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Abstract

In this notes we analyze an example of a linearly degenerate critical point, illustrating some

of the standard techniques one must use when dealing with nonlinear systems near a critical

point. For a particular value of a parameter, these techniques fail and we show how to get

around them. For ODE’s the situations where standard approximations fail are reasonably

well understood, but this is not the case for more general systems. Thus we do the exposition

here trying to emphasize generic ideas and techniques, useful beyond the context of ODE’s.

∗MIT, Department of Mathematics, Cambridge, MA 02139.
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1 Introduction.

Here we consider some subtle issues that arise while analyzing the behavior of the orbits near the

(single, thus isolated) critical point at the origin of the Dipole Fixed Point system (see problem

6.1.9 in Strogatz book)
dx

dt
=

2

n
xy , and

dy

dt
= y2 − x2 , (1.1)

where 0 < n ≤ 2 is a constant. Our objective is to illustrate how one can analyze the behavior

of the orbits near this linearly degenerate critical point and arrive at a qualitatively1 correct

description of the phase portrait. We will use for this “standard” asymptotic analysis techniques.

The case n = 2 is of particular interest, because then the standard techniques fail, and some

extra tricks are needed to make things work.

Just so we know what we are dealing with, a computer made phase portrait for the system2

(case n = 1) is shown in figure 1.1. Other values of 0 < n ≤ 2 give qualitatively similar pictures.

However, for n > 2 there is a qualitative change in the picture. We will not deal with the case n > 2

here, but the analysis will show how it is that things change then. The threshold between the two

behaviors is precisely the tricky case where “standard” asymptotic analysis techniques do not work.

2 Qualitative analysis.

We begin by searching for invariant curves, symmetries, nullclines, and general “orbit shape” prop-

erties for the system in (1.1).

A. Symmetries. The equations in (1.1) are invariant under the transformations:3

A1. x −→ −x

A2. y −→ −y and t −→ −t

A1 and A2 show that we need only study the behav-

ior of the equation in the quadrant x ≥ 0, y ≥ 0.

A3. x −→ ax, y −→ at, and t −→ t/a, for any constant a > 0.

1With quantitative extra information.
2The analysis will, however, proceed in a form that is independent of the information shown in this picture.
3Notice that these types of invariances occur as a rule when analyzing the “leading order” behavior near degenerate

critical points; because such systems tend to have homogeneous simple structures.
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Figure 1.1: Phase plane portrait for the Dipole Fixed Point system (1.1) for n = 1. The qualitative

details of the portrait do not change in the range 0 < n ≤ 2. However, for n > 2 differences arise.

The last set of symmetries (A3) shows that we need only compute a few orbits, since once we

have one orbit, we can get others by expanding/contracting it by arbitrary factors

a > 0. Note that we say “a few” here, not “one”! This is because the expansion/contractions

of a single orbit need not fill up the whole phase space, but just some fraction of it. A

particularly extreme example of this can be seen in figure 1.1, where the orbit given by y > 0

and x ≡ 0 simply gives back itself upon expansion. On the other hand, we will show that

any of the orbits on x > 0 (or x < 0) gives all the orbits on x > 0 (respectively, x < 0) upon

expansion/contraction.4 Actually: this is, precisely, the property that is lost for n > 2!

Note: (A2) shows that this system is reversible. On the other hand, because there are open

4It even gives the special orbits on the y-axis by taking a = ∞, and the critical point by taking a = 0.
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sets of orbits that are attracted by the critical point (we will show this later), the system is not

conservative. In fact, this is an example of a reversible, non-conservative system with a minimum

number of critical points.

B. Simple invariant curves. The y-axis (x ≡ 0) is an invariant line. Along it the flow is

in the direction of increasing y, with vanishing derivative at the origin only. This invariant

line is clearly seen in figure 1.1.

For n > 2, two further (simple) invariant lines are: y = ±
√

n√
n− 2

x.

Whenever a one parameter family of symmetries exist (such as (A3)), you should look for

invariant curves that are invariant under the whole family. In this case, this means looking

for straight lines (which is what we just did.)

C. Nullclines. The nullclines are given by

C1. The x-axis (y ≡ 0), where ẋ = 0 (and, for x 6= 0, ẏ < 0.)

C2. The y-axis (x ≡ 0), where ẋ = 0 (and, for y 6= 0, ẏ > 0.)

C3. The lines y = ±x, where ẏ = 0. In the first quadrant we also have ẋ > 0 here.

D. Orbit shape properties. In the first quadrant (from (A) above, it is enough to study

this x > 0 and y > 0 quadrant only), consider the equation for the orbits

dy

dx
=

n(y2 − x2)

2xy
=

n

2

(
y

x
− x

y

)
. (2.1)

A simple computation then shows that:

d2y

dx2
=

n

2

(
1

x
+

x

y2

)
dy

dx
− n

2

(
y

x2
+

1

y

)

= − n

4x2y3

(
(2− n)y2 + nx2

) (
y2 + x2

)
< 0 . (2.2)

This shows that the orbits are (strictly) concave in this quadrant. Note, however, that

the inequality breaks down for n > 2. Then the orbits are concave for (n− 2)y2 < nx2 and

convex for (n− 2)y2 > nx2.
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All this information can now be put together, to obtain a first approximation to what the

phase portrait must look like, as follows:

I. Region 0 < y < x (ẏ < 0 and ẋ > 0.) The orbits enter this region (horizontally)

across the nullcline y = x, bend down, and must eventually exit the region (vertically) across

the nullcline y = 0. It should be clear that, once we show that one orbit exhibiting this behav-

ior occurs, then all the others will be expansion/contractions of this one and, in particular, of

each other (see (A3).)

The only point that must be clarified here is why we say above that the orbit “must eventually

exit the region”? Why are we excluding the possibility that y will decrease, and x will increase,

but in such a fashion that the orbit diverges to infinity, without ever making it to the x-axis?

The answer to this is very simple: this would require the orbit to have an inflection point,

which it cannot have.5

II. Region 0 < x < y (ẏ > 0 and ẋ > 0.) Considering the flow backwards in time, we

see that all the orbits that exit this region (horizontally, entering region I) across the nullcline

y = x, must originate at the critical point.

However: do all the orbits that originate at the critical point, exit this region across the

nullcline y = x? Or is it possible for such an orbit to reach infinity without ever leaving this

region? — in fact, this is precisely what happens when n > 2, when all the orbits in the region
√

n− 2 y >
√

nx do this. Figure 1.1 seems to indicate that this is not the case, but: how can

be sure that a very thin pencil of orbits hugging the y-axis does not exist?

In section 3 we will show that all the orbits leave the critical point with infinite

slope (i.e.: vertically). Consider now any orbit that exits this region through the nullcline

y = x, and (we know) starts vertically at the critical point. We also know that all the ex-

pansions/contractions of this orbit must also be orbits (see (A)), and it should be clear that

these will fill up this region completely (the fact that the orbit starts vertically is crucial for

this.) But then there is no space left for the alternative type of orbits suggested in the prior

paragraph, thus there are none. This clarifies the point in the prior paragraph.

5See (D) — notice that the orbits are always concave in this region, for all values of n > 0.
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III. Conclusion. With this information, and using the symmetries in (A), we can draw a

qualitatively correct phase plane portrait, which will look as the one shown in figure 1.1. It

should be clear from this figure that:

The index of the critical point is I = 2.

3 Quantitative analysis, and failure for n = 2.

Our aim in this section is to get some quantitative information about the orbits near the critical

point. In particular, exactly how they approach or leave it.

Our approach below is “semi-rigorous”, in the sense that we try to justify all the steps as

best as possible, without going to “extremes” (whatever this means). 100% mathematical rigor in

calculations like the ones that follow is possible in simple examples like the one we are doing — and

not even very hard — but quickly becomes prohibitive as the complexity of the problems increases.

But the type of techniques and way of thinking that we follow below remain useful well beyond the

point where full mathematical rigor is currently achievable. Thus, provided one is willing to pay

the price of not having the “absolute” certainty that full mathematical rigor gives, large gains can

be made — while maintaining a “reasonable” level of certainty. This point of view is pretty close

to the one adopted by Strogatz in his book.

We begin by showing the result announced (and used) towards the end of section 2, namely: that

all the orbits leave/approach the critical point vertically. As before,

we restrict out attention to the first quadrant, and assume x, y > 0.

a. All the orbits must have a tangent limit direction as they approach the origin. This follows

easily from the concavity of the orbits (see (D)): as t → −∞, the slope
dy

dx
increases mono-

tonically. Thus, it must have a well defined limit (which may be ∞; in fact, the aim here is

to show that this limit is ∞.)

b. Suppose that there is an orbit that does not approach the critical point vertically. Then, the

result in item (a) shows that we should be able to write

y ≈ αx , for 0 < x ¿ x , (3.1)
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where 1 ≤ α < ∞ is a constant,6 in fact α = lim
x→0

dy

dx
. Substitution of this into equation (2.1)

then yields (upon taking the limit x → 0)

α =
n

2

(
α− 1

α

)
⇐⇒ (n− 2)α2 = n , (3.2)

which has no solution for 0 < n ≤ 2! It follows that an orbit approaching the critical point at

a finite slope cannot occur — which is precisely what we wanted to show.

We now become more ambitious and ask the question: How exactly do the orbits leave the

critical point? — that is to say: What is the leading order behavior in their shape

for 0 < x << 1? As we will show later (see remark 3.2), the answer to this question is useful in

calculating the rate (in time) at which the solutions approach the critical point.

To answer this last question we proceed as follows: We know that the orbits have infinite slope near

the critical point, thus we can write

y À x for 0 < x ¿ 1 . (3.3)

Using this, we should be able to replace equation (2.1) by the approximation

dy

dx
≈ n y2

2xy
=

ny

2x
. (3.4)

This yields

y ≈ βxn/2 , (3.5)

where β is a constant. This last step is not rigorous, by a long shot, and we must be a bit careful

before accepting it. Equation (3.4) is correct (the neglected terms are smaller than the ones kept),

but it is not clear that (upon integration) the neglected terms will not end up having a significant

contribution to the solution of the equation.

Thus before we accept equation (3.5) we must make some basic checks (these sort of

checks are important, you must always try to do as much as it is reasonable and you can do along

these lines), such as:

6We know that α ≥ 1 because the orbit must leave the critical point staying above the line y = x.
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c. Consistency with known facts. For example:

c1. For 0 < n < 2, (3.5) is consistent with (3.3).

c2. For n > 2, (3.5) is not consistent with (3.3). However, our proof that the orbits approach

the critical point vertically (which is what (3.3) is based on) does not apply for n > 2.

In fact, for n > 2, (3.2) provides a very definite (neither infinite nor zero) direction of

approach — which happens to agree with the invariant lines mentioned in (B) earlier.

So, there is no contradiction (see remark 3.1 below for a brief description of what the

situation is when n > 2.)

c3. For n = 2, (3.5) is not consistent with (3.3). Since our proof that the orbits approach the

critical point vertically (which implies (3.3)) does apply for n = 2, we have a problem

here, a rather tricky one, which we will address in section 4 below.

d. Self-consistency (plug in the proposed approximation into the full equation and check

that the neglected terms are indeed small). In this case the neglected term in the equation is
nx

2y
, which has size (using (3.5))

nx

2y
= O(x(2−n)/2) , while

dy

dx
=

ny

2x
= O(x(n−2)/2) .

For the retained terms to be smaller than the neglected terms, we need (2− n)/2 > (n− 2)/2,

which is true only for n < 2. Thus (3.5) is self-consistent only for n < 2.

e. Estimate the error. That is, write the solution as

y = βxn/2 + y1 ,

and assume y1 ¿ βxn/2. Then use this to get an approximate equation for y1, solve it, and

check that, indeed: y1 ¿ βxn/2.

In the case 0 < n < 2 (the only one worth doing this for, since the other cases have already

failed the two prior tests) one can do not only this, but repeat the process over and over again,

obtaining at each stage higher order asymptotic approximations to the solution. That is, an

asymptotic series of the form

y = βxn/2 + y1 + y2 + y3 + . . . , (3.6)

where yn+1 ¿ yn, can be systematically computed.
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Remark 3.1 What happens when n > 2.

The same methods that work for 0 < n < 2 can be used to study this case (but a bit more work

is needed). The main difference in the phase portrait occurs because all the orbits (except for the

special ones along the y-axis) approach the critical point along the lines
√

n− 2 y = ±√nx.

For
√

n− 2 |y| < ±√n |x|, the orbits look rather similar to the orbits in the case 0 < n < 2, that

is to say: closed loops starting and ending at the critical point, except that they approach the critical

point along the lines
√

n− 2 y = ±√nx, not the y-axis.

For
√

n− 2 |y| > ±√n |x|, the orbits approach the critical point at one end (along the lines
√

n− 2 y = ±√n x) and infinity at the other (ending parallel to the y-axis there). In between their

slopes vary steadily (no inflection points) from one limit to the other.

Figure 3.1 shows a typical phase plane portrait for the n > 2 case. From the figure it should be

clear that we still have for the index: I = 2.

Remark 3.2 Rate of approach to the critical point (0 < n < 2.)

