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Preface to the Second Edition

There are certain rules that one must abide by in order to create a
successful sequel.

— Randy Meeks, from the trailer to Scream 2

While we may not follow the precise rules that Mr. Meeks had in mind for suc-
cessful sequels, we have made a number of changes to the text in this second
edition. In the new edition, we continue to introduce new topics with concrete ex-
amples, we provide complete proofs of almost every result, and we preserve the
book’s friendly style and lively presentation, interspersing the text with occasional
jokes and quotations. The first two chapters, on graph theory and combinatorics,
remain largely independent, and may be covered in either order. Chapter 3, on
infinite combinatorics and graphs, may also be studied independently, although
many readers will want to investigate trees, matchings, and Ramsey theory for
finite sets before exploring these topics for infinite sets in the third chapter. Like
the first edition, this text is aimed at upper-division undergraduate students in
mathematics, though others will find much of interest as well. It assumes only
familiarity with basic proof techniques, and some experience with matrices and
infinite series.

The second edition offers many additional topics for use in the classroom or for
independent study. Chapter 1 includes a new section covering distance and related
notions in graphs, following an expanded introductory section. This new section
also introduces the adjacency matrix of a graph, and describes its connection to
important features of the graph. Another new section on trails, circuits, paths,
and cycles treats several problems regarding Hamiltonian and Eulerian paths in
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graphs, and describes some elementary open problems regarding paths in graphs,
and graphs with forbidden subgraphs.

Several topics were added to Chapter 2. The introductory section on basic
counting principles has been expanded. Early in the chapter, a new section covers
multinomial coefficients and their properties, following the development of the
binomial coefficients. Another new section treats the pigeonhole principle, with
applications to some problems in number theory. The material on Pólya’s theory
of counting has now been expanded to cover de Bruijn’s more general method of
counting arrangements in the presence of one symmetry group acting on the ob-
jects, and another acting on the set of allowed colors. A new section has also been
added on partitions, and the treatment of Eulerian numbers has been significantly
expanded. The topic of stable marriage is developed further as well, with three
interesting variations on the basic problem now covered here. Finally, the end
of the chapter features a new section on combinatorial geometry. Two principal
problems serve to introduce this rich area: a nice problem of Sylvester’s regard-
ing lines produced by a set of points in the plane, and the beautiful geometric
approach to Ramsey theory pioneered by Erdős and Szekeres in a problem about
the existence of convex polygons among finite sets of points in the plane.

In Chapter 3, a new section develops the theory of matchings further by in-
vestigating marriage problems on infinite sets, both countable and uncountable.
Another new section toward the end of this chapter describes a characterization
of certain large infinite cardinals by using linear orderings. Many new exercises
have also been added in each chapter, and the list of references has been com-
pletely updated.

The second edition grew out of our experiences teaching courses in graph the-
ory, combinatorics, and set theory at Appalachian State University, Davidson Col-
lege, and Furman University, and we thank these institutions for their support, and
our students for their comments. We also thank Mark Spencer at Springer-Verlag.
Finally, we thank our families for their patience and constant good humor through-
out this process. The first and third authors would also like to add that, since the
original publication of this book, their families have both gained their own second
additions!

May 2008 John M. Harris
Jeffry L. Hirst
Michael J. Mossinghoff



Preface to the First Edition

Three things should be considered: problems, theorems, and
applications.

— Gottfried Wilhelm Leibniz,
Dissertatio de Arte Combinatoria, 1666

This book grew out of several courses in combinatorics and graph theory given at
Appalachian State University and UCLA in recent years. A one-semester course
for juniors at Appalachian State University focusing on graph theory covered most
of Chapter 1 and the first part of Chapter 2. A one-quarter course at UCLA on
combinatorics for undergraduates concentrated on the topics in Chapter 2 and
included some parts of Chapter 1. Another semester course at Appalachian State
for advanced undergraduates and beginning graduate students covered most of the
topics from all three chapters.

There are rather few prerequisites for this text. We assume some familiarity
with basic proof techniques, like induction. A few topics in Chapter 1 assume
some prior exposure to elementary linear algebra. Chapter 2 assumes some famil-
iarity with sequences and series, especially Maclaurin series, at the level typically
covered in a first-year calculus course. The text requires no prior experience with
more advanced subjects, such as group theory.

While this book is primarily intended for upper-division undergraduate stu-
dents, we believe that others will find it useful as well. Lower-division undergrad-
uates with a penchant for proofs, and even talented high school students, will be
able to follow much of the material, and graduate students looking for an intro-
duction to topics in graph theory, combinatorics, and set theory may find several
topics of interest.
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Chapter 1 focuses on the theory of finite graphs. The first section serves as an
introduction to basic terminology and concepts. Each of the following sections
presents a specific branch of graph theory: trees, planarity, coloring, matchings,
and Ramsey theory. These five topics were chosen for two reasons. First, they
represent a broad range of the subfields of graph theory, and in turn they provide
the reader with a sound introduction to the subject. Second, and just as important,
these topics relate particularly well to topics in Chapters 2 and 3.

Chapter 2 develops the central techniques of enumerative combinatorics: the
principle of inclusion and exclusion, the theory and application of generating
functions, the solution of recurrence relations, Pólya’s theory of counting arrange-
ments in the presence of symmetry, and important classes of numbers, including
the Fibonacci, Catalan, Stirling, Bell, and Eulerian numbers. The final section in
the chapter continues the theme of matchings begun in Chapter 1 with a consider-
ation of the stable marriage problem and the Gale–Shapley algorithm for solving
it.

Chapter 3 presents infinite pigeonhole principles, König’s Lemma, Ramsey’s
Theorem, and their connections to set theory. The systems of distinct representa-
tives of Chapter 1 reappear in infinite form, linked to the axiom of choice. Count-
ing is recast as cardinal arithmetic, and a pigeonhole property for cardinals leads
to discussions of incompleteness and large cardinals. The last sections connect
large cardinals to finite combinatorics and describe supplementary material on
computability.

Following Leibniz’s advice, we focus on problems, theorems, and applications
throughout the text. We supply proofs of almost every theorem presented. We
try to introduce each topic with an application or a concrete interpretation, and
we often introduce more applications in the exercises at the end of each section.
In addition, we believe that mathematics is a fun and lively subject, so we have
tried to enliven our presentation with an occasional joke or (we hope) interesting
quotation.

We would like to thank the Department of Mathematical Sciences at Appala-
chian State University and the Department of Mathematics at UCLA. We would
especially like to thank our students (in particular, Jae-Il Shin at UCLA), whose
questions and comments on preliminary versions of this text helped us to improve
it. We would also like to thank the three anonymous reviewers, whose suggestions
helped to shape this book into its present form. We also thank Sharon McPeake,
a student at ASU, for her rendering of the Königsberg bridges.

In addition, the first author would like to thank Ron Gould, his graduate advi-
sor at Emory University, for teaching him the methods and the joys of studying
graphs, and for continuing to be his advisor even after graduation. He especially
wants to thank his wife, Priscilla, for being his perfect match, and his daughter
Sophie for adding color and brightness to each and every day. Their patience and
support throughout this process have been immeasurable.

The second author would like to thank Judith Roitman, who introduced him to
set theory and Ramsey’s Theorem at the University of Kansas, using an early draft
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of her fine text. Also, he would like to thank his wife, Holly (the other Professor
Hirst), for having the infinite tolerance that sets her apart from the norm.

The third author would like to thank Bob Blakley, from whom he first learned
about combinatorics as an undergraduate at Texas A & M University, and Don-
ald Knuth, whose class Concrete Mathematics at Stanford University taught him
much more about the subject. Most of all, he would like to thank his wife, Kris-
tine, for her constant support and infinite patience throughout the gestation of this
project, and for being someone he can always, well, count on.

September 1999 John M. Harris
Jeffry L. Hirst
Michael J. Mossinghoff
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1
Graph Theory

“Begin at the beginning,” the King said, gravely, “and go on till you
come to the end; then stop.”

— Lewis Carroll, Alice in Wonderland

The Pregolya River passes through a city once known as Königsberg. In the 1700s
seven bridges were situated across this river in a manner similar to what you see
in Figure 1.1. The city’s residents enjoyed strolling on these bridges, but, as hard
as they tried, no resident of the city was ever able to walk a route that crossed each
of these bridges exactly once. The Swiss mathematician Leonhard Euler learned
of this frustrating phenomenon, and in 1736 he wrote an article [98] about it.
His work on the “Königsberg Bridge Problem” is considered by many to be the
beginning of the field of graph theory.

FIGURE 1.1. The bridges in Königsberg.

J.M. Harris et al., Combinatorics and Graph Theory, DOI: 10.1007/978-0-387-79711-3 1,
c© Springer Science+Business Media, LLC 2008
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At first, the usefulness of Euler’s ideas and of “graph theory” itself was found
only in solving puzzles and in analyzing games and other recreations. In the mid
1800s, however, people began to realize that graphs could be used to model many
things that were of interest in society. For instance, the “Four Color Map Conjec-
ture,” introduced by DeMorgan in 1852, was a famous problem that was seem-
ingly unrelated to graph theory. The conjecture stated that four is the maximum
number of colors required to color any map where bordering regions are colored
differently. This conjecture can easily be phrased in terms of graph theory, and
many researchers used this approach during the dozen decades that the problem
remained unsolved.

The field of graph theory began to blossom in the twentieth century as more
and more modeling possibilities were recognized — and the growth continues. It
is interesting to note that as specific applications have increased in number and in
scope, the theory itself has developed beautifully as well.

In Chapter 1 we investigate some of the major concepts and applications of
graph theory. Keep your eyes open for the Königsberg Bridge Problem and the
Four Color Problem, for we will encounter them along the way.

1.1 Introductory Concepts

A definition is the enclosing a wilderness of idea within a wall of
words.

— Samuel Butler, Higgledy-Piggledy

1.1.1 Graphs and Their Relatives

A graph consists of two finite sets, V and E. Each element of V is called a vertex
(plural vertices). The elements of E, called edges, are unordered pairs of vertices.
For instance, the set V might be {a, b, c, d, e, f, g, h}, and E might be {{a, d},
{a, e}, {b, c}, {b, e}, {b, g}, {c, f}, {d, f}, {d, g}, {g, h}}. Together, V and E
are a graph G.

Graphs have natural visual representations. Look at the diagram in Figure 1.2.
Notice that each element of V is represented by a small circle and that each ele-
ment of E is represented by a line drawn between the corresponding two elements
of V .

� � � �

���	

FIGURE 1.2. A visual representation of the graph G.
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As a matter of fact, we can just as easily define a graph to be a diagram consist-
ing of small circles, called vertices, and curves, called edges, where each curve
connects two of the circles together. When we speak of a graph in this chapter, we
will almost always refer to such a diagram.

We can obtain similar structures by altering our definition in various ways. Here
are some examples.

1. By replacing our set E with a set of ordered pairs of vertices, we obtain
a directed graph, or digraph (Figure 1.3). Each edge of a digraph has a
specific orientation.

FIGURE 1.3. A digraph.

2. If we allow repeated elements in our set of edges, technically replacing our
set E with a multiset, we obtain a multigraph (Figure 1.4).

FIGURE 1.4. A multigraph.

3. By allowing edges to connect a vertex to itself (“loops”), we obtain a pseu-
dograph (Figure 1.5).

FIGURE 1.5. A pseudograph.
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4. Allowing our edges to be arbitrary subsets of vertices (rather than just pairs)
gives us hypergraphs (Figure 1.6).

	�

	�

	�
	�

	�

FIGURE 1.6. A hypergraph with 7 vertices and 5 edges.

5. By allowing V or E to be an infinite set, we obtain infinite graphs. Infinite
graphs are studied in Chapter 3.

In this chapter we will focus on finite, simple graphs: those without loops or
multiple edges.

Exercises

1. Ten people are seated around a circular table. Each person shakes hands
with everyone at the table except the person sitting directly across the table.
Draw a graph that models this situation.

2. Six fraternity brothers (Adam, Bert, Chuck, Doug, Ernie, and Filthy Frank)
need to pair off as roommates for the upcoming school year. Each person
has compiled a list of the people with whom he would be willing to share a
room.

Adam’s list: Doug
Bert’s list: Adam, Ernie
Chuck’s list: Doug, Ernie
Doug’s list: Chuck
Ernie’s list: Ernie
Frank’s list: Adam, Bert

Draw a digraph that models this situation.

3. There are twelve women’s basketball teams in the Atlantic Coast Confer-
ence: Boston College (B), Clemson (C), Duke (D), Florida State (F), Geor-
gia Tech (G), Miami (I), NC State (S), Univ. of Maryland (M), Univ. of
North Carolina (N), Univ. of Virginia (V), Virginia Tech (T), and Wake
Forest Univ. (W). At a certain point in midseason,

B has played I, T*, W

C has played D*, G
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D has played C*, S, W

F has played N*, V

G has played C, M

I has played B, M, T

S has played D, V*

M has played G, I, N

N has played F*, M, W

V has played F, S*

T has played B*, I

W has played B, D, N

The asterisk(*) indicates that these teams have played each other twice.
Draw a multigraph that models this situation.

4. Can you explain why no resident of Königsberg was ever able to walk a
route that crossed each bridge exactly once? (We will encounter this ques-
tion again in Section 1.4.1.)

1.1.2 The Basics

Your first discipline is your vocabulary;
— Robert Frost

In this section we will introduce a number of basic graph theory terms and
concepts. Study them carefully and pay special attention to the examples that are
provided. Our work together in the sections that follow will be enriched by a solid
understanding of these ideas.

The Very Basics

The vertex set of a graph G is denoted by V (G), and the edge set is denoted
by E(G). We may refer to these sets simply as V and E if the context makes the
particular graph clear. For notational convenience, instead of representing an edge
as {u, v}, we denote this simply by uv. The order of a graph G is the cardinality
of its vertex set, and the size of a graph is the cardinality of its edge set.

Given two vertices u and v, if uv ∈ E, then u and v are said to be adjacent. In
this case, u and v are said to be the end vertices of the edge uv. If uv �∈ E, then u
and v are nonadjacent. Furthermore, if an edge e has a vertex v as an end vertex,
we say that v is incident with e.

The neighborhood (or open neighborhood) of a vertex v, denoted by N(v), is
the set of vertices adjacent to v:

N(v) = {x ∈ V | vx ∈ E}.
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The closed neighborhood of a vertex v, denoted by N [v], is simply the set {v} ∪
N(v). Given a set S of vertices, we define the neighborhood of S, denoted by
N(S), to be the union of the neighborhoods of the vertices in S. Similarly, the
closed neighborhood of S, denoted N [S], is defined to be S ∪N(S).

The degree of v, denoted by deg(v), is the number of edges incident with v. In
simple graphs, this is the same as the cardinality of the (open) neighborhood of v.
The maximum degree of a graph G, denoted by Δ(G), is defined to be

Δ(G) = max{deg(v) | v ∈ V (G)}.

Similarly, the minimum degree of a graph G, denoted by δ(G), is defined to be

δ(G) = min{deg(v) | v ∈ V (G)}.

The degree sequence of a graph of order n is the n-term sequence (usually written
in descending order) of the vertex degrees.

Let’s use the graph G in Figure 1.2 to illustrate some of these concepts: G
has order 8 and size 9; vertices a and e are adjacent while vertices a and b are
nonadjacent; N(d) = {a, f, g}, N [d] = {a, d, f, g}; Δ(G) = 3, δ(G) = 1; and
the degree sequence is 3, 3, 3, 2, 2, 2, 2, 1.

The following theorem is often referred to as the First Theorem of Graph The-
ory.

Theorem 1.1. In a graph G, the sum of the degrees of the vertices is equal to
twice the number of edges. Consequently, the number of vertices with odd degree
is even.

Proof. Let S =
∑

v∈V deg(v). Notice that in counting S, we count each edge
exactly twice. Thus, S = 2|E| (the sum of the degrees is twice the number of
edges). Since S is even, it must be that the number of vertices with odd degree is
even.

Perambulation and Connectivity

A walk in a graph is a sequence of (not necessarily distinct) vertices v1, v2, . . . , vk

such that vivi+1 ∈ E for i = 1, 2, . . . , k − 1. Such a walk is sometimes called
a v1–vk walk, and v1 and vk are the end vertices of the walk. If the vertices in a
walk are distinct, then the walk is called a path. If the edges in a walk are distinct,
then the walk is called a trail. In this way, every path is a trail, but not every trail
is a path. Got it?

A closed path, or cycle, is a path v1, . . . , vk (where k ≥ 3) together with the
edge vkv1. Similarly, a trail that begins and ends at the same vertex is called a
closed trail, or circuit. The length of a walk (or path, or trail, or cycle, or circuit)
is its number of edges, counting repetitions.

Once again, let’s illustrate these definitions with an example. In the graph of
Figure 1.7, a, c, f , c, b, d is a walk of length 5. The sequence b, a, c, b, d represents
a trail of length 4, and the sequence d, g, b, a, c, f , e represents a path of length 6.
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FIGURE 1.7.

Also, g, d, b, c, a, b, g is a circuit, while e, d, b, a, c, f , e is a cycle. In general, it
is possible for a walk, trail, or path to have length 0, but the least possible length
of a circuit or cycle is 3.

The following theorem is often referred to as the Second Theorem in this book.

Theorem 1.2. In a graph G with vertices u and v, every u–v walk contains a u–v
path.

Proof. Let W be a u–v walk in G. We prove this theorem by induction on the
length of W . If W is of length 1 or 2, then it is easy to see that W must be a path.
For the induction hypothesis, suppose the result is true for all walks of length less
than k, and suppose W has length k. Say that W is

u = w0, w1, w2, . . . , wk−1, wk = v

where the vertices are not necessarily distinct. If the vertices are in fact distinct,
then W itself is the desired u–v path. If not, then let j be the smallest integer such
that wj = wr for some r > j. Let W1 be the walk

u = w0, . . . , wj , wr+1, . . . , wk = v.

This walk has length strictly less than k, and therefore the induction hypothesis
implies that W1 contains a u–v path. This means that W contains a u–v path, and
the proof is complete.

We now introduce two different operations on graphs: vertex deletion and edge
deletion. Given a graph G and a vertex v ∈ V (G), we let G− v denote the graph
obtained by removing v and all edges incident with v from G. If S is a set of
vertices, we let G − S denote the graph obtained by removing each vertex of S
and all associated incident edges. If e is an edge of G, then G − e is the graph
obtained by removing only the edge e (its end vertices stay). If T is a set of edges,
then G − T is the graph obtained by deleting each edge of T from G. Figure 1.8
gives examples of these operations.

A graph is connected if every pair of vertices can be joined by a path. Infor-
mally, if one can pick up an entire graph by grabbing just one vertex, then the
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FIGURE 1.8. Deletion operations.
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FIGURE 1.9. Connected and disconnected graphs.

graph is connected. In Figure 1.9, G1 is connected, and both G2 and G3 are not
connected (or disconnected). Each maximal connected piece of a graph is called
a connected component. In Figure 1.9, G1 has one component, G2 has three com-
ponents, and G3 has two components.

If the deletion of a vertex v from G causes the number of components to in-
crease, then v is called a cut vertex. In the graph G of Figure 1.8, vertex d is a cut
vertex and vertex c is not. Similarly, an edge e in G is said to be a bridge if the
graph G − e has more components than G. In Figure 1.8, the edge ab is the only
bridge.

A proper subset S of vertices of a graph G is called a vertex cut set (or simply,
a cut set) if the graph G − S is disconnected. A graph is said to be complete if
every vertex is adjacent to every other vertex. Consequently, if a graph contains at
least one nonadjacent pair of vertices, then that graph is not complete. Complete
graphs do not have any cut sets, since G−S is connected for all proper subsets S
of the vertex set. Every non-complete graph has a cut set, though, and this leads
us to another definition. For a graph G which is not complete, the connectivity
of G, denoted κ(G), is the minimum size of a cut set of G. If G is a connected,
non-complete graph of order n, then 1 ≤ κ(G) ≤ n − 2. If G is disconnected,
then κ(G) = 0. If G is complete of order n, then we say that κ(G) = n − 1.
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Further, for a positive integer k, we say that a graph is k-connected if k ≤ κ(G).
You will note here that “1-connected” simply means “connected.”

Here are several facts that follow from these definitions. You will get to prove
a couple of them in the exercises.

i. A graph is connected if and only if κ(G) ≥ 1.

ii. κ(G) ≥ 2 if and only if G is connected and has no cut vertices.

iii. Every 2-connected graph contains at least one cycle.

iv. For every graph G, κ(G) ≤ δ(G).

Exercises

1. If G is a graph of order n, what is the maximum number of edges in G?

2. Prove that for any graph G of order at least 2, the degree sequence has at
least one pair of repeated entries.

3. Consider the graph shown in Figure 1.10.

�
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�

FIGURE 1.10.

(a) How many different paths have c as an end vertex?

(b) How many different paths avoid vertex c altogether?

(c) What is the maximum length of a circuit in this graph? Give an exam-
ple of such a circuit.

(d) What is the maximum length of a circuit that does not include vertex
c? Give an example of such a circuit.

4. Is it true that a finite graph having exactly two vertices of odd degree must
contain a path from one to the other? Give a proof or a counterexample.

5. Let G be a graph where δ(G) ≥ k.

(a) Prove that G has a path of length at least k.

(b) If k ≥ 2, prove that G has a cycle of length at least k + 1.
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6. Prove that every closed odd walk in a graph contains an odd cycle.

7. Draw a connected graph having at most 10 vertices that has at least one
cycle of each length from 5 through 9, but has no cycles of any other length.

8. Let P1 and P2 be two paths of maximum length in a connected graph G.
Prove that P1 and P2 have a common vertex.

9. Let G be a graph of order n that is not connected. What is the maximum
size of G?

10. Let G be a graph of order n and size strictly less than n − 1. Prove that G
is not connected.

11. Prove that an edge e is a bridge of G if and only if e lies on no cycle of G.

12. Prove or disprove each of the following statements.

(a) If G has no bridges, then G has exactly one cycle.

(b) If G has no cut vertices, then G has no bridges.

(c) If G has no bridges, then G has no cut vertices.

13. Prove or disprove: If every vertex of a connected graph G lies on at least
one cycle, then G is 2-connected.

14. Prove that every 2-connected graph contains at least one cycle.

15. Prove that for every graph G,

(a) κ(G) ≤ δ(G);

(b) if δ(G) ≥ n− 2, then κ(G) = δ(G).

16. Let G be a graph of order n.

(a) If δ(G) ≥ n−1
2 , then prove that G is connected.

(b) If δ(G) ≥ n−2
2 , then show that G need not be connected.

1.1.3 Special Types of Graphs

until we meet again . . .
— from An Irish Blessing

In this section we describe several types of graphs. We will run into many of them
later in the chapter.

1. Complete Graphs

We introduced complete graphs in the previous section. A complete graph
of order n is denoted by Kn, and there are several examples in Figure 1.11.
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FIGURE 1.11. Examples of complete graphs.

2. Empty Graphs

The empty graph on n vertices, denoted by En, is the graph of order n
where E is the empty set (Figure 1.12).

��

FIGURE 1.12. An empty graph.

3. Complements

Given a graph G, the complement of G, denoted by G, is the graph whose
vertex set is the same as that of G, and whose edge set consists of all the
edges that are not present in G (Figure 1.13).


 


FIGURE 1.13. A graph and its complement.

4. Regular Graphs

A graph G is regular if every vertex has the same degree. G is said to be
regular of degree r (or r-regular) if deg(v) = r for all vertices v in G.
Complete graphs of order n are regular of degree n− 1, and empty graphs
are regular of degree 0. Two further examples are shown in Figure 1.14.
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FIGURE 1.14. Examples of regular graphs.

5. Cycles

The graph Cn is simply a cycle on n vertices (Figure 1.15).

FIGURE 1.15. The graph C7.

6. Paths

The graph Pn is simply a path on n vertices (Figure 1.16).

FIGURE 1.16. The graph P6.

7. Subgraphs

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆
E(G). In this case we write H ⊆ G, and we say that G contains H . In
a graph where the vertices and edges are unlabeled, we say that H ⊆ G
if the vertices could be labeled in such a way that V (H) ⊆ V (G) and
E(H) ⊆ E(G). In Figure 1.17, H1 and H2 are both subgraphs of G, but
H3 is not.

8. Induced Subgraphs

Given a graph G and a subset S of the vertex set, the subgraph of G induced
by S, denoted 〈S〉, is the subgraph with vertex set S and with edge set
{uv | u, v ∈ S and uv ∈ E(G)}. So, 〈S〉 contains all vertices of S and
all edges of G whose end vertices are both in S. A graph and two of its
induced subgraphs are shown in Figure 1.18.
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FIGURE 1.17. H1 and H2 are subgraphs of G.
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FIGURE 1.18. A graph and two of its induced subgraphs.

9. Bipartite Graphs

A graph G is bipartite if its vertex set can be partitioned into two sets X
and Y in such a way that every edge of G has one end vertex in X and the
other in Y . In this case, X and Y are called the partite sets. The first two
graphs in Figure 1.19 are bipartite. Since it is not possible to partition the
vertices of the third graph into two such sets, the third graph is not bipartite.

� �

FIGURE 1.19. Two bipartite graphs and one non-bipartite graph.

A bipartite graph with partite sets X and Y is called a complete bipartite
graph if its edge set is of the form E = {xy | x ∈ X, y ∈ Y } (that is, if
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every possible connection of a vertex of X with a vertex of Y is present in
the graph). Such a graph is denoted by K|X|,|Y |. See Figure 1.20.

��� ��� ���

FIGURE 1.20. A few complete bipartite graphs.

The next theorem gives an interesting characterization of bipartite graphs.

Theorem 1.3. A graph with at least two vertices is bipartite if and only if it
contains no odd cycles.

Proof. Let G be a bipartite graph with partite sets X and Y . Let C be a cycle
of G and say that C is v1, v2, . . . , vk, v1. Assume without loss of generality that
v1 ∈ X . The nature of bipartite graphs implies then that vi ∈ X for all odd i, and
vi ∈ Y for all even i. Since vk is adjacent to v1, it must be that k is even; and
hence C is an even cycle.

For the reverse direction of the theorem, let G be a graph of order at least two
such that G contains no odd cycles. Without loss of generality, we can assume
that G is connected, for if not, we could treat each of its connected components
separately. Let v be a vertex of G, and define the set X to be

X = {x ∈ V (G) | the shortest path from x to v has even length},

and let Y = V (G) \X .
Now let x and x′ be vertices of X , and suppose that x and x′ are adjacent. If

x = v, then the shortest path from v to x′ has length one. But this implies that
x′ ∈ Y , a contradiction. So, it must be that x �= v, and by a similar argument,
x′ �= v. Let P1 be a path from v to x of shortest length (a shortest v–x path) and
let P2 be a shortest v–x′ path. Say that P1 is v = v0, v1, . . . , v2k = x and that P2

is v = w0, w1, . . . , w2t = x′. The paths P1 and P2 certainly have v in common.
Let v′ be a vertex on both paths such that the v′–x path, call it P ′

1, and the v′–x′

path, call it P ′
2, have only the vertex v′ in common. Essentially, v′ is the “last”

vertex common to P1 and P2. It must be that P ′
1 and P ′

2 are shortest v′–x and
v′–x′ paths, respectively, and it must be that v′ = vi = wi for some i. But since
x and x′ are adjacent, vi, vi+1, . . . , v2k, w2t, w2t−1, . . . , wi is a cycle of length
(2k − i) + (2t− i) + 1, which is odd, and that is a contradiction.

Thus, no two vertices in X are adjacent to each other, and a similar argument
shows that no two vertices in Y are adjacent to each other. Therefore, G is bipartite
with partite sets X and Y .
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We conclude this section with a discussion of what it means for two graphs
to be the same. Look closely at the graphs in Figure 1.21 and convince yourself
that one could be re-drawn to look just like the other. Even though these graphs
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FIGURE 1.21. Are these graphs the same?

have different vertex sets and are drawn differently, it is still quite natural to think
of these graphs as being the same. The idea of isomorphism formalizes this phe-
nomenon.

Graphs G and H are said to be isomorphic to one another (or simply, isomor-
phic) if there exists a one-to-one correspondence f : V (G) → V (H) such that
for each pair x,y of vertices of G, xy ∈ E(G) if and only if f(x)f(y) ∈ E(H).
In other words, G and H are isomorphic if there exists a mapping from one vertex
set to another that preserves adjacencies. The mapping itself is called an isomor-
phism. In our example, such an isomorphism could be described as follows:

{(a, 1), (b, 2), (c, 8), (d, 3), (e, 7), (f, 4), (g, 6), (h, 5)} .

When two graphs G and H are isomorphic, it is not uncommon to simply say that
G = H or that “G is H .” As you will see, we will make use of this convention
quite often in the sections that follow.

Several facts about isomorphic graphs are immediate. First, if G and H are
isomorphic, then |V (G)| = |V (H)| and |E(G)| = |E(H)|. The converse of this
statement is not true, though, and you can see that in the graphs of Figure 1.22.
The vertex and edge counts are the same, but the two graphs are clearly not iso-


 �

FIGURE 1.22.
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morphic.
A second necessary fact is that if G and H are isomorphic then the degree

sequences must be identical. Again, the graphs in Figure 1.22 show that the con-
verse of this statement is not true. A third fact, and one that you will prove in
Exercise 8, is that if graphs G and H are isomorphic, then their complements G
and H must also be isomorphic.

In general, determining whether two graphs are isomorphic is a difficult prob-
lem. While the question is simple for small graphs and for pairs where the ver-
tex counts, edge counts, or degree sequences differ, the general problem is often
tricky to solve. A common strategy, and one you might find helpful in Exercises 9
and 10, is to compare subgraphs, complements, or the degrees of adjacent pairs
of vertices.

Exercises

1. For n ≥ 1, prove that Kn has n(n− 1)/2 edges.

2. If Kr1,r2 is regular, prove that r1 = r2.

3. Determine whether K4 is a subgraph of K4,4. If yes, then exhibit it. If no,
then explain why not.

4. Determine whether P4 is an induced subgraph of K4,4. If yes, then exhibit
it. If no, then explain why not.

5. List all of the unlabeled connected subgraphs of C34.

6. The concept of complete bipartite graphs can be generalized to define the
complete multipartite graph Kr1,r2,...,rk

. This graph consists of k sets of
vertices A1, A2, . . . , Ak, with |Ai| = ri for each i, where all possible
“interset edges” are present and no “intraset edges” are present. Find ex-
pressions for the order and size of Kr1,r2,...,rk

.

7. The line graph L(G) of a graph G is defined in the following way: the
vertices of L(G) are the edges of G, V (L(G)) = E(G), and two vertices
in L(G) are adjacent if and only if the corresponding edges in G share a
vertex.

(a) Let G be the graph shown in Figure 1.23. Find L(G).

FIGURE 1.23.
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(b) Find the complement of L(K5).
(c) Suppose G has n vertices, labeled v1, . . . vn, and the degree of vertex

vi is ri. Let m denote the size of G, so r1 + r2 + · · ·+ rn = 2m. Find
formulas for the order and size of L(G) in terms of n, m, and the ri.

8. Prove that if graphs G and H are isomorphic, then their complements G
and H are also isomorphic.

9. Prove that the two graphs in Figure 1.24 are not isomorphic.

FIGURE 1.24.

10. Two of the graphs in Figure 1.25 are isomorphic.

� � �

FIGURE 1.25.

(a) For the pair that is isomorphic, give an appropriate one-to-one corre-
spondence.

(b) Prove that the remaining graph is not isomporhic to the other two.

1.2 Distance in Graphs

‘Tis distance lends enchantment to the view . . .
— Thomas Campbell, The Pleasures of Hope

How far is it from one vertex to another? In this section we define distance in
graphs, and we consider several properties, interpretations, and applications. Dis-
tance functions, called metrics, are used in many different areas of mathematics,
and they have three defining properties. If M is a metric, then
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i. M(x, y) ≥ 0 for all x, y, and M(x, y) = 0 if and only if x = y;

ii. M(x, y) = M(y, x) for all x, y;

iii. M(x, y) ≤ M(x, z) + M(z, y) for all x, y, z.

As you encounter the distance concept in the graph sense, verify for yourself that
the function is in fact a metric.

1.2.1 Definitions and a Few Properties

I prefer the term ‘eccentric.’
— Brenda Bates, Urban Legend

Distance in graphs is defined in a natural way: in a connected graph G, the dis-
tance from vertex u to vertex v is the length (number of edges) of a shortest u–v
path in G. We denote this distance by d(u, v), and in situations where clarity of
context is important, we may write dG(u, v). In Figure 1.26, d(b, k) = 4 and
d(c, m) = 6.
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FIGURE 1.26.

For a given vertex v of a connected graph, the eccentricity of v, denoted ecc(v),
is defined to be the greatest distance from v to any other vertex. That is,

ecc(v) = max
x∈V (G)

{d(v, x)} .

In Figure 1.26, ecc(a) = 5 since the farthest vertices from a (namely k, m, n) are
at a distance of 5 from a.

Of the vertices in this graph, vertices c, k, m and n have the greatest eccentricity
(6), and vertices e, f and g have the smallest eccentricity (3). These values and
types of vertices are given special names. In a connected graph G, the radius of G,
denoted rad(G), is the value of the smallest eccentricity. Similarly, the diameter
of G, denoted diam(G), is the value of the greatest eccentricity. The center of the
graph G is the set of vertices, v, such that ecc(v) = rad(G). The periphery of G
is the set of vertices, u, such that ecc(u) = diam(G). In Figure 1.26, the radius
is 3, the diameter is 6, and the center and periphery of the graph are, respectively,
{e, f, g} and {c, k, m, n}.
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Surely these terms sound familiar to you. On a disk, the farthest one can travel
from one point to another is the disk’s diameter. Points on the rim of a disk are on
the periphery. The distance from the center of the disk to any other point on the
disk is at most the radius. The terms for graphs have similar meanings.

Do not be misled by this similarity, however. You may have noticed that the
diameter of our graph G is twice the radius of G. While this does seem to be a
natural relationship, such is not the case for all graphs. Take a quick look at a
cycle or a complete graph. For either of these graphs, the radius and diameter are
equal!

The following theorem describes the proper relationship between the radii and
diameters of graphs. While not as natural, tight, or “circle-like” as you might
hope, this relationship does have the advantage of being correct.

Theorem 1.4. For any connected graph G, rad(G) ≤ diam(G) ≤ 2 rad(G).

Proof. By definition, rad(G) ≤ diam(G), so we just need to prove the second
inequality. Let u and v be vertices in G such that d(u, v) = diam(G). Further, let
c be a vertex in the center of G. Then,

diam(G) = d(u, v) ≤ d(u, c) + d(c, v) ≤ 2 ecc(c) = 2 rad(G).

The definitions in this section can also be extended to graphs that are not con-
nected. In the context of a single connected component of a disconnected graph,
these terms have their normal meanings. If two vertices are in different compo-
nents, however, we say that the distance between them is infinity.

We conclude this section with two interesting results. Choose your favorite
graph. It can be large or small, dense with edges or sparse. Choose anything you
like, as long as it is your favorite. Now, wouldn’t it be neat if there existed a graph
in which your favorite graph was the “center” of attention? The next theorem
(credited to Hedetneimi in [44]) makes your wish come true.

Theorem 1.5. Every graph is (isomorphic to) the center of some graph.

Proof. Let G be a graph (your favorite!). We now construct a new graph H (see
Figure 1.27) by adding four vertices (w, x, y, z) to G, along with the following
edges:

{wx, yz} ∪ {xa | a ∈ V (G)} ∪ {yb | b ∈ V (G)}.

Now, ecc(w) = ecc(z) = 4, ecc(y) = ecc(x) = 3, and for any vertex v ∈ V (G),

� ��� 


FIGURE 1.27. G is the center.

ecc(v) = 2. Therefore, G is the center of H .



20 1. Graph Theory

Suppose you don’t like being the center of attention. Maybe you would rather
your favorite graph avoid the spotlight and stay on the periphery. The next theorem
(due to Bielak and Sysło, [25]) tells us when that can happen.

Theorem 1.6. A graph G is (isomorphic to) the periphery of some graph if and
only if either every vertex has eccentricity 1, or no vertex has eccentricity 1.

Proof. Suppose that every vertex of G has eccentricity 1. Not only does this mean
that G is complete, it also means that every vertex of G is in the periphery. G is
the periphery of itself!

On the other hand, suppose that no vertex of G has eccentricity 1. This means
that for every vertex u of G, there is some vertex v of G such that uv �∈ E(G).
Now, let H be a new graph, constructed by adding a single vertex, w, to G, to-
gether with the edges {wx | x ∈ V (G)}. In the graph H , the eccentricity of w is
1 (w is adjacent to everything). Further, for any vertex x ∈ V (G), the eccentricity
of x in H is 2 (no vertex of G is adjacent to everything else in G, and everything
in G is adjacent to w). Thus, the periphery of H is precisely the vertices of G.

For the reverse direction, let us suppose that G has some vertices of eccentricity
1 and some vertices of eccentricity greater than 1. Suppose also (in anticipation
of a contradiction) that G forms the periphery of some graph, say H . Since the
eccentricities of the vertices in G are not all the same, it must be that V (G) is
a proper subset of V (H). This means that H is not the periphery of itself and
that diam(H) ≥ 2. Now, let v be a vertex of G whose eccentricity in G is 1 (v
is therefore adjacent to all vertices of G). Since v ∈ V (G) and since G is the
periphery of H , there exists a vertex w in H such that d(v, w) = diam(H) ≥ 2.
The vertex w, then, is also a peripheral vertex (see Exercise 4) and therefore must
be in G. This contradicts the fact that v is adjacent to everything in G.

Exercises

1. Find the radius, diameter and center of the graph shown in Figure 1.28.

FIGURE 1.28.

2. Find the radius and diameter of each of the following graphs: P2k, P2k+1,
C2k, C2k+1, Kn, Km,n.

3. For each graph in Exercise 2, find the number of vertices in the center.

4. If x is in the periphery of G and d(x, y) = ecc(x), then prove that y is in
the periphery of G.
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5. If u and v are adjacent vertices in a graph, prove that their eccentricities
differ by at most one.

6. A graph G is called self-centered if C(G) = V (G). Prove that every com-
plete bipartite graph, every cycle, and every complete graph is self-centered.

7. Given a connected graph G and a positive integer k, the kth power of G,
denoted Gk, is the graph with V (Gk) = V (G) and where vertices u and v
are adjacent in Gk if and only if dG(u, v) ≤ k.

(a) Draw the 2nd and 3rd powers of P8 and C10.

(b) For a graph G of order n, what is Gdiam(G)?

8. (a) Find a graph of order 7 that has radius 3 and diameter 6.

(b) Find a graph of order 7 that has radius 3 and diameter 5.

(c) Find a graph of order 7 that has radius 3 and diameter 4.

(d) Suppose r and d are positive integers and r ≤ d ≤ 2r. Describe a
graph that has radius r and diameter d.

9. Suppose that u and v are vertices in a graph G, ecc(u) = m, ecc(v) = n,
and m < n. Prove that d(u, v) ≥ n − m. Then draw a graph G1 where
d(u, v) = n −m, and another graph G2 where d(u, v) > n −m. In each
case, label the vertices u and v, and give the values of m and n.

10. Let G be a connected graph with at least one cycle. Prove that G has at least
one cycle whose length is less than or equal to 2 diam(G) + 1.

11. (a) Prove that if G is connected and diam(G) ≥ 3, then G is connected.

(b) Prove that if diam(G) ≥ 3, then diam(G) ≤ 3.

(c) Prove that if G is regular and diam(G) = 3, then diam(G) = 2.

1.2.2 Graphs and Matrices

Unfortunately no one can be told what the Matrix is. You have to see
it for yourself.

— Morpheus, The Matrix

What do matrices have to do with graphs? This is a natural question — nothing
we have seen so far has suggested any possible relationship between these two
types of mathematical objects. That is about to change!

As we have seen, a graph is a very visual object. To this point, we have deter-
mined distances by looking at the diagram, pointing with our fingers, and count-
ing edges. This sort of analysis works fairly well for small graphs, but it quickly
breaks down as the graphs of interest get larger. Analysis of large graphs often
requires computer assistance.
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Computers cannot just look and point at graphs like we can. Instead, they under-
stand graphs via matrix representations. One such representation is an adjacency
matrix. Let G be a graph with vertices v1, v2, . . . , vn. The adjacency matrix of G
is the n× n matrix A whose (i, j) entry, denoted by [A]i,j , is defined by

[A]i,j =
{

1 if vi and vj are adjacent,
0 otherwise.

The graph in Figure 1.29 has six vertices. Its adjacency matrix, A, is

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 1 0
0 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 1
1 0 0 1 0 1
0 0 1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

��

��

��

��

��

��

FIGURE 1.29.

Note that for simple graphs (where there are no loops) adjacency matrices have
all zeros on the main diagonal. You can also see from the definition that these
matrices are symmetric.1

A single graph can have multiple adjacency matrices — different orderings of
the vertices will produce different matrices. If you think that these matrices ought
to be related in some way, then you are correct! In fact, if A and B are two differ-
ent adjacency matrices of the same graph G, then there must exist a permutation
of the vertices such that when the permuation is applied to the corresponding rows
and columns of A, you get B.

This fact can be used in reverse to determine if two graphs are isomorphic,
and the permutation mentioned here serves as an appropriate bijection: Given two
graphs G1 and G2 with respective adjacency matrices A1 and A2, if one can apply

1Can you think of a context in which adjacency matrices might not be symmetric? Direct your
attention to Figure 1.3 for a hint.
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a permutation to the rows and columns of A1 and produce A2, then G1 and G2

are isomorphic.
Let’s take a closer look at the previous example. The fact that the (1, 6) entry

is 0 indicates that v1 and v6 are not adjacent. Consider now the (1, 6) entry of the
matrix A2. This entry is just the dot product of row one of A with column six of
A:

[A2]1,6 = (0, 0, 0, 1, 1, 0) · (0, 0, 1, 1, 1, 0)

= (0 · 0) + (0 · 0) + (0 · 1) + (1 · 1) + (1 · 1) + (0 · 0)
= 2.

Think about what makes this dot product nonzero. It is the fact that there was
at least one place (and here there were two places) where a 1 in row one corre-
sponded with a 1 in column six. In our case, the 1 in the fourth position of row
one (representing the edge v1v4) matched up with the 1 in the fourth position of
column six (representing the edge v4v6). The same thing occurred in the fifth po-
sition of the row and column (where the edges represented were v1v5 and v5v6).

Can you see what is happening here? The entry in position (1, 6) of A2 is equal
to the number of two-edge walks from v1 to v6 in G. As the next theorem shows
us, this is not a coincidence.

Theorem 1.7. Let G be a graph with vertices labeled v1, v2, . . . , vn, and let A
be its corresponding adjacency matrix. For any positive integer k, the (i, j) entry
of Ak is equal to the number of walks from vi to vj that use exactly k edges.

Proof. We prove this by induction on k. For k = 1, the result is true since [A]i,j =
1 exactly when there is a one-edge walk between vi and vj .

Now suppose that for every i and j, the (i, j) entry of Ak−1 is the number of
walks from vi to vj that use exactly k− 1 edges. For each k-edge walk from vi to
vj , there exists an h such that the walk can be thought of as a (k − 1)-edge walk
from vi to vh, combined with an edge from vh to vj . The total number of these
k-edge walks, then, is

∑

vh∈N(vj)

(number of (k − 1)-edge walks from vi to vh).

By the induction hypothesis, we can rewrite this sum as

∑

vh∈N(vj)

[Ak−1]i,h =
n∑

h=1

[Ak−1]i,h[A]h,j = [Ak]i,j ,

and this proves the result.

This theorem has a straightforward corollary regarding distance between ver-
tices.

Corollary 1.8. Let G be a graph with vertices labeled v1, v2, . . . , vn, and let
A be its corresponding adjacency matrix. If d(vi, vj) = x, then [Ak]i,j = 0 for
1 ≤ k < x.
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Let’s see if we can relate these matrices back to earlier distance concepts. Given
a graph G of order n with adjacency matrix A, and given a positive integer k,
define the matrix sum Sk to be

Sk = I + A + A2 + · · ·+ Ak,

where I is the n × n identity matrix. Since the entries of I and A are ones and
zeros, the entries of Sk (for any k) are nonnegative integers. This implies that for
every pair i, j, we have [Sk]i,j ≤ [Sk+1]i,j .

Theorem 1.9. Let G be a connected graph with vertices labeled v1, v2, . . . , vn,
and let A be its corresponding adjacency matrix.

1. If k is the smallest positive integer such that row j of Sk contains no zeros,
then ecc(vj) = k.

2. If r is the smallest positive integer such that all entries of at least one row
of Sr are positive, then rad(G) = r.

3. If m is the smallest positive integer such that all entries of Sm are positive,
then diam(G) = m.

Proof. We will prove the first part of the theorem. The proofs of the other parts
are left for you as exercises.2

Suppose that k is the smallest positive integer such that row j of Sk contains
no zeros. The fact that there are no zeros on row j of Sk implies that the distance
from vj to any other vertex is at most k. If k = 1, the result follows immediately.
For k > 1, the fact that there is at least one zero on row j of Sk−1 indicates that
there is at least one vertex whose distance from vj is greater than k − 1. This
implies that ecc(vj) = k.

We can use adjacency matrices to create other types of graph-related matrices.
The steps given below describe the construction of a new matrix, using the matrix
sums Sk defined earlier. Carefully read through the process, and (before you read
the paragraph that follows!) see if you can recognize the matrix that is produced.

Creating a New Matrix, M

Given: A connected graph of order n, with adjacency matrix A, and with Sk as
defined earlier.

1. For each i ∈ {1, 2, . . . , n}, let [M ]i,i = 0.

2. For each pair i, j where i �= j, let [M ]i,j = k where k is the least positive
integer such that [Sk]i,j �= 0.

2You’re welcome.
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Can you see what the entries of M will be? For each pair i, j, the (i, j) entry
of M is the distance from vi to vj . That is,

[M ]i,j = d(vi, vj).

The matrix M is called the distance matrix of the graph G.

Exercises

1. Give the adjacency matrix for each of the following graphs.

(a) P2k and P2k+1, where the vertices are labeled from one end of the
path to the other.

(b) C2k and C2k+1, where the vertices are labeled consecutively around
the cycle.

(c) Km,n, where the vertices in the first partite set are labeled v1, . . . , vm.

(d) Kn, where the vertices are labeled any way you please.

2. Without computing the matrix directly, find A3 where A is the adjacency
matrix of K4.

3. If A is the adjacency matrix for the graph G, show that the (j, j) entry of
A2 is the degree of vj .

4. Let A be the adjacency matrix for the graph G.

(a) Show that the number of triangles that contain vj is 1
2 [A3]j,j .

(b) The trace of a square matrix M , denoted Tr(M), is the sum of the
entries on the main diagonal. Prove that the number of triangles in G
is 1

6 Tr(A3).

5. Find the (1, 5) entry of A2009 where A is the adjacency matrix of C10 and
where the vertices of C10 are labeled consecutively around the cycle.

6. (a) Prove the second statement in Theorem 1.9.

(b) Prove the third statement in Theorem 1.9.

7. Use Theorem 1.9 to design an algorithm for determining the center of a
graph G.

8. The graph G has adjacency matrix A and distance matrix D. Prove that if
A = D, then G is complete.

9. Give the distance matrices for the graphs in Exercise 1. You should create
these matrices directly — it is not necessary to use the method described in
the section.
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1.2.3 Graph Models and Distance

Do I know you?
— Kevin Bacon, in Flatliners

We have already seen that graphs can serve as models for all sorts of situations.
In this section we will discuss several models in which the idea of distance is
significant.

The Acquaintance Graph

“Wow, what a small world!” This familiar expression often follows the discovery
of a shared acquaintance between two people. Such discoveries are enjoyable,
for sure, but perhaps the frequency with which they occur ought to keep us from
being as surprised as we typically are when we experience them.

We can get a better feel for this phenomenon by using a graph as a model.
Define the Acquaintance Graph, A, to be the graph where each vertex represents
a person, and an edge connects two vertices if the corresponding people know
each other. The context here is flexible — one could create this graph for the
people living in a certain neighborhood, or the people working in a certain office
building, or the people populating a country or the planet. Since the smaller graphs
are all subgraphs of the graphs for larger populations, most people think of A in
the largest sense: The vertices represent the Earth’s human population.3

An interesting question is whether or not the graph A, in the large (Earth) sense,
is connected. Might there be a person or a group of people with no connection
(direct or indirect) at all to another group of people?4 While there is a possibility
of this being the case, it is most certainly true that if A is in fact disconnected,
there is one very large connected component.

The graph A can be illuminating with regard to the “six degrees of separation”
phenomenon. Made popular (at least in part) by a 1967 experiment by social psy-
chologist Stanley Milgram [204] and a 1990 play by John Guare [142], the “six
degrees theory” asserts that given any pair of people, there is a chain of no more
than six acquaintance connections joining them. Translating into graph theorese,
the assertion is that diam(A) ≤ 6. It is, of course, difficult (if not impossible) to
confirm this. For one, A is enormous, and the kind of computation required for
confirmation is nontrivial (to say the least!) for matrices with six billion rows. Fur-
ther, the matrix A is not static — vertices and edges appear all of the time.5 Still,
the graph model gives us a good way to visualize this intriguing phenomenon.

Milgram’s experiment [204] was an interesting one. He randomly selected sev-
eral hundred people from certain communities in the United States and sent a

3The graph could be made even larger by allowing the vertices to represent all people, living or
dead. We will stick with the living people only — six billion vertices is large enough, don’t you think?

4Wouldn’t it be interesting to meet such a person? Wait — it wouldn’t be interesting for long
because as soon as you meet him, he is no longer disconnected!

5Vertices will disappear if you limit A to living people. Edges disappear when amnesia strikes.
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packet to each. Inside each packet was the name and address of a single “target”
person. If the recipient knew this target personally, the recipient was to mail the
packet directly to him. If the recipient did not know the target personally, the re-
cipient was to send the packet to the person he/she thought had the best chance
of knowing the target personally (perhaps someone in the same state as the target,
or something like that). The new recipient was to follow the same rules: Either
send it directly to the target (if known personally) or send it to someone who has
a good chance of knowing the target. Milgram tracked how many steps it took for
the packets to reach the target. Of the packets that eventually returned, the median
number of steps was 5! Wow, what a small world!

The Hollywood Graph

Is the actor Kevin Bacon the center of Hollywood? This question, first asked by a
group of college students in 1993, was the beginning of what was soon to become
a national craze: The Kevin Bacon Game. The object of the game is to connect
actors to Bacon through appearances in movies. For example, the actress Emma
Thompson can be linked to Bacon in two steps: Thompson costarred with Gary
Oldman in Harry Potter and the Prisoner of Azkaban (among others), and Oldman
appeared with Bacon in JFK. Since Thompson has not appeared with Bacon in
a movie, two steps is the best we can do. We say that Thompson has a Bacon
number of 2.

Can you sense the underlying graph here?6 Let us define the Hollywood Graph,
H , as follows: The vertices of H represent actors, and an edge exists between two
vertices when the corresponding actors have appeared in a movie together. So, in
H , Oldman is adjacent to both Bacon and Thompson, but Bacon and Thompson
are not adjacent. Thompson has a Bacon number of 2 because the distance from
her vertex to Bacon’s is 2. In general, an actor’s Bacon number is defined to be
the distance from that actor’s vertex to Bacon’s vertex in H . If an actor cannot be
linked to Bacon at all, then that actor’s Bacon number is infinity. As was the case
with the Acquaintance Graph, if H is disconnected we can focus our attention on
the single connected component that makes up most of H (Bacon’s component).

The ease with which Kevin Bacon can be connected to other actors might lead
one to conjecture that Bacon is the unique center of Hollywood. In terms of graph
theory, that conjecture would be that the center of H consists only of Bacon’s ver-
tex. Is this true? Is Bacon’s vertex even in the center at all? Like the Acquaintance
Graph, the nature of H changes frequently, and answers to questions like these
are elusive. The best we can do is to look at a snapshot of the graph and answer
the questions based on that particular point in time.

Let’s take a look at the graph as it appeared on December 25, 2007. On that
day, the Internet Movie Database [165] had records for nearly 1.3 million actors.
Patrick Reynolds maintains a website [234] that tracks Bacon numbers, among
other things. According to Reynolds, of the 1.3 million actors in the database on

6or, “Can you smell the Bacon?”
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that day, 917,007 could be linked to Bacon in some way via chains of shared
movie appearances. The maximum distance from Bacon to any of the actors in
his component was 8 (and so Bacon’s eccentricity is 8). What about eccentricities
of other actors? Are there any that are less than 8? According to Reynolds, the
answer is no — 8 is the smallest eccentricity, and so Kevin Bacon is in the center
of H . But it is very crowded there — thousands and thousands of other actors
have eccentricity 8 as well.

The Mathematical Collaboration Graph

The Hungarian Paul Erdős (1913–1996) was one of the greatest and most pro-
lific mathematicians of the twentieth century. Erdős authored or coauthored over
1500 mathematical papers covering topics in graph theory, combinatorics, set the-
ory, geometry, number theory, and more. He collaborated with hundreds of other
mathematicians, and this collaboration forms the basis of a Bacon-like ranking
system. While not as widely popular as Bacon numbers, almost all mathemati-
cians are familiar with the concept of Erdős numbers.

Erdős himself is assigned Erdős number 0. Any mathematician who coauthored
a paper with Erdős has Erdős number 1. If a person has coauthored a paper with
someone who has an Erdős number of 1 (and if that person himself/herself doesn’t
have Erdős number 1), then that person has an Erdős number of 2. Higher Erdős
numbers are assigned in a similar manner.

The underlying graph here should be clear. Define the Mathematical Collabo-
ration Graph, C, to have vertices corresponding to researchers, and let an edge
join two researchers if the two have coauthored a paper together. A researcher’s
Erdős number, then, is the distance from the corresponding vertex to the vertex
of Erdős. If a researcher is not in the same connected component of C as Erdős,
then that researcher has an infinite Erdős number.

As you might imagine, new vertices and edges are frequently added to C. Jerry
Grossman maintains a website [140] that keeps track of Erdős numbers. At one
point in 2007, there were over 500 researchers with Erdős number 1 and over
8100 with Erdős number 2. You might surmise that because Erdős died in 1996,
the number of people with Erdős number 1 has stopped increasing. While this is
surely to be true sometime in the near future, it hasn’t happened yet. A number of
papers coauthored by Erdős have been published since his death. Erdős has not
been communicating with collaborators from the great beyond (at least as far as
we know) — it is simply the case that his collaborators continue to publish joint
research that began years ago.

Small World Networks

As we saw earlier, the Acquaintance Graph provides a way to model the famous
“small world phemomenon” — the sense that humans are connected via numerous
recognized and unrecognized connections. The immense size and dynamic nature
of that graph make it difficult to analyze carefully and completely, and so smaller
models can prove to be more useful. In order for the more manageable graphs to
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be helpful, though, it is important that they enjoy some fundamental small world
properties.

So what makes a small world small? What properties should a graph have if
it is to be a model of a small world? Let’s list a few. As you read through the
list below, think about your own acquaintance network and see if these properties
make sense to you.

1. There should be plenty of mutual acquaintances (shared neighbors). If this
were the only property, then complete graphs would surely fit the bill —
lots of mutual neighbors there. A complete graph, though, is not a realistic
model of acquaintances in the world.

2. The graph should be sparse in edges. In a realistic model, there should be
relatively few edges compared to the number of vertices in the graph.

3. Distances between pairs of vertices should be relatively small. The char-
acteristic path length of a graph G, denoted LG, is the average distance
between vertices, where the average is taken over all pairs of distinct ver-
tices. In any graph of order n, there are |E(Kn)| distinct pairs of vertices,
and in Exercise 1 of Section 1.1.3, you showed that |E(Kn)| = n(n−1)/2.
So for a graph G of order n,

LG =

∑
u,v∈V (G) d(u, v)

|E(Kn)| =
2

n(n− 1)

∑

u,v∈V (G)

d(u, v).

One way of obtaining this value for a graph is to find the mean of the non-
diagonal entries in the distance matrix of the graph.

4. There should be a reasonable amount of clustering in a small world graph.
In actual acquaintance networks, there are a number of factors (geography,
for instance) that create little clusters of vertices — small groups of vertices
among which a larger than typical portion of edges exists. For example,
there are likely to be many edges among the vertices that represent the
people that live in your neighborhood.

Given a vertex v in a graph of order n, we define its clustering coefficient,
denoted cc(v), as follows (recall that 〈N [v]〉 is the subgraph induced by the
closed neighborhood of v).

cc(v) =
|E (〈N [v]〉)|

∣
∣E

(
K1+deg(v)

)∣
∣ =

2 |E (〈N [v]〉)|
(1 + deg(v)) deg(v)

.

For each vertex v, this is the percentage of edges that exist among the ver-
tices in the closed neighborhood of v. For a graph G of order n, we define
the clustering coefficient of the graph G, denoted by CC(G) to be the aver-
age of the clustering coefficients of the vertices of G. That is,

CC(G) =
1
n

∑

v∈V (G)

cc(v).
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Small world networks have the property that characteristic path lengths are low
and clustering coefficients are high. Graphs that have these properties can be used
as models in the mathematical analyses of the small world phenomenon and its
associated concepts. It is interesting to note that other well known networks have
exhibited small world traits — the internet, electric power grids, and even neural
networks are examples — and this increases even further the applicability of graph
models.

Exercises

1. Compute the characteristic path length for each of each of the following
graphs: P2k, P2k+1, C2k , C2k+1, Kn, Km,n.

2. Compute the clustering coefficient for each of each of the following graphs:
P2k, P2k+1, C2k, C2k+1, Kn, Km,n.

3. (a) In the Acquaintance Graph, try to find a path from your vertex to the
vertex of the President of the United States.

(b) Your path from the previous question may not be your shortest such
path. Prove that your actual distance from the President is at most
one away from the shortest such distance to be found among your
classmates.

Interesting Note: There are several contexts in which Bacon numbers can be cal-
culuated. While Bacon purists only use movie connections, others include shared
appearances on television and in documentaries as well. Under these more open
guidelines, the mathematician Paul Erdős actually has a Bacon number of 3! Erdős
was the focus of the 1993 documentary N is a Number [63]. British actor Alec
Guinness made a (very) brief appearance near the beginning of that film, and
Guinness has a Bacon number of 2 (can you find the connections?). As far as
we know, Bacon has not coauthored a research article with anyone who is con-
nected to Erdős, and so while Erdős’ Bacon number is 3, Bacon’s Erdős number
is infinity.

1.3 Trees

“O look at the trees!” they cried, “O look at the trees!”
— Robert Bridges, London Snow

In this section we will look at the trees—but not the ones that sway in the wind
or catch the falling snow. We will talk about graph-theoretic trees. Before moving
on, glance ahead at Figure 1.30, and try to pick out which graphs are trees.
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1.3.1 Definitions and Examples

Example, the surest method of instruction.
— Pliny the Younger

In Figure 1.30 graphs A, B, and E are trees, while graphs C and D are not.
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FIGURE 1.30. Which ones are trees?

A tree is a connected graph that contains no cycles. Graph-theoretic trees re-
semble the trees we see outside our windows. For example, graph-theoretic trees
do not have cycles, just as the branches of trees in nature do not split and rejoin.
The descriptive terminology does not stop here.

Graph D in Figure 1.30 is not a tree; rather, it is a forest. A forest is a collection
of one or more trees. A vertex of degree 1 in a tree is called a leaf.

As in nature, graph-theoretic trees come in many shapes and sizes. They can
be thin (P10) or thick (K1,1000), tall (P1000) or short (K1 and K2). Yes, even the
graphs K1 and K2 are considered trees (they are certainly connected and acyclic).
In the spirit of our arboreal terminology, perhaps we should call K1 a stump and
K2 a twig!

While we are on the subject of small trees, we should count a few of them. It is
clear that K1 and K2 are the only trees of order 1 and 2, respectively. A moment’s
thought will reveal that P3 is the only tree of order 3. Figure 1.31 shows the
different trees of order 6 or less.

Trees sprout up as effective models in a wide variety of applications. We men-
tion a few brief examples.

Examples

1. Trees are useful for modeling the possible outcomes of an experiment. For
example, consider an experiment in which a coin is flipped and a 6-sided die
is rolled. The leaves in the tree in Figure 1.32 correspond to the outcomes
in the probability space for this experiment.
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FIGURE 1.31. Trees of order 6 or less.
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FIGURE 1.32. Outcomes of a coin/die experiment.

2. Programmers often use tree structures to facilitate searches and sorts and
to model the logic of algorithms. For instance, the logic for a program that
finds the maximum of four numbers (w, x, y, z) can be represented by the
tree shown in Figure 1.33. This type of tree is a binary decision tree.

3. Chemists can use trees to represent, among other things, saturated hydro-
carbons—chemical compounds of the form CnH2n+2 (propane, for exam-
ple). The bonds between the carbon and hydrogen atoms are depicted in the
trees of Figure 1.34. The vertices of degree 4 are the carbon atoms, and the
leaves represent the hydrogen atoms.

4. College basketball fans will recognize the tree in Figure 1.35. It displays
final results for the “Sweet 16” portion of the 2008 NCAA men’s basketball
tournament. Each vertex represents a single game.
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FIGURE 1.33. Logic of a program.
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FIGURE 1.34. A few saturated hydrocarbons.
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FIGURE 1.35. The 2008 Men’s Sweet 16.

Exercises

1. Draw all unlabeled trees of order 7. Hint: There are a prime number of
them.

2. Draw all unlabeled forests of order 6.

3. Let T be a tree of order n ≥ 2. Prove that T is bipartite.
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4. Graphs of the form K1,n are called stars. Prove that if Kr,s is a tree, then it
must be a star.

5. Match the graphs in Figure 1.36 with appropriate names: a palm tree, au-
tumn, a path through a forest, tea leaves.
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FIGURE 1.36. What would you name these graphs?

1.3.2 Properties of Trees

And the tree was happy.
— Shel Silverstein, The Giving Tree

Let us try an experiment. On a piece of scratch paper, draw a tree of order 16.
Got one? Now count the number of edges in the tree. We are going to go out on
a limb here and predict that there are 15. Since there are nearly 20,000 different
trees of order 16, it may seem surprising that our prediction was correct. The next
theorem gives away our secret.

Theorem 1.10. If T is a tree of order n, then T has n− 1 edges.

Proof. We induct on the order of T . For n = 1 the only tree is the stump (K1),
and it of course has 0 edges. Assume that the result is true for all trees of order
less than k, and let T be a tree of order k.

Choose some edge of T and call it e. Since T is a tree, it must be that T − e
is disconnected (see Exercise 7) with two connected components that are trees
themselves (see Figure 1.37). Say that these two components of T − e are T1

and T2, with orders k1 and k2, respectively. Thus, k1 and k2 are less than n and
k1 + k2 = k.

Since k1 < k, the theorem is true for T1. Thus T1 has k1 − 1 edges. Similarly,
T2 has k2− 1 edges. Now, since E(T ) is the disjoint union of E(T1), E(T2), and
{e}, we have |E(T )| = (k1 − 1) + (k2 − 1) + 1 = k1 + k2 − 1 = k − 1. This
completes the induction.
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FIGURE 1.37.

The next theorem extends the preceding result to forests. The proof is similar
and appears as Exercise 4.

Theorem 1.11. If F is a forest of order n containing k connected components,
then F contains n− k edges.

The next two theorems give alternative methods for defining trees. Two other
methods are given in Exercises 5 and 6.

Theorem 1.12. A graph of order n is a tree if and only if it is connected and
contains n− 1 edges.

Proof. The forward direction of this theorem is immediate from the definition of
trees and Theorem 1.10. For the reverse direction, suppose a graph G of order
n is connected and contains n − 1 edges. We need to show that G is acyclic. If
G did have a cycle, we could remove an edge from the cycle and the resulting
graph would still be connected. In fact, we could keep removing edges (one at
a time) from existing cycles, each time maintaining connectivity. The resulting
graph would be connected and acyclic and would thus be a tree. But this tree
would have fewer than n − 1 edges, and this is impossible by Theorem 1.10.
Therefore, G has no cycles, so G is a tree.

Theorem 1.13. A graph of order n is a tree if and only if it is acyclic and contains
n− 1 edges.

Proof. Again the forward direction of this theorem follows from the definition of
trees and from Theorem 1.10. So suppose that G is acyclic and has n − 1 edges.
To show that G is a tree we need to show only that it is connected. Let us say that
the connected components of G are G1, G2, . . . , Gk. Since G is acyclic, each of
these components is a tree, and so G is a forest. Theorem 1.11 tells us that G has
n − k edges, implying that k = 1. Thus G has only one connected component,
implying that G is a tree.

It is not uncommon to look out a window and see leafless trees. In graph theory,
though, leafless trees are rare indeed. In fact, the stump (K1) is the only such tree,
and every other tree has at least two leaves. Take note of the proof technique of
the following theorem. It is a standard graph theory induction argument.

Theorem 1.14. Let T be the tree of order n ≥ 2. Then T has at least two leaves.

Proof. Again we induct on the order. The result is certainly true if n = 2, since
T = K2 in this case. Suppose the result is true for all orders from 2 to n− 1, and
consider a tree T of order n ≥ 3. We know that T has n − 1 edges, and since
we can assume n ≥ 3, T has at least 2 edges. If every edge of T is incident with
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a leaf, then T has at least two leaves, and the proof is complete. So assume that
there is some edge of T that is not incident with a leaf, and let us say that this edge
is e = uv. The graph T − e is a pair of trees, T1 and T2, each of order less than n.
Let us say, without loss of generality, that u ∈ V (T1), v ∈ V (T2), |V (T1)| = n1,
and |V (T2)| = n2 (see Figure 1.38). Since e is not incident with any leaves of T ,

$� $�
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FIGURE 1.38.

we know that n1 and n2 are both at least 2, so the induction hypothesis applies to
each of T1 and T2. Thus, each of T1 and T2 has two leaves. This means that each
of T1 and T2 has at least one leaf that is not incident with the edge e. Thus the
graph (T − e) + e = T has at least two leaves.

We saw in the previous section that the center of a graph is the set of vertices
with minimum eccentricity. The next theorem, due to Jordan [170], shows that for
trees, there are only two possibilities for the center.

Theorem 1.15. In any tree, the center is either a single vertex or a pair of adja-
cent vertices.

Proof. Given a tree T , we form a sequence of trees as follows. Let T0 = T . Let
T1 be the graph obtained from T0 by deleting all of its leaves. Note here that T1

is also a tree. Let T2 be the tree obtained from T1 by deleting all of the leaves of
T1. In general, for as long as it is possible, let Tj be the tree obtained by deleting
all of the leaves of Tj−1. Since T is finite, there must be an integer r such that Tr

is either K1 or K2.
Consider now a consecutive pair Ti, Ti+1 of trees from the sequence T = T0,

T1, . . . , Tr. Let v be a non-leaf of Ti. In Ti, the vertices that are at the greatest
distance from v are leaves (of Ti). This means that the eccentricity of v in Ti+1 is
one less than the eccentricity of v in Ti. Since this is true for all non-leaves of Ti,
it must be that the center of Ti+1 is exactly the same as the center of Ti.

Therefore, the center of Tr is the center of Tr−1, which is the center of Tr−2,
. . . , which is the center of T0 = T . Since (the center of) Tr is either K1 or K2,
the proof is complete.

We conclude this section with an interesting result about trees as subgraphs.

Theorem 1.16. Let T be a tree with k edges. If G is a graph whose minimum
degree satisfies δ(G) ≥ k, then G contains T as a subgraph. Alternatively, G
contains every tree of order at most δ(G) + 1 as a subgraph.
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Proof. We induct on k. If k = 0, then T = K1, and it is clear that K1 is a
subgraph of any graph. Further, if k = 1, then T = K2, and K2 is a subgraph of
any graph whose minimum degree is 1. Assume that the result is true for all trees
with k − 1 edges (k ≥ 2), and consider a tree T with exactly k edges. We know
from Theorem 1.14 that T contains at least two leaves. Let v be one of them, and
let w be the vertex that is adjacent to v. Consider the graph T − v. Since T − v

$�&��

�%

FIGURE 1.39.

has k − 1 edges, the induction hypothesis applies, so T − v is a subgraph of G.
We can think of T − v as actually sitting inside of G (meaning w is a vertex of G,
too). Now, since G contains at least k + 1 vertices and T − v contains k vertices,
there exist vertices of G that are not a part of the subgraph T − v. Further, since
the degree in G of w is at least k, there must be a vertex u not in T − v that is
adjacent to w (Figure 1.40). The subgraph T − v together with u forms the tree T

$�&��

�%




FIGURE 1.40. A copy of T inside G.

as a subgraph of G.

Exercises

1. Draw each of the following, if you can. If you cannot, explain the reason.

(a) A 10-vertex forest with exactly 12 edges

(b) A 12-vertex forest with exactly 10 edges

(c) A 14-vertex forest with exactly 14 edges

(d) A 14-vertex forest with exactly 13 edges

(e) A 14-vertex forest with exactly 12 edges

2. Suppose a tree T has an even number of edges. Show that at least one vertex
must have even degree.

3. Let T be a tree with max degree Δ. Prove that T has at least Δ leaves.
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4. Let F be a forest of order n containing k connected components. Prove that
F contains n− k edges.

5. Prove that a graph G is a tree if and only if for every pair of vertices u, v,
there is exactly one path from u to v.

6. Prove that T is a tree if and only if T contains no cycles, and for any new
edge e, the graph T + e has exactly one cycle.

7. Show that every edge in a tree is a bridge.

8. Show that every nonleaf in a tree is a cut vertex.

9. Find a shorter proof to Theorem 1.14. Hint: Start by considering a longest
path in T .

10. Let T be a tree of order n > 1. Show that the number of leaves is

2 +
∑

deg(vi)≥3

(deg(vi)− 2),

where the sum is over all vertices of degree 3 or more.

11. For a graph G, define the average degree of G to be

avgdeg(G) =

∑
v∈V (G) deg(v)

|V (G)| .

If T is a tree and avgdeg(T ) = a, then find an expression for the number
of vertices in T in terms of a.

12. Let T be a tree such that every vertex adjacent to a leaf has degree at least
3. Prove that some pair of leaves in T has a common neighbor.

1.3.3 Spanning Trees

Under the spreading chestnut tree . . .
— Henry W. Longfellow, The Village Blacksmith

The North Carolina Department of Transportation (NCDOT) has decided to im-
plement a rapid rail system to serve eight cities in the western part of the state.
Some of the cities are currently joined by roads or highways, and the state plans
to lay the track right along these roads. Due to the mountainous terrain, some of
the roads are steep and curvy; and so laying track along these roads would be
difficult and expensive. The NCDOT hired a consultant to study the roads and to
assign difficulty ratings to each one. The rating accounted for length, grade, and
curviness of the roads; and higher ratings correspond to greater cost. The graph
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FIGURE 1.41. The city graph.

in Figure 1.41, call it the “city graph,” shows the result of the consultant’s inves-
tigation. The number on each edge represents the difficulty rating assigned to the
existing road.

The state wants to be able to make each city accessible (but not necessarily
directly accessible) from every other city. One obvious way to do this is to lay
track along every one of the existing roads. But the state wants to minimize cost,
so this solution is certainly not the best, since it would result in a large amount
of unnecessary track. In fact, the best solution will not include a cycle of track
anywhere, since a cycle would mean at least one segment of wasted track.

The situation above motivates a definition. Given a graph G and a subgraph T ,
we say that T is a spanning tree of G if T is a tree that contains every vertex of
G.

So it looks as though the DOT just needs to find a spanning tree of the city
graph, and they would like to find one whose overall rating is as small as possible.
Figure 1.42 shows several attempts at a solution.

Of the solutions in the figure, the one in the upper right has the least total
weight—but is it the best one overall? Try to find a better one. We will come back
to this problem soon.

Given a graph G, a weight function is a function W that maps the edges of
G to the nonnegative real numbers. The graph G together with a weight func-
tion is called a weighted graph . The graph in Figure 1.41 is a simple example of
a weighted graph. Although one might encounter situations where negative val-
ued weights would be appropriate, we will stick with nonnegative weights in our
discussion.

It should be fairly clear that every connected graph has at least one spanning
tree. In fact, it is not uncommon for a graph to have many different spanning trees.
Figure 1.42 displays three different spanning trees of the city graph.

Given a connected, weighted graph G, a spanning tree T is called a minimum
weight spanning tree if the sum of the weights of the edges of T is no more than
the sum for any other spanning tree of G.
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FIGURE 1.42. Several spanning trees.

There are a number of fairly simple algorithms for finding minimum weight
spanning trees. Perhaps the best known is Kruskal’s algorithm.

Kruskal’s Algorithm

Given: A connected, weighted graph G.

i. Find an edge of minimum weight and mark it.

ii. Among all of the unmarked edges that do not form a cycle with any of the
marked edges, choose an edge of minimum weight and mark it.

iii. If the set of marked edges forms a spanning tree of G, then stop. If not,
repeat step ii.

Figure 1.43 demonstrates Kruskal’s algorithm applied to the city graph. The
minimum weight is 210.

It is certainly possible for different trees to result from two different appli-
cations of Kruskal’s algorithm. For instance, in the second step we could have
chosen the edge between Marion and Lenoir instead of the one that was chosen.
Even so, the total weight of resulting trees is the same, and each such tree is a
minimum weight spanning tree.
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FIGURE 1.43. The stages of Kruskal’s algorithm.

It should be clear from the algorithm itself that the subgraph built is in fact
a spanning tree of G. How can we be sure, though, that it has minimum total
weight? The following theorem answers our question [183].

Theorem 1.17. Kruskal’s algorithm produces a spanning tree of minimum total
weight.

Proof. Let G be a connected, weighted graph of order n, and let T be a spanning
tree obtained by applying Kruskal’s algorithm to G. As we have seen, Kruskal’s
algorithm builds spanning trees by adding one edge at a time until a tree is formed.
Let us say that the edges added for T were (in order) e1, e2, . . . , en−1. Suppose
T is not a minimum weight spanning tree. Among all minimum weight spanning
trees of G, choose T ′ to be a minimum weight spanning tree that agrees with
the construction of T for the longest time (i.e., for the most initial steps). This
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means that there exists some k such that T ′ contains e1, . . . , ek, and no minimum
weight spanning tree contains all of e1, . . . , ek, ek+1 (notice that since T is not of
minimum weight, k < n− 1).

Since T ′ is a spanning tree, it must be that T ′ + ek+1 contains a cycle C, and
since T contains no cycles, C must contain some edge, say e′, that is not in T .
If we remove the edge e′ from T ′ + ek+1, then the cycle C is broken and what
remains is a spanning tree of G. Thus, T ′ + ek+1− e′ is a spanning tree of G, and
it contains edges e1, . . . , ek, ek+1. Furthermore, since the edge e′ must have been
available to be chosen when ek+1 was chosen by the algorithm, it must be that
w(ek+1) ≤ w(e′). This means that T ′ + ek+1 − e′ is a spanning tree with weight
no more than T ′ that contains edges e1, . . . , ek+1, contradicting our assumptions.
Therefore, it must be that T is a minimum weight spanning tree.

Exercises

1. Prove that every connected graph contains at least one spanning tree.

2. Prove that a graph is a tree if and only if it is connected and has exactly one
spanning tree.

3. Let G be a connected graph with n vertices and at least n edges. Let C be a
cycle of G. Prove that if T is a spanning tree of G, then T , the complement
of T , contains at least one edge of C.

4. Let G be connected, and let e be an edge of G. Prove that e is a bridge if
and only if it is in every spanning tree of G.

5. Using Kruskal’s algorithm, find a minimum weight spanning tree of the
graphs in Figure 1.44. In each case, determine (with proof) whether the
minimum weight spanning tree is unique.
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FIGURE 1.44. Two weighted graphs.
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6. Prim’s algorithm (from [228]) provides another method for finding mini-
mum weight spanning trees.

Prim’s Algorithm

Given: A connected, weighted graph G.

i. Choose a vertex v, and mark it.

ii. From among all edges that have one marked end vertex and one un-
marked end vertex, choose an edge e of minimum weight. Mark the
edge e, and also mark its unmarked end vertex.

iii. If every vertex of G is marked, then the set of marked edges forms a
minimum weight spanning tree. If not, repeat step ii.

Use Prim’s algorithm to find minimum weight spanning trees for the graphs
in Figure 1.44. As you work, compare the stages to those of Kruskal’s al-
gorithm.

7. Give an example of a connected, weighted graph G having (i) a cycle with
two identical weights, which is neither the smallest nor the largest weight in
the graph, and (ii) a unique minimum weight spanning tree which contains
exactly one of these two identical weights.

1.3.4 Counting Trees

As for everything else, so for a mathematical theory: beauty can be
perceived but not explained.

— Arthur Cayley [214]

In this section we discuss two beautiful results on counting the number of span-
ning trees in a graph. The next chapter studies general techniques for counting
arrangements of objects, so these results are a sneak preview.

Cayley’s Tree Formula

Cayley’s Tree Formula gives us a way to count the number of different labeled
trees on n vertices. In this problem we think of the vertices as being fixed, and
we consider all the ways to draw a tree on those fixed vertices. Figure 1.45 shows
three different labeled trees on three vertices, and in fact, these are the only three.

There are 16 different labeled trees on four vertices, and they are shown in
Figure 1.46.

As an exercise, the ambitious student should try drawing all of the labeled trees
on five vertices. The cautious ambitious student might wish to look ahead at Cay-
ley’s formula before embarking on such a task.
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FIGURE 1.46. Labeled trees on four vertices.

Cayley proved the following theorem in 1889 [50]. The proof technique that we
will describe here is due to Prüfer7 [229]. Prüfer’s method is almost as noteworthy
as the result itself. He counted the labeled trees by placing them in one-to-one cor-
respondence with a set whose size is easy to determine—the set of all sequences
of length n− 2 whose entries come from the set {1, . . . , n}. There are nn−2 such
sequences.

Theorem 1.18 (Cayley’s Tree Formula). There are nn−2 distinct labeled trees of
order n.

The algorithm below gives the steps that Prüfer used to assign a particular se-
quence to a given tree, T , whose vertices are labeled 1, . . . , n. Each labeled tree
is assigned a unique sequence.

7With a name like that he was destined for mathematical greatness!
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Prüfer’s Method for Assigning a Sequence to a Labeled Tree

Given: A tree T , with vertices labeled 1, . . . , n.

1. Let i = 0, and let T0 = T .

2. Find the leaf on Ti with the smallest label and call it v.

3. Record in the sequence the label of v’s neighbor.

4. Remove v from Ti to create a new tree Ti+1.

5. If Ti+1 = K2, then stop. Otherwise, increment i by 1 and go back to step
2.

Let us run through this algorithm with a particular graph. In Figure 1.47, tree
T = T0 has 7 vertices, labeled as shown. The first step is finding the leaf with
smallest label: This would be 2. The neighbor of vertex 2 is the vertex labeled
4. Therefore, 4 is the first entry in the sequence. Removing vertex 2 produces
tree T1. The leaf with smallest label in T1 is 4, and its neighbor is 3. Therefore,
we put 3 in the sequence and delete 4 from T1. Vertex 5 is the smallest leaf in
tree T2 = T1 − {4}, and its neighbor is 1. So our sequence so far is 4, 3, 1. In
T3 = T2−{5} the smallest leaf is vertex 6, whose neighbor is 3. In T4 = T3−{6},
the smallest leaf is vertex 3, whose neighbor is 1. Since T5 = K2, we stop here.
Our resulting sequence is 4, 3, 1, 3, 1.

Notice that in the previous example, none of the leaves of the original tree T
appears in the sequence. More generally, each vertex v appears in the sequence
exactly deg(v) − 1 times. This is not a coincidence (see Exercise 1). We now
present Prüfer’s algorithm for assigning trees to sequences. Each sequence gets
assigned a unique tree.

Prüfer’s Method for Assigning a Labeled Tree to a Sequence

Given: A sequence σ = a1, a2, . . . , ak of entries from the set {1, . . . , k + 2}.

1. Draw k+2 vertices; label them v1, v2, . . . , vk+2. Let S = {1, 2, . . . , k+2}.

2. Let i = 0, let σ0 = σ, and let S0 = S.

3. Let j be the smallest number in Si that does not appear in the sequence σi.

4. Place an edge between vertex vj and the vertex whose subscript appears
first in the sequence σi.

5. Remove the first number in the sequence σi to create a new sequence σi+1.
Remove the element j from the set Si to create a new set Si+1.

6. If the sequence σi+1 is empty, place an edge between the two vertices
whose subscripts are in Si+1, and stop. Otherwise, increment i by 1 and
return to step 3.
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FIGURE 1.47. Creating a Prüfer sequence.

Let us apply this algorithm to a particular example. Let σ = 4, 3, 1, 3, 1 be
our initial sequence to which we wish to assign a particular labeled tree. Since
there are five terms in the sequence, our labels will come from the set S =
{1, 2, 3, 4, 5, 6, 7}. After drawing the seven vertices, we look in the set S = S0

to find the smallest subscript that does not appear in the sequence σ = σ0. Sub-
script 2 is the one, and so we place an edge between vertices v2 and v4, the first
subscript in the sequence. We now remove the first term from the sequence and
the label v2 from the set, forming a new sequence σ1 = 3, 1, 3, 1 and a new
set S1 = {1, 3, 4, 5, 6, 7}. The remaining steps in the process are shown in Fig-
ure 1.48.
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FIGURE 1.48. Building a labeled tree.

You will notice that the tree that was created from the sequence σ in the second
example is the very same tree that created the sequence σ in the first example.
Score one for Prüfer!

Matrix Tree Theorem

The second major result that we present in this section is the Matrix Tree The-
orem, and like Cayley’s Theorem, it provides a way of counting spanning trees
of labeled graphs. While Cayley’s Theorem in essence gives us a count on the
number of spanning trees of complete labeled graphs, the Matrix Tree Theorem
applies to labeled graphs in general. The theorem was proved in 1847 by Kirch-
hoff [175], and it demonstrates a wonderful connection between spanning trees
and matrices.
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The theorem involves two special matrices. One is the adjacency matrix (de-
fined back in Section 1.2.2), and the other is defined as follows. Let G be a graph
with vertices v1, v2, . . . vn. The degree matrix of G is the n× n matrix D whose
(i, j) entry, denoted by [D]i,j , is defined by

[D]i,j =
{

deg(vi) if i = j,
0 otherwise.

So, the diagonal entries of D are the vertex degrees, and the off-diagonal entries
are all zero.

Given an n× n matrix M , the i, j cofactor of M is defined to be

(−1)i+j det(M(i|j)),
where det(M(i|j)) represents the determinant of the (n − 1) × (n − 1) matrix
formed by deleting row i and column j from M .

We are now ready to state the Matrix Tree Theorem, due to Kirchhoff. The
proof that we give imitates those presented in [148] and [52].

Theorem 1.19 (Matrix Tree Theorem). If G is a connected labeled graph with
adjacency matrix A and degree matrix D, then the number of unique spanning
trees of G is equal to the value of any cofactor of the matrix D −A.

Proof. Suppose G has n vertices (v1, . . . , vn) and k edges (f1, . . . , fk). Since G
is connected, we know that k is at least n− 1. Let N be the n × k matrix whose
(i, j) entry is defined by

[N ]i,j =
{

1 if vi and fj are incident,
0 otherwise.

N is called the incidence matrix of G. Since every edge of G is incident with
exactly two vertices of G, each column of N contains two 1’s and n − 2 zeros.
Let M be the n × k matrix that results from changing the topmost 1 in each
column to −1. To prove the result, we first need to establish two facts, which we
call Claim A and Claim B.

Claim A. MMT = D − A (where MT denotes the transpose of M ).

First, notice that the (i, j) entry of D −A is

[D −A]i,j =

⎧
⎨

⎩

deg(vi) if i = j,
−1 if i �= j and vivj ∈ E(G),
0 if i �= j and vivj �∈ E(G).

Now, what about the (i, j) entry of MMT ? The rules of matrix multiplication tell
us that this entry is the dot product of row i of M and column j of MT . That is,

[MMT ]i,j = ([M ]i,1, [M ]i,2, . . . , [M ]i,k) ·
(
[MT ]1,j , [MT ]2,j , . . . , [MT ]k,j

)

= ([M ]i,1, [M ]i,2, . . . , [M ]i,k) · ([M ]j,1, [M ]j,2, . . . , [M ]j,k)

=
k∑

r=1

[M ]i,r[M ]j,r.
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If i = j, then this sum counts one for every nonzero entry in row i; that is, it
counts the degree of vi. If i �= j and vivj �∈ E(G), then there is no column of M
in which both the row i and row j entries are nonzero. Hence the value of the sum
in this case is 0. If i �= j and vivj ∈ E(G), then the only column in which both
the row i and the row j entries are nonzero is the column that represents the edge
vivj . Since one of these entries is 1 and the other is −1, the value of the sum is
−1. We have shown that the (i, j) entry of MMT is the same as the (i, j) entry
of D −A, and thus Claim A is proved.

Let H be a subgraph of G with n vertices and n−1 edges. Let p be an arbitrary
integer between 1 and n, and let M ′ be the (n − 1) × (n − 1) submatrix of M
formed by all rows of M except row p and the columns that correspond to the
edges in H .

Claim B. If H is a tree, then | det(M ′)| = 1. Otherwise, det(M ′) = 0.

First suppose that H is not a tree. Since H has n vertices and n−1 edges, we know
from earlier work that H must be disconnected. Let H1 be a connected component
of H that does not contain the vertex vp. Let M ′′ be the |V (H1)| × (n − 1)
submatrix of M ′ formed by eliminating all rows other than the ones corresponding
to vertices of H1. Each column of M ′′ contains exactly two nonzero entries: 1 and
−1. Therefore, the sum of all of the row vectors of M ′′ is the zero vector, so the
rows of M ′′ are linearly dependent. Since these rows are also rows of M ′, we see
that det(M ′) = 0.

Now suppose that H is a tree. Choose some leaf of H that is not vp (Theo-
rem 1.14 lets us know that we can do this), and call it u1. Let us also say that e1 is
the edge of H that is incident with u1. In the tree H − u1, choose u2 to be some
leaf other than vp. Let e2 be the edge of H − u1 incident with u2. Keep removing
leaves in this fashion until vp is the only vertex left. Having established the list of
vertices u1, u2, . . . , un−1, we now create a new (n− 1)× (n− 1) matrix M∗ by
rearranging the rows of M ′ in the following way: row i of M∗ will be the row of
M ′ that corresponds to the vertex ui.

An important (i.e., useful!) property of the matrix M∗ is that it is lower tri-
angular (we know this because for each i, vertex ui is not incident with any of
ei+1, ei+2, . . . , en−1). Thus, the determinant of M∗ is equal to the product of the
main diagonal entries, which are either 1 or−1, since every ui is incident with ei.
Thus, | det(M∗)| = 1, and so | det(M ′)| = 1. This proves Claim B.

We are now ready to investigate the cofactors of D − A = MMT . It is a
fact from matrix theory that if the row sums and column sums of a matrix are all
0, then the cofactors all have the same value. (It would be a nice exercise—and a
nice review of matrix skills—for you to try to prove this.) Since the matrix MMT

satisfies this condition, we need to consider only one of its cofactors. We might
as well choose i and j such that i + j is even—let us choose i = 1 and j = 1. So,
the (1, 1) cofactor of D −A is

det ((D −A)(1|1)) = det
(
MMT (1|1)

)

= det(M1M
T
1 )
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where M1 is the matrix obtained by deleting the first row of D −A.
At this point we make use of the Cauchy–Binet Formula, which says that the

determinant above is equal to the sum of the determinants of (n − 1) × (n − 1)
submatrices of M1 (for a more thorough discussion of the Cauchy–Binet Formula,
see [40]). We have already seen (in Claim B) that any (n−1)× (n−1) submatrix
that corresponds to a spanning tree of G will contribute 1 to the sum, while all
others contribute 0. This tells us that the value of det(D − A) = det(MMT ) is
precisely the number of spanning trees of G.

Figure 1.49 shows a labeled graph G and each of its eight spanning trees.

�� ��

����

FIGURE 1.49. A labeled graph and its spanning trees.

The degree matrix D and adjacency matrix A are

D =

⎡

⎢
⎢
⎣

2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 3

⎤

⎥
⎥
⎦ , A =

⎡

⎢
⎢
⎣

0 0 1 1
0 0 1 1
1 1 0 1
1 1 1 0

⎤

⎥
⎥
⎦ ,

and so

D −A =

⎡

⎢
⎢
⎣

2 0 −1 −1
0 2 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤

⎥
⎥
⎦ .

The (1, 1) cofactor of D −A is

det

⎡

⎣
2 −1 −1
−1 3 −1
−1 −1 3

⎤

⎦ = 8.

Score one for Kirchhoff!
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Exercises

1. Let T be a labeled tree. Prove that the Prüfer sequence of T will not contain
any of the leaves’ labels. Also prove that each vertex v will appear in the
sequence exactly deg(v)− 1 times.

2. Determine the Prüfer sequence for the trees in Figure 1.50.

�

�

� �  5 �4 ��

� �
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�
�
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FIGURE 1.50. Two labeled trees.

3. Draw and label a tree whose Prüfer sequence is

5, 4, 3, 5, 4, 3, 5, 4, 3.

4. Which trees have constant Prüfer sequences?

5. Which trees have Prüfer sequences with distinct terms?

6. Let e be an edge of Kn. Use Cayley’s Theorem to prove that Kn − e has
(n− 2)nn−3 spanning trees.

7. Use the Matrix Tree Theorem to prove Cayley’s Theorem. Hint: Look back
at the discussion prior to the statement of the Matrix Tree Theorem.

1.4 Trails, Circuits, Paths, and Cycles

Takes a real salesman, I can tell you that. Anvils have a limited
appeal, you know.

— Charlie Cowell, anvil salesman, The Music Man

Charlie Cowell was a door to door anvil salesman, and he dragged his heavy wares
down every single street in each town he visited. Not surprisingly, Charlie became
quite proficient at designing routes that did not repeat many streets. He certainly
did not want to drag the anvils any farther than necessary, and he especially liked
it when he could cover every street in the town without repeating a single one.

After several years of unsuccessful sales (he saw more closed doors than closed
deals), the Acme Anvil Company did the natural thing — they promoted him.
Charlie moved from salesman to regional supplier. This meant that Charlie would
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be in charge of driving the anvil truck from town to town, delivering each town’s
supply of anvils. Still efficiency-minded, he wanted to plan driving routes that
did not repeat any town along the way. He had been very good at route planning
during his door to door days, and avoiding the repetition of towns was basically
the same as avoiding the repetition of streets, right?

