
Word Sense Disambiguation



Text, Speech and Language Technology

Series Editors

Nancy Ide, Vassar College, New York
Jean Véronis, Université de Provence and CNRS, France

Editorial Board

Harald Baayen, Max Planck Institute for Psycholinguistics, The Netherlands
Kenneth W. Church, AT & T Bell Labs, New Jersey, USA
Judith Klavans, Columbia University, New York, USA
David T. Barnard, University of Regina, Canada
Dan Tufis, Romanian Academy of Sciences, Romania
Joaquim Llisterri, Universitat Autonoma de Barcelona, Spain
Stig Johansson, University of Oslo, Norway
Joseph Mariani, LIMSI-CNRS, France

VOLUME 33

The titles published in this series are listed on www.springer.com.



●

Editors

Eneko Agirre Philip Edmonds

Word Sense Disambiguation
Algorithms and Applications



© 2007 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by 
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written 
 permission from the Publisher, with the exception of any material supplied specifically for the purpose 
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

Eneko Agirre
University of the Basque Country

Spain
Basque Country

Philip Edmonds
Sharp Laboratories of Europe
Oxford
U.K.

Library of Congress Control Number: 2007938211

e-ISBN 978-1-4020-4809-2ISBN 978-1-4020-4808-4



Contributors ............................................................................................xiii

Foreword ................................................................................................xvii

Preface .....................................................................................................xxi

1  Introduction............................................................................................1

1.1 Word Sense Disambiguation ............................................................1
1.2 A Brief History of WSD Research ...................................................4

1.4 Applications of WSD......................................................................10
1.5 Basic Approaches to WSD .............................................................12
1.6 State-of-the-Art Performance .........................................................14
1.7 Promising Directions ......................................................................15
1.8 Overview of this Book....................................................................19
1.9 Further Reading ..............................................................................21
References ............................................................................................22

2  Word Senses .........................................................................................29

2.1 Introduction ....................................................................................29
2.2 Lexicographers ...............................................................................30
2.3 Philosophy ......................................................................................32

2.3.1 Meaning is Something You Do ...............................................32
2.3.2 The Fregean Tradition and Reification....................................33
2.3.3 Two Incompatible Semantics?.................................................33
2.3.4 Implications for Word Senses..................................................34

2.4 Lexicalization .................................................................................35
2.5 Corpus Evidence.............................................................................39

2.5.1 Lexicon Size ............................................................................41
2.5.2 Quotations................................................................................42

2.6 Conclusion ......................................................................................43
2.7 Further Reading ..............................................................................44
Acknowledgments ................................................................................45
References ............................................................................................45

Contents

1.3 What is a Word Sense? .....................................................................8

Adam Kilgarriff 

Eneko Agirre  and Philip Edmonds  



3  Making Sense About Sense ................................................................. 47

3.1 Introduction .................................................................................... 47

3.7 Conclusion ...................................................................................... 68
References ............................................................................................ 68

4  Evaluation of WSD Systems................................................................ 75

4.1 Introduction .................................................................................... 75
4.1.1 Terminology ............................................................................ 76
4.1.2 Overview ................................................................................. 80

4.2 Background..................................................................................... 81
4.2.1 WordNet and Semcor .............................................................. 81

4.2.3 The DSO Corpus ..................................................................... 84
4.2.4 Open Mind Word Expert ......................................................... 85

4.3 Evaluation Using Pseudo-Words.................................................... 86
4.4 Senseval Evaluation Exercises ....................................................... 86

4.4.1 Senseval-1................................................................................ 87

4.4.2 Senseval-2................................................................................ 88

4.4.3 Comparison of Tagging Exercises........................................... 91
4.5 Sources of Inter-Annotator Disagreement ...................................... 92
4.6 Granularity of Sense: Groupings for WordNet............................... 95

4.6.1 Criteria for WordNet Sense Grouping..................................... 96
4.6.2 Analysis of Sense Grouping .................................................... 97

4.7 Senseval-3....................................................................................... 98
4.8 Discussion....................................................................................... 99
References .......................................................................................... 102

5  Knowledge-Based Methods for WSD............................................... 107

5.1 Introduction .................................................................................. 107
5.2 Lesk Algorithm............................................................................. 108

5.2.1 Variations of the Lesk Algorithm.......................................... 110

3.3 WSD and Sense Inventories ........................................................... 51

3.5 What Level of Sense Distinctions Do We Need 
for NLP, If Any? 58

3.4 NLP Applications and WSD........................................................... 55

............................................................................
3.6 What Now for WSD? ..................................................................... 64

4.2.2 The Line and Interest Corpora................................................. 83

Evaluation and Scoring............................................................88

English All-Words Task ..........................................................89
English Lexical Sample Task ..................................................89

Simulated Annealing .............................................................110
Simplified Lesk Algorithm....................................................111

3.2 WSD and the Lexicographers ........................................................ 49

vi      Contents  

Martha Palmer,  Hwee Tou Ng,  Hoa Trang Dang

Rada Mihalcea 

Nancy Ide  and Yorick Wilks  



5.3 Semantic Similarity ......................................................................114
5.3.1 Measures of Semantic Similarity...........................................114
5.3.2 Using Semantic Similarity Within a Local Context ..............117
5.3.3 Using Semantic Similarity Within a Global Context.............118

5.4 Selectional Preferences.................................................................119
5.4.1 Preliminaries: Learning Word-to-Word Relations ................120
5.4.2 Learning Selectional Preferences ..........................................120
5.4.3 Using Selectional Preferences ...............................................122

5.5.1 Most Frequent Sense .............................................................123
5.5.2 One Sense Per Discourse.......................................................124
5.5.3 One Sense Per Collocation ....................................................124

5.6 Knowledge-Based Methods at Senseval-2 ...................................125
5.7 Conclusions ..................................................................................126
References ..........................................................................................127

6  Unsupervised Corpus-Based Methods for WSD.............................133

6.1 Introduction ..................................................................................133
6.1.1 Scope .....................................................................................134
6.1.2 Motivation .............................................................................136

 Distributional Methods..........................................................137
 Translational Equivalence .....................................................139

6.1.3 Approaches ............................................................................140
6.2 Type-Based Discrimination ..........................................................141

6.2.1 Representation of Context .....................................................142
6.2.2 Algorithms.............................................................................145

 Latent Semantic Analysis (LSA)...........................................146 
 Hyperspace Analogue to Language (HAL)...........................147 
 Clustering By Committee (CBC) ..........................................148

6.2.3 Discussion..............................................................................150
6.3 Token-Based Discrimination ........................................................150

6.3.1 Representation of Context .....................................................151
6.3.2 Algorithms.............................................................................151

 Context Group Discrimination ..............................................152
 McQuitty’s Similarity Analysis.............................................154

6.3.3 Discussion..............................................................................157
6.4 Translational Equivalence ............................................................158

6.4.1 Representation of Context .....................................................159
6.4.2 Algorithms.............................................................................159
6.4.3 Discussion..............................................................................160

Summary ................................................................................113
Augmented Semantic Spaces .................................................113

Contents      vii 

5.5 Heuristics for Word Sense Disambiguation..................................123

Ted Pedersen 



6.5 Conclusions and the Way Forward............................................... 161

References .......................................................................................... 162

7  Supervised Corpus-Based Methods for WSD ................................. 167

7.1 Introduction to Supervised WSD.................................................. 167
7.1.1 Machine Learning for Classification ..................................... 168

 An Example on WSD............................................................170

7.2.1 Main Corpora Used ............................................................... 172
7.2.2 Main Sense Repositories ....................................................... 173
7.2.3 Representation of Examples by Means of Features............... 174
7.2.4 Main Approaches to Supervised WSD.................................. 175

 Probabilistic Methods............................................................175

 Methods Based on Discriminating Rules ..............................177
 Methods Based on Rule Combination...................................179
 Linear Classifiers and Kernel-Based Approaches.................179
 Discourse Properties: The Yarowsky Bootstrapping 

Algorithm 181

7.3.1 Five Learning Algorithms Under Study ................................ 185
 Naïve Bayes (NB) .................................................................185
 Exemplar-Based Learning (kNN) .........................................186
 Decision Lists (DL)...............................................................187
 AdaBoost (AB)......................................................................187
 Support Vector Machines (SVM)..........................................189

7.3.2 Empirical Evaluation on the DSO Corpus............................. 190
 Experiments...........................................................................191

7.4 Current Challenges of the Supervised Approach.......................... 195
7.4.1 Right-Sized Training Sets...................................................... 195
7.4.2 Porting Across Corpora ......................................................... 196
7.4.3 The Knowledge Acquisition Bottleneck................................ 197

 Automatic Acquisition of Training Examples.......................198
 Active Learning.....................................................................199
 Combining Training Examples from Different Words .........199
 Parallel Corpora.....................................................................200

7.4.4 Bootstrapping ........................................................................ 201
7.4.5 Feature Selection and Parameter Optimization ..................... 202
7.4.6 Combination of Algorithms and Knowledge Sources ........... 203

7.5 Conclusions and Future Trends .................................................... 205

7.2 A Survey of Supervised WSD ...................................................... 171

..............................................................................
7.2.5 Supervised Systems in the Senseval Evaluations ................. 183

7.3 An Empirical Study of Supervised Algorithms for WSD.............184

viii      Contents  

Acknowledgments ..............................................................................162

Methods Based on the Similarity of the Examples .............. 176

Lluís Màrquez, Gerard Escudero,  David Martínez,  German Rigau  



 Contents      ix 

References ..........................................................................................207

8  Knowledge Sources for WSD............................................................217

8.1 Introduction ..................................................................................217
8.2 Knowledge Sources Relevant to WSD .........................................218

8.2.1 Syntactic ................................................................................219

8.2.3 Pragmatic/Topical..................................................................222

8.3 Features and Lexical Resources....................................................223
8.3.1 Target-Word Specific Features..............................................224
8.3.2 Local Features .......................................................................225
8.3.3 Global Features......................................................................227

8.4 Identifying Knowledge Sources in Actual Systems .....................228
8.4.1 Senseval-2 Systems ...............................................................229
8.4.2 Senseval-3 Systems ...............................................................231

8.5 Comparison of Experimental Results ...........................................231
8.5.1 Senseval Results ....................................................................232
8.5.2 Yarowsky and Florian (2002)................................................233
8.5.3 Lee and Ng (2002).................................................................234
8.5.4 Martínez et al. (2002) ............................................................237
8.5.5 Agirre and Martínez (2001a) .................................................238
8.5.6 Stevenson and Wilks (2001)..................................................240

8.6 Discussion.....................................................................................242
8.7 Conclusions ..................................................................................245
Acknowledgments ..............................................................................246
References ..........................................................................................247

9  Automatic Acquisition of Lexical Information and Examples ......253

9.1 Introduction ..................................................................................253
9.2 Mining Topical Knowledge About Word Senses .........................254

Part of Speech (KS 1) ............................................................219
Morphology (KS 2)................................................................219
Collocations (KS 3) ...............................................................220
Subcategorization (KS 4).......................................................220

8.2.2 Semantic ................................................................................220
Frequency of Senses (KS 5) ..................................................220
Semantic Word Associations (KS 6) .....................................221
Selectional Preferences (KS 7) ..............................................221
Semantic Roles (KS 8)...........................................................222

Topical Word Association (KS 10) .......................................222
Pragmatics (KS 11) ................................................................223

Domain (KS 9).......................................................................222

Acknowledgments ..............................................................................206

Eneko Agirre and Mark Stevenson  

Julio Gonzalo and Felisa Verdejo 



9.2.1 Topic Signatures.................................................................... 255
9.2.2 Association of Web Directories to Word Senses................... 257

9.3 Automatic Acquisition of Sense-Tagged Corpora........................ 258
9.3.1 Acquisition by Direct Web Searching ................................... 258

9.3.5 Web-Based Cooperative Annotation ..................................... 268
9.4 Discussion..................................................................................... 269

References .......................................................................................... 272

10  Domain-Specific WSD ..................................................................... 275

10.1 Introduction ................................................................................ 275
10.2 Approaches to Domain-Specific WSD....................................... 277

10.2.1 Subject Codes ...................................................................... 277
10.2.2 Topic Signatures and Topic Variation................................. 282

   Topic Signatures..................................................................282
   Topic Variation ...................................................................283

10.2.3 Domain Tuning.................................................................... 284
    Top-down Domain Tuning ..................................................285
    Bottom-up Domain Tuning..................................................285

10.3 Domain-Specific Disambiguation in Applications ..................... 288
10.3.1 User-Modeling for Recommender Systems......................... 288
10.3.2 Cross-Lingual Information Retrieval................................... 289
10.3.3 The MEANING Project....................................................... 292

10.4 Conclusions ................................................................................ 295
References .......................................................................................... 296

11  WSD in NLP Applications .............................................................. 299

11.1 Introduction ................................................................................ 299
11.2 Why WSD?................................................................................. 300

Argument by Analogy................................................................301

11.3 Traditional WSD in Applications ............................................... 303
11.3.1 WSD in Traditional Information Retrieval.......................... 304
11.3.2 WSD in Applications Related to Information Retrieval...... 307

 Question Answering............................................................309 
 Document Classification .....................................................312

11.3.3 WSD in Traditional Machine Translation ........................... 313

9.3.2 Bootstrapping from Seed Examples ...................................... 261
9.3.3 Acquisition via Web Directories 263
9.3.4 Acquisition via Cross-Language Evidence ........................... 264

...........................................

x      Contents  

Acknowledgments ..............................................................................271

Argument from Faith................................................................. 300

Argument from Specific Applications ...................................... 302

Cross-Language IR............................................................. 308

Paul Buitelaar, Bernardo Magnini,  Carlo Strapparava, Piek Vossen  

Philip Resnik 



 Contents      xi 

11.3.5 Other Emerging Applications ..............................................317
11.4 Alternative Conceptions of Word Sense.....................................320

11.4.1 Richer Linguistic Representations.......................................320
11.4.2 Patterns of Usage .................................................................321
11.4.3 Cross-Language Relationships ............................................323

11.5 Conclusions ................................................................................325
Acknowledgments ..............................................................................325
References ..........................................................................................326

A  Resources for WSD...........................................................................339
A.1 Sense Inventories .........................................................................339

A.1.1 Dictionaries...........................................................................339
A.1.2 Thesauri ................................................................................341
A.1.3 Lexical Knowledge Bases.....................................................341

A.2 Corpora ........................................................................................343
A.2.1 Raw Corpora.........................................................................343
A.2.2 Sense-Tagged Corpora..........................................................345
A.2.3 Automatically Tagged Corpora ............................................347

A.3.1 Software................................................................................348
A.3.2 Utilities, Demos, and Data....................................................349
A.3.3 Language Data Providers......................................................350
A.3.4 Organizations and Mailing Lists...........................................350

Index of Terms.........................................................................................353

Index of Authors and Algorithms ............................................................361

11.3.4 Sense Ambiguity in Statistical Machine Translation...........315

A.3 Other Resources .......................................................................... 348



Contributors 

Eneko Agirre is an Associate Professor in the University of the Basque 

the Basque tasks for Senseval and coordinates the construction of the 
Basque WordNet and Semcor. Department of Computer Science, 
University of the Basque Country, Manuel de Lardizabal 1, E-20018 
Donostia, Basque Country, Spain. 

and co-chair of the Competence Center Semantic Web at DFKI (German 
Research Center for Artificial Intelligence) GmbH. He was organizer of 

Hoa Trang Dang is a Computer Scientist at the National Institute of 
Standards and Technology (NIST), where she coordinates evaluations of 
automatic question answering and summarization systems in TREC and 
DUC. National Institute of Standards and Technology, 100 Bureau Drive, 
Mailstop 8940, Gaithersburg, MD 20899-8940, U.S.A. 

Philip Edmonds is a Research Scientist at Sharp Laboratories of Europe. 
He was chair of Senseval, 2001–2004, and is the author of the entry on 

Linguistics, 2nd Ed. Sharp Laboratories of Europe Limited, Oxford 
Science Park, Oxford OX4 4GB, United Kingdom. 

Gerard Escudero is an Assistant Professor at the Universitat Politècnica 
de Catalunya. He was a participant in Senseval-2 and Senseval-3. He also 
participated in the MEANING project, funded by the EU. EUETIB, Urgell 
187, E-08036 Barcelona, Catalonia, Spain. 

Julio Gonzalo is an Assistant Professor at the UNED School of Computer 
Science. He is co-editor of the CLEF (Cross-Language Evaluation Forum) 
proceedings on multilingual information access published by Springer. In 

Country, where he is member of the IXA NLP group. He organized  

Paul Buitelaar is a Senior Researcher in the Language Technology Lab 

several international workshops and has been an invited speaker at panels 
and workshops on topics in semantic annotation and ontology develop- 
ment. DFKI GmbH Language Technology Department, Stuhlsatzen- 
hausweg 3, Saarbrücken, Germany. 

lexical disambiguation in the Elsevier Encyclopedia of Language and  

2006, he is co-chair of the Programme Committee of the European  



Conference on Advanced Research and Development for Digital Libraries. 
Dep. Lenguajes y Sistemas Informáticos, ETSI Informática – UNED, 
Ciudad Universitaria, c/ Juan del Rosal 16, 28040 Madrid, Spain. 

Nancy Ide is a Professor of Computer Science at Vassar College and chair 
of the Computer Science Department. She is founder of the Text Encoding 
Initiative (TEI) and creator of the Corpus Encoding Standard. Currently 
she is directing the development of the American National Corpus. 
Department of Computer Science, Vassar College, 124 Raymond Avenue, 
Poughkeepsie, New York 12604-0520, U.S.A. 

Adam Kilgarriff is Director of Lexical Computing Ltd. and Visiting 
Research Fellow at the University of Sussex, U.K. He works on both the 
theory and the practice, at the intersection of language corpora, language 
technologies and practical dictionary-making. Lexical Computing Ltd., 71 
Freshfield Road, Brighton BN2 0BL, U.K. 

Bernardo Magnini is a Senior Researcher at ITC-irst, where he 
coordinates the research group on Text Technologies. He is the local 
organizer co-chair of EACL-06, the 11th Conference of the European 
Chapter of the Association for Computational Linguistics. ITC-irst, Via 
Sommarive 18, I-38050, Povo-Trento, Italy. 

Lluís Màrquez is an Associate Professor at the Polytechnical University 
of Catalunya (UPC). He organized two shared tasks on semantic role 
labeling at the Conference on Natural Language Learning (CoNLL) in 
2004 and 2005, and led the team that organized the Catalan and Spanish 
lexical sample tasks at Senseval-3. In 2006, he will be the co-chair of the 
CoNLL conference. Despatx S120 - Edifici Omega, Campus Nord UPC, 
C/ Jordi Girona Salgado 1-3, E-08034 Barcelona, Catalonia, Spain. 

Rada Mihalcea is an Assistant Professor of Computer Science at 
University of North Texas. She is the president of ACL SIGLEX and was 
a co-chair of Senseval-3. Department of Computer Science, University of 
North Texas, PO Box 311366, Denton, TX 76203, U.S.A. 

Hwee Tou Ng is an Associate Professor of Computer Science at the 
National University of Singapore. He is on the editorial board of 
Computational Linguistics, was program co-chair of the ACL-2005 

conferences including ACL, SIGIR, AAAI, and IJCAI. Department of 

Singapore, 3 Science Drive 2, Singapore 117543. 
Computer Science, School of Computing, National University of 

conference, and has served on the program committees of many past 

xiv      Contributors  

David Martínez is a post-doc researcher in the NLP group of the 
University of Sheffield. Natural Language Processing Group, Department 
of Computer Science, University of Sheffield, Sheffield, S1 4DP, United 
Kingdom. 



Contributors      xv 

Martha Palmer is an Associate Professor in the Departments of Linguis-
tics and Computer Science and a Faculty Fellow of the Institute of Cogni-
tive Science at the University of Colorado at Boulder. She has been a 
member of the Advisory Committee for the DARPA TIDES program, 
chair of ACL SIGLEX and ACL SIGHAN, and is currently Past-President 
of the Association for Computational Linguistics. Department of 
Linguistics, 295 UCB - Hellems 295, Boulder, CO 80309, U.S.A. 

Ted Pedersen is an Associate Professor in the Department of Computer 
Science at the University of Minnesota, Duluth. He is the recipient of a 

Development (CAREER) Award. Department of Computer Science, 1114 
Kirby Drive, University of Minnesota, Duluth, MN 55812, U.S.A. 

Philip Resnik is an associate professor at the University of Maryland, 

Advanced Computer Studies. He is on the editorial board of Cognitive 
Linguistics. 1401 Marie Mount Hall, University of Maryland, College 
Park, MD 20742, U.S.A. 

German Rigau is an Associate Professor in the Department of Computer 
Science of the Basque Country University. He coordinated the EU’s 5th 
framework MEANING project. He has also participated in Senseval-2 and 
Senseval-3. Department of Computer Science, University of the Basque 
Country, Manuel de Lardizabal 1, E-20018 Donostia, Basque Country, 
Spain. 

Mark Stevenson is a Lecturer in Computer Science at the University of 
Sheffield. He is author of the monograph Word Sense Disambiguation: 
Combining Knowledge Sources for Sense Resolution (2003) based on his 

Computer Science, University of Sheffield, Sheffield, S1 4DP, United 
Kingdom. 

Carlo Strapparava is a Senior Researcher at ITC-irst in the 
Communication and Cognitive Technologies Division. He is author of 
over ninety published papers on topics including artificial intelligence, 
natural language processing, and word sense disambiguation. ITC-irst, Via 
Sommarive, 18 I-38050, Povo-Trento, Italy. 

Ph.D. thesis. Natural Language Processing Group, Department of 

College Park, in the Department of Linguistics and the Institute for 

National Science Foundation (NSF, USA) Faculty Early Career 



xvi      Contributors  

M. Felisa Verdejo is Full Professor and head of the department Lenguajes 
y Sistemas Informáticos (LSI) at National Distance Learning University 

Informáticos, ETSI Informática – UNED, Ciudad Universitaria, c/ Juan del 
Rosal 16, 28040 Madrid, Spain.

Piek Vossen is CTO of Irion Technologies. He worked on several EU pro-
jects: Acquilex, Sift, EAGLES, EuroWordNet, EuroTerm, BalkaNet and 
MEANING and most recently on an American project to develop an Ara-
bic wordnet. He is also founder and president of the Global Wordnet Asso-
ciation (GWA). Irion Technologies BV., Delftechpark 26, 2628 XH Delft, 
PO Box 2849, 2601 CV Delft, The Netherlands. 

Yorick Wilks is Professor of Computer Science at the University of Shef-
field. He is author of numerous articles and six books including Electric
Words: Dictionaries, Computers and Meanings (1996 with Brian Slator 
and Louise Guthrie). He is a Fellow of the American and European Asso-
ciations for Artificial Intelligence, and on the boards of some fifteen AI-
related journals. Department of Computer Science, University of Sheffield, 
Sheffield S1 4DP, United Kingdom. 

such as EuroWordNet and CLEF. Dep. Lenguajes y Sistemas 
(UNED). She has been involved in several large-scale EU-funded projects 



Foreword 

Graeme Hirst 

University of Toronto 

Of the many kinds of ambiguity in language, the two that have received 
the most attention in computational linguistics are those of word senses 
and those of syntactic structure, and the reasons for this are clear: these 
ambiguities are overt, their resolution is seemingly essential for any practi-
cal application, and they seem to require a wide variety of methods and 
knowledge-sources with no pattern apparent in what any particular in-
stance requires. 

Right at the birth of artificial intelligence, in his 1950 paper “Computing 
machinery and intelligence”, Alan Turing saw the ability to understand 
language as an essential test of intelligence, and an essential test of lan-
guage understanding was an ability to disambiguate; his example involved 
deciding between the generic and specific readings of the phrase a winter’s 
day. The first generations of AI researchers found it easy to construct ex-
amples of ambiguities whose resolution seemed to require vast knowledge 
and deep understanding of the world and complex inference on this knowl-
edge; for example, Pharmacists dispense with accuracy. The disambigua-
tion problem was, in a way, nothing less than the artificial intelligence 
problem itself. No use was seen for a disambiguation method that was less 
than 100% perfect; either it worked or it didn’t. Lexical resources, such as 
they were, were considered secondary to non-linguistic common-sense 
knowledge of the world. 

And because the methods that were developed required a resource whose 
eventual existence was merely hypothesized – a knowledge base containing 
everything a typical adult knows – and because there were no test data avail-
able, it was not possible to empirically test them or quantitatively evaluate 
them or their underlying ideas in any serious way. Rather, systems and 
methods were presented like theorems whose truth or correctness could be 
demonstrated by a rational argument bolstered by hand-waving and a ‘toy’ 
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demonstration: a knowledge source would be built for a few words and 
facts, and the system would be run on a few “interesting” constructed ex-
amples to show that it did “the right thing”. This approach to evaluation 
was quite normal in the milieu in which this research was carried out and 
didn’t seem to worry anyone at the time: computational linguistics had not 
yet achieved its empirical orientation. 

Contemporary approaches have turned all that upside-down. Statistical 
and machine-learning methods and methodologies that have been adopted 
in the last decade have revolutionized our view of ambiguity resolution. It 
is now understood that imperfect methods that rely on rich lexical re-
sources but limited additional knowledge have great use in the world; and 
that systems must undergo rigorous evaluation. The present volume dem-
onstrates this in particular for word sense disambiguation – both the 
strengths and the inherent limitations of these approaches.1 In particular, 
contemporary methods are less ambitious and have lower expectations. 
Unlike the earlier research, they don’t worry about case roles, about help-
ing a parser with attachment decisions, or about working with a semantic 
interpretation process aimed at a deep level of “understanding”. Rather 
than aiming for a complete solution and hypothesizing a resource that this 
necessitates, they rely on an existing resource and try to see how much can 
be done with it. And yet they still have enormous application in NLP (see 
Chap. 11). 

One issue that has remained constant is what kinds of information in the 
text may be drawn upon as cues for disambiguation, and how near in the 
text to the target word those cues should be. In my own early work (Hirst 
1987), restrictions on communication between disambiguating processes 
arose from two competing principles: any particular word or structural cue 
for disambiguation has quite a limited sphere of influence, and yet almost 
anything in a text or discourse is potentially a cue for disambiguation (cf. 
McRoy 1992). In contemporary systems, the analogous dilemma is in the 
choice of features and the window size (see Chap. 8). 

The other thing that hasn’t changed is how hard the lexical disambigua-
tion problem is. Many sophisticated systems struggle merely to reach the 
modest accuracy of simple baseline algorithms such as that of Lesk (1986) 

computer to do when humans themselves frequently disagree on what the 
correct answer is supposed to be (see Chaps. 2–4)? 

Although it is an edited volume, this book is not an anthology of “recent 
advances” papers by individual authors on their own research, requiring 
                                                     
1 A similar revolution has occurred in parsing and structural disambiguation; see 
Manning and Schütze (2000, Chaps. 11–12) for an overview. 

(see Chap. 5) or just choosing the most frequent sense. But what is a poor 
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each reader to synthesize a view of the overall situation in a research topic. 
Rather, editors Agirre and Edmonds have enlisted the leading researchers 
of the field to do the hard work. Each chapter of this book presents an 
overview and synthesis of one facet of current research. The result is a 
clear and well-organized presentation of the state of the art in word sense 
disambiguation that can be read, like a textbook, from start to finish. I 
commend it to you. 

Graeme Hirst is the author of Semantic Interpretation and the Resolution 

integrated theory of lexical disambiguation, structural disambiguation, 
and semantic interpretation. 
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Preface

Word sense disambiguation is a core research problem in computational 
linguistics, which was recognized at the beginning of the scientific interest 
in machine translation and artificial intelligence. And yet no book has been 
fully devoted to review the wide variety of approaches to solving the prob-
lem. The time is right for such a book. 

This book had its genesis over five years ago when Nancy Ide, series co-
editor of then Kluwer’s, now Springer’s, Text, Speech, and Language 
Technology series, approached us with the project. Word sense disam-
biguation is an active and quickly progressing research field, so we 
thought it far more beneficial to the research community if we were to 
enlist the main experts to each give their own view of the field. 

Being the first major book on the topic, and with the hope of it becom-
ing the definitive reference, we endeavoured to fashion a coherent, consis-
tent, critical, and readable survey of the current state of the art. We started 
by sketching an overview of the main topics that should be covered, and 
then approached experts in the field with desiderata for each chapter. We 
requested that authors give a general overview of their topic and proceed 
with a thorough exposition of the theory, methodology, algorithms, critical 
analysis, experimentation, results, and open issues. We are indebted to all 
of the authors, who worked with us most patiently. 

The manuscript has taken time to produce, having been through numer-
ous reviews and revisions along the way. Many difficult decisions were 
made in the attempt to best embrace all of the important research in the 
field, and to keep up with new developments. We apologize if we have 
missed something. 

Please visit the book website, www.wsdbook.org, for the latest informa-

Word sense disambiguation is a fascinating topic; we hope you enjoy 
reading this book as much as we did creating it! 

tion updates, and a book search interface. 
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than one distinct meaning. So why is it that text doesn’t seem like one long 
string of puns? After all, lexical ambiguity is pervasive. The 121 most fre-
quent English nouns, which account for about one in five word occurrences 
in real text, have on average 7.8 meanings each (in the Princeton WordNet 

largely unconscious process in people. As a computational problem it is 
often described as “AI-complete”, that is, a problem whose solution pre-
supposes a solution to complete natural-language understanding or com-
mon-sense reasoning (Ide and Véronis 1998). 

In the field of computational linguistics, the problem is generally called 
word sense disambiguation (WSD), and is defined as the problem of com-
putationally determining which “sense” of a word is activated by the use of 

ambiguity is a fundamental characteristic of language: Words can have more 
Anyone who gets the joke when they hear a pun will realize that lexical 

principle, but in actual text there is very little real ambiguity – to a person. 

(Miller 1990), tabulated by Ng and Lee (1996)). But the potential for 

a pun (a real ambiguity) obvious to others. Words may be polysemous in 

ambiguous readings tends to go completely unnoticed in normal text and 
flowing conversation. The effect is so strong that some people will even miss  

determining the meaning of every word in context, which appears to be a 
Lexical disambiguation in its broadest definition is nothing less than 

the word in a particular context. WSD is essentially a task of classification: 

1

 

1 Introduction 

1.1 Word Sense Disambiguation 

E. Agirre and P. Edmonds ( eds.), Word S ense Disambiguation: Algorithms and Applications, 1–28. 
© 2007 Springer. 



2      Agirre and Edmonds  

word senses are the classes, the context provides the evidence, and each 
occurrence of a word is assigned to one or more of its possible classes 
based on the evidence. This is the traditional and common characterization 
of WSD that sees it as an explicit process of disambiguation with respect 
to a fixed inventory of word senses. Words are assumed to have a finite 
and discrete set of senses from a dictionary, a lexical knowledge base, or 
an ontology (in the latter, senses correspond to concepts that a word lexi-
calizes). Application-specific inventories can also be used. For instance, in 
a machine translation (MT) setting, one can treat word translations as word 
senses, an approach that is  becoming increasingly feasible because of the 
availability of large multi-lingual parallel corpora that can serve as training 
data. The fixed inventory of traditional WSD reduces the complexity of the 
problem, making it tractable, but alternatives exist, as we will see below.  

WSD has obvious relationships to other fields such as lexical semantics, 
whose main endeavour is to define, analyze, and ultimately understand the 
relationships between “word”, “meaning”, and “context”. But even though 
word meaning is at the heart of the problem, WSD has never really found a 
home in lexical semantics. It could be that lexical semantics has always 
been more concerned with representational issues (see, for example, Lyons 
1995) and models of word meaning and polysemy so far too complex for 
WSD (Cruse 1986; Ravin and Leacock 2000). And so, the obvious proce-
dural or computational nature of WSD paired with its early invocation in 
the context of machine translation (Weaver 1949) has allied it more closely 
with language technology and thus computational linguistics. In fact, WSD 
has more in common with modern lexicography, with its intuitive premise 
that word uses group into coherent semantic units and its empirical corpus-
based approaches, than with lexical semantics (Wilks et al. 1993). 

The importance of WSD has been widely acknowledged in computa-
tional linguistics; some 700 papers in the ACL Anthology mention the 
term “word sense disambiguation”.1 Of course, WSD is not thought of as 
an end in itself, but as an enabler for other tasks and applications of com-
putational linguistics and natural language processing (NLP) such as pars-
ing, semantic interpretation, machine translation, information retrieval, text 

                                                      
1 To compare, “anaphora resolution” occurs in 438 papers; however, such statistics 
should not be taken too seriously. The ACL Anthology is a digital archive of re-
search papers in computational linguistics, covering conferences and workshops 
from 1979 to the present, maintained by the Association for Computational Lin-
guistics (www.aclweb.org/anthology). Our statistics were gathered in November 
2005. 
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mining, and (lexical) knowledge acquisition. However, in counterpoint to 
its theoretical importance, explicit WSD has not always demonstrated 
benefits in real applications. 

searched as a generic or as an integrated component. In the generic setting, 
the WSD component is a black box encompassing an explicit process of 
WSD that can be dropped into any application, much like a part-of-speech 
tagger or a syntactic parser. The alternative is to include WSD as a task-
specific “component” of a particular application in a specific domain and 
integrated so completely into a system that it is difficult to separate out. 

tion if the upper limit in accuracy (low as it is on fine-grained sense dis-
tinctions) has been attained (Section 1.6 gives current performance levels). 
And yet, explicit WSD has not yet been convincingly demonstrated to 
have a significant positive effect on any application. Only the integrated 

tion models of statistical machine translation. The former conception is 
easier to define, experiment with, and evaluate, and is thus more amenable 
to the scientific method; the latter is more applicable and puts the need for 
explicit WSD into question. 

Despite uncertain results on real applications, the effort on explicit 
WSD has produced a solid legacy of research results, methodology, and 
insights for computational semantics. For example, local contextual fea-
tures (i.e., other words near the target word) provide better evidence in 
general than wider topical features (Yarowsky 2000). Indeed, the role of 
context in WSD is much better understood: Compared to other classifica-
tion tasks in NLP (such as part-of-speech tagging), WSD requires a wide 
range of contextual knowledge to be modeled from fixed patterns of part-
of-speech tags around a topic word to syntactic relations to topical and 
domain associations. Each part-of-speech and even each word relies on 
different types of knowledge for disambiguation. For instance, nouns bene-
fit from a wide context and local collocations, whereas verbs benefit from 
syntactic features. Some words can be disambiguated by a single feature in 

quire an aggregation of many features. Homographs are generally much 

A long-standing and central debate is whether WSD should be re-

progressed steadily and successfully to a point where some people now ques-
Research into explicit WSD, having received the bulk of effort, has 

the right position, benefiting from a “discriminative” method; others re-

citly by virtue of other operations, for example, in the language and transla-
approach has been successful, with disambiguation often occurring impli-
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2

resources in several languages are now available. Finally, for a small sam-
ple of tested words, that have sufficient training data, the performance of 
WSD systems is comparable to that of humans (measured as the inter-
tagger agreement among two or more humans), as demonstrated by the re-
cent Senseval results (see Sect. 1.6 below). 

Two “spin offs” worth mentioning include the development of explicit 
WSD as a benchmark application for machine learning research, because 
of the clear problem definition and methodology, the variety of problem 
spaces (each word is a separate classification task), the high-dimensional 
feature space, and the skewed nature of word sense distributions. And sec-
ond, WSD research is helping in the development of popular lexical re-
sources such as WordNet (Fellbaum 1998; Palmer et al. 2001, 2006) and 
the multilingual lexicons of the MEANING project (Vossen et al. 2006). 

To introduce the topic of WSD, we begin with a brief history. Then, in 
Section 1.3 we discuss the central theoretical issues of “word sense” and 
the sense inventory. In Sections 1.4–1.6 we summarize several practical 
aspects including applicability to NLP tasks, the three basic approaches to 
WSD, and current performance achievements. Finally, Section 1.7 gathers 
our thoughts on emerging and future research into WSD. 

In order to introduce current WSD research, reported in the book, we pro-
vide here a brief review of the history of WSD research.3  

WSD was first formulated as a distinct computational task during the 
early days of machine translation in the late 1940s, making it one of the 
oldest problems in computational linguistics. Weaver (1949) introduced 
the problem in his now famous memorandum on machine translation: 

If one examines the words in a book, one at a time through an opaque mask 
with a hole in it one word wide, then it is obviously impossible to determine, 

                                                      
2

a financial institution or a river side). Polysemy involves a finer-grained sense dis-
tinction in which the senses can be related in different ways (e.g., bank as a physi-
cal building or as an institution). See Section 1.3 for further details. 
3 See Ide and Véronis (1998) for a more extensive history (up to 1998, of course.) 

easier to disambiguate than polysemous words.  An evaluation methodo-

 For the present purposes, a homograph is a coarse-grained sense distinction bet-
ween often completely unrelated meanings of the same word string (e.g., bank as 

1.2 A Brief History of WSD Research 

logy has been defined by Senseval (Kilgarriff and Palmer 2000) and many 
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one at a time, the meaning of words. “Fast” may mean “rapid”; or it may mean 
“motionless”; and there is no way of telling which. 

But, if one lengthens the slit in the opaque mask, until one can see not only the 
central word in question but also say N words on either side, then, if N is large 
enough one can unambiguously decide the meaning … 

In addition to formulating the general methodology still applied today (see 
also Kaplan (1950) and Reifler (1955)), Weaver acknowledged that con-
text is crucial, and recognized the basic statistical character of the problem 
in proposing that “statistical semantic studies should be undertaken, as a 
necessary primary step.” 

The 1950s then saw much work in estimating the degree of ambiguity in 
texts and bilingual dictionaries, and applying simple statistical models. 
Zipf (1949) published his “Law of Meaning”4 that accounts for the skewed 
distribution of words by number of senses, that is, that more frequent 
words have more senses than less frequent words in a power-law relation-
ship; the relationship has been confirmed for the British National Corpus 
(Edmonds 2005). Kaplan (1950) determined that two words of context on 
either side of an ambiguous word was equivalent to a whole sentence of 
context in resolving power. 

Some early work set the stage for methods still pursued today. Master-

of a word, and then chose the heading whose contained words were most 
prominent in the context. Madhu and Lytle (1965) calculated sense fre-
quencies of words in different domains – observing early on that domain 
constrains sense – and then applied Bayes formula to choose the most 
probable sense given a context. 

Early researchers well understood the significance and difficulty of 
WSD. In fact, this difficulty was one of the reasons why most of MT was 
abandoned in the 1960s due to the unfavorable ALPAC report (1966). For 
example, Bar-Hillel (1960) argued that “no existing or imaginable program 
will enable an electronic computer to determine that the word pen” is used 
in its ‘enclosure’ sense in the passage below, because of the need to model, 

objects: 

                                                      
4 Zipf ’s “Law of Meaning” is different from his well known “Zipf’s Law” about 
the power-law distribution of word frequencies. 

man (1957), for instance, used the headings of the categories in Roget’s 
 International Thesaurus (Chapman 1977) to represent the different senses 

in general, all world knowledge like, for example, the relative sizes of  
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Little John was looking for his toy box. Finally he found it. The box was in the 
pen. John was very happy. 

Ironically, the very “statistical semantics” that Weaver proposed might 
have applied in cases such as this: Yarowsky (2000) notes that the trigram 
in the pen is very strongly indicative of the enclosure sense, since one al-
most never refers to what is in a writing pen, except for ink. 

lexical semantics to find a consistent set of word senses for the words in a 
sentence. The idea of individual “word experts” evolved over this time 
(Rieger and Small 1979). For example, in Hirst’s (1987) system, a word 
was gradually disambiguated as information was passed between the vari-
ous modules (including a lexicon, parser, and semantic interpreter) in a 
process he called “Polaroid Words”. “Proper” knowledge representation 
was important in the AI paradigm. Knowledge sources had to be hand-
crafted, so the ensuing knowledge acquisition bottleneck inevitably led to 
limited lexical coverage of narrow domains and would not scale. 

The 1980s were a turning point for WSD. Large-scale lexical resources 
and corpora became available so handcrafting could be replaced with 
knowledge extracted automatically from the resources (Wilks et al. 1990). 
Lesk’s (1986) short but extremely seminal paper used the overlap of word 
sense definitions in the Oxford Advanced Learner’s Dictionary of Current 
English (OALD) to resolve word senses. Given two (or more) target words 
in a sentence, the pair of senses whose definitions have the greatest lexical 
overlap are chosen (see Chap. 5 (Sect. 5.2)). Dictionary-based WSD had 
begun and the relationship of WSD to lexicography became explicit. For 
example, Guthrie et al. (1991) used the subject codes (e.g., Economics, 
Engineering, etc.) in the Longman Dictionary of Contemporary English 
(LDOCE) (Procter 1978) on top of Lesk’s method. Yarowsky (1992) com-
bined the information in Roget’s International Thesaurus with co-
occurrence data from large corpora in order to learn disambiguation rules 
for Roget’s classes, which could then be applied to words in a manner 
reminiscent of Masterman (1957) (see Chap. 10 (Sect. 10.2.1)). Although 
dictionary methods are useful for some cases of word sense ambiguity 
(such as homographs), they are not robust since dictionaries lack complete 
coverage of information on sense distinctions. 

The 1990s saw three major developments: WordNet became available, 
the statistical revolution in NLP swept through, and Senseval began. 

research on full natural language understanding. In this spirit, Wilks (1975) 
WSD was resurrected in the 1970s within artificial intelligence (AI) 

account for WSD. The system used selectional restrictions and a frame-based 
developed “preference semantics”, one of the first systems to explicitly 
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WordNet (Miller 1990) pushed research forward because it was both com-
putationally accessible and hierarchically organized into word senses 
called synsets. Today, English WordNet (together with wordnets for other 
languages) is the most-used general sense inventory in WSD research. 

Statistical and machine learning methods have been successfully applied 
to the sense classification problem. Today, methods that train on manually 
sense-tagged corpora (i.e., supervised learning methods) have become the 
mainstream approach to WSD, with the best results in all tasks of the Sen-
seval competitions. Weaver had recognized the statistical nature of the 
problem as early as 1949 and early corpus-based work by Weiss (1973), 
Kelley and Stone (1975), and Black (1988) presaged the statistical revolu-
tion by demonstrating the potential of empirical methods to extract disam-
biguation clues from manually-tagged corpora. Brown et al. (1991) were 
the first to use corpus-based WSD in statistical MT. 

might follow in order to quantify the performance of our disambiguation 

However, these could not be used effectively until sufficiently large test 
corpora were generated. Senseval was first discussed in 1997 (Resnik and 
Yarowsky 1999; Kilgarriff and Palmer 2000) and now after hosting three 
evaluation exercises has grown into the primary forum for researchers to 
discuss and advance the field. Its main contribution was to establish a 
framework for WSD evaluation that includes standardized task descrip-
tions and an evaluation methodology. It has also focused research, enabled 
scientific rigor, produced benchmarks, and generated substantial resources 
in many languages (e.g., sense-annotated corpora), thus enabling research 
in languages other than English. 

Recently, at the Senseval-3 workshop (Mihalcea and Edmonds 2004) 
there was a general consensus (and a sense of unease) that the traditional 
explicit WSD task, so effective at driving research, had reached a plateau 
and was not likely to lead to fundamentally new research. This could indi-
cate the need to look for new research directions in the field, some of 
which may already be emerging, for instance the use of parallel bilingual 
corpora. Section 1.7 explores the emerging research, but let’s first review 
the issue at the center of it all: word senses. 

different systems because of disparities in test words, annotators, sense inven-
Before Senseval, it was extremely difficult to compare and evaluate 

literature on word sense disambiguation fails to offer a clear model that we 
tories, and corpora. For instance, Gale et al. (1992:252) noted that “the 

frequent sense) and upper bounds (the performance of human annotators). 
algorithms,” and so they introduced lower bounds (choosing the most 
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Word meaning is in principle infinitely variable and context sensitive. It 
does not divide up easily into distinct sub-meanings or senses. Lexicogra-
phers frequently discover in corpus data loose and overlapping word 
meanings, and standard or conventional meanings extended, modulated, 
and exploited in a bewildering variety of ways (Kilgarriff 1997; Hanks 
2000; also Chap. 2). In lexical semantics, this phenomenon is often ad-
dressed in theories that model sense extension and semantic vagueness, but 
such theories are at a very early stage in explaining the complexities of 
word meaning (e.g., Cruse 1986; Tuggy 1993; Lyons 1995). 

“Polysemy” means to have multiple meanings. It is an intrinsic property 
of words (in isolation from text), whereas “ambiguity” is a property of 
text. Whenever there is uncertainty as to the meaning that a speaker or 
writer intends, there is ambiguity. So, polysemy indicates only potential 
ambiguity, and context works to remove ambiguity. 

At a coarse grain a word often has a small number of senses that are 
clearly different and probably completely unrelated to each other, usually 
called homographs. Such senses are just “accidentally” collected under the 
same word string. As one moves to finer-grained distinctions the coarse-
grained senses break up into a complex structure of interrelated senses, in-
volving phenomena such as general polysemy, regular polysemy, and 
metaphorical extension. Thus, most sense distinctions are not as clear as 
the distinction between bank as ‘financial institution’ and bank as ‘river 
side’. For example, bank as financial institution splits into the following 
cloud of related senses: the company or institution, the building itself, the 
counter where money is exchanged, a fund or reserve of money, a money 
box (piggy bank), the funds in a gambling house, the dealer in a gambling 
house, and a supply of something held in reserve (blood bank) (WordNet 
2.1). 

Even rare and seemingly innocuous words such as quoin offer a rich 
structure of meanings. The American Heritage Dictionary of the English 
Language lists three related noun-senses: the outer angle or corner of a 
wall, a brick forming such an angle (a cornerstone), and a wedge-shaped 
block. As a verb, it can mean to build a corner with distinctive blocks, or, 
in the printing domain, to secure metal type with a quoin. 

Given the range of sense distinctions in examples such as these, which 
represent the norm, one might start to wonder if the very idea of word-sense 
is suspect. Some argue that task-independent senses simply cannot be enu-
merated in a list (Kilgarriff 1997; others that words are monosemous, having 

1.3 What is a Word Sense? 
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a have only a single, abstract meaning (Ruhl 1989). And perhaps the only 
tenable position is that a word must have a different meaning in each dis-

sets, which could be called senses, even if the sets cannot be satisfactorily 
described or labeled. The work on sense discovery or induction gives some 
empirical evidence for this intuition, however such “senses” are more aptly 
called “word uses” (see Chap. 6 (Sect. 6.3)). 

Concerns about the theoretical, linguistic, or psychological reality of 
word senses notwithstanding, the field of WSD has successfully estab-
lished itself by largely ignoring them, much as lexicographers do in order 
to produce dictionaries. Except, Kilgarriff (Chap. 2) suggests that it is time 
to take notice. 

In practice, the need for a sense inventory has driven WSD research. In 
the common conception, a sense inventory is an exhaustive and fixed list 
of the senses of every word of concern in an application. The nature of the 
sense inventory depends on the application, and the nature of the disam-
biguation task depends on the inventory. The three Cs of sense inventories 
are: clarity, consistency, and complete coverage of the range of meaning 
distinctions that matter. Sense granularity is actually a key consideration: 
too coarse and some critical senses may be missed, too fine and unneces-
sary errors may occur. For example, the ambiguity of mouse (animal or 
device) is not relevant in English-Basque machine translation, where sagu 
is the only translation, but is relevant in (English and Basque) information 
retrieval. The opposite is true of sister, which is translated differently into 
Basque depending on the gender of the other sibling: ahizpa for ‘sister of a 
girl’ and arreba for ‘sister of a boy’. In fact, Ide and Wilks (Chap. 3) argue 
that coarse-level distinctions are the only ones that humans and machines 
can reliably discriminate (and that they are the distinctions of concern to 
applications). There is evidence (see Chap. 4) that if senses are too fine or 
unclear, human annotators also have difficulty assigning them. 

The “sense inventory” has been the most contentious issue in the WSD 
community, and it surfaced during the formation of Senseval, which re-
quired agreement on a common standard. The main inventories used in 
English research have included LDOCE, Roget’s International Thesaurus, 
Hector, and WordNet. For other languages a variety of dictionaries have 
been used, together with local WordNet versions. Each resource has its 
pros and cons, which will become clear throughout the book (especially 
Chaps. 2, 3, and 4). For example, Hector (Atkins 1991) is lexicographi-
cally sound and detailed, but lacks coverage; LDOCE has subject codes 

ignores the intuition that word usages seem to cluster together into coherent 
tinct context in which it occurs. But a strong word-in-context position 
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and a structure such that homographs are part-of-speech-homogeneous, but 
is not freely available; WordNet is an open and very popular resource, but 
is too fine-grained in many cases. Senseval eventually settled on WordNet, 
mainly because of its availability and coverage. Of course, this choice 
sidesteps the greater debate of explicit versus implicit WSD, which brings 
the challenge that entirely different kinds of inventory would be required 
for applications such as MT (translation equivalences) and IR (induced 
clusters of usages). 

Machine translation is the original and most obvious application for WSD 
but disambiguation has been considered in almost every NLP application, 
and is becoming increasingly important in recent areas such as bioinfor-
matics and the Semantic Web.  

Machine translation (MT). WSD is required for lexical choice in MT for 

be removed during lexicon development). For example, in an English-
French financial news translator, the English noun change could translate 
to either changement (‘transformation’) or monnaie (‘pocket money’). In 
MT, the senses are often represented directly as words in the target lan-
guage. However, most MT models do not use explicit WSD. Either the 
lexicon is pre-disambiguated for a given domain, hand-crafted rules are 
devised, or WSD is folded into a statistical translation model (Brown et al. 
1991). 

Information retrieval (IR). Ambiguity has to be resolved in some que-
ries. For instance, given the query “depression” should the system return 
documents about illness, weather systems, or economics? A similar prob-
lem arises for proper nouns such as Raleigh (bicycle, person, city, etc.). 
Current IR systems do not use explicit WSD, and rely on the user typing 
enough context in the query to only retrieve documents relevant to the in-
tended sense (e.g., “tropical depression”). Early experiments suggested 
that reliable IR would require at least 90% disambiguation accuracy for 
explicit WSD to be of benefit (Sanderson 1994). More recently, WSD has 
been shown to improve cross-lingual IR and document classification  
(Vossen et al. 2006; Bloehdorn and Hotho 2004; Clough and Stevenson 
2004). Besides document classification and cross-lingual IR, related 

words that have different translations for different senses and that are pot-
entially ambiguous within a given domain (since non-domain senses could 

1.4 Applications of WSD 
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automatic advertisement placement. 

vast scientific literature; however, genes and their proteins often have the 
same name. More generally, the Semantic Web requires automatic annota-
tion of documents according to a reference ontology: all textual references 
must be resolved to the right concepts and event structures in the ontology 
(Dill et al. 2003). Named-entity classification, co-reference determination, 
and acronym expansion (MG as magnesium or milligram) can also be cast as 
WSD problems for proper names. WSD is only beginning to be applied in 
these areas. 

Lexicography. Modern lexicography is corpus-based, thus WSD and lexi-
cography can work in a loop, with WSD providing rough empirical sense 
groupings and statistically significant contextual indicators of sense to 
lexicographers, who provide better sense inventories and sense-annotated 
corpora to WSD. Furthermore, intelligent dictionaries and thesauri might 
one day provide us with a semantically-cross-referenced dictionary as well 
as better contextual look-up facilities. 

Despite this range of applications where WSD shows a great potential to 
be useful, WSD has not yet been shown to make a decisive difference in 

strains the number of senses a word can have (e.g., one would not expect 
to see the ‘river side’ sense of bank in a financial application), and so lexi-
cons can be constructed accordingly. Second, WSD might not be accurate 
enough yet to show an effect. Third, treating WSD as an explicit compo-

main. Most applications, such as MT, do not have a place for a WSD 
module (but see Carpuat and Wu (2005)), so either the application or the 
WSD would have to be redesigned. Research is just beginning on domain-
specific WSD (see Chap. 10). 

applications include news recommendation and alerting, topic tracking, and 

accurate analysis of text in many applications. For instance, an intelligence 

the relationships between genes and gene products to be catalogued from the 

Information extraction (IE) and text mining. WSD is required for the 

gathering system might require the flagging of, say, all the references to
illegal drugs, rather than medical drugs. Bioinformatics research requires 

any application. There are various isolated results that show minor improve-
ments, but just as often WSD can hurt performance, as is the case in one 
experiment on information retrieval (Sanderson 1994). There are several
possible reasons for this. First, the domain of an application often constrains

rated into a particular application or appropriately trained on the domain.
nent, as the majority of research does, means that it cannot be properly integ-
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Nevertheless, it’s clear that applications do require WSD in some form – 
perhaps through an implicit encoding of the same contextual models used 
in explicit WSD. For example in IR, a two-word query can disambiguate 
itself, implicitly, since both words are often used in text together in the 
senses intended by the user (e.g., tropical depression, above), and we’ve 
already mentioned the modeling of WSD in MT. The work on explicit 
WSD can serve to explore and highlight the particular features that provide 
the best evidence for accurate disambiguation, implicit or explicit. 

knowledge used in sense differentiation. Methods that rely primarily on 
dictionaries, thesauri, and lexical knowledge bases, without using any cor-
pus evidence, are termed dictionary-based or knowledge-based. Methods 
that eschew (almost) completely external information and work directly 
from raw unannotated corpora are termed unsupervised methods (adopting 
terminology from machine learning). Included in this category are methods 
that use word-aligned corpora to gather cross-linguistic evidence for sense 
discrimination. Finally, supervised and semi-supervised WSD make use of 
annotated corpora to train from, or as seed data in a bootstrapping process.  

Almost every approach to supervised learning has now been applied to 
WSD, including aggregative and discriminative algorithms and associated 
techniques such as feature selection, parameter optimization, and ensemble 
learning (see Chap. 7). 

Unsupervised learning methods have the potential to overcome the new 
knowledge acquisition bottleneck (manual sense-tagging) and have achieved 
good results (Schütze 1998). These methods are able to induce word senses 
from training text by clustering word occurrences, and then classifying new 
occurrences into the induced clusters/senses (see Chap. 6). 

The knowledge-based proposals of the 1970s and 80s are still a matter 
of current research. The main techniques use selectional restrictions, the 
overlap of definition text, and semantic similarity measures (see Chap. 5). 
Ultimately, the goal is to do general semantic inference using knowledge 
bases, with WSD as a by-product. 

Chapters 9 and 10 cover some techniques that did not fit very well in other 
chapters. Indeed, drawing a line between current systems is difficult, not 

Table 1.1 is our attempt to be systematic in covering the main app-
roaches to WSD in this book, but it was not always easy. For instance, 

Approaches to WSD are often classified according to the main source of 

1.5 Basic Approaches to WSD 
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Table 1.1. A variety of approaches to word sense disambiguation are dis-
cussed in this book. 

Approach Technique  Chapter 
Knowledge-based Hand-crafted disambiguation rules  Not covered 
 Selectional restrictions (or preferences), used to 

filter out inconsistent senses 
 5 

 Comparing dictionary definitions to the context 
(Lesk’s method) 

 5 

  5 

 “One-sense-per-discourse” and other heuristics  5 
Unsupervised 
corpus-based 

Unsupervised methods that cluster word occur-
rences or contexts, thus inducing senses 

 6 

 Using an aligned parallel corpus to infer cross-
language sense distinctions 

 6, 9, 11 

Supervised 
corpus-based 

Supervised machine learning, trained on a 
manually-tagged corpus 

 7 

 Bootstrapping from seed data (semi-
supervised) 

 7 

Combinations Unsupervised clustering techniques combined 
with knowledge base similarities 

 6 

 Using knowledge bases to search for examples 
for training in supervised WSD 

 9 

 Using an aligned parallel corpus, combined 
with knowledge-based methods 

 9 

 Using domain knowledge and subject codes  10 

least because recent research is exploring novel combinations of already 
existing techniques. For instance, cross-linguistic evidence gathered from 
word-aligned corpora can be used to train supervised systems, and then be 
combined with knowledge bases; unsupervised clustering techniques can 
be combined with knowledge-base similarities to produce sense prefer-
ences; and the information in knowledge-bases can be used to search for 
training examples which are then fed into supervised WSD.  

Regardless of the approach, all WSD systems extract contextual features 
of a target word (in text) and compare them against the sense differentia-
tion information stored for that word. A natural classification problem, 
WSD is characterized by its very high-dimensional feature space. Almost 
every type of local and topical feature has been shown to be useful includ-
ing  part-of-speech, word (as written and lemma), collocation, semantic 
class, subject or domain code, and syntactic dependency (see Chap. 8). 

semantic similarity measures 
The sense most similar to its context, using 
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We will briefly summarize the performance achieved by state-of-the-art 
WSD systems. First, homographs are often considered to be a solved prob-
lem. Accuracy above 95% is routinely achieved using very little input 

used part-of-speech data (and other knowledge sources) on all words using 
LDOCE (94.7%). 

Accurate WSD on general polysemy has been more difficult to achieve, 
but has improved over time. In 1997, Senseval-1 (Kilgarriff and Palmer 
2000) found accuracy of 77% on the English lexical sample task,5 just below 
the 80% level of human performance (estimated by inter-tagger agreement; 
however, human replicability was estimated at 95%; see Chap. 4). In 2001, 
scores at Senseval-2 (Edmonds and Cotton 2001) appeared to be lower, but 
the task was more difficult, as it was based on the finer-grained senses of 
WordNet. The best accuracy on the English lexical sample task at Senseval-
2 was 64% (to an inter-tagger agreement of 86%). Table 1.2 gives the results 
for all evaluated languages. Previous to Senseval-2, there was debate over 
whether a knowledge-based or machine learning approach was better, but 
Senseval-2 showed that supervised approaches had the best overall perform-
ance. However, the best unsupervised system on the English lexical sample 
task performed at 40%, well below the most-frequent-sense baseline of 48%, 
but better than the random baseline of 16%. 

By 2004, the top systems on the English lexical sample task at Senseval-3 
(Mihalcea and Edmonds 2004) were performing at human levels according 
to inter-tagger agreement (see Table 1.3). The ten top systems, all super-
vised, made between 71.8% and 72.9% correct disambiguations compared to 
an inter-tagger agreement of 67%.6 The best unsupervised system overcame 

                                                      
5 A “lexical sample” task involves tagging a few occurrences of a sample of words 
for which hand-annotated training data is provided. An “all-words” task involves 
tagging all words occurring in running text. See Chapter 4. 
6 This low agreement is perhaps explained because the annotators in this case were 
non-experts at the task – they were merely self-selected participants in the Open 
Mind Word Expert project (Chlovski & Mihalcea 2002) – rather than linguisti-
cally trained lexicographers and students as employed previously. Systems can 
beat human ITA because adjudication for the gold standard occurs after inter-
tagger agreement is calculated (see Chap. 4). This means that the systems could be 

the most-frequent-sense baseline achieving 66% accuracy. The score on the 

knowledge: for example, Yarowsky (1995) used a semi-supervised app-
roach evaluated on 12 words (96.5%), and Stevenson and Wilks (2001) 

1.6 State-of-the-Art Performance 
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Table 1.2. Performance of WSD systems in the Senseval-2 evaluation (Edmonds 
and Kilgarriff 2002).  

Language Taska Systems Lemmas Instances ITAb Baselined Best score 
English AW 21 1,082 2,473 75% 57%/–e 69%/55% 
Estonian AW 2 4,608 11,504 72 85 67 
Basque LS 3 40 5,284 75 65 76 
English LS 26 73 12,939 86c 48/16 64/40 
Italian LS 2 83 3,900 21 – 39 
Japanese LS 7 100 10,000 86 72 78 
Korean LS 2 11 1,733 – 71 74 
Spanish LS 12 39 6,705 64 48 65 
Swedish LS 8 40 10,241 95 – 70 
Japanese TM 9 40 1,200 81 37 79 
Copyright © 2002, Cambridge University Press. Reproduced with permission of Cam-
bridge University Press and Edmonds and Kilgarriff. 
aAW all-words, LS lexical sample, TM translation memory. 
b ITA is inter-tagger agreement, which is deemed as upper bound for the task. 
c The ITA for English nouns and adjectives is reported. Verbs had an ITA of 71%. 
d The baseline is most-frequent sense. 
e

no slash. 
 
all-words task was lower than for Senseval-2, probably because of a more 
difficult text. Senseval-3 also brought the complete domination of super-
vised approaches over pure knowledge-based approaches. 

Martin Kay, in his acceptance speech for the 2005 ACL Lifetime 
Achievement Award, made a distinction between “computational linguis-
tics” (CL), the use of computers to investigate and further linguistic theory, 
and “natural language processing” (NLP), engineering technologies for 
speech and text processing. Although much of the recent work in computa-
tional WSD falls squarely in the latter, solving the WSD problem is actu-
ally a prototypical endeavor for the former. 
 

                                                                                                                          
performing more like linguistically trained individuals, having learned from the 
adjudicated corpus. Notice that other languages had higher agreements. 

Scores separated by a slash are supervised/unsupervised methods; supervised when there is 

1.7 Promising Directions 
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Table 1.3. Performance of WSD systems in the Senseval-3 evaluation (Mihalcea 
and Edmonds 2004). 

Language Taska Systems Lemmas Instances ITAb Baselinec Best score 
English AW 26 – 2,081 62% 62%/–d 65%/58% 
Basque LS 8 40 7,362 78 59 70 
Catalan LS 7 27 6,721 93 66 85 
English LS 47 57       – 67 55/– 73/66 
Italian LS 6 45 7,584 89 18 53 
Romanian LS 7 39 11,532 – 58 73 
Spanish LS 9 46 12,625 83–90 67 84 
Hindi TM 8 41 11,984 – 56 67 
English GL 10 – 42,491 – – 68 
Copyright © 2004, Association for Computational Linguistics. Reproduced with permission 
of the Association for Computational Linguistics and Mihalcea and Edmonds. 
aAW all-words, LS lexical sample, TM translation memory, GL gloss task. 
bITA is inter-tagger agreement. 
cThe baseline is most-frequent sense. 
dScores separated by a slash are supervised/unsupervised methods; supervised when there is 
no slash. 
 

MT research, acknowledged as both difficult and necessary. So difficult 
that it was partially responsible for the cessation of funding to MT research 
in the 1960s following the ALPAC report. Nevertheless, researchers have 
made great strides in solving one constrained version of the problem: the 
traditional conception as an explicit task of resolving fine-grained and 
coarse-grained ambiguity to a fixed inventory of senses. The three evalua-
tion exercises run by Senseval show that over a variety of word types, 
word frequencies, and sense distributions, explicit WSD systems are 
achieving consistent and respectable accuracy levels. And yet, this success 
has not translated into better performance or utility in real applications. 
Ironically, research into WSD has become separate from research into 
NLP applications, despite several efforts to investigate and demonstrate 
utility. 

As we mentioned in Section 1.2, there is a growing feeling in the commu-
nity that change is necessary. The route taken to reach the state-of-the-art 
systems – explicit WSD solved by supervised learning approaches – may not 

results. 
lead to future performance increases or to fundamentally new research  

ving lexical ambiguity itself is one of the oldest problems in CL/NLP and 
Thus, the field finds itself in a strange position. The problem of resol-
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We believe that there are two complementary routes forward. The first 
is to become more theoretical, to return to computational linguistics, to 
work on WSD embracing more realistic models of word sense (including 
non-discreteness, vagueness, and analogy), thus drawing on and feeding 
theories of word meaning and context from (computational) lexical seman-
tics and lexicography. While not obviously immediately applicable, this 
research has defensible goals. Can we look to WSD research to provide a 
practical computational lexical semantics? 

The second route is to focus on making WSD applicable whatever it 
takes. Can any of the results to date be applied in real applications? Why 
doesn’t explicit WSD work in applications when other generic NLP com-
ponents do? Does WSD have to be more accurate? Are homographs the 
best level of granularity? Is domain-based WSD the answer? 

Both routes could lead to better applications and a better understanding 
of meaning and language – surely the two main goals of NLP and compu-
tational linguistics. 

It is worth revisiting the three main open problems of 1998, as put forth 
by Ide and Véronis (1998), and to add a few more. 

The Role of Context. Ide and Véronis said the “relative role and impor-
tance of information from the different contexts and their inter-relations 
are not well understood.” (p. 18) Although there is still more work to be 
done in isolating the contribution of different knowledge sources, much is 
now understood about the role of context, such as the diversity of feature 
types that can be used as evidence, and the types of features most useful 
for a few classes of words (see Chap. 8). Perhaps a goal of future WSD re-
search should be to understand how contextual information comes to bear 
on semantic processing in different applications such as MT and IR and to 
choose the approach and knowledge sources that best fit the applications. 

Sense Division. How to divide senses still remains one of the main open 
problems of WSD. As discussed in this chapter and throughout the book 
(see especially Chaps. 2, 3, and 4), semantic granularity is not well under-
stood, and the relation to specific applications is unexplored territory. 
Given the state of the art, coarse-grained differences could allow for per-
formance closer to an application’s needs. 

Evaluation. The first Senseval was held at about the time Ide and Véronis 
(1998) was published. As mentioned above, Senseval’s common evalua-
tion framework has focused research, enabled scientific rigor, and gener-
ated substantial resources. But, to date, it has worked with only in vitro 
evaluation of generic WSD, separating the task from application. In vivo 
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evaluation, or application-specific evaluation, has not yet been approached, 
but it is precisely this kind of evaluation that could prove the utility of 
WSD. (See Chapter 4.) 

Additional open problems include (following a survey of this book’s 
contributors): 

Domain- and Application-Based WSD. We discussed the need for appli-
cation-specific research above as one major route forward for the field, but 
this will entail a change in the conception of the task. Knowing the domain 
of a text can often disambiguate its words, but this assumes a specialized 
domain lexicon or a general lexicon expanded and tuned with domain-
specific information. All-words WSD would be required and in vivo 
evaluation would support the effort. (See Chapters 10 and 11.) 

Unsupervised WSD and Cross-Lingual Approaches. Tagging with no, 
or very little, hand-annotated training data still holds the promise of great 
riches. Recent work by McCarthy et al. (2004) on tagging with the pre-
dominant sense has reinvigorated this direction, and techniques that exploit 
alignments in parallel or comparable corpora are gaining momentum (Diab 
2003; Ng et al. 2003; Bhattacharya et al. 2004; Li and Li 2004; Tufi  et al. 
2004). The knowledge acquisition bottleneck is a serious impediment to 

guages) with a minimum of human annotation effort. (See Chapters 6, 9, 
and 11.) 

WSD as an Optimization Problem. Current WSD systems disambiguate 
texts one word at a time, treating each word in isolation. It is clear though 

(1986) and Cowie et al. (1992)). The interdependencies among senses in 
the context could be modeled and treated as an optimization problem (in 
contrast to the classification model of WSD). 

information, and other semantics, which are becoming available in wide-
coverage lexical knowledge bases like WordNet, VerbNet (Kipper et al. 
2000), and FrameNet (Baker et al. 2003). The recent trend to rediscover 
semantic interpretation and entailment includes WSD and semantic role 

robust methods for acquiring large sets of training examples (for all lan-
supervised all-words WSD, but this could be alleviated by advances in 

affect others in its context. This was clear in earlier systems (e.g., Lesk 
that meanings are interdependent and the disambiguation of a word can 

frames, syntactic structure, selectional preferences, semantic roles, domain 

Applying Deeper Linguistic Knowledge. Significant advances in the 
performance of current supervised WSD systems could rely on enriched 
feature representations based on deeper linguistic knowledge, rather than 
better learning algorithms. We refer, for instance, to sub-categorization 
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will never be able to cope with borrowed words, new words, new usages, 
or just rare or spurious usages. In practical terms, this makes it very diffi-
cult to move a system into a new domain. Sense discovery was a major 
component of Schütze’s (1998) work (see Chap. 6 (Sect. 6.3)), but little 
work has been done since, except Véronis (2004). Even identifying which 
words are being used in a novel (previously unknown) way, either with a 
completely new meaning or an existing meaning, would be useful in many 
applications. Senses can also be mined from parallel corpora and the Web 
(see Chap. 9).