Substituting (3.5) into (1.1), we obtain (near the critical point, where both x and y are small)

dx

dt
≈ 2β

n
x(n+2)/2 , and

dy

dt
≈ y2 ,

where (in the second equation) we simply used the fact that y À x. Thus

x = O

(
1

(−t)2/n

)
and y = O

(
1

t

)
, as t → −∞ .

4 Resolution of the difficulty in the case n = 2.

Again we restrict out attention to the first quadrant, and assume x, y > 0.

The results of section 3 are quite contradictory, when it comes to the case when n = 2. On the

one hand, we showed that (3.3) must apply. But, on the other hand, when we implemented the

consequences of this result (in (3.4)) we arrived at the contradictory result in (3.5). As we pointed

out, the step from (3.4) to (3.5), is not foolproof and need not work. On the other hand, it usually

does, and when it does not, things can get very subtle.7 We will show next a simple approach that

works in fixing some problems like the one we have.

7In fact, there are some open research problems that have to do with failures of this type, albeit in contexts quite

a bit more complicated than this one.
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Figure 3.1: Phase plane portrait for the Dipole Fixed Point system (1.1) for n = 5. The qualitative

details of the portrait do not change in the range 2 < n, but differ from those that apply in the range

0 < n < 2 (see figure 1.1.)

What happens for n = 2 must be, in same sense, a limit of the behavior for n < 2, as n → 2.

Now, look at (3.5) in this limit: it is clear that the behavior must become closer and closer to that

of a straight line (since the exponent approaches 1), at least locally (i.e.: near any fixed value of

x). On the other hand, it would be incorrect to assume that this implies that the orbits become

straight in this limit, because this ignores that fact that β will depend on n too. In fact, we know

that the limit behavior is not a straight line, but this argument shows that is must be very, very

close to one. Thus we propose to seek solutions of the form

y = αx , (4.1)
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where α = α(x) is not a constant, but behaves very much like one as x → 0. By this we mean that,

when we calculate the derivative
dy

dx
= α +

dα

dx
x , (4.2)

we can neglect the second term. That is

α À dα

dx
x , as x → 0 . (4.3)

We also expect that α →∞ as x → 0, since we know that the orbits must approach the critical

point vertically.

Notice that this proposal provides a very clean explanation of how it is that the step

from (3.3) to (3.5), via (3.4), fails (and provides a way out): In writing (3.4) some small

terms are neglected, and what is left is (when writing the solution in the form (4.1)) is α. Comparing

this with (4.2), we see that the neglected terms are, precisely, those that make α non-constant. Thus,

by neglecting them we end predicting that α is a constant,8 which leads to all the contradictions

pointed out in section 3.

What we need to do, therefore, is calculate the leading order correction9 to the right hand side

in (3.4), and equate it to the second term in (4.2). This will then give an equation for
dα

dx
, which

we must then solve. If the solution is then consistent with the assumption above in (4.3), we will

have our answer and the mystery will be solved.10

We now implement the process described in the prior paragraph. The leading order correction

to the right hand side in (3.4) is (recall n = 2 now)

correction = −x

y
= − 1

α
, (4.4)

which is small, since α is large for 0 < x ¿ 1. Thus the equation for α is:

x
dα

dx
= − 1

α
=⇒ α =

√
c− 2 ln(x) , (4.5)

where c is a constant. It is easy to see that this is consistent with (4.3).

8That is, α = β in (3.5).
9That is to say: plug (4.1) into equation (2.1) and then expand, using the fact that α is large.

10Note that this answer must be subject to the same type of basic checks we went through in (c), (d), and (e) of

section 3, before we accepted (3.5) in the case 0 < n < 2.
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Remark 4.1 It turns out that this problem is so simple that the “leading order” correction — i.e.:(−1

α

)
above in (4.4) — is everything! Thus (4.1 – 4.5) in fact provides not just an approximation

near the critical point, but an exact solution! It follows that we do not need to check for any

“consistencies” to make sure that the “approximation” can be trusted (in the manner of (c), (d),

and (e) of section 3.)

Of course, in more complicated problems this will (generally) not happen, and expressions like

the one in (4.1) — with α given by (4.5) — will end up being just the first term in an asymptotic

approximation for the orbit shape.

At this point you may wonder: what exactly is the “method” proposed here?

Well, as usual with these kind of things, there is no precise recipe that can be given — just as there

is no precise recipe that can be given to explain the “standard” methods. However, just as in the

standard methods one can give a vague — and rather short — list of things to do (e.g.: balance

terms and look for pairs that may dominate, therefore simplifying the problem11) we provide below a

list of hints as to what one can do when faced with problems like the one we treat in this section. In

the end, though, each problem is its own thing and (at least with our present level of understanding)

the only way to learn how to do these things “well” is by painfully acquired experience.

When faced with a problem of this type, you may try this:

1. See if you can add a parameter to the equations (say: n), in such a way that the difficult

problem corresponds to some critical value n = nc, and you can do the problem for n 6= nc.

In the example here nc = 2.

2. Look at the behavior of the solution for the “easier” problems as n → nc. This limit will,

almost certainly, be singular. What you should then do is try to extract a functional form

(by looking at these limits) with appropriate properties.12 The aim is to “guess” what the

“right” form to try for the solution is, by looking at the behavior of the solutions of the nearby

problems on each side of nc (these ought to “sandwich” the right behavior between them.)

11Books in asymptotic expansions deal with these and other ideas at length; see (for example) Bender, C. M., and

Orszag, S. A. (1978) Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York.)
12Sorry if this sounds very vague; it is very vague, but it is the best I can do!
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In the example studied here we had (β is a constant):

y ≈ β x1−ε , where ε =
nc − n

2
, when n < nc = 2

and

y ≈
√

1− ε√
ε

x , where ε =
n− nc

2
, when n > nc = 2 .

In the first case the limit behavior is βx, but it is a very non-uniform limit near x = 0 (see

what happens with the derivatives.) In the second case there is not even a limit.

The solutions for both cases, however, have the common form αx, where the bad behavior is

restricted to α. Thus we picked this common form, and assumed properties for α “intermedi-

ate” between the behaviors on each side: a constant, but not quite one, and going to infinity

as x → 0.

3. Alternatively, look at the solution13 that fails for n = nc. This solution will satisfy an ap-

proximate form of the equations (where some small terms have been neglected), but will be

inconsistent with the assumptions made in arriving to it — e.g.: the small terms end up not

being as small as assumed. The failure must occur because the neglected small terms have

some important effect. Therefore, try the following: assume a form of the solution equal to

the one that fails, but allow any free parameters in this solution to be “slow” functions, rather

than constants (this means: when taking derivatives, the terms involving derivatives of the

parameters will be higher order.14) Then use this “slow” dependence to eliminate the leading

order terms in the errors to the approximations that lead to the failed solution in the first

place. If you are lucky, and clever enough, this might fix the problem.

In the example studied here, the failure occurs for n = 2, when equation (3.4) becomes

dy

dx
=

y

x
, with solution y = αx (α a constant.)

This solution is inconsistent with the assumption y À x used in deriving (3.4). Thus we took

this form, but made the free constant parameter in the solution (α) a slow function of x, with

13Given by “standard” techniques.
14These functions should also have properties (e.g.: large, small, ... in some limit) that make the assumed form

consistent with the approximations that lead to the equations they solve.
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the additional property α À 1 as x → 0 (so that y À x still applies.) This then works, in this

case so well that it gives an exact solution.

The three hints outlined above will work straightforwardly for relatively simple problems, both in

ODE’s and PDE’s. Beyond that . . .

5 Exact solution of the orbit equation.

Equation (2.1) is simple enough that one can solve it exactly (for all values of n.) We can then

use this exact solution to verify that everything done earlier (using approximate arguments) is

absolutely correct. This is not a luxury one can afford too often; generally exact solutions are not

available and rigorous arguments are either too expensive or impossible — thus, the only tools one

is left with are numerical computations, approximate analysis, and experimental observations.15

Let us now solve (2.1). Multiply both sides of the equation by 2y and integrate. This yields a linear

equation in y2, namely:
dy2

dx
− n

x
y2 = −nx .

Now multiply the equation by x−n, and integrate again, to obtain (assume x > 0):

dy2x−n

dx
= −nx1−n .

From this the following solutions follow:

• Case 0 < n < 2.

y2 = 2Rxn − n

2− n
x2 , for 0 ≤ x ≤

(
2R(2− n)

n

) 1

2− n
, (5.1)

where R > 0 is a constant. For n = 1 these are circles of radius R, centered at (x, y) = (R, 0).

• Case n = 2.

y2 = (2 ln(x0)− 2 ln(x)) x2 , for 0 ≤ x ≤ x0 , (5.2)

where x0 > 0 is a constant.

15For 2-D problems all sorts of theoretician luxuries are available. But real problems are seldom this simple.
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• Case n > 2.

y2 = −Cxn +
n

n− 2
x2 , for 0 ≤ x ≤

(
n

(n− 2)C

) 1

n− 2
, (5.3)

where C > 0 is a constant (these are the orbits giving closed loops in figure 3.1), or

y2 = Cxn +
n

n− 2
x2 , for 0 ≤ x , (5.4)

where C ≥ 0 is a constant (these are the orbits that diverge to infinity in the sectors around

the y-axis in figure 3.1.)

6 Commented Bibliography.
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2. Bender, C. M., and Orszag, S. A. (1978). Advanced Mathematical Methods for Scientists and

Engineers, McGraw-Hill, New York.

This book has an extensive treatment of many of the ideas in asymptotic (and other) methods,

with many comparisons between the asymptotic approximations and numerical solutions. It

introduces the methods using simple examples, so it deals (mostly) with ODE’s.

3. Coddington, E. A., and Levinson, N. (1955). Theory of Ordinary Differential Equations,

McGraw-Hill, New York.

A rigorous treatment of the theory of ODE’s, and a classic for this. This book proves ev-

erything, but it does so with minimum use of jargon. It has several chapters dedicated to

asymptotic properties of ODE’s, a complete treatment of the Poincaré Bendixson theorem,

and many other things. If you want hard core proofs, without excuses or unnecessary jargon,

this is the place to go. Of course, it is a bit old, and a lot of the new theory is not here —



Tricky asymptotics fixed point. Notes: 18.385, MIT. Fall 2000. 16

but you cannot really appreciate (or understand) any proof in the newer theory without this

background.

4. Ince, E. L. (1926). Ordinary Differential Equations, Longmans, Green, London.

There is also a Dover edition!

Old, perhaps, but very good. A hard core exposition of the classical theory of ODE’s.

THE END.
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Abstract

In two dimensions a Hopf bifurcation occurs as a Spiral Point switches from stable

to unstable (or vice versa) and a periodic solution appears. There are, however, more

details to the story than this: The fact that a critical point switches from stable

to unstable spiral (or vice versa) alone does not guarantee that a periodic

solution will arise,1 though one almost always does. Here we will explore these

questions in some detail, using the method of multiple scales to find precise conditions

for a limit cycle to occur and to calculate its size. We will use a second order scalar

equation to illustrate the situation, but the results and methods are quite general and

easy to generalize to any number of dimensions and general dynamical systems.

1Extra conditions have to be satisfied. For example, in the damped pendulum equation: ẍ+µẋ+sin x = 0,

there are no periodic solutions for µ 6= 0 !

1
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1 Hopf bifurcation for second order scalar equations.

1.1 Reduction of general phase plane case to second order scalar.

We will consider here equations of the form

ẍ + h(ẋ, x, µ) = 0 , (1.1)

where h is a smooth and µ is a parameter.

Note 1 There is not much loss of generality in studying an equation like (1.1), as

opposed to a phase plane general system. For let:

ẋ = f(x, y, µ) and ẏ = g(x, y, µ) . (1.2)

Then we have

ẍ = fxẋ + fyẏ = fxf + fyg = F (x, y, µ) . (1.3)

Now, from ẋ = f(x, y, µ) we can, at least in principle,2 write

y = G(ẋ, x, µ) . (1.4)

Substituting then (1.4) into (1.3) we get an equation of the form (1.1).3

1.2 Equilibrium solution and linearization.

Consider now an equilibrium solution4 for (1.1), that is:

x = X(µ) such that h(0, X, µ) = 0 , (1.5)

2We can do this in a neighborhood of any point (x∗, y∗) (say,a critical point) such that fy(x∗, y∗, µ) 6= 0,

as follows from the Implicit Function theorem. If fy = 0, but gx 6= 0, then the same ideas yield an equation

of the form ÿ + h̃(ẏ, y, µ) = 0 for some h̃. The approach will fail only if both fy = gx = 0. But, for a

critical point this last situation implies that the eigenvalues are fx and gy, that is: both real ! Since we are

interested in studying the behavior of phase plane systems near a non–degenerate critical point switching

from stable to unstable spiral behavior, this cannot happen.
3Vice versa, if we have an equation of the form (1.1), then defining y by y = G(ẋ, x, µ), for any G such

that the equation can be solved to yield ẋ = f(x, y, µ) (for example: G = ẋ), then ẏ = Gẋẍ + Gxẋ = g(x, y)

upon replacing ẋ = f and ẍ = −h.
4i.e.: a critical point.
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so that x ≡ X is a solution for any fixed µ. There is no loss of generality in assuming

X(µ) ≡ 0 for all values of µ , (1.6)

since we can always change variables as follows: xold = X(µ) + xnew.