As you read through this section, see if you can answer that question for your-
self.

1.4.1 The Bridges of Königsberg

One should make a serious study of a pastime.
— Alexander the Great

At the very beginning of this chapter, we referred to the legendary Königsberg
Bridge Problem. As you will recall, this problem concerned the existence (or non-
existence) of a certain type of route across a group of bridges (Figure 1.1). Could
one design a route that crossed each bridge exactly once? The residents of seven-
teenth and eighteenth century Königsberg passed the time making valiant efforts,
but no route could be found.

In 1736, the Swiss mathematician Euler addressed the problem ([98], translated
in [26]). Near the beginning of his article, Euler described his thoughts as he
embarked on the search for a solution.

As far as the problem of the seven bridges of Königsberg is con-
cerned, it can be solved by making an exhaustive list of all possible
routes, and then finding whether or not any route satisfies the con-
ditions of the problem. Because of the number of possibilities, this
method of solution would be too difficult and laborious, and in other
problems with more bridges it would be impossible . . . Hence I re-
jected it, and looked for another method concerned only with the
problem of whether or not the specified route could be found; I con-
sidered that such a method would be much simpler. [26]

This passage is enlightening on several levels. For one, it gives us a glimpse of
the teacher/expositor side of the master mathematician Euler. It is doubtful that
he would have seriously considered listing all possible routes in search of a satis-
factory one. His mention of the possibility, though, does help the reader progress
along a natural arc of thought regarding the solution. The passage also gives a clue
as to what Euler is really after — not just a solution to the problem in Königsberg,
but a general solution that could be applied in other land/bridge formations.

Using a figure similar to Figure 1.51, he used sequences of letters to describe
routes — routes where no bridges were repeated. For instance, the sequence
ABDACAB represented a route that started at A, crossed a bridge to B, crossed
a bridge to D, crossed a bridge back to A, crossed a bridge to C, crossed a bridge
back to A, and then crossed a bridge to B. This seven letter sequence includes
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FIGURE 1.51. Layout of the bridges in Königsberg.

six of the seven bridges in Königsberg, and these bridges can be identified by the
consecutive pairs in the sequence: AB, BD, DA, AC, CA, AB.

For Euler the Königsberg Bridge Problem boiled down to finding a certain
sequence of letters. He described it in this way:

The problem is therefore reduced to finding a sequence of eight
letters, formed from the four letters A, B, C, and D, in which the
various pairs of letters occur the required number of times. Before I
turn to the problem of finding such a sequence, it would be useful to
find out whether or not it is even possible to arrange the letters in this
way, for if it were possible to show that there is no such arrangement,
then any work directed towards finding it would be wasted. I have
therefore tried to find a rule which will be useful in this case, and in
others, for determining whether or not such an arrangement can exist.
[26]

Euler argued that since land area D is connected to three bridges, then D must ap-
pear in the sequence two times. (If it appeared only once, this would not account
for all of the bridges; if it appeared more than twice, this would represent multiple
crossing of at least one bridge.) Similarly, Euler argued, B and C must each ap-
pear twice in the eight letter sequence. Further, since land area A is connected to
five bridges, the letter A must appear three times in the sequence (you will verify
this in Exercise 1a). This means that the necessary eight letter sequence would
have three As, two Bs, two Cs and two Ds. In Euler’s words,

It follows that such a journey cannot be undertaken across the seven
bridges of Königsberg. [26]

Once he had settled the problem of the Königsberg bridges, Euler used the same
ideas and methods to present a more general result, and we will see that result in
the next section. As you see, Euler did not use terms like graph, vertex or edge.
Today’s graph terminology did not appear until many years later. Still, this article
by Euler was the seed from which the field of graph theory grew.

Euler himself recognized that he was working in relatively uncharted territory.
We close this section with the passage with which Euler opened his seminal arti-
cle. See if you can read “graph theory” between the lines.
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In addition to that branch of geometry which is concerned with
magnitudes, and which has always received the greatest attention,
there is another branch, previously almost unknown, which Leibniz
first mentioned, calling it the geometry of position. This branch is
concerned only with the determination of position and its properties;
it does not involve measurements, nor calculations made with them.
It has not yet been satisfactorily determined what kind of problems
are relevant to this geometry of position, or what methods whould
be used in solving them. Hence, when a problem was recently men-
tioned [the Königsberg problem!], which seemed geometrical but
was so constructed that it did not require the measurement of dis-
tances, nor did calculation help at all, I had no doubt that it was
concerned with the geometry of position — especially as its solu-
tion involved only position, and no calculation was of any use. I have
therefore decided to give here the method which I have found for
solving this kind of problem, as an example of the geometry of posi-
tion. [26]

Mathematics is richer because Euler took up the problem of the Königsberg
bridges. We are grateful, but perhaps not as grateful as the residents of Königsberg
whose feet had grown tired from the search for a route that did not exist.

Exercises

1. In the context of Euler’s letter sequences, prove that . . .

(a) if a land mass L is connected to 5 bridges, then L will occur 3 times
in any representation of a route that crosses all of the bridges once.

(b) if a land mass L is connected to n bridges, where n is odd, then L will
occur n+1

2 times in any representation of a route that crosses all of the
bridges once.

2. An eighth bridge was built in Königsberg — an additional bridge joining
land masses B and C. Did this addition make the desired route possible?
Prove your answer.

3. Euler’s 1736 article included a second example of a land/bridge system (see
Figure 1.52). Does a route exist that crosses each bridge exactly once? If
so, give one. If not, prove it.

4. The streets in River City are shown in Figure 1.53. Is it possible for Charlie
the anvil salesman to plan a route that covers every street exactly once? If
so, give one. If not, prove it.
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FIGURE 1.52.

FIGURE 1.53.

1.4.2 Eulerian Trails and Circuits

If only part of the line-system has been traversed, then every node in
the remaining part remains even or odd, just as it was in the original
system.

— Carl Hierholzer [159], translated in [26]

Recall from Section 1.1.2 that a trail in a graph is a walk that does not repeat any
edges, and that a closed trail (one that begins and ends at the same vertex) is called
a circuit.

If a trail in a graph G includes every edge of G, then that trail is said to be an
Eulerian trail. Similarly, an Eulerian circuit in a graph is a circuit that includes
every edge of the graph. A graph that contains an Eulerian circuit is said to be an
Eulerian graph.

What are some examples of Eulerian graphs? The cycles, Cn, have prominent
Eulerian circuits. The paths, Pn, have no circuits at all, and so they are certainly
not Eulerian. Look at the graphs in Figure 1.54 and try to determine which ones,
if any, are Eulerian.

There are two well-known characterizations of Eulerian graphs. One involves
vertex degrees, and the other concerns the existence of a special collection of
cycles. The following theorem establishes both of these characterizations by as-
serting the logical equivalence of three statements. The theorem represents work
by Euler [98], Hierholzer [159], and Veblen [274].
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FIGURE 1.54. Are any of these Eulerian?

Theorem 1.20. For a connected graph G, the following statements are equiva-
lent.

1. G is Eulerian.

2. Every vertex of G has even degree.

3. The edges of G can be partitioned into (edge-disjoint) cycles.

Proof. To prove the logical equivalence of these statements, we prove that the first
statement implies the second, the second implies the third, and the third implies
the first.

For the first implication, suppose that G contains an Eulerian circuit C. Let v
be an arbitrary vertex of G. Every time the circuit enters v on an edge, it must
leave on a different edge. Since C never repeats an edge, there must be an even
number of edges incident with v and hence the degree of v is even.

For the second implication, suppose that every vertex of G has even degree.
We use induction on the number of cycles in G. Since G is connected and has
no vertices of degree 1, G is not a tree, and therefore G must have at least one
cycle. If G has exactly one cycle, the G must be a cycle graph Cn for some
n, and so the desired partition contains just the one cycle itself. Suppose now
(using strong induction) that the implication is valid for graphs containing at most
k cycles, and suppose G has k + 1 cycles. Let C be one of the cycles of G,
and let G′ be the graph obtained from G by deleting the edges of C. With this
deletion, each vertex of C loses exactly two edges, and hence the vertices of G′

all have even degree. Further, the graph G′ (which is possibly disconnected) has
connected components that have no more than k cycles each. Each component,
then, satisfies the induction hypothesis and has edges that can be partitioned into
cycles. These cycles, together with the cycle C, partition the edges of G into
cycles. The induction is complete, and the implication is established.

For the third implication, suppose that the edges of G can be partitioned into
cycles. Call these cycles S1, S2, . . . , Sk. Let C be the largest circuit in G such
that the set of edges of C is exactly

E(Sj1 ) ∪E(Sj2 ) ∪ · · · ∪ E(Sjm)

for some collection of the cycles Sj1 , Sj2 , . . . , Sjm . (We note here that this implies
that for each cycle Si (1 ≤ i ≤ k), either all of the edges of Si are on C or none
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of them are.) Now, suppose e is an edge of G that is (a) not an edge of C, and (b)
incident with a vertex, say v, that is on C. Since e is not an edge of C, it must be
that e is an edge of cycle Si, for some i, where no edge of Si is on C. The vertex
v must also be on Si. Let C′ be the circuit in G obtained by patching Si into C at
the vertex v (since no edge of Si is a member of C, there is no repetition of edges
caused by this patching). Since the edges of C′ consist of the edges of C together
with the edges of Si, we have contradicted the maximality of C′. This means that
no such edge e can exist and therefore that C is an Eulerian circuit of G. The final
implication is established.

So, Eulerian circuits exist in connected graphs precisely when the degrees of
these graphs are all even. What about Eulerian trails? Certainly if an Eulerian
circuit exists, then so does an Eulerian trail (the circuit is just a closed trail). But
are there graphs which are not Eulerian but which do contain an Eulerian trail?
The following corollary gives the complete answer. Its proof is left for you as an
exercise.

Corollary 1.21. The connected graph G contains an Eulerian trail if and only if
there are at most two vertices of odd degree.

Now that we know precisely when Eulerian circuits and trails exist, how easy
is it to find them? The algorithm given below, named for nineteenth century math-
ematician Carl Hierholzer [159], gives a simple way of identifying such routes.
While not identical, you may notice a similarity between this algorithm and the
method used to prove the third implication in the proof of Theorem 1.20.

Before reading on, take a look back at the quotation given at the beginning
of this section. It describes the primary reason for the success of Hierholzer’s
algorithm.

Hierholzer’s Algorithm for Identifying Eulerian Circuits

Given: An Eulerian graph G.

i. Identify a circuit in G and call it R1. Mark the edges of R1. Let i = 1.

ii. If Ri contains all edges of G, then stop (since Ri is an Eulerian circuit).

iii. If Ri does not contain all edges of G, then let vi be a vertex on Ri that is
incident with an unmarked edge, ei.

iv. Build a circuit, Qi, starting at vertex vi and using edge ei. Mark the edges
of Qi.

v. Create a new circuit, Ri+1, by patching the circuit Qi into Ri at vi.

vi. Increment i by 1, and go to step ii.

An example of this process is shown in Figure 1.55. You should note that the
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FIGURE 1.55. The stages of Hierholzer’s algorithm.

process will succeed no matter what the initial circuit, R1, is chosen to be. Another
algorithm for finding Eulerian circuits is given in Exercise 3.

The even degree characterization of Eulerian graphs is really quite nice. All one
needs to do to determine if a graph is Eulerian is simply look at the degrees of the
vertices. Once we know a graph is Eulerian, Hierholzer’s algorithm will give us
an Eulerian circuit. Maybe Charlie Cowell, our anvil salesman, used these ideas
to plan his door to door routes!

Exercises

1. For each of the following, draw an Eulerian graph that satisfies the condi-
tions, or prove that no such graph exists.

(a) An even number of vertices, an even number of edges.
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(b) An even number of vertices, an odd number of edges.

(c) An odd number of vertices, an even number of edges.

(d) An odd number of vertices, an odd number of edges.

2. Use Hierholzer’s algorithm to find an Eulerian circuit in the graph of Fig-
ure 1.56. Use R1 : a, b, c, g, f, j, i, e, a as your initial circuit.
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FIGURE 1.56.

3. What follows is another algorithm (from [195]) for finding Eulerian cir-
cuits. The method used here is to build the circuit, one edge at a time, mak-
ing sure to make good choices along the way.

Fleury’s Algorithm for Identifying Eulerian Circuits

Given: An Eulerian graph G, with all of its edges unmarked.

i. Choose a vertex v, and call it the “lead vertex.”

ii. If all edges of G have been marked, then stop. Otherwise continue to
step iii.

iii. Among all edges incident with the lead vertex, choose, if possible, one
that is not a bridge of the subgraph formed by the unmarked edges. If
this is not possible, choose any edge incident with the lead. Mark this
edge and let its other end vertex be the new lead vertex.

iv. Go to step ii.

Use Fleury’s algorithm to find an Eulerian circuit for the graph in Fig-
ure 1.57. Let a be your initial vertex.

4. Prove Corollary 1.21.

5. Prove that if every edge of a graph G lies on an odd number of cycles, then
G is Eulerian.

6. Let G be a connected graph which is regular of degree r. Prove that the line
graph of G, L(G), is Eulerian.
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FIGURE 1.57.

7. Let G = Kn1,n2 .

(a) Find conditions on n1 and n2 that characterize when G will have an
Eulerian trail.

(b) Find conditions that characterize when G will be Eulerian.

8. Let G = Kn1,...,nk
, where k ≥ 3.

(a) Find conditions on n1, . . . , nk that characterize when G will have an
Eulerian trail.

(b) Find conditions that characterize when G will be Eulerian.

1.4.3 Hamiltonian Paths and Cycles

In this new Game (. . . named Icosian, from a Greek work signifying
‘twenty’) a player is to place the whole or part of a set of twenty
numbered pieces or men upon the points or in the holes of a board
. . . in such a manner as always to proceed along the lines of the
figure . . .
— from the instructions which accompanied The Icosian Game [26]

In 1859 the English game company Jaques and Son bought the rights to manufac-
ture and market “The Icosian Game.” The game involved twenty pegs (numbered
1 through 20) and a gameboard with holes (see Figure 1.58). Players were re-
quired to place the pegs in the holes in such a way that every pair of consecutive
integers, along with the pair (1, 20), were directly connected by one of the lines
on the board. As intriguing and action-packed as the game sounds, it did not sell
well.8

Another version of the game had the board design situated on the exterior of
a dodecahedron, a 12-sided solid. The object here was to find a round-trip route
around the solid, traveling only on the edges and touching each vertex once. This
version was named “A Voyage Round the World” since the vertices represented
important cities of the time. Like its twin “The Icosian Game,” this game’s voyage
was short lived.

8Jaques and Son managed to get over this particular setback. The company, still in business today,
had much better success in popularizing Tiddledy Winks (now Tiddly Winks), Snakes and Ladders
(now Chutes and Ladders), and Whiff Whaff (now Table Tennis).
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FIGURE 1.58. The Icosian Game board.

The inventor who sold the game to Jaques and Son was the prominent math-
ematician Sir William Rowan Hamilton. Even though his ideas did not take root
in a recreational sense, they did become the seed for what would become a major
branch of inquiry within the field of graph theory. Let’s take a look at some of
these ideas.

If a path P spans the vertices of G (that is, if V (P ) = V (G)), then P is said to
be a Hamiltonian path of G. Any graph containing a Hamiltonian path is called
traceable. If a cycle C spans the vertices of a graph G, such a cycle is called
a Hamiltonian cycle, and any graph containing a Hamiltonian cycle is called,
simply, a Hamiltonian graph. Hamiltonian graphs are clearly traceable, but the
reverse is not always true. Look at the graphs in Figure 1.59 and try to determine
which ones are traceable, Hamiltonian, or neither.


� 
�
�

FIGURE 1.59. Which ones are Hamiltonian? Which are traceable?

We saw in the previous section that whether or not a connected graph was Eule-
rian depended completely on degree parity. Unfortunately, this is not the case for
Hamiltonicity. Hamiltonian graphs can have all even degrees (C10), all odd de-
grees (K10), or a mixture (G1 in Figure 1.59). Similarly, non-Hamiltonian graphs
can have varying degree parities: all even (G2 in Figure 1.59), all odd (K5,7), or
mixed (P9).
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If degree parity does not have much to do with Hamiltonicity, then what does?
Researchers have worked for decades on this question, and their efforts have
produced many interesting results. A complete summary of these developments
would require many pages,9 and we do not attempt to give a thorough treatment
here. Rather, we present several of the classic ideas and results.

The first result that we examine is due to Dirac [77]. It does concern degrees
in a graph — but their magnitude rather than their parity. Recall that δ(G) is the
minimum degree of G.

Theorem 1.22. Let G be a graph of order n ≥ 3. If δ(G) ≥ n/2, then G is
Hamiltonian.

Proof. Let G be a graph satisfying the given conditions, and suppose that G is not
Hamiltonian. Let P be a path in G with maximum length, and say the vertices of
P , in order, are v1, v2, . . . , vp. Because of the maximality of P , we know that all
of the neighbors of v1 and of vp are on P . And since δ(G) ≥ n/2, each of v1 and
vp has at least n/2 neighbors on P .

We now claim that there must exist some j (1 ≤ j ≤ p − 1) such that vj ∈
N(vp) and vj+1 ∈ N(v1). Suppose for the moment that this was not the case.
Then for every neighbor vi of vp on P (and there are at least n/2 of them), vi+1

is not a neighbor of v1. This means that

deg(v1) ≤ p− 1− n

2
< n− n

2
=

n

2
,

contradicting the fact that δ(G) ≥ n/2. Therefore, such a j exists (see Fig-
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FIGURE 1.60.

ure 1.60).
Let C be the cycle v1, v2, . . . , vj , vp, vp−1, . . . , vj+1, v1. We have assumed that

G is not Hamiltonian, and so there must be at least one vertex of G that is not on
P . Further, since δ(G) ≥ n/2, we know that G is connected (see Exercise 16a
in Section 1.1.2). Therefore there must be a vertex w not on P that is adjacent to
a vertex, say vi, on P . But then the path in G that begins with w, travels to vi,
and then travels around the cycle C is a longer path than our maximal path P —
a contradiction. Our initial assumption must have been incorrect. Therefore G is
Hamiltonian.

9In 2003 Ron Gould published an article [129] which summarized related results. His survey was
45 pages long, and even that only covered developments that took place within the previous dozen
years!
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There are two interesting things to note here. First, the lower bound in this the-
orem is best possible. To see this, consider the graph G = Kr,r+1. This graph is
not Hamiltonian (you will show this as part of Excercise 12b) and δ(G) is strictly
between |V (G)|

2 − 1 and |V (G)|
2 . Second, the theorem does not provide a charac-

terization of Hamiltonian graphs. That is, there are plenty of Hamiltonian graphs
that have relatively small minimum (and even maximum) degree. The cycles Cn

are obvious examples.
Dirac’s theorem is a corollary to the following general result of Ore [217]. The

proof of Ore’s theorem is similar to that of the above, and it is left for you as an
exercise.

Theorem 1.23. Let G be a graph of order n ≥ 3. If deg(x) + deg(y) ≥ n for all
pairs of nonadjacent vertices x, y, then G is Hamiltonian.

A set of vertices in a graph is said to be an independent set of vertices if they
are pairwise nonadjacent. The independence number of a graph G, denoted by
α(G), is defined to be the largest size of an independent set of vertices from G.
As an example, consider the graphs in Figure 1.61. The only independent set of
size 2 in G1 is {c, d}, so α(G1) = 2. There are two independent sets of size 3 in
G2: {a, c, e} and {b, d, f}, and none of size 4, so α(G2) = 3.
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FIGURE 1.61.

The next theorem, due to Chvátal and Erdős [54], relates Hamiltonicity to in-
dependence number and connectivity. Before stating and proving this result, let
us introduce some helpful notation. If x and y are vertices on a path P , let [x, y]P
denote the portion of P that runs from x to y. Further, given a cycle C with its
vertices labeled in a specific orientation (say, clockwise), let [x, y]C+ denote the
portion of C that runs clockwise from x to y. Similarly, [x, y]C− would denote
the portion of C that runs counter-clockwise from x to y.

Theorem 1.24. Let G be a connected graph of order n ≥ 3 with vertex connec-
tivity κ(G) and independence number α(G). If κ(G) ≥ α(G), then G is Hamil-
tonian.

Proof. If G is as described, then κ(G) ≥ 2 — for if κ(G) = 1, then α(G) = 1
and thus G is either K1 or K2, contradicting the fact that n ≥ 3.

Let C be a longest cycle in G. Suppose that C is not a Hamiltonian cycle, and
let v be a vertex of G that is not on C. Let H be the connected component of
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G−V (C) that contains v. Let c1, c2, . . . , cr be the vertices of C that are adjacent
to some vertex of H , and suppose that these vertices are labeled in a clockwise
direction around the cycle C. For each i (1 ≤ i ≤ r), let hi be a vertex of H that
is adjacent to ci, and let di be the immediate (clockwise) successor of ci on C.

We now observe several things. First, it must be that r ≥ κ(G). If the vertices
c1, c2, . . . , cr were removed from G, then H would be disconnected from the
rest of the graph. Since κ(G) is the size of the smallest cut set, it follows that
r ≥ κ(G). The observation in the first paragraph then implies that r ≥ 2.

Second, no two of the vertices in the set {c1, c2, . . . , cr} are consecutive ver-
tices on C. To see this, suppose that there is some i such that ci and ci+1 are
consecutive vertices on C. Let P be a path from hi to hi+1 in H , and consider the
cycle formed by replacing the edge cici+1 on C with the path ci, [hi, hi+1]P , ci+1.
This cycle is longer than our maximal cycle C, a contradiction. This observation
implies that the sets {c1, c2, . . . , cr} and {d1, d2, . . . , dr} are disjoint.

Third, for each i (1 ≤ i ≤ r), di is not adjacent to v. To see this, suppose
div ∈ E(G) for some i, and let Q be a path from hi to v in H . In this case,
the cycle formed by replacing the edge cidi on C with the path ci, [hi, v]Q, di is
longer than C, again a contradiction.

Now, let S = {v, d1, d2, . . . , dr}. The first observation above implies that
|S| ≥ κ(G)+1 > α(G). This means that some pair of vertices in S must be adja-
cent. Our third observation implies that di must be adjacent to dj for some i < j.
If R is a path from hi to hj in H , then the cycle ci, [hi, hj]R, [cj , di]C− , [dj , ci]C+

is a longer cycle than C (see Figure 1.62). Our assumption that C was not a Hamil-
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FIGURE 1.62.

tonian cycle has led to a contradiction. Therefore G is Hamiltonian.

As was the case for Dirac’s theorem, the inequality in this theorem is sharp.
That is, graphs G where κ(G) ≥ α(G) − 1 are not necessarily Hamiltonian.
The complete bipartite graphs Kr,r+1 provide proof of this. The Petersen graph,
shown in Figure 1.63, is another example.10

10The Petersen graph is well known among graph theorists for its surprising connections to many
areas of the field, and for its penchant for being a counterexample to many conjectures. You have seen
this graph already — it is the graph you should have obtained as the complement of the line graph of
K5 in Exercise 7b of Section 1.1.3.
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FIGURE 1.63. The Petersen Graph.

The next theorem belongs to a category of results that relate Hamiltonicity to
forbidden subgraphs. Given graphs G and H , if G does not contain a copy of H as
an induced subgraph, then we say that G is H-free. If S is a collection of graphs,
and if G does not contain any of the graphs in S as induced subgraphs, then we
say that G is S-free.

In 1974, Goodman and Hedetniemi [127] noticed something regarding two of
the graphs shown in Figure 1.64.

,

-����

FIGURE 1.64. Three special graphs.

Theorem 1.25. If G is a 2-connected, {K1,3, Z1}-free graph, then G is Hamilto-
nian.

Proof. Suppose G is 2-connected and {K1,3, Z1}-free, and let C be a longest
cycle in G (we know that G contains at least one cycle — see Exercise 14 in
Section 1.1.2). If C is not a Hamiltonian cycle, then there must exist a vertex v,
not on C, which is adjacent to a vertex, say w, on C. Let a and b be the immediate
predecessor and successor of w on C.

A longer cycle would exist if either a or b were adjacent to v, and so it must
be that both a and b are nonadjacent to v. Now, if a is not adjacent to b, then
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the subgraph induced by the vertices {w, v, a, b} is K1,3, and we know that G is
K1,3-free. So it must be that ab ∈ E(G). But if this is the case, then the subgraph
induced by {w, v, a, b} is Z1, a contradiction. Therefore, it must be that C is a
Hamiltonian cycle.

The fact that this result requires 2-connectivity should not be surprising, for
2-connectivity is required for all Hamiltonian graphs. As you will prove in Exer-
cise 2, graphs G where κ(G) = 1 cannot have a spanning cycle.

Another classic forbidden subgraph theorem involves K1,3 and the third graph
shown in Figure 1.64. This is a result of Duffus, Gould, and Jacobson [81].

Theorem 1.26. Let G be a {K1,3, N}-free graph.

1. If G is connected, then G is traceable.

2. If G is 2-connected, then G is Hamiltonian.

It is interesting to note that the graph K1,3 is involved in both of these theorems.
This graph, affectionately referred to as the “claw,” appears in many forbidden
subgraph results. Claw-free graphs have received a great deal of attention in recent
years, especially within the context of Hamiltonicity problems. The claw will bare
itself again in the next section in the context of unsolved problems.

Exercises

1. Give a solution to The Icosian Game.

2. Prove that if G is Hamiltonian, then G is 2-connected.

3. Prove Theorem 1.23.

4. Give the connectivity and independence number of the Petersen graph.

5. Prove or disprove: The independence number of a bipartite graph is equal
to the cardinality of one of its partite sets.

6. Prove that if G is of order n and is regular, then α(G) ≤ n/2.

7. Prove that each of the 18-vertex graphs in Figure 1.65 is 2-connected, claw-
free and nontraceable.11

8. For any graph G, prove that the line graph L(G) is claw-free.

9. Let G be a K3-free graph. Prove that its complement, G, is claw-free.

10. Let G be a graph and let S be a nonempty subset of V (G).

11In [154] the authors show that 2-connected, claw-free graphs of order less than 18 are traceable.
They also show that the graphs in Figure 1.65 are the only 2-connected, claw-free, nontraceable graphs
with order 18 and size at most 24.
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FIGURE 1.65.

(a) Prove that if G is Hamiltonian, then G− S has at most |S| connected
components.

(b) Prove that if G is traceable, then G−S has at most |S|+ 1 connected
components.

11. Prove that if G is Eulerian, then L(G) is Hamiltonian.

12. Let G = Kn1,n2 .

(a) Find conditions on n1 and n2 that characterize the traceability of G.

(b) Find conditions that characterize the Hamiltonicity of G.

13. Let n be a positive integer.

(a) Prove that Kn,2n,3n is Hamiltonian.

(b) Prove that Kn,2n,3n+1 is not Hamiltonian.

1.4.4 Three Open Problems

Nothing can stop the claw!
— Fletcher Reede, Liar, Liar

We close our discussion of paths and cycles with several questions. These prob-
lems were posed years ago, and they have received a great deal of attention. While
there has been progress on each of them, the original questions remain unan-
swered.

Intersecting Detour Paths

Given a graph G, the detour order of G, denoted τ(G), is the number of vertices
in a longest path in G. If a path P in G has τ(G) vertices, then we call P a detour
path in G.

In Exercise 8 of Section 1.1.2, you proved that if G is a connected graph and
if P1 and P2 are detour paths, then the interesection V (P1) ∩ V (P2) must be
nonempty. As you (hopefully!) saw, this result is not terribly difficult to prove.
Consider the following question.
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Question A: If G is connected and P1, P2, and P3 are detour paths in
G, then must the intersection V (P1)∩V (P2)∩V (P3) be nonempty?

As you see, the only difference between this question and the earlier exercise is
that this one involves three paths rather than two. But this difference makes all the
difference, because Question A remains unsolved!

The origin of this question can be traced to a related question asked by Gallai
[118] in 1966: Is it true that in every connected graph there is at least one vertex
that lies on every detour path? In 1969, Walther [278] gave a negative answer to
the question in the form of the graph in Figure 1.66. The detour order of this graph

FIGURE 1.66. Walther’s example.

is 21, and every vertex is missed by at least one of the detour paths. Within the
next several years, Walther and Zamfirescu, working independently (see [141],
[279], [290]), had produced a smaller example, the graph in Figure 1.67. This

FIGURE 1.67. A smaller example, given by Walther and Zamfirescu.

graph has 12 vertices, has detour order 10, and every vertex is missed by at least
one of the detour paths. The graph in Figure 1.67 is the smallest known graph
where the detour paths have an empty intersection.

Consider the following more general version of Question A.
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Question B: If G is connected and P1, . . . , Pn are distinct detour

paths in G, then must the intersection
n⋂

i=1

V (Pi) be nonempty?

The graph of Figure 1.67 demonstrates that for n = 12, the answer to Question B
is no.

In 1975, Schmitz [250] presented the graph in Figure 1.68. The detour order

FIGURE 1.68. Example given by Schmitz.

of this graph is 13. There are exactly seven detour paths, and every vertex of the
graph is missed by at least one of these paths. This tells us that for n = 7, the
answer to Question B is no.

We have already mentioned that for n = 3, the answer to Question B is un-
known. The same is true for n = 4, 5 and 6. When asked, most researchers would
probably lean toward believing the result to be true for n = 3, although no proof
is known as of yet. For now, it is simply a conjecture.

Conjecture 1. If G is connected, then the intersection of any three distinct detour
paths in G is nonempty.

Matthews and Sumner’s Conjecture

We met the claw, K1,3, in the previous section. We saw two results in which the
claw, when forbidden with another graph, implied Hamiltonicity in 2-connected
graphs. There are other such pairs. In [20], [39], and [130], the respective authors
showed that the pairs {K1,3, W}, {K1,3, P6}, and {K1,3, Z2} (see Figure 1.69)
all imply Hamiltonicity when forbidden in 2-connected graphs. Do you see a pat-

. -�

FIGURE 1.69. Two additional forbidden subgraphs.

tern here? The claw seems to be prominent in results like this. In 1997, Faudree
and Gould [102] showed that this was no coincidence. The graph N appears in
Figure 1.64.
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Theorem 1.27. If being {R, S}-free (where R, S are connected and neither is
P3) implies that 2-connected graphs are Hamiltonian, then one of R, S is the
claw, and the other is an induced subgraph of P6, Z2, W , or N .

Is the claw powerful enough to imply Hamiltonicity when forbidden by itself?
Well, as you will prove in the exercises, the graph P3 is the only connected graph
that, when forbidden, implies Hamiltonicity in 2-connected graphs. But what if
the level of connectivity is increased?

Question C: If G is claw-free and k-connected (k ≥ 3), must G be
Hamiltonian?

The graph in Figure 1.70 is 3-connected, claw-free and non-Hamiltonian,12 and
so the answer to Question C for k = 3 is no.

FIGURE 1.70. A lovely example.

In 1984 Matthews and Sumner [199] made the following, still unresolved, con-
jecture.

Conjecture 2. If G is 4-connected and claw-free, then G is Hamiltonian.

There has been some progress with regard to this conjecture. Most notably, in
1997 Ryjáček [245] proved the following theorem.

Theorem 1.28. If G is 7-connected and claw-free, then G is Hamiltonian.

At this time, Question C for k = 4, 5 and 6 is still unanswered.

12This graph, demonstrated by Matthews ([198], see also [199]) in 1982, is the smallest such graph,
and it is the line graph of the graph obtained from the Petersen graph (what else?) by replacing each
of the five “spoke” edges with a P3.
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The Path Partition Conjecture

Recall that τ(G), the detour order of G, is the number of vertices in a longest path
of G. Recall also that given a subset S of V (G), the notation 〈S〉 represents the
subgraph of G induced by S.

Given a graph G and positive integers a and b, if the vertices of G can be
partitioned into two sets A and B in such a way that τ(〈A〉) ≤ a and τ(〈B〉) ≤ b,
then we say that G has an (a, b)-partition.

As an example, consider the graph G in Figure 1.71. The partition (A1, B1),
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FIGURE 1.71. Partitioning the vertex set.

where A1 = {a, b, c, d, h, i} and B1 = {e, f, g, j, k, l}, is not a valid (4, 7)-
partition. This is because every longest path in both 〈A1〉 and 〈B1〉 has 6 vertices.
On the other hand, the partition (A2, B2), where

A2 = {c, d, h, i}, B2 = {a, b, e, f, g, j, k, l}

is a valid (4, 7)-partition, since τ(〈A2〉) ≤ 4 and τ(〈B2〉) ≤ 7.
If a graph G has an (a, b)-partition for every pair (a, b) of positive integers such

that a + b = τ(G), then we say that G is τ -partitionable. In order to show that
the graph in Figure 1.71 is τ -partitionable (since its detour order is 11), we would
also need to show that the graph had (1, 10)-, (2, 9)-, (3, 8)-, and (5, 6)-partitions.
Another way to demonstrate this would be to prove the following, still unresolved,
conjecture.

The Path Partition Conjecture. Every graph is τ -partitionable.
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The Path Partition Conjecture was first mentioned by Lovász and Mihók in
1981, and it has received a great deal of attention since then. Much of the progress
has been the establishment that certain families of graphs are τ -partitionable. The
following theorem gives a small sampling of these results.

Theorem 1.29. The graph G is τ -partitionable if any one of the following is true:

1. Δ(G) ≤ 3; (follows from [189])

2. Δ(G) ≥ |V (G)| − 8; (follows from [38])

3. τ(G) ≤ 13; [83]

4. τ(G) ≥ |V (G)| − 1. [38]

So, if the max degree of a graph G is either very small or relatively large, or
if the longest path in a graph is either rather short or relatively long, then G is
τ -partitionable.

In 2007, Dunbar and Frick [84] proved the following interesting result.

Theorem 1.30. If G is claw-free, then G is τ -partitionable.

There is the claw again! In the same article, the authors prove that in order to
prove that the Path Partition Conjecture is true, it is sufficient to prove that every
2-connected graph is τ -partitionable.

With each new result, researchers add to the arsenal of weapons that can be used
to attack the Path Partition Conjecture. So far, though, the conjecture is holding
strong.

With all of this era’s computing power, how can it be that the Path Partition
Conjecture and the other conjectures in this section remain unsolved? Computers
are now doing more things than ever, faster than ever, so why can’t we just get
a computer cranking away at these problems? These are reasonable questions to
ask. But the conjectures here are not really questions of computation. These are
problems that will require a combination of insight, cleverness and patience.

Exercises

1. If the word “connected” were removed from Conjecture 1, could you settle
the resulting conjecture?

2. Show that every vertex of the graph in Figure 1.67 is missed by at least one
detour path in the graph.

3. In the graph of Figure 1.68, find the seven distinct detour paths and show
that they have an empty intersection.

4. Show that if G is 2-connected and P3-free, then G is Hamiltonian.

5. Show that if being H-free implies Hamiltonicity in 2-connected graphs
(where H is connected), then H is P3.
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6. Verify that the graph in Figure 1.70 is actually the line graph of the graph
obtained from the Petersen graph by replacing each of the five “spoke”
edges with a P3.

7. Prove that the graph in Figure 1.67 is τ -partitionable by listing all necessary
partitions.

8. Prove that all bipartite graphs are τ -partitionable.

9. Prove that all traceable graphs are τ -partitionable.

10. Prove that every graph G has a (1, τ(G)− 1) partition.

11. Prove that if a graph is (1, 1)-partitionable, then it is (a, b)-partitionable for
all positive integers a and b.

12. Show that all graphs are (a, b)-partitionable when a ≤ 3.

13. EXTRA CREDIT: Settle any of the conjectures in this section.

1.5 Planarity

Three civil brawls, bred of an airy word
By thee, old Capulet, and Montague,
Have thrice disturb’d the quiet of our streets . . .

— William Shakespeare, Romeo and Juliet

The feud between the Montagues and the Capulets of Verona has been well doc-
umented, discussed, and studied. A fact that is lesser known, though, is that long
before Romeo and Juliet’s time, the feud actually involved a third family—the
Hatfields.13 The families’ houses were fairly close together, and chance meetings
on the street were common and quite disruptive.

The townspeople of Verona became very annoyed at the feuding families. They
devised a plan to create separate, nonintersecting routes from each of the houses to
each of three popular places in town: the square, the tavern, and the amphitheater.
They hoped that if each family had its own route to each of these places, then the
fighting in the streets might stop.

Figure 1.72 shows the original layout of the routes. Try to rearrange them so
that no route crosses another route. We will come back to this shortly.

13The Hatfields eventually grew tired of feuding, and they left Verona in search of friendlier terri-
tory. They found a nice spot in the mountains of West Virginia, right across the river from a really nice
family named McCoy.
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FIGURE 1.72. Original routes.

1.5.1 Definitions and Examples

Define, define, well-educated infant.
— William Shakespeare, Love’s Labour’s Lost

A graph G is said to be planar if it can be drawn in the plane in such a way that
pairs of edges intersect only at vertices, if at all. If G has no such representation,
G is called nonplanar. A drawing of a planar graph G in the plane in which edges
intersect only at vertices is called a planar representation (or a planar embedding)
of G.

Figure 1.73 shows examples of planar graphs. Notice that one of the drawings

FIGURE 1.73. Examples of planar graphs.

is not a planar representation—try to visualize untangling it.
Proving a graph to be planar is in some cases very simple—all that is required

is to exhibit a planar representation of the graph. This is certainly quite easy to do
with paths, cycles, and trees. What about complete graphs? K1, K2, and K3 are
clearly planar; Figure 1.74 shows a planar representation of K4. We will consider
K5 shortly.

FIGURE 1.74. A planar representation of K4.
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The Montague/Capulet/Hatfield problem essentially amounts to finding a pla-
nar representation of K3,3. Unfortunately, the townspeople of Verona just had to
learn to deal with the feuding families, for K3,3 is nonplanar, and we will see an
explanation shortly.

What is involved in showing that a graph G is nonplanar? In theory, one would
have to show that every possible drawing of G is not a planar representation. Since
considering every individual drawing is out of the question, we need some other
tools.

Given a planar representation of a graph G, a region is a maximal section of
the plane in which any two points can be joined by a curve that does not intersect
any part of G.

Informally, if a cookie cutter has the shape of a planar representation of G,
then the cookies are the regions (see Figure 1.75). The big region, R7, is called
the exterior (or outer) region.
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FIGURE 1.75. Six small cookies and one very large cookie.

It is quite natural to think of the regions as being bounded by the edges. A
single edge can come into contact with either one or two regions. In Figure 1.76,
edge e1 is only in contact with one region, S1, and edges e2 and e3 are only in
contact with S2. Each of the other edges in Figure 1.76 is in contact with two
regions. Let us say that an edge e bounds a region R if e comes into contact with
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FIGURE 1.76. Edges e1, e2, and e3 touch one region only.
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R and with a region different from R. Define the bound degree of R, denoted by
b(R), to be the number of edges that bound region R. For example, in Figure 1.75,
b(R1) = b(R4) = 4, b(R2) = b(R3) = b(R5) = b(R6) = 3, and b(R7) = 12. In
Figure 1.76, b(S1) = b(S3) = 3 and b(S2) = 6. Note that in this graph, the edges
e1, e2, and e3 do not contribute to the bound degree of any region.

Figure 1.77 displays six planar graphs along with the numbers of vertices,
edges, and regions. Before continuing to the next section, study these numbers
and try to find a pattern. You might also notice that two of drawings are actually
the same graph. This brings up an important point: The number of regions in a
planar representation of a graph does not depend on the representation itself!
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FIGURE 1.77. Is there a pattern?

Exercises

1. Find planar representations for each of the planar graphs in Figure 1.78.

2. Give planar representations of the graph in Figure 1.79 such that each of
the following is the exterior region.

(a) R1

(b) R2

(c) R3

(d) R4

(e) R5
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FIGURE 1.79.

3. Explain why embedding a graph in a plane is essentially the same as em-
bedding a graph on a sphere.

4. Write a nice proof of the fact that every tree is planar.

5. Draw a planar graph in which every vertex has degree exactly 5.

6. Suppose that e is a bridge of a planar graph G. Prove that e does not bound
a region in any planar representation of G.

7. In [101] and [277], Fáry and Wagner proved independently that every pla-
nar graph has a planar representation in which every edge is a straight line
segment. Find such a representation for the graph in Figure 1.80.
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FIGURE 1.80.

8. If planar graphs G1 and G2 each have n vertices, q edges, and r regions,
must the graphs be isomorphic? Justify your answer with a proof or a coun-
terexample.
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1.5.2 Euler’s Formula and Beyond

Now I will have less distraction.
— Leonard Euler, upon losing sight in his right eye [100]

Euler discovered a relationship between the numbers of vertices, edges, and re-
gions of a graph, and his discovery is often called Euler’s Formula [99].

Theorem 1.31 (Euler’s Formula). If G is a connected planar graph with n ver-
tices, q edges, and r regions, then

n− q + r = 2.

Proof. We induct on q, the number of edges. If q = 0, then G must be K1, a
graph with 1 vertex and 1 region. The result holds in this case. Assume that the
result is true for all connected planar graphs with fewer than q edges, and assume
that G has q edges.

Case 1. Suppose G is a tree. We know from our work with trees that q = n−1;
and of course, r = 1, since a planar representation of a tree has only one region.
Thus n− q + r = n− (n− 1) + 1 = 2, and the result holds.

Case 2. Suppose G is not a tree. Let C be a cycle in G, let e be an edge of C,
and consider the graph G − e. Compared to G, this graph has the same number
of vertices, one edge fewer, and one region fewer, since removing e coalesces two
regions in G into one in G − e. Thus the induction hypothesis applies, and in
G− e,

n− (q − 1) + (r − 1) = 2,

implying that n− q + r = 2.
The result holds in both cases, and the induction is complete.

Euler’s Formula is useful for establishing that a graph is nonplanar.

Theorem 1.32. K3,3 is nonplanar.

Proof. Suppose that K3,3 were planar and that we had a planar representation.
Since n = 6 and q = 9, Euler’s Formula implies that such a planar representation
of K3,3 would have r = 5 regions. Now consider the sum

C =
∑

R

b(R),

where the sum is over all regions R in the representation of the graph. Since every
edge of G can be on the boundary of at most two regions, we get C ≤ 2q = 18. On
the other hand, since each region of K3,3 has at least four edges on the boundary
(there are no triangles in bipartite graphs), we see that C ≥ 4r = 20. We have
reached a contradiction. Therefore, K3,3 is nonplanar.

Theorem 1.33. If G is a planar graph with n ≥ 3 vertices and q edges, then
q ≤ 3n− 6. Furthermore, if equality holds, then every region is bounded by three
edges.
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Proof. Again consider the sum

C =
∑

R

b(R).

As previously mentioned, C ≤ 2q. Further, since each region is bounded by at
least 3 edges, we have that C ≥ 3r. Thus

3r ≤ 2q ⇒ 3(2 + q − n) ≤ 2q ⇒ q ≤ 3n− 6.

If equality holds, then 3r = 2q, and it must be that every region is bounded by
three edges.

We can use Theorem 1.33 to establish that K5 is nonplanar.

Theorem 1.34. K5 is nonplanar.

Proof. K5 has 5 vertices and 10 edges. Thus 3n − 6 = 9 < 10 = q, implying
that K5 is nonplanar.

Exercise 5 in Section 1.5.1 asked for a planar graph in which every vertex has
degree exactly 5. This next result says that such a graph is an extreme example.

Theorem 1.35. If G is a planar graph, then G contains a vertex of degree at most
five. That is, δ(G) ≤ 5.

Proof. Suppose G has n vertices and q edges. If n ≤ 6, then the result is imme-
diate, so we will suppose that n > 6. If we let D be the sum of the degrees of the
vertices of G, then we have

D = 2q ≤ 2(3n− 6) = 6n− 12.

If each vertex had degree 6 or more, then we would have D ≥ 6n, which
is impossible. Thus there must be some vertex with degree less than or
equal to 5.

Exercises

1. G is a connected planar graph of order 24, and it is regular of degree 3.
How many regions are in a planar representation of G?

2. Let G be a connected planar graph of order less than 12. Prove δ(G) ≤ 4.

3. Prove that Euler’s formula fails for disconnected graphs.

4. Let G be a connected, planar, K3-free graph of order n ≥ 3. Prove that G
has no more than 2n− 4 edges.

5. Prove that there is no bipartite planar graph with minimum degree at
least 4.
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6. Let G be a planar graph with k components. Prove that

n− q + r = 1 + k.

7. Let G be of order n ≥ 11. Show that at least one of G and G is nonplanar.

8. Show that the average degree (see Exercise 11 in Section 1.3.2) of a planar
graph is less than six.

9. Prove that the converse of Theorem 1.33 is not true.

10. Find a 4-regular planar graph, and prove that it is unique.

11. A planar graph G is called maximal planar if the addition of any edge to G
creates a nonplanar graph.

(a) Show that every region of a maximal planar graph is a triangle.

(b) If a maximal planar graph has order n, how many edges and regions
does it have?

1.5.3 Regular Polyhedra

We are usually convinced more easily by reasons we have found
ourselves than by those which have occurred to others.

— Blaise Pascal, Pensées

A polyhedron is a solid that is bounded by flat surfaces. Dice, bricks, pyramids,
and the famous dome at Epcot Center in Florida are all examples of polyhedra.
Polyhedra can be associated with graphs in a very natural way. Think of the poly-
hedra as having faces, edges, and corners (or vertices). The vertices and edges of
the solid make up its skeleton, and the skeleton can be viewed as a graph. An in-
teresting property of these skeleton graphs is that they are planar. One way to see
this is to imagine taking hold of one of the faces and stretching it so that its edges
form the boundary of the exterior region of the graph. The regions of these pla-
nar representations directly correspond to the faces of the polyhedra. Figure 1.81
shows a brick-shaped polyhedron, its associated graph, and a planar representa-
tion of the graph.

FIGURE 1.81. A polyhedron and its graph.

Because of the natural correspondence, we are able to apply some of what we
know about planar graphs to polyhedra. The next theorem follows directly from
Euler’s Formula for planar graphs, Theorem 1.31.
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Theorem 1.36. If a polyhedron has V vertices, E edges, and F faces, then

V − E + F = 2.

This next theorem is similar to Theorem 1.35.
Given a polyhedron P , define ρ(P ) to be

ρ(P ) = min{b(R) | R is a region of P}.

Theorem 1.37. For all polyhedra P , 3 ≤ ρ(P ) ≤ 5.

Proof. Since one or two edges can never form a boundary, we know that ρ(P ) ≥
3 for all polyhedra P . So we need to prove only the upper bound.

Let P be a polyhedron and let G be its associated graph. Suppose P has V
vertices, E edges, and F faces. For each k, let Vk be the number of vertices of
degree k, and let Fk be the number of faces of P (or regions of G) of bound degree
k. From our earlier remarks, if k < 3, then Vk = Fk = 0. Since every edge of P
touches exactly two vertices and exactly two faces, we find that

∑

k≥3

kVk = 2E =
∑

k≥3

kFk.

If every face of P were bounded by 6 or more edges, then we would have

2E =
∑

k≥3

kFk ≥
∑

k≥6

6Fk = 6
∑

k≥6

Fk = 6F,

implying that E ≥ 3F . Furthermore,

2E =
∑

k≥3

kVk ≥ 3V,

implying that V ≤ 2
3E. Thus

E = V + F − 2 ≤ 2
3
E +

1
3
E − 2 = E − 2,

and this, of course, is a contradiction. Therefore, some face of P is bounded by
fewer than 6 edges. Hence, ρ(P ) ≤ 5.

We now apply this result to derive a geometric fact known to the ancient Greeks.
A regular polygon is one that is equilateral and equiangular. We say a poly-

hedron is regular if its faces are mutually congruent, regular polygons and if the
number of faces meeting at a vertex is the same for every vertex. The cube, whose
faces are congruent squares, and the tetrahedron, whose faces are congruent equi-
lateral triangles, are regular polyhedra. A fact that has been known for at least
2000 years is that there are only five regular polyhedra: the tetrahedron, the cube,
the octahedron, the dodecahedron, and the icosahedron (see Figure 1.82). We can
use a graph-theoretic argument to prove this.
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FIGURE 1.82. The five regular polyhedra and their graphical representations.

Theorem 1.38. There are exactly five regular polyhedra.

Proof. Let P be a regular polyhedron, and let G be its associated planar graph.
Let V , E, and F be the number of vertices, edges, and faces (regions) of P . Since
the faces of P are congruent, each is bordered by the same number of edges, say
k. Theorem 1.37 tells us that 3 ≤ k ≤ 5. Further, since the polyhedron P is
regular, it follows that the graph G is also regular. Let us say that G is regular of
degree r where r ≥ 3. From Theorem 1.37, we obtain rV = 2E = kF . Now,
Theorem 1.36 implies that

8 = 4V − 4E + 4F

= 4V − 2E + 4F − 2E

= 4V − rV + 4F − kF

= (4− r)V + (4− k)F.
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V and E are of course both positive, and since 3 ≤ k ≤ 5 and r ≥ 3, there are
only five possible cases.

Case 1. Suppose r = 3 and k = 3. In this case, V = F and 8 = V + F ,
implying that V = F = 4. This is the tetrahedron. (The fact that the tetrahedron
is the only regular polygon with V = F = 4 is based on a geometrical argument.
This applies to the remaining four cases as well.)

Case 2. Suppose r = 3 and k = 4. Here we have V = 8 and 3V = 4F . Thus
F = 6, and P is a cube.

Case 3. Suppose r = 3 and k = 5. In this case we have 8 = V − F and 3V =
5F . Solving this system yields V = 20 and F = 12. This is a dodecahedron.

Case 4. Suppose r = 4 and k = 3. Here we have F = 8 and 4V = 3F . Thus
V = 6 and P is an octahedron.

Case 5. Suppose r = 5 and k = 3. In this case we have 8 = −V +F and 5V =
3F . Solving this system yields V = 12 and F = 20. This is an icosahedron.

Exercises

1. (From [52].) Show that the octahedron is a complete multipartite graph:
Kr1,...,rn for some n and for some values r1, . . . , rn.

2. Find an example of a polyhedron different from the ones discussed in this
section. Sketch the polyhedron, and draw the associated graph.

3. See if you can find an alternative proof (not necessarily graph-theoretic) of
the fact that there are only five regular polyhedra.

1.5.4 Kuratowski’s Theorem

. . . a pair so famous.
— William Shakespeare, Anthony and Cleopatra

Our goal in this section is to compile a list of all nonplanar graphs. Since the
list will be infinite (and since this book is not), we will make use of a clever
characterization due to Kuratowski.

We have already established that both K3,3 and K5 are nonplanar, so we should
put them at the top of our list. What other graphs should we include? Suppose
G is a graph that contains K3,3 as a subgraph. This graph G would have to be
nonplanar, since a planar representation of it would have to contain a planar rep-
resentation of K3,3. So we can add to our list of nonplanar graphs all graphs that
contain K3,3 or K5 as a subgraph.

The graph in Figure 1.83 shows us that our list of nonplanar graphs is not
yet complete. This graph is not planar, but it does not contain K5 or K3,3 as a
subgraph. Of course, if we were to replace the two edges labeled a and b with a
single edge e, then the graph would contain K5 as a subgraph. This motivates the
following definition.
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FIGURE 1.83.

Let G be a graph. A subdivision of an edge e in G is a substitution of a path for
e. We say that a graph H is a subdivision of G if H can be obtained from G by a
finite sequence of subdivisions.

For example, the graph in Figure 1.83 contains a subdivision of K5, and in
Figure 1.84, H is a subdivision of G.


 �

FIGURE 1.84. A graph and a subdivision.

We leave the proof of the following theorem to the exercises (see Exercise 1).

Theorem 1.39. A graph G is planar if and only if every subdivision of G is planar.

Our list of nonplanar graphs now includes K3,3, K5, graphs containing K3,3 or
K5 as subgraphs, and all graphs containing a subdivision of K3,3 or K5. The list
so far stems from only two specific graphs: K3,3 and K5. A well-known theorem
by Kuratowski [185] tells us that there are no other graphs on the list! The bottom
line is that K3,3 and K5 are the only two real enemies of planarity.

Kuratowski proved this beautiful theorem in 1930, closing a long-open prob-
lem.14 In 1954, Dirac and Schuster [78] found a proof that was slightly shorter
than the original proof, and theirs is the proof that we will outline here.

Theorem 1.40 (Kuratowski’s Theorem). A graph G is planar if and only if it
contains no subdivision of K3,3 or K5.

Sketch of Proof
We have already discussed that if a graph G is planar, it contains no subgraph

that is a subdivision of K3,3 or K5. Thus we need to discuss only the reverse
direction of the theorem.

14We should note here that Frink and Smith also discovered a proof of this fact in 1930, indepen-
dently of Kuratowski. Since Kuratowski’s result was published first, his name has traditionally been
associated with the theorem (and the names Frink and Smith have traditionally been associated with
footnotes like this one.)
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Suppose G is a graph that contains no subdivision of K3,3 or K5. Here are the
steps that Dirac and Schuster used to prove the result.

1. Prove that G is planar if and only if each block of G is planar. (A block of
G is a maximal connected subgraph of G that has no cut vertex).

2. Explain why it suffices to show that a block is planar if and only if it con-
tains no subdivision of K3,3 or K5. Assume that G is a block itself (con-
nected with no cut vertex).

3. Suppose that G is a nonplanar block that contains no subdivision of K3,3

or K5 (and search for a contradiction).

4. Prove that δ(G) ≥ 3.

5. Establish the existence of an edge e = uv such that the graph G− e is also
a block.

6. Explain why G−e is a planar graph containing a cycle C that includes both
u and v, and choose C to have a maximum number of interior regions.

7. Establish several structural facts about the subgraphs inside and outside the
cycle C.

8. Use these structural facts to demonstrate the existence of subdivisions of
K3,3 or K5, thus establishing the contradiction.

Exercises

1. Prove that a graph G is planar if and only if every subdivision of G is planar.

2. Use Kuratowski’s Theorem to prove that the Petersen graph (Figure 1.63)
is nonplanar.

3. Prove the first step of the proof of Kuratowski’s Theorem.

4. Determine all complete multipartite graphs (of the form Kr1,...,rn ) that are
planar.

1.6 Colorings

One fish, two fish, red fish, blue fish.
— Dr. Seuss

The senators in a particular state sit on various senate committees, and the com-
mittees need to schedule times for meetings. Since each senator must be present
at each of his or her committee meetings, the meeting times need to be sched-
uled carefully. One could certainly assign a unique meeting time to each of the
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committees, but this plan may not be feasible, especially if the number of commit-
tees is large. We ask ourselves, given a particular committee structure, what is the
fewest number of meeting times that are required? We can answer this question
by studying graph coloring.

1.6.1 Definitions

Given a graph G and a positive integer k, a k-coloring is a function K : V (G) →
{1, . . . , k} from the vertex set into the set of positive integers less than or equal
to k. If we think of the latter set as a set of k “colors,” then K is an assignment of
one color to each vertex.

We say that K is a proper k-coloring of G if for every pair u, v of adjacent
vertices, K(u) �= K(v) — that is, if adjacent vertices are colored differently. If
such a coloring exists for a graph G, we say that G is k-colorable.

For example, the graph C5 as shown in Figure 1.85 is 3-colorable: P (a) =
P (c) = 1, P (b) = P (d) = 2, P (c) = 3. Since C5 is 3-colorable, a direct
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FIGURE 1.85. C5 is 3-colorable.

consequence of the definition is that C5 is k-colorable for all k ≥ 3. Is C5 2-
colorable?

Another way of viewing a proper k-coloring is as an assignment of vertices
to sets, called color classes, where each set represents vertices that all receive the
same color. For the coloring to be proper, each color class must be an independent
set of vertices.

It is natural to wonder how many colors are necessary to color a particular graph
G. For instance, we know that three colors are enough for the graph in Figure 1.85,
but is this the least required? A quick check of C5 reveals that coloring with
two colors is impossible. So three colors are necessary. This idea motivates a
definition.

Given a graph G, the chromatic number of G, denoted by χ(G), is the smallest
integer k such that G is k-colorable. In our example, we can say that χ(C5) = 3.
What about odd cycles in general? (Try one!) What about even cycles? (Try one!)
Here is a list of chromatic numbers for some common graphs. Verify them!

χ(Cn) =
{

2 if n is even,
3 if n is odd,
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χ(Pn) =
{

2 if n ≥ 2,
1 if n = 1,

χ(Kn) = n,

χ(En) = 1,

χ(Km,n) = 2.

Exercises

1. Find the chromatic number of each of the following graphs. Explain your
answers completely.

(a) Trees.

(b) Bipartite graphs.

(c) Complete multipartite graphs, Kr1,r2,...,rt .

(d) The Petersen Graph.

(e) The graph in Figure 1.86, called the Birkhoff Diamond.

(f) The graphs of the regular polyhedra in Figure 1.82.

FIGURE 1.86. The Birkhoff Diamond.

2. Senate committees C1 through C7 consist of the members as indicated:
C1 = {Adams, Bradford, Charles}, C2 = {Charles, Davis, Eggers},
C3 = {Davis, Ford}, C4 = {Adams, Gardner}, C5 = {Eggers, Howe},
C6 = {Eggers, Bradford, Gardner}, C7 = {Howe, Charles, Ford}.
Use the ideas of this section to determine the fewest number of meeting
times that need to be scheduled for these committees.

3. When issuing seating assignments for his third grade students, the teacher
wants to be sure that if two students might interfere with one another, then
they are assigned to different areas of the room. There are six main trou-
blemakers in the class: John, Jeff, Mike, Moe, Larry, and Curly. How many
different areas are required in the room if John interferes with Moe and



88 1. Graph Theory

Curly; Jeff interferes with Larry and Curly; Mike interferes with Larry and
Curly; Moe interferes with John, Larry, and Curly; Larry interferes with
Jeff, Mike, Moe, and Curly; and Curly interferes with everyone?

4. Prove that adding an edge to a graph increases its chromatic number by at
most one.

5. Prove that a graph G of order at least two is bipartite if and only if it is
2-colorable.

6. A graph G is called k-critical if χ(G) = k and χ(G − v) < k for each
vertex v of G.

(a) Find all 1-critical and 2-critical graphs.

(b) Give an example of a 3-critical graph.

(c) If G is k-critical, then show that G is connected.

(d) If G is k-critical, then show that δ(G) ≥ k − 1.

(e) Find all of the 3-critical graphs. Hint: Use part (d).

1.6.2 Bounds on Chromatic Number

The point is, ladies and gentlemen, that greed, for lack of a better
word, is good. Greed is right. Greed works.

— Gordon Gekko, in Wall Street

In general, determining the chromatic number of a graph is hard. While small or
well-known graphs (like the ones in the previous exercises) may be fairly easy,
the number of possibilities in large graphs makes computing chromatic numbers
difficult. We therefore often rely on bounds to give some sort of idea of what the
chromatic number of a graph is, and in this section we consider some of these
bounds.

If G is a graph on n vertices, then an obvious upper bound on χ(G) is n, since
an n-coloring is always possible on a graph with n vertices. This bound is exact
for complete graphs, as it takes as many colors as there are vertices to color a
complete graph. In fact, complete graphs are the only graphs for which this bound
is sharp (see Exercise 5). We set this aside as Theorem 1.41.

Theorem 1.41. For any graph G of order n, χ(G) ≤ n.

Let us now discuss a very basic graph coloring algorithm, the greedy algorithm.
To color a graph having n vertices using this algorithm, first label the vertices in
some order—call them v1, v2, . . . , vn. Next, order the available colors in some
way. We will denote them by the positive integers 1, 2, . . . , n. Then start coloring
by assigning color 1 to vertex v1. Next, if v1 and v2 are adjacent, assign color
2 to vertex v2; otherwise, use color 1 again. In general, to color vertex vi, use
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the first available color that has not been used for any of vi’s previously colored
neighbors.

For example, the greedy algorithm produces the coloring on the right from the
graph on the left in Figure 1.87. First, v1 is assigned color 1; then v2 is assigned
color 1, since v2 is not adjacent to v1. Then v3 is assigned color 1 since it is not
adjacent to v1 or v2. Vertex v4 is assigned color 2, then v5 is assigned 2, and
finally v6 is assigned 2.
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FIGURE 1.87. Applying the greedy algorithm.

It is important to realize that the coloring obtained by the greedy algorithm
depends heavily on the initial labeling of the vertices. Different labelings can (and
often do) produce different colorings. Figure 1.88 displays the coloring obtained
from a different original labeling of the same graph. More colors are used in this
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FIGURE 1.88. Applying it again.

second coloring. We see that while “greed works” in that the algorithm always
gives a legal coloring, we cannot expect it to give us a coloring that uses the
fewest possible colors.

The following bound improves Theorem 1.41.

Theorem 1.42. For any graph G, χ(G) ≤ Δ(G) + 1, where Δ(G) is the maxi-
mum degree of G.

Proof. Running the greedy algorithm on G produces a legal coloring that uses
at most Δ(G) + 1 colors. This is because every vertex in the graph is adjacent
to at most Δ(G) other vertices, and hence the largest color label used is at most
Δ(G) + 1. Thus, χ(G) ≤ Δ(G) + 1.

Notice that we obtain equality in this bound for complete graphs and for cycles
with an odd number of vertices. As it turns out, these are the only families of
graphs for which the equality in Theorem 1.42 holds. This is stated in Brooks’s
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Theorem [41]. The proof that we give is a modification of the one given by Lovász
[190].

Theorem 1.43 (Brooks’s Theorem). If G is a connected graph that is neither an
odd cycle nor a complete graph, then χ(G) ≤ Δ(G).

Proof. Let G be a connected graph of order n that is neither a complete graph nor
an odd cycle. Let k = Δ(G). We know that k �= 0 and k �= 1, since otherwise
G is complete. If k = 2, then G must be either an even cycle or a path. In either
case, χ(G) = 2 = Δ(G). So assume that k = Δ(G) ≥ 3.

We are now faced with three cases. In each case we will establish a labeling of
the vertices of G in the form v1, v2, . . . , vn. We will then use the greedy algorithm
to color G with no more than k colors.

Case 1. Suppose that G is not k-regular. Then there exists some vertex with
degree less than k. Choose such a vertex and call it vn. Let S0 = {vn} and let
S1 = N(vn), the neighborhood of vn. Further, let

S2 = N(S1)− {vn} − S1,

S3 = N(S2)− S1 − S2,

...

Si = N(Si−1)− Si−2 − Si−1,

for each i (Figure 1.89). Since G is finite, there is some t such that St is not empty,
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FIGURE 1.89. The sets Si.

and Sr is empty for all r > t.
Next, label the vertices in S1 with the labels vn−1, vn−2, . . . , vn−|S1|. Label the

vertices in S2 with the labels vn−|S1|−1, . . . , vn−|S1|−|S2|. Continue labeling in
this decreasing fashion until all vertices of G have been labeled. The vertex with
label v1 is in the set St.

Let u be a vertex in some Si, i ≥ 1. Since u has at least one neighbor in Si−1,
it has at most k − 1 adjacencies with vertices whose label is less than its own.
Thus, when the greedy algorithm gets to u, there will be at least one color from
{1, 2, . . . , k} available. Further, since deg(vn) < k, there will be a color from
{1, 2, . . . , k} available when the greedy algorithm reaches vn. Thus, in this case
the greedy algorithm uses at most k colors to properly color G.
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Case 2. Suppose that G is k-regular and that G has a cut vertex, say v. The
removal of v from G will form at least two connected components. Say the com-
ponents are G1, G2, . . . , Gt. Consider the graph H1 = G1 ∪ {v} (the component
G1 with v added back—see Figure 1.90). H1 is a connected graph, and the degree
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FIGURE 1.90. The graph H1.

of v in H is less than k. Using the method in Case 1, we can properly color H1

with at most k colors. Similarly, we can properly color each Hi = Gi −{v} with
at most k colors. Without loss of generality, we can assume that v gets the same
color in all of these colorings (if not, just permute the colors to make it so). These
colorings together create a proper coloring of G that uses at most k colors. Case
2 is complete.

Case 3. Suppose that G is k-regular and that it does not contain a cut vertex.
This means that G is 2-connected.

Subcase 3a. Suppose that G is 3-connected. This means that for all v, the graph
G − v is 2-connected. Let v be a vertex of G with neighbors v1 and v2 such that
v1v2 �∈ E(G) (such vertices exist since G is not complete). By the assumption in
this subcase, the graph G− {v1, v2} is connected.

Subcase 3b. Suppose that G is not 3-connected. This means that there exists
a pair of vertices v, w such that the graph G − {v, w} is disconnected. Let the
components of G− {v, w} be G1, G2, . . . , Gt. Since k ≥ 3, it must be that each
Gi has at least two vertices. It also must be that v is adjacent to at least one vertex
in each Gi, since w is not a cut vertex of G. Let u ∈ V (G1) be a neighbor of v.
Suppose for the moment that u is a cut vertex of the graph G − v. If this is the
case, then there must be another vertex y of G1 such that (i) y is not a cut vertex
of the graph G− v, and (ii) the only paths from y to w in G− v go through vertex
u. Since u is not a cut vertex of G itself, it must be that y is adjacent to v. In either
case, it must be that v has a neighbor in G1 (either u or y) that is not a cut vertex
of G− v. The vertex v has a similar such neighbor in G2. For convenience, let us
rename: For i = 1, 2, let vi ∈ V (Gi) be a neighbor of v that is not a cut vertex
of the graph G − v. Vertices v1 and v2 are nonadjacent, and since they were in
different components of G− {v, w}, it must be that G− {v1, v2} is connected.

In each subcase, we have identified vertices v, v1, and v2 such that vv1, vv2 ∈
E(G), v1v2 �∈ E(G), and G − {v1, v2} is connected. We now proceed to label
the vertices of G in preparation for the greedy algorithm.
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Let v1 and v2 be as labeled. Let v be labeled vn. Now choose a vertex adja-
cent to vn that is not v1 or v2 (such a vertex exists, since deg(vn) ≥ 3). Label
this vertex vn−1. Next choose a vertex that is adjacent to either vn or vn−1 and
is not v1, v2, vn, or vn−1. Call this vertex vn−2. We continue this process. Since
G − {v1, v2} is connected, then for each i ∈ {3, . . . , n − 1}, there is a ver-
tex vi ∈ V (G) − {v1, v2, vn, vn−1, . . . , vi+1} that is adjacent to at least one of
vi+1, . . . , vn.

Now that the vertices are labeled, we can apply the greedy algorithm. Since
v1v2 �∈ E(G), the algorithm will give the color 1 to both v1 and v2. Since each
vi, 3 ≤ i < n, is adjacent to at most k − 1 predecessors, and since vn is adjacent
to v1 and v2, the algorithm never requires more than k = Δ(G) colors. Case 3 is
complete.

The next bound involves a new concept.
The clique number of a graph, denoted by ω(G), is defined as the order of

the largest complete graph that is a subgraph of G. For example, in Figure 1.91,
ω(G1) = 3 and ω(G2) = 4.
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FIGURE 1.91. Graphs with clique numbers 3 and 4, respectively.

A simple bound that involves clique number follows. We leave it to the reader
to provide a (one or two line) explanation.

Theorem 1.44. For any graph G, χ(G) ≥ ω(G).

It is natural to wonder whether we might be able to strengthen this theorem and
prove that χ(G) = ω(G) for every graph G. Unfortunately, this is false. Consider
the graph G shown in Figure 1.92. The clique number of this graph is 5, and the

FIGURE 1.92. Is χ(G) = ω(G)?
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chromatic number is 6 (see Exercise 2).
The upper and lower bounds given in Theorem 1.45 concern α(G), the inde-

pendence number of G, defined back in Section 1.4.3. The proofs are left as an
exercise (see Exercise 6).

Theorem 1.45. For any graph G of order n,

n

α(G)
≤ χ(G) ≤ n + 1− α(G).

Exercises

1. Recall that avgdeg(G) denotes the average degree of vertices in G. Prove
or give a counterexample to the following statement:

χ(G) ≤ 1 + avgdeg(G).

2. If G is the graph in Figure 1.92, prove that χ(G) = 6 and ω(G) = 5.

3. Determine a necessary and sufficient condition for a graph to have a 2-
colorable line graph.

4. Recall that τ(G) denotes the number of vertices in a detour path (a longest
path) of G, prove that χ(G) ≤ τ(G).

5. Prove that the only graph G of order n for which χ(G) = n is Kn.

6. Prove that for any graph G of order n,

n

α(G)
≤ χ(G) ≤ n + 1− α(G).

7. If G is bipartite, prove that ω(G) = χ(G).

8. Let G be a graph of order n. Prove that

(a) n ≤ χ(G)χ(G);

(b) 2
√

n ≤ χ(G) + χ(G).

1.6.3 The Four Color Problem

That doesn’t sound too hard.
— Princess Leia, Star Wars

The Four Color Problem. Is it true that the countries on any given map can
be colored with four or fewer colors in such a way that adjacent countries are
colored differently?
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The seemingly simple Four Color Problem was introduced in 1852 by Francis
Guthrie, a student of Augustus DeMorgan. The first written reference to the prob-
lem is a letter from DeMorgan to Sir William Rowan Hamilton. Despite Hamil-
ton’s indifference15, DeMorgan continued to talk about the problem with other
mathematicians. In the years that followed, many of the world’s top mathematical
minds attempted either to prove or disprove the conjecture, and in 1879 Alfred
Kempe announced that he had found a proof. In 1890, however, P. J. Heawood
discovered an error in Kempe’s proof. Kempe’s work did have some positive fea-
tures, though, for Heawood made use of Kempe’s ideas to prove that five colors
always suffice. In this section, we translate the Four Color Problem into a graph
theory problem, and we prove the Five Color Theorem.

Any map can be represented by a planar graph in the following way: Repre-
sent each country on the map by a vertex, and connect two vertices with an edge
whenever the corresponding countries share a nontrivial border (more than just a
point). Some examples are shown in Figure 1.93.

FIGURE 1.93. Graph representations of maps.

The regions on the map correspond to vertices on the graph, so a graph col-
oring yields a map coloring with no bordering regions colored the same. This
natural representation allows us to see that a map is 4-colorable if and only if its
associated graph is 4-colorable.

The Four Color Conjecture is equivalent to the following statement. A thorough
discussion of this equivalence can be found in [52].

15Perhaps he was too busy perfecting plans for a cool new game that he would release a few years
later. See Section 1.4.3.
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Theorem 1.46 (Four Color Theorem). Every planar graph is 4-colorable.

When Heawood pointed out the error in Kempe’s proof, researchers flocked
back to the drawing board. People worked on the Four Color Problem for years
and years trying numerous strategies. Finally, in 1976, Kenneth Appel and Wolf-
gang Haken, with the help of John Koch, announced that they had found a proof
[12]. To complete their proof, they verified thousands of cases with computers,
using over 1000 hours of computer time. As you might imagine, people were
skeptical of this at first. Was this really a proof? How could an argument with so
many cases be verified?

While the Appel–Haken proof is accepted as being valid, mathematicians still
search for alternative proofs. Robertson, Sanders, Seymour, and Thomas [239]
have probably come the closest to finding a short and clever proof, but theirs still
requires a number of computer calculations.

In a 1998 article [267], Robin Thomas said the following.

For the purposes of this survey, let me telescope the difficulties with
the A&H proof into two points: (1) part of the proof uses a computer
and cannot be verified by hand, and (2) even the part that is suppos-
edly hand-checkable has not, as far as I know, been independently
verified in its entirety. . . . Neil Robertson, Daniel P. Sanders, Paul
Seymour, and I tried to verify the Appel–Haken proof, but soon gave
up and decided that it would be more profitable to work out our own
proof. . . . We were not able to eliminate reason (1), but we managed
to make progress toward (2).

As mentioned earlier, Heawood [156] provided a proof of the Five Color
Theorem in the late 1890s, and we present his proof here. Some of the ideas
in his proof came from Kempe’s attempt [174] to solve the Four Color Problem.

Theorem 1.47 (Five Color Theorem). Every planar graph is 5-colorable.

Proof. We induct on the order of G. Let G be a planar graph of order n. If n ≤ 5,
then the result is clear. So suppose that n ≥ 6 and that the result is true for all
planar graphs of order n − 1. From Theorem 1.35, we know that G contains a
vertex, say v, having deg(v) ≤ 5.

Consider the graph G′ obtained by removing from G the vertex v and all edges
incident with v. Since the order of G′ is n− 1 (and since G′ is of course planar),
we can apply the induction hypothesis and conclude that G′ is 5-colorable. Now,
we can assume that G′ has been colored using the five colors, named 1, 2, 3, 4,
and 5. Consider now the neighbors of v in G. As noted earlier, v has at most five
neighbors in G, and all of these neighbors are vertices in (the already colored) G′.

If in G′ fewer than five colors were used to color these neighbors, then we can
properly color G by using the coloring for G′ on all vertices other than v, and by
coloring v with one of the colors that is not used on the neighbors of v. In doing
this, we have produced a 5-coloring for G.
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So, assume that in G′ exactly five of the colors were used to color the neighbors
of v. This implies that there are exactly five neighbors, call them w1, w2, w3, w4,
w5, and assume without loss of generality that each wi is colored with color i (see
Figure 1.94).
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FIGURE 1.94.

We wish to rearrange the colors of G′ so that we make a color available for
v. Consider all of the vertices of G′ that have been colored with color 1 or with
color 3.

Case 1. Suppose that in G′ there does not exist a path from w1 to w3 where all
of the colors on the path are 1 or 3. Define a subgraph H of G′ to be the union of
all paths that start at w1 and that are colored with either 1 or 3. Note that w3 is not
a vertex of H and that none of the neighbors of w3 are in H (see Figure 1.95).
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FIGURE 1.95.

Now, interchange the colors in H . That is, change all of the 1’s into 3’s and
all of the 3’s into 1’s. The resulting coloring of the vertices of G′ is a proper
coloring, because no problems could have possibly arisen in this interchange. We
now see that w1 is colored 3, and thus color 1 is available to use for v. Thus, G is
5-colorable.

Case 2. Suppose that in G′ there does exist a path from w1 to w3 where all of
the colors on the path are 1 or 3. Call this path P . Note now that P along with v
forms a cycle that encloses either w2 or w4 (Figure 1.96).
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FIGURE 1.96. Two possibilities.

So there does not exist a path from w2 to w4 where all of the colors on the
path are 2 or 4. Thus, the reasoning in Case 1 applies! We conclude that G is
5-colorable.

Exercises

1. Determine the chromatic number of the graph of the map of the United
States.

2. Determine the chromatic number of the graph of the map of the countries
of South America.

3. Determine the chromatic number of the graph of the map of the countries
of Africa.

4. Determine the chromatic number of the graph of the map of the countries
of Australia. Hint: This graph will be quite small!

5. Where does the proof of the Five Color Theorem go wrong for four colors?

1.6.4 Chromatic Polynomials

Everything should be made as simple as possible, but not simpler.
— Albert Einstein

Chromatic polynomials, developed by Birkhoff in the early 1900s as he studied
the Four Color Problem, provide us with a method of counting the number of
different colorings of a graph.

Before we introduce the polynomials, we should clarify what we mean by dif-
ferent colorings. Given a graph G, suppose that its vertices are labeled v1, v2,
. . . vn. A coloring of G is an assignment of colors to these vertices, and we call
two colorings C1 and C2 different if at least one vi receives a different color in
C1 than it does in C2. For instance, the two colorings of K4 shown in Figure 1.97
are considered different, since v3 and v4 receive different colorings.
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FIGURE 1.97. Two different colorings.

If we restrict ourselves to four colors, how many different colorings are there
of K4? Since there are four choices for v1, then three for v2, etc., we see that
there are 4 · 3 · 2 · 1 different colorings of K4 using four colors. If six colors were
available, there would be 6 ·5 ·4 ·3 different colorings. If only two were available,
there would be no proper colorings of K4.

In general, define cG(k) to be the number of different colorings of a graph G
using at most k colors. So we have cK4(4) = 24, cK4(6) = 360, and cK4(2) = 0.
In fact, if k and n are positive integers where k ≥ n, then

cKn(k) = k(k − 1)(k − 2) · · · (k − n + 1).

Further, if k < n, then cKn(k) = 0. We also note that cEn(k) = kn for all
positive integers k and n.

A simple but important property of cG(k) is that G is k-colorable if and only if
cG(k) > 0. Equivalently, cG(k) > 0 if and only if χ(G) ≤ k.

Finding values of cG(k) is relatively easy for some well-known graphs. Com-
puting this function in general, though, can be hard. Birkhoff and Lewis [27]
developed a way to reduce this hard problem to an easier one. Before we see their
method, we need a definition.

Let G be a graph and let e be an edge of G. Recall that G− e denotes the graph
where e is removed from G. Define the graph G/e to be the graph obtained from
G by removing e, identifying the end vertices of e, and leaving only one copy of
any resulting multiple edges.

As an example, a graph G and the graphs G − bc and G/bc are shown in Fig-
ure 1.98.

Theorem 1.48. Let G be a graph and e be any edge of G. Then

cG(k) = cG−e(k)− cG/e(k).

Proof. Suppose that the end vertices of e are u and v, and consider the graph
G− e.

How many k-colorings are there of G− e where u and v are assigned the same
color? If C is a such a coloring of G−e, then C can be thought of as a coloring of
G/e, since u and v are colored the same. Similarly, any coloring of G/e can also
be thought of as a coloring of G − e where u and v are colored the same. Thus,
the answer to this question is cG/e(k).
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FIGURE 1.98. Examples of the operations.

Now, how many k-colorings are there of G − e where u and v are assigned
different colors? If C is a such a coloring of G− e, then C can be considered as a
coloring of G, since u and v are colored differently. Similarly, any coloring of G
can also be thought of as a coloring of G−e where u and v are colored differently.
Thus, the answer to this second question is cG(k).

Thus, the total number of k-colorings of G− e is

cG−e(k) = cG/e(k) + cG(k),

and the result follows.

For example, suppose we want to find cP4(k). That is, how many ways are there
to color the vertices of P4 with k colors available? We label the edges of P4 as
shown in Figure 1.99.

��
	� 	�	�

FIGURE 1.99. The labeled edges of P4.

The theorem implies that

cP4(k) = cP4−e1(k)− cP4/e1(k).

For convenience, let us denote P4 − e1 and P4/e1 by G11 and G12, respectively
(see Figure 1.100).

	� 	� 	� 	�
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FIGURE 1.100. The first application.
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Applying the theorem again, we obtain

cP4(k) = cG11−e2(k)− cG11/e2(k)− cG12−e2(k) + cG12/e2(k).

Denote the graphs G11 − e2, G11/e2, G12 − e2, and G12/e2 by G21, G22, G23,
and G24, respectively (see Figure 1.101).

	� 	�

	�	�

��


�� 
��


��

FIGURE 1.101. The second application.

Applying the theorem once more yields

cP4(k) = cG21−e3(k)− cG21/e3(k)− cG22−e3(k) + cG22/e3(k)
− cG23−e3(k) + cG23/e3(k) + cG24−e3(k)− cG24/e3(k).

That is,

cP4(k) = cE4(k)−cE3(k)−cE3(k)+cE2(k)−cE3(k)+cE2(k)+cE2(k)−cE1(k).

Thus,
cP4(k) = k4 − k3 − k3 + k2 − k3 + k2 + k2 − k

= k4 − 3k3 + 3k2 − k.

We should check a couple of examples. How many colorings of P4 are there
with one color?

cP4(1) = 14 − 3(1)3 + 3(1)2 − 1 = 0.

This, of course, makes sense. And how many colorings are there with two colors?

cP4(2) = 24 − 3(2)3 + 3(2)2 − 2 = 2.

Figure 1.102 shows these two colorings. Score one for Birkhoff!

��� C�)� ��� C�)� C�)� ��� C�)� ���

FIGURE 1.102. Two 2-colorings of P4.

As you can see, chromatic polynomials provide a way to count colorings, and
the Birkhoff–Lewis theorem allows you to reduce a problem to a slightly simpler
one. We should note that it is not always necessary to work all the way down to
empty graphs, as we did in the previous example. Once a graph G is obtained for
which the value of cG(k) is known, there is no need to reduce that one further.

We now present some properties of cG(k).
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Theorem 1.49. Let G be a graph of order n. Then

1. cG(k) is a polynomial in k of degree n,

2. the leading coefficient of cG(k) is 1,

3. the constant term of cG(k) is 0,

4. the coefficients of cG(k) alternate in sign, and

5. the absolute value of the coefficient of the kn−1 term is the number of edges
in G.

We leave the proof of this theorem as an exercise (Exercise 3). One proof strat-
egy is to induct on the number of edges in G and use the Birkhoff–Lewis reduction
theorem (Theorem 1.48).

Before leaving this section, we should note that Birkhoff considered chromatic
polynomials of planar graphs, and he hoped to find one of them that had 4 as a
root. If he had found one, then the corresponding planar graph would not be 4-
colorable, and hence would be a counterexample to the Four Color Conjecture.
Although he was unsuccessful in proving the Four Color Theorem, he still de-
serves credit for producing a very nice counting technique.

Exercises

1. Find chromatic polynomials for each of the following graphs. For each one,
determine how many 5-colorings exist.

(a) K1,3

(b) K1,5

(c) C4

(d) C5

(e) K4 − e

(f) K5 − e

2. Show that k4 − 4k3 + 3k2 is not a chromatic polynomial for any graph.

3. Prove Theorem 1.49.

4. Determine the chromatic polynomial for a tree of order n.

1.7 Matchings

Pardon me, do you have a match?
— James Bond, in From Russia with Love
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The Senate committees that we discussed earlier need to form an executive coun-
cil. Each committee needs to designate one of its members as an official repre-
sentative to sit on the council, and council policy states that no senator can be the
official representative for more than one committee. For example, let us suppose
there are four committees: Senators A, B, C, and D are on Committee 1; Senators
A, E, and F are members of Committee 2; Committee 3 consists of E, F , and D;
and Senator A is the only member of Committee 4. In this example, the executive
council could consist of A, E, F , and C—representing Committees 4, 3, 2, and
1, respectively.

As another example, suppose Committee 1 consists of W , X and Y ; Commit-
tee 2 of W , X , and Z; Committee 3 of W , Y , and Z; Committee 4 of X , Y , and
Z; and Committee 5 of W and Z . It does not take long to see that it is impossible
in this case to select official representatives according to the policy.

So a natural question arises: Under what circumstances can the executive coun-
cil be formed successfully? In the sections that follow, we will see how graphs
can be used to help answer this question.

1.7.1 Definitions

And as to the meaning . . .
— C. S. Calverly, Ballad

A matching in a graph is a set of independent edges. That is, it is a set of edges
in which no pair shares a vertex. Given a matching M in a graph G, the vertices
belonging to the edges of M are said to be saturated by M (or M -saturated). The
other vertices are M -unsaturated.

Consider the graph G shown in Figure 1.103. An example of a matching in G
is M1 = {ab, ce, df}. M2 = {cd, ab} is also a matching, and so is M3 = {df}.
We can see that a, b, c, d are M2-saturated and e, f , and g are M2-unsaturated.
The only M1-unsaturated vertex is g.

�

�

�

�

�

�

	

FIGURE 1.103. The matching M1.

If a matching M saturates every vertex of G, then M is said to be a perfect
matching. In Figure 1.104, G1 has a perfect matching, namely {ab, ch, de, fg}.
None of G2, G3, and G4 has a perfect matching. Why is this? We will talk more
about perfect matchings in Section 1.7.4.

A maximum matching in a graph is a matching that has the largest possible
cardinality. A maximal matching is a matching that cannot be enlarged by the
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FIGURE 1.104. Only G1 has a perfect matching.

addition of any edge. In Figure 1.105, M1 = {ae, bf, cd, gh} is a maximum
matching (since at most one of gh, gi, and gj can be in any matching). The match-
ing M2 = {dg, af, bc} is maximal, but not maximum.
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FIGURE 1.105.

Exercises

1. Determine whether the graph of Figure 1.106 has a perfect matching. If so,
then exhibit it. If not, explain why.

FIGURE 1.106. Is there a perfect matching?

2. Find the minimum size of a maximal matching in each of the following
graphs.

(a) C10
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(b) C11

(c) Cn

3. (From [52].) The matching graph M(G) of a graph G has the maximum
matchings of G as its vertices, and two vertices M1 and M2 of M(G) are
adjacent if M1 and M2 differ in only one edge. Show that each cycle Cn,
n = 3, 4, 5, or 6, is the matching graph of some graph.

1.7.2 Hall’s Theorem and SDRs

I’ll match that!
— Monty Hall, Let’s Make a Deal

In this section we consider several classic results concerning matchings. We begin
with a few more definitions.

Given a graph G and a matching M , an M -alternating path is a path in G where
the edges alternate between M -edges and non-M -edges. An M -augmenting path
is an M -alternating path where both end vertices are M -unsaturated.

As an example, consider the graph G and the matching M indicated in Fig-
ure 1.107. An example of an M -alternating path is c, a, d, e, i. An example of
an M -augmenting path is j, g, f , a, c, b. The reason for calling such a path “M -
augmenting” will become apparent soon.
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FIGURE 1.107. The graph G and matching M .

The following result is due to Berge [23].

Theorem 1.50 (Berge’s Theorem). Let M be a matching in a graph G. M is
maximum if and only if G contains no M -augmenting paths.

Proof. First, assume that M is a maximum matching, and suppose that P :
v1, v2, . . . , vk is an M -augmenting path. Due to the alternating nature of M -
augmenting paths, it must be that k is even and that the edges v2v3, v4v5, . . . ,
vk−2vk−1 are all edges of M . We also see that the edges v1v2, v3v4, . . . , vk−1vk

are not edges of M (Figure 1.108).
But then if we define the set of edges M1 to be

M1 = (M \ {v2v3, . . . , vk−2vk−1}) ∪ {v1v2, . . . , vk−1vk},
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FIGURE 1.108. An M -augmenting path.

then M1 is a matching that contains one more edge than M , a matching that we
assumed to be maximum. This is a contradiction, and we can conclude that G
contains no M -augmenting paths.

For the converse, assume that G has no M -augmenting paths, and suppose that
M ′ is a matching that is larger than M . Define a subgraph H of G as follows: Let
V (H) = V (G) and let E(H) be the set of edges of G that appear in exactly one
of M and M ′. Now consider some properties of this subgraph H . Since each of
the vertices of G lies on at most one edge from M and at most one edge from M ′,
it must be that the degree (in H) of each vertex of H is at most 2. This implies
that each connected component of H is either a single vertex, a path, or a cycle.
If a component is a cycle, then it must be an even cycle, since the edges alternate
between M -edges and M ′-edges. So, since |M ′| > |M |, there must be at least
one component of H that is a path that begins and ends with edges from M ′. But
this path is an M -augmenting path, contradicting our assumption. Therefore, no
such matching M ′ can exist—implying that M is maximum.

Before we see Hall’s classic matching theorem, we need to define one more
term. If G is a bipartite graph with partite sets X and Y , we say that X can be
matched into Y if there exists a matching in G that saturates the vertices of X .

Consider the two examples in Figure 1.109. In the bipartite graph on the left,

�� ��

FIGURE 1.109.

we see that X can be matched into Y . In the graph on the right, though, it is
impossible to match X into Y (why is this?). What conditions on a bipartite graph
must exist if we want to match one partite set into the other? The answer to this
question is found in the following result of Hall [147] (Philip, not Monty).

Recall that the neighborhood of a set of vertices S, denoted by N(S), is the
union of the neighborhoods of the vertices of S.
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Theorem 1.51 (Hall’s Theorem). Let G be a bipartite graph with partite sets X
and Y . X can be matched into Y if and only if |N(S)| ≥ |S| for all subsets S of
X .

Proof. First suppose that X can be matched into Y , and let S be some subset of
X . Since S itself is also matched into Y , we see immediately that |S| ≤ |N(S)|
(see Figure 1.110). Now suppose that |N(S)| ≥ |S| for all subsets S of X , and

,F(G
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FIGURE 1.110.

let M be a maximum matching. Suppose that u ∈ X is not saturated by M (see
Figure 1.111). Define the set A to be the set of vertices of G that can be joined to u
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FIGURE 1.111.

by an M -alternating path. Let S = A∩X , and let T = A∩Y (see Figure 1.112).
Notice now that Berge’s Theorem implies that every vertex of T is saturated by
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FIGURE 1.112.
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M and that u is the only unsaturated vertex of S. That is, every vertex of T is
saturated, and every vertex of S \{u} is saturated. This implies that |T | = |S|−1.
It follows from Berge’s Theorem and the definition of T that N(S) = T . But then
we have that |N(S)| = |S| − 1 < |S|, and this is a contradiction. We conclude
that such a vertex u cannot exist in X and that M saturates all of X .

Given some family of sets X , a system of distinct representatives, or SDR, for
the sets in X can be thought of as a “representative” collection of distinct elements
from the sets of X . For instance, let S1, S2, S3, S4, and S5 be defined as follows:

S1 = {2, 8},
S2 = {8},
S3 = {5, 7},
S4 = {2, 4, 8},
S5 = {2, 4}.

The family X1 = {S1, S2, S3, S4} does have an SDR, namely {2, 8, 7, 4}. The
family X2 = {S1, S2, S4, S5} does not have an SDR.

So under what conditions will a finite family of sets have an SDR? We answer
this question with the following theorem.

Theorem 1.52. Let S1, S2, . . . , Sk be a collection of finite, nonempty sets. This
collection has an SDR if and only if for every t ∈ {1, . . . , k}, the union of any t
of these sets contains at least t elements.

Proof. Since each of the sets is finite, then of course S = S1 ∪ S2 ∪ · · · ∪ Sk is
finite. Let us say that the elements of S are a1, . . . , an.

We now construct a bipartite graph with partite sets X = {S1, . . . , Sk} and
Y = {a1, . . . , an} (Figure 1.113). We place an edge between Si and aj if and
only if aj ∈ Si.
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FIGURE 1.113. Constructing a bipartite graph.

Hall’s Theorem now implies that X can be matched into Y if and only if |A| ≤
|N(A)| for all subsets A of X . In other words, the collection of sets has an SDR
if and only if for every t ∈ {1, . . . , k}, the union of any t of these sets contains at
least t elements.
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Hall’s Theorem is often referred to as Hall’s Marriage Theorem. We will see
more about this in Section 2.9.

Exercises

1. (From [56].) For the graphs of Figure 1.114, with matchings M as shaded,
find

(a) an M -alternating path that is not M -augmenting;

(b) an M -augmenting path if one exists; and, if so, use it to obtain a bigger
matching.