This is the first book that covers the entire topic of word sense disambigua-
tion (WSD) including: all the major algorithms, techniques, performance 

tise. For researchers, lecturers, students, and developers, we intend the 
book to answer (or begin answering) questions such as How well does 
WSD work? What are the main approaches and algorithms? Which tech-
nique is best for my application? How do I build it and evaluate it? What 
performance can I expect? What are the open problems? What is the nature 
of the relationship between WSD and other language processing compo-
nents? What is a word sense? Is WSD a good topic for my PhD? Where is 
the field heading? 

will be problematic by considering limiting cases of metaphor, quotation, 
and reasoning from general knowledge. 

labeling as component technologies (Gildea and Jurafsky 2002; Dagan  
et al. 2005). Coupling these techniques with the currently available resources,
we are seeing a shift back to knowledge-based methods, but this time 
coupled with corpus-based methods. 

researchers in the field have contributed chapters that synthesize and over-
measures, philosophical issues, applications, and future trends. Leading 

view past and state-of-the-art research in their respective areas of exper-

direction.
We hope that the chapters you have in your hands are helpful in this 

argues that any attempt to pin down an inventory of word senses for WSD 

1.8 Overview of This Book 

Sense Discovery. A sense inventory that a priori lists all relevant senses 

Chapter 2. WORD SENSES. Adam Kilgarriff explores various conceptions 
of “word sense”, including views from lexicographers to philosophers. He 
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Chapter 3. MAKING SENSE ABOUT SENSE. Nancy Ide and Yorick 
Wilks suggest that the standard fine-grained division of senses by a lexicog-
rapher for use by a human reader may not be an appropriate goal for the 
computational WSD task. Giving an overview of the literature on the psy-
cholinguistic basis of sense in the mental lexicon, they argue that the level of 
sense-discrimination that NLP needs corresponds roughly to homographs, 
which are often lexicalized cross-linguistically. Thus, they propose to reori-
ent WSD to what it can actually perform at high accuracy.

Chapter 4. EVALUATION OF WSD SYSTEMS. Martha Palmer, Hwee 
Tou Ng, and Hoa Trang Dang discuss the methodology for the evaluation of 
WSD systems, developed through Senseval. They give an overview of pre-
vious evaluation exercises and investigate sources of human inter-tagger 
disagreements. Many errors are at least partially reconciled by a more coarse-
grained partition of the senses. Well-defined sense groups can be of value in 
improving sense tagging consistency for both humans and machines.

Chapter 5. KNOWLEDGE-BASED METHODS FOR WSD. Rada
Mihalcea reviews current research on knowledge-intensive methods, includ-
ing those using overlap of dictionary definitions, similarity measures over 
semantic networks, selectional preferences for arguments, and several heu-
ristics, such as “one-sense-per-discourse”. 

Chapter 6. UNSUPERVISED CORPUS-BASED METHODS FOR 
WSD. Ted Pedersen focuses on knowledge-lean methods that do not rely on 
external sources of evidence other than the untagged corpus itself. These 
methods do not assign sense tags to words, but rather discriminate between 
word uses or induce word-use clusters. The chapter reviews both distribu-
tional approaches relying on monolingual corpora and methods based on 
translational equivalences as found in word-aligned parallel corpora. 

Chapter 7. SUPERVISED CORPUS-BASED METHODS FOR WSD. 
Lluís Màrquez, Gerard Escudero, David Martínez, and German Rigau pre-
sent methods that automatically induce classification models or rules from 
manually annotated examples, currently the mainstream approach. This 
chapter presents a detailed review of the literature, descriptions of five of the 
key machine learning algorithms including Naïve Bayes and Support Vector 
Machines, and a discussion of central issues such as learning paradigms, 
corpora used, sense repositories, and feature representation. 

Chapter 8. KNOWLEDGE SOURCES FOR WSD. Eneko Agirre and 
Mark Stevenson explore the different sources of linguistic knowledge that 
can be used by WSD systems. An analysis of actual WSD systems reveals 
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Visit the book website, www.wsdbook.org, for the latest information and 
updates.

Ide and Véronis’s (1998) survey of WSD is an excellent starting point 
for a thorough analysis and history of WSD. It forms the introduction to 
the special issue of Computational Linguistics 24(1) on WSD. A special 
issue of Computer, Speech, and Language 18(4) (edited by Preiss and Ste-
venson, 2004) contains more recent contributions. 

The article “Disambiguation, lexical” in the Elsevier Encyclopedia of 
Language and Linguistics, 2nd ed. (Edmonds 2005) gives an accessible 
overview of WSD. 

Recent technical surveys are to be found in Foundations of Statistical 
Natural Language Processing (Manning and Schütze 1999), Speech and 
Language Processing (Jurafsky and Martin 2000), and the Handbook of 
Natural Language Processing (Dale et al. 2000). The first introduces WSD 
in the statistical framework (including the three main approaches) with de-
tailed algorithms of a few selected systems. The second frames the prob-
lem in the context of semantic representation and analysis, and includes a 

1.9 Further Reading 

that the best results are often obtained by combining knowledge sources 
and the chapter concludes by analyzing experiments on the effect of differ-
ent knowledge sources. 

Chapter 9. AUTOMATIC ACQUISITION OF LEXICAL INFORMA-
TION AND EXAMPLES. Julio Gonzalo and Felisa Verdejo consider the 
knowledge acquisition bottleneck faced by supervised corpus-based methods. 
The chapter reviews current research to remedy the lack of sufficient 
hand-tagged examples, by using, for example, techniques that mine large 
corpora for examples of word senses or coupling parallel corpora with 
knowledge-based methods. 

Chapter 10. DOMAIN-SPECIFIC WSD. Paul Buitelaar, Bernardo 
Magnini, Carlo Strapparava, and Piek Vossen describe approaches to WSD 
that take the subject, domain, or topic of words into account. They discuss 
the use of subject codes, the extraction of topic signatures through a com-
bined use of a semantic resource and domain-specific corpora, and domain-
specific tuning of semantic resources.

Chapter 11. WSD IN NLP APPLICATIONS. Philip Resnik considers
applications of WSD in language technology, looking at established and 
emerging applications and at more and less traditional conceptions of the 
task.
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discussion of selectional preferences as well as a brief overview of the ma-
chine learning focus. The third article, by David Yarowsky, gives a good 
overview of the characteristics of the WSD problem, and then focuses 
primarily on machine learning and related solutions. An older survey in 
Allen’s (1995) Natural Language Understanding treats WSD as a compo-
nent in semantic interpretation. Finally, several chapters in Electric Words 
(Wilks et al. 1996) take a lexicographic perspective on WSD and discuss 
how LDOCE can be used. 

A few books focus squarely on WSD. Lexical Ambiguity Resolution 
(Small et al. 1988) is a collection of papers from a cognitive science per-

Evaluation is discussed in two journal special issues: Computers in the 
Humanities 34(1–2) (special issue on Senseval, edited by Kilgarriff and 
Palmer, 2000) and Natural Language Engineering 8(4) (special issue on 
evaluating word sense disambiguation systems, edited by Edmonds and 
Kilgarriff, 2002). 

The main venues for research papers in WSD are the journals Computa-
tional Linguistics and Natural Language Engineering, and the conference 
proceedings of the Association for Computational Linguistics (ACL), the 
International Conference on Computational Linguistics (COLING), and 
their associated organizations, special interest groups (SIGs), and work-
shops. 

polysemy, and acts as a good starting point for further reading. Lyons’ 
(1995) Linguistic Semantics is worth consulting. Ravin and Leacock’s 
(2000) Polysemy: Theoretical and Computational Approaches is a recent 
summary of activity, with three chapters about computational approaches. 

Allen, James. 1995. Natural Language Understanding. Redwood City, California: 
Benjamin Cummings. 

ALPAC. 1966. Language and Machine: Computers in Translation and Linguis-
tics. A report by the Automatic Language Processing Advisory Committee, 

Ambiguity discusses his semantic interpretation system and “Polaroid
”

his PhD dissertation on the benefits of combining knowledge sources. 
Words . And Stevenson’s (2003) Word Sense Disambiguation is based on 

spective. Hirst’s (1987) Semantic Interpretation and the Resolution of 

Polysemy is of course discussed frequently in the lexical semantics lite-
rature. Cruse’s (1986) Lexical Semantics gives a solid overview of 

References 



1 Introduction      23 

Division of Behavioral Sciences, National Research Council. Washington, 
D.C.: National Academy of Sciences. 

Atkins, Sue. 1991. Tools for computer-aided corpus lexicography: The Hector 
project. Acta Linguistica Hungarica, 41: 5–72. 

Baker, Collin F., Charles J. Fillmore & Beau Cronin. 2003. The structure of the 
FrameNet database. International Journal of Lexicography, 16(3): 281–296. 

Bar-Hillel, Yehoshua. 1960. The present status of automatic translation of lan-
guages. Advances in Computers, ed. by Franz Alt et al. 91–163. New York: 
Academic Press. 

Bhattacharya, Indrajit, Lise Getoor & Yoshua Bengio. 2004. Unsupervised word 
sense disambiguation using bilingual probabilistic models. Proceedings of the 
42nd Annual Meeting of the Association for Computational Linguistics (ACL), 
Barcelona, Spain, 288–295. 

Black, Ezra. 1988. An experiment in computational discrimination of English 
word senses. IBM Journal of Research and Development, 32(2): 185–194. 

Bloehdorn, Stephan & Andreas Hotho. 2004. Text classification by boosting weak 
learners based on terms and concepts. Proceedings of the Fourth IEEE Inter-
national Conference on Data Mining, 331–334.  

Brown, Peter F., Stephen Della Pietra, Vincent J. Della Pietra & Robert L. Mercer. 

the 29th Annual Meeting of the Association for Computational Linguistics 
(ACL), Berkeley, California, 264–270. 

Carpuat, Marine & Dekai Wu. 2005. Word sense disambiguation vs. statistical 
machine translation. Proceedings of the 43rd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), Ann Arbor, Michigan, 387–394. 

Chapman, Robert. 1977. Roget’s International Thesaurus (Fourth Edition). New 
York: Harper and Row. 

Chlovski, Timothy & Rada Mihalcea. 2002. Building a sense tagged corpus with 
Open Mind Word Expert. Proceedings of the Workshop on Word Sense Dis-
ambiguation: Recent Successes and Future Directions, Philadelphia, PA, 
USA, 116–122. 

Clough, Paul & Mark Stevenson. 2004. Cross-language information retrieval us-
ing EuroWordNet and word sense disambiguation. Advances in Information 
Retrieval, 26th European Conference on IR Research (ECIR), Sunderland, 
UK, 327–337. 

Cowie, Jim, Joe A. Guthrie & Louise Guthrie. 1992. Lexical disambiguation using 
simulated annealing. Proceedings of the 14th International Conference on 
Computational Linguistics (COLING), Nantes, France, 359–365. 

Cruse, D. Alan. 1986. Lexical Semantics. Cambridge, UK: Cambridge University 
Press. 

1991. Word-sense disambiguation using statistical methods. Proceedings of 



24      Agirre and Edmonds  

Dagan, Ido, Oren Glickman & Bernardo Magnini. 2005. The PASCAL recognis-
ing textual entailment challenge. Proceedings of the PASCAL Challenges 
Workshop on Recognising Textual Entailment. 

Dale, Robert, Hermann Moisl & Harold Somers, eds. 2000. Handbook of Natural 
Language Processing. New York: Marcel Dekker. 

Diab, Mona. 2003. Word Sense Disambiguation within a Multilingual Framework. 
Ph.D. Thesis, Department of Linguistics, University of Maryland, College 
Park, Maryland. 

Dill, Stephen, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhin-
gran, Tapas Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. 
Tomlin & Jason Y. Zien. 2003. SemTag and Seeker: Bootstrapping the Se-
mantic Web via automated semantic annotation. Proceedings of the Twelfth 
International Conference on World Wide Web (WWW-2003), Budapest, Hun-
gary, 178–186. 

Senseval-2: Second International Workshop on Evaluating Word Sense Dis-
ambiguation Systems, Toulouse, France, 1–5. 

Edmonds, Philip & Adam Kilgarriff. 2002. Introduction to the special issue on 
evaluating word sense disambiguation systems. Journal of Natural Language 
Engineering, 8(4): 279–291. 

 

Fellbaum, Christiane, ed. 1998. WordNet: An Electronic Lexical Database. MIT 
Press. 

Gale, William, Kenneth Church & David Yarowsky. 1992. Estimating upper and 
lower bounds on the performance of word-sense disambiguation programs. 
Proceedings of the 30th Annual Meeting of the Association for Computational 
Linguistics (ACL), Newark, Delaware, 249–256. 

Gildea, Daniel & Daniel Jurafsky. 2002. Automatic labeling of semantic roles. 
Computational Linguistics, 28(3): 245–288. 

Guthrie, Joe A., Louise Guthrie, Yorick Wilks & Homa Aidinejad. 1991. Subject 
dependent co-occurrence and word sense disambiguation. Proceedings of the 
29th Annual Meeting of the Association for Computational Linguistics (ACL), 
Berkeley, California, 146–152. 

Hanks, Patrick. 2000. Do word meanings exist? Computers in the Humanities, 
34(1–2): 205–215. 

Hirst, Graeme. 1987. Semantic Interpretation and the Resolution of Ambiguity. 
Cambridge, UK: Cambridge University Press. 

Edmonds, Philip & Scott Cotton. 2001. Senseval-2: Overview. Proceedings of 

Edmonds, Philip. 2005. Lexical disambiguation. The Elsevier Encyclopedia of 

Elsevier.
Language and Linguistics, 2nd Ed., ed. by Keith Brown, 607–23. Oxford: 



1 Introduction      25 

Ide, Nancy & Jean Véronis. 1998. Word sense disambiguation: The state of the 
art. Computational Linguistics, 24(1): 1–40. 

Jurafsky, Daniel & James H. Martin. 2000. Speech and Language Processing. 
New Jersey, USA: Prentice Hall. 

Kaplan, Abraham. 1950. An experimental study of ambiguity and context. 
Mimeographed, 18pp, November 1950. Published as: Kaplan, Abraham. 
1955. An experimental study of ambiguity and context. Mechanical Transla-
tion, 2(2): 39–46. 

Kelly, Edward F. & Philip J. Stone. 1975. Computer Recognition of English Word 
Senses. Amsterdam: North-Holland. 

Kilgarriff, Adam. 1997. “I don’t believe in word senses”. Computers in the Hu-
manities, 31(2): 91–113. 

Kilgarriff, Adam & Martha Palmer. 2000. Introduction to the special issue on Sen-
seval. Computers and the Humanities, 34(1–2): 1–13. 

Karin Kipper, Hoa Trang Dang & Martha Palmer. 2000. Class-based construction 
of a verb lexicon. Proceedings of the Seventh National Conference on Artifi-
cial Intelligence (AAAI-2000), Austin, Texas. 

Lesk, Michael. 1986. Automated sense disambiguation using machine-readable 
dictionaries: How to tell a pine cone from an ice cream cone. Proceedings of 
the 1986 ACM SIGDOC Conference, Toronto, Canada, 24–26. 

Li, Hang & Cong Li. 2004. Word translation disambiguation using bilingual boot-
strapping. Computational Linguistics, 30(1): 1–22. 

Lyons, John. 1995. Linguistic Semantics: An Introduction. Cambridge, UK: Cam-
bridge University Press. 

Madhu, Swaminathan & Dean W. Lytle. 1965. A figure of merit technique for the 
resolution of non-grammatical ambiguity. Mechanical translation, 8(2): 9–13. 

Maedche, Alexander & Steffen Staab. 2001. Ontology learning for the Semantic 
Web. IEEE Intelligent Systems, 16(2): 72–79. 

Manning, Christopher D. & Hinrich Schütze. 1999. Foundations of Statistical 
Natural Language Processing. Cambridge, MA: MIT Press. 

Masterman, Margaret. 1957. The thesaurus in syntax and semantics. Mechanical 
Translation, 4(1–2): 35–43. 

McCarthy, Diana, Rob Koeling, Julie Weeds & John Carroll. 2004. Finding pre-

–
Mihalcea, Rada, Timothy Chlovski & Adam Kilgarriff. 2004. The Senseval-3 

English lexical sample task. Proceedings of Senseval-3: Third International 
Workshop on the Evaluation of Systems for the Semantic Analysis of Text, 
Barcelona, Spain, 25–28. 

280 287. 
the Association for Computational Linguistics (ACL). Barcelona, Spain, 
dominant senses in untagged text. Proceedings of the 42nd Annual Meeting of 



26      Agirre and Edmonds  

Mihalcea, Rada & Philip Edmonds, eds. 2004. Proceedings of Senseval-3: Third 
International Workshop on the Evaluation of Systems for the Semantic Analy-
sis of Text, Barcelona, Spain. 

Miller, George A., ed. 1990. Special Issue, WordNet: An on-line lexical database. 
International Journal of Lexicography, 3(4). 

Ng, Hwee Tou & Hian Beng Lee. 1996. Integrating multiple knowledge sources to 
disambiguate word sense: An exemplar-based approach. Proceedings of the 
34th Annual Meeting of the Association for Computational Linguistics, Santa 
Cruz, California, 40–47. 

Ng, Hwee Tou, Bin Wang & Yee Seng Chan. 2003. Exploiting parallel texts for 

Palmer, Martha, Christiane Fellbaum, Scott Cotton, Lauren Delfs & Hoa Trang 

Senseval-2: Second International Workshop on Evaluating Word Sense Dis-
ambiguation Systems, Toulouse, France, 21–24. 

Palmer, Martha, Christiane Fellbaum & Hoa Trang Dang. 2006. Making fine-
grained and coarse-grained sense distinctions, both manually and automati-
cally. Natural Language Engineering, 12(3). 

Preiss, Judita & Mark Stevenson, eds. 2004. Computer, Speech, and Language, 
18(4). (Special issue on word sense disambiguation) 

Procter, Paul, ed. 1978. Longman Dictionary of Contemporary English. London: 
Longman Group. 

Quillian, M. Ross. 1968. Semantic memory. Semantic Information Processing, ed. 
by Marvin Minsky, 227–270. Cambridge, MA: MIT Press. 

Ravin, Yael & Claudia Leacock. 2000. Polysemy: Theoretical and Computational 
Approaches. Oxford University Press. 

Reifler, Edwin. 1955. The mechanical determination of meaning. Machine 
Translation of Languages, ed. William Locke & Donald A. Booth, 136–164. 
New York: John Wiley & Sons. 

Rieger, Chuck & Steven Small. 1979. Word expert parsing. Proceedings of the 6th 
International Joint Conference on Artificial Intelligence (IJCAI), 723–728. 

Ruhl, Charles. 1989. On Monosemy: A Study in Linguistic Semantics. Albany: 
State University of New York Press. 

Annual Meeting of the Association for Computational Linguistics (ACL), 
Sapporo, Japan, 455–462. 

word sense disambiguation: An empirical study. Proceedings of the 41st 

Dang. 2001. English tasks: All-words and verb lexical sample. Proceedings of 

Resnik, Philip & David Yarowsky. 1999. Distinguishing systems and distin- 
guishing senses: New evaluation methods for word sense disambiguation. 
Natural Language Engineering, 5(2): 113–133. 



1 Introduction      27 

Sanderson, Mark. 1994. Word sense disambiguation and information retrieval. 
Proceedings of the 17th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, Dublin, Ireland, 142–151. 

Schütze, Hinrich. 1998. Automatic word sense discrimination. Computational 
Linguistics, 24(1): 97–123. 

Small, Steven, Garrison Cottrell & Michael Tanenhaus, eds. 1988. Lexical 
Ambiguity Resolution: Perspectives from Artificial Intelligence, Psychology 
and Neurolinguistics. San Mateo: Morgan Kaufman. 

Stevenson, Mark & Yorick Wilks. 2001. The interaction of knowledge sources in 
word sense disambiguation. Computational Linguistics, 27(3): 321–349. 

Stevenson, Mark. 2003. Word Sense Disambiguation: The Case for Combination 
of Knowledge Sources. Stanford, USA: CSLI Publications. 

Tufi , Dan, Radu Ion & Nancy Ide. Fine-grained word sense disambiguation based 
on parallel corpora, word alignment, word clustering, and aligned wordnets. 
Proceedings of the Twentieth International Conference on Computational 
Linguistics (COLING), Geneva, 1312–1318. 

Tuggy, David H. 1993. Ambiguity, polysemy, and vagueness. Cognitive 
Linguistics, 4: 273–90. 

Véronis, Jean. 2004. Hyperlex: Lexical cartography for information retrieval. 
Computer, Speech and Language, 18(3): 223–252. 

Voorhees, Ellen M. 1993. Using WordNet to disambiguate word senses for text 
retrieval. Proceedings of the 16th Annual International ACM SIGIR 
Conference on Research and Development in Information Retrieval, 
Pittsburgh, Pennsylvania, 171–180. 

Vossen, Piek, German Rigau, Iñaki Alegria, Eneko Agirre, David Farwell & 
Manuel Fuentes. 2006. Meaningful results for information retrieval in the 
MEANING project. Proceedings of the 3rd Global Wordnet Conference, Jeju 
Island, Korea. 

Weaver, Warren. 1949. Translation. Mimeographed, 12 pp. Reprinted in William 
N. Locke & Donald A. Booth, eds. 1955. Machine Translation of Languages, 
15–23. New York: John Wiley & Sons. 

Weiss, Stephen. 1973. Learning to disambiguate. Information Storage and 
Retrieval, 9: 33–41. 

Wilks, Yorick. 1975. Preference semantics. Formal Semantics of Natural 
Language, ed. by E. L. Keenan, III, 329–348. Cambridge, UK: Cambridge 
University Press. 

Wilks, Yorick, Dan Fass, Cheng-Ming Guo, James E. MacDonald, Tony Plate & 
Brian A. Slator. 1990. Providing machine tractable dictionary tools. Semantics 



28      Agirre and Edmonds  

and the Lexicon, ed. by James Pustejovsky, 341–401. Dordrecht: Kluwer 
Academic Publishers. 

Wilks, Yorick, Louise Guthrie & Brian Slator. 1996. Electric Words. Cambridge, 
MA: MIT Press. 

Yarowsky, David. 1992. Word sense disambiguation using statistical models of 
Roget’s categories trained on large corpora. Proceedings of the 14th 
International Conference on Computational Linguistics (COLING), Nantes, 
France, 454–460. 

Yarowsky, David. 1995. Unsupervised word sense disambiguation rivaling 
supervised methods. Proceedings of the 33rd Annual Meeting of the 
Association for Computational Linguistics (ACL), Cambridge, MA, 189–196. 

Yarowsky, David. 2000. Word-sense disambiguation. Handbook of Natural 
Language Processing, ed. by Dale et al. 629–654. New York: Marcel Dekker. 

Zipf, George Kingsley. 1949. Human Behaviour and the Principle of Least Effort: 
An introduction to human ecology. Cambridge, MA: Addison-Wesley. 
Reprinted by New York: Hafner, 1972. 

 
 



Adam Kilgarriff 

Lexical Computing Ltd. and University of Sussex 

The trouble with word sense disambiguation is word senses. There are no 
decisive ways of identifying where one sense of a word ends and the next 
begins. This makes the definition of the WSD task problematic. In this 
chapter we explore the limits of the construct “word sense”, gathering evi-

metaphor, quotation, and reasoning from general knowledge, which sit at 
the margins of what a lexicographer might classify as a distinct word 
sense. 

The trouble with word sense disambiguation is word senses. There are no 
decisive ways of identifying where one sense of a word ends and the next 
begins. This makes the definition of the WSD task problematic. In this 
chapter we look at what word senses are. 

Word senses are to be found in dictionaries, and modern dictionaries are 

tionaries. We show that word senses are abstractions from the data. 
For a broader perspective, we then look to the philosophers. A word’s 

senses are its meanings, and meaning has long been a topic of philosophi-
cal argument. We consider two contrasting accounts of meaning, the “Fre-
gean” and the “Gricean”, and show that only the Gricean, in which a 
word’s meaning is an abstraction from the communicative purposes of the 

dence from lexicographers and philosophers, by considering cases of 

describing how lexicographers arrive at the word senses that we find in dic-
written on the basis of evidence from language corpora, so we start by 

utterances it occurs in, sheds light on word senses. 
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2 Word Senses 

2.1 Introduction 
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A word’s meaning can also be thought of as an abstraction from patterns 
of use; a new meaning arises with a new pattern of use. A speaker will 
only use a word in a new pattern when they either invent it or acquire it. 
Section 2.4 looks at the process of adding a new pattern to a speaker’s 
lexicon. 

Section 2.5 reports on an experiment in which we sought out new pat-
terns by finding corpus instances of words where the word’s use did not 
straightforwardly fit any of its dictionary senses. The analysis of the “mis-
fits” leads to a number of observations: 

• The distinction between lexical and general knowledge is problematic. 
• Sheer size: There is a vast quantity of knowledge about words in 

speakers’ heads. 
• Quotations: Our knowledge of how other people have used words, in 

quotations and similar, is a substantial part of our knowledge of how 
words behave and how we might make use of them. 

We finish with a section that points to further reading, in which we 
indicate the threads of thought that contribute to the lines of argument 
presented in this chapter, and where the interested reader might find out 
more. 

The goal of the lexicographer is to present a full account of the words of a 
language, in all their meanings and patterns of use. In commercial life, the 
goal is always compromised by practical considerations such as the market 
that the dictionary is aimed at, its size, its editorial stance, and the speed 
with which it must be prepared (which may allow, say, twenty minutes per 
entry). However, the idealized account remains a valuable point of refer-
ence. 

For the past twenty years, the use of corpora has been growing in lexi-
cography and it is now widely acknowledged that dictionaries should be 

Word In Context) concordance for the word and then to read the corpus 
lines to identify what different meanings and patterns of use there are. Fig. 
2.1 shows a KWIC concordance for the word sense. 

An idealization of the process provides a working definition of a word 
sense, as follows. For each word, the lexicographer: 

basic method for a lexicographer to use a corpus is to call up a KWIC (Key 
based on corpus evidence (see various papers in Corréard (2002)). The 

2.2 Lexicographers 
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Fig. 2.1. A few lines from a KWIC (Key Word In Context) concordance for the 
word sense. 

1. Looks at a KWIC concordance for the word; 
2. Divides the corpus lines into clusters, so that, as far as possible, the 

lines in each cluster have more in common with members of their 
own cluster than with those of other clusters; 

3. For each cluster, works out what it is that makes its members belong 
together; and 

4. Takes these conclusions and codes them in the highly constrained 
language of a dictionary definition. 

tering usages, performed by a lexicographer. The lexicographer was 
probably not explicitly aware of the criteria according to which he or she 
clustered at the time, and stage 3 is a fallible post hoc attempt to make the 
criteria explicit. Yet it is these criteria that determine the senses that even-
tually appear in the dictionary. Word senses are a result of this process. 

Word senses are a lexicographer’s attempt to impose order on a word’s 

ments or specializations of others, some strongly associated with particular 
collocates or settings or purposes, as we will see in detail in Section 2.5. 

This is “the central core of the lexicographer’s art, the analysis of the 
material collected” (Krishnamurthy 1987:75). It focuses on a process of clus-

reveals a web of meanings with shared components, some being develop-
role in the language. The task is hard: detailed analysis of most words 

Think, and I use that word in its broadest sense, I think you should jump on her. At 
profoundly different light from common sense in its materialistic moment; and much 
The belief that our sensations are in some sense to be understood in terms of a set of  
Stage’ in the development of the infant’s sense of self, has no base in clinical experience 
Sure ear for tonal balance and a strong  sense of the orchestra’s role as a virtual  
Firmly rooted. </p><p> Nor is there any sense in banning strikes ‘temporarily’, since 
of ‘The Hollow Men’ is furthered by a  sense of confused identity. Words come to the 
strengthening family life and promoting a  sense of individual responsibility. Among  
the top of it.) Where are the  sense organs that pick up such external factors 
By his fellow students. He has a great  sense of humour and will keep you all well- 
transmission, jams the code, prevents  sense being made. The subliminal message of  
free and rich, but has also begun to  sense its real power. Today’s West Germany 
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Meaning is hard. The philosophers have been arguing about meaning for 
two and a half millennia and still the arguments roll on. The article “Mean-
ing” in The Oxford Companion to the Mind (Tiles 1987:450–51) puts it as 
follows: 

The concept of meaning is every bit as problematic as the concept of mind, and 
for related reasons. For it seems to be the case that it is only for a mind that 
some things (gestures, sounds, words, or natural phenomena) can mean other 
things. […] Anyone who conceives of science as objective, and as objectivity 
as requiring the study of phenomena (objects and the relations between 
objects), which exist and have their character independently of human thought, 
will face a problem with the scientific study of meaning. 

One philosopher whose work is of particular note here is H. P. Grice. 
His goal is to specify what it is for a speaker to use a sentence, in a particu-
lar context, to mean something. The analysis is too complex to present 
here but is summarized in the article “Meaning” in The Oxford Companion 
to Philosophy (Crane 1995:541–42): 

The meaning of sentences can be reduced to a speaker’s intention to induce a 
belief in the hearer by means of their recognition of that intention. 

Grice’s account remains current, and while it has been challenged and 
extended in various ways it retains a central place in the philosophers’ 
understanding of meaning. 

One point to note about the Gricean account is that meaning is something 
you do. The base concept requiring definition is the verb to mean: what it 
is for speaker S to mean P when uttering U to hearer H. All other types of 
meaning-event and meaning-phenomenon, such as words or sentences 
having meanings, will then be explicated in terms that build on the 
definition of the base meaning-event. If a word has a meaning, it is 
because there are common patterns to how speakers use it in utterances 
that they are using to mean (in the base sense) particular things to 
particular hearers on particular occasions. The word can only be said to 
have a meaning insofar as there are stable aspects to the role that the word 
plays in those utterances. 

2.3 Philosophy 

2.3.1 Meaning is Something You Do 
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2.3.2 The Fregean Tradition and Reification 

One other line of philosophical thinking about meaning is associated with 
the work of Gottlob Frege, and has played a central role in the develop-
ment of logic and the foundations of mathematics and computer science. 

To reify an abstraction is to treat it “as if it has a concrete or material 
existence.”1 It is often an effective strategy in science: the reified entity is 
placed center stage and thereby becomes a proper object of scrutiny. It is 
only when Newton starts to think of force as an object in its own right, that 
it becomes appropriate to start asking the questions that lead to Newton’s 
Laws. To take an example from computational linguistics, it is only when 
we start thinking of parse trees as objects in their own right that we can 
develop accounts of their geometries and mappings between them. 

Frege took the bold step of reifying meaning. He reified the meaning of 
a sentence as a truth value, and a truth value would be treated as if it were 
a concrete object. 

Once the meanings of sentences are defined as truth values, the path is 
open for identifying meanings of parts of sentences. The parts are words, 
phrases, and the grammatical rules that compose words to make larger 
expressions. The parts should be assigned meanings in such a way that, 
when the parts are composed to give full sentences, the full sentences 
receive the appropriate truth values. 

The enterprise has been enormously successful, with the modern 
disciplines of logic and formal semantics building on it. Logic and formal 
semantics are now central to our everyday lives, underpinning a range of 
activities from set theory to database access. 

2.3.3 Two Incompatible Semantics? 

How do the two traditions, the Gricean and the Fregean, relate to each 
other? The friction has long been apparent. In 1971 the leading Oxford 
philosopher P. F. Strawson wrote in his essay “Meaning and Truth” 
(Strawson 1971:271–72): 

What is it for anything to have a meaning at all, in the way, or in the sense, in 
which words or sentences or signals have meaning? What is it for a particular 
sentence to have the meaning or meanings it does have? […] 

                                                      
1 American Heritage Dictionary of the English Language, Fourth Edition (Hough-
ton Mifflin Company, 2000). 
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I am not going to undertake to try to answer these so obviously connected ques-
tions […] I want rather to discuss a certain conflict, or apparent conflict, more 
or less dimly discernible in current approaches to these questions. For the sake 
of a label, we might call it the conflict between the theorists of communication-
intention and the theorists of formal semantics. […] A struggle on what seems 
to be such a central issue in philosophy should have something of a Homeric 
quality; and a Homeric struggle calls for gods and heroes. I can at least, though 
tentatively, name some living captains and benevolent shades: on the one side, 
say, Grice, Austin, and the later Wittgenstein; on the other, Chomsky, Frege, 
and the earlier Wittgenstein. 

Liberman (2003) leads a discussion of the recent history of the field 
with Strawson’s struggle and presents thumbnail sketches of the heroes. 
He concludes thus: 

The examples of reasoning about layers of intentions and belief found in Grice 
(and others who have adopted his ideas) are so complicated that many people, 
while granting the force of the examples, are reluctant to accept his 
explanations. Attempts to implement such ideas, in fully general form, in 
computer models of conversation have generally not been impressive. […] 
Most linguists believe that linguistic structure is most productively studied in its 
own terms, with its communicative use(s) considered separately. On the other 
hand, most linguists believe that Austin, Grice and the later Wittgenstein were 
right about many aspects of what is commonly called “meaning.” There is a 
difference of opinion about whether a theory of “sentence meaning” as opposed 
to “speaker meaning,” along roughly Fregean lines, is possible or not. 

The WSD community comprises practical people, so should it not simply 
adopt the highly successful Fregean model and use that as the basis of the 
account of meaning, and then get on with WSD? 

This does not work because it gives no leverage. Truth values are 
central to the Fregean model, which analyses the differences between 
meanings of related sentences – for example between all men are generous 
and some men are generous – in terms of the different situations in which 
they are true. When we are distinguishing different meanings of the same 
word, it is occasionally useful to think in terms of differences of truth 
value, but more often it is not. Consider generous as applied to 

1. money (a generous donation), 
2. people (“you are most generous”), and 
3. portions (a generous helping), 

2.3.4 Implications for Word Senses 
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and let us follow dictionary practice in considering these meanings 1, 2, 
and 3. Can we account for the differences between the three meanings in 
terms of differences in truth functions for sentences containing them? We 
might try to do this by saying that some men are generous-2 might be true 
but some men are generous-1 cannot be true (or false) because it is based 
on a selectional restriction infringement: generous-1 is applicable to sums 

Already, in this fragment, we have left the Fregean framework behind 
and have given an analysis of the difference in terms of infringement of 
selectional restrictions, not difference of truth value. We have lost the 
clarity of the Fregean framework and replaced it with the unclarity of 
selectional restrictions, and find ourselves talking about the acceptability 
of sentences that are, at best, pseudo-English (since generous-1 is not a 
word of English). 

The Fregean tradition is premised on the reification of meaning. For 
some areas of language study, this works very well. But for other areas, the 
assumption that one can abstract away from the communicative process 
that is the core of what it is to mean something, to manipulable objects that 
are “the meanings”, is not sustainable. We must then fall back to the 
underlying Gricean account of meaning. 

Once the different senses of generous are reified, they are to be treated 
as distinct individuals, and while they might be related as brothers are to 
sisters or mothers to sons, to talk of a reading being half way between one 
meaning and another makes no more sense than talking about a person 
being half way between me and my brother. 

Reifying word senses is misleading and unhelpful. 

Within a Gricean framework, the meaning of a word is an abstraction from 
the roles it has played in utterances. On the one hand, this makes it unsur-
prising that different speakers have different understandings of words, 
since each speaker will have acquired the word, according to their own 
process of abstraction and according to the utterances they have heard it in. 
A word-meaning is “in the language” if it is in the lexicon of a large 

restrictions in WSD.) 
of money, not people. (See Chap. 5 for more on the use of selectional 

2.4 Lexicalization 
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enough proportion of the speakers.2 It also makes sense of the synchronic 
and diachronic flexibility of word meanings, since a difference in a word’s 
meaning will follow on from new or different patterns of use. But on the 
other hand it is not informative about the particular role of a word or 
phrase as a carrier of meaning. In this section, we focus on the process 
whereby a word or phrase becomes a carrier of a particular meaning for a 
speaker. This is the process whereby a new meaning is added to the 
speaker’s lexicon, so we refer to it as lexicalization.3 

We first present and then defend a very broad definition of what it is for 
a speaker to lexicalize a particular meaning. A meaning is lexicalized for a 
given speaker if and only if there is some specific knowledge about that 
meaning in the speaker’s long-term memory. By “specific”, we mean it 
must be more than can be inferred from knowledge about other meanings 
combined with different contexts of utterance and rules. 

There are many forms that such specific knowledge may take. Consider 
a comment by a character in Salman Rushdie’s The Moor’s Last Sigh 
(1997:5) when the history of India and the spice trade is under review: 

not so much sub-continent as sub-condiment 

                                                      
2 This can be unpacked as follows: 1) Since de Saussure (1916), we are aware that 
words have two parts: form and meaning. A word is in a language if the form-
meaning pairing is in the lexicon of a large enough proportion of the speakers. 2) 
The situation is essentially the same for word meanings though for the second and 
subsequent meanings, the form is already in the lexicon, making it a more cum-
bersome matter to describe. 3) Clearly, given the Gricean account of meaning es-
poused here, there is no straightforward way in which one speaker’s meaning is 
identical to another’s, and to say that you and I both know that word w can mean 
m is to make a complex claim about correspondences between our uses and inter-
pretations of w. 
3 Lexicalization is the “process of making a word to express a concept” (WordNet 
2.0, http://wordnet.princeton.edu/) or “the realization of a meaning in a single 
word or morpheme rather than in a grammatical construction” (Merriam-Webster 
Online Dictionary, http://www.m-w.com/). Our use of “lexicalization“ emphasizes 
the process of a word (or phrase) being used in a new way, to express a concept 
that is distinct in some way from the concept(s) the word usually expresses, so 
emphasizing a different aspect of the process of constructing a new word/meaning 
pairing over other discussions of lexicalization. Nonetheless, as it is still a process 
of developing a new word/meaning pairing, we still consider “lexicalization” the 
appropriate term. 
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When I first encountered it, all I had to go on to form an interpretation 

words might mean. But since that day, whenever I have heard the words 
subcontinent and condiment, the Rushdie reference has been available to 
me to form part of my interpretation. For me, and possibly for you by the 
time you have read this far, sub-condiments have been lexicalized. There is 
some new knowledge in my long term memory, and possibly also in yours, 
about the potential of these words. 

Consider also green lentils. Is it lexicalized, or is the meaning merely 
composed from the meanings of its constituents? If we know what green 
lentils are, that they are called green lentils, and for example what they 
look like, what they taste like or how to cook them, then we have 
knowledge of green lentils over and above our knowledge of green and 
lentils. 

There are two things to note here. Firstly, much of the interpretation of 
green lentils is clearly composed from the meanings of its constituents but 
it must nonetheless be lexicalized as long as there is some part that is not. 

Secondly, some may find this definition of lexicalization too broad, and 
may wish to demarcate lexical as opposed to general knowledge. Sadly, 
there is no basis on which to do so. A lexicographer writing a definition for 
turkey has to decide whether to mention that they are often eaten for 
Christmas dinner, and to decide whether roast turkey is sufficiently salient 
to merit inclusion. Their decision will be based on the perceived interests 
of the dictionary’s target audience, lexicographic policy, and space; not on 
a principled distinction between lexical and world knowledge. 

We learn languages, words, and word meanings principally through 
exposure. We hear new words and expressions in contexts. There are two 
kinds of context: the linguistic, comprising the surrounding words and 
sentences, and the non-linguistic: what is being observed or done or 
encouraged or forbidden at the time. For any given word, the salient 
context may be linguistic, non-linguistic, or both. We make sense of the 
new word or expression as well as we are able, through identifying what 
meaning would make sense in that context. 

The process is cumulative. When we hear the word or expression again, 
whatever we have gleaned about it from previous encounters is available 
as an input for helping us in our interpretation. Our understanding of a 

was the standard meaning of the constituent words and the narrative context.
To make sense of the utterance – to appreciate the word play – reasoning
was required beyond the knowledge I had at that point of what the 

individual’s history of hearing a word dictates his or her understanding of 
word or phrase is the outcome of the situations we have heard it in. An 
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the word. A wider range of types of contexts will tend to give an individual 
a richer understanding of the word. His or her analytic abilities also, natu-
rally, play a role in the understanding that is developed. 

In cases of “real world” vocabulary, like tiger or mallet or bishop, once 
a word is learnt, the nature of the linguistic contexts which helped us learn 
it may become irrelevant: the word is understood when we know what it 
denotes. But most words have a less direct connection with the non-
linguistic realm: consider implicit, agent, thank, maintain. Then a great 
part of our knowledge of the place of the word in the linguistic system is 
embedded in the linguistic contexts in which we have encountered it. 

The contexts that form the substrate of our knowledge of words and 
their meanings cannot be dissected into lexical and world knowledge. 

In this view, a word is ambiguous if the understanding gleaned from one 
set of contexts fails to provide all that is needed for interpreting the word 
in another set of contexts. A homonym provides no useful information for 
the interpretation of its partner homonym. In the case of polysemy, if one 
meaning is known to a speaker and a second is not, the contexts for the 

understanding the new sense. 
A psycholinguist’s metaphor (MacWhinney 1989) may be useful here. 

We usually travel along well-worn routes. If it is a route thousands of peo-
ple take every day, there will be a highway. If it has less traffic, maybe 
across the moors, a footpath. Occasionally, because we want to explore 
new territory, for curiosity, for fun, we leave the beaten track and make 
our own way. If it looks interesting, our friends may follow. If they do, all 
of our footfalls begin to beat a new track, and the seeds are sown for a new 
path – which could, in time, be a major highway. Our footfalls make for a 
feedback system. Likewise, innovative word uses may inspire repetition 
and re-use, and, once they do, lexicalization is under way. 

Dictionary senses are a subset of the readings that are lexicalized for 
many speakers. But which subset? How do lexicographers choose which of 
the readings that are lexicalized in their own personal lexicon merit 
dictionary entries?  

The lexicographer’s response is pragmatic: those that are sufficiently 
frequent and insufficiently predictable (with respect to the style and target 
audience of the dictionary in question; the SFIP principle (Kilgarriff 
1997)). A reading that is highly predictable (like the ‘meat’ reading of 
warthog, or the ‘picture of x’ reading, which is available for any visible 
object) is not worth using valuable dictionary space on, unless it is particu-

encounter with the second, but further interpretive work will be required for 
first sense will provide some useful information for interpreting a first 

larly frequent: dictionaries will mention the ‘meat’ sense of turkey but not 
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the ‘meat’ potential of warthog. For a reading that is less-than-fully pre-
dictable, for example the use of tangerine as a color, a lower frequency 
threshold will be applicable. For homonyms, which are entirely unpredict-
able, a low baseline frequency (comparable to that required for rare words 
in general) is all that is required. 

In this section we present some findings and examples from a corpus study 
on the margins of lexicalization. Kilgarriff (2001) reports the study in full. 

As we are interested in the processes whereby new meanings for words 
come into being, the most interesting cases are the data instances that do 
not straightforwardly match dictionary definitions. The title of the chapter 
is “Word senses” so while it might seem that we should be comparing the 
data instances for one sense with the data instances for another, in practice 
this gives little purchase on the problem. The sense is lexicalized, the 
lexicographer has identified it and presents it as a sense, and a certain 
number of corpus instances match it: it is not clear what more there is to 
say. The critical process for an understanding of polysemy is the process of 
lexicalization, and it is most readily visible where a meaning has not yet 
been institutionalized as a dictionary sense. 

The materials were available from the first Senseval project (see Chap. 
4). For English Senseval-1, a set of corpus instances were tagged three 
times in all (by professional lexicographers), and where the taggers dis-
agreed the data was sent to an arbiter. The taggings thereby attained were 
95% replicable (Kilgarriff 1999). For a sample of seven word types, all 
corpus instances that received different tags from different lexicographers 
were examined by the author. The words were modest, disability, steering, 
seize, sack (noun), sack (verb), onion, and rabbit. 

The evidence from the study shows the similarity between the lexicog-
rapher’s task, when s/he classifies the word’s meaning into distinct senses, 

standard. The lexicographer asks him/herself, “is this pattern of usage suf-

words in names and in sublanguage expressions; underspecification and 

and the analyst’s when s/he classifies instances as standard or non-

metaphors, at word-, phrase-, sentence-, and even discourse-level; uses of 
to count as non-standard?” Both face the same confounding factors: 
asks him/herself, “is this instance sufficiently distinct from the listed senses  

sufficiently distinct from other uses, and well-enough embedded in the 
common knowledge of speakers to count as a distinct sense?” The analyst  

2.5 Corpus Evidence 
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overlap between meanings; and word combinations which mean roughly 
what one would expect if the meaning of the whole were simply the sum 
of the meanings of the parts, but that carry some additional connotation. 

For many of the non-standard instances, an appropriate model must con-
tain both particular knowledge about some non-standard interpretation, and 
reasoning to make the non-standard interpretation fit the current context. 
The “particular knowledge” can be lexical, non-lexical, or indeterminate. 

Consider the following example from the Senseval-1 data: 

Alpine France is dominated by new brutalist architecture: stacked rabbit 
hutches reaching into the sky …  

In this case the particular knowledge, shared by most native speakers, is 
that 

• rabbit hutch is a collocation, 
• rabbit hutches are small boxes, and 
• to call a human residence a rabbit hutch is to imply that it is 

uncomfortably small. 

The first time one hears a building, office, flat, or room referred to as a 
rabbit hutch, some general-purpose interpretation process (which may well 
be conscious) is needed.4 But thereafter, the ‘building’ reading is familiar. 
Future encounters will make reference to earlier ones. This can be seen as 
the “general” knowledge that buildings and rooms, when small and 
cramped, are like rabbits’ residences, or as the “lexical” knowledge that 
hutch or rabbit hutch can describe buildings and rooms, with a connotation 
of ‘cramped’. 

It is the compound rabbit hutch rather than hutch alone that triggers the 
non-standard reading. Setting the figurative use aside, rabbit hutch is a 
regular, compositional compound and there is little reason for specifying it 
in a dictionary. Hutches are, typically, for housing rabbits so, here again, 
the knowledge about the likely co-occurrence of the words can be seen as 
general or lexical. (The intonation contour implies it is stored in the mental 
lexicon.) 

                                                      
4 As ever, there are further complexities. Hutch and warren are both rabbit-
residence words that are also used pejoratively to imply that buildings are 
cramped. A speaker who is familiar with this use of warren but not of hutch may 
well, in their first encounter with this use of hutch, interpret by analogy with war-
ren rather than interpreting from scratch (whatever that may mean). 
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That hutches are small boxes is also indeterminate between lexical and 
general knowledge. It can be seen as the definition of hutch, hence lexical, 
or as based on familiarity with pet rabbit residences, hence general. 

To bring all this knowledge to bear in the current context requires an act 
of visual imagination: to see an alpine resort as a stack of rabbit hutches. 

A different sort of non-standard use is seen in the following example: 

Santa Claus Ridley pulled another doubtful gift from his sack. 

Here, the required knowledge is that Santa Claus has gifts in a sack which 
he gives out and this is a cause for rejoicing. There is less that is obviously 
lexical in this case, though gifts and sacks play a role in defining the social 
construct ‘Santa’, and it is the co-occurrence of Santa Claus, gifts, and 
sack that triggers the figurative interpretation. 

As with rabbit hutch, the figure is not fresh. We have previously 
encountered ironic attributions of “Santa Claus” or “Father Christmas” to 
people who are giving things away. Interpretation is eased by this 
familiarity. In the current context, Ridley is mapped to Santa Claus, and 
his sack to the package of policies or similar. 

These examples have been used to illustrate three themes that apply to 
almost all of the non-standard uses in this study: 

1. Non-standard uses generally build on similar uses, as previously 
encountered. 

2. It is usually a familiar combination of words that triggers the non-
standard interpretation. 

3. The knowledge of the previously-encountered uses of the words is 
very often indeterminate between “lexical” and “general”. 

Any theory which relies on a distinction between general and lexical 
knowledge will founder. 

The lexicon is rife with generalization. From generalizations about 
transitive verbs, to the generalization that hutch and warren are both rabbit 
residences, they permeate it, and the facts about a word that cannot 
usefully be viewed as an instance of a generalization are vastly 
outnumbered by those that can. 

Given an appropriate inheritance framework, once a generalization has 
been captured, it need only be stated once and inherited: it does not need to 
to be stated at every word where it applies. So a strategy for capturing 

2.5.1 Lexicon Size 
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Speakers recognize large numbers of poems, speeches, songs, jokes, and 
other quotations. Often, the knowledge required for interpreting a non-

seval-1 was bury. The bury data included three variants of Shakespeare’s 
“I come to bury Caesar, not to praise him” (Julius Caesar III.ii), as in:6 

Graf will not be there to praise the American but to bury her … 

                                                      
5 The issue of what should count as an interpretation, or, worse, a ‘full’ interpreta-
tion leads into heady waters (see, for example, Eco (1992)). We hope that a pre-
theoretical intuition of what it is for a reader or hearer to grasp what the author or 
speaker meant will be adequate for current purposes. 
6 For further details on the Caesar cases, and a discussion of other related issues in 
the Senseval data, see Krishnamurthy and Nicholls (2000). 

smaller: it will take less bytes to express the same set of facts. 
generalizations, coupled with inheritance, will tend to make the lexicon  

standard instance relates to a quotation. One of the words studied in Sen-

But a compact, or smaller, lexicon should not be confused with a small 
lexicon. The examples from the above study just begin to indicate how 
much knowledge of previously encountered language a speaker has at his 
or her disposal. Almost all the non-standard instances in the dataset called 
on some knowledge that we may not think of as part of the meaning of the 
word and that the lexicographer did not put in the dictionary used for the 
exercise, yet that is directly linked to previous occasions on which we have 
heard the word used. The sample was about 200 citations each per word; had 
far more data been examined, far more items of knowledge would have 
been found to be required for the full interpretation of the speaker’s mean-
ing.5 The sample took in just seven word types. There are tens or even 
hundreds of thousands of words in an adult vocabulary. The quantity of in-
formation is immense. A compact lexicon will be smaller than it would 
otherwise be – but still immense. 

We know and recognize vast numbers of quotations. (I suspect most of us 
could recognize, if not reproduce, snatches from most top ten pop songs 
from our teenage years.) Without them, many non-standard word uses are 
not fully interpretable. This may or may not be considered lexical know-
ledge. Much will and much will not be widely shared in a speaker commu-
nity: the more narrowly the speaker community is defined, the more will 
be shared. Many dictionaries, including Samuel Johnson’s Dictionary of 

2.5.2 Quotations 
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the English Language and the Oxford English Dictionary, include quota-
tions, both for their role in the word’s history and for their potential to shed 
light on otherwise incomprehensible uses. 

Hanks (1994) talks about word meaning in terms of “norms and exploi-
tations”. A word has its normal uses, and much of the time speakers simply 
proceed according to the norms. The norm for the word is its semantic 
capital, or meaning potential. But it is always open to language users to 
exploit the potential, carrying just a strand across to some new setting. As 

right. 

There are no decisive ways of identifying where one sense of a word ends 
and the next begins, and this is at the core of what makes word sense dis-
ambiguation hard. The task definition for WSD, in Senseval, includes the 
inventory of word senses, between which we are to disambiguate (see 
Chap. 4). But word senses are not easy to inventorize, and any list will in-

these issues, and will have applied those policies consistently. Still, how-
ever good the dictionary, it would be rash to assume that the policies of 
any particular dictionary are suited to the requirements of any particular 
application of natural language processing. 

In this chapter we have explored what word senses are. The 
straightforward place to find them is in dictionaries, so we have looked at 
the process that puts them there. In modern lexicography, they are included 
in dictionaries on the basis of corpus analysis. 

For a broader perspective, we looked to the philosophers. A word’s 
senses are its meanings, and meaning has long been a topic of philosophi-
cal argument. We considered two contrasting accounts of meaning, the 
“Fregean” and the “Gricean”, and showed that only the Gricean, in which 
a word’s meaning is an abstraction from the communicative purposes of 
the utterances it occurs in, sheds light on word senses. 

becomes sufficiently established to merit treatment as a norm in its own 

we have seen, an exploitation can then serve as a platform for further 
exploitations, and there is always the possibility that the exploitation 

corporate a wide range of choices, both about how to divide up the mean-

issues including metaphor, systematic polysemy, quotations, proper names, 
ing of an individual word, and, at a “policy” level, about how to address 

ledge. A good dictionary will have been compiled with policies on all of 
multi-word items and the limits of lexical as opposed to general know-

2.6 Conclusion 
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Since a word’s meaning is an abstraction from patterns of use, a new 
meaning arises with a new pattern of use. A speaker will only use a word 
in a new pattern when they either invent it or acquire it. We looked in 
some detail at the process of adding a new pattern to a speaker’s lexicon, 
and saw how new patterns come into use through a range of processes that 
exploit the established uses of the word, calling on general knowledge, 
quotations, and metaphorical reasoning along the way. 

Two lexicographers who have closely and perceptively described corpus 
evidence of the behavior of words are Sue Atkins and Patrick Hanks. 
Atkins and co-authors describe the behavior of a set of verbs of cooking 

(1992) discuss the noun risk and in so doing, provide one of the main 
motivating papers for Fillmore’s frame semantics (Fillmore 1982). Hanks 
(1994, 1996, 1998) addresses in detail nouns including enthusiasm and 
condescension and verbs including check in the course of developing his 
theory of norms and exploitations. All of the above references are 
recommended for readers wishing to find out more, as they present strong 
primary evidence of the sort of phenomenon that word meaning is, 
presented by people who, from lifetimes in dictionary-making, speak with 
experience and expertise on the nature of word meaning. These references 
are the further reading for Sections 2.4 and 2.5 as well as 2.2, as the 
discussions explore incipient lexicalizations, and interactions with real-
world knowledge and quotations as encountered in corpus evidence. Two 
studies of the author’s are Kilgarriff (1997), which looks particularly at the 
relation between this view of words senses and WSD, and the one from 
which the rabbit and sack examples are drawn, Kilgarriff (2001). Michael 
Hoey’s recent book presents the closely related “lexical priming” theory of 
language (Hoey 2005). 

For philosophy, a key primary text is Wittgenstein’s allusive and 
aphorism-filled Philosophical Investigations (Wittgenstein 1953), though 
readers may be happier with the secondary literature: Honderich (1995) or 
the online Dictionary of the Philosophy of Mind (Eliasmith 2005) are 
suitable launching-off points. (Grice, in particular, is a very technical 
writer and readers should not be dismayed if their attempts to read, for 
example, Grice (1968) bewilder more than they enlighten.) 

et al. (1986, 1988)) and of sound (Atkins et al. 1997). Fillmore and Atkins 
(2002, with particular reference to bilingual lexicography; also Atkins 

2.7 Further Reading 
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We suggest that the standard fine-grained division of senses and (larger) 
homographs by a lexicographer for use by a human reader may not be an 
appropriate goal for the computational WSD task. We argue that the level 
of sense-discrimination that natural language processing (NLP) needs 
corresponds roughly to homographs, though we discuss psycholinguistic 
evidence that there are broad sense divisions with some etymological deri-
vation (i.e., non-homographic) that are as distinct for humans as homo-
graphic ones and they may be part of the broad class of sense-divisions we 
seek to identify here. We link this discussion to the observation that major 
NLP tasks like machine translation (MT) and information retrieval (IR) 
seem not to need independent WSD modules of the sort produced in the 
Research field, even though they are undoubtedly doing WSD by other 
means. Our conclusion is that WSD should continue to focus on these 
broad discriminations, at which it can do very well, thereby possibly offer-
ing the close-to-100% success that most NLP seemingly requires, with the 
possible exception of very fine questions of target word choice in MT. This 
proposal can be seen as reorienting WSD to what it can actually perform 
at the standard success levels, but we argue that this, rather than some 
more idealized vision of sense inherited from lexicography, is what        
humans and machines can reliably discriminate. 

In Chapter 2, Kilgarriff identifies the source of the WSD “problem” as the 
attempt to assign one of several possible senses to a particular occurrence 

3 Making Sense About Sense 

3.1 Introduction 
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of a word in text – in particular, pre-defined sense lists provided in dic-
tionaries and similar lexical resources. He goes on to suggest that the 
proper assignment of word senses requires a vast amount of lexical,        
syntactic, and pragmatic knowledge, together with generative procedures 
that can be exploited for every occurrence – a position reminiscent of the 
artificial intelligence (AI) community’s objections to statistical natural lan-
guage processing (NLP) two decades ago. At the same time, Kilgarriff 
gives a nod to “the important role” of pre-established lists of word senses 
for WSD, by which we assume he means that the identification of some 
limited number of broadly defined senses is useful in language processing 
applications. He seems to be suggesting, at least obliquely, that while lexi-
cographers and linguists seek to represent word meaning in all its depth 
and complexity, NLP can provide some useful results by relying on far 
less. This is exactly right, but it begs the question of how much – or, more 
to the point, how little – information about word meaning is actually        
required to do something useful in NLP, given our current capabilities.  

Interestingly, although this question should be pivotal for those engaged 
in the WSD activity, within the NLP community very little progress has 
been made toward answering it directly. Perhaps this results from aiming 
too high: for example, the organizers of Senseval-2 state that “[Senseval’s] 
underlying mission is to develop our understanding of the lexicon and lan-
guage in general” (Edmonds and Kilgarriff 2002:289). It is difficult to re-
sist the temptation to answer the hard questions that have been debated by 
philosophers and linguists for millennia, rather than continue hard practical 
work within the considerable constraints on our current understanding of 
lexical semantics. But as Robert Amsler recently pointed out, 

I fear the state of our understanding of theoretical lexical semantics is about 
where astronomy was 2000 years ago. The theory or even the logical arguments 
as to what stars in the heavens (or the semantics of words) must be will be        
debated for years to come without affecting the work of those of us empirically 
measuring what is observable and predictable (Senseval discussion list,1 27        
August 2004). 

Here we take a practical view of WSD, beginning with a reconsideration        
of the role of lexicographers in word-sense disambiguation as a computa-
tional task, as providers of both legacy material (dictionaries) and special 
test material for competitions like Senseval. We suggest that the standard 
fine-grained division of senses and (larger) homographs by a lexicon-
grapher for use by a human reader may not be an appropriate goal for the 
                                                      
1 http://listserv.hum.gu.se/mailman/listinfo/senseval-discuss 
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computational WSD task, and that the level of sense-discrimination that 
NLP needs corresponds roughly to homographs. We then consider psycho-
linguistic evidence that certain etymologically related (i.e., non-
homographic) senses that are as distinct for humans as homographic ones 
may be part of the broad class of sense-divisions required for NLP. We link 
this discussion to the observation that major NLP tasks like machine transla-
tion (MT) and information retrieval (IR) seem not to need independent WSD 
modules of the sort produced in the research field, even though they are    
undoubtedly doing WSD by other means. We conclude by recommending 
that WSD focus on these broad discriminations, thereby reorienting WSD to 
what it can actually perform at the close-to-100% success rate that most 
NLP seemingly requires. 

It is a truism of recent NLP that one should use machine learning tech-
niques wherever appropriate, which in turn requires that training material 
be provided by the relevant experts, who will be translators in the case of 
MT, and perhaps lexicographers in the case of WSD. This has been 
roughly the method pursued by the WSD Senseval competition, but there 
may be reasons for questioning it, by asking whether lexicographers are in 
fact the experts that NLP needs for WSD training and expert input. 

Even raising this question can sound ungracious, in that there have been 
many fruitful intellectual and personal collaborations between NLPers and 
lexicographers, of which Church and Hanks (1990) is perhaps the best 
known. However, there is a serious point behind the question, and one  
motivated by the peculiar and indefinite nature of word-sense distinctions, 
right back to early observations that the sense distinctions you wish to 
make may depend on your purposes at any given moment (Wilks 1972). 

That there is no absolutely right number of senses for a word is con-
ceded by the fact that a publisher like Oxford University Press produces its 
major English dictionary in at least four sizes (Main, Shorter, Concise, 
Pocket) with a corresponding reduction in the number of senses for most 
words. But this is made more complex by the fact the senses in a shorter 
dictionary may not always be a subset of those in a longer one, but a dif-
ferent conceptualization of a word’s meanings. Hanks (1994) has noted 
that lexicographers can be distinguished as “lumpers” and “splitters”, 
where the latter prefer finer sense distinctions and the former prefer larger, 
more general, senses. And efforts to “map” senses between one dictionary 

3.2 WSD and the Lexicographers 
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and another, even if coarse-grained senses are mapped to several finer-
grained ones that they supposedly subsume, have shown that the corre-
spondences are not always one-to-one (Ide and Véronis 1990).  

However, whatever kind of lexicographer one is dealing with, one can-
not be sure that their motivation and expertise is what is required for NLP, 
because their goal is and must be the explanation of meaning to one who 
does not know it, and it is not obvious that that is what NLP requires in the 
way of sense distinctions. This is not to question the line of research on the 
use of machine readable dictionaries in NLP that began at System Deve-
lopment Corporation with Olney et al. (1966) in the Sixties, and which 
blossomed with the availability of the Longman Dictionary of Contempo-
rary English (LDOCE) (Procter 1978) and other learner’s dictionaries in 
the Eighties. It was always a research question whether machine-readable 
dictionaries (MRDs) would provide large-scale semantics effortlessly in 
the way optimists hoped. This possibility was questioned as early as (Ide 
and Véronis 1993) and perhaps it is now fairly clear that, although research 
with MRDs produced some useful artifacts, such as automatically gener-
ated hierarchies (Wilks et al. 1996), and indeed can be said to have started 
WSD as a subfield and task of NLP, their availability did not produce the 
revolution that had been hoped for. 

None of the above is intended to express skepticism about the expert 
task of the lexicographer and his intuitions; the issue is whether the prod-
uct of those intuitions – i.e., a classical dictionary – suits the needs of NLP 
in semantic analysis. That there has been dissention among lexicographers 
themselves over their output can be seen from Kilgarriff’s published ques-
tionings, already touched on above, under titles like “I don’t believe in 
word senses” (1997) as well as Hanks’s reported musings that a dictionary 
could be published consisting entirely of examples of use. Any proponent 
of such a set of examples of use, as a proto-lexicon in itself, has to explain 
how it performs either the classic explanatory role of a dictionary for the 
layman, or the needs of the NLP researcher who is perfectly capable of 
finding his own corpora, which is all a set of usages could amount to. A set 
of usages may well guide a foreign learner, directly or by analogy, how to 
use a word, but they cannot show what it means, in the way that definitions 
do, whatever their other faults. As to the second need, there may well be 
additional constraints on a well-balanced corpus for experiments, but there 
is no reason to imagine the set of usages of a word provided by a lexicog-
rapher would constitute a balanced corpus, since such balance was not a 
consideration in the set’s construction. Even if it were, there would be no 
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particular reason to trust a lexicographer to balance a corpus for one, rather 
than a linguist or a computer algorithm. 

These doubts about what lexicographers really have to offer NLP have 
been exacerbated by the realization that all successful WSD has operated 
at what, in LDOCE terms, we could call the homograph rather than the 
sense level. If we look at the results obtained by Yarowsky on small word 
sets (2000), probably the best known WSD results, they have all been at 
the crane-as-bird-or-machine level – a clear case of an LDOCE homo-
graph. In some of the earliest reported large scale WSD (Cowie et al. 
1992) it was clear that much better figures were obtained resolving to the 
LDOCE homograph, rather than to the sense, level. Moreover, homograph 
distinctions do not require a lexicographer to locate them, since they are 
basically those that can be found easily in parallel texts in different lan-
guages, a point we shall return to below. 

With few exceptions, contemporary automatic WSD assigns sense labels2 
drawn from a pre-defined sense inventory to words in context. If lexicog-
raphers’ output (i.e., dictionaries) is not a good source of sense inventories 
useful in NLP, where do we turn? For nearly a decade, the sense inventory 
used almost exclusively in WSD is the most recent version of WordNet 
(currently, version 2.1). In the late Eighties and early Nineties, prior to the 
availability of WordNet, sense labels were often drawn from the few elec-
tronic dictionaries made available for computational linguistics research 
(LDOCE, Collins English Dictionary, etc.). It is interesting to note that 
both during and before the hey-day of symbolic NLP in the Seventies and 
early Eighties, word senses were more often represented by groups of fea-
tures of varying kinds than by pre-defined inventories drawn from lexical 
resources; dictionaries and thesauri sometimes provided the starting point, 
but were frequently augmented by adding information from other sources, 
or by hand (for a more complete history, see Ide and Véronis 1998). 

                                                      
2 We include here not only sense labels derived from sense inventories such as 
WordNet, traditional dictionaries, and thesauri, but also “concept labels” such as 
EuroWordNet’s inter-lingual index (ILI), “semantic annotations” as used in, say, 
information extraction systems, as well as codings used in interlingual MT sys-
tems. 

3.3 WSD and Sense Inventories 
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The problems for WSD arising from the use of the WordNet inventory 
are well-known. The most common complaints are that unlike traditional 
dictionaries, WordNet delineates different senses of a word on the basis of 
synset membership, and that the resulting distinctions are too fine-grained 
for WSD. At the same time, the community repeatedly acknowledged that 
for all its imperfections, WordNet has become a de facto standard because 
it is freely available for research. As a result, the European projects        
Eurowordnet (Vossen 1998) and BalkaNet3 created parallel wordnets for 
Western and Balkan languages, and several other wordnets are under      
development.4 Whether or not calls for the development of better resources 
to support it are met, WordNet is likely to remain the benchmark sense    
inventory for WSD for the near future, at least. But the use of WordNet 
senses per se is not the root of the problem. Although it has been argued 
that using WordNet senses for WSD produces results worse than using 
senses from traditional dictionaries (Calzolari et al. 2002), the fact remains 
that pre-defined, enumerated sense lists from any source have proven to be 
problematic for WSD. 

In recent Senseval exercises (see Chap. 4) and the discussions surround-
ing them, several fixes to what we can call, a bit unfairly, “the WordNet 
problem” have been proposed and in some cases implemented. The most 
often-cited obstacle to correct assignment of pre-defined senses concerns 
granularity: as early as 1993, Kilgarriff showed that human annotators 
cannot distinguish well between some of the finer-grained senses deline-
ated in LDOCE (Kilgarriff 1993), and this fact has been re-established in 
numerous studies since then, at a ceiling of approximately 80% inter-
annotator agreement5 (for English) reported in recent literature (see, e.g., 
Edmonds and Kilgarriff 2002). Senseval has addressed this problem        
by adopting a full or partial “coarse-grained” scoring scheme, where     

                                                      
3 http://www.ceid.upatras.gr/Balkanet/publications.htm 
4 http://www.globalwordnet.org/gwa/wordnet_table.htm 
5 A problem we do not address but which must occur to many readers is that, in 
the case of WSD in particular, claimed and tested success rates in the 90%+ range 
are strikingly higher than the inter-annotator agreement level of 80%+, and to 
some this is a paradox. The answer may simply be that the better machine learning 
systems in fact simulate the better, more sensitive, discriminators and that the low 
agreement figure reflects the relative difficulty of the task, rather than some inher-
ent level of vagueness in the material. We all know some people are better lexi-
cographers than others, and this is not a “democratic” task like speaking a         
language. No other explanation seems to fit the experimental data. 
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sub-senses are collapsed to their highest parent, and partial credit is given 
for identifying the parent of the correct sense. Collapsing finer-grained dis-
tinctions has been suggested repeatedly in the literature (e.g., Dolan 1994, 
Chen and Chang 1998, Palmer et al. 2006; see also Chap. 4) as a means to 
avoid the WordNet problem, but this again begs the question of the level at 
which to stop collapsing, which has so far not been thoroughly addressed 
by WSD researchers.  

More extensive and radical proposals to improve WordNet have also 
been put forward, suggesting a major over-hauling of the lexicon by add-
ing information such as selectional preferences and frequency information, 
as well as refining or improving the information it already contains by 
simplifying hierarchies, making senses mutually exclusive, deleting bad 
links and esoteric words, and so on (Hanks 2003). While the suggested 
changes were not necessarily made with the aim of improving the resource 
for NLP specifically, they would certainly help. However, there seems to 
be little interest in (or perhaps, funding for) implementing changes to 
WordNet within the NLP community; despite its widespread use in NLP 
work, one sees very little in the literature about enhancing or extending 
WordNet to provide a better basis for automatically determining word 
senses.  