The linearized equation near the equilibrium solution x ≡ 0 (that is, the equation for x

infinitesimal) is now:

ẍ− 2αẋ + βx = 0 , (1.7)

where α = α(µ) = −1
2
hẋ(0, 0, µ) and β = β(µ) = hx(0, 0, µ) .

The critical point is a spiral point if β > α2. The eigenvalues and linearized solution

are then
λ = α± iω̃ (1.8)

(where ω̃ =
√

β − α2) and

x = aeαt cos (ω̃(t− t0)) , (1.9)

where a and t0 are constants.

1.3 Assumptions on the linear eigenvalues needed for a Hopf bi-

furcation.

Assume now: At µ = 0 the critical point changes from a stable to an unstable spiral

point (if the change occurs for some other µ = µc, one can always redefine µold = µc+µnew).

Thus

α < 0 for µ < 0 and α > 0 for µ > 0, with β > 0 for µ small.

In fact, assume:

• I. h is smooth.

• II. α(0) = 0, β(0) > 0 and
d

dµ
α(0) > 0 .5





(1.10)

We point out that, in addition, there are some restrictions on the behavior of

the nonlinear terms near the critical point that are needed for a Hopf bifurcation

to occur. See equation (1.22).

5This last is known as the Transversality condition. It guarantees that the eigenvalues cross the imaginary

axis as µ varies.
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1.4 Weakly Nonlinear things and expansion of the equation near

equilibrium.

Our objective is to study what happens near the critical point, for µ small. Since for µ = 0 the

critical point is a linear center, the nonlinear terms will be important in this study. Since

we will be considering the region near the critical point, the nonlinearity will be weak.

Thus we will use the methods introduced in the Weakly Nonlinear Things notes.

For x, ẋ, and µ small we can expand h in (1.1). This yields

ẍ + ω2
0x +

{
1
2Aẋ2 + Bẋx + 1

2Cx2
}
+

+ 1
6

{
Dẋ3 + 3Eẋ2x + 3Fẋx2 + Gx3

}

− 2p2ẋµ + Ωxµ + O(ε4, ε2µ, εµ2) = 0 ,

(1.11)

where we have used that h(0, 0, µ) ≡ 0 and α(0) = 0. In this equation we have:

A. ω2
0 =

∂

∂x
h(0, 0, 0) = β(0) > 0, with ω0 > 0,

B. A =
∂2

∂ẋ2
h(0, 0, 0), B =

∂2

∂ẋ∂x
h(0, 0, 0) , . . .,

C. p2 = −1

2

∂2

∂ẋ∂µ
h(0, 0, 0) =

d

dµ
α(0) > 0, with p > 0,

D. Ω =
∂2

∂x∂µ
h(0, 0, 0) =

d

dµ
β(0),

E. ε is a measure of the size of (x, ẋ). Further: both ε and µ are small.

1.5 Explanation of the idea behind the calculation.

We now want to study the solutions of (1.11). The idea is, again: for ε and µ small the

solutions are going to be dominated by the center in the linearized equation ẍ + ω2
0x = 0,

with a slow drift in the amplitude and small changes to the period6 caused by the higher

order terms. Thus we will use an approximation for the solution like the ones in section 2.1

of the Weakly Nonlinear Things notes.

6We will not model these period changes here. See section 2.3 of the Weakly Nonlinear Things notes for

how to do so.
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1.6 Calculation of the limit cycle size.

An important point to be answered is: What is epsilon? (1.12)

This is a parameter that does not appear in (1.1) or, equivalently, (1.11). In fact, the only

parameter in the equation is µ (assumed small as we are close to the bifurcation point µ = 0).

Thus:
ε must be related to µ. (1.13)

In fact, ε will be a measure of the size of the limit cycle, which is a property of the

equation (and thus a function of µ and not arbitrary all).

However: We do not know ε a priori! How do we go about determining it?

The idea is: If we choose ε “too small” in our scaling of (x, ẋ), then we will be looking

“too close” to the critical point and thus will find only spiral-like behavior, with no limit

cycle at all. Thus, we must choose ε just large enough so that the terms involving

µ in (1.11) (specifically 2p2µẋ, which is the leading order term in producing the sta-

ble/unstable spiral behavior) are “balanced” by the nonlinearity in such a fashion that

a limit cycle is allowed. In the context of Two–Timing this means we want µ to “kick

in” the damping/amplification term 2p2µẋ at “just the right level” in the sequence of

solvability conditions the method produces. Thus, going back to (1.11), we see that7

• The linear leading order terms ẍ + ω2
0x appear at O(ε).

• The first nonlinear terms (quadratic) appear at O(ε2).

However: Quadratic terms produce no resonances, since sin2 θ =
1

2
(1− cos 2θ) and

there are no sine or cosine terms. The same applies to cos2 θ and to

sin θ cos θ.

• Thus, the first resonances will occur when the cubic terms in x play a role ⇒ we must

have the balance
O(x3) = O(µẋ) , (1.14)

⇒ µ = O(ε2).

7This is a crucial argument that must be well understood. Else things look like a bunch of miracles!



18.385 MIT (Rosales) Hopf Bifurcations. 7

1.7 The Two Timing expansion up to O(ε3).

We are now ready to start. The expansion to use in (1.11) is

x = εx1(τ, T ) + ε2x2(τ, T ) + ε3x3(τ, T ) + . . . , (1.15)

where 0 < ε ¿ 1, 2π–periodicity in T is required, T = ω0t, ω0 is as in (1.11)8, τ is a slow

time variable and ε is related to µ by µ = νε2, where ν = ±1 (which ν we take depends

on which “side” of µ = 0 we want to investigate).

What exactly is τ? Well, we need τ to resolve resonances, which will not occur until the cubic

terms kick in into the expansion ⇒ τ = ε2t. (This is exactly the same argument used to

get (1.14)).

Then, with ′ = ∂
∂T

, (1.11) becomes:

ω2
0x
′′ + ω2

0x +
{

1
2
Aω2

0(x
′)2 + Bω0xx′ + 1

2
Cx2

}
+

1
6
{Dω3

0(x
′)3 + 3Eω2

0(x
′)2x + 3Fω0x

′x2 + Gx3} +

2ε2ω0x
′
τ − 2ε2νp2ω0x

′ + ε2νΩx + O(ε4) = 0 .

(1.16)

The rest is now a computational nightmare, but it is fairly straightforward. Without

getting into any of the messy algebra, this is what will happen:

At O(ε) ω2
0 {x′′1 + x1} = 0 . Thus

x1 = a1(τ)eiT + c.c. (1.17)

for some complex valued function a1(τ). We use complex notation, as in the Weakly Non-

linear Things notes.

At O(ε2) ω2
0 {x′′2 + x2}+ {quadratic terms in x1 and x′1}︸ ︷︷ ︸ = 0 . (1.18)

From the first bracket in (1.16), the quadratic terms here have the form:

C1a
2
1e

i2T + C2

∣∣∣a2
1

∣∣∣ + C∗
1(a∗1)

2e−2iT ,

where C1 and C2 are constants that can be computed in terms of ω0, A, B and C.

Since the solution and equation are real valued, C2 is real. Here, as usual, ∗ indicates the

complex conjugate.

8Same as the linear (at µ = 0) frequency. No attempt is made in this expansion to include higher order

nonlinear corrections to the frequency.
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No resonances occur and we have

x2 =
{(

a2(τ)eiT +
1

3
ω−2

0 C1a
2
1e

i2T
)

+ c.c.
}
− ω−2

0 C2

∣∣∣a2
1

∣∣∣ . (1.19)

At O(ε3) ω2
0 (x′′3 + x3) + 2ω0x

′
1τ − 2νp2ω0x

′
1 + νΩx1 + CNLT = 0 , (1.20)

where CNLT stands for Cubic Non Linear Terms, involving products of the form x2x1,

x′2x1, x2x
′
1, x′2x

′
1, (x′1)

3, (x′1)
2x1, x′1x

2
1 and x3

1. These will produce a term of the form

da2
1a
∗
1e

iT + c.c. plus other terms whose T dependencies are: 1, e±2iT and e±3iT , none of

which is resonant (forces a non periodic response in x3). Here

d is a constant that can be computed in terms of ω0, A, B, C, D, E, F and G . (1.21)

This is a big and messy calculation, but it involves only sweat. In general, of course,

Im(d) 6= 0. The case Im(d) = 0 is very particular, as it requires h in equation (1.1)to be just

right, so that the particular combination of its derivatives at x = 0, ẋ = 0 and µ = 0 that

yields Im(d) just happens to vanish. Thus

Assume a nondegenerate case: Im(d) 6= 0 . (1.22)

For equation (1.20) to have solutions x3 periodic in T , the forcing terms proportional to e±iT

must vanish. This leads to the equation:

2ω0i
d

dτ
a1 − 2νp2ω0ia1 + νΩa1 + d

∣∣∣a2
1

∣∣∣ a1 = 0. (1.23)

Then write

a1 = ρeiθ , with ρ and θ real , ρ > 0 .

This yields

d

dτ
θ =

1

2
νω−1

0 Ω +
1

2
ω−1

0 Re(d)ρ3 (1.24)

and
d

dτ
ρ = νp2(1− νqρ2)ρ , (1.25)

where q =
1

2
ω−1

0 p−2Im(d).
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Equation(1.24) provides a correction to the phase of x1, since x1 = 2ρ cos(T + θ). The

first term on the right of (1.24) corresponds to the changes in the linear part of the phase

due to µ 6= 0, away from the phase T = ω0t at µ = 0. The second term accounts for the

nonlinear effects.

The second equation (1.25) above is more interesting. First of all, it reconfirms that for

µ < 0 (that is, ν = −1) the critical point (ρ = 0) is a stable spiral, and that for µ > 0 (that

is, ν = 1) it is an unstable spiral. Further

If Im(d) > 0. Then a stable limit cycle exists for

µ > 0 (i.e. ν = 1) with ρ =
√

2ω0p2(Im(d))−1 .

Supercritical (Soft) Hopf Bifurcation.

If Im(d) < 0. Then an unstable limit cycle exists for

µ < 0 (i.e. ν = −1) with ρ =
√
−2ω0p2(Im(d))−1 .

Subcritical (Hard) Hopf Bifurcation.





(1.26)

Notice that ρ here is equal to
1

2ε
the radius of the limit cycle.

1.7.1 Remark on the situation at the critical bifurcation value.

Notice that, for µ = 0 (critical value of the bifurcation parameter)9 we can do a two timing

analysis as above to verify what the nonlinear terms do to the center.10 The calculations are

exactly as the ones leading to equations (1.23)–(1.25), except that ν = 0 and ε is now a small

parameter (unrelated to µ, as µ = 0 now) simply measuring the strength of the nonlinearity

near the critical point. Then we get for ρ =
1

2ε
radius of orbit around the critical point

d

dτ
ρ = −1

2
ω−1

0 Im(d)ρ3 . (1.27)

From this the behavior near the critical point follows.

9Then the critical point is a center in the linearized regime.
10This is the way one would normally go about deciding if a linear center is actually a spiral point and

what stability it has.
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Clearly





• Im(d) > 0 ⇐⇒ Soft bifurcation ⇐⇒ Nonlinear terms stabilize.

For µ = 0 critical point is a stable spiral.

• Im(d) < 0 ⇐⇒ Hard bifurcation ⇐⇒ Nonlinear terms de-stabilize.

For µ = 0 critical point is an unstable stable spiral.

1.7.2 Remark on higher orders and two timing validity limits.

As pointed out in the Weakly Nonlinear Things notes, Two Timing is generally valid for some

“limited” range in time, here probably |τ | ¿ ε−1. This is because we have no mechanism

for incorporating the higher order corrections to the period the nonlinearity produces. If

we are only interested in calculating the limit cycle in a Hopf bifurcation (not it’s stability

characteristics), we can always do so using the Poincaré–Lindsteadt Method. In particular,

then we can get the period to as high an order as wanted.

1.7.3 Remark on the problem when the nonlinearity is degenerate.

What about the degenerate case Im(d) = 0 ?

In this case there may be a limit cycle, or there may not be one. To decide the question

one must look at the effects of nonlinearities higher than cubic (going beyond O(ε3) in the

expansion) and see if they stabilize or destabilize. If a limit cycle exists, then its size will

not be given by
√
|µ|, but something else entirely different (given by the appropriate balance

between nonlinearity and the linear damping/amplification produced by α 6= 0 when µ 6= 0

in equation (1.7)). The details of the calculation needed in a case like this can be quite hairy.

One must use methods like the ones in Section 2.3 of the Weakly Nonlinear Things notes

because: even though the nonlinearity may require a high order before it decides the issue of

stability, modifications to the frequency of oscillation will occur at lower orders.11 We will

not get into this sort of stuff here.

11Note that Re(d) 6= 0 in (1.24) produces such a change, even if Im(d) = 0 and there are no nonlinear

effects in (1.25).
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Abstract

When nonlinearities are “small” there are various ways one can exploit this

fact — and the fact that the linearized problem can be solved exactly1 — to produce

useful approximations to the solutions.