FIGURE 1.114.

2. For each of the following families of sets, determine whether the condition
of Theorem 1.52 is met. If so, then find an SDR. If not, then show how the
condition is violated.

(a) {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5}, {1, 2, 5}
(b) {1, 2, 4}, {2, 4}, {2, 3}, {1, 2, 3}
(c) {1, 2}, {2, 3}, {1, 2, 3}, {2, 3, 4}, {1, 3}, {3, 4}
(d) {1, 2, 5}, {1, 5}, {1, 2}, {2, 5}
(e) {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}, {2, 3, 4}

3. Let G be a bipartite graph. Show that G has a matching of size at least
|E(G)|/Δ(G).

4. Let Θ = {S1, S2, . . . , Sr} be a family of distinct nonempty subsets of the
set {1, 2, . . . , n}. If the Si are all of the same cardinality, then prove that
there exists an SDR of Θ.
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5. Let M1 and M2 be matchings in a bipartite graph G with partite sets X and
Y . If S ⊆ X is saturated by M1 and T ⊆ Y is saturated by M2, show that
there exists a matching in G that saturates S ∪ T .

6. (From [139].) Let G be a bipartite graph with partite sets X and Y . Let δX

denote the minimum degree of the vertices in X , and let ΔY denote the
maximum degree of the vertices in Y . Prove that if δX ≥ ΔY , then there
exists a matching in G that saturates X .

1.7.3 The König–Egerváry Theorem

What I tell you three times is true.
— Lewis Carroll, The Hunting of the Snark

The main theorem that we present in this section is very important, for it is closely
related to several results from other areas of graph theory. We will discuss a few
of these areas after we have proven the theorem.

A set C of vertices in a graph G is said to cover the edges of G if every edge of
G is incident with at least one vertex of C. Such a set C is called an edge cover
of G.

Consider the graphs G1 and G2 in Figure 1.115. In G1, the set {b, d, e, a} is
an edge cover, as is the set {a, e, f}. In fact, you can see by a little examination
that there is no edge cover G1 with fewer than three vertices. So we can say that
{a, e, f} is a minimum edge cover of G1. In G2, each of the following sets is an
edge cover: {v1, v2, v3, v4, v5, v6} (obviously) and {u2, v6, u1}. What is the size
of a minimum edge cover here?
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FIGURE 1.115.

We are now ready to prove the following result of König [180] and Egerváry
[87].

Theorem 1.53 (König–Egerváry Theorem). Let G be a bipartite graph. The max-
imum number of edges in a matching in G equals the minimum number of vertices
in an edge cover of G.

Proof. Let M be a maximum matching of G. Let X and Y be the partite sets of
G, and let W be the set of all M -unsaturated vertices of X (see Figure 1.116).
Note that |M | = |X | − |W |.



110 1. Graph Theory
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FIGURE 1.116.

Now let A be the set of vertices of G that can be reached via an M -alternating
path from some vertex of W . Let S = A ∩X , and let T = A ∩ Y . We can note
two things now: First, S \W is matched to T (implying that |W | = |S| − |T |),
and second, N(S) = T .

If we let C = (X \ S) ∪ T , we see that C covers the edges of G. So C is an
edge cover of G, and |C| = |X | − |S|+ |T | = |X | − |W | = |M |. Now suppose
that C′ is any edge cover. Since each vertex of C′ can cover at most one edge
of M , it must be that |C′| ≥ |M |. We conclude then that C is a minimum edge
cover.

The König–Egerváry Theorem is one of several theorems in graph theory that
relate the minimum of one thing to the maximum of something else. What fol-
lows are some examples of theorems that are very closely related to the König–
Egerváry Theorem.

Menger’s Theorem

Let G be a connected graph, and let u and v be vertices of G. If S is a subset
of vertices that does not include u or v, and if the graph G − S has u and v in
different connected components, then we say that S is a u, v-separating set.

The following result is known as Menger’s Theorem [202].

Theorem 1.54. Let G be a graph and let u and v be vertices of G. The maximum
number of internally disjoint paths from u to v equals the minimum number of
vertices in a u, v-separating set.

Max Flow Min Cut Theorem

A graph can be thought of as a flow network, where one vertex is specified to be
the source of the flow and another is specified to be the receiver of the flow. As
an amount of material flows from source to receiver, it passes through other inter-
mediate vertices, each of which has a particular flow capacity. The total flow of a
network is the amount of material that is able to make it from source to receiver.
A cut in a network is a set of intermediate vertices whose removal completely cuts
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the flow from the source to the receiver. The capacity of the cut is simply the sum
of the capacities of the vertices in the cut.

Theorem 1.55. Let N be a flow network. The maximum value of total flow equals
the minimum capacity of a cut.

Independent Zeros

If A is an m × n matrix with real entries, a set of independent zeros in A can
be thought of as a set of ordered pairs {(i1, j1), (i2, j2), . . . , (it, jt)} with the
following properties:

a. the (ik, jk) entry of A is 0 for k = 1, 2, . . . , t;

b. if a �= b, then ia �= ib and ja �= jb.

That is, none of the zeros in the set are in the same row or column.
Now, in this matrix A one can draw lines through each row and column that

contains a zero. Such a set of lines is said to cover the zeros of A.

Theorem 1.56. The maximum number of independent zeros in A is equal to the
minimum number of lines through rows or columns that together cover all the
zeros of A.

Exercises

1. Use the König–Egerváry Theorem to prove Hall’s Theorem.

2. Let k be some fixed integer, 1 ≤ k ≤ n, and let G be some subgraph of
Kn,n with more than (k − 1)n edges. Prove that G has a matching of size
at least k.

3. Use the original statement of the König–Egerváry Theorem to prove Theo-
rem 1.56.

1.7.4 Perfect Matchings

It’s a perfect ending.
— Sophie, in Anastasia

We end this section on matchings by discussing perfect matchings. Recall that a
perfect matching is a matching that saturates the entire vertex set of a graph. What
kinds of graphs have perfect matchings? One thing that is clear is that a graph must
be of even order in order to have a chance at having a perfect matching. But being
of even order is certainly not enough to guarantee a perfect matching (look back
at Figure 1.105).

We do know that K2n, C2n, and P2n have perfect matchings. The following
result regarding perfect matchings in bipartite graphs is a corollary to Hall’s The-
orem. The proof is left as an exercise (Exercise 5).
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Corollary 1.57. If G is a bipartite graph that is regular of degree k, then G
contains a perfect matching.

It seems very natural to think that the more edges a graph has, the more likely
it is that the graph will have a perfect matching. The following theorem verifies
this thought, to a degree.

Theorem 1.58. If G is a graph of order 2n such that δ(G) ≥ n, then G has a
perfect matching.

Proof. Let G be a graph of order 2n with δ(G) ≥ n. Dirac’s theorem (Theo-
rem 1.22) guarantees the existence of a Hamiltonian cycle, C. A perfect matching
of G is formed by using alternate edges of C.

In 1947 Tutte [269] provided perhaps the best known characterization of graphs
with perfect matchings. A number of proofs of Tutte’s Theorem have been pub-
lished since then. The proof that we present is due to Anderson [7].

A definition first: Given a graph G, define Ω(G) to be the number of connected
components of G with odd order. Also, define Σ(G) to be the number of con-
nected components of G with even order.

Theorem 1.59 (Tutte’s Theorem). Let G be a graph of order n ≥ 2. G has a
perfect matching if and only if Ω(G− S) ≤ |S| for all subsets of S of V (G).

Proof. We begin with the forward direction. Let G be a graph that has a perfect
matching. Suppose S is a set of vertices and that O1, O2, . . . , Ok are the odd
components of G− S. For each i, the vertices in Oi can be adjacent only to other
vertices in Oi and to vertices in S. Since G has a perfect matching, at least one
vertex out of each of the Oi’s has to be matched with a different vertex in S. If
k > |S|, then some Oi would be left out (Figure 1.117). Thus, k ≤ |S|.
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FIGURE 1.117.

For the reverse direction of the theorem, suppose that |S| ≥ Ω(G − S) for all
S. In particular, if S = ∅, then Ω(G− ∅) ≤ 0. This implies that there are no odd
components of G—every component of G is even. More generally, we make the
following claim.
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Claim A. For any proper subset S, |S| and Ω(G − S) are either both even
or both odd.

Let C be some component of G. We know from earlier that C has even order. If an
even number of vertices is removed from C, then the number of odd components
remaining must also be even. If an odd number of vertices is removed from C,
then the number of odd components remaining must be odd. Since this is true for
every component of G, it is true for all of G. Hence Claim A is proved.

We now proceed by induction on n, the order of the graph. If n = 2, then G
is K2, which certainly has a perfect matching. Suppose now that the result is true
for all graphs of even order up to n, and let G be a graph of even order n. We now
have two cases.

Case 1. Suppose that for every proper subset S, Ω(G− S) < |S|. (That is, the
strict inequality holds.) Claim A implies that |S| and Ω(G − S) have the same
parity, so we can say in this case that for all subsets S, Ω(G− S) ≤ |S| − 2. Let
uv ∈ E(G), and consider the graph G − u − v (a graph with two fewer vertices
than G). We would like to apply the induction hypothesis to G − u − v, so we
need the following claim.

Claim B. For all subsets S′ of V (G− u− v), Ω(G− u− v − S′) ≤ |S′|.

If Claim B were not true, then Ω(G−u− v−S1) > |S1| for some subset S1. But
since |S1| = |S1 ∪ {u, v}| − 2, we get Ω(G− u − v − S1) > |S1 ∪ {u, v}|, and
this contradicts the assumption in this case. Claim B is proved.

Since Claim B is true, we can apply the induction hypothesis to G − u − v.
That is, we can conclude that G − u − v has a perfect matching. This matching,
together with the edge uv, forms a perfect matching of G. Case 1 is complete.

Case 2. Suppose there exists a subset S such that Ω(G − S) = |S|. There
may be a number of subsets S that satisfy this condition—suppose without loss
of generality that S is a largest such set. Let O1, O2, . . . , Ok be the components
of G− S of odd order.

Claim C. Σ(G− S) = 0. That is, there are no even-ordered components of
G− S.

Let E be an even ordered component of G − S, and let x be a vertex of E.
The graph G − S − x has exactly one more odd component than G − S. Thus,
|S ∪ {x}| = Ω(G − S − x). But this means that S ∪ {x} is a set larger than S
that satisfies the assumption of this case. Since we chose S to be the largest, we
have a contradiction. Therefore there are no even-ordered components of G− S.
Claim C is proved.

Claim D. There exist vertices s1, s2, . . . , sk ∈ S and vertices v1, v2, . . . , vk,
where for each i vi ∈ Oi, such that {v1s1, v2s2, . . . , vksk} is a matching.

For each i ∈ {1, . . . , k}, define the set Si to be the set of vertices in S that
are adjacent to some vertex in Oi. Note that if Si = ∅ for some i, then Oi is
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completely disconnected from anything else in G, implying that G itself has an
odd component. Since this contradicts our assumption in this case, we can assume
that each Si is nonempty. Furthermore, our initial assumptions imply that the
union of any r of the Si’s has size at least r. Thus, the condition in Theorem 1.52
is satisfied, implying that there exists a system of distinct representatives for the
family of sets S1, S2, . . . , Sk. If we let these representatives be s1, s2, . . . , sk,
and their adjacencies in the Oi’s be v1, v2, . . . , vk, then Claim D is proved.

The situation in G is depicted in Figure 1.118, where k = |S|.
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FIGURE 1.118.

At this point, each vertex in S has been matched to a vertex in an Oi. The goal
at this point is to show that each Oi − vi has a perfect matching.

Let W be some subset of vertices of (the even-ordered) Oi − vi.

Claim E. Ω(Oi − vi −W ) ≤ |W |.

If Ω(Oi − vi −W ) > |W |, then, by Claim A, Ω(Oi − vi −W ) ≥ |W |+ 2. But
then,

Ω(G− S − vi −W ) ≥ |S| − 1 + |W |+ 2
= |S|+ |W |+ 1
= |S ∪W ∪ {vi}|.

This contradicts our assumption, and thus Claim E is proved.
Since Claim E is true, each Oi − vi satisfies the induction hypothesis, and

thus has a perfect matching. These perfect matchings together with the perfect
matching shown in Figure 1.118 form a perfect matching of G, and so Case 2 is
complete.

We conclude this section by considering perfect matchings in regular graphs. If
a graph G is 1-regular, then G itself is a perfect matching. If G is 2-regular, then
G is a collection of disjoint cycles; as long as each cycle is even, G will have a
perfect matching.

What about 3-regular graphs? A graph that is 3-regular must be of even order,
so is it possible that every 3-regular graph contains a perfect matching? In a word,
no. The graph in Figure 1.119 is a connected 3-regular graph that does not have a
perfect matching. Thanks to Petersen [221], though, we do know of a special class
of 3-regular graphs that do have perfect matchings. Recall that a bridge in a graph
is an edge whose removal would disconnect the graph. The graph in Figure 1.119
has three bridges.
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FIGURE 1.119.

Theorem 1.60 (Petersen’s Theorem). Every bridgeless, 3-regular graph contains
a perfect matching.

Proof. Let G be a bridgeless, 3-regular graph, and suppose that it does not contain
a perfect matching. By Tutte’s Theorem, there must exist a subset S of vertices
where the number of odd components of G − S is greater than |S|. Denote the
odd-ordered components of G− S by O1, O2, . . . , Ok.

First, each Oi must have at least one edge into S. Otherwise, there would exist
an odd-ordered, 3-regular subgraph of G, and this is not possible, by Theorem 1.1.
Second, since G is bridgeless, there must be at least two edges joining each Oi to
S. Moreover, if there were only two edges joining some Oi to S, then Oi would
contain an odd number of vertices with odd degree, and this cannot happen.

We can therefore conclude that there are at least three edges joining each Oi to
S. This implies that there are at least 3k edges coming into S from the Oi’s. But
since every vertex of S has degree 3, the greatest number of edges incident with
vertices in S is 3|S|, and since 3k > 3|S|, we have a contradiction. Therefore, G
must have a perfect matching.

It is probably not surprising that the Petersen of Theorem 1.60 is the same
person for whom the Petersen graph (Figure 1.63) is named.

Petersen used this special graph as an example of a 3-regular, bridgeless graph
whose edges cannot be partitioned into three separate, disjoint matchings.

Exercises

1. Find a maximum matching of the graph shown in Figure 1.119.

2. Use Tutte’s Theorem to prove that the graph in Figure 1.119 does not have
a perfect matching.

3. Draw a connected, 3-regular graph that has both a cut vertex and a perfect
matching.
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4. Determine how many different perfect matchings there are in Kn,n.

5. Prove Corollary 1.57.

6. Characterize when Kr1,r2,...,rk
has a perfect matching.

7. Prove that every tree has at most one perfect matching.

8. Let G be a subgraph of K20,20. If G has a perfect matching, prove that G
has at most 190 edges that belong to no perfect matching.

9. Use Tutte’s Theorem to prove Hall’s Theorem.

1.8 Ramsey Theory

I have to go and see some friends of mine, some that I don’t know,
and some who aren’t familiar with my name.

— John Denver, Goodbye Again

We begin this section with a simple question: How many people are required at
a gathering so that there must exist either three mutual acquaintances or three
mutual strangers? We will answer this question soon.

Ramsey theory is named for Frank Ramsey, a young man who was especially
interested in logic and philosophy. Ramsey died at the age of 26 in 1930—the
same year that his paper On a problem of formal logic was published. His pa-
per catalyzed the development of the mathematical field now known as Ramsey
theory. The study of Ramsey theory has burgeoned since that time. While many
results in the subject are published each year, there are many questions whose
answers remain elusive. As the authors of [136] put it, “the field is alive and ex-
citing.”

1.8.1 Classical Ramsey Numbers

An innocent looking problem often gives no hint as to its true nature.
— Paul Erdős [92]

A 2-coloring of the edges of a graph G is any assignment of one of two colors to
each of the edges of G. Figure 1.120 shows a 2-coloring of the edges of K5 using
red (thick) and blue (thin).

Let p and q be positive integers. The (classical) Ramsey number associated with
these integers, denoted by R(p, q), is defined to be the smallest integer n such that
every 2-coloring of the edges of Kn either contains a red Kp or a blue Kq as a
subgraph.

Read through that definition at least one more time, and then consider this sim-
ple example. We would like to find the value of R(1, 3). According to the defi-
nition, this is the least value of n such that every 2-coloring of the edges of Kn
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FIGURE 1.120. A 2-coloring of K5.

either contains as a subgraph a K1 all of whose edges are red, or a K3 all of
whose edges are blue. How many vertices are required before we know that we
will have one of these objects in every coloring of a complete graph? If you have
just one vertex, then no matter how you color the edges (ha-ha) of K1, you will
always end up with a red K1. Thus, R(1, 3) = 1. We have found our first Ramsey
number!

We should note here that the definition given for Ramsey number is in fact
a good definition. That is, given positive integers p and q, R(p, q) does in fact
exist. Ramsey himself proved this fact, and we will learn more about the proof of
“Ramsey’s Theorem” in Chapter 2.

Back to examples. We just showed that R(1, 3) = 1. Similar reasoning shows
that R(1, k) = 1 for all positive integers k (see Exercise 2).

How about R(2, 4)? We need to know the smallest integer n such that every 2-
coloring of the edges of Kn contains either a red K2 or a blue K4. We claim that
R(2, 4) = 4. To show this, we must demonstrate two things: first, that there exists
a 2-coloring of K3 that contains neither a red K2 nor a blue K4, and second, that
any 2-coloring of the edges of K4 contains at least one of these as a subgraph.

We demonstrate the first point. Consider the 2-coloring of K3 given in Fig-
ure 1.121 (recall that red is thick and blue is thin—the edges in this coloring are
all blue). This coloring of K3 does not contain a red K2, and it certainly does not

FIGURE 1.121. The edges of K3 colored blue.

contain a blue K4. Thus R(2, 4) > 3.
For the second point, suppose that the edges of K4 are 2-colored in some fash-

ion. If any of the edges are red, then we have a red K2. If none of the edges are
red, then we have a blue K4. So, no matter the coloring, we always get one of the
two. This proves that R(2, 4) = 4.

What do you think is the value of R(2, 5)? How about R(2, 34)? As you will
prove in Exercise 3, R(2, k) = k for all integers k ≥ 2.
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Exercises

1. How many different 2-colorings are there of K3? of K4? of K5? of K10?

2. Write a nice proof of the fact that R(1, k) = 1 for all positive integers k.

3. Write a nice proof of the fact that R(2, k) = k for integers k ≥ 2.

4. Prove that for positive integers p and q, R(p, q) = R(q, p).

5. If 2 ≤ p′ ≤ p and 2 ≤ q′ ≤ q, then prove that R(p′, q′) ≤ R(p, q). Also,
prove that equality holds if and only if p′ = p and q′ = q.

1.8.2 Exact Ramsey Numbers and Bounds

Take me to your leader.
— proverbial alien

How many people are required at a gathering so that there must exist either three
mutual acquaintances or three mutual strangers? We can rephrase this question
as a problem in Ramsey theory: How many vertices do you need in an (edge) 2-
colored complete graph for it to be necessary that there be either a red K3 (people
who know each other) or a blue K3 (people who do not know each other)? As the
next theorem states, the answer is 6.

Theorem 1.61. R(3, 3) = 6.

Proof. We begin the proof by exhibiting (in Figure 1.122) a 2-coloring of the
edges of K5 that produces neither a red (thick) K3 nor a blue (thin) K3. This

FIGURE 1.122. A 2-coloring of the edges of K5.

2-coloring of K5 demonstrates that R(3, 3) > 5. Now consider K6, and suppose
that each of its edges has been colored red or blue. Let v be one of the vertices of
K6. There are five edges incident with v, and they are each colored red or blue,
so it must be that v is either incident with at least three red edges or at least three
blue edges (think about this; it is called the Pigeonhole Principle—more on this
in later chapters). Without loss of generality, let us assume that v is incident with
at least three red edges, and let us call them vx, vy, and vz (see Figure 1.123).
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FIGURE 1.123.

FIGURE 1.124.

Now, if none of the edges xy, xz, yz is colored red, then we have a blue K3

(Figure 1.124).
On the other hand, if at least one of xy, xz, yz is colored red, we have a red K3

(Figure 1.125).

FIGURE 1.125.

Therefore, any 2-coloring of the edges of K6 produces either a red K3 or a blue
K3.

Let us determine another Ramsey number.

Theorem 1.62. R(3, 4) = 9.

Proof. Consider the 2-coloring of the edges of K8 given in Figure 1.126.
A bit of examination reveals that this coloring produces no red (thick) K3 and

no blue (thin) K4. Thus, R(3, 4) ≥ 9. We now want to prove that R(3, 4) ≤ 9,
and we will use the facts that R(2, 4) = 4 and R(3, 3) = 6.

Let G be any complete graph of order at least 9, and suppose that the edges of
G have been 2-colored arbitrarily. Let v be some vertex of G.

Case 1. Suppose that v is incident with at least four red edges. Call the end
vertices of these edges “red neighbors” of v, and let S be the set of red neighbors
of v (see Figure 1.127).
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FIGURE 1.126. A 2-coloring of the edges in K8.
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FIGURE 1.127.

Since S contains at least four vertices, and since R(2, 4) = 4, the 2-coloring
of the edges that are within S must produce either a red K2 or a blue K4 within
S itself. If the former is the case, then we are guaranteed a red K3 in G (see
Figure 1.128). If the latter is the case, then we are clearly guaranteed a blue K4

in G.
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FIGURE 1.128.

Case 2. Suppose that v is incident with at least six blue edges. Call the other
end vertices of these edges “blue neighbors” of v, and let T be the set of blue
neighbors of v (see Figure 1.129).

Since T contains at least six vertices, and since R(3, 3) = 6, the 2-coloring of
the edges that are within T must produce either a red K3 or a blue K3 within T
itself. If the former is the case, then we are obviously guaranteed a red K3 in G.
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FIGURE 1.129.

If the latter is the case, then we are guaranteed a blue K4 in G (see Figure 1.130).

$

�

FIGURE 1.130.

Case 3. Suppose that v is incident with fewer than four red edges and fewer than
six blue edges. In this case there must be at most nine vertices in G altogether,
and since we assumed at the beginning that the order of G is at least 9, we can
say that G has order exactly 9. Further, we can say that v is incident with exactly
three red edges and exactly five blue edges. And since the vertex v was chosen
arbitrarily, we can assume that this holds true for every vertex of G.

Now if we consider the underlying “red” subgraph of G, we have a graph with
nine vertices, each of which has degree 3. But this cannot be, since the number
of vertices in G with odd degree is even (the First Theorem of Graph Theory).
Therefore, this case cannot occur.

We have therefore proved that any 2-coloring of the edges of a complete
graph on 9 vertices (or more) produces either a red K3 or a blue K4. Hence,
R(3, 4) = 9.
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Some known Ramsey numbers are listed below.

R(1, k) = 1,

R(2, k) = k,

R(3, 3) = 6, R(3, 4) = 9, R(3, 5) = 14, R(3, 6) = 18,

R(3, 7) = 23, R(3, 8) = 28, R(3, 9) = 36,

R(4, 4) = 18, R(4, 5) = 25.

Bounds on Ramsey Numbers

Determining exact values of Ramsey numbers is extremely difficult in general. In
fact, the list given above is not only a list of some known Ramsey numbers, it is
a list of all known Ramsey numbers. Many people have attempted to determine
other values, but to this day no other numbers are known.

However, there has been progress in finding bounds, and we state some im-
portant ones here. The proofs of the first two theorems will be discussed in Sec-
tion 2.10.2 (see Theorem 2.28 and Corollary 2.29). The first bound is due to Erdős
and Szekeres [94], two major players in the development of Ramsey theory. Their
result involves a quotient of factorials: Here, n! denotes the product 1 · 2 · · ·n.

Theorem 1.63. For positive integers p and q,

R(p, q) ≤ (p + q − 2)!
(p− 1)!(q − 1)!

.

The next theorem gives a bound on R(p, q) based on “previous” Ramsey num-
bers.

Theorem 1.64. If p ≥ 2 and q ≥ 2, then

R(p, q) ≤ R(p− 1, q) + R(p, q − 1).

Furthermore, if both terms on the right of this inequality are even, then the in-
equality is strict.

The following bound is for the special case p = 3.

Theorem 1.65. For every integer q ≥ 3,

R(3, q) ≤ q2 + 3
2

.

The final bound that we present is due to Erdős [90]. It applies to the special
case p = q. In the theorem, �x� denotes the greatest integer less than or equal to
x.

Theorem 1.66. If p ≥ 3, then

R(p, p) > �2n/2�.
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A number of other specific bounds are known:

35 ≤ R(4, 6) ≤ 41,

43 ≤ R(5, 5) ≤ 49,

58 ≤ R(5, 6) ≤ 87,

102 ≤ R(6, 6) ≤ 165.

Even with the sophisticated computing power that is available to us today, we
are not able to compute values for more than a handful of Ramsey numbers. Paul
Erdős once made the following comment regarding the difficulty in finding exact
values of Ramsey numbers [63]:

Suppose an evil alien would tell mankind “Either you tell me [the
value of R(5, 5)] or I will exterminate the human race.” . . . It would
be best in this case to try to compute it, both by mathematics and with
a computer.

If he would ask [for the value of R(6, 6)], the best thing would be
to destroy him before he destroys us, because we couldn’t [determine
R(6, 6)].

Exercises

1. Prove that R(3, 5) ≥ 14. The graph in Figure 1.131 will be very helpful.

FIGURE 1.131. A 2-coloring of K13.

2. Use Theorem 1.64 and the previous exercise to prove that R(3, 5) = 14.
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3. Construct a graph and a 2-coloring that proves R(4, 4) ≥ 18.

4. Use Theorem 1.64 and the previous exercise to prove that R(4, 4) = 18.

5. Use Theorem 1.64 to prove Theorem 1.65.

1.8.3 Graph Ramsey Theory

All generalizations are dangerous, even this one.
— Alexandre Dumas

Graph Ramsey theory is a generalization of classical Ramsey theory. Its develop-
ment was due in part to the search for the elusive classical Ramsey numbers, for it
was thought that the more general topic might shed some light on the search. The
generalization blossomed and became an exciting field in itself. In this section
we explain the concept of graph Ramsey theory, and we examine several results.
These results, and more like them, can be found in [136].

Given two graphs G and H , define the graph Ramsey number R(G, H) to be
the smallest value of n such that any 2-coloring of the edges of Kn contains either
a red copy of G or a blue copy of H . The classical Ramsey number R(p, q) would
in this context be written as R(Kp, Kq).

The following simple result demonstrates the relationship between graph Ram-
sey numbers and classical Ramsey numbers.

Theorem 1.67. If G is a graph of order p and H is a graph of order q, then

R(G, H) ≤ R(p, q).

Proof. Let n = R(p, q), and consider an arbitrary 2-coloring of Kn. By defini-
tion, Kn contains either a red Kp or a blue Kq. Since G ⊆ Kp and H ⊆ Kq, there
must either be a red G or a blue H in Kn. Hence, R(G, H) ≤ n = R(p, q).

Here is a result due to Chvátal and Harary [55] that relates R(G, H) to the
chromatic number of G, χ(G), and the order of the largest component of H ,
denoted by C(H).

Theorem 1.68. R(G, H) ≥ (χ(G)− 1)(C(H)− 1) + 1.

Proof. Let m = χ(G) − 1 and let n = C(H) − 1. Consider the graph S formed
by taking m copies of Kn and adding all of the edges in between each copy
(Figure 1.132). Actually, S = Kmn. Now color all of the edges within each
Kn blue, and color all other edges red. From the way we have constructed the
coloring, every red subgraph can be vertex colored with m colors. Since m <
χ(G), there can be no red G present. Furthermore, any blue subgraph has at most
n = C(H) − 1 vertices in its largest component. Hence, there can be no blue H
present. We have exhibited a 2-coloring of Kmn that contains neither a red G nor
a blue H .
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FIGURE 1.132. The graph S.

The next few theorems give exact graph Ramsey numbers for specific classes
of graphs. The first is due to Chvátal [53], and the proof uses a few ideas from
previous sections.

Theorem 1.69. If Tm is a tree with m vertices, then

R(Tm, Kn) = (m− 1)(n− 1) + 1.

Proof. If m = 1 or n = 1, then R(Tm, Kn) = 1 and the result holds. Assume
then that m and n are both at least 2.

Claim A. R(Tm, Kn) ≥ (m− 1)(n− 1) + 1.

Consider the graph that consists of n− 1 copies of Km−1, with all possible edges
between the copies of Km−1. This graph is actually K(m−1)(n−1). Color the
edges in each Km−1 red, and color all of the other edges blue. Since each of
the red subgraphs has order m − 1, no red Tm can exist. Also, by this construc-
tion, no blue Kn can exist. Since this 2-coloring contains no red Tm and no blue
Kn, it must be that R(Tm, Kn) ≥ (m− 1)(n− 1) + 1.

Claim B. R(Tm, Kn) ≤ (m− 1)(n− 1) + 1.

Let G be K(m−1)(n−1)+1, and suppose that its edges have been arbitrarily 2-
colored. Let Gr denote the subgraph of G formed by the red edges, and let Gb

denote the subgraph of G formed by the blue edges. If there is no blue Kn, then
ω(Gb) ≤ n−1, and if so, then α(Gr) ≤ n−1, since Gr is the complement of Gb.
Thus by Theorem 1.45, χ(Gr) ≥ m. Let H be a subgraph of Gr that is m-critical.
By part (d) of Exercise 6 in Section 1.6.1, δ(H) ≥ m − 1. By Theorem 1.16, H
contains Tm as a subgraph, and therefore G has a red Tm.

The next theorem is due to Burr [46].

Theorem 1.70. If Tm is a tree of order m and if m− 1 divides n− 1, then

R(Tm, K1,n) = m + n− 1.
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In the following theorem, mK2 denotes the graph consisting of m copies of
K2, and nK2 has a similar meaning.

Theorem 1.71. If m ≥ n ≥ 1, then

R(mK2, nK2) = 2m + n− 1.

As we mentioned earlier, these results apply to specific classes of graphs. In
general, determining values of R(G, H) is quite difficult. So the generalization
that was intended to solve hard classical Ramsey problems has produced hard
problems of its own!

Exercises

1. Find R(P3, P3).

2. Find R(P3, C4).

3. Find R(C4, C4).

4. Prove that R(K1,3, K1,3) = 6.

5. Prove that R(2K3, K3) = 8.

1.9 References

Prince John: Are you finished?
Sir Robin of Locksley: I’m only just beginning.

— Robin Hood

We have only just begun our walk through the field of graph theory. In this section
we will provide references for those who are interested in further study.

The books by Chartrand and Lesniak [52], Buckley and Lewinter [43] and West
[281] provide very thorough introductions to a large number of topics in graph
theory. The graduate-level texts by Diestel [75] and Bollobás [29], along with of-
fering further study of the concepts covered in this chapter, also cover network
flows, extremal graph theory, and random graphs. Gould’s book [128] covers a
number of graph algorithms, from finding maximum matchings to testing pla-
narity. Many interesting applications of graph theory can be found in texts by
Gross and Yellen [139], Foulds [106], and Roberts and Tesman [238]. A good
source for connections between graph theory and other mathematical topics is
[21], edited by Beineke and Wilson. The text [148] by Harary is a thorough dis-
cussion of counting various types of graphs. A wonderful source for the history of
graph theory and some of its famous problems is the book [26] by Biggs, Lloyd,
and Wilson.

Buckley and Harary [42] have a nice text which focuses on distance in graphs.
For more on the development of the Four Color Problem, see the books by Wilson
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[285] and Aigner [3]. Much more information regarding Ramsey theory can be
found in the book [136] by Graham, Rothschild, and Spencer. Also, Radziszowski
[231] maintains a list of current bounds on small Ramsey numbers.

The book by Barabási [17] is a nice general treatment of graphs (networks) and
their relationship to all sorts of phenomena. Finally, the books by Hoffman [163]
and Schechter [247] tell the story of Paul Erdős, a twentieth century giant in the
field of graph theory.



2
Combinatorics

[Combinatorics] has emerged as a new subject standing at the
crossroads between pure and applied mathematics, the center of
bustling activity, a simmering pot of new problems and exciting
speculations.

— Gian-Carlo Rota, [243, p. vii]

The formal study of combinatorics dates at least to Gottfried Wilhelm Leibniz’s
Dissertatio de Arte Combinatoria in the seventeenth century. The last half-century,
however, has seen a huge growth in the subject, fueled by problems and applica-
tions from many fields of study. Applications of combinatorics arise, for example,
in chemistry, in studying arrangements of atoms in molecules and crystals; biol-
ogy, in questions about the structure of genes and proteins; physics, in problems
in statistical mechanics; communications, in the design of codes for encryption,
compression, and correction of errors; and especially computer science, for in-
stance in problems of scheduling and allocating resources, and in analyzing the
efficiency of algorithms.

Combinatorics is, in essence, the study of arrangements: pairings and group-
ings, rankings and orderings, selections and allocations. There are three principal
branches in the subject. Enumerative combinatorics is the science of counting.
Problems in this subject deal with determining the number of possible arrange-
ments of a set of objects under some particular constraints. Existential combi-
natorics studies problems concerning the existence of arrangements that possess
some specified property. Constructive combinatorics is the design and study of
algorithms for creating arrangements with special properties.

J.M. Harris et al., Combinatorics and Graph Theory, DOI: 10.1007/978-0-387-79711-3 2,
c© Springer Science+Business Media, LLC 2008
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Combinatorics is closely related to the theory of graphs. Many problems in
graph theory concern arrangements of objects and so may be considered as com-
binatorial problems. For example, the theory of matchings and Ramsey theory,
both studied in the previous chapter, have the flavor of existential combinatorics,
and we continue their study later in this chapter. Also, combinatorial techniques
are often employed to address problems in graph theory. For example, in
Section 2.5 we determine another method for finding the chromatic polynomial
of a graph.

We focus on topics in enumerative combinatorics through most of this chapter,
but turn to some questions in existential combinatorics in Sections 2.4 and 2.10,
and to some problems in constructive combinatorics in Sections 2.9 and 2.10.
Throughout this chapter we study arrangements of finite sets. Chapter 3 deals
with arrangements and combinatorial problems involving infinite sets. Our study
in this chapter includes the investigation of the following questions.

• Should a straight beat a flush in the game of poker? What about a full house?

• Suppose a lazy professor collects a quiz from each student in a class, then
shuffles the papers and redistributes them randomly to the class for grading.
How likely is it that no one receives his or her own quiz to grade?

• How many ways are there to make change for a dollar?

• How many different necklaces with twenty beads can be made using rhodo-
nite, rose quartz, and lapis lazuli beads, if a necklace can be worn in any
orientation?

• How many seating arrangements are possible for n guests attending a wed-
ding reception in a banquet room with k round tables?

• Suppose 100 medical students rank 100 positions for residencies at hospi-
tals in order of preference, and the hospitals rank the students in order of
preference. Is there a way to assign the students to the hospitals in such a
way that no student and hospital prefer each other to their assignment? Is
there an efficient algorithm for finding such a matching?

• Is it possible to find a collection of n ≥ 3 points in the plane, not all on the
same line, so that every line that passes through two of the points in fact
passes through a third? Or, if we require instead that no three points lie on
the same line, can we arrange a large number of points so that no subset of
them forms the vertices of a convex octagon?

2.1 Some Essential Problems

The mere formulation of a problem is far more essential than its
solution. . .

— Albert Einstein
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We begin our study of combinatorics with two essential observations that underlie
many counting strategies and techniques. The first is a simple observation about
counting when presented with a number of alternative choices.

Sum Rule. Suppose S1, S2, . . . , Sm are mutually disjoint finite sets, and |Si| = ni

for 1 ≤ i ≤ m. Then the number of ways to select one object from any of the sets
S1, S2, . . . , Sm is the sum n1 + n2 + · · ·+ nm.

We often use the sum rule implicitly when solving a combinatorial problem
when we break the set of possible outcomes into several disjoint cases, each of
which can be analyzed separately. For example, suppose a coy college athlete
tells us that his two-digit jersey number is divisible by 3, its first digit is odd, and
its second digit is less than its first. How many numbers satisfy these criteria? A
natural approach is to break the problem into five cases based on the first digit.
Analyzing each of 1, 3, 5, 7, and 9 in turn, we find the possibilities are {}, {30},
{51, 54}, {72, 75}, or {90, 93, 96}, so there are eight possible jersey numbers in
all.

The second essential observation concerns counting problems where selections
are made in sequence.

Product Rule. Suppose S1, S2, . . . , Sm are finite sets, and |Si| = ni for 1 ≤
i ≤ m. Then the number of ways to select one element from S1, followed by one
element from S2, and so on, ending with one element from Sm, is the product
n1n2 · · ·nm, provided that the selections are independent, that is, the elements
chosen from S1, . . . , Si−1 have no bearing on the selection from Si, for each i.

For example, consider the number of m-letter acronyms that can be formed
using the full alphabet. To construct such an acronym, we make m choices in
sequence, one for each position, and each choice has no effect on any subsequent
selection. Thus, by the product rule, the number of such acronyms is 26m.

We can apply a similar strategy to count the number of valid phone numbers
in the U.S. and Canada. Under the North American Numbering Plan, a phone
number has ten digits, consisting of an area code, then an exchange, then a station
code. The three-digit area code cannot begin with 0 or 1, and its second digit can
be any number except 9. The three-digit exchange cannot begin with 0 or 1, and
the station code can be any four-digit number. Using the product rule, we find that
the number of valid phone numbers under this plan is (8 · 9 · 10) · (8 · 102) · 104 =
5 760 000 000.

One might object that certain three-digit numbers are service codes reserved
for special use in many areas, like 411 for information and 911 for emergencies.
Let’s compute the number of valid phone numbers for which neither the area code
nor the exchange end with the digits 11. The amended number of area codes is
then 8(9 · 10 − 1) = 712, and for exchanges we obtain 8 · 99 = 792. Thus, the
number of valid phone numbers is 712 · 792 · 104 = 5 639 040 000.

We can use the product rule to solve three basic combinatorial problems.
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Problem 1. How many ways are there to order a collection of n different objects?

For example, how many ways are there to arrange the cards in a standard deck
of 52 playing cards by shuffling? How many different batting orders are possible
among the nine players on a baseball team? How many ways are there to arrange
ten books on a shelf?

To order a collection of n objects, we need to pick one object to be first, then
another one to be second, and another one third, and so on. There are n different
choices for the first object, then n−1 remaining choices for the second, and n−2
for the third, and so forth, until just one choice remains for the last object. The
total number of ways to order the n objects is therefore the product of the integers
between 1 and n. This number, called n factorial, is written n!. An ordering, or
rearrangement, of n objects is often called a permutation of the objects. Thus, the
number of permutations of n items is n!.

Our second problem generalizes the first one.

Problem 2. How many ways are there to make an ordered list of k objects from a
collection of n different objects?

For example, how many ways can a poll rank the top 20 teams in a college sport
if there are 100 teams in the division? How many ways can a band arrange a play
list of twelve songs if they know only 25 different songs?

Applying the same reasoning used in the first problem, we find that the answer
to Problem 2 is the product n(n− 1)(n− 2) · · · (n− k + 1), or n!/(n− k)!. This
number is sometimes denoted by P (n, k), but products like this occur frequently
in combinatorics, and a more descriptive notation is often used to designate them.

We define the falling factorial power xk as a product of k terms beginning with
x, with each successive term one less than its predecessor:

xk = x(x− 1)(x− 2) · · · (x− k + 1) =
k−1∏

i=0

(x− i). (2.1)

The expression xk is pronounced “x to the k falling.” Similarly, we define the
rising factorial power xk (“x to the k rising”) by

xk = x(x + 1)(x + 2) · · · (x + k − 1) =
k−1∏

i=0

(x + i). (2.2)

Thus, we see that P (n, k) = nk = (n − k + 1)k, and n! = nn = 1n. Also, the
expressions n0, n0, and 0! all represent products having no terms at all. Multiply-
ing any expression by such an empty product should not disturb the value of the
expression, so the value of each of these degenerate products is taken to be 1.

Our third problem concerns unordered selections.
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Problem 3. How many ways are there to select k objects from a collection of n
objects, if the order of selection is irrelevant?

For example, how many different hands are possible in the game of poker? A
poker hand consists of five cards drawn from a standard deck of 52 different cards.
The order of the cards in a hand is unimportant, since players can rearrange their
cards freely.

The solution to Problem 3 is usually denoted by
(
n
k

)
, or sometimes C(n, k).

The expression
(
n
k

)
is pronounced “n choose k.”

We can find a formula for
(
n
k

)
by using our solutions to Problems 1 and 2.

Since there are k! different ways to order a collection of k objects, it follows that
the product

(
n
k

)
k! is the number of possible ordered lists of k objects selected

from the same collection of n objects. Therefore,
(

n

k

)

=
nk

k!
=

n!
k!(n− k)!

. (2.3)

The numbers
(
n
k

)
are called binomial coefficients, for reasons discussed in the

next section. The binomial coefficients are ubiquitous in combinatorics, and we
close this section with a few applications of these numbers.

1. The number of different hands in poker is
(
52
5

)
= 525/5! = 2 598 960. The

number of different thirteen-card hands in the game of bridge is
(
52
13

)
=

635 013 559 600.

2. To play the Texas lottery game Lotto Texas, a gambler selects six differ-
ent numbers between 1 and 54. The order of selection is unimportant. The
number of possible lottery tickets is therefore

(
54
6

)
= 25 827 165.

3. Suppose we need to travel m blocks east and n blocks south in a regular
grid of city streets. How many paths are there to our destination if we travel
only east and south?

We can represent a path to our destination as a sequence b1, b2, . . . , bn+m,
where bi represents the direction we are traveling during the ith block of
our route. Exactly m of the terms in this sequence must be “east,” and there
are precisely

(
m+n

m

)
ways to select m positions in the sequence to have this

value. The remaining n positions in the sequence must all be “south,” so
the number of possible paths is

(
m+n

m

)
= (m+n)!

m!n! .

4. A standard deck of playing cards consists of four suits (spades, hearts,
clubs, and diamonds), each with thirteen cards. Each of the cards in a suit
has a different face value: a number between 2 and 10, or a jack, queen,
king, or ace. How many poker hands have exactly three cards with the same
face value?

We can answer this question by considering how to construct such a hand
through a sequence of simple steps. First, select one of the thirteen different
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face values. Second, choose three of the four cards in the deck having this
value. Third, pick two cards from the 48 cards having a different face value.
By the product rule, the number of possibilities is

(
13
1

)(
4
3

)(
48
2

)

= 58 656.

Poker aficionados will recognize that this strategy counts the number of
ways to deal either of two different hands in the game: the “three of a kind”
and the stronger “full house.” A full house consists of a matched triple
together with a matched pair, for example, three jacks and two aces; a three
of a kind has only a matched triple. The number of ways to deal a full house
is (

13
1

)(
4
3

)(
12
1

)(
4
2

)

= 3744,

since choosing a matched pair involves first selecting one of twelve differ-
ent remaining face values, then picking two of the four cards having this
value. The number of three of a kind hands is therefore 58 656 − 3744 =
54 912.

We can also compute this number directly by modifying our first strategy.
To avoid the possibility of selecting a matched pair in the last step, we can
replace the term

(
48
2

)
= 48 · 47/2 by 48 · 44/2, since the face value of

the last card should not match any other card selected. Indeed, we calculate
13 · 4 · 48 · 44/2 = 54 912. Notice that dividing by 2 is required in the last
step, since the last two cards may be selected in any order.

Exercises

1. In the C++ programming language, a variable name must start with a letter
or the underscore character (_), and succeeding characters must be letters,
digits, or the underscore character. Uppercase and lowercase letters are con-
sidered to be different characters.

(a) How many variable names with exactly five characters can be formed
in C++?

(b) How many are there with at most five characters?

(c) How many are there with at most five characters, if they must read
exactly the same forwards and backwards? For example, kayak and
T55T are admissible, but Kayak is not.

2. Assume that a vowel is one of the five letters A, E, I, O, or U.

(a) How many eleven-letter sequences from the alphabet contain exactly
three vowels?

(b) How many of these have at least one repeated letter?
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3. There are 30 teams in the National Basketball Association: 15 in the West-
ern Conference, and 15 in the Eastern Conference.

(a) Suppose each of the teams in the league has one pick in the first round
of the NBA draft. How many ways are there to arrange the order of
the teams selecting in the draft?

(b) Suppose that each of the first three positions in the draft must be
awarded to one of the fourteen teams that did not advance to the play-
offs that year. How many ways are there to assign the first three posi-
tions in the draft?

(c) How many ways are there for eight teams from each conference to
advance to the playoffs, if order is unimportant?

(d) Suppose that every team has three centers, four guards, and five for-
wards. How many ways are there to select an all-star team with the
same composition from the Western Conference?

4. According to the Laws of the Game of the International Football Associa-
tion, a full football (soccer) team consists of eleven players, one of whom
is the goalkeeper. The other ten players fall into one of three outfield posi-
tions: defender, midfielder, and striker. There is no restriction on the number
of players at each of these positions, as long as the total number of outfield
players is ten.

(a) How many different configurations are there for a full football team?
For example, one team may field four strikers, three midfielders, and
three defenders, in addition to the goalkeeper. Another may play five
strikers, no midfielders, and five defenders, plus the goalkeeper.

(b) Repeat the previous problem if there must be at least two players at
each outfield position.

(c) How many ways can a coach assign eleven different players to one of
the four positions, if there must be exactly one goalkeeper, but there
is no restriction on the number of players at each outfield position?

5. A political science quiz has two parts. In the first, you must present your
opinion of the four most influential secretaries-general in the history of the
United Nations in a ranked list. In the second, you must name ten members
of the United Nations security council in any order, including at least two
permanent members of the council. If there have been eight secretaries-
general in U.N. history, and there are fifteen members of the U.N. security
council, including the five permanent members, how many ways can you
answer the quiz, assuming you answer both parts completely?

6. A midterm exam in phenomenology has two parts. The first part consists of
ten multiple choice questions. Each question has four choices, labeled (a),
(b), (c), and (d), and one may pick any combination of responses on each
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of these questions. For example, one could choose just (a) alone on one
question, or both (b) and (c), or all four possibilities, or none of them. In
the second part, one may choose either to answer eight true/false questions,
or to select the proper definition of each of seven terms from a list of ten
possible definitions. Every question must be answered on whichever part is
chosen, but one is not allowed to complete both portions. How many ways
are there to complete the exam?

7. A ballot lists ten candidates for city council, eight candidates for the school
board, and five bond issues. The ballot instructs voters to choose up to four
people running for city council, rank up to three candidates for the school
board, and approve or reject each bond issue. How many different ballots
may be cast, if partially completed (or empty) ballots are allowed?

8. Compute the number of ways to deal each of the following five-card hands
in poker.

(a) Straight: the values of the cards form a sequence of consecutive inte-
gers. A jack has value 11, a queen 12, and a king 13. An ace may have
a value of 1 or 14, so A 2 3 4 5 and 10 J Q K A are both straights, but
K A 2 3 4 is not. Furthermore, the cards in a straight cannot all be of
the same suit (a flush).

(b) Flush: All five cards have the same suit (but not in addition a straight).

(c) Straight flush: both a straight and a flush. Make sure that your counts
for straights and flushes do not include the straight flushes.

(d) Four of a kind.

(e) Two distinct matching pairs (but not a full house).

(f) Exactly one matching pair (but no three of a kind).

(g) At least one card from each suit.

(h) At least one card from each suit, but no two values matching.

(i) Three cards of one suit, and the other two of another suit, like three
hearts and two spades.

9. In the lottery game Texas Two Step, a player selects four different numbers
between 1 and 35 in step 1, then selects an additional “bonus ball” number
in the same range in step 2. The latter number is not considered to be part
of the set selected in step 1, and in fact it may match one of the numbers
selected there.

(a) A resident of College Station always selects a bonus ball number that
is different from any of the numbers he picks in step 1. How many of
the possible Texas Two Step tickets have this property?
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(b) In Rhode Island’s lottery game Wild Money, a gambler picks a set
of five numbers between 1 and 35. Is the number of possible tickets
in this game the same as the number of tickets in Texas Two Step
where the bonus ball number is different from the other numbers?
Determine the ratio of the number of possible tickets in Wild Money
to the number in the restricted Texas Two Step.

10. (a) A superstitious resident of Amarillo always picks three even numbers
and three odd numbers when playing Lotto Texas. What fraction of
all possible lottery tickets have this property?

(b) Suppose in a more general lottery game one selects six numbers be-
tween 1 and 2n. What fraction of all lottery tickets have the property
that half the numbers are odd and half are even?

(c) What is the limiting value of this probability as n grows large?

11. Suppose a positive integer N factors as N = pn1
1 pn2

2 · · · pnm
m , where p1,

p2, . . . , pm are distinct prime numbers and n1, n2, . . . , nm are all positive
integers. How many different positive integers are divisors of N?

12. Assume that a positive integer cannot have 0 as its leading digit.

(a) How many five-digit positive integers have no repeated digits at all?

(b) How many have no consecutive repeated digits?

(c) How many have at least one run of consecutive repeated digits (for
example, 23324, 45551, or 151155, but not 12121)?

13. How many positive integers are there whose representation in base 8 has
exactly eight octal digits, at most one of which is odd? An octal digit is a
number between 0 and 7, inclusive. Assume that the octal representation of
a positive integer cannot start with a zero.

14. Let Δ be the difference operator: Δ(f(x)) = f(x + 1)− f(x). Show that

Δ(xn) = nxn−1,

and use this to prove that

m−1∑

k=0

kn =
mn+1

n + 1
.

2.2 Binomial Coefficients

About binomial theorem I’m teeming with a lot o’ news,
With many cheerful facts about the square of the hypotenuse.

— Gilbert and Sullivan, The Pirates of Penzance
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The binomial coefficients possess a number of interesting arithmetic properties.
In this section we study some of the most important identities associated with
these numbers. Because binomial coefficients occur so frequently in this subject,
knowing these essential identities will be helpful in our later studies.

The first identity generalizes our formula (2.3).

Expansion. If n is a nonnegative integer and k is an integer, then

(
n

k

)

=

⎧
⎨

⎩

n!
k!(n− k)!

if 0 ≤ k ≤ n,

0 otherwise.
(2.4)

Designating the value of
(
n
k

)
to be 0 when k < 0 or k > n is sensible, for there

are no ways to select fewer than zero or more than n items from a collection of n
objects.

Notice that every subset of k objects selected from a set of n objects leaves
a complementary collection of n − k objects that are not selected. Counting the
number of subsets with k objects is therefore the same as counting the number of
subsets with n−k objects. This observation leads us to our second identity, which
is easy to verify using the expansion formula.

Symmetry. If n is a nonnegative integer and k is an integer, then
(

n

k

)

=
(

n

n− k

)

. (2.5)

Before presenting the next identity, let us consider again the problem of count-
ing poker hands. Suppose the ace of spades is the most desirable card in the deck
(it certainly is in American Western movies), and we would like to know the num-
ber of five-card hands that include this card. The answer is the number of ways
to select four cards from the other 51 cards in the deck, namely,

(
51
4

)
. We can

also count the number of hands that do not include the ace of spades. This is the
number of ways to pick five cards from the other 51, that is,

(
51
5

)
. But every poker

hand either includes the ace of spades or does not, so
(

52
5

)

=
(

51
5

)

+
(

51
4

)

.

More generally, suppose we distinguish one particular object in a collection of
n objects. The number of unordered collections of k of the objects that include
the distinguished object is

(
n−1
k−1

)
; the number of collections that do not include

this special object is
(
n−1

k

)
. We therefore obtain the following identity.

Addition. If n is a positive integer and k is any integer, then
(

n

k

)

=
(

n− 1
k

)

+
(

n− 1
k − 1

)

. (2.6)
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We can prove this identity more formally using the expansion identity. It is easy
to check that the identity holds for k ≤ 0 or k ≥ n. If 0 < k < n, we have

(
n− 1

k

)

+
(

n− 1
k − 1

)

=
(n− 1)!

k!(n− 1− k)!
+

(n− 1)!
(k − 1)!(n− k)!

=
((n− k) + k)(n− 1)!

k!(n− k)!

=
n!

k!(n− k)!

=
(

n

k

)

.

We can use this identity to create a table of binomial coefficients. Let n ≥ 0
index the rows of the table, and let k ≥ 0 index the columns. Begin by enter-
ing 1 in the first position of each row, since

(
n
0

)
= 1 for n ≥ 0; then use (2.6)

to compute the entries in successive rows of the table. The resulting pattern of
numbers is called Pascal’s triangle, after Blaise Pascal, who studied many of its
properties in his Traité du Triangle Arithmétique, written in 1654. (See [85] for
more information on its history.) The first few rows of Pascal’s triangle are shown
in Figure 2.1.

(
n
k

)
k = 0 1 2 3 4 5 6 7 8 9 10 2n

n = 0 1 1
1 1 1 2
2 1 2 1 4
3 1 3 3 1 8
4 1 4 6 4 1 16
5 1 5 10 10 5 1 32
6 1 6 15 20 15 6 1 64
7 1 7 21 35 35 21 7 1 128
8 1 8 28 56 70 56 28 8 1 256
9 1 9 36 84 126 126 84 36 9 1 512

10 1 10 45 120 210 252 210 120 45 10 1 1024

TABLE 2.1. Pascal’s triangle for binomial coefficients,
(

n
k

)
.

The next identity explains the origin of the name for these numbers: They ap-
pear as coefficients when expanding powers of the binomial expression x + y.

The Binomial Theorem. If n is a nonnegative integer, then

(x + y)n =
∑

k

(
n

k

)

xkyn−k. (2.7)
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The notation
∑

k

means that the sum extends over all integers k. Thus, the right

side of (2.7) is formally an infinite sum, but all terms with k < 0 or k > n are
zero by the expansion identity, so there are only n + 1 nonzero terms in this sum.

Proof. We prove this identity by induction on n. For n = 0, both sides evalu-
ate to 1. Suppose then that the identity holds for a fixed nonnegative integer n.
We need to verify that it holds for n + 1. Using our inductive hypothesis, then
distributing the remaining factor of (x + y), we obtain

(x + y)n+1 = (x + y)
∑

k

(
n

k

)

xkyn−k

=
∑

k

(
n

k

)

xk+1yn−k +
∑

k

(
n

k

)

xkyn+1−k.

Now we reindex the first sum, replacing each occurrence of k by k− 1. Since the
original sum extends over all values of k, the reindexed sum does, too. Thus

(x + y)n+1 =
∑

k

(
n

k − 1

)

xkyn+1−k +
∑

k

(
n

k

)

xkyn+1−k

=
∑

k

((
n

k − 1

)

+
(

n

k

))

xkyn+1−k

=
∑

k

(
n + 1

k

)

xkyn+1−k,

by the addition identity. This completes the induction, and we conclude that the
identity holds for all n ≥ 0.

We note two important consequences of the binomial theorem. First, setting
x = y = 1 in (2.7), we obtain

∑

k

(
n

k

)

= 2n. (2.8)

Thus, summing across the nth row in Pascal’s triangle yields 2n, and there are
therefore exactly 2n different subsets of a set of n elements. These row sums are
included in Table 2.1.

Second, setting x = −1 and y = 1 in (2.7), we find that the alternating sum
across any row of Pascal’s triangle is zero, except of course for the top row:

∑

k

(−1)k

(
n

k

)

=

{
0 if n ≥ 1,

1 if n = 0.
(2.9)

This is obvious from the symmetry relation when n is odd, but less clear when n
is even.
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These two consequences of the binomial theorem concern sums over the lower
index of binomial coefficients. The next identity tells us the value of a sum over
the upper index.

Summing on the Upper Index. If m and n are nonnegative integers, then
n∑

k=0

(
k

m

)

=
(

n + 1
m + 1

)

. (2.10)

Proof. We use induction on n to verify this identity. For n = 0, each side equals 1
if m = 0, and each side is 0 if m > 0. Suppose then that the identity holds for
some fixed nonnegative integer n. We must show that it holds for the case n + 1.
Let m be a nonnegative integer. We obtain

n+1∑

k=0

(
k

m

)

=
(

n + 1
m

)

+
n∑

k=0

(
k

m

)

=
(

n + 1
m

)

+
(

n + 1
m + 1

)

=
(

n + 2
m + 1

)

.

By induction, the identity holds for all n ≥ 0.

To illustrate one last identity, we study the Lotto Texas game in more detail.
Recall that a player selects six different numbers between 1 and 54 to enter the
lottery. The largest prize is awarded to anyone matching all six numbers picked
in a random drawing by lottery officials, but smaller prizes are given to players
matching at least three of these numbers. To determine fair amounts for these
smaller prizes, the state lottery commission needs to know the number of possible
tickets that match exactly k of the winning numbers, for every k.

Clearly, there is just one way to match all six winning numbers. There are(
6
5

)
= 6 ways to pick five of the six winning numbers, and 48 ways to select one

losing number, so there are 6 ·48 = 288 tickets that match five numbers. Selecting
four of the winning numbers and two of the losing numbers makes

(
6
4

)(
48
2

)
=

16 920 possible tickets, and in general we see that the number of tickets that match
exactly k of the winning numbers is

(
6
k

)(
48

6−k

)
. By summing over k, we count

every possible ticket exactly once, so
(

54
6

)

=
∑

k

(
6
k

)(
48

6− k

)

.

More generally, if a lottery game requires selecting m numbers from a set of m+n
numbers, we obtain the identity

(
m + n

m

)

=
∑

k

(
m

k

)(
n

m− k

)

.
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That is, the number of possible tickets equals the sum over k of the number of
ways to match exactly k of the m winning numbers and m − k of the n losing
numbers. More generally still, suppose a lottery game requires a player to select

 numbers on a ticket, and each drawing selects m winning numbers. Using the
same reasoning, we find that

(
m + n




)

=
∑

k

(
m

k

)(
n


− k

)

.

Now replace 
 by 
 + p and reindex the sum, replacing k by k + p, to obtain the
following identity.

Vandermonde’s Convolution. If m and n are nonnegative integers and 
 and p
are integers, then

(
m + n


 + p

)

=
∑

k

(
m

p + k

)(
n


− k

)

. (2.11)

Notice that the lower indices in the binomial coefficients on the right side sum
to a constant.

Exercises

1. Use a combinatorial argument to prove that there are exactly 2n different
subsets of a set of n elements. (Do not use the binomial theorem.)

2. Prove the absorption/extraction identity: If n is a positive integer and k is a
nonzero integer, then (

n

k

)

=
n

k

(
n− 1
k − 1

)

. (2.12)

3. Use algebraic methods to prove the cancellation identity: If n and k are
nonnegative integers and m is an integer with m ≤ n, then

(
n

k

)(
k

m

)

=
(

n

m

)(
n−m

k −m

)

. (2.13)

This identity is very useful when the left side appears in a sum over k, since
the right side has only a single occurrence of k.

4. Suppose that a museum curator with a collection of n paintings by Jackson
Pollack needs to select k of them for display, and needs to pick m of these
to put in a particularly prominent part of the display. Show how to count
the number of possible combinations in two ways so that the cancellation
identity appears.
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5. Prove the parallel summation identity: If m and n are nonnegative integers,
then

n∑

k=0

(
m + k

k

)

=
(

m + n + 1
n

)

. (2.14)

6. Prove the hexagon identity: If n is a positive integer and k is an integer,
then

(
n− 1
k − 1

)(
n

k + 1

)(
n + 1

k

)

=
(

n− 1
k

)(
n

k − 1

)(
n + 1
k + 1

)

. (2.15)

Why is it called the hexagon identity?

7. Compute the value of the following sums. Your answer should be an ex-
pression involving one or two binomial coefficients.

(a)
∑

k

(
80
k

)(
k + 1
31

)

.

(b)
∑

k≥0

1
k + 1

(
99
k

)(
200

120− k

)

.

(c)
201∑

k=100

k∑

j=100

(
201

k + 1

)(
j

100

)

.

(d)
∑

k

(
n

k

)2

, for a nonnegative integer n.

(e)
∑

k≤m

(−1)k

(
n

k

)

, for an integer m and a nonnegative integer n.

8. Prove the binomial theorem for falling factorial powers,

(x + y)n =
∑

k

(
n

k

)

xkyn−k,

and for rising factorial powers,

(x + y)n =
∑

k

(
n

k

)

xkyn−k.

9. Let n be a nonnegative integer. Suppose f(x) and g(x) are functions de-
fined for all real numbers x, and that both functions are n times differen-
tiable. Let f (k)(x) denote the kth derivative of f(x), so f (0)(x) = f(x),
f (1)(x) = f ′(x), and f (2)(x) = f ′′(x). Let h(x) = f(x)g(x). Show that

h(n)(x) =
∑

k

(
n

k

)

f (k)(x)g(n−k)(x).
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10. In the Virginia lottery game Win For Life, an entry consists of a selection
of six different numbers between 1 and 42, and each drawing selects seven
different numbers in this range. How many different entries can match at
least three of the drawn numbers?

11. The state of Florida administers several lottery games. In Florida Lotto, a
player picks a set of six numbers between 1 and 53. In Fantasy 5, a gambler
chooses a set of five numbers between 1 and 36. In which game is a player
more likely to match at least two numbers against the ones drawn?

2.3 Multinomial Coefficients

Alba, alma, ball, balm, bama, blam, lama, lamb, ma’am, mall,
malm, mama, . . .

— Words constructed from letters in “Alma, Alabama”

Suppose we want to know the number of ways to place n different objects into
two boxes, one marked A and the other marked B, in such a way that box A
receives a specified number a of the objects, and box B gets the remaining b
objects, so a + b = n. Assume that the order of placement of the objects in each
box is immaterial, and denote the total number of such arrangements by

(
n

a,b

)
. We

can compute this number easily by using our knowledge of binomial coefficients.
Since each valid distribution corresponds to a different subset of a objects for
box A, we see that

(
n

a,b

)
is simply the binomial coefficient

(
n
a

)
(or

(
n
b

)
). Thus,

(
n

a,b

)
= n!

a!b! .
Now imagine we have three boxes, labeled A, B, and C, and suppose we want

to know the number of ways to place a prescribed number a of the objects in
box A, a given number b in box B, and the remaining c = n − a − b in box C.
Again, assume the order of placement of objects in each box is irrelevant, and
denote this number by

(
n

a,b,c

)
. Since each arrangement can be described by first

selecting a elements from the set of n for box A, and then picking b objects from
the remaining n− a for box B, we see by the product rule that

(
n

a, b, c

)

=
(

n

a

)(
n− a

b

)

=
n!

a!(n− a)!
· (n− a)!
b!(n− a− b)!

=
n!

a! b! c!
.

(2.16)

The number
(

n
a,b,c

)
is called a trinomial coefficient.

We can generalize this problem for an arbitrary number of boxes. Suppose we
have n objects, together with m boxes labeled 1, 2, . . . , m, and suppose k1, k2,
. . . , km are nonnegative integers satisfying k1 +k2 + · · ·+km = n. We define the
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multinomial coefficient
(

n
k1,k2,...,km

)
to be the number of ways to place k1 of the

objects in box 1, k2 in box 2, and so on, without regard to the order of the objects
in each box. Then an argument similar to our analysis for trinomial coefficients
shows that

(
n

k1, . . . , km

)

=
(

n

k1

)(
n− k1

k2

)(
n− k1 − k2

k3

)

· · ·

·
(

n− k1 − · · · − km−2

km−1

)

=
n!

k1! k2! · · · km!
.

(2.17)

Multinomial coefficients often arise in a natural way in combinatorial problems.
While we can always reduce questions about multinomial coefficients to prob-
lems about binomial coefficients or factorials by using (2.17), it is often useful to
handle them directly. We derive some important formulas for multinomial coef-
ficients in this section. These generalize some of the statements about binomial
coefficients from Section 2.2. We begin with a more general formula for expand-
ing multinomial coefficients in terms of factorials.

Expansion. If n is a nonnegative integer, and k1, . . . , km are integers satisfying
k1 + · · ·+ km = n, then

(
n

k1, . . . , km

)

=

⎧
⎨

⎩

n!
k1! · · ·km!

if each ki ≥ 0,

0 otherwise.
(2.18)

Taking
(

n
k1,...,km

)
= 0 when at least one of the ki is negative is certainly sensible,

since it is impossible to place a negative number of objects in a box.
Second, it is clear that rearranging the numbers k1, . . . , km does not affect

the value of the multinomial coefficient
(

n
k1,...,km

)
, since this just corresponds to

relabeling the boxes. We can state this in the following way.

Symmetry. Suppose π(1), . . . , π(m) is a permutation of {1, . . . , m}. Then
(

n

k1, . . . , km

)

=
(

n

kπ(1), . . . , kπ(m)

)

. (2.19)

Third, we can observe a simple addition law. Let α be one of the objects from
the set of n. It must be placed in one of the boxes. If we place α in box 1, then
there are

(
n−1

k1−1,k2,...,km

)
ways to arrange the remaining n − 1 objects to create

a valid arrangement. If we set α in box 2, then there are
(

n−1
k1,k2−1,k3,...,km

)
to

complete the assignment of objects to boxes. Continuing in this way, we obtain
the following identity.
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Addition. If n is a positive integer and k1 + · · ·+ km = n, then

(
n

k1, . . . , km

)

=
(

n− 1
k1 − 1, k2, . . . , km

)

+
(

n− 1
k1, k2 − 1, k3, . . . , km

)

+ · · ·+
(

n− 1
k1, k2, . . . , km−1, km − 1

)

.

(2.20)

In the last section, the addition identity for m = 2 produced Pascal’s triangle
for the binomial coefficients. We can use a similar strategy to generate a geomet-
ric arrangement of the trinomial coefficients when m = 3, which we might call
Pascal’s pyramid. The top level of the pyramid corresponds to n = 0, just as in
Pascal’s triangle, and here we place a single 1, for

(
0

0,0,0

)
. The next level holds

the numbers for n = 1, and we place the three 1s in a triangular formation, just
below the n = 0 datum at the apex, for the numbers

(
1

1,0,0

)
,
(

1
0,1,0

)
, and

(
1

0,0,1

)
.

In general, we use the addition formula (2.20) to compute the numbers in level n
from those in level n − 1, and we place the value of

(
n

a,b,c

)
in level n just below

the triangular arrangement of numbers
(

n−1
a−1,b,c

)
,
(

n−1
a,b−1,c

)
, and

(
n−1

a,b,c−1

)
in level

n−1. Figure 2.1 shows the first few levels of the pyramid of trinomial coefficients.
Here, the position of each number in level n is shown relative to the positions of
the numbers in level n− 1, each of which is marked with a triangle (�).

1
1
�

1 1

1
�

2 2
� �

1 2 1

n = 0 n = 1 n = 2

1
�

3 3
� �

3 6 3
� � �

1 3 3 1

1
�

4 4
� �

6 12 6
� � �

4 12 12 4
� � � �

1 4 6 4 1

n = 3 n = 4

FIGURE 2.1. The first five levels of Pascal’s pyramid.
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We can use the addition identity to obtain an important generalization of the
binomial theorem for multinomial coefficients.

The Multinomial Theorem. If n is a nonnegative integer, then

(x1 + · · ·+ xm)n =
∑

k1+···+km=n

(
n

k1, . . . , km

)

xk1
1 · · ·xkm

m . (2.21)

Here, the notation
∑

k1+···+km=n means that the sum extends over all integer
m-tuples (k1, . . . , km) whose sum is n. Of course, there are infinitely many such
m-tuples, but only finitely many produce a nonzero term by the Expansion iden-
tity, so this is in effect a finite sum. We prove (2.21) for the case m = 3; the
general case is left as an exercise.

Proof. The formula

(x + y + z)n =
∑

a+b+c=n

(
n

a, b, c

)

xaybzc (2.22)

certainly holds for n = 0, so suppose that it is valid for n. We compute

(x+y + z)n+1 = (x + y + z)
∑

a+b+c=n

(
n

a, b, c

)

xaybzc

=
∑

a+b+c=n

(
n

a, b, c

)

xa+1ybzc +
∑

a+b+c=n

(
n

a, b, c

)

xayb+1zc

+
∑

a+b+c=n

(
n

a, b, c

)

xaybzc+1

=
∑

a+b+c=n+1

((
n

a− 1, b, c

)

+
(

n

a, b− 1, c

)

+
(

n

a, b, c− 1

))

xaybzc

=
∑

a+b+c=n+1

(
n + 1
a, b, c

)

xaybzc,

so (2.22) holds for all n ≥ 0.

Some additional formulas for multinomial coefficients are developed in the ex-
ercises. Some of these may be obtained by selecting particular values for x1, . . . ,
xm in the multinomial theorem.

We close this section by describing a common way that multinomial coeffi-
cients appear in combinatorial problems. Suppose we need to count the number
of ways to order a collection of n objects. If all the objects are different, then the
answer is simply n!, but what if our collection includes some duplicate objects?
Such a collection is called a multiset. Certainly we expect fewer different arrange-
ments when there are some duplicate objects. For example, there are just six ways
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to line up four poker chips, two of which are red and the other two blue: rrbb,
rbrb, rbbr, brrb, brbr, and bbrr.

Suppose we have a multiset of size n that includes exactly k1 identical copies
of one object, k2 instances of another, and so on, ending with km duplicates of
the last object, so k1 + · · ·+ km = n. In any ordering of these n objects, we may
rearrange the ki copies of object i in any way without disturbing the arrangement.
Since we can do this for any of the m objects independently, it follows that each
distinct ordering of the items occurs k1!k2! · · ·km! times among the n! ways that
one could arrange the objects if they had been distinguishable. Therefore, the
number of distinct arrangements of our multiset is

n!
k1! · · · km!

=
(

n

k1, . . . , km

)

.

We could also obtain this formula by using our first combinatorial model for
the multinomial coefficients. Suppose we have n ping-pong balls, numbered 1
through n, and m boxes, each labeled with a different object from our multiset.
The number of ways to distribute the balls among the boxes, with k1 in box 1, k2 in
box 2, and so on, is the multinomial coefficient

(
n

k1,...,km

)
. But each arrangement

corresponds to an ordering of the elements of our multiset: The numbers in box i
indicate the positions of object i in the listing.

We have thus answered the analogue of Problem 1 from Section 2.1 for multi-
sets. We can also study a generalization of Problem 2: How many ways are there
to make an ordered list of r objects from a multiset of n objects, if the multiset
comprises ki copies of object i for 1 ≤ i ≤ m? Our approach to this problem
depends on the ki and r, so we’ll study an example. Suppose a contemplative
resident of Alma, Alabama, wants to know the number of ways to rearrange the
letters of her home town and state, ignoring differences in case. There are eleven
letters in all: six As, one B, two Ls, and two Ms, so she computes the total
number to be

(
11

6,1,2,2

)
= 11!

6!2!2! = 13 860.
Suppose she also wants to know the number of four-letter sequences of letters

that can be formed from the same string, ALMAALABAMA, like the ones in the
list that open this section, only they do not have to be English words. This is
the multiset version of Problem 2 with n = 11, r = 4, m = 4, k1 = 6, k2 = 1,
and k3 = k4 = 2. We can solve this by constructing each sequence in two steps:
first, select four elements from the multiset; second, count the number of ways
to order that subcollection. We can group the possible sub-multisets according to
their pattern of repeated elements. For example, consider the subcollections that
have two copies of one object, and two copies of another. Denote this pattern by
wwxx. There are

(
3
2

)
= 3 ways to select values for w and x, since we must pick

two of the three letters A, L, and M. Each of these subcollections can be ordered
in any of

(
4

2,2

)
= 6 ways, so the pattern wwxx produces 3 · 6 = 18 possible

four-letter sequences in all. There are five possible patterns for a four-element
multiset, which we can denote wwww, wwwx, wwxx, wwxy, and wxyz. The
analysis of each one is summarized in the following table.
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Pattern Sub-multisets Orderings per sub-multiset Total
wwww 1 1 1
wwwx

(
3
1

) (
4

3,1

)
12

wwxx
(
3
2

) (
4

2,2

)
18

wwxy
(
3
1

)(
3
2

) (
4

2,1,1

)
108

wxyz 1 4! 24

Summing the values in the rightmost column, we find that there are exactly 163
ways to form a four-letter sequence from the letters in Alma, Alabama.

Exercises

1. Prove the addition identity for multinomial coefficients (2.20) by using the
expansion identity (2.18).

2. For nonnegative integers a, b, and c, let P (a, b, c) denote the number of
paths in three-dimensional space that begin at the origin, end at (a, b, c),
and consist entirely of steps of unit length, each of which is parallel to a
coordinate axis. Prove that P (a, b, c) =

(
a+b+c
a,b,c

)
.

3. Prove the multinomial theorem (2.21) for an arbitrary positive integer m.

4. Prove the following identities for sums of multinomial coefficients, if m
and n are positive integers.

(a)
∑

k1+···+km

(
n

k1, . . . , km

)

= mn.

(b)
∑

k1+···+km

(
n

k1, . . . , km

)

(−1)k2+k4+···+k2� =

{
0 if m = 2
,

1 if m = 2
 + 1.

5. Prove that if n is a nonnegative integer and k is an integer, then

∑

j

(
n

j, k, n− j − k

)

= 2n−k

(
n

k

)

.

6. Prove the multinomial theorem for falling factorial powers,

(x1 + · · ·+ xm)n =
∑

k1+···+km=n

(
n

k1, . . . , km

)

x
k1

1 · · ·xkm

m ,

and for rising factorial powers,

(x1 + · · ·+ xm)n =
∑

k1+···+km=n

(
n

k1, . . . , km

)

xk1
1 · · ·xkm

m .

You may find it helpful to consider the trinomial case first.
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7. Use a combinatorial argument to establish the following analogue of Van-
dermonde’s convolution for trinomial coefficients. If m and n are nonneg-
ative integers, and a + b + c = m + n, then

∑

α+β+γ=m

(
m

α, β, γ

)(
n

a− α, b− β, c− γ

)

=
(

m + n

a, b, c

)

.

8. State an analogue of Vandermonde’s convolution for multinomial coeffi-
cients, and use a combinatorial argument to establish it.

9. Compute the number of r-letter sequences that can be formed by using the
letters in each location below, for each given value of r. Ignore differences
in case.

(a) Bug Tussle, TX: r = 3, r = 4, r = 11.

(b) Cooleemee, NC: r = 4, r = 10, r = 11.

(c) Oconomowoc, WI: r = 4, r = 11, r = 12.

(d) Unalaska, Alaska: r = 3, r = 4, r = 14.

(e) Walla Walla, WA: r = 4, r = 5, r = 12.

10. Certainly there are more four-letter sequences that can be formed by using
the letters in Bobo, Mississippi, than can be formed by using the letters in
Soso, Mississippi. Is the difference more or less than the distance between
these two cities in miles, which is 267?

11. A band of combinatorial ichthyologists asserts that the number of five-letter
sequences that can be formed using the letters of the Hawaiian long-nosed
butterfly fish, the lauwiliwilinukunuku’oi’oi, is more than twice as large as
the number of five-letter sequences that can be created using the name of
the state fish of Hawaii, the painted triggerfish humuhumunukunukuapua’a.
Prove or disprove their claim by computing the exact number in each case.

2.4 The Pigeonhole Principle

I am just here for anyone that’s for the pigeons.
— Mike Tyson, Phoenix City Council meeting, June 1, 2005,

reported in The Arizona Republic

We now turn to a simple, but powerful, idea in combinatorial reasoning known
as the pigeonhole principle. We can state it in the following way.

Theorem 2.1 (Pigeonhole Principle). Let n be a positive integer. If more than
n objects are distributed among n containers, then some container must contain
more than one object.
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The proof is simple—if each container held at most one object, then there
would be at most n objects in all.

This mathematical idea is also called the box principle (especially in number
theory texts), which is sensible enough, since we can imagine the containers as
boxes. In German, it is the drawer principle, logically enough, after Dirichlet’s
original term, the Schubfachprinzip. It may seem odd to think of our containers
as pigeon roosts, but the name probably originally referred to the “pigeonholes”
one sees in those old desks with lots of square nooks for squirreling away papers.
(One imagines however that the origins of the term may be the subject of some,
well, squabbling. . . .) So while the traditional name may be somewhat antiquated,
at least the avian nomenclature saves us from talking about Dirichlet’s drawers.

The pigeonhole principle is very useful in establishing the existence of a partic-
ular configuration or combination in many mathematical contexts. We begin with
a few simple examples.

1. Suppose 400 freshmen enroll in introductory calculus one term. Then two
must have the same birthday. Here, the pigeonholes are calendar days, so
n = 366.

2. In honor of champion pugilist (and pigeon enthusiast) Mike Tyson, suppose
that n boxers schedule a round-robin tournament, so each fighter meets
every other in a bout, and afterwards no contestant is undefeated. Then
each boxer has between 1 and n − 1 wins, so two boxers must have the
same record in the tournament.

3. It is estimated that the average full head of hair has 100 000 to 150 000
strands of hair. Let’s assume that the most hirsute among us has less than
250 000 strands of hair on their head. The city of Phoenix has over 1.5
million residents, so it follows that there must be at least two residents with
exactly the same number of hairs on their head. Moreover, since only a
fraction of the population is bald, the statement surely remains true if we
exclude those with no hair at all. (Sorry, Iron Mike.)

In this last problem, we can in fact conclude considerably more. The population
of Phoenix is more than six times the maximum number of hairs per head, and
a moment’s thought reveals that there must in fact exist at least six people in
Phoenix with identical hair counts. We can thus state a more powerful pigeonhole
principle.

Theorem 2.2 (Generalized Pigeonhole Principle). Let m and n be positive inte-
gers. If more than mn objects are distributed among n containers, then at least
one container must contain at least m + 1 objects.

The proof is again easy—if each container held at most m objects then the
total number of objects would be at most mn. An alternative formulation of this
statement appears in the exercises. Next, we establish the following arithmetic
variation on the pigeonhole principle.
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Theorem 2.3. Suppose a1, a2, . . . , an is a sequence of real numbers with mean
μ, so μ = (a1 + · · ·+ an)/n. Then there exist integers i and j, with 1 ≤ i, j ≤ n,
such that ai ≤ μ and aj ≥ μ.

The proof is again straightforward—if every element of the sequence were
strictly greater than μ, then we would have a1 + · · · + an > nμ, a contradic-
tion. Thus, an integer i must exist with ai ≤ μ. A similar argument establishes
the existence of j.

While the pigeonhole principle and the variations we describe here are all quite
simple to state and verify, this idea plays a central role in establishing many de-
cidedly nontrivial statements in mathematics. We conclude this section with two
examples.

Monotonic Subsequences

We say a sequence a1, . . . , an is increasing if a1 ≤ a2 ≤ · · · ≤ an, and strictly
increasing if a1 < a2 < · · · < an. We define decreasing and strictly decreasing
in the same way. Consider first an arrangement of the integers between 1 and 10,
for example,

3, 5, 8, 10, 6, 1, 9, 2, 7, 4. (2.23)

Scan the list for an increasing subsequence of maximal length. Above, we find
(3, 5, 8, 10), (3, 5, 8, 9), (3, 5, 6, 7), and (3, 5, 6, 9) all qualify with length 4. Next,
scan the list for a decreasing subsequence of maximal length. Here, the best we
can do is length 3, achieved by (8, 6, 1), (8, 6, 2), (8, 6, 4), (10, 6, 2), (10, 6, 4),
(10, 7, 4), and (9, 7, 4). Is it possible to find an arrangement of the integers from 1
to 10 that simultaneously avoids both an increasing subsequence of length 4 and a
decreasing subsequence of length 4? The following theorem asserts that this is not
possible. Its statement dates to an early and influential paper of Erdős and Szek-
eres [94], the same one cited in Section 1.8 for its contribution to the development
of Ramsey theory.

Theorem 2.4. Suppose m and n are positive integers. A sequence of more than
mn real numbers must contain either an increasing subsequence of length at least
m + 1, or a strictly decreasing subsequence of length at least n + 1.

Proof. Suppose that r1, r2, . . . , rmn+1 is a sequence of real numbers which con-
tains neither an increasing subsequence of length m + 1, nor a strictly decreasing
subsequence of length n + 1. For each integer i with 1 ≤ i ≤ mn + 1, let ai de-
note the length of the longest increasing subsequence in this sequence of numbers
whose first term is ri, and let di denote the length of the longest strictly decreas-
ing subsequence beginning with this term. For example, for the sequence (2.23)
we see that a2 = 3 (for 5, 8, 10 or 5, 8, 9), and d2 = 2 (for 5, 1 or 5, 2). By our
hypothesis, we know that 1 ≤ ai ≤ m and 1 ≤ di ≤ n for each i, and thus
there are only mn different possible values for the ordered pair (ai, di). However,
there are mn + 1 such ordered pairs, so by the pigeonhole principle there exist
two integers j and k with j < k such that aj = ak and dj = dk. Denote this pair
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by (α, δ), so α = aj = ak and δ = dj = dk. Now let rk , ri2 , . . . , riα denote a
maximal increasing subsequence beginning with rk and let rk, ri′2

, . . . , ri′δ
denote

a maximal strictly decreasing subsequence beginning with this term. If rj ≤ rk,
then rj , rk , ri2 , . . . , riα is an increasing subsequence of length α + 1 beginning
with rj . On the other hand, if rj > rk, then rj , rk, ri′2

, . . . , ri′
δ

is a strictly de-
creasing subsequence of length δ + 1 beginning with rj . In either case, we reach
a contradiction.

Of course, we can replace “increasing” with “strictly increasing” and simulta-
neously “strictly decreasing” with “decreasing” in this statement.

Approximating Irrationals by Rationals

Let α be an irrational number. Since every real interval [a, b] with a < b contains
infinitely many rational numbers, certainly there exist rational numbers arbitrarily
close to α. Suppose however we restrict the rationals we may select to the set of
fractions with bounded denominator. How closely can we approximate α now?
More specifically, given an irrational number α and a positive integer Q, does

there exist a rational number p/q with 1 ≤ q ≤ Q and
∣
∣
∣α− p

q

∣
∣
∣ especially small?

How small can we guarantee?
At first glance, if we select a random denominator q in the range [1, Q], then

certainly α lies in some interval (k
q , k+1

q ), for some integer k, so its distance to
the nearest multiple of 1/q is at most 1/2q. We might therefore expect that on
average we would observe a distance of about 1/4q, for randomly selected q. In
view of Theorem 2.3, we might then expect that approximations with distance at
most 1/4q must exist. In fact, however, we can establish a much stronger result
by using the pigeonhole principle. The following important theorem is due to
Dirichlet and his Schubfachprinzip.

We first require some notation. For a real number x, let �x� denote the floor of
x, or integer part of x. It is defined to be the largest integer m satisfying m ≤ x.
Similarly, the ceiling of x, denoted by �x�, is the smallest integer m satisfying x ≤
m. Last, the fractional part of x, denoted by {x}, is defined by {x} = x − �x�.
For example, for x = π we have �π� = 3, �π� = 4, and {π} = 0.14159 . . . ; for
x = 1 we obtain �1� = �1� = 1 and {1} = 0.

Theorem 2.5 (Dirichlet’s Approximation Theorem). Suppose α is an irrational
real number, and Q is a positive integer. Then there exists a rational number p/q
with 1 ≤ q ≤ Q satisfying

∣
∣
∣
∣α−

p

q

∣
∣
∣
∣ <

1
q(Q + 1)

.

Proof. Divide the real interval [0, 1] into Q + 1 subintervals of equal length:

[

0,
1

Q + 1

)

,

[
1

Q + 1
,

2
Q + 1

)

, . . . ,

[
Q− 1
Q + 1

,
Q

Q + 1

)

,

[
Q

Q + 1
, 1
]

.
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Since each of the Q + 2 real numbers

0, {α} , {2α} , . . . , {Qα} , 1 (2.24)

lies in [0, 1], by the pigeonhole principle at least two of them must lie in the same
subinterval. Each of the numbers in (2.24) can be written in a unique way as rα−s
with r and s integers and 0 ≤ r ≤ Q, so it follows that there exist integers r1, r2,
s1, and s2, with 0 ≤ r1, r2 ≤ Q, such that

|(r2α− s2)− (r1α− s1)| <
1

Q + 1
.

Since only 0 and 1 in our list have the same r-value, we can assume that r1 �= r2,
so suppose r1 < r2. Let q = r2 − r1, so 1 ≤ q ≤ Q, and let p = s2 − s1. Then p
and q satisfy

|qα− p| < 1
Q + 1

,

and the conclusion follows upon dividing through by q.

Since q ≤ Q, we immediately obtain that the rational number p/q guaranteed
by the theorem satisfies ∣

∣
∣
∣α−

p

q

∣
∣
∣
∣ <

1
q2 + q

. (2.25)

Exercise 11 asks you to show that there exist infinitely many rational numbers
p/q that satisfy this inequality for a fixed irrational number α.

Exercises

1. Show that at any party with at least two people, there must exist at least
two people in the group who know the same number of other guests at the
party. Assume that each pair of people at the party are either mutual friends
or mutual strangers.

2. Prove the following version of the pigeonhole principle. Let m and n be
positive integers. If m objects are distributed in some way among n con-
tainers, then at least one container must hold at least 1 + �(m− 1)/n�
objects.

3. Prove the following more general version of the pigeonhole principle. Sup-
pose that m1, m2, . . . , mn are all positive integers, let M = m1 + m2 +
· · · + mn − n + 1, and suppose each of n containers is labeled with an
integer between 1 and n. Prove that if M objects are distributed in some
way among the n containers, then there exists an integer i between 1 and n
such that the container labeled with i contains at least mi objects.

4. The top four pitchers on a college baseball team combine for 297 strikeouts
over the course of a season. If each pitcher had at least 40 strikeouts over the
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course of the season, and the fourth-best pitcher had less than 50 strikeouts,
how many strikeouts could the best pitcher have made over the season?
Your answer should be a range of possible numbers.

5. Find the smallest value of m so that the following statement is valid: Any
collection of m distinct positive integers must contain at least two numbers
whose sum or difference is a multiple of 10. Prove that your value is best
possible.

6. Suppose A = (a1, a2, . . . , an) is a sequence of positive real numbers. Let
H(A) denote the harmonic mean of A, defined by

H(A) = n

(
n∑

i=1

1
ai

)−1

.

Show there exist integers i and j, with 1 ≤ i, j ≤ n, satisfying

ai ≤ H(A) ≤ aj.

7. Suppose the integers from 1 to n are arranged in some order around a circle,
and let k be an integer with 1 ≤ k ≤ n. Show that there must exist a
sequence of k adjacent numbers in the arrangement whose sum is at least
�k(n + 1)/2�.

8. Suppose the integers from 1 to n are arranged in some order around a circle,
and let k be an integer with 1 ≤ k ≤ n. Show that there must exist a
sequence of k adjacent numbers in the arrangement whose product is at
least

⌈
(n!)k/n

⌉
.

9. Let n be a positive integer. Exhibit an arrangement of the integers between 1
and n2 which has no increasing or decreasing subsequence of length n+1.

10. Let m and n be positive integers. Exhibit an arrangement of the integers
between 1 and mn which has no increasing subsequence of length m + 1,
and no decreasing subsequence of length n + 1.

11. Let α be an irrational number. Prove that there exist infinitely many rational
numbers p/q satisfying (2.25).

12. Let n be a positive integer, and let b ≥ 2 be an integer.

(a) Show that there exists a nonzero multiple N of n whose base-b rep-
resentation consists entirely of 0s and 1s. (No partial credit will be
awarded for the case b = 2!) Hint: Consider the sequence of numbers
∑k

i=0 bi for a number of values of k.

(b) Show that there exists a multiple N of n whose base-b representation
consists entirely of 1s if and only if no prime number p which divides
b is a factor of n.
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(c) Suppose that the greatest common divisor of b and n is 1, and let
d1, . . . , dm be a sequence of integers with 0 ≤ di < b for each i
and d1 �= 0. Show that there exists a multiple N of n whose base-
b representation is obtained by juxtaposing some integral number of
copies of the base-b digit sequence d1d2 · · ·dm.

13. Let a1, a2, . . . , an be a sequence of integers. Show that there exist integers
j and k with 1 ≤ j ≤ k ≤ n such that the sum

∑k
i=j ai is a multiple of n.

14. (Bloch and Pólya [28].) For a positive integer d, let Nd denote the set of
polynomials with degree at most d−1 whose coefficients are all 0 or 1. For
example,N3 = {0, 1, x, x2, 1 + x, 1 + x2, x + x2, 1 + x + x2}.

(a) Let f (k)(x) denote the kth derivative of f(x). Show that if f ∈ Nd

then f (k−1)(1) ≤ dk/k.

(b) Let m be a positive integer. Determine an upper bound on the number
of different possible m-tuples (f(1), f ′(1), . . . , f (m−1)(1)) achieved
by polynomials f(x) ∈ Nd.

(c) Prove that if d > 1 and

d

log2 d
>

(
m + 1

2

)

,

then there exists a polynomial h(x) of degree at most d − 1 whose
coefficients are all 0, 1, or −1, and which is divisible by (x− 1)m.

2.5 The Principle of Inclusion and Exclusion

What we here have to do is to conceive, and invent a notation for, all
the possible combinations which any number of class terms can
yield; and then find some mode of symbolic expression which shall
indicate which of these various compartments are empty or
occupied . . .

— John Venn, [275, p. 23]

Suppose there are 50 beads in a drawer: 25 are glass, 30 are red, 20 are spherical,
18 are red glass, 12 are glass spheres, 15 are red spheres, and 8 are red glass
spheres. How many beads are neither red, nor glass, nor spheres?

We can answer this question by organizing all of this information using a Venn
diagram with three overlapping sets: G for glass beads, R for red beads, and S for
spherical beads. See Figure 2.2. We are given that there are eight red glass spheres,
so start by labeling the common intersection of the sets G, R, and S in the diagram
with 8. Then the region just above this one must have ten elements, since there
are 18 red glass beads, and exactly eight of these are spherical. Continuing in this
way, we determine the size of each of the sets represented in the diagram, and we
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conclude that there are exactly twelve beads in the drawer that are neither red, nor
glass, nor spheres.

10
R

5

7

8

4

3

G

S
1

12

FIGURE 2.2. A solution using a Venn diagram.