There is of course a tradition that rejects the notion of a pre-defined         
inventory of senses altogether. One version, usually associated with 
Wierzbicka (1989) and, later, Pustejovsky (1995), is wholly linguistic; an-
other approaches the problem of determining appropriate sense distinctions 
by using the kinds of information typically exploited in WSD (context, 
syntactic role, etc.) to identify groups of word occurrences that should, on 
these grounds, be regarded as representing a distinct sense (e.g., Schütze 
1998; see also Chap. 6).6 This is a tradition that goes back to Karen Sparck 
Jones’s thesis in the mid-Sixties (1986/1964). While at first glance this         
approach would seem to be an effort to adapt the answers to the questions 
rather than the other way around, at the very least it provides some insight 
into which sense distinctions we can reasonably make given the state of 
the art. Yet another approach uses cross-lingual correspondences to deter-
mine appropriate sense distinctions. Brown et al. (1990) and Dagan and 
Itai (1994) use translation equivalents as “sense tags” in parallel and         

                                                      
6 The applicability of this approach is not limited to WSD: Hanks (2000) outlines 
a method by which lexicographers can determine sense distinctions for inclusion 
in traditional dictionaries by iteratively clustering concordance lines judged to rep-
resent the use of a given word in the same sense. 
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comparable corpora rather than pre-defined senses. More recent work 
along this line extends to the claim that, for the purposes of NLP, the         
different senses of a word could be determined by considering only those 
distinctions that are lexicalized cross-linguistically (Dagan and Itai 1994; 
Resnik and Yarowsky 1997a, 1997b). Given that many ambiguities are 
preserved across languages, this approach demands examining translation 
equivalents in parallel texts from multiple languages, possibly languages 
spanning the various broad linguistic families to overcome arbitrary effects 
of joint inheritance. This idea was pursued in a series of studies (Ide 1998; 
Ide et al. 2001, 2002), where word occurrences in an English text were 
clustered based on their translation equivalents in parallel texts in seven 
languages from the Germanic, Romance, Slavic, and Finno-Ugric language 
families. The results showed that clusters produced automatically and 
based on translation equivalents agreed with clusters (i.e., groupings of         
occurrences deemed to be used in the same sense) produced by four human 
annotators at a level slightly below that of agreement among the annotators 
themselves (74% vs. 79%), but the clustering algorithm performed well 
enough to be considered a viable means to delineate senses. Chapter 6, 
(Sect. 6.4) and Chapter 9 (Sect. 9.3.4) review WSD studies related to 
cross-lingual issues. Other recent works include Dyvik (1998, 2004), Res-
nik and Yarowsky (2000), Diab and Resnik (2002), Ng et al. (2003), and 
Tufi  et al. (2004), which attained similar results to those of Ide.  

These “data-driven” approaches to determining word senses are philoso-
phically in the good company of Halliday, Sinclair, Harris, and other major 
20th century linguists, but on a practical level they seem unlikely to be used 
in NLP applications in the near future, if at all. The primary problem is that 
their implementation to produce a “full” sense inventory would require mas-
sive amounts of data, and even continuous re-computation as new data      
becomes available and languages evolve. Furthermore, it is not even clear 
that a usable, independent sense “list” could be produced by these means: 
for example, how would senses in such a list be labeled/distinguished so as 
to be meaningfully understood and used, without resorting to some sort of 
definition, such as one would find in a traditional dictionary? If cross-lingual 
distinctions are used as a basis, do we include any distinction that any lan-
guage makes, or only the ones most or all languages make? For example, 
Romanian and Estonian have a special word for back of the head, whereas in 
English the word head is generally used without further specification. In the 
phrase behind [one’s] head, head is translated as kuklasse (nominative:     
kukal) in Estonian and ceaf  in Romanian, whereas in the phrase above 
[one’s] head, both Estonian and Romanian use a more general word for 
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head (pea and cap, respectively) that corresponds to the English equiva-
lent. Cross-linguistic data, then, suggests two “senses” to distinguish the 
concept of the back of the head from the head in general, but it is not clear 
whether the distinction should be made in sense labeling an English text, 
or if only the more general concept should be used even if the language     
being labeled makes the distinction (with language-specific refinements, as 
in EuroWordNet – see Peters et al. 1998). 

Overall, then, no suitable sense inventory for general-purpose WSD has 
yet been identified or created. However, despite the questions noted above, 
the use of cross-lingual information to determine an inventory of sense dis-
tinctions useful for NLP seems to offer the best potential for developing a 
meaningful inventory for NLP applications. We return to this point later, in 
Section 3.5. 

In his survey of WSD in NLP applications (Chap. 11), Resnik rightly 
points out that there is typically no explicit WSD phase in well-established 
applications such as monolingual IR and MT. MT remains the crucial and 
original NLP task, not just because of its age but because any NLP theory 
can almost certainly be expressed and tested in MT terms; moreover MT 
has undoubted and verifiable evaluation standards, in that it remains a task 
that can be evaluated outside any theory, simply because many people 
know what a translation is without any knowledge whatever of NLP or 
linguistics. That cannot be said of many classic NLP tasks, which require a 
great deal of skill and experience to evaluate, including WSD. Given that 
seniority of MT, we also know that tradition asserts firmly that WSD was 
one of the reasons early MT was not more successful, and this has been 
used as the justification for WSD since its inception: it would help MT. 
What we have to discuss and explain here is why the undoubted successes 
of WSD at the 95% level seem not to have so far materially assisted MT. 

Martin Kay wrote somewhere long ago that, even if all the individual 
problems associated with MT were solved, including WSD and syntactic 
analysis, that fact alone might not raise the success level of MT substan-
tially. The remark was in a paper that advocated human-aided MT, on the 
ground that pure MT seemed unlikely to succeed, a prediction that has 
turned out to be false. However, the remark about MT components now 
seems prescient. And again, it is worth asking why that is, if it is.  

3.4 NLP Applications and WSD  



56      Ide and Wilks 

To answer it, we might look at the history of IR, a discipline of about 
the same maturity as MT. From its beginning, there have been those who 
argued that IR must need some WSD function to reduce the ambiguity of 
words in queries. One remembers here Bruce Croft’s dictum that, for any 
IR technique, there is some document collection for which it will improve 
retrieval. More seriously, Vossen (2001) and Stevenson and Clough (2004) 
have recently shown that WSD does seem to have a real role in cross-
language IR (see also Chap. 10). Nonetheless, the current prevailing view 
is that explicit WSD must be close to 100% accurate to improve monolin-
gual IR (Krovetz and Croft 1992, Sanderson 1994), and therefore, for the 
long, standard, queries used in evaluations (as opposed to the short        
ambiguous queries sent to search engines), separate WSD modules seem to 
make little difference; it has even been argued that partially erroneous 
sense assignments from explicit WSD can degrade retrieval results (Voor-
hees 1999). This is certainly because the operation of an IR system, using 
as it normally does the overall context defined by the query, seems to per-
form WSD by indirect methods. So, the 100 terms in a classic query (as in 
the U.S. TREC competition7) will effectively define a domain, and co-
occurrence functions used in the retrieval ensure that associations of “in-
appropriate” senses of words in the query are eliminated in that process. 

As for MT, it is a fact that most working MT systems, from Systran8 
onwards to the present, do not have separate and identifiable WSD com-
ponents, although they undoubtedly do a great deal of WSD somewhere. 
Does this suggest that some local functions are in fact doing WSD without 
being so named? Two different examples of systems suggest that this may 
be the case. Wilks and Stevenson (1998) have shown that, if the lexicon 
was arranged appropriately, a simple part-of-speech tagger could give 90% 
WSD. Appropriate lexical organization here meant the sort given in 
LDOCE where senses are grouped under main homographs and the homo-
graph/sense clusters have all their members with a single part of speech. It 
is this last fact that allows a POS tagger to do so much sense discrimina-
tion at little or no computational cost: for instance if bark is tagged as a 
verb, then we know its sense is that of an animal (possibly human) vocali-
zing vociferously and need not concern ourselves at all with the ambiguity 
of that word as a noun. 

This result is a serendipitous side effect of LDOCE’s particular form of 
organization, but it does suggest something deeper about the extent to 

                                                      
7 http://trec.nist.gov 
8 http://www.systransoft.com 



3 Making Sense About Sense      57 

which sense distinction is not independent of part-of-speech distinction 
and how the latter can aid the discrimination of the former – i.e., without 
explicit WSD. Another example, quite different but pointing the same 
moral, is the generation component of the CANDIDE statistical MT sys-
tem (Brown et al. 1990) where prendre has as its most frequent equivalent 
in bilingual texts the verb take. Yet, when translating prendre une décision 
CANDIDE is able to generate make a decision which is more common in 
U.S. English, even though take a decision is not wrong. It does this        
because of the interaction of trigrams in the target language and bilingual 
associations. One could say that prendre is being disambiguated here but 
without its English alternatives ever being explicitly considered or com-
pared by the system. The correct output is simply a by-product of the        
interaction of two very general statistical components. 

In general, then, explicit WSD – as implemented in stand-alone systems 
such as those involved in the Senseval competitions – does not seem to 
play a role in the most prominent NLP applications.9 We again have to ask 
ourselves, why not?  

Before answering this question, it is useful to turn it around and ask, 
why is WSD generally treated as if it is an isolatable language processing 
step? The reasons would seem to be primarily historical. A “modular” 
view of language processing was firmly established in the mid-20th century 
by semioticians and structural linguists, who developed cognitive models 
that describe language understanding as an aggregative processing of vari-
ous levels of information (syntax/semantics/pragmatics for the semioti-
cians, morpho-phonological/syntactic/lexico-semantic for the structural 
linguists). This modular view was taken up by the earliest computational 
linguists, who treated the process of language understanding as a modular 
system of sub-systems that could be modeled computationally, and it has 
remained dominant (abetted by cognitive psychology and neuro-science) 
to this day. It is apparent in the design of “comprehensive” language pro-
cessing systems, which invariably include multiple modules devoted to 
isolatable analytic steps, and it informed the “pipeline” approach to lin-
guistic annotation introduced in the mid-Nineties (Ide and Véronis 1994) 
that has been implemented in major annotation systems10 since then. In 
keeping with the modular approach, it is natural to treat disambiguation in 
the same way morpho-syntax and syntax were treated in the past: as a step 

                                                      
9 See Chapter 11 for a comprehensive review of the role of WSD in IR and MT. 
10 For example, MULTEXT (Ide and Véronis, 1994), LT XML (McKelvie et al. 
1998), GATE (Cunningham 2002), and ATLAS (Bird et al. 2000). 
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in the language processing pipeline for which independent systems can be 
developed and tested, and which can then be integrated into more general        
language processing systems. As a result, for over 40 years considerable 
research activity has been devoted to the development and evaluation of 
stand-alone WSD systems, with techniques spanning the use of semantic 
and neural networks, hand-crafting of complex rules and semantic feature 
sets, exploitation of knowledge resources such as dictionaries, thesauri, 
and lexicons like WordNet, as well as the development of sophisticated 
statistical and machine learning techniques – despite the fact that these sys-
tems are rarely used as modules in language processing applications.  

The fact that different applications require different degrees of disam-
biguation is rarely considered in discussions of the application needs for 
WSD. In fact, IR and MT provide what may be the opposite ends of a con-
tinuum of WSD needs: IR typically demands “shallow” WSD, while MT 
may require more disambiguation precision to generate a translation that 
sounds more or less natural in the target language.11 In fact, it appears that 
applications that need deeper linguistic analysis in general, may need finer-
grained disambiguation. So, it follows that MT has exploited information 
gleaned from its more sophisticated linguistic processing to achieve more 
precise disambiguation, rather than turning to stand-alone WSD. IR, on the 
other hand, is virtually the only application that has seriously explored the 
use of stand-alone WSD, since the kind and level of disambiguation 
needed there is precisely what current WSD systems are good at. 

The question is therefore not whether NLP applications such as IR and 
MT need WSD (they do), but rather, what degree of disambiguation they 
need and whether or not pre-defined sense inventories can provide it. We 
turn to this question in the next section. 

NLP, If Any? 

Dagan and Itai (1994) have long argued that sense distinctions roughly at 
the homograph level, where crane is a bird or a machine for lifting, are the 

                                                      
11 In fact, it is almost certainly the case that the degree of disambiguation required 
for MT depends on the word in question (more ambiguous words, especially those 
often used metaphorically such as hard and run, may demand more analysis to 
disambiguate) as well as the target language and its similarity to the source lan-
guage, both etymologically and structurally. 

3.5 What Level of Sense Distinctions Do We Need for  
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ones actually used for most WSD and therefore those needed, by defini-
tion, for NLP. If we look a little more widely in the speculative literature 
on word sense, we see that the homograph-as-basic view has more support 
than at first appears: Wierzbicka (1989) is sometimes taken as having     
argued that there are no word senses, but only a basic sense for each word, 
a position held by Ruhl (1989) and, much earlier, by Antal (1965). How-
ever, Wierzbicka’s position is more complex, in that she accepts homo-
graphs – what are often argued to be different words by linguists, and only 
masquerading, as it were, as the same word. One can see her in the tradi-
tion of those interested in the way a word extends its sense with time, 
while retaining a strong semantic link to its origin (which is precisely what 
homographic distinctions lack). In the AI/NLP world, this tradition has 
manifested itself as those who either want more compacted lexicons (e.g., 
Gazdar’s DATR, Pustejovsky) or are interested in rules, or knowledge 
functions, by which sense lexicons extend (e.g., Givón, Wilks, Briscoe,  
Nirenburg – see Wilks and Catizone (2002) for a comparison of this class 
of systems). A similar approach is advocated by some linguist/lexicogra-
phers; for example, Nunberg (1979) argued that distinct senses should not 
be represented in the lexicon, but rather that pragmatic principles should 
be used to derive related senses from others.12 This view is also evident in 
the psycholinguistics literature: one theory of the mental lexicon holds that 
only a “core” meaning of a word is stored in memory, and polysemous   
extensions are computed on the fly from contextual features, using prag-
matics and plausible reasoning (see, e.g., Anderson and Ortony 1975, 
Caramazza and Grober 1976).  

The former group, as with Wierzbicka, tend to deny there is an exten-
sive set of senses, whatever there appears to be in many dictionaries, while 
the latter group claim that some mechanism could recapitulate the apparent 
variety that time and usage have produced. These two variant positions 
may not be ultimately distinct, and can be parodied by the example She sat 
on her bicycle and rode away where, if a bicycle, has, say, 150 distinct 
parts one could perhaps argue that bicycle in that sentence is 150 ways 
ambiguous and needs resolving to saddle or seat. However, that position is 
obviously absurd; it would be far better to say that the word is simply 
vague, and that it is AI, knowledge bases, and reasoning that should further 
resolve it, if that ever proved necessary, and not NLP or linguistics. To jus-
tify this, one could fall back on some form of Dagan’s case: namely that 

                                                      
12 This approach is in contrast to that of other lexicologists such as Zgusta (1971), 
who argue for representing each distinguishable sense. 



60      Ide and Wilks 

every language will have a word for a bicycle and for each of its parts, but 
it is hard to imagine a language that would force the specification of a par-
ticular part in the example above – though, as we saw, in some specific 
and limited cases like the Romanian/Estonian head, such precision is 
forced. 

In fact, homographs as strictly defined – i.e., etymologically unrelated 
words which through historical accident have the same “name”, like the 
senses of bank and calf – are certainly not enough for WSD, since there are 
many instances where etymologically related senses are as distinct as 
homographs for most people. Take, for example, the word paper: in dic-
tionaries that separate entries by homographs (most notoriously, the       
Oxford English Dictionary (OED)), the senses of paper that refer to sheets 
of material made from wood (as a sheet of paper) and a newspaper (as a 
daily paper) appear in the same entry and are therefore etymologically       
related. Other examples include words like nail (a finger nail vs. the metal 
object one drives with a hammer), shower (a rain shower vs. the stall in 
which one bathes), etc.13 For such words, certain senses are as distinguish-
able as homographs, a fact that has been borne out in psycholinguistic       
experiments. For example, Klein and Murphy (2001) conducted experi-
ments in which subjects were primed with a word in context in one sense 
and then presented with the same word in another context, reaction time 
for homographs was no less than reaction time for grossly polysemous 
words (e.g., daily paper vs. wrapping paper). This suggests that some 
senses of an ambiguous word, although not unrelated etymologically, are 
as distinct in the mind of the hearer as homographs, which in turn suggests 
that they may be just as relevant for NLP.  

Some linguists (e.g., Lakoff 1987, Heine 1992, Malt et al. 1999) have 
proposed that polysemy develops via a chain of novel extensions to previ-
ously known senses, each building on its predecessors. This idea, and 
computational methods for it surveyed and discussed in Wilks and         
Catizone (2002), follows nicely on from proposals for the generative lexi-
con proposed by Pustejovsky (1995) and others, but adds the notion that at 
some point, senses diverge enough to deserve independent representation 
in the lexicon (either computational or mental). The problem, of course, is 
in identifying the point at which two senses become distinct enough to 
warrant separation for the purposes of NLP (or, for that matter, in diction-
aries and the mental lexicon). Klein and Murphy (2002) extended their   

                                                      
13 A list of 175 polysemous words of this type and their most common different 
senses is given in Durkin and Manning (1989). 
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earlier study to involve more closely related senses, for instance senses for 
paper in WordNet such as sense 3 (‘publication’) versus sense 7 (‘physical 
object’) in order to address this question. Their results in this second slate 
of experiments lead them to several conclusions that have ramifications for 
automatic sense disambiguation. First, their results suggest that some of 
the different senses of polysemous14 words are stored independently in 
memory, supporting the notion that some etymologically related words are 
as distinguishable as homographs. Second, they experimented with differ-
ent categorical relations among senses similar to those outlined by Puste-
jovsky (1995), and determined that different senses of a polysemous word 
do not seem to correspond to a unified taxonomic, thematic, or ad hoc 
category, but rather that the types of relationships among senses are more 
or less random and unpredictable. This is bad news for proponents of the 
generative lexicon, because it means that rule sets for the online derivation 
of different senses of a given word cannot be determined in any systematic 
way. Furthermore, Klein and Murphy draw the conclusion that representa-
tion of a “core” sense (similar to a homograph) coupled with procedures to 
generate more refined meanings is inconsistent with their results; rather, 
they suggest that relational derivation of senses happens historically and/or 
during language acquisition, and once senses become sufficiently distinct, 
they are thereafter stored separately in the mental lexicon. This leads them 
to suggest a processing model for word meaning that they call “radical un-
der-specification”, in which a minimal, neutral placeholder is activated 
when a polysemous word is encountered (e.g., ‘something called paper’ 
when “The paper …” is seen) and refined by later context.  

Klein and Murphy’s work, along with that of other psycholinguists, has 
ramifications for WSD. First of all, it suggests that there are some etymo-
logically related senses that should be regarded as separate as homographs 
and could provide insight into which senses belong in this category. Unfor-
tunately, the aim of Klein and Murphy’s experiments is to provide evi-
dence for separate representation of etymologically-related senses, rather 
than to identify which senses of a given word fall into this category and 
which do not. Therefore, their analysis provides no information concerning 
which senses might be regarded as the same and therefore collapsed into 
one, homograph-level sense for the purposes of WSD. This is also the case 

                                                      
14 Klein and Murphy’s conception of polysemy is defined primarily through ex-
amples, and does not seem to rely on a pre-defined sense inventory (although in 
their 2001 article they mention the use of the OED for determining homographs). 

in other recent psycholinguistic studies concerning word meaning
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determine the distinctness – in terms of the mental lexicon – of senses        
below the level of the homograph.  

On the other hand, it is certainly possible that sufficiently separate 
senses can be identified using multi-lingual criteria – i.e., by identifying 
senses of the same homograph that have different translations in some sig-
nificant number of other languages – as discussed in Section 3.3. For        
example, the two senses of paper cited above are translated in French as 
journal and papier, respectively; similarly, the two etymologically-related 
senses of nail (fingernail and the metal object that one hammers) are trans-
lated as ongle and clou. At the same time, there is a danger in relying on 
cross-lingualism as the basis of sense, since the same historical processes 
of sense “chaining” (Cruse 1986, Lakoff 1987) can occur in different lan-
guages. For example, the English wing and its equivalent ala in Italian 
have extended their original sense in the same way, from birds to air-
planes, to buildings, and even to soccer positions. The Italian-English 
cross-corpus correlations of the two words would lead to the conclusion 
that both have a single sense, when in fact they have wide sense deviations 
approaching the homographic. 

Another source of information concerning relevant sense distinctions is 
domain, as discussed in Chapter 10. If senses of a given word are distin-
guished by their use in particular domains, this could offer evidence that 
they are distinguishable at the homograph-like level. At the same time, 
senses that are not distinguished by domain – take, for example, the sense 
of bank as a financial institution versus its sense as a building that houses a 
financial institution – might, for all practical purposes, be regarded as a 
single, homograph-level sense. 

The psycholinguistic evidence also suggests that different kinds of evi-
dence are needed to distinguish senses for different words. Experiments 
with a “multi-engine” WSD system (Stevenson and Wilks 1999) have        
already showed that the sense-discrimination of particular word-classes – 
usually part-of-speech classes like nouns or verbs – tended overwhelm-
ingly to be carried out by a particular “engine” using a particular resource: 
for instance verbs and adjectives, but not nouns, were discriminated to a 
great degree by the selectional preferences loaded in from LDOCE, while 
the nouns tended to be discriminated by a combination of LDOCE defini-
tions and thesaurus classes. None of this should be surprising, but it was 

(e.g., Rodd et al. 2002, 2004), which use pre-defined sense inventories as a 
point of departure without questioning the distinctness among multiple
senses of the same homograph. Nonetheless, it is easy to imagine extending
the methods and criteria used in psycholinguistic studies of word meaning to 
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confirmed strikingly by an overall machine learning algorithm which, in 
effect, decided for each word, which engine/resource best discriminated 
it.15 A further, less trivial, inference to be drawn from this result is that the 
different semantic resources used in WSD (thesauri, definitions, collo-
cations etc.) are not, as some have suspected, merely different notations for 
the same semantic facts. Klein and Murphy’s assertion that senses of a 
polysemous word are not unified by a common categorical relation sug-
gests that these processing differences may extend to words of the same 
part-of-speech category as well, and even further, that the degree and     
nature of these relations depend not only on the word in question, but often 
varies for each pair of senses for that word. This notion could be taken to 
lead to a position similar to Kilgarriff’s, that a vast array of knowledge 
about each word (similar to his “word sketches” in Kilgarriff and Tugwell 
(2001)) is required for sense disambiguation; but at least for the purposes 
of NLP, another interpretation is possible. 

If we accept that new senses of a given word develop historically 
through various relations, then we can also assume, based on the psycho-
linguistic evidence, that at some point a sense becomes distinct enough to 
be represented separately in the mental lexicon16 and becomes as distin-
guishable from other senses of the same word as homographs are from one 
another. We would argue that these senses are discernable from context to 
the same degree as homographs, and therefore, WSD systems can achieve 
the same high degree of success in detecting them as for homographs. It is 
this level of sense distinction that Amsler referred to as “observable and 
predictable” in his comments to the Senseval discussion list, and, in our 
view, this is the only kind of sense distinction that stand-alone WSD 
should be concerned with. Senses that have not achieved this degree of dis-
tinction demand greater knowledge and resources to identify reliably, but 
in applications like MT that may need finer sense granularity, the results of 
deeper linguistic processing and knowledge is readily available to assist 
the disambiguation process. 

To summarize, NLP applications, when they need WSD, seem to need 
homograph-level disambiguation, involving those senses that psycholin-
guists see as represented separately in the mental lexicon, are lexicalized 
cross-linguistically, or are domain-dependent. Finer-grained distinctions 
are rarely needed, and when they are, more robust and different kinds of 

                                                      
15 See Chapter 8 for a more complete survey of knowledge sources for WSD. 
16 Note that there is no psycholinguistic evidence that the links among derived 
senses are themselves stored. 
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processing are required. Lexicographers will necessarily continue to be 
concerned with the latter kind of sense distinction, as they must be; but for 
the purposes of NLP, work on the problem of WSD should focus on the 
broader distinctions that can be determined reliably from context. 

At present, WSD work is at a crossroads: systems have hit a reported ceil-
ing of 70% + accuracy (Edmonds and Kilgarriff 2002),17 the source and 
kinds of sense inventories that should be used in WSD work is an issue of 
continued debate, and the usefulness of stand-alone WSD systems for cur-
rent NLP applications is questionable.  

The WSD community has grappled for years with the issue of sense dis-
tinctions because of its reliance on pre-defined sense inventories provided 
in mono-lingual dictionaries and similar reference materials. Such invento-
ries are typically organized according to lexicographical principles, such as 
grouping senses on the basis of etymology and part of speech. Senses 
grouped according to these criteria are usually organized, either explicitly 
or implicitly, by frequency of use, and there is no other indication of the 
degree of distinguishability among them. Although WordNet is not the 
best example of a traditional dictionary, its organization is fairly typical; 
for example, if we stay with the paper example, WordNet gives us the   
following:18 

paper 
1 paper: a material made of cellulose pulp derived mainly from wood or 

rags or certain grasses 
2 composition, paper, report, theme: an essay (especially one written as an 

assignment), “he got an A on his composition” 
3 newspaper, paper: a daily or weekly publication on folded sheets; con-

tains news and articles and advertisements, “he read his newspaper at 
breakfast” 

4 paper: a scholarly article describing the results of observations or stating 
hypotheses, “he has written many scientific papers” 

                                                      
17 Of course, statistics such as these depend on the assumption that the criteria 
used – in this case, identification of WordNet sense distinctions – are good ones. 
18 Each sense is composed by, first the set of synonyms, followed by a hyphen and 
the definition, and finally a list of examples in double quotes. 

3.6 What Now for WSD? 
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5 paper: medium for written communication, “the notion of an office run-
ning without paper is absurd” 

6 newspaper, paper, newspaper publisher: a business firm that publishes 
newspapers, “Murdoch owns many newspapers” 

7 newspaper, paper: a newspaper as a physical object, “when it began to 
rain he covered his head with a newspaper” 

Clearly, sense 1 is far more distinguishable from sense 3 than sense 6 is, 
but in WSD experiments, senses like these are usually considered to be 
distinct. A more intuitive list might collapse senses 1, 5; 2, 4; and 3, 6, 7, 
yielding something like:  

paper (collapsed) 
1 material 
2 composition, article  
3 newspaper, publication, publisher  

This is given as an example and not a scientifically determined set of 
senses, based in part on the fact that some other languages lexicalize these 
broad distinctions differently (e.g., in French, as papier, article, and jour-
nal, respectively). The WSD community has recently begun discussing 
“collapsing” senses that are more related (see Palmer et al. 2006, and also 
Chap. 4 (Sect. 4.6)) – or at least, senses that WSD systems have difficulty 
distinguishing. This goes in the right direction, but it seems more appropri-
ate to adopt a “top-down” rather than a “bottom-up” approach: that is, the 
starting point for WSD should be a bi-polar distinction, between homo-
graph-level distinctions and “everything else”. The psycholinguistic  evidence 
supports this approach, by identifying senses that are, in psychological 
terms, represented separately in the mental lexicon; and it is in fact also in-
dicated by the performance of current WSD systems, which show clearly 
superior results for disambiguating homographs – and, we would argue, 
would do so for all homograph-level distinctions if they were clearly identi-
fied. 

In fact, there are good reasons to suggest that WSD should focus on a 
top-down approach to sense distinction rather than sense determination. 
Klein and Murphy’s notion of “radical under-specification” implies such   
a model for human processing, by stipulating that disambiguation starts 
with only the most general of concepts when an ambiguous word is        
encountered, and proceeds by refining meaning as additional context is 
provided. For example, when “the paper…” is seen or heard, we can ima-
gine that if the remainder of the sentence is “… was picked up at the cor-
ner newsstand”, the reader will make the homograph-level distinction and    
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determine that here, paper refers to a newspaper. More importantly, only 
the homograph-level distinction needs to be made: no choice between the 
newspaper-as-physical-object and information-source senses of paper 
(senses 3 and 7 in the WordNet list above) is necessary – that is, there is no 
need to choose one of these senses and explicitly eliminate the other. Even 
if the discourse emphasizes one of the two possibilities, both are likely to 
exist in the mind as a single encompassing concept that has not (yet) been 
torn apart. We can hypothesize, then, that sense “disambiguation” is really 
a process of step-wise sense refinement that progressively distinguishes 
“sub-senses” as needed for understanding. We argue that there is rarely a 
need to make distinctions below the homograph-like level for understand-
ing, human or automated; and in the unusual circumstance where it         
becomes necessary to explicitly throw one of the sub-senses away, we can 
expect there to be contextual clues that will enable both humans and      
machines to do so.  

Based on all of this, our recommendations for WSD work in the near fu-
ture are, first, to focus attention on identifying the homograph-level sense 
distinctions that are necessary for NLP, independent of pre-existing inven-
tories. The obvious sources of this information are cross-lingual and psy-
cholinguistic evidence, together with domain information. Cross-lingual 
evidence provides inventory-free distinctions based solely on translation 
equivalents, but will demand further work to acquire sufficient parallel 
data in order to overcome problems such as parallel sense chaining (as 
mentioned in the previous section) and mono-lingual synonymy. It will 
also require determining the number and types (in terms of representatives 
of different language families, etc.) of languages needed to ensure that all 
relevant distinctions are captured. At the same time, some threshold must 
be determined so that fine distinctions made by one or only a few lan-
guages, and/or which are highly culture dependent (e.g., different ways to 
greet a person depending on one’s relation to that person, or the time of 
day), are not included for the general WSD task (although they certainly 
need to be retained for the purposes of MT). 

To gather psycholinguistic evidence, further experimentation will be re-
quired, since research in this area has been focused on developing psycho-
logical models of language processing and has not directly addressed the 
problem of identifying senses that are distinct enough to warrant, in psy-
chological terms, a separate representation in the mental lexicon. Also, 
psycholinguistic experiments currently rely on pre-defined sense invento-
ries from traditional dictionaries, thereby providing sense distinctions 
a priori rather than seeking to determine which distinctions are sufficiently 
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independent. Collaboration between the WSD and psycholinguistic com-
munities could enable experimentation with “inventory-free” distinctions, 
and provide valuable results for WSD as well as theories of the mental 
lexicon. 

Another source of information about sense distinctions is corpus evi-
dence – that is, differences in patterns of usage for a given word that may 
signal its use in different senses. For example, the Corpus Pattern Analysis 
(CPA) project (Hanks and Pustejovsky 2005) is currently compiling a lexi-
con of verb patterns based on randomly chosen corpus occurrences, con-
sisting of syntactic frame information coupled with semantic types and 
roles. While the information in such a lexicon may provide a compendium 
of characteristics that help distinguish different senses of a word, it does 
not follow that the identified senses are at the level of granularity needed 
for most NLP applications, or, consequently, that the relatively sophisti-
cated techniques required to automatically detect them is necessary to     
accomplish adequate WSD. It will, however, be informative to consider 
correspondences (or lack thereof) between distinctions identified by pro-
jects such as CPA and those identified on the basis of domain, cross-
lingual evidence, and psycholinguistic experiments. 

Our second recommendation is to shift the focus of work on WSD to 
enhancing stand-alone systems in order to achieve near-100% accuracy for 
homograph-level distinctions. As we have argued above, disambiguation at 
the homograph-level is sufficient for IR, MT, and other NLP applications, 
and robust WSD systems that deliver accurate results at this level are     
potentially more useful for NLP applications than existing systems have so 
far proved to be. For example, Sanderson (1994) argued against the use of 
existing WSD systems for IR based on his observation that inaccurate 
WSD can negatively impact results. Likely, other NLP applications such 
as MT could profit from accurate WSD at this level as well. 

As a final note, we point out that while concern with sense distinctions 
at levels finer than the homograph may not be appropriate at this point for 
WSD research aimed at contributing to NLP applications, it is still a matter 
of interest for lexicographers and certainly valuable to “develop our under-
standing of the lexicon and language in general”. It may also be relevant 
for MT systems that seek to generate natural-sounding prose – for exam-
ple, several alternative translations for recur exist in French (se repro-
duire, revenir, se retrouver, réapparaître, se représenter); to generate a 
natural-sounding translation, additional knowledge and/or reasoning may 
be applied to determine the nature of the verb’s agent (l’événement se     
reproduit, l’idée se retrouve, la maladie réapparaît, le problème se 
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représent) – see, for example, Edmonds and Hirst (2002), who have       
explored means to choose among near-synonyms in order to produce natu-
ral-sounding prose. This type of lexical refinement, however, is primarily 
the work of lexicography, AI, and knowledge engineering, and should be 
left to specialized modules outside the scope of mainstream WSD. 

Our conclusions could seem both pessimistic and optimistic for WSD. 
They are optimistic in that, if something on the order of homograph dis-
tinctions are the level of WSD we need for NLP, then we have pretty good 
techniques for achieving that; the data may be relatively easily obtained 
from multilingual corpora, and we do not really need the expertise of lexi-
cographers to help us in that task. They may also be considered pessimis-
tic, in that it may be that many NLP systems do not require a separate 
WSD module at the level of granularity attempted by current systems, and 
that therefore much of the WSD work of the last decade has been wasted 
in presenting it as a separate task – however useful it has been as a hot-
house of techniques. Given that evaluating WSD, as a free-standing, inde-
pendent task has been so expensive and time-consuming, this discovery 
may be a relief all round. But this does not mean that work on stand-alone 
WSD is finished, by any means. There still remains the considerable task 
of identifying an “inventory-free” set of homograph-level distinctions that 
are useful for NLP, since they are not explicitly identified as such in any 
existing resource. The WSD community therefore has work to do, and 
should now turn itself to the task.  
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In this chapter we discuss the evaluation of automatic word sense disam-
biguation (WSD) systems. Some issues, such as evaluation metrics and the 
basic methodology for hand-tagging evaluation data, are well agreed upon 
by the WSD community. However, other important issues remain to be    
resolved, including the question of which sense distinctions are important 
and relevant to the sense-tagging task, and how to evaluate WSD systems 
in real NLP applications. We give an overview of previous evaluation     
exercises and investigate sources of human inter-annotator disagreements. 
The errors are at least partially reconciled by a more coarse-grained view 
of the senses, and we present the groupings that were used for quantitative 
coarse-grained evaluation. Well-defined sense groups can be of value in 
improving sense tagging consistency for both humans and machines. 

Highly ambiguous words pose continuing problems for natural language 
processing (NLP) applications. They can lead to irrelevant document      
retrieval in information retrieval systems, and inaccurate translations in 
machine translation systems (Palmer et al. 2000a). To tackle the word 
sense disambiguation (WSD) task, many different approaches have been 
implemented (see Chaps. 5–7 and 10). The question naturally arises as to 
which approach is the best. People producing WSD systems have always 
needed to evaluate them. However, each system or developer historically 
used a different evaluation scheme, making it difficult, if not impossible, 
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to compare the relative merits of different implementations and approaches 
to WSD.  

In recent years, a corpus-based approach to NLP has gained popularity. 
This data-oriented approach is robust and able to achieve high accuracy on 
many tasks ranging from part-of-speech tagging to syntactic parsing. Em-
pirical evaluation on real-world, unrestricted text is a crucial part of this 
approach. By evaluating on common benchmark data sets, we can measure 
the performance of competing approaches and calibrate the progress made 
over time. The requirement for empirical evaluation naturally applies also 
to the task of word sense disambiguation. 

The following is an overview of some key terms and issues in evaluation 
of automatic WSD systems. 

Sense Inventory. Probably the most important decision in designing an 
evaluation exercise for WSD is the choice of the sense inventory, which is 
a computational lexicon or machine-readable dictionary that partitions the 
meaning of each word into senses. An ideal sense inventory should make 
clear and consistent sense distinctions for each word. Unfortunately, sense 
inventories for a language can be discouragingly diverse, with significant 
differences with respect to entries for polysemous words. The granularity 
of the sense distinctions also plays a major factor in the suitability of a 
sense inventory for a particular application and in the quality of the sense-
tagged data used to evaluate WSD systems. 

Task Definition. There are two possible types of evaluation for WSD sys-
tems (Ide and Véronis 1998). The first is in vitro evaluation, where the 
WSD task is defined independently of any particular application, and sys-
tems are tested using specially constructed benchmarks. Alternatively,     
in vivo evaluation scores a WSD component in terms of its contribution to 
the overall performance of a particular NLP application. Since the impor-
tance of automatic WSD is primarily in its utility in real NLP applications, 
there is much that can be said in favor of the latter approach (see Chap. 
11). However, almost no attempts have been made to evaluate embedded 
WSD components. Rather, evaluation has concentrated on WSD as a 
standalone classification task, much like part-of-speech tagging, primarily 
because this evaluation framework is easier to define and implement.  

Standalone WSD can be framed as either a lexical sample task or an all-
words task. In the all-words task, systems are required to tag all words (or 

4.1.1 Terminology 
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all content words) in a running text or discourse. While superficially simi-
lar to part-of-speech tagging, the all-words task is significantly different in 
that a different set of sense tags is required for each word lemma. This   
severely limits the choice of possible sense inventories, because it requires 
access to a publicly available wide-coverage dictionary that is preferably 
also low-cost. In the lexical sample task, a sample of words is carefully  
selected from the lexicon, along with a number of corpus instances of each 
word; systems are required to tag these instances of the sample words in 
short extracts of text. Unlike the all-words task, dictionary entries are re-
quired only for these select words, so there is more flexibility in dictionary 
choice.  

The methodology for manual annotation depends on which variant of 
the WSD task is being examined. Words can be annotated more quickly 
and consistently if all instances of a word (type) are tagged at once (tar-
geted tagging), instead of tagging all words sequentially as they appear in 
text. The advantages of targeted tagging make the lexical sample task eas-
ier to implement than the all-words task, so most efforts at WSD evalua-
tion have focused on lexical sample tasks. If one had to choose between 
the two tasks, the lexical sample task is preferable in that more systems 
would be able to be evaluated against it, because systems designed to 
compete in the all-words task would also be able to compete in the lexical 
sample task, but not vice versa. However, the all-words task may more 
closely mimic the requirements of real NLP applications such as machine 
translation, where all content words in a sentence may need to be disam-
biguated for correct lexical choice. 

Corpus. The data for the lexical sample task is typically a large number of 
naturally occurring sentences containing a given target word, each of 
which has been tagged with a pointer to a sense entry from the sense       
inventory. A section of the tagged data may be set aside as training data for 
supervised machine learning systems (see Chap. 7), while another section 
is reserved for testing purposes. Rule-based and unsupervised systems (see 
Chaps. 5 and 6) can also be evaluated against the same test data, which is 
considered to be a “gold” standard. Several factors contribute to selecting 
the number or proportion of words that one might want to set aside as 
training data. Because performance generally increases with the amount of 
training data, typical evaluation of machine learning techniques would set 
aside a relatively large proportion of the data for training, on the order of 
10:1 or 5:1, to estimate the best performance possible with the current 
amount of data. In light of the relatively small number of manually sense-
tagged instances that are generally available for each word, however,    
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providing less training data (using a ratio of 2:1) may provide a more real-
istic indication of a system’s performance. At the extreme, no training data 
may be provided, testing a system’s ability to address the sense-tagging 
task by leveraging from other resources. This is necessarily the case for the 
all-words task, because in practice it is infeasible to provide training data 
for every content word in any corpus of nontrivial size. 

Scoring. The simplest way of scoring a system on a particular test item 
uses the exact-match criterion; the system receives a score of 1 if the sense 
tag that it assigns exactly matches the correct sense tag, and 0 otherwise. If 
a system chooses to assign multiple tags to a single test instance w, with 
associated probabilities for each tag, the system’s score can be computed 
simply as the probability that it assigns to the correct sense tag c given w 
and its context:1 

))(,|Pr( wcontextwcScore =  (4.1) 

If a test item has more than one correct sense tag, the system’s score is the 
sum of all probabilities that it assigns to any of the correct sense tags: 

=
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where t ranges over the C correct tags. That is, the multiple tags are inter-
preted disjunctively. 

When the sense inventory is hierarchically organized, three granularity 
levels can be defined for scoring: fine-grained, coarse-grained, and mixed-
grained. At the fine-grained level, only identical sense tags count as a 
match. At the coarse-grained level, all sense tags given in the gold stan-
dard and system guesses are mapped to the top-level sense tag, and the 
system receives a score of 1 if its guess has the same top-level sense as the 
correct tag.  

Mixed-grain scoring is applicable when the sense inventory is hierarchi-
cal and systems are allowed to guess (and humans are allowed to assign) 
any one of the senses in the hierarchy (Melamed and Resnik 2000). Each 
tree-structured tag set is interpreted as an IS-A hierarchy, and guessing a 
tag that is a descendant of the correct tag produces a score of 1. Guessing  
a tag that is an ancestor of the correct tag is computed by assuming that a 
parent’s probability is divided uniformly among its children; the score of  

                                                      
1 Resnik and Yarowsky (1999) propose additional methods for computing the sys-
tem’s score using cross-entropy or related measures such as perplexity and Kull-
back-Leibler divergence. 
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Fig. 4.1. Hierarchically structured tag set for bet. 

the (guessed) ancestor tag is simply the probability of the (correct) descen-
dant tag, given the ancestor. For example, suppose that the correct sense 
tag for a test item is sense 7 from the hierarchically-structured tag set for 
bet in Fig. 4.1. A system would receive a score of 1 if it guesses either 
sense 7, or sense 7.1, or sense 7.2. If the correct sense tag were sense 7.1, a 
system would receive a score of 1 for guessing sense 7.1, 0.5 for guessing 
sense 7, and 0 for guessing sense 7.2. For systems that guess multiple 
sense tags with some probability, the scores are the sum of scores for each 
guess, weighted by the probability that the system assigns to each guess. 

A system that is presented with the set of all word instances to tag may 
choose to attempt to tag all the words or just a subset. The coverage of a 
system is the percentage of items in the evaluation set for which the system 
guesses some sense tag. The precision of a system is computed by sum-
ming the scores over all test items that the system guesses on, and dividing 
by the number of guessed-on items. Recall is computed by summing the 
system’s scores over all items (counting unguessed-on items as zero 
score), and dividing by the total number of items in the evaluation set. For 
the sense-tagging task, accuracy is reported as recall. 

Lower bound. As with any evaluation, system performance must be inter-
preted in comparison with one or more baselines, which show the per-
formance of simple algorithms on the same benchmark data. The simplest 
baseline is choosing the most frequent sense (Gale et al. 1992), though 
other simple standard algorithms may also be appropriate such as the Lesk 
algorithm (see Sect. 4.4.1 below). Baselines present an expected lower 
bound on the performance of automatic systems and indicate whether a 
more complicated system is worth the additional implementation effort. 

Upper bound. A notional upper bound for automatic system performance 
is human inter-annotator agreement (ITA) on the same or comparable data 
(Gale et al. 1992)), since the consistency of the systems cannot be           
expected to surpass that of humans. Inter-annotator agreement is computed 

bet 7.2 bet 7.1 

bet 7 
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by looking at how two or more people who have been given the same tag-
ging guidelines annotate the same data; when multiple tags are allowed, 
agreement may be measured as exact match or as overlap. Agreement may 
be reported as the percentage of times that the annotators assigned the 
same sense tag to each instance. Alternatively, Cohen’s (1960) kappa coef-
ficient measures the agreement between annotators after factoring out the 
agreement that may be due to chance (Bruce and Wiebe 1999, Ng et al. 
1999), though kappa is not well defined when multiple tags are allowed.  

An alternative measure of upper bound on performance is replicability 
(Kilgarriff and Rosenzweig 2000). This replicates the entire process of           
arriving at the original gold standard (double-blind annotation followed by 
adjudication) and compares the agreement between the two sets of gold 
standards. However, replicability is extremely expensive to compute, so 
inter-annotator agreement is the usual measure of upper bound.  

Many factors affect inter-annotator agreement, including the choice of 
words, the quality of the sense inventory and examples, and how well the 
inventory matches the corpus to be tagged. High human inter-annotator 
agreement provides reassurance of the quality of the tagged data. This is, 
in turn, facilitated by a high-quality sense inventory with clear sense dis-
tinctions. Examining inter-annotator disagreements can provide feedback 
for modifying the sense inventory to make the sense distinctions and defi-
nitions more clear. 

Early work by Gale et al. (1992) dealt mainly with two-way ambiguities 
and estimated lower and upper bound WSD performance of 75% and 
96.8%, respectively. While these figures turn out to be relatively optimis-
tic, their proposal to use the most frequent sense as the lower bound and 
human inter-annotator agreement as the upper bound remains applicable. 

In this chapter, we examine the issues involved in trying to evaluate differ-
ent WSD systems. We review initial, individual attempts to create corpora 
annotated with sense tags to enable the training and evaluation of super-
vised WSD systems. We then describe the first community-wide evalua-
tion exercises for WSD, as represented by Senseval-1 and Senseval-2, and 
discuss the impact that the choice of sense inventory had on them. We dis-
cuss general criteria for sense distinctions and present sources of inter-
annotator disagreement. We then present some semantic groupings of           
related WordNet senses and show their effect on human inter-annotator 
agreement. Automatic WSD systems should not be expected to make sense 

4.1.2 Overview 
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distinctions that humans cannot make, and the groupings address the ques-
tion: Which senses can be distinguished? There is a separate but related 
question that is equally important: Which senses need to be distinguished? 
The answer to this, however, depends on the domain and the application 
(see Chaps. 2, 3, 10, and 11). Evaluation exercises have concentrated on 
WSD as a standalone classification task, with one fixed sense inventory 
that is considered general enough to be useful across domains. However, 
only some of these sense distinctions need to be made by various NLP           
applications. We will end with a review of Senseval-3, the most recent 
evaluation activity, and a discussion of future directions. 

For WSD, the list of senses of a word is assumed to be fixed in advance 
according to some dictionary, so one prerequisite for evaluating a WSD 
program is the existence of a sense inventory for the words in a language. 
Up until the early 1990s, most dictionaries for English existed only in    
paper form. A few were available in electronic form but only to a limited 
group of researchers. This hampered the progress of the field. 

At this point WordNet entered the scene, a public-domain electronic 
dictionary and thesaurus for English freely available for research purposes 
since about 1993. Created by George Miller and his team at Princeton 
University, WordNet (Miller 1990, Miller and Fellbaum 1991, Fellbaum 
1998) is a large electronic database organized as a semantic network built 
on paradigmatic relations including synonymy, hyponymy, antonymy, and 
entailment. WordNet has become the most widely used lexical database 
today for NLP research, and its approach has now been ported to several 
other languages, such as the European languages in EuroWordNet (Vossen 
1998) and in BalkaNet (Tufi  et al. 2004). 

WordNet lists the different senses (called synonym sets, or synsets) for 
each English open-class word (nouns, verbs, adjectives, and adverbs). It 
groups 155,327 words into 117,597 synsets. So, from the viewpoint of 
WSD, since WordNet has an extensive coverage of the English language 
and is freely available for research purposes, it is a practical choice as the 
sense inventory required for large scale WSD evaluation. WordNet has 
undergone regular updates since its first release. The latest release version 
is WordNet 2.1, although most published WSD research uses earlier     

4.2 Background 

4.2.1 WordNet and Semcor 
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versions, in particular, WordNet 1.6 and 1.7. Wordnets for other languages 
are also used in WSD research, of course. 

The creators of WordNet also annotated part of the Brown Corpus 
(Francis and Ku era 1982) with WordNet 1.6 senses. This sense-tagged 
portion of the Brown Corpus is known as Semcor (semantic concordance) 
(Miller et al. 1993). Of the 500 files that constitute the Brown Corpus, 186 
files have all occurrences of their nouns, verbs, adjectives, and adverbs 
sense-tagged. An additional set of 166 Brown Corpus files has all verb oc-
currences sense-tagged. In all, more than 234,000 word occurrences have 
been tagged with senses from WordNet 1.6. Semcor could thus serve as an 
evaluation corpus for WSD research. 

Unfortunately, Semcor by itself is too small for building robust corpus-
based WSD programs. To date, the success of the corpus-based approach 
to NLP has relied on large annotated corpora so that supervised machine 
learning algorithms can learn the underlying linguistic regularity from the 
annotated corpora. Rapid progress in part-of-speech tagging and syntactic 
parsing was achieved due in part to the availability of large, manually an-
notated corpora such as the Penn Treebank (Marcus et al. 1993). Models 
learned from annotated corpora by supervised learning algorithms are able 
to achieve good performance on many NLP tasks, and compare favorably 
to performance obtained by the laboriously handcrafted rules of linguists 
(Manning and Schütze 1999). 

Extrapolating to the task of WSD, a corpus-based approach would simi-
larly require a large, manually sense-tagged corpus. Compared to part-of-
speech tagging and syntactic parsing, WSD presents additional difficulties. 
Since each word is associated with its unique set of senses, supervised 
learning algorithms would require a substantial number of sense-tagged 
examples for each word of English. Specifically, while there are only 45 
Penn Treebank part-of-speech tags for all of English, there are more than 

Since Semcor annotates running text, there are insufficient sense-tagged 
examples for each word of English. This “knowledge acquisition bottle-
neck” of insufficient training examples remains a critical impediment to 
further progress in WSD today (Ng 1997a) (see also Chap. 7 (Sects. 7.2.1 
and 7.4.3)). 

adjectives, and adverbs. 
75,000 polysemous WordNet sense tags for all English nouns, verbs, 
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Initial research on the supervised learning approach to WSD performed 
evaluation on isolated words. Two notable early corpora are the line-hard-
serve (Leacock et al. 1993, Mooney 1996) and interest (Bruce and Wiebe 
1994) corpora. 

The line-hard-serve corpus consists of about 4,000 sense-tagged exam-
ples of each of the words line (noun), hard (adjective), and serve (verb) 
with subsets of their WordNet 1.5 senses. Examples are drawn from       
the Wall Street Journal, the American Printing House for the Blind, and       
the San Jose Mercury. For instance, instances of line are given one of the    
following six senses: 

line 
1 A product: “a new line of workstations” 
2 A formation of people or things: “stand in line” 
3 Spoken or written text: “a line from Shakespeare” 
4 A thin, flexible object; cord: “a nylon line” 
5 An abstract division: “a line between good and evil” 
6 A telephone connection: “the line went dead” 

When trained on 1,200 training examples and tested on 894 test examples, 
accuracy above 70% was achieved using the Naïve Bayes and Perceptron 
algorithms (see Chap. 7 for details of the Naïve Bayes algorithm). For this 
corpus, since the six senses are evenly distributed in the training and test 
examples, the baseline accuracy (picking the most frequent sense) can be 
estimated as 17%. 

The interest corpus consists of 2,369 sense-tagged examples of the noun 
interest in the following six senses: 

interest 
1  Readiness to give attention 
2 Quality of causing attention to be given 
3 Activity, subject, etc., which one gives time and attention to 
4 Advantage, advancement, or favor 
5 A share (in a company, business, etc.) 
6 Money paid for the use of money 

When trained on 1,769 training examples and tested on 600 test examples, 
accuracy of 78% was achieved by (Bruce and Wiebe 1994). For this cor-
pus, picking the most frequent sense (which is sense 6) gives a baseline 
accuracy of 53%. 

4.2.2 The Line and Interest Corpora 
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Up until 1996, evaluation of WSD was still done on only a few or at most 
a dozen words, where each word only had two or perhaps a few senses. To 
test the scalability of the corpus-based approach to WSD, Ng and Lee 
(1996) collected a large sense-tagged corpus. This corpus included 
192,800 occurrences of the most frequent nouns and verbs of English 
which had been manually sense-tagged with senses from WordNet. This 
corpus, known as the DSO corpus and subsequently available through the 
Linguistic Data Consortium, was almost two orders of magnitude larger in 
size than the above line-hard-serve or interest data sets. Manual tagging 
was done by university undergraduates majoring in linguistics, and          
approximately one man-year of effort was expended in tagging this corpus. 
These occurrences consisted of 121 nouns and 70 verbs that were the most 
frequently occurring and ambiguous words of English.  

The 121 nouns were: 

action activity age air area art board body book business car case center cen-
tury change child church city class college community company condition cost 
country course day death development difference door effect effort end example 
experience face fact family field figure foot force form girl government ground 
head history home hour house information interest job land law level life light 
line man material matter member mind moment money month name nation 
need number order part party picture place plan point policy position power 
pressure problem process program public purpose question reason result right 
room school section sense service side society stage state step student study 
surface system table term thing time town type use value voice water way word 
work world 

The 70 verbs were: 

add appear ask become believe bring build call carry change come consider 
continue determine develop draw expect fall give go grow happen help hold   
indicate involve keep know lead leave lie like live look lose mean meet move 
need open pay raise read receive remember require return rise run see seem 
send set show sit speak stand start stop strike take talk tell think turn wait walk 
want work write 

For this set of nouns and verbs, the average number of WordNet 1.5 
senses per noun (verb) was 7.8 (12.0). The sentences containing these    
occurrences were drawn from the combined corpus of the 1 million words 
Brown Corpus and a 2.5 million words Wall Street Journal (WSJ) corpus. 
For every word type, up to 1,500 sentences (each sentence containing an  

4.2.3 The DSO Corpus 
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Table 4.1. Evaluation on DSO corpus. 

Test set Number of test examples Baseline accuracy WSD accuracy 
BC50  7,119 47.1% 58.7% 
WSJ6 14,139 63.7% 75.2% 
 
occurrence of the word) were extracted from the combined corpus. In all, 
there were about 113,000 noun occurrences and about 79,800 verb occur-
rences. It was estimated that about 20% of all noun and verb occurrences 
in any unrestricted English text were one of these 191 words. 

Two subsets were set aside for testing. The first, named BC50, consisted 
of occurrences of the 191 content words in 50 text files of the Brown Cor-
pus, while the second test set, named WSJ6, consisted of occurrences of 
the 191 content words in 6 text files of the WSJ corpus. Empirical results 
reported by Ng and Lee (1996) and Ng (1997b) achieved by an exemplar-
based learning algorithm are given in Table 4.1, as well as the baseline   
accuracy obtained by always picking the most frequent sense in the train-
ing set. 

In contrast to Semcor, which assigned sense tags to all words in a run-
ning text and thus resulted in an insufficient number of training examples 
per word for a supervised learning approach, the DSO corpus focused on 
tagging the senses of a targeted set of words that occurred most frequently 
in an English text. The experiments carried out with the DSO corpus 
prompted the subsequent evaluation efforts of Senseval. 

More sources of sense-tagged data are listed in Edmonds and Kilgarriff 
(2002). 

The Open Mind Word Expert project (OMWE) (Chklovski and Mihalcea 
2002) is gathering a sense-tagged corpus by enticing regular Web users to 
participate in a “game” to disambiguate words in context. The effort has so 
far resulted in a fair amount of data being produced (70,000 examples of 
230 words annotated with WordNet 1.7 senses (Edmonds and Kilgariff 
2002)), however quality control is an issue since Web users are novices at 
the task compared to the linguistically trained annotators of previous tag-
ging efforts (Semcor, DSO, and Senseval). The inter-annotator agreement 
is somewhat lower than that attained by more traditional methods, but was 
computed somewhat differently: 67% (Mihalcea et al. 2004) versus 85.5% 
in Senseval-2 (Kilgarriff 2001). Part of the OMWE corpus was used in 

4.2.4 Open Mind Word Expert 
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Senseval-3 (see Sect. 4.7 below). Chapter 9 (Sect. 9.3.5) discusses OMWE 
further. 

Before there was enough sense-tagged data for evaluation, researchers 
nevertheless needed a way to evaluate their WSD systems. Yarowsky 
(1993) reported on a method to automatically evaluate WSD systems that 
used pseudo-words, artificial sense ambiguities introduced into a corpus by 
taking two words with the same part of speech (e.g., guerilla and reptile) 
and replacing each of their occurrences in the corpus with an ambiguous 
word (guerilla/reptile). A WSD system can either be trained on the modi-
fied corpus, or have its disambiguation rules modified to reflect the new 
lexicon. Evaluation is obviously trivial. Although the method has been 
used by others (e.g., Schütze (1998)), it has been criticized because it cre-
ates a simulated test bed that does not reflect real sense ambiguity. For    
instance, Sanderson (1994) remarks that the various senses of a pseudo-
word are not related in the same way that real senses are related, especially 
for polysemous words. Thus, pseudo-words might be effective only for 
homograph-level distinctions. 

The Senseval enterprise2 is the first open, community-based evaluation    
exercise for word sense disambiguation. Started in 1997 following a work-
shop, Tagging Text with Lexical Semantics: Why, What, and How? 
(Palmer and Light 1999), it is run by a small elected committee under the 
auspices of ACL-SIGLEX (the Association for Computational Linguistics’ 
Special Interest Group on the Lexicon). It uses a DARPA-style evaluation 
format where the participants are provided with hand-annotated training 
data and test data and a pre-defined metric for evaluation. Unlike true 
DARPA evaluations, Senseval is a more grassroots exercise, self-initiated 
by the WSD researchers. More than just a bake-off of automatic WSD sys-
tems, its underlying goal is to further the understanding of lexical seman-
tics and polysemy. 

                                                      
2 http://www.senseval.org 

4.3 Evaluation Using Pseudo-Words 

4.4 Senseval Evaluation Exercises 
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Senseval has now had three competitions. We discuss Senseval-1 and 
Senseval-2 below, and leave Senseval-3 to Section 4.7 after we have dis-
cussed some of the theoretical implications that such evaluations have 
brought to light (e.g., the difficulty of sense-tagging and sense granularity). 

Senseval-1 (Kilgarriff 1998, Kilgarriff and Palmer 2000), the first evalua-
tion exercise in automatic WSD for English, took place in 1998.3 The lexi-
cal inventory was the Hector lexicon (Atkins 1993), developed jointly by 
DEC and Oxford University Press using a corpus-based approach and tra-
ditional hierarchical dictionary entries (Kilgarriff and Rosenzweig 2000), 
such as the following entry: 

bother intransitive verb 1 (make an effort), after negation, usually with to      
infinitive; (of a person) to take the trouble or effort needed (to do some-
thing). Ex. About 70 percent of the shareholders did not bother to vote at all. 
1.1 (can’t be bothered), idiomatic, be unwilling to make the effort needed (to 
do something). Ex. The calculations needed are so tedious that theorists 
cannot be bothered to do them. 

Thirty-four words were selected using a stratified random sample taken 
from the lexicon, with sub-samples for part of speech (noun, verb, and   
adjective), frequency, and number of senses: 

accident amaze band behavior bet bitter bother brilliant bury calculate con-
sume deaf derive disability excess float/floating generous giant hurdle invade 
knee modest onion promise rabbit sack sanction scrap seize shake shirt slight 
steering wooden 

After selecting the target lexical items, professional lexicographers 
tagged sentences containing those items that had been extracted from the 
Hector corpus (a pilot for the British National Corpus). By allowing for 
discussion and revision of confusing lexical entries before the final test 
data was tagged, inter-annotator agreement of over 80% was eventually 
achieved; replicability for four words (generous, onion, sack, shake) was 

                                                      
3 Romanseval, an evaluation for French and Italian, was run in parallel (Segond 
2000; Calzolari and Corazzari 2000). The French and Italian sense inventories 
(Petit Larousse and Dizionario Garzanti di Italiano, respectively) were traditional 
dictionaries that were more encyclopedic than corpus-based. 

4.4.1 Senseval-1 
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95.5%. Twenty-four systems participated in the exercise, including both 
supervised and unsupervised systems. 

The evaluation scheme followed Melamed and Resnik’s (2000) proposal, 
which provides a scoring method for exact matches to fine-grained senses as 
well as one for partial matches at a more coarse-grained level. Several sim-
ple baseline algorithms were run, including RANDOM, COMMONEST, 

ig

COMMONEST always selected the most frequent sense appearing in the 
training data for the word. LESK used a simplification of Lesk’s (1986) 
strategy of choosing the sense whose dictionary definition and example sen-
tences had the most words in common with the word to be disambiguated 
(see Chap. 5 (Sect. 5.2)). LESK-DEFINITION and LESK-CORPUS were 
like LESK, but only considered the words in the sense definition or in the 
training instances with that sense, respectively. 

In the end, the choice of evaluation metric made little difference in the 
relative rankings of the systems. The best scoring system achieved a fine-
grained accuracy of 77.1% and a coarse-grained accuracy of 81.4%. In 
general, the lower the system performance, the larger the gap between the 
fine-grained and coarse-grained scores. The highest fine-grained score on 
just the verbs, which had an average polysemy of 7.79, was 70.5%. In     
the graph of the results, the best system’s performance was indistin-
guishable from that of the best baseline (LESK-CORPUS) (Kilgarriff and 
Rosenzweig 2000). 

The Senseval-1 workshop provided convincing evidence that automatic 
systems can perform WSD satisfactorily, given clear, consistent sense dis-
tinctions and suitable training data. However, the Hector lexicon was very 
small and under proprietary constraints, and the question remained 
whether it was possible to have a publicly available, broad-coverage lexi-
cal resource for English and other languages, with the requisite clear, con-
sistent sense distinctions. 

LESK, LESK-DEFINITION, and LESK-CORPUS (Kilgarriff and Rosenzwe 
2000). RANDOM gave equal weight to all sense tags for the word. 

Evaluation and Scoring 

4.4.2 Senseval-2 
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Subsequently, the Senseval-2 (Edmonds and Cotton 2001) exercise was 
run, which included WSD tasks for 10 languages.4 A concerted effort was 
made to use existing WordNets as sense inventories because of their wide-
spread popularity and availability. Some languages included only the lexi-
cal sample task, some had only the all-words task, and some included both. 
Notably, the Japanese task included a lexical sample task in which the 
sense inventory was defined by translations of Japanese into English, so 
that only those sense distinctions which surfaced as different translations 
would be made. Most languages had either just the lexical sample task or 
just the all-words task, but English included both. We present the English 
tasks as illustrative of the evaluation exercises. 

The English all-words task involved 5,000 words of running text consist-
ing of three Penn Treebank II articles (Palmer et al. 2001) representing dif-
ferent genres. Annotators preparing the data were allowed to indicate at 
most one multi-word construction for each content word to be tagged, but 
could give multiple senses for the construction. The annotation was done 
under a double-blind scheme by two linguistics students, and was then   
adjudicated and corrected by a different person. Task participants were 
given only the test data, so participating systems were either unsupervised 
rule-based systems or supervised systems trained on a different annotated 
corpus (e.g., Semcor, and example sentences in the dictionary definition). 
A baseline strategy that simply tagged each headword with the first 
WordNet sense for the corresponding Treebank part-of-speech tag had a 
score of 57%, as compared to the best system score of 69% (from Southern 
Methodist University). An upper bound based on inter-annotator agree-
ment was estimated to be 80%. 

The English lexical sample task for Senseval-2 was the result of a collabo-
ration between the University of Pennsylvania, which provided train-
ing/test data for the verbs, and the University of Brighton, which provided 
the training/test data for the nouns and adjectives (Kilgarriff 2001, Palmer 

                                                      
4 The originally planned languages were Basque, Chinese, Czech, Danish, Dutch, 
English, Estonian, Italian, Japanese, Korean, Spanish, and Swedish. However, the 
Chinese and Danish tasks were not prepared in time for the competition, and 
Dutch had no participants. 

English All-Words Task 

English Lexical Sample Task 
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et al. 2001). A total of 73 nouns, adjectives, and verbs were chosen from 
WordNet 1.7, and between 75 and 300 instances of each were hand-
tagged, depending on the number of senses. The data came primarily from 
the Penn Treebank II Wall Street Journal corpus, but was supplemented 
with data from the British National Corpus whenever there was an insuffi-
cient number of Treebank instances. The instances for each verb were par-
titioned into training/test data using a ratio of 2:1; as mentioned above, this 
low ratio of training/test data was intended to give a more realistic indica-
tion of a system’s performance (since more varied contexts per word 
would be tested) and to level the playing field between supervised and un-
supervised systems. 

The most polysemous words are typically verbs, so they will remain the 
focus for the rest of the chapter. Twenty-nine of the most polysemous 
verbs (an average polysemy of 16.28 senses using the pre-release version 
of WordNet 1.7) from the all-words task were chosen for the lexical sam-
ple task. Double-blind annotation by two linguistically trained annotators 
was performed on corpus instances, with a third linguist adjudicating be-
tween inter-annotator differences to create the gold standard. Most of the 
revisions of sense definitions in WordNet 1.7 were done by the adjudicator 
prior to the bulk of the tagging, although there was much less discussion 
among the taggers of how senses were to be applied than there had been 
with the Senseval-1 taggers. The average inter-annotator agreement rate 
achieved with these verb senses was 71%,5 which is lower than in Sen-
seval-1 but similar to the 73% agreement for all words for Semcor, which 
had a much lower average polysemy. (Note that nouns and adjectives had 
an inter-annotator agreement of 85.5%). 

WordNet does not offer the same type of hierarchical entry that Hector 
does, so the verbs were also grouped by two or more people, with differ-
ences being reconciled, and the sense groups were used for coarse-grained 
scoring of the systems. These groups and their utility for addressing com-
mon sources of inter-annotator disagreement will be discussed in Section 

                                                      
5 We do not include Cohen’s kappa coefficient because the standard formulation 
of kappa doesn’t address our situation where multiple tags are allowed for each in-
stance. Although there were relatively few multiply tagged instances in the gold 
standard (84 out of over 5,000 instances), in the raw human annotator data there 
are substantially more. We also find that inter-annotator agreement is sufficient for 
the comparisons that we wish to make between system and human performance, 
and between Senseval-1 and Senseval-2. 
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4.6. Using the grouped senses the inter-annotator agreement figures rose to 
82%.  

For system comparisons the same simple baseline algorithms that were 
used for Senseval-1, described above, were applied in Senseval-2. In con-
trast to Senseval-1, in which none of the competing systems performed 
significantly better than the highest baseline, this time most of the systems 
performed well against the highest baseline (LESK-CORPUS, at 45.5%), 
with approximately half performing better, and the top system achieving 
57.6% (Palmer et al. 2001) for the verbs lexical sample task (see Table 1.2 
in Chap. 1 for the Senseval-2 results). For the entire lexical sample task, 
the highest system scores (from Johns Hopkins University) were 64.2% 
(fine-grained) and 71.3% (coarse-grained). In general the nouns and adjec-
tives had lower polysemy and higher inter-annotator agreement and system 
scores (polysemy 4.9; 85.5% inter-annotator agreement; 64% fine-grained 
system score; see Yarowsky et al. (2001)). For the most part the lexical 
sample tasks in other languages were similar, with the results somewhere 
in the 60s or low 70s. It is very difficult, however, to do any true cross-
language comparison without first doing a detailed comparison of the 
sense inventories. Are the distinctions fine-grained or coarse-grained? Do 
the criteria for distinguishing senses tend to be syntactic or semantic, and 
how clearly are they spelled out? 

Since the first two Senseval evaluation exercises used different sense      
inventories, they provide an opportunity to study the impact of different 
sense inventories on system performance and inter-annotator agreement. 
Prior to the Senseval-2 exercise, there were concerns expressed about 
whether or not WordNet had the requisite clear and consistent sense dis-
tinctions. Both inter-annotator agreement and system performance in Sen-
seval-2 were lower than in Senseval-1, which seemingly substantiates 
these concerns. However, one must bear in mind the highly polysemous 
nature of the verbs, which are on average twice as polysemous as the Sen-
seval-1 verbs, an average polysemy of 16.28 compared to 7.79.6 High 
polysemy has a detrimental effect on both manual and automatic tagging, 
although it does not correlate inversely with system performance as closely 

                                                      
6 Overall polysemy for Senseval-1 is 10.7. 

4.4.3 Comparison of Tagging Exercises 
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as high entropy7 does (Palmer et al. 2001). There were also generally less 
training data made available to the systems; ignoring outliers, there were 
on average half as many training samples for each verb in Senseval-2 as 
there were in Senseval-1. A comparison of system performance on words 
of similar polysemy in Senseval-1 and Senseval-2 showed very little dif-
ference in accuracy (Palmer et al. 2006). When controlling for polysemy, 
even with different amounts of training instances, Senseval-2 data gives 
rise to very similar system performance as Senseval-1 data. Hence, we 
conclude that the lower system performance overall on Senseval-2 is due 
to the higher average polysemy and entropy of the verbs in the task. We 
can assume that, in spite of the lower inter-annotator agreement figures for 
Senseval-2, the double-blind annotation and adjudication provided a reli-
able enough filter to ensure consistently tagged data with WordNet senses, 
and the smaller set of training examples was not a major factor.  