We illustrate two of these techniques here, with examples from phase plane

analysis: The Poincaré–Lindstedt method and the (more flexible) Two Timing

method. This second method is a particular case of the Multiple Scales approxima-

tion technique, which is useful whenever the solution of a problem involves effects that

occur on very different scales. In the particular examples we consider, the different

scales arise from the basic vibration frequency induced by the linear terms (fast scale)

and from the (slow) scale over which the small nonlinear effects accumulate.

The material in these notes is intended to amplify the topics covered in

section 7.6 and problems 7.6.13–7.6.22 of the book “Nonlinear Dynamics

and Chaos” by S. Strogatz.

1Actually, one can also use these ideas when one has a nonlinear problem with known solution, and

wishes to solve a slightly different one. But we will not talk about this here.

1



18.385 MIT Weakly Nonlinear Things: Oscillators. 2

Contents
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1 Poincaré-Lindstedt Method (PLM).

PLM is a technique for calculating periodic solutions. The idea is that, if the linearized

equations have periodic solutions and 0 < ε ¿ 1 is a measure of the size of the nonlinear terms

then:

I. For any finite time period t0 ≤ t ≤ t0 + Tf (Tf > 0), the trajectories for the full

system will remain pretty close to those of the linearized system (errors no worse than

O(εTf ), typically).

II. On the other hand, even a small error is enough to destroy periodicity. An orbit that

“closes on itself” after some time period, will generally fail to do so if slightly perturbed.

Thus, typically, nonlinearity will destroy most periodic orbits the linearized system might

have. Some, however, may survive2 −→ PLM is designed to pick those up.

Even if a periodic orbit of the linearized system survives:

III. The nonlinearity will change (slightly) the shape of the orbit.

IV. The speed of “travel” along the orbit will be affected by the nonlinearity. In

particular the period will change (slightly.)

PLM takes care of these effects as follows:

A. The solution is approximated at leading order by the linear solution, but small correc-

tions at higher orders are introduced to take care of the (small) shape changes.

B. The linear solution is evaluated at a stretched time, to account for the change in period.

The two examples that follow illustrate the ideas.

1.1 Duffing Equation.

The equation can be written in the form

ẍ + x + ενx3 = 0 , (1.1)

2That is, if ~u = ~u(t) is a periodic solution of the linearized system, then so is a~u, for any scalar constant

a. But for only a few values of a will periodicity “survive” the effect of the nonlinearity.
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where 0 < ε ¿ 1 and ν = ±1. This equation is actually a conservative system, with

(conserved) energy

E =
1

2
ẋ2 +

1

2
x2 +

1

4
ενx4 . (1.2)

Thus all orbits for x bounded will be periodic.3 PLM will allow us to calculate corrections

to the linear period of 2π and sinusoidal orbit shape (for the bounded orbits).

The PLM expansion is given by:

x(t) = x0(T ) + εx1(T ) + ε2x2(T ) + · · · , (1.3)

where xj = xj(T ) is periodic of period 2π in T and does not depend on ε. T = ωt is the

stretched time variable, where

ω = 1 + εω1 + ε2ω2 + · · · , (1.4)

is a (real, positive) constant to be computed. The nonlinear period is then 2π/ω.

Note 1 x0(T ) will be the solution to the linearized problem, so (1.3) will reduce to the

right answer when ε = 0.

We now proceed as follows:

• First: Rewrite (1.1) in terms of the new independent variable T , replacing · = d
dt

by

′ = d
dT

via d
dt

= ω d
dT

. Thus:

ω2x′′ + x + ε ν x3 = 0 . (1.5)

• Second: Substitute (1.3) and (1.4) into (1.5) and collect equal powers4 of ε. Then require

that the equation be satisfied at each level in ε. Thus we get an equation for each order εp,

which determine higher and higher orders of approximation in the expansion (1.3), as follows.

3Notice that, for ν = 1 ALL orbits are periodic. However, for ν = −1, orbits where |x| > ε−
1
2 are

not periodic. This follows from looking at the level curves for E in the (x, ẋ) phase plane. Of course, when

|x| = O(ε−
1
2 ), the nonlinear term in equation (1.1) has the same size as the linear terms: the problem is no

longer “weakly nonlinear”. Thus, we should not be surprised if the solution exhibits behavior not close to

the linearized one.
4This is the messy part. It means you have to plug (1.3) and (1.4) into (1.5), then do all the products,

etc. . . . so as to end with the equation written as: {· · ·}+ ε {· · ·}+ ε2 {· · ·}+ · · · = 0.
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O(1) equation:

x′′0 + x0 = 0 . (1.6)

Clearly then

x0 = a cos T , (1.7)

where a is, at this stage, an arbitrary constant.5

O(ε) equation: x′′1 + 2ω1x
′′
0 + x1 + νx3

0 = 0, that is:

x′′1 + x1 = 2ω1a cos T − νa3 cos3 T =

=
{
2ω1a− 3

4
νa3

}
cos T − 1

4
νa3 cos 3T .

(1.8)

The form of equation (1.8) is typical of all the higher order equations.

Namely, we get the linear equation for the new term in x at that order — x1

here — forced by terms involving the lower orders already solved for.

The solution x1 to (1.8) will be 2π-periodic in T only if the coefficient of the cos T term on

the right hand side (terms between the brackets) vanishes. This is because this term will

produce a response in x1 proportional to T sin T , which is clearly not periodic. Since we

are interested in a nontrivial solution (that is a 6= 0) we conclude that:

ω1 = 3
8
νa2 ,

x1 = 1
32

νa3 cos 3T + A cos T + B sin T︸ ︷︷ ︸ ,
(1.9)

where the term marked by the brace in the second equation is the arbitrary homogeneous

solution, with A and B arbitrary constants. The first equation here determines the first

frequency correction, in terms of the amplitude6 of the oscillations a, which remains arbitrary

at this level.7 We note also that the homogeneous solution in the second equation above

5In fact, in this case, a will remain arbitrary. There is also a phase shift we could include in (1.7). But

this is just a matter of where we put the time origin (see appendix A.1).
6This is typical of nonlinear oscillators: the frequency depends on the amplitude.
7That is, no restrictions have been imposed by the expansion on it. In fact, it can be shown that no

restrictions on a will appear at any level of the expansion. This is because there is in fact a whole one

parameter set of periodic solutions, which can be parameterized by the amplitude a.



18.385 MIT Weakly Nonlinear Things: Oscillators. 6

amounts to no more than a small change in the amplitude and phase of the leading order

solution. That is:

a cos T −→ (a + εA) cos T + εB sin T = ã cos(T − T̃ ) ,

for some ã and T̃ . Thus (see appendix A.1)

Without Loss of Generality: we can set A = B = 0 in (1.9). (1.10)

O(ε2) equation: x′′2 + 2ω1x
′′
1 + (2ω2 + ω2

1) x′′0 + x2 + 3νx2
0x1 = 0, that is:

x′′2 + x2 =
(
2ω2 + ω2

1

)
a cos T +

9

16
ω1νa3 cos 3T − 3

32
a5 cos2 T cos 3T , (1.11)

where cos2 T cos 3T = 1
4
cos T + 1

2
cos 3T + 1

4
cos 5T . Again: x2 will be periodic only if the

coefficient of the cos T forcing term on the right hand side here vanishes. This yields

ω2 = −1

2
ω2

1 +
3

256
a4 = − 15

256
a4 (1.12)

and an explicit formula for x2, which we do not display here. Clearly, this process can be

carried to any desired order (see appendix A.2).

In summary, we have found for the solutions8 of the Duffing equation:

x ∼ a cos T + 1
32ενa3 cos 3T + O(ε2) ,

T = ωt ,

ω ∼ 1 + 3
8ενa2 − 15

256ε
2a4 + O(ε3) .

(1.13)

1.2 van der Pol equation.

The equation has the form

ẍ− εν(1− x2)ẋ + x = 0 , (1.14)

where 0 < ε ¿ 1 and ν = ±1. We use now the same ideas of section 1.1, so that (1.3) and

(1.4) still apply. Instead of (1.5) we get now

ω2x′′ + x− ενω(1− x2)x′ = 0 . (1.15)

8Notice that this is valid only as long as 0 ≤ a2 ¿ ε−1. When |a| = O(ε−
1
2 ), the “corrections” cease to

be smaller than the leading order and the expansion fails. This agrees with our observations in footnote 3.
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We proceed now to look at the expansion order by order.

At O(1) we get, as before (see appendix A.3):

x0 = a cos T. (1.16)

O(ε) equation: x′′1 + 2ω1x
′′
0 + x1 − ν(1− x2

0)x
′
0 = 0, that is:

x′′ + x1 = 2ω1a cos T − νa sin T + νa3 cos2 T sin T

= 2ω1a cos T + νa
(

1
4
a2 − 1

)
sin T + 1

4
νa3 sin 3T .

(1.17)

To get a periodic solution x1, both the coefficients of cos T and sin T must vanish on the

right hand side =⇒ For a nontrivial solution (a 6= 0) we must have9:

a = 2 , ω1 = 0 and x1 = − 1

32
νa3 sin 3T + A cos T + B sin T︸ ︷︷ ︸ . (1.18)

Note 2 There is an important difference here with the situation in the analog equations

(1.8) and (1.9). Now both sines and cosines appear on the right hand side of equation (1.17).

Thus we end up with TWO conditions that must be satisfied if equation (1.17) is to have

a periodic solution for x1. These conditions are generally called Solvability Conditions.

Thus now BOTH a and ω1 are determined. There is NO FREE PARAMETER left and

there is just one periodic orbit: the LIMIT CYCLE.

Since now a is fixed to be a = 2, we can no longer argue that by a slight change in

the amplitude and phase of x0, we can set A = B = 0 (homogeneous part of the solution,

marked by the brace above), as we did in (1.10). It is still true, however, that the phase of

the leading order x0 can be changed slightly. We can then use this to conclude (see appendix

A.3)

Without Loss of Generality: we can set B = 0 in (1.18). (1.19)

On the other hand, we point out that A remains to be determined. That is, the circular

part of the limit cycle orbit does not have a radius exactly equal to 2, but rather equal to

2 + εA + . . .

9We could take a = −2 also. This, however, is just a phase change T → T + π. Thus, we may as well

assume a > 0.
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At the next order (that is, O(ε2)) we will get an equation of the form:

x′′2 + x2 = Forcing . (1.20)

Again (see note 3) sine and cosine forcing terms on the right will have to be eliminated.

This will produce two conditions, that will determine both A and ω2 uniquely. In x2 an

homogeneous term of the form α cos T will appear,10 with α and ω3 determined at O(ε3).

And so on to higher and higher orders.

A unique solution, up to a phase shift, is produced

this way to all orders: The LIMIT CYCLE.
(1.21)

Note 3 In fact, after some calculation — using (1.16), (1.18) and (1.19) — we can see

that (1.20) is:

x′′2 + x2 =
(
2ω2 + 1

128
a4

)
a cos T +

(
3
4
a2 − 1

)
νA sin T

− 3
64

a3 (2− a2) cos 3T + 3
4
νAa2 sin 3T + 5

128
a5 cos 5T .

(1.22)

Thus we conclude

ω2 = − 1

256
a4 , A = 0 and x2 = α cos T +

3

512
a3(2−a2) cos 3T − 5

3072
a5 cos 5T , (1.23)

where we recall that a = 2.

2 Two Timing, Multiple Scales method (TTMS)

for the van der Pol equation.

2.1 Calculation of the limit cycle and stability.

In section 1.1 we basically obtained all the solutions to the Duffing equation (1.1) —

since we ended up with two free parameters: the amplitude a and an arbitrary phase shift

T → T − T0. On the other hand, in section 1.2 we only obtained the limit cycle solution.

Now, suppose we want all the solutions to the van der Pol equation (1.14) — this will

10With a “βsinT” homogeneous part of the solution eliminated just as above in (1.19)



18.385 MIT Weakly Nonlinear Things: Oscillators. 9

allow us to determine, in particular, the stability of the limit cycle. The method we introduce

in this section (TTMS) will allow us to do this.

The main idea is that, if the solution is not periodic, then we cannot represent it

with a single solution of the linearized equation (as we did in section 1, with its time

dependence stretched by ω from t to T = ωt — to allow for nonlinear corrections to the

period.11) For any “short” time period this will be O.K., but over long periods large errors

may result because they accumulate. To resolve this difficulty we will allow ALL the

parameters of the linear solution to change SLOWLY in time, so as to track the

true evolution of the solution. Thus, for equation (1.14), we expand12:

x ∼ x0(τ, t) + εx1(τ, t) + ε2x2(τ, t) + · · · , (2.1)

where t takes care of the “normal” 2π-periodic dependence induced by the linear solution

and τ = εt is the slow time (that will allow the linear solution being used to drift (slowly)

as time evolves, from one linear orbit to the next.13)

Remark 1 Note that now the solution depends explicitly on two times, thus the name

for the method. In this case the “slow” time is τ = εt, but in other problems it may be

τ = ε2t — or something else. Figuring out what the exact dependence should be need not be

trivial and usually requires some thinking: it is related to the rate at which the nonlinearity

causes drift in the orbits — as opposed to just shape changes. We will talk about this later.

