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Preface to the Second Edition

There are certain rules that one must abide by in order to create a
successful sequel.
— Randy Meeks, from the trailer to Scream 2

While we may not follow the precise rules that Mr. Meeks had in mind for suc-
cessful sequels, we have made a number of changes to the text in this second
edition. In the new edition, we continue to introduce new topics with concrete ex-
amples, we provide complete proofs of almost every result, and we preserve the
book’s friendly style and lively presentation, interspersing the text with occasional
jokes and quotations. The first two chapters, on graph theory and combinatorics,
remain largely independent, and may be covered in either order. Chapter 3, on
infinite combinatorics and graphs, may also be studied independently, although
many readers will want to investigate trees, matchings, and Ramsey theory for
finite sets before exploring these topics for infinite sets in the third chapter. Like
the first edition, this text is aimed at upper-division undergraduate students in
mathematics, though others will find much of interest as well. It assumes only
familiarity with basic proof techniques, and some experience with matrices and
infinite series.

The second edition offers many additional topics for use in the classroom or for
independent study. Chapter 1 includes a new section covering distance and related
notions in graphs, following an expanded introductory section. This new section
also introduces the adjacency matrix of a graph, and describes its connection to
important features of the graph. Another new section on trails, circuits, paths,
and cycles treats several problems regarding Hamiltonian and Eulerian paths in
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graphs, and describes some elementary open problems regarding paths in graphs,
and graphs with forbidden subgraphs.

Several topics were added to Chapter 2. The introductory section on basic
counting principles has been expanded. Early in the chapter, a new section covers
multinomial coefficients and their properties, following the development of the
binomial coefficients. Another new section treats the pigeonhole principle, with
applications to some problems in number theory. The material on Pélya’s theory
of counting has now been expanded to cover de Bruijn’s more general method of
counting arrangements in the presence of one symmetry group acting on the ob-
jects, and another acting on the set of allowed colors. A new section has also been
added on partitions, and the treatment of Eulerian numbers has been significantly
expanded. The topic of stable marriage is developed further as well, with three
interesting variations on the basic problem now covered here. Finally, the end
of the chapter features a new section on combinatorial geometry. Two principal
problems serve to introduce this rich area: a nice problem of Sylvester’s regard-
ing lines produced by a set of points in the plane, and the beautiful geometric
approach to Ramsey theory pioneered by Erdds and Szekeres in a problem about
the existence of convex polygons among finite sets of points in the plane.

In Chapter 3, a new section develops the theory of matchings further by in-
vestigating marriage problems on infinite sets, both countable and uncountable.
Another new section toward the end of this chapter describes a characterization
of certain large infinite cardinals by using linear orderings. Many new exercises
have also been added in each chapter, and the list of references has been com-
pletely updated.

The second edition grew out of our experiences teaching courses in graph the-
ory, combinatorics, and set theory at Appalachian State University, Davidson Col-
lege, and Furman University, and we thank these institutions for their support, and
our students for their comments. We also thank Mark Spencer at Springer-Verlag.
Finally, we thank our families for their patience and constant good humor through-
out this process. The first and third authors would also like to add that, since the
original publication of this book, their families have both gained their own second
additions!

May 2008 John M. Harris
Jeffry L. Hirst
Michael J. Mossinghoff



Preface to the First Edition

Three things should be considered: problems, theorems, and
applications.
— Gottfried Wilhelm Leibniz,
Dissertatio de Arte Combinatoria, 1666

This book grew out of several courses in combinatorics and graph theory given at
Appalachian State University and UCLA in recent years. A one-semester course
for juniors at Appalachian State University focusing on graph theory covered most
of Chapter 1 and the first part of Chapter 2. A one-quarter course at UCLA on
combinatorics for undergraduates concentrated on the topics in Chapter 2 and
included some parts of Chapter 1. Another semester course at Appalachian State
for advanced undergraduates and beginning graduate students covered most of the
topics from all three chapters.

There are rather few prerequisites for this text. We assume some familiarity
with basic proof techniques, like induction. A few topics in Chapter 1 assume
some prior exposure to elementary linear algebra. Chapter 2 assumes some famil-
iarity with sequences and series, especially Maclaurin series, at the level typically
covered in a first-year calculus course. The text requires no prior experience with
more advanced subjects, such as group theory.

While this book is primarily intended for upper-division undergraduate stu-
dents, we believe that others will find it useful as well. Lower-division undergrad-
uates with a penchant for proofs, and even talented high school students, will be
able to follow much of the material, and graduate students looking for an intro-
duction to topics in graph theory, combinatorics, and set theory may find several
topics of interest.
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Chapter 1 focuses on the theory of finite graphs. The first section serves as an
introduction to basic terminology and concepts. Each of the following sections
presents a specific branch of graph theory: trees, planarity, coloring, matchings,
and Ramsey theory. These five topics were chosen for two reasons. First, they
represent a broad range of the subfields of graph theory, and in turn they provide
the reader with a sound introduction to the subject. Second, and just as important,
these topics relate particularly well to topics in Chapters 2 and 3.

Chapter 2 develops the central techniques of enumerative combinatorics: the
principle of inclusion and exclusion, the theory and application of generating
functions, the solution of recurrence relations, P6lya’s theory of counting arrange-
ments in the presence of symmetry, and important classes of numbers, including
the Fibonacci, Catalan, Stirling, Bell, and Eulerian numbers. The final section in
the chapter continues the theme of matchings begun in Chapter 1 with a consider-
ation of the stable marriage problem and the Gale—Shapley algorithm for solving
it.

Chapter 3 presents infinite pigeonhole principles, Konig’s Lemma, Ramsey’s
Theorem, and their connections to set theory. The systems of distinct representa-
tives of Chapter 1 reappear in infinite form, linked to the axiom of choice. Count-
ing is recast as cardinal arithmetic, and a pigeonhole property for cardinals leads
to discussions of incompleteness and large cardinals. The last sections connect
large cardinals to finite combinatorics and describe supplementary material on
computability.

Following Leibniz’s advice, we focus on problems, theorems, and applications
throughout the text. We supply proofs of almost every theorem presented. We
try to introduce each topic with an application or a concrete interpretation, and
we often introduce more applications in the exercises at the end of each section.
In addition, we believe that mathematics is a fun and lively subject, so we have
tried to enliven our presentation with an occasional joke or (we hope) interesting
quotation.

We would like to thank the Department of Mathematical Sciences at Appala-
chian State University and the Department of Mathematics at UCLA. We would
especially like to thank our students (in particular, Jae-II Shin at UCLA), whose
questions and comments on preliminary versions of this text helped us to improve
it. We would also like to thank the three anonymous reviewers, whose suggestions
helped to shape this book into its present form. We also thank Sharon McPeake,
a student at ASU, for her rendering of the Konigsberg bridges.

In addition, the first author would like to thank Ron Gould, his graduate advi-
sor at Emory University, for teaching him the methods and the joys of studying
graphs, and for continuing to be his advisor even after graduation. He especially
wants to thank his wife, Priscilla, for being his perfect match, and his daughter
Sophie for adding color and brightness to each and every day. Their patience and
support throughout this process have been immeasurable.

The second author would like to thank Judith Roitman, who introduced him to
set theory and Ramsey’s Theorem at the University of Kansas, using an early draft
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of her fine text. Also, he would like to thank his wife, Holly (the other Professor
Hirst), for having the infinite tolerance that sets her apart from the norm.

The third author would like to thank Bob Blakley, from whom he first learned
about combinatorics as an undergraduate at Texas A & M University, and Don-
ald Knuth, whose class Concrete Mathematics at Stanford University taught him
much more about the subject. Most of all, he would like to thank his wife, Kris-
tine, for her constant support and infinite patience throughout the gestation of this
project, and for being someone he can always, well, count on.

September 1999 John M. Harris
Jeffry L. Hirst
Michael J. Mossinghoff
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1
Graph Theory

“Begin at the beginning,” the King said, gravely, “and go on till you
come to the end; then stop.”
— Lewis Carroll, Alice in Wonderland

The Pregolya River passes through a city once known as Konigsberg. In the 1700s
seven bridges were situated across this river in a manner similar to what you see
in Figure 1.1. The city’s residents enjoyed strolling on these bridges, but, as hard
as they tried, no resident of the city was ever able to walk a route that crossed each
of these bridges exactly once. The Swiss mathematician Leonhard Euler learned
of this frustrating phenomenon, and in 1736 he wrote an article [98] about it.
His work on the “Konigsberg Bridge Problem” is considered by many to be the
beginning of the field of graph theory.

FIGURE 1.1. The bridges in Konigsberg.

J.M. Harris et al., Combinatorics and Graph Theory, DOI: 10.1007/978-0-387-79711-3 1,
© Springer Science+Business Media, LLC 2008



2 1. Graph Theory

At first, the usefulness of Euler’s ideas and of “graph theory” itself was found
only in solving puzzles and in analyzing games and other recreations. In the mid
1800s, however, people began to realize that graphs could be used to model many
things that were of interest in society. For instance, the “Four Color Map Conjec-
ture,” introduced by DeMorgan in 1852, was a famous problem that was seem-
ingly unrelated to graph theory. The conjecture stated that four is the maximum
number of colors required to color any map where bordering regions are colored
differently. This conjecture can easily be phrased in terms of graph theory, and
many researchers used this approach during the dozen decades that the problem
remained unsolved.

The field of graph theory began to blossom in the twentieth century as more
and more modeling possibilities were recognized — and the growth continues. It
is interesting to note that as specific applications have increased in number and in
scope, the theory itself has developed beautifully as well.

In Chapter 1 we investigate some of the major concepts and applications of
graph theory. Keep your eyes open for the Konigsberg Bridge Problem and the
Four Color Problem, for we will encounter them along the way.

1.1 Introductory Concepts

A definition is the enclosing a wilderness of idea within a wall of
words.
— Samuel Butler, Higgledy-Piggledy

1.1.1 Graphs and Their Relatives

A graph consists of two finite sets, V and E. Each element of V' is called a vertex
(plural vertices). The elements of E, called edges, are unordered pairs of vertices.
For instance, the set V might be {a,b,¢,d, e, f,g,h}, and E might be {{a,d},
{a,e}, {b,c}, {b,e}, {b,9}, {c, [}, {d, f}. {d, g}, {g,h}}. Together, V and E
are a graph G.

Graphs have natural visual representations. Look at the diagram in Figure 1.2.
Notice that each element of V' is represented by a small circle and that each ele-
ment of E is represented by a line drawn between the corresponding two elements
of V.

) N
e fg h

FIGURE 1.2. A visual representation of the graph G.
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As a matter of fact, we can just as easily define a graph to be a diagram consist-
ing of small circles, called vertices, and curves, called edges, where each curve
connects two of the circles together. When we speak of a graph in this chapter, we
will almost always refer to such a diagram.

We can obtain similar structures by altering our definition in various ways. Here
are some examples.

1. By replacing our set E with a set of ordered pairs of vertices, we obtain
a directed graph, or digraph (Figure 1.3). Each edge of a digraph has a
specific orientation.

FIGURE 1.3. A digraph.

2. If we allow repeated elements in our set of edges, technically replacing our
set I/ with a multiset, we obtain a multigraph (Figure 1.4).

FIGURE 1.4. A multigraph.

3. By allowing edges to connect a vertex to itself (“loops”), we obtain a pseu-
dograph (Figure 1.5).

FIGURE 1.5. A pseudograph.
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4. Allowing our edges to be arbitrary subsets of vertices (rather than just pairs)
gives us hypergraphs (Figure 1.6).

FIGURE 1.6. A hypergraph with 7 vertices and 5 edges.

5. By allowing V' or E to be an infinite set, we obtain infinite graphs. Infinite
graphs are studied in Chapter 3.

In this chapter we will focus on finite, simple graphs: those without loops or
multiple edges.

Exercises

1. Ten people are seated around a circular table. Each person shakes hands
with everyone at the table except the person sitting directly across the table.
Draw a graph that models this situation.

2. Six fraternity brothers (Adam, Bert, Chuck, Doug, Ernie, and Filthy Frank)
need to pair off as roommates for the upcoming school year. Each person
has compiled a list of the people with whom he would be willing to share a
room.

Adam’s list: Doug

Bert’s list: Adam, Ernie
Chuck’s list: Doug, Ernie
Doug’s list: Chuck
Ernie’s list: Ernie
Frank’s list: Adam, Bert

Draw a digraph that models this situation.

3. There are twelve women’s basketball teams in the Atlantic Coast Confer-
ence: Boston College (B), Clemson (C), Duke (D), Florida State (F), Geor-
gia Tech (G), Miami (I), NC State (S), Univ. of Maryland (M), Univ. of
North Carolina (N), Univ. of Virginia (V), Virginia Tech (T), and Wake
Forest Univ. (W). At a certain point in midseason,

B has played I, T*, W
C has played D*, G



1.1 Introductory Concepts 5

D has played C*, S, W
F has played N*, V

G has played C, M

I has played B, M, T

S has played D, V*

M has played G, I, N

N has played F*, M, W
V has played F, S*

T has played B*, I

W has played B, D, N
The asterisk(*) indicates that these teams have played each other twice.

Draw a multigraph that models this situation.

4. Can you explain why no resident of Konigsberg was ever able to walk a
route that crossed each bridge exactly once? (We will encounter this ques-
tion again in Section 1.4.1.)

1.1.2 The Basics

Your first discipline is your vocabulary;
— Robert Frost

In this section we will introduce a number of basic graph theory terms and
concepts. Study them carefully and pay special attention to the examples that are
provided. Our work together in the sections that follow will be enriched by a solid
understanding of these ideas.

The Very Basics

The vertex set of a graph G is denoted by V(G), and the edge set is denoted
by E(G). We may refer to these sets simply as V' and F if the context makes the
particular graph clear. For notational convenience, instead of representing an edge
as {u, v}, we denote this simply by wwv. The order of a graph G is the cardinality
of its vertex set, and the size of a graph is the cardinality of its edge set.

Given two vertices v and v, if uv € FE, then w and v are said to be adjacent. In
this case, u and v are said to be the end vertices of the edge uv. If uv ¢ E, then u
and v are nonadjacent. Furthermore, if an edge e has a vertex v as an end vertex,
we say that v is incident with e.

The neighborhood (or open neighborhood) of a vertex v, denoted by N (v), is
the set of vertices adjacent to v:

N@w)={z eV |vx e E}.
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The closed neighborhood of a vertex v, denoted by N[v], is simply the set {v} U
N (v). Given a set S of vertices, we define the neighborhood of .S, denoted by
N(S), to be the union of the neighborhoods of the vertices in S. Similarly, the
closed neighborhood of .S, denoted N[S], is defined to be S U N(S).

The degree of v, denoted by deg(v), is the number of edges incident with v. In
simple graphs, this is the same as the cardinality of the (open) neighborhood of v.
The maximum degree of a graph G, denoted by A(G), is defined to be

A(G) = max{deg(v) | v € V(G)}.
Similarly, the minimum degree of a graph G, denoted by 6(G), is defined to be
§(G) = min{deg(v) | v € V(G)}.

The degree sequence of a graph of order n is the n-term sequence (usually written
in descending order) of the vertex degrees.

Let’s use the graph G in Figure 1.2 to illustrate some of these concepts: G
has order 8 and size 9; vertices a and e are adjacent while vertices a and b are
nonadjacent; N(d) = {a, f, g}, N[d] = {a,d, f,g}; A(G) = 3,0(G) = 1; and
the degree sequence is 3, 3, 3, 2, 2, 2, 2, 1.

The following theorem is often referred to as the First Theorem of Graph The-
ory.

Theorem 1.1. In a graph G, the sum of the degrees of the vertices is equal to
twice the number of edges. Consequently, the number of vertices with odd degree
is even.

Proof. Let S = )y deg(v). Notice that in counting S, we count each edge
exactly twice. Thus, S = 2|E| (the sum of the degrees is twice the number of
edges). Since S is even, it must be that the number of vertices with odd degree is
even.

Perambulation and Connectivity

A walk in a graph is a sequence of (not necessarily distinct) vertices vy, va, . . ., Uk
such that v;v,41 € F fori = 1,2,...,k — 1. Such a walk is sometimes called
a v1—vy, walk, and v, and v;, are the end vertices of the walk. If the vertices in a
walk are distinct, then the walk is called a path. If the edges in a walk are distinct,
then the walk is called a trail. In this way, every path is a trail, but not every trail
is a path. Got it?

A closed path, or cycle, is a path vy, ..., v, (wWhere k > 3) together with the
edge viv;. Similarly, a trail that begins and ends at the same vertex is called a
closed trail, or circuit. The length of a walk (or path, or trail, or cycle, or circuit)
is its number of edges, counting repetitions.

Once again, let’s illustrate these definitions with an example. In the graph of
Figure 1.7, a, ¢, f, ¢, b, dis a walk of length 5. The sequence b, a, ¢, b, d represents
a trail of length 4, and the sequence d, g, b, a, ¢, f, e represents a path of length 6.
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a

SN\,
.
N

FIGURE 1.7.

Also, g, d, b, ¢, a, b, g is a circuit, while e, d, b, a, ¢, f, e is a cycle. In general, it
is possible for a walk, trail, or path to have length 0, but the least possible length
of a circuit or cycle is 3.

The following theorem is often referred to as the Second Theorem in this book.

Theorem 1.2. In a graph G with vertices u and v, every u—v walk contains a u—v
path.

Proof. Let W be a u—v walk in G. We prove this theorem by induction on the
length of W. If W is of length 1 or 2, then it is easy to see that W must be a path.
For the induction hypothesis, suppose the result is true for all walks of length less
than k, and suppose W has length k. Say that W is

U = W, W1, W2, ..., Wk—1, W =7

where the vertices are not necessarily distinct. If the vertices are in fact distinct,
then W itself is the desired u—v path. If not, then let j be the smallest integer such
that w; = w, for some r > j. Let W, be the walk

U= wWo,y...,Wj,Wr41,..., W =70.

This walk has length strictly less than &, and therefore the induction hypothesis
implies that WW; contains a u—v path. This means that W contains a u—v path, and
the proof is complete.

We now introduce two different operations on graphs: vertex deletion and edge
deletion. Given a graph G and a vertex v € V(G), we let G — v denote the graph
obtained by removing v and all edges incident with v from G. If S is a set of
vertices, we let G — S denote the graph obtained by removing each vertex of S
and all associated incident edges. If e is an edge of GG, then G — e is the graph
obtained by removing only the edge e (its end vertices stay). If " is a set of edges,
then G — T is the graph obtained by deleting each edge of 7" from G. Figure 1.8
gives examples of these operations.

A graph is connected if every pair of vertices can be joined by a path. Infor-
mally, if one can pick up an entire graph by grabbing just one vertex, then the
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FIGURE 1.8. Deletion operations.

P A

G, G, G,

FIGURE 1.9. Connected and disconnected graphs.

graph is connected. In Figure 1.9, GG; is connected, and both G5 and G5 are not
connected (or disconnected). Each maximal connected piece of a graph is called
a connected component. In Figure 1.9, G; has one component, G5 has three com-
ponents, and G5 has two components.

If the deletion of a vertex v from G causes the number of components to in-
crease, then v is called a cut vertex. In the graph G of Figure 1.8, vertex d is a cut
vertex and vertex c is not. Similarly, an edge e in G is said to be a bridge if the
graph G — e has more components than G. In Figure 1.8, the edge ab is the only
bridge.

A proper subset S of vertices of a graph G is called a vertex cut set (or simply,
a cut set) if the graph G — S is disconnected. A graph is said to be complete if
every vertex is adjacent to every other vertex. Consequently, if a graph contains at
least one nonadjacent pair of vertices, then that graph is not complete. Complete
graphs do not have any cut sets, since G — .S is connected for all proper subsets .S
of the vertex set. Every non-complete graph has a cut set, though, and this leads
us to another definition. For a graph G which is not complete, the connectivity
of G, denoted x(G), is the minimum size of a cut set of G. If G is a connected,
non-complete graph of order n, then 1 < x(G) < n — 2. If G is disconnected,
then k(G) = 0. If G is complete of order n, then we say that x(G) = n — 1.



1.1 Introductory Concepts 9

Further, for a positive integer k, we say that a graph is k-connected if k < k(G).
You will note here that “1-connected” simply means “connected.”

Here are several facts that follow from these definitions. You will get to prove
a couple of them in the exercises.

i. A graph is connected if and only if x(G) > 1.
ii. x(G) > 2if and only if G is connected and has no cut vertices.
iii. Every 2-connected graph contains at least one cycle.
iv. For every graph G, k(G) < 0(G).
Exercises
1. If G is a graph of order n, what is the maximum number of edges in G?

2. Prove that for any graph G of order at least 2, the degree sequence has at
least one pair of repeated entries.

3. Consider the graph shown in Figure 1.10.

a

FIGURE 1.10.

(a) How many different paths have c as an end vertex?
(b) How many different paths avoid vertex c altogether?

(c) What is the maximum length of a circuit in this graph? Give an exam-
ple of such a circuit.

(d) What is the maximum length of a circuit that does not include vertex
¢? Give an example of such a circuit.

4. Is it true that a finite graph having exactly two vertices of odd degree must
contain a path from one to the other? Give a proof or a counterexample.

5. Let G be a graph where §(G) > k.

(a) Prove that G has a path of length at least k.
(b) If & > 2, prove that G has a cycle of length at least & + 1.
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Prove that every closed odd walk in a graph contains an odd cycle.

Draw a connected graph having at most 10 vertices that has at least one
cycle of each length from 5 through 9, but has no cycles of any other length.

Let P, and P» be two paths of maximum length in a connected graph G.
Prove that P; and P>, have a common vertex.

Let GG be a graph of order n that is not connected. What is the maximum
size of G?

Let GG be a graph of order n and size strictly less than n — 1. Prove that G
is not connected.

Prove that an edge e is a bridge of G if and only if e lies on no cycle of G.
Prove or disprove each of the following statements.

(a) If G has no bridges, then GG has exactly one cycle.
(b) If G has no cut vertices, then G has no bridges.

(¢) If G has no bridges, then G has no cut vertices.

Prove or disprove: If every vertex of a connected graph G lies on at least
one cycle, then G is 2-connected.

Prove that every 2-connected graph contains at least one cycle.
Prove that for every graph G,

(@) K(G) < 8(G);

(b) if 6(G) > n — 2, then K(G) = 0(G).
Let GG be a graph of order n.

(a) If 6(G) > ™,*, then prove that G is connected.
(b) If6(G) > ”;2, then show that G need not be connected.

1.1.3 Special Types of Graphs

until we meet again . ..
— from An Irish Blessing

In this section we describe several types of graphs. We will run into many of them
later in the chapter.

1.

Complete Graphs

We introduced complete graphs in the previous section. A complete graph
of order n is denoted by K,,, and there are several examples in Figure 1.11.
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K; K K,
FIGURE 1.11. Examples of complete graphs.

2. Empty Graphs

The empty graph on n vertices, denoted by E,,, is the graph of order n
where E is the empty set (Figure 1.12).

FIGURE 1.12. An empty graph.

3. Complements

Given a graph G, the complement of G, denoted by G, is the graph whose
vertex set is the same as that of (=, and whose edge set consists of all the
edges that are not present in GG (Figure 1.13).

G G

FIGURE 1.13. A graph and its complement.

4. Regular Graphs

A graph G is regular if every vertex has the same degree. G is said to be
regular of degree r (or r-regular) if deg(v) = r for all vertices v in G.
Complete graphs of order n are regular of degree n — 1, and empty graphs
are regular of degree 0. Two further examples are shown in Figure 1.14.
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FIGURE 1.14. Examples of regular graphs.