Alternatively, we can answer this question by determining the size of the set
G ∪ R ∪ S (does this make us counting GURUS?). Summing the number of
elements in the sets G, R, and S produces a number that is too large, since this
sum counts the beads that are in more than one of these sets at least twice. We
can try to compensate by subtracting the number of elements in the sets G ∩ R,
G ∩ S, and R ∩ S from the sum. This produces a total that is too small, since
the beads that have all three attributes are counted three times in the first step,
then subtracted three times in the second step. Thus, we must add the number of
elements in G ∩R ∩ S to the sum, and we find that

|G ∪R ∪ S| = |G|+ |R|+ |S| − |G ∩R| − |G ∩ S| − |R ∩ S|+ |G ∩R ∩ S| .

Letting N0 denote the number of beads with none of the three attributes, we then
compute

N0 = 50− |G ∪R ∪ S|
= 50− |G| − |R| − |S|+ |G ∩R|+ |G ∩ S|+ |R ∩ S| − |G ∩R ∩ S|
= 50− 25− 30− 20 + 18 + 12 + 15− 8
= 12.

This suggests a general technique for solving some similar combinatorial prob-
lems. Suppose we have a collection of N distinct objects, and each object may
satisfy one or more properties that we label a1, a2, . . . , ar. Let N(ai) denote
the number of objects having property ai, let N(aiaj) signify the number having
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both property ai and property aj , and in general let N(ai1ai2 . . . aim) represent
the number satisfying the m properties ai1 , . . . , aim . Let N0 denote the number
of objects having none of the properties. We prove the following theorem.

Theorem 2.6 (Principle of Inclusion and Exclusion). Using the notation above,

N0 = N −
∑

i

N(ai) +
∑

i<j

N(aiaj)−
∑

i<j<k

N(aiajak) + · · ·

+ (−1)m
∑

i1<···<im

N(ai1 . . . aim) + · · ·+ (−1)rN(a1a2 . . . ar).

(2.26)

Proof. Suppose an object satisfies none of the properties. Then the expression on
the right side counts it precisely once, in the N term. On the other hand, suppose
an object satisfies precisely m of the properties, with m a positive number. Then
it is counted once in the N term, m times in the

∑
N(ai) term,

(
m
2

)
times in

the second sum, and in general
(
m
k

)
times in the kth sum. Therefore, the total

contribution on the right side from this object is

∑

k

(−1)k

(
m

k

)

= 0

by (2.9). This completes the proof.

We consider four applications of this counting principle.

The Euler ϕ Function

Two integers are said to be relatively prime if their greatest common divisor is 1.
If n is a positive integer, let ϕ(n) be the number of positive integers m ≤ n that
are relatively prime to n. This function, called the Euler ϕ function or the Euler
totient function, is important in number theory. We can derive a formula for this
function by using the principle of inclusion and exclusion.

We must name a set and list a number of properties such that the number of
elements in the set satisfying none of the properties is ϕ(n). Suppose n is divisible
by precisely r different primes, which we label p1 through pr. Select {1, 2, . . . , n}
as the set, and let ai be the property “is divisible by pi.” Then N0 = ϕ(n), and
it is easy to compute the terms on the right side of the equation in Theorem 2.6:
N = n, N(ai) = n/pi, N(aiaj) = n/(pipj), and so on. Therefore,

ϕ(n) = n−
∑

i

n

pi
+
∑

i<j

n

pipj
−

∑

i<j<k

n

pipjpk
+ · · ·+ (−1)r n

p1p2 · · · pr

= n

r∏

i=1

(

1− 1
pi

)

.

Exercise 7 asks you to verify the last step.
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For example, the primes dividing 24 are 2 and 3, so ϕ(24) = 24(1− 1
2 )(1− 1

3 ) =
8. The eight numbers between 1 and 24 that are relatively prime to 24 are 1, 5, 7,
11, 13, 17, 19, and 23.

Counting Prime Numbers

Suppose m is a composite positive integer, so m can be written as a product of
two integers that are both greater than 1: m = ab with 1 < a ≤ b. Then a2 ≤ m,
so a ≤

√
m, and so m must be divisible by a prime number p with p ≤

√
m.

We can use this observation, together with Theorem 2.6, to count the prime
numbers between 1 and a given positive integer n. We start with the set of integers
{1, 2, . . . , n}, and use the theorem to count the number of elements that remain
when multiples of prime numbers p ≤

√
n are excluded from the set. Since every

composite number m ≤ n has a prime factor p ≤
√

m, excluding all of these
numbers removes all the composite numbers from the set.

For example, for n = 120, the largest prime less than or equal to
√

n is the
fourth prime number, 7, so we require just four properties in Theorem 2.6 to
exclude all the composite numbers in the set {1, 2, . . . , 120}. The four properties
are a1 = “is even,” a2 = “is divisible by 3,” a3 = “is divisible by 5,” and a4 =
“is divisible by 7.” We compute N(a1) = 120/2 = 60, N(a2) = 120/3 = 40,
N(a3) = 120/5 = 24, and N(a4) = �120/7� = 24. (The quantity �x�was
defined on page 153.)

Continuing our calculation, we compute N(a1a2) = �120/6� = 20, then
N(a1a3) = �120/10� = 12, etc., and find that N0 = 120−(60+40+24+17)+
(20 + 12+ 8 + 8+ 5 + 3)− (4 + 2 + 1 + 1)+ 0 = 27. But this is not the number
of prime numbers between 1 and 120, for our method excludes the primes 2, 3, 5,
and 7, and includes the nonprime 1. Accounting for these exceptions, we find that
the number of primes between 1 and 120 is N0 + 4− 1 = 30.

Chromatic Polynomials

Let G be a graph. Recall that its chromatic polynomial cG(x) measures the num-
ber of ways to color the vertices of G using at most x colors in such a way that no
two vertices connected by an edge have the same color. We can use Theorem 2.6
to compute chromatic polynomials.

Suppose G has n vertices, and consider the set of colorings of the vertices of G
using at most x colors, so the number of colorings in this set is N = xn. To find
cG(x), we must exclude all of the inadmissible colorings from this set. For each
edge ei in the graph, select property ai to be “edge ei connects two vertices that
have the same color.” In this way, the colorings in the set that satisfy none of the
properties are precisely the admissible colorings, so N0 = cG(x).

For example, we compute the chromatic polynomial for the complete graph K3

using this strategy. This graph has three edges, so we take r = 3 in the theorem.
We compute N(a1) = N(a2) = N(a3) = x2, since every coloring satisfying
one of the properties has two vertices with the same color, and the third vertex
may be any color. Also, N(a1a2) = N(a2a3) = N(a1a3) = N(a1a2a3) = x, as
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every coloring satisfying more than one property must have all vertices colored
identically. Thus, cK3(x) = N0 = x3 − 3x2 + 3x− x = x(x− 1)(x− 2) = x3.

Derangements

Suppose a lazy professor gives a quiz to a class of n students, then collects the
papers, shuffles them, and redistributes them randomly to the class for grading.
The professor would prefer that no student receives his or her own paper to grade.
What is the probability that this occurs? Is this probability substantially different
for different class sizes? What do you think the limiting probability is as n →∞?
Notice that as n grows larger, there are more ways for at least one person to receive
his or her own quiz back, but perhaps this increase is swamped by the growth of
the total number of permutations possible.

Suppose we have n objects in an initial configuration. A permutation of these
objects in which the position of each object differs from its initial position is called
a derangement of the objects. Since n! denotes the number of permutations of n
objects, following [133] we denote the number of derangements of n objects by
n¡ (and since n! is often pronounced “n bang,” perhaps n¡ should be pronounced
“n gnab”).

We compute n¡ for some small values of n. For n = 0, there is just one per-
mutation, and it vacuously satisfies the derangement condition, so 0¡ = 1. There
is only one permutation of a single object, and it is not a derangement, so 1¡ = 0.
Only one of the two permutations of two objects is a derangement, so 2¡ = 1, and
exactly two of the six permutations of three objects satisfies the condition: If our
original arrangement is [1, 2, 3], then the derangements are [2, 3, 1] and [3, 1, 2].
Thus 3¡ = 2. We find that 4¡ = 9: The derangements of [1, 2, 3, 4] are [2, 1, 4, 3],
[2, 3, 4, 1], [2, 4, 1, 3], [3, 1, 4, 2], [3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 3, 1, 2], and
[4, 3, 2, 1]. Thus, the probability that a random permutation of a fixed number n
of objects is a derangement is respectively 1, 0, 1

2 , 1
3 , and 3

8 for n = 0 through 4.
We can use Theorem 2.6 to determine a formula for n¡. We select the original

set to be the collection of all permutations of n objects, and for 1 ≤ i ≤ n let ai

denote the property that element i remains in its original position in a permutation.
Then N0 is the number of permutations where no elements remain in their original
position, so N0 = n¡.

To compute N(ai), we see that element i is fixed, but the other n− 1 elements
may be arranged arbitrarily, so N(ai) = (n− 1)!. Similarly, N(aiaj) = (n− 2)!
for i < j, N(aiajak) = (n− 3)! for i < j < k, and so on. Therefore,

n¡ = n!−
∑

i

(n− 1)! +
∑

i<j

(n− 2)!− · · ·

+ (−1)m
∑

i1<···<im

(n−m)! + · · ·+ (−1)n.
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Since the number of different m-tuples (i1, i2, . . . , im) with 1 ≤ i1 < i2 < · · · <
im ≤ n is

(
n
m

)
, we obtain

n¡ = n!−
(

n

1

)

(n− 1)! +
(

n

2

)

(n− 2)!− · · ·

+ (−1)m

(
n

m

)

(n−m)! + · · ·+ (−1)n

=
∑

m

(−1)m

(
n

m

)

(n−m)!

= n!
n∑

m=0

(−1)m

m!
.

Thus, the probability that a permutation of n objects is a derangement is

n¡
n!

=
n∑

m=0

(−1)m

m!
,

and in the limit,

lim
n→∞

n¡
n!

=
∑

m≥0

(−1)m

m!
= e−1. (2.27)

Our lazy professor obtains a desired configuration about 36.8% of the time, for
sizable classes.

Exercises

1. A noted vexillologist tells you that 30 of the 50 U.S. state flags have blue
as a background color, twelve have stripes, 26 exhibit a plant or animal,
nine have both blue in the background and stripes, 23 have both blue in the
background and feature a plant or animal, and three have both stripes and a
plant or animal. One of the flags in this last category (California) does not
have any blue in the background. How many state flags have no blue in the
background, no stripes, and no plant or animal featured?

2. Suppose 50 socks lie in a drawer. Each one is either white or black, ankle-
high or knee-high, and either has a hole or doesn’t. 22 socks are white, four
of these have a hole, and one of these four is knee-high. Ten white socks are
knee-high, ten black socks are knee-high, and five knee-high socks have a
hole. Exactly three ankle-high socks have a hole.

(a) Use Theorem 2.6 to determine the number of black, ankle-high socks
with no holes.

(b) Draw a Venn diagram that shows the number of socks with each com-
bination of characteristics.
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3. The buffet line at a local steakhouse has 35 dishes. Sixteen dishes contain
meat, fourteen dishes are fried, and of the dishes with meat, eight contain
vegetables and seven are fried. Of the fried dishes, five contain a vegetable.
Just two dishes are fried and contain both meat and a vegetable, and ten
dishes (principally in the dessert section) contain neither meat nor a veg-
etable and are not fried. Use Theorem 2.6 to determine how many dishes
contain vegetables.

4. A sneaky registrar reports the following information about a group of 400
students. There are 180 taking a math class, 200 taking an English class,
160 taking a biology class, and 250 in a foreign language class. 80 are
enrolled in both math and English, 90 in math and biology, 120 in math and
a foreign language, 70 in English and biology, 140 in English and a foreign
language, and 60 in biology and a foreign language. Also, there are 25 in
math, English, and a foreign language, 30 in math, English, and biology, 40
in math, biology, and a foreign language, and fifteen in English, biology,
and a foreign language. Finally, the sum of the number of students with a
course in all four subjects, plus the number of students with a course in none
of the four subjects, is 100. Use Theorem 2.6 to determine the number of
students that are enrolled in all four subjects simultaneously: math, biology,
English, and a foreign language.

5. On a busy evening a number of guests visit a gourmet restaurant, and ev-
eryone orders something. 140 guests order a beverage, 190 order an entree,
100 order an appetizer, 90 order a dessert, 65 order a beverage and an appe-
tizer, 125 order a beverage and an entree, 60 order a beverage and a dessert,
85 order an entree and an appetizer, 75 order an entree and a dessert, 60 or-
der an appetizer and a dessert, 40 order a beverage, appetizer, and dessert,
55 order a beverage, entree, and dessert, 45 order an appetizer, entree, and
dessert, 35 order a beverage, entree, and appetizer, and ten order all four
types of items. Use Theorem 2.6 to determine the number of guests who
visited the restaurant that evening.

6. Use Theorem 2.6 to determine the number of five-card hands drawn from a
standard deck that contain at least one card from each of the four suits.

7. Let α1, α2, . . . , αr be real numbers. Show that

r∏

i=1

(1− αi) = 1−
∑

i

αi +
∑

i<j

αiαj −
∑

i<j<k

αiαjαk + · · ·

+ (−1)rα1α2 · · ·αr.

8. (a) Show that ϕ(mn) = ϕ(m)ϕ(n) if m and n are relatively prime.

(b) Show that ϕ(mn) �= ϕ(m)ϕ(n) if m and n are not relatively prime.
Is one quantity always larger than the other in this case?
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(c) Determine all integers n satisfying ϕ(n) = 12, 13, or 14.

9. Use Theorem 2.6 to count the number of prime numbers less than 168.

10. Use Theorem 2.6 to determine the chromatic polynomial for each of the
following graphs.

(a) The yield sign (add a single edge to the bipartite graph K1,3).

(b) The bipartite graph K2,3.

11. Is the probability that a permutation of n objects is a derangement substan-
tially different for n = 12 and n = 120? Quantify your answer.

12. (Deranged twins.) Suppose n+2 people are seated behind a long table fac-
ing an audience to staff a panel discussion. Two of the people are identical
twins, wearing identical clothing. At intermission, the panelists decide to
rearrange themselves so that it will be apparent to the audience that every-
one has moved to a different seat when the panel reconvenes. Each twin can
therefore take neither her own former place, nor her twin’s. Let Tn denote
the number of different ways to derange the panel in this way.

(a) Compute T0, T1, T2, and T3.

(b) Compute T4.

(c) Determine a formula for Tn, and check that your formula produces
T10 = 72 755 370.

(d) Compute the value of lim
n→∞

Tn

(n + 2)!
.

13. Suppose our lazy professor collects a quiz and a homework assignment
from a class of n students one day, then distributes both the quizzes and the
homework assignments back to the class in a random fashion for grading.
Each student receives one quiz and one homework assignment to grade.

(a) What is the probability that every student receives someone else’s quiz
to grade, and someone else’s homework to grade?

(b) What is the probability that no student receives both their own quiz
and their own homework assignment to grade? In this case, some stu-
dents may receive their own quiz, and others may receive their own
homework assignment.

(c) Compute the limiting probability as n →∞ in each case.

14. Let Nm denote the number of objects from a collection of N objects that
possess exactly m of the properties a1, a2, . . . , ar. Generalize the principle
of inclusion and exclusion by showing that

Nm =
r∑

k=m

(−1)k−m

(
k

m

)

sk, (2.28)
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where
sk =

∑

i1<···<ik

N(ai1 . . . aik
). (2.29)

2.6 Generating Functions

And own no other function: each your doing,
So singular in each particular,
Crowns what you are doing in the present deed,
That all your acts are queens.

— William Shakespeare, The Winter’s Tale, Act IV, Scene IV

Given a sequence {ak} with k ≥ 0, its generating function G(x) is defined by

G(x) =
∑

k≥0

akxk. (2.30)

Thus, G(x) is a polynomial if {ak} is a finite sequence, and a power series if {ak}
is infinite. For example, if ak = (−1)k/k!, then G(x) is the Maclaurin series for
e−x, and if ak =

(
n
k

)
for a fixed nonnegative integer n, then G(x) = (1+x)n, by

the binomial theorem.
To illustrate how generating functions can be used to solve combinatorial prob-

lems, let us consider again the problem of determining the number of k-element
subsets of an n-element set. Fix n, and let ak denote this number. Of course, we
showed in Section 2.1 that ak = nk/k!; here we derive this formula again using
generating functions.

Suppose we wish to enumerate all subsets of the n-element set. To construct
one subset, we must pick which elements to include in the subset and which to
exclude. Let us denote the choice to omit an element by x0, and the choice to
include it by x1. Using “+” to represent “or,” the choice to include or exclude one
element then is denoted by x0 + x1. We must make n such choices to construct a
subset, so using multiplication to denote “and,” the expression (x0 +x1)n models
the choices required to make a subset.

Since “and” distributes over “or” just as multiplication distributes over addi-
tion, we may expand this expression using standard rules of arithmetic to obtain
representations for all 2n subsets. For example, when n = 3, we obtain

(
x0 + x1

)3
= x0x0x0 + x0x0x1 + x0x1x0 + x0x1x1

+ x1x0x0 + x1x0x1 + x1x1x0 + x1x1x1.

The first term represents the empty subset, the second signifies the subset contain-
ing just the third item in the original set, etc. Writing 1 for x0 and x for x1 and
treating the expression as a polynomial, we find that (1+x)3 = 1+3x+3x2+x3,
and the coefficient of xk is the number of subsets of a three-element set having
exactly k items.



2.6 Generating Functions 165

In general, we find that the generating function for the sequence {ak} is (1 +
x)n, so ak =

(
n
k

)
= nk/k!, by the binomial theorem. Since our proof of the

binomial theorem relies only on basic facts of arithmetic, this argument provides
an independent derivation for the number of k-element subsets of a set with n
elements.

This example illustrates the general strategy for using generating functions to
solve combinatorial problems. First, express the problem in terms of determining
one or more values of an unknown sequence {ak}. Second, determine a generat-
ing function for this sequence, writing the monomial xk to represent selecting an
object k times, then using addition to represent alternative choices and multipli-
cation to represent sequential choices. Third, use analytic methods to expand the
generating function and determine the values of the encoded sequence.

For example, suppose a drawer contains twelve beads: three red, four blue,
and five green, and suppose we wish to determine the number of ways to select
six beads from a drawer, if beads of the same color are indistinguishable, and the
order of selection is irrelevant. Let ak denote the number of ways to select k beads
from the drawer. Then the generating function for this sequence is

G(x) = (1 + x + x2 + x3)(1 + x + x2 + x3 + x4)

· (1 + x + x2 + x3 + x4 + x5)

= 1 + 3x + 6x2 + 10x3 + 14x4 + 17x5 + 18x6

+ 17x7 + 14x8 + 10x9 + 6x10 + 3x11 + x12.

For example, we see from this that there are exactly a6 = 18 ways to select
six beads from the drawer. Indeed, we can check this by constructing all such
selections:

rrrggg, rrrggb, rrrgbb, rrrbbb, rrgggg, rrgggb,
rrggbb, rrgbbb, rrbbbb, rggggb, rgggbb, rggbbb,
rgbbbb, rbbbbb, ggggbb, gggbbb, ggbbbb, gbbbbb.

(2.31)

In the following sections, we explore the power of this method by studying
several combinatorial problems.

Exercises

1. In this problem, we verify that the arithmetic operations performed in gen-
erating functions model the logical selections made in combinatorial prob-
lems. Write ak to denote selecting k copies of object a.

(a) Clearly, there are exactly four different subsets of the set {a, b}. We
can model the construction of the different possible subsets of this
two-element set by considering two choices: Pick a or not, and then
pick b or not. Thus, we can denote all the possible choices by writing:
(a0 or a1) and (b0 or b1). Expand this expression using the logical rule
“(P or Q) and R ≡ (P and R) or (Q and R)”. Continue expanding
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until you obtain an expression of the form “C1 or C2 or C3 or C4,”
where each Ci is a logical expression involving only and’s.

(b) Rewrite exactly the same logical computation, but now use x0 in place
of a0 or b0, x1 in place of a1 or b1, + instead of “or”, and ∗ instead of
“and”. Then simplify the expression by combining exponents in the
usual way.

(c) Repeat this procedure for the three-element set {a, b, c}.

(d) Repeat this procedure for sub-multisets of the three-element multiset
{a, a, b}.

2. Suppose a drawer contains three red beads, four blue beads, and five green
beads. Use a generating function to determine the number of ways to select
six beads if one must select at least one red bead, an odd number of blue
beads, and an even number of green beads. Then check your answer using
the combinations shown in (2.31). Assume that beads of the same color are
indistinguishable, and that the order of selection is irrelevant.

3. Suppose a drawer contains ten red beads, eight blue beads, and eleven green
beads. Determine a generating function that encodes the answer to each of
the following problems.

(a) The number of ways to select k beads from the drawer.

(b) The number of ways to select k beads if one must obtain an even num-
ber of red beads, an odd number of blue beads, and a prime number
of green beads.

(c) The number of ways to select k beads if one must obtain exactly two
red beads, at least five blue beads, and at most four green beads.

2.6.1 Double Decks

I don’t like the games you play, professor.
— Roger Thornhill, in North by Northwest

How many five-card poker hands can be dealt from a double deck? Assume that
the two decks are identical. More generally, how many ways are there to select m
items from n different items, where each item can be selected at most twice? Let
us denote this number by tn,m, and let Gn(x) be the generating function for the
sequence {tn,m} for m ≥ 0 and n fixed.

We find that Gn(x) =
(
1 + x + x2

)n
, since each object may be selected zero

times, one time, or two times. To find tn,m, we must determine a formula for
the coefficient of xm in Gn(x). This is simply a matter of applying the binomial
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theorem twice:

Gn(x) =
(
1 + (x + x2)

)n

=
∑

k

(
n

k

)
(
x + x2

)k

=
∑

k

(
n

k

)

xk
∑

j

(
k

j

)

xj

=
∑

k

∑

j

(
n

k

)(
k

j

)

xj+k

=
∑

m

(
∑

j

(
n

m− j

)(
m− j

j

))

xm,

where we obtained the last line by substituting m for j + k. Therefore,

tn,m =
	m/2
∑

j=0

(
n

m− j

)(
m− j

j

)

. (2.32)

The number of five-card poker hands that can be dealt from a double deck is
then (

52
5

)(
5
0

)

+
(

52
4

)(
4
1

)

+
(

52
3

)(
3
2

)

= 3 748 160.

There is a simple combinatorial explanation for this expression. A five-card hand
dealt from a double deck may have zero, one, or two cards repeated. There are(
52
5

)
hands with no cards repeated,

(
52
4

)(
4
1

)
hands with exactly one card repeated,

and
(
52
3

)(
3
2

)
hands with exactly two cards repeated. A similar explanation applies

for the general formula (2.32).

Exercises

1. Derive (2.32) by using the multinomial theorem to expand Gn(x).

2. Use a combinatorial argument to count the number of different five-card
hands that can be dealt from a triple deck, then the number of five-card
hands that can be dealt from a quadruple deck.

3. Use a combinatorial argument to count the number of different six-card
hands that can be dealt from r combined decks, for each positive integer r.

4. Use a generating function to determine the number of ways to select a hand
of m cards from a triple deck, if there are n distinct cards in a single deck.
Verify that your expression produces the correct answers when n = 52 and
m = 5 or m = 6.
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2.6.2 Counting with Repetition

Then, shalt thou count to three, no more, no less. Three shalt be the
number thou shalt count, and the number of the counting shall be
three. Four shalt thou not count, nor either count thou two,
excepting that thou then proceed to three. Five is right out.

— Monty Python and the Holy Grail

Suppose there is an inexhaustible supply of each of n different objects. How many
ways are there to select m objects from the n different objects, if you are allowed
to select each object as many times as you like?

Let an,m denote this number. Evidently, for fixed n, the generating function for
{an,m}m≥0 is

Gn(x) =
(
1 + x + x2 + · · ·

)n
=
(

1
1− x

)n

,

since the sum is just a geometric series in x. This raises questions on convergence,
for this formula is valid only for |x| < 1. We largely ignore these analytic issues,
since we treat generating functions as formal series.

Thus, to find a formula for an,m, we must find the coefficient of xm in Gn(x).
Let us consider a more general problem. Let f(x) = (1 + x)α, where α is a

real number. Then f ′(0) = α, f ′′(0) = α(α − 1), and in general, f (k)(0) = αk.
Therefore, the Maclaurin series for f(x) is

(1 + x)α =
∑

k≥0

αk

k!
xk.

Define the generalized binomial coefficient by

(
α

k

)

=

{
αk/k! if k ≥ 0,

0 if k < 0.
(2.33)

Note that
(
α
k

)
equals the ordinary binomial coefficient whenever α is a nonnega-

tive integer. We have the following theorem.

Theorem 2.7 (Generalized Binomial Theorem). If |x| < 1 or α is a nonnegative
integer, then

(1 + x)α =
∑

k

(
α

k

)

xk. (2.34)

The proof of convergence may be found in many analysis texts, where it is often
proved as a consequence of Bernstein’s theorem on convergence of Taylor series
(see for instance [11]). We do not supply the proof here.

Before solving our problem concerning selection with unlimited repetition, we
note a useful identity for generalized binomial coefficients.
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Negating the Upper Index. If α is a real number and k is an integer, then
(

α

k

)

= (−1)k

(
k − α− 1

k

)

. (2.35)

Proof. For k < 0, the identity is clear. For k ≥ 0, we have

(
α

k

)

=
1
k!

k−1∏

i=0

(α− i).

Reindex this product, replacing each i by k − 1− i, to obtain

(
α

k

)

=
1
k!

k−1∏

i=0

(α− (k − i− 1))

=
(−1)k

k!

k−1∏

i=0

(k − 1− i− α)

= (−1)k

(
k − α− 1

k

)

.

We may now solve our problem of determining an,m. We compute

Gn(x) = (1− x)−n

=
∑

m

(
−n

m

)

(−x)m

=
∑

m

(
n + m− 1

m

)

xm,

and therefore the number of ways to select m objects from a collection of n dif-
ferent objects, with repetition allowed, is

an,m =
(

n + m− 1
m

)

. (2.36)

For example, the number of five-card poker hands that can be dealt from a stack
of five or more decks is

(
56
5

)
= 3 819 816.

Finally, suppose we lay all 52 cards of a standard deck face up on a table. How
many ways can we place five identical poker chips on the cards if we allow more
than one chip to be placed on each card? To solve this, notice that each possible
placement of chips corresponds to a hand of five cards, where repeated cards are
allowed: If k chips lie on a particular card, place that card into the hand k times.
Further, every such five-card hand can be represented by a judicious placement of
chips. Therefore, the answer is the same as that of the previous example,

(
56
5

)
.

In general, the number of ways to place m identical objects into n distinguish-
able bins is the same as the number of ways to select m objects from a set of n
objects with repetition allowed: The answer to both problems is

(
n+m−1

m

)
.
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Exercises

1. Prove the addition identity for generalized binomial coefficients: If α is a
real number and k is an integer, then

(
α

k

)

=
(

α− 1
k

)

+
(

α− 1
k − 1

)

.

2. Prove the absorption/extraction identity for generalized binomial coeffi-
cients: If α is a real number and k is a nonzero integer, then

(
α

k

)

=
α

k

(
α− 1
k − 1

)

.

3. Prove the cancellation identity for generalized binomial coefficients: If α is
a real number and k and m are integers, then

(
α

k

)(
k

m

)

=
(

α

m

)(
α−m

k −m

)

.

4. Prove the parallel summation identity for generalized binomial coefficients:
If α is a real number and n is an integer, then

n∑

k=0

(
α + k

k

)

=
(

α + n + 1
n

)

.

5. Suppose that an unlimited number of jelly beans is available in each of five
different colors: red, green, yellow, white, and black.

(a) How many ways are there to select twenty jelly beans?

(b) How many ways are there to select twenty jelly beans if we must
select at least two jelly beans of each color?

6. A catering company brings fifty identical hamburgers to a party with twenty
guests.

(a) How many ways can the hamburgers be divided among the guests, if
none is left over?

(b) How many ways can the hamburgers be divided among the guests, if
every guest receives at least one hamburger, and none is left over?

(c) Repeat these problems if there may be burgers left over.

7. A zodiac sign is one of twelve constellations that the sun travels through
(from the vantage point of the earth) over the course of a year. Each person
has a zodiac sign based on the position of sun on their birth date. The astro-
logical configuration of a party with n guests is a list of twelve numbers that
records the number of guests with each sign, so the first number records the
number of people with the sign Capricorn, the second, Aquarius, . . . , the
last, Sagittarius.
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(a) How many different astrological configurations are possible for n =
100?

(b) How many astrological configurations are possible for n = 100, if
each component is at least 5?

8. Two lottery systems are proposed for a new state lottery. In the first sys-
tem, players select six different numbers from {1, 2, . . . , 50}. In the second
system, players select six numbers from {1, 2, . . . , 45}, and may select any
number as many times as they want. (In the second system, each ball se-
lected in the lottery drawing is replaced before another ball is selected.)
Which system has more possible tickets?

9. Suppose 100 identical tickets for rides are distributed among 40 children at
a carnival.

(a) How many ways can the tickets be distributed, if each child receives
at least two tickets, and all the tickets are distributed?

(b) How many ways can the tickets be distributed, if each child receives
at least one ticket, and some tickets may be left over?

(c) Suppose one child has twelve tickets, and each ticket may be used on
any of six different rides. How many ways can the child spend her
tickets, if she can choose any ride any number of times, and the order
of choice is unimportant?

2.6.3 Changing Money

Jesus went into the temple, and began to cast out them that sold and
bought in the temple, and overthrew the tables of the moneychangers
. . .

— Mark 11:15

We now turn to a problem popularized by the analyst and combinatorialist George
Pólya [225]: How many ways are there to change a dollar? That is, how many
combinations of pennies, nickels, dimes, quarters, half-dollars, and dollar coins
total $1? Our discussion of this problem follows the treatment of Graham, Knuth,
and Patashnik [133].

Let us define ak to be the number of ways to make k cents in change, and let
A(x) be a generating function for ak: A(x) =

∑
k akxk . Before analyzing this

problem, pause a moment and make a guess. Do you think a50 is more than 50
or less than 50? Is a100 more than 100 or less than 100? How fast do you think
ak grows as a function of k? Is it a polynomial in k? Exponential in k? Perhaps
something between these?

To create a pile of change, we must make six choices, selecting a number
of pennies, then nickels, then dimes, quarters, half-dollars, and dollars. We can
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model our choice of pennies by the sum

1 + x + x2 + x3 + · · · = 1
1− x

.

One might be tempted to use the same expression to model the different choices
for each of the other coins, since we can pick any number of nickels, and any
number of dimes, etc., but this would be incorrect. This would yield a generating
function for the number of ways to select k coins from a set of six different coins,
not the number of ways to form k cents. Instead, when choosing nickels, we select
either zero cents, or five cents, or ten cents, and so on, so this selection is modeled
as

1 + x5 + x10 + x15 + · · · = 1
1− x5

.

Therefore, the number of ways to make k cents using either pennies or nickels is
given by the generating function

1
(1− x)(1 − x5)

.

Continuing in this way, we find that

A(x) =
1

(1− x)(1 − x5)(1− x10)(1 − x25)(1 − x50)(1− x100)
, (2.37)

so we merely need to find the coefficient of ak in the Maclaurin series for A(x)!
This sounds rather daunting, so let us determine a few values of ak by hand first.

Let {pk} denote the number of ways to make k cents using only pennies, so
pk = 1 for all k. Let P (x) be the generating function for {pk}, so P (x) =
1/(1− x). Let nk be the number of ways to make k cents using either pennies or
nickels, so its generating function is

N(x) =
P (x)
1− x5

.

Thus N(x) = P (x) + x5N(x), and by equating coefficients we find that

nk =

{
pk if 0 ≤ k ≤ 4,

pk + nk−5 if k ≥ 5.

In the same way, let dk denote the number of ways to make k cents using pennies,
nickels, or dimes, and let D(x) be its generating function. We then have D(x) =
N(x) + x10D(x), and so

dk =

{
nk if 0 ≤ k ≤ 9,

nk + dk−10 if k ≥ 10.
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There is a simple combinatorial interpretation for this equation. If k < 10, then
we can choose only nickels and pennies to form k cents, so dk = nk in this case.
If k ≥ 10, we may form k cents using only nickels and pennies, or we can choose
one dime, then form the remaining k−10 cents using dimes, nickels, and pennies.
Thus dk = nk + dk−10 in this case.

Similarly, using qk for allowing quarters, hk for half dollars, and finally ak for
dollar coins, we have

qk =

{
dk if 0 ≤ k ≤ 24,
dk + qk−25 if k ≥ 25;

hk =

{
qk if 0 ≤ k ≤ 49,
qk + hk−50 if k ≥ 50;

ak =

{
hk if 0 ≤ k ≤ 99,
hk + ak−100 if k ≥ 100.

We may use these formulas to construct Table 2.2 below showing the number of
ways to make k cents with the different coin sets.

k 0 5 10 15 20 25 30 35 40 45 50
pk 1 1 1 1 1 1 1 1 1 1 1
nk 1 2 3 4 5 6 7 8 9 10 11
dk 1 2 4 6 9 12 16 20 25 30 36
qk 1 13 49
hk 1 50
ak 1

k 55 60 65 70 75 80 85 90 95 100
pk 1 1 1 1 1 1 1 1 1 1
nk 12 13 14 15 16 17 18 19 20 21
dk 42 49 56 64 72 81 100 121
qk 121 242
hk 292
ak 293

TABLE 2.2. Computing the number of ways to make k cents in change.

We find that there are precisely 50 ways to make 50 cents in change, and 293
ways to make one dollar in change.

This is a fairly efficient method to determine ak, since apparently we can cal-
culate this number using at most 5k arithmetic operations. But we can do much
better! We can compute ak using at most a constant number of arithmetic oper-
ations, regardless of the value of k. To show this, let us first simplify A(x) by
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exploiting the fact that all but one of the exponents in (2.37) is a multiple of 5. Let

B(x) =
1

(1− x)2(1− x2)(1− x5)(1 − x10)(1− x20)
,

so that
A(x) = (1 + x + x2 + x3 + x4)B(x5).

Writing bk for the coefficient of xk in the Maclaurin series for B(x) and equating
coefficients, we find that

bk = a5k = a5k+1 = a5k+2 = a5k+3 = a5k+4.

But this makes sense (or perhaps cents?), since the last few cents can be repre-
sented only using pennies. Now

B(x) =
C(x)

(1− x20)6
,

where

C(x) =
(
1 + x + · · ·+ x19

)2(
1 + x2 + · · ·+ x18

) (
1 + x5 + x10 + x15

)

·
(
1 + x10

)

= x81 + 2x80 + 4x79 + 6x78 + 9x77 + 13x76 + 18x75 + 24x74 + 31x73

+ 39x72 + 50x71 + 62x70 + 77x69 + 93x68 + 112x67 + 134x66

+ 159x65 + 187x64 + 218x63 + 252x62 + 287x61 + 325x60 + 364x59

+ 406x58 + 449x57 + 493x56 + 538x55 + 584x54 + 631x53 + 679x52

+ 722x51 + 766x50 + 805x49 + 845x48 + 880x47 + 910x46 + 935x45

+ 955x44 + 970x43 + 980x42 + 985x41 + 985x40 + 980x39 + 970x38

+ 955x37 + 935x36 + 910x35 + 880x34 + 845x33 + 805x32 + 766x31

+ 722x30 + 679x29 + 631x28 + 584x27 + 538x26 + 493x25 + 449x24

+ 406x23 + 364x22 + 325x21 + 287x20 + 252x19 + 218x18 + 187x17

+ 159x16 + 134x15 + 112x14 + 93x13 + 77x12 + 62x11 + 50x10

+ 39x9 + 31x8 + 24x7 + 18x6 + 13x5 + 9x4 + 6x3 + 4x2 + 2x + 1.

We know from the previous section that

1
(1− z)n =

∑

k

(
n + k − 1

n− 1

)

zk,

so

B(x) = C(x)
∑

k

(
k + 5

5

)

x20k. (2.38)
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Therefore, writing C(x) =
∑

k ckxk, we have a100 = b20 = c0

(
6
5

)
+ c20

(
5
5

)
=

6 + 287 = 293, and

a1000 = b200

= c0

(
15
5

)

+ c20

(
14
5

)

+ c40

(
13
5

)

+ c60

(
12
5

)

+ c80

(
11
5

)

= 2 103 596.

Our expression for computing ak is a sum having at most five terms, so this
method allows us to compute ak using only a constant number of operations.

Finally, consider the crazy system of coinage where there is a coin minted worth
n cents for every n ≥ 1. Let pn denote the number of ways to make n cents in
change in this system. For example, p4 = 5, since we can make four cents by
using four pennies, or one two-cent piece and two pennies, or one three-cent piece
and one penny, or two two-cent pieces, or one four-cent piece. By representing
these five possibilities as the sums 1 + 1 + 1 + 1, 2 + 1 + 1, 3 + 1, 2 + 2,
and 4, we see that pn is the number of ways to write n as a sum of one of more
positive integers, disregarding the order of the summands. Such a representation
is called a partition of n. Evidently the generating function P (x) for the sequence
of partitions is given by the infinite product

P (x) =
∏

k≥1

1
1− xk

. (2.39)

We explore this generating function and the sequence {pn} in Section 2.8.1.

Exercises

1. Use (2.38) to compute a2009, the number of ways to make $20.09 in change.

2. How many ways are there to select 100 coins from an inexhaustible supply
of pennies, nickels, dimes, quarters, half-dollars, and dollar coins?

3. Show that the number of ways to make 10m cents in change using only
pennies, nickels, and dimes is (m + 1)2.

4. Show that ak can be computed using equation (2.38) using at most 60 arith-
metic operations. Optimize your method to show that ak can be computed
using at most 31 arithmetic operations.

5. Prove that ak grows like k5 by showing that there exist positive constants c
and C such that ck5 < ak < Ck5 for sufficiently large k.

6. The following coins were in circulation in the United States in 1875: the
Indian-head penny, a bronze two-cent piece (last minted in 1873), a silver
three-cent piece (also last minted in 1873), a nickel three-cent piece, the



176 2. Combinatorics

shield nickel (worth five cents), the seated liberty half-dime, dime, twenty-
cent piece (produced for only four years beginning in 1875), quarter, half-
dollar, and silver dollar, and the Indian-head gold dollar. (We ignore the
trade dollar, minted for circulation between 1873 and 1878, as it was issued
for overseas trade. This coin holds the distinction of being the only U.S.
coin to be demonetized.)

(a) How many ways were there to make twenty cents in change in 1875?
How about twenty-five cents? Compute these values using the tabular
method of this section.

(b) Write down a generating function in the form of a rational function
for the number of ways to make k cents in change in 1875, then use
a computer algebra system to find the number of ways to make one
dollar in change in 1875.

7. (Inspired in part by [133, ex. 7.21].) A ransom note demands:

(i) $10000 in unmarked fifty- and hundred-dollar bills, and

(ii) the number of ways to award the cash.

You realize that both old-fashioned and redesigned anticounterfeit bills are
available in both denominations.

(a) Answer the second demand of the ransom note. For extra credit, an-
swer the first demand �̈.

(b) Find a closed form for the number of ways to make 50m dollars us-
ing the two kinds of fifty- and hundred-dollar bills, for a nonnegative
integer m.

8. In 2010, there are six different kinds of nickels in general circulation in
the U.S., and six different kinds of pennies. Four of the varieties of nickels
were issued in 2004 and 2005 and commemorate the bicentennial of the
Lewis and Clark expedition—their respective designs on the reverse show a
handshake, a boat, a bison, and an ocean view; the other two show president
Jefferson’s home, Monticello. Four of the pennies were issued in 2009 to
commemorate the bicentennial of Lincoln’s birth, with each design evoking
a different period of the life of the U.S. president.

(a) Determine a generating function in closed form for the number of
ways ak to make k cents in change using only pennies and nickels
available in 2010, counting each design as a different coin.

(b) Determine a finite sequence c0, c1, . . . , cn so that

ak =
	k/5
∑

j=�(k−n)/5�
ck−5j

(
j + 11

11

)

.
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(c) Use the formula to determine a5, and verify that your answer is cor-
rect.

(d) Use the formula to determine a23, a24, and a25.

9. In 2010, there are fifty commemorative quarters in general circulation in
the U.S., one for each state, and sixteen different presidential dollar coins,
showing Washington through Lincoln on the obverse. Prove that the number
of ways to make 25k cents in change using just these 66 different coins is

∑

a+b+2c=k

(−1)b+c

(
65 + a

a

)(
15 + b

b

)(
15 + c

c

)

.

Then use this formula to determine the number of ways to change one dollar
using just these coins.

10. A hungry math major visits the school’s cafeteria and wants to know the
number of ways sk to take k servings of food, including at least one main
course, an even number (possibly zero) of side vegetables, an odd number
of rolls, and at least two desserts. The cafeteria’s food can be distinguished
only in the coarsest way: Every dish is either a main course, a side veg-
etable, a roll, or a dessert. There is an unlimited supply of each kind of dish
available.

(a) Determine a closed form for the generating function
∑

k skxk.

(b) Show that

sk =
(⌊k+1

2

⌋

3

)

+
(⌈k+1

2

⌉

3

)

.

The quantities �x� and �x� are defined on page 153.

2.6.4 Fibonacci Numbers

Attention! Attention! Ladies and gentlemen, attention! There is a
herd of killer rabbits headed this way and we desperately need your
help!

— Night of the Lepus

Hey, shouldn’t that be a colony of killer rabbits?
Leonardo of Pisa, better known as Fibonacci, proposed the following harey

problem in 1202. Assume that the rabbit population grows according to the fol-
lowing rules.

1. Every pair of adult rabbits produces a pair of baby rabbits, one of each
gender, every month.

2. Baby rabbits become adult rabbits at age one month and produce their first
offspring at age two months.
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3. Rabbits are immortal.

Starting with a single pair of baby rabbits at the start of the first month, how many
pairs of rabbits are there after k months?

Let Fk denote this number. In the first month, there is one pair of baby rabbits,
so F1 = 1. Likewise, F2 = 1, as there is one pair of adult rabbits in the second
month. In the third month, we have one baby pair and one adult pair, so F3 = 2,
and in the fourth month, the babies become adults and the adults produce another
pair of offspring, so there is one pair of babies and two pairs of adults: F4 = 3.
Continuing in this way, we record the population in the following table.

k Baby pairs Adult pairs Fk

0 0 0 0
1 1 0 1
2 0 1 1
3 1 1 2
4 1 2 3
5 2 3 5
6 3 5 8
7 5 8 13

Notice that the number of pairs of adults in month k equals the total number of
pairs of rabbits in month k − 1. This is Fk−1. Also, the number of pairs of baby
rabbits in month k equals the number of adult pairs in month k − 1, which is the
total number of pairs in month k − 2. This is Fk−2. Therefore,

Fk = Fk−1 + Fk−2, k ≥ 2. (2.40)

This recurrence, together with the initial conditions F0 = 0 and F1 = 1, deter-
mines the Fibonacci sequence {Fk} = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .}.
This sequence appears frequently in combinatorial problems.

In this section we determine a closed form for Fk by analyzing its generat-
ing function. We will adapt this technique to solve other recurrences later in this
chapter.

Let G(x) be the generating function for {Fk}. Then

G(x) =
∑

k≥0

Fkxk

= F0 + F1x +
∑

k≥2

Fkxk

= x +
∑

k≥2

(Fk−1 + Fk−2)xk

= x + x
∑

k≥2

Fk−1x
k−1 + x2

∑

k≥2

Fk−2x
k−2

= x + x
∑

k≥1

Fkxk + x2
∑

k≥0

Fkxk,
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and so
G(x) = x + xG(x) + x2G(x).

Therefore,

G(x) =
−x

x2 + x− 1
,

and thus Fk is the coefficient of xk in the Maclaurin series for this rational func-
tion. How can we determine this series without all the messy differentiation?

The trick is using partial fractions to write G(x) as a sum of simpler rational
functions. Write x2 + x − 1 = (x + ϕ)(x + ϕ̂), where ϕ is the golden ratio,
ϕ = (1 +

√
5)/2, and ϕ̂ = (1−

√
5)/2. Write

−x

x2 + x− 1
=

A

x + ϕ
+

B

x + ϕ̂

and solve to find that A = −ϕ/
√

5 and B = ϕ̂/
√

5. Thus

G(x) =
1√
5

(
ϕ̂

x + ϕ̂
− ϕ

x + ϕ

)

=
1√
5

(
1

1 + x/ϕ̂
− 1

1 + x/ϕ

)

=
1√
5

(
1

1− ϕx
− 1

1− ϕ̂x

)

,

since ϕϕ̂ = −1. Now the two terms on the right are closed forms for simple
geometric series, so

G(x) =
1√
5

∑

k≥0

(ϕk − ϕ̂k)xk,

and therefore

Fk =
ϕk − ϕ̂k

√
5

. (2.41)

Notice that |ϕ̂| < 1, so Fk ∼ ϕk/
√

5: a large number of rabbits indeed.

Exercises

1. In each of the following problems, first compute the value the expression
for a few small values of n. Then use your data to conjecture a general
formula. Last, prove that your formula is correct.

(a)
n∑

k=0

Fk.

(b)
n∑

k=0

F2k.
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(c)
n∑

k=1

F2k−1, if n ≥ 1.

(d) Fn+1Fn−1 − F 2
n , if n ≥ 1.

2. Solve the recurrence ak = 2ak−1 + 3ak−2, if a0 = 0 and a1 = 8.

3. Suppose a0 = 0, a1 = 5, and ak = ak−1 + 6ak−2 for k ≥ 2. Compute
a closed form for the generating function of the sequence {ak}. Then use
this to determine a formula for ak.

4. Solve the recurrence ak = 2ak−1 + 2ak−2, if a0 = 0 and a1 = 1.

5. Prove the following identities involving Fibonacci numbers.

(a) Fm+n = FmFn+1 + Fm−1Fn, if m ≥ 1 and n ≥ 0.

(b) F 2
n + F 2

n+1 = F2n+1.

(c) F 2
n+1 − F 2

n−1 = F2n, if n ≥ 1.

(d)
n∑

k=0

F 2
k = FnFn+1.

(e)
n∑

k=0

(−1)n−kFk = Fn−1 − (−1)n, if n ≥ 1.

(f)
n∑

k=0

(−1)n−kkFk = (n + 1)Fn−1 − Fn−2 − 2(−1)n, if n ≥ 2.

6. Prove that if m and n are nonnegative integers, then Fm divides Fmn.

7. The Lucas numbers are defined by L0 = 2, L1 = 1, and Lk = Lk−1+Lk−2

for k ≥ 2. Find a formula for Lk in terms of ϕ and ϕ̂.

8. Prove the following identities involving Lucas and Fibonacci numbers.

(a) Ln = Fn+1 + Fn−1, if n ≥ 1.

(b)
n∑

k=0

L2
k = LnLn+1 + 2.

(c)
n∑

k=0

(−1)kLn−k = Ln−1 + 3(−1)n, if n ≥ 1.

(d) F2n = FnLn.

(e) L2n = L2
n − 2(−1)n.

9. The Perrin sequence is defined by a0 = 3, a1 = 0, a2 = 2, and ak =
ak−2 + ak−3 for k ≥ 3. The Padovan sequence is defined by b0 = 0,
b1 = 1, b2 = 1, and bk = bk−2 + bk−3 for k ≥ 3.
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(a) Find generating functions in the form of rational functions for the
Perrin sequence and the Padovan sequence.

(b) Prove that ak = rk +αk+αk, where r, α, and α are the three complex
roots of x3 − x− 1. Conclude that ak ∼ rk.

The Perrin sequence has an interesting property: If p is a prime number, then
p divides the pth term in the Perrin sequence, p | ap. This was first noted
by Lucas in 1878 [192–194] (perhaps Lucas would have been interested in
Exercise 6 of Section 2.6.3). Thus we obtain a test for composite numbers:
If n does not divide an, then n is not prime. Unfortunately, the converse is
false: There are infinitely many composite n with the property that n | an.
This was proved by Grantham [137].

10. In the children’s game of hopscotch, a player hops across an array of squares
drawn on the ground, landing on only one foot whenever there is just one
square at a position, and landing on both feet when there are two. If ev-
ery position has either one or two squares, how many different hopscotch
games have exactly n squares? Figure 2.3 shows the five different hop-
scotch games having four squares.

FIGURE 2.3. Hopscotch games with four squares.

11. Use a combinatorial argument and Exercise 10 to prove that

Fn =
∑

k

(
n− k − 1

k

)

.

2.6.5 Recurrence Relations

O me! O life!. . . of the questions of these recurring;
— Walt Whitman, Leaves of Grass

In the “Tower of Hanoi” puzzle, one begins with a pyramid of k disks stacked
around a center pole, with the disks arranged from largest diameter on the bottom
to smallest diameter on top. There are also two empty poles that can accept disks.
The object of the puzzle is to move the entire stack of disks to one of the other
poles, subject to three constraints:
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1. Only one disk may be moved at a time.

2. Disks can be placed only on one of the three poles.

3. A larger disk cannot be placed on a smaller one.

How many moves are required to move the entire stack of k disks onto another
pole? Let ak denote this number. Clearly, a1 = 1. To move k disks, we must first
move the k − 1 top disks to one of the other poles, then move the bottom disk to
the third pole, then move the stack of k− 1 disks to that pole, so ak = 2ak−1 + 1
for k ≥ 1. Thus, a2 = 3, a3 = 7, a4 = 15, and it appears that ak = 2k − 1.

We can certainly verify this formula by induction, but we wish to show how
recurrences of this form can be solved by using generating functions. Consider
the more general recurrence

ak = bak−1 + c, k ≥ 1,

where b and c are constants. This is a linear recurrence relation, since ak is a linear
function of the preceding values of the sequence. (The Fibonacci recurrence is
also a linear recurrence relation.) If c is zero, we call the recurrence homogeneous;
otherwise, it is inhomogeneous.

Let G(x) be the generating function for {ak}. Then

G(x) =
∑

k≥0

akxk

= a0 +
∑

k≥1

(
bak−1x

k + cxk
)

= a0 + bx
∑

k≥0

akxk + cx
∑

k≥0

xk

= a0 + bxG(x) +
cx

1− x
,

and so
G(x) =

cx

(1− bx)(1 − x)
+

a0

1− bx
.

Assuming b �= 1, we compute

cx

(1− bx)(1 − x)
=

c

b − 1

(
1

1− bx
− 1

1− x

)

,

so

G(x) =
(

a0 +
c

b− 1

)(
1

1− bx

)

− c

b− 1

(
1

1− x

)

=
(

a0 +
c

b− 1

)∑

k≥0

bkxk − c

b− 1

∑

k≥0

xk,
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and therefore

ak =
(

a0 +
c

b− 1

)

bk − c

b − 1
. (2.42)

For example, to find the number of moves needed to solve the Tower of Hanoi
puzzle, we set a0 = 0, b = 2, and c = 1 to obtain ak = 2k − 1. Also, if we set
b = − 1

2 and c = 2, we find that ak = (−1)k(a0 − 4
3 )/2k + 4

3 , so ak approaches
4
3 as k grows large, independent of the initial value a0.

We conclude with a short list of useful generating functions. Since

1
1− x

=
∑

k≥0

xk, (2.43)

we differentiate both sides to find that

1
(1− x)2

=
∑

k≥1

kxk−1,

and so
x

(1− x)2
=
∑

k≥0

kxk. (2.44)

Thus we obtain a closed form for the generating function of the identity sequence
{k}. We take up the problem of determining a generating function for {kn}, for
any fixed positive integer n, in Section 2.8.5.

Finally, we integrate both sides of (2.43) to obtain the generating function for
{1/k}:

− ln(1− x) =
∑

k≥1

xk

k
. (2.45)

Exercises

1. Find a recurrence relation for the maximal number of regions of the plane
separated by k straight lines, then solve it.

2. Solve for ak in terms of a0 and the other parameters in each of the following
recurrence relations.

(a) ak = ak−1 + c.

(b) ak = bak−1 + cbk.

(c) ak = bak−1 + crk, assuming b �= r.

(d) ak = bak−1 + crk + d, assuming b �∈ {1, r}.
(e) ak = bak−1 + ck, assuming b �= 1.

(f) ak = bak−1 + ck + d, assuming b �= 1.

3. Find a closed form for the generating function of the sequence {k2}k≥0.
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4. Let vn denote the number of ways that 3n different people can split up into
n three-person teams for a volleyball tournament, and let v0 = 1. Assume
that team members are unordered, so the team {a, b, c} is the same as the
team {c, a, b}, and assume that the teams are unordered, so putting {a, b, c}
on the first team and {d, e, f} on the second is the same as putting {d, e, f}
on the first team and {a, b, c} on the second. Determine a recurrence rela-
tion for vn, then use it to compute v4.

5. Let dk denote the minimal degree of a polynomial with {0, 1} coefficients
that is divisible by (x + 1)k. For example, certainly d1 = 1, since f1(x) =
x + 1 has the required properties, and d2 ≤ 4, since f2(x) = (x + 1)(x3 +
1) = x4 + x3 + x + 1 is permissible (in fact, d2 = 4).

(a) Determine an upper bound on d3 by multiplying f2(x) by a suitable
binomial of the form xr + 1, choosing r as small as possible. Then
iterate this process to obtain upper bounds for d4 and d5.

(b) Observe that one can obtain an upper bound on dk in general by con-
structing a polynomial of the form

fk(x) =
k∏

i=1

(xri + 1)

for a judiciously selected sequence {ri}. Describe how to calculate
{ri}, and compute the values of this sequence for i ≤ 7.

(c) Determine a linear, homogeneous recurrence relation for the sequence
{ri}.

(d) Compute a closed formula for ri.

(e) Determine an upper bound for dk.

6. A binary sequence is a sequence in which each term is 0 or 1. Determine a
recurrence relation for the number of binary sequences of length n that do
not contain two adjacent 1s, then find a simple expression for this number.

7. Let tn denote the number of binary sequences of length n that do not con-
tain three adjacent 1s.

(a) Determine a recurrence relation for tn, and enough initial values to
generate the sequence.

(b) Determine a closed form for the generating function

T (x) =
∑

n≥0

tnxn.

(c) Define t∗n by t∗0 = t∗1 = 0, t∗2 = 1, and t∗n = tn−3 for n ≥ 3.
Determine a closed form for T ∗(x) =

∑
n≥0 t∗nxn. The numbers {t∗n}

are known as the tribonacci numbers.
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8. For a fixed positive integer m, let sm,n denote the number of binary se-
quences of length n that do not contain m adjacent 1s.

(a) Determine a recurrence relation in n for sm,n, and enough initial val-
ues to generate the sequence.

(b) Show that the generating function Sm(x) for {sn,m}n≥0 is

Sm(x) =
1− xm

xm+1 − 2x + 1
.

Hint: First define a sequence s∗m,n from sm,n in the same manner as
Exercise 7c. Then find its generating function S∗

m(x), and use this to
determine S(x). The numbers {s∗m,n}n≥0 are known as the general-
ized Fibonacci numbers of order m, or the m-generalized Fibonacci
numbers.

2.6.6 Catalan Numbers

zero, un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu, onze, dotze,
tretze, catorze, quinze, setze, disset, divuit, dinou, vint.

How many ways are there to compute a product of k + 1 matrices? Matrix mul-
tiplication is associative but not commutative, so this is the number of ways to
place k − 1 pairs of parentheses in the product x0x1 . . . xk in such a way that the
order of multiplications is completely specified. Let Ck denote this number.

Let us first compute a few values of Ck. There is only one way to compute
the product of one or two matrices. There are two ways to group a product of
three matrices, (x0x1)x2 and x0(x1x2), and there are five ways for a product of
four matrices: ((x0x1)x2)x3, (x0(x1x2))x3, (x0x1)(x2x3), x0((x1x2)x3), and
x0(x1(x2x3)). A bit more work gives us 14 ways to compute a product of five ma-
trices: There are five ways if one pair of parentheses is x0(x1x2x3x4), another five
for (x0x1x2x3)x4, two for (x0x1)(x2x3x4), and two more for (x0x1x2)(x3x4).
We record these numbers in the following table.

k Ck

0 1
1 1
2 2
3 5
4 14

Can we determine a recurrence relation for Ck?
Suppose we group the terms so that the last multiplication occurs between xi

and xi+1:

(x0x1 . . . xi)(xi+1 . . . xk).
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Then there are Ci ways to group the terms in the first part of the product, and
Ck−1−i ways for the second part, so there are CiCk−1−i ways to group the re-
maining terms in this case. Summing over i, we obtain the following formula for
the total number of ways to group the k + 1 terms:

Ck =
k−1∑

i=0

CiCk−1−i, k ≥ 1. (2.46)

We compute

C1 = C0C0 = 1,

C2 = C0C1 + C1C0 = 2,

C3 = C0C2 + C1C1 + C2C0 = 5,

C4 = C0C3 + C1C2 + C2C1 + C3C0 = 14,

C5 = C0C4 + C1C3 + C2C2 + C3C1 + C4C0 = 42.

We would like to solve this recurrence to find a formula for Ck, so let us define
the generating function for this sequence,

G(x) =
∑

k≥0

Ckxk.

Unlike other recurrences we have studied, this one is not linear, and has a vari-
able number of terms. To solve it, we require one fact concerning products of
generating functions.

If A(x) =
∑

k≥0 akxk and B(x) =
∑

k≥0 bkxk , then

A(x)B(x) =
∑

k≥0

(
k∑

i=0

aibk−i

)

xk.

Let ck =
∑k

i=0 aibk−i. The sequence {ck} is called the convolution of the se-
quences {ak} and {bk}. Thus, the generating function of the convolution of two
sequences is the product of the generating functions of the sequences.

Using this fact, we find that

G(x) =
∑

k≥0

Ckxk

= C0 +
∑

k≥1

(
k−1∑

i=0

CiCk−1−i

)

xk

= 1 + x
∑

k≥0

(
k∑

i=0

CiCk−i

)

xk

= 1 + xG(x)2,
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since {
∑k

i=0 CiCk−i} is the convolution of {Ck} with itself. Thus,

xG(x)2 −G(x) + 1 = 0,

and so

G(x) =
1±

√
1− 4x

2x
.

Only one of these functions can be the generating function for {Ck}, and it must
satisfy

lim
x→0

G(x) = C0 = 1.

It is easy to check that the correct function is

G(x) =
1−

√
1− 4x

2x
.

We now expand G(x) as a Maclaurin series to find a formula for Ck. Using the
generalized binomial theorem and the identity for negating the upper index, we
find that

(1− 4x)1/2 =
∑

k≥0

(
1/2
k

)

(−4x)k

=
∑

k≥0

(
k − 3/2

k

)

4kxk

= 1 +
∑

k≥1

(
k − 3/2

k

)

4kxk

= 1 + 4x
∑

k≥0

(
k − 1/2
k + 1

)

4kxk.

Therefore,

G(x) = −2
∑

k≥0

(
k − 1/2
k + 1

)

4kxk,

and so

Ck = −22k+1

(
k − 1/2
k + 1

)

.

We can find a much simpler form for Ck. Expanding the generalized binomial
coefficient and multiplying each term in the product by 2, we compute that

Ck = − 22k+1

(k + 1)!

k∏

i=0

(

k − 1
2
− i

)

= − 2k

(k + 1)!

k∏

i=0

(2k − 1− 2i).
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The product consists of all the odd numbers between −1 and 2k − 1, so

Ck =
2k

(k + 1)!

k∏

i=1

(2i− 1)

=
2k

(k + 1)!

k∏

i=1

(2i− 1)(2i)
2i

=
1

k!(k + 1)!

k∏

i=1

(2i− 1)(2i).

The remaining product is simply (2k)!, so

Ck =
(2k)!

k!(k + 1)!
=

1
k + 1

(
2k

k

)

. (2.47)

Ck is called the kth Catalan number.
Incidentally, since Ck is an integer, we have shown that k + 1 always divides

the binomial coefficient
(
2k
k

)
. Can you find an independent arithmetic proof of

this fact?
Sloane and Plouffe [258] remark that the Catalan numbers are perhaps the sec-

ond most frequently occurring numbers in combinatorics, after the binomial coef-
ficients. Indeed, Stanley [262, ex. 6.19] lists 66 different combinatorial interpre-
tations of these numbers! We close with another problem whose solution involves
the Catalan numbers.

A rooted tree is a tree with a distinguished vertex called the root. The vertices
in a rooted tree form a hierarchy, with the root at the highest level, and the level of
every other vertex determined by its distance from the root. Some familiar terms
are often used to describe relationships between vertices in a rooted tree: If v and
w are adjacent vertices and v lies closer to the root than w, then v is the parent of
w, and w is a child of v. Likewise, one may define siblings, grandparents, cousins,
and other family relationships in a rooted tree.

We say that a rooted tree is strictly binary if every parent vertex has exactly two
children. How many strictly binary trees are there with k parent vertices? Do not
take symmetry into account: If two trees are mirror images of one another, count
both configurations. Figure 2.4 shows that there are five trees with three parent
vertices.

It is easy to see that the number of strictly binary trees with k parent vertices
is Ck. By Exercise 2, every such tree has k + 1 leaves. Label these vertices with
x0 through xk from left to right in the tree. Then the tree determines an order of
multiplication for the xi. For example, the five trees in Figure 2.4 correspond to
the multiplications ((x0x1)x2)x3, (x0(x1x2))x3, (x0x1)(x2x3), x0((x1x2)x3),
and x0(x1(x2x3)), respectively. Binary trees like these are often used in computer
science to designate the order of evaluation of arithmetic expressions.
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FIGURE 2.4. Strictly binary trees with three parent vertices.

Exercises

1. Show that every vertex in a rooted tree has at most one parent.

2. Show that a strictly binary tree having exactly k parent vertices has exactly
k + 1 leaves.

3. A diagonal of a convex polygon is a line segment connecting two non-
adjacent vertices of the polygon. Let pn denote the number of ways to de-
compose a convex polygon having n vertices into triangles by drawing n−3
diagonals that do not cross inside the polygon. Assume that the vertices of
the polygon are labeled, so that triangulations with different orientations
are counted separately.

(a) Determine p3, p4, p5, and p6 by showing all the possible triangula-
tions.

(b) Let v be a fixed vertex of a polygon with n = 7 sides. Count all the
triangulations of the heptagon by considering two cases: (i) v is not an
endpoint of any of the four diagonals added in a triangulation, and (ii)
v is an endpoint of at least one of the diagonals. Use this to determine
the value of p7 without drawing every possible triangulation.

(c) Determine a formula for pn.

4. A staircase of size n is a path in the plane from the origin to the point (n, n)
consisting of exactly n horizontal and n vertical steps, each of length 1, with
the added condition that the path never rises above the line y = x. Let sn

denote the number of staircases of size n. For example, s1 = 1 since the
only staircase is . Also, s2 = 2 since the only possible staircases are
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and .

(a) Determine s3 and s4 by drawing all the staircases of these sizes.

(b) For 1 ≤ k ≤ n, let sn,k denote the number of staircases of size n for
which the first intersection of the path with the y = x line (after the
origin) is the point (k, k). Determine a formula for sn,k in terms of
the numbers sm.

(c) Determine a recurrence relation for sn, then a formula.

5. Let rn denote the number of mountain ridgelines one can draw using n
ascending steps and n descending steps. A ridgeline must start and end on
the horizon, and may never dip below the horizon. For example, r1 = 1
since the only ridgeline is /\, and the following illustrates a valid ridgeline
with n = 11.

/\
/ \/\/\ /\/\

/ \/\/ \/\/\

Two ridgelines that are mirror images of one another count as different
arrangements.

(a) Determine r2, r3, and r4 by drawing all of the possible ridgelines.

(b) Use a combinatorial argument to determine a recurrence relation for
rn, then find a formula for rn.

6. Suppose 2k people are seated around a table. How many ways are there for
the k pairs of people to shake hands simultaneously across the table in such
a way that no arms cross?

7. Show that the coefficient of xk in the Maclaurin series expansion of (1 −
(1− 3x)1/3)/x is

1
(k + 1)!

k∏

i=1

(3i− 1).

8. Use an arithmetic argument to show that (2k)! is divisible by k!(k + 1)!.
Hint: First compute the number of times a prime number p divides m!.

2.7 Pólya’s Theory of Counting

Who are you who are so wise in the ways of science?
— Sir Bedivere, in Monty Python and the Holy Grail
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How many ways can King Arthur and his knights sit at the round table? How
many different necklaces with n beads can be formed using m different kinds
of beads?

Both these questions ask for a number of combinations in the presence of sym-
metry. Since there is no distinguished position at a round table, seating Arthur
first, then Gawain, Percival, Bedivere, Tristram, and Galahad clockwise around
the table yields the same configuration as seating Tristram first, then Galahad,
Arthur, Gawain, Percival, and Bedivere in clockwise order. Similarly, we should
consider two necklaces to be identical if we can transform one into the other by
rotating the necklace or by turning it over.

Before answering these questions, let us first rephrase them in the language of
group theory.

2.7.1 Permutation Groups

I haven’t fought just one person in a long time. I’ve been
specializing in groups.

— Fezzik, in The Princess Bride

A group consists of a set G together with a binary operator ◦ defined on this set.
The set and the operator must satisfy four properties.

• Closure. For every a and b in G, a ◦ b is in G.

• Associativity. For every a, b, and c in G, a ◦ (b ◦ c) = (a ◦ b) ◦ c.

• Identity. There exists an element e in G that satisfies e ◦ a = a ◦ e = a for
every a in G. The element e is called the identity of G.

• Inverses. For every element a in G, there exists an element b in G such that
a ◦ b = b ◦ a = e. The element b is called the inverse of a.

In addition, if a ◦ b = b ◦ a for every a and b in G, we say that G is an abelian, or
commutative, group.

For example, the set of integers forms a group under addition. The identity
element is 0, since 0 + i = i + 0 = i for every integer i, and the inverse of the
integer i is the integer −i. Similarly, the set of nonzero rational numbers forms a
group under multiplication (with identity element 1), as does the set of nonzero
real numbers.

We can also construct groups of permutations. A permutation of n objects may
be described by a function π defined on the set {1, 2, . . . , n} by ordering the
objects in some fashion, then taking π(i) = j if the ith object in the order-
ing occupies the jth position in the permutation. For example, the permutation
[c, d, a, e, b] of the list [a, b, c, d, e] is represented by the function π defined on the
set {1, 2, 3, 4, 5}, with π(1) = 3, π(2) = 5, π(3) = 1, π(4) = 2, and π(5) = 4.
Notice that a function π : {1, . . . , n} → {1, . . . , n} arising from a permutation
has the property that π(i) �= π(j) whenever i �= j. Such a function is called an
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injective, or one-to-one, function. The map π also has the property that for every
m with 1 ≤ m ≤ n, there exists a number i such that π(i) = m. A function
like this that maps to every element in its range is called surjective, or onto, and a
function that is both injective and surjective is said to be a bijection. Thus, every
permutation of n objects corresponds to a bijection π on the set {1, 2, . . . n}, and
every such bijection corresponds to a permutation.

Let Sn denote the set of all bijections on the set {1, 2, . . . , n}. Exercise 4 asks
you to verify that this set forms a group under the operation of composition of
functions. For example, the identity element of the group is the identity map π0,
defined by π0(k) = k for each k, since π ◦ π0 = π0 ◦ π = π for every π in Sn.
This group is called the symmetric group on n elements.

The size of the group Sn is the number of permutations of n objects, so |Sn| =
n!. Because of our correspondence, we normally refer to an element of Sn as a
permutation, rather than a bijection.

To specify a particular permutation π in Sn, we need to name the value of π(k)
for each k. This is often written in two rows as follows:

(
1 2 3 . . . n

π(1) π(2) π(3) . . . π(n)

)

.

For example, (
1 2 3 4 5
3 5 1 2 4

)

denotes the permutation described earlier.
We can describe the permutations in a more succinct manner by using cycle

notation. For example, in the permutation above, π sends 1 to 3 and 3 to 1, and
sends 2 to 5, 5 to 4, and 4 to 2. So we can think of π as a combination of two
cycles, 1 → 3 → 1 and 2→ 5 → 4 → 2, and denote it by

(13)(254).

Of course, we could also denote this same permutation by the cycles (542)(31),
so to make our notation unique, we make two demands. First, the cycle contain-
ing 1 must appear first, followed by the cycle containing the smallest number
not appearing in the first cycle, and so on. Second, we require the first number
listed in each cycle to be the smallest number appearing in that cycle. To simplify
the notation, cycles of length 1 are usually omitted, so (1253)(4) is written more
simply as (1253). The identity permutation is denoted by (1).

The composition of two permutations is computed from right to left. For exam-
ple, suppose π1 = (13)(254) and π2 = (15423). We determine the composition
π1 ◦ π2 by applying π2 first, then π1. Since π2 sends 1 to 5, and π1 sends 5 to 4,
the composition π1 ◦ π2 then sends 1 to 4. In the same way, we see that π1 ◦ π2

sends 4 to 5, 5 to 2, 2 to 1, and 3 to 3. Thus, π1 ◦ π2 = (1452). In cycle notation,
we denote the composition of two permutations by juxtaposing their cycles, so

π1 ◦ π2 = (13)(254) (15423) = (1452).
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Notice that the cycles for π1 appear first, so products of cycles are always com-
puted from right to left. Also, we calculate that π2 ◦ π1 = (15423) (13)(254) =
(2435), so in general Sn is not an abelian group.

A subset H of a group G is called a subgroup of G if H is itself a group under
the same binary operation. The group Sn contains many subgroups; for example,
{(1), (12)} is a subgroup of Sn for every n ≥ 2. We investigate three particularly
important subgroups of Sn.

The Cyclic Group

If π is a permutation in Sn and m is a nonnegative integer, let πm denote the
permutation obtained by composing π with itself m times, so π0 = (1), and
π3 = π ◦ π ◦ π. Let

〈π〉 = {πm : m ≥ 0}, (2.48)

so that 〈π〉 is a subset of Sn. In fact (Exercise 5), 〈π〉 is a subgroup of Sn, and we
call this group the cyclic subgroup generated by π in Sn.

The cyclic group Cn is the subgroup of the symmetric group Sn generated by
the permutation (123 · · ·n), so

Cn = 〈(123 · · ·n)〉. (2.49)

Clearly, Cn contains n elements, since n applications of the generating permuta-
tion are required to return to the identity permutation. For example, (1234)2 =
(13)(24), (1234)3 = (1432), and (1234)4 = (1), so

C4 = {(1), (1234), (13)(24), (1432)}. (2.50)

The group Cn may be realized as the group of rotational symmetries of a reg-
ular polygon having n sides. For example, each of the permutations of (2.50)
corresponds to a permutation of the vertices of Figure 2.5 obtained by rotating the
square by 0, 90, 180, or 270 degrees.

The Dihedral Group

The dihedral group Dn is the group of symmetries of a regular polygon with
n sides, including reflections as well as rotations. Since Cn consists of just the
rotational symmetries of such a figure, evidently Cn is a subgroup of Dn.

Referring to Figure 2.5, we see that D4 consists of the four rotations of C4,
plus the four reflections (12)(34), (14)(23), (13), and (24). The first two permu-
tations represent reflections about the vertical and horizontal axes of symmetry
of the square; the last two represent flips about the diagonal axes of symmetry.
In general, if n is even, we obtain n/2 reflections through axes of symmetry that
pass through opposite vertices, and n/2 reflections through axes that pass through
midpoints of opposite edges. Combining these with the n rotations of Cn, we find
that |Dn| = 2n in this case.
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FIGURE 2.5. A square with labeled vertices.
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FIGURE 2.6. A regular pentagon with labeled vertices.

Using Figure 2.6, we find that D5 consists of five rotations and five reflections,

D5 = {(1), (12345), (13524), (14253), (15432), (25)(34),
(13)(45), (15)(24), (12)(35), (14)(23)}.

It is easy to see that we always obtain n reflections if n is odd, so |Dn| = 2n for
every n ≥ 1.

The Alternating Group

Every permutation can be expressed as a product of transpositions, which are
cycles of length 2. For example, the cycle (123) can be written as the product
(12)(23), and the permutation (1234)(567) can be expressed as the product of six
transpositions: (12)(23)(34)(56)(67). Such a decomposition is not unique; for
instance, (123) may also be written as (23)(13), or (12)(23)(13)(13). However,
the number of transpositions in any representation of one permutation is either
always an even number, or always an odd number. Exercise 6 outlines a proof of
this fact. If a permutation π always decomposes into an even number of transpo-
sitions, we say that π is an even permutation; otherwise, it is an odd permutation.
Notice that the identity permutation is even, since it is represented by a product
of zero transpositions.
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The alternating group An consists of the even permutations of Sn. For exam-
ple, A3 = {(1), (123), (132)} = C3, and

A4 = {(1), (123), (132), (124), (142), (134), (143),
(234), (243), (12)(34), (13)(24), (14)(23)}.

Exercises 7 and 8 ask you to verify that An is a group of size |An| = n!/2 for
n ≥ 2, and that An is not abelian for n ≥ 5.

Exercises

1. Show that the identity element of a group is unique.

2. (a) Suppose that M is a finite set and f : M → M is an injective func-
tion. Show that f is a bijection.

(b) Suppose that M is a finite set and f : M →M is a surjective function.
Show that f is a bijection.

(c) Show that neither of these statements is necessarily true if M is an
infinite set.

3. In each part, determine all values of n that satisfy the statement.

(a) Cn is a subgroup of An.

(b) Dn is a subgroup of An.

(c) Cn is a subgroup of Dn+1.

(d) Cn is a subgroup of Sn+1.

4. Verify that Sn forms a group under composition of functions by checking
that each of the required properties is satisfied.

(a) Closure. If π1 and π2 are bijections on {1, 2, . . . , n}, show that π1◦π2

is also a bijection on {1, 2, . . . , n}.
(b) Associativity. If π1, π2, and π3 are in Sn, show that π1 ◦ (π2 ◦π3) and

(π1 ◦ π2) ◦ π3 represent the same function in Sn.

(c) Identity. Check that π0 ◦ π = π ◦ π0 = π, for every π in Sn. Here, π0

is the identity map on {1, 2, . . . , n}.
(d) Inverses. Given a bijection π in Sn, construct a bijection π−1 in Sn

satisfying π ◦ π−1 = π−1 ◦ π = π0.

5. Suppose that G is a group and g is an element of G.

(a) Show that 〈g〉 is a subgroup of G.

(b) Show that 〈g〉 is abelian.
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6. Let x denote the vector of n variables (x1, x2, . . . , xn). Define

P (x) =
∏

1≤i<j≤n

(xi − xj),

and if π ∈ Sn, let

Pπ(x) =
∏

1≤i<j≤n

(xπ(i) − xπ(j)).

(a) Show that Pπ(x) = ±P (x).

(b) Show that Pπ(x) = −P (x) if π is a transposition.

(c) Conclude that no permutation π in Sn can be represented both as a
product of an even number of transpositions and as a product of an
odd number of transpositions.

7. (a) Prove that An is a group.

(b) Show that An is not abelian for n ≥ 5.

8. Let n ≥ 2, let Bn denote the set of odd permutations in Sn, and let τ be a
transposition in Sn.

(a) Show that the map T : Sn → Sn defined by T (π) = τ ◦ π is a
bijection.

(b) Show that T maps An to Bn, and Bn to An.

(c) Conclude that |An| = n!/2.

9. Determine the group of symmetries of each of the following objects.

(a) The vertices of a regular tetrahedron.

(b) The vertices of a cube.

(c) The vertices of a regular octahedron.

2.7.2 Burnside’s Lemma

Burnside had submitted the scheme to Meade and myself, and we
both approved of it, as a means of keeping the men occupied.

— Personal Memoirs of U. S. Grant

Armed with our knowledge of permutation groups, we now develop a general
method for counting combinations in the presence of symmetry. In general, we
are given a set of objects S, a set of colorings of these objects C, and a group
of permutations G representing symmetries possessed by configurations of the
objects. We consider two colorings in C to be equivalent if one of the permutations
in G transforms one coloring to the other, and we would like to determine the
number of nonequivalent colorings in C.
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For example, suppose S = {1, 2, 3, 4} is the set of vertices of the square in
Figure 2.5, and C is the set of all possible colorings of these vertices using two
colors, red and green. Let rrgr denote the coloring where vertices 1, 2, and 4 are
red and vertex 3 is green. Then

C = {gggg, gggr, ggrg, ggrr, grgg, grgr, grrg, grrr,

rggg, rggr, rgrg, rgrr, rrgg, rrgr, rrrg, rrrr}.
(2.51)

We consider two colorings in C to be equivalent if one can be transformed to the
other by a rotation of the square. For example, rotating the coloring rrgr yields
the equivalent colorings rrrg, grrr, and rgrr. So we choose G to be the group of
rotations, C4. A permutation π in C4 is a function defined on the set {1, 2, 3, 4},
but π induces a map π∗ defined on the set of colorings C in a natural way. For
example, if π is the 180-degree rotation (13)(24), then the induced map π∗ rotates
a coloring by the same amount, so π∗(rrgr) = grrr, and π∗(grgr) = grgr.

If c1 and c2 are two equivalent colorings in C, so π∗(c1) = c2 for some π ∈ G,
we write c1 ∼ c2. Using the fact that G is a group, it is easy to verify (Exercise 1)
that the relation ∼ on the set of colorings is

• reflexive: c ∼ c for all colorings c,

• symmetric: c1 ∼ c2 implies c2 ∼ c1, and

• transitive: c1 ∼ c2 and c2 ∼ c3 implies c1 ∼ c3.

A relation possessing these three properties is called an equivalence relation. By
grouping together collections of mutually equivalent elements, an equivalence
relation on a set partitions the set into a number of disjoint subsets, called equiva-
lence classes. Our goal then is to determine the number of equivalence classes of
C under the relation∼.

In our example, the group C4 partitions our set of colorings (2.51) into six
equivalence classes:

{gggg},
{gggr, ggrg, grgg, rggg},
{ggrr, grrg, rggr, rrgg},

{grgr, rgrg},
{grrr, rgrr, rrgr, rrrg},

{rrrr}.

Therefore, there are just six ways to color the vertices of a square using two colors,
after discounting rotational symmetries.

We can now translate the problems from the introduction to this section into
this more abstract setting. In the round table problem, S is the set of n places at
the table, G is Cn, and C is the collection of the n! seating assignments. In the
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necklace problem, S is the set of n bead positions, G is Dn, and C is the collection
of the mn possible arrangements of the m kinds of beads on the necklace.

Before presenting a general method to solve problems like these, we introduce
three sets that will be useful in our analysis. Given a permutation π in G, define
Cπ to be the set of colorings that are invariant under action by the induced map
π∗,

Cπ = {c ∈ C : π∗(c) = c}. (2.52)

This set is called the invariant set of π in C. Similarly, given a coloring c in C,
define Gc to be the set of permutations π in G for which c is a fixed coloring,

Gc = {π ∈ G : π∗(c) = c}. (2.53)

This set is called the stabilizer of c in G. It is always a subgroup of G. Finally, let
c be the set of colorings in C that are equivalent to c under the action of the group
G,

c = {π∗(c) : π ∈ G}. (2.54)

The set c is thus the equivalence class of c under the relation ∼. It is also called
the orbit of c under the action of G.

For example, if C is given by (2.51) and G is the dihedral group D4, we have

gggr = {gggr, ggrg, grgg, rggg}

and
Ggggr = {(1), (13)}.

Also,
grgr = {grgr, rgrg}

and
Ggrgr = {(1), (13)(24), (13), (24)}.

Notice that in both cases, the product of the size of the stabilizer of a coloring
with the size of the equivalence class of the same coloring equals the number of
elements in the group. The following lemma proves that this is always the case.

Lemma 2.8. Suppose a group G acts on a set of colorings C. For any coloring c
in C, we have |Gc| | c | = |G|.

Proof. We prove this by showing that every permutation in G may be represented
in a unique way as a composition of a permutation in Gc with a permutation
in a particular set P , where |P | = | c |. Suppose there are m colorings in the
equivalence class of c, c = {c1, c2, . . . , cm}. For each i between 1 and m, select
a permutation πi ∈ G such that π∗

i (c) = ci, and let P = {π1, π2, . . . , πm}.
Now let π be an arbitrary permutation in G. Then π∗(c) = ci for some i, so

π∗(c) = π∗
i (c). Thus (π−1

i ◦ π)∗(c) = c, and so π−1
i ◦ π ∈ Gc. Since πi ◦ (π−1

i ◦
π) = π, we see that π has at least one representation in the desired form. Suppose
now that π = πi ◦ σ = πj ◦ τ , for some πi and πj in P and some σ and τ in Gc.
Then πi(σ(c)) = πi(c) = ci and πj(τ(c)) = cj , so ci = cj , and hence i = j.
Therefore, σ = τ , so the representation of π is unique.
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The following formula for the number of equivalence classes of C under the
action of a group G is usually named for Burnside (the English mathematician,
not the American Civil War general), as it was popularized by his book [45]. This
result was first proved by Frobenius [115], however, and Burnside even attributes
the formula to Frobenius in the first edition of his textbook [45]. Further details
on the history of this result appear in Neumann [213] and Wright [288].

Briefly, Burnside’s Lemma states that the number of equivalence classes of
colorings is the average size of the invariant sets.

Theorem 2.9 (Burnside’s Lemma). The number of equivalence classes N of the
set C in the presence of the group of symmetries G is given by

N =
1
|G|

∑

π∈G

|Cπ| . (2.55)

Proof. If P is a logical expression, let [P ] be 1 if P is true and 0 if P is false.
Then

1
|G|

∑

π∈G

|Cπ| =
1
|G|

∑

π∈G

∑

c∈C

[π∗(c) = c]

=
1
|G|

∑

c∈C

∑

π∈G

[π∗(c) = c]

=
1
|G|

∑

c∈C

|Gc|

=
∑

c∈C

1
| c |

=
∑

c

∑

c∈c

1
| c |

=
∑

c

1

= N.

We applied Lemma 2.8 to obtain the fourth line.

We may apply Burnside’s Lemma to solve the problems we described earlier.
In the round table problem, |G| = n. The invariant set of the identity permutation
is the entire set of colorings, C(1) = C, and the invariant set of any nontrivial
rotation π is empty, Cπ = { }. Therefore, the number of nonequivalent seating
arrangements is |C| /n = (n− 1)!.

To determine the number of nonequivalent necklaces with four beads using
two different kinds of beads, we calculate

∣
∣C(1)

∣
∣ = 16,

∣
∣C(13)

∣
∣ =

∣
∣C(24)

∣
∣ = 8,∣

∣C(12)(34)

∣
∣ =

∣
∣C(13)(24)

∣
∣ =

∣
∣C(14)(23)

∣
∣ = 4, and

∣
∣C(1234)

∣
∣ =

∣
∣C(1432)

∣
∣ = 2.

Therefore, N = (16 + 2 · 8 + 3 · 4 + 2 · 2)/8 = 6. Last, we calculate the number
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of nonequivalent three-bead necklaces using three different kinds of beads. Here,∣
∣C(1)

∣
∣ = 27,

∣
∣C(12)

∣
∣ =

∣
∣C(13)

∣
∣ =

∣
∣C(23)

∣
∣ = 9, and

∣
∣C(123)

∣
∣ =

∣
∣C(132)

∣
∣ = 3, so

N = 60/6 = 10.

Exercises

1. Show that ∼ is an equivalence relation on C.

2. Prove that Gc is a subgroup of G.

3. How many different necklaces having five beads can be formed using three
different kinds of beads if we discount:

(a) Both flips and rotations?

(b) Rotations only?

(c) Just one flip?

4. The commander of a space cruiser wishes to post four sentry ships arrayed
around the cruiser at the vertices of a tetrahedron for defensive purposes,
since an attack can come from any direction.

(a) How many ways are there to deploy the ships if there are two different
kinds of sentry ships available, and we discount all symmetries of the
tetrahedral formation?

(b) How many ways are there if there are three different kinds of sentry
ships available?

5. (a) How many ways are there to label the faces of a cube with the num-
bers 1 through 6 if each number may be used more than once?

(b) What if each number may only be used once?

2.7.3 The Cycle Index

Lance Armstrong (7), Jacques Anquetil (5), Bernard Hinault (5),
Miguel Indurain (5), Eddy Merckx (5), Louision Bobet (3), Greg
LeMond (3), Philippe Thys (3).

— Multiple Tour de France winners

To use Burnside’s Lemma to count the number of equivalence classes of a set of
colorings C, we must compute the size of the invariant set Cπ associated with
every permutation π in a group of symmetries G. A simple observation allows us
to compute the size of this set easily in many situations.

Suppose we wish to determine the number of ways to color n objects using
up to m colors, discounting symmetries on the objects described by a group G.
If a coloring is invariant under the action of a permutation π in G, then every
object permuted by one cycle of π must have the same color. Therefore, if π
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has k disjoint cycles, the number of colorings invariant under the action of π is
|Cπ | = mk. For example, if S is the set of vertices of a square and G = D4, then∣
∣C(1234)

∣
∣ = m,

∣
∣C(12)(34)

∣
∣ = m2,

∣
∣C(13)(2)(4)

∣
∣ = m3, and

∣
∣C(1)(2)(3)(4)

∣
∣ = m4.

Notice that it is essential to include the cycles of length 1 in these calculations.
With this in mind, we define the cycle index of a group G of permutations on

n objects. For a permutation π in G, define a monomial Mπ associated with π in
the following way. If π is a product of k cycles, and the ith cycle has length 
i, let

Mπ = Mπ(x1, x2, . . . , xn) =
k∏

i=1

x�i . (2.56)

Here, x1, x2, . . . , xn are indeterminates. The cycle index of G is defined by

PG(x) =
1
|G|

∑

π∈G

Mπ(x), (2.57)

where x denotes the vector (x1, x2, . . . , xn).
For example, for G = D4, we find that

M(1)(2)(3)(4) = x4
1,

M(13)(2)(4) = M(1)(24)(3) = x2
1x2,

M(12)(34) = M(13)(24) = M(14)(23) = x2
2,

M(1234) = M(1432) = x4.

Therefore,

PD4 (x1, x2, x3, x4) = 1
8

(
x4

1 + 2x2
1x2 + 3x2

2 + 2x4

)
, (2.58)

and
PC4(x1, x2, x3, x4) = 1

4

(
x4

1 + x2
2 + 2x4

)
. (2.59)

By Burnside’s Lemma, the number of ways to color n objects using up to m
colors, discounting the symmetries of G, is PG(m, m, . . . , m). For example, the
number of equivalence classes of four-bead necklaces composed using m different
kinds of beads is

PD4(m, m, m, m) = 1
8

(
m4 + 2m3 + 3m2 + 2m

)
.

Substituting m = 2, we find there are six different colorings, as before.
Finally, let us compute the number of twenty-bead necklaces composed of

rhodonite, rose quartz, and lapis lazuli beads. We must determine the cycle in-
dex for the group D20. We find that eight of the rotations, those by 18k degrees
with k = 1, 3, 7, 9, 11, 13, 17, or 19, are a single cycle of length 20, yielding
the term 8x20 in the cycle index. Four rotations, k = 2, 6, 14, and 18, make two
cycles of length 10, contributing 4x2

10. Rotations with k = 4, 8, 12, or 16 make
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four cycles of length 5, adding 4x4
5, and k = 5 or 15 contributes 2x5

4. The ro-
tation with k = 10 yields x10

2 , and the identity adds x20
1 . Ten of the reflections,

the ones about axes of symmetry that pass through midpoints of edges, are each
represented by ten transpositions, contributing 10x10

2 . The other ten reflections,
flipping about opposite vertices, yield 10x2

1x
9
2. Therefore,

PD20(x1, . . . , x20) = 1
40

(
x20

1 + 10x2
1x

9
2 + 11x10

2 + 2x5
4 + 4x4

5 + 4x2
10 + 8x20

)
,

(2.60)
and the number of different twenty-bead necklaces that can be made using three
kinds of beads is PD20(3, . . . , 3) = 87 230 157.

Exercises

1. Show that the monomial Mπ defined in (2.57) has the property that the sum
∑k

i=1 
i = n.

2. (a) Determine the cycle index for S4 and for A4.

(b) Show that PS4(m, m, m, m) may be written as a binomial coefficient.

(c) Determine the smallest value of m for which PA4(m, m, m, m) >
PS4(m, m, m, m).

3. Determine the number of different necklaces with 21 beads that can be
made using four kinds of beads. Your equivalence classes should account
for both rotations and flips.

4. Determine the number of eight-bead necklaces that can be made using red,
green, blue, and white beads under each of the following groups of symme-
tries.

(a) D8.

(b) A subgroup of D8 having four elements. How does the answer depend
on the subgroup you choose?

5. Determine the cycle index for the group of symmetries of the faces of a
cube, and use this to determine the number of different six-sided dice that
can be manufactured using m different labels for the faces of the dice. As-
sume that each label may be used any number of times.

2.7.4 Pólya’s Enumeration Formula

I have yet to see any problem, however complicated, which, when
looked at in the right way, did not become still more complicated.

— Poul Anderson

We can use the cycle index to solve more complicated problems on arrangements
in the presence of symmetry. Suppose we need to determine the number of equiv-
alence classes of colorings of n objects using the m colors y1, y2, . . . , ym, where
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each color yi occurs a prescribed number of times. For example, how many dif-
ferent necklaces can be made using exactly two rhodonite, nine rose quartz, and
nine lapis lazuli beads?

Let us define the pattern inventory of the different ways to color n objects
using m colors with respect to a symmetry group G as a generating function in m
variables,

FG(y1, y2, . . . , ym) =
∑

v

avyn1
1 yn2

2 · · · ynm
m , (2.61)

where the sum runs over all vectors v = (n1, n2, . . . , nm) of nonnegative integers
satisfying n1 + n2 + · · ·+ nm = n, and av represents the number of nonequiv-
alent colorings of the n objects where the color yi occurs precisely ni times. For
example, if we denote a rhodonite bead by r, a rose quartz bead by q, and a lapis
lazuli bead by l, we see that the answer to our question above is the coefficient of
r2q9l9 in the generating function

FD20(r, q, l) =
∑

i+j+k=20
i,j,k≥0

a(i,j,k) riqj lk.

In his influential paper [224] (translated into English by Read [226]), Pólya
found that the cycle index can be used to compute the pattern inventory in a
simple way. Recall that each occurrence of xk in the cycle index arises from a
permutation having a cycle of length k, and if a coloring is invariant under this
permutation, then these k elements must have the same color. So either each of
the k objects permuted by this cycle has color y1, or each one has color y2, etc.
In the spirit of generating functions, this choice can be represented by the formal
sum yk

1 + yk
2 + · · ·+ yk

m. Pólya found that substituting this expression for xk for
each k in the cycle index yields the pattern inventory for the coloring.