We now rewrite equation (1.14) in terms of the increased set of “independent” variables

τ and t to obtain (here a dot indicates differentiation with respect to t ):

ẍ + 2εẋτ + ε2xττ + x− εν(1− x2)ẋ− ε2ν(1− x2)xτ = 0 . (2.2)

Note that the equation is now a P. D. E. ! This method appears to complicate things! How-

ever, the extra terms are multiplied by ε and ε2 and so at leading order we only get the linear

O. D. E. In fact: we will only have to solve linear O. D. E.’s at each order in the approximation!

11Namely: the orbits in phase space are quite close to the linear ones, but the speed at which they are

tracked is slightly different =⇒ Over long times a big error will accumulate, unless we correct for it.
12This is only a first, very simple, implementation. We will introduce a more refined one in section 2.3.
13This description, strictly, only applies to x0 above. The higher order terms εx1 . . . are there to account

for the fact that the nonlinear orbits will have slightly different shapes than the linear ones.
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As usual, we now substitute the expansion (2.1) into equation (2.2) and collect equal

powers of ε to obtain

O(1) equation:

x′′0 + x0 = 0 . (2.3)

This is the same as in section 1.2, except that now the arbitrary “constants” in the solution

of (2.3) will depend on τ . We thus have

x0 = A0(τ)eit + c.c. , (2.4)

where c.c. denotes complex conjugate and A0 is complex valued.

Remark 2 Alternatively, we could write x0 = a(τ) cos t + b(τ) sin t, where A = 1
2
(a− ib).

We cannot now argue, as we did before, that it is O.K. to set b = 0 using the fact that a

change of time origin t → t + t0 is allowed. This is because t0 has to be constant, while

setting an arbitrary b(τ) to zero would require t0 = t0(τ), at least in principle.14

Remark 3 The use of complex notation in (2.4) makes life simpler. The kind of expan-

sions we are doing require at each level of approximation that one expand things like x3
0 in

Fourier modes. This is much easier to do with exponentials than with sine and cosines!

At O(ε) we obtain:

ẍ1 + x1 = −2ẋ0 τ + ν(1− x2
0)ẋ0

=
{
−2i

(
d
dτ

A0 − 1
2
νA0

(
1− |A0|2

))
eit − iνA3

0e
3it

}
+ c.c. .

(2.5)

This equation is very similar to (1.17), except that now: (i) We are using complex nota-

tion, (ii) There is no ω1 term and (iii) A new term in d
dτ

A0 appears because of the allowed

τ dependence. The solution x1 will be periodic in t provided the coefficient of the eit forcing

on the right hand side of (2.5) vanishes. This yields the equation

d
dτ

A0 = 1
2
ν

(
1− |A0|2

)
A0, (2.6)

14Actually, an argument to set b = 0 can be made, namely: we expect the solutions of equation (1.14) to

be basically oscillatory. Thus, they will have maximums and minimums. If we set t = 0 to occur at a local

maximum, then ẋ = 0 at t = 0, which yields b = 0. But this argument will not work at higher orders.
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which governs the evolution15 of the amplitude A0 for the linear (circular) orbits under the

effect of the weak nonlinearity.

If we let A0 = 1
2
aeiϕ, where a and ϕ are a real amplitude and phase, respectively, then16

d

dτ
ϕ = 0 and

d

dτ
a =

1

8
ν(4− a2)a . (2.7)

These formulas show that the orbits in the phase plane are nearly circular, with a slowly changing

radius a that evolves following the second equation in (2.7) and a limit cycle for a = 2. In

particular:

For ν = 1 the limit cycle is stable and it is unstable for ν = −1. (2.8)

If we let µ = εν in (1.14) and write the equation as

ẍ− µ(1− x2)ẋ + x = 0 , (2.9)

then we see that our calculations here show that at µ = 0 we have a bifurcation, with an

exchange of stability between the limit cycle and the critical point at the origin.

µ < 0. Unstable limit cycle and stable spiral point.

µ > 0. Stable limit cycle and unstable spiral point.

µ = 0. Center with continuoum of periodic orbits. (There is no limit cycle.)

(2.10)

2.2 Higher orders and limitations of TTMS.

We us now finish the O(ε) calculation and solve equation (2.5) using (2.6). We have

x1 =
{

1

8
iνA3

0e
3it + A1(τ)eit

}
+ c.c. , (2.11)

where A1 is complex valued.

Let us now continue the expansion to one more order, as there is an important detail to

be learned from doing this.

15Drift in phase space
16Since this shows that ϕ is a constant, we could have taken b = 0 in remark 2 !
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The O(ε2) equation is:

ẍ2 + x2 = −2ẋ1τ − x0ττ + νẋ1 + νx0τ − νx2
0ẋ1 − 2νx0x1ẋ0 − νx2

0x0τ

=
{
−2i

(
A′

1 − 1
2
νA1 + ν |A2

0|A1 + 1
2
νA2

0A
∗
1 + 1

2
iνA′

0 − 1
2
iA′′

0

−1
2
iν (|A2

0|A0)
′
+ 1

16
i |A4

0|A0

)
eit + (. . .)e3it + (. . .)e5it

}
+ c.c. ,

(2.12)

where ′ = d
dτ

and A∗
1 denotes the complex conjugate of A1. Thus, to avoid secular terms

in x2 (namely: terms proportional to t eit, that destroy the periodicity in t) the coefficient

of eit on the right hand side of this last equation must vanish. Thus

A′
1 −

1

2
νA1 + ν

∣∣∣A2
0

∣∣∣ A1 +
1

2
νA2

0A
∗
1 = −1

2
iνA′

0 +
1

2
iA′′

0 +
1

2
iν

(∣∣∣A2
0

∣∣∣ A0

)′ − 1

16
i
∣∣∣A4

0

∣∣∣ A0 . (2.13)

This is a rather messy equation. We do not aim to solve it here; but only to analyze its behavior

for τ large.

Assume ν = 1: In this case the limit cycle is stable and, for τ large — see equation

(2.7) — A0 ∼ eiϕ, for some constant ϕ. Then equation (2.13) reduces to

A′
1 +

1

2
A1 +

1

2
e2iϕA∗

1 = − 1

16
ieiϕ . (2.14)

This is much simpler and can be solved explicitly17

A1 =
(
C1e

−τ + iC2 − 1

16
iτ

)
eiϕ , (2.15)

where C1 and C2 are real constants. This means that the solution of equation (2.13)

will behave, for large τ , like

A1 ∼ − 1

16
iτeiϕ . (2.16)

This is “bad”. Notice that the expansion (2.1) for the solution of (1.14) — use equations

(2.4) and (2.11) — is

x ∼ 2 Re
(
A0(τ)eiτ

)
− 1

4
ε Im

(
A3

0(τ)e3it
)

+ 2ε Re
(
A1(τ)eit

)
+ · · · .

But, when ετ = O(1) the second term in the expansion will not be small at all (as

εA1 ∼ − 1
16

iετeiϕ) ! Thus

The two timing expansion (2.1) is only valid as long as |τ | ¿ ε−1. (2.17)

17Write A1 = zeiϕ. Then z′ + Re(z) = − 1
16 i.
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This is pretty typical for TTMS expansions: Usually they are valid for a time range

where the “slow” time can be taken large — but not arbitrary large. Beyond some ε−p, for

some p, they fail.

In the current situation (2.17) is not terribly upsetting. It still allows us to take τ fairly

large. Once τ is large and the limit cycle is reached =⇒ can switch to the expansion in section

1.2 !!

However: suppose that (2.17) makes us terribly unhappy, for whatever reasons. Then

Can we fix the problem posed by (2.17)? (2.18)

The answer to this question is YES, but first we must understand why (2.17)

occurs! This is clarified next; for simplicity we CONSIDER ONLY the STABLE

LIMIT CYCLE case, when ν = 1.

Note 4 Equations (2.1)–(2.7) lead to an approximation of the limit cycle (for large τ , so

that A0 ∼ eiϕ ) given by

x ∼ 2Re(ei(t+ϕ)) = 2 cos(t + ϕ) . (2.19)

On the other hand, the PLM calculation of section 1.2 tells us that we should use

x ∼ 2 cos(ωt + ϕ) = 2Re(ei(ωt+ϕ)) ,

where ω = 1− 1
16

ε2 + · · ·. Now, since (expand in Taylor series)

ei(ωt+ϕ) = ei(t+ϕ)e−i 1
16

ε2t+··· = ei(t+ϕ) − 1

16
iε2tei(t+ϕ) + · · · , (2.20)

we see that the error in (2.19) is − 1
16

iε2tei(t+ϕ) + · · · , which is precisely the “bad” behavior

arising in A1 earlier in equation (2.16). Thus

The TTMS expansion goes bad because it does not properly take into account

the fact that the nonlinearity affects the phase — i.e. the position along the

linear orbit of the solution.

(2.21)

• It follows that, to achieve (2.18) we must fix the problem pointed out by (2.21).

THIS WE DO NEXT.
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2.3 Generalization of TTMS to extend the range of validity.

Let φ be the phase of the solution — namely: its position along the orbit — and ω = d
dt

φ

its angular velocity. The phase increases with time and, for the linearized equation, we

have
d

dt
φ = ω = 1 . (2.22)

However, once nonlinear effects kick in, there is no reason for ω to remain equal to 1,

or in fact even constant!

Now, when considering a periodic orbit, as long as ω is approximated by its correct

average value things will be O.K. (as then errors will not accumulate over time). This is

what PLM does, by taking φ = T = ωt with ω = 1 + εω1 + · · · . We cannot use this

idea of PLM in TTMS, because now the orbit (thus the average value of ω) varies slowly

as time changes. We must then allow ω to be a function of τ . Thus

To fix the type of problem discussed in the previous section 2.2 we must replace

the expansion (2.1) by a subtler type, where the phase (fast time) itself is to be determined.

Generally we must deal then with expansions of the form

x ∼ X0(τ, φ) + εX1(τ, φ) + ε2 X2(τ, φ) + · · · , (2.23)

where 2π–periodic dependence on the phase φ is required, τ = εt and

d

dt
φ = ω = 1 + ε ω1(τ) + ε2 ω2(τ) + · · · .

This amounts to writing: φ = 1
ε
(τ + ε φ1(τ) + ε2 φ2(τ) + · · ·), where d

dτ
φj = ωj .

When no τ dependence is allowed, this reduces to PLM. We will not carry out the details of

this expansion here — they are quite messy and some technicalities are involved in selecting

the ωj’s so that the Xj’s behave “properly” as functions of τ (that is, no secular growth in τ

occurs). On the other hand, in the particular case of the van der Pol equation (1.14), when

the limit cycle is stable18: all solutions eventually approach the limit cycle, and they do so

on time scales where τ ¿ ε−1 (as follows from our results in section 1.2). Thus, as long as

no cumulative errors occur in tracking the limit cycle, there should be no problems. We can

conclude thus, without doing any calculations, that:

18That is, ν = 1.
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For equation (1.14), in the case ν = 1:

• The ωj’s in equation (2.23) are constant and equal to the values calculated for the

expansion in section 1.2.

• The functional form of X0(τ, φ) in equation (2.23) is the same as that we obtained

for x0(τ, t) in equation (2.1), with t replaced by φ. That is: X0(τ, φ) = x0(τ, φ).

In particular, note that from this we learn that the TTMS approximation for the behavior

of the van der Pol equation is quite good. The secular growth displayed by A1 in equation

(2.16) for very long times is nothing to worry about. It is simply a manifestation of the

fact that we have some small (very small, O(ε2)) errors on the velocity at which the solution

moves along the limit cycle, but of nothing else. No important qualitative or quantitative

effect is missing.

Note 5 Other ways to fix the problem in (2.17) can be devised. For example, some people

advocate introducing ever slower time scales, such as ε2t, ε3t and so on — in addition to

the εt of equation (2.1). This is not a good idea, unless the problem truly depends

on that many scales! For example: if the difficulty arises because the true slow time

dependence19 is on something like (say) ε
1+ε2

t and not εt, then this “lots of scales” approach

will just complicate things for no real gain at all. For an expansion to be useful, it has to

zero into the real behavior of the solution. The aim of doing an asymptotic expansion should

be to learn something useful about the solution, not to produce a massive amount of algebra

(even if this is, sometimes, an unfortunate byproduct, it is not the aim). In particular,

producing an “approximation” that fools us into believing that the solution depends on very

many different time scales (when in fact it does not), is exactly opposite to this objective.

19Notice that the van der Pol equation is exactly an example of this type.
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A Appendix.

A.1 Some details regarding section 1.1.

Generally, asymptotic expansions — like the ones in these notes — require at each level

the solution of a linear equation with some forcing made up from the prior terms. The

solution of this linear equation is then required to satisfy some condition (periodicity in the

examples here) and this imposes restrictions on the forcing terms. These restrictions are

then used to determine free parameters, slow time evolutions, etc.

When solving the linear equations in the expansion, it is very important to include in the

solution ALL the free parameters consistent with the conditions imposed on the solution.

This is because parameters that are “arbitrary” at some level, may later be needed to satisfy

the restrictions at a higher order.20 Failure to include a particular parameter — which boils

down to setting it to some arbitrary fixed value — will typically cause trouble at higher

order, when a restriction on a forcing term will be found impossible to satisfy.