5. Cycles
The graph C,, is simply a cycle on n vertices (Figure 1.15).

FIGURE 1.15. The graph C'.

6. Paths
The graph P, is simply a path on n vertices (Figure 1.16).

FIGURE 1.16. The graph Fs.

7. Subgraphs

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C
E(G). In this case we write H C @, and we say that G contains H. In
a graph where the vertices and edges are unlabeled, we say that H C G
if the vertices could be labeled in such a way that V(H) C V(@) and
E(H) C E(G). In Figure 1.17, Hy and Hj are both subgraphs of G, but
Hsj is not.

8. Induced Subgraphs

Given a graph G and a subset S of the vertex set, the subgraph of G induced
by S, denoted (S), is the subgraph with vertex set S and with edge set
{uv | u,v € S and wv € E(G)}. So, (S) contains all vertices of S and
all edges of G whose end vertices are both in S. A graph and two of its
induced subgraphs are shown in Figure 1.18.
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H,

" 9

H,

FIGURE 1.17. H; and H> are subgraphs of G.

b c
g f e
f e
FIGURE 1.18. A graph and two of its induced subgraphs.

9. Bipartite Graphs

A graph G is bipartite if its vertex set can be partitioned into two sets X
and Y in such a way that every edge of GG has one end vertex in X and the
other in Y. In this case, X and Y are called the partite sets. The first two
graphs in Figure 1.19 are bipartite. Since it is not possible to partition the
vertices of the third graph into two such sets, the third graph is not bipartite.

Ao

FIGURE 1.19. Two bipartite graphs and one non-bipartite graph.

A bipartite graph with partite sets X and Y is called a complete bipartite
graph if its edge set is of the form £ = {zy | © € X,y € Y} (that is, if
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every possible connection of a vertex of X with a vertex of Y is present in
the graph). Such a graph is denoted by K| x| |y|. See Figure 1.20.

K;; K4 K4

FIGURE 1.20. A few complete bipartite graphs.

The next theorem gives an interesting characterization of bipartite graphs.

Theorem 1.3. A graph with at least two vertices is bipartite if and only if it
contains no odd cycles.

Proof. Let GG be a bipartite graph with partite sets X and Y. Let C be a cycle
of G and say that C'is v1, va, .. ., Uk, v1. Assume without loss of generality that
v1 € X. The nature of bipartite graphs implies then that v; € X for all odd %, and
v; € Y for all even i. Since vy, is adjacent to vy, it must be that k is even; and
hence C'is an even cycle.

For the reverse direction of the theorem, let G be a graph of order at least two
such that G contains no odd cycles. Without loss of generality, we can assume
that G is connected, for if not, we could treat each of its connected components
separately. Let v be a vertex of G, and define the set X to be

X = {z € V(G) | the shortest path from x to v has even length},

andletY = V(G) \ X.

Now let x and x’ be vertices of X, and suppose that = and 2’ are adjacent. If
2 = wv, then the shortest path from v to 2’ has length one. But this implies that
2’ € Y, a contradiction. So, it must be that 2 # v, and by a similar argument,
2’ # v. Let Py be a path from v to x of shortest length (a shortest v—z path) and
let P, be a shortest v—x’ path. Say that P, is v = vg, v1, . .., vor = x and that Py
isv = wp, wi,..., ws = z'. The paths P; and P, certainly have v in common.
Let v’ be a vertex on both paths such that the v'—x path, call it Py, and the v’z
path, call it Pj, have only the vertex v’ in common. Essentially, v’ is the “last”
vertex common to P; and Ps. It must be that P| and Pj are shortest v'—z and
v'—x’ paths, respectively, and it must be that v" = v; = w; for some . But since
x and z’ are adjacent, v;, V;y1,. .., Vog, Wor, Wop_1, - . ., w; is a cycle of length
(2k — i) 4+ (2t — i) 4 1, which is odd, and that is a contradiction.

Thus, no two vertices in X are adjacent to each other, and a similar argument
shows that no two vertices in Y are adjacent to each other. Therefore, GG is bipartite
with partite sets X and Y.
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We conclude this section with a discussion of what it means for two graphs

to be the same. Look closely at the graphs in Figure 1.21 and convince yourself
that one could be re-drawn to look just like the other. Even though these graphs

a b 1 2

g h 6 5

FIGURE 1.21. Are these graphs the same?

have different vertex sets and are drawn differently, it is still quite natural to think
of these graphs as being the same. The idea of isomorphism formalizes this phe-
nomenon.

Graphs G and H are said to be isomorphic to one another (or simply, isomor-
phic) if there exists a one-to-one correspondence f : V(G) — V(H) such that
for each pair .,y of vertices of G, zy € E(G) if and only if f(x)f(y) € E(H).
In other words, G and H are isomorphic if there exists a mapping from one vertex
set to another that preserves adjacencies. The mapping itself is called an isomor-
phism. In our example, such an isomorphism could be described as follows:

{(a,1),(,2),(¢,8),(d,3), (e, 7), (f,4), (9,6), (h, 5)} .

When two graphs GG and H are isomorphic, it is not uncommon to simply say that
G = H or that “G is H.” As you will see, we will make use of this convention
quite often in the sections that follow.

Several facts about isomorphic graphs are immediate. First, if G and H are
isomorphic, then |V(G)| = |V (H)| and |E(G)| = |E(H)|. The converse of this
statement is not true, though, and you can see that in the graphs of Figure 1.22.
The vertex and edge counts are the same, but the two graphs are clearly not iso-

FIGURE 1.22.
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morphic.

A second necessary fact is that if G and H are isomorphic then the degree
sequences must be identical. Again, the graphs in Figure 1.22 show that the con-
verse of this statement is not true. A third fact, and one that you will prove in
Exercise 8, is that if graphs G and H are isomorphic, then their complements G
and H must also be isomorphic.

In general, determining whether two graphs are isomorphic is a difficult prob-
lem. While the question is simple for small graphs and for pairs where the ver-
tex counts, edge counts, or degree sequences differ, the general problem is often
tricky to solve. A common strategy, and one you might find helpful in Exercises 9
and 10, is to compare subgraphs, complements, or the degrees of adjacent pairs
of vertices.

Exercises
1. Forn > 1, prove that K, has n(n — 1)/2 edges.
2. If K, ,, is regular, prove that ry = 2.

3. Determine whether K is a subgraph of K4 4. If yes, then exhibit it. If no,
then explain why not.

4. Determine whether Py is an induced subgraph of K4 4. If yes, then exhibit
it. If no, then explain why not.

5. List all of the unlabeled connected subgraphs of C'sy.

6. The concept of complete bipartite graphs can be generalized to define the
complete multipartite graph K, ;... .. This graph consists of k sets of
vertices Ay, A, ..., Ay, with |4;| = r; for each i, where all possible
“interset edges” are present and no “intraset edges” are present. Find ex-

pressions for the order and size of K., ,,, .. .-

7. The line graph L(G) of a graph G is defined in the following way: the
vertices of L(G) are the edges of G, V(L(G)) = E(G), and two vertices
in L(G) are adjacent if and only if the corresponding edges in GG share a
vertex.

(a) Let G be the graph shown in Figure 1.23. Find L(G).

FIGURE 1.23.
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(b) Find the complement of L(K5).

(c) Suppose G has n vertices, labeled vy, ... v,, and the degree of vertex
v; is r;. Let m denote the size of G, so r1 +7r9+ -+ -+ 7, = 2m. Find
formulas for the order and size of L(G) in terms of n, m, and the r;.

8. Prove that if graphs G and H are isomorphic, then their complements GG
and H are also isomorphic.

9. Prove that the two graphs in Figure 1.24 are not isomorphic.

L

FIGURE 1.24.

10. Two of the graphs in Figure 1.25 are isomorphic.

= E

FIGURE 1.25.

(a) For the pair that is isomorphic, give an appropriate one-to-one corre-
spondence.

(b) Prove that the remaining graph is not isomporhic to the other two.

1.2 Distance in Graphs

‘Tis distance lends enchantment to the view . ..
— Thomas Campbell, The Pleasures of Hope

How far is it from one vertex to another? In this section we define distance in
graphs, and we consider several properties, interpretations, and applications. Dis-
tance functions, called metrics, are used in many different areas of mathematics,
and they have three defining properties. If M is a metric, then
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i. M(z,y) > Oforall z,y,and M (x,y) = 0if and only if z = y;
il. M(x,y) = M/(y,z)forall z, y;
iii. M(z,y) < M(x,2)+ M(z,y)forall z, y, z.

As you encounter the distance concept in the graph sense, verify for yourself that
the function is in fact a metric.

1.2.1 Definitions and a Few Properties

[ prefer the term ‘eccentric.
— Brenda Bates, Urban Legend

Distance in graphs is defined in a natural way: in a connected graph G, the dis-
tance from vertex u to vertex v is the length (number of edges) of a shortest u—v
path in G. We denote this distance by d(u, v), and in situations where clarity of
context is important, we may write d¢g(u,v). In Figure 1.26, d(b,k) = 4 and
d(e,m) = 6.

FIGURE 1.26.

For a given vertex v of a connected graph, the eccentricity of v, denoted ecc(v),
is defined to be the greatest distance from v to any other vertex. That is,

ecc(v) = zg‘l/a(%) {d(v,x)}.
In Figure 1.26, ecc(a) = 5 since the farthest vertices from a (namely k, m, n) are
at a distance of 5 from a.

Of the vertices in this graph, vertices c, k, m and n have the greatest eccentricity
(6), and vertices e, f and g have the smallest eccentricity (3). These values and
types of vertices are given special names. In a connected graph G, the radius of G,
denoted rad(G), is the value of the smallest eccentricity. Similarly, the diameter
of G, denoted diam(G), is the value of the greatest eccentricity. The center of the
graph G is the set of vertices, v, such that ecc(v) = rad(G). The periphery of G
is the set of vertices, u, such that ecc(u) = diam(G). In Figure 1.26, the radius
is 3, the diameter is 6, and the center and periphery of the graph are, respectively,

{e, f,g} and {c, k,m,n}.
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Surely these terms sound familiar to you. On a disk, the farthest one can travel
from one point to another is the disk’s diameter. Points on the rim of a disk are on
the periphery. The distance from the center of the disk to any other point on the
disk is at most the radius. The terms for graphs have similar meanings.

Do not be misled by this similarity, however. You may have noticed that the
diameter of our graph G is twice the radius of GG. While this does seem to be a
natural relationship, such is not the case for all graphs. Take a quick look at a
cycle or a complete graph. For either of these graphs, the radius and diameter are
equal!

The following theorem describes the proper relationship between the radii and
diameters of graphs. While not as natural, tight, or “circle-like” as you might
hope, this relationship does have the advantage of being correct.

Theorem 1.4. For any connected graph G, rad(G) < diam(G) < 2rad(G).

Proof. By definition, rad(G) < diam(G), so we just need to prove the second
inequality. Let u and v be vertices in G such that d(u, v) = diam(G). Further, let
c be a vertex in the center of G. Then,

diam(G) = d(u,v) < d(u,c) + d(c,v) < 2ecc(c) = 2rad(G).

The definitions in this section can also be extended to graphs that are not con-
nected. In the context of a single connected component of a disconnected graph,
these terms have their normal meanings. If two vertices are in different compo-
nents, however, we say that the distance between them is infinity.

We conclude this section with two interesting results. Choose your favorite
graph. It can be large or small, dense with edges or sparse. Choose anything you
like, as long as it is your favorite. Now, wouldn’t it be neat if there existed a graph
in which your favorite graph was the “center” of attention? The next theorem
(credited to Hedetneimi in [44]) makes your wish come true.

Theorem 1.5. Every graph is (isomorphic to) the center of some graph.

Proof. Let G be a graph (your favorite!). We now construct a new graph H (see
Figure 1.27) by adding four vertices (w, z, ¥y, z) to GG, along with the following
edges:

{wz,yz} U{za|a e V(G)}U{yb|be V(G)}.

Now, ecc(w) = ecc(z) = 4, ecc(y) = ecc(x) = 3, and for any vertex v € V(G),

W._x< >y_,

FIGURE 1.27. G is the center.

ecc(v) = 2. Therefore, G is the center of H.
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Suppose you don’t like being the center of attention. Maybe you would rather
your favorite graph avoid the spotlight and stay on the periphery. The next theorem
(due to Bielak and Systo, [25]) tells us when that can happen.

Theorem 1.6. A graph G is (isomorphic to) the periphery of some graph if and
only if either every vertex has eccentricity 1, or no vertex has eccentricity 1.

Proof. Suppose that every vertex of GG has eccentricity 1. Not only does this mean
that G is complete, it also means that every vertex of G is in the periphery. G is
the periphery of itself!

On the other hand, suppose that no vertex of G has eccentricity 1. This means
that for every vertex u of G, there is some vertex v of G such that uv ¢ E(G).
Now, let H be a new graph, constructed by adding a single vertex, w, to G, to-
gether with the edges {wz | x € V(G)}. In the graph H, the eccentricity of w is
1 (w is adjacent to everything). Further, for any vertex x € V' (G), the eccentricity
of x in H is 2 (no vertex of GG is adjacent to everything else in GG, and everything
in G is adjacent to w). Thus, the periphery of H is precisely the vertices of G.

For the reverse direction, let us suppose that G has some vertices of eccentricity
1 and some vertices of eccentricity greater than 1. Suppose also (in anticipation
of a contradiction) that G forms the periphery of some graph, say H. Since the
eccentricities of the vertices in G are not all the same, it must be that V(G) is
a proper subset of V' (H). This means that H is not the periphery of itself and
that diam(H) > 2. Now, let v be a vertex of G whose eccentricity in G is 1 (v
is therefore adjacent to all vertices of G). Since v € V(&) and since G is the
periphery of H, there exists a vertex w in H such that d(v, w) = diam(H) > 2.
The vertex w, then, is also a peripheral vertex (see Exercise 4) and therefore must
be in G. This contradicts the fact that v is adjacent to everything in G.

Exercises

1. Find the radius, diameter and center of the graph shown in Figure 1.28.

FIGURE 1.28.
2. Find the radius and diameter of each of the following graphs: Poy, Pajy1,
CQk, 02k+1’ Kn, Km,n-
3. For each graph in Exercise 2, find the number of vertices in the center.

4. If x is in the periphery of G and d(z,y) = ecc(x), then prove that y is in
the periphery of G.
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5. If w and v are adjacent vertices in a graph, prove that their eccentricities
differ by at most one.

6. A graph G is called self-centered if C(G) = V(G). Prove that every com-
plete bipartite graph, every cycle, and every complete graph is self-centered.

7. Given a connected graph G and a positive integer k, the kth power of G,
denoted G*, is the graph with V (G*) = V(G) and where vertices u and v
are adjacent in G* if and only if dg (u,v) < k.

(a) Draw the 2nd and 3rd powers of Pg and C1j.
(b) For a graph G of order n, what is G412m(G)?

8. (a) Find a graph of order 7 that has radius 3 and diameter 6.
(b) Find a graph of order 7 that has radius 3 and diameter 5.
(c) Find a graph of order 7 that has radius 3 and diameter 4.

(d) Suppose r and d are positive integers and r < d < 2r. Describe a
graph that has radius  and diameter d.

9. Suppose that u and v are vertices in a graph G, ecc(u) = m, ecc(v) = n,
and m < n. Prove that d(u,v) > n — m. Then draw a graph GG; where
d(u,v) = n — m, and another graph G2 where d(u,v) > n — m. In each
case, label the vertices u and v, and give the values of m and n.

10. Let GG be a connected graph with at least one cycle. Prove that G has at least
one cycle whose length is less than or equal to 2 diam(G) + 1.

11. (a) Prove that if G is connected and diam(G) > 3, then G is connected.
(b) Prove that if diam(G) > 3, then diam(G) < 3.
(c) Prove that if G is regular and diam(G) = 3, then diam(G) = 2.

1.2.2 Graphs and Matrices

Unfortunately no one can be told what the Matrix is. You have to see
it for yourself.
— Morpheus, The Matrix

What do matrices have to do with graphs? This is a natural question — nothing
we have seen so far has suggested any possible relationship between these two
types of mathematical objects. That is about to change!

As we have seen, a graph is a very visual object. To this point, we have deter-
mined distances by looking at the diagram, pointing with our fingers, and count-
ing edges. This sort of analysis works fairly well for small graphs, but it quickly
breaks down as the graphs of interest get larger. Analysis of large graphs often
requires computer assistance.
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Computers cannot just look and point at graphs like we can. Instead, they under-
stand graphs via matrix representations. One such representation is an adjacency
matrix. Let G be a graph with vertices vy, vo, ..., v,. The adjacency matrix of G
is the n x n matrix A whose (7, j) entry, denoted by [A]; ;, is defined by

4], = 1 if v; and v; are adjacent,
“J 71 0 otherwise.

The graph in Figure 1.29 has six vertices. Its adjacency matrix, A, is

000110
001000
01000 1

A=19 00 01 1
10010 1
001110

Vy

Vs v,

FIGURE 1.29.

Note that for simple graphs (where there are no loops) adjacency matrices have
all zeros on the main diagonal. You can also see from the definition that these
matrices are symmetric. !

A single graph can have multiple adjacency matrices — different orderings of
the vertices will produce different matrices. If you think that these matrices ought
to be related in some way, then you are correct! In fact, if A and B are two differ-
ent adjacency matrices of the same graph G, then there must exist a permutation
of the vertices such that when the permuation is applied to the corresponding rows
and columns of A, you get B.

This fact can be used in reverse to determine if two graphs are isomorphic,
and the permutation mentioned here serves as an appropriate bijection: Given two
graphs GG; and G with respective adjacency matrices A; and As, if one can apply

!Can you think of a context in which adjacency matrices might not be symmetric? Direct your
attention to Figure 1.3 for a hint.
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a permutation to the rows and columns of A; and produce Ao, then G; and G2
are isomorphic.

Let’s take a closer look at the previous example. The fact that the (1, 6) entry
is 0 indicates that v; and vg are not adjacent. Consider now the (1, 6) entry of the
matrix A2. This entry is just the dot product of row one of A with column six of
A:

[AQ]l,G = (07 07 07 17 17 0) : (07 07 17 17 17 0)
=0-00+0-0)+(0-1)+(1-1)+(1-1)+(0-0)
=2.

Think about what makes this dot product nonzero. It is the fact that there was
at least one place (and here there were two places) where a 1 in row one corre-
sponded with a 1 in column six. In our case, the 1 in the fourth position of row
one (representing the edge v;v4) matched up with the 1 in the fourth position of
column six (representing the edge v4vg). The same thing occurred in the fifth po-
sition of the row and column (where the edges represented were v, v5 and vsvg).

Can you see what is happening here? The entry in position (1,6) of A? is equal
to the number of two-edge walks from v; to vg in G. As the next theorem shows
us, this is not a coincidence.

Theorem 1.7. Let G be a graph with vertices labeled vy, vo, ..., vy, and let A
be its corresponding adjacency matrix. For any positive integer k, the (i, j) entry
of A¥ is equal to the number of walks from v; to v; that use exactly k edges.

Proof. We prove this by induction on k. For k = 1, the result is true since [A]; ; =
1 exactly when there is a one-edge walk between v; and v;.

Now suppose that for every i and j, the (4, 5) entry of A*~! is the number of
walks from v; to v; that use exactly k — 1 edges. For each k-edge walk from v; to
vj, there exists an h such that the walk can be thought of as a (k — 1)-edge walk
from v; to vy, combined with an edge from vy, to v;. The total number of these
k-edge walks, then, is

Z (number of (k — 1)-edge walks from v; to vy,).
vp €N (vj)

By the induction hypothesis, we can rewrite this sum as

n

o A = D A Al = (AN

vp €N (vj) h=1
and this proves the result.

This theorem has a straightforward corollary regarding distance between ver-
tices.

Corollary 1.8. Let G be a graph with vertices labeled vy, vo, ..., v,, and let
A be its corresponding adjacency matrix. If d(v;,v;) = x, then [Ak]m = 0 for
1<k<ua
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Let’s see if we can relate these matrices back to earlier distance concepts. Given
a graph G of order n with adjacency matrix A, and given a positive integer k,
define the matrix sum S}, to be

Sp=I+A+A%+...+ A

where [ is the n X n identity matrix. Since the entries of I and A are ones and
zeros, the entries of Sy, (for any k) are nonnegative integers. This implies that for
every pair 4, j, we have [Si]; ; < [Sk1lij-

Theorem 1.9. Let G be a connected graph with vertices labeled vy, vs, ..., vy,
and let A be its corresponding adjacency matrix.

1. If k is the smallest positive integer such that row j of Sy contains no zeros,
then ecc(vj) = k.

2. If r is the smallest positive integer such that all entries of at least one row
of S, are positive, then rad(G) = r.

3. If m is the smallest positive integer such that all entries of Sy, are positive,
then diam(G) = m.

Proof. We will prove the first part of the theorem. The proofs of the other parts
are left for you as exercises.’

Suppose that k is the smallest positive integer such that row j of .Sj contains
no zeros. The fact that there are no zeros on row j of Sy implies that the distance
from v; to any other vertex is at most k. If & = 1, the result follows immediately.
For k > 1, the fact that there is at least one zero on row j of Si_1 indicates that
there is at least one vertex whose distance from v; is greater than & — 1. This
implies that ecc(v;) = k.

We can use adjacency matrices to create other types of graph-related matrices.
The steps given below describe the construction of a new matrix, using the matrix
sums S}, defined earlier. Carefully read through the process, and (before you read
the paragraph that follows!) see if you can recognize the matrix that is produced.

Creating a New Matrix, M

Given: A connected graph of order n, with adjacency matrix A, and with S, as
defined earlier.

1. Foreachi € {1,2,...,n},let [M];; = 0.

2. For each pair ¢, j where ¢ # j, let [M]; ; = k where k is the least positive
integer such that [S]; ; # 0.

2You're welcome.
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Can you see what the entries of M will be? For each pair 4, j, the (4, j) entry
of M is the distance from v; to v;. That is,

[M]i; = d(vs,v5).
The matrix M is called the distance matrix of the graph G.

Exercises

1. Give the adjacency matrix for each of the following graphs.

(a) P and Psi41, where the vertices are labeled from one end of the

path to the other.

(b) Cyi and Caq1, where the vertices are labeled consecutively around
the cycle.

(¢) K n, where the vertices in the first partite set are labeled vy, . .., Uy,

(d) K,, where the vertices are labeled any way you please.

2. Without computing the matrix directly, find A3 where A is the adjacency
matrix of K.

3. If A is the adjacency matrix for the graph G, show that the (7, j) entry of
A? is the degree of v;.

4. Let A be the adjacency matrix for the graph G.

(a) Show that the number of triangles that contain v; is 5[A®]; ;.

(b) The frace of a square matrix M, denoted Tr(M), is the sum of the

entries on the main diagonal. Prove that the number of triangles in G
is § Tr(A?).

5. Find the (1,5) entry of A2°%Y where A is the adjacency matrix of Cjq and
where the vertices of C'y are labeled consecutively around the cycle.
6. (a) Prove the second statement in Theorem 1.9.
(b) Prove the third statement in Theorem 1.9.