In the next section, we will first examine the nature of sense distinc-
tions, and the sources of sense tagging disagreements. We then present the 
criteria for creating sense groups, and discuss the impact these groups have 
on the inter-annotator disagreements for the highly polysemous Senseval-2 
verbs. 

The difficulty of achieving accurate sense-tagged data has been thoroughly 

ween Hector  and WordNet 1.6 that was made available for Senseval-1 
provides striking evidence of the different choices lexicographers can 
make in determining sense distinctions. It is immediately apparent that 
Hector and WordNet often have different numbers of senses for the same 
lemma. Closer examination of individual words such as shake reveals even 

                                                      
7 Entropy is the measure of disorder in a system. In terms of information theory, it 
gives us the average amount of information in bits in some attribute of an instance. 
This can be captured as –log2(p), the amount of information in bits associated with 
an event of probability p. If there are several possible events (several possible 
sense tags), the number of bits for each outcome is multiplied by its p and summed 
over all of the outcomes. A word that has almost all of its instances tagged with its 
most frequent sense (so, for example, p for that sense is 0.8 or higher, whereas the 
p for the other senses is very low) has a very low entropy, that is, it is considered 
to be an orderly, predictable system. 

attested to in the literature (Kilgarriff 1997; Hanks 2000). A mapping bet-

4.5 Sources of Inter-Annotator Disagreement 
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more fundamental mismatches. They each have the same number of main 
senses (8). However, there is variation in the verb-particle constructions 
they have chosen to include. For instance, Hector includes verb and noun 
senses for shake down and shake out, while WordNet only has the noun 
senses. The result is that Hector has 27 total senses while WordNet has 
only 15. They also make different decisions as to which criteria to use to 
differentiate between senses. These distinctions can all be seen as valid 
choices, but they carve the available space up in very different ways. 

In this section we examine more closely the rates of inter-annotator 
agreement (ITA) on manual sense-tagging. We focus on verbs, which tend 
to have the lowest ITA scores. In Senseval-2, the ITA ranged from the low 
scores of 28.8% (train) and 44.3% ( find) to high scores of 90.8% (serve) 
and 86.5% (dress). For each of several of the verbs, including develop, a 
subset of 50 sentences distributed as evenly as possible among the differ-
ent possible senses (in the gold standard) was chosen and tagged again by 
two annotators, and the disagreements were carefully examined. There are 
at least four different clear sources of annotator errors: sense subsumption, 
missing or insufficient dictionary entries, vague usages, and world knowl-
edge (Fellbaum et al. 2001). 

Sense Subsumption. There were several disagreements on develop which 
stemmed from the choice between a more general or a more specific entry, 
well-known among lexicographers as “lumping” versus “splitting” (Fell-
baum et al. 2005). Two easily confused develop senses involve the creation 
of new entities, characterized as either “products, or mental or artistic crea-
tions” (Sense 1, physical creation) or “a new theory of evolution” (Sense 2, 
created by mental act). Three of the develop disagreements (25%) involved 
determining which of these two senses should be applied to phrases like 
develop a better way to introduce crystallography techniques. Either defi-
nition could fit; it’s merely a question of determining among the annotators 
ahead of time whether ways should be treated as things or theories. Since 
Sense 1 specifically mentions mental creations in addition to other types of 
creations, it can be seen as a more general definition which could subsume 
Sense 2. These more general senses, when present, provide the requisite 
flexibility for encompassing new usages, another sense-tagging challenge. 

Missing or Insufficient Dictionary Entries. Other disagreements are    
introduced because the sense inventory against which an annotator is anno-
tating may have gaps or redundancies. The glosses may also have ambigu-
ous wordings or contradictory examples. Even if the annotator is working 
with an extremely clear, extensive entry, it may not cover novel or unusual 
usages, or domain-specific ones. For instance, WordNet 1.7 did not have a 
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domain-specific sense of develop to handle the real-estate sense of deve-    
loping land. The annotators agreed on the meaning of these verb tokens 
when they appeared, but used different strategies to stretch the pre-existing 
sense inventory to fit this usage, hesitating between two senses. Some-
times, in fact, one annotator would double-tag a particular instance while 
the second annotator chose a single sense that matched one of the two     
selected by the first annotator. Two of the develop disagreements (16.7%) 
involved deciding whether or not understanding (as in develop a much bet-
ter understanding of …) constituted an attribute (Sense 3) or a physical 
characteristic (Sense 4). In this case neither of the pre-existing senses is 
general enough to subsume the other. 

vokes a rich representation of a word that includes two or more related 
senses. Puns are classic examples of this, but there are more subtle uses of 
multiple meanings. For instance, onion (Senseval-1) typically has a food 
sense and a plant sense, and in a phrase such as planting, harvesting and 
marketing onions both are invoked (Krishnamurthy and Nicholls 2000). In 
an instance of play (Senseval-2), he played superbly, it was clear from the 
context that music was being played, but did the author intend to praise the 
playing of the instrument (Sense 3) or the melody (Sense 6) or both? 

World Knowledge. Perhaps the most intractable tagging issues arise when 
the meaning of a word in a particular context depends not only on its syn-
tactic use or the semantics of its arguments, but on world knowledge. For 
instance, the final seven of the develop disagreements (58%) all pertained 
to a single group. Three of the sentences involved the development of can-
cer tumors. Do cancer tumors originate spontaneously, as would a reli-
gious movement (Sense 5), or are they more like a flower, a product of 
natural growth and evolution (Sense 10)? This choice involves a depth of 
medical knowledge which few doctors would claim, and in such a case 
tagging with a more coarse-grained sense that subsumes both senses offers 
a wiser choice. 

The twelve develop errors that could be categorized into these four types 
were also reconciled by the Senseval-2 groups (see Table 4.3, in Sect. 4.6 
below). Measured against the gold standard, the fine-grained score on    
develop was 66% (33 correct tags) while the coarse-grained score rose to 
90%. In general the ITA scores rose between 10% and 20% when meas-
ured against the grouped senses, resulting in an average ITA of 82% for 
coarse-grained senses versus 71.3% for fine-grained senses. The improve-
ment in ITA using the groupings did not come simply from the lower 
number of tag choices for each verb, because when the senses for each 

Vague Contexts. There are sentences where an author intentionally in-
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verb were randomly distributed into the same number of groups, ITA rose 
to only 74%. 

Differences in annotator choices often involve subtle semantic distinc-
tions between senses where one sense might be slightly more specific or 
more applicable (in the case of a gap) than the other. Extremely high ITA 
with highly polysemous words is an unrealistic goal, given the inherent 
difficulty in attaining a consensus on word meaning and the changeable 
nature of language. Since a semantic grouping of senses with similar 
meanings puts the most easily confused senses in the same group, the an-
notator disagreements can often be reconciled by evaluating with the 
groups instead of the more fine-grained senses. Equally valuable is the op-
portunity to treat the group as a more underspecified sense in itself, for 
new usages that do not exactly fit a pre-existing sense. These benefits 
however, could be outweighed by the drawback of losing important dis-
tinctions, no matter how subtle they are. 

We begin by introducing the criteria for creating the Senseval-2 verb 
groups, which led to significant revisions of pre-existing WordNet groups, 
and discuss the factors behind their success. There are situations where, 
rather than trying to force an exact match with a fine-grained sense, it may 
be more prudent to equivocate by choosing a less-specific cluster of 
senses. Coarser-grained sense distinctions can sometimes alleviate the dif-
ficulties involved in mapping between sense inventories, as well as recon-
cile inter-annotator disagreements (Palmer et al. 2000b). 

One of the main differences between WordNet and a standard dictionary 
is the lack of a hierarchical organization for the distinct senses of an entry. 
They are all simply listed sequentially. WordNet supplies a wealth of      
inheritance information via hypernyms and synonym sets. However, these 
do not lend themselves readily to forming natural sense hierarchies, and 
have not been especially beneficial for evaluating automatic WSD systems 
at a coarse-grained level (Lin 1998; Mihalcea and Moldovan 2001). The 
variation in hypernyms that occur in most of the Senseval-2 groups pro-
vides evidence for why automatic grouping by hypernyms has not been 
more successful. For example, group 4 of play involves three WordNet 
senses which all involve producing music from musical instruments, as 
shown in Table 4.2. In spite of the semantic similarity of these senses each 
one has a different WordNet hypernym, highlighting subtle distinctions in 
emphasis. 

4.6 Granularity of Sense: Groupings for WordNet 
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Table 4.2. Senseval-2 group 4 for WordNet 1.7 play. 

Sense WordNet gloss Hypernym 
3 Play (music) on an instrument perform 
6 Play a melody recreate 
7 Perform music (on a musical instrument) sound 

 
WordNet also has a distinct entry for each syntactic use of a verb, so the 

two variants involved in a standard causative/inchoative alternation such as 
John broke the window/The window broke will each have different senses. 

WordNet 1.6 had groupings that were limited to linking together certain 
pairs of syntactic frames, such as the causative/inchoative alternations 
mentioned above. These existing WordNet 1.6 groupings were substan-
tially revised and augmented for WordNet 1.7. This was done after the 
tagging had already been completed, so the annotators did not annotate 
with the groups. The groups were simply used as a scoring device. Coarse-
grained sense distinctions are only slightly easier to define than fine-
grained ones, and there are often cases where a sense appropriately         
belongs to more than one group. However, the simplest possible style of 
grouping was chosen, allowing for no overlaps between groups. The 
groupings were made without reference to any corpus instances and by    
annotators who had not annotated that particular word. The confusion    
matrices for the ITA were not used, so the grouping was done without any 
reference to annotator discrepancies. The senses for each lemma were 
grouped independently by two separate annotators, following specific syn-
tactic and semantic criteria. Discrepancies in the groupings were discussed 
and then adjudicated by a third annotator (Fellbaum et al. 2001). In con-
trast to hierarchical dictionary entries, this approach has a distinctly bot-
tom-up, self-organizing flavor, and varies quite a bit from verb to verb. 

Syntactic criteria. Syntactic structure performed two distinct functions in 
the groupings. Syntax is often considered a mirror of the underlying seman-
tics, and major differences in subcategorization frames for the same verb can 
reflect correspondingly major differences in meaning (e.g., John left the 
room vs. Mary left her daughter-in-law her pearls in her will). When this               
is the case, the two senses belong to different groups, and applying a coarse 
syntactic filter to a verb’s usages can be the simplest way to quickly capture 
the underlying sense distinction. On the other hand, recognizable alternations

4.6.1 Criteria for WordNet Sense Grouping 
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tor in choosing to group senses together, as in the Levin (1993) classes, 
where the changes in meaning can be very slight. The groupings that were 
determined by this criterion had the most overlap with the previous  group-
ings from WordNet 1.6. The pre-existing WordNet 1.6 groups only affected 
3.5% of the senses of the Senseval-2 verbs, and had no impact on system 
performance or reconciliation of inter-annotator agreements. 

Semantic criteria. Clear semantic criteria for groupings are even more 
variable. Senses were grouped together if they were more specialized ver-
sions of a general sense. The criteria for putting senses into separate 
groups included differences in semantic classes of arguments (abstract ver-
sus concrete, animal versus human, animacy versus inanimacy, different 
instrument types, and so on), differences in the number and type of argu-
ments (often reflected in the subcategorization frame as discussed above), 
differences in entailments (whether an argument refers to a created entity 
or a resultant state), differences in the type of event (abstract, concrete, 
mental, emotional, and so on), whether there is a specialized subject domain, 
and so on. Table 4.3 illustrates the four primary groups for develop, leaving 
out three more domain-specific groups having to do with chess, film, and 
mathematics. 

Senseval-2 inter-annotator agreement on WordNet 1.7 verb sense tags   
improved significantly when evaluated against the groups, from 71.3% to 
82%, as mentioned above. Since the data had already been tagged, this 
evaluation simply involved a change in scoring. If the annotators had cho-
sen two different senses that were in the same group, they were evaluated 
as matching. If they were in two different groups, they did not match. As a 
baseline, to ensure that the improvement in inter-annotator agreement using 
the groups did not come simply from the lower number of tag choices for 
each verb, random groupings were created in which each verb had the 
same number of groups, but with the senses distributed randomly. These 
random groups provided almost no benefit to the inter-annotator agreement 
figures (74% instead of 71%), confirming the greater coherence of the 
manual groupings. The original WordNet 1.6 groups reduced the polysemy 
of the same verbs from 14 to 13.5, and had even less effect on perform-
ance. In subsequent studies annotators have been given the grouped senses 

with similar corresponding predicate-argument structureswere often a fac-

4.6.2 Analysis of Sense Grouping 
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Table 4.3. The four primary Senseval-2 groups for WordNet 1.7 develop. 

Group Sense WordNet gloss Hypernym 
1 – New (abstract) 1 Products, or mental creations Create 
 2 Mental creations: “new theory” Create 
2 – New (property) 3 Personal attribute: “a passion for …” Change 
 4 Physical characteristic: “a beard” Change 
3 – New (self ) 5 Originate: “new religious movement” Become 

 9 Gradually unfold: “the plot …” Occur 
 10 Grow: “a flower developed …” Grow 

 14 Mature: “The child developed …” Change 
 20 Happen: “report the news as it …” Occur 
4 – Improve item 6 Resources: “natural resources” Improve 
 7 Ideas: “ideas in your thesis” Theorize 
 8 Train animate beings: “violinists” Teach 
 11 Civilize: “developing countries” Change 
 12 Make, grow: “develop the grain” Change 
 13 Business: “develop the market” Generate 
 19 Music: “develop the melody” Complicate
 
for tagging, and the ITA goes up to 89%, and the tagging speed is almost 
quadrupled (Weischedel and Palmer 2004). The groupings have an intui-
tive appeal; a reader can readily appreciate the semantic coherence of the 
senses. However, if too much information is being lost by failing to make 
the more fine-grained distinctions, the groups will avail us little. It remains 
to be seen whether or not the groupings can be effective in NLP applica-
tions. 

The most recent Senseval, Senseval-3 (Mihalcea and Edmonds 2004), was 
held in Barcelona, Spain in conjunction with ACL-2004. The scope of the 
evaluation expanded yet again, this time including 14 different tasks and 55 
participating teams with 160 systems. The English all-words and lexical 
sample tasks had over 47 and 26 submissions each, respectively (Mihalcea  
et al. 2004; Snyder and Palmer 2004). The traditional sense-tagging tasks 
followed the established Senseval-2 protocols; the new semantic annotation 
tasks involved semantic role labeling based on FrameNet (Baker et al. 2003) 
and for logical form annotation; there was also a task for disambiguating 

4.7 Senseval-3 
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WordNet glosses. The results are shown in Table 1.3 (Chap. 1). One major 
difference was that the English lexical sample task tried to avoid the       
expensive overhead of using linguistically trained annotators by making 
use of the OMWE project (Chklovski and Mihalcea 2002), as mentioned in 
Section 4.2.4 above. A portion of the OMWE data comprising about 
12,000 tagged examples of 59 words was used. The inter-annotator agree-
ment on this portion was somewhat lower than that attained by more tradi-
tional methods: 67% (Mihalcea et al. 2004) versus 85.5% in Senseval-2 
(Kilgarriff 2001). The lower ITA may be accounted for by the fact that the 
tagging was done by novice Web users and not linguistically trained anno-
tators. However, that does not explain the surprisingly high system per-
formance of up to 72%. Chapter 9 (Sect. 9.3.5) discusses OMWE further. 

Many new WSD techniques were described at the workshop; supervised 
machine learning approaches that aggregate a range of features, such as 
Support Vector Machines (SVMs), achieved the best performance. How-
ever, on the whole, system performance is still tied to inter-annotator 
agreement, which is in turn tied to the quality of the sense inventory; when 
this is low, system performance follows suit. 

Much interest was generated by two panel discussions, one on planning 
for future Sensevals and another focusing on potential uses of WSD in 
natural-language applications. There was a general consensus that the tra-
ditional in vitro task had reached a plateau, and was not likely to lead to 
fundamentally new research, but many still liked the task because of its 
clear definition. Applications promise to play a larger role in Senseval-4: 
possibilities discussed included WSD as lexical selection in machine trans-
lation, and WSD as sense equivalence in an IR or paraphrasing framework 
(see Chap. 11 for more information on applications of WSD). 

This chapter has discussed the data preparation for the evaluation of auto-
matic WSD systems. The successful Senseval program has developed 
common evaluation metrics and hand-tagging annotation methodologies, 
which are now widely accepted as being appropriate for in vitro word 
sense disambiguation evaluation. Explicit WSD to a fixed sense inventory 
is a robust task: The three evaluation exercises run by Senseval show that 
over a variety of word types, frequencies, and sense distributions, systems 
are achieving consistent and respectable accuracy levels that are approach-
ing human performance on the task. 

4.8 Discussion 
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However, there are still several open issues. One of the most important 
factors in evaluation has been the choice of sense inventory, which affects 
the consistency with which sense distinctions can be made by humans (and 
hence automatic systems), and which can be largely dependent on the final 
application of the WSD subtask. Although there are questions about 
whether or not it provides an appropriate level of granularity, WordNet has 
emerged as the most likely candidate for any large-scale evaluation, pri-
marily because it has a broad coverage, it is in the public domain, and 
much effort has gone into linking it to WordNets of other languages. 

This highlights the relevance of achieving a more coarse-grained view 
of WordNet verb senses through manual groupings of these senses. In    
examining the instances that proved troublesome to the human annotators, 
we have discussed in this chapter several categories of errors that were tied 
to subtle sense distinctions which were reconciled by backing off to the 
more coarse-grained sense groups. These categories include different per-
spectives on sense subsumption, insufficient sense entries, vague contexts, 
or inadequate world knowledge.  

Lexicographers have long recognized that many natural occurrences of 
polysemous words are embedded in underspecified contexts and could cor-
respond to more than one specific sense. There will also always be gaps in 
inventories and available world knowledge. In such cases both manual and 
automatic tagging discrepancies are inevitable. Annotators and automatic 
systems need the option of selecting, as an alternative to an explicit sense, 
either a group of specific senses or a single, broader sense, where specific 
meaning nuances are subsumed (Palmer 1990; Pustejovsky 1991). Although 
present to some degree in the hierarchical entries of traditional dictionaries, 
these have previously played only a small role in WordNet. The verb group-
ings presented here represent a step in the direction of making WordNet 
more effective in computational applications. 

Another open question remains as to whether or not significantly more 
training instances would benefit high polysemy verbs. Although additional 
data has proven useful for Chinese sense tagging (Dang et al. 2002), 
enlarging the Senseval-2 training set by 30–40% for the English verbs by 
using a 9:1 partition instead of 2:1, and using 10-fold cross-validation,   
improved system scores by only 1.9%. Also, the interest and line corpora 
had an order of magnitude greater number of examples, but did not give 
rise to significantly higher performance. Further experimentation is needed 
to determine the impact of additional training data. Yarowsky and Florian 
(2002) found a significant drop in performance with smaller training sets. 
Ng (1997a) found that increasing the size of the training data set improves 
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WSD accuracy on the DSO corpus (see also Chap. 7 (Sect. 7.3.2 and Table 
7.3)). 

Another area for exploration is measuring the impact of WSD on the 
performance of applications. Up to this point in time, evaluation of WSD 
has focused on in vitro evaluation, determining the correct sense of a word 
in context when the sense is chosen from a fixed list according to some 
dictionary. As such, WSD is treated as a separate subtask divorced from 
any application, much like part-of-speech tagging and syntactic parsing. 
While such an evaluation has the advantage that we are focused on the per-
formance of the WSD subtask, it is subject to the criticism that the utility 
of WSD is not measured directly, in terms of improvements brought about 
by WSD to the performance of an application in which WSD is embedded. 

To address this concern, Senseval would do well to include an in vivo 
application-oriented evaluation task, in addition to the current lexical sam-
ple task and the all-words task, in future evaluations. One possible applica-
tion is machine translation (MT), where applying WSD would correspond 
to improved lexical choice, i.e., selecting better words in the target lan-
guage as translations of words in the source language. As MT appears to 
be an NLP application that would directly benefit from improved WSD, it 
would be good to quantify such improvements, making it clear that WSD 
can make a difference. Preliminary versions of such tasks were run at Sen-
seval-2 (Japanese) and Senseval-3 (Hindi). A multilingual lexical sample 
task where the “correct” tags are determined by different translations in a 
second language is also a potential application-oriented task. The training 
data in such a task could be obtained by automatic alignment of parallel 
texts, as was done by Ng et al. (2003) in using Chinese-English parallel 
texts to obtain training data for word sense disambiguation. Chapter 9 
(Sect. 9.3.4) elaborates on this approach. 

In summary, much progress has been made on the task of regularizing 
the evaluation of word sense disambiguation systems, but much work     
remains to be done. There are still issues around the choice of the sense  
inventory being used for evaluation, especially for English. An equally 
important future goal is a clear demonstration of the positive impact of 
WSD on the performance of NLP applications, and plans are underway to 
include that in Senseval-4. 
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This chapter provides an overview of research to date in knowledge-based 
word sense disambiguation. It outlines the main knowledge-intensive meth-
ods devised so far for automatic sense tagging: 1) methods using contextual 
overlap with respect to dictionary definitions, 2) methods based on similarity 
measures computed on semantic networks, 3) selectional preferences as a 
means of constraining the possible meanings of words in a given context, 
and 4) heuristic-based methods that rely on properties of human language 
including the most frequent sense, one sense per discourse, and one sense 
per collocation. 

Knowledge-based methods represent a distinct category in word sense dis-
ambiguation (WSD). Along with corpus-based methods, accounted for in 
detail in Chapters 6 and 7, they represent one of the main categories of algo-
rithms developed for automatic sense tagging. The performance of such 
knowledge intensive methods is usually exceeded by their corpus-based     
alternatives, but they have the advantage of a larger coverage. Knowledge-
based methods for WSD are usually applicable to all words in unrestricted 
text, as opposed to corpus-based techniques, which are applicable only to 
those words for which annotated corpora are available. 

This chapter overviews the main approaches for knowledge-intensive 
sense tagging as currently used. The introduction to this book (Chap. 1) 
reviews some other historical knowledge-based systems. While the tech-
niques be presented in this chapter are generally applicable in conjunction 
with any lexical knowledge base that defines word senses (and relations
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among them), WordNet (Miller 1995) is used most often. Four main types 
of knowledge-based methods are presented: 

1. The Lesk algorithm, in which the most likely meanings for the words 
in a given context are identified based on a measure of contextual 
overlap among dictionary definitions pertaining to the various senses 
of the ambiguous words.  

2. Measures of semantic similarity computed over semantic networks. 

distance between concepts. Depending on the size of the context they 
span, these measures are in turn divided into two main categories: 
- Methods applicable to a local context, where semantic measures 

are used to disambiguate words connected by a) syntactic relations; 
or b) their locality.  

- Methods applicable to a global context, where lexical chains are 
derived based on measures of semantic similarity (a lexical chain is 
a thread of meaning drawn throughout an entire text).  

3. Automatically or semi-automatically acquired selectional preferences, 
as a means of constraining the possible meanings of a word, based on 
the relation it has with other words in context.  

4. Heuristic methods, consisting of simple rules that can reliably assign 
a sense to certain word categories, including: 
- Most frequent sense 
- One sense per collocation 
- One sense per discourse 

These four types of methods are explored in detail in the following 
sections. Two other knowledge-based methods: 5) methods relying on 
semantic knowledge induced across aligned parallel texts, and 6) methods 
based on information derived from semantic domains are covered in 
Chapters 9 and 10, respectively. 

The Lesk algorithm (Lesk 1986) is one of the first algorithms developed 
for the semantic disambiguation of all words in unrestricted text. The only 
resource required by the algorithm is a set of dictionary entries, one for 
each possible word sense, and knowledge about the immediate context 
where the sense disambiguation is performed.  

 

 

This category includes methods for finding the semantic density/ 

5.2 Lesk Algorithm 
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Although traditionally considered a dictionary-based method, the idea 
behind the Lesk algorithm represents the starting seed for today’s corpus-
based algorithms. Almost every supervised WSD system relies one way or 
another on some form of contextual overlap (see Chap. 7), with the overlap 
being typically measured between the context of an ambiguous word and 
contexts specific to various meanings of that word, as learned from pre-
viously annotated data. 

The main idea behind the original definition of the algorithm is to 
disambiguate words by finding the overlap among their sense definitions. 
Namely, given two words, W1 and W2, each with NW1 and NW2 senses      
defined in a dictionary, for each possible sense pair W1

i and W2
j, i = 1..NW1, 

j = 1..NW2, we first determine the overlap of the corresponding definitions 
by counting the number of words they have in common. Next, the sense 
pair with the highest overlap is selected, and therefore a sense is assigned 
to each word in the initial word pair. Fig. 5.1 illustrates the main steps of 
the algorithm. 

As an example, consider the task of disambiguating the words pine and 
cone in the word pair pine cone.1 The Oxford Advanced Learner’s 
Dictionary defines four senses for pine and three senses for cone: 

pine  
1* seven kinds of evergreen tree with needle-shaped leaves 
2 pine 
3 waste away through sorrow or illness 
4 pine for something, pine to do something 

1 solid body which narrows to a point 
2 something of this shape, whether solid or hollow 
3* fruit of certain evergreen trees (fir, pine) 

                                                      
1 The example and corresponding dictionary definitions are from Lesk (1986). 

(1) for each sense i of W1 
(2)  for each sense j of W2  

     between the definitions of sense i and sense j 
(4) find i and j for which Overlap(i,j) is maximized 
(5) assign sense i to W1 and sense j to W2 

Fig. 5.1. Dictionary-based Lesk algorithm. 

cone 

 (3)  compute Overlap(i,j), the number of words in common       
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The first definition for pine and the third definition for cone have the 
largest overlap among all possible sense combinations, with three words in 
common: evergreen, tree, and pine, and therefore these are the meanings 
selected by the Lesk algorithm for the given pair pine cone.  

The Lesk algorithm was evaluated on a sample of ambiguous word pairs 
manually annotated with respect to the Oxford Advanced Learner’s Dic-
tionary; a precision of 50–70% was observed (Lesk 1986). 

Since the original definition of the Lesk algorithm in 1986, several varia-
tions of the algorithm have been proposed, including: i) versions of the   
algorithm that attempt to solve the combinatorial explosion of possible 
word sense combinations when more than two words are considered, ii) 
algorithm variations where each word in a given context is disambiguated 
individually, by measuring the overlap between its corresponding diction-
ary definitions and the current sentential context, and iii) alternatives 
where the semantic space of a word meaning is augmented with definitions 
of semantically related words. 

One notorious problem with the original Lesk algorithm is the fact that it 
leads to a combinatorial explosion when applied to the disambiguation of 
more than two words. Consider for instance the text I saw a man who is 98 
years old and can still walk and tell jokes, with nine open class words, each 
with several possible senses:2 see(26), man(11), year(4), old(8), can(5), 
still(4), walk(10), tell(8), joke(3). A total of 43,929,600 sense combinations 
are possible for this text, and thus trying to figure out the optimal 
combination using definition overlaps is not a tractable approach.  

A possible solution to this problem is to use simulated annealing, as 
proposed by Cowie et al. (1992). They define a function E that reflects the 
combination of word senses in a given text, and whose minimum should 
correspond to the correct choice of word senses. For a given combination 
of senses, all corresponding definitions from a dictionary are collected, and 
each word appearing at least once in these definitions receives a score 
equal to its number of occurrences. Adding all these scores together gives 
the redundancy of the text. The E function is then defined as the inverse of 

                                                      
2 Numbers of senses (indicated in parentheses) are determined based on WordNet. 

5.2.1 Variations of the Lesk Algorithm 

Simulated Annealing 
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Fig. 5.2. Simplified Lesk algorithm. 

redundancy, and the goal is to find a combination of senses that minimizes 
this function. To this end, an initial combination of senses is determined 
(e.g., pick the most frequent sense for each word), and then several itera-

replaced with a different sense, and the new selection is considered as cor-
rect only if it reduces the value of the E function. The iterations stop when 

example sentences using this optimized Lesk algorithm led to 47% dis-
ambiguation precision at sense level, and 72% at homograph level. The 
method was also evaluated by Stevenson and Wilks (2001), who reimple-

tem. A similar average precision was observed during their experiments 
(65.24%) on a corpus annotated with senses from the Longman Dictionary 
of Contemporary English (LDOCE). 

Another version of the Lesk algorithm, which also attempts to solve the 
combinatorial explosion of word sense combinations, is a simplified 
variation that runs a separate disambiguation process for each ambiguous 
word in the input text. In this simplified algorithm, the correct meaning of 
each word in a text is determined individually by finding the sense that 
leads to the highest overlap between its dictionary definition and the 
current context. Rather than seeking to simultaneously determine the 
meanings of all words in a given text, this approach tackles each word 
individually, regardless of the meaning of the other words occurring in the 
same context. Fig. 5.2 illustrates the main steps of this algorithm.  

A comparative evaluation performed by Vasilescu et al. (2004) has 
shown that the simplified Lesk algorithm can significantly outperform the 
original definition of the algorithm, both in terms of precision and effi-
ciency. By evaluating the disambiguation algorithms on the Senseval-2  
 

(1) for each sense i of W 
(2)

(3) find sense i for which Overlap(i) is maximized 
(4) assign sense i to W  

Simplified Lesk Algorithm 

between the definition of sense i and current sentential context  

mented the simulated annealing algorithm as part of their larger WSD sys-

there is no change in the configuration of senses. Tests performed on 50 

 determine Overlap(i), the number of words in common 

tions are performed, where the sense of a random word in the text is        
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Fig. 5.3. Corpus-based Lesk algorithm. 

English all words data, they measured a 58% precision using the simplified 
Lesk algorithm compared to only 42% under the original algorithm.3  

A similar variation of the Lesk algorithm is frequently used to solve the 
semantic ambiguity of a target word, using manually annotated corpora 
(see Chaps. 4 and 7 for details). This corpus-based variation has the capa-
bility to augment the sense-centered context of a word with additional 
tagged examples. Subsequently, the most likely sense for a new occurrence 

lap between the sense-centered contexts and the new context. 

guate one target word provided that a set of annotated training examples is 
available. The weight of a word is defined using a measure borrowed from 
the information retrieval community: Weight(w) is the inverse “document” 
frequency (IDF) of the word w over the examples and dictionary 
definitions. The IDF of a word is –log(p(w)), where p(w) is estimated as 
the fraction of examples and definitions including the word w. 

Incidentally, the corpus-based variation of Lesk algorithm is one of the 
best performing baselines in comparative evaluations of supervised WSD 
learning systems. Among all baselines evaluated during the Senseval-1  
exercise (Kilgarriff and Rosenzweig 2000), the Lesk algorithm relying on 
corpus and phrase filtering achieves 69.1% precision for fine-grained fil-
tering, as compared to 56.6% achieved using the most-frequent-sense heu-
ristic, and a low precision of 16.2% achieved by a random sense selection. 

                                                      
3 Note that their implementation considers a back-off strategy for words not cov-
ered by the algorithm, consisting of the most frequent sense defined in WordNet. 
This means that words for which all their possible meanings lead to zero overlap 
with current context or with other word definitions are by default assigned sense 
number one in WordNet (see Sect. 5.5.1 for details on the most frequent sense 
heuristic). 

(1) for each sense i of W 
(2) set Weight(i) to 0 
(3) for each [unique] word w in surrounding context of W 
(4)

(5)  add Weight(w) to Weight(i) 
(6) choose sense i with highest Weight(i) 

of the ambiguous target word is identified as the one with the highest over-

dictionary definition of sense i 

Fig. 5.3 illustrates the corpus-based Lesk algorithm used to disambi-

 if w appears in the training examples or 
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The algorithm was ranked the seventh among eleven different supervised 
and unsupervised systems, with the best performing system achieving 
78.1% precision. In Senseval-2 (Kilgarriff 2001), the Lesk baseline led to 
similar results: 51.2% precision, compared to the performance of 64.2% 
achieved by the best supervised system (see Chap. 4 for additional infor-
mation on Senseval).  

Another variation of the Lesk algorithm, called the adapted Lesk algo-
rithm, was introduced by Banerjee and Pedersen (2002), in which defini-
tions of related words are used in addition to the definitions of the word   
itself to determine the most likely sense for a word in a given context. 
Banerjee and Pedersen employ a function similar to the one defined by 
Cowie et al. (1992) to determine a score for each possible combination of 
senses in a text, and attempt to identify the sense configuration that leads 
to the highest score.  

The novelty of their approach consists of the type of information used for 
a given word sense. While the original Lesk algorithm considers strictly the 
definition of a word meaning as a source of contextual information for a 
given sense, Banerjee and Pedersen extend this algorithm to related concepts 
and their definitions. Based on the WordNet hierarchy, the adapted Lesk    
algorithm takes into account hypernyms, hyponyms, holonyms, meronyms, 
troponyms, attribute relations, and their associated definitions to build an 
enlarged context for a given word meaning. Hence, they attempt to enlarge 
the dictionary-context of a word sense by taking into account definitions of 
semantically related concepts. In comparative evaluations performed on the 
Senseval-2 English noun data set, they show that the adapted Lesk algorithm 
on a set of 4,320 ambiguous instances doubles the precision (to 32%).  

Overall, the Lesk algorithm is an appealing solution for identifying word 
senses when the only resource available is a set of dictionary definitions. 
Among all variations of this algorithm, the simplified Lesk method is the 
one that improves most over the original algorithm both in terms of 
efficiency (it overcomes the combinational sense explosion problem) and 
precision (comparative evaluations have shown that this alternative leads 
to better disambiguation results). Moreover, enriched semantic spaces, 
which consider definitions of semantically related words in addition to the  

Augmented Semantic Spaces 

Summary 
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definition of the ambiguous words themselves, were found to almost 
double the disambiguation precision. Finally, if a sense-annotated corpus is 
available, information learned from the annotated data can be naturally   
integrated into the Lesk algorithm, leading to improved results in the 
disambiguation process. 

Words in a discourse must be related in meaning for the discourse to be 
coherent (Halliday and Hasan 1976). This is a natural property of human 
language and at the same time one of the most powerful constraints used in 
automatic word sense disambiguation. Words that share a common context 
are usually closely related in meaning, and therefore the appropriate senses 
can be selected by choosing those meanings found within the smallest    
semantic distance (Rada et al. 1989). 

While this kind of semantic constraint is often able to provide unity to 
an entire discourse, its scope has been usually limited to a small number of 
words found in the immediate vicinity of a target word, or to words 
connected by syntactic dependencies with the target word. These methods   
target the local context of a given word, and do not take into account 
additional contextual information found outside a certain window size. 

There are however other methods that rely on a global context and      
attempt to build threads of meaning throughout an entire text, with their 
scope extended beyond a small window centered on target words. Lexical 
chains are an example of such semantic relations drawn across several 
words in a text. 

Similar to the Lesk algorithm, these similarity methods become extremely 
computationally-intensive when more than two words are involved. 
However, solutions designed to increase the efficiency of the Lesk algorithm 
are equally applicable here, as for instance the algorithm proposed in Agirre 
and Rigau (1996) in which each ambiguous word in disambiguated 
individually, using a method similar in spirit with to the simplified Lesk 
algorithm.  

There are a number of similarity measures that were developed to quantify 
the degree to which two words are semantically related. Most such measures 
rely on semantic networks and follow the original methodology proposed by 

5.3 Semantic Similarity 

5.3.1 Measures of Semantic Similarity 
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Rada et al. (1989) for computing metrics on semantic nets. A comprehen-
sive survey of semantic similarity measures is reported by Budanitsky and 
Hirst (2001), and a software tool that computes similarity metrics on 
WordNet is made available by Patwardhan et al. (2003).4 

We present below several similarity measures proved to work well on 
the WordNet hierarchy. Most of these measures assume as input a pair of 
concepts and return a value indicating their semantic relatedness. 

1. Leacock et al. (1998) determine the minimum length of a connecting 
path between synsets including the input words. This value is norma-
lized by the depth of the taxonomy. In Eq. 5.1 Path(C1,C2) represents 
the length of the path connecting the two concepts (i.e., the number of 
arcs in the semantic network that are traversed going from C1 to C2), 
and D is the overall depth of the taxonomy. 

−=
D

CCPathCCSimilarity
2

),(log),( 21
21  (5.1)

2. Hirst and St-Onge (1998) integrate into their similarity measure the 
direction of the links that form the connecting path. In addition to the 
length, the path should not “change direction too often.” In Eq. 5.2, C 
and k are constants, Path is defined similarly as above, and d 
represents the number of changes of direction. 

kdCCPathCCCSimilarity −−= ),(),( 2121  (5.2)

3. Resnik (1995) defines the notion of information content, which is a 
measure of the specificity of a given concept, and is defined based on 
its probability of occurrence in a large corpus (Eq. 5.3).  

))(log()( CPCIC −=  (5.3)

Given a textual corpus, P(C) is the probability of encountering an in-
stance of type C. The value for P(C) is therefore larger for concepts 
listed higher in the semantic hierarchy, and reaches its maximum value 
for the topmost concept (if the hierarchy has only one top, then the P 
value for this concept is 1). Starting with this concept of information 
content, Resnik defines a measure of semantic relatedness between 
words (Eq. 5.4) by quantifying the information content of the lowest 
common subsumer (LCS) of two concepts (that is, the first common 

                                                      
4 The Perl module “WordNet::Similarity” implements various measures of seman-

tic similarity and relatedness (http://search.cpan.org/dist/WordNet-Similarity). 
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node in the semantic network encountered by traveling from the two 
given concepts toward the root).  

)),((),( 2121 CCLCSICCCSimilarity =  (5.4) 

Jiang and Conrath’s (1997) alternative to Resnik’s definition (Eq. 5.5) 
uses the difference in the information content of the two concepts to 
indicate their similarity (Eq. 5.5). 
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Lin (1998) gives another formulation that combines the information 
content of the lowest common subsumer with the information con-
tent of the concepts involved (Eq. 5.6) 
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4. Mihalcea and Moldovan (1999) introduce a formula to measure the 
semantic similarity between independent hierarchies, including 
hierarchies for different parts of speech. All previously mentioned 
measures are applicable only to concepts that are explicitly connected 
through arcs in the semantic network. Mihalcea and Moldovan create 
virtual paths between different hierarchies through the gloss 
definitions found in WordNet. In Eq. 5.7 |CD12| is the number of 
common words to the definitions in the hierarchy of C1 and C2, 
descendants(C2) is the number of concepts in the hierarchy of C2, and 
Wk is a weight associated with each concept and is determined as the 
depth of the concept within the semantic hierarchy. 
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This measure was found to work well for the disambiguation of nouns 
and verbs connected by a syntactic relation (e.g., verb-object, noun-
modifier, and others). 

5. Agirre and Rigau (1996) introduce the notion of conceptual density, 
defined as the overlap between the semantic hierarchy rooted by a 
given concept C, and the words in the context of C. In Eq. 5.8, m is 
the total number of word meanings in the context of C found in the 
hierarchy rooted by C, and descendants(C ) represents the total 
number of concepts in the hierarchy rooted by C. Wk is a weight 
associated with each concept in the hierarchy (nhyp is the number of 



5 Knowledge-Based Methods for WSD      117 

hyponyms for the given node in the hierarchy, and the optimal value 
for α was empirically determined to be 0.20). 
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m
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αk
k nhypW =  (5.8)

To identify the sense of a target word in a given context, the 
conceptual density formula is applied to all possible meanings of the 
target word, and ultimately the sense leading to the highest 
conceptual density score is selected. The conceptual density formula 
may be regarded as a variation of Lesk algorithm. While the original 
Lesk measure considers definitions for the various senses of a target 
word to compute the contextual overlap, the conceptual density 
measure takes into consideration entire sub-hierarchies rooted by 
different word senses. Similarly, it then computes the number of 
common words between these sub-hierarchies and the current 
context, and subsequently the correct sense is the one leading to the 
highest overlap. Experiments performed with this measure on the 
disambiguation of nouns in Semcor (Miller et al. 1994) led to an 
overall precision of 66.4%, including monosemous words, and 
coverage of 88.6%, figures that are promising given the difficulty of 
the task and the wide coverage of the method.  

The application of measures of semantic similarity to the disambiguation 
of words in unrestricted text is not always a straightforward process. A text 
usually involves more than two ambiguous words, and therefore we 
typically deal with sets of ambiguous words in which the distance of a 
word to all the other words in the context influences its meaning in the 
given text.  

Work in this area has considered the use of local context as an additional 
constraint to limit the number of words in the set of ambiguous words.     
Patwardhan et al. (2003) applied the first five similarity measures above to    
decide upon the correct sense of 1,723 instances of ambiguous nouns from 
the Senseval-2 English lexical sample data. They computed a cumulative 
score by adding the semantic distances from the target word to the words in 
its immediate vicinity (i.e., one word to the left and one word to the right). 
The sense that is selected is the one with the highest cumulative score. They 
found that, among the five different measures of similarity, Jiang and    

5.3.2 Using Semantic Similarity Within a Local Context 
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Conrath (1997) leads to the best overall performance, and Hirst and St-Onge 
(1998) provides the most consistent behavior across various words. 

Syntactic dependencies are another possible constraint that can be      
applied to words involved in a similarity relation. Stetina et al. (1998)    
devised a method that relies on syntactic dependencies among words, and 
on a very simple similarity measure that defines two words as similar if 
they belong to the same WordNet synset. Experiments using syntactic    
dependencies learned from about 100 Semcor texts led to an overall dis-
ambiguation precision of 80.3% measured on 15 Semcor test files. On the 
same test set, they obtained 75.2% using a simple baseline that chooses the 
most frequent sense. 

Lexical chains are some of the most widely known structures of meaning. 
A lexical chain is a sequence of semantically related words, which creates 
a context and contributes to the continuity of meaning and the coherence 
of a discourse (Halliday and Hasan 1976). They are considered useful for 
various tasks in natural language processing, including text summarization, 
text categorization, and word sense disambiguation. Lexical chains are 
drawn independently of the grammatical structure of the text, and may 
span long distances in the text.

A generic chaining algorithm consists of three main steps: 

1. Select the candidate words from the text. These are words for which 
we can compute semantic relatedness measures and therefore most of 
the time they have the same part of speech.5

2. For each such candidate word, and for each meaning for this word, 
find a chain to receive the candidate word sense, based on a semantic 
relatedness measure between the concepts that are already in the 
chain and the candidate word meaning. 

3. If such a chain is found, insert the word into the chain; otherwise, 
create a new chain. 

All chains that exceed a certain threshold are selected.

5 With almost no exception, previous work in lexical chaining has considered only 
the nouns in the text as candidate chain elements. 

Galley and McKeown (2003) evaluated a lexical chaining algorithm    
on the nouns from a subset of Semcor, reporting 62.1% disambiguation 

5.3.3 Using Semantic Similarity Within a Global Context 
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precision, which represented an improvement over previous lexical chain 
implementations. 

Okumura and Honda (1994) report a closely related evaluation in which 
lexical chains are derived based on a Japanese thesaurus, and give an 
overall precision of 63.4% computed on five different test texts. 

A procedure similar to lexical chaining was proposed by Mihalcea and 
Moldovan (2000), where chains of meaning are derived starting with      
anchor points in the text (an anchor point is a word that can be reliably 
annotated with its corresponding meaning, e.g., monosemous words or 
various named entities). These anchors are then starting points for lexical 
chains. Mihalcea and Moldovan (2000) report a high overall precision of 
over 90% at a recall of 60%, measured on a subset of the Semcor corpus. 

More recently, Mihalcea (2005) proposed a graph-based algorithm for 
sequence data labeling, using random walks on graphs encoding word 
sense dependencies. The graphs are constructed automatically using defini-
tion similarities, and then used to automatically select the most likely sense 
for each word using a graph-based ranking algorithm such as PageRank 
(Brin and Page 1998). Her algorithm is completely unsupervised, as it     
ignores all supervised sources of information, including the sense order 
available in WordNet. In an evaluation conducted on the Senseval-2 Eng-
lish all-words data, the algorithm led to a precision of 55.2%, which com-
pared favorably with the simplified Lesk algorithm on the same data set 
(48.7%). Erkan and Radev (2004) have a similar approach. 

Some of the earliest algorithms for word sense disambiguation rely on    
selectional preferences as a way of constraining the possible meanings of a 
word in a given context.  

Selectional preferences capture information about the possible relations 
between word categories, and represent commonsense knowledge about 
classes of concepts. EAT-FOOD, DRINK-LIQUID, are examples of such 
semantic constraints, which can be used to rule out incorrect word 
meanings and select only those senses that are in harmony with 
commonsense rules. For instance, given the sentence Mary drank 
burgundy, the ‘color’ sense of burgundy does not fit in context since the 
verb to drink requires a liquid as a direct object. 

While selectional preferences are intuitive, and occur to us in a natural 
way, it is difficult to put them into practice to solve the problem of WSD. 

5.4 Selectional Preferences 
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The main reason seems to be the circular relation between selectional 
preferences and WSD: learning accurate semantic constraints requires 
knowledge of the word senses involved in a candidate relation, and, vice 
versa, WSD can improve if large collections of selectional preferences are 
available.  

Here we give an account of the most frequently used approaches that try 
to overcome this circularity and automatically learn selectional preferences 
based on frequency counts, information-theory measures, or class-to-class 
relations acquired from manually-crafted taxonomies. Brockmann and    
Lapata (2003) give a detailed analysis of these approaches and compara-
tive evaluations against human judgments. 

Frequency counts of word-to-word relations are useful measures to account 
for the semantic fit between words. Given two words W1 and W2, and the 
syntactic relation R that connects them, the semantic fit between these 
words can be quantified by counting in a large corpus the number of times 
that the two words occur in the relation R, which we formalize here as 

),,( 21 RWWCount .  
An alternative method is to use conditional probabilities to estimate the 

semantic fit of a given relation. Under the same assumption that selectional 
preferences are learned for two words W1 and W2 connected by a relation 
R, the conditional probability is determined as in Eq. 5.9, where the word 
W2 imposes the selectional preferences on W1. The constraint can be       
expressed in the other direction as well, with conditional probabilities 
where the roles of the two words are reversed. 
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RWWCountRWWP =  (5.9) 

Several approaches have been proposed to determine the selectional prefe-
rence between two concepts, between a concept and an entire semantic 
class, or between two semantic classes. A comparative evaluation of these 
various approaches in a WSD task is reported in Agirre and Martínez 
(2001) (see Sect. 5.4.3 below). 

5.4.1 Preliminaries: Learning Word-to-Word Relations 

5.4.2 Learning Selectional Preferences 
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Resnik (1993) suggests selectional associations as a measure of the    
semantic fit between a word and a semantic class (in particular, Resnik’s 
work deals with verbs and the semantic class of their noun arguments). In 
selectional associations, the contribution of a semantic class in a given    
relation is quantified using the contribution of all the concepts subsumed 
by that class. Given a word W and a semantic class C connected by the   
relation R, the selectional association is estimated as in Eq. 5.10, based on 
Eqs. 5.11 and 5.12. 
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Since the meaning of the words is unknown, Resnik assumes an equal 
sense distribution, and thus a word with N senses will have its corpus 
frequency equally distributed among its possible meanings.  

Agirre and Martínez (2001) propose a method to determine class-to-
class selectional preferences, which are more general than the previously 
proposed models of word-to-word or word-to-class selectional constraints. 
Their model requires a sense-tagged corpus to make the class estimates. 
Eq. 5.13 is used to seek the sense of the word W2 that leads to the maxi-
mum probability of co-occurrence of its semantic class with the class of 
the word it relates to.  

),|( 21 RWWP i  (5.13)
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In Eq. 5.13, W1
i and W2

j represent the possible senses of W1 and W2. Since 
they assume the availability of a sense-tagged corpus, the frequency counts 
(abbreviated to Cnt for space) Cnt(W1

i,W1) and Cnt(W2
j,W2) can be easily 
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derived, and do not have to rely on the assumption of equal sense 
distributions, as proposed by Resnik (1997).  

In addition to these two methods, there are several other approaches that 
were proposed to derive selectional preferences, including the Bayesian 
networks approach proposed by Ciaramita and Johnson (2000) and the tree 
cut model of Li and Abe (1998). 

The application of word-to-word, word-to-class, and class-to-class 
selectional preferences to WSD was evaluated by Agirre and Martínez 
(2001). While the results they obtain on a subset of Semcor nouns do not 
exceed the most-frequent-sense baseline, they observed, however, that 
class-to-class models lead to significantly better disambiguation results 
compared to word-to-word or word-to-class selectional preferences. For 
instance, on a set of 8 nouns, the most-frequent-sense baseline leads to 
69% precision and 100% coverage, the word-to-word selectional 
preferences give 95.9% precision and 26% coverage, word-to-class 
preferences decrease the precision to 66.9% and increase the coverage to 
86.7%, and finally the class-  to-class preferences have a precision of 
66.6% and a coverage of 97.3%.  

Selectional preferences were also evaluated by Stevenson and Wilks 
(2001), who implemented them as features in their larger WSD system. In 
their work, selectional preferences are derived using 1) the LDOCE 
semantic codes, 2) a custom-built hierarchy over these codes that indicates 
for instance that Solid, Liquid, and Gas are all a kind of Inanimate, and 3) 
grammatical relations such as subject-verb, verb-object, and noun-modifier 
identified using a shallow syntactic analyzer. They evaluated the individ-
ual contribution of each knowledge source in their WSD system, and 
found that selectional preferences alone could lead to a disambiguation 
precision of 44.8% on a corpus annotated with LDOCE senses (see also 
Chap. 8, Sect. 8.5.6). 

The use of selectional preferences for WSD is an appealing method, in 
particular when these preferences can be learned without making use of 
sense-tagged data. For example, McCarthy and Carroll (2003) automati-
cally acquired selectional preferences for use in an unsupervised WSD   
system. They achieved 52.3% precision at a recall of only 20% on the  
Senseval-2 all-words corpus (58.5% precision on the nouns only), which, 
incidentally, reveals, the sparse applicability of selectional preferences. 
The performance of WSD methods based on selectional preferences is 
however usually exceeded by the simple most-frequent-sense baseline 

5.4.3 Using Selectional Preferences 
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(e.g., the all-words baseline in Senseval-2 was 57%), suggesting that more 
work needs to be done for learning accurate selectional preferences       
(Ciaramita and Johnson 2000).  

An easy and yet fairly precise way to predict word meanings is to rely on 
heuristics drawn from linguistic properties observed on large texts. One 
such heuristic, which is often used as a baseline in the evaluation of many 
WSD systems is the most-frequent-sense heuristic. The other two 
heuristics that we address in this section refer to the tendency of a word to       
exhibit the same meaning in all its occurrences in a given discourse (one-
sense-per-discourse), in the same collocation (one-sense-per-collocation), 
or in the same domain (see Chap. 10 on domains).  

Among all possible meanings that a word may have, it is generally true 
that one meaning occurs more often than the other meanings. It is interes-
ting to notice that word meanings exhibit a Zipfian distribution: one sense 
has a dominant frequency of occurrence, followed by a significant          
decrease in frequency for the remaining word senses (Zipf 1949). There-
fore, assuming the availability of word frequency data, a very simple dis-
ambiguation method can be designed that assigns to each word its most 
frequent meaning, according to this a priori sense distribution.  

This very simple method is often used as a baseline for WSD, and      
according to Gale et al. (1992a) “most reasonable systems should outper-
form this baseline.” 

Even though conceptually very simple, and almost trivial to implement, 
there is an important drawback associated with this method: sense distribu-
tions may not always be available, and therefore the most-frequent-sense 
heuristic is applicable only to those few languages for which significantly 
large sense-tagged corpora are available.6 Moreover, a change in domain or 

                                                      
6 Currently only English. See Chapters 4 and 9. 

genre can significantly affect the sense distributions, considerably decreas-
ing the performance of this simple heuristic (see Chap. 10 and also 
Martínez and Agirre (2000)). 

5.4 Heuristics for Word Sense Disambiguation 

5.5.1 Most Frequent Sense 
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There is also an alternative method for finding the most frequent sense, 
which does not assume the availability of sense-tagged data. McCarthy      
et al. (2004) show how a measure of similarity between various meanings 
of a word and distributionally similar words can be used to determine the 
predominant sense in a given domain. Additional details on this method 
are provided in Chapter 6 (Sect. 6.1.2). 

This heuristic was introduced by Gale et al. (1992b). It states that a word 
tends to preserve its meaning across all its occurrences in a given discourse. 
This is a rather strong rule since it allows for the automatic disambiguation 
of all instances of a certain word, given that its meaning is identified in at 
least one such occurrence.  

Initially, the one-sense-per-discourse hypothesis was tested on nine 
words with 2-way ambiguity in an experiment performed with five sub-
jects. The subjects were given 82 pairs of concordance lines, and asked to 
determine if they correspond to the same sense or not. Overall, they found 
that with a probability of 98%, two word occurrences in the same dis-
course would have the same sense (Gale et al. 1992b). 

While this hypothesis is extremely likely to hold for words with coarse-
grained sense distinctions, Krovetz (1998) experimented with words that 
have more than two possible senses and/or finer sense distinctions, and 
found that such words tend to have more than one sense per discourse. He 
based his evaluation on Semcor and the DSO corpus. About 33% of the 
words in these texts were found to have multiple senses per discourse, and 
therefore the overall disambiguation precision achieved in this case is less 
than 70%. 

Yarowsky (1995) used both one-sense-per-discourse (and one-sense-
per-collocation) in his iterative bootstrapping algorithm, which improved 
performance from 90.6% to 96.5% (see Chap. 7 (Sect. 7.2.4) for a descrip-
tion of the algorithm.)  

The one-sense-per-collocation heuristic is similar in spirit to the one-sense-
per-discourse hypothesis, but it has a different scope. It was introduced by 
Yarowsky (1993), and it states that a word tends to preserve its meaning 
when used in the same collocation. In other words, nearby words provide 
strong and consistent clues to the sense of a target word. It was also     

5.5.2 One Sense Per Discourse 

5.5.3 One Sense Per Collocation 
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observed that this effect is stronger for adjacent collocations, and becomes 
weaker as the distance between words increases. 

Initial experiments with this hypothesis considered again coarse-grained 
sense distinctions, mostly words with 2-way ambiguity. An overall 
precision of 97% was observed across a large set of hand-annotated 
examples.  

As with the one-sense-per-discourse assumption, further experiments 
performed with different types of corpora and finer levels of ambiguity 
showed that the strength of the hypothesis diminishes significantly when 
fine-grained sense distinctions are employed. Martínez and Agirre (2000) 
tested the one-sense-per-collocation hypothesis under a different experi-
mental setting, in which the annotated corpora involve genre and topic 
variations – Semcor and DSO – and word meanings are defined with        
respect to the fine-grained sense entries from WordNet. Similar to 
Krovetz’s findings in the case of the one-sense-per-discourse hypothesis, 
Martínez and Agirre found that the precision of the one-sense-per-
collocation heuristic drops significantly to about 70% or even less when 
words with higher degrees of ambiguity are considered.  

An interesting aspect observed by Martínez and Agirre relates to the 
consistency of this heuristic across different corpora. Specifically, 
experiments performed on texts with genre and topic variations led to the 
conclusion that one-sense-per-collocation holds across corpora. However, 
as they noticed, the number of collocations found in common between 

      performance. 

Several of the systems that participated in Senseval-2 (see Chap. 4) relied 
on various flavors of knowledge-based algorithms.  

The simplified Lesk algorithm (Sect. 5.2.1), together with several other 
heuristics (e.g., collocational patterns, topic area), was used in Litkowski’s 
(2001) system in the Senseval-2 English all-words task, achieving a 
precision and recall of 45%.  

A form of lexical chains (Sect. 5.3.3) – called structural semantic inter-
connections–was used by Navigli and Velardi (2004) in a system designed 
to find the meaning of the words in the WordNet glosses (a Senseval-3 
task), by identifying paths along concepts in WordNet, for an overall pre-
cision and recall of 68.5%.  

independent corpora is usually very low, which causes the low cross-corpora

5.6 Knowledge-Based Methods at Senseval-2 
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A method based on metrics of semantic similarity (Sect. 5.3.1) was used 
in Tat et al. (2001) for the disambiguation of all the words in a text. Speci-
fically, they use a conceptual density method that identifies the relatedness 
between two concepts based on a dictionary (LDOCE), for a precision and 
recall of 36.0% obtained during the Senseval-2 English all-words task.  

Automatically acquired selectional preferences (Sect. 5.4.2) were used 
by McCarthy et al. (McCarthy et al. 2001; McCarthy and Carroll 2003) to 
disambiguate the nouns and verbs in the texts provided during the 
Senseval-2 English all-words task. They report a precision in the range 
54.5–59.8%, for a recall of 14–16.9%.  

Finally, among the methods described in this chapter, the most-frequent-
sense heuristic (Sect. 5.5.1) is playing a special role in these evaluations, 
as a baseline for most of the Senseval tasks.  

This chapter has addressed the main knowledge-based methods proposed 
so far in word WSD. Four types of methods were presented: 1) Lesk-type 
algorithms, relying on measures of contextual overlap among dictionary 
definitions or among definitions and current sentential context, 2) 
measures of semantic similarity in a local or global context, 3) selectional       
restrictions as means of imposing semantic constraints on the possible 
meanings of words participating in a given relation, and 4) methods based 
on properties of human language, including the most-frequent-sense 
heuristic, and the one-sense-per-discourse and one-sense-per-collocation     
hypotheses. 

Lesk algorithms provide reasonable disambiguation precision when the 
only resource available is a set of dictionary definitions. In particular, 
variations of this algorithm, addressing each word individually or using 
richer sense representations based on information drawn from semantic 
networks have been found to significantly improve Lesk’s original 
algorithm in precision and efficiency. 

If additional resources are available (e.g., a set of semantic relations 
from a semantic network or a minimal set of annotated data) other know-
ledge-based methods can be applied. For instance, the most-frequent-sense 
heuristic was found to lead to good disambiguation results if a sense-
annotated corpus is available to derive the required sense frequency infor-
mation. Selectional preferences or measures of semantic similarity are also 
appealing methods for word sense disambiguation if relations between 
word senses are available. Finally, once a subset of the words in a text is 

5.7 Conclusions 
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disambiguated with reasonable precision, the one-sense-per-discourse and 
one-sense-per-collocation heuristics can be used to propagate these mean-
ings to the other occurrences in the text.  

The knowledge-based methods overviewed in this chapter have an impor-
tant advantage over corpus-based methods: Although they sometimes lead to 
smaller disambiguation precision,7 knowledge-intensive algorithms are not 
restricted to the few target words for which large sense-tagged data are 
available, but rather can be applied to all words in unrestricted text. Another 
important advantage is the fact that they are not tight to the availability of 
sense-annotated corpora, and thus they can be easily ported to other 
languages or domains for which a sense inventory is available. 
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This chapter focuses on unsupervised corpus-based methods of word sense 
discrimination that are knowledge-lean, and do not rely on external 
knowledge sources such as machine readable dictionaries, concept hierar-
chies, or sense-tagged text. They do not assign sense tags to words; rather, 
they discriminate among word meanings based on information found in 
unannotated corpora. This chapter reviews distributional approaches that 
rely on monolingual corpora and methods based on translational equiva-
lence as found in word-aligned parallel corpora. These techniques are   
organized into type- and token-based approaches. The former identify sets 
of related words, while the latter distinguish among the senses of a word 
used in multiple contexts. 

Research in word sense disambiguation (WSD) has resulted in the deve- 
lopment of algorithms that rely on a variety of resources. These include 
knowledge-rich techniques that employ dictionaries, thesauri, or concept 
hierarchies (Chap. 5), and corpus-based approaches that take advantage of 
sense-tagged text (Chap. 7). Unfortunately, the resources required for such 
approaches must be hand-built by humans and are therefore expensive to 
acquire and maintain. This inevitably leads to knowledge acquisition bot-
tlenecks when attempting to handle larger amounts of text, new domains, 
or new languages.  

There are two alternative avenues that eliminate this dependence on 
manually created resources. The first are distributional approaches that 
make distinctions in word meanings based on the assumption that words 
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that occur in similar contexts will have similar meanings (see, e.g., Harris 
(1968), Miller and Charles (1991)). The second are translational-
equivalence approaches based on parallel corpora, which identify transla-
tions of a word to a target language that are dependent on the sense of the 
word in the source language. These different sense-dependent translations 
of a word can then be used as a kind of sense inventory for that word in the 
source language. Both distributional and translational-equivalence methods 
can be considered knowledge-lean, since they require no resources beyond 
unannotated monolingual corpora or word-aligned parallel text.  

A key characteristic of distributional approaches is that they do not 
categorize words based on a pre-existing sense inventory, but rather cluster 
words based on their contexts as observed in corpora. This is an appealing 
alternative to knowledge-intensive methods, since sense inventories are 
usually hand-crafted, and approaches that depend on them will necessarily 
be constrained to those words where a human expert has enumerated the 
possible meanings. Even if a sense inventory already exists, it is unlikely 
to be generally useful, since the nature and degree of sense distinctions that 
will be of interest will vary across a range of applications (see Chaps. 2, 3, 
and 11). 

Distributional approaches do not assign meanings to words, but rather 
allow us to discriminate among the meanings of a word by identifying 
clusters of similar contexts, where each cluster shows that word being used 
in a particular meaning. This is quite distinct from the traditional task of 
word sense disambiguation, which classifies words relative to existing 
senses. 

Methods based on translational equivalence rely on the fact that the dif-
ferent senses of a word in a source language may translate to completely 
different words in a target language. These approaches have two attractive 
properties. First, they automatically derive a sense inventory that makes 
distinctions that are relevant to the problem of machine translation.       
Second, a sense-tagged corpus based on these distinctions can be auto-
matically created and used as training data for traditional methods of      
supervised learning.  

This chapter is about knowledge-lean methods that rely on monolingual or 
parallel corpora. These methods are distinct in that they do not assign 
meanings relative to a pre-existing sense inventory, but rather make dis-
tinctions in meaning based on distributional similarity or translational 

6.1.1 Scope 
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equivalence. They are highly portable, robust, and do not require dictiona- 
ries, concept hierarchies, or any other hand-crafted knowledge source. As 
such, they are unsupervised in a strict sense, since they are not guided by 
manually created examples or knowledge resources. However, “unsuper-
vised” has become a polysemous term in the word sense disambiguation 
literature, and can be a source of some confusion.  

One common sense of “unsupervised” literally means “not supervised”, 
and includes any method that does not use supervised learning from sense-
tagged text. This definition leads to approaches that rely on manually    
created resources such as WordNet being referred to as unsupervised (e.g., 
Rigau et al. (1997), Resnik (1997), and Buitelaar, et al. (2001)). In fact, 
this is the definition of unsupervised that has been used in the Senseval-2 
and Senseval-3 WSD evaluation exercises (see Chap. 4). However, we   
exclude such methods from this chapter since they are based on know- 
ledge-rich resources and are not knowledge-lean even though they don’t 
use sense-tagged text. Instead, these methods are discussed in Chapter 5. 

“Unsupervised” can also be used to describe methods that are minimally 
supervised. These are approaches that bootstrap from a small number of 
sense-tagged training examples, and use those to build a simple model or 
classifier that then tags a few more contexts. The newly tagged contexts 
are added to the training data and the process is repeated until a large 
amount of data has been sense-tagged. While these methods use a smaller 
amount of sense-tagged text, there is still some manual intervention        
required, and often times the goal is to classify words based on a pre-
existing sense inventory.  

Yarowsky’s (1995) algorithm is the most prominent example of such an 
approach. It is initialized with a set of seed collocations that are selected 
by a human. These seeds include the target word and are strongly indica-
tive of a particular sense, as in manufacturing plant versus flowering plant. 
While this method does not require the use of a sense inventory, the fact 
that a human selects the seed collocations leads to it not being considered 
knowledge-lean. Instead, it is discussed in Chapter 7 (Sect 7.2.4). 

Thus, polysemy is a fact of life even in scientific literature, and we would 
have it no other way. While the different senses of “unsupervised” may     
result in some confusion, each of them represents a reasonable and distinct 
type of solution to the problem of semantic ambiguity. This chapter defines 
“unsupervised” to mean knowledge-lean approaches that do not require 
sense-tagged text and do not utilize other manually-crafted knowledge as 
found in dictionaries or concept hierarchies. These methods are data-driven 
and language-independent, and rely on the distributional characteristics of 
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unannotated corpora, and translational equivalences in word aligned paral-
lel text.  

Given the very tight constraints placed on knowledge-lean approaches, it 
seems reasonable to ask why even attempt such an apparently unpromising 
and difficult task. Why not take advantage of rich lexical resources that   
already exist such as the Longman Dictionary of Contemporary English 
(LDOCE) or WordNet? Why not undertake a systematic and long-term   
effort to create sense-tagged text, or make do with existing sense-tagged 
corpora?  

The motivation for knowledge-lean approaches follows quite naturally 
from arguments against the very idea of word senses, particularly as ex-
pressed in the form of a fixed sense inventory (see Kilgarriff (1997) and 
Chaps. 2 and 3). The principal objection is that all dictionaries impose 
their own unique interpretation and organization on the meanings of a 
word, and that this is at best an imperfect and approximate representation 
of what might really exist in language. Each dictionary draws the bounda-
ries between different senses of a word at disparate points along the spec-
trum of meaning.  

Thus, any approach to WSD that is dependent on a particular sense     
inventory is permanently locked into a fixed view of word meanings that 
will not be able to evolve or adapt as circumstances warrant. Sense-tagged 
text is the most obvious example, since the tags are normally associated 
with senses from a selected dictionary. But the same limitations apply to 
approaches based on the structure or content of resources such as WordNet 
or LDOCE, since typically their sense inventories are inherited along with 
this other information. Thus, such methods not only depend on a particular 
sense inventory, their disambiguation algorithm may be based on a certain 
organization or structure that is unique to that resource.  

For example, numerous disambiguation algorithms rely on the noun is-a 
hierarchies of WordNet, the subject codes in LDOCE, or the semantic 
categories in Roget’s International Thesaurus (Chaps. 5 and 10). However, 
the very formulation of such disambiguation algorithms may be specific to 
these underlying knowledge-rich resources and not able to generalize to 
other similar or related resources. This has the long-term effect of locking 
the algorithm to a particular sense inventory and making it impossible to 
adapt or extend the algorithm beyond the boundaries imposed by a particu-
lar resource and its sense inventory.  

6.1.2 Motivation 
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A second danger of developing methods that are tightly coupled with 
knowledge-rich resources is that this frequently introduces a high degree 
of language dependence, and makes it difficult to apply them to a variety 
of languages. Thus, if one rejects the use of pre-existing sense inventories 
and rich knowledge resources on the grounds of maintaining portability 
and adaptability across resources and languages, then unsupervised know- 
ledge-lean approaches are appealing. They are based on the belief that 
sense inventories are not absolute arbiters of word meanings, and that dis-
ambiguation algorithms should not be limited to a particular sense inven-
tory or knowledge-rich resource, and that they should port readily to new 
languages.  

Distributional methods identify words that appear in similar contexts with-
out regard to any particular underlying sense inventory. Schütze (1998), 
for example, decomposes word sense disambiguation into a two step proc-
ess. The first is to discriminate among the different meanings of a given 
target word by dividing the contexts in which it occurs into clusters that 
share distributional characteristics. The second is to label each cluster with 
a gloss that describes the underlying meaning of the target word in those 
contexts. This is quite distinct from the usual view of word sense disam-
biguation, where the labels (i.e., sense-tags) are assumed to exist prior to 
discrimination.  