On the other hand, practical considerations dictate that we carry as few free parameters

in a calculation as feasible. Thus, one must always look at the equations involved and ask

if there is some argument that would allow for the elimination of a parameter — but never

must one eliminate a parameter without a good reason.21

Consider now equation (1.1) — or (1.5). This equation is invariant under time trans-

lation: if x = X(t) is a solution, then so it is x = X(t − t0). Thus, we can always pick the

origin of the time coordinate to simplify the solution and eliminate parameters.

For example: The general solution of (1.6) is: a cos(T −T0), where a and T0 are constants.

But the invariance under time translation shows that we can set T0 = 0.

Furthermore: At the level of (1.9) we know that in fact a is arbitrary. Then, since A and

B in (1.9) amount to making small O(ε) changes to a and T0 at the O(1) level — thus they

are not true “new” free parameters — we can again set A = B = 0, as in (1.10), without

any fear.

20For example, in section 1.2, the amplitude a in (1.16) is eventually set to a = 2 in (1.18).
21Conversely: if an expansion fails at some level, one should always check to see if somehow an important

degree of freedom (some parameter) was ignored!
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In fact, the same argument shows that we can conclude:

At any level O(εn) in the expansion, for n > 1, we can

take xn in (1.3) with NO cos T or sin T components.
(A.1)

A.2 More details regarding section 1.1.

It is clear that, in the expansion of section 1.1, the O(εn) equations — for n > 1 — have the

form

x′′n + xn = Pn(x0, . . . , xn−1)−
n∑

`=1

α`x
′′
n−` , (A.2)

where Pn is a cubic polynomial and the α`’s are constants defined by ω2 =
∑∞

`=0 α`ε
`. Thus

α0 = 1, α1 = 2ω1, α2 = 2ω2 + ω2
1, α3 = 2ω3 + 2ω1ω2, . . . . In general we can see that

αn = 2ωn + fn(ω1, . . . , ωn−1), where fn is a quadratic polynomial.

Because x0 is even, the forcing on the right hand side of (1.8) is also even. Then (1.10)

gives x1 even. The same type of argument shows then that x2 is also even. More generally,

one can show using (A.1) that all the xn’s are even.

Now, the condition on (A.2) to get xn periodic in T is that the right hand side should

not have any forcing proportional to either sin T or cos T . But the right hand side is even,

thus there is NO sin T forcing ever. On the other hand, the coefficient of the cos T forcing

has the form: 2aωn +Gn(a, ω1, . . . , ωn−1), where Gn is some polynomial function. Thus, one

can always choose ωn so as to make the coefficient of cos T vanish. We have thus

shown that

The expansion in equation (1.3) works up to any order. (A.3)

A.3 Some details regarding section 1.2.

Equation (1.14) is invariant under time translation. Thus, just as we did in appendix A.1,

we have a phase to play with and can use to eliminate parameters.

We used this fact in (1.16) to eliminate the sine component in x0(T ). But now a is no

longer a free parameter in the solution, as equation (1.18) shows that a = 2. Thus, in order

to eliminate spurious parameters in x1(T ) (from the two – A and B – that appear in (1.18)),

we only have a phase to play with.
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Since 2 cos(T − 1
2
εB) = 2 cos T +εB sin T + . . ., it follows that a small phase change can be

used to eliminate B in x1(T ) as given in (1.18). But A cannot and should not be eliminated

from the formula. In fact, at O(ε2) the solvability requirement on the equations (periodicity

of x2(T )) will determine A in the same fashion that a = 2 followed from the O(ε) equation.

At this level it will be possible to argue that no term in sin T is needed in x2(T ), but a

term α cos T must be kept (with α determined at O(ε3)). Clearly the same pattern will be

repeated over and over. In this fashion the expansion can be continued to any desired

order.



 MIT (Fall 2002) 18.385 

First Problem Set 
________________________________________________________________________ 
Suggested Readings (textbook): Chapters 1-2-3. 
Suggested Problems (textbook): 

Ch. 2: 2.2.9 2.2.12 2.2.13 2.3.3 2.4.9 2.6.1 2.8.3 2.8.5 
Ch. 3: 3.3.1 3.4.5 3.4.7 3.4.8 3.4.9 3.4.10 

________________________________________________________________________ 
Problems to hand in for grading (textbook): 

Ch. 2: 2.2.8 2.2.10 2.3.2 2.5.4 2.5.5 2.5.6 
Ch. 3: 3.2.6 3.2.7 3.3.2 3.4.6 

________________________________________________________________________ 

PROBLEM TO HAND IN FOR GRADING (not in textbook): 

PDE_Blow_Up 

In the lectures we considered the PDE problem initial value problem: 

u_t + u*u_x = 0; u(x, 0) = F(x). 

Notation: 
1) u_t and u_x are the partial derivatives, 

with respect to t and x (resp.). 
2) t is time and x is space. 
3) * is the multiplication operator. 
4) ^ denotes taking a power [u^2 is the square of u]. 
4) u = u(x, t) is a function of x and t. 

We showed that the solution to this problem ceased to exist at a finite 
time (the derivatives of u become infinite and, beyond that, u becomes 
multiple valued) whenever dF/dx was negative anywhere. 

This was shown "graphically". It can be shown analytically as follows: 
--- A. Consider the CHARACTERISTIC CURVES dx/dt = u(x, t), 

as instroduced in the lecture. 
--- B. 	 Along each characteristic curve, one has du/dt = 0, as shown in 

class. Now, let v = u_x. Then v satisfies the equation [obtained 
by taking the partial derivative with respect to x of the equation 
for u]: 

v_t + u*v_x + v^2 = 0. 

Thus, along characteristics: dv/dt + v^2 = 0. Thus, if v is 
negative anywhere, v develops an infinity in finite time. But 
the initial conditions for v, along the characteristic such that 
x(0) = x_0, is v(0) = dF/dx(x_0). 

Hence the conclusion follows: the solution u = u(x, t) to the problem 
ceases to exist at a finite time (with the 

derivative u_x of u becoming infinite somewhere) whenever dF/dx is 
negative anywhere. 

________________________ 
CONSIDER NOW THE PROBLEM: 

u_t + u*u_x = -u; u(x, 0) = F(x). 

Show that the solution to this second problem ceases to exist at a 
finite time, provided that dF/dx < C < 0, where C is a finite 
(non-zero) constant. Again, what happens is that the derivatives become 
infinite. Calculate C. 

Hint: Use an approach analog to the one used above: get an ODE for 
the derivative v = u_x along the characteristics, and study the 
conditions under which the solutions of the ODE blow-up in a 
finite time. 
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 A graphical approach for how the solution to u_t + u*u_x = -u 
behaves in time will also work, but the approach using the ODE 
for v along characteristics turns out to be simpler. 

________________________________________________________________________ 
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 MIT (Fall 2002) 18.385 

Second Problem Set 
________________________________________________________________________ 
Suggested Readings (textbook): Chapters 4-5-6. 
Suggested Problems (textbook): Strongly Recommended: SR 

Ch. 3: 3.4.11 3.5.6 3.5.7 3.6.6 3.7.5 3.7.6

Ch. 4: 4.3.2 4.3.3 4.6.4 4.6.5

Ch. 5: 5.1.10 5.2.14 ............................... SR: 5.1.10

Ch. 6: 6.1.8 6.1.9 6.1.11 6.1.13 6.2.2 ......... SR: 6.2.2


________________________________________________________________________ 
Problems to hand in for grading (textbook): 

Ch. 3: 3.4.14 3.4.15 3.5.8 3.6.3 
Ch. 4: 4.1.1 4.1.8 
Ch. 5: 5.2.11 
Ch. 6: 6.1.7 6.1.10 6.1.12 
Special Problem Below. 

________________________________________________________________________ 
NOTE: you can use the MatLab® scripts: 

PHPLdemoA, PHPLdemoB, PHPLplot or PHPLplot_v2 
with the problems requiring computer plotting. 
________________________________________________________________________ 
SPECIAL PROBLEM 

Consider a system in the plane: 	 dx/dt = f(x, y), 
dy/dt = g(x, y) 

such that the origin P = (x, y) = (0, 0)} is an isolated critical point, 
with the linearized system there having a stable star. Now consider the 
following two alternatives for the complete behavior of the system: 

(a) Linearized: stable star -----> Fully nonlinear: stable spiral. 
(b) Linearized: stable star -----> Fully nonlinear: stable proper node. 

Which ones are possible? For each one that is possible, give an example 
of a system with the desired behavior. Otherwise, explain why you think 
the particular alternative cannot happen. In this case, how close can 
you get (produce an example that ``almost'' does it)? 

OPTIONAL: Give thought to the nature of the perturbation you need: 

smooth (smooth means that the perturbation has infinitely many 
derivatives) perturbations will not do the job, why? 

It turns out that the perturbations needed cannot even have a second 
derivative at the origin (you need at least one derivative to have 
the linearization make sense). Can you give some argument in the 
direction of what is the ``minimum'' amount of singularity needed for 
the job? 

RECALL THE DEFINITIONS: 

(1) For a linear system, a stable star is a point with a double 
eigenvalue of equal algebraic and geometric multiplicities. 
Thus its associated matrix is a multiple of the identity. 

(2) We say that a critical point for a nonlinear system is a node 
(spiral, whatever) if the phase portrait NEAR the critical point 
can be ``deformed'' by a continuous transformation into the phase 
portrait for the corresponding linear system. That is: the two phase 
portraits ``look'' qualitatively the same.[For the purposes of this 
problem use this second ``definition'' --- i.e.: do not worry about 
continuous transformations, just show that the key properties are 
the same. 

Thus, the origin is: 
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 (I) A (stable) spiral point if the orbits near the origin satisfy: 

r ---> 0 and \theta ---> infinity (or \theta ---> -infinity) 
as t ---> infinity. 

(II) 	 A (stable) proper node} if all the orbits near the origin 
approach it as t ---> infinity, and there are two special 
directions 

theta = +/- theta_1 
and 

theta = +/- theta_2 
such that: 
--- There is exactly one orbit such that 

theta ---> + theta_1 as t ---> infinity. 
--- There is exactly one orbit such that 

theta ---> - theta_1 as t ---> infinity. 
--- For all other orbits: As t ---> infinity, 

either theta ---> + theta_2, 
or theta ---> - theta_2. 

HINT: 
Consider first small linear perturbations to a linear systems 
that cause the appropriate changes. Then write systems where 
perturbations of the same form are introduced by a nonlinearity. 
The nonlinearity will have to be small, so that it vanishes 
faster than the linear terms as the origin is approached; but do not 
make it vanish too fast, else it will not do the job! In fact, you 
should find that it must vanish so "slowly", that the resulting 
function has second derivatives that "blow up" at the origin. 

MATLAB® is a trademark of The MathWorks, Inc. 
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Third Problem Set 
________________________________________________________________________ 
Suggested Readings (textbook): Chapters 6-7. 
Suggested Problems (textbook): 

Ch. 6: 6.3.10 6.3.11 6.5.8 6.5.13 6.6.3 6.8.7

Ch. 7: 7.1.9 7.2.5 7.2.7 7.2.16

Note: Part b of 6.5.13 is actually wrong. Figure out what actually


happens when epsilon < 0. 
Note: For 6.8.7 you will need index theory, but it will not be 

enough. Dulac's criterion (for example) will also be needed. 
________________________________________________________________________ 
Problems to hand in for grading (textbook) 

Ch. 6: 6.3.13 6.3.16 6.5.7 6.5.19 6.8.9 
Ch. 7: 7.2.6 

________________________________________________________________________ 
NOTE: you can use the MatLab® scripts: 

PHPLdemoA, PHPLdemoB, PHPLplot or PHPLplot_v2 
with the problems requiring computer plotting. 
________________________________________________________________________ 

MATLAB® is a trademark of The MathWorks, Inc. 
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 MIT (Fall 2002) 18.385 

Fourth Problem Set 
________________________________________________________________________ 
Suggested Readings (textbook): Chapters 7-8. 
Suggested Problems (textbook): 

Ch. 7: 7.2.17 7.3.1 7.3.2 7.3.8 7.3.11 7.5.5 7.5.7 7.6.10 
Ch. 8: 

________________________________________________________________________ 
Problems to hand in for grading (textbook) 

Ch. 7: 7.3.10 7.5.6 7.6.14 
Ch. 8: 

Note: For 7.3.10; think before you do anything. It's quite easy if you go 
at it the right way, else ... think of the component of 
\dot{\vect{x}} in the radial direction for large r. 

Note: 7.5.5 may sound confusing at first; but it can be done using 
exactly the same set of tricks that work for van de Pol equation. 

________________________________________________________________________ 
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 MIT (Fall 2002) 18.385 

Fifth Problem Set 
________________________________________________________________________ 
Suggested Readings (textbook): Chapter 8-9. 
Suggested Problems (textbook): 

Ch. 8: 8.1.11 8.2.6 8.2.11 8.2.12 
8.3.1 8.5.2 8.6.7 8.7.5 

Note: For 8.2.12; see if you can derive the criteria for 
a Hopf Bifurcation using the tools in the Handouts. 