7. Use Theorem 1.9 to design an algorithm for determining the center of a
graph G.

8. The graph G has adjacency matrix A and distance matrix D. Prove that if
A = D, then G is complete.

9. Give the distance matrices for the graphs in Exercise 1. You should create
these matrices directly — it is not necessary to use the method described in
the section.
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1.2.3 Graph Models and Distance

Do I know you?
— Kevin Bacon, in Flatliners

We have already seen that graphs can serve as models for all sorts of situations.
In this section we will discuss several models in which the idea of distance is
significant.

The Acquaintance Graph

“Wow, what a small world!” This familiar expression often follows the discovery
of a shared acquaintance between two people. Such discoveries are enjoyable,
for sure, but perhaps the frequency with which they occur ought to keep us from
being as surprised as we typically are when we experience them.

We can get a better feel for this phenomenon by using a graph as a model.
Define the Acquaintance Graph, A, to be the graph where each vertex represents
a person, and an edge connects two vertices if the corresponding people know
each other. The context here is flexible — one could create this graph for the
people living in a certain neighborhood, or the people working in a certain office
building, or the people populating a country or the planet. Since the smaller graphs
are all subgraphs of the graphs for larger populations, most people think of A in
the largest sense: The vertices represent the Earth’s human population.?

An interesting question is whether or not the graph A, in the large (Earth) sense,
is connected. Might there be a person or a group of people with no connection
(direct or indirect) at all to another group of people?* While there is a possibility
of this being the case, it is most certainly true that if A is in fact disconnected,
there is one very large connected component.

The graph A can be illuminating with regard to the “six degrees of separation”
phenomenon. Made popular (at least in part) by a 1967 experiment by social psy-
chologist Stanley Milgram [204] and a 1990 play by John Guare [142], the “six
degrees theory” asserts that given any pair of people, there is a chain of no more
than six acquaintance connections joining them. Translating into graph theorese,
the assertion is that diam(A) < 6. It is, of course, difficult (if not impossible) to
confirm this. For one, A is enormous, and the kind of computation required for
confirmation is nontrivial (to say the least!) for matrices with six billion rows. Fur-
ther, the matrix A is not static — vertices and edges appear all of the time.> Still,
the graph model gives us a good way to visualize this intriguing phenomenon.

Milgram’s experiment [204] was an interesting one. He randomly selected sev-
eral hundred people from certain communities in the United States and sent a

3The graph could be made even larger by allowing the vertices to represent all people, living or
dead. We will stick with the living people only — six billion vertices is large enough, don’t you think?

4Wouldn’t it be interesting to meet such a person? Wait — it wouldn’t be interesting for long
because as soon as you meet him, he is no longer disconnected!

SVertices will disappear if you limit A to living people. Edges disappear when amnesia strikes.
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packet to each. Inside each packet was the name and address of a single “target”
person. If the recipient knew this target personally, the recipient was to mail the
packet directly to him. If the recipient did not know the target personally, the re-
cipient was to send the packet to the person he/she thought had the best chance
of knowing the target personally (perhaps someone in the same state as the target,
or something like that). The new recipient was to follow the same rules: Either
send it directly to the target (if known personally) or send it to someone who has
a good chance of knowing the target. Milgram tracked how many steps it took for
the packets to reach the target. Of the packets that eventually returned, the median
number of steps was 5! Wow, what a small world!

The Hollywood Graph

Is the actor Kevin Bacon the center of Hollywood? This question, first asked by a
group of college students in 1993, was the beginning of what was soon to become
a national craze: The Kevin Bacon Game. The object of the game is to connect
actors to Bacon through appearances in movies. For example, the actress Emma
Thompson can be linked to Bacon in two steps: Thompson costarred with Gary
Oldman in Harry Potter and the Prisoner of Azkaban (among others), and Oldman
appeared with Bacon in JFK. Since Thompson has not appeared with Bacon in
a movie, two steps is the best we can do. We say that Thompson has a Bacon
number of 2.

Can you sense the underlying graph here?° Let us define the Hollywood Graph,
H, as follows: The vertices of H represent actors, and an edge exists between two
vertices when the corresponding actors have appeared in a movie together. So, in
H, Oldman is adjacent to both Bacon and Thompson, but Bacon and Thompson
are not adjacent. Thompson has a Bacon number of 2 because the distance from
her vertex to Bacon’s is 2. In general, an actor’s Bacon number is defined to be
the distance from that actor’s vertex to Bacon’s vertex in [. If an actor cannot be
linked to Bacon at all, then that actor’s Bacon number is infinity. As was the case
with the Acquaintance Graph, if H is disconnected we can focus our attention on
the single connected component that makes up most of H (Bacon’s component).

The ease with which Kevin Bacon can be connected to other actors might lead
one to conjecture that Bacon is the unique center of Hollywood. In terms of graph
theory, that conjecture would be that the center of /1 consists only of Bacon’s ver-
tex. Is this true? Is Bacon’s vertex even in the center at all? Like the Acquaintance
Graph, the nature of H changes frequently, and answers to questions like these
are elusive. The best we can do is to look at a snapshot of the graph and answer
the questions based on that particular point in time.

Let’s take a look at the graph as it appeared on December 25, 2007. On that
day, the Internet Movie Database [165] had records for nearly 1.3 million actors.
Patrick Reynolds maintains a website [234] that tracks Bacon numbers, among
other things. According to Reynolds, of the 1.3 million actors in the database on

Sor, “Can you smell the Bacon?”
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that day, 917,007 could be linked to Bacon in some way via chains of shared
movie appearances. The maximum distance from Bacon to any of the actors in
his component was 8 (and so Bacon’s eccentricity is 8). What about eccentricities
of other actors? Are there any that are less than 8? According to Reynolds, the
answer is no — 8§ is the smallest eccentricity, and so Kevin Bacon is in the center
of H. But it is very crowded there — thousands and thousands of other actors
have eccentricity 8§ as well.

The Mathematical Collaboration Graph

The Hungarian Paul Erd6s (1913-1996) was one of the greatest and most pro-
lific mathematicians of the twentieth century. Erd6s authored or coauthored over
1500 mathematical papers covering topics in graph theory, combinatorics, set the-
ory, geometry, number theory, and more. He collaborated with hundreds of other
mathematicians, and this collaboration forms the basis of a Bacon-like ranking
system. While not as widely popular as Bacon numbers, almost all mathemati-
cians are familiar with the concept of Erd6s numbers.

Erd6s himself is assigned Erdés number 0. Any mathematician who coauthored
a paper with Erdds has Erdés number 1. If a person has coauthored a paper with
someone who has an Erd6s number of 1 (and if that person himself/herself doesn’t
have Erd6s number 1), then that person has an Erdés number of 2. Higher Erdés
numbers are assigned in a similar manner.

The underlying graph here should be clear. Define the Mathematical Collabo-
ration Graph, C, to have vertices corresponding to researchers, and let an edge
join two researchers if the two have coauthored a paper together. A researcher’s
Erd8s number, then, is the distance from the corresponding vertex to the vertex
of Erdés. If a researcher is not in the same connected component of C' as Erdds,
then that researcher has an infinite Erd6s number.

As you might imagine, new vertices and edges are frequently added to C'. Jerry
Grossman maintains a website [140] that keeps track of Erd6s numbers. At one
point in 2007, there were over 500 researchers with Erdés number 1 and over
8100 with Erdds number 2. You might surmise that because Erdds died in 1996,
the number of people with Erdés number 1 has stopped increasing. While this is
surely to be true sometime in the near future, it hasn’t happened yet. A number of
papers coauthored by Erdds have been published since his death. Erdés has not
been communicating with collaborators from the great beyond (at least as far as
we know) — it is simply the case that his collaborators continue to publish joint
research that began years ago.

Small World Networks

As we saw earlier, the Acquaintance Graph provides a way to model the famous
“small world phemomenon” — the sense that humans are connected via numerous
recognized and unrecognized connections. The immense size and dynamic nature
of that graph make it difficult to analyze carefully and completely, and so smaller
models can prove to be more useful. In order for the more manageable graphs to
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be helpful, though, it is important that they enjoy some fundamental small world
properties.

So what makes a small world small? What properties should a graph have if
it is to be a model of a small world? Let’s list a few. As you read through the
list below, think about your own acquaintance network and see if these properties
make sense to you.

1. There should be plenty of mutual acquaintances (shared neighbors). If this
were the only property, then complete graphs would surely fit the bill —
lots of mutual neighbors there. A complete graph, though, is not a realistic
model of acquaintances in the world.

2. The graph should be sparse in edges. In a realistic model, there should be
relatively few edges compared to the number of vertices in the graph.

3. Distances between pairs of vertices should be relatively small. The char-
acteristic path length of a graph G, denoted L, is the average distance
between vertices, where the average is taken over all pairs of distinct ver-
tices. In any graph of order n, there are |E(K,,)| distinct pairs of vertices,
and in Exercise 1 of Section 1.1.3, you showed that | E(K,,)| = n(n—1)/2.

So for a graph G of order n,
Zu veV(G) d(uv U) 2
Lg = ' = d(u,v).
|E(Kn)| n(n —1) 2

One way of obtaining this value for a graph is to find the mean of the non-
diagonal entries in the distance matrix of the graph.

4. There should be a reasonable amount of clustering in a small world graph.
In actual acquaintance networks, there are a number of factors (geography,
for instance) that create little clusters of vertices — small groups of vertices
among which a larger than typical portion of edges exists. For example,
there are likely to be many edges among the vertices that represent the
people that live in your neighborhood.

Given a vertex v in a graph of order n, we define its clustering coefficient,
denoted cc(v), as follows (recall that (N[v]) is the subgraph induced by the
closed neighborhood of v).

co(v) = [ENI)I _ 2[E(N[]))] .
|E (Kitdeg(v))| (1 +deg(v))deg(v)

For each vertex v, this is the percentage of edges that exist among the ver-
tices in the closed neighborhood of v. For a graph G of order n, we define
the clustering coefficient of the graph G, denoted by CC(G) to be the aver-
age of the clustering coefficients of the vertices of GG. That is,

cc@="3 c).

n
veV(G)



30 1. Graph Theory

Small world networks have the property that characteristic path lengths are low
and clustering coefficients are high. Graphs that have these properties can be used
as models in the mathematical analyses of the small world phenomenon and its
associated concepts. It is interesting to note that other well known networks have
exhibited small world traits — the internet, electric power grids, and even neural
networks are examples — and this increases even further the applicability of graph
models.

Exercises

1. Compute the characteristic path length for each of each of the following
graphs: Poi, Port1, Cog, Corg1, Ky Ky

2. Compute the clustering coefficient for each of each of the following graphs:
Py, Popyi1, Co, Copg1s Ky Koy -

3. (a) Inthe Acquaintance Graph, try to find a path from your vertex to the
vertex of the President of the United States.

(b) Your path from the previous question may not be your shortest such
path. Prove that your actual distance from the President is at most
one away from the shortest such distance to be found among your
classmates.

Interesting Note: There are several contexts in which Bacon numbers can be cal-
culuated. While Bacon purists only use movie connections, others include shared
appearances on television and in documentaries as well. Under these more open
guidelines, the mathematician Paul Erdés actually has a Bacon number of 3! Erdés
was the focus of the 1993 documentary N is a Number [63]. British actor Alec
Guinness made a (very) brief appearance near the beginning of that film, and
Guinness has a Bacon number of 2 (can you find the connections?). As far as
we know, Bacon has not coauthored a research article with anyone who is con-

nected to Erdds, and so while Erdés’ Bacon number is 3, Bacon’s Erdés number
is infinity.

1.3 Trees

“O look at the trees!” they cried, “O look at the trees!”
— Robert Bridges, London Snow

In this section we will look at the trees—but not the ones that sway in the wind
or catch the falling snow. We will talk about graph-theoretic trees. Before moving
on, glance ahead at Figure 1.30, and try to pick out which graphs are trees.
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1.3.1 Definitions and Examples

Example, the surest method of instruction.
— Pliny the Younger

In Figure 1.30 graphs A, B, and F are trees, while graphs C' and D are not.

A B C

FIGURE 1.30. Which ones are trees?

A tree is a connected graph that contains no cycles. Graph-theoretic trees re-
semble the trees we see outside our windows. For example, graph-theoretic trees
do not have cycles, just as the branches of trees in nature do not split and rejoin.
The descriptive terminology does not stop here.

Graph D in Figure 1.30 is not a tree; rather, it is a forest. A forest is a collection
of one or more trees. A vertex of degree 1 in a tree is called a leaf.

As in nature, graph-theoretic trees come in many shapes and sizes. They can
be thin (Pp) or thick (K71 1000), tall (Piogo) or short (/; and K>5). Yes, even the
graphs K; and K, are considered trees (they are certainly connected and acyclic).
In the spirit of our arboreal terminology, perhaps we should call K a stump and
Ko arwig!

While we are on the subject of small trees, we should count a few of them. It is
clear that K; and K, are the only trees of order 1 and 2, respectively. A moment’s
thought will reveal that P; is the only tree of order 3. Figure 1.31 shows the
different trees of order 6 or less.

Trees sprout up as effective models in a wide variety of applications. We men-
tion a few brief examples.

Examples

1. Trees are useful for modeling the possible outcomes of an experiment. For
example, consider an experiment in which a coin is flipped and a 6-sided die
is rolled. The leaves in the tree in Figure 1.32 correspond to the outcomes
in the probability space for this experiment.
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FIGURE 1.31. Trees of order 6 or less.

heads tails

FIGURE 1.32. Outcomes of a coin/die experiment.

2. Programmers often use tree structures to facilitate searches and sorts and
to model the logic of algorithms. For instance, the logic for a program that
finds the maximum of four numbers (w, , y, z) can be represented by the
tree shown in Figure 1.33. This type of tree is a binary decision tree.

3. Chemists can use trees to represent, among other things, saturated hydro-
carbons—chemical compounds of the form C,,Ha,, 42 (propane, for exam-
ple). The bonds between the carbon and hydrogen atoms are depicted in the
trees of Figure 1.34. The vertices of degree 4 are the carbon atoms, and the
leaves represent the hydrogen atoms.

4. College basketball fans will recognize the tree in Figure 1.35. It displays
final results for the “Sweet 16” portion of the 2008 NCAA men’s basketball
tournament. Each vertex represents a single game.
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wisal|zisa||yisa||zisa||xisa||zisa||yisa||zisa
max. || max. || max. | [ max. || max. || max. || max. || max.

FIGURE 1.33. Logic of a program.

SE

ethane propane pentane

FIGURE 1.34. A few saturated hydrocarbons.
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FIGURE 1.35. The 2008 Men’s Sweet 16.

Exercises

1. Draw all unlabeled trees of order 7. Hint: There are a prime number of
them.

2. Draw all unlabeled forests of order 6.

3. Let T be a tree of order n > 2. Prove that T is bipartite.
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4. Graphs of the form K ,, are called stars. Prove that if K. ; is a tree, then it
must be a star.

5. Match the graphs in Figure 1.36 with appropriate names: a palm tree, au-
tumn, a path through a forest, tea leaves.

LAY

FIGURE 1.36. What would you name these graphs?

1.3.2 Properties of Trees

And the tree was happy.
— Shel Silverstein, The Giving Tree

Let us try an experiment. On a piece of scratch paper, draw a tree of order 16.
Got one? Now count the number of edges in the tree. We are going to go out on
a limb here and predict that there are 15. Since there are nearly 20,000 different
trees of order 16, it may seem surprising that our prediction was correct. The next
theorem gives away our secret.

Theorem 1.10. If T is a tree of order n, then T has n — 1 edges.

Proof. We induct on the order of T'. For n = 1 the only tree is the stump (kK),
and it of course has 0 edges. Assume that the result is true for all trees of order
less than &, and let 7" be a tree of order k.

Choose some edge of 7" and call it e. Since 7' is a tree, it must be that 7" — e
is disconnected (see Exercise 7) with two connected components that are trees
themselves (see Figure 1.37). Say that these two components of 7' — e are T}
and T5, with orders k; and ko, respectively. Thus, k; and k, are less than n and
ki1 + ko = k.

Since k1 < k, the theorem is true for 77. Thus 77 has k1 — 1 edges. Similarly,
T5 has ko — 1 edges. Now, since E(7') is the disjoint union of E(T}), E(T%), and
{e},wehave |[E(T)| = (k1 — 1)+ (ko = 1)+ 1 =k; + ko — 1 = k — 1. This
completes the induction.



1.3 Trees 35

FIGURE 1.37.

The next theorem extends the preceding result to forests. The proof is similar
and appears as Exercise 4.

Theorem 1.11. If I is a forest of order n containing k connected components,
then F contains n — k edges.

The next two theorems give alternative methods for defining trees. Two other
methods are given in Exercises 5 and 6.

Theorem 1.12. A graph of order n is a tree if and only if it is connected and
contains n — 1 edges.

Proof. The forward direction of this theorem is immediate from the definition of
trees and Theorem 1.10. For the reverse direction, suppose a graph G of order
n is connected and contains n — 1 edges. We need to show that G is acyclic. If
G did have a cycle, we could remove an edge from the cycle and the resulting
graph would still be connected. In fact, we could keep removing edges (one at
a time) from existing cycles, each time maintaining connectivity. The resulting
graph would be connected and acyclic and would thus be a tree. But this tree
would have fewer than n — 1 edges, and this is impossible by Theorem 1.10.
Therefore, G has no cycles, so G is a tree.

Theorem 1.13. A graph of order n is a tree if and only if it is acyclic and contains
n — 1 edges.

Proof. Again the forward direction of this theorem follows from the definition of
trees and from Theorem 1.10. So suppose that G is acyclic and has n — 1 edges.
To show that G is a tree we need to show only that it is connected. Let us say that
the connected components of G are G1, Go, ..., Gj. Since G is acyclic, each of
these components is a tree, and so G is a forest. Theorem 1.11 tells us that G has
n — k edges, implying that & = 1. Thus G has only one connected component,
implying that G is a tree.

It is not uncommon to look out a window and see leafless trees. In graph theory,
though, leafless trees are rare indeed. In fact, the stump (/) is the only such tree,
and every other tree has at least two leaves. Take note of the proof technique of
the following theorem. It is a standard graph theory induction argument.

Theorem 1.14. Let T be the tree of order n > 2. Then T has at least two leaves.

Proof. Again we induct on the order. The result is certainly true if n = 2, since
T = K5 in this case. Suppose the result is true for all orders from 2 to n — 1, and
consider a tree " of order n > 3. We know that 7" has n — 1 edges, and since
we can assume n > 3, 1" has at least 2 edges. If every edge of 71" is incident with
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a leaf, then 7" has at least two leaves, and the proof is complete. So assume that
there is some edge of 7" that is not incident with a leaf, and let us say that this edge
is e = uv. The graph T' — e is a pair of trees, 11 and 75, each of order less than n.
Let us say, without loss of generality, that u € V(T7), v € V(T3), |V (T1)| = n1,
and |V (T%)| = n2 (see Figure 1.38). Since e is not incident with any leaves of T,

FIGURE 1.38.

we know that n; and ng are both at least 2, so the induction hypothesis applies to
each of T and 75. Thus, each of 7T and 715 has two leaves. This means that each
of T7 and T3 has at least one leaf that is not incident with the edge e. Thus the
graph (T' — e) 4+ e = T has at least two leaves.

We saw in the previous section that the center of a graph is the set of vertices
with minimum eccentricity. The next theorem, due to Jordan [170], shows that for
trees, there are only two possibilities for the center.

Theorem 1.15. In any tree, the center is either a single vertex or a pair of adja-
cent vertices.

Proof. Given a tree T', we form a sequence of trees as follows. Let Ty = T'. Let
T, be the graph obtained from 7j by deleting all of its leaves. Note here that T}
is also a tree. Let T be the tree obtained from 7} by deleting all of the leaves of
T1. In general, for as long as it is possible, let T); be the tree obtained by deleting
all of the leaves of T’;_;. Since 7' is finite, there must be an integer r such that 7’.
is either K or Ks.

Consider now a consecutive pair 75, T; of trees from the sequence T' = Ty,
Ty, ..., T;.. Let v be a non-leaf of T;. In Tj, the vertices that are at the greatest
distance from v are leaves (of ;). This means that the eccentricity of v in 7541 is
one less than the eccentricity of v in 7;. Since this is true for all non-leaves of 75,
it must be that the center of 7;; is exactly the same as the center of 7.

Therefore, the center of 7). is the center of 7;._1, which is the center of T}, _o,
..., which is the center of T = 7. Since (the center of) 7T’ is either K; or Ko,
the proof is complete.

We conclude this section with an interesting result about trees as subgraphs.

Theorem 1.16. Let T be a tree with k edges. If G is a graph whose minimum
degree satisfies 6(G) > k, then G contains T as a subgraph. Alternatively, G
contains every tree of order at most 6(G) + 1 as a subgraph.
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Proof. We induct on k. If & = 0, then T" = K7, and it is clear that K is a
subgraph of any graph. Further, if £ = 1, then T' = K>, and K> is a subgraph of
any graph whose minimum degree is 1. Assume that the result is true for all trees
with k£ — 1 edges (k > 2), and consider a tree 1" with exactly k edges. We know
from Theorem 1.14 that T" contains at least two leaves. Let v be one of them, and
let w be the vertex that is adjacent to v. Consider the graph 7' — v. Since T' — v

FIGURE 1.39.

has k£ — 1 edges, the induction hypothesis applies, so 7' — v is a subgraph of G.
We can think of 7" — v as actually sitting inside of G' (meaning w is a vertex of G,
too). Now, since GG contains at least k + 1 vertices and T' — v contains k vertices,
there exist vertices of GG that are not a part of the subgraph 7" — v. Further, since
the degree in G of w is at least k, there must be a vertex u not in 7' — v that is
adjacent to w (Figure 1.40). The subgraph 7" — v together with « forms the tree T’

FIGURE 1.40. A copy of T inside G.
as a subgraph of G.

Exercises

1. Draw each of the following, if you can. If you cannot, explain the reason.

(a) A 10-vertex forest with exactly 12 edges
(b) A 12-vertex forest with exactly 10 edges
(c) A l4-vertex forest with exactly 14 edges
(d) A 14-vertex forest with exactly 13 edges
(e) A l4-vertex forest with exactly 12 edges

2. Suppose a tree T has an even number of edges. Show that at least one vertex
must have even degree.

3. Let T be a tree with max degree A. Prove that 7" has at least A leaves.



38 1. Graph Theory

4. Let F be a forest of order n containing k connected components. Prove that
F contains n — k edges.

5. Prove that a graph G is a tree if and only if for every pair of vertices u, v,
there is exactly one path from u to v.

6. Prove that 7' is a tree if and only if 7" contains no cycles, and for any new
edge e, the graph T" + e has exactly one cycle.

7. Show that every edge in a tree is a bridge.
8. Show that every nonleaf in a tree is a cut vertex.

9. Find a shorter proof to Theorem 1.14. Hint: Start by considering a longest
pathin 7.

10. Let T be a tree of order n > 1. Show that the number of leaves is

2+ > (deg(vs) - 2),

deg(v;)>3
where the sum is over all vertices of degree 3 or more.

11. For a graph G, define the average degree of G to be

ZUGV(G) deg(v)
avgdeg(G) = V(G|
If T is a tree and avgdeg(T') = a, then find an expression for the number
of vertices in 7" in terms of a.

12. Let T be a tree such that every vertex adjacent to a leaf has degree at least
3. Prove that some pair of leaves in 7" has a common neighbor.