This “discriminate and label” view of disambiguation corresponds to     
a somewhat idealized view of a lexicographer’s technique for defining a 
word. A lexicographer collects multiple contexts of a target word from a 
large corpus that is representative of the audience for whom the dictionary 
is being created. For example, when compiling a children’s dictionary the 
corpus should consist of text written for children, whereas when creating a 
dictionary of technical terminology the corpus should be from the particu-
lar specialty that is to be the focus of the dictionary. The lexicographer 
studies the resulting concordance lines, which show the target word in 
many contexts, and begins to divide the occurrences of that word into vari-
ous piles or clusters, gradually discriminating among the various meanings 
of the word without any preconceived ideas about how many clusters 
should be created (see Chap. 2 (Sect. 2.2), Chap. 3 (Sect. 3.2), and Hanks 
(2000)). Thus, distributional approaches can be seen as an effort to auto-
mate the discrimination portion of the two step approach to word sense 
disambiguation.  

Distributional Methods 
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The result of the discrimination step is some number of clusters that 
capture the different meanings of the word, as observed in the particular 
corpus used to create the concordance. Then, the lexicographer must study 
each cluster and compose a definition that acts as a sense tag or a label. 
This establishes the sense of the word that will appear in the dictionary that 
the lexicographer is crafting. In effect this labeling is a form of summariza-
tion, which briefly describes all of the contexts of the target word that 
make up the cluster. Given the limited space available in dictionaries, this 
is by necessity brief and abstracts away many details. Composing a defini-
tion that describes a cluster made up of multiple examples of a word in 
context is a challenging problem even for a human expert, and it no doubt 
requires that they draw upon real-world knowledge in addition to the con-
tent of the concordance.  

Despite the apparent difficulty, automatic labeling of clusters of con-
texts of a target word with definitions of that word is an important problem 
to pursue. One possible solution is to identify sets of words that are related 
to the contents of each cluster using type-based methods of discrimination 
as will be discussed in this chapter. In brief, rather than crafting a tradi-
tional definition, a set of word types that are associated with a cluster 
could be used as an approximation of a sense-tag. For example, a cluster of 
contexts of the target word line might contain a set of related words such 
as phone, telephone, call, and busy. While this is not as rich or informative 
as a carefully drawn definition, it is certainly indicative of the underlying 
meaning of the cluster.  

Knowledge-lean approaches can address the discrimination and/or label-
ing phase of the two-step view of word sense disambiguation. If such meth-
ods are successfully developed, the result will be an automatic language-
independent process of word sense disambiguation that will not fall victim 
to knowledge acquisition bottlenecks.  

However, until such methods are available, a reasonable alternative may 
be to label the clusters of contexts found by distributional methods with in-
formation from existing knowledge-rich resources. McCarthy et al. (2004) 
present one particularly promising approach. Given a corpus that includes 
multiple occurrences of a particular target noun, they use Lin’s (1998) dis-
tributional method to identify a set of word types that are contextually and 
syntactically related to that target word. They find the k nearest neighbors 
to this word to characterize the domain in which the target word occurs. 
They use the Jiang and Conrath (1997) and Banerjee and Pedersen (2003) 
measures to determine the degree of semantic similarity or relatedness bet-
ween the word and its neighbors. (See Chap. 5 for other related measures). 
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The sense of the target word judged most similar (semantically) to the 
set of word types representing the domain is considered to be the predomi-
nant sense in that domain. Then, the target word is assigned that sense in 
all of the contexts in which it occurs in the given corpus. McCarthy et al. 
show that this method attains accuracy of 64% on the nouns of the Sen-
seval-2 English all-words task, where the most-frequent-sense baseline is 
69%. This is an impressive result as all but two of the participating sys-
tems in the Senseval-2 all-words task achieved accuracy lower than the 
baseline.  

Since McCarthy et al.’s method uses WordNet; it is not an unsupervised 
knowledge-lean approach. However, it is related to such methods since it 
could be used to augment clusters of contexts discovered via distributional 
methods with sense tags from WordNet. For example, McCarthy et al. 
show that the nearest distributional neighbors of pipe as found in contexts 
from the British National Corpus (BNC) include the following: tube,      
cable, wire, tank, hole, cylinder, fitting, tap, cistern, plate. This set of 
words proves to be most related to the sense of pipe that means “a tube 
made of metal or plastic used to carry water, oil, or gas etc.” Their experi-
ment did not attempt to discriminate among the different meanings of pipe 
that may be present in the BNC (and as such found a dominant sense, 
which was their goal). However, suppose that the contexts in which pipe 
occurs were first clustered via some distributional method – we could then 
apply McCarthy et al.’s method to each resulting cluster, and thereby      
assign a sense of pipe to each of the clusters. 

As introduced above, translational-equivalence methods have the potential 
to make distinctions in meaning that are relevant to machine translation, 
which has long been suggested as an application that would benefit from 
WSD (see Chap. 11 (Sect. 11.3)). It is often difficult to determine if a sense 
inventory is appropriate for a particular domain or application, and there 
seems to be general agreement that there is no single inventory that will al-
ways be the best choice. For example, the senses relevant to an information 
retrieval task are not likely the same ones that matter to machine translation. 
The nature of the sense distinctions to be made must reflect both the domain 
of the text and the underlying application for which disambiguation is being 
employed (see Chap. 3 (Sect 3.4)). Resnik and Yarowsky (1997) note that 
methods based on translational equivalence have the potential to address 
both problems since the sense distinctions observed in parallel corpora rep-
resent the actual distinctions that will be useful for machine translation. This 

Translational Equivalence 
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is a critical point, since the utility of sense inventories as provided in a  
dictionary or other lexical resource is sometimes dubious with respect to 
specific applications. For example, the distinctions in WordNet are in 
many cases more fine grained than may be needed, and there is no hierar-
chy of senses that allows for easy generalization from fine- to coarse-
grained senses of a word. Methods based on translational equivalence can 
also be used to derive bilingual dictionaries automatically from parallel 
corpora, which may allow them to be more specific to a given domain.  

Distributional approaches function at two levels of granularity. Type-based 
methods identify sets (or clusters) of words that are deemed to be related 
by virtue of their use in similar contexts. These methods often rely on 
measuring similarity between word co-occurrence vectors, and produce 
sets of word types such as (line, cord, tie, cable) and (line, telephone, 
busy). Note that the resulting clusters do not include any information       
regarding the individual occurrences of each word, which is why they are 
known as type-based methods.  

Token-based methods cluster all of the contexts in which a given target 
word (or words) occur based on the similarity of those contexts. In the fol-
lowing example, line and queue are the target words. The contexts in 
which they occur have been assigned to two different clusters:  

Cluster 1:  The line was occupied. 
   The operator came onto the line abruptly. 

Cluster 2:  The line was really long and it took forever to be served. 
  I stood in the queue for about 10 minutes.  

Cluster 1 refers to the telephone sense of line, while Cluster 2 refers to 
the formation in which people wait for service. This illustrates the overall 
goal of such methods, which is to assign each context in which a target 
word occurs to a cluster that contains contexts that use the target word in 
the same sense. This is referred to as token-based discrimination, since 
each context in which the target word occurs is preserved in a cluster.  

The input to a token-based method is a corpus of text where a particular 
target word (or words) has been specified. It attempts to differentiate 
among the multiple contexts that contain the target word(s) based on their 
similarity. For example, suppose there are 100 contexts, each of which 
contains the word line. The output is some number of clusters, each of 

6.1.3 Approaches 
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which is made up of the contexts that are judged to be more similar to each 
other than they are to any of the contexts in the other clusters. Thus, such 
an approach might recognize that line has been used in three distinct 
senses. However, these methods do not label the resulting clusters, and it 
would be necessary for a human to examine the three clusters and deter-
mine, for example, that one contained contexts associated with the tele-
phone, one with queues, and another with a line of text.  

Note that type- and token-based methods of discrimination are related in 
that some degree of token-based discrimination may need to occur before a 
set of related types can be discovered. In the example above, it would be 
reasonable to extend the results of the token-based clusters to conclude that 
the types line and queue form a set of related words, since both occur in 
contexts that are assigned to the same cluster.  

Methods of translational equivalence also have type and token-based  
interpretations. A token-based method labels each occurrence of a target 
word with its appropriate translation, which is a type in the source lan-
guage that is assumed to represent a distinct sense. For example, given a 
parallel corpus of English and Spanish, all the occurrences of bill that 
mean ‘invoice’ will be tagged as cuenta, while those that mean ‘bird jaw’ 
will be tagged as pico. The end result will be a corpus of “sense-tagged” 
text, where the tags are the translational equivalences of the target words in 
that context. The tags of the tokens in one language are in fact the types of 
the translational equivalences in the other. While this may often result in 
an unambiguous sense distinction, there is some possibility that the result-
ing tags may be polysemous since the translational equivalences may have 
ambiguities in the target language. These methods can be used to derive 
sense-tagged text (which is a token-based level of discrimination) or to 
create bilingual dictionaries (which is a type-based resource). For each 
word in the target language, a bilingual dictionary provides a set of related 
words in the source language.  

Type-based approaches create a representation of the different words in a 
corpus that attempts to capture their contextual similarity, often in a high-
dimensional feature space. These representations are usually based on 
counts of word co-occurrences or measures of association between words. 
Given such information about a word, it is possible to identify other words 
that have a similar profile and are thereby presumed to have occurred in  

6.2 Type-Based Discrimination 
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related contexts and have similar meanings. Some of these methods explic-
itly account for the polysemy of words and represent each possible meaning 
of a word, while others do not and simply arrive at an averaged or predomi-
nant sense.  

Upon first consideration, the conflation of the multiple possible mean-
ings of a word into a single representation, or simply the identification of 
the predominant sense, may not seem terribly useful. However, it is widely 
agreed that the most-frequent-sense baseline is often a very successful 
method of word sense disambiguation. So, coupled with the one-sense-per-
discourse hypothesis (when true), typed-based methods can potentially 
perform WSD in a particular domain (see Chap. 5 on the baseline and    
hypothesis). 

In addition, type-based methods that account for polysemy will allow 
the same word type to appear in multiple sets of related words, where each 
set essentially disambiguates itself. For example, (line, cable, tie, cord) 
clearly refers to the rope-like sense, while (line, telephone, call) is related 
to communication. While line occurs in both sets, its meaning in each is 
disambiguated by the other words in each set.  

Type-based techniques often rely on high-dimensional spaces defined by 

corpus, then a symmetric N×N co-occurrence matrix can be constructed, 
where each word type is represented by a particular row (or column). Each 
cell in such a matrix contains a count of the number of times the words of 
words represented by the row and column co-occur within some window 
of context. These may indicate pairs of co-occurring words without regard 
to order, or they may be ordered co-occurrences, which we will refer to as 
“bigrams”. When order doesn’t matter, then oil rig and rig oil have the 
same frequency count; when order does matter then the counts will likely 
be different.  

If the matrix contains unordered co-occurrence counts, then it will be 
symmetric and square. However, if it contains bigram counts, then it will 
be rectangular and asymmetric. Fig. 6.1 is an example of a bigram matrix 
made up of count values. It shows that oil rig occurs 20 times, oil trap 3 
times, grease rig 5 times, and grease trap 10 times. Note that if we allow 
some number of intervening words between the words of interest, it is not 
explicitly indicated in such a matrix. After building this matrix, each word 
has a row and column vector that defines the contexts in which it occurs.  

word co-occurrences. As a generic example, if there are N word types in a 

6.2.1 Representation of Context 
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 rig trap
oil 20 3

grease 5 10

Fig. 6.1. Bigram matrix. 

 trap ¬trap Total
grease n11 = 10 n12 =     5 n1p =      15

¬grease n21 = 15 n22 = 970 n2p =    985
Total np1 = 25 np2 = 975 npp = 1,000

Fig. 6.2. 2 × 2 contingency table of bigram counts. 

There are many variations possible in these matrices beyond ordered   
bigrams versus unordered co-occurrences. Rather than counts, the cells in 
the matrix could contain scores of measures of association such as the log-
likelihood ratio (G2) or pointwise mutual information (PMI). These meas-
ures indicate the degree to which two words occur together more often 
than would be expected by chance. The co-occurrence counts are normally 
represented in a 2 × 2 contingency table. For example, Fig. 6.2 gives a 
more detailed view of the counts associated with the bigram grease trap. 
This shows that grease trap occurs 10 times (n11), that grease is the first 
word in a bigram with words other than trap 5 times (n12), that grease    
occurs as the first word of a bigram 15 times (n1p), and so forth. The col-
umn and row totals are referred to as marginal counts, and are indicated by 
values that have a “p” in their subscripts. Finally, this table shows that 
there are 1,000 bigrams in the corpus (npp).  

The log-likelihood ratio compares the divergence of these observed fre-
quencies with the counts that would be expected if the two words were 
truly independent (and only occurring together by chance), as shown in  
Eq. 6.1. 

=
×=

2

1,

2 log2
ji ij

ij
ij m

n
nG  (6.1)

The expected value mij is calculated by multiplying the frequency of the 
two marginal totals, and dividing by the number of bigrams in the sample. 
For example, in the grease trap example m11 = (15 × 25)/1000 = 0.375. 
The expected values are calculated for each cell in the 2 × 2 table and then 
compared to the observed values in order to see how much the observed 
and expected values diverge. If the expected and observed values are com-
parable, the overall score will be close to 0, which indicates that the two  
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rig

oil

trap grease

Fig. 6.3. Context vectors created from the bigram matrix.

words have occurred together by chance and are not significantly associ-
ated. Values greater than 0 show that the observed values diverge greatly 
from those expected if the words in the bigram were independent, which is 
interpreted as evidence that the words in the bigram are associated, and 
that the bigram is a collocation. For the given example of grease trap the 
log-likelihood ratio is 59.41, which shows considerable deviation between 
the observed and expected values, and suggests (strongly) that the ob-
served values do not support the hypothesis that the two words are inde-
pendent. Thus, we would conclude that grease trap is a significant bigram. 

After the co-occurrence matrix is created, a word type can be repre-
sented in a multi-dimensional space by treating its corresponding row as a 
vector in an N-dimensional space, where the vector begins at the origin. 
For example, Fig. 6.3 shows vectors for oil and grease based on the        
co-occurrence data found in Fig. 6.1. 

The contextual similarity between word types can be measured by the 
cosine between their corresponding vectors. In general, the cosine is de-
fined as in Eq. 6.2, where x and y are the word vectors being compared. 
Their dot products are scaled by the product of their vector lengths. This 
value measures the distance between the different contexts in which the 
words being compared occur. 

yx

yxyx ⋅=),cos(  (6.2) 
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Three different type-based algorithms are discussed in this section. They 
include Latent Semantic Analysis (LSA)1 (Deerwester et al. 1991, Lan-
dauer and Dumais 1997, Landauer et al. 1998), the Hyperspace Analogue 
to Language (HAL) (Burgess and Lund 1997, 2000), and Clustering by 
Committee (CBC)2 (Lin and Pantel 2002). 

HAL and LSA represent a corpus by populating a multi-dimensional 
space with vectors, where each vector represents the context in which a 
word type occurs. Note that each word type is only represented by a single 
vector, so it is not possible to directly represent the polysemy of individual 
words. Rather, HAL and LSA will measure the similarity between word 
types observed in a given corpus. For example, they might conclude that 
rock, boulder, and stone are all related.  

HAL relies on word-by-word co-occurrence matrices to represent con-
text, while LSA is based on word-by-context representations. HAL meas-
ures Euclidean distance between the endpoints of vectors, while LSA 
measures the cosine between two vectors. Note that LSA can be extended 
to measure the similarity between a pair of sentences or contexts by aver-
aging the vectors associated with words that make up each context being 
compared. In fact, when we consider token-based methods we will see that 
this technique is at the center of several methods of word sense discrimi-
nation.  

CBC discovers clusters of word types associated with the underlying 
senses of a target word, using word-by-context co-occurences. For example, 
given rock as the target, CBC might identify two clusters, one associated 
with music that consists of meringue, calypso, and reggae, and another asso-
ciated with geology that is made up of marble, sandstone, and granite. Thus, 
CBC identifies synonyms associated with the different senses of a word, 
while HAL and LSA represent each word type with a single sense.  

All three rely on multi-dimensional representations of co-occurrence 
data. In LSA the contexts are short articles or paragraphs, whereas in CBC 
the contexts are syntactic. As a result, CBC is not knowledge-lean in the 
same sense as HAL or LSA, but it remains a viable approach since it uses 
no knowledge beyond syntactic parses and is able to make sense distinc-
tions for a single word type, which is something neither HAL nor LSA is 
capable of in their standard formulations.  

                                                      
1 LSA: http://lsa.colorado.edu/ 
2 CBC: http://www.isi.edu/~pantel/Content/Demos/LexSem/cbc.htm 

6.2.2 Algorithms 
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LSA traces its origins to a technique in information retrieval known as   
Latent Semantic Indexing (LSI) (Furnas et al. 1988, Deerwester et al. 
1990). The objective of LSI is to improve the retrieval of documents by 
reducing a large term-by-document matrix into a much smaller space using 
Singular Value Decomposition (SVD). LSA uses much the same metho- 
dology, except that it employs a word-by-context representation. 

LSA represents a corpus of text as an M × N co-occurrence matrix, 
where the M rows correspond to word types, and the N columns provide a 
unit of context such as a phrase, sentence, or paragraph. Each cell in this 
matrix contains a count of the number of times that a word given in the 
row occurs in the context provided by the column.  

LSI and LSA differ primarily in regards to their definition of context. 
For LSI it is a document, while for LSA it is more flexible, although it is 
often a paragraph of text. If the unit of context in LSA is a document, then 
LSA and LSI become essentially the same technique.  

After the co-occurrence cell counts are collected and possibly smoothed 
or transformed in some way, the M × N matrix is decomposed via Singular 
Value Decomposition (SVD), which is a form of factor or principal com-
ponents analysis. SVD reduces the dimensionality of the original matrix so 
that similar contexts are collapsed into each other. SVD is based on the 
fact that any rectangular matrix can be decomposed into the product of 
three other matrices. This decomposition can be achieved without any loss 
of information if no more factors than the minimum of N and M are used. 
In such cases the original matrix may be perfectly reconstructed. 

However, as it is normally used, LSA reduces matrices of tens of thou-
sands of dimensions down to a few hundred, and is therefore unable to per-
fectly reconstruct the original matrix. While this might sound undesirable, 
in fact this is exactly the goal of LSA. The effect of this is analogous to 
smoothing, where columns (contexts) that are only marginally different 
from each other are brought together, thus allowing for similarity judg-
ments to be made. The hope is that the information that is lost because of 
the imperfect reconstruction is noise, and therefore the dimensionality     
reduction causes the similarity among words and contexts to become more 
apparent. 

Landauer et al. (1997) presents an evaluation of the ability of LSA to dis-
criminate among synonyms via a vocabulary test from the Test of English as 
a Foreign Language (TOEFL). The test taker is given a word and then asked 
to choose the most similar word from among four others. For example, if 
levied is the word in question, then the choice of the most similar word must 

Latent Semantic Analysis (LSA) 
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be made from among imposed, believed, requested, or correlated. Grolier’s 
Encyclopedia served as the corpus, where the first paragraph from each arti-
cle served as a context and was represented as a column, and the word types 
therein were represented in the rows. This resulted in a matrix of 60,000 
rows (words) and 30,473 columns (article paragraphs, on average 73 tokens 
long). 

This matrix was decomposed to approximately 300 dimensions by SVD, 
and then reconstructed from this reduced representation. Then the test was 
taken simply by finding the cosine between the given word and each of the 
four alternatives. LSA chose the word with the smallest cosine to the given 
word as its answer. This proved to be correct 65% of the time, which is 
comparable to that of human test takers. When these cosine measures were 
computed using the original 30,000 × 60,000 matrix, the accuracy fell to 
37%, suggesting that the decomposition is removing noise and achieving a 
better representation of synonymy. 

This experiment was repeated by Turney (2001), who attained accuracy 
of 74% on the TOEFL test. Rather than using LSA or another high-
dimensional representation, he calculated Pointwise Mutual Information 
values for the given word and each of the possible selections based on fre-
quency counts obtained from the Alta Vista search engine. These two        
approaches both rely on evidence found in large corpora, however for LSA 
the corpora is represented by an SVD reduced co-occurrence matrix, while 
in the Turney work the World Wide Web acts as the corpus.  

HAL is based on word-by-word co-occurrence statistics (Burgess and 
Lund 1997, 2000). Unlike LSA it does not include larger units of context, 
but instead captures co-occurrence data for words that occur within a win-
dow of 10 positions of each other. The co-occurrences are order depend-
ent, so in some respects the results can be thought of as a bigram matrix 
(although not exactly as described previously). This matrix allows the 
number of intervening positions between the two words to be up to 10. 
This is selected as the window size in order to capture some long distance 
dependencies among words, but yet still localized enough to avoid over-
whelming frequency counts.  

The bigram counts are scaled inversely proportional to the number of 
positions between the two words. Adjacent words receive a score of 10, 
while word pairs separated by nine intervening words receive a score of 1. 
The bigram matrix is not symmetric. Each word is represented by a row 
and a column, where the values in the row reflect the count of the number 

Hyperspace Analogue to Language (HAL) 
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of times that word follows each word represented in the columns. Like-
wise, each column represents the number of times the word represented in 
the column precedes the words represented in the rows. Thus there are two 
context vectors created for each word. The word is finally represented by a 
single vector that is a concatenation of its row and column vector, which 
represent the co-occurrence behavior of the word as the first and second 
member of a bigram. 

This matrix forms a high-dimensional space that is converted into a 
much smaller distance-based representation via Multidimensional Scaling 
(MDS). Normally MDS reduces a very large multidimensional space down 
to two or three dimensions, so that similar or related concepts can be 
clearly seen graphically by a human observer. This reduction also allows 
for the computation of Euclidean distance measures between word types, 
which are interpreted as representing semantic distances. MDS can be seen 
as a very extreme form of SVD. Since it reduces to so few dimensions, 
MDS is able to provide visual representations of synonymy which are eas-
ily interpreted by a human.  

Burgess and Lund (1997) describe several experiments, all of which are 
based on a 300 million word corpus of Usenet newsgroup postings. This    
resulted in a co-occurrence matrix for the 70,000 most frequent words in the 
corpus that was then reduced using MDS. Once situated in 2-dimensional 
space, similarities between words can be measured as distances between 
these points. 

Their first experiment assessed the degree to which HAL was able to 
distinguish among categories. They restricted their analysis to word types 
whose meanings conflated to one of four categories: animals, body parts, 
cities, and geographic locations. They extracted the vectors associated with 
types belonging to these categories and then applied MDS to convert the 
co-occurrence data into distances. Visual inspection of the resulting dis-
tances between types shows that clear distinctions are drawn among them. 
A second experiment restricts the analysis to parts of speech, and shows 
that selected nouns, prepositions, and determiners are clearly distinguished 
in the resulting distance space. 

CBC takes a word type as input, and finds clusters of words that represent 
each sense of the word (Lin and Pantel 2002). The clusters will be made up 
of synonyms or words that are otherwise related to the discovered senses. 
For example, if conference is input, CBC produces two sets: the first       
including summit, meeting, council, and session, while the second includes 

Clustering By Committee (CBC) 
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Big East, Big Ten, and ACC (which are university athletic conferences in 
the USA).  

CBC is distinct from HAL and LSA in that it finds synonyms of differ-
ent senses of a word and does not conflate all the meanings of a word into 
a single representation. It is also unique (and technically not knowledge-
lean according to our standards) in that it requires a parsed corpus. This is 
not a difficult constraint for languages such as English which have suitable 
tools available, but it could pose challenges for languages with less devel-
oped resources.  

CBC is a three stage algorithm. In the first stage a co-occurrence matrix 
is constructed, such that each cell in the matrix contains the Pointwise  
Mutual Information between a word and a particular context as found in 
the given corpus of text. Contexts are not simply co-occurring words but 
rather syntactic contexts in which a word has occurred in the parsed cor-
pus. In particular, these contexts are dependency triples (Lin 1998) which 
consist of two words and the syntactic relation between them. For exam-
ple, “threaten with X” is a context of handgun. The top k elements (words) 
associated with the target word are found by sorting these values. Lin and 
Pantel recommend values for k between 10 and 20. 

These k most similar elements become the input to the second stage of 
CBC. For each of these elements, CBC finds its most similar elements 
from the same co-occurrence matrix as used in the first stage, and then 
clusters them using average link clustering. Each discovered cluster is    
assigned a similarity score, and the elements in the most similar cluster 
form a committee. Thus, each of the k most similar elements to the target 
word will have their own k most similar elements. For each of the latter 
elements, a committee will be formed that consists of the elements that 
prove (via clustering) to be most similar to each other. This continues     
recursively until a final set of committees is identified, where each com-
mittee represents a list of word types that characterize a sense of the target 
word. 

Lin and Pantel (2002) evaluate CBC by comparing the lists of words  
assigned to each cluster with the contents of WordNet synsets. This sug-
gests that the best case for the algorithm would be to find lists of syno-
nyms associated with senses of words. They make this comparison by 
measuring the number of transformations (similar to edit distance) that 
would be required to convert one of their discovered senses into a Word-
Net synset. This results in a measure of cluster quality or purity, meaning 
that if no transformations were required then the discovered cluster exactly 
corresponds to the existing standard. They found that CBC achieved 60% 
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and 65% cluster quality on two randomly selected test sets, which was bet-
ter than any of the other clustering algorithms they considered. 

Type-based methods are particularly useful in domains where a single 
sense for a word may be dominant. As shown by McCarthy et al. (2004), a 
method of disambiguation that relies on identifying the most frequent 
sense of a word for a particular domain can perform nearly as well as sys-
tems that are based on manually sense-tagged examples, and better than 
unsupervised systems that are based on un-annotated corpora or know- 
ledge-rich resources.  

Thus, type-based methods can provide an important first step towards 
carrying out disambiguation in more flexible and adaptable ways since the 
sets of related words that they identify depend entirely on the nature of the 
corpora from which they are extracted. A simple but effective method of 
disambiguation can follow in which a set of related words is associated 
with a single sense, and all the occurrences of the words in the set that    
occur in a particular corpus could be assigned that same sense.  

In addition, type-based methods may be suitable for assigning labels to 
clusters that are discovered by token-based discrimination. In this case, a 
set of words related to the content of the clusters could be generated, and 
that set would be used as a label to describe or define the cluster. If suc-
cessful, this could fully automate word sense disambiguation and make it 
possible to avoid the use of pre-existing sense inventories.  

The goal of token-based discrimination is to cluster the contexts in which a 
given target word occurs, such that the resulting clusters will be made up 
of contexts that use the target word in the same sense. Each context in 
which the target word occurs is a member of one of the resulting clusters. 
This is the basis of referring to these methods as token-based, since each 
occurrence of the target word (i.e., each token) is preserved.   

The methods described in this section are based on the use of first- and 
second-order features. First-order features occur directly in a context being 
clustered, while second-order features are those that occur with a first     
order feature, but may not occur in the context being clustered.  

6.2.3 Discussion 

6.3 Token-Based Discrimination 
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We discuss two examples of token-based approaches. First, we describe 
Schütze’s (1998) adaptations of LSI/LSA to token-based discrimination 
using second-order co-occurrence features. Then work by Pedersen and 
Bruce (1997, 1998) is presented, in which a small number of localized syn-
tactic and co-occurrence features are employed in a first order representa-
tion. Finally, we briefly review a comparative study by Purandare and 
Pedersen (2004) of first- and second-order methods. 

The input to token-based discrimination is multiple contexts that contain a 
specified word type (i.e., the target word). This is similar to the input to 
supervised learning algorithms, with the very notable exception that there 
are no sense tags included in the data. When sense-tagged training exam-
ples are available, a supervised learning algorithm can determine which 
features are indicative of particular senses, and thereby build a model that 
takes advantage of this information. However, knowledge-lean approaches 
group contexts together based on their similarity, and it is presumed that a 
target word that occurs in similar contexts will have similar meanings. 

This discussion focuses on two early approaches to word sense discrimina-
tion: Schütze’s (1998) context group discrimination, and Pedersen and 
Bruce’s (1997, 1998) work with a form of average link clustering known as 
McQuitty’s Similarity Analysis. Both rely on different sets of features than 
those of the type-based approaches described in Section 6.2. Schütze adapts 
LSI/LSA so that it represents entire contexts rather than single word types 
using second-order co-occurrences of lexical features. Pedersen and Bruce 
rely on a small numbers of first-order features to create matrices that show 
the pairwise (dis)similarity between contexts. These features are localized 
around the target word and include word co-occurrences and part-of-speech 
tags. 

The clusters that are created by all of these approaches are made up of 
contexts that represent a similar or related sense. However, it is challeng-
ing to evaluate such clusters without manually inspecting them or compar-
ing them to a previously created gold standard that indicates a desired  
clustering. Schütze overcomes this difficulty by carrying out disambigua-
tion of pseudo-words and performing a manual analysis, while Pedersen 
and Bruce as well as Purandare and Pedersen compare the discovered 

6.3.1 Representation of Context 

6.3.2 Algorithms 
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sense clusters with those previously determined by human judges while 
creating sense-tagged text.  

Context group discrimination clusters together the contexts in which a 
given word type occurs. Like LSA, it uses SVD to reduce the dimensiona- 
lity of a co-occurrence matrix. However, it goes one step beyond LSA and 
averages together word vectors to create a representation of a context that 
is then based on second-order co-occurrences.  

In general, a word has a second-order co-occurrence with another if the 
words do not occur with each other, but both occur with a third word fre-
quently. In effect, these are words that are joined by a “friend of a friend” 
relation. As a simple example, in traffic cop and traffic accident, cop is a 
second-order co-occurrence of accident, because both are first-order       
co-occurrences with traffic. Schütze argues for the use of second-order   
co-occurrences because they are less sparse and more likely to capture    
semantic content. 

Context group discrimination represents the senses of a word by build-
ing a series of three vector spaces. The first is known as a “Word Space” 
and is a co-occurrence matrix where each word is represented by a vector 
of co-occurrence data, much as is done in LSA and HAL. There are two 
methods by which the words that make up the dimensions of the             
co-occurrence matrix are determined. In global selection, features are     
selected based on their frequency in a large corpus of text and without     
regard to whether they occur anywhere near the target word. Schütze uses 
the 20,000 most frequent words as features and creates a co-occurrence 
matrix with the 2,000 most frequent words, based on counts obtained from 
60 million words of New York Times articles. Local selection does not con-
sider this entire corpus but rather only the contexts in which the target 
word occurs. It performs a Chi-squared test of association between the tar-
get word and any word that occurs within 25 positions. Those surrounding 
words that prove to be strongly associated with the target are indicative of 
one of the senses of the target word and are therefore included as features. 
In Schütze’s experiments, local selection finds 1,000 features, which leads 
to a 1,000 × 1,000 Word Space. 

The dimensionality of the Word Space may be reduced by Singular 
Value Decomposition, although this is not required. This has the effect of 
smoothing out zero counts, and conflating words that appear in nearly the 
same contexts. However, Schütze finds that the discrimination results 
don’t tend to vary much regardless of whether or not SVD was performed. 

Context Group Discrimination 
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OPEC

production

crude

cut

oil

 
Fig. 6.4. Context vector (dashed) as average of word vectors (solid). 

Both local and global selection result in a vector associated with each 
word type, and in fact one can find sets of related word types by measuring 
the cosines between these vectors. However, context group discrimination 
goes on to create context vectors from the Word Space that represent the 
contexts in which each target word occurs. A context vector is the centroid 
(or average) of the vectors in the Word Space associated with the words 
that occur in that particular context and are included in the Word Space.  

A context vector is created for each context in which a given target 
word occurs. For example, Fig. 6.4 shows a hypothetical context vector for 
the sentence OPEC has cut production of crude oil. Note that stop words 
are eliminated, so there is a vector associated with each of the following 
words: OPEC, cut, production, crude, and oil. The context vector is the 
average of these word vectors, and ultimately represents the context. 

Second-order co-occurrences of the target word come about indirectly via 
this representation. The Word Space represents first-order co-occurrences by 
creating a vector for each word which shows the words with which it occurs 
(within a given number of positions) in a large corpus of text. These first-
order vectors are then used to create a second-order representation of each 
context in which a target word occurs, by averaging together all the vectors 
of all the words that occur in a given vector. This results in a context vector, 
which represents the target word in that context based on the first-order     
co-occurrences of the words in its surrounding context, which are therefore 
the second-order co-occurrences of the target word. 

Once all of the context vectors for a word type have been created, sense 
vectors are discovered by identifying clusters of similar context vectors. 
This is done with the Buckshot clustering algorithm (Cutting et al. 1992), 
which uses the results of an agglomerative clustering algorithm as seeds 
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for the EM algorithm (Dempster et al. 1977). The sense vectors that are 
discovered represent the different senses of the target word. 

Context group discrimination is evaluated by dividing a corpus into 
training and test portions. The local and global selection of co-occurrence 
features and subsequent creation of the Word Space are carried out relative 
to the training data, as is the derivation of the context and sense vectors. 
Each context in the test data is assigned to the sense vector whose centroid 
is closest to the context vector that represents that test context.  

In Schütze’s experiments, the training and test data was taken from the 
New York Times. There were approximately 60 million word tokens in the 
training data and 5.4 million words in the test data. These two sets of data 
were taken from different time periods in order to guarantee that there are 
differences in vocabulary which will introduce some noise into the context 
vectors and lead to a more stringent and realistic evaluation. 

Schütze presents results with ten pseudo-words and ten naturally occur-
ring words. The pseudo-words were created by conflating two word types 
into one. For example, all occurrences of banana and door are conflated to 
banana-door. This is a convenient means of creating data for evaluation 
since the correct sense of each occurrence of a pseudo-word is simply its 
original form (Yarowsky 1993) (see also Chap 4. (Sect. 4.3)). While 
pseudo-words could be used to create multiple-way ambiguities, in these 
experiments they were always two-way. In order to also use naturally     
occurring ambiguous words in his experiments, Schütze sense-tagged test 
data for these words. He reports accuracies for the pseudo-words and the 
naturally occurring words separately. For the 10 pseudo-words, the local 
features attain average accuracy (when identifying two clusters) of 89.9%. 
When using the global features the accuracy is 98.6%. The most-frequent-
sense baseline for the pseudo-words is approximately 60%. For the 10 
naturally occurring words, the local features result in accuracy of 76%, and 
80.8% for the global features. The most frequent sense for the naturally 
occurring words is approximately 65%. The greater level of success for the 
pseudo-words is not surprising, given that the distinctions made were quite 
coarse and artificial. For example, one of the pseudo words was the confla-
tion of pete rose and nuclear power, which will usually occur in very     
different contexts.  

Pedersen and Bruce (1997, 1998) cluster the contexts in which a target 
word occurs based on the use of a small set of localized features. This app-
roach is distinct from the others in this chapter in that it does not employ 

McQuitty’s Similarity Analysis 
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large co-occurrence vectors to represent words or contexts. Each context in 
which a target word appears is converted into a relatively small feature 
vector that includes simple morphological features, the part of speech of 
surrounding words, and a small number of co-occurrence features. A first-
order feature vector is created to represent each context, and that vector  
indicates which features occur in a particular context. 

Pedersen and Bruce consider nouns, verbs, and adjectives as possible 
target words in the discrimination task, and explore the use of several dif-
ferent combinations of features. They identify their features from the con-
texts that are to be clustered, which is in contrast to Schütze’s approach of 
finding co-occurrence features in the training data while holding out the 
test contexts that are to be clustered. However, Pedersen and Bruce use at 
most a few thousand contexts for each word being discriminated, and this 
may not provide a sufficient quantity of data to have a separate set of data 
for feature identification. The feature sets are formed from the following 
types of features:  

• Morphology (Mo): The morphological form of the target word. For 
nouns it is either plural or singular, and for verbs one of seven possible 
tenses are encoded. It is not used for adjectives. 

• Part of speech (PLi, PRi): The part of speech of the word i positions to 
the left (L) and right (R) of the target word. Four such features were 
used, 1 and 2 positions to the left and right. There are only five part of 
speech distinctions made: noun, verb, adjective, adverb, and “other”. 

• Co-occurrences (Ci): Binary features that are set if any of the three 
most frequent content words observed with the target word occur in this 
particular context.  

• Unrestricted collocations (ULi URi): Features with 20 possible values 
that indicate if one of the top 19 most frequent words occurs in position 
i to the left (ULi) or right (URi) of the target word.  

• Content collocations (CLi  CRi): Identical to the unrestricted 
collocations, except they exclude function words and only represent 
content words. 

There are three feature sets formed from various combinations of these 
features, which are described below as F1, F2, and F3. The number of 
possible feature value combinations is shown in parentheses, which 
indicates how small these features spaces are when compared to the 
approaches   discussed previously. 

F1: Mo, PL2, PL1, PR1, PR2, C1, C2, C3 (5,000–35,000) 
F2: Mo, UL2, UL1, UR1, UR2 (194,481–1,361,367) 
F3: Mo, PL2, PL1, PR1, PR2, CL1, CR1 (275,625–1,929,375) 
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Each of the N contexts of the target word is represented by a vector that     
includes M features. This N × M representation is then converted into an N × N 
dissimilarity matrix, where each cell in the matrix represents the number of 
features that are different between the two contexts corresponding to the row 
and column values. Thus, if two contexts are identical then the value of the 
associated cell would be 0, while if they had no features in common the 
value would be M. 

McQuitty’s (1966) method is a form of average link clustering, and as 
such is an agglomerative clustering algorithm. Like all such approaches it 
begins by assuming that each context of a target words forms its own 
cluster (and therefore represents a unique sense). Then, it merges the two 
contexts that have the lowest average dissimilarity between them (and are 
therefore most alike). It continues until some specified number of clusters 
is found or until there are no clusters with a dissimilarity value less than a 
specified cutoff. 

Pedersen and Bruce conduct an experimental evaluation relative to the 
12-word sense-tagged corpus of Bruce and Wiebe (1994) as well as with 
the line corpus (Leacock et al. 1993). The sense-tagged data was filtered 
such that 2 or 3 senses remained, and the clustering algorithm was set to 
find the number of clusters that existed in the sense-tagged data. Each 
word was treated separately, so discrimination for a word was carried out 
using only those contexts that included the target word. As a result, the 
sizes of the corpora are quite small. The largest are the line data, which has 
approximately 4,000 paragraph sized contexts, and the interest data, which 
is one of the 12 Bruce and Wiebe words and has approximately 2,500 
sentence-long contexts. Other words had from several hundred to a 
thousand contexts. While the text had already been manually sense-tagged, 

or clustering, but was only employed as a point of comparison for 
evaluation.  

The clusters that are discovered do not have sense labels attached to 
them. Thus, evaluation is carried out by determining an optimal 
assignment of actual sense tags to the discovered clusters. This is possible        
because they discriminated text for which the “correct” sense tags were    
already known, and could thereby use that as a gold standard. The 
evaluation methodology is modeled after the idea that a human might 
examine clusters and manually select the sense for which most of the 
contexts seem to apply. The objective of the evaluation is to determine 
which assignment of senses to clusters would result in optimal accuracy. 

this   i  nformation was not used during any stage of feature identification 
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Pedersen and Bruce found that McQuitty’s similarity analysis performed 
more accurately than did Ward’s (1963) method of minimum variance and 
the EM algorithm (Dempster et al. 1977). They found that feature set F2 
performs best for nouns, and F3 for adjectives and verbs. They found that 
feature set F1 did not fare terribly well with any part of speech, suggesting 
that local part-of-speech information and three binary collocation features 
simply don’t provide enough information to make distinctions in senses. 
Feature set F2 is based on co-occurrences near the target word, and the fact 
that it performs well with nouns is consistent with findings in supervised 
learning, suggesting that collocations involving the target word are signifi-
cant sources of disambiguation information (cf. Yarowsky (1995)). Inter-
estingly, no method or feature set resulted in greater accuracy than the 
most frequent sense for the verbs and adjectives, however, those sense dis-
tributions were rather skewed, with most verbs and adjectives having a 
majority sense between 70% and 90%. The nouns had a more balanced 
distribution of senses and the results of McQuitty’s method in combination 
with feature set F2 improved upon the most frequent sense by at least 10%.  

Purandare and Pedersen (2004) developed first- and second-order app-
roaches to clustering contexts that incorporate ideas from both of the pre-
ceding works.3 Rather than using localized first-order features, they use 
lexical features such as unigrams, bigrams, and co-occurrences that occur 
near the target word. They also developed a method similar to Schütze’s 
that relies on second order co-occurrences. They carried out a comparative 
evaluation of these various methods using the Senseval-2 English lexical 
sample data, as well as the line, hard, and serve sense-tagged corpora 
(Leacock et al. 1993).  

The Senseval-2 corpus generally has at most one or two hundred 
training examples per word, while the line, hard, and serve corpora have 
four to five thousand for each word. 

In their experiments they identified features in the training corpus (fol-
lowing Schütze) and then used those in clustering a held out test set. They 
found that first-order features performed more effectively when given lar-
ger amounts of training data (as with line, hard, and serve) and that the 
second-order features fared better with the smaller Senseval-2 corpus. This 

                                                      
3 These experiments were performed with the SenseClusters package 
(http://senseclusters.sourceforge.net). 

6.3.3 Discussion 
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suggests that when a sufficient volume of data is available, directly identi-
fying features in training data provides adequate information for represent-
ing the contexts of an ambiguous word, while with smaller amounts of data 
the indirect relationships captured by second order features are necessary.  

translation and Web search is the most effective means of measuring 
progress in these   areas (see Chap. 11 (Sect 11.4.2)). 

One of the characteristics of knowledge-lean unsupervised methods is that 
a mapping between similar contexts as found in a cluster and a known 
word sense in an existing resource may not be entirely clear. In fact, this is 
inevitable when the only knowledge source employed is an unannotated 
corpus of text, and there is no reference made to any underlying dictionary 
or sense inventory. In the end, this is a desirable property of these methods 
in that it offers a means of discovering new senses of words, and makes    
it possible to organize contexts in ways that existing resources would be    
unable to support.  

Parallel corpora offer an alternative to unsupervised discrimination in that 
the translations between a source and target language will be indicative of 
sense distinctions in either language. Consider the following example from 
Brown et al. (1991), where the French verb prendre can be translated as take 
or make. In Je vais prendre ma propre décision, prendre should be trans-
lated as make, meaning I will make my own decision. However, in Je vais 
prendre ma propre voiture, it is translated as take, as in I will take my own 
car. Thus, a corpus of parallel French-English text could reveal that when 
prendre is used with décision it means one thing, and another with voiture. 
Early approaches to take advantage of this characteristic were Brown et al. 
(1991), Dagan et al. (1991), and Gale et al. (1992a, 1992b). 

There are still considerable obstacles to be overcome in developing these 
methods. In particular, evaluation is difficult since the sense distinc- 
tions made are not relative to any existing inventory. It is unclear how to 
evaluate discovered senses (especially those that are domain specific) 
since the main objective behind such approaches is to create and make 
distinctions that are not currently documented in existing resources. In 
this case it may be that evaluation relative to applications like machine 

6.4 Translational Equivalence 
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Methods that take advantage of translational equivalences normally require 
that the parallel corpus be word-aligned. That is, each word or phrase in the 
source language should be connected to its corresponding translation in the 
target language. This connection is usually made via automatic means, as it 
is difficult and time consuming to manually align translated text. Prior to 
word alignment, it is usually assumed that the corpus has been sentence-
aligned. While there are reliable techniques for sentence alignment available, 
word alignment remains an open problem. However, there are sufficiently 
good results to allow for the creation of word-aligned parallel corpora for 
finding translational equivalences in a wide range of languages. This has 
been demonstrated in comparative evaluations of word alignment systems 
for English-French and Romanian-English parallel corpora (Mihalcea and 
Pedersen 2003) and then again for Romanian-English, English-Hindi, and 
English-Inuktitut (Martin et al. 2005).  

Once a parallel corpus is word-aligned, then typically lexical or 
syntactic features that are local to the potential target word and its 
translational equivalences are employed to create a training context. In the 
previous   example, décision and voiture are features that could indicate if 
prendre should be translated as make or take. In the following section we 
present two early approaches, those of Brown et al. (1991) and Gale et al. 
(1992a, 1992b). 

Brown et al. (1991) describe a method that chooses between two possible 
translations of a given source word in a target language. The candidates for 
translation are identified after word alignment is carried out on a large cor-
pus of parallel text. The method is based on identifying a single key lexical 
feature near the word to be translated that will be indicative of the appro-
priate sense/translational-equivalence. It goes through a procedure very 
much like decision list learning to determine the most discriminating fea-
tures for each potential translation. The method is described for French and 
English text, but is not dependent on any particular language pair.  

The features employed for a French word to be translated into English 
include the word to the left, the word to the right, the first noun to the left, 
the first noun to the right, the first verb to the left, the first verb to the 
right, and the tense of the target word (if a verb) or the first verb to the left 
of the word (if a verb is not being translated). Given a corpus of parallel 

6.4.1 Representation of Context 

6.4.2 Algorithms 
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text, the mutual information of each feature is calculated with respect to 
each of the possible English translations, and the most informative feature 
is selected. Then the particular values of that feature are divided via an    
iterative process into two groups, one associated with the first sense of the 
word and the other with the second. Then a French word can be assigned 
an English sense by determining which of the feature values occurred in a 
particular context. 

This is a very early example of a WSD method that was integrated into 
an application and evaluated. They incorporated this algorithm into their 
statistical machine translation system and reported a 13% reduction in the 
error rate. However, much more recently Carpuat and Wu (2005) found 
that inclusion of WSD into a statistical MT system does not improve       
results. As such it remains unclear whether WSD will have a significant 
impact on MT (but see Chap. 11 (Sect. 11.3.4) for further discussion). 

Gale et al. (1992a, 1992b) demonstrate that parallel text can be used to 
create training data that can then be used to train a supervised learning    
algorithm for WSD. First they align the Canadian Hansards, an English-
French parallel corpus, sentence by sentence. Then they identify the 
French sentences that contain words that are associated with a sense of a 
given polysemous English word. For example, one of the words they study 
is duty, which means an obligation (He has a duty to report to work) or a 
tax (You must pay duty on those purchases you made in Mexico). In 
French, these two senses are translated as devoir and droit. They identify 
the French sentences that contain these words, and then tag the corre-
sponding occurrences of duty in English with one of two sense tags. They 
use the resulting sense-tagged text to train a Naïve Bayes classifier to per-
form supervised WSD (see Chap 7 (Sect. 7.3.1)). As features they use are a 
simple bag of words of the surrounding 100 words. For each English word, 
they train on 60 examples for each sense, and then evaluate this on 90 held 
out contexts. They report that training data collected in this way results in 
more than 90% accuracy for six polysemous English words (duty, drug, 
land, language, position, and sentence) that exhibit coarse-grained distinc-
tions.  

The efficacy of using translations of words as found in parallel corpora as 
the basis of sense distinctions rather than those made in a dictionary is well 
established. Ng et al. (2003) show that using Chinese translations as sense 
tags for English words results in disambiguation accuracy on nouns that is 

6.4.3 Discussion  
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comparable to those systems that participated in the Senseval-2 exercise. 
Likewise, the Senseval-3 English-Hindi multilingual lexical sample task 
(Chklovski et al. 2004) showed that systems trained with Hindi translations 
of English word senses could achieve disambiguation accuracy of app-
roximately 65%, which is comparable to that attained using training exam-
ples that were manually annotated with sense distinctions. This exercise 
used Hindi translations of a set of 41 target words as the sense tags for 
English words that appeared in context. These tags were then assigned to 
the English text by bilingual speakers of English and Hindi, and used as 
training data for a range of supervised learning techniques.  

However, challenges remain for deploying these techniques on a large 
scale. While great progress has been made in word alignment, it is still a 
challenging problem, especially when dealing with less studied languages. 
In addition, it is still difficult to obtain large quantities of parallel text for 
many language pairs, again especially for those languages that are less 
studied and associated with regions or cultures that have less of an online 
presence. 

Chapters 9 (Sect. 9.3.4) and 11 (Sect. 11.4.3) discuss more recent app- 
roaches in using translational equivalence. 

Knowledge-lean approaches to WSD discriminate among the meanings of 
words based on the similarity exhibited among the contexts in which 
words occur in unannotated corpora. They avoid dependence on pre-
existing sense inventories. This is based on the distributional hypothesis, 
which holds that words that occur in similar contexts will have similar 

generally tied to a particular sense inventory, which limits their portability 

different languages.  
While there is great diversity in the work discussed in this chapter, a few 

dominant themes emerge. First, counts or measures of association between 
co-occurring words are an extremely useful information source for these 
methods. They are easy to derive from large corpora, and they result in a 
flexible representation that allows one to distinguish among different con-
texts in any language. Second, there is very little linguistic knowledge em-
ployed. Feature sets tend to be made up of lexical features, part-of-speech 
tags, and possibly syntactic dependencies like verb-object relations. The 

and flexibility in the face of new domains, changing applications, or 

meanings. Supervised and knowledge-rich approaches to WSD are 

6.5 Conclusions and the Way Forward 
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lack of such information may seem to impoverish these methods, but on 
the other hand it makes them portable to a wide variety of languages with-
out any difficulty. However, clearly the use of more extensive syntactic  
information is one direction in which these approaches could evolve, espe-
cially for languages with relatively well-developed tools such as parsers, 
chunkers, and part-of-speech taggers.  

There is tremendous potential in developing word sense disambiguation 
approaches that follow Schütze’s two step model, where discrimination is 
performed first, and then followed by methods that label the resulting 
clusters. This would break open the knowledge acquisition bottleneck that    
afflicts supervised and knowledge-rich approaches, and make word sense 
disambiguation highly portable and robust. 

However, even without labeling, clusters discovered via discrimination 
techniques are useful. For example, Schütze (1998) shows that unlabeled 
clusters of occurrences of a word representing the same sense result in   
improved information retrieval, and Landauer et al. (1998) demonstrated 
that type-based distinctions can provide useful information about semantic 
similarity.  
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In this chapter, the supervised approach to word sense disambiguation 
is presented, which consists of automatically inducing classification mod-
els or rules from annotated examples. We start by introducing the machine 
learning framework for classification and some important related concepts. 
Then, a review of the main approaches in the literature is presented, 
focusing on the following issues: learning paradigms, corpora used, sense 
repositories, and feature representation. We also include a more detailed 
description of five statistical and machine learning algorithms, which are 
experimentally evaluated and compared on the DSO corpus. In the final 
part of the chapter, the current challenges of the supervised learning 
approach to WSD are briefly discussed. 

In the last fifteen years, empirical and statistical approaches have signifi-
cantly increased their impact on natural language processing (NLP). 
Among them, the algorithms and techniques coming from the machine 
learning (ML) community have been applied to a large variety of NLP 
tasks with remarkable success and they are becoming the focus of increas-
ing interest. The reader can find excellent introductions to ML in Mitchell 
(1997), and its relation to NLP in Manning and Schütze (1999) and Cardie 
and Mooney (1999). 

The type of NLP problems initially addressed by statistical and machine 
learning techniques are those of language ambiguity resolution, in which 
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the correct interpretation should be selected, among a set of alternatives, in 
a particular context (e.g., word choice selection in speech recognition or 
machine translation, part-of-speech tagging, word sense disambiguation, 
co-reference resolution, etc.). They are particularly appropriate for ML be-
cause they can be seen as classification problems, which have been studied 
extensively in the ML community. 

More recently, ML techniques have also been applied to NLP problems 
that do not reduce to a simple classification scheme. We place in this cate-
gory sequence tagging (e.g., with part-of-speech, named entities, etc.), and 
assignment of hierarchical structures (e.g., parse trees, complex concepts 
in information extraction, etc.). These approaches typically proceed by de-
composition of complex problems into simple decision schemes or by gen-
eralizing the classification setting in order to work directly with complex 
representations and outputs. 

Regarding automatic word sense disambiguation (WSD), one of the 
most successful approaches in the last ten years is supervised learning 
from examples, in which statistical or ML classification models are in-
duced from semantically annotated corpora. Generally, supervised systems 
have obtained better results than the unsupervised ones, as shown by ex-
perimental work and international evaluation exercises such as Senseval 
(see Chap. 4). However, the knowledge acquisition bottleneck is still an 
open problem that poses serious challenges to the supervised learning 
approach for WSD. 

The overall organization of this chapter is as follows. The next subsec-
tion introduces the machine learning framework for classification. Section 
7.2 contains a survey on the state of the art in supervised WSD, concentrat-
ing on topics such as learning approaches, sources of information, and fea-
ture codification. Section 7.3 describes five learning algorithms which are 
experimentally compared on the DSO corpus. The main challenges posed 
by the supervised approach to WSD are discussed in Section 7.4. Finally, 
Section 7.5 concludes and devotes some words to the possible future 
trends. 

The goal in supervised learning for classification consists of inducing from 
a training set S, an approximation (or hypothesis) h of an unknown func-
tion f that maps from an input space X to a discrete unordered output space 
Y={1,…, K}. 

7.1.1 Machine Learning for Classification 
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X and y = f (x). The x component of each example is typically a vector 
x = (x1,…, xn), whose components, called features (or attributes), are dis-
crete- or real-valued and describe the relevant information/properties about 
the example. The values of the output space Y associated with each train-
ing example are called classes (or categories). Therefore, each training 
example is completely described by a set of attribute-value pairs and a 
class label. 

In the field of statistical learning theory (Vapnik 1998), the function f is 
viewed as a probability distribution P(X,Y) and not as a deterministic map-
ping, and the training examples are considered as a sample (independent 
and identically distributed) from this distribution. Additionally, X is usu-
ally identified as ℜn, and each example x as a point in ℜn with one real-
valued feature for each dimension. In this chapter we will try to maintain 
the descriptions and notation compatible with both approaches. 

Given a training set S, a learning algorithm induces a classifier, denoted 
h, which is a hypothesis about the true function f. In doing so, the learning 
algorithm can choose among a set of possible functions H, which is referred 
to as the space of hypotheses. Learning algorithms differ in which space of 

sentation language used (e.g., decision trees, sets of conditional probabili-
ties, neural networks, etc.), and in the bias they use for choosing the best 
hypothesis among several that can be compatible with the training set (e.g., 
simplicity, maximal margin, etc.). 

Given new x vectors, h is used to predict the corresponding y values, 
that is, to classify the new examples, and it is expected to be coincident 
with f in the majority of the cases, or, equivalently, to perform a small 
number of errors. The measure of the error rate on unseen examples is 
called generalization (or true) error. It is obvious that the generalization 
error cannot be directly minimized by the learning algorithm since the true 
function f, or the distribution P(X,Y ), is unknown. Therefore, an inductive 
principle is needed. The most common way to proceed is to directly mini-
mize the training (or empirical) error, that is, the number of errors on the 
training set. This principle is known as “empirical risk minimization”, and 
gives a good estimation of the generalization error in the presence of suffi-
cient training examples. However, in domains with few training examples, 
forcing a zero training error can lead to overfit the training data and 
to generalize badly. The risk of overfitting is increased in the presence of 
outliers and noise (i.e., very exceptional and wrongly classified training 

hypotheses they take into account (e.g., linear functions, domain partitioning
by axis parallel hyperplanes, radial basis functions, etc.) in the repre-

The training set contains m training examples,  S = 
{(x , y ),…,(x , y )}, which are each pairs (x, y) where x belongs to 
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examples, respectively). A notion of complexity of the hypothesis function 

computed using the Vapnik-Chervonenkis (VC) dimension (see Vapnik 
(1998) for details). The trade-off between training error and complexity of 
the induced classifier is something that has to be faced in any experimental 
setting in order to guarantee a low generalization error. 

Consider the problem of disambiguating the verb to know in a sentence. 
The senses of the word know are the classes of the classification problem 
(defining the output space Y), and each occurrence of the word in a corpus 
will be codified into a training example (xi), annotated with the correct 
sense. In our example the verb to know has 8 senses according to WordNet 
1.6. Senses 1 and 4 are shown here: 

to know 
Sense 1: know, cognize (be cognizant or aware of a fact or a specific piece of 

information), “I know that the President lied to the people”, “I want to know 
who is winning the game!”, “I know it’s time”. 

Sense 4: know (be familiar or acquainted with a person or an object), “She 
doesn’t know this composer”, “Do you know my sister?”, “We know this 
movie”. 

The representation of examples usually includes information about the 
context in which the ambiguous word occurs. Thus, the features describing 
an example may codify the bigrams and trigrams of words and part-
of-speech (POS) tags next to the target word and all the words appearing 
in the sentence (a “bag-of-words” representation). Section 7.2.3, below, 
expands on example representation. 

A decision list is a simple learning algorithm that can be applied in this 
domain. It acquires a list of ordered classification rules of the form: 

if (feature = value) then class 

When classifying a new example x, the list of rules is checked in order 
and the first rule that matches the example is applied. Supposing that such 
a list of classification rules has been acquired from training examples, 
Table 7.1 contains the set of rules that match the example sentence: There is 
nothing in the whole range of human experience more widely known and 
universally felt than spirit. They are ordered by decreasing values of a log- 

An Example on WSD 

directly related to the risk of overfitting. This complexity measure is usually 
h, defined in terms of the expressiveness of the functions in H, is also 
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Table 7.1. Classification example of the word know using decision lists. 

Feature Value Sense Log-likelihood 
±3-word-window “widely” 4 2.99 
word-bigram “known widely” 4 2.99 
word-bigram “known and” 4 1.09 
sentence-window “whole” 1 0.91 
sentence-window “widely” 4 0.69 
sentence-window “known” 4 0.43 
 
likelihood measure indicating the confidence of the rule. We can see that 
only features related to the first and fourth senses of know receive positive 
values of its 8 WordNet senses. Classifying the example by the first two 
tied rules (which are activated because the word widely appears immedi-
ately to the left of the word know), sense 4 will be assigned to the example. 

Finally, we would like to briefly comment on a terminological issue that 
can be rather confusing in the WSD literature. Recall that, in machine 
learning, the term “supervised learning” refers to the fact that the training 
examples are annotated with the class labels, which are taken from a pre-
specified set. “Unsupervised learning” refers to the problem of learning 
from examples when there is no set of pre-specified class labels. That is, 
the learning consists of acquiring the similarities between examples to 
form clusters that can be later interpreted as classes (this is why it is usu-
ally referred to as clustering). In the WSD literature, “unsupervised learn-
ing” is sometimes used with another meaning, which is the acquisition of 
disambiguation models or rules from non-annotated examples and external 
sources of information (e.g., lexical databases, aligned corpora, etc.). Note 
that in this case the set of class labels (which are the senses of the words) 
are also specified in advance. See Chapter 6 (especially Sect. 6.1.1) for 
more discussion on this issue. 

In this section we overview the supervised approach to WSD. To begin, 
the first three subsections introduce important issues related to the super-
vised paradigm: corpora, sense inventories, and feature design, respec-
tively. (More thorough discussion can be found on corpora in Chapter 4 
and feature codification and knowledge sources in Chapter 8). 

7.2 A Survey of Supervised WSD 
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As we have seen in the previous section, supervised machine learning     
algorithms use semantically annotated corpora to induce classification 
models for deciding the appropriate word sense for each particular context. 
The compilation of corpora for training and testing such systems requires a 
large human effort since all the words in these annotated corpora have to 
be manually tagged by lexicographers with semantic classes taken from a 
particular lexical semantic resource – most commonly WordNet (Miller 
1990, Fellbaum 1998). 

Despite the good results obtained, supervised methods suffer from the 
lack of widely available semantically tagged corpora, from which to con-
struct broad-coverage systems. This is known as the knowledge acquisition 
bottleneck. And the lack of annotated corpora is even worse for languages 

words, all languages) explains why supervised methods have been seri-
ously questioned. 

Due to this obstacle, the first attempts to use statistical techniques for 
WSD tried to avoid the manual annotation of a training corpus. This was 
achieved by using pseudo-words (Yarowsky 1993), aligned bilingual cor-
pora (Gale et al. 1993), or by working with the related problem of form 
(e.g., accent) restoration (Yarowsky 1994). 

Pseudo-words are artificial ambiguities introduced into untagged cor-
pora. Given a set of related words, for instance {match, party}, a pseudo-
word corpus can be created by replacing all the instances of the words with 
a new word (in this case, match/party) maintaining as labels the original 
words (which act as senses). (Chapter 4 (Sect. 4.3) further discusses 
pseudo-words). 

Methods that use bilingual corpora rely on the fact that the different 
senses of a word in a given language are translated using different words in 
another language. For example, the Spanish word partido translates to 
match in English in the sports sense and to party in the political sense. 
Therefore, if a corpus is available with a word-to-word alignment, when a 
translation of a word like partido is made, its English sense can be auto-
matically determined as match or party. Word-aligned parallel corpora 
have only recently become available. Section 7.4.3 below continues this 
discussion. 

Several manually annotated corpora do exist, and have been used exten-
sively in research into supervised methods: 

other than English. The extremely high overhead for supervision (all 

7.2.1 Main Corpora Used 
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• Semcor (Miller et al. 1993) is a portion of the Brown Corpus (Francis 
and Ku era 1982) annotated with WordNet 1.6 senses. All words in 
some 186 files, and verbs in a further 166 files, are annotated totalling 
234,000 sense-annotated words. 

• The DSO corpus (Ng and Lee 1996) contains sentences from the Wall 
Street Journal corpus (WSJ) and the Brown Corpus. 192,800 words 
(121 frequent nouns and 70 frequent verbs) are annotated with WordNet 
1.5 senses. 

• Senseval produced several corpora in different languages. The main 
English corpora for the lexical sample task comprise about 8,000 
instances of 41 words (Senseval-1), 12,000 instances of 73 words 
(Senseval-2), and 12,000 instances of 59 words (Senseval-3), all 
annotated with WordNet senses. See Section 7.2.5 below. 

• The Open Mind Word Expert project (OMWE) (Chklovski and 
Mihalcea 2002) has volunteers on the Web manually annotate examples. 
The examples are extracted from three sources: Penn Treebank corpus, 
Los Angeles Times collection (provided for the TREC conferences), and 
Open Mind Common Sense. While the two first sources are well known, 
the Open Mind Common Sense corpus provides sentences that are not 
usually found in current corpora. They consist mainly in explanations 
and assertions similar to glosses of a dictionary, but phrased in less 
formal language, and with many examples per sense. Chklovski and 
Mihalcea suggest that these sentences could be a good source of 
keywords to be used for disambiguation. The examples obtained from 
this project were used in the English lexical-sample task in Senseval-3. 

These resources are discussed in greater detail in Chapter 4 (Sect. 4.2), and 
OMWE in Chapter 9 (Sect. 9.3.4).  

Initially, machine readable dictionaries (MRDs) were used as the main 
repositories of word sense distinctions to annotate word examples with 
senses. For instance, LDOCE, the Longman Dictionary of Contemporary 
English (Procter 1978) was frequently used as a research lexicon (Wilks 
et al. 1993) and for tagging word sense usages (Bruce and Wiebe 1994). 

At Senseval-1, the English lexical sample task used the Hector lexicon 
to label each sense instance. This lexicon was produced jointly by Oxford 
University Press and DEC dictionary research project. However, WordNet 
(Miller 1991, Fellbaum 1998) and EuroWordNet (Vossen 1998) are nowa-

7.2.2 Main Sense Repositories 

days becoming the most common knowledge sources for sense distinctions.
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Before applying any ML algorithm, all the examples of a particular word 
have to be codified in a way that the learning algorithm can handle them. 
As explained in Section 7.1.1, the most usual way of codifying training 
examples is as feature vectors. In this way, they can be seen as points in an 
n-dimensional feature space, where n is the total number of features used. 

Features try to capture information and knowledge about the context of 
the target words to be disambiguated. Computational requirements of 
learning algorithms and the availability of the information impose some 
limitations on the features that can be considered, thus they necessarily 
codify only a simplification (or generalization) of the word sense instances 
(see Chap. 8 for more details on features codified). 

Usually, a complex pre-processing step is performed to build a feature 
vector for each context example. This step often considers the use of a 
windowing scheme or a sentence-splitter for the selection of the appropri-
ate context (to select a fixed number of content words or sentences around 
the target word), a POS tagger to establish POS patterns around the target 
word, ad hoc routines for detecting multi-words or capturing n-grams, or 
parsing tools for detecting dependencies between lexical units.  

Although this pre-processing step could be seen as independent from the 
ML algorithm to be used, there are strong dependencies between the kind 
and codification of the features and the appropriateness for each learning 
algorithm (e.g., exemplar-based learning is very sensitive to irrelevant fea-
tures, decision tree induction does not properly handle attributes with 
many values, etc.). Escudero et al. (2000b) discuss how the feature repre-
sentation affects both the efficiency and accuracy of two learning systems 
for WSD. See also Agirre and Martínez (2001) for a survey on the types of 
knowledge sources that could be relevant for codifying training examples. 

The feature sets most commonly used in the supervised WSD literature 
can be grouped as follows: 

Many corpora have been annotated using various versions of WordNet
and EuroWordNet (e.g., Semcor, the DSO corpus, the Senseval corpora,

successful algorithms have been proposed for providing compatibility
across the European wordnets and the different versions of the Princeton 
WordNet (Daudé et al. 1999, 2000, 2001).  

and OMWE). Although using different WordNet versions can be seen as 
a problem for the standardization of these valuable lexical resources,

7.2.3 Representation of Examples by Means of Features  
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1. Local features: The local context features comprise n-grams of POS 
tags, lemmas, word forms and their positions with respect to the 
target word. Sometimes, local features include a bag-of-words or 
lemmas in a small window around the target word (the position of 
these words is not taken into account). These features are able to 
capture knowledge about collocations, argument-head relations and 
limited syntactic cues.  

2. Topical features: Such featues represent more general contexts 
(wide windows of words, other sentences, paragraphs, documents), 
usually in a bag-of-words representation. These features aim at 
capturing the semantic domain of the text fragment or document. 

3. Syntactic dependencies: At a sentence level, dependencies have also 
been used to try to better model syntactic cues and argument-head 
relations. 

We will categorize the supervised methods according to the induction 
principle they use for acquiring their classification models. Our categoriza-
tion does not aim to be exhaustive, but we have attempted to be thorough, 
nonetheless. The combination of many paradigms is another possibility, 
which is covered in Section 7.4.6. Note that for the algorithms that are in-
cluded in the experiments of Section 7.3, we will keep the description in 
this section to an minimum and expand on it in Section 7.3.1. 

Statistical methods usually estimate a set of probabilistic parameters that 
express the conditional or joint probability distributions of categories and 
contexts (described by features). These parameters can be then used to as-
sign to each new example the particular category that maximizes the con-
ditional probability of a category given the observed context features. 

The Naïve Bayes algorithm (Duda et al. 2001) is the simplest algorithm 
of this type, which uses the Bayes inversion rule and assumes the condi-
tional independence of features given the class label (see Sect. 7.3.1 be-
low). It has been applied to many investigations into WSD (Gale et al. 
1992, Leacock et al. 1993, Pedersen and Bruce 1997, Escudero et al. 
2000b) and, despite its simplicity, Naïve Bayes is claimed to obtain state-
of-the-art accuracy in many papers (Mooney 1996, Ng 1997a, Leacock 
et al. 1998). 

7.2.4 Main Approaches to Supervised WSD 

Probabilistic Methods 
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A potential problem of Naïve Bayes is the independence assumption. 
Bruce and Wiebe (1994) present a more complex model known as the “de-
composable model”, which considers different characteristics dependent 
on each other. The main drawback of their approach is the enormous num-
ber of parameters to be estimated, proportional to the number of different 
combinations of the interdependent characteristics. As a consequence, this 
technique requires a great quantity of training examples. In order to solve 
this problem, Pedersen and Bruce (1997) propose an automatic method for 
identifying the optimal model by means of the iterative modification of the 
complexity level of the model. 

The Maximum Entropy approach (Berger et al. 1996) provides a flexi-
ble way to combine statistical evidence from many sources. The estimation 
of probabilities assumes no prior knowledge of data and it has proven to be 
very robust. It has been applied to many NLP problems and it also appears 
as a promising alternative in WSD (Suárez and Palomar 2002).  

The methods in this family perform disambiguation by taking into account 
a similarity metric. This can be done by comparing new examples to a set 
of learned vector prototypes (one for each word sense) and assigning the 
sense of the most similar prototype, or by searching in a stored base of an-
notated examples for the most similar examples and assigning the most 
frequent sense among them. 