Strongly Suggested Problems: 
---- "Fourier Series Problem". 
---- "Variable Length Pendulum Problem". 
To do these you will have to download the problem statements,and the 
MatLab® scripts in the "MatLab® for Fourier Series" link, namely: 

readmeFouSer.m 
fourierSC.m 
FSFun.m 
FSoption.m 
FSoptionP.m 
heatSln.m 

All this can be found in the 18.385 WEB page. 
________________________________________________________________________ 
Problems to hand in for grading (textbook): 

Ch. 8: 8.1.6 8.2.5 8.6.5 8.7.3 
________________________________________________________________________ 

MATLAB® is a trademark of The MathWorks, Inc. 
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Exam Number 1 for 18.385, MIT (Fall 2002).

Due at the Lecture of Thursday November 14, 2002.

Rodolfo R. Rosales�. November 7, 2002.

Course TA: Boguk Kim, MIT, Dept. of Mathematics.

Contents

� Instructions. 1

� Problems. 2

1 Problem 2002.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Problem 2002.1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Problem 2002.1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Problem 2002.1.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

� Instructions.

1. Read all the instructions and read each problem statement completely before you

begin the process of solving it.

2. Do it alone. You can consult only with the lecturer and/or the TA.

3. You can use the textbook, your class notes, hand-outs and the problem set answers posted in the

course WEB page. Nothing else, in particular: you cannot use the results in the answers to the

problems at the end of the book. When referencing a result, be speci�c (e.g.: "Using Theorem 787,

page 9986 in the book"). Explain how the thing being referred to �ts into your answer.

4. There is no time limit, but a few hours should be enough.

5. Write the answers to each problem on separate pages. Write your name and the problem

solved (as in: 18.385, J. Doe, Exam #1, Problem #77, page 2 of 7329.) at the head of each

page (meaning that your exam answer has 7329 pages, this is page 2 and you are doing problem #

77). This is important, in case the answers get mixed up, which will probably happen!

6. Staple the whole exam.

7. In all your solutions show your reasoning, explaining carefully what you are doing. Use English,

not just mathematical symbols. You play dice with unjusti�ed steps. Maybe I'll buy them,

maybe not. If not: tough luck. Note: this does not mean that you have to justify 2 + 2 = 4!

�MIT, Department of Mathematics, room 2-337, Cambridge, MA 02139.
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IMPORTANT POINT: a computer plot is not enough! For example, in cases where a

phase plane portrait, or classi�cation of critical points, or something like this is required,

an explanation and justi�cation of your conclusions is expected. The computer should

be taken merely as a way to produce a pretty plot, give you hints as to what might

be going on, check out your ideas and so. I have no interest in testing your ability to

use PHPLdemoB or equivalent software! At any rate, beware: some of the problems may have

subtleties that are easy to �gure out with a good analysis, but can fool you in a computer plot (if

you do not know what to look for).

Please: no "chicken scratches" or arrows on the side of the page leading from one piece of an argument

to another and so on. If a particular thing is illegible, write it again. The answers MUST be

readable.

8. Start early. Do not wait till the night before it is due.

9. By the way: you are not expected to produce answers at the level of the ones provided in the web

page; you are, however, expected to read them.

� Problems.

Note: I will be looking for REAL arguments. I do not require, nor expect mathe-

matical rigor, but do expect what may be called a "reasonable person" justi�cation of

your conclusions | of the type used in both the lectures, the notes on the WEB page,

and the answers to the problem sets provided.

1 Problem 2002.1.1.

Statement:

Consider the equation
d2 x

dt2
� � cos(x)

dx

dt
+ x = 0 ; (1.1)

where 0 < �� 1. Using a two-timing approach, calculate (to leading order) the limit cycles [and their

stability] for this equation.

Hint 1.1 In this particular example it is convenient to write the leading order solution in the form

x0 = a(�) cos(t), where � is the slow time and the origin of time is selected so that there is no sine term.

What you are being asked to do is to �nd an equation for the amplitude a = a(�). In this endeavor you

may want to check the integral representations for the integer order Bessel functions.
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Note 1.1 This problem is worth 25 points.

2 Problem 2002.1.2.

Statement:

Do problem 3.5.4 in the book by Strogatz [bead on an horizontal wire].

Note 2.1 This problem is worth 25 points.

3 Problem 2002.1.3.

Statement:

Consider problem 3.5.4 in the book by Strogatz [bead on an horizontal wire], and change it as follows:

� Assume that the relaxed length of the spring L, is much smaller than the distance h from the spring

support to the wire. That is L� h. Thus you can make the approximation L = 0 and eliminate a

parameter from the problem.

� Assume that the whole contraption is rotating, at angular velocity 
, around a vertical axis going

through the support of the spring.

Note 3.1 This problem is worth 25 points.

4 Problem 2002.1.4.

Statement:

Do problem 3.6.6 in the book by Strogatz [patterns in uids].

Note 4.1 This problem is worth 25 points.

THE END.



Exam Number 2 for 18.385, MIT (Fall 2002). 

Due on the last day of classes, Fall 2002. 

MIT, Department of Mathematics, Cambridge, MA 02139. 

INSTRUCTIONS and RULES: same as those for the first exam. 

Problem #1 (35 POINTS).

--- Do the "Balancing a Broom" problem (posted on the WEB page).


Problem #2 (20 POINTS)

--- Do the "Coastline Fractal" problem (posted on the WEB page).


Problem #3 (25 POINTS)

--- Do problem 8.6.3 of the book by Strogatz.


Problem #4 (20 POINTS)

--- Do problem 9.6.2 of the book by Strogatz.


The points are assigned more-or-less on the basis of the degree of

difficulty, and/or length of the problem (in my estimation).
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118.385 Problem. Rodolfo R. Rosales.
1 (December 5, 2002).

� Balancing a broom.

Statement:

Consider the problem of balancing a broom upright, by placing it on a surface that moves up and down

in some prescribed manner. Speci�cally:

Assume a rough at horizontal surface, which oscillates up and down following some prescribed law

(that is, at any time the surface can be described by the equation y = Y (t), where y is the vertical

coordinate, and Y is some oscillatory function). On this surface we place a broom, in upright

position, with the sweeping side pointing up.2 Question: Can we prescribe Y in such a way

that the broom remains upright | i.e.: the position is stable?

In order to answer the question, consider the following idealized situation:

A) Replace the broom by a mass m, placed at the upper end of a (massless) rigid rod of length

L. Let the displacement of the rod from the vertical position be given by the angle �, with

� = 0 corresponding to the rod standing vertical, and the mass on the upper end.

B) The bottom of the rod is attached to a hinge that allows it to rotate in a plane. Thus the

motion of the rod is restricted to occur on a plane.

C) Assume that friction can be neglected.

D) The hinge to which the rod is attached oscillates up and down, with position x = 0 and

y = Y (t) | x is the horizontal coordinate on the plane where the rod moves. The mass is

then at x = L sin(�) and y = Y + L cos(�) | we measure angles clockwise from the top.

Now, do the following:

(1)

Use Newton's laws to derive the equation of motion for the mass m. You should obtain a second

order ODE for the angle �, with coeÆcients depending on the parameters g (the acceleration of

gravity) and the length of the rod L | in addition to the forcing function Y = Y (t).

Hint: Only two forces act on the mass m, namely: gravity and a force F = F (t) along the rod.

The force F has just the right strength to keep the (rigid) rod at constant length L| this is enough

to determine F , though you do not need to calculate it.

1MIT, Department of Mathematics, room 2-337, Cambridge, MA 02139.

2
Because the surface is rough, the contact point of the broom with the surface will not move relative to the surface.
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(2)

You should notice that adding a constant velocity to the hinge motion (that is: Y ! Y + v t, where

v is a constant) does not change the equation of motion. Why should this be so? What physical

principle is involved?

(3)

Write down the (linearized) equations for small perturbations of the equilibrium position (� = 0)

that we wish stabilized. Stability occurs if and only if Y = Y (t) can be selected

so that the solutions of this linear equation do not grow in time | strictly

speaking we should also consider the possible e�ects of nonlinearity, but we will ignore this issue here.

(4)

You should notice that it is possible to stabilize � = 0 by taking Y = �a t2, where a > 0 is a constant

acceleration. How large does a have to be for this to happen? Give a justi�cation of this result

based on physical reasoning, without involving any equations (this is something you should have

been able to predict before you wrote a single equation).

(5)

Of course, the \solution" found in (4) is not very satisfactory, since Y grows without bound in it.

Consider now oscillatory forcing functions of the form:

Y = ` cos(! t) ; (1)

where ` > 0 and ! > 0 are constants (with dimensions of length and time�1, respectively).

The objective is to �nd conditions

on (`; !) that guarantee stability.
(2)

The next steps will lead you through this process, but �rst: Nondimensionalize the (linearized)

stability equation. In doing so it is convenient to use the time scale provided by the forcing to

nondimensionalize time | i.e.: let the nondimensional time be � = ! t :

This step should lead you to an equation describing the evolution of the angle � (valid for small

angles), involving two nondimensional parameters. One of them, � = `=L; measures the amplitude
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of the oscillations in terms of the length of the rod. The other measures the time scale of the forcing

(as given by 1=!) in terms of the time scale of the gravitational instability | a function of g and

L. Call this second parameter � | note that in the equation only �2
appears, not � itself.

(6)

Find the stability range for � as a function of �, for the values 0 < � � 0:6 | it is enough

to pick a few values of �, say � = 0:1; 0:2; 0:3; 0:4; 0:5; 0:6, and then to compute the stability range

for each of them.

Note/hint: This step will require not just analysis, but some numerical computation. So as not

to be forced to explore all possible values of � when looking for the stability ranges (numerically an

impossible task), you should notice that the analysis for � = 0 can be done exactly | and should

provide you with a good hint as to where to look.

(7)

Write the period p =
2�

!
of the forcing, in terms of the nondimensional parameter �, and the

parameters g and L. The results of part (6) should provide you with the period ranges (for a given

oscillation amplitude) where stability occurs. Use this information to provide a rough explanation

of why it is relatively easy to balance a broom on the palm of your hand (using the strategy outlined

in this problem | try it), and why you will not be able to balance a pencil.

(8)

For 0 � �� 1 and 0 � �� 1 you should be able to obtain analytical approximations for the stable

ranges. Do so, and compare your results with those of part (6).

Hint: Floquet theory provides a function (the Floquet Trace � = �(�; �)) that characterizes lin-

earized stability | stability if and only if j�j � 1. Compute this function for � and � small.

THE END.



118.385 Problem. Rodolfo R. Rosales.1 (December 5, 2002).

� Coastline Fractal.

Statement:

In this problem we construct a fractal that is a very idealized caricature of what a coastline looks like.

The construction proceeds by iteration of a basic process, which we describe next.

We start with a simple curve, �0, and apply to it a simple process, that yields a new curve �1. This

new curve is made up of several parts, each of which is a scaled down copy of �0. The same simple

process is then applied to each of these parts, yielding �2. Then we iterate, to obtain in this fashion

a series of curves �n, for n = 0; 1; 2; 3 : : :. The fractal is then the limit of this process: � = lim
n!1

�n

| provided the limit exists.

For the \coastline fractal" we start by picking an angle 0 < � < �, and a length R0 > 0. Then

the �rst curve is:

�0 = Circular arc of radius R0, subtending an angle �. (1)

Next divide �0 into three equal sub-arcs, each subtending an angle �=3, and replace each

of these pieces by a properly scaled version of �0. This yields �1. The process is then

repeated on each of the three pieces making up �1, so as to obtain �2, and so on ad in�nitum. The

�rst two steps in this construction are illustrated in �gure 1.

The issue of whether or not the limit lim
n!1

�n exists is easy to settle. Consider an arbitrary radial

line within the circle sector associated with �0, and the intersection of this line with �n. It should

be clear that this intersection is unique. Let dn be the distance of this intersection from the origin

of the radial line. Then fdng is an increasing, bounded sequence | so it has a limit. This limit

de�nes a point along the radial line. The set of all these points is the fractal �.

Now do the following:

(1)

For each n = 0; 1; 2; 3 : : :, calculate the length `n of the curve �n. What is the \length" of �?

(2)

Calculate the fractal dimension (self-similar or box) of �.

1MIT, Department of Mathematics, room 2-337, Cambridge, MA 02139.
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 Coastline Fractal construction

 θ = π/2

Figure 1: This �gure illustrates the �rst two steps in the construction of the coastline fractal. That

is, the curve �0 (solid blue) and the curve �1 (solid black). The dashed red lines indicate various

radial lines useful in the construction.

Hint:

The �rst thing you will need to calculate is the \scaling" factor between �0 and each of the three

parts that make up �1. With this scaling factor 0 < Sc = Sc(�) < 1, everything else follows.

Notes:

Real coastlines are not this simple, of course. At the very least the number of parts into which each

sector is divided should not be a constant (3 here), nor should the parts be equal in size, nor should

they all subtend the same angle �. But further: the sectors need not be exactly circular | though,

this is probably not a terrible approximation.

THE END.



118.385 Problem. Rodolfo R. Rosales.1 (November 27, 2002).

� Variable Length Pendulum.

Statement:

Consider a pendulum (in a plane), whose arm length L > 0 changes in time (i.e.: L = L(t)). To

make matters more precise:

(a) Let the hinge for the pendulum be at origin in the plane: x = y = 0.

(b) Let the mass M for the pendulum be at x = L sin � and y = �L cos �, where � is the angle

measured (counter-clockwise) from the down-rest position of the pendulum.