1.3.3 Spanning Trees

Under the spreading chestnut tree . ..
— Henry W. Longfellow, The Village Blacksmith

The North Carolina Department of Transportation (NCDOT) has decided to im-
plement a rapid rail system to serve eight cities in the western part of the state.
Some of the cities are currently joined by roads or highways, and the state plans
to lay the track right along these roads. Due to the mountainous terrain, some of
the roads are steep and curvy; and so laying track along these roads would be
difficult and expensive. The NCDOT hired a consultant to study the roads and to
assign difficulty ratings to each one. The rating accounted for length, grade, and
curviness of the roads; and higher ratings correspond to greater cost. The graph
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FIGURE 1.41. The city graph.

in Figure 1.41, call it the “city graph,” shows the result of the consultant’s inves-
tigation. The number on each edge represents the difficulty rating assigned to the
existing road.

The state wants to be able to make each city accessible (but not necessarily
directly accessible) from every other city. One obvious way to do this is to lay
track along every one of the existing roads. But the state wants to minimize cost,
so this solution is certainly not the best, since it would result in a large amount
of unnecessary track. In fact, the best solution will not include a cycle of track
anywhere, since a cycle would mean at least one segment of wasted track.

The situation above motivates a definition. Given a graph G and a subgraph 7',
we say that T is a spanning tree of G if T is a tree that contains every vertex of
G.

So it looks as though the DOT just needs to find a spanning tree of the city
graph, and they would like to find one whose overall rating is as small as possible.
Figure 1.42 shows several attempts at a solution.

Of the solutions in the figure, the one in the upper right has the least total
weight—but is it the best one overall? Try to find a better one. We will come back
to this problem soon.

Given a graph G, a weight function is a function W that maps the edges of
G to the nonnegative real numbers. The graph G together with a weight func-
tion is called a weighted graph . The graph in Figure 1.41 is a simple example of
a weighted graph. Although one might encounter situations where negative val-
ued weights would be appropriate, we will stick with nonnegative weights in our
discussion.

It should be fairly clear that every connected graph has at least one spanning
tree. In fact, it is not uncommon for a graph to have many different spanning trees.
Figure 1.42 displays three different spanning trees of the city graph.

Given a connected, weighted graph G, a spanning tree 7" is called a minimum
weight spanning tree if the sum of the weights of the edges of " is no more than
the sum for any other spanning tree of G.
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Total Weight = 325 Total Weight = 240
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Total Weight =290

FIGURE 1.42. Several spanning trees.

There are a number of fairly simple algorithms for finding minimum weight
spanning trees. Perhaps the best known is Kruskal’s algorithm.

Kruskal’s Algorithm

Given: A connected, weighted graph G.
i. Find an edge of minimum weight and mark it.

ii. Among all of the unmarked edges that do not form a cycle with any of the
marked edges, choose an edge of minimum weight and mark it.

iii. If the set of marked edges forms a spanning tree of G, then stop. If not,
repeat step ii.

Figure 1.43 demonstrates Kruskal’s algorithm applied to the city graph. The
minimum weight is 210.

It is certainly possible for different trees to result from two different appli-
cations of Kruskal’s algorithm. For instance, in the second step we could have
chosen the edge between Marion and Lenoir instead of the one that was chosen.
Even so, the total weight of resulting trees is the same, and each such tree is a
minimum weight spanning tree.
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FIGURE 1.43. The stages of Kruskal’s algorithm.

It should be clear from the algorithm itself that the subgraph built is in fact
a spanning tree of G. How can we be sure, though, that it has minimum total
weight? The following theorem answers our question [183].

Theorem 1.17. Kruskal’s algorithm produces a spanning tree of minimum total
weight.

Proof. Let G be a connected, weighted graph of order n, and let 7" be a spanning
tree obtained by applying Kruskal’s algorithm to GG. As we have seen, Kruskal’s
algorithm builds spanning trees by adding one edge at a time until a tree is formed.
Let us say that the edges added for 7" were (in order) e1, ea, ..., e,—1. Suppose
T is not a minimum weight spanning tree. Among all minimum weight spanning
trees of GG, choose T” to be a minimum weight spanning tree that agrees with
the construction of 7" for the longest time (i.e., for the most initial steps). This
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means that there exists some % such that 7" contains e, . . . , e, and no minimum
weight spanning tree contains all of ey, . . ., ex, ex41 (notice that since 7' is not of
minimum weight, k& < n — 1).

Since T is a spanning tree, it must be that 7”7 + e 1 contains a cycle C, and
since T' contains no cycles, C' must contain some edge, say ¢, that is not in 7.
If we remove the edge e’ from 7" + ej1, then the cycle C is broken and what
remains is a spanning tree of G. Thus, 7" + ex4+1 — ¢’ is a spanning tree of G, and
it contains edges ey, . . ., ek, €x11. Furthermore, since the edge e’ must have been
available to be chosen when ej; was chosen by the algorithm, it must be that
w(ek+1) < w(e’). This means that 77 + ex41 — €’ is a spanning tree with weight
no more than 7" that contains edges e, . . ., ex11, contradicting our assumptions.
Therefore, it must be that 7" is a minimum weight spanning tree.

Exercises

1. Prove that every connected graph contains at least one spanning tree.

2. Prove that a graph is a tree if and only if it is connected and has exactly one
spanning tree.

3. Let GG be a connected graph with n vertices and at least n edges. Let C' be a
cycle of G. Prove that if 7" is a spanning tree of G, then 7, the complement
of T, contains at least one edge of C'.

4. Let G be connected, and let e be an edge of . Prove that e is a bridge if
and only if it is in every spanning tree of G.

5. Using Kruskal’s algorithm, find a minimum weight spanning tree of the
graphs in Figure 1.44. In each case, determine (with proof) whether the
minimum weight spanning tree is unique.

FIGURE 1.44. Two weighted graphs.
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6. Prim’s algorithm (from [228]) provides another method for finding mini-
mum weight spanning trees.

Prim’s Algorithm

Given: A connected, weighted graph G.

i. Choose a vertex v, and mark it.

ii. From among all edges that have one marked end vertex and one un-
marked end vertex, choose an edge e of minimum weight. Mark the
edge e, and also mark its unmarked end vertex.

iii. If every vertex of GG is marked, then the set of marked edges forms a
minimum weight spanning tree. If not, repeat step ii.

Use Prim’s algorithm to find minimum weight spanning trees for the graphs
in Figure 1.44. As you work, compare the stages to those of Kruskal’s al-
gorithm.

7. Give an example of a connected, weighted graph G having (i) a cycle with
two identical weights, which is neither the smallest nor the largest weight in
the graph, and (ii) a unique minimum weight spanning tree which contains
exactly one of these two identical weights.

1.3.4 Counting Trees

As for everything else, so for a mathematical theory: beauty can be

perceived but not explained.
— Arthur Cayley [214]

In this section we discuss two beautiful results on counting the number of span-
ning trees in a graph. The next chapter studies general techniques for counting
arrangements of objects, so these results are a sneak preview.

Cayley’s Tree Formula

Cayley’s Tree Formula gives us a way to count the number of different labeled
trees on n vertices. In this problem we think of the vertices as being fixed, and
we consider all the ways to draw a tree on those fixed vertices. Figure 1.45 shows
three different labeled trees on three vertices, and in fact, these are the only three.

There are 16 different labeled trees on four vertices, and they are shown in
Figure 1.46.

As an exercise, the ambitious student should try drawing all of the labeled trees
on five vertices. The cautious ambitious student might wish to look ahead at Cay-
ley’s formula before embarking on such a task.
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FIGURE 1.45. Labeled trees on three vertices.
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FIGURE 1.46. Labeled trees on four vertices.

Cayley proved the following theorem in 1889 [50]. The proof technique that we
will describe here is due to Priifer’ [229]. Priifer’s method is almost as noteworthy
as the result itself. He counted the labeled trees by placing them in one-to-one cor-
respondence with a set whose size is easy to determine—the set of all sequences
of length n — 2 whose entries come from the set {1, ..., n}. There are n~2 such
sequences.

Theorem 1.18 (Cayley’s Tree Formula). There are n™~2 distinct labeled trees of
order n.

The algorithm below gives the steps that Priifer used to assign a particular se-
quence to a given tree, 7', whose vertices are labeled 1, ..., n. Each labeled tree
is assigned a unique sequence.

7With a name like that he was destined for mathematical greatness!
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Priifer’s Method for Assigning a Sequence to a Labeled Tree
Given: A tree T, with vertices labeled 1, ..., n.

1. Leti =0,and let 1o =T

2. Find the leaf on 7} with the smallest label and call it v.

3. Record in the sequence the label of v’s neighbor.

4. Remove v from T; to create a new tree 7T;4 .

5. If Tj41 = Ko, then stop. Otherwise, increment ¢ by 1 and go back to step
2.

Let us run through this algorithm with a particular graph. In Figure 1.47, tree
T = Ty has 7 vertices, labeled as shown. The first step is finding the leaf with
smallest label: This would be 2. The neighbor of vertex 2 is the vertex labeled
4. Therefore, 4 is the first entry in the sequence. Removing vertex 2 produces
tree T7. The leaf with smallest label in 77 is 4, and its neighbor is 3. Therefore,
we put 3 in the sequence and delete 4 from 7. Vertex 5 is the smallest leaf in
tree T, = Ty — {4}, and its neighbor is 1. So our sequence so far is 4, 3, 1. In
T3 = To—{5} the smallest leaf is vertex 6, whose neighboris 3. In T, = T3 —{6},
the smallest leaf is vertex 3, whose neighbor is 1. Since 75 = Ko, we stop here.
Our resulting sequence is 4, 3, 1, 3, 1.

Notice that in the previous example, none of the leaves of the original tree T’
appears in the sequence. More generally, each vertex v appears in the sequence
exactly deg(v) — 1 times. This is not a coincidence (see Exercise 1). We now
present Priifer’s algorithm for assigning trees to sequences. Each sequence gets
assigned a unique tree.

Priifer’s Method for Assigning a Labeled Tree to a Sequence

Given: A sequence o = ay, as, . . ., aj of entries from the set {1,..., k + 2}.
1. Draw k-2 vertices; label them vy, vo, ..., vp42. Let S = {1,2,..., k+2}.
2. Leti =0,letoy = o,and let S; = S.

3. Let j be the smallest number in \S; that does not appear in the sequence o;.

4. Place an edge between vertex v; and the vertex whose subscript appears
first in the sequence o;.

5. Remove the first number in the sequence o; to create a new sequence ;1.
Remove the element j from the set \S; to create a new set S; 1.

6. If the sequence 0,11 is empty, place an edge between the two vertices
whose subscripts are in S;41, and stop. Otherwise, increment ¢ by 1 and
return to step 3.
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FIGURE 1.47. Creating a Priifer sequence.

Let us apply this algorithm to a particular example. Let 0 = 4,3,1,3,1 be
our initial sequence to which we wish to assign a particular labeled tree. Since
there are five terms in the sequence, our labels will come from the set S =
{1,2,3,4,5,6, 7}. After drawing the seven vertices, we look in the set S = Sy
to find the smallest subscript that does not appear in the sequence o = 0. Sub-
script 2 is the one, and so we place an edge between vertices vo and vy, the first
subscript in the sequence. We now remove the first term from the sequence and
the label vy from the set, forming a new sequence o7 = 3,1,3,1 and a new
set S1 = {1,3,4,5,6,7}. The remaining steps in the process are shown in Fig-
ure 1.48.
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Vs Vg
Vi
[ ]
6,=3,1,3,1 vie V2
§,={1,3,4,5,6,7} v® V3
Vs vy
Vi
o,=1,3,1 Ve V2
§,=1{1,3,5,6,7} v6® v3
Vs Vg
Vi
5,=3,1 Vie Va
§;=1{1,3,6,7} Ve V3
Vs vy
Vi
6,=1 vVie V2
S,={1,3,7} Ve V3
Vs vy
Vi
o5 is empty V7 va
Ss={1,7} Ve V3
Vs vy

FIGURE 1.48. Building a labeled tree.

You will notice that the tree that was created from the sequence o in the second
example is the very same tree that created the sequence o in the first example.
Score one for Priifer!

Matrix Tree Theorem

The second major result that we present in this section is the Matrix Tree The-
orem, and like Cayley’s Theorem, it provides a way of counting spanning trees
of labeled graphs. While Cayley’s Theorem in essence gives us a count on the
number of spanning trees of complete labeled graphs, the Matrix Tree Theorem
applies to labeled graphs in general. The theorem was proved in 1847 by Kirch-
hoff [175], and it demonstrates a wonderful connection between spanning trees
and matrices.



48 1. Graph Theory

The theorem involves two special matrices. One is the adjacency matrix (de-
fined back in Section 1.2.2), and the other is defined as follows. Let G be a graph
with vertices vy, vs, . . . vy,. The degree matrix of G is the n X n matrix D whose
(1,7) entry, denoted by [D]; ;, is defined by

_f deg(v;) ifi=j,
[Plij = { 0 otherwise.
So, the diagonal entries of D are the vertex degrees, and the off-diagonal entries
are all zero.

Given an n X n matrix M, the ¢, j cofactor of M is defined to be
(=1)"7 det(M (il ),

where det (M (i]7)) represents the determinant of the (n — 1) x (n — 1) matrix
formed by deleting row ¢ and column j from M.

We are now ready to state the Matrix Tree Theorem, due to Kirchhoff. The
proof that we give imitates those presented in [148] and [52].

Theorem 1.19 (Matrix Tree Theorem). If G is a connected labeled graph with
adjacency matrix A and degree matrix D, then the number of unique spanning
trees of G is equal to the value of any cofactor of the matrix D — A.

Proof. Suppose G has n vertices (vy, ..., v,) and k edges (f1, - .., fx). Since G
is connected, we know that k is at least n — 1. Let NV be the n x k matrix whose
(i, ) entry is defined by
IN],, = { 1 if v; and f; are incident,
“J 0 otherwise.
N is called the incidence matrix of GG. Since every edge of G is incident with
exactly two vertices of (G, each column of N contains two 1’s and n — 2 zeros.
Let M be the n x k matrix that results from changing the topmost 1 in each
column to —1. To prove the result, we first need to establish two facts, which we
call Claim A and Claim B.

Claim A. MM7T = D — A (where M7 denotes the transpose of M).
First, notice that the (¢, j) entry of D — Ais
deg(v;) ifi=1j,
[D — A]Lj = -1 if ¢ 7& j and ViU € E(G),
0 if ¢ 7& j and VU5 6{ E(G)

Now, what about the (7, j) entry of M MT? The rules of matrix multiplication tell
us that this entry is the dot product of row i of M and column j of M ™. That is,
[MMT]; ;= ([M]i1, [M]i2, o [M]ig) - (IM T, [M ]2, [M T k)

= (M Mg (M) - (M0 (M. [M] )

k
=D [M]i [M];..

r=1
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If ¢ = j, then this sum counts one for every nonzero entry in row ¢; that is, it
counts the degree of v;. If i # j and v;v; € E(G), then there is no column of M
in which both the row 7 and row j entries are nonzero. Hence the value of the sum
in this case is 0. If 7 # j and v;u; € E(G), then the only column in which both
the row ¢ and the row j entries are nonzero is the column that represents the edge
v;v;. Since one of these entries is 1 and the other is —1, the value of the sum is
—1. We have shown that the (i, j) entry of M M7 is the same as the (7, 5) entry
of D — A, and thus Claim A is proved.

Let H be a subgraph of GG with n vertices and n — 1 edges. Let p be an arbitrary
integer between 1 and n, and let M’ be the (n — 1) x (n — 1) submatrix of M
formed by all rows of M except row p and the columns that correspond to the
edgesin H.

Claim B. If H is a tree, then | det(M”)| = 1. Otherwise, det(M') = 0.

First suppose that H is nota tree. Since H has n vertices and n— 1 edges, we know
from earlier work that / must be disconnected. Let H; be a connected component
of H that does not contain the vertex v,. Let M" be the |V (H7)| x (n — 1)
submatrix of M’ formed by eliminating all rows other than the ones corresponding
to vertices of H;. Each column of M" contains exactly two nonzero entries: 1 and
—1. Therefore, the sum of all of the row vectors of M" is the zero vector, so the
rows of M" are linearly dependent. Since these rows are also rows of M’, we see
that det(M') = 0.

Now suppose that H is a tree. Choose some leaf of H that is not v, (Theo-
rem 1.14 lets us know that we can do this), and call it u;. Let us also say that e; is
the edge of H that is incident with ;. In the tree H — wuy, choose us to be some
leaf other than v),. Let e5 be the edge of H — u, incident with uo. Keep removing
leaves in this fashion until v, is the only vertex left. Having established the list of
vertices u1, ug, . . ., U,_1, We nOW create a new (n — 1) x (n — 1) matrix M* by
rearranging the rows of M’ in the following way: row ¢ of M* will be the row of
M’ that corresponds to the vertex u;.

An important (i.e., useful!) property of the matrix M* is that it is lower tri-
angular (we know this because for each i, vertex u; is not incident with any of
€i+1,€i+2, - -.,en—1). Thus, the determinant of M * is equal to the product of the
main diagonal entries, which are either 1 or —1, since every wu; is incident with e;.
Thus, | det(M™*)| = 1, and so | det(M’)| = 1. This proves Claim B.

We are now ready to investigate the cofactors of D — A = MM7T. Itis a
fact from matrix theory that if the row sums and column sums of a matrix are all
0, then the cofactors all have the same value. (It would be a nice exercise—and a
nice review of matrix skills—for you to try to prove this.) Since the matrix M M 7T
satisfies this condition, we need to consider only one of its cofactors. We might
as well choose 7 and j such that 7 4 j is even—Iet us choose ¢ = 1 and j = 1. So,
the (1, 1) cofactor of D — A is

det (D — A)(1|1)) = det (MMT(1]1))
= det(M, M)
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where M is the matrix obtained by deleting the first row of D — A.

At this point we make use of the Cauchy—Binet Formula, which says that the
determinant above is equal to the sum of the determinants of (n — 1) x (n — 1)
submatrices of M (for a more thorough discussion of the Cauchy—Binet Formula,
see [40]). We have already seen (in Claim B) that any (n— 1) x (n— 1) submatrix
that corresponds to a spanning tree of G will contribute 1 to the sum, while all
others contribute 0. This tells us that the value of det(D — A) = det(M M7T) is
precisely the number of spanning trees of G.

Figure 1.49 shows a labeled graph GG and each of its eight spanning trees.

Y1 V2

V3 V4

8N

FIGURE 1.49. A labeled graph and its spanning trees.

The degree matrix D and adjacency matrix A are
2 0 00 0

D: A:

o O O
w o o
=)
—_= =0 O
— O =
O =~

20
0 3
0 0

and so

2 0o -1 -1
0 2 -1 -1
-1 -1 3 -1
-1 -1 -1 3

D—-A=

The (1, 1) cofactor of D — A is

2 -1 -1
det | -1 3 -1 | =8.
-1 -1 3

Score one for Kirchhoff!
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Exercises

1.

1.4

Let 7" be a labeled tree. Prove that the Priifer sequence of 7" will not contain
any of the leaves’ labels. Also prove that each vertex v will appear in the
sequence exactly deg(v) — 1 times.

Determine the Priifer sequence for the trees in Figure 1.50.

6 7 8 9 10 11

FIGURE 1.50. Two labeled trees.

. Draw and label a tree whose Priifer sequence is

5,4,3,5,4,3,5,4,3.

Which trees have constant Priifer sequences?
Which trees have Priifer sequences with distinct terms?

Let e be an edge of K,,. Use Cayley’s Theorem to prove that K,, — e has
(n — 2)n"™~3 spanning trees.

Use the Matrix Tree Theorem to prove Cayley’s Theorem. Hint: Look back
at the discussion prior to the statement of the Matrix Tree Theorem.

Trails, Circuits, Paths, and Cycles

Takes a real salesman, I can tell you that. Anvils have a limited
appeal, you know.
— Charlie Cowell, anvil salesman, The Music Man

Charlie Cowell was a door to door anvil salesman, and he dragged his heavy wares
down every single street in each town he visited. Not surprisingly, Charlie became
quite proficient at designing routes that did not repeat many streets. He certainly
did not want to drag the anvils any farther than necessary, and he especially liked
it when he could cover every street in the town without repeating a single one.
After several years of unsuccessful sales (he saw more closed doors than closed
deals), the Acme Anvil Company did the natural thing — they promoted him.
Charlie moved from salesman to regional supplier. This meant that Charlie would
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be in charge of driving the anvil truck from town to town, delivering each town’s
supply of anvils. Still efficiency-minded, he wanted to plan driving routes that
did not repeat any town along the way. He had been very good at route planning
during his door to door days, and avoiding the repetition of towns was basically
the same as avoiding the repetition of streets, right?

As you read through this section, see if you can answer that question for your-
self.

1.4.1 The Bridges of Konigsberg

One should make a serious study of a pastime.
— Alexander the Great

At the very beginning of this chapter, we referred to the legendary Konigsberg
Bridge Problem. As you will recall, this problem concerned the existence (or non-
existence) of a certain type of route across a group of bridges (Figure 1.1). Could
one design a route that crossed each bridge exactly once? The residents of seven-
teenth and eighteenth century Konigsberg passed the time making valiant efforts,
but no route could be found.

In 1736, the Swiss mathematician Euler addressed the problem ([98], translated
in [26]). Near the beginning of his article, Euler described his thoughts as he
embarked on the search for a solution.

As far as the problem of the seven bridges of Konigsberg is con-
cerned, it can be solved by making an exhaustive list of all possible
routes, and then finding whether or not any route satisfies the con-
ditions of the problem. Because of the number of possibilities, this
method of solution would be too difficult and laborious, and in other
problems with more bridges it would be impossible ...Hence I re-
jected it, and looked for another method concerned only with the
problem of whether or not the specified route could be found; I con-
sidered that such a method would be much simpler. [26]

This passage is enlightening on several levels. For one, it gives us a glimpse of
the teacher/expositor side of the master mathematician Euler. It is doubtful that
he would have seriously considered listing all possible routes in search of a satis-
factory one. His mention of the possibility, though, does help the reader progress
along a natural arc of thought regarding the solution. The passage also gives a clue
as to what Euler is really after — not just a solution to the problem in Konigsberg,
but a general solution that could be applied in other land/bridge formations.
Using a figure similar to Figure 1.51, he used sequences of letters to describe
routes — routes where no bridges were repeated. For instance, the sequence
ABDACAB represented a route that started at A, crossed a bridge to B, crossed
a bridge to D, crossed a bridge back to A, crossed a bridge to C', crossed a bridge
back to A, and then crossed a bridge to B. This seven letter sequence includes
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FIGURE 1.51. Layout of the bridges in Konigsberg.

six of the seven bridges in Konigsberg, and these bridges can be identified by the
consecutive pairs in the sequence: AB, BD, DA, AC, CA, AB.

For Euler the Konigsberg Bridge Problem boiled down to finding a certain
sequence of letters. He described it in this way:

The problem is therefore reduced to finding a sequence of eight
letters, formed from the four letters A, B, C, and D, in which the
various pairs of letters occur the required number of times. Before I
turn to the problem of finding such a sequence, it would be useful to
find out whether or not it is even possible to arrange the letters in this
way, for if it were possible to show that there is no such arrangement,
then any work directed towards finding it would be wasted. I have
therefore tried to find a rule which will be useful in this case, and in
others, for determining whether or not such an arrangement can exist.
[26]

Euler argued that since land area D is connected to three bridges, then D must ap-
pear in the sequence two times. (If it appeared only once, this would not account
for all of the bridges; if it appeared more than twice, this would represent multiple
crossing of at least one bridge.) Similarly, Euler argued, B and C must each ap-
pear twice in the eight letter sequence. Further, since land area A is connected to
five bridges, the letter A must appear three times in the sequence (you will verify
this in Exercise 1a). This means that the necessary eight letter sequence would
have three As, two Bs, two C's and two Ds. In Euler’s words,

It follows that such a journey cannot be undertaken across the seven
bridges of Konigsberg. [26]

Once he had settled the problem of the Konigsberg bridges, Euler used the same
ideas and methods to present a more general result, and we will see that result in
the next section. As you see, Euler did not use terms like graph, vertex or edge.
Today’s graph terminology did not appear until many years later. Still, this article
by Euler was the seed from which the field of graph theory grew.