Theorem 2.10 (Pólya’s Enumeration Formula). Suppose S is a set of n objects
and G is a subgroup of the symmetric group Sn. Let PG(x) be the cycle index
of G. Then the pattern inventory for the nonequivalent colorings of S under the
action of G using colors y1, y2, . . . , ym is

FG(y) = PG

(
m∑

i=1

yi,

m∑

i=1

y2
i , . . . ,

m∑

i=1

yn
i

)

. (2.62)

The proof we present follows Stanley [262, sec. 7.24].

Proof. Let v = (n1, n2, . . . , nm) be a vector of nonnegative integers of length m
whose components sum to n, and let Cv denote the set of colorings of S where
exactly ni of the objects have the color yi, for each i. Let Cv,π denote the invariant
set of Cv under the action of a permutation π.

If a permutation π in G does not disturb a particular coloring, then every ob-
ject permuted by one cycle of π must have the same color. Therefore, |Cv,π| is
the coefficient of yn1

1 yn2
2 · · · ynm

m in Mπ(
∑

yi,
∑

y2
i , . . . ,

∑
yn

i ), where Mπ is
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the monomial defined by (2.56). Let yv denote the term yn1
1 yn2

2 · · · ynm
m . Then,

summing over all permissible vectors v, we obtain

∑

v

|Cv,π|yv = Mπ

(
m∑

i=1

yi,

m∑

i=1

y2
i , . . . ,

m∑

i=1

yn
i

)

.

Now we sum both expressions over all π ∈ G and divide by |G|. On the left side,
we have

1
|G|

∑

π∈G

∑

v

|Cv,π|yv =
∑

v

(
1
|G|

∑

π∈G

|Cv,π|
)

yv

=
∑

v

avyv

by Burnside’s Lemma, and this is the pattern inventory (2.61). On the right side,
using (2.57), we obtain (2.62), the cycle index of G evaluated at xk =

∑
i yk

i :

FG(y) =
1
|G|

∑

π∈G

Mπ

(
m∑

i=1

yi,

m∑

i=1

y2
i , . . . ,

m∑

i=1

yn
i

)

= PG

(
m∑

i=1

yi,

m∑

i=1

y2
i , . . . ,

m∑

i=1

yn
i

)

.

For example, the pattern inventory for nonequivalent four-bead necklaces under
D4 using colors red (r), green (g), and blue (b) is

FD4 (r, g, b) = PD4

(
r + g + b, r2 + g2 + b2, r3 + g3 + b3, r4 + g4 + b4

)

= r4 + g4 + b4 + r3g + rg3 + r3b + rb3 + g3b + gb3

+ 2r2g2 + 2r2b2 + 2g2b2 + 2r2gb + 2rg2b + 2rgb2.

The pattern inventory for nonequivalent four-bead necklaces under C4 using the
same three colors is

FC4(r, g, b) = PC4

(
r + g + b, r2 + g2 + b2, r3 + g3 + b3, r4 + g4 + b4

)

= r4 + g4 + b4 + r3g + rg3 + r3b + rb3 + g3b + gb3

+ 2r2g2 + 2r2b2 + 2g2b2 + 3r2gb + 3rg2b + 3rgb2.

Notice that there are three nonequivalent necklaces with two red beads, one green
bead, and one blue bead under C4, but only two under D4. Can you explain this?

Using (2.60) and Theorem 2.10, we may compute the pattern inventory for
twenty-bead necklaces composed of rhodonite (r), rose quartz (q), and lapis lazuli
(l) beads. This pattern inventory is shown in Figure 2.7, where we see that there
are exactly 231 260 different necklaces with two rhodonite, nine rose quartz, and
nine lapis lazuli beads.



2.7 Pólya’s Theory of Counting 205

FD20 (r, q, l) = r20 + r19q + r19l + 10r18q2 + 10r18ql + 10r18l2 + 33r17q3 + 90r17q2l

+ 90r17ql2 + 33r17l3 + 145r16q4 + 489r16q3l + 774r16q2l2 + 489r16ql3 + 145r16l4

+ 406r15q5 + 1956r15q4l + 3912r15q3l2 + 3912r15q2l3 + 1956r15ql4 + 406r15l5

+ 1032r14q6 + 5832r14q5l + 14724r14q4l2 + 19416r14q3l3 + 14724r14q2l4

+ 5832r14ql5 + 1032r14l6 + 1980r13q7 + 13608r13q6l + 40824r13q5l2

+ 67956r13q4l3 + 67956r13q3l4 + 40824r13q2l5 + 13608r13ql6 + 1980r13l7

+ 3260r
12

q
8

+ 25236r
12

q
7
l + 88620r

12
q
6
l
2

+ 176484r
12

q
5
l
3

+ 221110r
12

q
4
l
4

+ 176484r12q3l5 + 88620r12q2l6 + 25236r12ql7 + 3260r12l8 + 4262r11q9

+ 37854r11q8l + 151416r11q7l2 + 352968r11q6l3 + 529452r11q5l4 + 529452r11q4l5

+ 352968r11q3l6 + 151416r11q2l7 + 37854r11ql8 + 4262r11l9 + 4752r10q10

+ 46252r10q9l + 208512r10q8l2 + 554520r10q7l3 + 971292r10q6l4 + 1164342r10q5l5

+ 971292r10q4l6 + 554520r10q3l7 + 208512r10q2l8 + 46252r10ql9 + 4752r10l10

+ 4262r9q11 + 46252r9q10l + 231260r9q9l2 + 693150r9q8l3 + 1386300r9q7l4

+ 1940568r
9
q
6
l
5

+ 1940568r
9
q
5
l
6

+ 1386300r
9
q
4
l
7

+ 693150r
9
q
3
l
8

+ 231260r
9
q
2
l
9

+ 46252r9ql10 + 4262r9l11 + 3260r8q12 + 37854r8q11l + 208512r8q10l2

+ 693150r
8
q
9
l
3

+ 1560534r
8
q
8
l
4

+ 2494836r
8
q
7
l
5

+ 2912112r
8
q
6
l
6

+ 2494836r
8
q
5
l
7

+ 1560534r8q4l8 + 693150r8q3l9 + 208512r8q2l10 + 37854r8ql11 + 3260r8l12

+ 1980r7q13 + 25236r7q12l + 151416r7q11l2 + 554520r7q10l3 + 1386300r7q9l4

+ 2494836r7q8l5 + 3326448r7q7l6 + 3326448r7q6l7 + 2494836r7q5l8 + 1386300r7q4l9

+ 554520r7q3l10 + 151416r7q2l11 + 25236r7ql12 + 1980r7l13 + 1032r6q14

+ 13608r6q13l + 88620r6q12l2 + 352968r6q11l3 + 971292r6q10l4 + 1940568r6q9l5

+ 2912112r6q8l6 + 3326448r6q7l7 + 2912112r6q6l8 + 1940568r6q5l9 + 971292r6q4l10

+ 352968r
6
q
3
l
11

+ 88620r
6
q
2
l
12

+ 13608r
6
ql

13
+ 1032r

6
l
14

+ 406r
5
q
15

+ 5832r
5
q
14

l

+ 40824r5q13l2 + 176484r5q12l3 + 529452r5q11l4 + 1164342r5q10l5 + 1940568r5q9l6

+ 2494836r
5
q
8
l
7

+ 2494836r
5
q
7
l
8

+ 1940568r
5
q
6
l
9

+ 1164342r
5
q
5
l
10

+ 529452r
5
q
4
l
11

+ 176484r5q3l12 + 40824r5q2l13 + 5832r5ql14 + 406r5l15 + 145r4q16 + 1956r4q15l

+ 14724r4q14l2 + 67956r4q13l3 + 221110r4q12l4 + 529452r4q11l5 + 971292r4q10l6

+ 1386300r4q9l7 + 1560534r4q8l8 + 1386300r4q7l9 + 971292r4q6l10 + 529452r4q5l11

+ 221110r4q4l12 + 67956r4q3l13 + 14724r4q2l14 + 1956r4ql15 + 145r4l16 + 33r3q17

+ 489r3q16l + 3912r3q15l2 + 19416r3q14l3 + 67956r3q13l4 + 176484r3q12l5

+ 352968r3q11l6 + 554520r3q10l7 + 693150r3q9l8 + 693150r3q8l9 + 554520r3q7l10

+ 352968r
3
q
6
l
11

+ 176484r
3
q
5
l
12

+ 67956r
3
q
4
l
13

+ 19416r
3
q
3
l
14

+ 3912r
3
q
2
l
15

+ 489r3ql16 + 33r3l17 + 10r2q18 + 90r2q17l + 774r2q16l2 + 3912r2q15l3

+ 14724r
2
q
14

l
4

+ 40824r
2
q
13

l
5

+ 88620r
2
q
12

l
6

+ 151416r
2
q
11

l
7

+ 208512r
2
q
10

l
8

+ 231260r2q9l9 + 208512r2q8l10 + 151416r2q7l11 + 88620r2q6l12 + 40824r2q5l13

+ 14724r2q4l14 + 3912r2q3l15 + 774r2q2l16 + 90r2ql17 + 10r2l18 + rq19 + 10rq18l

+ 90rq17l2 + 489rq16l3 + 1956rq15l4 + 5832rq14l5 + 13608rq13l6 + 25236rq12l7

+ 37854rq11l8 + 46252rq10l9 + 46252rq9l10 + 37854rq8l11 + 25236rq7l12

+ 13608rq6l13 + 5832rq5l14 + 1956rq4l15 + 489rq3l16 + 90rq2l17 + 10rql18 + rl19

+ q20 + q19l + 10q18l2 + 33q17l3 + 145q16l4 + 406q15l5 + 1032q14l6 + 1980q13l7

+ 3260q
12

l
8

+ 4262q
11

l
9

+ 4752q
10

l
10

+ 4262q
9
l
11

+ 3260q
8
l
12

+ 1980q
7
l
13

+ 1032q6l14 + 406q5l15 + 145q4l16 + 33q3l17 + 10q2l18 + ql19 + l20

FIGURE 2.7. Pattern inventory for necklaces with twenty beads formed using three kinds
of beads.
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Pólya’s enumeration formula has many applications in several fields, including
chemistry, physics, and computer science. Pólya devotes a large portion of his
paper [224] to applications involving enumeration of graphs, trees, and chemical
isomers.

Exercises

1. What is the pattern inventory for coloring n objects using the m colors y1,
y2, . . . , ym if the group of symmetries is Sn?

2. Use Pólya’s enumeration formula to determine the number of six-sided dice
that can be manufactured if each of three different labels must be placed on
two of the faces.

3. The hydrocarbon benzene has six carbon atoms arranged at the vertices of a
regular hexagon, and six hydrogen atoms, with one bonded to each carbon
atom. Two molecules are said to be isomers if they are composed of the
same number and types of atoms, but have different structure.

(a) Show that exactly three isomers (ortho-dichlorobenzene, meta-dichlo-
robenzene, and para-dichlorobenzene) may be constructed by replac-
ing two of the hydrogen atoms of benzene with chlorine atoms.

(b) How many isomers may be obtained by replacing two of the hydrogen
atoms with chlorine atoms, and two others with bromine atoms?

4. The hydrocarbon naphthalene has ten carbon atoms arranged in a double
hexagon as in Figure 2.8, and eight hydrogen atoms attached at each of the
positions labeled 1 through 8.

2

36

7

8

5

1

4

FIGURE 2.8. Naphthalene.

(a) Naphthol is obtained by replacing one of the hydrogen atoms of naph-
thalene with a hydroxyl group (OH). How many isomers of naphthol
are there?

(b) Tetramethylnaphthalene is obtained by replacing four of the hydrogen
atoms of naphthalene with methyl groups (CH3). How many isomers
of tetramethylnaphthalene are there?
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(c) How many isomers may be constructed by replacing three of the hy-
drogen molecules of naphthalene with hydroxyl groups, and another
three with methyl groups?

(d) How many isomers may be constructed by replacing two of the hydro-
gen molecules of naphthalene with hydroxyl groups, two with methyl
groups, and two with carboxyl groups (COOH)?

5. The hydrocarbon anthracene has fourteen carbon atoms arranged in a triple
hexagon as in Figure 2.9, with ten hydrogen atoms bonded at the numbered
positions.

1

4

98

5 10

2

36

7

FIGURE 2.9. Anthracene.

(a) How many isomers of trimethylanthracene can be formed by replac-
ing three hydrogen atoms with methyl groups?

(b) How many isomers can be formed by replacing four of the hydrogen
atoms with chlorine, and two others with hydroxyl groups?

6. The molecule triphenylamine has three rings of six carbon atoms attached
to a central nitrogen atom, as in Figure 2.10, and fifteen hydrogen atoms,
with one attached to each carbon atom except the three carbons attached to
the central nitrogen atom.

FIGURE 2.10. Triphenylamine.

(a) How many isomers can be formed by replacing six hydrogen atoms
with hydroxyl groups?
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(b) How many isomers can be formed by replacing five hydrogen atoms
with methyl groups, and five with fluorine atoms?

7. The hydrocarbon tetraphenylmethane consists of four rings of six carbon
atoms, each bonded to a central carbon atom, as in Figure 2.11, together
with twenty hydrogen atoms, with one hydrogen atom attached to each car-
bon atom in the rings except for those attached to the carbon at the center.

FIGURE 2.11. Tetraphenylmethane.

(a) How many isomers can be formed by replacing five hydrogen atoms
of tetraphenylmethane with chlorine?

(b) How many isomers can be formed by replacing five hydrogen atoms
with bromine, and six others with hydroxyl groups?

8. Suppose a medical relief agency plans to design a symbol for their organi-
zation in the shape of a regular cross, as in Figure 2.12. To symbolize the
purpose of the organization and emphasize its international constituency, its
board of directors decides that the cross should be white in color, with each
of the twelve line segments outlining the cross colored red, green, blue, or
yellow, with an equal number of lines of each color. If we discount rotations
and flips, how many different ways are there to design the symbol?

FIGURE 2.12. Symbol of a relief agency.
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2.7.5 de Bruijn’s Generalization

It doesn’t matter what color, well that gets a nope!
Be it pink, purple, or heliotrope!

— Boundin’, Pixar Films

Suppose a jewelry company plans to market a new line of unisex bracelets under
the brand name opposites attract. The bracelets are sold in pairs, for a couple
to share. Each bracelet consists of n beads, some gold and some silver, and the
two bracelets in a pair are opposites, in the sense that one can be obtained from
the other by changing each silver bead to a gold one and each gold to a silver. For
example, if one bracelet has two adjacent gold beads and n− 2 silver beads, then
its mate has two adjacent silver beads and n− 2 gold beads. The companion then
of the all-gold bracelet is the all-silver one. How many different pairs of n-bead
bracelets are possible in the opposites attract product line?

We have seen that there are exactly six different bracelets for the case n = 4, if
we discount both rotations and flips. These are represented by the configurations
gggg, gggs, ggss, gsgs, gsss, and ssss of gold and silver beads. This produces
just four different (unordered) pairs of bracelets for the product line when n = 4:

gggg + ssss, gggs + gsss, ggss + ggss, gsgs + gsgs. (2.63)

Recall that each of the configurations we listed for n = 4 in fact represent an
equivalence class of the set of two-colorings of the vertices of a square, where
we consider two colorings to be equivalent if one can be obtained from the other
by the action of some element of the group of symmetries of the square, D4.
In the same way, we may consider each of the pairs of bracelets in our product
line as representing a single set of two-colorings of the square—the union of the
equivalence classes of the two bracelets in the set. For example, the four pairs
listed in (2.63) correspond to the following partition of the sixteen ways to color
the vertices of a square using at most two colors:

{gggg, ssss},
{gggs, ggsg, gsgg, sggg, sssg, ssgs, sgss, gsss},
{ggss, gssg, ssgg, sggs},
{gsgs, sgsg}.

This partition is precisely the collection of equivalence classes of two-colorings
under a different equivalence relation. Now we consider two colorings to be equiv-
alent if one can be obtained from the other by first performing some geometric
transformation corresponding to a symmetry of the bracelet, then possibly invert-
ing all the colors. It is easy to check that this is indeed an equivalence relation.

We can generalize this problem in the following way. Given a set of objects S,
a set of colors R, a group G acting on S, and a group H acting on R. Let C denote
the set of colorings of S using the colors in R, so this is the set of all functions
from S into R. We consider two colorings in C to be equivalent if one can be



210 2. Combinatorics

obtained from the other by first applying a permutation from G on the objects,
then applying a permutation from H on the colors. Exercise 1 asks you to verify
that this does in fact form an equivalence relation on C. We would like to know
the number of equivalence classes of C with respect to G and H .

In our example with four-bead bracelets, we have that S is the set of vertices
of a square, R = {g, s} for gold and silver beads, G = D4, and H = S2, since
we may either leave the beads unchanged, or swap them. A permutation π ∈ G
induces a map π∗ on C in the usual way. For instance, if π is the 90-degree rotation
(1234), then π∗(gggs) = sggg. Similarly, a permutation ρ ∈ H induces a map
ρ∗ on C. For example, if ρ = (12) then ρ∗(gggs) = sssg.

Of course, if H is the trivial group consisting only of the identity permutation
(1), then we can use the cycle index and the enumeration formula of Pólya to
determine the answer. The Dutch mathematician Nicolaas Govert de Bruijn gen-
eralized the method of Pólya for arbitrary color groups H , and we describe this
theory here. The first step is computing the set of equivalence classes of C with
respect to the object group G which are invariant with respect to a given permu-
tation of the colors. Our proof follows de Bruijn’s paper [69].

Theorem 2.11. Suppose S is a set of n objects, R = {y1, . . . , ym} is a set of
m colors, G is a subgroup of the symmetric group Sn, and ρ ∈ Sm. Let PG(x)
denote the cycle index of G. Then the pattern inventory for the colorings of S
which are nonequivalent with respect to the action of G on S, but invariant with
respect to the action of ρ on R, is

FG,ρ(y) = PG(α1(ρ), α2(ρ), . . . , αn(ρ)), (2.64)

where

αk(ρ) =
∑

ρk(j)=j

k−1∏

i=0

yρi(j)

for 1 ≤ k ≤ n.

Proof. Let C denote the set of all colorings of S, so C is the set of maps from S
into R. For a particular coloring c ∈ C, let c denote its orbit with respect to the
group G, so c = {π∗(c) : π ∈ G}. Also, let v(c) = (n1, n2, . . . , nm), where for
each i the integer ni records the number of elements of S assigned the color yi in
c, and let yv(c) denote the monomial yn1

1 yn2
2 · · · ynm

m . Since v(π∗(c)) = v(c) for
any π ∈ G, we may define yv(c) by yv(c) = yv(c).

Suppose that c is invariant under the action of ρ, that is ρ∗(c) ∈ c. Since
we want to find the pattern inventory for the classes of colorings of S that are
nonequivalent with respect to G, but invariant with respect to ρ, we need to study
the generating function

FG,ρ(y) =
∑

ρ(c)=c

yv(c).

Since G is a group, it is straightforward to show that the set of all colorings that
are invariant under ρ is the union of all the orbits c where ρ(c) = c. Thus, using
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Lemma 2.8 we find that

FG,ρ(y) =
∑

ρ∗(c)∈c

yv(c)

|c| =
1
|G|

∑

ρ∗(c)∈c

|Gc|yv(c),

where Gc is the stabilizer of c in G. Now since ρ∗(c) ∈ c, there exists a permuta-
tion πc ∈ G such that ρ∗(c) = π∗

c (c). Also, the set of permutations {πc ◦ π : π ∈
Gc} is exactly the same as the set {π ∈ G : π∗(c) = π∗

c (c)}, so |Gc| equals the
number of permutations in G which have the same effect as ρ on c:

|Gc| = |{π ∈ G : π∗(c) = ρ∗(c)}| .

Let Uπ denote the set of colorings c for which π and ρ have the same effect,

Uπ = {c ∈ C : π∗(c) = ρ∗(c)}.

Note that if c ∈ Uπ then automatically ρ∗(c) ∈ c. Thus, we find that

FG,ρ(y) =
1
|G|

∑

π∈G

∑

c∈Uπ

yv(c). (2.65)

Now suppose π ∈ G, and π has λi cycles of length i, for each i with 1 ≤ i ≤ n.
Let 
i denote the length of the ith cycle (when π is written in cycle notation
in the canonical way), and let si denote the smallest element of the ith cycle.
For example, if n = 7 and π = (1245)(37)(6), then λ1 = λ2 = λ4 = 1,

1 = 4, 
2 = 2, 
3 = 1, s1 = 1, s2 = 3, and s3 = 6. Also, let Mπ(x1, . . . , xn)
denote the monomial obtained from π as in (2.56), so in the example we have
Mπ(x1, . . . , x7) = x1x2x4.

Suppose that c ∈ Uπ, so that applying π to c has the same effect as applying
ρ. If position si has color yj in c, it follows that position π−1(si) has color yρ(j),
position π−2(si) has color yρ2(j), . . . , position π−(�i−1)(si) has color yρ(�i−1)(j),
and we require that ρ�i(j) = j. It therefore follows that

∑

c∈Uπ

yv(c) = Mπ(α1(ρ), α2(ρ), . . . , αn(ρ)),

and the theorem follows by combining this with (2.57) and (2.65).

We can apply this theorem to our original example on bracelets, where n = 4,
m = 2, G = D4, and ρ = (12). Write y1 = g for a gold bead, and y2 = s
for a silver one. Then α1(ρ) = 0, since no color is left unchanged by ρ. Next,
α2(ρ) = y1y2 + y2y1 = 2gs, since ρ2(j) = j for both j = 1 and j = 2.
We then find that α3(ρ) = 0 since ρ3(1) = 2 and ρ3(2) = 1, and α4(ρ) =
y1y2y1y2 + y2y1y2y1 = 2g2s2. Using (2.58), we obtain then that

FD4,(12)(g, s) = PD4(0, 2gs, 0, 2g2s2) = 2g2s2,



212 2. Combinatorics

and we verify that there are indeed just two four-bead bracelets which are invariant
under bead swapping, discounting rotations and flips: gsgs and ggss.

If we introduce another type of bead in this example, say y3 = b for bronze,
and keep ρ = (12), then we obtain α1(ρ) = b, α2(ρ) = 2gs + b2, α3(ρ) = b3,
and α4(ρ) = 2g2s2 + b4, and we calculate that

FD4,(12)(g, s, b) = PD4(b, 2gs + b2, b3, 2g2s2 + b4) = 2g2s2 + 2gsb2 + b4.

The five different configurations in this case are represented by ggss, gsgs, gbsb,
gsbb, and bbbb.

We may now use Theorem 2.11 to solve our original problem. We would like
to obtain the pattern inventory for a set of colorings C when we account for both
a group of symmetries G on the objects, and a group H of symmetries on the
colors. We compute this pattern inventory by averaging the patterns FG,ρ(y) over
all permutations ρ in H , then combining the terms that correspond to equivalent
patterns of colors.

Theorem 2.12 (de Bruijn’s Enumeration Formula). Suppose S is a set of n ob-
jects, R = {y1, . . . , ym} is a set of m colors, G is a subgroup of the symmetric
group Sn, and H is a subgroup of Sm. Then the pattern inventory F̂G,H(y) for
the colorings of S which are nonequivalent with respect to both the action of G on
S and the action of H on R is obtained by identifying equivalent color patterns
in the polynomial

FG,H(y) =
1
|H |

∑

ρ∈H

FG,ρ(y), (2.66)

where FG,ρ(y) is given by (2.64).

We describe one example before providing the proof. With n = 4, m = 2,
R = {g, s}, G = D4, and H = S2, we compute

FD4,S2(g, s) = 1
2

(
PD4(g + s, g2 + s2, g3 + s3, g4 + s4)

+ PD4(0, 2gs, 0, 2g2s2)
)

= 1
2 (g4 + s4) + 1

2 (g3s + gs3) + 2g2s2.

(2.67)

The color patterns g4 and s4 are equivalent under the color group H = S2, so we
let [g4] denote either one of these patterns. Likewise, we let [g3s] denote either of
the equivalent patterns g3s or gs3. The last pattern, g2s2, is not equivalent to any
of the others, so we let [g2s2] designate this single pattern. We obtain the pattern
inventory by combining the equivalent terms:

F̂D4,S2(g, s) = [g4] + [g3s] + 2[g2s2].

Proof of Theorem 2.12. Let C denote the set of all colorings of S using the colors
of R, and let c denote the orbit of the coloring c under the action of G, so c =
{π∗(c) : π ∈ G}. The group H acts on the set of equivalence classes {c : c ∈ C},
and we let c denote the orbit of c under this action, so

c = {ρ∗(c) : ρ ∈ H}.
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In the example above, if c = gggs, then

c = {gggs, ggsg, gsgg, sggg}

and
c = {{gggs, ggsg, gsgg, sggg}, {sssg, ssgs, sgss, gsss}};

if c = gsgs, then c = {gsgs, sgsg} and c = {{gsgs, sgsg}}.
Employing the notation we introduced in the proof of Theorem 2.9, and using

Lemma 2.8, we compute

1
|H |

∑

ρ∈H

FG,ρ(y) =
1
|H |

∑

ρ∈H

∑

c

[ρ∗(c) = c]yv(c)

=
1
|H |

∑

c

yv(c)
∑

ρ∈H

[ρ∗(c) = c]

=
1
|H |

∑

c

|Hc|yv(c)

=
∑

c

∣
∣c
∣
∣−1

yv(c)

=
∑

c

∣
∣c
∣
∣−1∑

c∈c

yv(c).

(2.68)

Since the color patterns in the set {yv(c) : c ∈ c} are equivalent under H , we
select one pattern from this set to represent the class c, and denote this equivalence
class of patterns by [yv(c)]. By replacing each term yv(c) in the last line of (2.68)
by its representative class [yv(c)], we obtain the pattern inventory,

F̂G,H(y) =
∑

c

[yv(c)].

We can use Theorem 2.12 to determine the number different ten-bead pairs of
bracelets in the opposites attract product line having a given configuration
of colors. Since

PD10(x) = 1
2

(
x10

1 + x5
2 + 4x2

5 + 4x10 + 5x5
2 + 5x2

1x
4
2

)
,

we compute

FD10,S2(g, s) = 1
2

(
PD10 (g + s, g2 + s2, . . . , g10 + s10)

+ PD10(0, 2gs, . . . , 0, 2g5s5)
)

= 1
2 (g10 + s10) + 1

2 (g9s + gs9) + 5
2 (g8s2 + g2s8)

+ 4(g7s3 + g3s7) + 8(g6s4 + g4s6) + 13g5s5,

so the pattern inventory for these pairs of bracelet is

F̂D10,S2(g, s) = [g10] + [g9s] + 5[g8s2] + 8[g7s3] + 16[g6s4] + 13[g5s5].
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The situation is much simpler if we need only compute the total number of dis-
tinct colorings with respect to G and H , and we do not need the finer information
provided by the pattern inventory. For this case, we need only set each yi = 1 in
FG,H(y), and there is no need to compute F̂G,H(y). Since this case is so com-
mon, we describe its solution as a corollary to Theorem 2.12. Its proof is left as
an exercise.

Corollary 2.13. Suppose S is a set of n objects, R is a set of m colors, G is
a subgroup of the symmetric group Sn, and H is a subgroup of Sm. Then the
number of colorings of S using the colors in R which are nonequivalent with
respect to both the action of G on S and the action of H on R is

NG,H(n, m) =
1
|H |

∑

ρ∈H

PG(β1(ρ), β2(ρ), . . . , βn(ρ)), (2.69)

where βk(ρ) =
∑

j|k jλj(ρ), with the sum extending over all the positive divisors
j of k, and λj(ρ) is the number of cycles of ρ of length j.

For example, for our ten-bead bracelet problem with m = 2 and H = S2,
we find that the only nonzero values of the λj(ρ) are λ1( (1)(2) ) = 2 and
λ2( (12) ) = 1. It follows that βk( (1)(2) ) = 2 for 1 ≤ k ≤ 10, and

βk( (12) ) =

{
2 if k is even,

0 if k is odd.

Therefore,

ND10,S2(10, 2) = 1
2

(
PD10(2, 2, . . . , 2) + PD10 (0, 2, . . . , 0, 2)

)
= 44.

Last, we return to the problem from earlier sections concerning twenty-bead
necklaces using rhodonite, rose quartz, and lapis lazuli beads. Using H = 〈(123)〉,
we find that

βk( (123) ) = βk( (132) ) =

{
3 if 3 | k,

0 if 3 � k,

and βk( (1) ) = 3 for each k. Thus,

ND20,C3(20, 3) = 1
3

(
PD20 (3, . . . , 3) + 2PD20(0, 0, 3, . . . , 0, 0, 3, 0, 0)

)

= 1
3PD20 (3, . . . , 3) = 29 076 719,

since none of the variables x3k appears in PD20 (x). This then is the number of
different 20-bead necklaces if we discount rotations, flips, and the bead substitu-
tions rhodonite→ rose quartz → lapis lazuli → rhodonite, or rhodonite→ lapis
lazuli→ rose quartz→ rhodonite.

Using H = S3 instead, we obtain

βk( (12) ) = βk( (13) ) = βk( (23) ) =

{
1 if k is odd,

3 if k is even,
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and so

ND20,S3(20, 3) = 1
6

(
PD20(3, . . . , 3) + 2PD20(0, 0, 3, . . . , 0, 0, 3, 0, 0)

+ 3PD20(1, 3, . . . , 1, 3)
)

= 1
6 (87 230 157 + 63 519) = 14 548 946.

This is therefore the number of different 20-bead necklaces if we discount rota-
tions, flips, and any permutation of the bead types.

Exercises

1. Suppose that a group G acts on a set S of objects, and a group H acts on
a set R of colors. Let C denote the set of functions from S into R, that is,
the number of colorings of S using the colors in R. If c1 and c2 are two
colorings in C, write c1 ∼ c2 if there exists an element g ∈ G and an
element h ∈ H such that applying g to the underlying objects of c1, then h
to its colors, produces c2. Show that ∼ induces an equivalence relation on
C.

2. Suppose that G is a group acting on a set of objects S, and that C is the set
of colorings of elements of S using the colors in a set R. Let c denote the
orbit of c in C with respect to the action of G. Let ρ be a permutation acting
on R. Prove that {c ∈ C : ρ∗(c) ∈ c} =

⋃
ρ∗(c)=c c.

3. Compute the number of different pairs of bracelets in the opposites at-
tract product line for n = 6, n = 7, and n = 8.

4. Our jewelry company plans to extend their line of bracelets by introducing
sets of m bracelets formed using m different colors of beads, so that a set
may be shared among a group of m people. If one bracelet in a package
has the coloring c, then the others in the package have the coloring ρ∗(c),
(ρ∗)2(c), . . . , (ρ∗)m−1(c), where ρ is the cyclic permutation (1 2 · · ·m).
Use Dn for the object group G in each of the following problems.

(a) Compute the number of different packages of bracelets for m = 3
when n = 6, then n = 7, then n = 9.

(b) Compute the number of different packages of bracelets for m = 4
when n = 10, then when n = 12.

(c) Determine the pattern inventory F̂Dn,Cm(y) for the case m = 3 and
n = 6, then n = 9.

5. Compute the pattern inventory F̂Dn,S2(x, y) for n = 6, n = 7, and n = 8.

6. Compute the pattern inventory F̂Cn,S2(x, y) for n = 6, n = 7, and n = 8.
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7. Verify that the pattern inventory F̂D20,S3(r, q, l) for 20-bead necklaces with
three kinds of beads, using the full symmetric group S3 for H , is

F̂D20,S3(r, q, l) = [r20] + [r19q] + 10[r18q2] + 10[r18ql] + 33[r17q3]

+ 90[r17q2l] + 145[r16q4] + 489[r16q3l] + 430[r16q2l2]

+ 406[r15q5] + 1956[r15q4l] + 3912[r15q3l2] + 1032[r14q6]

+ 5832[r14q5l] + 14724[r14q4l2] + 9924[r14q3l3] + 1980[r13q7]

+ 13608[r13q6l] + 40824[r13q5l2] + 67956[r13q4l3] + 3260[r12q8]

+ 25236[r12q7l] + 88620[r12q6l2] + 176484[r12q5l3]

+ 111270[r12q4l4] + 4262[r11q9] + 37854[r11q8l]

+ 151416[r11q7l2] + 352968[r11q6l3] + 529452[r11q5l4]

+ 2518[r10q10] + 46252[r10q9l] + 208512[r10q8l2]

+ 554520[r10q7l3] + 971292[r10q6l4] + 583784[r10q5l5]

+ 116398[r9q9l2] + 693150[r9q8l3] + 1386300[r9q7l4]

+ 1940568[r9q6l5] + 782141[r8q8l4] + 2494836[r8q7l5]

+ 1458578[r8q6l6] + 1665912[r7q7l6].

8. Prove Corollary 2.13.

9. Consider the symbol of the medical relief agency shown in Figure 2.12.
Each of the twelve line segments outlining the cross shape must be colored
red, green, blue, or yellow.

(a) How many ways are there to design the symbol, if we consider two
configurations equivalent if one can be obtained from the other by
some combination of a rotation, flip, and color reversal? A color re-
versal exchanges red and green, and exchanges blue and yellow.

(b) How many of these configurations have the same number of edges of
each color?

(c) Repeat the first two problems, but this time consider two colorings to
be equivalent if one can be obtained from the other by either exchang-
ing red and green, or exchanging blue and yellow, or both.

(d) Repeat the first two problems, but now consider two colorings to be
equivalent if one can be obtained from the other by an iterate of the
cyclic permutation red→ green→ blue→ yellow→ red.

(e) Suppose now that black is added as a possible color for a segment
of the border. How many ways are there to design the symbol, if we
consider two configurations equivalent if one can be obtained from
the other by some combination of a rotation, flip, and color reversal?
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A color reversal exchanges red and green, exchanges blue and yellow,
and leaves black fixed.

(f) Repeat the previous problem, but this time consider two colorings to
be equivalent if one can be obtained from the other by either exchang-
ing red and green, or exchanging blue and yellow, or both.

10. Determine the number of ways to color the faces of a cube using the three
colors maroon, cardinal, and burnt orange, if two colorings are considered
to be equivalent if one can be obtained from the other by rotating the cube
in some way in three-dimensional space, and possibly exchanging maroon
and burnt orange. Then determine the number of such colorings in which
maroon and burnt orange appear the same number of times.

11. Determine the number of ways to color the faces of an octahedron using
the four colors heliotrope, lavender, thistle, and wisteria, if two colorings
are considered to be equivalent if one can be obtained from the other by
rotating the octahedron in some way, and possibly exchanging heliotrope
and lavender, or thistle and wisteria, or both. Then determine the number of
such colorings in which the number of faces colored heliotrope matches the
number colored lavender, and at the same time the number of faces colored
thistle matches the number colored wisteria.

2.8 More Numbers

Truly, I thought there had been one number more. . .
— William Shakespeare, The Merry Wives of Windsor,

Act IV, Scene I

Many questions in combinatorics can be answered by analyzing the number of
ways to arrange a particular collection of objects into a number of bins, without
regard to the order of placement. There are four basic kinds of problems of this
form: The objects may be identical or distinguishable, and similarly for the bins.
Problems of this form in combinatorics are called occupancy problems.

We have already studied occupancy problems for the case of distinguishable
bins. If the objects are identical, then we saw in Section 2.6.2 that the number
of ways to distribute n objects among k bins is the binomial coefficient

(
n+k−1

n

)
.

This is the same as the number of ways to select n objects from a set of k different
objects with repetition allowed, and we described the correspondence between
these two problems in the earlier section. On the other hand, if the objects are
distinguishable, then the number of ways to distribute n objects among k bins is
simply kn by the product rule, since each object can be placed in any of the bins.
For example, consider the problem of determining the number of n-letter words
that can be formed using an k-letter alphabet. We can model this as an occupancy
problem by taking the integers between 1 and n as our objects, and the k letters of
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the alphabet as our bins. Each placement of the objects in the bins corresponds to
an n-letter word: The placement of 1 indicates the first letter, 2 the second letter,
etc. Furthermore, it is clear that every possible n-letter word can be obtained in
this way.

In subsequent sections, we consider some occupancy problems where the bins
are indistinguishable. We call the bins groups or piles in this case, with the un-
derstanding that they are always unlabeled. The remaining two basic types of
occupancy problems each produce important sequences of numbers in combina-
torics. The problem of arranging a number identical objects into piles gives rise
to partitions, which are studied in Section 2.8.1. The case of distributing a col-
lection of distinguishable objects into groups produces the Stirling set numbers,
discussed in Section 2.8.3, and the Bell numbers of Section 2.8.4. We also study
two other important combinatorial sequences here: the Stirling cycle numbers in
Section 2.8.2, and the Eulerian numbers in Section 2.8.5. Both of these are con-
nected to the structure of permutations.

We study some important properties of each of these classes numbers, aided
by generating functions. We also introduce some different kinds of generating
functions to assist with our derivations. Some analysis illuminates for instance
some interesting connections between ordinary powers, rising and falling factorial
powers, and binomial coefficients.

2.8.1 Partitions

Whew! Don’t try to eat these so-called chips!
— Homer Simpson, after choking during a poker game,

The Simpsons, episode 103, Secrets of a Successful Marriage

Suppose a winning hand in poker nets you a pot of n identical poker chips, and
you want to organize your winnings into a number of neat stacks, in order to
intimidate your opponents. Individual stacks are not labeled or distinguishable in
any way, except for the number of chips they contain, so an arrangement of chips
simply corresponds to a collection of positive numbers that sums to n. How many
ways are there to organize your winnings?

An arrangement of n identical objects into a number of (unlabeled) piles is
called a partition of the objects, so we want to know the number of partitions of
the n objects, or, for short, the number of partitions of n. Let pn denote this num-
ber. We might also investigate the number of ways to divide n identical objects
into a specific number k of piles. Let pn,k denote this number. Since the piles
are unlabeled, we can discount the possibility of an empty pile, so it follows that
pn = pn,1 + pn,2 + · · · + pn,n for n ≥ 1. For example, Figure 2.13 exhibits the
fifteen ways to divide n = 7 poker chips into stacks. Thus p7 = 15, and we see
for instance that p7,3 = 4 and p7,4 = 3. Each configuration here is also displayed
with a list showing the size of the stacks in descending order. We will always de-
note partitions in this way. It follows that we can define pn as the number of ways
to write n as a sum of positive integers, with the summands listed in descending
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FIGURE 2.13. The fifteen ways to stack seven poker chips.

order. For example, the partitions of n = 4 are (4), (3, 1), (2, 2), (2, 1, 1), and
(1, 1, 1, 1).

We first note some particular values for the pn,k. As a special case, we set

p0,k =

{
1 if k = 0,

0 if k �= 0,
(2.70)

so p0 = 1. Also, we set pn,k = 0 for all k if n < 0, so pn = 0 if n is negative.
For n ≥ 1, certainly there is just one way to write n using a single summand, and
just one way using n summands, so pn,1 = pn,n = 1 for n ≥ 1. Further, it is
impossible to express a positive integer as a sum with zero terms, or more than n
terms, or a negative number of terms, so we set

pn,k = 0, if k ≤ 0 or k > n. (2.71)
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Thus, for each integer n we have the identity

pn =
∑

k

pn,k. (2.72)

We can now derive a recurrence relation for pn,k. Suppose that (a1, . . . , ak)
is a partition of n, with the summands in descending order. If ak = 1, then
(a1, . . . , ak−1) is a partition of n − 1, and every partition of n − 1 into k − 1
parts can be obtained in this way. Thus, the number of partitions of n into k parts,
where the smallest part is 1, is precisely pn−1,k−1. Suppose then that ak ≥ 2. In
this case, we see that (a1 − 1, . . . , ak − 1) is a partition of n − k into exactly
k parts, and every partition of n − k can be obtained in this way. It follows that
the number of partitions of n into k parts, where the smallest part is at least 2, is
pn−k,k. Therefore, we find that

pn,k = pn−1,k−1 + pn−k,k (2.73)

for n ≥ 1. This recurrence relation, together with the initial condition p0,0 = 1,
allows us to compute the value of pn,k, for any n and k. A table of these values
for n ≤ 10 appears in Table 2.3.

pn,k k = 0 1 2 3 4 5 6 7 8 9 10 pn

n = 0 1 1
1 0 1 1
2 0 1 1 2
3 0 1 1 1 3
4 0 1 2 1 1 5
5 0 1 2 2 1 1 7
6 0 1 3 3 2 1 1 11
7 0 1 3 4 3 2 1 1 15
8 0 1 4 5 5 3 2 1 1 22
9 0 1 4 7 6 5 3 2 1 1 30

10 0 1 5 8 9 7 5 3 2 1 1 42

TABLE 2.3. Number of partitions pn,k of n into k parts, and the number of partitions pn

of n.

We would like to determine a more efficient way of computing pn, without
using (2.73) to determine all of the pn,k. In order to do this, we first introduce a
useful way to visualize a partition known as a Young diagram. The Young diagram
of a partition (a1, . . . , ak) of n consists of n boxes arranged in k rows, with a1

boxes in the top row, a2 boxes in the second row, and so on, and each row is
aligned on the left. For example, Figure 2.14(a) illustrates the Young diagram for
the partition (6, 4, 4, 2, 1) of n = 17. This is then much like our stacks of poker
chips of Figure 2.13, only turned sideways.

Many texts use arrays of dots instead of arrays of boxes for illustrating par-
titions, and in this case the diagrams are known as Ferrers diagrams. We find
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the Young diagrams more convenient to use. (Young diagrams earned a distinct
name due to their use in visualizing more complicated structures known as Young
tableaux, where the boxes are filled with integers according to particular rules.)

(a) λ = (6, 4, 4, 2, 1). (b) λ′ = (5, 4, 3, 3, 1, 1).

FIGURE 2.14. The Young diagram for a partition λ, and its conjugate λ′.

We now define the conjugate λ′ of a given partition λ of n as the partition of n
obtained by counting the stacks of boxes in the columns of the Young diagram for
λ. For example, that the conjugate partition of λ = (6, 4, 4, 2, 1) in Figure 2.14(a)
is λ′ = (5, 4, 3, 3, 1, 1). The diagram for λ′ is displayed in Figure 2.14(b). Also,
the conjugate of the partition of n that consists of all 1s is the trivial partition (n).

Clearly, different partitions cannot have the same conjugate, and every partition
is the conjugate of some partition, so the conjugation mapping is a permutation on
the set of partitions of n. This fact is very useful in establishing properties of the
numbers pn,k and pn. For example, it is immediate that the number of partitions
of n which have largest summand a1 = k is simply pn,k, since conjugating the
partitions with this property yields precisely the set of partitions of n into exactly
k parts.

Next, we consider some generating functions. From our work on the money-
changing problems of Section 2.6.3, we know that the generating function P (x)
for the sequence pn is given by an infinite product,

P (x) =
∏

k≥1

1
1− xk

. (2.74)

Let Φ(x) = 1/P (x), so

Φ(x) =
∏

k≥1

(1− xk). (2.75)

Then Φ(x) is itself the generating function for some sequence {cn}. If we imagine
expanding enough terms of this product to determine cn, we see that each partition
(a1, . . . , ak) of n into distinct parts a1 > · · · > ak contributes (−1)k to cn, and
these terms determine cn. Define qe(n) to be the number of partitions of n into an
even number of distinct parts, and let qo(n) be the number of partitions of n into
an odd number of distinct parts. It follows that cn = qe(n)− qo(n), and so

Φ(x) =
∑

n≥0

(qe(n)− qo(n))xn, (2.76)
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with the understanding that qe(0) = 1 and qo(0) = 0.
By expanding a number of terms of the product for Φ(x), we can compute the

values of these coefficients up to n = 100:

Φ(x) = 1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26

− x35 − x40 + x51 + x57 − x70 − x77 + x92 + x100 − · · ·

Thus, it appears that qe(n) and qo(n) are often equal, and moreover differ by at
most 1. Euler first established this fact; the proof we exhibit here employs Young
diagrams and is due to Franklin in 1881 [111]. The reason for the curious name
of this theorem is explored in Exercise 7.

Theorem 2.14 (Euler’s Pentagonal Number Theorem). Let n be a nonnegative
integer, and let qe(n) and qo(n) be defined as above. Then

qe(n)− qo(n) =

{
(−1)k if n = k(3k±1)

2 ,

0 otherwise.

Proof. Let λ be a partition of n into distinct parts. Let s(λ) denote the smallest
part of λ, and let r(λ) be the number of consecutive integers in λ, starting with
its largest part. In the Young diagram for λ, the number of squares on the bottom
row is s(λ), and r(λ) is the number of boxes in the diagram that lie on a 45◦ line
anchored at the rightmost box. For example, Figure 2.15(a) exhibits a partition of
n = 23 into five distinct parts. Here r(λ) = 3 and s(λ) = 2, and the relevant
boxes for these quantities are marked respectively with x’s and +’s.

����
����

����

����
����

����

(a) λ = (7, 6, 5, 3, 2). (b) μ = (8, 7, 5, 3).

FIGURE 2.15. Constructing μ when s(λ) ≤ r(λ).

We aim to transform λ into another partition μ of n with distinct parts. The
number of parts of μ will be either one more or one less than the number of parts
of λ, so one of these two partitions will have an even number of parts, and the
other will have an odd number. The transformation is described in terms of the
Young diagram for λ, and depends on the relative sizes of r(λ) and s(λ).

If s(λ) ≤ r(λ), then we move the boxes in the bottom row of the Young dia-
gram for λ to the ends of the top s(λ) rows of the diagram. Figure 2.15(b) shows
the resulting partition μ obtained from the partition λ of Figure 2.15(a). On the
other hand, if s(λ) > r(λ), then we move the rightmost boxes of the top r(λ) rows



2.8 More Numbers 223

of the diagram for λ to make a new row at the bottom of the diagram. Figure 2.16
shows this procedure for λ = (9, 7, 5, 2), yielding μ = (8, 7, 5, 2, 1).

����

����

(a) λ = (9, 7, 5, 2). (b) μ = (8, 7, 5, 2, 1).

FIGURE 2.16. Constructing μ when s(λ) > r(λ).

The procedure for creating μ from λ fails in some special cases. The first case
breaks down precisely when s(λ) = r(λ) and the corresponding boxes in the
Young diagram overlap, as in Figure 2.17(a). In this case, writing k for r(λ), we
compute that the total number of boxes in the diagram is

n =
2k−1∑

j=k

j =
k(3k − 1)

2
.

The second case fails precisely when s(λ) = r(λ) + 1 and the boxes overlap, as
in Figure 2.17(b). Again writing k for r(λ), we find that

n =
2k∑

j=k+1

j =
k(3k + 1)

2

in this case.

����
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����
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(a) λ = (7, 6, 5, 4). (b) λ = (6, 5, 4).

FIGURE 2.17. Exceptional partitions.

Since our mapping on Young diagrams is its own inverse (see Exercise 6), it
follows that it defines a bijection between the set of partitions of n into a distinct
odd number of parts, and the set of partitions of n into a distinct even number
of parts, provided that n �= k(3k ± 1)/2. When n is one of these exceptional
values, there is exactly one additional partition with an even number of parts if k
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is even, and exactly one extra partition into an odd number of parts if k is odd.
The statement then follows.

By combining (2.76) with Theorem 2.14, we see that

Φ(x) = 1 +
∑

k≥1

(−1)k
(
xk(3k−1)/2 + xk(3k+1)/2

)
, (2.77)

and so

1 = P (x)Φ(x)

=

⎛

⎝
∑

k≥0

pkxk

⎞

⎠

⎛

⎝1 +
∑

k≥1

(−1)k
(
xk(3k−1)/2 + xk(3k+1)/2

)
⎞

⎠ .
(2.78)

It follows that the coefficient of xn on the right side of (2.78) is 0 for n ≥ 1. We
therefore immediately obtain the following result.

Theorem 2.15. Let n be a positive integer. Then

pn +
∑

k≥1

(−1)k
(
pn−k(3k−1)/2 + pn−k(3k+1)/2

)
= 0,

that is,

pn = pn−1 + pn−2 − pn−5 − pn−7 + pn−12 + pn−15 − · · · . (2.79)

We can now use (2.79) to determine values of pn without using the recurrence
(2.73) for the pn,k. For example, using the values of pn computed in Table 2.3,
we compute

p11 = p10 + p9 − p6 − p4 = 42 + 30− 11− 5 = 56,

then

p12 = p11 + p10 − p7 − p5 + p0 = 56 + 42− 15− 7 + 1 = 77,

and so on. Table 2.4 displays the values of pn computed in this way up to n = 50,
where

p50 = p49 + p48 − p45 − p43 + p38 + p35 − p28 − p24 + p15 + p10 = 204 226.

We close this section with another interesting fact about the partition sequence.
In 1918, Hardy and Ramanujan [152] established a remarkable nonrecursive for-
mula for pn as the value of a certain convergent series. Their formula was refined
by Rademacher in 1937 [230]. We do not reproduce this formula here, but we
mention only that it involves the number π, a certain complex root of the polyno-
mial x24 − 1, and the hyperbolic sine function. From this formula, however, one
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n pn n pn n pn n pn

11 56 21 792 31 6842 41 44583
12 77 22 1002 32 8349 42 53174
13 101 23 1255 33 10143 43 63261
14 135 24 1575 34 12310 44 75175
15 176 25 1958 35 14883 45 89134
16 231 26 2436 36 17977 46 105558
17 297 27 3010 37 21637 47 124754
18 385 28 3718 38 26015 48 147273
19 490 39 4565 39 31185 49 173525
20 627 30 5604 40 37338 50 204226

TABLE 2.4. The number of partitions of n.

can obtain information on the rate of growth of the sequence pn. Asymptotically,
the number of partitions of n satisfies

pn ∼
eπ
√

2n/3

4n
√

3
, (2.80)

where an ∼ bn means that limn→∞ an/bn = 1. See the book by Andrews [9] for
the details and a proof, as well as much more information on this rich topic.

Exercises

1. Establish formulas for pn,2, pn,n−1, and pn,n−2.

2. Use (2.73) and Table 2.3 to compute the values of p11,k, p12,k, and p13,k

for each k.

3. Use (2.79) and Table 2.4 to compute the value of p51, then p52.

4. Use Young diagrams to prove that q0(n) equals the number of partitions λ
of n which are invariant under conjugation, that is, for which λ = λ′.

5. Use generating functions to prove that the number of partitions of n into
distinct parts equals the number of partitions of n where each part is odd.

6. Suppose that λ is a partition of n, and that λ is not an exceptional partition
like those shown in Figure 2.17. Let μ be the partition obtained by apply-
ing the procedure described in the proof of Theorem 2.14 on λ. Show that
r(μ) < s(μ) if and only if r(λ) ≥ s(λ). Then conclude that this map de-
fines a permutation on the set of non-exceptional partitions of n into distinct
parts, and that this permutation is its own inverse.

7. (a) Show that (2.77) may be written more simply as

Φ(x) =
∑

k

(−1)kxk(3k−1)/2.
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(b) The kth pentagonal number αk is the number of disks in a pentagonal
shape formed by stacking a triangular arrangement of 1 + 2 + · · · +
(k − 1) disks atop a square arrangement of k × k disks, as shown in
Figure 2.18. Determine a closed fomula for the kth pentagonal num-
ber. Why is Theorem 2.14 called the Pentagonal Number Theorem?

•

•
• •
• •

•
• •
• • •
• • •
• • •

FIGURE 2.18. Pentagonal numbers: α1 = 1, α2 = 5, and α3 = 12.

8. Let sn,k denote the number of partitions of n whose smallest element is k,
so pn = sn,1 + sn,2 + · · ·+ sn,n. Prove that

sn,k =

{
pn−1 if k = 1,

sn−1,k−1 − sn−k,k−1 if k ≥ 2.

Then use this recurrence, together with the base values sn,k = 0 for k > n
and p0,0 = 0, to produce a table of values for the sn,k for 1 ≤ n ≤ 10,
similar to Table 2.3.

9. Prove that pn ≤ pn−1 + pn−2 for n ≥ 1 by considering first the number
of partitions of n that have at least two parts equal to 1, then the other
partitions. Then use this to establish that pn ≤ Fn+1 for n ≥ 0, where Fk

denotes the kth Fibonacci number.

10. A composition of n is a list of positive integers 〈a1, a2, . . . , ak〉 whose sum
is n, where the order of the integers matters. For example, there are four
different compositions of n = 3: 〈3〉, 〈2, 1〉, 〈1, 2〉, and 〈1, 1, 1〉. Let cn

denote the number of compositions of n, and let cn,k denote the number of
compositions of n into exactly k parts.

(a) Compute the value of cn,k for each k and n with 1 ≤ k ≤ n and
1 ≤ n ≤ 5 by listing all the compositions, and then calculate the
value of cn for 1 ≤ n ≤ 5.

(b) Using these examples, conjecture formulas for cn,k and cn, for ar-
bitrary positive integers n and k. Then prove that your formulas are
correct.
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2.8.2 Stirling Cycle Numbers

The Round Table soon heard of the challenge, and of course it was a
good deal discussed. . .

— Mark Twain, A Connecticut Yankee in King Arthur’s Court

Suppose King Arthur decides to divide his knights into committees in order to
better govern Britain. True to his egalitarian nature, he crafts k identical round
tables for this purpose. How many ways are there to seat n knights at these tables,
if each table can seat any number of knights, and no table can be empty? Here, we
count two seating arrangements as different only if some knight has a different
neighbor on his left side (or his right) in each one. Since the tables are identical,
the particular table occupied by a group of knights is immaterial. Thus, once a
group of knights is assigned to a table, we must account for all the possible seating
arrangements there. From Section 2.7.2, we know that there are (m−1)! different
ways to seat m people at one round table.

Let us represent the n knights by the integers 1 through n, and denote the
seating of knights K1, K2, . . . , Km in clockwise order around one table by
(K1K2 . . .Km). Of course, (K2K3 . . .KmK1) denotes the same arrangement
of knights around the table, so to make our notation unique we demand that the
knight represented by the smallest number appear first in the list. An arrange-
ment of knights at the k tables is then uniquely represented by a list of k strings
of integers in parentheses, where each integer between 1 and n appears exactly
once. For example, with six knights and three tables, we might seat knights 1, 3,
and 5 in clockwise order around one table, knights 2 and 6 at another table, and
knight 4 alone at the third table. This arrangement is denoted by (135)(26)(4).
This is precisely the cycle notation we used to describe a permutation on six ob-
jects. We see that each seating arrangement of n knights at k tables corresponds to
a unique permutation π ∈ Sn having exactly k cycles, and every such permutation
corresponds to a unique seating arrangement.

We define the Stirling cycle number, denoted by
[
n
k

]
, to be the number of ways

to seat n knights at k identical tables, or, equivalently, the number of permutations
π ∈ Sn having exactly k cycles. These numbers are also known as the signless
Stirling numbers of the first kind. A signed version of these numbers is also often
defined by

s(n, k) = (−1)n−k

[
n

k

]

, (2.81)

but we will employ only the signless numbers here.
We derive a few properties of the Stirling cycle numbers. First, it is impossible

to seat n knights at zero tables, unless there are no knights, so

[
n

0

]

=

{
1 if n = 0,

0 if n > 0.
(2.82)
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Second, if there is only one table, then
[
n

1

]

= (n− 1)!, n ≥ 1. (2.83)

Next, if there are n tables, then each knight must sit at his own table, and if there
are n−1 tables, then one pair of knights must sit at one table, and the others must
each sit alone. Thus [

n

n

]

= 1, (2.84)

and [
n

n− 1

]

=
(

n

2

)

. (2.85)

There are no arrangements possible if there are more tables than knights, or a
negative number of tables, so

[
n

k

]

= 0 if k < 0 or k > n. (2.86)

Further, because of the correspondence between seating arrangements and per-
mutations, we have

∑

k

[
n

k

]

= n!. (2.87)

Consider now the case n = 4 and k = 2. Suppose one knight, delayed by an
armor adjustment, picks his place after the first three knights are already seated.
If the first three knights are seated at one table, then the last knight must sit at the
second table by himself. The number of arrangements in this case is the number
of ways to seat the first three knights at one table, so

[
3
1

]
= 2. On the other hand,

if two of the first three knights occupy one table, and the third sits at the second
table, then the last knight may then either join the single knight, or the table with
two knights. There are two possibilities in the latter case, since the fourth knight
may sit on the left side of either of the knights already at the table. Thus, there
are 3

[
3
2

]
= 9 possibilities in this case, and we find that

[
4
2

]
= 3

[
3
2

]
+
[
3
1

]
=

11. Figure 2.19 shows these eleven arrangements when Tristram joins Bedivere,
Lancelot, and Percival at two tables.

This technique generalizes to produce a recurrence relation for these numbers.
To seat n knights at k tables, we can first seat n− 1 knights at k − 1 tables, then
seat the last knight alone at the kth table. Alternatively, we can seat the first n− 1
knights at k tables, then insert the last knight at one of these tables. This knight
must sit on the left side of one of the other n − 1 knights, so there are n − 1
different places to seat the last knight. Therefore,

[
n

k

]

= (n− 1)
[
n− 1

k

]

+
[
n− 1
k − 1

]

, n ≥ 1. (2.88)
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FIGURE 2.19. Seating Bedivere, Lancelot, Percival, and Tristram at two tables.

We can use this formula to compute a triangle of Stirling cycle numbers, just as
we used the addition identity for binomial coefficients to obtain Pascal’s triangle.
These computations appear in Table 2.5.

Recall that for fixed n the generating function for the sequence of binomial
coefficients has a particularly nice form:

∑
k

(
n
k

)
xk = (x + 1)n. We can use the

identity (2.88) to obtain an analogous representation for the sequence of Stirling
cycle numbers. Let Gn(x) =

∑
k

[
n
k

]
xk . Clearly, G0(x) = 1, and for n ≥ 1,

Gn(x) =
∑

k

[
n

k

]

xk

= (n− 1)
∑

k

[
n− 1

k

]

xk +
∑

k

[
n− 1
k − 1

]

xk

= (n− 1)Gn−1(x) + xGn−1(x),

so Gn(x) = (x+n−1)Gn−1(x). It is easy to verify by induction that this implies
that Gn(x) = x(x + 1)(x + 2) · · · (x + n− 1) = xn. Thus,

xn =
∑

k

[
n

k

]

xk. (2.89)
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[
n
k

]
k = 0 1 2 3 4 5 6 7 8 n!

n = 0 1 1
1 0 1 1
2 0 1 1 2
3 0 2 3 1 6
4 0 6 11 6 1 24
5 0 24 50 35 10 1 120
6 0 120 274 225 85 15 1 720
7 0 720 1764 1624 735 175 21 1 5040
8 0 5040 13068 13132 6769 1960 322 28 1 40320

TABLE 2.5. Stirling cycle numbers,
[
n
k

]
.

for n ≥ 0. Therefore, the Stirling cycle numbers allow us to express rising fac-
torial powers as linear combinations of ordinary powers. Exercise 7 establishes a
similar connection for the falling factorial powers.

Exercises

1. Use (2.88) and Table 2.5 to compute the values of
[
9
k

]
and

[
10
k

]
for each k.

2. Prove that

∑

k

(−1)k

[
n

k

]

=

⎧
⎪⎨

⎪⎩

1 if n = 0,
−1 if n = 1,
0 if n ≥ 2.

3. Use a combinatorial argument to show that

[
n

2

]

=
n!
2

n−1∑

m=1

1
m(n−m)

.

4. Use a combinatorial argument to determine a simple formula for
[

n
n−2

]
.

5. Use a combinatorial argument to show that

[
n + 1

m

]

=
n∑

k=0

[
n− k

m− 1

]

nk

for nonnegative integers n and m.

6. Prove that if n and m are nonnegative integers then
[
n + 1
m + 1

]

=
∑

k

[
n

k

](
k

m

)

.
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7. Prove that if n ≥ 0 then

xn =
∑

k

(−1)n−k

[
n

k

]

xk =
∑

k

s(n, k)xk. (2.90)

8. Use (2.89) to prove that if n ≥ 0 then

∑

k

[
n

k

]

yn−k =
n∏

k=1

(1 + ky).

Then use this to prove that
[
n
k

]
equals the sum of all products of n − k

distinct integers selected from {1, . . . , n−1}. For example,
[
6
3

]
= 1 ·2 ·3+

1·2·4+1·2·5+1·3·4+1·3·5+1·4·5+2·3·4+2·3·5+2·4·5+3·4·5 = 225.

9. Let d(n, k) denote the number of ways to place n knights at k identical
tables, with at least two knights at each table. For example, Figure 2.19
shows that d(4, 2) = 3. Set d(0, 0) = 1.

(a) Use a combinatorial argument to show that d(n, k) satisfies the recur-
rence relation

d(n, k) = (n− 1)
(
d(n− 1, k) + d(n− 2, k − 1)

)

for n ≥ 1.

(b) Compute the table of values of d(n, k) for 0 ≤ n ≤ 8, similar to
Table 2.5.

(c) Prove that if n ≥ 0 then
∑

k

d(n, k) = n¡,

where n¡ denotes the number of derangements of n.

2.8.3 Stirling Set Numbers

36 (Roger Federer, 2006–07), 35 (John McEnroe, 1984),
26 (Stefan Edberg, 1991–92), 25 (Ilie Nastase, 1972–73).

— Most consecutive sets won in Grand
Slam matches in men’s tennis

How many ways are there to divide n guests at a party into exactly k groups, if we
disregard the arrangement of people within each group? Rephrased, this problem
asks for the number of ways to partition a set of n objects into exactly k nonempty
subsets, so that each element in the original set appears exactly once among the
k subsets. For example, there are three ways to partition the set {a, b, c} into
two nonempty subsets: {a, b}, {c}; {a, c}, {b}; and {b, c}, {a}. There is just one
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way to partition {a, b, c} into one subset: {a, b, c}, and just one way to partition
{a, b, c} into three subsets: {a}, {b}, {c}.

The number of ways to divide n objects into exactly k groups is denoted by{
n
k

}
. Thus,

{
3
2

}
= 3, and

{
3
1

}
=
{

3
3

}
= 1. These numbers are called the Stirling

set numbers, or the Stirling numbers of the second kind. The notation S(n, k) is
also often used to denote these numbers.

We begin by listing a few properties of these numbers. First, for n ≥ 1 we have
{

n

1

}

=
{

n

n

}

= 1, (2.91)

since there is only one way to place n people into a single group, and only one
way to split them into n groups. Second,

{
n

0

}

=

{
1 if n = 0,

0 if n > 0,
(2.92)

since one cannot divide n people into zero groups, unless there are no people.
Third, to divide n people into n− 1 groups, we must pick two people to be in one
group, then place the rest of the people in groups by themselves, so

{
n

n− 1

}

=
(

n

2

)

. (2.93)

Next, we set {
n

k

}

= 0, if k < 0 or k > n. (2.94)

Also, the Stirling cycle number
[
n
k

]
distinguishes among the different ways to

arrange n people within k groups, and the Stirling set number
{

n
k

}
does not, so

{
n

k

}

≤
[
n

k

]

(2.95)

for all n ≥ 0 and all k.
We now derive a recurrence relation for

{
n
k

}
. Suppose we plan to divide n ≥ 1

people into k groups for a party, and we know that one person will arrive late. We
could divide the first n − 1 people into k − 1 groups, then place the last person
in her own group when she arrives, or we can arrange the first n − 1 people into
k groups, then pick a group for the last person to join. There are

{
n−1
k−1

}
different

ways to arrange the guests in the first case, and k
{

n−1
k

}
different possibilities in

the second. Therefore,
{

n

k

}

= k

{
n− 1

k

}

+
{

n− 1
k − 1

}

, n ≥ 1. (2.96)

For example, to partition the set {a, b, c, d} into two subsets, we can place d in its
own set, yielding {a, b, c}, {d}, or we can split {a, b, c} into two sets, then add d
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to one of these sets. The latter possibility yields the six different partitions

{a, b, d}, {c}; {a, c, d}, {b}; {b, c, d}, {a};
{a, b}, {c, d}; {a, c}, {b, d}; {b, c}, {a, d}; (2.97)

and
{

4
2

}
= 2

{
3
2

}
+
{

3
1

}
= 7.

Using identity (2.96), we can generate the triangle of Stirling set numbers
shown in Table 2.6. The sequence {bn} that appears in this table as the sum across
the rows of the triangle is studied in the next section.

{
n
k

}
k = 0 1 2 3 4 5 6 7 8 bn

n = 0 1 1
1 0 1 1
2 0 1 1 2
3 0 1 3 1 5
4 0 1 7 6 1 15
5 0 1 15 25 10 1 52
6 0 1 31 90 65 15 1 203
7 0 1 63 301 350 140 21 1 877
8 0 1 127 966 1701 1050 266 28 1 4140

TABLE 2.6. Stirling set numbers,
{

n
k

}
, and Bell numbers, bn.

Exercise 8 analyzes the generating function for the sequence of Stirling set
numbers

{
n
k

}
with n fixed. We can obtain a more useful relation, however, if we

replace the ordinary powers of x in this generating function with falling factorial
powers. For fixed n, let

Fn(x) =
∑

k

{
n

k

}

xk,

so F0(x) = 1. If n ≥ 1, then

Fn(x) =
∑

k

(

k

{
n− 1

k

}

+
{

n− 1
k − 1

})

xk

=
∑

k

k

{
n− 1

k

}

xk +
∑

k

{
n− 1

k

}

xk+1

=
∑

k

k

{
n− 1

k

}

xk +
∑

k

(x− k)
{

n− 1
k

}

xk

= xFn−1(x),

so by induction we obtain

xn =
∑

k

{
n

k

}

xk, n ≥ 0. (2.98)
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Therefore, the Stirling set numbers allow us to express ordinary powers as com-
binations of falling factorial powers.

We can derive another useful formula by considering the generating function
for the numbers

{
n
k

}
with k fixed. Let

Hk(x) =
∑

n≥0

{
n

k

}

xn,

so H0(x) = 1. For k ≥ 1, we obtain

Hk(x) =
∑

n≥1

{
n

k

}

xn

=
∑

n≥1

(

k

{
n− 1

k

}

+
{

n− 1
k − 1

})

xn

= kx
∑

n≥0

{
n

k

}

xn + x
∑

n≥0

{
n

k − 1

}

xn

= kxHk(x) + xHk−1(x),

so

Hk(x) =
x

1− kx
Hk−1(x),

and therefore

Hk(x) =
xk

(1 − x)(1 − 2x) · · · (1 − kx)
. (2.99)

Next, we use partial fractions to expand this rational function. Our calculations
are somewhat simpler if we multiply by k! first, so we wish to find constants A1,
A2, . . . , Ak such that

k!xk

∏k
m=1(1−mx)

=
k∑

m=1

Am

1−mx
.

Clearing denominators, we have

k!xk =
k∑

m=1

Am

m−1∏

j=1

(1− jx)
k∏

j=m+1

(1− jx),

and setting x = 1/m, we obtain

k!
mk

= Am

m−1∏

j=1

(

1− j

m

) k∏

j=m+1

(

1− j

m

)

,
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so

k! = mAm

m−1∏

j=1

(m− j)
k∏

j=m+1

(m− j)

= mAm(m− 1)!(−1)k−m
k∏

j=m+1

(j −m)

= (−1)k−mm!(k −m)!Am,

and

Am = (−1)k−m

(
k

m

)

.

Thus

Hk(x) =
1
k!

k∑

m=1

(−1)k−m

(
k
m

)

1−mx

=
1
k!

k∑

m=1

(−1)k−m

(
k

m

)∑

n≥0

(mx)n

=
∑

n≥0

(
1
k!

k∑

m=1

(−1)k−m

(
k

m

)

mn

)

xn,

and therefore
{

n

k

}

=
1
k!

k∑

m=0

(−1)k−m

(
k

m

)

mn, (2.100)

for any nonnegative integers n and k. This produces a formula for the Stirling set
numbers. For example, we may compute

{
6
3

}
= 1

3! (3 · 16 − 3 · 26 + 1 · 36) = 90.

Exercises

1. Use (2.96) and Table 2.6 to compute the values of
{

9
k

}
and

{
10
k

}
for each k.

2. A hungry fraternity brother stops at the drive-through window of a fast-food
restaurant and orders twelve different items. The server plans to convey the
items using either three or four identical cardboard trays, and empty trays
are never given to a customer. Use (2.96) and your augmented table from
Exercise 1 to determine the number of ways that the server can arrange the
items on the trays.

3. Use combinatorial arguments to determine simple formulas for
{

n
2

}
and{

n
n−2

}
.

4. A new casino game takes ten ping-pong balls, each labeled with a different
number between 1 and 10, and drops each one at random into one of three
identical buckets. A bucket may be empty after the ten balls are dropped.
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(a) Suppose a bet consists of identifying which balls have landed together
in each bucket. For example, a bet may state that one bucket is empty,
another has just the balls numbered 2, 3, and 7, and the rest are in the
other bucket. How many bets are possible?

(b) Suppose instead that a bet consists of identifying only the number
of balls that land in the buckets. For example, a bet might state that
one bucket is empty, another has three balls, and the other has seven.
The numbers on the balls have no role in the bet. How many bets are
possible?

5. How many different fifty-character sequences use every character of the
26-letter alphabet at least once? More generally, how many ways can one
place n distinguishable objects into k distinguishable bins, if no bin may be
empty?

6. Use (2.99) to prove that
{

n
k

}
equals the sum of all products of n−k integers

selected from {1, . . . , k}. For example,
{

6
3

}
= 1 · 1 · 1 + 1 · 1 · 2 + 1 · 1 ·

3 + 1 · 2 · 2 + 1 · 2 · 3+1 · 3 · 3+2 · 2 · 2+ 2 · 2 · 3+ 2 · 3 · 3+ 3 · 3 · 3 = 90.

7. Let rn,k denote the number of ways to divide n people into k groups, with
at least two people in each group. For example, the list (2.97) shows that
r4,2 = 3. Set r0,0 = 1.

(a) Use a combinatorial argument to show that rn,k satisfies the recur-
rence relation

rn,k = krn−1,k + (n− 1)rn−2,k−1

for n ≥ 1.

(b) Define rn for n ≥ 0 by rn =
∑

k rn,k. Compute the table of values
of rn,k and rn for 0 ≤ n ≤ 8, similar to Table 2.6.

(c) Determine a formula for r2n,n, for a positive integer n.

(d) A rhyming scheme describes the pattern of rhymes in a poem. For
example, the rhyming scheme of a limerick is (a, a, b, b, a), since a
limerick has five lines, with the first, second, and last line exhibiting
one rhyme, and the third and fourth showing a different rhyme. Also, a
sonnet is a poem with fourteen lines. Shakespearean sonnets have the
rhyming scheme (a, b, a, b, c, d, c, d, e, f, e, f, g, g); many Petrarchan
sonnets exhibit the scheme (a, b, b, a, a, b, b, a, c, d, e, c, d, e). Argue
that rn counts the number of possible rhyming schemes for a poem
with n lines, if each line must rhyme with at least one other line.

8. Let Gn(x) =
∑

k

{
n
k

}
xk , so G0(x) = 1. Show that Gn(x) = x(Gn−1(x)+

G′
n−1(x)) for n ≥ 1, and use this recurrence to compute G4(x).
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9. Show that

xn =
∑

k

{
n

k

}

(−1)n−kxk. (2.101)

10. Use (2.90) and (2.98), or (2.89) and (2.101), to prove the following identi-
ties.

∑

k

[
n

k

]{
k

m

}

(−1)(n−k) =

{
1 if n = m,

0 otherwise.
(2.102)

∑

k

{
n

k

}[
k

m

]

(−1)(n−k) =

{
1 if n = m,

0 otherwise.
(2.103)

11. Prove that
∑

k≥0

knxk =
∑

k

{
n

k

}
k!xk

(1− x)k+1

for any nonnegative integer n.

12. Suppose {r1, . . . , r�} and {s1, . . . , s�} are two sets of positive integers,
f(x) =

∑�
j=1(x

rj − xsj ), and N is a positive integer. Prove that

�∑

j=1

rn
j =

�∑

j=1

sn
j

for every n with 1 ≤ n ≤ N if and only if f (n)(1) = 0 for every n with
1 ≤ n ≤ N . Here, f (n)(x) denotes the nth derivative of f(x).

For example, select {1, 5, 9, 17, 18} and {2, 3, 11, 15, 19} as the two sets,
and select N = 4. Then 1 + 5 + 9 + 17 + 18 = 2 + 3 + 11 + 15 + 19 =
50, 12 + 52 + 92 + 172 + 182 = 22 + 32 + 112 + 152 + 192 = 720,
13 + 53 + 93 + 173 + 183 = 23 + 33 + 113 + 153 + 193 = 11600, and
14 + 54 + 94 + 174 + 184 = 24 + 34 + 114 + 154 + 194 = 195684; and
f(x) = x−x2+x5−x3+x9−x11+x17−x15+x18−x19 has f (n)(1) = 0
for 1 ≤ n ≤ 4.

2.8.4 Bell Numbers

Silence that dreadful bell: it frights the isle. . .
— William Shakespeare, Othello, Act II, Scene III

The Bell number bn is the number of ways to divide n people into any number of
groups. It is therefore a sum of Stirling set numbers,

bn =
∑

k

{
n

k

}

. (2.104)
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The first few values of this sequence appear in Table 2.6.
We can derive a recurrence relation for the Bell numbers. To divide n people

into groups, consider the different ways to form a group containing one particular
person. We must choose some number k of the other n − 1 people to join this
person in one group, then divide the other n−1−k people into groups. It follows
that

bn =
∑

k

(
n− 1

k

)

bn−1−k.

Reindexing the sum by replacing k with n− 1 − k, then applying the symmetry
identity for binomial coefficients, we find the somewhat simpler relation

bn =
∑

k

(
n− 1

k

)

bk, n ≥ 1. (2.105)

Rather than analyze the ordinary generating function for the sequence of Bell
numbers, we introduce another kind of generating function that is often useful
in combinatorial analysis. The exponential generating function for the sequence
{an} is defined as the ordinary generating function for the sequence {an/n!}. For
example, the exponential generating function for the constant sequence an = c is∑

n≥0 cxn/n! = cex, and for the sequence an = (−1)nn!, it is 1/(1 + x). The
exponential generating function for the sequence of Bell numbers is therefore

E(x) =
∑

n≥0

bn

n!
xn. (2.106)

We can compute a closed form for this series. Differentiating, we find

E′(x) =
∑

n≥1

bn

(n− 1)!
xn−1

=
∑

n≥1

1
(n− 1)!

(
∑

k

(
n− 1

k

)

bk

)

xn−1

=
∑

n≥1

n−1∑

k=0

bk

k!(n− 1− k)!
xn−1

=
∑

k≥0

∑

n≥k+1

bk

k!(n− 1− k)!
xn−1

=
∑

k≥0

∑

n≥0

bk

k!n!
xn+k

=

(
∑

n≥0

xn

n!

)(
∑

k≥0

bk

k!
xk

)

= exE(x).
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Therefore,
(ln E(x))′ = ex,

and so
ln E(x) = ex + c

for some constant c. Since E(0) = b0 = 1, we must have c = −1. Thus,

E(x) = eex−1. (2.107)

We can use this closed form to determine a formula for bn. Using the Maclaurin
series for the exponential function twice, we find that

E(x) =
1
e
eex

=
1
e

∑

k≥0

(ex)k

k!

=
1
e

∑

k≥0

1
k!

∑

n≥0

(kx)n

n!

=
1
e

∑

n≥0

(
∑

k≥0

kn

k!

)
xn

n!
.

Therefore,

bn =
1
e

∑

k≥0

kn

k!
. (2.108)

This formula is sometimes called Dobiński’s formula [79].

Exercises

1. How many ways are there to put ten different dogs into pens, if each pen
can hold any number of dogs, and every pen is exactly the same?

2. Determine a closed form for the exponential generating function for each
of the following sequences.

(a) ak = ck, with c a constant.

(b) ak = 1 if k is even and 0 if k is odd.

(c) ak = k.

(d) ak = kn, for a fixed nonnegative integer n. The number of terms in
the answer may depend on n.

3. Verify that equation (2.108) for bn produces the correct value for b0, b1,
and b2.

4. Show that the series in equation (2.108) converges for every n ≥ 0.



240 2. Combinatorics

5. Use a combinatorial argument to show that
{

n

m

}

=
∑

k

(
n− 1

k

){
n− k − 1

m− 1

}

=
∑

k

(
n− 1

k

){
k

m− 1

}

,

(2.109)

for n ≥ 1, and use this to derive the recurrence (2.105) for Bell numbers.

6. Define the complementary Bell number b̃n for n ≥ 0 by

b̃n =
∑

k

(−1)k

{
n

k

}

.

Wilf asked if b̃n = 0 for infinitely many n, or if there even exists an integer
n > 2 where b̃n = 0. The first few complementary Bell numbers are 1,−1,
0, 1, 1, −2,−9, −9, 50, 267, 413,−2180,−17731,−50533, and 110176.

(a) Describe a combinatorial interpretation of b̃n.

(b) Use (2.109) to determine a recurrence for the complementary Bell
numbers. Then determine a closed form for their exponential generat-
ing function, Ẽ(x). How is this function related to the function E(x)
of this section?

(c) Use Ẽ(x) to determine a formula for b̃n, similar to the expression
(2.108) for bn.

It is known that the sequence b̃n changes sign infinitely often, and that b̃n �=
0 for almost all values of n. See Yang [289] and de Wannemacker, Laffey,
and Osburn [71] for more information on this problem.

7. Suppose P (x) is the exponential generating function for the sequence {pn},
and Q(x) is the exponential generating function for {qn}. Prove that the
product P (x)Q(x) is the exponential generating function for the sequence
{
∑

k

(
n
k

)
pkqn−k}.

8. Let rn denote the number of rhyming schemes for a poem with n lines,
if each line must rhyme with at least one other line, as in Exercise 7d of
Section 2.8.3. Recall that r0 = 1.

(a) Prove that

rn =
n−2∑

k=0

(
n− 1

k

)

rk.

(b) Determine a closed form similar to (2.107) for the exponential gener-
ating function R(x) for the sequence {rn}.
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(c) Use this generating function, together with Exercise 7, to show that

rn =
∑

k

(
n

k

)

(−1)n−kbk.

(d) Prove that the number of rhyming schemes for n + 1 lines in which
each line rhymes with at least one other line equals the number of
rhyming schemes for n lines in which at least one line rhymes with
no other line. Note that bn is the total number of rhyming schemes on
n lines, including schemes where some lines rhyme with no others.

9. Let Ek(x) denote the exponential generating function for the sequence of
Stirling cycle numbers with k fixed,

Ek(x) =
∑

n≥0

[
n

k

]
xn

n!
.

Prove that

E′
k(x) =

Ek−1(x)
1− x

,

for k ≥ 1, and use this to derive a closed form for Ek(x),

∑

n≥0

[
n

k

]
xn

n!
=

(−1)k

k!
(ln(1− x))k . (2.110)

Comtet [60] uses this identity, together with (2.100) and (2.113), to derive a
complicated formula due to Schlömilch for the Stirling cycle numbers. We
include it here without proof:

[
n

k

]

=
n−k∑

m=0

(−1)n−k−m

(
n− 1 + m

k − 1

)(
2n− k

n− k −m

){
n− k + m

m

}

(2.111)

=
n−k∑

m=0

m∑

j=0

(−1)n−k−j

(
n− 1 + m

k − 1

)(
2n− k

n− k −m

)(
m

j

)
jn−k+m

m!
.

(2.112)

10. Use an argument similar to that of Exercise 9 to prove that

∑

n≥0

{
n

k

}
xn

n!
=

1
k!

(ex − 1)k (2.113)

for every k ≥ 0.
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2.8.5 Eulerian Numbers

3 (Al Hamilton), 7 (Paul Coffey), 11 (Mark Messier), 17 (Jari
Kurri), 31 (Grant Fuhr), 99 (Wayne Gretzky).

— Retired jersey numbers, Edmonton Oilers

Suppose that a pipe organ having n pipes needs to be installed at a concert hall.
Each pipe has a different length, and the pipes must be arranged in a single row.
Let us say that two adjacent pipes in an arrangement form an ascent if the one on
the left is shorter than the one on the right, and a descent otherwise. Arranging
the pipes from shortest to tallest yields an arrangement with n− 1 ascents and no
descents; arranging them from tallest to shortest results in no ascents and n − 1
descents.

Whether for aesthetic or acoustical reasons, the eccentric director of the concert
hall demands that there be exactly k ascents in the arrangement of the n pipes.
How many ways are there to install the organ? The answer is the Eulerian number〈

n
k

〉
. Stated in more abstract terms,

〈
n
k

〉
is the number of permutations π of the

integers {1, . . . , n} having π(i) < π(i + 1) for exactly k numbers i between 1
and n− 1.

We list a few properties of these numbers. It is easy to see that there is only one
arrangement of n pipes with no ascents, and only one with n− 1 ascents, so

〈
n

0

〉

= 1, n ≥ 0, (2.114)

and 〈
n

n− 1

〉

= 1, n ≥ 1. (2.115)

The Eulerian numbers have a symmetry property similar to that of the binomial
coefficients. An arrangement of n pipes with k ascents has n− 1− k descents, so
reversing this arrangement yields a complementary configuration with n− 1− k
ascents and k descents. Thus,

〈
n

k

〉

=
〈

n

n− 1− k

〉

. (2.116)

Next, by summing over k we count every possible arrangement of pipes precisely
once, so

∑

k

〈
n

k

〉

= n!. (2.117)

We also note the degenerate cases
〈

n

k

〉

= 0, if n > 0, and k < 0 or k ≥ n, (2.118)

and 〈
0
k

〉

= 0, if k �= 0. (2.119)
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We can derive a recurrence relation for the Eulerian numbers. To arrange n
pipes with exactly k ascents, suppose we first place every pipe except the tallest
into a configuration with exactly k ascents. Then the tallest pipe can be inserted
either in the first position, or between two pipes forming any ascent. Any other
position would yield an additional ascent. There are therefore k + 1 different
places to insert the tallest pipe in this case. Alternatively, we can line up the n− 1
shorter pipes so that there are k − 1 ascents, then insert the last pipe either at the
end of the row, or between two pipes forming any descent. There are n−2− (k−
1) = n − k − 1 descents, so there are n − k different places to insert the tallest
pipe in this case. It is impossible to create a permissible configuration by inserting
the tallest pipe into any other arrangement of the n− 1 shorter pipes, so

〈
n

k

〉

= (k + 1)
〈

n− 1
k

〉

+ (n− k)
〈

n− 1
k − 1

〉

, n ≥ 1. (2.120)

For example,
〈
3
1

〉
= 2

〈
2
1

〉
+ 2

〈
2
0

〉
= 4, and

〈
4
2

〉
= 3

〈
3
2

〉
+ 2

〈
3
1

〉
= 3 + 8 = 11.

Figure 2.20 shows these eleven arrangements of four pipes with two ascents.
We can use the recurrence (2.120) to compute the triangle of Eulerian numbers,

shown in Table 2.7.

〈
n
k

〉
k = 0 1 2 3 4 5 6 7 n!

n = 0 1 1
1 1 1
2 1 1 2
3 1 4 1 6
4 1 11 11 1 24
5 1 26 66 26 1 120
6 1 57 302 302 57 1 720
7 1 120 1191 2416 1191 120 1 5040
8 1 247 4293 15619 15619 4293 247 1 40320

TABLE 2.7. Eulerian numbers,
〈

n
k

〉
.

Next, we study some generating functions involving the Eulerian numbers. Re-
call that in Section 2.6.5 we computed the generating function for the sequence
{0, 1, 2, 3, . . .} by differentiating both sides of the identity

∑
k≥0 xk = 1

1−x , then
multiplying by x:

∑

k≥0

kxk = x · d

dx

(
∑

k≥0

xk

)

= x · d

dx

(
1

1− x

)

=
x

(1− x)2
. (2.121)
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FIGURE 2.20. Four organ pipes with two ascents.

Clearly, we can obtain a generating function for the sequence of squares {k2} by
applying the same differentiate-and-multiply operator to (2.121). We find that

∑

k≥0

k2xk = x · d

dx

(
x

(1− x)2

)

= x

(
2x

(1− x)3
+

1
(1− x)2

)

=
x(1 + x)
(1− x)3

.

(2.122)

In the same way, we may use this operator to calculate the generating function
for the sequence of cubes, then fourth powers and fifth powers. After a bit of
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simplifying, we find that

∑

k≥0

k3xk =
x(1 + 4x + x2)

(1− x)4
, (2.123)

∑

k≥0

k4xk =
x(1 + 11x + 11x2 + x3)

(1− x)5
, (2.124)

∑

k≥0

k5xk =
x(1 + 26x + 66x2 + 26x3 + x4)

(1− x)6
. (2.125)

A glance at Table 2.7 shows that the coefficients appearing on the right side of
these formulas are all Eulerian numbers, and we would suspect that the numbers〈

n
k

〉
will appear in the generating function for the sequence of nth powers of inte-

gers. This is in fact the case.

Theorem 2.16. If n ≥ 0 then

∑

k≥1

knxk =
x

(1− x)n+1

∑

k

〈
n

k

〉

xk. (2.126)

Proof. We use induction on n. The formula is easy to verify when n = 0, so we
assume it holds for a nonnegative integer n. We calculate

∑

k≥1

kn+1xk = x · d

dx

(
∑

k≥1

knxk

)

= x · d

dx

(
x

(1− x)n+1

∑

k

〈
n

k

〉

xk

)

= x

(
1

(1− x)n+1

∑

k

〈
n

k

〉

(k + 1)xk +
n + 1

(1 − x)n+2

∑

k

〈
n

k

〉

xk+1

)

=
x

(1− x)n+2

(

(1− x)
∑

k

〈
n

k

〉

(k + 1)xk + (n + 1)
∑

k

〈
n

k − 1

〉

xk

)

=
x

(1− x)n+2

(
∑

k

(k + 1)
〈

n

k

〉

xk +
∑

k

(n + 1− k)
〈

n

k − 1

〉

xk

)

=
x

(1− x)n+2

∑

k

〈
n + 1

k

〉

xk.

The last step follows from the recurrence relation (2.120).
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We can use (2.126) to obtain a formula for
〈

n
k

〉
in terms of binomial coefficients

and powers. We calculate

∑

k

〈
n

k

〉

xk =
(1− x)m+1

x

∑

m≥1

mnxm

=
∑

m≥0

(m + 1)nxm
∑

j

(
n + 1

j

)

(−1)jxj

=
∑

m≥0

∑

j≥0

(−1)j

(
n + 1

j

)

(m + 1)nxj+m

=
∑

k≥0

k∑

j=0

(−1)j

(
n + 1

j

)

(k + 1− j)nxk.

(2.127)

Now the first and last expressions in (2.127) are power series in x, so we can
equate coefficients to obtain a formula for the Eulerian number

〈
n
k

〉
. We find that

〈
n

k

〉

=
k∑

j=0

(−1)j

(
n + 1

j

)

(k + 1− j)n. (2.128)

Last, we derive one more interesting identity involving Eulerian numbers, bi-
nomial coefficients, and ordinary powers. Consider a sort of generating function
for the sequence {

〈
n
k

〉
} with n fixed, where we use the binomial coefficient

(
x+k

n

)

in place of xk . Let

Fn(x) =
∑

k

〈
n

k

〉(
x + k

n

)

,

so that F0(x) = 1. For n ≥ 1, we calculate

Fn(x) =
∑

k

(

(k + 1)
〈

n− 1
k

〉

+ (n− k)
〈

n− 1
k − 1

〉)(
x + k

n

)

=
∑

k

(k + 1)
〈

n− 1
k

〉(
x + k

n

)

+
∑

k

(n− k)
〈

n− 1
k − 1

〉(
x + k

n

)

=
∑

k

(k + 1)
〈

n− 1
k

〉(
x + k

n

)

+
∑

k

(n− k − 1)
〈

n− 1
k

〉(
x + k + 1

n

)

.

Combining the two sums on the right, and replacing the term
(
x+k+1

n

)
by the sum

(
x+k

n

)
+
(
x+k
n−1

)
, we find that

Fn(x) =
∑

k

〈
n− 1

k

〉(

n

(
x + k

n

)

+ (n− k − 1)
(

x + k

n− 1

))

=
∑

k

〈
n− 1

k

〉
(x + k)n−1

(n− 1)!
(
(x + k − n + 1) + (n− k − 1)

)
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= x
∑

k

〈
n− 1

k

〉(
x + k

n− 1

)

= xFn−1(x).

Therefore, Fn(x) = xn, so we obtain

xn =
∑

k

〈
n

k

〉(
x + k

n

)

, n ≥ 0. (2.129)

This is known as Worpitzky’s identity [287]. Thus, Eulerian numbers allow us
to write ordinary powers as linear combinations of certain generalized binomial
coefficients. For example, x4 =

(
x
4

)
+ 11

(
x+1

4

)
+ 11

(
x+2
4

)
+
(
x+3
4

)
.

Exercises

1. Use an ordinary generating function to find a simple formula for
〈

n
1

〉
, and

verify your formula using (2.128).

2. Let En(x) denote the polynomial

En(x) =
∑

k

〈
n

k

〉

xk.

Use (2.126) to show that the exponential generating function for the se-
quence of polynomials {En(x)}n≥0 is

E(x, t) =
1− x

et(x−1) − x
.

That is, show that

E(x, t) =
∑

n≥0

En(x)tn

n!
.

3. (From [282].) Use (2.126) and Exercise 11 of Section 2.8.3 to prove that

∑

k

〈
n

k

〉

2k =
∑

k

{
n

k

}

k!

for any nonnegative integer n.

4. Use (2.128) to establish the following identity for n ≥ 1:

n∑

j=0

(−1)j

(
n

j

)

(j + 1)n−1 = 0.
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5. A neurotic running back for an American football team will run between
two offensive linemen only if the jersey number of the player on the left is
less than the jersey number of the player on the right. The player will not run
outside the last player on either end of the offensive line. The coach wants
to be sure that the running back has at least three options on every play.
If the coach always puts seven players on the offensive line, and there are
fifteen players on the team capable of playing any position on the offensive
line, each of whom has a different jersey number, how many formations of
linemen are possible?

2.9 Stable Marriage

How do I love thee? Let me count the ways.
— Elizabeth Barrett Browning, Sonnet 43,

Sonnets from the Portuguese

Most of the problems we have considered in this chapter are questions in enumer-
ative combinatorics, concerned with counting arrangements of objects subject to
various constraints. In this section we consider a very different kind of combina-
torial problem.