(c) Let g be the acceleration of gravity, and assume that frictional forces can be neglected.

(d) Assume that the mass of the pendulum arm can be neglected.

Now do the following

A Using Newton's laws, derive the equations for the pendulum.

Hint: There are two forces acting on the mass M :

{ The force of gravity (of magnitude Mg, pointing downwards).

{ A force (of magnitude F = F (t)) acting along the arm of the pendulum.

The force F is not known a-priori, but it must have the exact magnitude to keep the distance from

the mass to the pendulum hinge at the length L = L(t). This is enough to determine this force.

B Consider the following situation: you have a mass tied up at the end of a string. The string

goes through a small hole somewhere | say, the hole at the end of a �shing rod. Now, pull

steadily on the string, shortening the string length from the hole to the mass (do not move

the hole while this happens). You should observe that, quite often, you end up with the

mass going around the \�shing rod", wrapping the string there. Explain this behavior

using the equations derived in A. (Note that real life is neither 2-D, nor frictionless: the

equations tend to over-predict what happens).

1MIT, Department of Mathematics, room 2-337, Cambridge, MA 02139.
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C Study the stability of the � = 0 equilibrium position for the pendulum. Linearize the equations

near this solution, and obtain an equation of the form

d
2
'

dt2
+ V (t)' = 0 ; (1)

where ' = L� and V = V (t) is some \potential" obtained from L and its derivatives.

D Argue that, if L is sinusoidal, with small amplitude variations, then one can take

V = 
2(1 + � cos(!t)) ; (2)

in (1), where � is small. Then (1) becomes Mathieu's equation.

E Take 
 = 1 in Mathieu's equation and use Floquet theory to study the stability of the pen-

dulum. That is, calculate (numerically) the trace of the Floquet matrix as a function of �

and ! (say, for 0 � � � 0:3 and 0:5 � ! � 5). Note that the period to use in the calculation

is 2�=! | i.e.: the period of V = V (t) | and that instability corresponds to � = trace=2

having magnitude bigger than one.

Alternatively: you can take ! = 1, and then vary 
 and �.

Answers:

Answer to Part A: Derivation of the equations.

Using Newton's law, we can write | for the position of the mass M | the equations

M �x = �F sin(�) ;

M �y = +F cos(�)�M g ;

9>=
>; (3)

where F = F (t) is the (unknown at this stage) force along the pendulum arm (we use the convention

that F > 0 corresponds to tension on the pendulum arm). We also have that:

x = +L sin(�) ;

y = �L cos(�) ;

9>=
>; (4)

where L = L(t) is the (given) variable length of the pendulum. At this stage it is convenient to

introduce complex notation (since it simpli�es the algebra considerably), with z = x + i y:

Then equations (3) and (4) take the form:

M �z = i F e
i � � iM g ; with z = �i L e

i �
: (5)
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From the second equation in (5) we obtain: �z = (�� L+ 2 _� _L� i �L+ i ( _�)2 L) ei � (intermediate

step: _z = ( _� L� i _L) ei �). Thus:

M (�� L + 2 _� _L) + iM (( _�)2 L� �L) = i F � iM g e
�i �

: (6)

From the imaginary part of this equation we obtain a formula for F , namely:

F = M g cos(�) +M (( _�)2 L� �L) : (7)

The real part gives the equation of motion for �, namely:

�� L + 2 _� _L+ g sin(�) = 0 : (8)

Alternatively, in terms of ' = L �; this last equation can be written in the form

�'�
�L

L
'+ g sin(

'

L
) = 0 : (9)

Remark 1 Derivation of the equations using Lagrangian Mechanics.

Equation (8) is straightforward to derive using Lagrangians, since:

L = Lagrangian

= Kinetic Energy� Potential Energy

=
M

2
( _x2 + _y2)� gM y

=
M

2
( _�2 _L2 + _L2) + gM L cos(�) : (10)

Then the Euler-Lagrange equation for L

d

dt

 
@L

@ _�

!
�

@L

@�
= 0 ; (11)

is precisely equation (8).

Answer to Part B: Steady pulling on the pendulum mass.

In this case L = L0 (1� ! t); where L0 > 0 and ! > 0 are constants. Then equation (9) becomes

�'+ g sin(
'

L
) = 0 : (12)



18.385 MIT, (Rosales) Variable Length Pendulum problem. 4

Let us write this equation in nondimensional form, with � =
'

L0

and � = ! t. Then

d
2
�

d� 2
+  sin(

�

1� �
) = 0 ; where  =

g

L0 !
2
> 0 (13)

is a nondimensional parameter. Near � = 1, the general solution to this equation behaves like

� = �0 + �1 (1� �) + 

Z
1

�

(� � s) sin

 
�0

1� s
+ �1

!
ds+ : : : (14)

where �0 and �1 are constants. Since (generally) �0 6= 0, it follows that

� =
'

L
=

L0 �

L
�

�0

1� ! t
as t!

1

!
: (15)

Thus � grows unboundedly as the string is pulled. Of course: the mathematical model breaks

down way before � =1 can occur, but it does give an explanation for the observed behavior.

Answer to Part C: Linearized stability equations.

Near equilibrium, both � and ' = L � are small.2 Using (9) and linearizing, we obtain:

�'+ V (t)' = 0 ; where V =
g � �L

L
: (16)

Answer to Part D: Mathieu's equation.

We now take L = L(t) sinusoidal, of the form L = L0 (1 + Æ cos(! t)); where L0 > 0, ! > 0, and

Æ are constants, with Æ small. Then

V =
g � �L

L
=

1

1 + Æ cos(! t)

�

2 + Æ !

2 cos(! t)
�
� 
2 (1 + � cos(! t)) (17)

where 
 =
q
g=L0; � = Æ !

2
=
2

; and we have used the fact that Æ is small.

Let us now nondimensionalize the equations, using � = '=L0 and � = !t: Then

d
2
�

d � 2
+
�
�
2 + Æ cos(�)

�
� = 0 ; (18)

where � = 
=! is the ratio of the angular frequencies (pendulum to forcing).

2Assume that L is oscillatory and stays away from zero. Thus the singular behavior studied in part (B) is avoided.
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Answer to Part E: Floquet analysis and stability.

The stability question (are the solutions of equation (18) bounded, or do they grow?) can be decided

using Floquet Theory. For this purpose �rst we introduce the Floquet Matrix, de�ned by:

FM = FM(�; Æ) =

2
6664
�1(� = 2�) �2(� = 2�)

d �1

d�
(� = 2�)

d �2

d�
(� = 2�)

3
7775 ; (19)

where �1and �2 are the solutions of (18) de�ned by the initial conditions (at � = 0)

�1 = 1 ;
d �1

d�
= 0 ; and �2 = 0 ;

d �2

d�
= 1 ; (20)

and 2� is the period of the coeÆcients in equation (18). The Floquet Trace is then given by

FT = FT (�; Æ) =
1

2
Trace(FM) =

1

2

 
�1(� = 2�) +

d �2

d�
(� = 2�)

!
: (21)

The conditions for stability/instability are then

jFT j � 1 (stability) and jFT j > 1 (instability) : (22)

One of the questions we would like to answer is: can the pendulum be de-stabilized by

selecting the frequency and amplitude of the forcing appropriately? Of course, in general

FT can only be computed numerically. However, we note that for Æ = 0 an analytic solution is

possible (since then equation (18) is just the linear harmonic oscillator). In this case:

FT (�; 0) = cos(2��) ; (23)

so FT (n=2; 0) = (�1)n for n a natural number. Thus, for Æ small, we should explore near

� = n=2 to �nd ranges where the pendulum is destabilized by the forcing (FT is a con-

tinuous function of its arguments). Since � = n=2 yields ! = 2
=n, the unstable parameter values

occur in situations where the forcing frequency is a subharmonic of twice the the unperturbed pendulum

frequency. Why this is so can be easily understood in terms of resonances. For Æ small:

� At leading order (0-th), the solutions to equation (18) is a sinusoidal of angular frequency �.

� At 1-st order, the term cos(�)� in the equation creates the frequencies �� 1 and �+ 1.

� At 2-nd order, the frequencies �+ n, with �2 � n � 2, appear.
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� In general, at m-th order, the frequencies �+ n, with �m � n � m, appear.

� A resonance will occur if �+ n = ��, for some n. That is, if � = n=2:

� The larger n is, the further up the expansion the resonance occurs. Thus, the instabilities that

occur for larger values of n should be weaker. The �gures below con�rm this expectation: both the

ranges where instability occurs, and the deviations there above absolute value one of FT , decrease

very fast as n grows. Finally: note that a large value of � corresponds to very slow forcing. It

is natural to expect instabilities in this regime to be very hard to produce!

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

 Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.1

 µ

 +1

 -1

Figure 1:

Floquet Trace FT , for

Æ = 0:1 and 0 � � � 2.

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

 Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.2

 µ

 +1

 -1

Figure 2:

Floquet Trace FT , for

Æ = 0:2 and 0 � � � 2.

Description of the Figures:

The �gures in this problem illustrate the behavior of the Floquet Trace FT (�; Æ), as a function of �,

for a sequence of increasingly larger values of (small) Æ. We note how windows of instability arise
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 Floquet trace F
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Figure 3:

Floquet Trace FT , for

Æ = 0:3 and 0 � � � 2.
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 Floquet trace F
T
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Figure 4:

Floquet Trace FT , for

Æ = 0:4 and 0 � � � 2.
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 Floquet trace F
T
 = F

T
(µ, δ) --- for δ = 0.5
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Figure 5:

Floquet Trace FT , for

Æ = 0:5 and 0 � � � 2.

near each of the critical values of � (i.e.: � = n=2), and grow in width as Æ grows. We also note

that, for a given Æ, the windows widths decrease very fast as n gets larger.
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 Floquet trace F
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Figure 6:

Floquet Trace FT , for

Æ = 0:1 and � � 0:5.
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Floquet Trace FT , for

Æ = 0:2 and � � 0:5.
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 Floquet trace F
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(µ, δ) --- for δ = 0.3
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Figure 8:

Floquet Trace FT , for

Æ = 0:3 and � � 0:5.

First consider the plots of the Floquet Trace FT | as a function in the range 0 � � � 2

| for the values Æ = 0:1, 0:2, 0:3, 0:4 and 0:5 (see Figures 1 through 5). On this scale

the instability window near � = 0:5 is clearly visible for Æ � 0:1, while the other windows (near
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Figure 9:

Floquet Trace FT , for

Æ = 0:4 and � � 0:5.
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Figure 10:

Floquet Trace FT , for

Æ = 0:1 and � � 1:0.
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Figure 11:

Floquet Trace FT , for

Æ = 0:2 and � � 1:0.

� = 1, 1:5, and 2) are too small to be seen.3 In particular, note that by Æ = 0:5 the instability

window near � = 0:5 has grown so much that there is no longer a stable range for � small | note

3These windows can be seen in the plots involving small ranges of �; see Figures 6 through 18.
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Figure 12:

Floquet Trace FT , for

Æ = 0:3 and � � 1:0.
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Figure 13:

Floquet Trace FT , for

Æ = 0:4 and � � 1:0.
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Figure 14:

Floquet Trace FT , for

Æ = 0:5 and � � 1:0.

that � small corresponds to a forcing frequency that is much faster than the natural pendulum

frequency. A fairly large forcing amplitude is required to de-stabilize the equilibrium position under

such conditions.
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Figure 15:

Floquet Trace FT , for

Æ = 0:2 and � � 1:5.
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Figure 16:

Floquet Trace FT , for

Æ = 0:3 and � � 1:5.
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Figure 17:

Floquet Trace FT , for

Æ = 0:4 and � � 1:5.

Figures 6 through 9 show plots of the Floquet Trace FT in a neighborhood of � = 0:5, for the

values Æ = 0:1, 0:2, 0:3, and 0:4. Thus these �gures show details of the lowest, and largest,

instability window, for Æ small and � near 1=2. Note that the width of this window grows

roughly linearly with Æ (for small Æ this can be shown using asymptotic expansion techniques). Of
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Figure 18:

Floquet Trace FT , for

Æ = 0:5 and � � 1:5.

course, by Æ = 0:5 this is no longer true, and the window is so large as to have completely absorbed

the stable \� small" range.

Figures 10 through 14 show plots of the Floquet Trace FT in a neighborhood of � = 1:0, for

the values Æ = 0:1, 0:2, 0:3, 0:4, and 0:5. This window is much smaller than the � � 0:5 window, and

it grows much more slowly. In fact, note that the width of this window grows roughly quadratically

with Æ (for small Æ this can be shown using asymptotic expansion techniques).

Figures 15 through 18 show plots of the Floquet Trace FT in a neighborhood of � = 1:5,

for the values Æ = 0:2, 0:3, 0:4, and 0:5. This window is still smaller than the prior ones | so

small, in fact, that I was un-able to resolve it for Æ = 0:1. The width of this window grows roughly

cubically with Æ (for small Æ this can be shown using asymptotic expansion techniques).

Note: The �gures were done using MatLab. To calculate the Floquet Trace FT , the ode solver ode113

was used to solve for the functions �1 and �2. To speed up the process, the calculation was \vectorized":

for each value of Æ, the solutions for all the calculated values of � were calculated simultaneously.

THE END.