Euler himself recognized that he was working in relatively uncharted territory.
We close this section with the passage with which Euler opened his seminal arti-
cle. See if you can read “graph theory” between the lines.
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In addition to that branch of geometry which is concerned with
magnitudes, and which has always received the greatest attention,
there is another branch, previously almost unknown, which Leibniz
first mentioned, calling it the geometry of position. This branch is
concerned only with the determination of position and its properties;
it does not involve measurements, nor calculations made with them.
It has not yet been satisfactorily determined what kind of problems
are relevant to this geometry of position, or what methods whould
be used in solving them. Hence, when a problem was recently men-
tioned [the Konigsberg problem!], which seemed geometrical but
was so constructed that it did not require the measurement of dis-
tances, nor did calculation help at all, I had no doubt that it was
concerned with the geometry of position — especially as its solu-
tion involved only position, and no calculation was of any use. I have
therefore decided to give here the method which I have found for
solving this kind of problem, as an example of the geometry of posi-
tion. [26]

Mathematics is richer because Euler took up the problem of the Konigsberg
bridges. We are grateful, but perhaps not as grateful as the residents of Konigsberg

whose feet had grown tired from the search for a route that did not exist.

Exercises

1. In the context of Euler’s letter sequences, prove that . ..

(a) if a land mass L is connected to 5 bridges, then L will occur 3 times
in any representation of a route that crosses all of the bridges once.

(b) if aland mass L is connected to n bridges, where n is odd, then L will

n+1

occur "7 times in any representation of a route that crosses all of the

bridges once.

2. An eighth bridge was built in Konigsberg — an additional bridge joining
land masses B and C. Did this addition make the desired route possible?

Prove your answer.

. Euler’s 1736 article included a second example of a land/bridge system (see
Figure 1.52). Does a route exist that crosses each bridge exactly once? If

so0, give one. If not, prove it.

. The streets in River City are shown in Figure 1.53. Is it possible for Charlie
the anvil salesman to plan a route that covers every street exactly once? If

S0, give one. If not, prove it.
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FIGURE 1.52.

FIGURE 1.53.

1.4.2 Eulerian Trails and Circuits

If only part of the line-system has been traversed, then every node in
the remaining part remains even or odd, just as it was in the original
system.

— Carl Hierholzer [159], translated in [26]

Recall from Section 1.1.2 that a trail in a graph is a walk that does not repeat any
edges, and that a closed trail (one that begins and ends at the same vertex) is called
a circuit.

If a trail in a graph G includes every edge of G, then that trail is said to be an
Eulerian trail. Similarly, an Eulerian circuit in a graph is a circuit that includes
every edge of the graph. A graph that contains an Eulerian circuit is said to be an
Eulerian graph.

What are some examples of Eulerian graphs? The cycles, C,,, have prominent
Eulerian circuits. The paths, P,,, have no circuits at all, and so they are certainly
not Eulerian. Look at the graphs in Figure 1.54 and try to determine which ones,
if any, are Eulerian.

There are two well-known characterizations of Eulerian graphs. One involves
vertex degrees, and the other concerns the existence of a special collection of
cycles. The following theorem establishes both of these characterizations by as-
serting the logical equivalence of three statements. The theorem represents work
by Euler [98], Hierholzer [159], and Veblen [274].
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O <

FIGURE 1.54. Are any of these Eulerian?

Theorem 1.20. For a connected graph G, the following statements are equiva-
lent.

1. G is Eulerian.
2. Every vertex of G has even degree.
3. The edges of G can be partitioned into (edge-disjoint) cycles.

Proof. To prove the logical equivalence of these statements, we prove that the first
statement implies the second, the second implies the third, and the third implies
the first.

For the first implication, suppose that G contains an Eulerian circuit C. Let v
be an arbitrary vertex of G. Every time the circuit enters v on an edge, it must
leave on a different edge. Since C' never repeats an edge, there must be an even
number of edges incident with v and hence the degree of v is even.

For the second implication, suppose that every vertex of G has even degree.
We use induction on the number of cycles in G. Since G is connected and has
no vertices of degree 1, GG is not a tree, and therefore G must have at least one
cycle. If G has exactly one cycle, the G must be a cycle graph C,, for some
n, and so the desired partition contains just the one cycle itself. Suppose now
(using strong induction) that the implication is valid for graphs containing at most
k cycles, and suppose G has k + 1 cycles. Let C' be one of the cycles of G,
and let G’ be the graph obtained from G by deleting the edges of C. With this
deletion, each vertex of C' loses exactly two edges, and hence the vertices of G’
all have even degree. Further, the graph G’ (which is possibly disconnected) has
connected components that have no more than & cycles each. Each component,
then, satisfies the induction hypothesis and has edges that can be partitioned into
cycles. These cycles, together with the cycle C, partition the edges of G into
cycles. The induction is complete, and the implication is established.

For the third implication, suppose that the edges of G can be partitioned into
cycles. Call these cycles Sq, So, ..., Sk. Let C be the largest circuit in G such
that the set of edges of C' is exactly

E(Sj,) UE(S;,)U---UE(S;,)

for some collection of the cycles S, Sj,, ..., S},,. (We note here that this implies
that for each cycle S; (1 < ¢ < k), either all of the edges of S; are on C' or none
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of them are.) Now, suppose e is an edge of G that is (a) not an edge of C, and (b)
incident with a vertex, say v, that is on C. Since e is not an edge of C, it must be
that e is an edge of cycle .S;, for some i, where no edge of S; is on C. The vertex
v must also be on ;. Let C’ be the circuit in G obtained by patching S; into C' at
the vertex v (since no edge of \S; is a member of C, there is no repetition of edges
caused by this patching). Since the edges of C” consist of the edges of C' together
with the edges of \S;, we have contradicted the maximality of C’. This means that
no such edge e can exist and therefore that C'is an Eulerian circuit of G. The final
implication is established.

So, Eulerian circuits exist in connected graphs precisely when the degrees of
these graphs are all even. What about Eulerian trails? Certainly if an Eulerian
circuit exists, then so does an Eulerian trail (the circuit is just a closed trail). But
are there graphs which are not Eulerian but which do contain an Eulerian trail?
The following corollary gives the complete answer. Its proof is left for you as an
exercise.

Corollary 1.21. The connected graph G contains an Eulerian trail if and only if
there are at most two vertices of odd degree.

Now that we know precisely when Eulerian circuits and trails exist, how easy
is it to find them? The algorithm given below, named for nineteenth century math-
ematician Carl Hierholzer [159], gives a simple way of identifying such routes.
While not identical, you may notice a similarity between this algorithm and the
method used to prove the third implication in the proof of Theorem 1.20.

Before reading on, take a look back at the quotation given at the beginning
of this section. It describes the primary reason for the success of Hierholzer’s
algorithm.

Hierholzer’s Algorithm for Identifying Eulerian Circuits

Given: An Eulerian graph G.

i. Identify a circuit in G and call it R;. Mark the edges of R;. Let i = 1.

ii. If R; contains all edges of G, then stop (since R; is an Eulerian circuit).

iii. If R; does not contain all edges of G, then let v; be a vertex on R; that is
incident with an unmarked edge, e;.

iv. Build a circuit, );, starting at vertex v; and using edge e;. Mark the edges

of Ql
v. Create a new circuit, R; 1, by patching the circuit @); into R; at v;.
vi. Increment: by 1, and go to step ii.

An example of this process is shown in Figure 1.55. You should note that the
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FIGURE 1.55. The stages of Hierholzer’s algorithm.

process will succeed no matter what the initial circuit, R, is chosen to be. Another
algorithm for finding Eulerian circuits is given in Exercise 3.

The even degree characterization of Eulerian graphs is really quite nice. All one
needs to do to determine if a graph is Eulerian is simply look at the degrees of the
vertices. Once we know a graph is Eulerian, Hierholzer’s algorithm will give us
an Eulerian circuit. Maybe Charlie Cowell, our anvil salesman, used these ideas
to plan his door to door routes!

Exercises

1. For each of the following, draw an Eulerian graph that satisfies the condi-
tions, or prove that no such graph exists.

(a) An even number of vertices, an even number of edges.
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(b) An even number of vertices, an odd number of edges.
(c) An odd number of vertices, an even number of edges.
(d) An odd number of vertices, an odd number of edges.

2. Use Hierholzer’s algorithm to find an Eulerian circuit in the graph of Fig-
ure 1.56. Use R; : a,b,c,q, f,],1,e,aas your initial circuit.

a b c d
@ 9
e ) & .g h
j @ ¢ /
i 7 -
[ ]
m n 0 p
FIGURE 1.56.

3. What follows is another algorithm (from [195]) for finding Eulerian cir-
cuits. The method used here is to build the circuit, one edge at a time, mak-
ing sure to make good choices along the way.

Fleury’s Algorithm for Identifying Eulerian Circuits

Given: An Eulerian graph G, with all of its edges unmarked.

i. Choose a vertex v, and call it the “lead vertex.”
ii. If all edges of G have been marked, then stop. Otherwise continue to
step iii.

iii. Among all edges incident with the lead vertex, choose, if possible, one
that is not a bridge of the subgraph formed by the unmarked edges. If
this is not possible, choose any edge incident with the lead. Mark this
edge and let its other end vertex be the new lead vertex.

iv. Go to step ii.

Use Fleury’s algorithm to find an Eulerian circuit for the graph in Fig-
ure 1.57. Let a be your initial vertex.

4. Prove Corollary 1.21.

5. Prove that if every edge of a graph G lies on an odd number of cycles, then
G is Eulerian.

6. Let G be a connected graph which is regular of degree 7. Prove that the line
graph of G, L(G), is Eulerian.
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FIGURE 1.57.
7. Let G = Ky po-

(a) Find conditions on n; and no that characterize when GG will have an
Eulerian trail.

(b) Find conditions that characterize when G will be Eulerian.
8. LetG' = Ky, .. n,, where k > 3.

(a) Find conditions on nq, ..., n; that characterize when GG will have an
Eulerian trail.

(b) Find conditions that characterize when G will be Eulerian.

1.4.3 Hamiltonian Paths and Cycles

In this new Game (... named Icosian, from a Greek work signifying
‘twenty’) a player is to place the whole or part of a set of twenty
numbered pieces or men upon the points or in the holes of a board
...in such a manner as always to proceed along the lines of the

figure . ..
— from the instructions which accompanied The Icosian Game [26]

In 1859 the English game company Jaques and Son bought the rights to manufac-
ture and market “The Icosian Game.” The game involved twenty pegs (numbered
1 through 20) and a gameboard with holes (see Figure 1.58). Players were re-
quired to place the pegs in the holes in such a way that every pair of consecutive
integers, along with the pair (1, 20), were directly connected by one of the lines
on the board. As intriguing and action-packed as the game sounds, it did not sell
well.3

Another version of the game had the board design situated on the exterior of
a dodecahedron, a 12-sided solid. The object here was to find a round-trip route
around the solid, traveling only on the edges and touching each vertex once. This
version was named “A Voyage Round the World” since the vertices represented
important cities of the time. Like its twin “The Icosian Game,” this game’s voyage
was short lived.

8Jaques and Son managed to get over this particular setback. The company, still in business today,
had much better success in popularizing Tiddledy Winks (now Tiddly Winks), Snakes and Ladders
(now Chutes and Ladders), and Whiff Whaff (now Table Tennis).
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FIGURE 1.58. The Icosian Game board.

The inventor who sold the game to Jaques and Son was the prominent math-
ematician Sir William Rowan Hamilton. Even though his ideas did not take root
in a recreational sense, they did become the seed for what would become a major
branch of inquiry within the field of graph theory. Let’s take a look at some of
these ideas.

If a path P spans the vertices of G (that s, if V/(P) = V(G)), then P is said to
be a Hamiltonian path of G. Any graph containing a Hamiltonian path is called
traceable. If a cycle C spans the vertices of a graph G, such a cycle is called
a Hamiltonian cycle, and any graph containing a Hamiltonian cycle is called,
simply, a Hamiltonian graph. Hamiltonian graphs are clearly traceable, but the
reverse is not always true. Look at the graphs in Figure 1.59 and try to determine
which ones are traceable, Hamiltonian, or neither.

G, G, G,

FIGURE 1.59. Which ones are Hamiltonian? Which are traceable?

We saw in the previous section that whether or not a connected graph was Eule-
rian depended completely on degree parity. Unfortunately, this is not the case for
Hamiltonicity. Hamiltonian graphs can have all even degrees (Cp), all odd de-
grees (/(1p), or a mixture (G'; in Figure 1.59). Similarly, non-Hamiltonian graphs
can have varying degree parities: all even (G5 in Figure 1.59), all odd (K5 7), or
mixed (FPy).
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If degree parity does not have much to do with Hamiltonicity, then what does?
Researchers have worked for decades on this question, and their efforts have
produced many interesting results. A complete summary of these developments
would require many pages,’ and we do not attempt to give a thorough treatment
here. Rather, we present several of the classic ideas and results.

The first result that we examine is due to Dirac [77]. It does concern degrees
in a graph — but their magnitude rather than their parity. Recall that 6(G) is the
minimum degree of G.

Theorem 1.22. Ler G be a graph of order n > 3. If §(G) > n/2, then G is
Hamiltonian.

Proof. Let G be a graph satisfying the given conditions, and suppose that G is not
Hamiltonian. Let P be a path in G with maximum length, and say the vertices of
P, in order, are vy, va, ..., v,. Because of the maximality of P, we know that all
of the neighbors of v; and of v, are on P. And since §(G) > n/2, each of v; and
vp, has at least n/2 neighbors on P.

We now claim that there must exist some j (1 < j < p — 1) such that v; €
N(vp) and v;41 € N(v1). Suppose for the moment that this was not the case.
Then for every neighbor v; of v, on P (and there are at least n /2 of them), v; 11
is not a neighbor of v;. This means that

n non
< — — — =
deg(v1) <p-—1 9 <n 9 5’

contradicting the fact that 6(G) > n/2. Therefore, such a j exists (see Fig-

FIGURE 1.60.

ure 1.60).

Let C' be the cycle vy, va, ..., V), Vp, Up—1, ..., Vjt1, V1. We have assumed that
G is not Hamiltonian, and so there must be at least one vertex of GG that is not on
P. Further, since 6(G) > n/2, we know that G is connected (see Exercise 16a
in Section 1.1.2). Therefore there must be a vertex w not on P that is adjacent to
a vertex, say v;, on P. But then the path in G that begins with w, travels to v;,
and then travels around the cycle C' is a longer path than our maximal path P —
a contradiction. Our initial assumption must have been incorrect. Therefore G is
Hamiltonian.

In 2003 Ron Gould published an article [129] which summarized related results. His survey was
45 pages long, and even that only covered developments that took place within the previous dozen
years!
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There are two interesting things to note here. First, the lower bound in this the-
orem is best possible. To see this, consider the graph G = K. ,-;1. This graph is
not Hamiltonian (you will show this as part of Excercise 12b) and §(G) is strictly
between |V(2G)| — 1 and IV(QG)‘. Second, the theorem does not provide a charac-
terization of Hamiltonian graphs. That is, there are plenty of Hamiltonian graphs
that have relatively small minimum (and even maximum) degree. The cycles (),
are obvious examples.

Dirac’s theorem is a corollary to the following general result of Ore [217]. The
proof of Ore’s theorem is similar to that of the above, and it is left for you as an
exercise.

Theorem 1.23. Let G be a graph of order n > 3. If deg(x) + deg(y) > n for all
pairs of nonadjacent vertices x,y, then G is Hamiltonian.

A set of vertices in a graph is said to be an independent set of vertices if they
are pairwise nonadjacent. The independence number of a graph GG, denoted by
a(@), is defined to be the largest size of an independent set of vertices from G.
As an example, consider the graphs in Figure 1.61. The only independent set of
size 2 in Gy is {c, d}, so a(G1) = 2. There are two independent sets of size 3 in
Ga: {a,c,e} and {b,d, f}, and none of size 4, so a(G2) = 3.

u a b
G, G,
e b
I c
d c . dJ
FIGURE 1.61.

The next theorem, due to Chvatal and Erd6s [54], relates Hamiltonicity to in-
dependence number and connectivity. Before stating and proving this result, let
us introduce some helpful notation. If z and y are vertices on a path P, let [z, y]p
denote the portion of P that runs from z to y. Further, given a cycle C' with its
vertices labeled in a specific orientation (say, clockwise), let [z, y]o+ denote the
portion of C' that runs clockwise from « to y. Similarly, [z, y]c- would denote
the portion of C' that runs counter-clockwise from x to y.

Theorem 1.24. Let G be a connected graph of order n > 3 with vertex connec-
tivity k(G) and independence number o(G). If k(G) > a(Q), then G is Hamil-
tonian.

Proof. If G is as described, then k(G) > 2 — for if kK(G) = 1, then o(G) =1
and thus G is either K3 or Ko, contradicting the fact that n > 3.

Let C be a longest cycle in GG. Suppose that C' is not a Hamiltonian cycle, and
let v be a vertex of G that is not on C. Let H be the connected component of
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G — V(C) that contains v. Let ¢y, ¢, ..., ¢, be the vertices of C' that are adjacent
to some vertex of H, and suppose that these vertices are labeled in a clockwise
direction around the cycle C. For each i (1 <1 < r), let h; be a vertex of H that
is adjacent to ¢;, and let d; be the immediate (clockwise) successor of ¢; on C.

We now observe several things. First, it must be that » > «(G). If the vertices
c1, ¢, ..., ¢, were removed from G, then H would be disconnected from the
rest of the graph. Since x(G) is the size of the smallest cut set, it follows that
r > k(G). The observation in the first paragraph then implies that r > 2.

Second, no two of the vertices in the set {c1, ca, ..., ¢} are consecutive ver-
tices on C. To see this, suppose that there is some ¢ such that ¢; and ¢; 1 are
consecutive vertices on C'. Let P be a path from h; to h;11 in H, and consider the
cycle formed by replacing the edge ¢;c; 41 on C with the path ¢;, [h;, hit1]p, Cig1.
This cycle is longer than our maximal cycle C, a contradiction. This observation
implies that the sets {c1, ¢a, ..., ¢} and {d1, da, ..., d,} are disjoint.

Third, for each ¢ (1 < i < r), d; is not adjacent to v. To see this, suppose
d;v € E(G) for some 4, and let ) be a path from h; to v in H. In this case,
the cycle formed by replacing the edge ¢;d; on C with the path ¢;, [h;, v]qg, d; is
longer than C', again a contradiction.

Now, let S = {v,dy,ds,...,d,.}. The first observation above implies that
|S| > k(G)+1 > «(G). This means that some pair of vertices in S must be adja-
cent. Our third observation implies that d; must be adjacent to d; for some ¢ < j.
If R is a path from h; to hj in H, then the cycle ¢;, [hi, hj]r, [¢j, di]o-, [d;, ¢i]o+
is alonger cycle than C' (see Figure 1.62). Our assumption that C' was not a Hamil-

FIGURE 1.62.

tonian cycle has led to a contradiction. Therefore G is Hamiltonian.

As was the case for Dirac’s theorem, the inequality in this theorem is sharp.
That is, graphs G where x(G) > a(G) — 1 are not necessarily Hamiltonian.
The complete bipartite graphs K. .1 provide proof of this. The Petersen graph,
shown in Figure 1.63, is another example.'”

10The Petersen graph is well known among graph theorists for its surprising connections to many
areas of the field, and for its penchant for being a counterexample to many conjectures. You have seen
this graph already — it is the graph you should have obtained as the complement of the line graph of
K5 in Exercise 7b of Section 1.1.3.
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FIGURE 1.63. The Petersen Graph.

The next theorem belongs to a category of results that relate Hamiltonicity to
forbidden subgraphs. Given graphs G and H, if G does not contain a copy of H as
an induced subgraph, then we say that G is H-free. If S is a collection of graphs,
and if G does not contain any of the graphs in S as induced subgraphs, then we
say that G is S-free.

In 1974, Goodman and Hedetniemi [127] noticed something regarding two of
the graphs shown in Figure 1.64.

N

FIGURE 1.64. Three special graphs.

Theorem 1.25. If G is a 2-connected, { K1 3, Z1 }-free graph, then G is Hamilto-
nian.

Proof. Suppose G is 2-connected and {K7 3, Z1 }-free, and let C' be a longest
cycle in G (we know that G contains at least one cycle — see Exercise 14 in
Section 1.1.2). If C' is not a Hamiltonian cycle, then there must exist a vertex v,
not on C, which is adjacent to a vertex, say w, on C'. Let a and b be the immediate
predecessor and successor of w on C.

A longer cycle would exist if either a or b were adjacent to v, and so it must
be that both a and b are nonadjacent to v. Now, if a is not adjacent to b, then
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the subgraph induced by the vertices {w, v, a, b} is K7 3, and we know that G is
K 3-free. So it must be that ab € E(G). But if this is the case, then the subgraph
induced by {w, v, a,b} is Z;, a contradiction. Therefore, it must be that C' is a
Hamiltonian cycle.

The fact that this result requires 2-connectivity should not be surprising, for
2-connectivity is required for all Hamiltonian graphs. As you will prove in Exer-
cise 2, graphs G where x(G) = 1 cannot have a spanning cycle.

Another classic forbidden subgraph theorem involves K 3 and the third graph
shown in Figure 1.64. This is a result of Duffus, Gould, and Jacobson [81].

Theorem 1.26. Let G be a { K1 3, N }-free graph.
1. If G is connected, then G is traceable.
2. If G is 2-connected, then G is Hamiltonian.

It is interesting to note that the graph Ky 3 is involved in both of these theorems.
This graph, affectionately referred to as the “claw,” appears in many forbidden
subgraph results. Claw-free graphs have received a great deal of attention in recent
years, especially within the context of Hamiltonicity problems. The claw will bare
itself again in the next section in the context of unsolved problems.

Exercises
1. Give a solution to The Icosian Game.
2. Prove that if G is Hamiltonian, then G is 2-connected.
3. Prove Theorem 1.23.
4. Give the connectivity and independence number of the Petersen graph.

5. Prove or disprove: The independence number of a bipartite graph is equal
to the cardinality of one of its partite sets.

6. Prove that if G is of order n and is regular, then a(G) < n/2.

7. Prove that each of the 18-vertex graphs in Figure 1.65 is 2-connected, claw-
free and nontraceable.'!

8. For any graph G, prove that the line graph L(G) is claw-free.
9. Let G be a K3-free graph. Prove that its complement, G, is claw-free.
10. Let G be a graph and let S be a nonempty subset of V' (G).
Tn [154] the authors show that 2-connected, claw-free graphs of order less than 18 are traceable.

They also show that the graphs in Figure 1.65 are the only 2-connected, claw-free, nontraceable graphs
with order 18 and size at most 24.
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FIGURE 1.65.

(a) Prove that if G is Hamiltonian, then G — S has at most |\S| connected
components.