Suppose we must arrange n marriages between n men and n women. Each
man supplies us with a list of the women ranked according to his preference; each
woman does the same for the men. Is there always a way to arrange the marriages
so that no unmatched man and woman prefer each other to their assigned spouses?
Such a pairing is called a stable matching.

Consider a simple example with n = 2. Suppose Aaron prefers Yvonne over
Zoë, and Björn prefers Zoë over Yvonne. We denote these preferences by

A : Y > Z,

B : Z > Y.

Suppose also that Yvonne and Zoë both prefer Aaron over Björn, so

Y : A > B,

Z : A > B.

Then the matching of Aaron with Zoë and Björn with Yvonne is unstable, since
Aaron and Yvonne prefer each other over their partners. The preferences of Björn
and Zoë are irrelevant: Indeed, Zoë would prefer to remain with Aaron in this
case. On the other hand, the matching of Aaron with Yvonne and Björn with Zoë
is stable, for no unmatched pair prefers to be together over their assigned partners.

The stable marriage problem is a question of existential combinatorics, since it
asks whether a particular kind of arrangement exists. We might also consider it as
a problem in constructive combinatorics, if we ask for an efficient algorithm for
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finding a stable matching whenever one does exist. In fact, we develop just such
an algorithm in Section 2.9.1.

The stable marriage problem and its variations have many applications in prob-
lems involving scheduling and assignments. We mention three examples.

1. Stable Roommates.

Suppose 2n students at a university must be paired off and assigned to n
dorm rooms. Each student ranks all of the others in order of preference.
A pairing is stable if no two unmatched students prefer to room with each
other over their assigned partners. Must a stable pairing always exist? This
variation of the stable marriage problem, known as stable roommates, is
considered in Exercise 1.

2. College Admissions.

Suppose a number of students apply for admission to a number of univer-
sities. Each student ranks the universities, and each university ranks the
students. Is there a way to assign the students to universities in such a way
that no student and university prefer each other over their assignment? This
problem is similar to the original stable marriage question, since we are
matching elements from two sets using information on preferences. How-
ever, there are some significant differences—probably not every student
applies to every university, and each university needs to admit a number of
students. Some variations on the stable marriage problem that cover exten-
sions like these are considered in Section 2.9.2.

3. Hospitals and Residents.

The problem of assigning medical students to hospitals for residencies is
similar to the problem of matching students and universities: Each medi-
cal student ranks hospital residency programs in order of preference, and
each hospital ranks the candidates. In this case, however, a program has
been used to make most of the assignments in the U.S. since 1952. The Na-
tional Resident Matching Program was developed by a group of hospitals
to try to ensure a fair method of hiring residents. Since medical students are
not obligated to accept the position produced by the matching program, it
is important that the algorithm produce a stable matching. (Since the pro-
gram’s inception, a large majority of the medical students have accepted
their offer.) We describe this matching algorithm in the next section.

Exercises

1. Suppose that four fraternity brothers, Austin, Bryan, Conroe, and Dallas,
need to pair off as roommates. Each of the four brothers ranks the other
three brothers in order of preference. Prove that there is a set of rankings
for which no stable matching of roommates exists.
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2. Suppose M1 and M2 are two stable matchings between n men and n women,
and we allow each woman to choose between the man she is paired with in
M1 and the partner she receives in M2. Each woman always chooses the
man she prefers. Show that the result is a stable matching between the men
and the women.

3. Suppose that in the previous problem we assign each woman the man she
likes less between her partners in the two matchings M1 and M2. Show that
the result is again a stable matching.

4. The following preference lists for four men, {A, B, C, D}, and four women,
{W, X, Y, Z}, admit exactly ten different stable matchings.

1 2 3 4
A W X Y Z
B X W Z Y
C Y Z W X
D Z Y X W

1 2 3 4
W D C B A
X C D A B
Y B A D C
Z A B C D

(a) Prove that the matching {(A, X), (B, Z), (C, W ), (D, Y )} is stable.

(b) Determine the remaining nine stable matchings.

2.9.1 The Gale–Shapley Algorithm

Matchmaker, matchmaker, make me a match!
— Chava and Hodel, Fiddler on the Roof

In 1962, Gale and Shapley [117] proved that a stable matching between n men
and n women always exists by describing an algorithm for constructing such a
matching. Their algorithm is essentially the same as the one used by the hospitals
to select residents, although apparently no one realized this for several years [143,
chap. 1].

In the algorithm, we first choose either the men or the women to be the pro-
posers. Suppose we select the men; the women will have their chance soon. Then
the men take turns proposing to the women, and the women weigh the offers
that they receive. More precisely, the Gale–Shapley algorithm has three principal
steps.

Algorithm 2.17 (Gale–Shapley). Construct a stable matching.

Input. A set of n men, a set of n women, a ranked list of the n women for
each man, and a ranked list of the n men for each woman.

Output. A stable matching that pairs the n men and n women.

Description.
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Step 1. Label every man and woman as free.

Step 2. While some man m is free, do the following.

Let w be the highest-ranked woman on the preference list of m to
whom m has not yet proposed. If w is free, then label m and w as
engaged to each other. If w is engaged to m′ and w prefers m over m′,
then label m′ as free and label m and w as engaged to one another.
Otherwise, if w prefers m′ over m, then w remains engaged to m′ and
m remains free.

Step 3. Match all of the engaged couples.

For example, consider the problem of arranging marriages between five men,
Mack, Mark, Marv, Milt, and Mort, and five women, Walda, Wanda, Wendy,
Wilma, and Winny. The men’s and women’s preferences are listed in Table 2.8.

1 2 3 4 5
Mack Winny Wilma Wanda Walda Wendy
Mark Wanda Winny Wendy Wilma Walda
Marv Winny Walda Wanda Wilma Wendy
Milt Winny Wilma Wanda Wendy Walda
Mort Wanda Winny Walda Wilma Wendy

Walda Milt Mort Mack Mark Marv
Wanda Milt Marv Mort Mark Mack
Wendy Mort Mack Milt Mark Marv
Wilma Mark Mort Milt Mack Marv
Winny Marv Mort Mark Milt Mack

TABLE 2.8. Preferences for five men and women.

First, Mack proposes to Winny, who accepts, and Mark proposes to Wanda,
who also accepts. Then Marv proposes to Winny. Winny likes Marv much better
than her current fiancé, Mack, so Winny rejects Mack and becomes engaged to
Marv. This leaves Mack without a partner, so he proceeds to the second name
on his list, Wilma. Wilma currently has no partner, so she accepts. Our engaged
couples are now

(Mack, Wilma), (Mark, Wanda), and (Marv, Winny).

Next, Milt proposes to his first choice, Winny. Winny prefers her current partner,
Marv, so she rejects Milt. Milt proceeds to his second choice, Wilma. Wilma re-
jects Mack in favor of Milt, and Mack proposes to his third choice, Wanda. Wanda
prefers to remain with Mark, so Mack asks Walda, who accepts. Our engaged cou-
ples are now

(Mack, Walda), (Mark, Wanda), (Marv, Winny), and (Milt, Wilma).
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Now our last unmatched man, Mort, asks his first choice, Wanda. Wanda accepts
Mort over Mark, then Mark asks his second choice, Winny. Winny rejects Mark in
favor of her current partner, Marv, so Mark proposes to his third choice, Wendy.
Wendy is not engaged, so she accepts. Now all the men and women are engaged,
so we have our matching:

(Mack, Walda), (Mark, Wendy), (Marv, Winny),
(Milt, Wilma), and (Mort, Wanda).

We prove that this is in fact a stable matching.

Theorem 2.18. The Gale–Shapley algorithm produces a stable matching.

Proof. First, each man proposes at most n times, so the procedure must termi-
nate after at most n2 proposals. Thus, the procedure is an algorithm. Second, the
algorithm always produces a matching. This follows from the observations that a
woman, once engaged, is thereafter engaged to exactly one man, and every man
ranks every woman, so the last unmatched man must eventually propose to the
last unmatched woman. Third, we prove that the matching is stable. Suppose m
prefers w to his partner in the matching. Then m proposed to w, and was rejected
in favor of another suitor. This suitor is ranked higher than m by w, so w must
prefer her partner in the matching to m. Therefore, the matching is stable.

We remark that the Gale–Shapley algorithm is quite efficient: A stable match-
ing is always found after at most n2 proposals. (Exercise 8 establishes a better
upper bound.)

Suppose that we choose the women as the proposers. Does the algorithm pro-
duce the same stable matching? We test this by using the lists of preferences in
Table 2.8. First, Walda proposes to Milt, who accepts. Next, Wanda proposes to
Milt, and Milt prefers Wanda over Walda, so he accepts. Walda must ask her sec-
ond choice, Mort, who accepts. Then Wendy proposes to Mort, who declines, so
she asks Mack, and Mack accepts. Last, Wilma asks Mark, and Winny proposes
to Marv, and both accept. We therefore obtain a different stable matching:

(Walda, Mort), (Wanda, Milt), (Wendy, Mack),
(Wilma, Mark), and (Winny, Marv).

Only Winny and Marv are paired together in both matchings; everyone else re-
ceives a higher-ranked partner precisely when he or she is among the proposers.
Table 2.9 illustrates this for the two different matchings. The pairing obtained
with the men as proposers is in boldface; the matching resulting from the women
as proposers is underlined.

The next theorem shows that this is no accident. The proposers always obtain
the best possible stable matching, and those in the other group, which we call
the proposees, always receive the worst possible stable matching. We define two
terms before stating this theorem. We say a stable matching is optimal for a person
p if p can do no better in any stable matching. Thus, if p is matched with q in an
optimal matching for p, and p prefers r over q, then there is no stable matching
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1 2 3 4 5
Mack Winny Wilma Wanda Walda Wendy
Mark Wanda Winny Wendy Wilma Walda
Marv Winny Walda Wanda Wilma Wendy
Milt Winny Wilma Wanda Wendy Walda
Mort Wanda Winny Walda Wilma Wendy

Walda Milt Mort Mack Mark Marv
Wanda Milt Marv Mort Mark Mack
Wendy Mort Mack Milt Mark Marv
Wilma Mark Mort Milt Mack Marv
Winny Marv Mort Mark Milt Mack

TABLE 2.9. Two stable matchings.

where p is paired with r. Similarly, a stable matching is pessimal for p if p can do
no worse in any stable matching. So if p is matched with q in a pessimal matching
for p, and p prefers q over r, then there is no stable matching where p is paired
with r. Finally, a stable matching is optimal for a set of people P if it is optimal
for every person p in P , and likewise for a pessimal matching.

Theorem 2.19. The stable matching produced by the Gale–Shapley algorithm is
independent of the order of proposers, optimal for the proposers, and pessimal
for the proposees.

Proof. Suppose the men are the proposers. We first prove that the matching pro-
duced by the Gale–Shapley algorithm is optimal for the men, regardless of the
order of the proposers. Order the men in an arbitrary manner, and suppose that a
man m and woman w are matched by the algorithm. Suppose also that m prefers
a woman w′ over w, denoted by m : w′ > w, and assume that there exists a
stable matching M with m paired with w′. Then m was rejected by w′ at some
time during the execution of the algorithm. We may assume that this was the first
time a potentially stable couple was rejected by the algorithm. Say w′ rejected m
in favor of another man m′, so w′ : m′ > m. Then m′ has no stable partner he
prefers over w′, by our assumption. Let w′′ be the partner of m′ in the matching
M . Then w′′ �= w′, since m is matched with w′ in M , and so m′ : w′ > w′′. But
then m′ and w′ prefer each other to their partners in M , and this contradicts the
stability of M .

The optimality of the matching for the proposers is independent of the order of
the proposers, so the first statement in the theorem follows immediately.

Finally, we show that the algorithm is pessimal for the proposees. Suppose
again that the men are the proposers. Assume that m and w are matched by the
algorithm, and that there exists a stable matching M where w is matched with a
man m′ and w : m > m′. Let w′ be the partner of m in M . Since the Gale–
Shapley algorithm produces a matching that is optimal for the men, we have m :
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w > w′. Therefore, m and w prefer each other over their partners in M , and this
contradicts the stability of M .

Exercises

1. Our four fraternity brothers, Austin, Bryan, Conroe, and Dallas, plan to
ask four women from the neighboring sorority, Willa, Xena, Yvette, and
Zelda, to a dance on Friday night. Each person’s preferences are listed in
the following table.

1 2 3 4
Austin Yvette Xena Zelda Willa
Bryan Willa Yvette Xena Zelda
Conroe Yvette Xena Zelda Willa
Dallas Willa Zelda Yvette Xena

Willa Austin Dallas Conroe Bryan
Xena Dallas Bryan Austin Conroe
Yvette Dallas Bryan Conroe Austin
Zelda Austin Dallas Conroe Bryan

(a) What couples attend the dance, if each man asks the women in his
order of preference, and each woman accepts the best offer she re-
ceives?

(b) Suppose the sorority hosts a “Sadie Hawkins” dance the following
weekend, where the women ask the men out. Which couples attend
this dance?

2. Determine the total number of stable matchings that pair the four men Axel,
Buzz, Clay, and Drew with the four women Willow, Xuxa, Yetty, and Zizi,
given the following preference lists.

1 2 3 4
Axel Yetty Willow Zizi Xuxa
Buzz Yetty Xuxa Zizi Willow
Clay Zizi Yetty Xuxa Willow
Drew Xuxa Zizi Willow Yetty

Willow Buzz Drew Axel Clay
Xuxa Buzz Axel Clay Drew
Yetty Drew Clay Axel Buzz
Zizi Axel Drew Buzz Clay

3. Determine a list of preferences for four men and four women where no one
obtains his or her first choice, regardless of who proposes.
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4. Determine a list of preferences for four men and four women where one
proposer receives his or her lowest-ranked choice.

5. Determine a list of preferences for four men and four women where one
proposer receives his or her lowest-ranked choice, and the rest of the pro-
posers receive their penultimate choice.

6. Suppose that all the men have identical preference lists in an instance of the
stable marriage problem. Show that there exists exactly one stable matching
by completing the following argument. Let M be the matching obtained
by the Gale-Shapley algorithm using the men as proposers, and suppose
another stable matching M ′ exists. Among all women who change partners
between M and M ′, let w be the woman who ranks lowest on the men’s
common preference list. Suppose m and w are matched in M , and m and
w′ in M ′. Determine a contradiction.

7. Suppose that the preference lists of the men m1, . . . , mn and the women
w1, . . . , wn have the property that mi ranks wi ahead of each of the women
wi+1, . . . , wn, and wi ranks mi ahead of each of the men mi+1, . . . , mn,
for each i.

(a) Show that the matching (m1, w1), . . . , (mn, wn) is stable.

(b) (Eeckhout [86].) Show that this is the unique stable matching in this
case.

(c) Prove that there are (n!)n−1 different sets of preference lists for m1,
. . . , mn that have the property that mi ranks wi ahead of each of the
women wi+1, . . . , wn, for each i.

(d) Prove that at least 1/n! of the possible instances of the stable marriage
problem for n couples admits a unique solution.

8. (Knuth [178].) Prove that the Gale–Shapley algorithm terminates after at
most n2 − n + 1 proposals by showing that at most one proposer receives
his or her lowest-ranked choice.

9. Suppose that more than one woman receives her lowest-ranked choice when
the men propose. Prove that there exist at least two stable matchings be-
tween the men and the women.

2.9.2 Variations on Stable Marriage

I want what any princess wants—to live happily ever after, with the
ogre I married.

— Princess Fiona, Shrek 2

The stable marriage problem solves matching problems of a rather special sort.
Each member of one set must rank all the members of the other set, and the two
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sets must have the same number of elements. In this section, we consider several
variations of the stable marriage problem, in order to apply this theory much more
broadly. In each case, we study two main questions. First, how does the change
affect the existence and structure of the stable pairings? Second, can we amend
the Gale-Shapley algorithm to construct a stable matching in the new setting?

Unacceptable Partners

Suppose each of n men and n women ranks only a subset of their potential mates.
Potential partners omitted from a person’s list are deemed unacceptable to that
person, and we do not allow any pairing in which either party is unacceptable
to the other. Clearly, we cannot in general guarantee even a complete matching,
since for instance a confirmed bachelor could mark all women as unacceptable.
This suggests a modification of our notion of a stable matching for this problem.
We say a matching (or partial matching) M is unstable if there exists a man m and
woman w who are unmatched in M , each of whom is acceptable to the other, and
each is either single in M , or prefers the other to their partner in M . We will show
that every such problem admits a matching that is stable in this sense, and further
that every stable matching pairs the same subcollection of men and women. We
first require a preliminary observation. We say a person p prefers a matching M1

over a matching M2 if p strictly prefers his or her partner in M1 to p’s match in
M2.

Lemma 2.20. Suppose M1 and M2 are stable matchings of n men and n women,
whose preference lists may include unacceptable partners. If m and w are matched
in M1 but not in M2, then one of m or w prefers M1 over M2, and the other
prefers M2 over M1.

Proof. Suppose m0 and w0 are paired in M1 but not M2. Then m0 and w0 cannot
both prefer M1, since otherwise M2 would not be stable. Suppose that both prefer
M2. Then both have partners in M2, so suppose (m0, w1) and (m1, w0) are in M2.
Both m0 and w1 cannot prefer M2, since M1 is stable, so w1 must prefer M1, and
likewise m1 must prefer M1. These two cannot be paired in M1, so denote their
partners in M1 by m2 and w2. By the same reasoning, both of these people must
prefer M2, but cannot be matched together in M2, so we obtain m3 and w3, who
prefer M1, but are not paired to each other in M1. We can continue this process
indefinitely, obtaining a sequence m0, w0, m2, w2, m4, w4, . . . of distinct men
and women who prefer M2 over M1, and another sequence m1, w1, m3, w3, . . .
of different people who prefer M1 over M2. This is impossible, since there are
only finitely many men and women.

We can now establish an important property of stable matchings when some un-
acceptable partners may be included: For a given set of preferences, every stable
matching leaves the same group of men and women single.

Theorem 2.21. Suppose each of n women ranks a subset of n men as potential
partners, with the remaining men deemed unacceptable, and suppose each of the
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men rank the women in the same way. Then there exists a subset X0 of the women
and a subset Y0 of the men such that every stable matching of the n men and n
women leaves precisely the members of X0 and Y0 unassigned.

Proof. Suppose M1 and M2 are distinct stable matchings, and suppose m1 is
matched in M1 but not in M2. Let w1 be the partner of m1 in M1. Since m1

clearly prefers M1 over M2, by Lemma 2.20 w1 must prefer M2 over M1. Let
m2 be the partner of w1 in M2. Then m2 prefers M1, and so his partner w2 in
M1 must prefer M2 over M1. Continuing in this way, we obtain an infinite se-
quence (m1, w1), (m2, w2), (m3, w3), . . . of distinct couples in M1 (and another
sequence (m2, w1), (m3, w2), (m4, w3), . . . in M2), which is impossible.

We still need to show that at least one stable matching exists, and we can do
this by altering the Gale-Shapley algorithm for preference lists that may include
unacceptable partners. We require just two modifications. First, we terminate the
loop either when all proposers are engaged, or when no free proposer has any
remaining acceptable partners to ask. Second, proposals from unacceptable part-
ners are always rejected. It is straightforward to show that this amended procedure
always produces a stable matching (see Exercise 1). We can illustrate it with an
example. Suppose the four men Iago, Julius, Kent, and Laertes each rank a subset
of the four women Silvia, Thaisa, Ursula, and Viola, and each of the women ranks
a subset of the men, as shown in Figure 2.21. Potential partners omitted from a
person’s list are deemed unacceptable to that person, so for example Iago would
not consider marrying Thaisa or Ursula.

1 2 3
I V S
J S V
K U T S
L S T V

1 2 3 4
S I K L J
T J K
U L I J
V K J

FIGURE 2.21. Preferences with unacceptable partners.

Suppose the men propose. Iago first asks Viola, but she rejects him as an unac-
ceptable partner, so he asks Silvia, who happily accepts. Next, Julius asks Silvia,
who rejects him in favor of Iago, so he proposes to Viola, who now accepts. Ur-
sula then rejects Kent, then Thaisa accepts his proposal. Finally, Laertes proposes
to Silvia, then Thaisa, then Viola, but each rejects him. Our stable matching is
then (Iago, Silvia), (Julius, Viola), and (Kent, Thaisa). The set X0 of unmatch-
able bachelorettes contains only Ursula, and Y0 = {Laertes}.

We have shown how to adapt the Gale-Shapley algorithm to handle incomplete
preference lists, but we can also describe a way to alter the data in such a way that
we can apply the Gale-Shapley algorithm without any modifications. To do this,
we introduce a fictitious man to mark the boundary between the acceptable and
unacceptable partners on each woman’s list, and similarly introduce a fictitious
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woman for the men’s lists. We’ll call our invented man the ogre, and our fictitious
woman, the ogress. Append the ogre to each woman’s ranked list of acceptable
partners, then add her unacceptable partners afterwards in an arbitrary order. Thus,
each woman would sooner marry an ogre than one of her unacceptable partners.
Do the same for the men with the ogress. The ogre prefers any woman over the
ogress, and the ogress prefers any man over the ogre (people are tastier!), but
the rankings of the humans on the ogre’s and ogress’ lists are immaterial. For
example, we can augment the preference lists of Figure 2.21 to obtain the 5 × 5
system of Figure 2.22, using M to denote the ogre and W for the ogress.

1 2 3 4 5
I V S W T U
J S V W T U
K U T S W V
L S T V W U
M S T U V W

1 2 3 4 5
S I K L J M
T J K M I L
U L I J M K
V K J M I L
W I J K L M

FIGURE 2.22. Augmented preference lists.

We can now characterize when the original configuration has a complete stable
matching, that is, a stable pairing where no one is left single.

Theorem 2.22. Suppose each of n men ranks some subset of n women as accept-
able partners, and each of the women does the same for the men. Suppose further
that we obtain an instance of the standard stable marriage problem on n + 1 men
and women by adding an ogre M and ogress W, and augmenting the preference
lists in the manner described above. Then the original system has a complete sta-
ble matching if and only if the augmented system has a stable matching where M
is paired with W.

Proof. Suppose the original system has a complete stable matching. Then each
woman prefers her partner in this matching to the ogre under the augmented
preferences, and likewise no man would leave his partner for the ogress. Thus,
adding (M,W) to this pairing produces a stable matching for the augmented sys-
tem. Next, suppose the augmented system has a stable matching P ′ that includes
(M,W), and let P = P ′ \ {(M,W)}. Suppose (m, w) ∈ P . If m is unaccept-
able to w, then w would prefer the ogre M over m, and certainly M prefers w
over W. This contradicts the stability of P ′. Similarly, w must be acceptable to
m. Thus, P is a complete matching of mutually acceptable partners, and stability
follows at once from the stability of P ′.

Exercise 2 asks you to show that M and W must be paired together in all
stable matchings of the augmented system, if they are paired in any particular
stable matching. Thus, we can determine if a complete stable matching exists by
running the original Gale-Shapley algorithm on the augmented preference lists,
choosing either set as the proposers.
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While applying the Gale-Shapley algorithm in this way always produces a
matching that is stable with respect to the augmented preferences, it is impor-
tant to note that restricting such a pairing back to the original preferences might
not produce a stable matching! For example, when the men propose using the
augmented lists of Figure 2.22, we obtain the stable matching

(Iago, Silvia), (Julius, Viola), (Kent, Ursula),
(Laertes, Ogress), (Ogre, Thaisa).

(2.130)

However, Kent is not acceptable to Ursula, so we must disband this pair when we
restrict to the original preference lists. The surviving pairs are (Iago, Silvia) and
(Julius, Viola), and now Kent and Thaisa are unmatched but mutually acceptable.

Indifference

In the original stable marriage problem, we required that all preferences be strictly
ordered, since each person needed to assign each potential partner a different rank.
However, rankings often contain items that are valued equally. What happens if
we allow weakly ordered rankings, that is, rankings that may contain some ele-
ments of the same rank? Suppose that each of n men supplies a weak ordering of a
set of n women, and each of the women does the same for the men. We’ll assume
for now that all rankings are complete, so there are no unacceptable partners. Must
a stable ranking exist? Can we construct one?

We first require a clarification of our notion of stability for this situation. We
say a matching M of the men and women is unstable if there exists an unmatched
couple m and w, each of whom strictly prefers the other to his or her partner in
M . For example, if m strictly prefers w to his partner, but w ranks m equal to her
partner, then the pair m and w do not violate stability under this definition.

One can certainly study this problem with other notions of stability. For in-
stance, one could demand that no unmatched man and woman weakly prefer each
other to their assigned partners. A matching with no such couples is called super-
stable. Or one could require that no unmatched couple prefer each other, one in a
strict sense and the other in a weak manner. Such a matching is said to be strongly
stable. Since the notion that we employ is the least restrictive, matchings with this
property are often called weakly stable.

Given a collection of weakly ordered preference lists for n men and n women,
we can certainly create a corresponding set of strongly ordered preference lists by
breaking each tie in an arbitrary way. We call the strongly ordered preferences a
refinement of the original weak preferences. A stable matching for the refined lists
certainly exists, and it is easy to see that this matching is also a (weakly) stable
matching for the original, weakly ordered lists. Furthermore, every stable match-
ing for the original preferences can be obtained in this way. We can summarize
these facts in the following theorem.

Theorem 2.23. Suppose each of n men ranks a collection of n women, with tied
rankings allowed, and each woman does the same for the men. Then a stable
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matching for these preferences exists, and further every such stable matching is a
stable matching for some refinement of these weakly ordered rankings.

Proof. For the first part, let P ′ be a refinement of the given list of preferences
P , and let M be a stable matching for P ′. If m and w are unmatched in M , and
according to P strictly prefer each other to their partners in this matching, then
they also strictly prefer each other according to P ′. This is impossible, since M
is stable with respect to P ′. Thus, M is stable with respect to P .

For the second part, suppose M is a stable matching with respect to P . We
need to construct a refinement P ′ of P where M is stable. If (m, w) ∈ M , and
m ranks w′ equal to w in P , then let m rank w ahead of w′ in P ′. Likewise, if
w ranks m′ equal to m in P , then w ranks m ahead of m′ in P ′. Any remaining
tied rankings are broken arbitrarily to complete P ′. Suppose then that m0 and w0

are unmatched in P ′, but prefer each other (according to P ′) to their partners in
M . Since M is stable with respect to P , then either m0 ranks w0 equal to his
partner in M , or w0 ranks m0 equal to her partner in M (or both). We obtain a
contradiction in either case, by the construction of P ′.

G : D > A = C > F
H : A = F > C = D
I : F > C > D > A
K : D > A = C = F

A : I > G = H = K
C : H > G = I > K
D : I > K > H > G
F : H = I > G = K

FIGURE 2.23. Preference lists with indifference.

The Gale-Shapley algorithm requires no modifications for this variation, once
a refinement is selected. Of course, the algorithm may produce different match-
ings for different refinements, even when the same group proposes. For example,
suppose the four men Gatsby, Hawkeye, Ishmael, and Kino, and four women
Apolonia, Cora, Daisy, and Fayaway, submit the preference lists shown in Fig-
ure 2.23. Using the refinement obtained by replacing each = in these lists with
>, the Gale-Shapley algorithm produces the following matching when the men
propose:

(Gatsby, Apolonia), (Hawkeye, Fayaway),
(Ishmael, Cora), (Kino, Daisy).

(2.131)

However, if we reverse the order of Apolonia and Cora in the refinement of
Gatsby’s list, and the order of Apolonia and Fayaway in Hawkeye’s, we then
obtain a very different stable matching:

(Gatsby, Cora), (Hawkeye, Fayaway),
(Ishmael, Daisy), (Kino, Apolonia).

(2.132)

Finally, we may also ask about combining this extension of the stable marriage
problem with the prior one. Suppose the men and women supply weakly ordered
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rankings, and may also declare some potential partners as unacceptable. The sta-
ble matching problem becomes much more complicated in this case. Even the size
of a stable matching may vary, in contrast to the case of unacceptable partners with
strict rankings, where Theorem 2.21 guarantees that all stable matchings have not
only the same size, but match exactly the same men and women. For example,
consider the following 2× 2 system from [196], where A finds Y acceptable but
not Z , and Z finds B acceptable but not A.

A : Y
B : Y > Z

Y : A = B
Z : B

These preferences admit exactly two stable matchings, which have different sizes:
{(A, Y ), (B, Z)} and {(B, Y )}.

We might ask if we could determine a stable matching of maximal size in a
problem like this, since this would often be desirable. However, no fast algorithm
is known for computing this in the general n × n case. (Here, a “fast” algorithm
would have its running time bounded by a polynomial in n.) In fact, it is known
[196] that this problem belongs to a family of difficult questions known as NP-
complete problems. The problem remains hard even if ties are allowed in only the
men’s or only the women’s preferences, and all ties occur at the end of each list,
even if each person is allowed at most one tied ranking.

Sets of Different Sizes

Every stable marriage problem we have considered so far required an equal num-
ber of men and women. Suppose now that one group is larger than the other. Of
course, we could not possibly match everyone with a partner now, but can we find
a stable matching that pairs everyone in the smaller set? Here, we say a matching
(or partial matching) M is unstable if there exists a man m and woman w, un-
matched in M , such that each is either single in M , or prefers the other to his or
her partner in M .

We can solve this variation by considering it to be a special case of the problem
with unacceptable partners. Suppose we have k men and n women, with n > k.
Suppose also that each of the men rank each of the women in strict order, and each
of the women reciprocate for the men. We introduce n−k ghosts to the set of men.
Each ghost finds no woman to be an acceptable partner, and each women would
not accept any ghost. Then a stable matching exists by the modified Gale-Shapley
algorithm for unacceptable partners, and by Theorem 2.21 there exists a set X0

of women and Y0 of ghosts and men such that the members of X0 and Y0 are
precisely the unassigned parties in any stable matching. Certainly Y0 includes all
the ghosts, since they have no acceptable partners. But no man can be unassigned
in a stable matching, since each man is acceptable to all the women. Thus, X0 is
empty and Y0 is precisely the set of ghosts, and we obtain the following theorem.

Theorem 2.24. Suppose each of k men ranks each of n women in a strict order-
ing, and each of the women ranks the men in the same way. Then

(i) a stable matching exists,
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(ii) every stable matching pairs every member of the smaller set, and

(iii) there exists a subset X of the larger set such that every stable matching
leaves the members of X unassigned, and the others all matched.

An example with groups of different sizes appears in Exercise 6. Some other in-
teresting variations (and combinations of variations) on the stable marriage prob-
lem are introduced in the exercises too. We will study marriage problems further
in Chapter 3, where in Section 3.8 we investigate matchings for various infinite
sets.

Exercises

1. Prove that the Gale-Shapley algorithm, amended to handle unacceptable
partners, always produces a stable matching.

2. Prove that if the ogre and ogress are paired in some stable matching for an
augmented system of preferences as in Theorem 2.22, then they must be
paired in every such stable matching.

3. (a) Verify the stable matching (2.130) produced by the Gale-Shapley al-
gorithm when the men propose using the preferences in Figure 2.22.

(b) Compute the stable matching obtained when the women propose us-
ing these preferences. Does this pairing restrict to a stable matching
for Figure 2.21?

(c) In the augmentation procedure for the case of unacceptable partners,
we can list the unacceptable partners for each person in any order after
the ogre or ogress, and we can list the humans in any order in the lists
for the ogre and ogress. Show that one can select orderings when aug-
menting the preferences of Figure 2.21 so that when the men propose
in the Gale-Shapley algorithm, one obtains a pairing that restricts to a
stable matching of Figure 2.21.

4. The following problems all refer to the weakly ordered preference lists of
Figure 2.23.

(a) Verify the matching (2.131) obtained from the refinement obtained by
replacing each = with >, when the men propose in the Gale-Shapley
algorithm. Then determine the matching obtained when the women
propose.

(b) Verify (2.132) using the refinement obtained from the previous one
by reversing the order of Apolonia and Cora in Gatsby’s list, and
Apolonia and Fayaway in Hawkeye’s. Then determine the matching
obtained when the women propose.

(c) Construct another refinement by ranking any tied names in reverse
alphabetical order. Compute the stable matchings constructed by the
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Gale-Shapley algorithm when the men propose, then when the women
propose.

5. Construct three refinements of the following preference lists so that the
Gale-Shapley algorithm, amended for unacceptable partners, produces a
stable matching of a different size in each case.

A : W
B : W > X
C : W > X > Y
D : W > X > Y > Z

W : A = B = C = D
X : B = C = D
Y : C = D
Z : D

6. Suppose the five men Arceneaux, Boudreaux, Comeaux, Duriaux, and Gaut-
reaux, each rank the three women Marteaux, Robichaux, and Thibodeaux
in order of preference, and the women each rank the men, as shown in the
following tables.

1 2 3
A R T M
B T R M
C M T R
D T M R
G R T M

1 2 3 4 5
M A D B C G
R D G A C B
T G A D C B

Determine the stable matching obtained when the men propose, then the
matching found when the women propose. What is the set X of Theo-
rem 2.24 for these preferences?

7. Suppose we allow weakly ordered rankings in the hypothesis of Theo-
rem 2.24. Determine which of the conclusions still hold, and which do not
necessarily follow. Supply a proof for any parts that do hold, and supply a
counterexample for any parts that do not.

8. Suppose that each of n students, denoted S1, S2, . . . , Sn, ranks each of
m universities, U1, U2, . . . , Um, and each university does the same for the
students. Suppose also that university Uk has pk open positions. We say an
assignment of students to universities is unstable if there exists an unpaired
student Si and university Uj such that Si is either unassigned, or prefers Uj

to his assignment, and Uj either has an unfilled position, or prefers Si to
some student in the new class.

(a) Assume that
∑m

k=1 pk = n. Explain how to amend the preference lists
so that the Gale-Shapley algorithm may be used to compute a stable
assignment of students to universities, with no university exceeding
its capacity.
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(b) Repeat this problem without assuming that the number of students
matches the total number of open positions.

(c) Suppose each student ranks only a subset of the universities, and each
university ranks only a subset of the students who apply to that school.
Assume that unranked possibilities are unacceptable choices. Modify
the definition of stability for this case, then describe how to use the
Gale-Shapley algorithm to determine a stable assignment.

9. Suppose that each of n students, denoted S1, S2, . . . , Sn, needs to enroll in
a number of courses from among m possible offerings, denoted C1, C2, . . . ,
Cm. Assume that student Si can register for up to qi courses, and course
Cj can admit up to rj students. An enrollment is a set of pairs (Si, Cj)
where each student Si appears in at most qi such pairs, and each course Cj

appears in at most rj pairs. Suppose each student ranks a subset of accept-
able courses in order of preference, and the supervising professor of each
course ranks a subset of acceptable students. Define a stable enrollment in
an appropriate way.

2.10 Combinatorial Geometry

We should expose the student to some material that has strong
intuitive appeal, is currently of research interest to professional
mathematicians, and in which the student himself may discover
interesting problems that even the experts are unable to solve.

— Victor Klee, from the translator’s preface to
Combinatorial Geometry in the Plane [144]

The subject of combinatorial geometry studies combinatorial problems regarding
arrangements of points in space, and the geometric figures obtained from them.
Such figures include lines and polygons in two dimensions, planes and polyhedra
in three, and hyperplanes and polytopes in n-dimensional space. This subject has
much in common with the somewhat broader subject of discrete geometry, which
treats all sorts of geometric problems on discrete sets of points in Euclidean space,
especially extremal problems concerning quantities such as distance, direction,
area, volume, perimeter, intersection counts, and packing density.

In this section, we provide an introduction to the field of combinatorial geom-
etry by describing two famous problems regarding points in the plane: a question
of Sylvester concerning the collection of lines determined by a set of points, and
a problem of Erdős, Klein, and Szekeres on the existence of certain polygons that
can be formed from large collections of points in the plane. The latter problem
leads us again to Ramsey’s theorem, and we prove this statement in a more gen-
eral form than what we described in Section 1.8. (Ramsey theory is developed
further in Chapter 3.) In particular, we establish some of the bounds on the Ram-
sey numbers R(p, q) that were cited in Section 1.8.
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2.10.1 Sylvester’s Problem

Thufferin’ thuccotash!
— Sylvester the cat, Looney Tunes

James Joseph Sylvester, a British-born mathematician, spent the latter part of his
career at Johns Hopkins University, where he founded the first research school in
mathematics in America, and established the first American research journal in
the subject, The American Journal of Mathematics. Toward the end of his career,
Sylvester posed the following problem in 1893, in the “Mathematical Questions”
column of the British journal, Educational Times [265].

Sylvester’s Problem. Given n ≥ 3 points in the plane which do not all lie on the
same line, must there exist a line that passes through exactly two of them?

Given a collection of points in the plane, we say a line is ordinary if it passes
through exactly two of the points. Thus, Sylvester’s problem asks if an ordinary
line always exists, as long as the points are not all on the same line.

This problem remained unsolved for many years, and seemed to have been
largely forgotten until Erdős rediscovered it in 1933. Tibor Gallai, a friend of
Erdős’ who is also known as T. Grünwald, found the first proof in the same year.
Erdős helped to revive the problem by posing it in the “Problems” section of the
American Mathematical Monthly in 1933 [89], and Gallai’s solution was pub-
lished in the solution the following year [264].

Kelly also produced a clever solution, which was published in a short article
by Coxeter in 1948 [62], along with a version of Gallai’s argument. Forty years
later, the computer scientist Edsger Dijkstra derived a similar proof, but with a
more algorithmic viewpoint [76]. The proof we present here is based on Dijkstra’s
algorithm. Given any collection of three or more points which do not all lie on the
same line, it constructs a line with the required property.

In this method, we start with an arbitrary line 
1 connecting at least two points
of the set, and some point S1 from the set that does not lie on 
1. If 
1 contains just
two of the points, we are done, so suppose that at least three of the points lie on

1. The main idea of the method is to construct from the current line 
1 and point
S1 another line 
2 and point S2, with S2 not on 
2. Then we iterate this process,
constructing 
3 and S3, then 
4 and S4, etc., until one is assured of obtaining a line
that connects exactly two of the points of the original collection. In order to ensure
that the procedure does not cycle endlessly, we introduce a termination argument:
a strictly monotone function of the state of the algorithm. A natural candidate is
the distance dk from the point Sk to the line 
k, so dk = d(Sk, 
k). We therefore
aim to construct 
k+1 and Sk+1 from 
k and Sk in such a way that dk+1 < dk.
Since there are only finitely many points, there are only finitely many possible
values for dk, so if we can achieve this monotonicity, then it would follow that the
procedure must terminate.

We derive a procedure that produces a strictly decreasing sequence {dk}. Sup-
pose the line 
k contains the points Pk, Qk, and Rk from our original collection,
and Sk is a point from the set that does not lie on 
k. We need to choose 
k+1 and
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Sk+1 so that dk+1 < dk. Suppose we set Sk+1 to be one of the points that we
labeled on 
k, say Sk+1 = Qk. Certainly Qk does not lie on either of the lines
PkSk or RkSk, so we might choose one of these two lines for our 
k+1. Can we
guarantee that one of these choices will produce a good value for dk+1? To test
this, let

pk = d(Qk, PkSk)

and
rk = d(Qk, RkSk).

We require then that
min(pk, rk) < dk. (2.133)

k

kd
Pk Q

k

kp

S

FIGURE 2.24. Similar triangles in the construction.

Using similar triangles in Figure 2.24, we see that the inequality pk < dk is
equivalent to the statement

d(Pk, Qk) < d(Pk, Sk), (2.134)

and likewise rk < dk is equivalent to the inequality

d(Qk, Rk) < d(Sk, Rk). (2.135)

Now at least one of (2.134) or (2.135) must hold if

d(Pk, Qk) + d(Qk, Rk) < d(Pk, Sk) + d(Sk, Rk).

Further, since Sk does not lie on 
k, by the triangle inequality we know that

d(Pk, Rk) < d(Pk, Sk) + d(Sk, Rk).

Therefore, inequality (2.133) follows from the statement

d(Pk, Qk) + d(Qk, Rk) ≤ d(Pk, Rk).

However, by the triangle inequality, we know that

d(Pk, Qk) + d(Qk, Rk) ≥ d(Pk, Rk).
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Thus, we require that

d(Pk, Qk) + d(Qk, Rk) = d(Pk, Rk).

Clearly, this latter condition holds if and only if Qk lies between Pk and Rk on

k. We therefore obtain the following algorithm for solving Sylvester’s problem.

Algorithm 2.25. Construct an ordinary line.

Input. A set of n ≥ 3 points in the plane, not all on the same line.

Output. A line connecting exactly two of the points.

Description.

Step 1. Let 
1 be a line connecting at least two of the points in the given set,
and let S1 be a point from the collection that does not lie on 
1. Set
k = 1, then perform Step 2.

Step 2. If 
k contains exactly two points from the original collection, then out-
put 
k and stop. Otherwise, perform Step 3.

Step 3. Let Pk , Qk, and Rk be three points from the given set that lie on 
k,
with Qk lying between Pk and Rk. Set Sk+1 = Qk, and set 
k+1 =
PkSk if d(Qk, PkSk) < d(Qk, PkRk); otherwise set 
k+1 = RkSk.
Then increment k by 1 and repeat Step 2.

Now Sylvester’s problem is readily solved: The monotonicity of the sequence
{dk} guarantees that the algorithm must terminate, so it must produce a line con-
necting just two points of the given set. An ordinary line must therefore always
exist.

We can illustrate Dijkstra’s algorithm with an example. Figure 2.25 shows a
collection of thirteen points that produce just six ordinary lines (shown in bold),
along with 21 lines that connect at least three of the points. Figure 2.26 illustrates
the action of Algorithm 2.25 on these points, using a particular initial configura-
tion. Each successive diagram shows the line 
k, the point Sk off the line, and the
points Pk, Qk, and Rk on the line.

Much more is now known about Sylvester’s problem. For example, Csima and
Sawyer [64, 65] proved that every arrangement of n ≥ 3 points in the plane,
not all on the same line, must produce at least 6n/13 ordinary lines, except for
certain arrangements of n = 7 points. Figure 2.25 shows that this bound is best
possible, and Exercise 2 asks you to determine an exceptional configuration for
n = 7. Also, it has long been conjectured that there are always at least �n/2�
ordinary lines for a set of n non-colinear points, except for n = 7 and n = 13, but
this remains unresolved. For additional information on Sylvester’s problem and
several of its generalizations, see the survey article by Borwein and Moser [34],
or the book by Brass, Moser, and Pach [37, sec. 7.2].
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FIGURE 2.25. A collection of thirteen points with just six ordinary lines.

Exercises

1. Exhibit an arrangement of six points in the plane that produce exactly three
ordinary lines.

2. Exhibit an arrangement of seven points in the plane that produce exactly
three ordinary lines.

3. Exhibit an arrangement of eight points in the plane that produce exactly
four ordinary lines.

4. Exhibit an arrangement of nine points in the plane that produce exactly six
ordinary lines.

5. Suppose n ≥ 3 points in the plane do not all lie on the same line. Show that
if one joins each pair of points with a straight line, then one must obtain at
least n distinct lines.

6. We say a set of points B is separated if there exists a positive number δ
such that the distance d(P, Q) ≥ δ for every pair of points P and Q in B.
Describe an infinite, separated set of points in the plane, not all on the same
line, for which no ordinary line exists. What happens if you apply Dijkstra’s
algorithm to this set of points?

7. Repeat problem 6, if each of the points (x, y) must in addition satisfy
|y| ≤ 1.
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k = 1 k = 2

k = 3 k = 4

k = 5 k = 6

k = 7

FIGURE 2.26. Dijkstra’s algorithm.
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8. Let the set S consist of the point (0, 0), together with all the points in the
plane of the form ( 1

3k−1 , 1
3k−1 ), ( −1

3k−1 , 1
3k−1 ), or (0, 2

3k−2 ), where k is
an arbitrary integer. Show that every line connecting two points of S must
intersect a third point of S.

9. Consider the following collection T of three-element subsets of the seven-
element set S = {a, b, c, d, e, f, g}:

T = {{a, b, c}, {a, d, e}, {a, f, g}, {b, d, f}, {b, e, g}, {c, d, g}, {c, e, f}}.

(a) Verify that each two-element subset of S is in fact a subset of one of
the members of T , and that any two distinct sets in T have at most
one element in common.

(b) Explain how this example is germane to Sylvester’s problem. Hint:
Try thinking of the elements of S as points, and the elements of T as
lines.

2.10.2 Convex Polygons

I would certainly pay $500 for a proof of Szekeres’ conjecture.
— Paul Erdős, [92, p. 66]

A set of points S in the plane is said to be convex if for each pair of points a and
b in S, the line segment joining a to b lies entirely in S. Loosely, then, a convex
set has no “holes” in its interior, and no “dents” in its boundary. Line segments,
triangles, rectangles, and ellipses are thus all examples of convex sets.

The convex hull of a finite collection of points T in the plane is defined as
the intersection of all closed convex sets which contain T . Less formally, if one
imagines T represented by a set of pushpins in a bulletin board, then the convex
hull of T is the shape enclosed by a rubber band when it is snapped around all
the pushpins. The convex hull of a set of three points then is either a triangle or a
line segment, and for four points we may obtain one of these shapes, or a convex
quadrilateral.

In order to avoid degenerate cases, we will assume in this section that our given
collection of points is in general position, which means that no three points lie on
the same line, or, using the term from the previous section, that each line connect-
ing two of the points is ordinary. Thus, the convex hull of a set of four points in
general position forms either a quadrilateral, or a triangle whose interior contains
the fourth point of the collection. In the early 1930s, Esther Klein observed that
one can always find a convex quadrilateral in a collection of five points in general
position.

Theorem 2.26. Any collection of five points in the plane in general position con-
tains a four-element subset whose convex hull is a quadrilateral.

Proof. Suppose we are given a collection of five points in the plane, with no three
on the same line. If their convex hull is a pentagon or a quadrilateral, then the
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statement follows, so suppose that it forms a triangle. Let a and b be the two
points of the collection lying inside the triangle, and let 
 be the line connecting a
and b. Since the points are in general position, two of the vertices of the triangle
lie on one side of 
. Label them c and d. Then the convex hull of {a, b, c, d} is a
quadrilateral. See Figure 2.27.

FIGURE 2.27. A convex quadrilateral may always be found among five points in general
position.

Klein then asked about a natural generalization. How many points in the plane
(in general position) are required in order to be certain that some subset forms
the convex hull of a polygon with n sides? Does such a number exist for each n?
For example, Figure 2.28 illustrates a collection of eight points, no five of which
produce a convex pentagon, and a set of sixteen points, no six of which forms
a convex hexagon. Thus, at least nine points are needed for n = 5, and at least
seventeen for n = 6.

FIGURE 2.28. Eight points with no convex pentagon, and sixteen points with no convex
hexagon.

Erdős and Szekeres studied this problem in their first joint paper, in 1935 [94].
There they independently developed a version of Ramsey’s theorem, and the proof
we describe in this section is based on their argument. The statement we develop
here is much more general than the special case of Ramsey’s theorem that we
described in Section 1.8, although Ramsey in fact established a still more general
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result in his seminal paper of 1930 [232] (see Exercise 7). We will also derive
the bounds on the ordinary Ramsey numbers R(m, n) stated in Theorems 1.63
and 1.64 of Section 1.8 as special cases.

Let ES(n) denote the minimal number of points in the plane in general position
that are required so that there must exist a subcollection of n points whose convex
hull is a polygon with n sides (an n-gon). Thus, we have seen that ES(3) = 3,
ES(4) = 5, and, from Figure 2.28, that ES(5) ≥ 9 and ES(6) ≥ 17. We aim
to show that ES(n) exists for each n by obtaining an upper bound on its value,
in terms of n. As a first step, we show that it is enough to find a collection of n
points, each of whose four-element subsets forms a convex quadrilateral.

Theorem 2.27. Suppose S is a set of n points in the plane in general position
with the property that each four-element subset of S is the vertex set of a convex
quadrilateral. Then S is the set of vertices of a convex n-gon.

Proof. Let H denote the convex hull of S, and suppose a ∈ S lies in the interior
of H . Let b ∈ S with a �= b. Divide H into triangles by joining b to each vertex
of H . Then a lies in the interior of one of these triangles, and we label its vertices
b, c, and d. But then {a, b, c, d} is a four-element subset of S whose convex hull
is a triangle, contradicting our assumption.

Next, we develop the more general version of Ramsey’s theorem. Recall that in
Section 1.8 we defined R(m, n) to be the smallest positive integer N such that any
2-coloring of the edges of the complete graph KN (using the colors red and blue)
must produce either a red Km or a blue Kn as a subgraph. Coloring each edge of
KN is certainly equivalent to assigning a color to each of the

(
N
2

)
subsets of size 2

of the set {1, 2, . . . , N}, and so we might consider what happens more generally
when we assign a color to each of the

(
N
k

)
subsets of size k, for a fixed positive

integer k. We call such a subset a k-subset of the original set. Ramsey’s theorem
extends in a natural way to this setting. For convenience, we let [N ] denote the set
{1, 2, . . . , N}, and we define the generalized Ramsey numbers in the following
way.

Definition. For positive integers k, m, and n, with m ≥ k and n ≥ k, the Ramsey
number Rk(m, n) is defined as the smallest positive integer N such that in any
2-coloring of the k-subsets of [N ] (using the colors red and blue) there must exist
either a subset of m elements, each of whose k-subsets is red, or a subset of n
elements, each of whose k-subsets is blue.

Thus, the Ramsey numbers R(m, n) of Section 1.8 are denoted by R2(m, n)
here. Also, just as the ordinary Ramsey numbers can be described in terms of
coloring edges of complete graphs, so too can we describe Rk(m, n) in terms of
coloring edges of certain hypergraphs (see Exercise 1).

The next theorem establishes that the Ramsey numbers Rk(m, n) always exist,
and provides an upper bound on their values.
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Theorem 2.28 (Ramsey’s Theorem). Let k, m, and n be positive integers, with
min{m, n} ≥ k. Then the Ramsey number Rk(m, n) exists. Furthermore, for
each such k, m, and n, we have

R1(m, n) = m + n− 1, (2.136)

Rk(k, n) = n, (2.137)

Rk(m, k) = m, (2.138)

and, if min{m, n} > k ≥ 2, then

Rk(m, n) ≤ Rk−1

(
Rk(m− 1, n) + Rk(m, n− 1)

)
+ 1. (2.139)

Proof. First, consider the case k = 1. If the elements of [N ] are each colored red
or blue, and there are fewer than m red elements and fewer than n blue elements,
then certainly N ≤ m + n− 2, and (2.136) follows.

Second, suppose k = m, and suppose that each k-subset of [N ] is colored red
or blue. If any is red then we have a qualifying m-subset, so suppose all are blue.
Then we have a qualifying n-subset precisely when N ≥ n. Thus, the formula
(2.137) follows, and by symmetry so does (2.138).

To establish (2.139), suppose min{m, n} > k ≥ 2. Using induction on k,
we may assume that Rk−1(a, b) exists for all integers a and b with min{a, b} ≥
k − 1, and further by induction on m + n we may assume that Rk(m − 1, n)
and Rk(m, n− 1) both exist. Let m′ = Rk(m− 1, n), n′ = Rk(m, n− 1), and
N = Rk−1(m′, n′) + 1, and consider an arbitrary 2-coloring C of the k-subsets
of [N ] using the colors red and blue. Create a coloring C′ of the (k − 1)-subsets
of [N − 1] by assigning a subset X of size k − 1 the color of the set X ∪ {N}
in C. Since N − 1 = Rk−1(m′, n′), the coloring C′ must produce either a subset
of [N − 1] of cardinality m′, each of whose (k − 1)-subsets is red, or a subset of
[N − 1] of cardinality n′, each of whose (k− 1)-subsets is blue. Suppose the first
possibility occurs (the argument for the second case is symmetric), and let S be
a qualifying subset of [N − 1]. Since S has m′ = Rk(m − 1, n) elements, there
must exist either a subset of size m−1 of S, each of whose k-subsets is red in the
original coloring C, or a subset of size n of S, each of whose k-subsets is blue
in C. In the latter case, we are done, so suppose the former case occurs, and let
T be such a subset of [N − 1]. Let T ′ = T ∪ {N}, and suppose X is a k-subset
of T ′. If N �∈ X , then X ⊆ S, so X is red in C. If N ∈ X , then X \ {N} is a
(k − 1)-subset of S and so is red in C′, and thus X is red in C.

Using this result, we can now establish the upper bound for the original Ramsey
numbers R2(m, n) that was cited in Section 1.8.

Corollary 2.29. Suppose m and n are integers with min{m, n} ≥ 2. Then

R2(m, n) ≤ R2(m− 1, n) + R2(m, n− 1) (2.140)

and

R2(m, n) ≤
(

m + n− 2
m− 1

)

. (2.141)
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Proof. The inequality (2.140) follows at once from (2.136) and (2.139). The for-
mulas (2.137) and (2.138) produce equality in (2.141) for the cases m = 2 and
n = 2 respectively, and the general inequality follows by induction on m+n (see
Exercise 3).

Armed with Ramsey’s theorem, we may now prove that a sufficiently large
collection of points in the plane in general position must contain a subset that
forms the vertices of a convex n-gon, for any positive integer n.

Theorem 2.30. If n ≥ 3 is an integer, then ES(n) ≤ R4(5, n).

Proof. Let S be a collection of N = R4(5, n) points in the plane in general
position. For each four-element subset T of S, assign T the color red if its convex
hull is a triangle, and assign it the color blue if it is a quadrilateral. By Ramsey’s
Theorem, there must exist either a five-element subset of S whose 4-subsets are
all red, or an n-element subset of S whose 4-subsets are all blue. The former case
is impossible by Theorem 2.26, so the latter case must occur, and this implies that
the n points form the vertex set of a convex n-gon by Theorem 2.27.

Much more is known about the quantity ES(n). In the same article [94], Erdős
and Szekeres employ a separate geometric argument to show that in fact

ES(n) ≤
(

2n− 4
n− 2

)

+ 1.

Since then, this bound has been improved several times. For example, in 2005
Tóth and Valtr [268] proved that

ES(n) ≤
(

2n− 5
n− 2

)

+ 1

for n ≥ 5.
Few exact values of ES(n) have been determined. In [94], Erdős and Szekeres

noted that Makai first proved that ES(5) = 9, so Figure 2.28 exhibits an extremal
configuration. Proofs of this statement were published later in [171] and [30]. In
2006, Szekeres and Peters [266] employed a computational strategy to establish
that ES(6) = 17. Thus, again Figure 2.28 illustrates an optimal arrangement.
Erdős and Szekeres conjectured that in fact ES(n) = 2n−2 + 1 for all n ≥ 3, and
this problem remains open. This is the $500 conjecture that Erdős was referring
to in the quote that opens this section.

It is known that ES(n) cannot be any smaller than the conjectured value. In
1961, Erdős and Szekeres [95] described a method for placing 2n−2 points in the
plane in general position so that no convex n-gon appears. Their construction was
later corrected by Kalbfleisch and Stanton [172]. Thus, certainly

ES(n) ≥ 2n−2 + 1

for n ≥ 7. For additional information on this problem and many of its general-
izations, see for instance the books by Brass, Moser, and Pach [37, sec. 8.2] and



2.10 Combinatorial Geometry 275

Matoušek [200, chap. 3], the survey article by Morris and Soltan [208], or the
note by Dumitrescu [82].

Exercises

1. State Ramsey’s theorem in terms of coloring edges of certain hypergraphs.

2. Exhibit a collection of eight points in general position in the plane whose
convex hull is a triangle, so that no subset of four points forms the vertex
set of a convex quadrilateral.

3. Complete the proof of Corollary 2.29.

4. (Johnson [169].) If S is a finite set of points in the plane in general position,
and T is a subset of S of size 3, let ψS(T ) denote the number of points of
S that lie in the interior of the triangle determined by T . Complete the
following argument to establish a different upper bound on ES(n).

(a) Let n ≥ 3 be an integer. Prove that if S is sufficiently large, then there
exists a subset U of S of size n such that either every 3-subset T of U
has ψS(T ) even, or every such subset has ψS(T ) odd.

(b) If U does not form the vertex set of a convex n-gon, then by Theo-
rem 2.27 there exist four points a, b, c, and d of U , with d lying inside
the triangle determined by a, b, and c. Show that

ψS({a, b, c}) = ψS({a, b, d}) + ψS({b, c, d}) + ψS({a, c, d}) + 1.

(c) Establish a contradiction and conclude that ES(n) ≤ R3(n, n).

5. (Tarsy [188].) If a, b, and c form the vertices of a triangle in the plane, let
θ(a, b, c) = 1 if the path a → b → c → a induces a clockwise orientation
of the boundary, and let θ(a, b, c) = −1 if it is counterclockwise. Thus,
for example, θ(a, b, c) = −θ(a, c, b). Complete the following argument to
establish an upper bound on ES(n).

(a) Let n ≥ 3 be an integer, and let S = {v1, v2, . . . , vN} be a set of
labeled points in the plane in general position. Prove that if N is suffi-
ciently large, then there exists a subset U of S of size n such that either
every 3-subset {vi, vj , vk} of U with i < j < k has θ(vi, vj , vk) = 1,
or every such subset has θ(vi, vj , vk) = −1.

(b) Prove that if S contains a 4-subset whose convex hull is a triangle,
then this subset must contain triangles of both orientations with re-
spect to the ordering of the vertices.

(c) Conclude that ES(n) ≤ R3(n, n).
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6. Complete the proof of Theorem 1.64 by proving that if m and n are positive
integers with min{m, n} ≥ 2, and R2(m−1, n) and R2(m, n−1) are both
even, then

R2(m, n) ≤ R2(m− 1, n) + R2(m, n− 1)− 1.

Use the following strategy. Let r1 = R2(m − 1, n), r2 = R2(m, n − 1),
and N = r1 + r2 − 1. Suppose that the edges of KN are 2-colored, using
the colors red and blue, in such a way that no red Km nor blue Kn appears.

(a) Show that the red degree of any vertex in the graph must be less than
r1.

(b) Show that the red degree of any vertex in the graph must equal r1−1.

(c) Compute the number of red edges in the graph, and establish a con-
tradiction.

7. Prove the following more general version of Ramsey’s theorem. Let k, n1,
n2, . . . , nr be positive integers, with min{n1, . . . , nr} ≥ k, and let c1,
c2, . . . , cr denote r different colors. Then there exists a positive integer
Rk(n1, . . . , nr) such that in any r-coloring of the k-subsets of a set with
N ≥ Rk(n1, . . . , nr) elements, there must exist a subset of ni elements,
each of whose k-subsets has color ci, for some i with 1 ≤ i ≤ r.

8. (Schur [251].) If C is an r-coloring of the elements of [N ], then let C′ be the
r-coloring of 2-subsets of [N ] ∪ {0} obtained by assigning the pair {a, b}
the color of |b− a| in C.

(a) Use the generalized Ramsey’s Theorem of Exercise 7 to assert that if
N is sufficiently large then in [N ]∪{0} there must exist a set of three
nonnegative integers, each of whose 2-subsets has the same color in
C′.

(b) Conclude that if N is sufficiently large then there exist integers a and
b in [N ], with a + b ≤ N , such that a, b, and a + b all have the same
color in C.

9. Let S be a finite set of points in the plane, and let P be a convex polygon
whose vertices are all selected from S. We say P is empty (with respect
to S) if its interior contains no points of S. Erdős asked if for each integer
n ≥ 3 there exists a positive integer ES0(n) such that any set of at least
ES0(n) points in general position in the plane must contain an empty n-
gon, but this need not be the case for sets with fewer than ES0(n) points.

(a) Compute ES0(3) and ES0(4).
(b) (Ehrenfeucht [91].) Prove that ES0(5) exists by completing the fol-

lowing argument. Let S be a set of ES(6) points in general position
in the plane, and let P be a convex hexagon whose vertices lie in S,
selected so that its interior contains a minimal number of points of S.
Denote this number by m.
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i. Complete the proof if m = 0 or m = 1.

ii. If m ≥ 2, let H be the convex hull of the points of S lying inside
P , and let 
 be a line determined by two points on the boundary
of H . Finish the proof for this case.

The argument above establishes that ES0(5) ≤ 17; in 1978 Harborth [151]
showed that in fact ES0(5) = 10. Horton [164] in 1983 proved the sur-
prising result that ES0(n) does not exist for n ≥ 7. More recently, Gerken
[121] and Nicolás [215] solved the problem for n = 6: A sufficiently large
set of points in the plane in general position must contain an empty convex
hexagon. The precise value of ES0(6) remains unknown, though it must
satisfy 30 ≤ ES0(6) ≤ ES(9) ≤ 1717. (An example by Overmars [219]
establishes the lower bound; additional information on the upper bound can
be found in [182, 271].)

2.11 References

You may talk too much on the best of subjects.
— Benjamin Franklin, Poor Richard’s Almanack

We list several additional references for the reader who wishes to embark on fur-
ther study.

General References

The text by van Lint and Wilson [273] is a broad and thorough introduction to the
field of combinatorics, covering many additional topics. Classical introductions to
combinatorial analysis include Riordan [235] and Ryser [246], and many topics in
discrete mathematics and enumerative combinatorics are developed extensively in
Graham, Knuth, and Patashnik [133]. The text by Pólya, Tarjan, and Woods [227]
is a set of notes from a course in enumerative and constructive combinatorics. A
problems-oriented introduction to many topics in combinatorics and graph theory
can be found in Lovász [191]. The book by Nijenhuis and Wilf [216] describes
efficient algorithms for solving a number of problems in combinatorics and graph
theory, and a constructive view of the subject is developed in Stanton and White
[263]. Texts by Aigner [4, 5], Berge [24], Comtet [60], Hall [146], and Stanley
[261, 262] present more advanced treatments of many aspects of combinatorics.

Combinatorial Identities

The history of binomial coefficients and Pascal’s triangle is studied in Edwards
[85], and some interesting patterns in the rows of Pascal’s triangle are observed
by Granville [138]. Combinatorial identities are studied in Riordan [236], and
automated techniques for deriving and proving identities involving binomial co-
efficients and other quantities are developed in Petkovšek, Wilf, and Zeilberger
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[222]. Combinatorial proofs for many identities are also developed in the book by
Benjamin and Quinn [22].

Pigeonhole Principle

More nice applications of the pigeonhole principle, together with many other suc-
cinct proofs in combinatorics and other subjects, are described in Aigner and
Ziegler [6]. An interesting card trick based in part on a special case of Theo-
rem 2.4 is described by Mulcahy [210]. Polynomials with {−1, 0, 1} coefficients
and a root of prescribed order m at x = 1, as in Exercise 14 of Section 2.4, are
studied by Borwein and Mossinghoff [35].

Generating Functions

More details on generating functions and their applications can be found for in-
stance in the texts by Wilf [284] and Graham, Knuth, and Patashnik [133], and
in the survey article by Stanley [260]. The problem of determining the minimal
degree dk of a polynomial with {0, 1} coefficients that is divisible by (x+1)k, as
in Exercise 5 of Section 2.6.5, is studied by Borwein and Mossinghoff [36]. Some
properties of the generalized Fibonacci numbers (Exercise 8b of Section 2.6.5)
are investigated by Miles [203].

Pólya’s Theory of Counting

Pólya’s seminal paper on enumeration in the presence of symmetry is translated
into English by Read in [226]. Redfield [233] independently devised the notion of
a cycle index for a group, which he termed the group reduction formula, ten years
before Pólya’s paper. As a result, many texts call this topic Pólya-Redfield theory.
This theory, along with the generalization incorporating a color group, is also de-
scribed in the expository article by de Bruijn [68], and his research article [69].
Further generalizations of this theory are explored by de Bruijn in [70], culminat-
ing in a “monster theorem.” Another view of de Bruijn’s theorem is developed by
Harary and Palmer in [149; 150, chap. 6].

Applications of this theory in chemistry are described in the text by Fujita
[116], and additional references for enumeration problems in this field are col-
lected in the survey article [13]. Some applications of Pólya’s and de Bruijn’s
theorems in computer graphics appear for example in articles by Banks, Linton,
and Stockmeyer [15, 16].

More Numbers

The book [10] by Andrews and Eriksson is an introduction to the theory of parti-
tions of integers, directed toward undergraduates. A more advanced treatment is
developed by Andrews [9]. Euler’s original proof of the pentagonal number the-
orem, along with some of its additional ramifications, is described by Andrews
in [8].
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The history of Stirling numbers, the notations developed for them, and many in-
teresting identities they satisfy are discussed by Knuth in [177]. Rhyming schemes,
as in Exercise 7d of Section 2.8.3 and Exercise 8 of Section 2.8.4, are analyzed
by Riordan [237]. Stirling set numbers arise in a natural way in an interesting
problem on juggling in an article by Warrington [280]. Some identities involving
the complementary Bell numbers (Exercise 6 of Section 2.8.4) are established in
the article by Uppuluri and Carpenter [270].

Eulerian numbers appear in the computation of the volume of certain slabs of n-
dimensional cubes in articles by Chakerian and Logothetti [51] and Marichal and
Mossinghoff [197], and in the solution to a problem concerning a novel graduation
ceremony in an article by Gessel [122].

The reference book by Sloane and Plouffe [258] and website by Sloane [257]
catalog thousands of integer sequences, many of which arise in combinatorics and
graph theory, and list references to the literature for almost all of these sequences.
The book by Conway and Guy [61] is an informal discussion of several kinds of
numbers, including many common combinatorial sequences.

Stable Marriage

The important results of Gale and Shapley appeared in [117]. A fast algorithm that
solves the “stable roommates” problem whenever a solution exists was first de-
scribed by Irving in [166]. Stable matching problems are studied in Knuth [178]
as motivation for the mathematical analysis of algorithms, and the structure of
stable matchings in marriage and roommate problems is described in detail by
Gusfield and Irving [143], along with algorithms for their computation. A match-
ing algorithm for the “many-to-many” variation of the stable marriage problem,
as in Exercise 9 of Section 2.9.2, is developed by Baı̈ou and Balinski [14]. The
monograph by Feder [103] studies extensions of the stable matching problem to
more general settings.

Combinatorial Geometry

A survey on Sylvester’s problem regarding ordinary lines for collections of points,
as well as related problems, appears in Borwein and Moser [34]. A variation of
Sylvester’s theorem for an infinite sequence of points lying within a bounded re-
gion in the plane is investigated by Borwein [33]. The influential paper of Erdős
and Szekeres on convex polygons, first published in [94], also appears in the col-
lection by Gessel and Rota [123]. The survey by Morris and Soltan [208] sum-
marizes work on this problem and several of its variations. Dozens of problems
in combinatorial geometry, both solved and unsolved, are described in the books
by Brass, Moser, and Pach [37], Hadwiger, Debrunner, and Klee [144], Herman,
Kučera, and Šimša [158], and Matoušek [200], as well as the survey article by
Erdős and Purdy [93].
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Collected Papers

The collection [123] by Gessel and Rota contains many influential papers in com-
binatorics and graph theory, including the important articles by Erdős and Szek-
eres [94], Pólya [225], and Ramsey [232]. The two-volume set edited by Graham
and Nešetřil [134,135] is a collection of articles on the mathematics of Paul Erdős,
including many contributions regarding his work in combinatorics and graph the-
ory. The Handbook of Combinatorics [131, 132] provides an overview of dozens
of different areas of combinatorics and graph theory for mathematicians and com-
puter scientists.



3
Infinite Combinatorics and Graphs

. . . the definitive clarification of the nature of the infinite has become
necessary. . .

— David Hilbert [160]

Infinite sets are very peculiar, and remarkably different from finite sets. This can
be illustrated with a combinatorial example.

Suppose we have four pigeons and two pigeonholes. If we place the pigeons
in the pigeonholes, one of the pigeonholes must contain at least two pigeons.
This crowding will always occur, regardless of the arrangement we choose for the
pigeons. Furthermore, the crowding will occur whenever there are more pigeons
than holes. In general, if P (pigeons) is a finite set, and H (pigeonholes) is a
proper subset of P , then there is no matching between the elements of P and H .

Now suppose that we have a pigeon for each real number in the closed interval
P = [0, 2]. Put a leg tag on each pigeon with its real number. Also suppose that we
have a pigeonhole for each real number in the interval H = [0, 1]. Put an address
plate on each pigeonhole with its real number. Note that H � P , so the set of
address plate numbers is a proper subset of the set of leg tag numbers. For each
x ∈ [0, 2], place the pigeon tagged x in the pigeonhole with address x/2. Using
this arrangement, no two pigeons will be assigned to the same pigeonhole. Thus,
if P is infinite and H is a proper subset of P , there may be a matching between
the elements of P and those of H .

Infinite sets behave differently from finite sets, and we have used ideas from
graph theory and combinatorics to illustrate this difference. One of the justifica-
tions for studying infinite versions of combinatorial and graph-theoretic theorems
is to gain more insight into the behavior of infinite sets and, by contrast, more

J.M. Harris et al., Combinatorics and Graph Theory, DOI: 10.1007/978-0-387-79711-3 3,
c© Springer Science+Business Media, LLC 2008
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A B C D

0 1 2 3

FIGURE 3.1. A matching.

insight into finite sets. Sections 3.1 and 3.2 follow this agenda, culminating in
a proof of a finite combinatorial statement using infinite tools. We can also use
combinatorial properties to distinguish between different sizes of infinite sets, as
is done in Section 3.7. This requires the deeper understanding of the axioms for
manipulating infinite sets provided by Sections 3.3 and 3.4, and a precise notion
of size that appears in Section 3.5. Combinatorial and graph-theoretic properties
can also illuminate the limitations of our axiom systems, as shown in Sections 3.6
and 3.9. The chapter concludes with a hint at the wealth of related topics and a
list of references.

3.1 Pigeons and Trees

I wonder about the trees.
— Robert Frost, The Sound of Trees

The chapter introduction shows one way to use pigeons to distinguish between
some finite and infinite sets. We could use this as a basis for defining finite sets,
but this approach has some drawbacks that we will see in Section 3.4. It is more
straightforward to say that a set is infinite if its not finite, and that a set is finite if
its elements can be matched with a bounded initial segment of N. For example,
the set {A, B, C, D} is finite, because the matching in Figure 3.1 exists. Note that
the least integer not used in this matching is 4, which is also the size of the set
{A, B, C, D}. This nifty trick, the result of using 0 in our matchings, reappears
in Section 3.5.

Using the preceding notion of infinite and finite sets, we can propose another
pigeonhole principle. Suppose we have an infinite number of pigeons that we stuff
into a finite number of pigeonholes. Momentarily disregarding physical consider-
ations, we must have at least one pigeonhole that contains an infinite number of
pigeons. Letting P be the set of pigeons, H the set of holes, and f the stuffing
function, we obtain the following theorem.

Theorem 3.1 (Infinite Pigeonhole Principle). Suppose P is infinite, H is finite,
and f : P → H . Then there is an element h ∈ H such that the pre-image set
{p ∈ P | f(p) = h} is infinite.

Proof. Let P , H , and f be as in the hypothesis of the theorem. In particular, let
H = {h0, h1, . . . , hn}. Suppose, by way of contradiction, that for each hi ∈ H ,
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c0
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FIGURE 3.2. A tree with labels.

the set Pi = {p ∈ P | f(p) = hi} has si elements. Because P can be written as
P = P0 ∪ P1 ∪ · · · ∪ Pn, we see that

∑
i≤n si is the size of P . Thus P is finite,

providing the desired contradiction.

A physicist might suggest that the density of matter resulting from cramming
an unbounded number of pigeons into a bounded pigeonhole would yield a fusion
explosion, obliterating any evidence that could be used by litigious animal rights
advocates. Home experiments with actual live pigeons are strongly discouraged.
Despite the physical impracticality of our theorem, it is handy for proving a very
nice theorem about trees.

As stated in Chapter 1, a tree is a connected acyclic graph. For big trees, it is
handy to designate a root and label the vertices. Figure 3.2 is an example. As a
convenient convention, we always think of the root r as the bottom of the tree
and vertices farther from r as being higher in the tree. A path through a tree is
a path leading up and away from the root. For example, r, a1, b2 and r, a1, b1, c0

are paths in the tree above. The sequence r, a1, b0 is not a path, because a1b0 is
not an edge in the graph. If we add the edge a1b0, the resulting graph is not a tree.
(Find the cycle!)

A level in a tree is the collection of all vertices at a fixed distance from the root.
The levels in our sample tree are {r}, {a0, a1}, {b0, b1, b2} and {c0, c1, c2}. If v
is a vertex and w is a neighboring vertex in the next higher level, then we call w
an immediate successor of v. In the sample, b1 is an immediate successor of a1,
and b0 is not. We can even say that c1 is a successor of a1, but not an immediate
successor.

The vertex labels in the sample tree are arbitrary; if we want more than 26
levels, we could use a different labeling scheme. It is even possible to reuse labels
in some circumstances, as shown in Exercise 2.

Now we are ready to state König’s Lemma. The result concerns infinite trees,
that is, trees with an infinite number of vertices. Essentially, König’s Lemma says
that big skinny trees are tall.
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Theorem 3.2 (König’s Lemma). If T is an infinite tree and each level of T is
finite, then T contains an infinite path.

Proof. Let T be an infinite tree in which every level is finite. Let L0 = {r}, L1,
L2, . . . be the levels of T . We will construct a path as follows. Let r be the first
element of the path. There are infinitely many vertices in T above r. Each of these
vertices is either in L1 or above a unique vertex in L1. Map each of the vertices
above r to the vertex of L1 that it is equal to or above. We have mapped infinitely
many vertices (pigeons) to the finitely many vertices of L1 (pigeonholes). By
Theorem 3.1, there is at least one vertex of L1 that is above r and has infinitely
many vertices above it; pick one and call it v1. The path so far is r, v1. Since there
are infinitely many vertices above v1, we can replace r by v1 in the preceding
argument and select v2. Similarly, for each n ∈ N, when we have found vn we
can find vn+1. Thus T contains an infinite path.

König’s Lemma appears in the 1927 paper of Dénes König [179]. Some authors
(e.g [218]) refer to the lemma as König’s Infinity Theorem. The name König’s
Theorem is usually reserved for an unrelated result on cardinal numbers proved
by Julius König, another (earlier) famous Hungarian mathematician.

Exercises

1. Suppose we arrange finitely many pigeons in infinitely many pigeon holes.
Use the Infinite Pigeonhole Principle to prove that there are infinitely many
pigeonholes that contain no pigeons.

2. Reusing labels in trees.
Figure 3.3 shows an example of a tree where labels are reused.

r

0

1

0

0

1

0

1

FIGURE 3.3. A tree with reused labels.

Note that in this tree, each vertex can be reached by a path corresponding
to a unique sequence of labels. For example, there is exactly one vertex
corresponding to r, 0, 1.
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(a) Give an example of a tree with badly assigned labels, resulting in two
vertices that have the same sequence of labels.

(b) Prove that if the immediate successors of each vertex in a tree have
distinct labels, then no two vertices can have matching sequences of
labels.

(c) Prove the converse of part 2b.

3. 2-coloring an infinite graph.
Suppose G is a graph with vertices V = {vi | i ∈ N} and every finite
subgraph of G can be 2-colored. Use König’s Lemma to prove that G is
2-colorable. (Hint: Build a tree of partial colorings. Put the vertex root,
red, blue, blue in the tree if and only if assigning red to v0, blue to v1, and
blue to v2 yields a 2-coloring of the subgraph with vertices {v0, v1, v2}. An
infinite path through such a tree will be a coloring of G. You must prove
that the tree is infinite and that each level is finite.)

4. Construct an infinite graph where each finite subgraph can be colored using
a finite number of colors, but where infinitely many colors are needed to
color the entire graph. (Hint: Use lots of edges.)

5. Heine–Borel Theorem on compactness of the real interval [0, 1].
Use König’s Lemma to prove that if (a0, b0), (a1, b1), . . . are open inter-
vals in R and [0, 1] ⊂ (a0, b0) ∪ (a1, b1) ∪ · · · , then for some finite value
n, [0, 1] ⊂ (a0, b0) ∪ (a1, b1) ∪ · · · ∪ (an, bn). (Hint: Build a tree where
the labels in the ith level are the closed intervals obtained by removing
(a0, b0) ∪ (a1, b1) ∪ · · · ∪ (ai, bi) from [0, 1] and the successors of a vertex
v are labeled with subintervals of the interval for v. Use the fact that the in-
tersection of any sequence of nested closed intervals is nonempty to show
that the tree contains no infinite paths. Apply the contrapositive of König’s
Lemma.)

3.2 Ramsey Revisited

Ah! the singing, fatal arrow,
Like a wasp it buzzed and stung him!

— H. W. Longfellow, The Song of Hiawatha

Suppose that we 2-color the edges of K6, the complete graph with six vertices,
using the colors red and blue. As we proved in Chapter 1, the colored graph must
contain a red K3 or a blue K3. Since we can 2-color K5 in a way that prevents
monochromatic triangles, K6 is the smallest graph that must contain a monochro-
matic triangle. Thus, the Ramsey number R(3, 3) is 6, as noted in Theorem 1.61.
If we want to guarantee a monochromatic K4 subgraph then we must 2-color K18,
because R(4, 4) = 18. Exact values for R(p, p) when p ≥ 5 are not known, but by
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the Erdős–Szekeres bound (Theorem 1.63) we know that these Ramsey numbers
exist.

Suppose that G is the complete graph with vertices V = {vi | i ∈ N}. If we 2-
color the edges of G, what can we say about monochromatic complete subgraphs?
Since G contains K6, it must contain a monochromatic K3. Similarly, since G
contains K18, it must contain a monochromatic K4. For p ≥ 5, we know that
R(p, p) is finite and that G contains KR(p,p) as a subgraph, so G must contain a
monochromatic Kp. So far we know that G must contain arbitrarily large finite
monochromatic complete subgraphs. As a matter of fact, G contains an infinite
complete monochromatic subgraph, though this requires some proof.

Theorem 3.3. Let G be a complete infinite graph with vertices V = {vi | i ∈ N}.
Given any 2-coloring of the edges, G will contain an infinite complete monochro-
matic subgraph.

Proof. Suppose the edges of G are colored using red and blue. We will build an
infinite subsequence 〈wi | i ∈ N〉 of V by repeatedly applying the pigeonhole
principle (Theorem 3.1). Let w0 = v0. For each i > 0, the edge v0vi is either
red or blue. Since this assigns vi to one of two colors for each i > 0, there is
an infinite set of vertices V0 such that all the edges {v0v | v ∈ V0} are the same
color. Suppose we have selected wn and Vn. Let wn+1 be the lowest-numbered
vertex in Vn, and let Vn+1 be an infinite subset of Vn such that the edges in the
set {wn+1v | v ∈ Vn+1} are the same color. This completes the construction of
the sequence.

This sequence 〈wi | i ∈ N〉 has a very interesting property. If i < j < k,
then wj and wk are both in Vi, and consequently wiwj and wiwk are the same
color! We will say that a vertex wi is blue-based if j > i implies wiwj is blue,
and red-based if j > i implies wiwj is red. Each vertex in the infinite sequence
〈wi | i ∈ N〉 is blue-based or red-based, so by the pigeonhole principle there
must be an infinite subsequence 〈wi0 , wi1 , . . . 〉 where each element has the same
color base. As a sample case, suppose the vertices in the subsequence are all blue-
based. Then for each j < k, since wij is blue-based, the edge wij wik

is blue. Thus
all the edges of the complete subgraph with vertices {wi0 , wi1 , . . . } are blue. If
the subsequence vertices are red-based, then the edges of the associated infinite
complete subgraph are red.

Using the preceding theorem, we can prove that the finite Ramsey numbers
exist without relying on the Erdős–Szekeres bound.

Theorem 3.4. For each n ∈ N there is an m ∈ N such that R(n, n) = m.

Proof. By way of contradiction, suppose that there is an n such that for every
m there is a 2-coloring of the edges of Km that contains no monochromatic Kn

subgraph. Let G be the complete graph with vertices V = {vi | i ∈ N}. Suppose
E = {ei | i ∈ N} is an enumeration of the edges of G. Construct a tree T of partial
edge colorings of G as follows. Include the sequence root, c0, c1, c2, . . . , ck in T
if and only if whenever edge ei is colored color ci for all i ≤ k, the subgraph of
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G containing e0, e1, . . . , ek contains no monochromatic Kn. The kth level of T
contains at most 2k vertices, so each level is finite. Since we have assumed that
there is a way of coloring any Km so that no monochromatic Kn appears, T is
infinite. By König’s Lemma (Theorem 3.2), T has an infinite path. This infinite
path provides a 2-coloring of G that contains no monochromatic Kn. Thus for
this coloring, G has no infinite complete monochromatic subgraph, contradicting
the preceding theorem. Our initial supposition must be false, and so for each n,
there is an m such that R(n, n) = m.

We just used the infinite pigeonhole principle, infinite trees, and colorings of
infinite graphs to prove a result about finite graphs! (In doing so, we are imitating
Ramsey [232].) Besides being inherently fascinating, infinite constructions are
very handy. Furthermore, the arguments are easily generalized. In order to take
full advantage of our work, we need some new notation.

Here come the arrows! The notation κ → (λ)2c means that every c-colored
complete graph on κ vertices contains a monochromatic complete subgraph with
λ vertices. Most people pronounce κ → (λ)2c as “kappa arrows lambda 2 c.” The
statement that R(3, 3) = 6 combines the facts that 6 → (3)22 (K6 is big enough)
and 5 �→ (3)22 (K5 is not big enough). If we imitate set theorists and write ω for
the size of the set V = {vi | i ∈ N}, we can rewrite Theorem 3.3 as ω → ω2

2 .
Abbreviating “for all n” by ∀n and “there exists an m” by ∃m, Theorem 3.4
becomes ∀n∃m m → (n)22.

Arrow notation is particularly useful if we want to use lots of colors. It is easy
to check that if every use of two colors is replaced by some finite value c in the
proof of Theorem 3.3, the result still holds. The same can be said for Theorem
3.4. Consequently, for any c ∈ N we have

ω → (ω)2c and ∀n∃m m → (n)2c .

Note that when c is largish, the arrow notation is particularly convenient. For
example, the statement “m is the least number such that m → (3)29” translates into
Ramsey number notation as the unwieldy formula R(3, 3, 3, 3, 3, 3, 3, 3, 3) = m.
Nobody would want to translate m → (3)21000. On the other hand, R(3, 4) = 9
does not translate into our arrow notation.

The 2 in κ → (λ)2c indicates that we are coloring unordered pairs of elements
taken from a set of size κ. When we edge color a graph, we are indeed assigning
colors to the pairs of vertices corresponding to the edges. However, we can extend
Ramsey’s theorem by coloring larger subsets. The resulting statements are still
very combinatorial in flavor, though they no longer refer to edge colorings. For
example, the notation κ → (λ)n

c means that for any assignment of c colors to the
unordered n-tuples of κ, there is a particular color (say lime) and a subset X ⊂ κ
of size λ such that no matter how we select n elements from X , the corresponding
n-tuple will be lime colored. The proofs of Theorems 3.3 and 3.4 can be modified
to prove the following theorems.

Theorem 3.5 (Infinite Ramsey’s Theorem). For all n ∈ N and c ∈ N, ω → (ω)n
c .
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Proof. By induction on n. Exercise 2 gives hints.

Theorem 3.6 (Finite Ramsey’s Theorem). For all k, n, c ∈ N, there is an m ∈ N
such that m → (k)n

c .

Proof. Follows from Theorem 3.5. Exercise 3 gives hints.

Throughout this section we have been very picky about our infinite sets. For
example, V = {vi | i ∈ N} has a built-in matching with N. What happens if we
look at graphs with a vertex for each real number? In Section 3.7 we will learn
that the analog of Theorem 3.3 fails for an infinite graph of this sort. For what
sorts of infinite graphs does Theorem 3.3 hold? To answer this question, we need
a deeper understanding of the infinite.

Exercises

1. Let X = {xi | i ∈ N} be a set. Suppose that the relation ≤ is a partial
ordering on X . That is, for any a, b, c ∈ X , suppose that

• a ≤ a,

• if a ≤ b and b ≤ a, then a = b, and

• if a ≤ b ≤ c, then a ≤ c.

Use Theorem 3.3 to prove that there is an infinite subset Y ⊂ X such that
either

• for every a, b ∈ Y , either a ≤ b or b ≤ a, or

• for every a, b ∈ Y , both a �≤ b and b �≤ a.

A subset of the first type is called a chain, and a subset of the second type
is called an antichain.

2. Prove Theorem 3.5. Begin by proving Theorem 3.5 for 2 colors. Proceed by
induction on n. For n = 1, use the pigeonhole principle as a base case. For
the induction step, assume that ω → (ω)n

2 , and prove that ω → (ω)n+1
2 by

imitating the proof of Theorem 3.3, substituting applications of ω → (ω)n
2

for the use of the pigeonhole principle.

Given the theorem for 2 colors, there are many ways to prove it for other
finite numbers of colors. You could replace 2 by c everywhere in the proof
you just did, or you could try proving the theorem for c colors and n-tuples
by using the theorem for 2 colors and 2n-tuples.

3. Prove Theorem 3.6. Imitate the proof of Theorem 3.4, using Theorem 3.5
in place of Theorem 3.3.
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FIGURE 3.4. A tripartite graph representing a 2-coloring.

4. One way to visualize coloring triples.
We can represent a coloring of triples by attaching a claw to a triple that
points in a particular direction. For example, the tripartite graph in Figure
3.4 represents coloring {0, 1, 2} red and {1, 3, 4} blue.

Figure 3.5 represents a 2-coloring of the ten triples that can be formed from
the set V = {0, 1, 2, 3, 4}. You can check that every four-element subset of
V contains a triple with a claw on the blue side and a triple with a claw on
the red side. Thus, Figure 3.5 illustrates that 5 �→ (4)32.

Red

Blue

0 1 2 3 4

FIGURE 3.5. A 2-coloring of the triples from {0, 1, 2, 3, 4}.

(a) Find a different coloring that shows that 5 �→ (4)32 and represent it as a
tripartite graph. (How do you know that your coloring is significantly
different?)

(b) Find a tripartite graph that shows that 5 �→ (3)22.

(c) Devise a way to draw a similar graph that shows that 6 �→ (3)23.

(d) Find a tripartite graph that shows that 6 �→ (4)32. Since every triple
gets a claw, make your life easier by drawing only the red claws.
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3.3 ZFC

No one shall be able to drive us from the paradise that Cantor
created for us.

— David Hilbert [160]

Paraphrasing Hilbert, in Cantor’s paradise mathematicians can joyfully prove new
and rich results by employing infinite sets. Since we have been living reasonably
comfortably in this paradise since the beginning of the chapter, Hilbert’s anxiety
about eviction may seem misplaced. However, Russell and other mathematicians
discovered some set-theoretic paradoxes that made the naı̈ve use of infinite sets
very questionable. Hilbert responded by calling for a careful investigation with
the goal of completely clarifying the nature of the infinite.

One could argue that Hilbert’s call (made in 1925) had already been answered
by Zermelo in 1908. In the introduction to [293], Zermelo claimed to have reduced
the entire theory created by Cantor and Dedekind to seven axioms and a few
definitions. Although we now use formulations of the axioms of separation and
replacement that more closely resemble those of Fraenkel and Skolem, the most
commonly used axiomatization of set theory, ZFC, consists primarily of axioms
proposed by Zermelo. The letters ZFC stand for Zermelo, Fraenkel, and Axiom
of Choice. Although Skolem does not get a letter, it would be hard to overestimate
his influence in recasting ZFC as a first order theory.

ZFC succinctly axiomatizes what has become the de facto foundation for stan-
dard mathematical practice. With sufficient diligence, it would be possible to for-
malize every theorem appearing so far in this book and prove each of them from
the axioms of ZFC. Since these proofs can be carried out in a less formal setting,
foundational concerns are insufficient motivation for adopting an axiomatic ap-
proach. However, many of the results in Sections 3.4 through 3.10 cannot even be
stated without referring to ZFC. We will use ZFC as a base theory to explore the
relative strength of some very interesting statements about sets. In particular, ZFC
will be central to our discussion of large cardinals and infinite combinatorics.

3.3.1 Language and Logical Axioms

The comfort of the typesetter is certainly not the summum bonum.
— Gottlob Frege [112]

Before we discuss the axioms of ZFC, we need to list the symbols we will use.
Although some of these symbols may be unfamiliar, they can be used as a very
convenient shorthand.

Variables can be uppercase or lowercase letters with subscripts tacked on if
we please. Good examples of variables include A, B, x, and y3. The symbol ∅
denotes the empty set, and P and ∪ are function symbols for the power set and
union. The exact meaning of ∅, P(x), and ∪x are determined by the axioms in
the next section. (∪x is not a typographical error; a discussion appears later.) A
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Formula Translation
¬θ not θ
θ ∧ ψ θ and ψ
θ ∨ ψ θ or ψ
θ → ψ if θ then ψ
θ ↔ ψ θ if and only if ψ
∀xθ for all sets x, θ holds
∃xθ there is a set x such that θ holds

TABLE 3.1. Translations of connectives and quantifiers.

term is a variable, the symbol ∅, or the result of applying a function to a term.
In ZFC, terms always denote sets. Consequently, all the objects discussed in ZFC
are sets. Some early formalizations of set theory include distinct objects with no
elements. These objects are usually called atoms or urelements. They do not show
up in ZFC.

The atomic formulas of ZFC are x ∈ y and x = y, where x and y could be any
terms. As one would expect, the formula x ∈ y means x is an element of y. The
connection between ∈ and = is partly determined by the axiom of extensionality
(in the next section) and partly determined by the fact that = really does denote
the familiar equality relation.

All other formulas of ZFC are built up by repeatedly applying logical connec-
tives and quantifiers to the atomic formulas. Table 3.1 lists typical formulas and
their translations. The letters θ and ψ denote formulas of ZFC.

Specifying that ZFC is a first order theory implicitly appends the axioms for
predicate calculus with equality to the axioms for ZFC. In a nutshell, these logical
axioms tell us that the connectives and quantifiers have the meanings shown in
Table 3.1, and that = is well behaved. In particular, we can substitute equal terms.
Thus, if x = y and θ(x) both hold, then θ(y) holds, too. As a consequence, we
can prove the following theorem.

Theorem 3.7. Equal sets have the same elements. Formally,

x = y → ∀t(t ∈ x↔ t ∈ y).

Proof. Suppose x = y. Fix t. If t ∈ x, then by substitution, t ∈ y. Similarly, if
t ∈ y, then t ∈ x. Our choice of t was arbitrary, so ∀t(t ∈ x ↔ t ∈ y).