There are many ways to calculate the similarity between two examples. 
Assuming the Vector Space Model (VSM), one of the simplest similarity 
measures is to consider the angle that both example vectors form (i.e., the 
cosine measure). Leacock et al. (1993) compared VSM, Neural Networks, 
and Naïve Bayes methods, and drew the conclusion that the two first 
methods slightly surpass the last one in WSD. Yarowsky et al. (2001) in-
cluded a VSM model in their system that combined the results of up to six 
different supervised classifiers, and obtained very good results in Sen-
seval-2. For training the VSM component, they applied a rich set of fea-
tures (including syntactic information), and weighting of feature types. 

The most widely used representative of this family of algorithms is the 
k-Nearest Neighbor (kNN) algorithm, which we also describe and test in 
section 7.3. In this algorithm the classification of a new example is per-
formed by searching the set of the k most similar examples (or nearest 
neighbors) among a pre-stored set of labeled examples, and performing an 
“average” of their senses in order to make the prediction. In the simplest 
case, the training step reduces to storing all of the examples in memory 

Methods Based on the Similarity of the Examples 
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(this is why this technique is called memory-based, exemplar-based, in-
stance-based, or case-based learning) and the generalization is postponed 
until each new example is classified (this is why it is sometimes also called 
Lazy learning). A very important issue in this technique is the definition of 
an appropriate similarity (or distance) metric for the task, which should 
take into account the relative importance of each attribute and be effi-
ciently computable. The combination scheme for deciding the resulting 
sense among the k nearest neighbors also leads to several alternative algo-
rithms. kNN-based learning is said to be the best option for WSD by Ng 
(1997a). Other authors (Daelemans et al. 1999) argue that exemplar-based 
methods tend to be superior in NLP problems because they do not apply 
any kind of generalization on data and, therefore, they do not forget excep-
tions. 

Ng and Lee (1996) did the first work on kNN for WSD. Ng (1997a) 
automatically identified the optimal value of k for each word improving 
the previously obtained results. Escudero et al. (2000b) focused on certain 
contradictory results in the literature regarding the comparison of Naïve 
Bayes and kNN methods for WSD. The kNN approach seemed to be very 
sensitive to the attribute representation and to the presence of irrelevant 
features. For that reason alternative representations were developed, which 
were more efficient and effective. The experiments demonstrated that kNN 
was clearly superior to Naïve Bayes when applied with an adequate feature 
representation and with feature and example weighting, and sophisticated 
similarity metrics. Stevenson and Wilks (2001) also applied kNN in order 
to integrate different knowledge sources, reporting high precision figures 
for LDOCE senses (see Sect. 7.4.6). 

Regarding Senseval evaluations, Hoste et al. (2001, 2002a) used, among 
others, a kNN system in the English all-words task of Senseval-2, with 
good performance. At Senseval-3, a new system was presented by Decadt 
et al. (2004) winning the all-words task. However, they submitted a similar 
system to the lexical sample task, which scored lower than kernel-based 
methods. 

Decision lists and decision trees use selective rules associated with each 
word sense. Given an example to classify, the system selects one or more 
rules that are satisfied by the example features and assign a sense based on 
their predictions. 

A decision list (DL), introduced in the example of Section 7.1.1 above, 
is an ordered list of rules of the form (condition, class, weight). According 

Methods Based on Discriminating Rules 
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to Rivest (1987), decision lists can be considered as weighted if-then-else 
rules where the exceptional conditions appear at the beginning of the list 
(high weights), the general conditions appear at the bottom (low weights), 
and the last condition of the list is a “default” accepting all remaining 
cases. Weights are calculated with a scoring function describing the asso-
ciation between the condition and the particular class, and they are esti-
mated from the training corpus. When classifying a new example, each 
rule in the list is tested sequentially and the class of the first rule whose 
condition matches the example is assigned as the result. Decision lists are 
tested in Section 7.3. 

Yarowsky (1994) used decision lists to solve a particular type of lexical 
ambiguity: Spanish and French accent restoration. In subsequent work, 
Yarowsky (1995a) applied decision lists to WSD. In this work, each condi-
tion corresponds to a feature, the values are the word senses and the 
weights are calculated by a log-likelihood measure indicating the plausibil-
ity of the sense given the feature value.  

Some more recent experiments suggest that decision lists could also be 
very productive for high precision feature selection for bootstrapping 
(Martínez et al. 2002). 

A decision tree (DT) is a way to represent classification rules underlying 
data by an n-ary branching tree structure that recursively partitions the 
training set. Each branch of a decision tree represents a rule that tests a 
conjunction of basic features (internal nodes) and makes a prediction of the 
class label in the terminal node. Although decision trees have been used 
for years in many classification problems in artificial intelligence they 
have not been applied to WSD very frequently. Mooney (1996) used the 
C4.5 algorithm (Quinlan 1993) in a comparative experiment with many 
ML algorithms for WSD. He concluded that decision trees are not among 
the top performing methods. Some factors that make decision trees inap-
propriate for WSD are: i) the data fragmentation performed by the induction 
algorithm in the presence of features with many values, ii) the computa-
tional cost is high in very large feature spaces, and iii) terminal nodes 
corresponding to rules that cover very few training examples do not pro-
duce reliable estimates of the class label. Part of these problems can be 
partially mitigated by using simpler related methods such as decision lists. 
Another way of effectively using DTs is considering the weighted combi-
nation of many decision trees in an ensemble of classifiers (see below). 



7 Supervised Corpus-Based Methods for WSD    179 

The combination of many heterogeneous learning modules for developing 
a complex and robust WSD system is currently a common practice, which 
is explained in Section 7.4.6. In the current section, “combination” refers 
to a set of homogeneous classification rules that are learned and combined 
by a single learning algorithm. The AdaBoost learning algorithm is one of 
the most successful approaches. 

The main idea of the AdaBoost algorithm is to linearly combine many 
simple and not necessarily very accurate classification rules (called weak 
rules or weak hypotheses) into a strong classifier with an arbitrarily low  
error rate on the training set. Weak rules are trained sequentially by main-
taining a distribution of weights over training examples and by updating it 
so as to concentrate weak classifiers on the examples that were most difficult 
to classify by the ensemble of the preceding weak rules (see Sect. 7.3.1 for 
details). AdaBoost has been successfully applied to many practical prob-
lems, including several NLP tasks (Schapire 2003) and it is especially 
appropriate when dealing with unstable learning algorithms (e.g., decision 
tree induction) as the weak learner.  

Several experiments on the DSO corpus (Escudero et al. 2000a, 2000c, 
2001), including the one reported in Section 7.3.2 below, concluded that 
the boosting approach surpasses many other ML algorithms on the WSD 
task. We can mention, among others, Naïve Bayes, exemplar-based learn-
ing and decision lists. In those experiments, simple decision stumps (ex-
tremely shallow decision trees that make a test on a single binary feature) 
were used as weak rules, and a more efficient implementation of the algo-
rithm, called LazyBoosting, was used to deal with the large feature set in-
duced. 

Linear classifiers have been very popular in the field of information re-
trieval (IR), since they have been used successfully as simple and efficient 
models for text categorization. A linear (binary) classifier is a hyperplane 
in an n-dimensional feature space that can be represented with a weight 
vector w and a bias b indicating the distance of the hyperplane to the ori-
gin. The weight vector has a component for each feature, expressing the 
importance of this feature in the classification rule (see Eq. 7.6, below). 
There are many on-line learning algorithms for training such linear classi-
fiers (e.g., Perceptron, Widrow-Hoff, Winnow, Exponentiated-Gradient, 

Methods Based on Rule Combination 

Linear Classifiers and Kernel-Based Approaches 
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Sleeping Experts, etc.) that have been applied to text categorization (see, 
for instance, Dagan et al. (1997)).  

Despite their success in IR, the use of linear classifiers in the late 1990s 
for WSD had few papers. Mooney (1996) used the Perceptron algorithm 
and Escudero et al. (2000c) used the SNoW architecture (based on Win-
now). In both cases, the results obtained with the linear classifiers were 
very low. 

The expressivity of this type of classifier can be improved by allowing 
the learning of non-linear functions by introducing a non-linear mapping 
of the input features to a higher-dimensional feature space, in which new 
features can be expressed as combinations of many basic features and  
standard linear learning is performed. If example vectors appear only in-
side dot product operations in the learning algorithm and the classification 
rule, then the non-linear learning can be performed efficiently (i.e., without 
making explicit non-linear mappings of the input vectors), via the use of 
kernel functions. The advantage of using kernel-methods is that they offer 
a flexible and efficient way of defining application-specific kernels for ex-
ploiting the singularities of the data and introducing background knowl-
edge. Currently, there exist several kernel implementations for dealing 
with general structured data. Regarding WSD, we find some recent contri-
butions in Senseval-3 (Strapparava et al. 2004, Popescu 2004). 

Support Vector Machines (SVM), introduced by Boser et al. (1992), is 
the most popular kernel-method. The learning bias consists of choosing the 
hyperplane that separates the positive examples from the negatives with 
maximum margin; see Cristianini and Shawe-Taylor (2000) and also Sec-
tion 7.3.1 for details. This learning bias has proven to be very powerful 
and has lead to very good results in many pattern recognition, text, and 
NLP problems. The first applications of SVMs to WSD are those of 
Murata et al. (2001) and Lee and Ng (2002).  

More recently, an explosion of systems using SVMs was observed in the 
Senseval-3 evaluation (most of them among the best performing systems). 
Among others, we highlight Strapparava et al. (2004), Lee et al. (2004), 
Agirre and Martínez (2004a), Cabezas et al. (2004), and Escudero et al. 
(2004). 

Other kernel-methods for WSD presented at Senseval-3 and recent con-
ferences include: Kernel Principal Component Analysis (KPCA) (Carpuat 
et al. 2004, Wu et al. 2004), Regularized Least Squares (Popescu 2004), 
and Averaged Multiclass Perceptron (Ciaramita and Johnson 2004). We 
think that kernel-methods are the most popular learning paradigm in NLP 
because they offer a remarkable performance in most of the desirable 
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properties: accuracy, efficiency, ability to work with large and complex 
feature sets, and robustness in the presence of noise and exceptions. More-
over, some robust and efficient implementations are currently available. 

Artificial Neural Networks, characterized by a multi-layer architecture 
of interconnected linear units, are an alternative for learning non-linear 
functions. Such connectionist methods were broadly used in the late eight-
ies and early nineties to represent semantic models in the form of net-
works. More recently, Towell et al. (1998) presented a standard supervised 
feed-forward neural network model for disambiguating highly ambiguous 
words in a framework including the combined use of labeled and unlabeled 
examples.  

The Yarowsky algorithm (Yarowsky 1995a) was, probably, one of the first 
and more successful applications of the bootstrapping approach to NLP 
tasks. It can be considered a semi-supervised method, and, thus, it is not 
directly comparable to the rest of the approaches described in this section. 
However, we will devote this entire subsection to explain the algorithm 
given its importance and impact on the subsequent work on bootstrapping 
for WSD. See, for instance, Abney (2004) and Section 7.4.4, below.  

The Yarowsky algorithm is a simple iterative and incremental algorithm. 
It assumes a small seed set of labeled examples, which are representatives 
of each of the senses, a large set of examples to classify, and a supervised 
base learning algorithm (decision lists, in this particular case). Initially, the 
base learning algorithm is trained on the seed set and used to classify the 
entire set of (un-annotated) examples. Only those examples that are classi-
fied with a confidence above a certain threshold are kept as additional 
training examples for the next iteration. The algorithm repeats this re-
training and re-labeling procedure until convergence (i.e., when no 
changes are observed from the previous iteration). 

Regarding the initial seed set, Yarowsky (1995a) discusses several alter-
natives to find them, ranging from fully automatic to manually supervised 
procedures. This initial labeling may have very low coverage (and, thus, 
low recall) but it is intended to have extremely high precision. As itera-
tions proceed, the set of training examples tends to increase, while the pool 
of unlabeled examples shrinks. In terms of performance, recall improves 
with iterations, while precision tends to decrease slightly. Ideally, at con-
vergence, most of the examples will be labeled with high confidence.  

Discourse Properties: The Yarowsky Bootstrapping Algorithm 

Some well-known discourse properties are at the core of the learning 
process and allow the algorithm to generalize to label new examples with 
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confidence. We refer to: one-sense-per-collocation, language redundancy, 
and one-sense-per-discourse (heuristic WSD methods based on these dis-
course properties have been covered in Chap. 5 (Sect. 5.4)). First, the   
one-sense-per-collocation heuristic gives a good justification for using 
a decision list as the base learner, since a DL uses a single rule, based on a 
single contextual feature, to classify each new example. Actually, 
Yarowsky refers to contextual features and collocations indistinctly. 

Second, we know that language is very redundant. This means that the 
sense of a concrete example is overdetermined by a set of multiple relevant 
contextual features (or collocations). Some of these collocations are shared 
among other examples of the same sense. These intersections allow the    
algorithm to learn to classify new examples, and, by transitivity, to in-
crease recall with each iteration. This is the key point in the algorithm for 
achieving generalization. For instance, borrowing Yarowsky’s (1995a) 
original examples, a seed rule may establish that all the examples of the 
word plant in the collocation plant life should be labeled with the 
vegetal sense of plant (as opposed to its industrial sense). If we run a DL 
on the set of seed examples determined by this collocation, we may obtain 
many other relevant collocations for the same sense in the list of rules, for 
instance, “presence of the word animal in a ±10-word window”. This rule 
would allow the classification of some new examples at the second itera-
tion that were left unlabeled by the seed rule, for instance, the example 
contains a varied plant and animal life.

Third, Yarowsky also applied the one-sense-per-discourse heuristic as a 
post-process at each iteration to uniformly label all the examples in the 
same discourse with the majority sense. This has a double effect. On the 
one hand, it allows the algorithm to extend the number of labeled exam-
ples, which, in turn, will provide new “bridge” collocations that cannot be 
captured directly from intersections among currently labeled examples. On 
the other hand, it allows the algorithm to correct some misclassified exam-
ples in a particular discourse. 

Yarowsky’s (1995a) evaluation showed that, with a minimum set of an-
notated seed examples, this algorithm obtained comparable results to a 
fully supervised system (again, using DLs). The evaluation framework 
consisted of a small set of words limited to binary homographic sense dis-
tinctions.

Apart from simplicity, we would like to highlight another good property 
of the Yarowsky algorithm, which is the ability of recovering from initial 
misclassifications. The fact that at each iteration all the examples are rela-
beled makes it possible that an initial wrong prediction for a concrete 
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example may lower its strength in subsequent iterations (due to the more 
informative training sets) until the confidence for that collocation falls be-
low the threshold. In other words, we might say that language redundancy 
makes the Yarowsky algorithm self-correcting.  

As a drawback, this bootstrapping approach has been theoretically 
poorly understood since its appearance in 1995. Recently, Abney (2004) 
performed some advances in this direction by analyzing a number of vari-
ants of the Yarowsky algorithm, showing that they optimize natural objec-
tive functions. Another criticism refers to real applicability, since Martínez 
and Agirre (2000) observed a far less predictive power of the one-sense-
per-discourse and one-sense-per-collocation heuristics when tested in a 
real domain with highly polysemous words. 

Senseval (see Chap. 4), in the style of international competitions sponsored 
by the American government (e.g., MUC and TREC), was designed to 
compare and evaluate within a controlled framework the performance of 
the different approaches and systems for WSD (see Chap. 4). In an all-
words task, the evaluation consists of assigning the correct sense to all 
content words of a text. In a lexical sample task, the evaluation consists of 
assigning the correct sense to all the occurrences of a few words. Other 
tasks included, for instance, a translation task. Basically, Senseval clas-
sifies systems into two different types: supervised and unsupervised 

Senseval-1 (Kilgarriff and Rosenszweig 2000) had lexical sample tasks 
for English, French, and Italian, with 25 participating systems, 17 in Eng-
lish. The best performing systems achieved 75–80% accuracy.  

Senseval-2 (Edmonds and Cotton 2001) included tasks for 12 languages. 
About 26 systems took part in the English lexical sample task, and the best 
were in the 60–65% range of accuracy, but the task was more difficult (see 
Chap. 4 (Sect 4.3.3)). 

systems, but some systems are difficult to classify. In principle, knowled g     e-
based systems (mostly unsupervised) could compete in all tasks, whereas 
corpus-based systems (mostly supervised) could normally only partici- 
pate in the lexical sample task and other tasks with sufficient training 
data. However, many supervised systems trained on external data can 
actually participate in the all-words task. 

7.2.5 Supervised Systems in the Senseval Evaluations 

In Senseval-3 (Mihalcea and Edmonds 2004) the English lexical sample 
task had 37 systems considered to be supervised, and only 9 unsupervised. 
The best system (72.9% accuracy) (Grozea 2004) was way ahead of the 
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most-frequent-sense baseline (55.2%), a significant improvement over Sen-
seval-2.1 The results of the top systems had little difference in performance. 
This suggests that a plateau had been reached for the lexical sample task 
with these kinds of ML approaches. The top performing systems were pre-
dominantly kernel-based methods (e.g., SVM; see Sect. 7.3.1). Other appro-
aches, used by several systems, were the combination of algorithms by 
voting, and the usage of complex features such as syntactic dependencies 
and domain tags.  

Regarding the English all-words task at Senseval-3, 20 systems com-
peted, the best achieving an accuracy of 65.1% compared to the WordNet-
first-sense baseline of 60.9% or 62.4% (depending on the treatment of 
multi-words and hyphenated words). The top nine systems were super-
vised. Unlike the English lexical sample task, a plateau was not observed, 
since significantly different approaches with significant differences     
in performance were present among the top systems. The supervised 
methods relied mostly on Semcor to get manually-tagged examples, but 
several groups incorporated other resources like the DSO corpus, WordNet 
definitions and glosses, previous Senseval corpora, and even the line-hard-
serve corpus. Most of the participant systems included rich features in their 
models, especially syntactic dependencies and domain information. 

An interesting issue is that the teams with good results in the English 
lexical sample and those in the all-words do not overlap. The reason could 
be the different behavior of the algorithms with respect the different set-
tings of each task: the number of training examples per word, number of 
words to deal with, and so on. 

A more detailed analysis of the knowledge sources used by the Senseval 
systems is given in Chapter 8. 

                                                     
1 Factors explaining the better results of Senseval-3 reside in the corpus character-
istics: it contained more examples per word, the different senses were more regu-
larly populated, and the corpus contained no multi-words, proper nouns, or phrasal 
verbs, which were difficult to detect and process in Senseval-2. 

Outside of the Senseval framework, one can find many other papers in the 
recent literature presenting empirical comparisons among several machine 
learning algorithms for WSD, from different perspectives (e.g., Escudero 
et al. (2000c), Pedersen (2001), Lee and Ng (2002), and Florian et al. 

7.3 An Empirical Study of Supervised Algorithms for WSD 
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(2002)). This section presents an experimental comparison, in the frame-
work of the DSO corpus, among five significant machine learning algo-
rithms for WSD. The comparison is presented from the fundamental point 
of view of the accuracy and agreement achieved by all competing classifi-
ers. Other important aspects, such as knowledge sources, efficiency, and 
tuning, have been deliberately left out for brevity.  

In this section, the five algorithms that will be compared in Section 7.3.2 
are presented. Due to space limitations the description cannot be very de-
tailed. We try to provide the main principles that the algorithms rely on, 
and the main design decisions affecting the specific implementations 
tested. Some references to more complete descriptions are also provided. 

Naïve Bayes is the simplest representative of probabilistic learning meth-
ods (Duda et al. 2001). In this model, an example is assumed to be “gener-
ated” first by stochastically selecting the sense s of the example and then 
each of the features independently according to their individual distribu-
tions P( xi | s ) . The classification rule of a new example x = (x1,…, xm)
consists of assigning the sense s that maximizes the conditional probability 
of the sense given the observed sequence of features, as shown in Eq. 7.1. 

∏ ==

=

m
i i

s

m

m

s
m

s

sxPsP

xxP
sPsxxPxxsP

1

1

1
1

)|()(  maxarg  

),,(
)()|,,(maxarg )(maxarg     ,,| (7.1)

The first equality in Eq. 7.1 is the Bayesian inversion, while the factori-
zation comes from the independence assumption: P( xi | s,xj≠i )=P( xi | s ). 
Since we are calculating an maximum over s there is no need to keep the 
denominator, which is independent of s, in the objective function. P(s) and 
P( xi | s ) are the probabilistic parameters of the model and they can be     

7.3.1 Five Learning Algorithms Under Study 

Naïve Bayes (NB) 

estimated from the training set using relative frequency counts (i.e., maxi-
mum likelihood estimation, MLE). For instance, the a priori probability of 
sense s, P(s), is estimated as the ratio between the number of examples of 
sense s and the total number of examples in the training set. P( xi | s ) is the 

i

The MLE estimation in this case is the number of sense-s examples that 
have the feature xi active divided by the total number of examples of sense s.

probability of observing the feature x  given that the observed sense is s.



186   Màrquez, Escudero, Martínez, and Rigau 

In order to avoid the effects of zero counts when estimating the condi-
tional probabilities of the model, a very simple smoothing technique, pro-
posed by Ng (1997a), has been used in this experiment. It consists in 
replacing zero counts of P( xi | s ) with P(s)/n where n is the number of 
training examples.

We will use a k-Nearest-Neighbor (kNN) algorithm as a representative of 
exemplar-based learning. As described in Section 7.2.4, all examples are 
stored in memory during training and the classification of a new example 
is based on the senses of the k most similar stored examples. In order to 
obtain the set of nearest neighbors, the example to be classified, 
x=(x1,…, xm), is compared to each stored example xi=(xi

1,…, xi
m), and the 

distance between them is calculated. The most basic distance metric for 
cases with symbolic features is the overlap metric (also called Hamming 
distance), defined in Eq. 7.2, where wj is the weight of the j-th feature and 
δ(xj, xi

j) is the distance between two values, which is 0 if xj = xi
j and 1 oth-

erwise.
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In the implementation tested in these experiments, we used Hamming 
distance to measure closeness and the Gain Ratio measure (Quinlan 1993) 
to estimate feature weights. For k values greater than 1, the resulting sense 
is the weighted majority sense of the k nearest neighbors – where each ex-
ample votes its sense with a strength proportional to its closeness to the 
test example. There exist more complex metrics for calculating graded dis-
tances between symbolic feature values, for example, the modified value 
difference metric (MVDM) (Cost and Salzberg 1993) that could lead to 
better results. We do not use MVDM here for reasons of simplicity. Work-
ing with MVDM has a significant computational overhead and its advan-
tage in performance is reduced to a minimum when using feature and 

Exemplar-Based Learning (kNN) 

example weighting to complement the simple Hamming distance (Escud-
ero et al. 2000b), as we do in this experimental setting. 

The kNN algorithm is run several times using a different number of 
nearest neighbors: 1, 3, 5, 7, 10, 15, 20, and 25. The results corresponding 
to the best choice for each word are reported. 
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As we saw in Section 7.2.4, a decision list consists of a set of ordered rules 
of the form (condition, sense, weight). In this setting, the algorithm works 
as follows. The training data is used to estimate the importance of individ-
ual features, which are weighted with a log-likelihood measure (Yarowsky 
1995a, 2000) indicating the likelihood of a particular sense given a particu-
lar feature value. The list of all rules is sorted by decreasing values of this 
weight. When testing new examples, the decision list is checked, and the 
feature with highest weight that matches the test example selects the win-
ning word sense. 

The original formula in Yarowsky (1995a) can be adapted in order to 
handle classification problems with more than two classes. In this case, the 
weight of sense sk when feature i occurs in the context is computed as the 
logarithm of the probability of sense sk given feature fi divided by the sum 
of the probabilities of the other senses given fi (see Eq. 7.3).
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These probabilities can be calculated using the maximum likelihood 
estimate, and some kind of smoothing so as to avoid the problem of zero 
counts. There are many approaches for smoothing probabilities (we al-
ready used a simple method applied to NB above). A complete survey of 
different smoothing techniques can be found in Chen (1996). For our ex-
periments, we adopted a very simple solution, replacing the denominator 
by 0.1 when the frequency is zero. 

As seen in Section 7.2.4, AdaBoost is a general method for obtaining a 
highly accurate classification rule by combining many weak classifiers, 
each of which need only be moderately accurate. A generalized version of 
the AdaBoost algorithm, which combines weak classifiers with confi-
dence-rated predictions (Schapire and Singer 1999) has been used in these 

Decision Lists (DL) 

AdaBoost (AB) 

experiments. This particular boosting algorithm has been successfully ap-
plied to a number of practical problems. 

The weak hypotheses are learned sequentially, one at a time, and, con-
ceptually, at each iteration the weak hypothesis is biased to classify the ex-
amples which were most difficult to classify by the ensemble of preceding 
weak hypotheses. AdaBoost maintains a vector of weights as a distribution 
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Dt over examples. At round t, the goal of the weak learner algorithm is to 
find a weak hypothesis, ht : X → ℜ, with moderately low error with respect 
to the weight distribution Dt. In this setting, weak hypotheses ht(x) make 
real-valued confidence-rated predictions. Initially, the distribution D1 is 
uniform, but after each iteration, the boosting algorithm exponentially in-
creases (or decreases) the weights Dt(i) for which ht(xi) makes a bad (or 
good) prediction, with a variation proportional to the confidence |ht(xi)|.
The final combined hypothesis, ht : X → ℜ, computes its predictions using 
a weighted vote of the weak hypotheses: 
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For each example x, the sign of f(x) is interpreted as the predicted class 
(the basic AdaBoost works only with binary outputs, −1 or +1), and the 
magnitude | f(x)| is interpreted as a measure of confidence in the prediction. 
Such a function can be used either for classifying new unseen examples or 
for ranking them according to the confidence degree. 

In this work we have used decision stumps as weak hypotheses. They 
are rules that test the value of a single binary (or Boolean) feature and 
make a real-valued prediction based on that value. Features describing the 
examples are predicates of the form: “the word X appears immediately to 
the left of the target word to be disambiguated.” Formally, based on a 
given predicate p, weak hypotheses h are considered that make predictions 
of the form: 
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where c0 and c1 are real numbers. See Schapire and Singer (1999) for the 
details about how to select the best predicate p at each iteration, the ci val-
ues associated with p, and the weight αi corresponding to the resulting 
weak rule. 

Regarding the particular implementation used in these experiments, two 
final details should be mentioned. First, WSD defines multi-class classifi-
cation problems, not binary. We have used the AdaBoost.MH algorithm 
that generalizes AdaBoost to multi-class multi-label classification (Schapire 
and Singer 2000). Second, a simple modification of the AdaBoost algo-
rithm, which consists of dynamically selecting a much reduced feature set 
at each iteration, has been used to significantly increase the efficiency of 
the learning process with no loss in accuracy. This variant is called Lazy-
Boosting and it is described in Escudero et al. (2000a). 
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Fig. 7.1. Geometrical interpretation of Support Vector Machines. 

SVMs are based on the principle of Structural Risk Minimization from the 
Statistical Learning Theory (Vapnik 1998) and, in their basic form, they 
learn a linear discriminant that separates a set of positive examples from a 
set of negative examples with maximum margin (the margin is defined by 
the distance of the hyperplane to the nearest of the positive and negative 
examples). This learning bias has proved to have good properties in terms 
of generalization bounds for the induced classifiers. The left plot in Fig. 
7.1 shows the geometrical intuition about the maximal margin hyperplane 
in a two-dimensional space. The linear classifier is defined by two ele-
ments: a weight vector w (with one component for each feature), and a 
bias b which stands for the distance of the hyperplane to the origin. The 
classification rule assigns +1 or –1 to a new example x as follows: 
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The positive and negative examples closest to the (w, b) hyperplane (on 
the dashed lines) are called support vectors.

Learning the maximal margin hyperplane (w, b) can be simply stated as 
a convex quadratic optimization problem with a unique solution, consist-
ing of (primal form): minimize ||w|| subject to the constraints (one for each 

b/||w||
w

b/||w||
w

Support Vector Machines (SVM) 

training example) yi [(w·xi) + b] ≥ 1, indicating that all training examples 
are classified with a margin equal or greater than 1. 

Sometimes, training examples are not linearly separable or, simply, it is 
not desirable to obtain a perfect hyperplane. In these cases it is preferable 
to allow some errors in the training set so as to maintain a better solution 
hyperplane (see the right plot of Fig. 7.1). This is achieved by a variant of the
optimization problem, referred to as soft margin, in which the contribution
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errors can be balanced through the use of a parameter called C.
As discussed in Section 7.2.4, SVMs can be used in conjunction with 

kernel functions to produce non-linear classifiers. Thus, the selection of an 
appropriate kernel to the dataset is another important element when using 
SVMs. In the experiments presented below we used the SVMlight software,2

a freely available implementation. We present only the results with linear 
kernels, performing a tuning of the C parameter directly on the DSO cor-

We tested the algorithms on the DSO corpus. Of the 191 words tagged in 
the DSO corpus, a group of 21 words that frequently appear in the WSD 
literature was selected to perform the comparative experiment. We chose 
13 nouns (age, art, body, car, child, cost, head, interest, line, point, state, 
thing, work) and 8 verbs (become, fall, grow, lose, set, speak, strike, tell )
and we treated them as independent classification problems. The number 
of examples per word ranged from 202 to 1,482 with an average of 801.1 
examples per word (840.6 for nouns and 737.0 for verbs). The level of 
ambiguity is quite high in this corpus. The number of senses per word is 
between 3 and 25, with an average of 10.1 senses per word (8.9 for nouns 
and 12.1 for verbs).  

Two kinds of information are used to perform disambiguation: local and 
topical context. Let [w-3, w-2, w-1, w, w+1, w+2, w+3] be the context of con-
secutive words around the word w to be disambiguated, and pi, -3 ≤ i ≤ 3, 
be the POS tag of word wi. Fifteen feature patterns referring to local con-
text are considered: p-3, p-2, p-1, p+1, p+2, p+3, w-1, w+1, (w-2, w-1), (w-1, w+1),
(w+1, w+2), (w-3, w-2, w-1), (w-2, w-1, w+1), (w-1, w+1, w+2), and (w+1, w+2, w+3).
The last seven correspond to collocations of two and three consecutive 

                                                     
2 http://svmlight.joachims.org 

kernels.
pus. No significant improvements were achieved by using polynomial

7.3.2 Empirical Evaluation on the DSO Corpus 

to the objective function of the margin maximization and the training 

words. The topical context is formed by the bag of words {c1,...,cm}, which 
is an unordered set of m open class words appearing in the sentence. The 
feature set includes those used by Ng (1996) with the exception of the 
morphology of the target word and the verb-object syntactic relation (see 
Chap. 8). 

The methods evaluated in this section codify the features in different 
ways. AB and SVM algorithms require binary features. Therefore, local 
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Table 7.2. Percentage accuracy and standard deviation of all learning methods. 

 MFC NB kNN DL AB SVM 
Nouns 46.59 ±1.08 62.29 ±1.25 63.17 ±0.84 61.79 ±0.95 66.00 ±1.47 66.80 ±1.18
Verbs 46.49 ±1.37 60.18 ±1.64 64.37 ±1.63 60.52 ±1.96 66.91 ±2.25 67.54 ±1.75
ALL 46.55 ±0.71 61.55 ±1.04 63.59 ±0.80 61.34 ±0.93 66.32 ±1.34 67.06 ±0.65

context attributes have to be binarized in a pre-process, while the topical 
context attributes remain as binary tests about the presence or absence of 
a concrete word in the sentence. As a result of this binarization, the num-
ber of features is expanded to several thousands (from 1,764 to 9,900 de-
pending on the particular word). DL has been applied also with the same 
example representation as AB and SVM. 

The binary representation of features is not appropriate for NB and kNN 
algorithms. Therefore, the 15 local-context attributes are considered as is. 
Regarding the binary topical-context attributes, the variants described by 
Escudero et al. (2000b) are considered. For kNN, the topical information is 
codified as a single set-valued attribute (containing all words appearing in 
the sentence) and the calculation of closeness is modified so as to handle 
this type of attribute. For NB, the topical context is conserved as binary 
features, but when classifying new examples only the information of words 
appearing in the example (positive information) is taken into account. 

We performed a 10-fold cross-validation experiment in order to estimate 
the performance of the systems. The accuracy figures reported below are 
micro-averaged over the results of the 10 folds and over the results on each 
of the 21 words. We have applied a paired Student’s t-test of significance 
with a confidence value of t9,0.995=3.250 (see Dietterich (1998) for infor-
mation about statistical tests for comparing ML classification systems). 
When classifying test examples, all methods are forced to output a unique 

Experiments 

sense, resolving potential ties among senses by choosing the most frequent 
sense among all those tied. 

Table 7.2 presents the results (accuracy and standard deviation) of all 
methods in the reference corpus. MFC stands for a most-frequent-sense 
classifier, that is, a naïve classifier that learns the most frequent sense of 
the training set and uses it to classify all the examples of the test set. Aver-
aged results are presented for nouns, verbs, and overall and the best results 
are printed in boldface. 
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All methods clearly outperform the MFC baseline, obtaining accuracy 
gains between 15 and 20.5 points. The best performing methods are SVM 
and AB (SVM achieves a slightly better accuracy but this difference is not 
statistically significant). On the other extreme, NB and DL are methods 
with the lowest accuracy with no significant differences between them. 
The kNN method is in the middle of the previous two groups. That is, ac-
cording to the paired t-test, the partial order between methods is: 

SVM ≈ AB > kNN > NB ≈ DL > MFC

where “A ≈ B” means that the accuracies of A and B are not significantly 
different, and “A > B” means that the accuracy of A is significantly better 
than B. 

The low performance of DL seems to contradict some previous res-
earch, in which very good results were reported with this method. One 
possible reason for this failure is the simple smoothing method applied. 
Yarowsky (1995b) showed that smoothing techniques can help to obtain 
good estimates for different feature types, which is crucial for methods like 
DL. These techniques were also applied to different learning methods in 
(Agirre and Martínez 2004b), showing a significant improvement over the 
simple smoothing. Another reason for the low performance is that when 
DL is forced to make decisions with few data points it does not make reli-
able predictions. Rather than trying to force 100% coverage, the DL paradigm 
seems to be more appropriate for obtaining high precision estimates. In 
Martínez et al. (2002) decision lists are shown to have a very high preci-
sion for low coverage, achieving 94.90% accuracy at 9.66% coverage, and 
92.79% accuracy at 20.44% coverage. These experiments were performed 
on the Senseval-2 datasets. 

In this corpus subset, the average accuracy values achieved for nouns 
and verbs are very close; the baseline MFC results are almost identical 
(46.59% for nouns and 46.49% for verbs). This is quite different from the 
results reported in many papers taking into account the whole set of 191 
words of the DSO corpus. For instance, differences of between 3 and 4 
points can be observed in favor of nouns in Escudero et al. (2000b). This is 
due to the particular subset of 13 nouns studied here, which are more diffi-
cult words. In the whole DSO corpus, the MFC for nouns (56.4%) is 
higher than in this subset (46.6%) and an AdaBoost-based system is able to 
achieve 70.8% on nouns (Escudero et al. 2000b) compared to the 66.0% on 
this subset. Also, the average number of senses per noun is higher than in 
the entire corpus. Despite this fact, a difference between two groups of 
methods can be observed regarding the accuracy on nouns and verbs. On 
the one hand, the worst performing methods (NB and DL) do better on 
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Table 7.3. Overall percentage accuracy of AB and SVM classifiers by groups of 
words of increasing average number of examples per sense. 

≤35 35–60 60–120 120–200 >200 
AB 60.19 57.40 70.21 65.23 73.93 
SVM 63.59 60.18 70.15 64.93 72.90 

nouns than on verbs. On the other hand, the best performing methods 
(kNN, AB, and SVM) are able to better learn the behavior of verb exam-
ples, achieving an accuracy value around 1 point higher than for nouns. 

Some researchers, Schapire (2003) for instance, argue that the AdaBoost 
algorithm may perform poorly when training from small samples. In order 
to verify this statement, we calculated the accuracy obtained by AB in sev-
eral groups of words sorted by increasing size of the training set, that is, 
the average number of examples per sense. Table 7.3 shows the results ob-
tained, including a comparison with the SVM method. As expected, the 
accuracy of SVM is significantly higher than that of AB for small training 
sets (up to 60 examples per sense). However, AB outperforms SVM in the 
larger training sets (over 120 examples per sense). Recall that the overall 
accuracy is comparable in both classifiers (Table 7.2). 

In absolute terms, the overall results of all methods can be considered 
quite low (61–67%). We do not claim that these results cannot be im-
proved by using richer feature representations, by a more accurate tuning 
of the systems, or by the addition of more training examples. Additionally, 
it is known that the DSO words included in this study are among the most 
polysemous English words and that WordNet is a very fine-grained sense 
repository. Supposing that we had enough training examples for every am-
biguous word in the language, it seems reasonable to think that a much 
more accurate all-words system could be constructed based on the current 
supervised technology. However, this requirement is not met at present, 
and the best current supervised systems for English all-words disambigua-
tion achieve accuracy figures around 65% (see Senseval-3 results). Our 
opinion is that state-of-the art supervised systems still have to be qualita-
tively improved in order to be really practical. 

Apart from accuracy figures, the observation of the predictions made by 
the classifiers provides interesting information about the comparison be-
tween methods. Table 7.4 presents the percentage of agreement and the 
Kappa statistic between all pairs of systems on the test sets. “DSO” stands 
for the annotation of the DSO corpus, which is taken as the correct annota-
tion. Therefore, the agreement rates with respect to DSO contain the accu-
racy results previously reported. The kappa coefficient (Cohen 1960) is a 
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Table 7.4. Kappa coefficient (below diagonal) and percentage of agreement 
(above diagonal) between all pairs of systems on the DSO corpus. 

 DSO MFC NB kNN DL AB SVM 
DSO – 46.6 61.5 63.6 61.3 66.3 67.1 
MFC –0.19 – 73.9 58.9 64.9 54.9 57.3 
NB 0.24 –0.09 – 75.2 76.7 71.4 76.7 
kNN 0.39 –0.15 0.43 – 70.2 72.3 78.0 
DL 0.31 –0.13 0.39 0.40 – 69.9 72.5 
AB 0.44 –0.17 0.37 0.50 0.42 – 80.3 
SVM 0.44 –0.16 0.49 0.61 0.45 0.65 – 

measure of inter-annotator agreement, which reduces the effect of chance 
agreement, and which has been used for measuring inter-annotator agree-
ment during the construction of some semantically annotated corpora 
(Véronis 1998, Ng et al. 1999b; see Chap. 4). A kappa value of 1 indicates 
perfect agreement, values around 0.8 are considered to indicate very good 
agreement (Carletta 1996), and negative values are interpreted as system-
atic disagreement on non-frequent cases.  

NB obtains the most similar results to MFC in agreement rate and kappa 
value. The 73.9% of agreement means that almost 3 out of 4 times it pre-
dicts the most frequent sense (which is correct in less than half of the 
cases). SVM and AB obtain the most similar results with regard to DSO in 
agreement rate and kappa values, and they have the least similar kappa and 
agreement values to MFC. This indicates that SVM and AB are the meth-
ods that best learn the behavior of the DSO examples. It is also interesting 
to note that the three highest values of kappa (0.65, 0.61, and 0.50) are be-
tween the top performing methods (SVM, AB, and kNN), and that despite 
that NB and DL achieve a very similar accuracy on the corpus, their      
predictions are quite different, since the kappa value between them is one 
of the lowest (0.39). 

The kappa values between the methods and the DSO annotation are very 
low. But as Véronis (1998) suggests, evaluation measures should be com-
puted relative to the agreement between the human annotators of the cor-
pus and not to a theoretical 100%. It seems pointless to expect more 
agreement between the system and the reference corpus than between the 
annotators themselves. Besides that, although hand-tagging initiatives that 
proceed through discussion and arbitration report fairly high agreement 
rates (Kilgarriff and Rosenszweig 2000), this is not the case when inde-
pendent groups hand-tag the same corpus separately. For instance, Ng 
et al. (1999b) report an accuracy rate of 56.7% and a kappa value of 0.317 
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when comparing the annotation of a subset of the DSO corpus performed 
by two independent research groups. Similarly, Véronis (1998) reports 
values of Kappa near to zero when annotating some special words for the 
Romanseval corpus (see Chap. 4). 

From this point of view, the kappa values of 0.44 achieved by SVM and 
AB could be considered high results. Unfortunately, the subset of the DSO 
corpus treated in this work does not coincide with Ng et al. (1999b) and, 
therefore, a direct comparison is not possible. 

Supervised methods for WSD based on machine learning techniques are 
undeniably effective and they have obtained the best results to date. How-
ever, there exists a set of practical questions that should be resolved before 
stating that the supervised approach is a realistic way to construct accurate 
systems for wide-coverage WSD on open text. In this section, we will dis-
cuss some of the problems and current efforts at overcoming them. 

One question that arises concerning supervised WSD methods is the 
quantity of data needed to train the systems. Ng (1997b) estimates that to 
obtain a high accuracy domain-independent system, about 1,000 occurrences 
of each of at least 3,200 words should be tagged. The necessary effort for 
constructing such a training corpus is estimated to be 16 person-years, acc-
ording to the experience of Ng and Lee (1996). However, Ng (1997b) sug-
gests that active learning methods, described afterwards in this section, 
could reduce the required effort significantly. 

7.4 Current Challenges of the Supervised Approach 

7.4.1 Right-Sized Training Sets 

Unfortunately, many people think that Ng’s estimate might fall short, as 
the annotated corpus produced in this way is not guaranteed to enable high 
accuracy WSD. In fact, recent studies using DSO have shown that: 1) the 
performance for state-of-the-art supervised WSD systems continues to be 
60–70% for this corpus (Escudero et al. 2001), and 2) some highly 
polysemous words get very low performance (20–40% accuracy). 

There has been some work exploring the learning curves of each differ-
ent word to investigate the amount of training data required. Ng (1997b) 
trained the exemplar-based-learning LEXAS system for a set of 137 words 
with at least 500 examples each, and for a set of 43 words with at least 
1,300 examples each. In both situations, the accuracy of the system was 
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still rising with the whole training data. In independent work, Agirre and 
Martínez (2000) studied the learning curves of two small sets of words 
(containing nouns, verbs, adjectives, and adverbs) using different corpora 
(Semcor and DSO). Words of different types were selected, taking into  
account their characteristics: high/low polysemy, high/low frequency, and 
high/low skew of the most frequent sense in Semcor. Using decision lists 
as the learning algorithm, they observed that Semcor is not big enough to 
get stable results. However, on the DSO corpus, results seemed to stabilize 
for nouns and verbs before using all the training material. The word set 
tested in DSO had on average 927 examples per noun, and 1,370 examples 
per verb. 

The importance of having enough examples is also highlighted in our 
experiment above (Sect. 7.3.2), where the best performance is clearly 
achieved on the words with the most examples (more than 200 per sense). 

The porting of corpora to new genre/domains also presents important chal-
lenges. Some studies show that the assumptions for supervised learning do 
not hold when using different corpora, and that there is a dramatic degra-
dation of performance (cf. domain-specific WSD, Chap. 10). 

Escudero et al. (2000c) studied the performance of some ML algorithms 
(Naïve Bayes, exemplar-based learning, decision lists, AdaBoost, etc.) 
when tested on a different corpus (target corpus) than the one they were 
trained on (source corpus), and explored their ability to adapt to new domains. 
They carried out three experiments to test the portability of the algo-
rithms. For the first and second experiments, they collected two          
equal-sized sets of sentence examples from the WSJ and Brown Corpus 
portions of the DSO corpus. The results obtained when training and testing 

7.4.2 Porting Across Corpora 

across corpora were disappointing for all ML algorithms tested, since sig-
nificant decreases in performance were observed in all cases. In some of 
them the cross-corpus accuracy was even lower than the most-frequent-
sense baseline. A tuning technique was applied that added an increasing 
percentage of supervised training examples from the target corpus; how-
ever, this did not significantly improve the accuracy of the systems. More-
over, the results achieved in this mixed training situation were only 
slightly better than training on the small supervised part of the target cor-
pus, thus making no use at all of the set of examples from the source cor-
pus.

The third experiment showed that WSJ and Brown have very different 
sense distributions and that relevant features acquired by the ML algo-
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rithms are not portable across corpora, since they were indicating different 
senses in many cases. 

Martínez and Agirre (2000) also attribute the low performance in cross-
corpora tagging to the change in domain and genre. Again, they used the 
DSO corpus and a disjoint selection of the sentences from the WSJ and 
Brown parts. In Brown, texts are classified according to predefined genres 
(reportage, religion, science-fiction, etc.); this allowed them to perform 
tests on the effect of the domain and genre on cross-corpus tagging. 

Their experiments, trained on WSJ and tested on Brown and vice versa, 
show that the performance drops significantly from the performance on 
each corpus separately. This happened mainly because there were few 
common collocations, but also because some collocations received sys-
tematically different tags in each corpus – a similar observation to that of 
Escudero et al. (2000c). Subsequent experiments were conducted taking 
into account the genre of the documents in Brown, showing that results 
were better when two independent corpora shared genre/topic than when 
using the same corpus with different genre/topic. The main conclusion is 
that the one-sense-per-collocation constraint does hold across corpora, but 
that collocations vary from one corpus to other, following genre and topic 
variations. They argued that a system trained on a specific genre/topic 
would have difficulties to adapt to new genres/topics. Besides, methods 
that try to extend automatically the set of examples for training should also 
take into account these phenomena. 

As we mentioned in the introduction, an important issue for supervised 
WSD systems is the knowledge acquisition bottleneck. In most of the 

7.4.3 The Knowledge Acquisition Bottleneck 

tagged corpora available it is difficult to find at least the required minimum 
number of occurrences per each sense of a word. In order to overcome this 
problem, a number of lines of research are currently being pursued, including: 

1. automatic acquisition of training examples, 
2. active learning, 
3. combining training examples from different words, 
4. exploiting parallel corpora, and 
5. learning from labeled and unlabeled examples. 

We will focus on the former four in this section, and devote the next sec-
tion to the latter. 
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In automatic acquisition of training examples, an external lexical source, 

Leacock et al. (1998) used a pioneering knowledge-based technique to 
automatically find training examples from a very large corpus. WordNet 
was used to obtain monosemous words semantically related to those word 
senses to be disambiguated (monosemous relatives).  

Similarly, Mihalcea and Moldovan (1999) used information in WordNet 
(e.g., monosemous synonyms and glosses) to construct queries, which later 
fed the Altavista Web search engine. Four procedures were used sequen-
tially, in a decreasing order of precision, but with increasing levels of ret-
rieved examples. Results were evaluated by hand: over 91% of the examples 
were correctly retrieved among a set of 1,080 instances of 120 word 
senses. However, the number of examples acquired did not correlate with 
the frequency of senses, and the resulting corpus was not used for training 
a real WSD system. The above two algorithms are elaborated in Chapter 9 
(Sect. 9.3.1). 

Mihalcea (2002a) generated a sense-tagged corpus (GenCor) by using a 
set of seeds consisting of sense-tagged examples from four sources: Sem-
cor, WordNet, examples created using the method above, and manually-
tagged examples from other sources (e.g., the Senseval-2 corpus). The 
method, fully described in Chap. 9 (Sect 9.3.2), boosted her system to first 
place in the Senseval-2 all-words task. 

This approach was also taken by Agirre and Martinez (2004c), where 
they rely on monosemous relatives of the target word to query the Internet 
and gather sense-tagged examples. In this case, they analyze the effect of 
the bias of the word senses in the performance of the system. They propose 

Automatic Acquisition of Training Examples 

examples from a very large untagged corpus (e.g., the Internet).  
for instance WordNet, or a sense-tagged corpus is used to obtain new 

to integrate the work from McCarthy et al. (2004) on automatically deter-
mining the predominant sense in an unlabeled corpus (see Chap. 6 (Sect. 
6.1.2)). Combining this method with their automatically sense-tagged cor-
pus, Agirre and Martinez (2004c) improve over the performance of the 
best unsupervised systems in the Senseval-2 English lexical sample. 

Following also similar ideas, Cuadros et al. (2004) present ExRetriever, 
a software tool for automatically acquiring large sets of sense-tagged ex-
amples from large collections of text or the Web. This tool has been used 
to directly compare on Semcor different types of query construction strate-
gies. Using the powerful and flexible declarative language of ExRetriever, 
new strategies can be easily designed, executed and evaluated. 
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Active learning is a technique used to choose informative examples for 
manual-tagging in order to reduce the acquisition cost. Argamon-Engelson 
and Dagan (1999) describe two main types of active learning: membership 
queries and selective sampling. In the first approach, the learner constructs 
examples and asks a teacher to label them. This approach would be diffi-
cult to apply to WSD. Instead, in selective sampling the learner selects the 
most informative examples from unlabeled data. The informativeness of 
the examples can be measured using the amount of uncertainty in their 
classification, given the current training data. Lewis and Gale (1994) use a 
single learning model and select those examples for which the classifier is 
most uncertain (uncertainty sampling). Argamon-Engelson and Dagan 
(1999) propose another method, called committee-based sampling, which 
randomly derives several classification models from the training set, and 
the degree of disagreement among them is used to measure the informa-
tiveness of the examples. Regarding WSD, Fujii et al. (1998) applied 
selective sampling to the acquisition of examples for disambiguating verb 
senses, in an iterative process with human taggers. The disambiguation 
method was based on nearest neighbor classification, and the selection of 
examples via the notion of “training utility”. Utility is determined based on 
two criteria: number of neighbors in unsupervised data (i.e., examples with 
many neighbors will be more informative in next iterations), and similarity 
of the example with other supervised examples (the less similar, the more 

Active Learning 

interesting). A comparison of their method with uncertainty and committee-
based sampling showed a significantly better learning curve for the training 
utility approach. 

In the OMWE data (Chklovski and Mihalcea 2002) (see Sect. 7.2.1 
above), examples are selected for tagging by selective sampling. Two dif-
ferent classifiers are independently applied on untagged data. The classifi-
ers have low inter-annotator agreement, but high accuracy when they agree 
(and low accuracy when they disagree). This makes the disagreement cases 
the hardest to annotate, therefore they are presented to the user. 

Another recent trend to alleviate the knowledge acquisition bottleneck is 
the combination of training data from different words. Kohomban and Lee 
(2005) build semantic classifiers by merging the training data from words 
in the same semantic class. Once the system selects the class, simple heu-
ristics are applied to obtain the fine-grained sense. The classifier follows 

Combining Training Examples from Different Words 
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the memory-based learning paradigm, and the examples are weighted     
according to their semantic similarity to the target word (computed using 
WordNet similarity; see Chap. 5 (Sect. 5.3.1)). Their final system im-
proved over the best system of the Senseval-3 all-words competition. An-
other approach that uses training data from different words is presented by 
Niu et al. (2005). They build a word-independent model to compute the 
similarity between two contexts. A Maximum Entropy algorithm is trained 
with the all-words Semcor corpus, and the model is used for clustering the 
instances of a given target word. Evaluation is a problem in clustering    
approaches (see Chap. 6 (Sect. 6.3.2)), and in this case they map the clus-
ters to the Senseval-3 lexical sample data by looking at 10% of the exam-
ples in the training data. Their final system obtained the best results for   
unsupervised systems on the English Senseval-3 lexical sample task. 

Methods that use bilingual corpora rely on the fact that the different senses 
of a word in a given language are translated using different words in an-
other language. For example, the Spanish word partido translates to match
in English in the sports sense and to party in the political sense. Therefore, 
if a corpus is available with a word-to-word alignment, when a translation 
of a word like partido is made, its English sense can be automatically de-
termined as match or party. Gale et al. (1993) used an aligned French-

Parallel Corpora 

English corpus and achieved 92% accuracy. Working with aligned corpora  
has the obvious limitation that the learned models are able to distinguish 
only those senses that are translated into different words in the other lan-
guage.

Another potential source for automatically obtaining WSD training data 
is parallel corpora. This approach was already suggested a few years ago 
by Resnik and Yarowsky (1997) but only recently has been applied to real 
WSD. The key point is that by using the alignment tools from the statisti-
cal machine translation community one can align at word level all the sen-
tence pairs in both languages using unsupervised techniques. By using the 
alignments in the two directions and some knowledge sources (e.g., 
WordNet) to test consistency and eliminate noisy alignments, one can ex-
tract all possible translations for each given word in the source language, 
which, in turn, can be considered as the relevant senses to disambiguate. 
Two recent papers present very promising evidence for the validity of this 
approach (Tufi  et al. 2004, Chan and Ng 2005). The latter validates the 
approach by evaluating on the Senseval-2 all-words task (restricted to 
nouns) by mapping the coarse-grained “senses” of translation pairs to the 
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fine-grained sense inventory of WordNet. They conclude that using a 680 
megabyte Chinese-English parallel corpus is enough to achieve the accu-
racy of the best Senseval-2 system at competition time. (Chapters 6 (Sect. 
6.4), 9 (Sect. 9.3.4), and 11 (Sect. 11.4.3) discuss translational equivalence 
and WSD.) 

As a way to partly overcome the knowledge acquisition bottleneck, some 
methods have been devised for building sense classifiers when only a few 
annotated examples are available together with a high quantity of unanno-
tated data. These methods are often referred to as bootstrapping methods 
(Abney 2002, 2004). Among them, we can highlight co-training (Blum 
and Mitchell 1998), their derivatives (Collins and Singer 1999; Abney 
2002, 2004), and self-training (Nigam and Ghani 2000).  

Briefly, co-training algorithms work by learning two complementary 
classifiers for the classification task trained on a small starting set of la-
beled examples, which are then used to annotate new unlabeled examples. 
From these new examples only the most confident predictions are added to 
the set of labeled examples, and the process starts again with the re-
training of classifiers and re-labeling of examples. This process may con-
tinue for several iterations until convergence, alternating at each iteration 
from one classifier to the other. The two complementary classifiers are 

7.4.4 Bootstrapping 

constructed by considering two different views of the data (i.e., two differ-
ent feature codifications), which must be conditionally independent given 
the class label. In several NLP tasks, co-training has provided moderate 
improvements with respect to not using additional unlabeled examples. 

One important aspect of co-training consist on the use of different views 
to train different classifiers during the iterative process. While Blum and 
Mitchell (1998) stated the conditional independence of the views as a re-
quirement, Abney (2002) shows that this requirement can be relaxed. 
Moreover, Clark et al. (2003) show that simply re-training on all the newly 
labeled data can, in some cases, yield comparable results to agreement-
based co-training, with only a fraction of the computational cost. 

Self-training starts with a set of labeled data, and builds a unique classi-
fier (there are no different views of the data), which is then used on the 
unlabeled data. Only those examples with a confidence score over a certain 
threshold are included in the new labeled set. The classifier is then re-
trained on the new set. This process continues for several iterations. Notice 
that only a single classifier is derived. The Yarowsky bootstrapping 
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sentative of this family of algorithms. 
Mihalcea (2004) introduced a new bootstrapping scheme that combines 

co-training with majority voting, with the effect of smoothing the boot-
strapping learning curves and improving the average performance. How-
ever, this approach assumes a comparable distribution of classes between 
both labeled and unlabeled data (see Sect. 7.4.2). At each iteration, the 
class distribution in the labeled data is maintained by keeping a constant 
ratio across classes between already labeled examples and newly added 
examples. This requires one to know a priori the distribution of sense 
classes in the unlabeled corpus, which seems unrealistic. 

Pham et al. (2005) also experimented with a number of co-training vari-
ants on the Senseval-2 lexical sample and all-words tasks, including the 
ones in Mihalcea (2004). Although the original co-training algorithm did 
not provide any advantage over using only labeled examples, all the so-
phisticated co-training variants obtained significant improvements (taking 
Naïve Bayes as the base learning method). The best reported method was 
Spectral Graph Transduction Co-training.  

Another current trend in WSD is the automatic selection of features. Some 
recent work has focused on defining separate feature sets for each word, 

7.4.5 Feature Selection and Parameter Optimization  

algorithm (Yarowsky 1995a) (see Sect. 7.2.4 above) is the best known repre-

claiming that different features help to disambiguate different words. The 
exemplar-based learning algorithm is very sensitive to irrelevant features, 
so in order to overcome this problem Mihalcea (2002b) used a forward-
selection iterative process to select the optimal features for each word. She 
ran cross-validation on the training set, adding the best feature to the opti-
mal set at each iteration, until no improvement was observed. The final 
system achieved good results in the Senseval-2 competition. 

Very interesting research has been conducted connecting parameter    

determine the method with the best bias for WSD, there are large varia-
tions on performance depending on three factors: algorithm parameters, 
input representation (i.e., features), and interaction between both. They 
claim that changing any of these factors produces large fluctuations in    
accuracy, and that exhaustive optimization of parameters is required in or-
der to obtain reliable results. They argue that there is little understanding 
of the interaction among the three influential factors, and while no funda-

optimization and feature selection. Hoste et al. (2002b) observed that
although there have been many comparisons among ML algorithms trying to 
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mental data-independent explanation is found, data-dependent cross-
validation can provide useful clues for WSD. In their experiments, they 
show that memory-based WSD benefits from optimizing architecture, in-
formation sources, and algorithmic parameters. The optimization is carried 
out using cross-validation on the learning data for each word. In order to 
do it, one promising direction is the use of genetic algorithms (Daelemans 
and Hoste 2002), which lead to very good results in the Senseval-3 English 
all-words task (Decadt et al. 2004) – though the results were less satisfac-
tory in the English lexical sample task. 

Martínez et al. (2002) made use of feature selection for high precision 
disambiguation at the cost of coverage. By using cross validation on the 
training corpus, a set of individual features with a discriminative power 
above a certain threshold was extracted for each word. The threshold pa-
rameter allows one to adjust the desired precision of the final system. This 
method was used to train decision lists, obtaining 86% precision for 26% 
coverage, or 95% precision for 8% coverage on the Senseval-2 data. In 
principle, such a high precision system could be used to acquire almost 
error-free new examples in a bootstrapping framework. 

Another approach to feature engineering consists of using smoothing 
methods to optimize the parameters of the models. Agirre and Martinez 
(2004c) integrate different smoothing techniques from the literature with 
four well-known ML methods. The smoothing techniques focus on the dif-
ferent feature types and provide better probability estimations for dealing 
with sparse data. They claim that the systems are more robust when inte-
grating smoothing techniques. By combining the individual methods, the 
best ensemble of algorithms improves the best results in the English Sen-
seval-2 lexical sample task. 

The combination paradigm, known as ensembles of classifiers, is a very 
well-known approach in the machine learning community. It helps to 
reduce variance and to provide more robust predictions for unstable base 
classifiers. The key for improving classification results is that the different 
classifiers combined commit non-correlated errors. For an in-depth analy-
sis on classifier combination one may consult Dietterich (1997). The 
AdaBoost algorithm already explained in Sections 7.2.4 and 7.3.1, above, 
can be seen as a method of constructing an ensemble of classification 
rules. When the different classifiers are heterogeneous (e.g., coming from 
different learning algorithms), an important issue is to define an appropriate 

7.4.6 Combination of Algorithms and Knowledge Sources 
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combination scheme to decide an output class from individual predictions. 
The most common combination schemes are based on a weighted voting 
strategy with a winner-take-all rule. Sometimes, an additional learning 
problem can be set in order to learn how to combine the available classifi-
ers. In this case we talk about meta-learning.  

The integration of heterogeneous ML methods and knowledge sources 
in combined systems has been one of the most popular approaches in 
recent supervised WSD systems, including many of the best performing 
systems at the Senseval-2 and Senseval-3. For instance, the JHU-English 
system (Yarowsky et al. 2001, Florian et al. 2002), which used a voting 
scheme, obtained the best performance at the English lexical sample task 
in Senseval-2. Based on this architecture, Yarowsky and Florian (2002) 
carried out a large set of experiments evaluating different parameter set-
tings. The main conclusions of their study are that the feature space has 
significantly greater impact than the algorithm choice, and that the combi-
nation of different algorithms helps to construct significantly more robust 
WSD systems.  

In Agirre et al. (2005) we find an example of recent work on dealing 
with the sparseness of data by means of combining classifiers with differ-
ent feature spaces. Three possible improvements of the system are tested: 
i) applying Singular Value Decomposition (SVD) to find correlations in 
the feature space, ii) using unlabeled data from a related corpus for back-
ground knowledge, and iii) partitioning the feature space and training    
different voting classifiers. They found that each of the parameters im-
proves the results of their kNN learner, and overall they obtained the best 
published results on the English Senseval-3 lexical sample task. 

The use of ensembles helps to improve results in almost all learning 
scenarios and it constitutes a very helpful and powerful tool for system 
engineering. However, the improvement obtained by the majority of com-
bined WSD systems is only marginal. Thus, our impression is that combi-
nation itself is not enough and other issues such as the knowledge taken 
into account must be addressed for overcoming the limitations of the cur-
rent supervised systems. 

Another approach is the combination of different linguistic knowledge 
sources to disambiguate all the words in the context, as in Stevenson and 
Wilks (2001). In this work, they integrate the answers of three partial tag-
gers based on different knowledge sources in a feature-vector representa-
tion for each sense. The vector is completed with information about the 
sense (including rank in the lexicon), and simple collocations extracted 
from the context. The TiMBL memory-based learning algorithm is then 
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applied to classify the new examples. The partial taggers apply the follow-
ing knowledge: i) dictionary definition overlap, optimized for all-words by 
means of simulated annealing, ii) selectional preferences based on syntac-
tic dependencies and LDOCE codes, and iii) subject codes from LDOCE 
using the Yarowsky (1992) algorithm (see Chap. 10). They obtained very 
good results, with accuracies over 90% in this experimental setting under 
the LDOCE sense inventory.

Montoyo et al. (2005) present a different approach to combination. 
Their work explores three different schemes of collaboration between 
knowledge-based and corpus-based WSD methods. Two complementary 
methods are presented: Specification Marks and Maximum Entropy. The 
results show that the combination of both methods outperforms each of 
them individually, demonstrating that both approaches can collaborate to 
obtain an enhanced WSD system. 

This chapter has presented the state of the art of the supervised approach to 
WSD, which consists of automatically inducing classification (or disam-
biguation) models from examples. We started by introducing the machine 
learning framework for classification, including an in-depth review of the 
main ML approaches present in the WSD-related literature. We focused on 

7.5 Conclusions and Future Trends 

the following issues: learning paradigms, corpora used, sense repositories, 
and feature representation. We included a description of five machine 
learning algorithms, which we experimentally evaluated and compared in a 
controlled framework. Finally, we briefly described some of the current 
challenges of the supervised learning approach. 

The supervised approach to WSD makes use of semantically annotated 
corpora to train machine learning algorithms in order to decide which word 
sense to choose in which contexts. The words in these annotated corpora 
are manually tagged with semantic classes taken from a particular lexical-
semantic resource. Many standard ML techniques have been investigated 
on the literature, including: probabilistic models, exemplar-based learning, 
decision lists, and, more recently, learning methods based on rule combi-
nation (like AdaBoost), and kernel functions and margin maximization 
(like Support Vector Machines). 

Despite the work devoted to the task, it can be said that no large-scale 
broad-coverage accurate WSD system has been built up to date (Snyder 
and Palmer 2004). Although performance figures reported greatly vary 
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from work to work (depending on the sense inventory used, the experi-
mental setting, the knowledge sources used, etc.) it seems clear that the 
performance of current state-of-the-art systems is still below the opera-
tional threshold, making it difficult to empirically test the advantages of 
using WSD components in a broader NLP system that addresses a real task 
(see Chap. 11 for WSD in applications). Therefore, we still consider WSD 
as an important open problem in NLP. 

As we have seen in Senseval, machine learning classifiers are undenia-
bly effective, but, due to the knowledge acquisition bottleneck, they will 
not be feasible until reliable methods for acquiring large sets of training 
examples with a minimum human annotation effort are available. Further-
more, automatic methods for helping in the collection of examples should 
be robust to noisy data and changes in sense frequency distributions and 
corpus domain (or genre). The WSD classifiers should be also noise-
tolerant (both in class-label and feature values), easy to adapt to new 
domains, robust to overfitting, and efficient for learning thousands of 
classifiers using large training sets and high-dimensional feature spaces.  

The interrelated use of the individually learned classifiers in order to ob-
tain a full text disambiguation (e.g., in an all-words scenario) is an issue 
that still has to be faced. A solution to this problem might have important 
implications in the way in which individual classifiers are learned.  

In order to make significant advances in the performance of current su-
pervised WSD systems, we also think that the feature representation must 
be enriched with a set of features with linguistic knowledge that is not cur-
rently available in wide-coverage lexical knowledge bases. We refer, for 
instance, to sub-categorization frames, syntactic structure, selectional pref-
erences, semantic roles and domain information. Moreover, future WSD 
systems will need to automatically detect and group spurious sense distinc-
tions, as well as to discover, probably in an on-line learning setting, occur-
rences of new senses in running text. 
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This chapter explores the different sources of linguistic knowledge that 
can be employed by WSD systems. These are more abstract than the features 
used by WSD algorithms, which are encoded at the algorithmic level and 
normally extracted from a lexical resource or corpora. The chapter begins by 
listing a comprehensive set of knowledge sources with examples of their 
application and then explains whether this linguistic knowledge may be 
found in corpora, lexical knowledge bases or machine readable dictionaries. 
An analysis of knowledge sources used in actual WSD systems is then 
presented. It has been observed that the best results are often obtained by 
combining knowledge sources and the chapter concludes by analyzing 
experiments on the effect of different knowledge sources which have 
implications about the effectiveness of each. 

The long history of research into word sense disambiguation has identified 
a range of linguistic phenomena, such as selectional preferences and 
domain information, that are thought to be relevant to resolving word 
sense ambiguity. We call such linguistic phenomena knowledge sources. 
Reports of WSD systems usually fail to refer to knowledge sources and 
prefer to focus on lower level features, such as “bag-of-words” or n-grams, 
used within the disambiguation algorithms. The features employed by a par-
ticular approach are relevant at the algorithmic level but there is not neces-
sarily a clear theoretical connection to the more abstract choice of the 
knowledge source chosen to resolve word sense ambiguity. One reason 
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for this complication is that features may encode more than one linguistic 
knowledge source, and vice versa. We think an analysis in terms of knowl-
edge sources allows deeper insight into why WSD algorithms work, and 
ultimately into the phenomenon of polysemy itself. 

This chapter aims to clarify the distinctions and relations between lin-
guistic knowledge sources, features, and the lexical resources used for 
WSD. We first present the terminology used throughout this chapter:  

• Knowledge Sources (KS): High-level abstract linguistic and semantic 
phenomena relevant to resolving ambiguity, for example, selectional 
preferences or the domain of each word sense (sports, military, etc.).  

• Features: Ways of encoding the context used by systems. For instance, 
the domain of a word sense can be represented by the words co-
occurring often with the word sense (bag-of-words feature) as extracted 
from sense-tagged corpora, or the domain code assigned to the word 
sense in a specific machine-readable dictionary (MRD) or lexical 
knowledge base (LKB). (Chaps. 5–7 give examples of features used by 
actual WSD algorithms). 

• Lexical Resources: The specific resources that have been used to 
extract the features in actual systems. For instance, as just mentioned, 
bag-of-words features can be extracted from sense-tagged corpora, and 
domain codes can be found in MRDs or LKBs. 

This chapter is organized as follows. In Section 8.2 we describe high 
level and abstract knowledge sources relevant to WSD. Section 8.3 
describes the features used in actual WSD systems and relates them to the 
knowledge sources they represent and the lexical resources from which 
they are acquired. Section 8.4 studies knowledge sources as used in a 
number of relevant systems. Section 8.5 presents some experimental res-
ults in the literature regarding the contribution of different knowledge 
sources and/or features, which are then analyzed in Section 8.6. Finally, 
Section 8.7 presents the conclusions drawn from this chapter. 

The literature has proposed a wide range of knowledge sources related to 
the WSD problem. In this section we provide a list, and demonstrate, with 
examples, how each can be used in a WSD system.  

Knowledge sources may belong to one of three broad classes: syntactic,

8.2 Knowledge Sources Relevant to WSD 

semantic, or pragmatic/topical (Stevenson and Wilks 2001). Syntactic
knowledge sources have to do with the role of a word within the
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soning with reference to world knowledge or information about the topic 
of the text under consideration.  