(b) Prove that if G is traceable, then G — S has at most |S| + 1 connected
components.
11. Prove that if G is Eulerian, then L(G) is Hamiltonian.
12. Let G = Ky, -

(a) Find conditions on n; and no that characterize the traceability of G.
(b) Find conditions that characterize the Hamiltonicity of G.

13. Let n be a positive integer.

(a) Prove that K, o, 3, is Hamiltonian.

(b) Prove that K, 25, 35+1 1S not Hamiltonian.

1.4.4 Three Open Problems

Nothing can stop the claw!
— Fletcher Reede, Liar, Liar

We close our discussion of paths and cycles with several questions. These prob-
lems were posed years ago, and they have received a great deal of attention. While
there has been progress on each of them, the original questions remain unan-
swered.

Intersecting Detour Paths

Given a graph G, the detour order of G, denoted 7(G), is the number of vertices
in a longest path in G. If a path P in G has 7(G) vertices, then we call P a detour
path in G.

In Exercise 8 of Section 1.1.2, you proved that if G is a connected graph and
if P and P are detour paths, then the interesection V(P;) N V(P) must be
nonempty. As you (hopefully!) saw, this result is not terribly difficult to prove.
Consider the following question.
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Question A: If G is connected and Py, P», and Ps are detour paths in
G, then must the intersection V' (P;) NV (P2) NV (Ps) be nonempty?

As you see, the only difference between this question and the earlier exercise is
that this one involves three paths rather than two. But this difference makes all the
difference, because Question A remains unsolved!

The origin of this question can be traced to a related question asked by Gallai
[118] in 1966: Is it true that in every connected graph there is at least one vertex
that lies on every detour path? In 1969, Walther [278] gave a negative answer to
the question in the form of the graph in Figure 1.66. The detour order of this graph

FIGURE 1.66. Walther’s example.

is 21, and every vertex is missed by at least one of the detour paths. Within the
next several years, Walther and Zamfirescu, working independently (see [141],
[279], [290]), had produced a smaller example, the graph in Figure 1.67. This

FIGURE 1.67. A smaller example, given by Walther and Zamfirescu.

graph has 12 vertices, has detour order 10, and every vertex is missed by at least
one of the detour paths. The graph in Figure 1.67 is the smallest known graph
where the detour paths have an empty intersection.

Consider the following more general version of Question A.



1.4 Trails, Circuits, Paths, and Cycles 69

Question B: If (G is connected and P, ..., P, are distinct detour
n

paths in G, then must the intersection m V(P;) be nonempty?
i=1

The graph of Figure 1.67 demonstrates that for n = 12, the answer to Question B
is no.
In 1975, Schmitz [250] presented the graph in Figure 1.68. The detour order

FIGURE 1.68. Example given by Schmitz.

of this graph is 13. There are exactly seven detour paths, and every vertex of the
graph is missed by at least one of these paths. This tells us that for n = 7, the
answer to Question B is no.

We have already mentioned that for n = 3, the answer to Question B is un-
known. The same is true for n = 4, 5 and 6. When asked, most researchers would
probably lean toward believing the result to be true for n = 3, although no proof
is known as of yet. For now, it is simply a conjecture.

Conjecture 1. If G is connected, then the intersection of any three distinct detour
paths in G is nonempty.

Matthews and Sumner’s Conjecture

We met the claw, K 3, in the previous section. We saw two results in which the
claw, when forbidden with another graph, implied Hamiltonicity in 2-connected
graphs. There are other such pairs. In [20], [39], and [130], the respective authors
showed that the pairs {K; 3, W}, {K1 3, Ps}, and { K1 3, Z2} (see Figure 1.69)
all imply Hamiltonicity when forbidden in 2-connected graphs. Do you see a pat-

W Z,

FIGURE 1.69. Two additional forbidden subgraphs.

tern here? The claw seems to be prominent in results like this. In 1997, Faudree
and Gould [102] showed that this was no coincidence. The graph N appears in
Figure 1.64.
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Theorem 1.27. If being { R, S}-free (where R, S are connected and neither is
Ps) implies that 2-connected graphs are Hamiltonian, then one of R, S is the
claw, and the other is an induced subgraph of Ps, Z2, W, or N.

Is the claw powerful enough to imply Hamiltonicity when forbidden by itself?
Well, as you will prove in the exercises, the graph P; is the only connected graph
that, when forbidden, implies Hamiltonicity in 2-connected graphs. But what if
the level of connectivity is increased?

Question C: If G is claw-free and k-connected (k > 3), must GG be
Hamiltonian?
The graph in Figure 1.70 is 3-connected, claw-free and non-Hamiltonian, '
so the answer to Question C for £ = 3 is no.

and

FIGURE 1.70. A lovely example.

In 1984 Matthews and Sumner [199] made the following, still unresolved, con-
jecture.

Conjecture 2. [f G is 4-connected and claw-free, then G is Hamiltonian.

There has been some progress with regard to this conjecture. Most notably, in
1997 Ryjacek [245] proved the following theorem.

Theorem 1.28. If G is 7-connected and claw-free, then G is Hamiltonian.

At this time, Question C for k = 4,5 and 6 is still unanswered.

12This graph, demonstrated by Matthews ([198], see also [199]) in 1982, is the smallest such graph,
and it is the line graph of the graph obtained from the Petersen graph (what else?) by replacing each
of the five “spoke” edges with a Ps.
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The Path Partition Conjecture

Recall that 7(G), the detour order of G, is the number of vertices in a longest path
of G. Recall also that given a subset .S of V(G), the notation (S) represents the
subgraph of G induced by S.

Given a graph G and positive integers a and b, if the vertices of G can be
partitioned into two sets A and B in such a way that 7((A)) < a and 7((B)) < b,
then we say that G has an (a, b)-partition.

As an example, consider the graph G in Figure 1.71. The partition (A;, By),

A ={a b cdh i} A, ={c, d h, i}
Bi={efgjkl} B,={a befgjkl

FIGURE 1.71. Partitioning the vertex set.

where A; = {a,b,¢,d,h,i} and By = {e, f,g,7,k, 1}, is not a valid (4,7)-
partition. This is because every longest path in both (A;) and (B ) has 6 vertices.
On the other hand, the partition (As, Bs), where

AQ = {Cvdvhvi}vBQ = {a,b,e,f,g,j,k:,l}

is a valid (4, 7)-partition, since 7((A42)) < 4 and 7((Bg)) < 7.

If a graph G has an (a, b)-partition for every pair (a, b) of positive integers such
that  + b = 7(G), then we say that G is T-partitionable. In order to show that
the graph in Figure 1.71 is 7-partitionable (since its detour order is 11), we would
also need to show that the graph had (1, 10)-, (2,9)-, (3, 8)-, and (5, 6)-partitions.
Another way to demonstrate this would be to prove the following, still unresolved,
conjecture.

The Path Partition Conjecture. Every graph is T-partitionable.
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The Path Partition Conjecture was first mentioned by Lovdsz and Mihék in
1981, and it has received a great deal of attention since then. Much of the progress
has been the establishment that certain families of graphs are T-partitionable. The
following theorem gives a small sampling of these results.

Theorem 1.29. The graph G is T-partitionable if any one of the following is true:
1. A(G) < 3; (follows from [189])
2. A(G) > |V(G)| = 8; (follows from [38])
3. 7(GQ) <13, [83]
4. 7(G) > |[V(G)| — 1. [38]

So, if the max degree of a graph G is either very small or relatively large, or
if the longest path in a graph is either rather short or relatively long, then G is
T-partitionable.

In 2007, Dunbar and Frick [84] proved the following interesting result.

Theorem 1.30. If G is claw-free, then G is T-partitionable.

There is the claw again! In the same article, the authors prove that in order to
prove that the Path Partition Conjecture is true, it is sufficient to prove that every
2-connected graph is T-partitionable.

With each new result, researchers add to the arsenal of weapons that can be used
to attack the Path Partition Conjecture. So far, though, the conjecture is holding
strong.

With all of this era’s computing power, how can it be that the Path Partition
Conjecture and the other conjectures in this section remain unsolved? Computers
are now doing more things than ever, faster than ever, so why can’t we just get
a computer cranking away at these problems? These are reasonable questions to
ask. But the conjectures here are not really questions of computation. These are
problems that will require a combination of insight, cleverness and patience.

Exercises

1. If the word “connected” were removed from Conjecture 1, could you settle
the resulting conjecture?

2. Show that every vertex of the graph in Figure 1.67 is missed by at least one
detour path in the graph.

3. In the graph of Figure 1.68, find the seven distinct detour paths and show
that they have an empty intersection.

4. Show that if G is 2-connected and Ps-free, then G is Hamiltonian.

5. Show that if being H-free implies Hamiltonicity in 2-connected graphs
(where H is connected), then H is Ps.
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6. Verify that the graph in Figure 1.70 is actually the line graph of the graph
obtained from the Petersen graph by replacing each of the five “spoke”
edges with a P3.

7. Prove that the graph in Figure 1.67 is T-partitionable by listing all necessary
partitions.

8. Prove that all bipartite graphs are 7-partitionable.
9. Prove that all traceable graphs are T-partitionable.
10. Prove that every graph G has a (1, 7(G) — 1) partition.

11. Prove that if a graph is (1, 1)-partitionable, then it is (a, b)-partitionable for
all positive integers a and b.

12. Show that all graphs are (a, b)-partitionable when a < 3.

13. EXTRA CREDIT: Settle any of the conjectures in this section.

1.5 Planarity

Three civil brawls, bred of an airy word
By thee, old Capulet, and Montague,
Have thrice disturb’d the quiet of our streets . ..
— William Shakespeare, Romeo and Juliet

The feud between the Montagues and the Capulets of Verona has been well doc-
umented, discussed, and studied. A fact that is lesser known, though, is that long
before Romeo and Juliet’s time, the feud actually involved a third family—the
Hatfields.'? The families’ houses were fairly close together, and chance meetings
on the street were common and quite disruptive.

The townspeople of Verona became very annoyed at the feuding families. They
devised a plan to create separate, nonintersecting routes from each of the houses to
each of three popular places in town: the square, the tavern, and the amphitheater.
They hoped that if each family had its own route to each of these places, then the
fighting in the streets might stop.

Figure 1.72 shows the original layout of the routes. Try to rearrange them so
that no route crosses another route. We will come back to this shortly.

13The Hatfields eventually grew tired of feuding, and they left Verona in search of friendlier terri-
tory. They found a nice spot in the mountains of West Virginia, right across the river from a really nice
family named McCoy.
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Hatfield

Capulet

| Square | | Amphitheaterl | Tavern |

FIGURE 1.72. Original routes.

1.5.1 Definitions and Examples

Define, define, well-educated infant.
— William Shakespeare, Love’s Labour’s Lost

A graph G is said to be planar if it can be drawn in the plane in such a way that
pairs of edges intersect only at vertices, if at all. If G has no such representation,
G is called nonplanar. A drawing of a planar graph G in the plane in which edges
intersect only at vertices is called a planar representation (or a planar embedding)
of G.

Figure 1.73 shows examples of planar graphs. Notice that one of the drawings

FIGURE 1.73. Examples of planar graphs.

is not a planar representation—try to visualize untangling it.

Proving a graph to be planar is in some cases very simple—all that is required
is to exhibit a planar representation of the graph. This is certainly quite easy to do
with paths, cycles, and trees. What about complete graphs? K, K5, and K3 are
clearly planar; Figure 1.74 shows a planar representation of /4. We will consider
K5 shortly.

FIGURE 1.74. A planar representation of /4.
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The Montague/Capulet/Hatfield problem essentially amounts to finding a pla-
nar representation of K3 3. Unfortunately, the townspeople of Verona just had to
learn to deal with the feuding families, for K3 3 is nonplanar, and we will see an
explanation shortly.

What is involved in showing that a graph G is nonplanar? In theory, one would
have to show that every possible drawing of GG is not a planar representation. Since
considering every individual drawing is out of the question, we need some other
tools.

Given a planar representation of a graph G, a region is a maximal section of
the plane in which any two points can be joined by a curve that does not intersect
any part of G.

Informally, if a cookie cutter has the shape of a planar representation of G,
then the cookies are the regions (see Figure 1.75). The big region, Ry, is called
the exterior (or outer) region.

FIGURE 1.75. Six small cookies and one very large cookie.

It is quite natural to think of the regions as being bounded by the edges. A
single edge can come into contact with either one or two regions. In Figure 1.76,
edge e; is only in contact with one region, .S1, and edges e2 and e3 are only in
contact with Ss. Each of the other edges in Figure 1.76 is in contact with two
regions. Let us say that an edge e bounds a region R if e comes into contact with

S,

FIGURE 1.76. Edges e, e2, and e3 touch one region only.
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R and with a region different from R. Define the bound degree of R, denoted by
b(R), to be the number of edges that bound region R. For example, in Figure 1.75,
b(Rl) = b(R4) = 4, b(RQ) = b(Rg) = b(R5) = b(RG) = 3, and b(R7) =12.1In
Figure 1.76, b(S1) = b(S3) = 3 and b(S2) = 6. Note that in this graph, the edges
e1, e2, and e3 do not contribute to the bound degree of any region.

Figure 1.77 displays six planar graphs along with the numbers of vertices,
edges, and regions. Before continuing to the next section, study these numbers
and try to find a pattern. You might also notice that two of drawings are actually
the same graph. This brings up an important point: The number of regions in a
planar representation of a graph does not depend on the representation itself!

n=4 n=7
g=4 q=9
r=2 r=4
n=>5 n=38
q=7 q=12
r=4 r==6
n=8 n=10
g=12 =9
r=6 r=1

FIGURE 1.77. Is there a pattern?

Exercises

1. Find planar representations for each of the planar graphs in Figure 1.78.

2. Give planar representations of the graph in Figure 1.79 such that each of
the following is the exterior region.
(@) Ry
() Ry
(©) R
(d) R4
(e) Rs
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a b
x
v h c
y
w g d
z
I e
FIGURE 1.78.

FIGURE 1.79.

3. Explain why embedding a graph in a plane is essentially the same as em-
bedding a graph on a sphere.

4. Write a nice proof of the fact that every tree is planar.
5. Draw a planar graph in which every vertex has degree exactly 5.

6. Suppose that e is a bridge of a planar graph G. Prove that e does not bound
aregion in any planar representation of G.

7. In [101] and [277], Fary and Wagner proved independently that every pla-
nar graph has a planar representation in which every edge is a straight line
segment. Find such a representation for the graph in Figure 1.80.

FIGURE 1.80.

8. If planar graphs Gy and G2 each have n vertices, ¢ edges, and r regions,
must the graphs be isomorphic? Justify your answer with a proof or a coun-
terexample.
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1.5.2 Euler’s Formula and Beyond

Now I will have less distraction.
— Leonard Euler, upon losing sight in his right eye [100]

Euler discovered a relationship between the numbers of vertices, edges, and re-
gions of a graph, and his discovery is often called Euler’s Formula [99].

Theorem 1.31 (Euler’s Formula). If G is a connected planar graph with n ver-
tices, q edges, and r regions, then

n—q+r=2.

Proof. We induct on ¢, the number of edges. If ¢ = 0, then G must be K1, a
graph with 1 vertex and 1 region. The result holds in this case. Assume that the
result is true for all connected planar graphs with fewer than ¢ edges, and assume
that G has ¢ edges.

Case 1. Suppose G is a tree. We know from our work with trees that g = n — 1;
and of course, » = 1, since a planar representation of a tree has only one region.
Thusn —q+7r=n—(n—1)+ 1 = 2, and the result holds.

Case 2. Suppose G is not a tree. Let C' be a cycle in G, let e be an edge of C,
and consider the graph G — e. Compared to G, this graph has the same number
of vertices, one edge fewer, and one region fewer, since removing e coalesces two
regions in GG into one in G — e. Thus the induction hypothesis applies, and in
G —e,

n—(g-1)+(r-1)=2

implying thatn — g +r = 2.
The result holds in both cases, and the induction is complete.

Euler’s Formula is useful for establishing that a graph is nonplanar.

Theorem 1.32. K3 3 is nonplanar.

Proof. Suppose that K3 3 were planar and that we had a planar representation.
Since n = 6 and ¢ = 9, Euler’s Formula implies that such a planar representation
of K3 3 would have r = 5 regions. Now consider the sum

C=> b(R),
R

where the sum is over all regions R in the representation of the graph. Since every
edge of GG can be on the boundary of at most two regions, we get C' < 2¢g = 18. On
the other hand, since each region of K3 3 has at least four edges on the boundary
(there are no triangles in bipartite graphs), we see that C' > 4r = 20. We have
reached a contradiction. Therefore, K5 3 is nonplanar.

Theorem 1.33. If G is a planar graph with n > 3 vertices and q edges, then
q < 3n — 6. Furthermore, if equality holds, then every region is bounded by three
edges.
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Proof. Again consider the sum
C=Y bR).
R

As previously mentioned, C' < 2q. Further, since each region is bounded by at
least 3 edges, we have that C' > 3r. Thus

3Ir<2¢g = 324+q¢q—m)<2¢ = ¢q<3n-—06.

If equality holds, then 3r = 2¢, and it must be that every region is bounded by
three edges.

We can use Theorem 1.33 to establish that K5 is nonplanar.

Theorem 1.34. K5 is nonplanar:

Proof. K5 has 5 vertices and 10 edges. Thus 3n — 6 = 9 < 10 = ¢, implying
that K5 is nonplanar.

Exercise 5 in Section 1.5.1 asked for a planar graph in which every vertex has
degree exactly 5. This next result says that such a graph is an extreme example.

Theorem 1.35. If G is a planar graph, then G contains a vertex of degree at most
five. That is, 5(G) < 5.

Proof. Suppose G has n vertices and ¢ edges. If n < 6, then the result is imme-
diate, so we will suppose that n > 6. If we let D be the sum of the degrees of the
vertices of (G, then we have

D =2¢<23n—6)=06n—12.

If each vertex had degree 6 or more, then we would have D > 6n, which
is impossible. Thus there must be some vertex with degree less than or
equal to 5.

Exercises

1. G is a connected planar graph of order 24, and it is regular of degree 3.
How many regions are in a planar representation of G?

2. Let G be a connected planar graph of order less than 12. Prove 6(G) < 4.
3. Prove that Euler’s formula fails for disconnected graphs.

4. Let GG be a connected, planar, K3-free graph of order n > 3. Prove that G
has no more than 2n — 4 edges.

5. Prove that there is no bipartite planar graph with minimum degree at
least 4.
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6. Let G be a planar graph with & components. Prove that
n—q+r=1+k.
7. Let G be of order n > 11. Show that at least one of GG and G is nonplanar.

8. Show that the average degree (see Exercise 11 in Section 1.3.2) of a planar
graph is less than six.

9. Prove that the converse of Theorem 1.33 is not true.
10. Find a 4-regular planar graph, and prove that it is unique.

11. A planar graph G is called maximal planar if the addition of any edge to G
creates a nonplanar graph.

(a) Show that every region of a maximal planar graph is a triangle.

(b) If a maximal planar graph has order n, how many edges and regions
does it have?

1.5.3 Regular Polyhedra

We are usually convinced more easily by reasons we have found
ourselves than by those which have occurred to others.
— Blaise Pascal, Pensées

A polyhedron is a solid that is bounded by flat surfaces. Dice, bricks, pyramids,
and the famous dome at Epcot Center in Florida are all examples of polyhedra.
Polyhedra can be associated with graphs in a very natural way. Think of the poly-
hedra as having faces, edges, and corners (or vertices). The vertices and edges of
the solid make up its skeleton, and the skeleton can be viewed as a graph. An in-
teresting property of these skeleton graphs is that they are planar. One way to see
this is to imagine taking hold of one of the faces and stretching it so that its edges
form the boundary of the exterior region of the graph. The regions of these pla-
nar representations directly correspond to the faces of the polyhedra. Figure 1.81
shows a brick-shaped polyhedron, its associated graph, and a planar representa-
tion of the graph.

— e - —

FIGURE 1.81. A polyhedron and its graph.

Because of the natural correspondence, we are able to apply some of what we
know about planar graphs to polyhedra. The next theorem follows directly from
Euler’s Formula for planar graphs, Theorem 1.31.
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Theorem 1.36. If a polyhedron has V vertices, E edges, and F faces, then
V-E+F=2.

This next theorem is similar to Theorem 1.35.
Given a polyhedron P, define p(P) to be

p(P) = min{b(R) | R is aregion of P}.
Theorem 1.37. For all polyhedra P, 3 < p(P) < 5.

Proof. Since one or two edges can never form a boundary, we know that p(P) >
3 for all polyhedra P. So we need to prove only the upper bound.

Let P be a polyhedron and let G be its associated graph. Suppose P has V'
vertices, I/ edges, and F faces. For each k, let V}, be the number of vertices of
degree k, and let F}, be the number of faces of P (or regions of ;) of bound degree
k. From our earlier remarks, if £ < 3, then V;, = F}, = 0. Since every edge of P
touches exactly two vertices and exactly two faces, we find that

Zka =2F = Zka.

k>3 k>3

If every face of P were bounded by 6 or more edges, then we would have

2FE =Y kFp>» 6Fx=6Y F,=6F,

k>3 k>6 k>6

implying that ¥ > 3F'. Furthermore,

2E =Y kVi >3V,
k>3

implying that V' < 2 E. Thus
2 1
E=V+F-2< B+ E-2=F-2,

and this, of course, is a contradiction. Therefore, some face of P is bounded by
fewer than 6 edges. Hence, p(P) < 5.

We now apply this result to derive a geometric fact known to the ancient Greeks.

A regular polygon is one that is equilateral and equiangular. We say a poly-
hedron is regular if its faces are mutually congruent, regular polygons and if the
number of faces meeting at a vertex is the same for every vertex. The cube, whose
faces are congruent squares, and the tetrahedron, whose faces are congruent equi-
lateral triangles, are regular polyhedra. A fact that has been known for at least
2000 years is that there are only five regular polyhedra: the tetrahedron, the cube,
the octahedron, the dodecahedron, and the icosahedron (see Figure 1.82). We can
use a graph-theoretic argument to prove this.
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Tetrahedron A A

w Ly

@ @

8V

FIGURE 1.82. The five regular polyhedra and their graphical representations.

9

Icosahedron

Theorem 1.38. There are exactly five regular polyhedra.

Proof. Let P be a regular polyhedron, and let G be its associated planar graph.
Let V, E, and F' be the number of vertices, edges, and faces (regions) of P. Since
the faces of P are congruent, each is bordered by the same number of edges, say
k. Theorem 1.37 tells us that 3 < k < 5. Further, since the polyhedron P is
regular, it follows that the graph G is also regular. Let us say that G is regular of
degree r where » > 3. From Theorem 1.37, we obtain 7V = 2F = kF. Now,
Theorem 1.36 implies that

8 =4V — A + AF
=4V — 2E +4F — 2F
=4V —rV 4+ 4F — kF
=(A-7r)V+(4-Fk)F.
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V and E are of course both positive, and since 3 < k& < 5 and r > 3, there are
only five possible cases.

Case 1. Suppose r = 3and k = 3. Inthiscase, V = Fand8 =V + F,
implying that V' = F' = 4. This is the tetrahedron. (The fact that the tetrahedron
is the only regular polygon with V' = F' = 4 is based on a geometrical argument.
This applies to the remaining four cases as well.)

Case 2. Suppose r = 3 and k = 4. Here we have V = 8 and 3V = 4F'. Thus
F =6, and P is a cube.