We could completely formalize the preceding argument as a symbolic logic
proof in any axiom system for predicate calculus with equality. Some good formal
axiom systems can be found in Mendelson [201] or Kleene [176] by readers with
a frighteningly technical bent.

It is very convenient to write x ⊂ y for the formula ∀t(t ∈ x → t ∈ y). Using
this abbreviation and only the axioms of predicate calculus, we could prove that
∀x(x ⊂ x), showing that every set is a subset of itself. We could also prove that
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containment is a transitive relation, which can be formalized as

∀x∀y∀z((x ⊂ y ∧ y ⊂ z)→ x ⊂ z).

The preceding results (which appear in the exercises) rely on logical axioms rather
than on the actual nature of sets. To prove meaty theorems, we need more axioms.

3.3.2 Proper Axioms

. . . I tasted the pleasures of Paradise, which produced these Hell
torments. . .

— Pangloss, in Candide

The axiom system ZFC consists of nine basic axioms plus the axiom of choice.
Typically, the nine basic axioms are referred to as ZF. In this section, we will
examine the axioms of ZF, including their formalizations, some immediate appli-
cations, and a few random historical comments. This should be less painful than
the affliction of Pangloss.

1. Axiom of extensionality: If a and b have the same elements, then a = b.
Formally,

∀x(x ∈ a ↔ x ∈ b)→ a = b.

This axiom is the converse of Theorem 3.7, so ZF can prove that a = b if
and only if a and b have exactly the same elements. Using this, we can prove the
following familiar theorem about the connection between subsets and equality.

Theorem 3.8. For all sets a and b, a = b if and only if a ⊂ b and b ⊂ a. Formally,

∀a∀b(a = b↔ (a ⊂ b ∧ b ⊂ a)).

Proof. First suppose that a = b. Since a ⊂ a (see Exercise 1), by substitution we
have a ⊂ b and b ⊂ a. Thus, a = b → (a ⊂ b ∧ b ⊂ a).

To prove the converse, suppose a ⊂ b and b ⊂ a. Since a ⊂ b, for every
x we have that if x ∈ a then x ∈ b. Similarly, since b ⊂ a, x ∈ b implies
x ∈ a. Summarizing, for all x, x ∈ a ↔ x ∈ b. By the axiom of extensionality,
a = b.

The axiom of extensionality and the preceding theorem give us strategies for
proving that sets are equal. Most proofs of set equality apply one of these two
approaches.

2. Empty set axiom: ∅ has no elements. Formally, ∀x(x /∈ ∅).

The empty set has some unusual containment properties. For example, it is a
subset of every set.

Theorem 3.9. ∅ is a subset of every set. Formally, ∀t(∅ ⊂ t).
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Proof. The proof relies on the mathematical meaning of implication. Suppose t
is a set. Pick any set x. By the empty set axiom, x /∈ ∅, so x ∈ ∅ implies x ∈ t.
(When the hypothesis is false, the implication is automatically true. If I am the
king of the world, then you will send me all your money. The statement is true,
but no checks have arrived.) Formally, ∀x(x ∈ ∅ → x ∈ t), so ∅ ⊂ t.

The preceding proof also implies that ∅ ⊂ ∅, although Exercise 1 provides a
more direct proof.

3. Pairing axiom: For every x and y, the pair set {x, y} exists. Formally,

∀x∀y∃z∀t(t ∈ z ↔ (t = x ∨ t = y)).

In the formal version of the axiom, the set z has x and y as its only elements.
Thus, z is {x, y}. The pair sets provided by the pairing axiom are unordered, so
{x, y} = {y, x}. The pairing axiom can be used to prove the existence of single-
element sets, which are often called singletons.

Theorem 3.10. For every x, the set {x} exists. That is, ∀x∃z∀t(t ∈ z ↔ t = x).

Proof. Fix x. Substituting x for y in the pairing axiom yields a set z such that
∀t(t ∈ z ↔ (t = x ∨ t = x)). By the axiom of extensionality, z = {x}.

The empty set axiom, the pairing axiom, and Theorem 3.10 on the existence of
singletons are all combined in Zermelo’s original axiom of elementary sets [293].
As an immediate consequence he solves Exercise 4, showing that singleton sets
have no proper subsets.

The statement of the next axiom uses the union symbol in an unusual way. In
particular, we will write ∪{x, y} to denote the familiar x∪ y. This prefix notation
is very convenient for writing unions of infinite collections of sets. For example,
if X = {xi | i ∈ N}, then the infinite union x0 ∪ x1 ∪ x2 ∪ · · · can be written as
∪X , eliminating the use of pesky dots. The union axiom says that ∪X contains
the appropriate elements.

4. Union axiom: The elements of∪X are precisely those sets that are elements
of the elements of X . Formally,

∀t(t ∈ ∪X ↔ ∃y(t ∈ y ∧ y ∈ X)).

Exercise 5 is a verification that ∪{x, y} is exactly the familiar set x ∪ y. The
notion of union extends naturally to collections of fewer than two sets, also. By
the union axiom, t ∈ ∪{x} if and only if there is a y ∈ {x} such that t ∈ y,
that is, if and only if t ∈ x. Thus, ∪{x} = x. For an exercise in wildly vacuous
reasoning, try out Exercise 6, showing that ∪∅ = ∅.

Like the union axiom, the power set axiom defines one of our built-in functions.
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5. Power set axiom: The elements of P(X) are precisely the subsets of X .
Formally,

∀t(t ∈ P(X)↔ t ⊂ X).

This is the same power set operator that appears in the first chapter of dozens
of mathematics texts. For example,

P({a, b}) = {∅, {a}, {b}, {a, b}}.

If X is a finite set of size n, then P(X) has 2n elements. Thus for finite sets, the
size of P(X) is always larger than the size of X . In Section 3.5 we will prove that
this relation continues to hold when X is infinite.

It may seem odd that we do not have other built-in functions, like intersection,
set-theoretic difference, or Cartesian products. However, all these operations can
be defined using the next axiom and are omitted in order to reduce redundancy in
the axioms. Our version of the separation axiom is the invention of Skolem [255].
Both Skolem and Fraenkel [109] proposed emendations to Zermelo’s version of
the separation axiom.

6. Separation axiom: If ψ(x) is a formula and X is a set, then the set denoted
by {x ∈ X | ψ(x)} exists. More formally, given any set X and any formula
ψ(x) in the language of ZFC, if ψ(x) does not contain the variable S, then

∃S∀x(x ∈ S ↔ (x ∈ X ∧ ψ(x))).

Note that ψ(x) may contain unquantified variables that can be viewed as
parameters. Thus S can be defined in terms of X and other given sets.

We can use the separation axiom to prove that intersections exist. It is nice to
use intersection notation that is parallel to our union notation, so we write ∩{a, b}
for a ∩ b. In general, an element should be in ∩X precisely when it is in every
element of X .

Theorem 3.11. For any nonempty set X , ∩X exists. That is, for any set X there
is a set Y such that

∀x(x ∈ Y ↔ ∀t(t ∈ X → x ∈ t)).

Proof. Fix X . Let Y = {x ∈ ∪X | ∀t(t ∈ X → x ∈ t)}. By the separation
axiom, Y exists. We still need to show that Y is the desired set. By the definition
of Y , if x ∈ Y , then ∀t(t ∈ X → x ∈ t). Conversely, if ∀t(t ∈ X → x ∈ t),
then since X is nonempty, ∃t(t ∈ X ∧ x ∈ t). Thus x ∈ ∪X . Because x ∈ ∪X
and ∀t(t ∈ X → x ∈ t), we have x ∈ Y . Summarizing, x ∈ Y if and only if
∀t(t ∈ X → x ∈ t).

It is also possible to show that ∩X is unique. (See Exercise 8.) Since we can
show that for all X the set ∩X exists and is unique, we can add the function
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symbol ∩ to the language of ZFC. Of course, the symbol itself could be subject
to misinterpretation, so we need to add a defining axiom. The formula

∀x(x ∈ ∩X ↔ ∀t(t ∈ X → x ∈ t))

will do nicely. The resulting extended theory is more convenient to use, but proves
exactly the same theorems, except for theorems actually containing the symbol∩.
Mathematical logicians would say that ZFC with ∩ is a conservative extension of
ZFC.

Using the same process, we can introduce other set-theoretic functions. For
example, we can specify a set that represents the ordered pair (x, y), and define
the Cartesian product X × Y = {(x, y) | x ∈ X ∧ y ∈ Y }. Ordered n-tuples can
be defined in a number of reasonable ways from ordered pairs. We could define
the relative complement of Y in X by X−Y = {x ∈ X | x /∈ Y }. See Exercises
9, 10, and 11 for more discussion of these operations.

There are some significant restrictions in the sorts of functions that could be
conservatively added to ZFC. For example, as above it is acceptable to introduce
the relative complement, but not a full-blown general complement. (Books usually
use X or Xc to denote a general complement.) Given a general complement, we
could prove that X ∪Xc existed. This would give us a set of all sets, but that is
prohibited by the separation axiom.

Theorem 3.12. There is no universal set. That is, there is no set U such that
∀x(x ∈ U).

Proof. Suppose by way of contradiction that ∀x(x ∈ U). Applying the separation
axiom, there is a set X such that X = {z ∈ U | z /∈ z}. Note that for all z, z ∈ X
if and only if z ∈ U and z /∈ z. Furthermore, z ∈ U and z /∈ z if and only if
z /∈ z. Thus, z ∈ X if and only if z /∈ z for any z we care to choose. In particular,
substituting X for z gives us X ∈ X if and only if X /∈ X , yielding the desired
contradiction.

The preceding proof contains the gist of Russell’s paradox. Briefly, Russell’s
paradox says that the existence of {z | z /∈ z} leads inexorably to contradictions.
Note that the existence of {z | z /∈ z} is not proved by the separation axiom,
because the specified set is not bounded. For any bound X , we can prove that
{z ∈ X | z /∈ z} exists; it is just a harmless subset of X . By requiring bounds on
definable sets, we cleverly sidestep paradoxes that ensnare the users of naı̈ve set
theory. For another experiment with Russell’s style of argument, try Exercise 12.

Part of Hilbert’s motivation for the rigorous study of set theory was to gain
a deeper understanding of infinite sets. So far, our axioms do not guarantee the
existence of a single infinite set. (Readers who love technical details may want to
construct a model of axioms 1 through 6 in which every set is finite. The universe
for this model will be infinite, but each element in the universe will be finite.)

One way to construct an infinite set is to start with ∅ and successively apply
Theorem 3.10. If we let x0 = ∅ and xn+1 = {xn} for each n, this yields a set for
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each natural number. In particular, x0 = ∅, x1 = {∅}, x2 = {{∅}}, and so on.
The next axiom affirms the existence of a set containing all these sets as elements.

7. Infinity axiom: There is a set Z such that (i) ∅ ∈ Z and (ii) if x ∈ Z , then
{x} ∈ Z . Formally,

∃Z(∅ ∈ Z ∧ ∀x(x ∈ Z → ∃y(y ∈ Z ∧ ∀t(t ∈ y ↔ t = x)))).

The axiom of infinity guarantees the existence of some set satisfying properties
(i) and (ii). By applying the power set axiom, the separation axiom, and taking
an intersection, we can find the smallest set with this property. For details, see
Exercise 13.

Zermelo’s axiomatization of set theory consists of axioms 1 through 7 plus
the axiom of choice. We will discuss the axiom of choice shortly. In the mean-
time, there are two more axioms that have been appended to ZF that should be
mentioned. The first of these is the axiom of replacement, proposed in various
versions by Fraenkel ([107], [108], and [110]), Skolem [255], and Lennes [186].

8. Replacement axiom: Ranges of functions restricted to sets exist. That is, if
f(x) is a function and D is a set, then the set R = {f(x) | x ∈ D} exists.
More formally, if ψ(x, y) is a formula of set theory such that

∀x∀y∀z((ψ(x, y) ∧ ψ(x, z)) → y = z),

then for every set D there is a set R such that

∀y(y ∈ R ↔ ∃x(x ∈ D ∧ ψ(x, y)).

Note that the formula ψ(x, y) in the formal statement of the axiom can be
viewed as defining the relation f(x) = y. The replacement axiom is useful for
proving the existence of large sets. In particular, if we assume that ZFC and the
continuum hypothesis are consistent, in the absence of the replacement axiom it
is impossible to prove that any sets of size greater than or equal to ℵω exist. (To
find out what ℵω is, you have to stick around until Section 3.5.)

The final axiom of ZF is the regularity axiom. In a nutshell, it outlaws some
rather bizarre behavior, for example having x ∈ y ∈ x. Attempts to avoid these
strange constructs can be found in the work of Mirimanoff [207], but Skolem
[255] and von Neumann [276] are usually given credit for proposing the actual
axiom.

9. Regularity axiom: Every nonempty set x contains an element y such that
x ∩ y = ∅. Formally,

∀x(x �= ∅ → ∃y(y ∈ x ∧ x ∩ y = ∅)).
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The idea here is that ∈ can be viewed as a partial ordering on any set by letting
x < y mean x ∈ y. The regularity axiom says that every set has a minimal element
in this ordering. This rules out loops (like x ∈ y ∈ x) and infinite descending
chains (like · · · ∈ x3 ∈ x2 ∈ x1 ∈ x0). The following theorem shows that tight
loops are outlawed.

Theorem 3.13. For all x, x /∈ x.

Proof. By way of contradiction, suppose x ∈ x. By Theorem 3.10, we know the
set X = {x} exists. The set X is nonempty, so by the regularity axiom, there is
an element y ∈ X such that X ∩y = ∅. The only element of X is x, so y = x and
X ∩ x = ∅. However, x ∈ X and x ∈ x, so x ∈ X ∩ x = ∅, a contradiction.

Summarizing this section, the proper axioms of ZF are:

1. Axiom of extensionality,

2. Empty set axiom,

3. Pairing axiom,

4. Union axiom,

5. Power set axiom,

6. Separation axiom,

7. Infinity axiom,

8. Replacement axiom, and

9. Regularity axiom.

We are still missing one axiom from Zermelo’s list, the axiom of choice.

3.3.3 Axiom of Choice

Vizzini: . . . so I can clearly not choose the wine in front of me.
Man in black: You’ve made your decision then?
Vizzini: [happily] Not remotely!

— The Princess Bride

Suppose that we, like Vizzini, are faced with the task of selecting one glass from a
set of two glasses. Since the set of glasses is nonempty, we can select one element
and get on with our lives, which hopefully will be much longer than Vizzini’s.
To be very technical, the justification for our selection is the logical principle
of existential instantiation. Similarly, using only axioms of ZF, we can always
select one element from any nonempty set, without regard for the size of the set.
Furthermore, we could repeat this process any finite number of times, so we can
choose one element from each set in any finite list of nonempty sets.
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By contrast, making an infinite number of choices simultaneously can often be
problematic, depending on the circumstances. Suppose that we have an infinite
collection of pairs of boots. We can pick one boot from each pair by specifying
that we will select the left boot from each pair. Because each nonempty set (pair
of boots) has a designated element (left boot), ZF suffices to prove the existence
of the set of selected boots. Working in ZF, we cannot carry out the same process
with an infinite collection of pairs of socks, because socks are not footed. We
need a new axiom. In [244], Russell discusses this boot problem, though rather
than selecting socks, he considers the case where “the left and right boots in each
pair are indistinguishable.” Cruel shoes indeed!

The axiom of choice guarantees the existence of a set of selected socks. The
following version of the axiom is very close to that of Zermelo [293].

10. Axiom of choice (AC): If T is a set whose elements are all sets that are
nonempty and mutually disjoint, then ∪T contains at least one subset with
exactly one element in common with each element of T .

Most recent works use a formulation of the axiom of choice that asserts the
existence of choice functions. In terms of socks, when a choice function is applied
to a pair of socks, it outputs a designated sock. In the following statement, if T is
a set of pairs of socks, t would be a pair of socks, and f(t) would be a sock.

10′. Axiom of choice (AC2): If T is a set of nonempty sets, then there is a
function f such that for every t ∈ T , f(t) ∈ t.

We use ZFC to denote ZF plus either version of AC. This is not imprecise, since
we can prove that the two versions of the axiom of choice are interchangeable.

Theorem 3.14. ZF proves that AC holds if and only if AC2 holds.

Proof. First assume all the axioms of ZF plus AC. Let T be a set of nonempty
sets. Define the function g with domain T by setting

g(t) = {(t, y) | y ∈ t}

for each t ∈ T . Essentially, g(t) looks like the set t with a flag saying “I’m in t”
attached to each element. By the replacement axiom, the set Y = {g(t) | t ∈ T }
exists. The elements of Y are nonempty and disjoint, so by AC there is a set S that
contains exactly one element from each element of Y . Thus S is a set of ordered
pairs of the form (t, y), where exactly one pair is included for each t ∈ T . Let
f(t) be the unique y such that (t, y) ∈ S. Then f is the desired choice function.

To prove the converse, assume ZF plus AC2. Let T be a set whose elements are
nonempty and disjoint. By AC2, there is a function f such that for each t ∈ T ,
f(t) ∈ t. By the replacement axiom, S = {f(t) | t ∈ T } exists. S is the desired
subset of ∪T .
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Zermelo ([291], [292]) used AC to prove that every set can be well-ordered.
Hartogs [155] extended Zermelo’s result by proving that AC is equivalent to this
well-ordering principle. Hartogs’ result is identical in format to the equivalence
result that we just proved. What really makes Hartogs’ result and our equivalence
theorem interesting is the fact that AC can neither be proved nor disproved in ZF.
(Technically, we just implicitly assumed that ZF is consistent. I assure you that
many people make much more bizarre assumptions in their daily lives.) Gödel
[125] proved that ZF cannot disprove AC, and Cohen ([58], [59]) showed that ZF
cannot prove AC. Thus our equivalence theorem and the theorem of Hartogs list
statements that we can add interchangeably to strengthen ZF. In later sections we
will see more examples of equivalence theorems and more examples of statements
that strengthen ZF and ZFC.

Exercises

1. Prove that set containment is reflexive. That is, prove ∀x(x ⊂ x). (This
requires only logical properties.)

2. Prove that set containment is transitive. That is, prove

∀x∀y∀z((x ⊂ y ∧ y ⊂ z)→ x ⊂ z).

(This requires only logical properties.)

3. Prove that the empty set is unique. That is, if ∀x(x /∈ y), then y = ∅.

4. Prove that if y ⊂ {x}, then y = ∅ or y = {x}.

5. Prove that ∪{x, y} is exactly the familiar set x ∪ y. That is, prove that
t ∈ ∪{x, y} if and only if t ∈ x or t ∈ y.

6. Prove that ∪∅ = ∅.

7. Find P(∅), P(P(∅)), and P(P(P(∅))). (To make your answers look really
bizarre and drive your instructor nuts, write { } for ∅.)

8. Prove that ∩X is unique. That is, show that if Y is a set that satisfies the
formula ∀x(x ∈ Y ↔ ∀t(t ∈ X → x ∈ t)) and Z is a set that satisfies the
formula ∀x(x ∈ Z ↔ ∀t(t ∈ X → x ∈ t)), then Y = Z . (Proving the
existence of Y and Z requires the separation axiom (see Theorem 3.11),
but this problem uses the axiom of extensionality.)

9. Let X − Y denote the set {x ∈ X | x /∈ Y }.

(a) Prove that for every X and Y , X − Y exists.

(b) Prove that for every X and Y , X − Y is unique.

(c) Under what circumstances does X − Y = Y −X?
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10. Representations of ordered pairs.

(a) Kuratowski [184] suggested that the ordered pair (a, b) can be repre-
sented by the set {{a, b}, a}. (This encoding is still in use.) Using this
definition, prove that (a, b) = (c, d) if and only if a = c and b = d.

(b) Using Kuratowski’s encoding, show that if X and Y are sets, then the
set X × Y defined by X × Y = {(x, y) | x ∈ X ∧ y ∈ Y } exists and
is uniquely determined by X and Y .

(c) Wiener [283] suggested that the ordered pair (x, y) can be represented
by the set {{{x}, ∅}, {{y}}}. If you dare, repeat parts 10a and 10b
using this encoding.

(d) Show that encoding (a, b) by {a, {b}} leads to difficulties. (Find two
distinct ordered pairs that have the same representation in this encod-
ing.)

11. Representations of n-tuples.

(a) Usually, set theorists represent (a, b, c) by ((a, b), c), where pairs are
represented using the Kuratowski encoding from Exercise 10. Using
this representation prove the following:

(i) (a, b, c) = (d, e, f)↔ (a = d ∧ b = e ∧ c = f),
(ii) X × Y × Z exists, and

(iii) X × Y × Z is unique.

(b) To address type-theoretic concerns, Skolem [256] suggested repre-
senting (a, b, c) by ((a, c), (b, c)). Repeat part 11a with this encoding.

(c) Using parts 11a and 11b as the base cases in an induction argument,
extend the statements in part 11a to n-tuples for each natural number
n. (If you do this, you clearly have a great love for long technical
arguments. You might as well repeat the whole mess with the Wiener
encoding.)

(d) Show that encoding (a, b, c) by {{a, b, c}, {a, b}, {a}} leads to diffi-
culties. (You can find distinct triples with the same representation, or
you can find an ordered pair that has the same representation as an
ordered triple.)

12. Prove that for all X ,P(X) �⊂ X . (Hint: Suppose that for some X ,P(X) ⊂
X . Define Y = {t ∈ X | t /∈ t}. Show that Y ∈ X and shop for a
contradiction.)

13. Let Z be the set provided by the infinity axiom. Let T be the set of subsets
of Z that satisfy properties (i) and (ii) of the infinity axiom. Let Z0 = ∩T .

(a) Prove that T exists. (Hint: T ⊂ P(Z).)
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(b) Prove that Z0 exists.

(c) Prove that if X satisfies properties (i) and (ii) of the infinity axiom,
then Z0 ⊂ X .

14. Use the regularity axiom to prove that for all x and y either x /∈ y or y /∈ x.

3.4 The Return of der König

And Aragorn planted the new tree in the court by the fountain.
— J. R. R. Tolkien, The Return of the King

It may seem that the discussion of the last section strayed from our original topics
in graph theory and combinatorics. However, AC is actually a statement about
infinite systems of distinct representatives (SDR). As defined in Section 1.7.2, an
SDR for a family of sets T is a set that contains a distinct element from each set
in T . For disjoint families, we have the following theorem.

Theorem 3.15. ZF proves that the following are equivalent:

1. AC.

2. If T is a family of disjoint nonempty sets, then there is a set Y that is an
SDR for T .

Proof. First, assume ZF and AC and suppose T is a family of disjoint nonempty
sets. By AC, there is a set Y ⊂ ∪T that has exactly one element in common with
each element of T . Since the elements of T are disjoint, Y is an SDR for T .

To prove the converse, suppose T is a family of disjoint nonempty sets. Let Y
be an SDR for T . Then Y ⊂ ∪T , and Y has exactly one element in common with
each element of T , as required by AC.

What if T is not disjoint? For finite families of sets, it is sufficient to know that
every union of k sets has at least k elements. This is still necessary for infinite fam-
ilies, but no longer sufficient. Consider the family of sets T = {X0, X1, X2, . . . }
defined by X0 = {1, 2, 3, . . .}, X1 = {1}, X2 = {2}, and so on. The union of
any k sets from T has at least k elements. As a matter of fact, any collection of k
sets from T has an SDR. However, the whole of T has no SDR. To build an SDR
for T , we must pick some n as a representative for X0. This immediately leaves
us with no element to represent Xn. We are out of luck. Note that if we chuck
X0, we can find an SDR for the remaining sets. (There are not many options for
the representatives; it is hard to go wrong.) The infinite set X0 is the source of all
our problems. If we allow only finite sets in the family, then we get a nice SDR
existence theorem originally proved by Marshall Hall [145].

Theorem 3.16. Suppose T = {X0, X1, X2, . . . } is a family of finite sets. T has
an SDR if and only if for every k ∈ N and every collection of k sets from T , the
union of these sets contains at least k elements.
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Proof. Let T = {X0, X1, X2, . . . } and suppose that each Xi is finite. If T has
an SDR, then for any collection of k sets, their representatives form a k element
subset of their union.

To prove the converse, assume that for every k ∈ N, the union of any k elements
of T contains at least k elements. By Theorem 1.52, for each k the subfamily
{X0, X1, . . . , Xk} has an SDR. Let Y be the tree whose paths are of the form
r, x0, x1, . . . , xk, where xi ∈ Xi for i ≤ k and {x0, x1, . . . , xk} is an SDR for
{X0, X1, . . . , Xk}. Since arbitrarily large finite subfamilies of T have SDRs, the
tree Y is infinite. Furthermore, the size of the kth level of the tree Y is at most
|X0| · |X1| · · · |Xk|, where |Xi| denotes the size of Xi. Since these sets are all
finite, each level is finite. By König’s Lemma, Y has an infinite path, and that
path is an SDR for T .

In the preceding proof we made no immediately obvious use of AC. Here is a
question: Have we actually avoided the use of AC, or did we merely disguise it?
The answer is that we have used some of the strength of AC in a disguised form.

There are two very natural ways to restrict AC. Recall that AC considers a
family of sets. We can either restrict the size of the sets or restrict the size of the
family. If we require that each set is finite, we get the following statement.

Axiom of choice for finite sets (ACF): If T is a family of finite, nonempty,
mutually disjoint sets, then ∪T contains at least one subset having exactly
one element in common with each element of T .

If we specify that the family can be enumerated, we get the following state-
ment. (We say that an infinite set is countable if it can be written in the form
{x0, x1, x2, . . . }.)

Countable axiom of choice (CAC): If T = {X0, X1, X2, . . . } is a family
of nonempty, mutually disjoint sets, then ∪T contains at least one subset
having exactly one element in common with each element of T .

Combining both restrictions gives us CACF, the countable axiom of choice for
finite sets. The statement of CACF looks like CAC with the added hypothesis that
each Xi is finite. This weak version of AC is exactly what we used in proving
Theorem 3.16.

Theorem 3.17. ZF proves that the following are equivalent:

1. König’s Lemma.

2. Theorem 3.16.

3. CACF.

Proof. The proof of Theorem 3.16 shows 1 implies 2. The proofs that 2 implies 3
and 3 implies 1 are Exercises 1 and 2.
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The relationships between our various versions of choice are very interest-
ing. It is easy to see that ZF proves AC→CAC, AC→ACF, CAC→CACF, and
ACF→CACF. It is not at all obvious, but can be shown, that not a single one of
the converses of these implications is provable in ZF, and also that CACF is not a
theorem of ZF. To prove that ZF cannot prove these statements we would assume
that ZF is consistent and build special models where each particular statement
fails. The models are obtained by lifting results from permutation models or by
forcing. Jech’s book The Axiom of Choice [167] is an excellent reference.

Since ZF proves that König’s Lemma is equivalent to CACF and CACF is not
a theorem of ZF, we know that König’s Lemma is not a theorem of ZF. Of course,
ZFC can prove König’s Lemma, so it is perfectly reasonable to think of it as a
theorem of mathematics. Also, ZF can prove some restrictions of König’s Lemma,
for example if all the labels in the tree are natural numbers. Many applications of
König’s Lemma can be carried out with a restricted version.

Our proof closely ties König’s Lemma to countable families of sets. As we
will see in the next section, not all families are countable. We will see bigger sets
where the lemma fails, and still bigger sets where it holds again. This is not the
last return of König. (König means “king” in German.)

In the introduction to this chapter we noted that if P is finite, then whenever
H is a proper subset of P there is no matching between P and H . A set X is
called Dedekind finite if no proper subset of X can be matched with X . Thus,
the introduction shows that if X is finite, then X is Dedekind finite. Exercise 4
shows that CAC implies the converse. Thus, in ZFC, the finite sets are exactly
the Dedekind finite sets. This characterization of the finite sets requires use of a
statement that is weaker than CAC, but not provable in ZF [167].

Exercises

1. Prove in ZF that Theorem 3.16 implies CACF. (Hint: Use disjointness to
show that the union of any k sets contains at least k elements.)

2. Challenging exercise. Prove König’s Lemma using ZF and CACF. To do
this, let S be the set of nodes in the tree that have infinitely many successors.
Find an enumeration for S. (It is easy to slip up and use full AC when
finding the enumeration.) For each s ∈ S, let Xs be the set of immediate
successors of s that have infinitely many successors. Apply CACF to the
family {Xs | x ∈ S}. Use the selected vertices to construct a path through
the tree.

3. Disjointification trick. Suppose that {Xn | n ∈ N} is a family of sets. For
each n ∈ N let Xn = {(n, x) | x ∈ Xn}. Show that {Xn | n ∈ N} exists
and is a disjoint family of sets.

4. Use CAC to prove that every infinite set has a countable subset. (Hint: Sup-
pose that W is infinite. For each k ∈ N let Wk be the set of all subsets of W
of size k. Apply CAC to a disjointified version of the family {Wk | k ∈ N}.
Show that the union of the selected elements is a countable subset of W .)



304 3. Infinite Combinatorics and Graphs

5. Assume that every infinite set has a countable subset. Prove that if X cannot
be matched with any proper subset of itself, then X is finite. (Hint: Suppose
X is infinite and use a countable subset of X to find a matching between X
and a proper subset of X .)

3.5 Ordinals, Cardinals, and Many Pigeons

Whenever Gutei Oshō was asked about Zen, he simply raised his
finger. Once a visitor asked Gutei’s boy attendant, “What does your
master teach?” The boy too raised his finger. Hearing of this, Gutei
cut off the boy’s finger with a knife. The boy, screaming with pain,
began to run away. Gutei called to him, and when he turned around,
Gutei raised his finger. The boy suddenly became enlightened.

— Mumon Ekai, The Gateless Gate

The previous section contains some references to infinite sets of different sizes.
To make sense of this we need to know what it means for sets to be the same
size. We can illustrate two approaches by considering some familiar sets. Thanks
to the gentleness of my religious training, I have the same number of fingers
on my left and right hands. This can be verified in two ways. I can count the
fingers on my left hand, count the fingers on my right hand, and check that the
results match. Note that in the process of counting, I am matching fingers with
elements of a canonical ordered set, probably {1, 2, 3, 4, 5}. By emphasizing the
matching process, I can verify the equinumerousness of my fingers without using
any canonical set middleman. To do this, I match left thumb with right thumb, left
forefinger with right forefinger, and so on. When my pinkies match, I know that
I have the same number of fingers on my left and right hands. One advantage of
this technique is that it works without modification for people with six or more
fingers on each hand.

For infinite sets, either method works well. We will start by comparing sets
directly, then study some canonical ordered sets, and finish the section off with
some applications to pigeons and trees.

3.5.1 Cardinality

The big one!
— Connie Conehead

Suppose we write X � Y if there is a one-to-one function from X into Y , and
X ∼ Y if there is a one-to-one function from X onto Y . Thus X ∼ Y means
that there is a matching between X and Y . If X � Y and X � Y , so X can be
embedded into but not onto Y , we will write X ≺ Y . With this notation, we can
describe relative sizes of some infinite sets.
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First consider the sets N = {0, 1, 2, . . .} and Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
Define the function f : N → Z by

f(n) = (−1)n+1

(
2n + 1

4

)

+
1
4
.

It is not hard to verify that if f(j) = f(k), then j = k, proving that f is a one-
to-one function. Additionally, if m > 0, then f(2m− 1) = m, and if t ≤ 0, then
f(−2t) = t, so f maps the odd natural numbers onto the positive integers and
the even natural numbers onto the negative integers and 0. Thus, f witnesses that
N ∼ Z, and we now know that N and Z are the same size.

If X is a set satisfying N ∼ X , then we say that X is countable (or countably
infinite if we are being very precise.) We just prove that Z is countable. Not every
infinite set is countable, as shown by the following theorem of Cantor.

Theorem 3.18 (Cantor’s Theorem). For any set X , X ≺ P(X). In particular,
N ≺ P(N).

Proof. Define f : X → P(X) by setting f(t) = {t} for each t ∈ X . Since f
is one-to-one, it witnesses that X � P(X). It remains to show that X � P(X).
Suppose g : X → P(X) is any one-to-one function. We will show that g is not
onto. Let y = {t ∈ X | t /∈ g(t)}. Suppose by way of contradiction that for some
x ∈ X , g(x) = y. Because g(x) = y, x ∈ g(x) if and only if x ∈ y, and by the
definition of y, x ∈ y if and only if x /∈ g(x). Concatenating, we get x ∈ g(x)
if and only if x /∈ g(x), a clear contradiction. Thus y is not in the range of g,
completing the proof.

One consequence of Cantor’s Theorem is that any function from P(N) into N
must not be one-to-one. More combinatorially stated, if we try to ram a pigeon
for each element of P(N) into pigeonholes corresponding to the elements of N,
some pigeonhole must contain at least two pigeons. Another consequence is that
by sequentially applying Cantor’s Theorem to an infinite set, we get lots of infinite
sets, including some very big ones.

Corollary 3.19. There are infinitely many infinite sets of different sizes.

Proof. N is infinite, and N ≺ P(N) ≺ P(P(N)) · · · by Cantor’s Theorem.

Using only the definition of ∼ and chasing some functions, we can prove that
∼ is an equivalence relation. (See Exercise 2.) In particular, for any sets A, B,
and C, we have

• A ∼ A,

• if A ∼ B then B ∼ A, and

• if A ∼ B and B ∼ C, then A ∼ C.
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These are handy shortcuts, and it would be nice to have analogous statements for
the � relation. We can easily show that A � A and that if A � B and B � C,
then A � C. (See Exercise 3.) Symmetry does not hold for the � relation, but
we can prove that if A � B and B � A then A ∼ B. This last statement is the
Cantor–Bernstein Theorem, an incredibly handy shortcut for showing that sets are
the same size. After discussing the proof and history of the theorem, we will look
at some nice applications.

Theorem 3.20 (Cantor–Bernstein Theorem). If both X � Y and Y � X , then
X ∼ Y .

Proof. Suppose f : A → B and g : B → A are one-to-one functions. We
will sketch the construction of a function h : A → B that is one-to-one and
onto. Define a set of subsets of A as follows. Let A0 = A, A1 = g(B), and
An = g(f(An−2)) for n ≥ 2. In particular, writing g ◦ f(A) for g(f(A)), we
have

A0 = A,

A1 = g(B),
A2 = g ◦ f(A),
A3 = g ◦ f ◦ g(B),
A4 = g ◦ f ◦ g ◦ f(A), and

A5 = g ◦ f ◦ g ◦ f ◦ g(B).

Note that An is defined with n function applications. It goes “back and forth” n
times. Using induction as described in Exercise 4a, it is fairly easy to prove the
following claim.

Claim 1: For all n, An ⊃ An+1.

Given Claim 1, define the sets A′
n = An − An+1 for each n. Also define the set

A′
ω = ∩n∈NAn. These sets form a partition of A into disjoint pieces, as claimed

below. Hints for the proof of this claim appear in Exercise 4b.

Claim 2: For every x ∈ A there is a unique n ∈ {ω, 0, 1, 2, . . .} such that
x ∈ A′

n.

Define the function h : A→ B by the following formula:

h(x) =

{
f(x) if x ∈ ∪{A′

ω, A′
0, A

′
2, . . . },

g−1(x) if x ∈ ∪{A′
1, A

′
3, A

′
5, . . . }.

By Claim 2, h(x) is well-defined and has all of A as its domain. It remains to show
that h(x) is one-to-one and onto. This can be accomplished by defining B0 = B,
and Bn+1 = f(An) for each n ≥ 0. Imitating our work with the An, in Exercise
4c we prove the following.
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Claim 3: For all n, Bn ⊇ Bn+1. Furthermore, if we define the prime sets
B′

n = Bn − Bn+1 and B′
ω = ∩n∈NBn, then for every y ∈ B, there is a

unique n ∈ {ω, 0, 1, 2, . . .} such that y ∈ B′
n.

The partitions of A and B are closely related. In particular, Exercise 4d gives hints
for proving the following claim.

Claim 4: For each n ∈ N, h(A′
2n) = B′

2n+1 and h(A′
2n+1) = B′

2n. Also,
h(A′

ω) = B′
ω.

Since h matches the A′ pieces with the B′ pieces and is one-to-one and onto on
these pieces, h is the desired one-to-one and onto function.

One indication of the importance of the Cantor–Bernstein Theorem is the num-
ber of mathematicians who have produced proofs of it. The following is a partial
listing. According to Levy [187], Dedekind proved the theorem in 1887. Writing
in 1895, Cantor [47] described the theorem as an easy consequence of a version
of the axiom of choice. In the endnotes of [49], Jourdain refers to an 1896 proof
by Schröder. Some texts, [209] for example, refer to the theorem as the Schröder–
Bernstein Theorem. Bernstein proved the theorem without using the axiom of
choice in 1898; this proof appears in Borel’s book [32]. Additional later proofs
were published by Peano [220], J. König [181], and Zermelo [292]. It is good
to remember that the axioms for set theory were in flux during this period. These
mathematicians were making sure that this very applicable theorem was supported
by the axioms du jour.

Now we will examine a pair of applications of the Cantor–Bernstein Theorem.
Note that we are freed of the tedium of constructing onto maps.

Corollary 3.21. N ∼ Z.

Proof. Define f : N → Z by f(n) = n. Note that f is one-to-one, so N � Z.
Define g : Z → N by

g(z) =

{
2z if z ≥ 0,

2|z|+ 1 if z < 0.

Note that g is one-to-one, so Z � N. Applying the Cantor–Bernstein Theorem,
N ∼ Z.

Corollary 3.22. N ∼ N× N.

Proof. The function f : N → N× N defined by f(n) = (0, n) is one-to-one, so
N � N×N. The function g : N×N → N defined by g(m, n) = 2m+1·3n+1 is also
one-to-one, so N× N � N. By the Cantor–Bernstein Theorem, N ∼ N× N.

Corollary 3.23. P(N) ∼ R. Consequently, R is uncountable.
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Proof. First we will prove that P(N) � R. Define f : P(N) → R by setting
f(X) =

∑
n∈X 10−n for each X ∈ P(N). As an example of how this map

works, if X consists of the odd natural numbers, then f(X) = 0.1010. If X and
Y are distinct subsets of N, then they differ at some least natural number n, and
f(X) and f(Y ) will differ in the nth decimal place. Thus, f is one-to-one, and so
P(N) � R.

Now we must construct a one-to-one function g : R → P(N). Let r be a real
number. If we avoid decimal expansions that terminate in an infinite sequence of
9’s, we can assume that r has a unique decimal expansion of the form

(−1)ε

⎛

⎝
∑

i∈X1

ki10i +
∑

j∈X2

dj10−j

⎞

⎠ ,

where ε ∈ {0, 1}, each ki and dj is between 1 and 9, X1 is a set of natural
numbers, and X2 is a set of nonzero natural numbers. In this representation, (−1)ε

is the sign of r,
∑

i∈X1
ki10i is the integer portion of r, and

∑
j∈X2

dj10−j is the
fractional portion of r. Define the function g by setting

g(r) = {ε} ∪ {102i+1 + ki | i ∈ X1} ∪ {102j + dj | j ∈ X2}

for each r ∈ R. As a concrete example of the behavior of this map, consider
g(−12.305) = {1, 1001, 12, 103, 1000005}. Since different reals differ in some
decimal place, g is one-to-one. By the Cantor–Bernstein Theorem, P(N) ∼ R.

By Theorem 3.18, N ≺ P(N). Together with P(N) ∼ R, this implies that
N ≺ R, so R is uncountable.

Note that we did not construct a one-to-one function from P(N) onto R. The
Cantor–Bernstein Theorem tells us that such a function must exist, so we are not
obligated to construct it. (If you are not already convinced that existence theorems
are tremendously convenient, try doing a direct construction for the preceding
corollary. This is intentionally not listed in the exercises.)

3.5.2 Ordinals and Cardinals

The aleph was heavy, like trying to carry a small engine block.
— William Gibson, Mona Lisa Overdrive

For Gibson, an aleph is a huge biochip of virtually infinite storage capacity. For
a linguist, aleph is ℵ, the first letter of the Hebrew alphabet. For a set theorist, an
aleph is a cardinal number. Saying that there are ℵ0 natural numbers is like saying
that there are five fingers on my right hand. Alephs are special sorts of ordinals,
and ordinals are special sorts of well-ordered sets.

Suppose that X is set and ≤ is an ordering relation on X . We write x < y
when x ≤ y and x �= y. The relation ≤ is a linear ordering on X if the following
properties hold for all x, y, and z in X .
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Antisymmetry: (x ≤ y ∧ y ≤ x) → x = y.

Transitivity: x ≤ y → (y ≤ z → x ≤ z).

Trichotomy: x < y ∨ x = y ∨ y < x.

Familiar examples of linear orderings include N, Z, Q, and R with the typical
orderings. We say that a linear ordering is a well-ordering if every nonempty
subset has a least element. Since every subset of N has a least element, N is a
well-ordering (using the usual ordering). Since the open interval (0, 1) has no
least element, the usual ordering does not well-order R. An analyst would say
that 0 is the greatest lower bound of (0, 1), but 0 is not the least element of (0, 1)
because 0 /∈ (0, 1). The following theorem gives a handy characterization of well-
ordered sets.

Theorem 3.24. Suppose X with ≤ is a linearly ordered set. X is well-ordered if
and only if X contains no infinite descending sequences.

Proof. We will prove the contrapositive version, that is, X is not well-ordered if
and only if X contains an infinite descending sequence.

First suppose X is not well-ordered. Then X has a nonempty subset Y with
no least element. Pick an element x0 in Y . Since x0 is not the least element of
Y , there is an element x1 in Y such that x0 > x1. Continuing in this fashion, we
obtain x0 > x1 > x2 > · · · , an infinite descending sequence.

To prove the converse, suppose X contains x0 > x1 > x2 > · · · , an infinite
descending sequence. Then the set Y = {xi | i ∈ N} is a nonempty subset of X
with no least element. Thus, X is not well-ordered.

For any set X , the ∈ relation defines an ordering on X . To see this, for each
x, y ∈ X , let x ≤∈ y if x ∈ y or x = y. In general, this is not a particularly pretty
ordering. For example, if a �= b then the set X = {a, b, {a, b}} is not linearly
ordered by the ≤∈ relation. On the other hand, Y = {a, {a, b}, {a, {a, b}}} is
well-ordered by the≤∈ relation. In a moment, we will use this property as part of
the definition of an ordinal number.

A set X is transitive if for all y ∈ X , if x ∈ y then x ∈ X . A transitive set that
is well-ordered by ≤∈ is called an ordinal. The ordinals have some interesting
properties.

Theorem 3.25. Suppose X is a set of ordinals and α and β are ordinals. Then
the following hold:

1. ∪X is an ordinal.

2. α ∪ {α} is an ordinal.

3. α ∈ β or α = β or β ∈ α.

Proof. See Exercises 10, 13, 14, 15, and 16.
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The first two properties in the preceding theorem give good ways to build new
ordinals from old ones. For example, a little vacuous reasoning shows that ∅ is an
ordinal. By the theorem, the sets ∅ ∪ {∅} = {∅}, {∅} ∪ {{∅}} = {∅, {∅}}, and
{∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅}, {∅, {∅}}} are all ordinals. Set theorists have
special names for these finite ordinals. They write

∅ = 0,

{∅} = {0} = 1,

{∅, {∅}} = {0, 1} = 2,

{∅, {∅}, {∅, {∅}}}= {0, 1, 2} = 3,

and so on for all k ∈ N. Since each k is a set, we can define ω by ω = ∪k∈Nk, and
use the first property in the theorem to see that ω is an ordinal. We do not have to
stop here. Since ω is an ordinal, so is ω ∪ {ω} = {ω, 0, 1, 2, . . .}, and we start all
over. Sometimes, texts write α + 1 for the ordinal α ∪ {α} and call ordinals like
1, 2, 3, and ω + 1 successor ordinals. Ordinals that are not successors are called
limit ordinals. The set ω is a good example of a limit ordinal.

Traditionally, greek letters are used to denote ordinals. Also, we usually write
α ≤ β rather than α ≤∈ β. Consequently, for ordinals the formula α < β means
the same thing as α ∈ β. Because ordinals are transitive, α ∈ β implies α ⊂ β,
although the converse is not always true.

There are three ways to think about ordinals and well-orderings. First, every
ordinal is a well-ordered set under the≤ relation. Second, the class of all ordinals
is well-ordered by the ≤ relation. Third, every well-ordered set looks just like an
ordinal. The next theorem is a precise expression of the way that ordinals act as
canonical well-orderings.

Theorem 3.26. Every nonempty well-ordered set is order isomorphic to an ordi-
nal. That is, if X is well-ordered by ≤, then there is an ordinal α and a function
h : X → α such that h is one-to-one and onto, and for all x and y in X , x ≤ y
implies h(x) ≤ h(y).

Proof. Let X be a well-ordered set. For each x ∈ X , define the initial segment for
x by Ix = {t ∈ X | t ≤ x}. Let W be the subset of X consisting of all elements
x such that Ix is order isomorphic to an ordinal. Note that for each x ∈ W , Ix is
order isomorphic to a unique ordinal. By the replacement axiom, we can construct
a set A of all the ordinals isomorphic to initial segments of X . Let α = ∪A; by
Theorem 3.25, α is an ordinal. If x, y ∈ W , x ≤ y, γ and δ are ordinals, and hx

and hy are order isomorphisms such that hx : Ix → γ and hy : Iy → δ, then for
all t < x, hy(t) = hx(t). Using the replacement axiom, we can form the set of
all the order isomorphisms corresponding to the initial segments, and concatenate
them to build a new function h. This new function is an order isomorphism from
W onto α. To complete the proof, we claim that W = X . Suppose not; since
X is well-ordered, we can find a least t in X such that t /∈ W . If we extend h
by setting h(t) = α, then h witnesses that It is order isomorphic to α + 1. Thus
t ∈ W , yielding a contradiction and completing the proof.
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The next theorem shows that using AC we can well-order any set, widening the
applicability of the preceding theorem. Our proof of the “well-ordering principle”
uses ideas from Zermelo’s [291] original proof. The proof can also be viewed as
a special case of Zorn’s Lemma. See Exercise 18 for more about Zorn’s Lemma.

Theorem 3.27. Every set can be well-ordered.

Proof. Let X be a set. We will construct a one-to-one map h : α → X from an
ordinal α onto X . This suffices to prove the theorem, since the elements of α are
well-ordered and h matches elements of α with elements of X .

By AC we can pick x ∈ X − t for each nonempty t ⊂ X . There are two
things to note here. First, xt is never an element of t. This is important later in the
proof. Second, this is the only use of AC in this entire proof. This is handy for the
exercises.

Suppose that f : α→ Y is a one-to-one map of an ordinal α onto a set Y ⊂ X .
For each β < α, let f [β] denote {f(δ) | δ ∈ β}. (Remember, since β and α are
ordinals, β < α is the same thing as β ∈ α.) We say that f is a γ-function if
f(β) = xf [β] for every β ∈ α. Let Γ be the set of all γ-functions. The γ-functions
cohere nicely; if f and g are γ-functions and β is in both of their domains, then
f(β) = g(β). (See Exercise 17.) If we view the functions in Γ as sets of ordered
pairs, ∪Γ is also a set of ordered pairs. Since the functions cohere and are one-to-
one, ∪Γ is actually a one-to-one function; call it h. By Theorem 3.25, the union of
the ordinals that are domains of the functions in Γ is also an ordinal, so for some
ordinal α, h : α→ X . Furthermore, h is a γ-function.

It gets better. Suppose that h does not map α onto X , so h[α] � X . Then we
can define an extension h′ by setting h′(β) = h(β) for β < α and h′(α) = xh[α].
This extension h′ is also a γ-function, so h′ ∈ Γ. Applying the definition of h,
we find that h′(α) is in the range of h. But h′(α) = xh[α] and the range of h is
h[α], so we have xh[α] ∈ h[α], contradicting the statement two paragraphs back.
Summarizing, h is a one-to-one map of α onto X , so X is well-ordered.

Combining the last two theorems yields the following corollary.

Corollary 3.28. For every X there is a unique least ordinal α such that X ∼ α.

Proof. Fix X . By Theorem 3.27, X can be well-ordered. By Theorem 3.26, X ∼
β for some ordinal β. Let A = {γ ≤ β | γ ∼ X} be the set of ordinals less than
or equal to β that are equinumerous with X . Since A is a nonempty set of ordinals
well-ordered by ≤, A contains a least element, α. Let δ be any ordinal such that
X ∼ δ. By Theorem 3.25, δ < α or α ≤ δ. If δ < α, then δ ≤ β and we have
δ ∈ A, contradicting the minimality of α. Thus α ≤ δ, and α is unique.

Since every set has a unique least equinumerous ordinal, we can define |X | as
the least ordinal α such that X ∼ α. We say that an ordinal κ is a cardinal number
if |κ| = κ. In slogan form, a cardinal number is the least ordinal of its cardinality.
The finite pigeonhole principle asserts that every finite ordinal is a cardinal. Thus,
0, 1, and 17324 are all cardinals. The infinite pigeonhole principle shows that ω
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cannot be mapped one-to-one into any finite cardinal, so ω is a cardinal number;
indeed, it is the least infinite cardinal. On the other hand, ω+1 ∼ ω and ω+2 ∼ ω,
so ω+1 and ω+2 are not cardinals. The elements of the next larger cardinal cannot
be matched with the elements of ω, so the next larger cardinal is uncountable.

Even though every cardinal number is an ordinal, we have special notation to
distinguish the cardinals. When we are thinking of ω as a cardinal, we denote
it with an aleph, so ω = ℵ0. The next larger (and consequently uncountable)
cardinal is ℵ1. Proceeding in this way, and using unions at limit ordinals, we can
define ℵα for every ordinal number α. For example, the least cardinal bigger than
ℵ0,ℵ1,ℵ2, . . . is ℵω. Assuming AC, for every infinite set X , there is an ordinal α
such that |X | = ℵα.

The ordinals are like a long string of beads. The infinite cardinals, which are the
alephs, appear like infrequent pearls along the string. The ordinals are good for
counting steps in order (like rosary beads), and the cardinals are ideal for summing
up sizes (like abacus beads). For finite sets, cardinals and ordinals are identical.
Thus |{A, B, C, D}| = 4 = {0, 1, 2, 3} and {A, B, C, D} ∼ {0, 1, 2, 3}. In
general, the matching approach to measuring the sizes of sets agrees with the
cardinality approach. This is formalized in the following theorem.

Theorem 3.29. For all sets X and Y , |X | = |Y | if and only if X ∼ Y .

Proof. Suppose |X | = |Y | = κ. Then X ∼ κ and Y ∼ κ, so X ∼ Y . Conversely,
suppose X ∼ Y , and let κ1 = |X | and κ2 = |Y |. Since κ1 ∼ X ∼ Y ∼ κ2, we
have κ1 ∼ κ2. Since κ1 and κ2 are cardinals, κ1 ∼ κ2 implies κ1 = κ2. Thus
|X | = |Y |.

3.5.3 Pigeons Finished Off

Every Sunday you’ll see
My sweetheart and me,
As we poison the pigeons in the park.

— Tom Lehrer

At this point, we know quite a bit about stuffing pigeons into pigeonholes. For
example, if p and h are both finite cardinal numbers, we have the following finite
pigeonhole principle.

• If we put p pigeons into h pigeonholes and h < p, then some pigeonhole
contains at least two pigeons.

The idea here is that any function from the set of larger cardinality into the set of
smaller cardinality must fail to be one-to-one. By the Cantor–Bernstein Theorem,
this holds for infinite cardinals as well. Thus for any cardinals κ and λ, we get the
following analogue of the finite pigeonhole principle.

• If we put κ pigeons into λ pigeonholes and λ < κ, then some pigeonhole
contains at least two pigeons.
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The preceding infinite analogue of the finite pigeonhole principle is not the
same as the infinite pigeonhole principle of Theorem 3.1. Here is a restatement of
Theorem 3.1 using our notation for cardinals.

• If we put ℵ0 pigeons into h pigeonholes and h < ℵ0, then some pigeonhole
contains ℵ0 pigeons.

The infinite pigeonhole principle says that some pigeonhole is infinitely crowded.
This does not transfer directly to higher cardinalities. For example, we can put ℵω

pigeons into ℵ0 pigeonholes is such a way that every pigeonhole has fewer than
ℵω pigeons in it. To do this, put ℵ0 pigeons in the 0th hole, ℵ1 pigeons in the
1st hole, ℵ2 pigeons in the 2nd hole, and so on. The total number of pigeons is
ℵω = ∪n∈ωℵn, but each hole contains ℵn pigeons for some n < ω. This peculiar
behavior stems from the singular nature of ℵω.

A cardinal κ is called singular if there is a cardinal λ < κ and a function
f : λ → κ such that ∪α<λf(α) = κ. (Remember, κ is transitive, so if f(α) ∈ κ,
then f(α) ⊂ κ.) As an example, if we define f : ℵ0 → ℵω by f(n) = ℵn, then
∪α<ℵ0f(α) = ℵω, showing that ℵω is singular. Any infinite cardinal number that
is not singular is called regular. One good example of a regular cardinal is ℵ0; it
is not equal to any finite union of finite cardinals. We can generalize the infinite
pigeonhole principle for regular cardinals, but to prove the new result, we will
need the following theorem.

Theorem 3.30. For every infinite cardinal κ, |κ× κ| = κ.

We will postpone the proof of Theorem 3.30 for a while and jump right to the
avian corollary. Since this is the last pigeonhole principle in this book, we will
call it ultimate. Of course our list of pigeonhole principles is not all inclusive. For
example, more set theoretic pigeonhole principles are given in [72].

Corollary 3.31 (Ultimate Pigeonhole Principle). The following are equivalent:

1. κ is a regular cardinal.

2. If we put κ pigeons into λ < κ pigeonholes, then some pigeonhole must
contain κ pigeons.

Proof. First suppose that λ < κ and κ is regular. Suppose that g : κ → λ is an
assignment of κ pigeons to λ pigeonholes. Define f(α) = |{x ∈ κ | g(x) = α}|
for each α < λ, so f(α) is the population of the αth pigeonhole. Suppose, by
way of contradiction, that f(α) < κ for each α. Because each f(α) is a cardinal,
μ = ∪α<λf(α) is a cardinal. Furthermore, μ < κ because κ is regular. For each
α, f(α) ≤ μ, so the population of the αth pigeonhole can be matched with a
subset of μ. Since there are λ pigeonholes, the entire pigeon population can be
matched with a subset of μ×λ, so κ ≤ |μ×λ|. Let ν = max{μ, λ}. Since μ ≤ ν
and λ ≤ ν, |μ × λ| ≤ |ν × ν|. By Theorem 3.30, |ν × ν| = ν. Since μ < κ and
λ < κ, we have ν < κ, and concatenating inequalities yields

κ ≤ |μ× λ| ≤ |ν × ν| = ν < κ,
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a contradiction. Thus, for some α, f(α) = κ and the αth pigeonhole contains κ
birds.

To prove the converse, suppose that κ is a singular cardinal. Then there is a
cardinal λ < κ and a function f : λ → κ such that ∪α<λf(α) = κ. Define
g : κ → λ by letting g(β) be the least α such that β ∈ f(α). Since∪α<λf(α) = κ
and λ is well-ordered, g is well-defined and maps each element of κ to an element
of λ. Furthermore, for each α < λ,

|{β ∈ κ | g(β) = α}| ≤ |f(α)| < κ.

Thus g can be viewed as an assignment of κ pigeons to λ pigeonholes so that the
population of each pigeonhole is less than κ.

The first part of the preceding proof can be adapted to prove that lots of cardi-
nals are regular. This is a nice fact, since it means that we can apply the pigeonhole
principle in lots of situations.

Corollary 3.32. For each ordinal α, the cardinal ℵα+1 is regular.

Proof. We will sketch the argument. Suppose f : λ → ℵα+1, where λ is any
cardinal such that λ < ℵα+1. Then λ ≤ ℵα, and for each β < λ, |f(β)| ≤ ℵα.
Applying Theorem 3.30 yields | ∪α<λ f(α)| ≤ |ℵα × ℵα| = ℵα < ℵα+1.

We should list the regular cardinals we have found. ℵ0 is regular, and by the
preceding corollary so are ℵ1(= ℵ0+1), ℵ2(= ℵ1+1), ℵ3, ℵ4, and so on. We have
seen that the limit cardinal ℵω is singular; the subscript cannot be written as α+1,
so this does not contradict Corollary 3.32. However, ℵω+1 is regular, as are ℵω+2,
ℵω+3, and so on. Our only good example of a regular limit cardinal is ℵ0. We do
not have an example of an uncountable regular limit cardinal. The reason for this
is explained in Section 3.6.

It seems that Theorem 3.30 is a handy way to bound the sizes of unions. Here
is a nice way to capsulize that.

Corollary 3.33. If κ is an infinite cardinal and |Xα| ≤ κ for each α < κ, then
| ∪α<κ Xα| ≤ κ. In particular, a countable or finite union of at most countable
sets is at most countable.

Proof. Suppose |Xα| ≤ κ for each α < κ. For each α, let gα : Xα → κ be a one-
to-one map. Define f : ∪α<κXα → κ× κ by f(x) = (α, gα(x)), where α is the
least ordinal such that x ∈ Xα. The function f is one-to-one, so∪α<κXα � κ×κ.
Thus by Theorem 3.30, | ∪α<κ Xα| ≤ |κ× κ| = κ. To prove the particular case,
let κ = ℵ0.

We have used Theorem 3.30 repeatedly, but still have not proved it. It is time
to pay the piper.

Proof of Theorem 3.30. We will use induction to prove that |κ×κ| = κ for every
infinite cardinal κ. For the base case, apply Corollary 3.22 to get |ℵ0 ×ℵ0| = ℵ0.
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As the induction hypothesis, assume |λ×λ| = λ for every infinite cardinal λ < κ.
Since κ � κ × κ, by the Cantor–Bernstein Theorem, it suffices to show that
κ× κ � κ.

Define the ordering < on κ× κ as follows. Let (α, β), (α′, β′) ∈ κ× κ and let
μ = max{α, β} and μ′ = max{α′, β′}. We say that (α, β) < (α′, β′) if and only
if

μ < μ′, or

μ = μ′ and α < α′, or

μ = μ′ and α = α′ and β < β′.

Informally, this relation sorts κ × κ by looking at maxima, then first elements,
and then second elements. A routine but technical argument shows that < is a
well-ordering of κ × κ. By Theorem 3.26, κ × κ under < is order isomorphic
to some ordinal. Let δ denote that ordinal, and let f : κ × κ → δ be the order
isomorphism. If δ ≤ κ, then κ× κ � δ � κ and the proof is complete.

Suppose by way of contradiction that κ < δ. Since δ is an ordinal, we know that
κ ∈ δ, so there is an element (σ, τ) ∈ κ× κ such that f(σ, τ) = κ. Let μ denote
max{σ, τ} and note that σ < κ, τ < κ, and consequently μ < κ. Furthermore,
by definition of the well-ordering on κ× κ,

{(α, β) ∈ κ× κ | f(α, β) < κ} ⊂ μ× μ,

so κ � μ × μ and κ ≤ |μ × μ|. Let λ = |μ|. Since λ ∼ μ, we have |μ × μ| =
|λ × λ|. Since μ < κ, λ is a cardinal less than κ, so by the induction hypothesis,
|λ × λ| = λ < κ. Concatenating inequalities yields κ ≤ |μ× μ| = |λ× λ| < κ,
a contradiction that completes the proof.

Exercises

1. Define f : N → Z by f(n) = (−1)n+1(1
4 )(2n + 1) + (1

4 ).

(a) Show that f is one-to-one. (Assume f(j) = f(k) and prove j = k.)

(b) Show that f is onto. (Show that if m > 0, then f(2m− 1) = m and
if t ≤ 0 then f(−2t) = t.)

2. Prove that ∼ is an equivalence relation. That is, show that for all sets A, B
and C, the following hold:

(a) A ∼ A,

(b) A ∼ B → B ∼ A, and

(c) (A ∼ B ∧B ∼ C)→ A ∼ C.

3. Show that for all sets A, B, and C, the following hold:

(a) A � A (so � is reflexive), and
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(b) (A � B ∧B � C)→ A � C (so � is transitive).

4. Details of the Cantor–Bernstein proof. This problem uses notation from the
proof of Theorem 3.20.

(a) Use induction to prove Claim 1. As a base case, show A0 ⊃ A1 ⊃ A2.
For the induction step, assume An ⊃ An+1 ⊃ An+2 and show that
An+2 ⊃ An+3, using the fact that An ⊃ An+1 implies g ◦ f(An) ⊃
g ◦ f(An+1).

(b) Prove Claim 2. Use the fact that either x ∈ A′
ω or there is a least j

such that x /∈ Aj to show that each x is in some A′
n. (Here n is a

natural number or ω.) To prove that x is in a unique A′
n, suppose that

x is in two such sets, and seek a contradiction.

(c) Prove Claim 3. Use Claim 1 to get a short proof that Bn ⊃ Bn+1. The
remainder of the argument parallels the proof of Claim 2.

(d) Prove Claim 4. To show that h(A′
2n) = B′

2n+1, note that because f is
one-to-one we have f(A2n)− f(A2n−1) = f(A2n −A2n−1), and so

B′
2n+1 = B2n+1−B2n = f(A2n)−f(A2n−1) = f(A′

2n) = h(A′
2n).

The proof that B′
2n = h(A′

2n+1) is similar. For the limit, the proof
of h(A′

ω) = B′
ω relies on the fact that since f is one-to-one, we must

have that f(∩n∈ωAn) = ∩n∈ωf(An).

5. Let Q denote the set of rationals. Prove that Q ∼ N.

6. Let Seq denote the set of all finite sequences of natural numbers. Prove that
Seq ∼ N.

7. Without using Theorem 3.24, prove that Z with the usual ordering is not
well-ordered.

8. Using Theorem 3.24, prove that Z with the usual ordering is not well-
ordered.

9. Repeat Exercises 7 and 8 for the set Q+ = Q ∩ [0,∞) with the usual
ordering.

10. Suppose that X is a transitive set.

(a) Prove that X ′ = X ∪ {X} is transitive.

(b) Prove that ∪X is transitive.

11. Give an example of a nontransitive set where ≤∈ is a transitive relation.
(Hint: The relation ≤∈ is vacuously transitive on every two-element set.)

12. Give an example of a transitive set where ≤∈ is not a transitive relation.
(Hint: There is an example with three elements.)
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13. Prove that if α is an ordinal, then so is α′ = α ∪ {α}. (Hint: Exercise 10a
shows that α′ is transitive. Use the fact that α is well-ordered by ≤∈ to
show that α′ is too.)

14. Prove that if α and β are ordinals, then α∩ β = α or α∩ β = β. (Hint: Let
C = α ∩ β and suppose that C �= α and C �= β. Let γ be the least element
of α such that γ /∈ C. Show that γ = C, so C ∈ α. Similarly, C ∈ β, so
C ∈ α ∩ β = C, contradicting Theorem 3.13.)

15. Prove that if X is a set of ordinals, then ∪X is an ordinal. (Hint: To show
that ∪X is transitive, note that if x ∈ y ∈ ∪X , then for some ordinal z ∈ X
we have y ∈ z. The fact that ≤∈ well-orders each element of X helps
in proving antisymmetry and transitivity. Exercise 14 is useful in showing
that trichotomy holds. Use the axiom of regularity to show that ∪X has no
infinite descending sequences.)

16. Prove that if α and β are ordinals, then α ∈ β, α = β, or β ∈ α.

17. Details from the proof of Theorem 3.27.

Let f : β1 → X and g : β2 → X be γ-functions as defined in the proof
of Theorem 3.27. Prove that if β ∈ β1 ∩ β2, then f(β) = g(β). (If f
and g disagree, then there is a least β such that f(β) �= g(β). For this β,
f [β] = g[β]. Apply the definition of a γ-function.)

18. Zorn’s Lemma and AC.

Prove in ZF that the following are equivalent:

1. AC.

2. Zorn’s Lemma: Let P be a partial ordering (transitive and antisym-
metric) such that every chain (linearly ordered subset) has an upper
bound in P . Then P contains a maximal element (an element with no
elements above it.)

3. Every set can be well-ordered.

(a) Prove that 1 implies 2. (Hint: Emulate the proof of Theorem 3.27.
Suppose P has no maximal elements. For each chain C, let xC be an
upper bound of C that is not an element of C. Call C a γ-chain if
for every p ∈ C, x{y∈C | y<p} = p. Use the union of the γ-chains to
derive a contradiction.)

(b) Prove that 2 implies 3. (Hint: Fix a set X to well-order. Let P be
the set of all one-to-one maps from ordinals to subsets of X . P is
partially ordered by function extension. Show that every chain has an
upper bound. Show that a maximal element maps an ordinal one-to-
one onto X .)

(c) Prove that 3 implies 1.
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19. Describe a way to place ℵ0 pigeons in ℵ0 pigeonholes so that each pigeon-
hole contains at most one pigeon and ℵ0 of the pigeonholes are empty.
(Hint: |Z| = |N| = ℵ0.)

20. Describe a way to place ℵ0 pigeons in ℵ0 pigeonholes so that each pigeon-
hole contains ℵ0 pigeons. (Hint: |ℵ0 × ℵ0| = ℵ0.)

21. Describe a way to place ℵ0 pigeons in ℵ0 pigeonholes so that for each
κ ≤ ℵ0 exactly one pigeonhole contains exactly κ pigeons.

22. Describe a way to place ℵ0 pigeons in ℵ0 pigeonholes so that for each
κ ≤ ℵ0 exactly ℵ0 pigeonholes contain exactly κ pigeons.

23. Show that if we put κ pigeons into λ pigeonholes and κ < λ, then λ pi-
geonholes will remain empty. (Hint: The set of all pigeonholes is the union
of the empty holes and the occupied holes.)

3.6 Incompleteness and Cardinals

. . . we never assumed that (ZFC) included all the “true” facts.
— Levy [187]

In the last section we noted the absence of an example of an uncountable regular
limit cardinal. We do not have an example because in ZFC we cannot prove that
uncountable regular limit cardinals exist, assuming that ZFC is consistent. We
have to assume that ZFC is consistent, because ZFC cannot prove that either.
The last sentence is essentially Gödel’s Second Incompleteness Theorem and the
starting point for our exploration of large cardinals.

3.6.1 Gödel’s Theorems for PA and ZFC

Gödel’s 1931 (paper) was undoubtably the most exciting and the
most cited article in mathematical logic and foundations to appear
in the first eighty years of the (twentieth) century.

— Kleene [126]

Gödel’s First Incompleteness Theorem [124] is a statement about the provability
of a formula in formal Peano Arithmetic (PA). In a nutshell, Gödel’s first theorem
says that if PA is ω-consistent, then there is a formula G such that PA does not
prove G and PA does not prove¬G. In order to make this clear, we should discuss
PA, ω-consistency, and the formula G.

The axioms of PA are an attempt to describe the important properties of the
natural numbers under the operations of successor (adding one), addition, and
multiplication. PA includes predicate calculus and axioms that say that

• 0 is not the successor of any element,
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• x + 0 = x and x + (n + 1) = (x + n) + 1,

• x · 0 = 0 and x · (n + 1) = x · n + x, and

• the distributive laws hold.

PA also includes an induction scheme that can be used to prove a wealth of facts
about the natural numbers. At one point, it was thought that PA might be able to
prove every true statement about N, but then Gödel’s work ruled that possibility
out.

We say that a theory is consistent if there is no formula A such that the theory
proves both A and ¬A. A theory that is inconsistent and includes predicate calcu-
lus can prove every formula. Thus a theory is consistent if and only if there is some
formula the theory cannot prove. When we say PA is ω-consistent, we mean PA
cannot prove both ∃xA(x) and every formula in the list ¬A(0), ¬A(1), ¬A(2),
and so on. Assuming ω-consistency is very reasonable, but a little stronger than
assuming regular old consistency. Rosser [242] devised a way to prove Gödel’s
first theorem assuming only the consistency of PA. His replacement for Gödel’s
sentence G is a slightly more complicated formula.

Informally, Gödel’s formula G says “there is no proof in PA of the formula G.”
This is encoded in the language of arithmetic. Given our daily exposure to word
processors and automated spelling and grammar checkers, we are used to the idea
that formulas and lists of formulas (like proofs) can be represented as strings of
zeros and ones, and that such strings can be viewed as integers and described by
arithmetical formulas. It is very remarkable that Gödel devised and utilized an
encoding scheme in 1931, long before the advent of electronic computers.

The method for making G refer to G is very entertaining. Let G0(x) be the
formula that says “there is no number that encodes a proof in PA of the formula
obtained by substituting the number x for the free variable in the formula encoded
by the number x.” Suppose that n is the number that encodes G0(x). Note that the
formula obtained by substituting n for the free variable in the formula encoded
by n is exactly G0(n). Informally, G0(n) says “there is no number that encodes
a proof in PA of G0(n).” Thus, G0(n) is the desired formula G.

Once we have the encoding procedures in hand and have created the formula G,
the remainder of the proof of Gödel’s First Incompleteness Theorem is straight-
forward. Suppose that PA is ω-consistent. First, suppose that PA proves G. Then
this proof is encoded by a number n and PA proves that “there is a number that
encodes a proof in PA of G.” Thus, PA proves ¬G, contradicting the consistency
of PA. Now suppose that PA proves ¬G. Then PA proves that “there is a number
that encodes a proof of G.” By the ω-consistency of PA, we can find some num-
ber that actually does encode such a proof, and so PA proves G. Again, we have
contradicted the consistency of PA.

Gödel’s Second Incompleteness Theorem [124] says that if PA is consistent,
then there is no proof in PA that PA is consistent. Much of the machinery used for
the first theorem applies here also. The formula that asserts that PA is consistent,
ConPA, is an encoding of the sentence “there are no numbers x and y such that x
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encodes a proof in PA of a formula and y encodes a proof in PA of the negation of
that formula.” It is possible to prove in PA that ConPA → G. Thus, if PA proved
ConPA, then PA would prove G, and that contradicts Gödel’s First Incompleteness
Theorem.

Perhaps the most remarkable quality of the incompleteness theorems is the
ubiquity of their applicability. The theorems utilize only a few important features
of PA and therefore apply to a wide variety of formal theories. In particular, the
proofs of the theorems rely heavily on the ability to carry out a modest amount of
arithmetic and the ability to check proofs in a mechanical fashion. Consequently,
if a theory has enough axioms (to prove facts about encoding) but not too many
axioms (so proof checking is not incomprehensibly complicated), then both in-
completeness theorems apply. For example, both incompleteness theorems hold
for ZFC. Thus, assuming that ZFC is consistent, there is a formula Z such that
ZFC proves neither Z nor ¬Z , and ZFC does not prove ConZFC. The incomplete-
ness theorems also hold for ZF and for any extensions of ZF by a finite number
of axioms.

3.6.2 Inaccessible Cardinals

Better to reign in L, than serve in Heav’n.
— Milton, Paradise Lost (slightly misquoted)

If κ is an uncountable regular limit cardinal, then we say κ is weakly inaccessible.
Our goal is to prove that the existence of weakly inaccessible cardinals is not
provable in ZFC. At the end of this section we will link this back to our study of
pigeonhole principles. The plan for achieving the goal is straightforward. The first
step is to prove in ZFC that if there is a weakly inaccessible cardinal, then ZFC is
consistent. Then we apply Gödel’s Second Incompleteness Theorem and get the
desired result. The first step requires a journey to L, the constructible universe.

We will build the constructible universe in stages. Let L0 = ∅. If Lα is defined,
let Lα+1 be the set of all subsets of Lα that are definable by restricted formulas
with parameters from Lα. To be precise, a set X will be placed in Lα+1 if all of
the following conditions hold.

• X ⊂ Lα,

• u1, u2, . . . , un ∈ Lα is a finite list of parameters,

• ψ is a formula in the language of set theory,

• ψ does not contain the power set or union symbols,

• each quantifier in ψ is of the form ∃x ∈ Lα or ∀x ∈ Lα, and

• X = {y ∈ Lα | ψ(y, u1, u2, . . . , un)}.
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If α is a limit ordinal, let Lα = ∪β<αLβ . This suffices to define Lα for each
ordinal number α. Note that for each α, Lα is a set. The constructible universe, L,
is the class defined by L = ∪Lα, where the union ranges over all ordinal numbers.
Neither {Lα | α is an ordinal number} nor L itself are sets, but it is convenient to
refer to them using set-theoretic notation.

The finite levels of the constructible universe are simple in structure. For each
k < ω, each Lk is finite and Lk+1 = P(Lk). By definition L0 = ∅, and so L1 =
P(∅) = {∅} and L2 = P({∅}) = {∅, {∅}}. Rewriting with ordinal notation,
L0 = 0, L1 = 1, and L2 = 2. At the next level, L3 breaks this pattern, since
L3 = P(L2) = {0, 1, {1}, 2}, which is not an ordinal. Lω is defined by a union,
so every element of Lω is an element of Lk for some k < ω. Beyond Lω, the sets
become vastly more complicated very rapidly. If κ is weakly inaccessible, the Lκ

is an abridged version of the entire universe. This is stated more formally in the
following theorem.

Theorem 3.34. If κ is weakly inaccessible, then Lκ is a model of ZFC. That is, if
we restrict the quantifiers in the axioms to Lκ, then the axioms of ZFC all hold.

Comments on the proof. For a detailed treatment, see [80] or [73]. We provide
only a hint of some of the main issues in the proof. The basic idea is to verify
that the axioms of ZFC hold in Vκ in much the same way that one would show
that the axioms defining vector spaces hold in R3. Some axioms are very easy to
manage. For example, ∅ ∈ L1, so the empty set axiom holds. If a and b are in Lα,
then {a, b} is in Lα+1, so some instances of the pairing axiom are easy to verify.
Verification of the infinity axiom relies on κ being larger than ℵ0, since every set
in Lℵ0 is finite. The verification of the power set axiom is particularly tricky and
relies on the assumption that κ is a regular limit cardinal.

Now we can finish our proof of the unprovability of the existence of a weakly
inaccessible cardinal. The proof relies on the fact that any set of axioms with a
model must be consistent. If M is any model for a set of axioms T , then every
theorem that can be proved from T is true in M . (This is actually what makes
proofs useful. If you prove a theorem from the axioms for vector spaces, then it
has to be true in every vector space.) If T is inconsistent, then it proves a contra-
diction that would have to be true in M . But models are concrete (think of R3 as
a model for the vector space axioms), so no contradiction can be true in a model.
For a more technical discussion of models, truth, and provability, see [201].

Theorem 3.35. If ZFC is consistent, then ZFC does not prove the existence of a
weakly inaccessible cardinal.

Proof. Assume that ZFC is consistent. Suppose, by way of contradiction, that
ZFC proves that there is a cardinal κ that is weakly inaccessible. Then ZFC proves
that the set Lκ exists. By Theorem 3.34 we know that Lκ is a model of ZFC,
so ZFC is consistent. Thus ZFC proves the consistency of ZFC, contradicting
Gödel’s Second Incompleteness Theorem and completing the proof.
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The unprovability of the existence of weakly inaccessible cardinals is not like
the unprovability of AC in ZF. If we write I for the statement “there is a weakly
inaccessible cardinal” and write ZFC " I for “ZFC proves I ,” then the preceding
theorem says that ZFC �" I , provided that ZFC is consistent. To show that I
is independent of ZFC (like AC is for ZF) we would also need to prove ZFC
�" ¬I assuming that ZFC is consistent. Thanks to Gödel, we know that this is an
unattainable goal. To see this, suppose (for an eventual contradiction) that from
ConZFC we can prove in ZFC that ZFC �" ¬I . If ZFC �" ¬I , then ConZFC+I .
Thus, our hypothesis boils down to ZFC " ConZFC → ConZFC+I . Since ZFC+I
is an extension of ZFC, we have ZFC+I " ConZFC → ConZFC+I . Theorem
3.34 shows that ZFC+I " ConZFC. Concatenating the last two lines, we obtain
ZFC+I " ConZFC+I , contradicting Gödel’s Second Incompleteness Theorem for
ZFC+I .

Finally, we should summarize the combinatorial implications of this section.
We know that if ZFC is consistent, then it cannot prove the existence of a weakly
inaccessible cardinal. Also, κ is weakly inaccessible if and only if it is an uncount-
able regular limit cardinal. By the Ultimate Pigeonhole Principle, κ is regular if
and only if whenever κ pigeons are placed in fewer than κ pigeonholes, then some
hole contains κ pigeons. So a weakly inaccessible cardinal is an uncountable limit
cardinal with this pigeonhole property. In Section 3.5 we proved that ℵ0 and ℵα+1

for each ordinal α have this pigeonhole property. In this section we have proved
that we cannot prove the existence of any more cardinals with this property.

3.6.3 A Small Collage of Large Cardinals

All for one . . . and more for me.
— Cardinal Richelieu in The Three Musketeers

A cardinal number is said to be large if there is no proof in ZFC of its existence.
We just met our first large cardinal, the weakly inaccessible cardinal. There are
many other large cardinals related to combinatorial principles. This section lists
the ones we need for the next two sections.

Recall that a weakly inaccessible cardinal is an uncountable regular limit car-
dinal. We say that a cardinal κ is a strong limit if for every λ < κ we have
|P(λ)| < κ. An uncountable regular strong limit cardinal is called strongly in-
accessible (or just inaccessible). Every strongly inaccessible cardinal is weakly
inaccessible. If we assume the generalized continuum hypothesis (GCH), then
every weakly inaccessible cardinal is also strongly inaccessible. (See Exercise
6.) The hypothesis GCH is independent of ZFC, and has inspired a great deal of
interesting work [173].

We say that κ is weakly compact if κ is uncountable and κ → (κ)22. This arrow
notation is the same used in Section 3.2, so κ → (κ)22 means that if we color the
edges of a complete graph with κ vertices using two colors, then it must contain
a monochromatic complete subgraph with κ vertices. These cardinals reappear in
the next section.
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We will also look at some results concerning subtle cardinals, another type of
large cardinal defined in terms of colorings of unordered n-tuples. Suppose that κ
is a cardinal and let [κ]n denote the set of n-element subsets of κ. We say that a
function S : [κ]n → P(κ) is an (n, κ)-sequence if for each element of [κ]n of the
form α1 < α2 < · · · < αn < κ, we have S({α1, α2, . . . , αn}) ⊂ α1. A subset
C ⊂ κ is closed if the limit of each sequence of elements in C is either κ or in
C. The subset C ⊂ κ is unbounded if for each α ∈ κ, there is a β ∈ C such
that α < β. We abbreviate closed and unbounded by writing club. The cardinal κ
is n-subtle if for every (n, κ)-sequence S and every club set C ⊂ κ, there exist
elements β1, β2, . . . , βn+1 ∈ C such that

S(β1, β2, . . . , βn) = β1 ∩ S(β2, β3, . . . , βn+1).

The basic idea is that given a coloring S and a large set C, the large set must
contain some elements that are monochromatic. The n-subtle cardinals are closely
related to n-ineffable cardinals. More information on both these types of cardinals
can be found in [18], [19], [80], and especially [157].

One variation on coloring n-tuples for fixed values of n is to color n-tuples for
all n ∈ ω simultaneously. Let [κ]<ω denote the set of all finite subsets of κ. We say
κ is a Ramsey cardinal and write κ → (κ)<ω

2 if for every function f : [κ]<ω → 2
there is a set X of size κ such that for each n, f is constant on [X ]n. Note that
the same X works for all n, though when j �= k the j-tuples may not be the same
color as the k-tuples.

One type of cardinal often mentioned in the literature is bigger than anything
we have listed so far. We say that κ is a measurable cardinal if there is a κ-additive
two-valued measure on κ. Roughly, this means that there is a way of assigning a
value μ(X) to each X ⊂ κ so that μ acts a lot like the measures that appear in
analysis.

One way to organize all these cardinals is by comparing the sizes of the least
example of each type of cardinal. Suppose we assign letters as follows:

W : Least weakly inaccessible cardinal,
I : Least strongly inaccessible cardinal,
C : Least weakly compact cardinal,
S1: Least 1-subtle cardinal,
S2: Least 2-subtle cardinal,
...

Sn: Least n-subtle cardinal,
...
R : Least Ramsey cardinal,
M : Least measurable cardinal.

Then we have the following relationships:

W ≤ I < C < S1 < S2 < · · · < Sn < · · · < R < M.
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The proofs of these relationships are frequently nontrivial. Good references in-
clude [80] and [168].

Exercises

1. For each k ∈ ω show that |Lk+1| = 2|Lk|.

2. Using Exercise 1, prove that Lω is countable.

3. Prove that for each ordinal α, Lα is transitive. (Hint: Lα is transitive if
x ∈ y ∈ Lα implies x ∈ Lα. Use induction on the ordinals.)

4. Prove that if α < β, then Lα ⊂ Lβ .

5. Prove that if κ is a limit cardinal and x ∈ Lβ for some β < κ, then we also
have ∪x ∈ Lκ.

6. The generalized continuum hypothesis (GCH) asserts that for every ordinal
α, |P(ℵα)| = ℵα+1. Assuming GCH, prove that every limit cardinal is
a strong limit cardinal. As a corollary, show that GCH implies that every
weakly inaccessible cardinal is strongly inaccessible.

7. Construct a 2-coloring f of [ω]<ω such that f is constant on [ω]n for each
n, but no pair has the same color as any triple.

3.7 Weakly Compact Cardinals

Watch out for that tree!
— George of the Jungle theme song

Theorem 3.3 says that if we 2-color a complete graph G with ℵ0 vertices, then
it must contain a monochromatic subgraph with ℵ0 vertices. In arrow notation,
this is written as ℵ0 → (ℵ0)22, where the first ℵ0 is the size of G and the second
ℵ0 is the size of the desired monochromatic subgraph. It would be nice to know
what other cardinals κ satisfy κ → (κ)22. We call an uncountable cardinal with
this property weakly compact. Judging from the next theorem, our list of weakly
compact cardinals may be very short.

Theorem 3.36. |R| �→ (ℵ1)22 and consequently, ℵ1 �→ (ℵ1)22.

Proof. Let κ = |R| and let g : κ → R be a matching between the ordinals less
than κ and the reals. Let G be a complete graph with κ vertices. We can think of
each vertex of G as having two labels, an ordinal α < κ and a real number g(α).
Color the edges of G using the scheme

χ(αβ) =

{
red if α < β ↔ g(α) < g(β),
blue if α < β ↔ g(β) < g(α).
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Informally, χ colors the edge αβ red if the order on the ordinal labels agrees with
the order on the real number labels, and colors the edge blue if the orders disagree.

Suppose that S is a subgraph of G and |S| = ℵ1. We will show that S is not
monochromatic. Since the ordinal labels for the vertices of S are a well-ordered
subset of κ, we can list them in increasing order as 〈αγ | γ < ℵ1〉. We consider
two cases.

First, suppose that S is red. Then the ordering on the real labels of the vertices
of S agrees with the ordering on the ordinal labels. This gives us an uncountable
well-ordered increasing sequence of reals, 〈g(αγ) | γ < ℵ1〉. Using the fact that
Q is dense in R, for each γ ∈ ℵ1, choose a rational qγ such that g(αγ) < qγ <
g(αγ+1). Then 〈qγ | γ < ℵ1〉 is an uncountable sequence of distinct rationals,
contradicting the countability of Q. (See Exercise 5 in Section 3.5.) Thus, S is not
red.

Second, suppose that S is blue. This yields an uncountable decreasing sequence
of reals. By choosing qγ such that g(αγ) > qγ > g(αγ+1) we obtain another
contradiction in the same fashion as in the preceding case.

Summarizing, S is neither red nor blue. Thus G contains no monochromatic
subgraph of size ℵ1.

To prove the last statement in the theorem, we note that by Theorem 3.18 and
Corollary 3.23, N ≺ R. Thus ℵ0 < |R|, and so |R| ≥ ℵ1. Since there is a way
to color a graph with |R| vertices so that no ℵ1-sized monochromatic subgraphs
exist, we can certainly do the same for a (possibly smaller) graph with a mere ℵ1

vertices.

Summarizing, we know that ℵ0 → (ℵ0)22, but ℵ1 �→ (ℵ1)22. We can general-
ize Theorem 3.36 to show that ℵα+1 �→ (ℵα+1)22, eliminating all the successor
cardinals from our hunt for weakly compact cardinals.

Theorem 3.37. |P(ℵα)| �→ (ℵα+1)22.

Proof. Imitate the preceding proof using P(ℵα) in the role of R. To do this, prove
and use the fact that when P(ℵα) is ordered by the relation

X < Y if and only if min((X − Y ) ∪ (Y −X)) ∈ Y,

it contains no increasing or decreasing sequences of size ℵα+1.

At this point we know that any weakly compact cardinal must be an uncount-
able limit cardinal. In the following theorem, we emulate Erdős and Tarski [97]
in showing that any weakly compact cardinal is inaccessible, and therefore large.
Their studies of weakly compact cardinals were motivated by questions in infinite
combinatorics stated in their 1943 paper [96].

Theorem 3.38. If κ is weakly compact, then κ is strongly inaccessible.

Proof. Suppose that κ → (κ)22. We need to show that κ is regular and a strong
limit cardinal.
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First suppose that κ is not regular, so for some λ there is a function f : λ → κ
such that ∪α<λf(α) = κ. We may assume that f is increasing. We will use f to
construct a 2-coloring of a complete graph with κ vertices. For each α < β < κ,
color the edge αβ using the scheme

χ(αβ) =

{
red if ∃γ(α < f(γ) ≤ β),
blue otherwise.

Informally, f chops κ into λ intervals. An edge is red if it connects two intervals.
Thus, no red subgraph can be larger than size λ. Also, each interval chopped out
by f is smaller than κ, so there is no blue subgraph of size κ. This contradicts
κ → (κ)22, proving that no function like f exists and that κ is regular.

Now suppose that ℵα < κ. If κ ≤ |P(ℵα)|, then by Theorem 3.37, κ �→
(ℵα+1)22. But ℵα+1 ≤ κ, so this implies that κ �→ (κ)22, contradicting weak
compactness. Thus, if ℵα < κ, then |P(ℵα)| < κ, proving that κ is a strong limit
cardinal.

We have seen that if κ is uncountable and κ → (κ)22, then κ is a large cardinal.
By the results in Section 3.6, we know that ZFC cannot prove that such cardinals
exist. Interestingly enough, increasing the number of colors (to any value less that
κ) or increasing the size of the n-tuples (from 2 to any n < ω) does not lead
to larger cardinals. That is, if λ < κ, n ∈ ω, and κ is weakly compact, then
κ → (κ)n

λ. (Details are left as exercises.) We could color n-tuples for all n ∈ ω,
and look for a single set that is monochromatic for n-tuples for each n. This leads
to the Ramsey cardinals mentioned in Section 3.6, which are considerably larger
than the weakly compact cardinals.

In Section 3.1 we saw a close relationship between Ramsey’s Theorem and
König’s Lemma. This relationship reappears at higher cardinalities. We say that
a cardinal κ has the tree property if whenever T is a tree with κ many nodes
and every level of T has size less than κ, then T must have a path of size κ.
König’s Lemma (Theorem 3.2) says that ℵ0 has the tree property. The next theo-
rem shows the connection between weakly compact cardinals and cardinals with
the tree property.

Theorem 3.39. κ is weakly compact if and only if κ is strongly inaccessible and
has the tree property.

Pointers: Excellent proofs of this result can be found in the books of Drake (The-
orems 3.5 and 3.7 in Chapter 7 of [80]), Jech (Lemma 29.6 in Chapter 5 of [168]),
and Roitman (Theorem 36 in Chapter 7 of [241]).

Theorem 3.39 does not characterize the smaller cardinals with the tree property.
As we have already noted, ℵ0 has the tree property. However, ZFC proves that ℵ1

does not. There is a tree T such that |T | = ℵ1, the cardinality of each level of
T is less than ℵ1, and T has no paths of size ℵ1. Such a tree is called an ℵ1-
Aronszajn tree, and stands as a counterexample to ℵ1 having the tree property.
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The existence of an ℵ2-Aronszajn tree is deducible from GCH in ZFC. On the
other hand, Silver has shown that from the existence of a weakly compact cardinal
we can prove the consistency of ZFC and “ℵ2 has the tree property.” Mitchell and
Silver have a number of other results pertaining to the tree property. Finally, using
the ordered list of cardinals that appears in Section 3.6, if κ is the least strongly
inaccessible cardinal, then κ is strictly less than the least weakly compact cardinal,
so by Theorem 3.39, κ cannot have the tree property. Thus if κ is the least strongly
inaccessible cardinal, then there is a κ-Aronszajn tree.

Exercises

1. Prove that if κ → (κ)22, then κ → (κ)2λ for every λ < κ.

2. Prove that if κ → (κ)2λ for each λ < κ, then κ → (κ)32.

3. Assuming GCH, show that if κ is the least weakly inaccessible cardinal,
then there is a κ-Aronszajn tree.

4. Find a proof that there is an ℵ1-Aronszajn tree. (Hint: A library is a good
place to look for proofs.)

3.8 Infinite Marriage Problems

Infinite matching theory may seem rather mature and complete as it
stands, but there are still fascinating unsolved problems. . .

— Reinhard Diestel [75]

We have considered the problem of matchmaking in the guise of graph matchings
in Section 1.7, systems of distinct representatives in Section 1.7.2 and Section 3.4,
and stable marriages in Section 2.9. Now we will study formulations of infinite
marriage problems, expressed in some anthropocentric terminology.

Suppose M is a set of men. For each man m ∈ M , let W (m) denote the
women on his list of potential wives. For a set S ⊂ M , we will write W (S) =
∪m∈SW (m) for the combined lists of all the men in S. We will call the ordered
pair (M, W ) a society. A society is espousable if there is a one-to-one function
f : M → W (M) such that for every m ∈ M we have f(m) ∈ W (m). We
are requiring that f is an injection, so polygamy is disallowed. Every man must
marry someone on his list, but some women may be left unmarried. Implicitly we
assume that the collections of men and women are disjoint, so M ∩W (M) = ∅.

Some readers may argue that this terminology is quaint or sexist. We use it
in deference to earlier authors (e.g. [2]) and because it makes the concepts very
concrete and clear. Technically any matching application could be substituted,
such as callers and circuits, readers and books, or pigeons and single occupancy
pigeon holes.

Our goal is to determine exactly which societies are espousable. We can address
certain situations by applying the theorems of various Halls.
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3.8.1 Hall and Hall

She made it perfectly plain that she was his . . .
— Hall and Oates

If we have some group of seven men whose combined lists contain only five
women, we have no hope of finding a wife for every man. In general, given any
society (M, W ) with a subpopulation S ⊂ M such that |S| > |W (S)|, we know
that the society is not espousable. When M is finite, this condition is the only
possible barrier to solving a marriage problem, as shown by the following theorem
of Philip Hall [147]. (An alternate form of this theorem was published earlier by
D. König [180].)