The following list elaborates previously presented lists of knowledge 
sources presented by Hirst (1987), McRoy (1992) and Agirre and Martínez 
(2001a). This list is an effort to systematize closely related linguistic 
phenomena, and often there is no clear-cut border among the knowledge 
sources. Each item is numbered for further reference. 

Part-of-speech (POS) tags indicate the grammatical category of a word and 
can be a powerful feature to disambiguate words. For example, in the 
Longman Dictionary of Contemporary English (LDOCE) (Procter 1978) 
the word fast has four major senses, each applying to a different part-
of-speech category (noun, verb, adjective, and adverb). In this case know-
ing the relevant part of speech is sufficient information to disambiguate the 
word. However, this is not the case for all words and, in particular, is not 
useful for homographs. For example, bank has (at least) two senses in 
which the word can be used as a noun, ‘financial institution’ and ‘edge of 
river’, and knowledge of the part of speech in context will not provide any 
indication of which of these is being used in a particular context (Wilks 
and Stevenson 1998). 

The morphological behavior of a word can be relevant for WSD. Some 
morphological forms cannot be associated with certain senses, so if a word 
is used in that form then the sense can be ruled out. For example, tins can 
be either the plural of the noun tin or the third person singular form of the 
verb to tin, as in John tins food for a living. There are two nominal senses 
for tin, ‘small metal container’ and ‘metal’. The second of these is a mass 
noun and so cannot be the intended sense when the word is used in plural 
form. 

relates to the role of the word within the wider discourse, for example rea-

8.2.1 Syntactic 

Part of Speech (KS 1) 

Morphology (KS 2) 

perties of the things to which words refer, for example selectional preferen- 
subcategorization information. Semantic knowledge sources relate to pro-
grammatical structure of sentences; examples are part-of-speech tags and 

ces and associations between word meanings. Pragmatic/topical knowledge
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This knowledge source is often more effective in languages that have 
richer morphologies than English. In Basque, for instance, certain suffixes 
can only be composed with animate nouns. For example, the word lapur 
can mean ‘electrical appliance’ or ‘robber’, but it can only mean ‘robber’ 
in lapurrarengana (‘to the robber’), because the suffix arengana only 
attaches to animate nouns. 

Collocations have been defined as “any statistically significant co-occurrence 
[of words]” (Sag et al. 2002:8). At one end of the scale are collocations 
that cannot be analyzed by decomposition, for example, kick the bucket 
and take the biscuit. This class of collocations can only be disambiguated 
by explicitly storing the phrase and an associated meaning. At the other end 
of the scale are collocations that can be analyzed by decomposition into con-
stituent lexemes. However, these may not be completely productive since 
they block alternative rephrasing using synonyms. For example, motor car 
cannot be rephrased as engine car or motor automobile. Although it is 
possible to analyze these collocations without storing an explicit 
meaning for each, there is a benefit from doing so since their semantics 
differ from standard productive word combinations and so may cause 
problems during disambiguation. Besides, collocations have proved to be a 
useful knowledge source. For example, in the phrase river bank the fact 
that the word bank is immediately preceded by river indicates that it is 
used in its ‘edge of river’ sense. 

Subcategorization information can be a useful knowledge source. For ex-
ample, the verb to grow is intransitive when it is used in the ‘become big-
ger’ sense (John grew quickly) but transitive in all other senses (John grew 
the plants).  

The distribution of senses in text is far from uniform (Resnik and 
Yarowsky 1997). Knowledge about the a priori distribution is useful in-
formation for WSD (McCarthy et al. 2004). For example, there are 4 
senses of people in WordNet 1.6 (Fellbaum 1998) but only one of them 

Collocations (KS 3) 

Subcategorization (KS 4) 

8.2.2 Semantic 

Frequency of Senses (KS 5) 
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accounts for 90% of occurrences in the Semcor sense-tagged corpus 
(Miller et al. 1993) (see Chap. 4). 

The relationship between the meanings of different words and senses is 
very valuable for WSD. They can be divided into two main classes: para-
digmatic and syntagmatic (Kriedler 1998).  

associations between the meanings of words. Examples are hypernymy, 
the relation between a word and a more general term (e.g., vehicle is a hy-
pernym of car) and meronymy, the part-whole relationship (e.g., mast is 
a meronym of ship). In the sentence Cherry is a type of tree common in 
Japan there is a hypernymy relation between cherry and tree which im-
plies that in this context cherry means ‘plant’ rather than ‘fruit’. Another 
example in which paradigmatic relations come into play is when the con-
text implies that words are being used in similar meanings. For example, in 
The guests may choose between duck or beef the fact that duck and beef are 
coordinated implies that there is a paradigmatic relation between them. In 
fact, both words have two senses with a common hypernym (‘meat’) in 
WordNet, and therefore the ‘meat’ readings of duck and beef can be 
selected. 

associations between words in sentences with respect to various syntactic 
dependency relationships. For example, in The dog bit the postman the 
direct object of bit is a strong indicator that the word is being used in the 
‘attack’ sense. These relations can be seen as a restriction of collocations, 
where the words in the collocation need to be in a syntactic dependency 
relation. Although these kind of relations could also be classified as syn-
tactic, we would like to stress that such word pairs are also semantically 
related. Thus, the semantic-word-association knowledge source includes 
all types of semantic relation.  

Verbs and adjectives often expect words of a specific semantic class as the 
fillers to their argument slots (Cruse 1998). In the ideal scenario these 
preferences may be used to disambiguate several words at once. For ex-
ample, two senses of the word stake are ‘post’ and ‘bet’, which have the 
semantic types, say, ‘implement’ and ‘abstract’, respectively; the verb 

Semantic Word Associations (KS 6) 

Paradigmatic Relations (KS 6a). Paradigmatic relations are defined as 

Syntagmatic Relations (KS 6b). Syntagmatic word relations describe the 

Selectional Preferences (KS 7) 
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drove expects a direct object of type, say, ‘vehicle’ (drive the truck) or 
‘implement’ (drive the nail ). There is only one possible combination of 
noun and verb senses satisfying these preferences in the sentence John 
drove the stake into the ground. 

An important aspect of selectional preferences is that the slot fillers are 
expressed in terms of a set of abstract semantic types that are often organ-
ized into a hierarchy (Wilks 1975). The syntagmatic relations (KS 6b) 
above are similar to selectional preferences (Resnik 1997) but express the 
constraints in terms of sets of words representing potential slot fillers 
rather than abstract semantic types that generalize over the set of words. 

Semantic roles (Fillmore 1971) are closely related to selectional prefer-
ences (KS 7) and subcategorization of verbs (KS 4). For example, in the 
sentence The bad news will eat him, the object of eat fills the experiencer 
role (as opposed to the theme role), and this fact can be used to better con-
strain the possible senses of eat, together with the selectional preferences 
of eat. 

Knowledge of the domain of the text in which a word is used can be useful 
for WSD. For example, if we find the word bat in a text known to be about 
sports, then it is more likely that the ‘sports’ sense of bat is the one used in 
the text. In this chapter, we assume that the domain is a label drawn from 
an externally-defined list. Example domain labels are the metadata manually 
added to newswire stories, subject codes in LDOCE, or the output of an 
automatic process such as a text categorization system (see Chap. 10). 

It is known that words appearing together in text are likely to be linked to a 
common topic. Also, there may be no explicit representation of the domain 
(i.e., domain labels) for a collection of texts. Topical word associations re-
fer to the knowledge about which pairs of word senses are likely to appear 
together in texts on the same topic. By topic we mean here any domain or 
specialization of a domain, depending on the target application and docu-
ment collection; it might range from, for example, ‘sports’ in general to the 

Semantic Roles (KS 8) 

8.2.3 Pragmatic/Topical 

Domain (KS 9) 

Topical Word Association (KS 10)  
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‘2004 Olympic Games’. For instance, racket and court are topically related 
and disambiguate each other without the need for an explicit domain label 
(KS 9). These word associations are also different from the paradigmatic 
associations (KS 6a) since the words may be of different ontological 
types. Topical word associations are also related to syntagmatic word 
associations (KS 6b), but in the latter the two associated words must be 
syntactically related, and need not be topically related. The same goes for col-
locations (KS 3), which may not be associated with any particular topic.  

In some cases, world knowledge, and reasoning with it, is necessary for 
disambiguation. The ALPAC report (ALPAC 1966) used this as evidence 
that WSD was too difficult a problem to be solved by computer. Their argu-
ment was motivated by an example sentence from Bar-Hillel (1964) (see 
also Chap. 11 (Sect. 11.2)): The box was in the pen. This sentence can only 
be disambiguated using knowledge of the relative physical sizes of two 
senses of pen: ‘writing implement’ and ‘enclosure’. However, examples 
like this are unusual and the majority of word occurrences can be disam-
biguated using more basic knowledge sources (Yarowsky 1996). 

Certain knowledge sources provide categorical evidence as to the word 
sense used or disallowed by a particular context, but most of them provide 
heuristic knowledge. For example, the word star has (at least) two nominal 
senses (‘celestial body’ or ‘celebrity’) and one verbal sense (‘to be the 
star of a performance’). In the sentence, due to Charniak (1983), The 
astronomer married the star, the evidence provided by the part-of-speech 
information can be used to categorically rule out the verb sense. However, 
the correct sense cannot be found by choosing the one that is topically 
related to astronomer, a technique that is successful in many other cases. 
This sentence can be disambiguated via other knowledge sources, such as 
the selectional preferences of the verb to marry. 

The knowledge sources outlined in the previous section are all relevant to 
the disambiguation decisions made by WSD algorithms. However, in order 
to be applied they need to be coded as features, which need to be identifi-
able in text. These features need to be derived from lexical resources, such 
as corpora, MRDs, or LKBs. Corpora used in WSD may be tagged with 
word senses although they need not be. Sense-tagged corpora (as opposed 

Pragmatics (KS 11) 

8.3 Features and Lexical Resources  
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to untagged corpora) are far more useful for WSD since it is then easy to 
examine the behavior of a word used in a particular sense. However, the 
main disadvantage of tagged text is that it is extremely time-consuming to 
produce (see Chap. 4). Researchers have also tried to use the information 
contained in structured lexical resources including LKBs (e.g., WordNet), 
and MRDs (e.g., LDOCE). 

Different lexical resources contain different types of disambiguation in-
formation; consequently, WSD methods have often been tailored around 
the available lexical resources. Chapters 5–7 present a variety of algo-
rithms using structured lexical resources, untagged corpora, and tagged 
corpora, respectively. 

We now present a list of the features which are commonly used in WSD 
systems. Following each feature is a description of the knowledge source 
(or sources) and lexical resource from which it may be obtained. Accord-
ing to the scope of the context, the features are grouped into three catego-
ries: target-word-specific1 features, local features, and global features. In 
the end of this section, Figure 8.1 summarizes the relation among knowl-
edge sources and features, where we can see that the relation is in most 
cases many-to-many.  

Word Form of Target Word. This feature may partially encode POS and 
morphology (KS 1 and KS 2), depending on the language. 

Part of Speech of Target Word. A direct encoding of POS (KS 1). The 
part of speech of a lexeme is one of the most readily identifiable features. 
It is available in lexicons commonly used for WSD and these can be used 
to determine the grammatical category for each sense. The part of speech 
of a word in context can be identified using one of the many taggers (for 
example, the Brill tagger (Brill 1995)). 

Sense Distribution of the Target Word. Directly encodes the frequency 
of senses (KS 5). In principle this distribution could be found by analyzing 
a tagged corpus. However, this would suffer from data sparseness prob-
lems unless the corpus was extremely large and the annotation of high 
quality. No appropriate resource is currently available, but some lexical 
resources attempt to order the senses in terms of their frequency of 

                                                      
1 “Target word” refers to the word being disambiguated. 

8.3.1 Target-Word Specific Features 

occurrence, however, the dictionary creators are also limited by the lack
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           1 Part of speech  
           2 Morphology 

           3 Collocations 
           4 Subcategorization 
            5 Frequency of senses 
           6a Semantic word association, paradigmatic 
           6b Semantic word association, syntagmatic 
            7 Selectional preferences 
            8 Semantic roles 
           9 Domain 
            10 Topical word association 
            11 Pragmatics 

Fig. 8.1. Relation between knowledge sources (rows) and commonly used features 
(columns). Two of the rows (KS 8 and KS 11) have no related features. 

of appropriate sense-tagged corpora and the ordering is often subjective 
(Kilgarriff 1997). 

Local Patterns. Some of the most commonly used features in WSD sys-
tems are local patterns around the target word. These partially encode sev-
eral knowledge sources: collocations (KS 3), subcategorization (KS 4) and 
syntagmatic semantic word associations (KS 6b). The local patterns around 
the target word have many potential forms that vary in terms of their extent 
and fillers. Possible extent of patterns include n-grams around the target 
word, n-th word to the right or left of the target, and nth word with a certain 
property to the left or right of the target. Several features in the context 
could be used to fill these patterns such as word forms in text, word lem-
mas, their part of speech tags, or a mixture of these. Example patterns 
under this definition include trigrams containing the target word and the 

8.3.2 Local Features 
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two words immediately to the left, bigrams containing POS tags of the first 
two words to the right of the target, and bigrams composed of the target 
and the first noun to its right. 

These features are most easily extracted from a tagged corpus. In an 
untagged corpus it is difficult to tell which senses of the word the patterns 
apply to. Consequently this feature is most commonly used with super-
vised approaches to WSD (see Chap. 7) where the system has access to 
tagged training data (Brown et al. 1991, Gale et al. 1993, Ng and Lee 
1996). 

Subcategorization. Directly encodes KS 4. Details of a word’s subcatego-
rization behavior are most easily obtained from tagged corpora using a 
robust parser (e.g., Minipar (Lin 1993) or RASP (Carroll and Briscoe 
2001)). Martínez et al. (2002) used Minipar to derive subcategorization 
information for verbs from tagged corpora. For instance, from The unfor-
tunate hiker fell-1 into a crevasse2 we can derive that the first sense of the 
verb to fall allows for a subject but no other arguments. Some dictionaries 
(e.g., LDOCE and WordNet) list information about the syntactic behavior 
of words although this has not been extensively used in WSD. 

Syntactic Dependencies. This feature encodes syntagmatic relations (KS 
6b). The dependencies of a particular word sense can be extracted from a 
corpus which is parsed and tagged with word senses (Lin 1997, Yarowsky 
and Florian 2002). 

Selectional Preferences. A direct encoding of KS 7. This information is 
not included in all lexicons but may be included in hand-crafted ones such 
as those used by Wilks (1978) and McRoy (1992). MRDs often include selec-
tional preference information. For example, LDOCE has relatively detailed 
information based on a set of 36 semantic types that Stevenson (2003) 
used for disambiguation. WordNet also includes some selectional prefer-
ence information although it is limited to simple types such as “somebody” 
and “something” for the arguments of verb senses and these are of little 
practical use as an information source. Methods have also been devised to 
acquire selectional preferences automatically from untagged corpora (Res-
nik 1997, McCarthy et al. 2001) and tagged, parsed corpora (Agirre and 
Martínez 2001b) (see Chap. 5 (Sect. 5.4) for more details). 

                                                      
2 We use fell-1 to indicate that fell in that sentence has been hand-tagged with the 
first sense of the verb to fall in WordNet. 
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Bag-of-Words. Partially encodes semantic and topical word associations 
(KS 6b and KS 10), as well as domain information (KS 9). Bag-of-words 
features consist of a wide context window around the target word. This 
context is encoded as a simple list of the words in that window and how 
often they occur there. Other forms of the feature might consist of counts 
of bigrams in the context. These features can be extracted from text with 
no linguistic processing other than tokenization. Most WSD systems use 
this kind of feature. 

Relation to Words in Context. Partially encodes semantic and topical 
word associations (KS 6 and KS 10), as well as domain information (KS 
9). This feature has been typically extracted from dictionary definitions. 
The first proposal for using definitions to identify semantic and topical 
word associations came from Lesk (1986), who suggested that counting 
the number of content words shared by the definitions of two senses pro-
vided a measure of semantic relatedness. Recent work has looked at com-
bining corpus evidence with dictionary definitions (see Chap. 5). 

Similarity to Words in Context. Encodes paradigmatic relations (KS 6a). 
Taxonomical information such as that contained in WordNet can be used 
to find the similarity between the senses of the target word and the words 
in the context (Patwardhan et al. 2003) (see Chap. 5). 

ources list the most likely domain for a sense. For example, LDOCE uses a 
set of 100 subject codes (and 246 subdivisions), so the ‘railway track’ 
sense of track is marked with the ‘Railway’ subject code and the ‘album 
track’ sense with ‘Music’. A thesaurus, such as Roget’s International Thesaurus 
(Chapman 1977), also includes domain codes in the form of the categories 
into which the words are organized.  

The main challenge in using domain codes in WSD is to find a way to 
accurately identify the domain. In addition, most lexicons are structured in 
such a way that there is a unique sense for each domain and therefore iden-
tifying the domain of the target word is equivalent to disambiguating it. 
For example, Yarowsky (1992) used bag-of-words features to model Roget 
categories and disambiguated ambiguous words by comparing their con-
texts with the model acquired for each category. Domain codes can also be 
applied more directly, for example Stevenson and Wilks (2001) used 
LDOCE subject codes by choosing the senses for words in a paragraph 
that maximize the number of shared codes. (See Chap. 10 (Sect. 10.2.1).) 

8.3.3 Global Features 

Domain Codes. Encodes domain information (KS 9). Some lexical res-



228      Agirre and Stevenson  

Note that some of the above features offer overlapping and somehow 
redundant information. For example, a relevant argument-head relation 
such as bit:postman in The dog bit the postman can appear as a local pat-
tern (e.g., the word trigram bit the postman), a syntactic dependency, or as 
a bag-of-words feature (i.e., postman in the context of bit). This redun-
dancy and overlap is reflected in the mapping in Fig. 8.1. 

Different knowledge sources have been favored at different times during 
the history of WSD research. Some of the early WSD systems enjoyed 
access to rich sets of, generally hand-crafted, knowledge sources. For ex-
ample, Wilks’s preference semantics (Wilks 1975) relied on extraction pat-
terns which described the relations between content words in a text. Each 
ambiguous word had a set of senses that listed its selectional preferences 
(KS 7), the sole knowledge source used for disambiguation. However, 
Boguraev (1979) found that this approach did not work well for polyse-
mous verbs. Hirst (1987) created a system, called “polaroid words”, that 
contained a grammar, parser, lexicon, and semantic interpreter all based 
around a specialized knowledge representation language. Small’s “word 
expert” approach (Small 1980) also had access to rich knowledge sources 
although in this case they were all stored in the lexicon as hand-crafted 
disambiguators. It is difficult to determine exactly which of the knowledge 
sources Hirst’s and Small’s systems had access to although it is clear that a 
wide range was employed. The above systems each relied on hand-crafted 
knowledge sources which were restricted by limited lexical coverage to 
small domains and did not scale up well to larger applications.  

McRoy’s system (McRoy 1992) was not limited to a particular domain. 
It used of a system of “core” and “dynamic” (or domain-specific) lexicons, 
the first applied to all texts while the dynamic lexicons are only used when 
the text being disambiguated is identified as being on the same topic as the 
lexicon. These lexicons were bespoke data sources for WSD and were 
complemented by several others including a concept hierarchy, a library of 
collocation patterns, semantic classes, selectional preferences, role-related 
expectations as well as part-of-speech tags and morphological information. 
These features encode the majority of knowledge sources outlined in Sec-
tion 8.2. However, her system was not evaluated against a tagged corpus.  

We have already mentioned Lesk (1986) (see Sect. 8.3.3), who deve-
loped an approach to WSD that has often been duplicated using dictionary 

8.4 Identifying Knowledge Sources in Actual Systems 
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definitions as the sole source of disambiguation information (KS 6, 9, and 
10). Disambiguation was carried out by computing the overlap of content 
words in the definitions. Cowie et al. (1992) used the LDOCE subject 
codes as an additional source of information (KS 9). 

A more recent approach has been to make use of large corpora to pro-
vide the disambiguation information. For example, Brown et al. (1991) and 
Gale et al. (1993) used bilingual corpora in which the translation in the 
parallel text was used as the sense tag, thereby avoiding the need for man-
ual disambiguation (see Chap. 6). Knowledge sources used were simple 
collocates such as first noun to the left/right, second word to the left/right 
and so on. These encoded KS 3 and KS 6b. In general supervised systems 
that learn from sense-tagged text have tended to use quite simple knowl-
edge sources. More complex ones were used by Ng and Lee (1996) who 
used part-of-speech information (KS 1), morphological form (KS 2), sur-
rounding words and local collocates (KS 3, 6b, and 10) and words in verb-
object syntactic relation (KS 6b). Subsequently, richer sets of features have 
been acquired in the supervised WSD literature (see Section 8.5, below, 
and Chap. 7). 

Early experience with WSD showed that the features that model knowl-
edge sources were difficult to obtain for anything other than limited do-
mains or a handful of words, and that, in general, they had to be encoded 
by hand. Later, researchers made use of the information in existing lexical 
resources such as MRDs and LKBs, building systems that were able to 
cope with large vocabularies and general domain texts, but with limited 
accuracy. More recently, the features of choice have been the ones ex-
tracted from hand-tagged corpora. 

One important advent in the history of WSD has been Senseval (see Chap. 
4). Although an increasing number of tasks are being proposed (some of 
which go beyond WSD), we will focus on the English WSD tasks in Sen-
seval-2 and Senseval-3. 

Senseval-2 was carried out in 2001. The majority of entries relied on in-
formation from a small number of knowledge sources, with several sites 
entering multiple systems in order to compare different aspects of those 
knowledge sources or different combinations of them.  

Supervised systems were the most homogeneous, with only a few 
knowledge sources being commonly used among the participating entries: 
first, bag-of-words features where widely used (KS 6b, 9, and 10), second, 

8.4.1 Senseval-2 Systems 
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local patterns such as 2–4 words (also coded as lemmas or POS tags) 
around the ambiguous token, (KS 3, 4, 6b), and lastly, knowledge sources 
corresponding to the target word (KS 1, 2, and 5).  

Several supervised systems augmented these knowledge sources with 
additional or more precise information, for example Dang and Palmer 
(2002) also employed the output from a named entity identifier and rela-
tions between WordNet senses (KS 10), while a system entered by 
Yarowsky et al. (2001) used a richer set of features including subject, ob-
ject, and prepositions of verbs, and modification relations for nouns and 
adjectives, which better modeled syntagmatic word associations (KS 6b). 
Mihalcea and Moldovan (2001) supplemented training instances from 
Semcor with automatically acquired examples and used a standard set of 
knowledge sources.  

Unsupervised systems based their disambiguation decisions on different 
knowledge sources. For example, McCarthy et al. (2001) and Preiss (2001) 
used selectional preferences based on the WordNet hierarchy (KS 7) and 
the results of an anaphora resolution algorithm to replace anaphoric expres-
sions with their antecedents. The system described in Magnini et al. (2001) 
based its disambiguation decisions solely on domain information and topi-
cal word associations (KS 9 and KS 10) using a version of WordNet aug-
mented with domain labels. Fernández et al. (2002) collected co-occurrence 
vectors for each word from very large corpora. These co-occurrence vec-
tors were used to build co-occurrence vectors for word senses using defini-
tions in an MRD (KS 6b, 9, and 10). 

Montoyo and Suárez (2001) combined two different systems. Disam-
biguation of nouns was carried out using an unsupervised method relying 
on information about the structure of the EuroWordNet noun hierarchy and 
the textual glosses (KS 6a and KS 10). Verbs and adjectives are disam-
biguated at a later stage using a narrow context of 3 words that records the 
lemma, part of speech, and collocations (KS 1–3). Pedersen’s (2002) 
analysis of the systems entered in the English and Spanish lexical sample 
showed that Montoyo and Suárez’s system behaved differently from the 
other seven systems participating in the Spanish task. This system was the 
only one to make use of the structure of the sense inventory and was able 
to disambiguate different corpus instances from the others although it was 
also unable to disambiguate many of the instances covered by the other 
systems.  

The systems entered into Senseval-2 tended to favor the use of a rela-
tively small set of features that encode a wide range of knowledge sources, 
which is representative of the current trend in WSD research. A small 
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number of systems chose to encode these knowledge sources through fea-
tures which were different from those used by the majority of entries; 
analysis of results showed that this had a positive influence on the word 
instances that systems were able to disambiguate. No supervised systems 
made use of selectional preferences, subcategorization information, or 
paradigmatic information. A few systems employed the output from other 
NLP components such as named entity identification and anaphora resolu-
tion. 

Senseval-3 was carried out in 2004. Overall, most of the systems relied on 
knowledge sources already used in Senseval-2. There was a more wide-
spread use of richer features such as syntactic features (Lee et al. 2004) 
and domain information (Strapparava et al. 2004) both in supervised and 
unsupervised systems. Aside from that, two innovations are worth men-
tioning. 

Mihalcea and Faruque (2004) presented a supervised system which, in 
addition to a semantic language model not very different from other super-
vised methods, used semantic generalizations for syntactic dependencies 
extracted from a parsed version of Semcor. The semantic generalization 
was done using the WordNet hierarchy. This method implicitly uses selec-
tional preferences (KS 7), but instead of modeling them explicitly they are 
fed as positive and negative examples into a supervised machine learning 
algorithm. 

McCarthy et al. (2004) proposed an unsupervised system which induced 
the predominant sense of each word. They observed that the most frequent 
sense heuristic (KS 5) was successful in the Senseval-2 all-words task, as it 
performed better than all except two systems, including many supervised 
systems. In the absence of large quantities of tagged examples the method 
induces the most predominant sense for any word (see Chap. 6). 

There have been few experiments that have systematically explored the 
contribution of different knowledge sources to WSD. Systems such as 
Hirst’s (1987) and McRoy’s (1992), which combined several knowledge 
sources, did not report quantitative results either for the entire system or 
for individual knowledge sources. More recent experiments have studied 

8.4.2 Senseval-3 Systems 

8.5 Comparison of Experimental Results  
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Table 8.1. Results of selected all-words systems in Senseval-2. Types S and U 
refer to supervised and unsupervised. The rank of the systems (according to recall) is 
shown together with the precision and coverage (as percentage). 

System  Type Knowledge sources used Rank Prec. Cov. 
Mihalcea & Moldovan  S KS 1–5, 6b, 9–10 1 69.0 100.0 
MFS baseline S Most frequent sense KS 5 3 57.0 100.0 
Fernández et al.a (2002) U Cooc. vectors KS 6b, 9, 10 6 55.6 98.9 
Magnini et al. (2001) U Domain information KS 9, 10 12 74.8 47.7 
McCarthy et al. (2004) U Selectional preferences KS 7 17 59.8 23.3 
aFernández et al. (2002) proposed two systems, one fully unsupervised and the other relying 
on word sense frequencies from Semcor (KS 5). We consider here the totally unsupervised 
system. 
 
the quantitative effects of combining various knowledge sources, usually 
together with other factors. We summarize the results of these studies be-
low, mentioning also the effect of different algorithms and results on dif-
ferent parts of speech and other factors.  

A common strategy among Senseval participants was to use a combination 
of knowledge sources although some unsupervised systems used a single 
knowledge source. The top lines of Table 8.1 show the results in the Sen-
seval-2  all-words task for three such unsupervised systems (presented in 
Sect. 8.4.1) allowing us to compare the relative performance of their 
knowledge sources. The winning system is also shown for comparison. It 
can be seen that domain information and selectional preferences provide 
reasonable precision but at the expense of coverage while co-occurrence 
vectors provide full coverage without sacrificing that much precision. The 
winning system uses a combination of features typical of supervised sys-
tems, and thus implicitly captures several knowledge sources.  

Table 8.2 shows selected results for Senseval-3. Mihalcea and Faruque’s 
(2004) system attains one of the highest results. Unfortunately they do not 
provide separate results for their system working on selectional prefer-
ences in isolation. McCarthy et al (2004) provide an unsupervised app-
roximation of the most-frequent-sense (MFS) heuristic, with good results 
on precision, but not full coverage. 

 
 

8.5.1 Senseval Results 
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Table 8.2. Results of selected all-words systems in Senseval-3. Types S and U 
refer to supervised and unsupervised. The rank of the systems (according to recall) is 
shown together with precision and coverage (as percentage). 

System  Type Knowledge sources used Rank Prec. Cov. 
Decadt et al. (2004) S KS 1–5, 6b, 9–10 1 65.1 100.0 
Mihalcea & Faruque S KS 1–5, 6b, 7, 9–0 2 65.1 98.6 
MFS baseline S Most frequent sense KS 5 6 62.4 100.0 
McCarthy et al. (2004) U Most frequent sense KS 5 22 49.0 88.4 

 
The results on the lexical-sample tasks are more difficult to interpret. 

All systems (except those already mentioned that participated in both 
tasks) used a complex combination of algorithms, parameterization, and 
features, and it is thus very difficult to extract any conclusion regarding 
knowledge sources. We therefore do not include them here. 

Yarowsky and Florian (2002) experimented with the effect of varying a 
diverse range of knowledge sources and learning algorithms. The follow-
ing features were used in their experiments:  

• Local context (KS 1–4, 6b): This includes a diverse set of features (n-
grams, small context window) using raw words, lemmas, and part-of-
speech tags in a ±2 word window around, and including, the ambiguous 
word.  

• Syntactic features (KS 6b): The particular features extracted depend on 
the part of speech of the ambiguous word. For example, for nouns, the 
headword of any verb-object, subject-verb, and noun-noun relations 
were extracted.  

• Bag-of-words (KS 6b, 9, 10): Sets of words that occur in the context of 
the ambiguous word regardless of their position. 

They tested various aggregative and discriminative supervised machine 
learning algorithms (see Chap. 7). Aggregative algorithms integrate evidence 
from all feature sets and then select the sense with the highest combined 
support whereas discriminative algorithms aim to identify the features that 
discriminate the candidate sense most efficiently. The aggregative algo-
rithms used were Feature-Enhanced Naïve Bayes (FENBayes), a standard 
cosine vector model (Cosine), and the Bayes Ratio model (BayesR) (Gale 

8.5.2 Yarowsky and Florian (2002) 

et al. 1993). The discriminative algorithms employed were a transformation-
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Yarowsky and Florian tested their system on the Senseval-2 evaluation 
data. Table 8.3 shows the results for each of the five algorithms across the 
entire corpus and each grammatical category. The effect of omitting the 
syntactic dependency features (KS 6b) is also recorded for each combina-
tion. The Feature-Enhanced Naïve Bayes model and Bayes Ratio classifi-
ers are consistently the best performing. Verbs were consistently found to 
be the most difficult grammatical category to disambiguate. They are also 
the most affected by the removal of syntactic features. This is probably be-
cause verbs, and to a lesser extent adjectives, depend on precise identifica-
tion of their arguments. The experiments also show that nouns benefit 
more from information about the wide context and basic collocations, 
although this is not shown in Table 8.3. 

Table 8.4 demonstrates the differences between the performance of ag-
gregative and discriminative models by varying the features presented to 
each algorithm. Discriminative models are more robust to the removal of 
features and this is because they attempt to identify the most informative 
feature. On the other hand aggregative models make their decisions by 
combining all features and are severely restricted when they only have ac-
cess to a single feature type. All in all, the best results are obtained using 
all available knowledge sources. 

Lee and Ng (2002) also evaluated a variety of knowledge sources using 
several different learning algorithms. The following features were used:  

• Part of speech of neighboring words (KS 1, 4): Part-of-speech tags 
applied to lexical items in a ±3 word window around, and including, the 
ambiguous word. 

• Local context (KS 2–4, 6b): A set of 11 variable length n-grams in a ±3 
word window around the ambiguous word.  

• Syntactic relations (KS 6b): The sentence containing the ambiguous 
word is parsed. The features extracted depend on the part of speech of 
the ambiguous word but include the parent headword from the parser, its 
syntactic category, and relative position to the ambiguous word in the 
sentence.  

• Single words in surrounding context (KS 6b, 9, 10): Existence of a set 
of pre-defined keywords in the context of the ambiguous word.  

8.5.3 Lee and Ng (2002) 

(Yarowsky 1996). 
based learning system (TBL) (Florian et al. 2002) and decision lists (DL)
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Table 8.3. Selected results from Yarowsky and Florian (2002) on the Senseval-2 
data set expressed as the percentage of word instances correctly disambiguated for 
each of the learning algorithms on the entire corpus and individual part-of-speech 
categories. The effect of omitting the syntactic dependency features (KS 6b) is 
measured for each combination, and shown in parentheses. 

Algorithm All  Noun Verb  Adjective 
Baseline 61.5 59.3 43.5 60.1 
FENBayes 72.7 (–1.1) 72.8 (–0.6) 55.6 (–3.0) 71.2 (–1.2) 
Cosine 69.7 (–0.8) 70.1 (–0.7) 52.0 (–3.65) 66.7 (+1.35) 
BayesR 72.8 (–1.3) 73.2 (–0.5) 54.7 (–2.6) 71.9 (–1.9) 
TBL 71.1 (–1.0) 70.4 (–1.6) 56.1 (–7.0) 70.8 (–2.3) 
DL 70.1 (–2.3) 67.4 (–0.3) 55.4 (–3.4) 70.8 (–0.7) 
Copyright © 2002, Cambridge University Press. Reproduced with permission of Cambridge 
University Press and Yarowsky and Florian. 

Table 8.4. Selected results from Yarowsky and Florian (2002) on the Senseval-2 
data set expressed as the difference in the percentage correctness of omitting and 
including only single features for the five algorithms. 

Aggregative  Discriminative Features used 
FENB Cosine BayesR  TBL DL 

Omit bag-of-words (KS 6b, 9, 10) –14.7 –8.1 –5.3  –0.5 –2.0 
Omit local context (KS 1–4, 6b) –3.5 –0.8 –2.2  –2.9 –4.5 
Omit syntactic features (KS 6b) –1.1 –0.8 –1.3  –1.0 –2.3 
Bag-of-words only (KS 6b, 9, 10) –6.4 –4.8 –4.8  –6.0 –3.2 
Local context only (KS 1–4, 6b) –18.4 –11.5 –6.1  –1.5 –3.3 
Syntactic features only (KS 6b) –28.1 –14.9 –5.4  –5.4 –4.8 
Copyright © 2002, Cambridge University Press. Reproduced with permission of Cambridge 
University Press and Yarowsky and Florian. 

 
With the exception of the first feature each of these features could be 

applied with or without feature selection. When feature selection is applied 
the value of a feature is used only if it is observed at least three times for at 
least one instance of the ambiguous word in the training data.  

Lee and Ng (2002) used this feature set with four different learning 
algorithms (see Chap. 7 for details): Support Vector Machines (SVM) 
(Vapnik 1995), AdaBoost (AdB) (Freund and Schapire 1996), Naïve Bayes 
(NBayes) (Duda and Hart 1973) and Decision Trees (DT) (Quinlan 1993). 
Each of the learning algorithms was tested on the Senseval-1 and Senseval-2 
data sets. The results obtained for the Senseval-2 data are shown in Table 
8.5. Results from the Senseval-1 data had similar implications. 
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Table 8.5. Selected results from Lee and Ng (2002) on the Senseval-2 data set 
expressed as the percentage of word instances correctly disambiguated. The best 
binary and multi-class configuration of learning algorithm and knowledge source 
with or without feature selection is quoted. The best performing configuration for 
each learning algorithm is shown in bold font. 

Algorithm POS  
(KS 1, 4) 

Surrounding
words 
(KS 6, 10) 

Local  
context 
(KS 2–4, 6b)

Syntactic 
relations 
 (KS 6b) 

Combined 

SVM 54.7 57.7 60.5 54.5 65.4 
AdB 55.9 55.4 59.3 53.5 62.8 
NBayes 58.0 56.2 55.8 54.2 62.7 
DT 55.3 50.9 57.2 54.2 56.8 
Copyright © 2002, Association for Computational Linguistics. Reproduced with permission 
of the Association for Computational Linguistics and Lee and Ng. 

Table 8.6. Selected results from Lee and Ng (2002) showing 
the results of the best configuration for each learning algorithm 
analysed by grammatical category. 

POS SVM AdB NBayes DT 
Noun 68.8 69.2 66.4 60.0 
Verb 61.1 56.1 56.6 51.8 
Adjective 68.0 64.3 68.4 63.8 
All 65.4 62.8 62.7 57.2 
Copyright © 2002, Association for Computational Linguistics. 
Reproduced with permission of the Association for Computational 
Linguistics and Lee and Ng. 

 
A first observation is that there is not much difference in the perform-

ance of the individual knowledge sources. Second, all algorithms benefit 
from the combination of all knowledge sources, except for Decision Trees, 
which gets the lowest scores among the four learning algorithms overall. 

For completeness, we show in Table 8.6 the results for each learning algo-
rithm calculated across each of the three main grammatical categories. The 
results are consistent on each of the main grammatical categories across 
the four learning algorithms in the experiment. Each algorithm finds verbs 
the most difficult grammatical category to disambiguate. Results for nouns 
and adjectives are higher than the average. 
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Martínez et al. (2002) explore the contribution of a broad set of syntacti-
cally motivated features that range from the presence of complements and 
adjuncts, and the detection of subcategorization frames, to grammatical re-
lations instantiated with specific words. Minipar (Lin 1993) was used for 
parsing with nearly all dependencies returned being used. Two forms of 
syntactic relation were used:  

• Instantiated grammatical relations (IGR) (KS 6b): IGRs are coded as 
(word-sense, relation, value) triples, where the value can be either the 
word form or the lemma. 

• Grammatical relations (GR) (KS 4): GRs refer to the grammatical 
relations themselves. In this case, we collect bigrams (word-sense, 
relation) and also n-grams (word-sense, relation-1, relation-2, relation-3, 
…). The relations can refer to any argument, adjunct, or modifier. N-
grams are similar to verbal subcategorization frames and were used only 
for verbs.  

The performance of the syntactic features is measured in isolation and in 
combination with a basic set of local and topical features. Two machine 
learning algorithms were used: decision lists (DL) and AdaBoost (AdB). 
DL is a discriminative learning algorithm, as noted earlier, while AdB is 
an aggregative approach that uses combinations of features and negative 
evidence, that is, the absence of features.  

Table 8.7 shows the percentage correct precision and coverage for each 
of the grammatical feature sets as used by the DL algorithm. IGRs provide 
high precision, but low coverage. Uninstantiated GRs provide lower preci-
sion but higher coverage. The only exceptions are verbs, which get very 
similar precision for both kinds of syntactic relations. A combination of 
both attains the best recall, and is the feature set used in subsequent ex-
periments. 

All in all, AdB is able to outperform DL in all cases, except with local 
features. Syntactic features get worse results than local features, except for 
verbs. Regarding the contribution of syntactic features to the basic set, DL 
scarcely profits from the additional syntactic features (only significant for 
verbs). AdB attains significant improvement, showing that basic and syn-
tactic features are complementary. 

8.5.4 Martínez et al. (2002) 



238      Agirre and Stevenson  

Table 8.7. Evaluation of the syntactic features in Martínez et al. (2002) showing 
the percentage precision (P) and coverage (C) for various combinations of algo-
rithms and knowledge sources. A “+” in an “All” row indicates the difference in 
the precision over the basic (“local + topical”) feature set is significant according 
to McNemar’s test. 

Knowledge sources Alg. All POS 
(P/C) 

Nouns only
(P/C) 

Verbs only
(P/C) 

Adjs. Only 
(P/C) 

Local context (KS 1–4, 6b) DL 80.3/44.3 90.3/54.2 68.3/32.4 86.2/54.0 
GR (KS 4) DL 67.1/52.1 65.4/57.6 67.3/41.2 70.1/65.4 
IGR (KS 6b) DL 72.9/31.9 74.6/36.0 68.6/32.2 81.6/21.8 
All syntax (GR+IGR) DL 67.7/59.5 67.6/62.5 66.3/52.7 70.7/68.9 
Local + global DL 59.3/97.5 63.2/100 52.6/94.0 65.3/100 
All (local+topical+syntax) DL 59.4/97.7 63.3/100 52.7/94.6+ 65.4/100 
All syntax (GR+IGR) AdB 55.2/100 60.0/100 47.5/100 62.6//100 
Local + global AdB 60.7/100 67.9/100 51.6/100 66.2/100 
All (local+topical+syntax) AdB 62.5/100+ 69.3/100+ 53.9/100+ 67.7/100+ 
Copyright © 2002, Association for Computational Linguistics and Chinese Language Proc-
essing. Reproduced with permission of the ACLCLP and Martínez et al. 

 
These results are consistent with those of previous sections: syntactic 

features allow for a small improvement in the precision, especially for 
verbs. DL is a discriminative approach and so does not combine informa-
tion well. Boosting appears to benefit from the addition of local and global 
syntactic features. Regarding the types of syntactic features, IGRs are best, 
as expected, but GRs provide very good clues for verbs, comparable to local 
features and IGRs.  

Agirre and Martínez (2001a) present the results of a large number of WSD 
algorithms making use of a diverse set of knowledge sources. The disam-
biguation information was derived from a number of sources: corpora, an 
LKB, and an MRD. WordNet 1.6 was used as the sense inventory and 
played the role of both the LKB providing taxonomical structure and the 
MRD. The algorithms used include:  

• First sense (KS 5): The first sense of the dictionaries is usually the most 
salient. The word senses in WordNet are ordered according to frequency 
in Semcor, so first sense in WordNet also means the most frequent sense 
in Semcor.  

8.5.5 Agirre and Martínez (2001a) 
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• Dictionary definition overlap (KS 6b, 10): A simple computation of 
the overlap between the definitions for the word senses of the target 
word and the words in the surrounding context is used (Lesk 1986) (see 
Chap. 5). 

• Conceptual density (ConDen) (KS 6a): A measure of concept-
relatedness based on taxonomies (see Chap. 5). 

• Decision lists on a number of features: A wide range of features were 
employed following Martínez et al. (2002) (see Sect. 8.5.4): 

tags and lemmas. 
Argument-head relations (KS 6b). 
Subcategorization (KS 4). 
Global context (KS 6, 9–10): Bag-of-words feature for the words in 
the sentence. 

• Semantic classes (KS 10): A system that disambiguates word senses at 
a coarse-grained level combining broad semantic classes with corpora 
using mutual information (Agirre and Rigau 1996). 

• Selectional preferences (KS 7): A formalization of selectional 
preferences that learns preferences for classes of verbs on subject and 
object relations extracted from Semcor, based on the tagged corpus 
(Agirre and Martínez 2001b). Note that the coverage of this algorithm is 
rather low, due to the sparseness of training data.  

These algorithms were tested on one or both of two experimental set-
tings. The test corpora include either all occurrences of 8 nouns (account, 
age, church, duty, head, interest, member, and people) in Semcor or all 
polysemous nouns occurring in a set of 4 random files from Semcor (br-
a01, br-b20, br-j09, and br-r05). Table 8.8 shows the results of each 
knowledge source on at least one of the two evaluation corpora.3 Results of 
each algorithm were compared against a baseline that assigned a random 
sense. 

From the comparison of the results, it is clear that algorithms based on 
hand-tagged corpora provide results above the most frequent baseline. This 
is true for all features (local context, subcategorization, argument-head rel-
ations, and global), including the combination of hand-tagged corpora with 
taxonomical knowledge (selectional preferences), which gets precision 

                                                      
3 Two algorithms (Conceptual Density and Semantic Classes) were tested on the 
4-file test set using WordNet 1.4. The results on WordNet 1.6 are expected to be 
very similar. 

Local context (KS 1–4, 6b): N-grams and small windows of POS - 

- 
- 
- 

close to the most frequent sense on the 4-files task. Other resources 
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Table 8.8. Summary of knowledge sources and results of the algorithms used by 
Agirre and Martínez (2001a). Scores are given for the two test sets as percentage 
precision (P) and coverage (C). 

Results (P/C) Knowledge source Lexical resources Algorithm 
8-nouns 4-files 

– – Random 19/100 28/100 
Main sense (KS 5) MRD – 69/100 66/100 
Definition (KS 6b, 10)  Overlap 42/100 – 
Hierarchy (KS 6a) Ontology ConDen – 43/80 
Most frequent sense (KS 5) Corpora – 69/100 66/100 
Subcategorization (KS 4)  DL 78/96 – 
Local context (KS 1–4, 6b)  DL 70/92 – 
Arg-head relations (KS 6b)  DL 78/69 – 
Global context (KS 6, 10)  DL 81/87 – 
Semantic classes (KS 6, 10) MRD+Corpora MI – 41/100 
Selectional pref. (KS 7) Ontology+Corpora Probability 63/33 65/31 
Copyright © 2001, Springer Verlag. Reproduced with permission of Springer Verlag and 
Agirre and Martínez. 

provide more modest results: conceptual density on ontologies, definition 
overlap on definitions, or the combination of MRD and corpora. 

Another set of experiments comparing different knowledge sources was 
carried out by Stevenson and Wilks (2001). They assigned senses from the 
LDOCE dictionary and made use of the rich sources of linguistic knowledge 
available in that resource. Stevenson and Wilks made use of several knowl-
edge sources: 

• Part of speech (KS 1): Applied to the target word by the Brill tagger (Brill 1995). 
• Surface form (KS 2): Surface form of ambiguous word in context.  
• Collocations (KS 3, 6b): Single words in a ±2 word window, first noun, 

verb, and adjective to the right and left. 
• Dictionary definitions (KS 6a, 10): Results of the simulated annealing 

algorithm (Cowie et al. 1992) used to maximize the overlap of 
dictionary definitions for LDOCE senses (see Chap. 5 (Sect. 5.2.1)). 

• Selectional preferences (KS 7): LDOCE lists the semantic class of 
nouns from a set of 36 possible types as well as the classes expected by 
adjectives and the arguments of verbs. LDOCE does not contain any 

8.5.6 Stevenson and Wilks (2001) 



8 Knowledge Sources for WSD      241 

preference information for adverbs. The preferences for all words in a 
sentence are resolved using a constraint satisfaction algorithm (Stevenson 
2003) (see Chap. 5 (Sect. 5.4)). 

• Domain codes (KS 9): Results of the simulated annealing algorithm 
used to maximize the number of LDOCE subject codes applied to all 
words in a paragraph (see Chap. 10 (Sect. 10.2.1)).  

These knowledge sources were applied in different ways. First, any 
senses that did not agree with the one assigned by the part-of-speech tag-
ger were immediately eliminated from consideration. The dictionary defi-
nitions, selectional preferences, and subject codes are each applied in their 
own algorithm, the output of which is used as an element in a feature vector. 
These vectors are supplemented with the collocations and part-of-speech 
information and used in a supervised learning approach. The TiMBL 
(Daelemans et al. 1999) k-nearest neighbor learning algorithm, an aggrega-
tive approach, was used to combine the knowledge sources in this experi-
ment. 

Semcor was also used as an evaluation corpus. However, content words 
in Semcor are marked with senses from WordNet and the system assigned 
meanings from LDOCE. Consequently the WordNet senses were mapped 
onto their equivalents in LDOCE by means of a mapping derived from 
LDOCE (created by Bruce and Guthrie (1992)) and the Penman Upper 
Model from ISI (Bateman et al. 1990)). 

Table 8.9 shows the results of each knowledge source and their combi-
nation when applied to the adapted Semcor corpus. Results are given for 
the four main grammatical categories and combined. The knowledge 
source based on subject codes is the most successful, consistently achiev-
ing over 70% correct disambiguation across grammatical categories. The 
least successful knowledge source is selectional preferences (KS 7), whose 
limitations have already been noted by Agirre and Martínez (2001a) (see 
above), McRoy (1992), and Resnik (1997). In addition these experiments 
confirm the observation of Martínez and Agirre (2002) that semantic and 
topical word associations (KS 6, 10) are valuable knowledge sources. 

The combination of knowledge sources generally performs better than 
any applied individually for all part-of-speech classes. The one exception 
is the adverbs in which the combination actually performs worse than the 
subject-codes disambiguator. This seems to be due to the poor perform-
ance of the other knowledge sources on this part-of-speech category, the 
dictionary definitions achieve just over 50% correct disambiguation and  
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Table 8.9. Disambiguation precision (as percentage correct) for the different 
knowledge sources used by Stevenson and Wilks (2001). 

Knowledge sources All POS Nouns Verbs Adjs. Adverbs 
All 90.37 91.24 88.38 91.09 70.61 
Dictionary definitions (KS 6b, 10) 65.24 66.50 67.51 49.02 50.61 
Selectional preferences (KS 7) 44.85 40.73 75.80 27.56 – 
Domain information (KS 9) 79.41 79.18 72.75 73.73 85.50 
Copyright © 2001, Association for Computational Linguistics. Reproduced with permission 
of the Association for Computational Linguistics and Stevenson and Wilks. 
 
LDOCE does not contain any selectional preference information for 
adverbs. 

The results mentioned in the previous section, even coming from diverse 
experimental settings, allow us to analyze and compare different parame-
ters: knowledge sources involved, lexical resources used, features and alg-
orithms used, and part-of-speech of target words.  

If the results are analyzed from the perspective of knowledge sources, 
we can observe the following (all results cited have been given in the pre-
vious section): 

• Part of speech (KS 1): POS has been shown to be a useful knowledge 
source (Stevenson and Wilks 2001); it can be used to quickly reduce the 
senses being considered and, when used as the sole knowledge source, 
provides enough information to accurately perform homograph-level 
disambiguation (Stevenson 2003). 

• Morphology (KS 2): No separate analysis is provided, but the word 
form of the target word is usually included in local features for 
supervised systems, and is regarded as a useful feature. 

• Collocations (KS 3): Syntactic collocations are one of the strongest 
indicators if learned from hand-tagged corpora. Usually they are not 
encoded as a separate feature, but included in local context features such 
as word n-grams and small context windows. 

• Subcategorization (KS 4): Subcategorization can be approximated 
from hand-tagged corpora using POS n-grams, but the work of Martínez 
et al. (2002) shows that better results can be achieved for verbs when 
subcategorization is modeled by explicit syntactic relations extracted 
from the tagged corpora using a parser. 

8.6 Discussion 
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• Frequency of word senses (KS 5): Frequency provides a baseline that 
is difficult to match. Systems not using tagged corpora often have 
difficulties reaching this level. 

• Semantic word associations (KS 6): Regarding semantic word 
associations, taxonomical information from LKBs is very weak as 
shown by Martínez et. al. (2002) and Montoyo and Suarez (2001), while 
argument-head relations extracted from hand-tagged data are strong 
features.  

• Selectional preferences (KS 7): Selectional preferences get acceptable 
accuracy when obtained from the combination of an LKB and an 
untagged corpus, but the applicability is quite low (Martínez et al. 2002, 
McCarthy et al. 2001). It seems that selectional preferences as coded in 
an MRD also have limited effect (Stevenson and Wilks 2001). 

• Semantic roles (KS 8): To our knowledge, semantic roles have not 
been applied in any system that has been quantifiably evaluated and so it 
is difficult to gauge their contribution.  

• Domain knowledge (KS 9): Magnini et al. (2001) and Stevenson 
(2003) show that the domain codes in LKBs and MRDs are useful for 
disambiguation even without tagged corpora.  

• Topical word associations (KS 10): Such associations are very reliable 
when acquired from tagged data. Efforts to capture such information 
using definitions on MRDs have been less successful (Fernández et al. 
2001, Stevenson and Wilks 2001). 

• Pragmatics (KS 11): High-level reasoning is not currently used in 
WSD systems. Some researchers (e.g., Yarowsky (1996)) believe that 
simpler knowledge sources are sufficient to disambiguate the vast 
majority of word instances. 

Regarding lexical resources, hand-tagged corpora seem to be the most 
effective for the automatic acquisition of all the knowledge sources that we 
considered, although they are very expensive to create. The results from 
the Senseval exercises indicate that this is true on both the lexical sample 
and the all-words tasks (see Chap. 4). Supervised systems trained on Sem-
cor (around 500,000 words) outperformed their unsupervised counterparts 
on the all-words task. However, complex linguistic knowledge can be also 
extracted from LKBs and MRDs. When combined with untagged corpora 
they can be very effective for acquiring selectional preferences and domain 
knowledge, which also provide good results in WSD. 

Supervised systems capture knowledge sources with three main kinds of 
features: local context (n-grams and small windows), syntactic (specific 
syntactic relations), and large context (bag-of-words). These features mix 
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different knowledge sources (large-context features can capture argument-
head semantic associations as well as topical word associations), and they 
contain overlapping information (the same argument-head relation can be 
captured by small contexts, large contexts, and syntactic parsing). Some-
times, adding new features, such as syntactic information, does not improve 
the results dramatically, and a possible reason is overlap: the linguistic 
information was already present in another form (e.g., subcategorization 
captured by POS n-grams). Finally, certain knowledge sources (e.g., selec-
tional preferences and domain information) have seldom been used in the 
context of supervised WSD systems. 

The usefulness of various knowledge sources is dependent, to some ex-
tent, on the grammatical category of the target word. Bag-of-words fea-
tures seem to be the most effective for nouns, implying that semantic and 
topical word associations (KS 6a and KS 10) are the strongest features. 
Another indication is the high precision obtained by Stevenson and Wilks 
using subject codes from LDOCE. Verbs benefit most from local knowl-
edge sources like collocations (KS 3), subcategorization (KS 4), argument-
head associations (KS 6b), and selectional preferences (KS 7). Verbs are 
the most difficult to disambiguate, and also tend to be the most polyse-
mous grammatical category. Adjectives benefit from similar knowledge 
sources to verbs although they do not seem to profit from selectional pref-
erences. 

The interaction between knowledge sources and algorithms is the most 
complex. It appears that aggregative learning models, such as AdaBoost, 
Naïve Bayes, Support Vector Machines, and Memory-Based Learning, 
perform better than discriminative models when several knowledge 
sources are being combined. This is because each knowledge source pro-
vides some useful information for the disambiguation process which ag-
gregative models can take advantage of by combining information from 
several knowledge sources encoded as a range of learning features. Dis-
criminative models attempt to identify the optimal feature for disambigua-
tion which can, at best, represent a restricted set of knowledge sources. 
However, Yarowsky and Florian (2002) show that Transformation Based 
Learning, a discriminative model, provides the best results for verbs, while 
aggregative models perform best for nouns and adjectives. This provides 
some evidence that disambiguation of verbs may depend on a smaller 
number of knowledge sources than nouns and adjectives. Aggregative algo-
rithms also seem to be most suitable for bag-of-word features, while dis-
criminative algorithms behave better with local collocations. Lee and Ng 
(2002) show that Support Vector Machines are best for most of the fea-
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tures they use, except for POS surrounding the target word, for which Na-
ïve Bayes proves best. Unfortunately Lee and Ng do not provide a dis-
criminative algorithm for comparison.  

Nevertheless it could well be that different words of the same part of 
speech exhibit different behavior. Moreover, all knowledge sources seem 
to be valuable, as the combinations always fare better than using single 
features in isolation. Feature selection strategies like those applied by 
Mihalcea and Moldovan (2001) seem to provide ground for fitting the fea-
tures to each single word (see Chap. 7). 

This chapter has listed a set of knowledge sources of potential interest for 
WSD. We have shown that these knowledge sources can be acquired from 
a number of different resources: untagged corpora, sense-tagged corpora, 
lexical knowledge bases, and machine readable dictionaries. The results 
show that information from tagged corpora is the most reliable for WSD. 
Domain information and selectional preferences from untagged corpora 
also provide reliable clues.  

Viewing WSD techniques in terms of the knowledge sources they use 
provides a solid linguistic motivation for the choice of approach. Focusing 
on this level, rather than the features used by implementations, gives a 
more abstract view of the different approaches to the problem. Unfortunately, 
knowledge sources are rarely represented separately, but are usually mixed 
in feature groups (e.g., local context features). Current approaches to WSD 
also tend to favor features that represent several knowledge sources. It is 
difficult to measure the effectiveness of individual knowledge sources (as 
well as combinations) because:  

• Knowledge sources are hidden behind superficial features, 
• Systems seldom present analyses of the contribution of individual 

knowledge sources, and 
• Algorithms and knowledge sources interact in complex ways. 

From the results of the systems that participated in the Senseval exer-
cises and of the reported measurements on performance with respect to 
knowledge sources, we draw the following conclusions: 

 

 

8.7 Conclusions 
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• All knowledge sources seem to provide useful disambiguation clues. 
• Each part of speech profits from different knowledge sources, for 

example knowledge sources like KS 9 and KS 10 which encode the 
topic of a text are most useful for disambiguating nouns while those that 
represent local context benefit verbs and adjectives. However, the 
combination of all consistently gets the best results across POS 
categories.  

• Some learning algorithms are better suited to certain knowledge 
sources; those which use an aggregative approach seem suited to 
combining the information provided by several knowledge sources. 
There is also evidence that different grammatical categories may benefit 
from different learning algorithms. 

A common theme that runs through research on knowledge sources for 
WSD is that combinations of knowledge sources provide better results 
than when they are used alone. Future work in this area should attempt to 
identify the best combination of knowledge sources for the WSD problem 
and methods for combining them effectively. One explanation for why 
combinations of knowledge sources are so successful is that polysemy is a 
complex phenomenon and that each knowledge source captures some as-
pect of it but none is enough to describe the semantics of a word in enough 
detail for disambiguation. It is likely that greater understanding of the rele-
vant knowledge sources and how they interact will allow the development 
of more detailed theories of polysemy. In turn this may provide a frame-
work for approaching some more advanced problems related to semantics 
that are not generally tackled in the community at present, for example the 
identification of when a word is being used in a novel way or sense (not 
included in the dictionary being used for disambiguation) and the analysis 
of metaphor. 
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A possible way of solving the knowledge acquisition bottleneck in word 
sense disambiguation is mining very large corpora (most prominently the 
World Wide Web) to automatically acquire lexical information and examples 
to feed supervised learning methods. Although this area of research remains 
largely unexplored, it has already revealed a strong potential to improve 
WSD performance. This chapter reviews the main approaches, initial 
accomplishments, and open challenges in this topic. 

The knowledge acquisition bottleneck is perhaps the major impediment to 
solving the word sense disambiguation (WSD) problem. Unsupervised 
methods rely on knowledge about word senses, which is barely formulated 
in dictionaries and lexical databases. Supervised methods depend crucially 
on the existence of manually annotated examples for every word sense, a 
requisite that can so far be met only for a handful of words for testing pur-
poses, as it is done in the Senseval exercises (see Chap. 4). 

Therefore, one of the most promising trends in WSD research is using 
the largest corpus ever accessible, the World Wide Web, to acquire lexical 
information automatically (Kilgarriff and Grefenstette 2003). WSD has 
been traditionally understood as an intermediate language engineering 
technology which could improve applications such as information retrieval 
(IR). In this case, however, the reverse is also true: Web search engines 
implement simple and robust IR techniques that can be successfully used 
when mining the Web for information to be employed in WSD. 
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In this chapter we review the main approaches to acquire lexical in-
formation using the Web. We have distinguished two types of research: 
acquiring topical knowledge about word senses (which is discussed in 
Sect. 9.2) and acquiring examples for supervised learning (which is dis-
cussed in Sect. 9.3). Of course, these two kinds of strategies are not iso-
lated from each other. For instance, the method of Agirre and Martínez 
(2000) to extract topic signatures associated with word senses (which is 
described in Sect. 9.2) starts by retrieving examples from the Web for 
every word sense. In the opposite order, the method of Santamaría et al. 
(2003) assigns web directories to word senses (also described in Sect. 9.2) 
and then retrieves examples for supervised learning (described in Sect. 
9.3). The above are monolingual techniques; Section 9.3.4 is devoted spe-
cifically to cross-lingual techniques.  

The chapter is organized as follows. Section 9.2 discusses two kinds of 
topical knowledge which can be extracted from the Web and have been 
used in (unsupervised) WSD: topic signatures (lists of words topically re-
lated to the word sense) and word sense/web directory associations. Then, 
Section 9.3 compares existing approaches (both monolingual and cross-
lingual) to the acquisition of training examples, which are probably the 
most valuable resource for WSD as they enable the use of supervised 
learning algorithms. Because of their relevance, this chapter emphasizes 
such methods. Finally, Section 9.4 summarizes the accomplishments and 
main challenges in mining the Web for WSD. 

WordNet, which is the most frequently used sense inventory in WSD, does 
not incorporate topical or domain information, which is very valuable for 
sense disambiguation and for many other purposes.1 We will mention here 
two strategies to enrich WordNet with domain information from the Web: 
extraction of topical signatures and association of WordNet senses with 
Web directories. 

                                                      
1 See Chapter 10 (Sect 10.1) for a brief discussion of the terminology related to 
topics and domains.  
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Agirre et al. (2000) used the Web to enrich WordNet senses with topic 
signatures. A topic signature is defined as a list of words which are topi-
cally related to the word sense, together with a measure of the strength of 
the association. An example is waiter as a person who waits versus a per-
son who serves a table. In the first sense, the topic signature could be made 
of words such as hospital, station, airport, and cigarette. In the second 
sense, the list would include restaurant, menu, waitress, and dinner. 

Such topic signatures are built in two main steps: 1) using the Web 
search engine (Altavista, in this case) to retrieve sets of documents associ-
ated with each word sense, and 2) using the documents to extract and 
weight the words that form the topic signatures for every sense. In step 
one, a list of cue words for each sense is extracted from WordNet (includ-
ing synonyms, words in the gloss and words in related synsets). Then, for 
each sense, a Boolean query is formed to retrieve documents containing 
the original word, at least one of the cue words of the intended sense, and 
none of the cue words for the other senses of the word. Then, in the second 
step, a weight is assigned to each word in the set of documents for each 
sense. This weight grows when the frequency of the word is higher than 
what would be expected from the contrast set made of the documents be-
longing to the other senses of the word. The words and their weights, in 
decreasing order of weight, form the topic signature for each word sense. 
Table 10.3 (in Chap. 10) gives an example for the noun boy. 

In this work, the topic signatures are used in a straightforward WSD 
approach (to test the utility of the information provided by the signatures) 
with encouraging results. They are also used to cluster WordNet senses 
(two close senses will have close topic signatures; cf. verb grouping in 
Chap 4. (Sect. 4.6)), which are in turn successfully used in the WSD 
experiments described in the paper. The authors conclude that the quanti-
tative evidence in favor of topic signatures is high, but a qualitative ins-
pection of the data suggests that more filtering is needed to discard poor 
quality documents and some topical biases of the Web (e.g., the topic sig-
nature for boy was biased towards pornography issues). 

In Agirre and Lopez de Lacalle (2004) topic signatures for all WordNet 
nominal senses have been built with similar techniques (using the Google 
search engine instead of Altavista, and querying with the method of 
monosemous relatives – described in Section 9.3.2 below – to create the 
examples). In order to avoid the cost (especially in time) of downloading 
full Web documents, the authors collect the examples directly from Google 
snippets (the small pieces of text matching the query, which Google uses 

9.2.1 Topic Signatures 
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Fig. 9.1. Topic signatures for the first sense of circuit (‘electrical circuit’). The 
number in parentheses is the weight assigned to the corresponding word. 

to describe the content of every URL in the ranked list of results). The 
problem with Google snippets is that they are often ungrammatical and in-
coherent as text fragments. The authors apply a number of simple heuris-
tics to filter them, such as discarding fragments shorter than six words, 
with a number of non-alphanumeric characters greater than half of the 
words or with more words in uppercase than in lowercase. These filters 
discard approximately two out of three snippets, retaining an average of 
160 examples per word. Fig. 9.1 compares the topic signatures for circuit-
1 (‘electrical circuit’) obtained from the Web corpus and from the Sen-
seval-2 training corpus. Note that both topic signatures seem equally rea-
sonable, although one of them involves manual annotations (Senseval-2) 
while the other is obtained in a completely automatic manner (Web data). 
Of course, the great advantage of the Web corpus is that it can be applied 
to all WordNet senses, not just to a handful of words. The final corpus2 
contains around 4,500 topic words per word sense.  
 

                                                      
2 http://ixa.si.ehu.es/Ixa/resources/sensecorpus 

Topic signature extracted from Web data: 
circuit (1804.11), electrical (1031.70), panel (714.00), solar (659.35), electric (649.94), 
plug (606.26), feedback (522.25), control (500.64), battery (462.07), device (343.18), 
generator (335.51), electrostatic (318.90), system (314.36), loop (272.64), bridge 
(270.08), distributor (266.72), use (255.84), board (251.91), delay (247.48), resonant 
(240.84), series (238.49), computer (237.91), instrument (223.26), fuse (189.73), ca-
pacitor (184.64), voltage (183.87), strip (183.56), current (173.38), tank (164.29), 
power (153.42), wire (151.61), resistor (137.76), design (131.88), relay (129.29), out-
put (115.00), switch (115.00), transducer (112.47), transformer (106.25), ... 

Topic signature extracted from Senseval-2 training data:  
pass (17.42), stage (17.42), delay (13.93), capacitor (10.45), network (9.89), clock 
(6.96), connection (6.96), control (6.96), neural (6.96), brain (3.48), cause (3.48), 
churning (3.48), destroy (3.48), device (3.48), disconnect (3.48), due (3.48), equal 
(3.48), experimental (3.48), frequency (3.48), govern (3.48), input (3.48), line (3.48), 
missouri (3.48), next (3.48), pattern (3.48), physicist (3.48), practice (3.48), rate (3.48), 
reliving (3.48), scramble (3.48), second (3.48), semblance (3.48), speed (3.48), part 
(1.02), process (1.02), produce (1.02), provide (1.02), run (1.02), two (1.02), 2 (0.97), 
first (0.33), use (0.33), circuit (0.04), ... 
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9.2.2  

Santamaría et al. (2003) developed a system that automatically associates 
WordNet senses with Web directories. Web directories, such as Yahoo! 
Directory or the Open Directory Project (ODP)3 are hierarchical thematic 
categories that organize the information in the Web so that the information 
of interest to a user can be located not only by querying (as in a search en-
gine), but also by browsing the contents of the Web through iterative topic 
refinement. The most interesting feature of Web directories, from the per-
spective of the Web as a corpus, is that both the directories and the 
association of Web pages to directories are manually constructed. 
Compared to the Web, then, directories should be a much cleaner and 
balanced source of information. The hypothesis of Santamaría et al. is that 
one or more assignments of Web directories to a word sense would be an 
enormously rich and compact source of topical information about the word 
sense, which includes both the hierarchy of associated subdirectories and 
the Web pages beneath them. 

The approach consists mainly of three stages. First, a query is formed 
similarly to Agirre et al. (2000), using relevant cue words extracted from 
WordNet for every word sense, and using cue words from the other senses 
as negative information. The query is sent to ODP directories, and a set of 
directories (rather than documents) is retrieved. Then the directories are 
compared with the word senses, assuming that a relevant directory (repre-
sented by the chain of parent directories that lead to it) will have some 
degree of overlap with the word sense (represented by the chain of 
hypernyms of the associated synset in WordNet). Then the authors apply a 
set of additional criteria and filters to end up with possible associations and 
an empirical confidence measure for each association. 

The main result of the algorithm is a set of (word sense, Web directory) 
associations with a confidence weight. Table 9.1 lists some of the results 
for the word circuit. For instance, the directory “computers/cad/electronic 
design automation” is assigned to circuit-1 (‘electrical circuit’) with a con-
fidence of 0.78. The algorithm also detects some sense specializations (i.e., 
hyponyms of existing WordNet senses) such as “business/industries/elec-
tronics/components/integrated circuits” as a sense specialization (inte-
grated circuit) of circuit-1. Using this technique, the authors characterized 
27,383 word senses corresponding to 24,558 WordNet nouns with 86% 
accuracy as measured on the set of nouns used in the Senseval-2 test bed.4 
                                                      
3 http://dmoz.org 
4 http://nlp.uned.es/ODP 

Association of Web Directories to Word Senses  
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Table 9.1. Some WordNet-sense/ODP-directory associations for circuit. Below 
each of the senses of circuit, the list of associated categories are listed with the 
confidence weight. In the case of circuit-1, a category that is a specialization is 
also detected. 