Case 3. Suppose r = 3 and k = 5. In this case we have 8 =V — F and 3V =
5F'. Solving this system yields V' = 20 and F' = 12. This is a dodecahedron.

Case 4. Suppose r = 4 and k£ = 3. Here we have F' = 8 and 4V = 3F'. Thus
V =6 and P is an octahedron.

Case 5. Suppose r = 5 and k = 3. In this case we have 8 = —V + F and 5V =
3F'. Solving this system yields V' = 12 and F' = 20. This is an icosahedron.

Exercises

1. (From [52].) Show that the octahedron is a complete multipartite graph:
K,.,.....r, for some n and for some values 71, ..., 7.

2. Find an example of a polyhedron different from the ones discussed in this
section. Sketch the polyhedron, and draw the associated graph.

3. See if you can find an alternative proof (not necessarily graph-theoretic) of
the fact that there are only five regular polyhedra.

1.5.4 Kuratowski’s Theorem

...a pair so famous.
— William Shakespeare, Anthony and Cleopatra

Our goal in this section is to compile a list of all nonplanar graphs. Since the
list will be infinite (and since this book is not), we will make use of a clever
characterization due to Kuratowski.

We have already established that both K3 3 and K5 are nonplanar, so we should
put them at the top of our list. What other graphs should we include? Suppose
G is a graph that contains K3 3 as a subgraph. This graph G would have to be
nonplanar, since a planar representation of it would have to contain a planar rep-
resentation of K3 3. So we can add to our list of nonplanar graphs all graphs that
contain K3 3 or K5 as a subgraph.

The graph in Figure 1.83 shows us that our list of nonplanar graphs is not
yet complete. This graph is not planar, but it does not contain K5 or K3 3 as a
subgraph. Of course, if we were to replace the two edges labeled a and b with a
single edge e, then the graph would contain K35 as a subgraph. This motivates the
following definition.
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FIGURE 1.83.

Let G be a graph. A subdivision of an edge e in G is a substitution of a path for
e. We say that a graph H is a subdivision of G if H can be obtained from G by a
finite sequence of subdivisions.

For example, the graph in Figure 1.83 contains a subdivision of K5, and in
Figure 1.84, H is a subdivision of G.

G H

FIGURE 1.84. A graph and a subdivision.

We leave the proof of the following theorem to the exercises (see Exercise 1).
Theorem 1.39. A graph G is planar if and only if every subdivision of G is planar.

Our list of nonplanar graphs now includes K3 3, K5, graphs containing K3 3 or
K as subgraphs, and all graphs containing a subdivision of K3 3 or K. The list
so far stems from only two specific graphs: K3 3 and K5. A well-known theorem
by Kuratowski [185] tells us that there are no other graphs on the list! The bottom
line is that K3 3 and K5 are the only two real enemies of planarity.

Kuratowski proved this beautiful theorem in 1930, closing a long-open prob-
lem.'* In 1954, Dirac and Schuster [78] found a proof that was slightly shorter
than the original proof, and theirs is the proof that we will outline here.

Theorem 1.40 (Kuratowski’s Theorem). A graph G is planar if and only if it
contains no subdivision of K3 3 or K.

Sketch of Proof

We have already discussed that if a graph G is planar, it contains no subgraph
that is a subdivision of K33 or K5. Thus we need to discuss only the reverse
direction of the theorem.

14We should note here that Frink and Smith also discovered a proof of this fact in 1930, indepen-
dently of Kuratowski. Since Kuratowski’s result was published first, his name has traditionally been
associated with the theorem (and the names Frink and Smith have traditionally been associated with
footnotes like this one.)
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Suppose G is a graph that contains no subdivision of K3 3 or K. Here are the
steps that Dirac and Schuster used to prove the result.

1. Prove that G is planar if and only if each block of G is planar. (A block of
G is a maximal connected subgraph of G that has no cut vertex).

2. Explain why it suffices to show that a block is planar if and only if it con-
tains no subdivision of K3 3 or K. Assume that G is a block itself (con-
nected with no cut vertex).

3. Suppose that G is a nonplanar block that contains no subdivision of K3 3
or K5 (and search for a contradiction).

4. Prove that §(G) > 3.

5. Establish the existence of an edge e = uw such that the graph G — e is also
a block.

6. Explain why G — e is a planar graph containing a cycle C' that includes both
u and v, and choose C' to have a maximum number of interior regions.

7. Establish several structural facts about the subgraphs inside and outside the
cycle C.

8. Use these structural facts to demonstrate the existence of subdivisions of
K3 3 or K3, thus establishing the contradiction.

Exercises

1. Prove that a graph G is planar if and only if every subdivision of G is planar.

2. Use Kuratowski’s Theorem to prove that the Petersen graph (Figure 1.63)
is nonplanar.

3. Prove the first step of the proof of Kuratowski’s Theorem.

4. Determine all complete multipartite graphs (of the form K., ., ) that are
planar.

1.6 Colorings
One fish, two fish, red fish, blue fish.
— Dr. Seuss

The senators in a particular state sit on various senate committees, and the com-
mittees need to schedule times for meetings. Since each senator must be present
at each of his or her committee meetings, the meeting times need to be sched-
uled carefully. One could certainly assign a unique meeting time to each of the
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committees, but this plan may not be feasible, especially if the number of commit-
tees is large. We ask ourselves, given a particular committee structure, what is the
fewest number of meeting times that are required? We can answer this question
by studying graph coloring.

1.6.1 Definitions

Given a graph GG and a positive integer k, a k-coloring is a function K : V(G) —
{1,...,k} from the vertex set into the set of positive integers less than or equal
to k. If we think of the latter set as a set of k “colors,” then K is an assignment of
one color to each vertex.

We say that K is a proper k-coloring of G if for every pair u, v of adjacent
vertices, K (u) # K (v) — that is, if adjacent vertices are colored differently. If
such a coloring exists for a graph G, we say that G is k-colorable.

For example, the graph C5 as shown in Figure 1.85 is 3-colorable: P(a) =
P(¢) = 1, P(b) = P(d) = 2, P(c) = 3. Since Cj5 is 3-colorable, a direct

a

d c

FIGURE 1.85. (5 is 3-colorable.

consequence of the definition is that Cj is k-colorable for all k& > 3. Is C5 2-
colorable?

Another way of viewing a proper k-coloring is as an assignment of vertices
to sets, called color classes, where each set represents vertices that all receive the
same color. For the coloring to be proper, each color class must be an independent
set of vertices.

It is natural to wonder how many colors are necessary to color a particular graph
G. For instance, we know that three colors are enough for the graph in Figure 1.85,
but is this the least required? A quick check of C5 reveals that coloring with
two colors is impossible. So three colors are necessary. This idea motivates a
definition.

Given a graph G, the chromatic number of G, denoted by x(G), is the smallest
integer k such that G is k-colorable. In our example, we can say that x(C5) = 3.
What about odd cycles in general? (Try one!) What about even cycles? (Try one!)
Here is a list of chromatic numbers for some common graphs. Verify them!

2 if nis even,
X(C")_{ 3 if n is odd,
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2 ifn > 2,
X(P")_{ 1 ifn=1,
X(Ky) =n,
X(En) =1,

Exercises

1. Find the chromatic number of each of the following graphs. Explain your
answers completely.
(a) Trees.
(b) Bipartite graphs.
(c) Complete multipartite graphs, K., ., . r,.
(d) The Petersen Graph.
(e) The graph in Figure 1.86, called the Birkhoff Diamond.
(f) The graphs of the regular polyhedra in Figure 1.82.

FIGURE 1.86. The Birkhoff Diamond.

2. Senate committees C through C'; consist of the members as indicated:
Cy = {Adams, Bradford, Charles}, C5 = {Charles, Davis, Eggers},
C3 = {Davis, Ford}, Cy = {Adams, Gardner}, C5 = {Eggers, Howe},
Cs = {Eggers, Bradford, Gardner}, C; = {Howe, Charles, Ford}.
Use the ideas of this section to determine the fewest number of meeting
times that need to be scheduled for these committees.

3. When issuing seating assignments for his third grade students, the teacher
wants to be sure that if two students might interfere with one another, then
they are assigned to different areas of the room. There are six main trou-
blemakers in the class: John, Jeff, Mike, Moe, Larry, and Curly. How many
different areas are required in the room if John interferes with Moe and
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Curly; Jeff interferes with Larry and Curly; Mike interferes with Larry and
Curly; Moe interferes with John, Larry, and Curly; Larry interferes with
Jeff, Mike, Moe, and Curly; and Curly interferes with everyone?

4. Prove that adding an edge to a graph increases its chromatic number by at
most one.

5. Prove that a graph GG of order at least two is bipartite if and only if it is
2-colorable.

6. A graph G is called k-critical if x(G) = k and x(G — v) < k for each
vertex v of G.

(a) Find all 1-critical and 2-critical graphs.

(b) Give an example of a 3-critical graph.

(¢) If G is k-critical, then show that GG is connected.
(d) If G is k-critical, then show that 6(G) > k — 1.
(e) Find all of the 3-critical graphs. Hint: Use part (d).

1.6.2 Bounds on Chromatic Number

The point is, ladies and gentlemen, that greed, for lack of a better
word, is good. Greed is right. Greed works.
— Gordon Gekko, in Wall Street

In general, determining the chromatic number of a graph is hard. While small or
well-known graphs (like the ones in the previous exercises) may be fairly easy,
the number of possibilities in large graphs makes computing chromatic numbers
difficult. We therefore often rely on bounds to give some sort of idea of what the
chromatic number of a graph is, and in this section we consider some of these
bounds.

If G is a graph on n vertices, then an obvious upper bound on x(G) is n, since
an n-coloring is always possible on a graph with n vertices. This bound is exact
for complete graphs, as it takes as many colors as there are vertices to color a
complete graph. In fact, complete graphs are the only graphs for which this bound
is sharp (see Exercise 5). We set this aside as Theorem 1.41.

Theorem 1.41. For any graph G of order n, x(G) < n.

Let us now discuss a very basic graph coloring algorithm, the greedy algorithm.
To color a graph having n vertices using this algorithm, first label the vertices in
some order—call them vy, vg, ..., v,. Next, order the available colors in some
way. We will denote them by the positive integers 1, 2, ..., n. Then start coloring
by assigning color 1 to vertex v;. Next, if v; and vy are adjacent, assign color
2 to vertex vq; otherwise, use color 1 again. In general, to color vertex v;, use
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the first available color that has not been used for any of v;’s previously colored
neighbors.

For example, the greedy algorithm produces the coloring on the right from the
graph on the left in Figure 1.87. First, v; is assigned color 1; then v3 is assigned
color 1, since v9 is not adjacent to v;. Then v3 is assigned color 1 since it is not
adjacent to v; or vy. Vertex vy is assigned color 2, then vy is assigned 2, and
finally vg is assigned 2.

v, V4 v, 1 2 1

ZI ZI

Vs V3 Ve 2 1 2
FIGURE 1.87. Applying the greedy algorithm.

It is important to realize that the coloring obtained by the greedy algorithm
depends heavily on the initial labeling of the vertices. Different labelings can (and
often do) produce different colorings. Figure 1.88 displays the coloring obtained
from a different original labeling of the same graph. More colors are used in this

ZI ZI
Ve V4 v, 1 3 1
FIGURE 1.88. Applying it again.

second coloring. We see that while “greed works” in that the algorithm always
gives a legal coloring, we cannot expect it to give us a coloring that uses the
fewest possible colors.

The following bound improves Theorem 1.41.

Theorem 1.42. For any graph G, x(G) < A(G) + 1, where A(Q) is the maxi-
mum degree of G.

Proof. Running the greedy algorithm on G produces a legal coloring that uses
at most A(G) + 1 colors. This is because every vertex in the graph is adjacent
to at most A(G) other vertices, and hence the largest color label used is at most
A(G) + 1. Thus, x(G) < A(G) + 1.

Notice that we obtain equality in this bound for complete graphs and for cycles
with an odd number of vertices. As it turns out, these are the only families of
graphs for which the equality in Theorem 1.42 holds. This is stated in Brooks’s
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Theorem [41]. The proof that we give is a modification of the one given by Lovész
[190].

Theorem 1.43 (Brooks’s Theorem). If G is a connected graph that is neither an
odd cycle nor a complete graph, then x(G) < A(G).

Proof. Let G be a connected graph of order n that is neither a complete graph nor
an odd cycle. Let K = A(G). We know that & # 0 and k # 1, since otherwise
G is complete. If £ = 2, then GG must be either an even cycle or a path. In either
case, x(G) = 2 = A(G). So assume that k = A(G) > 3.

We are now faced with three cases. In each case we will establish a labeling of
the vertices of GG in the form v1, vo, . . ., v,. We will then use the greedy algorithm
to color GG with no more than k colors.

Case 1. Suppose that GG is not k-regular. Then there exists some vertex with
degree less than k. Choose such a vertex and call it v,,. Let Sy = {v,,} and let
S1 = N(vy,), the neighborhood of v,,. Further, let

S2 = N(Sl) - {vn} - S17
S3 = N(S2) —S1 — 52,

Si = N(Si—1) — Si—2 — Si—1,

for each ¢ (Figure 1.89). Since G is finite, there is some ¢ such that .S; is not empty,

FIGURE 1.89. The sets S;.

and S, is empty for all > ¢.

Next, label the vertices in S; with the labels v,,—1, Vy,—2, ..., Un—|8y]- Label the
vertices in Sy with the labels v, _|g,|—1, ..., Vn_|5,|—|s,|- Continue labeling in
this decreasing fashion until all vertices of GG have been labeled. The vertex with
label vy is in the set S;.

Let u be a vertex in some .S;, ¢ > 1. Since w has at least one neighbor in S;_1,
it has at most k£ — 1 adjacencies with vertices whose label is less than its own.
Thus, when the greedy algorithm gets to u, there will be at least one color from
{1,2,...,k} available. Further, since deg(v,,) < k, there will be a color from
{1,2,...,k} available when the greedy algorithm reaches v,,. Thus, in this case
the greedy algorithm uses at most & colors to properly color G.
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Case 2. Suppose that G is k-regular and that G has a cut vertex, say v. The
removal of v from G will form at least two connected components. Say the com-
ponents are G1, Ga, ..., Gy. Consider the graph H; = G1 U {v} (the component
(1 with v added back—see Figure 1.90). H; is a connected graph, and the degree

FIGURE 1.90. The graph H;.

of v in H is less than k. Using the method in Case 1, we can properly color H;
with at most k colors. Similarly, we can properly color each H; = G; — {v} with
at most k colors. Without loss of generality, we can assume that v gets the same
color in all of these colorings (if not, just permute the colors to make it so). These
colorings together create a proper coloring of G that uses at most & colors. Case
2 is complete.

Case 3. Suppose that GG is k-regular and that it does not contain a cut vertex.
This means that G is 2-connected.

Subcase 3a. Suppose that G is 3-connected. This means that for all v, the graph
G — v is 2-connected. Let v be a vertex of GG with neighbors v, and vy such that
v1v2 € E(G) (such vertices exist since G is not complete). By the assumption in
this subcase, the graph G — {v1, v2} is connected.

Subcase 3b. Suppose that GG is not 3-connected. This means that there exists
a pair of vertices v, w such that the graph G — {v,w} is disconnected. Let the
components of G — {v,w} be G1, Ga, ..., G;. Since k > 3, it must be that each
G, has at least two vertices. It also must be that v is adjacent to at least one vertex
in each G, since w is not a cut vertex of G. Let u € V(G1) be a neighbor of v.
Suppose for the moment that « is a cut vertex of the graph G — v. If this is the
case, then there must be another vertex y of G; such that (i) y is not a cut vertex
of the graph G — v, and (ii) the only paths from y to w in G — v go through vertex
u. Since u is not a cut vertex of G itself, it must be that y is adjacent to v. In either
case, it must be that v has a neighbor in G (either u or y) that is not a cut vertex
of G — v. The vertex v has a similar such neighbor in G5. For convenience, let us
rename: For ¢ = 1,2, let v; € V(G;) be a neighbor of v that is not a cut vertex
of the graph G' — v. Vertices v; and v9 are nonadjacent, and since they were in
different components of G — {v, w}, it must be that G — {v1, vo} is connected.

In each subcase, we have identified vertices v, vy, and vy such that vvy, vvy €
E(G), vivs € E(G), and G — {v1,v2} is connected. We now proceed to label
the vertices of GG in preparation for the greedy algorithm.
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Let v; and vo be as labeled. Let v be labeled v,,. Now choose a vertex adja-
cent to v,, that is not v; or vs (such a vertex exists, since deg(v,) > 3). Label
this vertex v,,—1. Next choose a vertex that is adjacent to either v,, or v,_; and
is not vy, va, vy, OF v,—1. Call this vertex v, _o. We continue this process. Since

G — {v1,v2} is connected, then for each i € {3,...,n — 1}, there is a ver-
tex v; € V(G) — {v1,v2,0n,0n—1,...,0;11} that is adjacent to at least one of
Vit1y.-+5 Un.

Now that the vertices are labeled, we can apply the greedy algorithm. Since
vive € E(G), the algorithm will give the color 1 to both v; and vs. Since each
v;, 3 < i < n,is adjacent to at most k — 1 predecessors, and since v,, is adjacent
to v1 and vs, the algorithm never requires more than &k = A(G) colors. Case 3 is
complete.

The next bound involves a new concept.

The clique number of a graph, denoted by w(G), is defined as the order of
the largest complete graph that is a subgraph of G. For example, in Figure 1.91,
w(G1) =3 and w(Gs) = 4.

[ L
G, G,
@

FIGURE 1.91. Graphs with clique numbers 3 and 4, respectively.
A simple bound that involves clique number follows. We leave it to the reader
to provide a (one or two line) explanation.
Theorem 1.44. For any graph G, x(G) > w(G).

It is natural to wonder whether we might be able to strengthen this theorem and
prove that x(G) = w(G) for every graph G. Unfortunately, this is false. Consider
the graph G shown in Figure 1.92. The clique number of this graph is 5, and the

FIGURE 1.92. Is x(G) = w(G)?
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chromatic number is 6 (see Exercise 2).

The upper and lower bounds given in Theorem 1.45 concern a(G), the inde-
pendence number of (G, defined back in Section 1.4.3. The proofs are left as an
exercise (see Exercise 6).

Theorem 1.45. For any graph G of order n,

a(G) <x(G) <n+1-aG).

Exercises

1. Recall that avgdeg(G) denotes the average degree of vertices in G. Prove
or give a counterexample to the following statement:

X(G) <1+ avgdeg(G).

2. If G is the graph in Figure 1.92, prove that x(G) = 6 and w(G) = 5.

3. Determine a necessary and sufficient condition for a graph to have a 2-
colorable line graph.

4. Recall that 7(G) denotes the number of vertices in a detour path (a longest
path) of G, prove that x(G) < 7(G).

5. Prove that the only graph G of order n for which x(G) = n is K.

6. Prove that for any graph G of order n,

a(G) <x(G) <n+1-aG).

7. If G is bipartite, prove that w(G) = x(G).
8. Let G be a graph of order n. Prove that

@ n < X(G)x(G);
(b) 2v/n < X(G) + x(G).

1.6.3 The Four Color Problem

That doesn’t sound too hard.
— Princess Leia, Star Wars

The Four Color Problem. Is it true that the countries on any given map can
be colored with four or fewer colors in such a way that adjacent countries are
colored differently?
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The seemingly simple Four Color Problem was introduced in 1852 by Francis
Guthrie, a student of Augustus DeMorgan. The first written reference to the prob-
lem is a letter from DeMorgan to Sir William Rowan Hamilton. Despite Hamil-
ton’s indifference'>, DeMorgan continued to talk about the problem with other
mathematicians. In the years that followed, many of the world’s top mathematical
minds attempted either to prove or disprove the conjecture, and in 1879 Alfred
Kempe announced that he had found a proof. In 1890, however, P. J. Heawood
discovered an error in Kempe’s proof. Kempe’s work did have some positive fea-
tures, though, for Heawood made use of Kempe’s ideas to prove that five colors
always suffice. In this section, we translate the Four Color Problem into a graph
theory problem, and we prove the Five Color Theorem.

Any map can be represented by a planar graph in the following way: Repre-
sent each country on the map by a vertex, and connect two vertices with an edge
whenever the corresponding countries share a nontrivial border (more than just a

point). Some examples are shown in Figure 1.93.

FIGURE 1.93. Graph representations of maps.

l

|

The regions on the map correspond to vertices on the graph, so a graph col-
oring yields a map coloring with no bordering regions colored the same. This
natural representation allows us to see that a map is 4-colorable if and only if its
associated graph is 4-colorable.

The Four Color Conjecture is equivalent to the following statement. A thorough
discussion of this equivalence can be found in [52].

15Perhaps he was too busy perfecting plans for a cool new game that he would release a few years
later. See Section 1.4.3.
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Theorem 1.46 (Four Color Theorem). Every planar graph is 4-colorable.

When Heawood pointed out the error in Kempe’s proof, researchers flocked
back to the drawing board. People worked on the Four Color Problem for years
and years trying numerous strategies. Finally, in 1976, Kenneth Appel and Wolf-
gang Haken, with the help of John Koch, announced that they had found a proof
[12]. To complete their proof, they verified thousands of cases with computers,
using over 1000 hours of computer time. As you might imagine, people were
skeptical of this at first. Was this really a proof? How could an argument with so
many cases be verified?

While the Appel-Haken proof is accepted as being valid, mathematicians still
search for alternative proofs. Robertson, Sanders, Seymour, and Thomas [239]
have probably come the closest to finding a short and clever proof, but theirs still
requires a number of computer calculations.

In a 1998 article [267], Robin Thomas said the following.

For the purposes of this survey, let me telescope the difficulties with
the A&H proof into two points: (1) part of the proof uses a computer
and cannot be verified by hand, and (2) even the part that is suppos-
edly hand-checkable has not, as far as I know, been independently
verified in its entirety. ...Neil Robertson, Daniel P. Sanders, Paul
Seymour, and I tried to verify the Appel-Haken proof, but soon gave
up and decided that it would be more profitable to work out our own
proof. ... We were not able to eliminate reason (1), but we managed
to make progress toward (2).

As mentioned earlier, Heawood [156] provided a proof of the Five Color
Theorem in the late 1890s, and we present his proof here. Some of the ideas
in his proof came from Kempe’s attempt [174] to solve the Four Color Problem.

Theorem 1.47 (Five Color Theorem). Every planar graph is 5-colorable.

Proof. We induct on the order of G. Let G be a planar graph of order n. If n < 5,
then the result is clear. So suppose that n > 6 and that the result is true for all
planar graphs of order n — 1. From Theorem 1.35, we know that G’ contains a
vertex, say v, having deg(v) < 5.

Consider the graph G’ obtained by removing from G the vertex v and all edges
incident with v. Since the order of G’ is n — 1 (and since G’ is of course planar),
we can apply the induction hypothesis and conclude that G’ is 5-colorable. Now,
we can assume that G’ has been colored using the five colors, named 1, 2, 3, 4,
and 5. Consider now the neighbors of v in G. As noted earlier, v has at most five
neighbors in GG, and all of these neighbors are vertices in (the already colored) G”.

If in G’ fewer than five colors were used to color these neighbors, then we can
properly color G by using the coloring for G’ on all vertices other than v, and by
coloring v with one of the colors that is not used on the neighbors of v. In doing
this, we have produced a 5-coloring for G.
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So, assume that in G’ exactly five of the colors were used to color the neighbors
of v. This implies that there are exactly five neighbors, call them w;, wa, w3, wy,
ws, and assume without loss of generality that each w; is colored with color 7 (see
Figure 1.94).