Theorem 3.40. If (M, W ) is a society and |M | < ℵ0, then the following are
equivalent:

1. For every S ⊂ M , |S| ≤ |W (S)|.

2. (M, W ) is espousable.

Proof. Given a society (M, W ), construct the graph G consisting of a vertex for
each person and an edge from each man to each women on his list. Thus the vertex
set is M ∪W (M) and the set of edges is {(m, W (m)) | m ∈ M}. This graph
is bipartite; separate the vertices by gender. If the cardinality condition in item 1
holds, then by Theorem 1.51 there is a matching of the men into the women, so
(M, W ) is espousable. To prove the converse, suppose that (M, W ) is espousable
and that f is the injection of M into W (M) matching each man to his wife. Then
for each S ⊂ M , f restricted to S is an injection of S into W (S), so by the
definition of cardinality we must have |S| ≤ |W (S)|.

The preceding theorem is usually viewed as a result about finite societies, but
the only requirement is that the population of men is finite. The number of women
could be anything (e.g. a woman for every real number) and the theorem still
holds. Thus, as long as the number of men is finite, this theorem completely settles
the question of which societies are espousable. If we allow an infinite number of
men, problems may arise. By restricting ourselves to the case where each man has
a finite list of women, we can use a theorem of Marshall Hall, Jr. [145] to settle
the problem.

Theorem 3.41. Suppose (M, W ) is a society and for every m ∈ M we have
|W (m)| < ℵ0. Then the following are equivalent:

1. For every S ⊂ M , |S| ≤ |W (S)|.

2. (M, W ) is espousable.

Proof. First, we will prove the theorem for countable sets of men using a result
from a previous section. Given a society (M, W ) with |M | ≤ ℵ0, consider the
family of sets defined by the formula T = {W (m) | m ∈ M}. Since |M | ≤ ℵ0,
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we could index the members of T with natural numbers. Also, since each W (m)
is finite, we have that T is a countable family of finite sets. By Theorem 3.16, T
has a system of distinct representatives (SDR) if and only if the condition in item
1 holds. From the definition of an SDR, T has an SDR if and only if (M, W ) is
espousable. Thus item 1 holds if and only if item 2 holds.

Now we will prove the theorem for arbitrarily large sets of men. Our proof that
item 1 implies item 2 will use the following compactness principle: “If T is a
set of formulas and every finite subset of T has a model, then T has a model.”
Just as in Section 3.6.2, if U is a model of T , then every object mentioned in
formulas of T will appear in U , and every formula of T will be true of the objects
in U . Suppose that (M, W ) is a society satisfying item 1 in the theorem. For each
m ∈ M , if W (m) = {w1, . . . , wn} is the set of women on m’s list, add the
formula f(m) = w1 ∨ · · · ∨ f(m) = wn to T . For every pair m1, m2 ∈ M
with m1 �= m2, add the formula f(m1) �= f(m2) to T . By the condition in item
1, every finite subset of T has a model. By the compactness principle, T has a
model. Let f be the function in this model. Then f is a matching of the men into
the women, as desired. The proof that item 2 implies item 1 is identical to that for
Theorem 3.40.

From the proof, it appears that Theorem 3.41 for countable M is just Theorem
3.16 with some of the terminology changed. Indeed, Theorem 3.41 for countable
M could be added to the list of results in Theorem 3.17. Thus, in ZF we can
prove that this marriage theorem for countable M is equivalent to König’s Lemma
and also to the countable axiom of choice for finite sets (CACF). Even in axiom
systems much weaker than ZF, a countable version of this marriage theorem can
be shown to be equivalent to a weak version of König’s Lemma [162].

Hall’s [145] original proof of Theorem 3.41 for arbitrarily large sets of men
uses Zorn’s Lemma, a statement equivalent to the full axiom of choice (AC).
Our proof uses the compactness principle from logic, which is equivalent to the
Prime Ideal Theorem (PIT). Since PIT is weaker than AC (see [167]), we can also
conclude that working in ZF it is not possible to deduce AC from Theorem 3.41.
It is not known whether or not PIT can be deduced from Theorem 3.41 in ZF.

It may seem odd that we restrict the length of the lists of potential wives in
Theorem 3.41. If some man has an infinite list, then he must not be very picky.
On the surface, it seems like it should be easy to find him a wife. However, our
intuition here is based on finite societies, and infinite societies (like infinite sets)
are very peculiar.

Consider the following situation. Let M = {m0, m1, . . . } be the men in our
society and let Y = {w0, w1, . . . } be the women. Let W (m0) = Y and for
j > 0, let W (mj) = {wj−1}. If S ⊂ M , then the structure of W (S) falls
into two nice cases. If m0 ∈ S, then W (S) ⊃ W (m0) ⊃ Y , so W (S) = Y .
If m0 /∈ S, then W (S) = {wj | mj+1 ∈ S}. In either case, |S| ≤ |W (S)|.
Thus, the society (M, W ) satisfies item 1 in Theorem 3.41 and satisfies all the
hypotheses of Theorem 3.41 except that |W (m0)| = ℵ0. However, this society
is not espousable. By its construction, m1 must marry w0, m2 must marry w1,
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and so on. If m0 marries some wj , then mj+1 will be deprived of a wife. Thus,
because m0 has an infinite list, item 1 of Theorem 3.41 is no longer sufficient to
guarantee that the society is espousable.

Exercises

1. Prove that if (M, W ) is any espousable society then for every S ⊂ M ,
|S| ≤ |W (S)|. (Hint: Since the society may have infinitely men or a man
with an infinite list, neither Theorem 3.40 nor Theorem 3.41 applies di-
rectly. However, you could adapt part of a proof.)

2. Without using Theorem 3.17, prove in ZF that Theorem 3.41 for countable
M implies CACF.

3. Without using Theorem 3.17, prove in ZF that Theorem 3.41 for countable
M implies König’s Lemma.

4. Prove in ZF that Theorem 3.41 implies the axiom of choice for finite sets
(ACF).

5. Consider the society containing men M = {m0, m1, . . . } and women
Y = {w0, w1, . . . }, where W (m0) = Y and W (mj) = wj for j > 0.
Is (M, W ) espousable?

6. Construct a society such that all the following hold:

(a) W (m0) is infinite.

(b) There are infinitely many women who are not on m0’s list.

(c) For every finite S ⊂ M , |S| ≤ |W (S)|.
(d) (M, W ) is not espousable.

7. Suppose (M, W ) is a society in which exactly one man has an infinite list
and for all finite sets S ⊂M , |S| < |W (S)|. (Note the strict inequality.) Is
(M, W ) espousable?

3.8.2 Countably Many Men

The squad may count off in a line or column formation.
– Drill sergeant study guide

In this subsection, we will examine four marriage theorems for the situation where
the population of men is countable. We begin with the theorem of Damerell and
Milner [66]. The statement of this theorem incorporates a margin function μω1 ,
inspired by a conjecture of Nash-Williams [211]. Although the exact definition of
μω1 is somewhat technical, the underlying notion is easy. Suppose (M, W ) is a
society and let Y ⊂ W (M) be some subset of the women. Build the set of all
the men whose entire list lies within Y , so S = {m ∈ M | W (M) ⊂ Y }. If Y
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and S are finite, then |Y | − |S| indicates how many extra women Y contains. If
|Y |− |S| is ever negative, then the society is not espousable. The margin function
μω1 generalizes this notion of measuring the extra women in a set. We will define
it precisely after we see how it is used in the following theorem of Damerell and
Milner [66].

Theorem 3.42. If (M, W ) is a society and |M | ≤ ℵ0 then the following are
equivalent:

1. For every Y ⊂ W (M) we have μω1(Y ) ≥ 0.

2. (M, W ) is espousable.

In a moment, we will define μω1 and make some comments on the proof of the
theorem. Before we do that, it is worth taking a minute to note how this theorem
compares with those in the preceding and following subsections. First, in this
theorem, each man may have any number of women on his list. This is a change
from M. Hall’s Theorem 3.41 where each man was restricted to a finite number
of women. On the other hand, Theorem 3.41 places no restriction on |M | and this
theorem requires the set of men to be countable. This is not an idle restriction. In
[66], Damerell and Milner provide an example of a society with an uncountable
collection of men that satisfies item 1 of the theorem, but fails to be espousable.
This example and a theorem for uncountable collections of men is given in Section
3.8.3.

To clarify the statement of the theorem we must define μω1 . To do this we need
some ancillary definitions. Let (M, W ) be a society with |M | ≤ ℵ0. For a set
Y ⊂ W (M), a tower on Y is defined to be an infinite nested sequence of sets
T = 〈Tn | n < ω〉 such that T0 ⊂ T1 ⊂ T2 ⊂ . . . and Y = ∪n<ωTn. Given a
tower T on Y , let d(T ) be the number of men whose lists are subsets of Y but not
subsets of any element in the tower. That is,

d(T ) = |{m ∈M |W (m) ⊂ Y ∧ ∀nW (m) �⊂ Tn}|.

Let Z+ denote the extended integers, including the usual integers plus symbols for
infinities, so Z+ = {. . . ,−2,−1, 0, 1, 2, . . .} ∪ {−∞,∞}. Now we can define
μα for each ordinal α. In the case where α = 0, for Y ⊂ W (M) define

μ0(Y ) =

{
|Y | − |{m ∈M |W (m) ⊂ Y }| if |Y | < ℵ0

∞ if |Y | ≥ ℵ0.

The definition of the margin function for successor ordinals uses a special class
of towers. Suppose that μα has been defined and that it maps subsets of W (M)
into Z+. For each Y ⊂ W (M) let Aα(Y ) denote the collection of all towers
T = 〈Tn | n ∈ ω〉 on Y satisfying both μα(T0) < ∞ and for all n < ω,
μα(Tn) = μα(T0). Thus, Aα(Y ) consists of all towers on Y such that μα is
constant and finite on the elements of the tower.
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With the formulation of Aα(Y ) in hand, we can complete the definition of the
margin function. Suppose α = β +1 and μβ and Aβ(Y ) have been defined. Then
for each Y ⊂ W (M) define μα by

μα(Y ) =

{
infT∈Aβ(Y )(μβ(T0)− d(T )) if Aβ(Y ) �= ∅
∞ if Aβ(Y ) = ∅.

If α is a limit ordinal, and μβ is defined for all β < α, then define

μα(Y ) = inf
β<α

μβ(Y ).

In particular, μω1(Y ) = infβ<ω1 μβ(Y ) where ω1 is the smallest uncountable
ordinal.

In light of the complexity of the construction of μω1 , it is not too surprising
that the proof of Theorem 3.42 is beyond the scope of this book. However, we
will make a few comments on the general structure of the proof and verify the
theorem for a couple of societies. Theorem 3.42 states that a society with a count-
able number of men is espousable if and only if ∀Y ⊂ W (M) μω1(Y ) ≥ 0. The
proof that the society is espousable actually constructs the matching one man at a
time. The condition on μω1 insures that the construction can proceed at each stage.
The countability of M insures that the men can be counted off as m0, m1, m2, . . .
so that the construction does not involve a limit stage. To prove the converse, the
authors assume the existence of a matching and show that for each α < ω1 and
each Y ⊂ W (M) the inequality μα(Y ) ≥ 0 holds. This argument is carried
out in a number of lemmas, largely proved by transfinite induction. These induc-
tion arguments have base cases, successor cases, and limit cases, mirroring the
construction of μω1 . For full details, see [66].

As an aside, we should elaborate on this use of constructions and induction
proofs indexed by ordinals. These proof techniques are referred to as transfinite
recursion and transfinite induction. Both principles can be proved in ZFC. In the
case of recursion, ZFC proves that given any formula θ(x, y) and any ordinal α,
if for every x there is a unique y such that θ(x, y) holds, then there is a function
f with domain dom(f) = α such that for every β < α we have θ(f �β , f(β)).
(The notation f �β denotes the function that is the same as f for inputs less than
β and is undefined elsewhere. We call this the restriction of f to β.) For a proof
of this transfinite recursion theorem, see [88]. In terms of the construction of our
margin function, the transfinite recursion theorem asserts that there is a function
f with domain ω1 +1 such that for each α ≤ ω1, f(α) = μα. Thus, not only does
μω1 exist, but a function encoding the entire construction of μω1 exists.

The transfinite induction principle states that given an ordinal α and a formula
θ(x), if both θ(0) and ∀β ≤ α((∀γ < β θ(γ)) → θ(β)), then ∀β ≤ α θ(β).
Just as in regular induction, we can view θ(0) as a base case and the formula
∀β ≤ α((∀γ < β θ(γ)) → θ(β)) as an induction step. The proof of the induction
step is often broken into cases where β is a successor ordinal and where β is a limit
ordinal. Like the standard induction scheme, transfinite induction can be viewed
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as a consequence of a least element principle. If θ(β) fails for some β ≤ α,
then the set {β ≤ α | ¬θ(β)} exists. This set is well ordered, and thus has
a least element β0. If β0 = 0 then the base case fails, while if β0 > 0 then
the induction step fails. In this fashion, the existence of a least β0 proves the
contrapositive of the transfinite induction priniciple. This concludes our aside on
transfinite recursion and induction; we return to our discussion of Theorem 3.42.

We will now verify Theorem 3.42 for two societies. We begin with the society
from Subsection 3.8.1 that was not espousable.

Example (M, W ). Let (M, W ) be the society in which

M = {m0, m1, m2, . . . },

W (M) = X = {w0, w1, w2, . . . },

W (m0) = X , and

W (mj) = {wj−1} for each j > 0.

As shown in Subsection 3.8.1, the society in Example (M, W ) is not espous-
able. Consequently, we should be able to find a set of women Y ⊂ W (M) such
that μω1(Y ) < 0. To do this, we will need to calculate some values of μ0 and μ1,
using the definitions following the statement of Theorem 3.42.

If Y = {wi1 , . . . , wij} is a finite set of women, then the collection of all men
m such that W (m) ⊂ Y is exactly {mi1+1, . . . , mij+1}. Because Y is finite
and W (m0) is infinite, m0 is never included in such a list. Since μ0(Y ) is the
cardinality of Y less the number of these men, μ0(Y ) = 0. On the other hand, if
Y is infinite, then μ0(Y ) =∞. Summarizing,

μ0(Y ) =

{
0 if |Y | < ℵ0

∞ if |Y | ≥ ℵ0.

Given μ0(Y ), we can calculate A0(Y ) for each set of women Y . When Y is finite,
μ0 is constantly 0 on every subset of Y , so A0(Y ) will consist of all infinite nested
sequences of subsets of Y that include Y . (Note that elements in the tower can be
repeated.) If Y is infinite, A0(Y ) consists of all infinite nested sequences of finite
subsets of Y that eventually contain every element of Y .

With μ0 and A0(Y ) in hand, we are ready to calculate a value of μ1. Consider
the tower T = 〈Ti | i < ω〉 defined by Ti = {wj | j ≤ i}. We know that
T ∈ A0(W (M)). For each j > 0, W (mj) ⊂ Tj , so m0 is the only man satisfying
both W (m0) ⊂ W (M) and ∀nW (m0) �⊂ Tn. From the definition of d(T ), we
have d(T ) = 1. Now

μ1(W (M)) = inf
T ′∈A0(W (M))

(μ0(T ′
0)− d(T ′))

≤ μ0(T0)− d(T )
= 0− 1
= −1.
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Thus μ1(W (M)) < 0. It can be shown that whenever α < β, μβ(Y ) ≤ μα(Y ).
(See the exercises.) Consequently, μω1(W (M)) ≤ μ1(W (M)) < 0, and the first
item of Theorem 3.42 fails, verifying the theorem.

To distinguish our next example from the work we have just completed, we will
use boys and girls.

Example (B, G). Let (B, G) be the society in which

B = {b0, b1, b2, . . . },

G(B) = {g0, g1, g2, . . . },

G(b0) = {g0, g1}, and

G(bj) = {gj} for each j > 0.

It is easy to see that the map f(bi) = g(i) is a solution to this marriage problem.
We should be able to show that μω1(Y ) ≥ 0 for every possible set of girls Y .

We begin by finding μ0(Y ). If we choose a finite set of girls Y that contains
g0 but omits g1, then {m ∈ M | W (m) ⊂ Y } will consist of exactly those
boys whose indices match the indices of the non-g0 girls of Y . In this case, g0 is
“extra,” and μ0(Y ) = 1. For other finite Y , μ0(Y ) will always be 0. Summarizing,
we have

μ0(Y ) =

⎧
⎪⎨

⎪⎩

0 if |Y | < ℵ0 ∧ (g0 /∈ Y ∨ g1 ∈ Y )
1 if |Y | < ℵ0 ∧ g0 ∈ Y ∧ g1 /∈ Y

∞ if |Y | ≥ ℵ0.

Any sequence included in A0(Y ) must be an infinite nested sequence of finite
subsets of Y whose union is Y . Additionally, to insure that for every n we have
μ0(Tn) = μ0(T0), either we must have both g0 ∈ T0 and g1 /∈ Y , or we must
have that g0 ∈ Tk implies g1 ∈ Tk for all k. In the first case μ(Tn) = 1 for all
n, and in the second case μ(Tn) = 0 for all n. If W (m0) = {g0, g1} ⊂ Y , then
W (m0) ⊂ Tn for some n. This implies that d(T ) = 0 for all T ∈ A0(Y ).

Now we are ready to calculate μ1. If g0 ∈ Y and g1 /∈ Y , then μ0(T0) = 1 for
all T ∈ A0(Y ). Since d(T ) = 0, we have μ1(Y ) = μ0(T0) − d(T ) = 1 in this
case. On the other hand, if g0 /∈ Y or g1 ∈ Y then for every T ∈ A0(Y ), g0 ∈ Tk

implies g1 ∈ Tk. In this case μ0(T0) = 0, yielding μ1(Y ) = μ0(T0) − d(T ) =
0− 0 = 0. Summarizing, we have

μ1(Y ) =

{
0 if g0 /∈ Y ∨ g1 ∈ Y

1 if g0 ∈ Y ∧ g1 /∈ Y.

We have shown that for all Y ⊂ G(B), μ1(Y ) ≥ 0. Furthermore, it is not
too hard to see that for every Y , A0(Y ) = A1(Y ). Since d(T ) is always 0, it
immediately follows that μ2(Y ) = μ1(Y ). An easy transfinite induction proves
that μα(Y ) = μ1(Y ) for all α and Y . In particular, when α = ω1 we have
μω1(Y ) = μ1(Y ) ≥ 0 for all Y , so the first item of Theorem 3.42 holds, verifying
the theorem for this espousable society.
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Of course, our two verifications do not constitute a valid proof, nor do they
even provide a significant body of empirical evidence. However, they do reveal
the structure of the margin functions, and the interaction between the margin func-
tions and the matchings (or absence of matchings) in societies.

After Damerell and Milner, other mathematicians devised necessary and suffi-
cient conditions for the espousability of societies with countable sets of men. We
will collect three statements of this sort below in Theorem 3.43. To unify their
presentation, we will introduce the terminology of strings and admissibility as
found in Wojciechowski [286].

The simplest form of admissibility is due to Podewski and Steffens [223]. The
marriage problem (M, W ) is c-admissible if there is no subset J ⊂ M for which
there is an element m ∈M −J such that W (m) ⊂ W (J) and the society (J, W )
has a unique solution. Note that if such a J and m ∈ M−J exist, then the society
(J ∪ {m}, W ) is not espousable. Thus a society is c-admissible if it avoids these
egregiously solutionless subsocieties.

The other two forms of admissibility use the following notion. A string in
(M, W ) is a one-to-one function from an ordinal into M ∪W (M). We can have
strings of men, strings of women, or mixed gender strings. A string f is saturated
if no man precedes any woman on his list. That is, f is saturated if whenever
f(β) = m, then W (m) ⊂ {f(α) | α < β}.

Saturated strings are used in the definition of μ-admissibility introduced by
Wojciechowski [286]. Define the function μ on strings f as follows. Suppose α is
dom(f) (the domain of f ). If α = 0, then let μ(f) = 0. If α = β + 1, then define
μ(f) by

μ(f) =

{
μ(f �β) + 1 if f(β) ∈W (M)
μ(f �β)− 1 if f(β) ∈M.

If α is a limit, then define μ(f) = lim infβ→α μ(fβ). We say that (M, W ) is
μ-admissible if μ(f) ≥ 0 for every saturated string of (M, W ). Informally, a
saturated string is like a line of people. The margin function μ(f) indicates how
many spare women are in the line defined by f . If (M, W ) is μ-admissible, then
the only way a line can have a negative number of spare women is if some man
jumps in front of a woman on his list.

Our third form of admissibility is due to Nash-Williams [212]. Suppose f is a
string of women. Define q(f) as follows. Suppose α = dom(f). If α = 0, then
define q(f) = −|{m ∈ M | W (m) = ∅}|. In the following let ran(f) denote the
range of f and let f �β denote the restriction of f to β. If α = β + 1, then define

q(f) = q(f �β)− |{m ∈M |W (m) ⊂ ran(f) ∧W (m) �⊂ ran(f �β)}|.

When α is a limit, define

q(f) = lim inf
β→α

q(f �β)−

|{m ∈ M |W (m) ⊂ ran(f) ∧ ∀β < α W (m) �⊂ ran(f �β)}|.
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We say that (M, W ) is q-admissible if q(f) ≥ 0 for every string f of women. The
construction of q parallels the definition of μω1 , but substitutes strings for towers.
This is Nash-Williams’ simplification of the concepts in Damerell and Milner’s
work on his conjecture.

With all this terminology, we can state Theorem 3.43, a sort of historical tour
of marriage theorems for societies with countable populations of men.

Theorem 3.43. If (M, W ) is a society and |M | ≤ ℵ0, then the following are
equivalent:

1. (M, W ) is espousable.

2. (M, W ) is c-admissible.

3. (M, W ) is q-admissible.

4. (M, W ) is μ-admissible.

Proofs of the equivalences above can be found in the papers of Podewski and
Steffens [223] (for item 2), Nash-Williams [212] (for item 3), and Wojciechowski
[286] (for item 4). Verifications of these marriage theorems for the previously
analyzed examples are left as exercises.

Exercises

1. Prove that for all Y , μα+1(Y ) ≤ μα(Y ).

2. Use transfinite induction to prove that for every pair of ordinals α and β, if
α ≤ β then μβ(Y ) ≤ μα(Y ) for all Y . (Hint: Fix α, let β = α + γ and use
induction on γ. Exercise 1 is the induction step.)

3. Prove directly that the society in Example (M, W ) is not c-admissible.

4. Prove directly that the society in Example (M, W ) is not q-admissible.

5. Prove directly that the society in Example (M, W ) is not μ-admissible.

6. Prove directly that the society in Example (B, G) is c-admissible.

7. Prove directly that the society in Example (B, G) is q-admissible.

8. Prove directly that the society in Example (B, G) is μ-admissible.

3.8.3 Uncountably Many Men

If you can count the leaves of the trees,
Or the foaming waves of the untamed seas,
Then I will entrust to you alone
To reckon the amours I have known.

— Anacreontea, Ode 14 (translated by J. F. Davidson [67])
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The marriage theorems of the previous section allow each man an arbitrarily long
list of prospective wives, but require that the set of men is countable. This is not an
idle restriction. The theorems all fail for certain societies with uncountably many
men.

Consider the following example, taken from [66]. We use ω1 to denote the first
uncountable ordinal and define the society (M, W ) by

M = {mα | ω ≤ α < ω1},

W (M) = {yα | α < ω1}, and

∀mα ∈M W (mα) = {yβ | β < α}.

Thus we have a man for every infinite ordinal less than ω1, a woman for every
ordinal (infinite or finite) less than ω1, and each man’s list consists of those women
whose indices are strictly less than his own. Since mω is the man of lowest index
(poor guy), he has the shortest list. Even he has an infinitely long list of potential
wives. In fact, every man’s list contains exactly ℵ0 women.

We will show that (M, W ) is not espousable. By way of contradiction, suppose
that f : M → W (M) is a one-to-one function. Beginning with any α such that
ω ≤ α < ω1, build a sequence of men as follows. Start with mα. If f(mα) = yβ

and β ≥ ω, add mβ to the left of mα. If f(mγ) = yα, add mγ to the right of mα.
Since f maps men to women with smaller indices, we must have β < α < γ.
Continue in this fashion, adding men to the right of the right end of the sequence
and to the left of the left end of the sequence for as long as possible. Since the
sequence to the left gives a descending sequence of ordinals, the sequence must
have a left termination point. The only way for the sequence to terminate is if the
last man is mapped to a woman with an index less than ω. Thus every sequence
constructed in this fashion terminates on the left with a man married to some
woman yk with k < ω. Because f is one-to-one, no two sequences can terminate
with men married to the same woman, so each sequence terminates on the left
with a man married to a unique woman yk with k < ω. This shows that there are
countably many sequences. The sequence for any particular man mα could extend
infinitely to the right. However, since there is no limit stage in the construction,
the sequence to the right will have at most ℵ0 elements. Thus we have countably
many sequences, each containing countably many men. Every man is in one of
these sequences, so there are countably many men. However, we said that the set
of men is M = {mα | ω ≤ α < ω1}, which is uncountable. This contradiction
shows that the society (M, W ) is not espousable.

If we could apply Theorem 3.43 here, then (M, W ) would not be c-admissible.
However, (M, W ) is c-admissible, as the following argument shows. Suppose
J ⊂ M is any subset of men such that the subsociety (J, W ) is espousable. Let
f : J → W (J) be a one-to-one function espousing (J, W ). On the one hand,
suppose that for some mα ∈ J , f(mα) = yβ and β + 1 < α. We can modify
the solution f by setting f(mα) = yβ+1 and, if necessary, marrying the former
husband of yβ+1 to yβ . In this case, f is not a unique solution to the marriage
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problem. On the other hand, if f(mα) = yβ always implies β + 1 ≥ α, then
nobody is married to y0. Thus, we can modify f by marrying someone to y0.
In either case, the solution of (J, W ) is not unique, so (M, W ) is c-admissible.
Similar proofs could be used to show that (M, W ) is q-admissible, μ-admissible,
and satisfies item 1 of Theorem 3.42. Thus none of the results of the previous
section remain true when the hypothesis of the countability of M is removed
from their statements.

In [2] and [1], Aharoni, Nash-Williams, and Shelah present a marriage theorem
that does allow uncountable populations of men. Unlike Theorem 3.41, there is
no restriction on the lengths of the lists of the men. Thus the hypothesis for the
statement is particularly brief. Here is the theorem.

Theorem 3.44. Suppose (M, W ) is a society. The following are equivalent:

1. (M, W ) is espousable.

2. For every cardinal κ such that 0 < κ ≤ ℵ0 or κ is regular, there is no
κ-obstruction in (M, W ).

Since the proof of this theorem in [1] is twenty-five pages long, we will not
replicate it here. However, to understand the statement of the theorem, we should
unravel the definition of a κ-obstruction. This will require application of some of
our knowledge of cardinal numbers. Item 2 above mentions finite cardinals, which
are just natural numbers, and regular cardinals, which are defined in Section 3.5.3.
Good examples of regular cardinals include ℵ0 and ℵ1. By contrast, ℵω is good
example of a singular (i.e. not regular) cardinal.

Every κ-obstruction turns out to be a subsociety of (M, W ), and some new
notation will prove helpful. In this setting, it is easiest to identify (M, W ) with
the bipartite graph with vertices in M and W (M). Given some subset Δ of the
vertices (people) in (M, W ), we can easily construct the subsociety (which we
will also denote with Δ) corresponding to the subgraph of (M, W ) with vertices
in Δ. We can also form (M, W ) − Δ, the society whose graph is the subgraph
of (M, W ) on the vertices that do not appear in Δ. We say that Δ is a saturated
subsociety of (M, W ) if whenever m ∈ Δ, W (m) ⊂ Δ.

Our definition of κ-obstructions is a transfinite recursion with infinitely many
base cases. Here are the base cases. Suppose that 0 < κ < ℵ0 or κ = ℵ0. We say
that Δ is a κ-obstruction of (M, W ) if Δ is a saturated subsociety and there is a
set L ⊂ M with |L| = κ such that Δ − L is espousable, but for every woman
w ∈ Δ, the society Δ − (L ∪ {w}) is not espousable. Informally, if Δ is a κ-
obstruction (for κ ≤ ℵ0), then L is a set of excess men preventing Δ from having
an espousal. The requirement that Δ is saturated transfers the unespousability of
Δ to the society (M, W ). Thus if (M, W ) has a κ-obstruction for κ ≤ ℵ0, then
(M, W ) is not espousable.

To define κ-obstructions for uncountable regular cardinals κ, we will need to
review and introduce some set theoretic terminology. In Section 3.6.3 we said that
a set C ⊂ κ is club (shorthand for closed and unbounded) if
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• the limit of each sequence of elements in C is either κ or in C, and

• ∀α ∈ κ ∃β ∈ C (α < β).

We say that a set S ⊂ κ is stationary if for every club C ⊂ κ, we have S∩C �= ∅.
To use a topological metaphor, stationary sets meet every club set.

Now we are ready for the inductive step in the definition of κ-obstructions of
(M, W ). Suppose that κ is regular, and we have defined μ-obstructions for every
μ < κ such that 0 < μ ≤ ℵ0 or μ is uncountable and regular. We say that a
subsociety Δ of (M, W ) is a κ-obstruction of (M, W ) if there is a transfinite
sequence 〈Δα〉α<κ of disjoint subsocieties such that

• Δ = ∪α<κΔα,

• for each α < κ, either Δα is a single woman, or for some β < κ, the
subsociety Δα is a β-obstruction in (M, W )− ∪θ<αΔθ , and

• the set of α < κ for which Δα is not a single woman is stationary.

This completes the definition of κ-obstructions for all those cardinals κ such that
0 < κ ≤ ℵ0 or κ is regular.

At the beginning of this section we showed that the society (M, W ) that has
M = {mα | ω ≤ α < ω1} and W (mα) = {yβ | β < α} for all infinite α < ω1

is not espousable. In light of Theorem 3.44, this society must have a κ-obstruction
for some κ that either satisfies 0 < κ ≤ ℵ0 or is a regular cardinal. In fact, we can
find an ℵ1-obstruction for (M, W ).

We define the ℵ1-obstruction for (M, W ) by applying transfinite recursion.
Let Δ0 = {y0}. For each successor ordinal α + 1 < ℵ1, let Δα+1 = {yα+1}.
Finally, if λ < ℵ1 is a limit ordinal, let Δλ = {mλ, mλ+1, yλ}. This defines a
sequence 〈Δα〉α<ℵ1 of disjoint subsocieties of (M, W ). Let Δ = ∪α<ℵ1Δα. We
must use the definition of a κ-obstruction to prove that Δ is an ℵ1-obstruction.
For each α < ℵ1, either the subsociety Δα is a single woman or α is a limit.
If α is a limit, then Δα = {mα, mα+1, yα}. Since yα is the only woman in
(M, W ) − ∪θ<αΔθ with an index less than α + 1, Δα is a saturated subsociety
of (M, W ) − ∪θ<αΔθ . Furthermore, the subsociety Δα − {mα} is espousable,
but Δα − {mα, yα} is not. Thus if α is a limit, then Δα is a 1-obstruction of
(M, W ) − ∪θ<αΔθ . Finally, the set of α < ℵ1 such that Δα is not a single
woman is exactly the set S = {λ < ℵ1 | λ is a limit}, which is stationary. (This
is an exercise.) This completes the verification that Δ is an ℵ1-obstruction of
(M, W ).

If we think of a society as a bipartite graph, then every κ-obstruction is a sub-
graph of the society. With this viewpoint, Theorem 3.44 states that the graph for
a society has a matching of the men into the women if and only if it contains no
subgraphs of a particular form. Thus, Theorem 3.44 is a “forbidden subgraph”
characterization of all the espousable societies.
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Exercises

1. Prove that if κ is an uncountable regular cardinal, then the set of ordinals
{λ < κ | λ is a limit} is stationary.

2. Prove that if a society (M, W ) has an ℵ0-obstruction, then it also has a
1-obstruction.

3. Suppose that (M, W ) is the society with

M = {mα | α < ω},
W (mα+1) = {wα} for each α < ω, and

W (m0) = {wα | α < ω}.

Complete the following.

(a) Find a 1-obstruction for (M, W ).

(b) Prove that (M, W ) has no 2-obstructions.

4. Suppose that (M, W ) is the society with

M = {mα | ω ≤ α < ω1},
W (M) = {yα | α < ω1}, and

∀mα ∈M W (mα) = {yβ | β < α}.

Complete the following.

(a) Prove that (M, W ) has no 1-obstruction.

(b) Prove that (M, W ) has no ℵ0-obstruction. (Hint: You could do and
apply Exercise 2.)

(c) Prove that (M, W ) is μ-admissible.

(d) If you survived part 4c, then prove that (M, W ) is p-admissible.

3.8.4 Espousable Cardinals

It is easy to deduce from this that weakly compact cardinals are very
large. . .

— E. C. Milner [206]

For the past two sections we have been modifying our marriage theorems in order
to make them hold for larger and larger cardinals. This process has been pretty
successful, resulting in Theorem 3.44 that can handle arbitrarily large societies.
However, the statement of Theorem 3.44 is substantially more complicated than
that of Marshall Hall Jr.’s Theorem 3.41. An alternative approach is to concoct a
natural simple generalization of Theorem 3.41 and ask which cardinals satisfy it.
This is the motivation for the following definition.
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Definition. An infinite cardinal κ is espousable if every society (M, W ) that
satisfies the following criteria is espousable.

1. |M | = κ,

2. ∀m ∈M |W (m)| < κ, and

3. if M0 ⊂ M and |M0| < κ, then (M0, W ) is espousable.

Informally, “κ is espousable” means that a result very like Theorem 3.41 holds
for all societies of size κ. There is some variation from the theorem. The third
clause requires espousability of all small subsocieties where Theorem 3.41 just
specifies that there is a sufficiently large number of women. This modification
is necessary, since the unespousable uncountable society from the beginning of
Section 3.8.3 satisfies the cardinality requirements from Theorem 3.41 and could
be embedded in any uncountable society.

From Theorem 3.41, we know that ℵ0 is espousable. The unespousable and
uncountable society from the beginning of Section 3.8.3 shows that ℵ1 is not
espousable. (You may wish to check the details of these claims as exercises.) Thus
the espousable cardinals form a proper subclass of the class of all cardinals. The
following two theorems of Shelah [252] give additional properties of espousable
cardinals.

Theorem 3.45. If κ is an uncountable espousable cardinal, then κ is a limit
cardinal.

Proof. It is easiest to show that if κ is an uncountable successor cardinal, then κ
is not espousable. We will show that a particular uncountable successor cardinal,
ℵ2, is not espousable, and leave the generalization of the argument as an exercise.

Our goal is to show that ℵ2 is not espousable. We modify the example from the
beginning of Section 3.8.3 as follows. Let

M = {mα | ℵ1 ≤ α < ℵ2},

W (M) = {yα | α < ℵ2}, and

for each mα ∈ M , W (mα) = {yβ | β < α}.

We must verify that (M, W ) satisfies all the criteria in the definition of espousable
cardinal. The cardinality of M is ℵ2 and for each man mα, |W (mα)| = ℵ1 < ℵ2.
Furthermore, if M0 ⊂ M and |M0| < ℵ2, then |M0| = ℵ1, so any bijection
between M0 and {yα | α < ℵ1} is an espousal of the subsociety (M0, W ).
Summarizing, (M, W ) satisfies all the criteria listed in the definition of espous-
able cardinals. However, the argument on page 337 can be adapted to show that
(M, W ) is not espousable. Thus ℵ2 is not an espousable cardinal. Generalization
of this argument to other successor cardinals is left as an exercise.

Theorem 3.46. If κ is an uncountable espousable cardinal, then κ is regular.
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Proof. As in the preceding theorem’s proof, it is easiest to show that if κ is both
uncountable and not regular then κ is not espousable. Again, we will prove the
theorem for a particular case and leave the generalization as an exercise.

Suppose that κ is ℵω. We know that ℵω is not regular because ∪α<ωℵα = ℵω.
We will show that ℵω is not espousable by gluing together versions of the society
from the end of Section 3.8.1. Let (M, W ) be the society defined by:

M = {p} ∪ {mα | α < ℵω},

W (M) = {wα | α < ℵω},

W (mα) = {wα} if α /∈ {ℵn | n ∈ ω},

W (mℵn) = {wβ | ℵn ≤ β < ℵn+1}, and

W (p) = {wℵn | n ∈ ω}.

It is easy to verify that (M, W ) satisfies the first two criteria in the definition of
an espousable cardinal. Suppose that M0 ⊂ M and |M0| < ℵω. If p /∈ M0 then
matching each man to the woman with his index yields an espousal. If p ∈M0, we
must work a little harder. Find the least j with M0 �⊃ {mα | ℵj ≤ α < ℵj+1}, and
let α0 be some ordinal in [ℵj,ℵj+1) such that mα0 /∈ M0. If we let f(p) = wℵj ,
f(mℵj ) = wα0 , and f(mβ) = wβ for all other β ∈ M0, then F is an espousal
of the subsociety for M0. If ℵω was espousable, then (M, W ) would have an
espousal. However, any assignment of a wife to man p leads to a contradiction.
Thus ℵω is not an espousable cardinal. To generalize this argument to other non-
regular cardinals, just replace ℵ0,ℵ1, . . . with any cofinal sequence witnessing
that the cardinal under consideration is singular.

On the basis of the preceding two theorems, we know that if κ is an uncountable
espousable cardinal, then κ is an uncountable regular limit cardinal, and so κ is
weakly inaccessible. Applying Theorem 3.35, ZFC cannot prove the existence of
an uncountable espousable cardinal. However, the following theorem shows that
espousable cardinals are not too high in our hierarchy of large cardinals. (Weakly
compact cardinals are very large, but not too large.)

Theorem 3.47. Every weakly compact cardinal is espousable.

Sketch of proof. Suppose that κ is weakly compact and (M, W ) is a society that
satisfies the criteria in the definition of espousable cardinals. Without any loss of
generality, let M = {mα | α < κ}. Build a tree of height κ in which the nodes
at level α of T are labeled with the names of women in W (mα), and each path
through the tree is an initial segment of an espousal of (M, W ). Since κ is weakly
compact, it is a regular strong limit cardinal. This can be used to prove that each
level of T has size less than κ. Applying Theorem 3.39, use the tree property
for κ to find a path through T of length κ. This path is the desired espousal of
(M, W ).
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We now have both upper and lower bounds on the size of the least uncountable
espousable cardinal, but there are some obvious questions. Is every uncountable
espousable cardinal a strong limit cardinal? Does every uncountable espousable
cardinal have the tree property? Is every uncountable cardinal with the tree prop-
erty espousable? At this writing, these questions appear to be open.

Exercises

1. Show that ℵ0 is espousable.

2. Show that ℵ1 is not espousable.

3. Complete the proof of Theorem 3.45 by generalizing the argument to other
successor cardinals.

4. Complete the proof of Theorem 3.46 by generalizing the argument to other
singular cardinals.

5. Fill in the details of the proof of Theorem 3.47.

3.8.5 Perfect Matchings

I actually found someone for me.
— Whitney Houston

A society is called symmetrically espousable if it has an espousal that maps the
men onto the women. What a difference one word makes! Requiring the espousal
to be onto insures that every person in the society will have a spouse, without
regard to their gender. If we view societies as bipartite graphs, an onto espousal
gives a perfect matching between the two sets of vertices.

A bit more notation makes it easy to formulate symmetric marriage theorems.
A symmetric society is a quadruple (M, W, W, M) such that (M, W ) is a society
consisting of the men and their lists, (W, M) is a society consisting of the women
and their lists, and the lists match appropriately. More precisely, we require that a
woman is on a man’s list if and only if he is on her list, so w ∈W (m) if and only
if m ∈ M(w). We can now formulate and prove a symmetric version of Theorem
3.41.

Theorem 3.48. Suppose (M, W, W, M) is a symmetric society in which each
person has a finite list. More formally, for every m ∈ M and w ∈ W , we have
|W (m)| < ℵ0 and |M(w)| < ℵ0. Then the following are equivalent:

1. For every S ⊂ M , |S| ≤ |W (S)| and for every T ⊂W , |T | ≤ |M(T )|.

2. (M, W, W, M) is symmetrically espousable.

Proof. To prove item 2 implies item 1, it suffices to note that if (M, W, W, M) is
symmetrically espousable, then (M, W ) and (W, M) are espousable. Applying
Theorem 3.41 twice yields item 1.
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To prove the converse assuming item 1, Theorem 3.41 says that the societies
(M, W ) and (W, M) have espousals. Thus we have one-to-one functions from
the men into the women and from the women into the men. The statement of the
Cantor–Bernstein Theorem (Theorem 3.20) says that we must have a bijection
between the men and the women. This does not quite finish the proof, since an
arbitrary bijection might not map a person to someone on their list. However, the
proof of Theorem 3.20 shows that this bijection can be constructed using only
values from the initial injections. In our setting, suppose f : M → W is an
espousal of the men, g : W →M is an espousal of the women, and h : M →W
is the bijection constructed as in the proof of Theorem 3.20. Then h(m) = w
implies that either f(m) = w or g(w) = m. Thus, either w is on m’s list or m is
on w’s list. By the symmetry of the society, each must be on the other’s list. Thus
h is a one-to-one and onto map between the men and the women that matches
each person with someone on their list.

The preceding theorem and proof can be adapted to formulate and prove new
symmetric versions of all of our marriage theorems. We leave these results as
exercises.

Exercises

1. Formulate and prove a symmetric version of the finite marriage theorem,
Theorem 3.40.

2. Formulate and prove a symmetric version of the theorem of Damerell and
Milner, Theorem 3.42.

3. Formulate and prove a symmetric version of the countable omnibus mar-
riage theorem, Theorem 3.43.

4. Formulate and prove a symmetric version of the uncountable marriage the-
orem, Theorem 3.44.

5. Define symmetrically espousable cardinals. Using your definition, is there
a cardinal that is espousable but not symmetrically espousable?

3.9 Finite Combinatorics with Infinite
Consequences

Does mathematics need new axioms?
— Solomon Feferman [104]

In this section we will discuss a remarkable result due to H. Friedman [113].
Friedman has concocted a finite combinatorial statement that he calls Proposition
B. Under the appropriate consistency assumptions, he shows the following:
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1. For each k ∈ ω, the axiom system consisting of ZFC plus “there is a k-
subtle cardinal” cannot prove Proposition B.

2. The axiom system consisting of ZFC plus “for every k ∈ ω there is a k-
subtle cardinal” can prove Proposition B.

Thus, the use of large cardinals is required in the proof of the finite combinatorial
statement of Proposition B.

Proposition B is not simple, but it can be understood with a modest effort.
We will start with the full statement, and then gradually define any mysterious
terminology.

Proposition B. For every k > 0 and p > 0, there is an integer n such that if
{fX | X ⊂ [n]k} is any #-decreasing function assignment for [n]k, then we can
find sets A and E satisfying

• E is subset of {0, 1, 2, . . . , n} with p elements,

• [E]k ⊂ A ⊂ [n]k, and

• fA has no more than kk regressive values on [E]k.

In the statement of the proposition, p, n, and k represent natural numbers.
Here, the notation [n]k denotes the set of all ordered k-tuples with coordinates
in {0, 1, 2, . . . , n− 1}.

If x is a k-tuple, then |x| is the maximum coordinate of x and min(x) is the
minimum coordinate. For example, if x = (1, 3, 0), then |x| = 3 and min(x) = 0.
If f is a function mapping k-tuples to k-tuples, we say that y is a regressive value
for f on [E]k if for some x ∈ [E]k, y = f(x) and |y| < min(x). For example,
if f(7, 6, 5) = (1, 3, 2), then (1, 3, 2) is a regressive value for f because 3 < 5.
A single regressive value may have many witnesses. The function g : [8]3 → [8]3

defined by g(x, y, z) = (0, 0, 0) for all 0 ≤ x, y, z < 8 has only one regressive
value, namely (0, 0, 0).

A function assignment on [n]k assigns one function to each nonempty subset
X ⊂ [n]k. The function assigned to X is required to map X to X , so we always
have fX : X → X . We say that the function assignment {fX | X ⊂ [n]k} is
#-decreasing if whenever A ⊂ [n]k and x ∈ [n]k, either

• fA∪{x} and fA agree on all elements of A, or

• there is a y such that |y| > |x| and |fA(y)| > |fA∪{x}(y)|.

Some sense of the nature of #-decreasing function assignments can be gained
from looking at a very small example. Suppose we set k = 1 and consider the
possible function assignments for [2]1. Since we are required to set f{0}(0) = 0
and f{1}(1) = 1, every function assignment on [2]1 is completely determined by
the values of f{0,1}. We will look at all four possible cases.

Case 01: Suppose f{0,1}(0) = 0 and f{0,1}(1) = 1. Since f{0,1} extends
both f{0} and f{1}, this is a #-decreasing function assignment.
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Case 00: Suppose f{0,1}(0) = 0 and f{0,1}(1) = 0. Since f{0,1} extends
f{0} and f{1}(1) = 1 > 0 = f{1}∪{0}(1), this is also a #-decreasing
function assignment.

Case 10: Suppose f{0,1}(0) = 1 and f{0,1}(1) = 0. This is an acceptable
function assignment, but it is not #-decreasing. If we let A = {0} and
set x = 1, then fA∪{x}(0) = 1 �= 0 = fA(0), so the first clause of the
definition of #-decreasing fails. Because x = 1, there is no y ∈ A such
that |y| > |x|, so the second clause fails also.

Case 11: Suppose f{0,1}(0) = 1 and f{0,1}(1) = 1. This is an acceptable
function assignment. Because f{0,1}(0) = 1, imitating the argument in the
preceding case will show that this function assignment is not #-decreasing.

In general, the second clause of the definition of #-decreasing function assign-
ment forces the values of the functions to be pushed down. One might think that
this would always lead to a proliferation of regressive values. But Proposition B
asserts that if we start with a large enough domain, then even when the function
assignment is #-decreasing there will be a function on a large subset that is not
regressive at too many values.

Proposition B is a remarkable statement. Perhaps it is too remarkable to be
true. It is important to remember that proving the proposition inherently requires
large cardinal assumptions that are well beyond the strength of the axioms of
ZFC. Should we automatically tack these large cardinal axioms onto our collec-
tion of everyday set theory axioms? Feferman [104] would consider this rash.
Does Friedman’s result offer novel insights into the consequences of assuming
large cardinal axioms? Absolutely.

Exercises

1. Let I denote the function assignment on [n]k defined by setting fA(x) = x
for every A and every x ∈ A. Show that I is a #-decreasing function
assignment.

2. Let M denote the function assignment on [n]1 defined by setting fA(x) =
min(A) for every A and every x ∈ A.

(a) Show that M is a #-decreasing function assignment.

(b) If fA ∈ M , what is the maximum number of regressive values that fA

can have? What is the maximum number of witnesses that a regressive
value for fA can have?

3. Let S denote the function assignment on [n]1 defined by setting

fA(x) =

{
x if x < |A|,
min(A) if x = |A|,

for every A and every x ∈ A. Is S a #-decreasing function assignment?
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4. Find a function assignment on [3]1 that is not #-decreasing. If you would
like a challenge, find all of them.

3.10 k-critical Linear Orderings

It appears that Feferman is using the word ‘need’ in a sense that
requires discussion.

— Harvey Friedman [105]

In [114], H. Friedman reveals the connection between k-subtle cardinals and a
very natural Ramsey-style property on linear orderings. These new results are not
expressions of finite combinatorics like those of Section 3.9, but they have the
advantage of requiring less terminology.

Suppose that 〈X,≤〉 is a linear ordering. As you may recall from Section 3.5.2,
this means that the relation ≤ is antisymmetric, transitive, and satisfies the tri-
chotomy law. We say that X has no endpoints if it has neither a maximum nor a
minimum element. The ordinal ω is certainly a linear ordering, with 0 as an end-
point. The integers are a familiar example of a linear ordering without endpoints,
as are the rational numbers and the real numbers.

Suppose that 〈X,≤〉 is a linear ordering without endpoints and that k > 0
is a natural number. We say that f : [X ]k → X is a regressive function if for
every increasing k-tuple x1 < x2 < · · · < xk, we have f(x1, x2, . . . , xk) < x1.
A linear ordering is k-critical if for every regressive function f : [X ]k → X
there is a sequence of elements b1 < · · · < bk+1 such that f(b1, . . . , bk) =
f(b2, . . . , bk+1).

This is all the machinery that we need to state (some of) Friedman’s results!
Here are two of his theorems.

Theorem 3.49. For each nonzero k ∈ ω, ZFC proves that κ is the least cardinality
of a (k + 1)-critical linear ordering if and only if κ is the least k-subtle cardinal.

Theorem 3.50. ZFC proves that there is a k-critical linear ordering for every
nonzero k ∈ ω if and only if there is a k-subtle cardinal for every nonzero k ∈ ω.

For proofs of these theorems and many related results, see [114]. It is worth
noting that Theorem 3.49 could be reformulated without using the word “least.”
Working in ZFC, suppose there is a (k + 1)-critical linear ordering X . Let λ =
|X |. Applying the axiom of separation we can form the subset S of those cardinals
α ≤ λ such that there is a (k+1)-critical linear ordering Y with |Y | = α. Since S
is a set of cardinals, it has a least element; call it κ. Then κ is the least cardinality
of a (k+1)-critical linear ordering. Summarizing, if there is a (k+1)-critical linear
ordering, then there is a least cardinality of a (k + 1)-critical linear ordering. The
converse of this implication is obvious. A similar argument based on the definition
of subtle cardinals shows that there is a k-subtle cardinal if and only if there is a
least k-subtle cardinal. Consequently, Theorem 3.49 could be stated as “there is a
(k + 1)-critical linear ordering if and only if there is a k-subtle cardinal.”
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Is it reasonable to assert that k-critical linear orderings exist? Familiar linear
orderings like the integers, the rationals, and the reals, are much too small to be
even 2-critical. (See the exercises.) The smallest 2-critical linear ordering must be
larger than some weakly compact cardinal. On the other hand, the least Ramsey
cardinal is larger than some k-critical linear ordering for every k. If we believe
that k-subtle cardinals exist, then we must also accept the existence of k-critical
linear orderings. If we reject the existence of weakly compact cardinals, then we
must also reject the existence of k-critical linear orderings. The existence of these
objects is independent of ZFC (assuming ZFC is consistent), so we are back to
deciding whether or not to add new axioms.

We can be certain about one thing. Friedman’s theorems give us a characteri-
zation of k-subtle cardinals that does not mention (n, κ)-sequences or club sets.
This elegant description of k-subtle cardinals could be a help in discussions about
their existence.

Exercises

1. Let Z = {. . . ,−2,−1, 0, 1, 2, . . .} denote the set of all integers and define
f : Z → Z by f(x) = x− 1. Show that f is regressive.

2. Prove that Z is not 2-critical. (Hint: Problem 1 is useful.)

3. Let Q denote the rational numbers. Show that Q is not 2-critical.

4. Let R denote the real numbers. Show that R is not 2-critical.

5. Prove that no countable linear ordering with no endpoints is 2-critical.
(Hint: Any such linear ordering has countably many pairs and also has a
countable unbounded descending sequence. These can be used to build the
needed regressive function.)

6. Suppose that κ ≥ ℵ0 and κ is regular. Prove that if L is a linear ordering of
cardinality κ containing an unbounded descending sequence of size κ, then
L is not 2-critical.

7. (This one is very challenging.) Without using Friedman’s theorem, try to
prove that if κ is a Ramsey cardinal then there is a 2-critical linear ordering
of size κ.

3.11 Points of Departure

Where do you want to go today? �

— Microsoft

This chapter can be summarized as a study of pigeonhole principles, König’s
Lemma, and Ramsey’s Theorem and their connections to cardinal numbers. Our
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slightly obsessive focus on cardinals is not the only approach to studying infinite
objects. In this section we take brief peeks at computability, reverse mathematics,
and the analytical hierarchy. For each topic area, we outline an application to
graph theory and combinatorics, and state an open question. The section closes
with a list of Ramsey-style theorems and named trees.

Computability

We say that a function f : N → N is computable if there is a program written
in C that given an input of n always halts with output f(n). Any programming
language can be substituted for C. A set M ⊂ N is computable if its characteristic
function χM is a computable function. The function χM is defined by setting
χM (n) = 1 if n ∈ M and χM (n) = 0 if n /∈ M . Our definition extends in
the obvious way to handle functions on Nk and subsets of Nk. The computable
functions are sometimes called Turing computable functions or general recursive
functions. The study of these functions is called computability theory or recursion
theory. Good introductory texts include [31] and [259], and [120] is a survey of
computability in graph theory and combinatorics.

Every computable function has a program. We can think of this program as an
integer; it certainly would be stored in a computer as a string of zeros and ones that
could be thought of as a single big integer. We use {m}(n) = k as shorthand for
saying that when the machine with code m receives input n, it halts with output
k. We frequently refer to these codes as indices for computable functions.

Not every subset of N is computable. For example, consider the set

H = {m ∈ N | {m}(m) = 0}.

To show that H is not computable, we consider χH and prove the following the-
orem.

Theorem 3.51. χH is not computable.

Proof. Suppose that χH is computable. Let m be the code for a program that
computes χH . Then

χH(m) = 0 ↔ {m}(m) = 0
↔ m ∈ H

↔ χH(m) = 1.

Since 0 �= 1, χH is not computable.

Because computer programs process in discrete steps, we can examine compu-
tations at various stages. We write {m}(n) ↓s if the program with index m and
input n halts in fewer than s steps. We also write {m}(n) ↓ if the program even-
tually halts. It is easy to mechanically check whether a program halts in s steps,
but impossible to mechanically determine which programs will eventually halt.
Indeed, the set H is referred to as the solution to the self-halting problem.
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Using our extended shorthand, we can encode noncomputable sets like H in
graph theory problems. For example, suppose we define a coloring F on [N]3 by
the following rule. Let {i, j, k} be any three-element subset of N, assume that we
have i < j < k, and let

F (i, j, k) =

{
red (∀m ≤ i) {m}(m) ↓j↔ {m}(m) ↓k,

blue otherwise.

Thus F (i, j, k) is red when for every machine with a code m ≤ i, we get the same
information about whether or not {m}(m) halts by checking j steps as we do by
checking k steps. If F (i, j, k) is blue, then for some m ≤ i the machine {m}(m)
halts between step j and step k. By Ramsey’s Theorem, F must have an infinite
monochromatic set; call it T = {t0, t1, t2, . . . } and assume that we have listed
the elements in increasing order. No matter how we select three elements from
T , applying F should always give us the same color. Since there are only finitely
many machines with codes less than t0, we cannot have one of them stopping
between ti steps and ti+1 steps for every i > 1. (Smell any pigeons?) Thus T must
be a red monochromatic set. The elements of T are very handy for computing the
set H . Pick any machine m. We know that m ≤ tm, and if {m}(m) ever halts,
it must halt by step tm+1. To see this, suppose that {m}(m) halts at a later step
k. Then tk+1 > k and F (tm, tm+1, tk+1) would be blue, contradicting the claim
that T is a monochromatic red set. Thus, using χT as a subprogram, we could
easily write a program that computes χH . Since χH is not computable, χT is not
computable either, and we have proved the following theorem.

Theorem 3.52. There is a computable coloring of [N]3 that has no infinite com-
putable monochromatic set.

Many other types of coloring problems lead to noncomputable sets. For ex-
ample, there is a computable 2-regular 2-colorable graph with no computable
2-coloring. However, bumping up the size of our color palette can lead to com-
putable colorings. Schmerl [248] proved that if G is a computable d-regular graph
that is n-colorable, then G has a computable 2n − 1 coloring. Depending on the
value of d, it may or may not be possible to find a computable coloring with fewer
than 2n − 1 colors. For 2 ≤ n ≤ m ≤ 2n − 2, let D(n, m) be the least degree
d such that there is a d-regular n-colorable graph with no recursive m coloring.
Beyond a few bounds (see [120] and [248]), little is known about the values of
D(n, m). For example, we know that 6 ≤ D(5, 5) ≤ 7, but the exact value of
D(5, 5) is not known.

Reverse Mathematics

Reverse mathematics is a program of mathematical logic that was founded by
H. Friedman (as in Section 3.9) and S. Simpson. The goal of the program is to
measure the logical strength of mathematical theorems by proving that each one is
equivalent to some statement in a hierarchy of axioms for second order arithmetic.
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These proofs are carried out in a weak base system, RCA0, which consists of PA
with restricted induction plus a comprehension axiom that essentially asserts the
existence of computable subsets of N. We refer to these systems as second order
arithmetic because the formulas include variables for numbers and variables for
sets of numbers. Simpson’s book [254] is a comprehensive source for information
about reverse mathematics. A number of theorems about infinite graphs have been
analyzed, including the following example.

Theorem 3.53. RCA0 can prove that the following are equivalent:

1. Every 2-regular graph with no cycles of odd length is bipartite.

2. Weak König’s Lemma: Every infinite tree in which every node is labeled 0
or 1 contains an infinite path.

Since a graph is bipartite if and only if it is 2-colorable, it is not hard to adapt
the solution of Exercise 3 of Section 3.1 to prove that 2 implies 1. The proof that 1
implies 2 is less obvious, and the published proof uses an intermediate equivalent
statement [162].

There are many open questions in reverse mathematics that are related to com-
binatorics and graph theory. For example, can RCA0 prove that Ramsey’s Theo-
rem for pairs and two colors implies Weak König’s Lemma? It is known that the
converse is independent of RCA0 and that Ramsey’s Theorem for triples and two
colors implies a much stronger version of König’s Lemma.

The Analytical Hierarchy

Subsets of N that are definable by formulas of second order arithmetic are called
analytical, and can be organized by the complexity of their defining formulas.
The resulting hierarchy of sets is analogous (but not identical) to the hierarchy of
projective sets studied by descriptive set theorists. Both [240] and [161] provide
useful background for the study of the analytical hierarchy.

To state any results, we need some terminology. A set is Σ1
1-definable if it

is definable by a formula containing no universal set quantifiers. We say that a
set is Σ1

1-complete if it is Σ1
1-definable and every other Σ1

1-definable set is 1-
reducible to it. Here, B is 1-reducible to A if there is a computable one-to-one
function f such that for all n, n ∈ B if and only if f(n) ∈ A. Naı̈vely, each Σ1

1-
complete set embodies all the information content of every other Σ1

1-definable
set. One interesting characteristic of these sets is that any defining formula for a
Σ1

1-complete set must contain a set quantifier. Thus, no formula containing only
quantifiers on numbers can possibly define a Σ1

1-complete set.
An infinite graph G has a Hamiltonian path if there is a sequence of vertices

v0, v1, v2, . . . such that each vertex of G appears exactly once in the list and
vjvj+1 is an edge of G for each j ∈ N. An index for a computable graph is the
code for the characteristic function of the edge and vertex sets for the graph. Using
all this terminology, we can state the following theorem of Harel [153].
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Theorem 3.54. The set of indices of computable graphs with Hamiltonian paths
is Σ1

1-complete.

For a similar problem, suppose we weight the edges of an infinite graph with
rational numbers that sum to 1. Such a graph may or may not have a minimal
spanning tree. Is the set of indices of computable graphs with minimal spanning
trees a Σ1

1-complete set? This question was motivated by a related reverse mathe-
matics result for directed graphs [57], and the answer was unknown when the first
edition of this book was published. Since that time, Schmerl [249] has shown that
the answer is no, the set of indices of computable graphs with minimal spanning
trees can be defined by an arithmetical formula.

Lists of Theorems and Trees

There are a number of interesting Ramsey-style theorems that are worthy of ex-
ploration. Here is a list, with pointers to some good references.

• Van der Waerden’s Theorem (and the related Szemerédi’s Theorem) [136]

• Hindman’s Theorem (and the related Folkman’s Theorem) [136]

• Milliken’s Theorem [205]

• Galvin–Prikry Theorem [119]

• Erdős–Rado Theorem [168]

Other good prospects for further study include special and regular Aronszajn
trees, Suslin trees, and Kurepa trees, all appearing in [168] and [187].

3.12 References

His was a name to conjure with in certain circles.
— E. Wallace, The Just Men of Cordova

In this section we will name a few authors whose books will be helpful to those
interested in the further study of infinite sets, graphs, and combinatorics. Many
good introductory texts on axiomatic set theory are available. For example, the
books of Enderton [88], Moschovakis [209], and Roitman [241] are all accessible
and remarkably distinct. For a more technical approach, Drake [80] and Levy
[187] are good choices. Jech’s encyclopedic text [168] is an invaluable reference
(and a good read).

Several books give extended treatments of some specific topics in this chapter.
Devlin’s book [73] gives a comprehensive coverage of constructible sets. Large
cardinals and partition cardinals play a central role in Drake’s text [80]. The Axiom
of Choice is the title and subject of another nice book by Jech [167]. For a detailed
treatment of cardinal and ordinal arithmetic, it is hard to beat Sierpiński’s old gem
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[253]. It is very interesting to compare Sierpiński’s development with that of the
ante-ZFC papers of Cantor, [47] and [48], both translated in [49].

Much of the historical content of the chapter was gleaned from van Heijenoort’s
anthology [272] and Kanamori’s insightful article [173]. For the final word in
many matters of logic, one can consult Kleene’s blue bible [176] or the more
accessible text of Mendelson [201]. Finally, other treatments of infinite graphs
and combinatorics can be found in the books of Ore [218] and Diestel [74].
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[32] E. Borel, Leçons sur la Theorie des Fonctions, Gauthier-Villars et fils, Paris, 1898.

[33] P. Borwein, Sylvester’s problem and Motzkin’s theorem for countable and compact sets, Proc.
Amer. Math. Soc. 90 (1984), no. 4, 580–584.

[34] P. Borwein and W. O. J. Moser, A survey of Sylvester’s problem and its generalizations, Aequa-
tiones Math. 40 (1990), 111–135.

[35] P. Borwein and M. J. Mossinghoff, Polynomials with height 1 and prescribed vanishing at 1,
Experiment. Math. 9 (2000), no. 3, 425–433.

[36] , Newman polynomials with prescribed vanishing and integer sets with distinct subset
sums, Math. Comp. 72 (2003), no. 242, 787–800.



References 357

[37] P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry, Springer-Verlag,
New York, 2005.

[38] I. Broere, M. Dorfling, J. E. Dunbar, and M. Frick, A path(ological) partition problem, Discuss.
Math. Graph Theory 18 (1998), no. 1, 113–125.

[39] H. Broersma and H. J. Veldman, Restrictions on induced subgraphs ensuring Hamiltonicity or
pancyclicity of K1,3-free graphs, Contemporary Methods in Graph Theory (R. Bodendiek, ed.),
BI Wissenschaftsverlag, Mannheim, 1990, pp. 181–194.

[40] J. G. Broida and S. G. Williamson, A Comprehensive Introduction to Linear Algebra, Addison-
Wesley, Redwood City, CA, 1989.

[41] R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941),
194–197.

[42] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.

[43] F. Buckley and M. Lewinter, A Friendly Introduction to Graph Theory, Pearson Education,
Upper Saddle River, NJ, 2003.

[44] F. Buckley, Z. Miller, and P. J. Slater, On graphs containing a given graph as center, J. Graph
Theory 5 (1981), no. 4, 427–434.

[45] W. Burnside, Theory of Groups of Finite Order, Cambridge Univ. Press, London, 1897. 2nd ed.,
Cambridge Univ. Press, London, 1911, reprinted by Dover, New York, 1955.

[46] S. A. Burr, Generalized Ramsey theory for graphs—A survey, Capital Conference on Graph
Theory and Combinatorics (George Washington Univ., Washington, DC, 1973), Graphs and
Combinatorics (R. A. Bari and F. Harary, eds.), Lecture Notes in Math., vol. 406, Springer-
Verlag, Berlin, 1974, pp. 52–75.
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[87] E. Egerváry, Matrixok Kombinatórius Tulajdonságairól, Mat. Fiz. Lapok 38 (1931), 16–28.

[88] H. B. Enderton, Elements of Set Theory, Academic Press, New York, 1977.
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[91] P. Erdős, Combinatorial problems in geometry and number theory, Relations Between Com-
binatorics and Other Parts of Mathematics (Ohio State Univ., Columbus, OH, 1978) (D. K.
Ray-Chaudhuri, ed.), Proc. Sympos. Pure Math., vol. 34, Amer. Math. Soc., Providence, R.I.,
1979, pp. 149–162.

[92] , Some of my favorite problems and results, The Mathematics of Paul Erdős I (R. L.
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[124] K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Sys-
teme I, Monatsh. Math. Phys. 38 (1931), no. 1, 173–198; English transl., K. Gödel, Collected
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linearen Verteilung galvanischer Ströme gefürt wird, Ann. Phys. Chem. 72 (1847), 497–508.

[176] S. C. Kleene, Introduction to Metamathematics, Van Nostrand, Princeton, NJ, 1952. Reprinted
by North-Holland, Amsterdam, 1980.

[177] D. E. Knuth, Two notes on notation, Amer. Math. Monthly 99 (1992), no. 5, 403–422. Adden-
dum, Stirling numbers, 102 (1995), no. 6, 562.

[178] , Stable Marriage and its Relation to other Combinatorial Problems, CRM Proc. Lec.
Notes, vol. 10, Amer. Math. Soc., Providence, RI, 1997.
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[272] J. van Heijenoort, From Frege to Gödel. A Source Book in Mathematical Logic, 1879–1931,
Harvard Univ. Press, Cambridge, MA, 1967.

[273] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd ed., Cambridge Univ. Press,
Cambridge, 2001.

[274] O. Veblen, An application of modular equations in analysis situs, Ann. of Math. 2 (1912/13),
no. 14, 86–94.

[275] J. Venn, Symbolic Logic, Macmillan, London, 1881.

[276] J. von Neumann, Eine Axiomatisierung der Mengenlehre, J. Reine Angew. Math. 154 (1925),
34–56; English transl., J. van Heijenoort, From Frege to Gödel. A Source Book in Mathematical
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ical Logic, 1879–1931 (1967), 183–198.



368 References

[293] , Untersuchungen über die Grundlagen der Mengenlehre I, Math. Ann. 65 (1908), no. 2,
261–281; English transl., J. van Heijenoort, From Frege to Gödel. A Source Book in Mathemat-
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of vertices, 86

k-coloring of a graph, 86
proper, 86

combinatorial geometry, 264
commemorative coins, 176, 177
complement, 11
complementary Bell numbers,

see Bell numbers
complete

bipartite graph, 13
graph, 10
multipartite graph, 16

complete graph, 8
composition, 226
computability, 349
Comtet, Louis, 241, 277
concert hall, 242
Conehead, Connie, 304
connected component, 8
connected graph, 7
Connecticut Yankee in King Arthur’s

Court, A, 227
connectives, 291
connectivity of a graph, 8
constructible universe (L), 320
convolution of two sequences, 186
Conway, John H., 279
Cooleemee, North Carolina, 150
countable sets, 305
countable union, 314
cover, 109
Cowell, Charlie (anvil salesman), 51
Coxeter, Harold Scott MacDonald,

265
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k-critical graphs, 88
Csima, József, 267
cube, 81
cut

in a network, 110
capacity, 111

set, 8
vertex, 8, 10

cycle
Hamiltonian, 60
index (of a group), 201
notation (for permutations), 192
the graph Cn, 12
within a graph, 6

Damerell, R. M., 331
de Bruijn, Nicolaas Govert, 278

enumeration formula, 212
de Wannemacker, Stefan, 240
Debrunner, Hans E., 279
deck of cards, 133
Dedekind finite, 303
degree

average, 38, 80, 93
matrix, 48
of a vertex, 6
sequence, 6

DeMorgan, Augustus, 2, 94
Denver, John, 116
deranged twins, 163
derangements, 160–161, 163, 231
detour

order, 67, 93
path, 67, 93

Devlin, Keith J., 352
diameter of a graph, 18
dice, six-sided, 200, 202, 206
Diestel, Reinhard, 126, 327, 353
difference operator, 137
digraph, see directed graph
Dijkstra, Edsger Wybe, 265
Dirac, Gabriel Andrew, 62, 84
directed graph (digraph), 3
Dirichlet, Johann Peter Gustav Leje-

une, 151, 153

Dirichlet’s approximation theorem,
153

disjointification, 303
Dissertatio de Arte Combinatoria,

vii, 129
distance

between vertices, 18
matrix, 25

Dobiński’s formula, 239
dodecahedron, 60, 81
Drake, Frank R., 352
Duffus, Dwight, 66
Dumas, Alexandre, 124
Dumitrescu, Adrian, 275
Dunbar, Jean, 72

eccentricity, 18
Edberg, Stefan, 231
edge, 2

deletion, 7
edge set, 5

edge cover, 109, see cover
Edmonton Oilers, 242
Edwards, Anthony William Fairbank,

277
Eeckhout, Jan, 255
Ehrenfeucht, Andrzej, 276
Einstein, Albert, 97, 130
Ekai, Mumon, 304
empty

graph, 11
product, 132
set (∅), 290, 299

axiom, see axioms of ZFC
end vertices

of a walk, 6
of an edge, 5

Enderton, Herbert B., 352
Epcot Center, 80
equivalence

class, 197
relation, 197, 315

Erdős, Paul, 28, 30, 63, 116, 122,
123, 127, 152, 264, 270,
279, 280, 325
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number, 28
Eriksson, Kimmo, 278
Euler, Leonhard

and Königsberg bridge problem,
1, 52–54

characterization of Eulerian graphs,
55

Formula (for planar graphs), 78,
81

losing sight, 78
Pentagonal Number Theorem,

222
ϕ function, 158, 162

Eulerian
circuit, 55
graph, 55
numbers, 242–247
trail, 55

Fáry, István, 77
factorial, 132
falling factorial power, 132
Faudree, Ralph, 69
Feder, Tomás, 279
Federer, Roger, 231
Feferman, Solomon, 344, 346
Ferrers diagram, see Young diagram
Fezzik, 191
Fibonacci numbers, 177–179

generalized, 185
Fiddler on the Roof, 250
Filthy Frank, 4
finger, 304
finite set, 282
First Theorem of Graph Theory, 6
Five Color Theorem, 95
flags, 161
Flatliners, 26
Fleury’s algorithm, 59
floor function (�x�), 153
flow, 110
football

American, 248
International Football Associa-

tion, 135

Laws of the Game, 135
forbidden subgraphs, 65
forest, 31

number of edges, 35
Foulds, Leslie R., 126
Four Color Problem, 2, 93
Four Color Theorem, 94
fractional part function ({x}), 153
Fraenkel, Abraham A., 290, 294, 296
Franklin, Benjamin, 277
Franklin, Fabian, 222
Frege, Gottlob, 290
Frick, Marietjie, 72
Friedman, Harvey M., 344, 347, 350
Frink, Orrin, 84
Frobenius, Ferdinand G., 199
From Russia with Love, 101
Frost, Robert, 5, 282
Fuhr, Grant, 242
Fujita, Shinsaku, 278
full house, 134
function assignment, 345
fusion, 283

Gödel, Kurt F., 318
Gödel’s Incompleteness Theorem

First, 318–320
Second, 319–320

Galahad, Sir, 191
Gale, David, 250, 279
Gale–Shapley algorithm, 250
Gallai, Tibor, 68, 265
Gateless Gate, The, 304
Gawain, Sir, 191
Gekko, Gordon, 88
general position, 270
generating function, 164

exponential, 238
geometry of position, 54
George of the Jungle, 324
Gerken, Tobias, 277
Gessel, Ira M., 279, 280
Gibson, William, 308
Gilbert, Sir William S., 137
Giving Tree, The, 34
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Goodman, Seymour, 65
Gould, Ronald J., viii, 62, 66, 69,

126
Graham, Ronald L., 127, 171, 277,

278, 280
Grand Slam matches, 231
Grant, Cary, 166
Grant, Ulysses S., 196
Grantham, Jon, 181
Granville, Andrew, 277
graph

bipartite, 13
center, 18
clique number, 92
clustering coefficient, 29
complement, 11
complete, 8, 10

bipartite, 13
multipartite, 16

connected, 7
connectivity, 8
critical, 88
definition, 2
diameter, 18
directed, 3
empty, 11
Eulerian, 55
Hamiltonian, 60
infinite, 4
isomporphic pairs, 15
kth power, 21
line, 16, 64, 66, 67, 70, 93
matching, 104
order, 5
periphery, 18
planar, 74
radius, 18
Ramsey theory, 124
regular, 11
self-centered, 21
size, 5
traceable, 61
weighted, 39

Great Gatsby, The, allusion to, 260
greedy algorithm, 88

Gretzky, Wayne, 242
Gross, Jonathon L., 126
Grossman, Jerry, 28
group

abelian, 191
alternating, 194
cyclic, 193
definition, 191
dihedral, 193
generated by an element, 193
symmetric, 192

Grünwald, Tibor, 265
Guare, John, 26
Guinness, Alec, 30
gurus, 157
Gusfield, Dan, 279
Guthrie, Francis, 94
Guy, Richard K., 279

Hadwiger, Hugo, 279
Haken, Wolfgang, 95
Hall, Daryl and Oates, John, 328
Hall, Monty, 104, 105
Hall, Philip, 105, 328
Hall Jr., Marshall, 277, 328
Hall’s Theorem, 105, 328

corollary for regular graphs, 112
halting problem, 349
hamburgers, 170
Hamilton, Al, 242
Hamilton, Sir William Rowan, 61,

94
Hamiltonian

cycle, 60
graph, 60
path, 60, 351

handshakes, 190
Hanoi, Tower of, 181
Harary, Frank, 124, 126, 278
Harborth, Heiko, 277
Hardy, Godfrey H., 224
harey problem, 177
harmonic mean, 155
Harris, Priscilla, viii
Harris, Sophie, viii
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Harris, Will
allusion to, vi

Harry Potter and the Prisoner of Azk-
aban, 27

Heawood, Percy, 94, 95
Hedetniemi, Stephen, 19, 65
Heine–Borel Theorem, 285
heliotrope, 209, 217
Herman, Jiřı́, 279
Hierholzer, Carl, 55
Hierholzer’s algorithm, 57
Higgledy-Piggledy, 2
Hilbert, David, 281, 290
Hinault, Bernard, 200
Hirst, the other Prof., ix
Hitchcock, Alfred, 166
Hoffman, Paul, 127
Hollywood Graph, 27
hopscotch, 181
Horton, Joseph D., 277
Houston, Whitney, 343
humuhumunukunukuapua’a, 150
hungry

fraternity brother, 235
math major, 177

Hunting of the Snark, The, 109
hydroxyl group, 206
hypergraph, 4

ichthyologists, 150
icosahedron, 81
Icosian Game, The, 60
incidence

matrix, 48
of vertex and edge, 5

independence number, 63, 93
independent set of vertices, 63
independent zeros, 111
induced subgraph, 12
Indurain, Miguel, 200
infinite set, 282
injective function, 192
Internet Movie Database, 27
intersecting detour paths, 67
intersection, 294

invariant set, 198
Irish Blessing, An, 10
irrational numbers, 153
Irving, Robert W., 279
isomer, 206
isomorphism, 15

Jacobson, Michael S., 66
Jech, Thomas J., 352
Jefferson, Thomas, 176
jelly beans, 170
JFK, 27
Johnson, Scott, 275
Just Men of Cordova, The, 352

Kalbfleisch, James G., 274
Kanamori, Akihiro, 353
Kelly, Leroy M., 265
Kempe, Alfred, 94, 95
killer rabbits, 177
Kirchhoff, Gustav, 47, 48
Klee Jr., Victor L., 264, 279
Kleene, Stephen C., 318, 353
Klein, Esther, 264, 270
knights of the round table, 227–228
Knuth, Donald E., ix, 171, 255, 277–

279
König, Dénes, 284, 328
König, Julius, 284, 307
König–Egerváry Theorem, 109
König’s Lemma, 283, 302, 326, 351
Königsberg Bridge Problem, 1, 52–

54
Kruskal’s algorithm, 40–42
Kučera, Radan, 279
Kuratowski, Kazimierz, 83, 84
Kuratowski’s Theorem, 84
Kurri, Jari, 242

L, constructible universe, 320
Laffey, Thomas, 240
Lancelot, Sir, 228
lapis lazuli, 201, 203, 214
Last of the Mohicans, The, allusion

to, 260
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lauwiliwilinukunuku’oi’oi, 150
lavender, 217
lazy professor, 160, 163
leaf, 31

number in tree, 35
tea, 34

Leaves of Grass, 181
Lehrer, Tom, 312
Leibniz, Gottfried Wilhelm, vii, 129
LeMond, Greg, 200
length, 6
Leonardo of Pisa, 177
Lesniak, Linda, 126
Levy, Azriel, 352
Lewinter, Marty, 126
Lewis and Clark expedition, 176
Liar, Liar, 67
limerick, 236
Lincoln, Abraham, 176, 177
line graph, 16, 64, 66, 67, 70, 93
linear ordering, 309

k-critical, 347
Linton, Stephen A., 278
Lloyd, E. Keith, 126
Logothetti, David E., 279
London Snow, 30
Longfellow, Henry W., 38, 285
Looney Tunes, 265
lottery

Florida Fantasy 5, 144
Florida Lotto, 144
Lotto Texas, 133, 137, 141
repetition allowed, 171
Rhode Island Wild Money, 137
Texas Two Step, 136
Virginia Win For Life, 144

Lovász, László, 72, 90, 277
Love’s Labour’s Lost, 74
Lucas, Édouard, 181

numbers, 180

Makai, Endre, 274
Man in black, 297
Marichal, Jean-Luc, 279
Mark, gospel of, 171

maroon, 217
marriage

infinite sets, 327–344
Secrets of a Successful, 218
stable, see stable marriage

matching, 102
graph, 104
M -alternating path, 104
M -augmenting path, 104
many-to-many, 264
many-to-one, 263
maximal, 102
maximum, 102
perfect, 102, 111, 343
saturated edges, 102
stable, 248

optimal, 252
pessimal, 253

strongly stable, 259
super-stable, 259
weakly stable, 259

Mathematical Collaboration Graph,
28

Matoušek, Jiřı́, 275, 279
Matrix Tree Theorem, 48
Matrix, The, 21
Matthews, Manton, 70
Matthews and Sumner’s Conjecture,

69
Max Flow Min Cut Theorem, 111
maximal planar graph, 80
maximum degree, 6
McEnroe, John, 231
McPeake, Sharon, viii
Meade, George G., 196
Meeks, Randy, v
Mendelson, Elliott, 353
Menger’s Theorem, 110
Merckx, Eddy, 200
Merry Wives of Windsor, The, 217
Messier, Mark, 242
methyl group, 206
metric, 17
Mihók, Peter, 72
Miles Jr., Ernest P., 278
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Milgram, Stanley, 26
Milner, Eric C., 331, 340
Milton, John, 320
minimum degree, 6
minimum weight spanning trees, 39–

42
Moby Dick, allusion to, 260
model of ZFC, 321
Moe, Larry, and Curly, 87
Mona Lisa Overdrive, 308
monotonic subsequences, 152
Montagues, Capulets, and Hatfields,

73
Monticello, 176
Monty Python and the Holy Grail,

168, 190
Morris Jr., Walter D., 275, 279
Moschovakis, Yiannis, 352
Moser, William O. J., 267, 274, 279
Mossinghoff, Alexandra

allusion to, vi
Mossinghoff, Amanda

allusion to, ix
Mossinghoff, Kristine, ix
Mossinghoff, Michael J., 278, 279
Mulcahy, Colm, 278
multigraph, 3
multinomial coefficients, 144–149

analogue of Vandermonde’s con-
volution, 150

addition, 146
expansion, 145
symmetry, 145

multinomial theorem, 147, 167
for factorial powers, 149

multiset, 147
Music Man, The, 51

N is a Number, 30
naphthalene, 206
naphthol, 206
Nash-Williams, Crispin St. John Al-

vah, 335, 338
Nastase, Ilie, 231
National Basketball Association, 135

National Resident Matching Program,
249

necklaces, 191, 198–203
neighborhood

closed, of a vertex, 6
of a set, 6
open, of a vertex, 5

Nešetřil, Jaroslav, 280
neurotic running back, 248
Nicolás, Carlos M., 277
Night of the Lepus, 177
Nijenhuis, Albert, 277
North American Numbering Plan, 131
North by Northwest, 166

occupancy problems, 217–218
Oconomowoc, Wisconsin, 150
octahedron, 81, 217
ogre and ogress, 255, 258
Oldman, Gary, 27
opposites attract, 209, 213, 215
orbit, 198
order of a graph, 5
ordinal, 309–312, 317
ordinary line, 265
Ore, Oystein, 63, 353
Osburn, Robert, 240
Othello, 237
Overmars, Mark, 277

Pach, Janos, 267, 274, 279
Padovan sequence, 180
Palmer, Edgar M., 278
Pangloss, 292
paradise

Cantor’s, 290
Lost, 320
tasting, 292

parent vertex, 188
partite set, 13
τ -partitionable graphs, 71
partitions, 175, 218–225

conjugate, 221
distinct parts, 221, 225

Pascal, Blaise, 80, 139
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pyramid of, 146
triangle of, 139

Patashnik, Oren, 171, 277, 278
path

closed, 6
Hamiltonian, 60, 351
the graph Pn, 12
within a graph, 6

Path Partition Conjecture, 71
pattern inventory, 203
Peano Arithmetic (PA), 318
Pearl, The, allusion to, 260
Pensées, 80
pentagonal number, 226
Percival, Sir, 191, 228
perfect matching, 102, 111

in regular graphs, 114
periphery of a graph, 18, 20
permutation, 132

as function, 191
even and odd, 194

Perrin sequence, 180
Peters, Lindsay, 274
Petersen, Julius, 114, 115
Petersen graph, 64, 87, 115
Petersen’s Theorem, 115
Petkovšek, Marko, 277
phenomenology exam, 135
Phoenix, Arizona, 150, 151
phone numbers, 131
pigeonhole principle

finite, 118, 150–152, 154, 281,
312

infinite, 282, 313
ultimate, 313
variations, 318

ping-pong balls, 148, 235
pipe organ, 242, 244
Pirates of Penzance, The, 137
planar graph, 74

maximal, 80
straight line representation, 77

planar representation, 74
Pleasures of Hope, The, 17
Pliny the Younger, 31

Plouffe, Simon, 188, 279
Podewski, Klaus-Peter, 335
poker

card game, 133, 136, 162
chips, 148, 169, 218, 219
multiple decks, 167, 169
two decks, 166–167

Pólya, George, 156, 171, 190, 277,
278, 280

enumeration formula, 203
polyhedra, 80
Poor Richard’s Almanack, 277
power set (P), 290, 299

axiom, see axioms of ZFC
Prüfer sequence, 51
Prim’s algorithm, 43
prime numbers, 159, 163
Princess Bride, The, 191, 297
Princess Fiona, 255
Princess Leia, 93
principle of inclusion and exclusion,

158
generalization, 163

product rule, 131
proverbial alien, 118
Prüfer, Heinz, 44
pseudograph, 3
Purdy, George B., 279

quantifiers, 291
Quinn, Jennifer J., 278

Rademacher, Hans, 224
radius of a graph, 18
Radziszowski, Stanisław P., 127
Ramanujan, Srinivasa, 224
Ramsey, Frank P., 116, 271, 280, 287
Ramsey numbers

classical, 116
known bounds, 123, 273
known values, 122

graph, 124
Ramsey’s Theorem

failure at ℵ1, 324
finite, 272, 286, 288
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hypergraphs, 272, 275
infinite, 287
pairs, 286, 351
triples, 289, 351
variations, 352

ransom note, 176
Read, Ronald C., 278
Redfield, J. Howard, 278
region, 75
registrar, 162
regressive value, 345
regular

graph, 11
polyhedra, 81

relatively prime, 158
relief agency, 208, 216
restaurant

gourmet, 162
steakhouse, 162

restriction, 332
Return of the King, The, 301
reverse mathematics, 350
Reynolds, Patrick, 27
rhodonite, 201, 203, 214
rhyming schemes, 236, 240, 279
ridgeline, 190
Riordan, John, 277, 279
rising factorial power, 132
Roberts, Fred S., 126
Robertson, Neil, 95
Robin Hood, 126
Roitman, Judith, viii, 352
Romeo and Juliet, 73
rose quartz, 201, 203, 214
Rota, Gian-Carlo, 129, 279, 280
Rothschild, Bruce L., 127
round tables, 191, 197, 199, 227, 229
Russell, Bertrand, 295, 298
Ryjáček, Zdeněk, 70
Ryser, Herbert J., 277

Sadie Hawkins dance, 254
Sanders, Daniel, 95
Sawyer, Eric T., 267
Schechter, Bruce, 127

Schlömilch, Oskar X., 241
Schmitz, Werner, 69
Schröder, see Cantor–Bernstein
Schubfachprinzip, 151
Schur, Issai, 276
Schuster, Seymour, 84
Scream 2, v
SDR, 107, 301, 327

version of Hall’s Theorem, 107
self-centered graph, 21
separated set, 268
separating set, 110
Seuss, Dr., 85
Seymour, Paul, 95
Shakespeare, William, 73, 74, 83,

164, 217, 237
characters, 257

Shapley, Lloyd S., 250, 279
Shelah, Saharon, 338, 341
Shin, Jae-Il, viii
Shrek 2, 255
Sierpiński, Wacław, 352
Σ1

1-complete sets, 351
Silverstein, Shel, 34
Simpson, Homer, 218
Simpson, Stephen G., 350
Šimša, Jaromı́r, 279
six degrees of separation, 26
size of a graph, 5
Skolem, Thoralf, 290, 294, 296
Sloane, Neil James Alexander, 188,

279
small world networks, 28
Smith, Paul, 84
soccer team, 135
socks, 161
Soltan, Valeriu P., 275, 279
Song of Hiawatha, The, 285
sonnet, 236
Sonnets from the Portuguese, 248
Soso, Mississippi, 150
Sound of Trees, The, 282
space cruiser, 200
spanning tree, 39

counting, 43
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of minimum weight, 39–42
Spencer, Joel H., 127
stabilizer, 198
stable enrollment, 264
stable marriage

algorithm, 250
main theorem, 252
problem, 248–262
with indifference, 259–261
with sets of different sizes, 261–

262
with unacceptable partners, 256–

259
stable roommates, 249, 279
staircase, 189
Stanley, Richard P., 188, 203, 277,

278
Stanton, Dennis, 277
Stanton, Ralph Gordon, 274
star, 34
Star Wars, 93
stationary set, 339
Steffens, Karsten, 335
Stirling

cycle numbers, 227–230
set numbers, 231–235

Stockmeyer, Paul, 278
strikeouts, 154
stump, 31
subdivision

of a graph, 84, 85
of an edge, 84
of Verona, 73

subgraph, 12
forbidden, 65
induced, 12

subgroup, 193
Sullivan, Sir Arthur S., 137
sum rule, 131
Sumner, David, 70
surjective function, 192
Sweet 16, 32
Sylvester

James Joseph, 265
Looney Tunes cat, 265

problem of, 265–267
system of distinct representatives,

see SDR
Sysło, Maciej, 20
Szekeres, George, 122, 152, 264, 274,

279, 280

Tarjan, Robert E., 277
Tarski, Alfred, 325
Tarsy, Michael, 275
tennis, 231
termination argument, 265
Tesman, Barry, 126
tetrahedron, 81
tetramethylnaphthalene, 206
tetraphenylmethane, 208
Texas

cities, 137, 150, 249, 254
lottery, see lottery

thistle, 217
Thomas, Robin, 95
Thompson, Emma, 27
Thornhill, Roger, 166
Three Musketeers, The, 322
Thys, Philippe, 200
Tolkein, J. R. R., 301
Tour de France, 200
trace of a square matrix, 25
traceable graph, 61
trail, 6

closed, 6
Eulerian, 55

Traité du Triangle Arithmétique, 139
transfinite

induction, 332
recursion, 332

transitive set, 309, 316
transposition, 194
tree, 30, 283

Aronszajn, 326
as a model, 31–32
as a subgraph, 36
binary decision, 32
characterization, 35, 38, 42
definition, 31



Index 381

in chemistry, 32
in probability, 31
in programming, 32
labeled, 43
labels, 283, 284
named, 352
number of edges, 34
palm, 34
property, 326
rooted, 188
small, 31
spanning, 39, 352
strictly binary, 188

triangulation, 189
tribonacci numbers, 184
trimethylanthracene, 207
trinomial coefficients, 150
triphenylamine, 207
Tristram, Sir, 191, 228
Tutte’s Theorem, 112
Twain, Mark, 227
twig, 31
Typee, allusion to, 260
typesetter’s comfort, 290
Tyson, Mike, 150, 151

Unalaska, Alaska, 150
union, 290, 299

axiom, see axioms of ZFC
United Nations, 135
universal set, 295
Uppuluri, V. R. Rao, 279
Urban Legend, 18

van Heijenoort, Jean, 353
van Lint, Jacobus H., 277
Vandermonde’s convolution, 142, 150
Veblen, Oswald, 55
Venn, John, 156
Venn diagram, 157
vertex, 2

cut set, 8
deletion, 7
vertex set, 5

vexillologist, 161

Village Blacksmith, The, 38
Vizzini, 297
volleyball tournament, 184
Voyage Round the World, A, 60

Wagner, Klaus, 77
walk, 6
Walla Walla, Washington, 150
Wallace, Edgar, 352
Wall Street, 88
Walther, Hansjoachim, 68
Warrington, Gregory S., 279
Washington, George, 177
weakly ordered rankings, 259
weight function, 39
weighted graph, 39
well-ordering, 309–311
West, Douglas B., 126
White, Dennis, 277
Whitman, Walt, 181
Wilf, Herbert S., 240, 277, 278
Wilson, Richard M., 277
Wilson, Robin J., 126
Winter’s Tale, The, 164
wisteria, 217
Wojciechowski, Jerzy, 335
Woods, Donald R., 277
Worpitzky’s identity, 247

Yang, Yifan, 240
Yellen, Jay, 126
Young diagram, 220

Zamfirescu, Tudor, 68
Zeilberger, Doron, 277
Zermelo, Ernst, 290, 311
ZF and ZFC, 292
ZFC, 290

axioms, see axioms of ZFC
limitations, 318, 320, 344

Ziegler, Günter M., 278
zodiac sign, 170
Zorn’s Lemma, 311, 317
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