Wi
5 2
%
Ws Wy
W4 W3
4 3
FIGURE 1.94.

We wish to rearrange the colors of G’ so that we make a color available for
v. Consider all of the vertices of G’ that have been colored with color 1 or with
color 3.

Case 1. Suppose that in G’ there does not exist a path from w; to w3 where all
of the colors on the path are 1 or 3. Define a subgraph H of G’ to be the union of
all paths that start at w; and that are colored with either 1 or 3. Note that w3 is not
a vertex of H and that none of the neighbors of w3 are in H (see Figure 1.95).

FIGURE 1.95.

Now, interchange the colors in H. That is, change all of the 1’s into 3’s and
all of the 3’s into 1’s. The resulting coloring of the vertices of G’ is a proper
coloring, because no problems could have possibly arisen in this interchange. We
now see that w; is colored 3, and thus color 1 is available to use for v. Thus, G is
5-colorable.

Case 2. Suppose that in G’ there does exist a path from w; to ws where all of
the colors on the path are 1 or 3. Call this path P. Note now that P along with v
forms a cycle that encloses either wq or wy (Figure 1.96).
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or

FIGURE 1.96. Two possibilities.

So there does not exist a path from ws to w4 where all of the colors on the
path are 2 or 4. Thus, the reasoning in Case 1 applies! We conclude that G is
5-colorable.

Exercises

1. Determine the chromatic number of the graph of the map of the United
States.

2. Determine the chromatic number of the graph of the map of the countries
of South America.

3. Determine the chromatic number of the graph of the map of the countries
of Africa.

4. Determine the chromatic number of the graph of the map of the countries
of Australia. Hint: This graph will be quite small!

5. Where does the proof of the Five Color Theorem go wrong for four colors?

1.6.4 Chromatic Polynomials

Everything should be made as simple as possible, but not simpler.
— Albert Einstein

Chromatic polynomials, developed by Birkhoff in the early 1900s as he studied
the Four Color Problem, provide us with a method of counting the number of
different colorings of a graph.

Before we introduce the polynomials, we should clarify what we mean by dif-
ferent colorings. Given a graph G, suppose that its vertices are labeled vy, va,
...Un. A coloring of GG is an assignment of colors to these vertices, and we call
two colorings C; and Cy, different if at least one v; receives a different color in
(1 than it does in C'. For instance, the two colorings of K4 shown in Figure 1.97
are considered different, since v and vy receive different colorings.



98 1. Graph Theory

red blue red blue
2 Vv, v, Vv,
Vs Vs Vs V4
green white white green

FIGURE 1.97. Two different colorings.

If we restrict ourselves to four colors, how many different colorings are there
of K4? Since there are four choices for vq, then three for v, etc., we see that
there are 4 - 3 - 2 - 1 different colorings of K4 using four colors. If six colors were
available, there would be 6 - 5 - 4 - 3 different colorings. If only two were available,
there would be no proper colorings of Kj.

In general, define ¢ (k) to be the number of different colorings of a graph G
using at most k colors. So we have ¢k, (4) = 24, ¢k, (6) = 360, and ¢k, (2) = 0.
In fact, if k and n are positive integers where k > n, then

e, (k) = k(k — 1)(k —2) - (k —n +1).

Further, if & < n, then ¢k, (k) = 0. We also note that cg, (k) = k™ for all
positive integers k and n.

A simple but important property of ¢ (k) is that G is k-colorable if and only if
ca (k) > 0. Equivalently, ¢ (k) > 0 if and only if x(G) < k.

Finding values of c¢ (k) is relatively easy for some well-known graphs. Com-
puting this function in general, though, can be hard. Birkhoff and Lewis [27]
developed a way to reduce this hard problem to an easier one. Before we see their
method, we need a definition.

Let G be a graph and let e be an edge of GG. Recall that G — e denotes the graph
where e is removed from G. Define the graph G/e to be the graph obtained from
G by removing e, identifying the end vertices of e, and leaving only one copy of
any resulting multiple edges.

As an example, a graph G and the graphs G — bc and G /bc are shown in Fig-
ure 1.98.

Theorem 1.48. Let G be a graph and e be any edge of G. Then
cg(k) = cg—c(k) — cq/e(k).

Proof. Suppose that the end vertices of e are u and v, and consider the graph
G —e.

How many k-colorings are there of G — e where u and v are assigned the same
color? If C'is a such a coloring of G — e, then C' can be thought of as a coloring of
G /e, since u and v are colored the same. Similarly, any coloring of G /e can also
be thought of as a coloring of G — e where u and v are colored the same. Thus,
the answer to this question is ¢/ (k).
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G - bc a
G a . .
b c
w z
b c X y
Gl/be 4
w z
* y b&c ™7/
X y

FIGURE 1.98. Examples of the operations.

Now, how many k-colorings are there of G — e where u and v are assigned
different colors? If C' is a such a coloring of G — e, then C' can be considered as a
coloring of G, since u and v are colored differently. Similarly, any coloring of G
can also be thought of as a coloring of G — e where u and v are colored differently.
Thus, the answer to this second question is ¢ (k).

Thus, the total number of k-colorings of G — e is

cG—e(k) = cge(k) + ca(k),
and the result follows.

For example, suppose we want to find cp, (k). That is, how many ways are there
to color the vertices of P, with k colors available? We label the edges of P as
shown in Figure 1.99.

P, ® ® ® °
€ € €;

FIGURE 1.99. The labeled edges of Pix.
The theorem implies that
Cpy (k) = CPy—ey (k) —CpPy/eq (k)

For convenience, let us denote Py — e; and P, /e; by G171 and G2, respectively
(see Figure 1.100).

G, e ° ° ° G, e ° °
e, e, e, e,

FIGURE 1.100. The first application.
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Applying the theorem again, we obtain

Cpy (k) = CGi1—e2 (k) —CGy1/en (k) — CGia—es (k) + CGia/en (k)

Denote the graphs Gll — €9, Gll/eg, Glg — e, and G12/62 by Ggl, GQQ, G23,
and G4, respectively (see Figure 1.101).

G, e ° oo Gy, e oo
€3 €3
G22 ® G24
] €3

FIGURE 1.101. The second application.

Applying the theorem once more yields
Cpy (k) = CGa1—es (k) — CGai/es (k) — CGyy—es (k) + CGas/es (k)
— CGa3—es (k) + CGas/es (k) + CGay—es (k) — CGay/es (k)
That is,
Cpy (k) = CEy (k)_cE?, (k)_cE?, (k)+cE2 (k)_cE?, (k)+cE2 (k)+cE2 (k)_cEl (k)

Thus,
cp, (k) =K — K -+ -+ B+ —k

=k* — 3k +3k% — k.

We should check a couple of examples. How many colorings of P are there
with one color?
cp, (1) =1* = 3(1)3 +3(1)2 —1=0.

This, of course, makes sense. And how many colorings are there with two colors?
cp,(2) =2 —3(2)° +3(2)2 —2=2.

Figure 1.102 shows these two colorings. Score one for Birkhoff!

red blue red  blue blue red blue red
[ L L o [ L L 4 @

FIGURE 1.102. Two 2-colorings of Pj.

As you can see, chromatic polynomials provide a way to count colorings, and
the Birkhoff—Lewis theorem allows you to reduce a problem to a slightly simpler
one. We should note that it is not always necessary to work all the way down to
empty graphs, as we did in the previous example. Once a graph G is obtained for
which the value of ¢ (k) is known, there is no need to reduce that one further.

We now present some properties of ¢ (k).



1.7 Matchings 101

Theorem 1.49. Let G be a graph of order n. Then
1. cq(k) is a polynomial in k of degree n,
2. the leading coefficient of (k) is 1,
3. the constant term of cc (k) is 0,
4. the coefficients of c:(k) alternate in sign, and

5. the absolute value of the coefficient of the k™! term is the number of edges
inG.

We leave the proof of this theorem as an exercise (Exercise 3). One proof strat-
egy is to induct on the number of edges in G and use the Birkhoff-Lewis reduction
theorem (Theorem 1.48).

Before leaving this section, we should note that Birkhoff considered chromatic
polynomials of planar graphs, and he hoped to find one of them that had 4 as a
root. If he had found one, then the corresponding planar graph would not be 4-
colorable, and hence would be a counterexample to the Four Color Conjecture.
Although he was unsuccessful in proving the Four Color Theorem, he still de-
serves credit for producing a very nice counting technique.

Exercises

1. Find chromatic polynomials for each of the following graphs. For each one,
determine how many 5-colorings exist.

(@) Ki3

(b) Ki5

(©) C4

(@) Cs

(e) Ky—e

(f) K5 —e
2. Show that k* — 4k® + 3k? is not a chromatic polynomial for any graph.
3. Prove Theorem 1.49.

4. Determine the chromatic polynomial for a tree of order n.

1.7 Matchings

Pardon me, do you have a match?
— James Bond, in From Russia with Love
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The Senate committees that we discussed earlier need to form an executive coun-
cil. Each committee needs to designate one of its members as an official repre-
sentative to sit on the council, and council policy states that no senator can be the
official representative for more than one committee. For example, let us suppose
there are four committees: Senators A, B, C, and D are on Committee 1; Senators
A, F, and F' are members of Committee 2; Committee 3 consists of &, F', and D;
and Senator A is the only member of Committee 4. In this example, the executive
council could consist of A, F, F', and C—representing Committees 4, 3, 2, and
1, respectively.

As another example, suppose Committee 1 consists of W, X and Y'; Commit-
tee 2 of W, X, and Z; Committee 3 of W, Y, and Z; Committee 4 of X, Y, and
Z; and Committee 5 of W and Z. It does not take long to see that it is impossible
in this case to select official representatives according to the policy.

So a natural question arises: Under what circumstances can the executive coun-
cil be formed successfully? In the sections that follow, we will see how graphs
can be used to help answer this question.

1.7.1 Definitions

And as to the meaning . ..
— C. S. Calverly, Ballad

A matching in a graph is a set of independent edges. That is, it is a set of edges
in which no pair shares a vertex. Given a matching M in a graph G, the vertices
belonging to the edges of M are said to be saturated by M (or M -saturated). The
other vertices are M -unsaturated.

Consider the graph G shown in Figure 1.103. An example of a matching in G
is My = {ab, ce,df}. My = {cd, ab} is also a matching, and so is M3 = {df}.
We can see that a, b, ¢, d are Ms-saturated and e, f, and g are Ms-unsaturated.
The only M -unsaturated vertex is g.

FIGURE 1.103. The matching M;.

If a matching M saturates every vertex of G, then M is said to be a perfect
matching. In Figure 1.104, G has a perfect matching, namely {ab, ch, de, fg}.
None of G5, G3, and G4 has a perfect matching. Why is this? We will talk more
about perfect matchings in Section 1.7.4.

A maximum matching in a graph is a matching that has the largest possible
cardinality. A maximal matching is a matching that cannot be enlarged by the
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G,

*—o—o—0—90

FIGURE 1.104. Only G has a perfect matching.

addition of any edge. In Figure 1.105, M; = {ae,bf, cd, gh} is a maximum
matching (since at most one of gh, gi, and ¢gj can be in any matching). The match-
ing My = {dg, af,bc} is maximal, but not maximum.

a b

FIGURE 1.105.

Exercises

1. Determine whether the graph of Figure 1.106 has a perfect matching. If so,
then exhibit it. If not, explain why.

FIGURE 1.106. Is there a perfect matching?

2. Find the minimum size of a maximal matching in each of the following
graphs.

(a) Cro
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(b) Cn1
(c) Cy

3. (From [52].) The matching graph M (G) of a graph G has the maximum
matchings of G as its vertices, and two vertices M and M of M (G) are
adjacent if M, and M differ in only one edge. Show that each cycle C,,,
n = 3,4, 5, or 6, is the matching graph of some graph.

1.7.2 Hall’s Theorem and SDRs

I’ll match that!
— Monty Hall, Let’s Make a Deal

In this section we consider several classic results concerning matchings. We begin
with a few more definitions.

Given a graph GG and a matching M, an M -alternating path is a path in G where
the edges alternate between M -edges and non-M -edges. An M -augmenting path
is an M -alternating path where both end vertices are M -unsaturated.

As an example, consider the graph G and the matching M indicated in Fig-
ure 1.107. An example of an M-alternating path is ¢, a, d, e, i. An example of
an M-augmenting path is j, g, f, a, ¢, b. The reason for calling such a path “M -
augmenting” will become apparent soon.

J
FIGURE 1.107. The graph G and matching M.

The following result is due to Berge [23].

Theorem 1.50 (Berge’s Theorem). Let M be a matching in a graph G. M is
maximum if and only if G contains no M -augmenting paths.

Proof. First, assume that M is a maximum matching, and suppose that P :
V1,02, ...,V 1s an M-augmenting path. Due to the alternating nature of M-
augmenting paths, it must be that &k is even and that the edges vovs, v4vs, ...,
vi—ovk—1 are all edges of M. We also see that the edges vy va, v3v4, .. ., Vk—_1Vk
are not edges of M (Figure 1.108).

But then if we define the set of edges M to be

M, = (M \ {U2U3, L ,’kag’kal}) U {’Ulvg, C ,kalvk},
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Viio Vo V3 V4 Vs Vg Vica Va1 Vi

FIGURE 1.108. An M -augmenting path.

then M is a matching that contains one more edge than M, a matching that we
assumed to be maximum. This is a contradiction, and we can conclude that GG
contains no M -augmenting paths.

For the converse, assume that G has no M -augmenting paths, and suppose that
M’ is a matching that is larger than M. Define a subgraph H of G as follows: Let
V(H) = V(G) and let E(H) be the set of edges of G that appear in exactly one
of M and M’. Now consider some properties of this subgraph H. Since each of
the vertices of G lies on at most one edge from M and at most one edge from M,
it must be that the degree (in H) of each vertex of H is at most 2. This implies
that each connected component of H is either a single vertex, a path, or a cycle.
If a component is a cycle, then it must be an even cycle, since the edges alternate
between M-edges and M'-edges. So, since |M’| > |M]|, there must be at least
one component of H that is a path that begins and ends with edges from M’. But
this path is an M -augmenting path, contradicting our assumption. Therefore, no
such matching M’ can exist—implying that M is maximum.

Before we see Hall’s classic matching theorem, we need to define one more
term. If GG is a bipartite graph with partite sets X and Y, we say that X can be
matched into Y if there exists a matching in G that saturates the vertices of X .

Consider the two examples in Figure 1.109. In the bipartite graph on the left,

X Y X Y

FIGURE 1.109.

we see that X can be matched into Y. In the graph on the right, though, it is
impossible to match X into Y (why is this?). What conditions on a bipartite graph
must exist if we want to match one partite set into the other? The answer to this
question is found in the following result of Hall [147] (Philip, not Monty).

Recall that the neighborhood of a set of vertices S, denoted by N(SS), is the
union of the neighborhoods of the vertices of .S.
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Theorem 1.51 (Hall’s Theorem). Let G be a bipartite graph with partite sets X
and Y. X can be matched into Y if and only if [N (S)| > |S| for all subsets S of
X.

Proof. First suppose that X can be matched into Y, and let .S be some subset of
X. Since S itself is also matched into Y, we see immediately that |S| < |[N(5)]
(see Figure 1.110). Now suppose that [N (S)| > |S] for all subsets S of X, and

SNEICX X |
=
3

FIGURE 1.110.

let M be a maximum matching. Suppose that © € X is not saturated by M (see
Figure 1.111). Define the set A to be the set of vertices of G that can be joined to u

c J
L °
°
u
X Y

FIGURE 1.111.

by an M -alternating path. Let S = AN X, andletT = ANY (see Figure 1.112).
Notice now that Berge’s Theorem implies that every vertex of 7' is saturated by

S

X Y

FIGURE 1.112.
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M and that w is the only unsaturated vertex of S. That is, every vertex of 7" is
saturated, and every vertex of S'\ {u} is saturated. This implies that |T| = |S|—1.
It follows from Berge’s Theorem and the definition of 7" that N (S) = T'. But then
we have that [N(S)| = |S| — 1 < |S], and this is a contradiction. We conclude
that such a vertex u cannot exist in X and that M saturates all of X.

Given some family of sets X, a system of distinct representatives, or SDR, for
the sets in X can be thought of as a “representative” collection of distinct elements
from the sets of X . For instance, let S1, S5, S3, S4, and S5 be defined as follows:

Sy = {278}7
Sz = {8},

S3 ={5,7},
Sy ={2,4,8},
S5 ={2,4}.

The family X; = {51, S2, 53,54} does have an SDR, namely {2,8,7,4}. The
family X5 = {51, So, Sy, S5} does not have an SDR.

So under what conditions will a finite family of sets have an SDR? We answer
this question with the following theorem.

Theorem 1.52. Let Sy, So, ..., Sg be a collection of finite, nonempty sets. This
collection has an SDR if and only if for every t € {1,...,k}, the union of any t
of these sets contains at least t elements.

Proof. Since each of the sets is finite, then of course S = S1 U Sy U --- U S is
finite. Let us say that the elements of S are aq, ..., a,.

We now construct a bipartite graph with partite sets X = {S1,..., S} and
Y = {ai1,...,a,} (Figure 1.113). We place an edge between S; and a; if and
only if a; € S;.

FIGURE 1.113. Constructing a bipartite graph.

Hall’s Theorem now implies that X can be matched into Y if and only if | 4| <
|N(A)| for all subsets A of X. In other words, the collection of sets has an SDR
if and only if for every t € {1, ..., k}, the union of any ¢ of these sets contains at
least ¢ elements.
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Hall’s Theorem is often referred to as Hall’s Marriage Theorem. We will see
more about this in Section 2.9.

Exercises

1. (From [56].) For the graphs of Figure 1.114, with matchings M as shaded,
find

(a) an M-alternating path that is not M -augmenting;

(b) an M-augmenting path if one exists; and, if so, use it to obtain a bigger

A
/=

FIGURE 1.114.

2. For each of the following families of sets, determine whether the condition
of Theorem 1.52 is met. If so, then find an SDR. If not, then show how the
condition is violated.

(@) {1,2,3},{2,3,4},{3,4,5},{4,5},{1,2,5}

(b) {1,2,4},{2,4}, {2,3},{1,2,3}

@) {1,2},{2,3},{1,2,3}.{2,3,4}, {1,3}, {3,4}
(d {1,2,5}, {1,5}, {1,2},{2,5}

() {1,2,3},{1,2,4},{1,3,4},{1,2,3,4}, {2, 3,4}

3. Let G be a bipartite graph. Show that G has a matching of size at least
[E(G)]/A(G).

4. Let©® = {51, 5s,...,S,} be a family of distinct nonempty subsets of the
set {1,2,...,n}. If the S; are all of the same cardinality, then prove that
there exists an SDR of ©.



1.7 Matchings 109

5. Let My and M5 be matchings in a bipartite graph G' with partite sets X and
Y. If S C X is saturated by My and T' C Y is saturated by M, show that
there exists a matching in G that saturates S U T'.

6. (From [139].) Let GG be a bipartite graph with partite sets X and Y. Let dx
denote the minimum degree of the vertices in X, and let Ay denote the
maximum degree of the vertices in Y. Prove that if x > Ay, then there
exists a matching in G that saturates X.

1.7.3 The Konig-Egervary Theorem

What I tell you three times is true.
— Lewis Carroll, The Hunting of the Snark

The main theorem that we present in this section is very important, for it is closely
related to several results from other areas of graph theory. We will discuss a few
of these areas after we have proven the theorem.

A set C of vertices in a graph G is said to cover the edges of G if every edge of
G is incident with at least one vertex of C. Such a set C is called an edge cover
of G.

Consider the graphs G; and G5 in Figure 1.115. In Gy, the set {b,d, e, a} is
an edge cover, as is the set {a, e, f }. In fact, you can see by a little examination
that there is no edge cover (G; with fewer than three vertices. So we can say that
{a, e, f} is a minimum edge cover of G;. In G5, each of the following sets is an
edge cover: {v1,va, v3, V4, U5, U} (Obviously) and {us, vg, u1}. What is the size
of a minimum edge cover here?

a b Vi V2 V3 Vg4 Vs Vg
C
d
G, G,
f l/ll u2 u3 u4

FIGURE 1.115.

We are now ready to prove the following result of Konig [180] and Egervary
[87].

Theorem 1.53 (Konig—Egervary Theorem). Let G be a bipartite graph. The max-
imum number of edges in a matching in G equals the minimum number of vertices
in an edge cover of G.

Proof. Let M be a maximum matching of G. Let X and Y be the partite sets of
G, and let W be the set of all M -unsaturated vertices of X (see Figure 1.116).
Note that |M| = | X| — |W|.
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X Y

FIGURE 1.116.

Now let A be the set of vertices of G that can be reached via an M -alternating
path from some vertex of W. Let S = AN X, and let T'= ANY. We can note
two things now: First, S \ W is matched to T' (implying that |W| = |S| — |T)),
and second, N(S5) =T.

If welet C = (X \ S) UT, we see that C' covers the edges of G. So C' is an
edge cover of G, and |C| = [X| — [S| + |T| = | X| — |[W| = |M|. Now suppose
that C’ is any edge cover. Since each vertex of C’ can cover at most one edge
of M, it must be that |C’| > |M|. We conclude then that C' is a minimum edge
cover.

The Konig—Egervary Theorem is one of several theorems in graph theory that
relate the minimum of one thing to the maximum of something else. What fol-
lows are some examples of theorems that are very closely related to the Konig—
Egervary Theorem.

Menger’s Theorem

Let G be a connected graph, and let u and v be vertices of G. If S is a subset
of vertices that does not include u or v, and if the graph G — S has v and v in
different connected components, then we say that S'is a u, v-separating set.

The following result is known as Menger’s Theorem [202].

Theorem 1.54. Let G be a graph and let u and v be vertices of G. The maximum
number of internally disjoint paths from u to v equals the minimum number of
vertices in a u, v-separating set.

Max Flow Min Cut Theorem

A graph can be thought of as a flow network, where one vertex is specified to be
the source of the flow and another is specified to be the receiver of the flow. As
an amount of material flows from source to receiver, it passes through other inter-
mediate vertices, each of which has a particular flow capacity. The fotal flow of a
network is the amount of material that is able to make it from source to receiver.
A cut in anetwork is a set of intermediate vertices whose removal completely cuts
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the flow from the source to the receiver. The capacity of the cut is simply the sum
of the capacities of the vertices in the cut.

Theorem 1.55. Let N be a flow network. The maximum value of total flow equals
the minimum capacity of a cut.

Independent Zeros

If A is an m X n matrix with real entries, a set of independent zeros in A can
be thought of as a set of ordered pairs {(i1,71), (i2,72),- - -, (%, j¢)} with the
following properties:

a. the (ig,jr) entryof AisOfork =1,2,...,¢;
b. if a # b, then i, # i, and j, # Jp-

That is, none of the zeros in the set are in the same row or column.
Now, in this matrix A one can draw lines through each row and column that
contains a zero. Such a set of lines is said to cover the zeros of A.

Theorem 1.56. The maximum number of independent zeros in A is equal to the
minimum number of lines through rows or columns that together cover all the
zeros of A.

Exercises

1. Use the Konig—Egervary Theorem to prove Hall’s Theorem.

2. Let k be some fixed integer, 1 < k < n, and let G be some subgraph of
K, ,, with 