ODP directories for each sense Confidence 
circuit-1 (‘electrical circuit’)  
 business/industries/electronics and electrical/contract manufacturers 0.98 
 manufacturers/printed circuit boards/fabrication 0.88 
 computers/cad/electronic design automation 0.78 
 sense specialization (hyponym):  
 business/industries/electronics and electrical/components/int. circuits 0.98 
circuit-2 (‘tour’, ‘journey around a particular area’)  
 sports/cycling/travel/travelogues/europe/france 0.58 
 regional/asia/nepal/travel and tourism/travel guides 0.66 
circuit-5 (‘racing circuit’)  
 sports/motorsports/auto racing/stock cars/drivers and teams  0.78 
 sports/motorsports/auto racing/tracks 0.82 

 
These sense/directory associations have been used to automatically 

acquire sense-tagged examples for supervised WSD; see Section 9.3.3 
below. 

The most direct way of using the Web (and other corpora) to enhance 
WSD performance is the automatic acquisition of sense-tagged corpora, 
the fundamental resource to feed supervised WSD algorithms (see Chap. 
7). Although this is far from being commonplace in the WSD literature, 
a number of different and effective strategies to achieve this goal have 
already been proposed. We will classify them in five types: acquisition by 
direct Web searching (Sect. 9.3.1), bootstrapping (Sect. 9.3.2), acquisition 
via Web directories (Sect. 9.3.3), acquisition via cross-language evidence 
(Sect. 9.3.4), and Web-based cooperative annotation (Sect. 9.3.5). 

Leacock et al. (1998) use the monosemous lexical relatives of a word sense 
as a key for finding training sentences in a corpus. For instance, looking 

9.3 Automatic Acquisition of Sense-Tagged Corpora 

9.3.1 Acquisition by Direct Web Searching 
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for business suit as a monosemous hyponym of suit can give us training 
sentences for the appropriate sense of suit. Mihalcea and Moldovan (1999) 
extend this idea and apply it to the Web as the target corpus. 

Mihalcea and Moldovan use four ranked procedures to search the Web 
for instances of a word sense: 

1. Monosemous synonyms. For instance, remember-1 has the monose-
mous synonym recollect. Therefore, “recollect” is used to search the 
Web for examples. 

2. Defining phrases. For instance, produce-5 is defined as “bring onto 
the market or release, as of an intellectual creation”. The definition is 
automatically parsed and “bring onto the market” is used as defining 
phrase (release is discarded as ambiguous). 

3. In case of failure, a Boolean query is made with synonyms (grouped 
with OR operators) in conjunction with words from the defining 
phrases (using the NEAR operator). For instance, “cultivate NEAR 
growing AND (grow OR raise OR farm OR produce)” retrieves ex-
amples for produce-6, synonyms, grow, raise, farm, and produce, 
and defining phrase, “cultivate by growing”. 

4. In case of failure, do a similar search but substituting the NEAR oper-
ator with the more relaxed AND operator.  

Once examples are retrieved, a post-processing phase checks that the part 
of speech of the word in every example is correct; otherwise, the example 
is eliminated. This method provides an average of 670 example sentences 
per word sense, with a reported precision of 91%, clearly indicating the 
potential of the Web to solve the knowledge acquisition bottleneck. In this 
work, however, results on the application of the examples to supervised 
WSD are not presented. 

Somewhat surprisingly, using the Web did not quickly become a main-
stream approach for WSD. A partial explanation can be found in Agirre 
and Martínez (2000): they replicated the same strategy to build a sense-
tagged corpus and used the results to train a WSD system that was tested 
against a subset of Semcor. The results were disappointing: only a few 
words got better than random results. Agirre and Martínez concluded that 
the examples, being themselves correct, could provide systematically mis-
leading features, and that the unbalanced number of examples (all word 
senses received basically the same number of training instances) could be 
misleading for the supervised learning process.  

In Agirre and Martínez (2004), the same authors built another Web 
corpus, focusing on only the monosemous-relatives technique and apply-
ing additional filters. Monosemous relatives included in this work are  



260      Gonzalo and Verdejo  

Fig. 9.2. The three synsets (the synonym set and definitions are shown) corres-
ponding to the three senses of church in WordNet 1.6, followed by a partial list of 
monosemous relatives (with the corresponding sense of church in parenthesis.  

synonyms, hyponyms, hypernyms, and siblings (with different degrees of 
confidence) (see Fig. 9.2). It is shown that the monosemous relatives tech-
nique can be used to extract examples for all nouns in WordNet. 

The authors focus on the bias problem, comparing several possibilities:  

1. Taking the same number of examples per sense (no bias). 
2. Taking all examples found in the Web per sense (Web bias).  
3. Using the same proportion of examples per sense as in Semcor (Sem-

cor bias). 
4. Using the same proportion of examples as in the Senseval-2 training 

set (Senseval-2 bias, which is optimal for evaluating with Senseval-2 
data). 

5. Using the ranking method proposed by McCarthy et al. (2004) (see 
Chap. 6 (Sect. 6.1.2)) (automatic bias). 

Bias is shown to have a strong impact on recall: the worst strategy (no 
bias) reaches a recall of 38%, while the best possible bias (Senseval-2 bias) 
reaches 58% (a relative improvement of 53%). The paper does not discuss 
whether this is a problem of Web data (which can be biased for certain 
contexts or senses) or an intrinsic feature of supervised learning systems.  

Overall, training a supervised WSD system with Web data provides 
better results than any unsupervised system participating in Senseval-2 
(see Table 9.2). Overall, Web data is shown to be very useful for WSD, 
but still does not match the results obtained with hand-tagged data, or even 
the most-frequent-sense baseline. 

church-1: church, Christian church, Christianity (a group of Christians; any 
group professing Christian doctrine or belief ) 

church-2: church, church building (a place for public (especially Christian) 
worship) 

church-3: church service, church (a service conducted in a church) 

Synonyms: church building (sense 2), church service (sense 3), ... 
Direct hyponyms: Protestant Church (sense 1), Coptic Church (sense 1), ... 
Direct hypernyms: house of prayer (sense 2), religious service (sense 3), ... 
Distant hyponyms: Greek Church (sense 1), Western Church (sense 1), ... 
Siblings: Hebraism (sense 2), synagogue (sense 2), ... 



9 Automatic Acquisition of Lexical Information and Examples      261 

Table 9.2. Web data versus Senseval-2 unsupervised WSD systems (Agirre and 
Martínez 2004). 

Method Type of method Senseval-2 recall 
Web corpus (Semcor bias) Minimally supervised 49.8% 
UNED            45.1 
Web corpus (automatic bias) Unsupervised 43.3 
Litkowski-clr-ls            35.8 
Haynes-IIT2            27.9 
Haynes-IIT1            26.4 
Copyright © 2004, Association for Computational Linguistics. All rights reserved. 
Reprinted by permission of ACL and Agirre and Martínez. 
 

In our opinion, a problem of directly querying the Web to get training 
samples is that we only capture a fraction of the relevant examples, the 
ones that co-occur with query terms. This set of examples may be just a 
fraction of the possible contexts for the word sense. For instance, if we 
want to find examples for mother-1 (‘a woman who has given birth to a 
child’), we can use its monosemous relative female parent (a synonym 
of mother-1 in WordNet 2.0) to search Web examples, obtaining over 
10,000 hits in Google. Substituting female parent for mother, we can cer-
tainly obtain a very large set of examples for mother-1. But this set is 
strongly biased: We will find many examples from, say, the domain of 
law, such as “non custodial female parent support group” or of biology, 
“the DNA of the female parent plant”, but no examples of common con-
texts for mother-1 such as “My female parent is coming for dinner 
tonight”. This problem is also correlated with Web bias. In this case, the 
proportion of examples for mother-1 will be underestimated from Web data.

One way to alleviate this problem is searching the Web with the widest 
possible set of queries per word sense. This is more feasible if we have ini-
tial examples for every word sense, as in the approach described in the fol-
lowing section. 

Mihalcea (2002a) enriches the method described in Mihalcea and Moldo-
van (1999) with a bootstrapping approach inspired by Yarowsky (1995). 
Yarowsky’s method trains a decision list system using a few tagged seed 
samples, and the system is then employed to tag new instances (see details 
in Chap. 7 (Sect 7.2.4)). Mihalcea creates a set of seeds extracted from 
Semcor, WordNet, and the Web (using the monosemous relatives approach  

9.3.2 Bootstrapping from Seed Examples 
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Table 9.3. Comparison between Senseval-2 training data and Web data (Mihalcea 
2002b). 

 Senseval-2 training examples  Mihalcea (2002b) Web examples 
 Num. of examples Precision  Num. of examples Precision 
art 123 65%  265 73% 
chair 121 83  179 87 
church 81 64  189 58 
detention 46 88  163 83 
nation 60 73  225 70 
Copyright (c) 2002, European Language Resources Association. All rights reserved. 
Reprinted by permission of ELRA and Mihalcea. 

 
described in the previous section). Then, the Web is searched using queries 
formed with the seed expressions. Finally, the words surrounding the tar-
get word (noun phrases and verb/noun constructs) in the documents 
retrieved are disambiguated using Mihalcea and Moldovan’s (2000) algo-
rithm. These expressions serve in turn as new seeds for a new Web search. 
The sense-tagged corpus generated with this approach (GenCor) was tested 
in Senseval-2, achieving one of the best scores both in the lexical sample 
and the all-words tasks, and a good part of the success is due to the Web 
acquired corpora. For instance, in the all-words task, the first sense heuris-
tic gives a precision of 64%; if only Semcor and WordNet are used for 
training, the result is 65% (+ 2% relative improvement). The same algo-
rithm, trained with the Web-based corpus, achieves a precision of 69% 
(+ 6% relative improvement). This additional recall due to the Web corpus 
boosts the system to the best result among Senseval-2 participants.  

Using the same system and test bed, Mihalcea (2002b) compares the 
quality of Web data (up to seven iteration steps in the bootstrapping proc-
ess) with hand-tagged data. This comparison is made on a limited number 
of words: for the noun channel, the supervised WSD system using the Web 
corpus reaches optimal results after 6 iterations (34% precision), matching 
supervision with the hand tagged data (34% precision as well). For the five 
additional nouns considered in the experiment, art, chair, church, deten-
tion, and nation, the results with the Web corpus are comparable with the 
results using hand-tagged data (see Table 9.3). 

These are, to our knowledge, the best results reported for WSD using 
Web data, confirming the potential of the Web to solve the knowledge 
acquisition bottleneck. They have been obtained, however, using Semcor 
and other sources as seeds, and such a large initial set of seeds is only 
available for English. Another pending issue is extending the evaluation to 
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a larger set of words, because inter-word variability in WSD is extremely 
high, and results obtained on five words cannot be extrapolated to a full 
language vocabulary. 

The word sense to Web directory associations obtained by Santamaría 
et al. (2003) can be trivially applied to obtain sense-tagged corpora, ex-
tracting the occurrences of the word in the Web pages listed under the Web 
directory entry or in the manually built description of the pages under the 
directory. For instance, circuit-2 (‘tour’, ‘journey’) is associated with ODP 
directories such as “sports/cycling/travel/travelogues/Europe/France”. The 
Web page that describes this directory contains a number of examples of 
circuit, such as the Tour du Mont-Blanc is a circuit of 322km based in the 
Alps, which can be automatically assigned the circuit-2 sense. 

Compared to the strategies described above, the use of directories has, 
a priori, at least three advantages: 1) catalogued Web pages are a cleaner 
source of information than the Web itself, 2) as the algorithm retrieves di-
rectories rather than documents, the occurrences of the word in the docu-
ments associated with the directory do not necessarily co-occur with the 
seed words used in the Web search, permitting a larger variety of training 
samples, and 3) Web directories can be distributed without copyright prob-
lems, and they are more stable over time than individual Web pages. A 
drawback of the method is that it can only be applied to word senses that 
can be related to some topical domain; some word senses, however, do not 
have any domain specificity.  

Santamaría et al. (2003) experimented with the above approach, com-
paring the quality of examples retrieved from ODP pages with the hand-
tagged training samples provided in the Senseval-2 English lexical sample 
task. Only the examples found in the pages that describe the Web catego-
ries (rather than the Web pages listed under the category) were used in this 
experiment. The initial problem is the coverage of the approach: only 10 
nouns (out of 29 polysemous nouns) receive characterizations for two or 
more senses. In order to measure the quality of the data (rather than the 
coverage), only the senses which are characterized with ODP directories 
were used in the evaluation. For this subset, the recall obtained with Web 
data is as good as with the hand-tagged training material, when the number 
of training instances is comparable (see Table 9.4). Again, the problem is 
coverage: Web directories provide enough training material for only half 
of the words included in the experiment. 

9.3.3 Acquisition via Web Directories 
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Table 9.4. WSD with examples retrieved from ODP Web directories (Santamaría 
et al. 2003). 

Senses Num. of training instances Test instances Recall 
 Senseval ODP Senseval Senseval ODP 
bar-1, 10 127, 11 1, 1 62, 6 91% 50% 
child-1, 2 39, 78 3, 80 35, 27 57 44 
circuit-1, 2, 5 67, 6, 7 229, 2, 5 23, 2, 8 70 70 
facility-1, 4 26, 61 4, 18 15, 28 79 67 
grip-2, 7 6, 1 17, 6 4, 0 100 100 
holiday-1, 2 4, 57 5, 17 26, 2 96 96 
material-1, 4 65, 7 63, 10 30, 9 79 79 
post-2, 3, 4, 7, 8 1, 64, 20, 11, 7 2, 7, 1, 9, 3 2, 25, 13, 12, 4 45 25 
restraint-1, 4, 6 17, 32, 11 2, 2, 2 8, 14, 4 65 50 
stress-1, 2 3, 45 8, 50 1, 19 95 95 
Total 773 547 379 73% 58% 
Copyright © 2003, Association for Computational Linguistics. All rights reserved. Re-
printed by permission of ACL and Santamaría et al. 

 
In summary, this is a promising approach that extracts high-quality ex-

amples from a clean, manually-classified subset of the Web. Coverage, 
however, is low: not every word sense can be associated with a Web direc-
tory (some degree of domain specificity is required), and the number of 
examples found in directory descriptions is limited. The authors conclude 
that the approach can be especially useful for applications in which only 
domain disambiguation is required, such as information retrieval. 

Sometimes choosing a correct translation for a word in context can be eas-
ier than disambiguating its sense. This is often the case when there are 
enough translation statistics extracted from available parallel corpora. In 
such cases, translation information can be used to partially disambiguate 
the word, because only a subset of the possible senses can be translated to 
given term (Gale et al. 1992). For instance, if we know that a particular in-
stance of bank is translated into French as rive, we can conclude that the 
correct sense of bank is bank-3 (‘riverside’). In this way, word-aligned 
parallel corpora can be used as a source of examples for supervised WSD.  

Of course, this strategy might not lead to full disambiguation (i.e., re-
turning a single word sense, as opposed to returning several word senses) 

9.3.4 Acquisition via Cross-Language Evidence 



9 Automatic Acquisition of Lexical Information and Examples      265 

for every aligned word, because there tends to be many cases of parallel 
polysemy between pairs of languages (especially if they do not belong to 
distant language families). For instance, most senses of art can be trans-
lated as arte in Spanish; in this case, translation preserves ambiguity. 
Chapter 3 suggests that this level of disambiguation is sufficient for more 
applications. Chapter 6 (Sect. 6.4) discusses the early work on using paral-
lel corpora to label word occurrences with their translations as a form of 
WSD. In the remainder of this section, we will focus on how to exploit 
parallel corpora for full-fledged disambiguation, and on how to acquire 
parallel corpora from the Web. 

One algorithm that provides full disambiguation is Diab’s (2003) unsu-
pervised bootstrapping approach to WSD, which exploits noisy parallel 
corpora described. Diab’s method to annotate a parallel corpus with senses 
consists of the following steps: 

1. Locate words in the source corpus and their corresponding transla-
tions in the target corpus. 

2. Group source words that translate to the same target word. For in-
stance, target French rive produces the source group {bank, shore, 
riverside}, while banque produces {bank, brokerage}. 

3. Measure the similarity among the different senses of the words in the 
source groups. In Diab’s case study, WordNet is used together with 
the “Noun Groupings” similarity measure (Resnik 1999a) (see Chap. 
5 (Sect. 5.3) for other similarity measures). 

4. Assign the closest sense tags to the respective word occurrences in 
the corpus. For instance, the source groups above would disambiguate 
as {bank-3, shore-1, riverside-2} and {bank-2, brokerage-1}; these 
sense assignments are projected to the corpus in the original sen-
tences (e.g., He has a house by the river bank-3). Note that at least 
two words are needed in each source group to make this disambigua-
tion step possible. If a word has always the same (polysemous) trans-
lation in the parallel corpus, then no semantic annotation is possible 
with this algorithm. 

5. Project the assigned sense tags from the source language words to the 
corresponding target language words in the parallel corpus. For in-
stance, if Il a une maison par la rive du fleuve is the translation for 
He has a house by the river bank-3, then rive receives the sense bank-
3 in that context. 

Diab’s algorithm shows that parallel corpora can be effectively used for 
word sense disambiguation, even in languages without appropriate sense 
inventories (by projecting sense tags from a source language having richer 
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computational resources). Using an English corpus translated into Spanish 
by a machine translation (MT) system, Diab’s algorithm reached a recall 
of 57% on the Senseval-2 English all-words task. Bhattacharya et al. 
(2004) recast and refined Diab’s approach in a probabilistic framework, 
achieving 65% recall on the same test bed. Diab (2004) also compares the 
results of a supervised learning algorithm on the Senseval-2 English lexi-
cal sample task, using either examples acquired from the output of an MT 
system or manual-annotated Senseval-2 examples. The latter gives much 
better results, but, still, Diab’s method gives results comparable to that of 
the best unsupervised systems that participated in Senseval-2. Note that 
these results are obtained with a “noisy” data set, because the output of 
MT systems are not yet of human quality. 

An alternative approach is to exploit the multilingual sense alignments 
in a multilingual wordnet, such as the EuroWordNet (Vossen 1998), Bal-
kaNet (Tufi  et al. 2004a), or from the MEANING project (Vossen et al. 
2006). Tufi  et al. (2004b) used BalkaNet to disambiguate word occur-
rences in parallel corpora following a simple strategy: Given two aligned 
words, w1 and w2, their senses are mapped to the Interlingual Index (ILI) 
that links monolingual wordnets together. If there is one ILI record com-
mon to the possible pairs of senses of w1 and w2, then this ILI record is the 
appropriate sense for both words. If the wordnet alignments do not point to 
the same ILI record, but to semantically close concepts, then a semantic 
similarity score is used to detect the closest pair of ILI records connecting 
w1 and w2 sense-pairs. If there is more than one ILI record in common be-
tween the two words, the ILI record of the most frequent sense of the tar-
get word is selected (additional heuristics apply in case of ties). Finally, a 
sense clustering method is applied, in which a disambiguated occurrence 
of a word can be propagated to other non-disambiguated instances in a 
cluster. The method is applied to an annotated version of George Orwell’s 
1984, with a best result of 75% accuracy, which is comparable to inter-
annotator agreement for the dataset.  

More recently, Chan and Ng (2005) have shown that even a direct app-
lication of aligned texts as examples for word sense disambiguation 
reaches state-of-the-art results in an all-words disambiguation task. Chan 
and Ng start by mapping WordNet 1.7 senses into similar definition entries 
for two bilingual English-Chinese dictionaries; then the Chinese transla-
tions are gathered from the relevant definition entries, and examples are 
automatically retrieved from word-aligned parallel corpora. The problem 
of translation ambiguity is ignored, assigning an ambiguous translation to 
the lowest numbered WordNet sense. Even with this limitation, a 
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state-of-the-art supervised learning system (Lee and Ng 2002) achieves an 
accuracy of 77% in the Senseval-2 English all-words task, comparable to 
the accuracy using Semcor as training data (76%), an impressive result. 

Again, the problem is the knowledge acquisition bottleneck: parallel 
corpora are scarce resources – especially when languages other than Eng-
lish are involved – and usually domain-specific, and therefore not suitable 
for general WSD. And once again, the Web is a potential solution to this 
problem.  

Creating a parallel corpus out of the Web usually involves three steps 
(Resnik and Smith 2003): 1) locating domains, sites or pages that might 
have parallel translations, 2) generating candidate URL pairs from such 
data, and 3) filtering candidate pairs with structural or content-based 
criteria.  

Generation of candidate pairs can be done with relatively simple strate-
gies such as language identification, URL matching (e.g., substituting 
“esp” with “eng” – Spanish and English – in an existing URL and check-
ing whether the substituted URL also exists), or the comparison of docu-
ment lengths. 

Filtering candidate pairs can be done according to structural criteria 
(looking for similar document structure) or content criteria (similar con-
tent). Some approaches include PTMINER, BITS, and STRAND. PTMINER 
(Chen and Nie 2000) locates promising sites by querying for pages in a 
given language that contain links to pages in different languages. Once 
bilingual sites are located and crawled, filtering criteria include language 
identification, URL matching and length comparison, without structural or 
content comparison. Chen and Nie produced an English-French corpus of 
around 100 megabytes per language using these techniques and improved 
cross-language information retrieval (CLIR) systems submitted by partici-
pants in the CLEF comparative evaluation of multilingual information 
retrieval. 

BITS (Ma and Liberman 1999) uses bilingual dictionaries to compute a 
content-based similarity score between candidate pairs, with additional fil-
ters for document length and similarity of anchors (numbers, acronyms, 
etc.). 

STRAND (Resnik 1999b) uses structural filtering to compare language 
pairs, linearizing the HTML structure of both documents and aligning the 
resulting sequences. Four scalar values on the alignment characterize the 
quality of the alignment, and a machine learning process is used to opti-
mize filtering according to these parameters, to obtain a precision of 97% 
and a recall of 83% over a set of English-French candidate pairs. Resnik 
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and Smith (2003) enhanced STRAND with content-based similarity meas-
ures and applied it over the Internet Archive5 to obtain an English-Arabic 
parallel corpus of more than one million tokens per language, with a preci-
sion of 95% and a recall of 99% over the extracted candidate pairs. An inter-
esting feature of STRAND, when combined with the Internet Archive, is 
that it solves legal distribution problems by listing the URLs rather than 
the documents themselves, and that URLs are stable as part of the Internet 
Archive. 

To our knowledge, these automatically extracted parallel corpora have 
not been applied to WSD yet, but given the increasing success of WSD 
based on parallel corpora, it is reasonable to expect results in the near 
future. 

Besides parallel corpora, evidence about translation in context can also 
be obtained from comparable corpora or even from the Web as a big, com-
prehensive multilingual corpus. Grefenstette (1999) showed that multi-
word translation can be done accurately just by using the co-occurrence 
statistics of the candidate translation pairs for the original words in the 
multiword expression. For instance, strong tea is much more frequent on 
the Web than powerful tea according to the statistics of querying Altavista. 
In the case of translation ambiguity, a multiword expression can be trans-
lated with the collocation that is more frequent in the target language, 
according to statistics gathered from the Web or a large comparable cor-
pus. Fernández-Amorós (2004) applies this idea using a large scale bilin-
gual noun phrase alignment which was extracted from the CLEF English-
Spanish comparable corpus (López-Ostenero et al. 2005). Although the 
corpus exceeds one gigabyte in size, and the noun phrase alignment con-
tains more than one million phrases in each language, it covers only 5% of 
the collocations to be disambiguated in the Senseval-2 test bed. This is an 
indication that perhaps only the Web can provide enough statistical evi-
dence to be useful for WSD.  

The Web is not only useful for WSD as a huge corpus, but also as a huge 
social network of potential volunteers for performing cooperative annota-
tion tasks. This is the approach taken by the Open Mind Word Expert 
(OMWE)6 project, in which a Web site collects sense annotations made by 

                                                      
5 www.archive.org 
6 www.teach-computers.org/word-expert.html 

9.3.5 Web-Based Cooperative Annotation 
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Web users (Chklovski and Mihalcea 2002). The system has an active 
learning component that selects the hardest examples (from an automatic 
WSD perspective) as the examples to be shown to the volunteers for man-
ual annotation. In order to find such examples, two different classifiers (an 
instance-based classifier and a constraint-based tagger) are applied to 
untagged data. The agreement between both systems is very low, leading 
to a high accuracy in the cases where they agree, and to a low accuracy 
when they disagree. The cases of disagreement are therefore chosen to be 
hand tagged. 

One potential problem with Web volunteers is how to control the qual-
ity of their annotations. In order to control this factor, redundant tagging 
(from two taggers) is collected for each example, allowing only one tag per 
example per volunteer. The inter-annotator agreement rate for the English 
collection is 62.8% (Mihalcea and Chklovski 2003), which is much lower 
than the 85.5% agreement attained in the Senseval-2 test set (Kilgarriff 
2001). In addition, the best systems in Senseval-3, where OMWE was used 
as the test corpus, inexplicably outperformed the Web volunteers (see 
Chap. 4 (Sect. 4.7)) by a small margin. The quality of the tagging is thus 
an open issue. 

OMWE is growing daily. At the time of writing, OMWE for English 
already exceeds the number of annotations in Semcor, thus becoming the 
largest manually sense-tagged corpus for WSD. At least 70,000 instances 
of about 230 words are annotated with WordNet 1.7 senses (Edmonds and 
Kilgariff 2002). The OMWE project is also collecting hand-tagged exam-
ples for Romanian, and also translation equivalences for English-Hindi and 
English-French.  

In summary, collecting annotations from anonymous volunteers in the 
Web has revealed as a surprisingly effective way of alleviating the know-
ledge acquisition bottleneck. It is more feasible, however, for building test 
resources (as used in Senseval-3) than to obtain training material for a 
complete language, which remains a formidable task for humans. 

The automatic extraction of examples to train supervised learning algo-
rithms reviewed in Section 9.3 has been, by far, the best explored approach 
to mine the web for word sense disambiguation. Some results are certainly 
encouraging: 

9.4 Discussion  
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• In some experiments, the quality of the Web data for WSD equals that 
of human-tagged examples. This is the case of the monosemous rela-
tives plus bootstrapping with Semcor seeds technique (Mihalcea 2002b) 
and the examples taken from the ODP Web directories in Santamaría 
et al. (2003). In the first case, however, Semcor-size example seeds are 
necessary (and only available for English), and it has only been tested 
with a very limited set of nouns; in the second case, the coverage is 
quite limited, and it is not yet clear whether it can be grown without 
compromising the quality of the examples retrieved. 

• It has been shown (Agirre and Martinez 2004) that a mainstream super-
vised learning technique trained exclusively with web data can obtain 
better results than all unsupervised WSD systems which participated at 
Senseval-2.  

• Web examples made a significant contribution to the best Senseval-2 
English all-words system (Mihalcea 2002a). 

There are, however, several open research issues related to the use of Web 
examples in WSD: 

• High precision in the retrieved examples (i.e., correct sense assignments 
for the examples) does not necessarily lead to good supervised WSD res-
ults (i.e., the examples are possibly not useful for training) (Agirre and 
Martínez 2000). 

• The most complete evaluation of Web examples for supervised WSD 
(Agirre and Martínez 2004) indicates that learning with Web data im-
proves over unsupervised techniques, but the results are nevertheless far 
from those obtained with hand-tagged data, and do not even beat the 
most-frequent-sense baseline. 

• Results are not always reproducible; the same or similar techniques may 
lead to different results in different experiments. Compare, for instance, 
Mihalcea (2002b) with Agirre and Martínez (2004), or Agirre and 
Martínez (2000) with Mihalcea and Moldovan (1999). Results with Web 
data seem to be very sensitive to small differences in the learning algo-
rithm, to when the corpus was extracted (search engines change con-
tinuously), and on small heuristic issues (e.g., differences in filters to 
discard part of the retrieved examples). 

• Results are strongly dependent on bias (i.e., on the relative frequencies 
of examples per word sense), as shown in Agirre and Martínez (2004). It 
is unclear whether this is simply a problem of Web data, or an intrinsic 
problem of supervised learning techniques, or just a problem of how 
WSD systems are evaluated (indeed, testing with rather small Senseval 



9 Automatic Acquisition of Lexical Information and Examples      271 

data may overemphasize sense distributions compared to sense distribu-
tions obtained from the full Web as corpus). 

• In any case, Web data has an intrinsic bias, because queries to search 
engines directly constrain the context of the examples retrieved. There 
are approaches that alleviate this problem, such as using several differ-
ent seeds/queries per sense (Mihalcea 2002b) or assigning senses to 
Web directories and then scanning directories for examples (Santamaría 
et al. 2003); but this problem is nevertheless far from being solved. 

• Once a Web corpus of examples is built, it is not entirely clear whether 
its distribution is safe from a legal perspective. 

Besides automatic acquisition of examples from the Web, there are some 
other WSD experiments that have profited from the Web: 

• The Web as a social network has been successfully used for cooperative 
annotation of a corpus (OMWE) (Chklovski and Mihalcea 2002) which 
has already been used in three Senseval-3 tasks (English, Romanian and 
Multilingual).

• The Web has been used to enrich WordNet senses with domain informa-
tion: topic signatures (Agirre et al. 2000) and Web directories (San-
tamaría et al. 2003), which have in turn been successfully used for 
WSD.

It is clear, however, that most research opportunities remain largely unex-
plored. For instance, little is known about how to use lexical information 
extracted from the Web in knowledge-based WSD systems; and it is also 
hard to find systems that use Web-mined parallel corpora for WSD, even 
though there are already efficient algorithms that use parallel corpora in 
WSD. Therefore, it is reasonable to expect many new, exciting results in 
this area in the near future. 

We are indebted to the editors of this volume, Eneko Agirre and Phil 
Edmonds, for their feedback, support and patience along the whole 
editorial process. This work has been partially supported by a Spanish 
government grant (project R2D2, TIC2003-07158-C04). 
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This chapter describes a number of approaches to word sense disambigua-

account. Semantic space may be instantiated by a specific domain, task, or 
application. Approaches discussed include the use of subject codes as 
specified in dictionaries or manually added to WordNet and similar 
semantic resources, the extraction of topic signatures through a combined 
use of a semantic resource and domain-specific corpora, and domain-
specific tuning of semantic resources in a top-down or bottom-up fashion. 

An important aspect of word sense disambiguation (WSD) is the wider 
semantic space in which the ambiguous word occurs. Semantic space1 may 
be instantiated by a specific domain (e.g., biomedicine), a sub-domain 
(e.g., anatomy), a specific task (e.g., heart transplantation) or an organiza-
tion (e.g., biomedicine at Aventis). Researchers have used different terms 
to indicate semantic space in the context of word sense disambiguation: 
“subject” (Guthrie et al. 1991), “discourse” (Gale et al. 1992), “domain” 

                                                      
1 “Semantic space” is a technical term used in the context of Latent Semantic In-
dexing to indicate a “mathematical representation of a large body of text” (Lan-
dauer et al. 1998). A similar use of the term goes back to much earlier work, e.g., 
Rieger (1983). Here the term is not used directly in this formal sense, but most of 
the methods discussed assume a similar notion of word meaning. 

tion, which take the wider “semantic space” of ambiguous words into 
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(Peh and Ng 1997, Cucchiarelli and Velardi 1998), or “topic” (Agirre et al. 
2001). Although there are slight differences among the terms,2 here we will 
use them interchangeably to indicate semantic space. 

The influence of a particular domain on sense disambiguation can be 
clearly illustrated with some cross-lingual examples, as they would appear 
in (machine) translation.3 Consider for instance the English word housing. 
In a more general sense, this translates into German Wohnung (‘accom-
modation, dwelling’). However in engineering it translates into Gehäuse 
(‘frame, casing’). Also verbs may be translated differently (i.e., have a dif-
ferent sense) according to the semantic space in which they occur. For in-
stance, English warming up translates into erhitzen (‘broil, heat’) in a more 
general sense, but into aufwärmen (‘limber up’) in the sports domain. 

This chapter deals with several aspects of the following two questions. 
If senses are strongly aligned with specific domains, then: 

1. Is it possible to disambiguate between senses in a completely generic 
way, that is, without reference to a specific domain? 

2. Is sense disambiguation (by occurrence) even necessary, as the 
domain will determine the appropriate sense (of each occurrence)?  

The first question is concerned with the influence of domain on the dis-
ambiguation process. For instance, it seems theoretically impossible to de-
fine a training corpus and sense inventory that is truly generic (i.e., general 
enough to represent any possible domain). The second question concerns 
the observation that sense disambiguation is unnecessary if a particular 
sense can be assigned universally within a certain domain. The disam-
biguation problem then shifts more towards modeling the role of a particu-
lar sense within a domain, for instance by use of such techniques as topic 
detection and domain modeling.  

In summary, it may not be feasible to separate sense disambiguation 
from the domain in which it operates, which in turn implies that modeling 
this domain is the first priority for sense disambiguation. 
                                                      
2 “Domain” will be used primarily as “technical domain”, whereas a “subject” or 
“topic” may indicate a more loosely defined semantic space, such as sports, rock 
climbing, etc. The use of “discourse” to indicate semantic space is more contro-
versial, as this term has a more precise meaning within linguistic theory. However, 
our use of the term can be paraphrased as “semantically coherent text segment on 
a particular subject,” which corresponds roughly to that of the other terms men-
tioned. 
3
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 Examples from: D. Luckhardt, Approaches to Disambiguation  (http://is.uni-sb.de/
studium /handbuch/infoling/ambi/sublanguage). 
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The remainder of this chapter consists of a detailed description of a 
number of approaches (subject codes, topic signatures, domain tuning) to 
domain-specific word sense disambiguation, followed by a section that 
gives some examples of the use of such approaches in applications (user-
modeling and cross-lingual information retrieval). The chapter closes with 
conclusions and some discussion on the pros and cons of a stronger focus 
on domains in word sense disambiguation. 

A semantic space may be indicated in a dictionary by the use of a so-called 
subject code. In the Longman Dictionary of Contemporary English 
(LDOCE) (Procter 1978), subject codes like MD (‘Medical domain’) or 
ML (‘Meteorology’) are used to define which senses of a word are used in 
which domains. Three of the senses of the word high, for instance, correspond 
to three different domains: Music (a high tone), Drugs (the experience of 
being high), and Meteorology (a high pressure area). 

Subject codes can be used to detect the topic of a text segment by sim-
ply counting their frequency over all content words (Walker and Amsler 
1986). Or, subject codes can be used in sense disambiguation by construct-
ing topic-specific context models (Guthrie et al. 1991). Such neighborhoods 
can be constructed by taking into account all words in the definitions and 
sample sentences of all the dictionary words that share the same subject 
code. 

Given this perspective it seems worthwhile to identify also the semantic 
space of WordNet synsets more explicitly by the introduction of subject 
codes. In WordNet Domains (Magnini and Cavaglià 2000)4 synsets have 
been annotated with at least one domain label, selected from a set of about 
two hundred hierarchically organized labels. 

Table 10.1 shows the domain distribution over the WordNet 1.6 synsets, 
considering 43 disjoint domain labels. This set of labels constitutes an 
intermediate level of the domain hierarchy (i.e., the use of Sport instead of 
Volleyball or Basketball).  

The annotation methodology used for creating WordNet Domains was 
mainly manual, and based on lexico-semantic criteria, which take advan-
tage of the already existing conceptual relations in WordNet. 
                                                      
4 http://wndomains.itc.it/ 

10.2 Approaches to Domain-Specific WSD 

10.2.1 Subject Codes 
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Table 10.1. Domain distribution over WordNet 1.6 synsets. 

No. of 
synsets 

Domain No. of
synsets

Domain No. of 
synsets

Domain 

36820 Factotum  1771 Linguistics 532 Publishing 
21281 Biology 1491 Military 511 Tourism 

4637 Earth 1340 Law 509 Computer-science 
3405 Psychology 1264 History 493 Telecommunication 
3394 Architecture 1103 Industry 477 Astronomy 
3271 Medicine 1033 Politics 381 Philosophy 
3039 Economy 1009 Play 334 Agriculture 
2998 Alimentation 963 Anthropology 272 Sexuality 
2975 Administration 937 Fashion 185 Body-care 
2472 Chemistry 861 Mathematics 149 Artisanship 
2443 Transport 822 Literature 141 Archaeology 
2365 Art 746 Engineering 92 Veterinary 
2225 Physics 679 Sociology 90 Astrology 
2105 Sport 637 Commerce   
2055 Religion 612 Pedagogy   

 
Information brought by domains is complementary to what is already in 

WordNet: 

• Domains may include synsets of different syntactic categories. For 
instance, Medicine groups together senses from nouns, such as doctor-1 
and hospital-1, and from verbs such as operate-7. 

• Domains may include senses from different WordNet sub-hierarchies 
(i.e., deriving from different unique beginners or from different 
lexicographer files). For instance, Sport contains senses such as athlete-1 
derived from life-form-1, game-equipment-1 from physical-object-1, 
sport-1 from act-2, and playing-field-1 from location-1. 

• Domains may group senses of the same word into semantic clusters, 
which has the important side effect of reducing the level of ambiguity 
when we are disambiguating to a domain (cf. verb groups in Chap. 4). 
For instance, the word bank has ten different senses in WordNet 1.6 (see 
Table 10.2): three of them (senses 1, 3, and 6) can be grouped under the 
Economy domain, while senses 2 and 7 belong to Geography and 
Geology, respectively. 

Roget’s International Thesaurus presents a different map of semantic 
space; the 1,042 heads under which all words are categorized can be 
thought of as semantic classes, or subject codes. 
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Table 10.2. WordNet senses and domains for the word bank. 

Sense WordNet synset and gloss Domains 
1 depository, financial institution, bank,  

banking concern, banking company  
(a financial institution) 

Economy 

2 bank (sloping land) Geography, Geology 
3 bank (a supply or stock held in reserve) Economy 
4 bank, bank building (a building) Architecture, Economy 
5 bank (an arrangement of similar objects) Factotum 
6 savings bank, coin bank, money box, bank  

(a container) 
Economy 

7 bank (a long ridge or pile) Geography, Geology 
8 bank (the funds held by a gambling house) Economy, Play 
9 bank, cant, camber  

(a slope in the turn of a road) 
Architecture 

10 bank (a flight maneuver)  Transport 
 

Using subject codes in sense disambiguation has been shown to be fruit-
ful, relative to using other sources of knowledge. For instance, Yarowsky 
(1992) developed a method in which word senses are aligned to semantic 
classes, such as those provided by Roget’s hierarchy, which relied on the 
observation that a sufficient number of words in a class will be monose-
mous so that a reliable discriminator can be trained on contexts of all the 
words in the class. As a consequence, being able to determine the semantic 
class of a word from its context provides a method for the discrimination 
of its senses. The approach consists of three steps: 

1. For each Roget category, collect words that are typically found in the 
context of the category (e.g., for the Bird category of crane collect 
words in the context of heron, grebe, and hawk, and for the Machine 
category collect words in the context of jackhammer, drill, and 
bulldozer), 

2. For a given word (e.g., crane), train a classifier to separate the two or 
more categories in which it is a member, based on the context words 
associated with each category, 

3. Given a novel context, apply the classifier. 

This unsupervised method has achieved 92% accuracy on homograph 
distinctions. However, a somewhat weak aspect in the approach is the need 
to link Roget categories to word senses as provided by a dictionary or lexi-
con. In fact, Yarowsky treats categories as senses, but he suggests one 
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could align categories to senses by using dictionary definitions as context 
(thereby in effect recreating Lesk’s (1986) dictionary algorithm; see Chap. 
5 (Sect. 5.2)). 

Stevenson and Wilks (2001) adapted the Yarowsky (1992) algorithm to 
work with the LDOCE subject codes, which brings it closer to WSD with 
dictionary senses. Experiments were performed on a subset of the British 
National Corpus (BNC) on the words appearing at least 10 times in the 
training context of a particular word. In addition, while Yarowsky assumed 
a uniform prior probability for each Roget category, the probability of each 
subject category was estimated as the proportion of senses in LDOCE to 
which a given category was assigned. They report that the performance of 

More recently Escudero et al. (2000) used domain features extracted 
from WordNet Domains in a supervised approach tested on the Senseval-2 
tasks (see Chap. 4 for Senseval). Prior probabilities for each domain were 
computed considering the frequency of a domain in WordNet Domains. 
The introduction of such domain features systematically improved system 
performance, especially for nouns (+3%).  

While Escudero et al. (2000) integrated domains within a wider set of 
features, Magnini et al. (2002) presented at Senseval-2 a system that makes 
use of only domain information. The underlying hypothesis of the ap-
proach, called DDD (Domain Driven Disambiguation), is that information 
provided by domain labels offers a natural way to establish associations 
among word senses in a certain text fragment, which can be profitably 
used during the disambiguation process. In particular, they argued that 
domains constitute a fundamental feature of text coherence, such that word 
senses occurring in a coherent portion of text tend to maximize domain 
similarity. Following from this premise they verified a “one-domain-per-
discourse” heuristic5 on Semcor, the portion of the Brown Corpus semanti-
cally annotated with WordNet senses. 

The basic idea of DDD is that the disambiguation of a target word w in 
its context t is mainly a process of comparison between the domain of the 
context and the domains of the word’s senses. The algorithm is in principle 
quite simple and requires three steps, as shown in Fig. 10.1. 

 

                                                      
5 Gale et al. (1992) proposed a related one-sense-per-discourse heuristic. See 
Chap. 5 (Sect. 5.5.2) and Sec. 10.2.2 below. 

using only subject codes (79% precision) was much better than that of using
only dictionary definition words (65%), or selectional restrictions (44%)
(see Chap. 5 for more discussion on knowledge-based methods). 
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Fig. 10.1. Domain driven disambiguation (DDD) algorithm for WSD. 

The domain vectors (DV) in the algorithm are data structures that col-
lect the domain information related to both word senses and texts. They are 
vectors in a multidimensional space in which each domain represents 
a dimension of the space. The value of each component is the relevance 
of the corresponding domain with respect to the object described by the 
vector. 

In step (1) the system determines the relevant domain for the context t 
of the word to be disambiguated (±50 words around the target word are 
used). In this phase the system makes use of thresholds, one for each 
domain considered, that need to be exceeded for a domain to be relevant. 

Then, in step (2), a domain vector DV(si) is built for each sense si of the 
target word. In an unsupervised setting this is done using the association 
between words senses and domains provided in WordNet Domains. If 
training data is available, DV(si) is obtained by applying step (1) to each 
training example. 

Finally, in step (3), the sense of w is selected that maximizes the 
similarity with the relevant domain of the context, computed as the dot 
product of DV(si) and DV(t). 

The DDD system was evaluated in the all-words task at Senseval-2 
obtaining 75% precision and 36% recall. The low recall was due to the fact 
that just a subset of the word senses in a document are actually related to 
the domain of the context. However, the fact that the DDD approach all-
ows one to predict the class of words that can be disambiguated is an 
appealing feature of the system, which has been exploited in an application 
scenario (see Sect. 10.3.1 below). Gliozzo et al. (2004b) present an 
empirical assessment of the potential utilization of domains in WSD in a 
wide range of comparative settings. 

In Magnini et al. (2002), the thresholds used in step (1) were estimated 
based on the intuition that a domain is relevant to a text if its frequency in 
that text is significantly higher than in texts unrelated to that domain. 
Gliozzo et al. (2004a) improved the algorithm by using an unsupervised 
method, combining the annotations in WordNet Domains and a probabilistic 

(1) for the context t of the target word w, compute the domain vector DV(t) 
(2) for all the senses si of w, compute the domain vectors DV(si) 
(3) choose the sense , such that 

     ( )))(),((maxargˆ tDVsDVsimilarity
s

s i

i
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framework that made use of a balanced corpus. More precisely, given a 
domain D, the “empirical” probability density function (i.e., the frequency 
distribution of D in the corpus according to WordNet Domains) can be 
seen as the decomposition of two distinct distributions, the distribution for 
D and for non-D. This decomposition is effectively computed using the 
Gaussian mixture model and the expectation maximization (EM) algorithm 
(Redner and Walker 1984), which can represent every smooth probability 
function as a linear combination of two Gaussian probability density func-
tions. The methodology was applied on the BNC to estimate relevance 
thresholds for the domains shown in Table 10.1. The DDD system had a 
significant improvement (+ 3%) with respect to the performance obtained 
in the all-words task at Senseval-2. 

The topic-specific context models (i.e., neighborhoods) as constructed by, 
for instance, Guthrie et al.’s (1991) neighborhoods, above, can be viewed 
as topic signatures of the topic in question. A topic signature can, how-
ever, be constructed even without the use of subject codes by generating it 
(semi-) automatically from a lexical resource and then validating it on 
topic-specific corpora (Hearst and Schütze 1993). 

An extension of this idea is to construct “topics” around individual 
senses of a word by collecting a number of documents corresponding to 
this sense. The collected documents then represent a topic out of which a 
topic signature may be extracted, which in turn corresponds directly to the 
word sense under investigation. 

One such approach is to retrieve relevant documents through Web 
search engines by defining queries for a particular word sense or WordNet 
synset (Agirre et al. 2000, 2001). A query consists of a Boolean combina-
tion of cue words (extracted from the synset, its gloss, available hyper-
nyms, hyponyms, etc.) that restrict the search to only those documents that 
are most relevant to the particular word sense. 

For instance, the following query can be defined for the first WordNet 
1.6 sense of boy: 

(boy AND (altar boy OR ball boy OR … OR male person)  
 AND NOT (man OR … OR broth of a boy OR  
 son OR … OR mama’s boy OR black )  

 

10.2.2 Topic Signatures and Topic Variation 

Topic Signatures 
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Table 10.3. Top ten words for three senses of boy in WordNet 1.6. 

Sense 1 
(male child, boy, child) 

Sense 2 
(‘informal reference to a man’) 

Sense 3 
(son, boy) 

Score Word Score Word Score Word 
43.14 male 35.00 exboyfriend 72.14 mamma’s 
33.47 sonny 31.89 womaniser 70.76 esau 
29.41 ball 24.23 womanizer 69.65 man-child 
27.85 laddie 23.71 ex-husband 54.17 mama’s 
25.57 schoolboy 23.30 eunuch 50.59 offspring 
21.26 sirrah 19.98 galoot 49.56 male 
18.91 ploughboy 18.84 divorced 29.85 jnr 
16.35 adult 18.02 philanderer 27.76 mother’s 
14.23 altar 16.88 strapper 12.73 female 
13.61 bat 13.98 geezer 6.35 chromosome 
 
By submitting the query to a search engine, a number of documents are 
retrieved from which a list of the most relevant words for this word sense 
is generated. Table 10.3 gives the top ten relevant words for the first three 
senses of boy (using the WordNet 1.6 topic signature web-interface (Agirre 
and Lopez de Lacalle 2004)).6 Although results are mixed, a rough 
signature for the senses can be recognized from this list, corresponding to 
the use of the word boy in different topics. 

Constructing topic signatures corresponding to particular senses assumes 
that a predominant sense can be identified for a given topic or domain. 
This may be true for clearly ambiguous words (i.e., in the case of homonymy). 
For instance, sentence will be dominant in the judicial sense in the law 
domain and in the syntactic sense in the linguistics domain. However, for 
words with related senses (i.e., in the case of systematic polysemy; see for 
instance Buitelaar (1998)) the topic signatures will overlap, as with the 
results on boy in sense 1 (‘young male person’) and sense 3 (‘son’). 

In fact, this idea has also been investigated from a different angle in 
reaction to Gale et al.’s (1992) one-sense-per-discourse heuristic (see 
Chap. 5 (Sect. 5.5.2)). Krovetz (1998) demonstrated that many words have 

                                                      
6 http://ixa3.si.ehu.es/cgi-bin/signatureak/signature.cgi 

discourse.  
overlapping senses that will be used simultaneously throughout one 

Topic Variation 
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The main question that then remains is what exactly constitutes a 
semantic space? 

Some indication of this is given by sense disambiguation results that in-
volve a variation of topic. More specifically, we can observe some effects 
of topic variation by training a sense disambiguation system on one topic 
and applying it to another. For instance, training on the Wall Street Journal 
while testing on Semcor and vice versa shows a degradation of 12% and 
19% in precision, respectively (Escudero et al. 2000). On the other hand, 
applying context information (collocations) extracted from the Wall Street 
Journal to a financial text in Semcor shows significantly higher precision 
than on texts in other domains in Semcor (Martínez and Agirre 
2000).These results therefore suggest that a semantic space corresponds to 
a larger or smaller chunk of text (a corpus, a text, or a text segment) with a 
homogeneous distribution of senses and corresponding collocations. 

As shown by the boy example (Fig. 10.3), the WordNet senses of this word 
do not easily line up with an empirically-derived set of topics. In fact, this 
is indicative of a more fundamental problem of using a general (not do-
main-specific) sense inventory such as WordNet. 

The usual scenario … has been that the word senses are taken from a general 
purpose dictionary, … whereas the material to be disambiguated is … Wall 
Street Journal. … So, the profiles [signatures] … will be for general English 
senses according to the WSJ … (Kilgarriff 1998:5). 

Therefore, a general sense inventory needs to be tuned to the domain at 
hand, which involves selecting only those senses that are most appropriate 
to the domain (Basili et al. 1997, Cucchiarelli and Velardi 1998, Turcato 
et al. 2000, Buitelaar and Sacaleanu 2001), as well as extending the sense 
inventory with novel terms (Buitelaar and Sacaleanu 2002, Vossen 2001) 
and novel senses, specific to the domain. 

In the next two sections, we will take a closer look at two approaches to 
the tuning of a general sense inventory to particular domains. The first 
approach empirically defines the most appropriate set of higher-level 
synsets in the WordNet hierarchy, which in turn directs the elimination of 
lower-level synsets (i.e., senses). The second approach instead defines the 
set of appropriate synsets based on the lowest (i.e., sense) level. Given the 
difference in direction, we call the first approach top-down and the second 
bottom-up. 

10.2.3 Domain Tuning  



10 Domain-Specific WSD      285 

sense inventory that is balanced (i.e., that has an even distribution of words 
to senses) and at the right level of abstraction (i.e., trading off ambiguity 
versus generalization) can be selected automatically given the following 
criteria: generality, discrimination power, domain coverage, and average 
ambiguity. 

Applying these criteria in a quantitative way to WordNet and a given 
domain-specific corpus, the method automatically selects a set of relevant 
“categories” (i.e., groups of synsets). The method starts by applying the 
Hearst and Schütze (1993) algorithm for empirically determining alterna-
tive balanced sets of synsets, where each set represents a category. This 
algorithm applies a recursive function that groups synsets into categories 
according to the inheritance structure of WordNet. The algorithm uses pre-
set upper and lower bounds for category inclusion. As long as a category is 
small enough (i.e., under the upper-bound) synsets may be assigned to it. 

After the categories have been determined, a scoring function is applied 
in order to decide the alternative set of categories that is the most relevant 
one for the domain at hand. The scoring function takes the four criteria 
mentioned above as performance factors into account. For instance, the 
generality of a higher-level synset Ci can be expressed as 1/DM(Ci), in 
which DM(Ci) represents the average distance between the set Ci and the 
top-level synsets. Similar performance factors for the other three criteria 
are defined. 

To illustrate the method, consider the set of categories shown in Table 
10.4 that was selected for the financial domain on the basis of the Wall 
Street Journal corpus. Given this set of higher-level synsets, only those 
senses that are subsumed by these will be maintained in the tuned (do-
main-specific) sense inventory. For instance, for the word stock, only 5 out 
of 16 senses are kept, as shown in Tables 10.5 and 10.6. 

The above method uses a top-down approach that propagates the domain 
relevance of higher-level synsets down through the WordNet hierarchy. A 
somewhat different approach would be to assign a domain relevance to 
each word sense directly. Buitelaar and Sacaleanu’s (2001) method determines 

According to Cucchiarelli and Velardi’s (1998) method, a domain-specific 

Top-Down Domain Tuning 

Bottom-Up Domain Tuning 
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Table 10.4. Categories for the financial domain, based on the Wall Street Journal. 

Category Higher-level synset 
C1 person, individual, someone, mortal, human, soul 
C2 instrumentality, instrumentation 
C3 written communication, written language 
C4 message, content, subject matter, substance 
C5 measure, quantity, amount, quantum 
C6 action 
C7 activity 
C8 group action 
C9 organization 
C10 psychological feature 
C11 possession 
C12 state 
C13 location 

Table 10.5. Senses for stock (kept by domain tuning on the Wall 
Street Journal). 

Sense Synset hierarchy for sense Top synset for sense 
1 capital > asset  possession (C11) 
2 support > device instrumentality (C2) 
4 document > writing written communication (C3) 
5 accumulation > asset possession (C11) 
6 ancestor > relative person (C1) 

Table 10.6. Senses for stock (discarded by domain tuning on the Wall 
Street Journal). 

Sense Synset hierarchy for sense 
3 stock, inventory > merchandise, wares >… 
7 broth, stock > soup > … 
8 stock, caudex > stalk, stem > … 
9 stock > plant part > … 

10 stock, gillyflower > flower > … 
11 malcolm stock, stock > flower … 
12 lineage, line of descent > … > genealogy > … 
14 lumber, timber > … 
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Fig. 10.2. WSD algorithm with bottom-up domain tuning (Buitelaar and 
Sacaleanu 2001). 

the domain-specific relevance of synsets on the basis of the relevance of 
their constituent synonyms that co-occur within domain-specific corpora. 
Fig. 10.2 shows the algorithm: first the domain relevance of each of the 
synonyms in a synset is computed and then this information is used to 
compute the cumulative relevance of each synset. 

The relevance measure used in this process is a slightly adapted version 
of standard tf.idf, as used in vector-space models of information retrieval 
(Salton and Buckley 1988): 

tdt dfNtfdtrelevance log)log()|( ,=  (10.2)

where t represents the term, d the domain-specific corpus, N the total 
number of domain-specific corpora taken into account (instead of 
comparing term frequency between documents as in the traditional use of 
tf.idf, here we compare term frequency between domain-specific corpora; 
tf and df are term frequency and document/corpus frequency). This 
formula gives full weight to terms that occur in just one domain (i.e., 
domain-specific corpus) and zero to those occurring in all. 

Given term relevance, one can now compute the relevance of each 
synset. This is simply the sum of the relevance of each term in the synset, 
which may be defined as follows: 

∈
=

ct
dtrelevancedcrelevance )|()|(  (10.3)

where c is a synset. 
To increase the number of terms to be found within a domain-specific 

corpus, a given synset may be extended with its hyponyms as these are 
often directly related (e.g., cell expanded with dungeon or blastomere). 
Adding hyponyms changes the relevance formula accordingly: 

1

(2) for each synset S of which W1 is a member 
(3) for each synonym W2 in synset S, compute domain relevance 

 score of W2 in domain corpus DC 
(4) compute domain relevance score for S over all W2 
(5)  assign S with the highest score to each occurrence of W1 in DC 
 (or similar corpora in the same domain) 

(1) for each word W  in WordNet WN 
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where 'c  is the extended synset and T is the number of synonyms in the 
synset that are found in the domain-specific corpus. 

In order to assess the correctness of this method an experiment would 
need to show two points: 1) How well the method selects domain-specific 
concepts, and 2) How well the most specific sense (synset) is selected for 
domain-specific terms. On the first point, Buitelaar and Sacaleanu (2001) 
report experiments that achieve an accuracy of 80% to 90% for three 
domains (Financial, Soccer, and Medical). On the second point, different 
results for different domains were obtained. Out of 24 terms in the Medical 
domain, 12 had at least one sense that is specific to the domain, all of 
which were determined correctly. For the Financial domain, 6 out of 17 
terms had at least one domain-specific sense, of which 5 were determined 
correctly. For the Soccer domain, there were 6 out of 8 terms of which 5 
were determined correctly. These results indicate a consistently accurate 
selection of domain-specific senses.  

In similar work, McCarthy et al. (2004) report an approach in which 
they use untagged domain-specific corpora to determine predominant 
senses for corresponding domains. Their method produced a 64% preci-
sion on sense disambiguation of nouns with WordNet on the Senseval-2 
English all-word task (see Chap. 6 (Sect. 6.1.2)). 

Sense disambiguation is a subtask within more comprehensive 
applications, such as machine translation, document classification, and 
information retrieval. Therefore should evaluate sense disambiguation not 
only in a standalone fashion, but also as part of such applications, and this 
especially pertinent for domain-specific WSD. In this section we take a 
closer look at the use of some of the above approaches to domain-specific 
WSD in the context of particular applications. See Chapter 10 for a 
broader discussion of the applications. 

Despite its popularity in the computational linguistics community, Word-
Net (and many other lexical resources) is still scarcely used in real 

10.3 Domain-Specific Disambiguation in Applications 

10.3.1 User-Modeling for Recommender Systems 
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NLP-based applications. One reason for this is that the granularity of sense 
distinctions makes it hard to use in WSD. The problem is being addressed 
from the following two converging directions. From the resource side, 
WordNet can be extended, for instance, by adding information on clusters 
of similar senses (see Sect. 10.2.3 above and Chap. 4 on verb groups). 
From the application side, it is important to select scenarios where the loss 
of sense granularity is not crucial, but the benefits of a sense-based app-
roach are still significant.  

An attempt in the latter direction is SiteIF (Magnini and Strapparava 
2004), a document recommendation, a form of document classification, 
system for a multilingual news website where the introduction of a sense-
based analysis of the documents had positive effects. The system exploits a 
sense-based document representation as a starting point to build a model of 
the user’s interests. Documents passed over are processed and relevant 
senses are extracted and then combined to form a semantic network. A fil-
tering procedure dynamically predicts new documents on the basis of the 
semantic network. There are two main advantages of a sense-based ap-
proach: first, the model’s predictions, based on senses rather than words, 
are more accurate; second, the user model is language independent, allow-
ing navigation in multilingual sites. 

SiteIF uses the Domain Driven Disambiguation (DDD) algorithm, 
above, as its WSD component. The sense-based approach was compared 
against a pure word-based approach, resulting both in better precision 
(+ 34%) and in better recall (+ 15%) in document prediction. Because of 
the DDD method, the algorithm shows good performance particularly in 
the disambiguation of words that are related to the relevant domain of a 
text. The gain in overall performance shows that achieving high precision 
on this class of words is important for effective user-modeling systems, 
where there is a need for high quality (i.e., precision) recommendations. 
On the other hand, low recall does not seem to be a serious drawback for a 
pure recommender system, where there is no need to answer an explicit 
query (as is required, for instance, in a standard information retrieval system).  

Sail-Labs Antwerp applied a domain-based disambiguation to the Hewlett-
Packard document collection (Vossen 2001). Sail-Labs had a multilingual 
semantic network built around WordNet 1.5 and linked to a domain hierar-
chy of 750 concepts. The domain hierarchy was used to disambiguate the 
senses, much as described in Section 10.2.1 for the WordNet Domains. 

10.3.2 Cross-Lingual Information Retrieval 
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The complete document set was used to calculate the dominant domains. 
First, only concepts from the dominant domains were accepted and, sec-
ond, concepts of the hypernyms of these domain concepts were accepted 
even if these did not have a domain relation. In the latter case, for instance, 
a particular sense of system was preferred because it dominated domain 
concepts even though it did not have a domain-related meaning. Other 
words without domain-related senses were not expanded. In doing so, it 
was assumed that words are used in the same sense throughout the docu-
ment collection, a much stronger heuristic than one-sense-per-discourse. 
As this work relies on homogeneous domains, the heuristic may still be 
valid. 

The disambiguation was used to derive a trimmed wordnet from the 
generic wordnet7 that only contained the relevant concepts and was 
extended with all the extracted terminology. This trimmed wordnet was 
used in a cross-retrieval test environment and compared with the generic 
wordnet and no wordnet. 

The mono- and cross-lingual information retrieval experiments were 
carried out on the same set of 26,260 English HTML documents from 
which the terminology was extracted. A set of 100 English queries based 
on logged user queries was used. The queries were translated into Dutch 
and French by native speakers. The best matching document was selected 
manually. The following two types of retrieval runs were carried out. 

• Literal: Query terms are directly matched with the English index terms. 
EN: Unexpanded English queries to English documents. 
FR: Untranslated French queries to English documents. 

•
translations. Two different methods of expansion have been applied: 

All meanings: The complete wordnet database was used with all 
word meanings; no disambiguation was applied to trim the database. 
Trimmed: The wordnet database was trimmed after disambiguation 
and extended with terminology; disambiguation was applied. 

Each of the query expansion methods was applied for the three languages, 
where the amount of expansion differs: 

• EN: Expanded English queries to English documents; expansion with 
synonyms. 

                                                      
7 The term “wordnet”, in lowercase, indicates any WordNet-like database rather 
than English WordNet itself. 

- 
- 

Query expansion: Query terms are first expanded to synonyms or 
NL: Untranslated Dutch queries to English documents. - 

- 

- 
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Table 10.7. Retrieval results with trimmed and general multilingual wordnets. 

Retrieval run EN FR NL 
Literal queries 89.6% 39.9% 43.6% 
Query expansion – All meanings (no WSD) 82.4 54.2 54.3 
Query expansion – Trimmed (WSD) 86.4 65.4 61.7 
 
• NL: Dutch queries translated to English and expanded with synonyms. 
• FR: French queries translated to English and expanded with synonyms. 

Table 10.7 shows the results. The baseline is represented by the first 
row, where there is no query expansion or translation. The baseline for 
mono-lingual retrieval (the EN column) consisted of matching literal 
English queries to English documents. This resulted in 89.6% recall as an 
average score, where the intended result in the first ten was considered to 

A stronger effect can be seen for cross-lingual retrieval. Here the base-
line is to match the French and Dutch queries directly with the English in-
dex (the first row, columns FR and NL respectively). Obviously, this gives 
poor results: 39.9% and 43.6%. It still works a little bit because of the spe-
cific terminology that is the same in all three languages. Taking transla-
tions for all meanings increases retrieval to about 54% and disambiguation 
improves on that to 65.4% for French and 61.7% for Dutch. 

These experiments clearly showed that WSD has a positive effect in 
cross-lingual retrieval and only a small negative impact on mono-lingual 
retrieval. The latter is not as bad as it seems, since the queries were rather 
technical and did not show much variation in the usage of synonyms. An-
other advantage of domain disambiguation is that the trimming could be 
done for the complete domain. A small domain-specific wordnet (about 
10% of the size) makes query expansion and index expansion much faster 
without loss of precision. Finally, we believe that WSD up to the domain 
level avoids trying to choose between very specific and fine-grained senses 
that do not make a difference for the application. 

be correct. Only a single result was considered correct. We did not eva-
luate appropriateness of the other results. Using synonyms for all meanings
decreases the English monolingual retrieval to 82.4%. This is due to 
the fact that less precise synonyms were introduced, which tends to have a
negative effect in specialized documents. Disambiguation improves this by
4% to 86.4%. This suggests that expansion with synonyms after disambi-
guation is useful if non-literal queries are expected. 
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A more recent and similar study (Vossen et al. 2006) has been carried out 
in the MEANING project8 on English and Spanish news collections. For 
English, part of the Reuters news collection was used (23,307 articles), and 
for Spanish, a database from the EFE News Agency with news pictures 
and captions (26,546 articles). Domain-based disambiguation is expected 
to be more difficult for these databases because the language in news arti-
cles is more general.  

The project used the TwentyOne retrieval system developed by Irion 
Technologies (Delft, the Netherlands). Disambiguation was applied in a 
similar way as above by assigning the proper WordNet domain labels to 
the text and selecting concepts within the domains, if applicable. All 

The system ran the queries against the corresponding language-indexes, 
where the English index (Reuters) and Spanish index (EFE) were 
expanded with synonyms and the other language-indexes with translations 
(and synonyms). Three variants of the indexes were used: 

• Literal indexes based on the literal words in the text, 
• Indexes with WordNet expansion and translation based on all meanings, 

and 
• Indexes with WordNet expansion and translation with disambiguated 

meanings. 

Queries were matched against document pages. Retrieval was measured 
in terms of recall by checking whether the document from which the NP 
originated was listed in the first 10 results. The results are shown in Table 
10.8. As above (Sect. 10.3.2), literal queries applied to the literal index 
                                                      
8 The MEANING project: Developing Multilingual Web-scale Language Tech-
nologies, was funded by the European Union’s 5th Framework IST Programme as 
IST-2001-34460. 

concepts or selected concepts were expanded with synonyms or transla-
lations from a multilingual WordNet database. The difference to the Sail-
Labs experiment is that here the indexes, instead of the queries, were
translated to other languages, with synonym expansion. Furthermore,
noun phrases (NPs), automatically extracted from the indexed docu-
ments, that showed a clear ambiguity were selected as queries. These
English and Spanish queries were translated to the other languages for
cross-lingual retrieval and we also generated (English and Spanish)
queries with synonyms for non-literal mono-lingual retrieval (e.g., mobile
to search for cell phone and jail to search for police cell ). 

10.3.3 The MEANING Project 
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Table 10.8. Retrieval results on the Reuters news collection in the MEANING 
project. 

Index variant English 
Literal queries 

English 
Paraphrased queries 

Cross-lingual 

Literal 79% 25% 7% 
Expansion (no WSD) 64 29 32 
Expansion (WSD) 71 31 28 
 
perform the best: 79% recall. Literal queries applied to expanded indexes 
had a recall of 64% without disambiguation and 71% with disambiguation. 
For paraphrased queries, the recall for the literal index dropped to 25%, 
and expanded indexes dropped to 29% (no disambiguation) and 31% (with 
disambiguation). There was some advantage in the disambiguated index 
compared to the non-disambiguated index, both for literal (+7%) and 

The project also applied a cross-lingual test using Dutch, German, 
French, Spanish, and English translations of the queries, applied to the 
corresponding translated indexes. Column 4 of Table 10.8 gives the 
average of the results on these languages. Clearly, the results were very 
poor on the literal index because the English words were copied to the 
language indexes. Translated indexes without disambiguation gave best 
results: 32% compared to 28% for the disambiguated expansion. Thus, the 
advantage of disambiguation disappeared in the cross-lingual context. 

A possible explanation for the small differences between the 
disambiguated and non-disambiguated expansion is that page-retrieval is 
relatively robust to the noise that is introduced by the synonym/translation 
expansion. This robustness can be formulated as follows: wrong words are 
added to the index, but the combination of wrong words is unlikely to be 
used in a query or is not consistent enough to push out good results from 
the first 10 results. Apparently, disambiguation does not remove enough 
noise to show a significant difference. 

Based on this analysis, the similarity measurement for matching queries 
was adapted for the experiments on the Spanish news captions in the EFE 
corpus. Queries were treated as phrases and compared with the NPs rather 
than the complete page. It was expected that NPs should be more robust to 
noisy expansion than pages. Here, the literal indexes were Spanish and 
MEANING’s wordnets were to for the expansion. The languages for the 
cross-lingual retrieval were English, Catalan, Basque, and Italian. 

paraphrased queries (+2%). In general, we can say that less noise is intro-
duced by the disambiguated indexes. 
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Table 10.9. Retrieval results on the EFE news collection in the MEANING 
project. 

Index variant Spanish 
Literal Queries  

Spanish 
Paraphrased Queries 

Cross-lingual 

Literal 94% 15% 2% 
   Precision in first position 57 1 1 
Expansion (no WSD) 91 76 47 
   Precision in first position 52 4 25 
Expansion (WSD) 92 65 44 
   Precision in first position 57 41 28 

 
The results are shown in Table 10.9. In general, we see that the recall 

for the literal Spanish queries on the literal index was very high: 94%, 
despite the general news language. We also see that the expanded indexes 
(both non-disambiguated and disambiguated) did not suffer much 
compared to the literal index. Both the high recall in general and the fact 
that the noise is apparently not harmful could be the result of matching 
queries with NPs instead of queries with pages. The NP context is thus 
more noise-robust. 

In the case of paraphrased Spanish queries, the results for the literal 
index dropped dramatically, even more than in the Reuters experiment. 
Again this is due to NP-based retrieval: paraphrases might occur on the 
same page but not likely in the same NP. We also see that the recall results 
for expanded indexes are still good for paraphrased indexes but are better 
for the non-disambiguated index: 76% versus 65%, as expected since NPs 
are noise-robust. As above, column 4 shows the average cross-lingual 
result over English, Catalan, Basque, and Italian. 

To get a better insight into the precision of the result, the intermediate 
rows show the proportion of NPs retrieved in the first (i.e., top) position. 
Disambiguation thus leads to better results than both the literal and the 
non-disambiguated indexes. This means that the noise reduction is 
effective. 

To corroborate this result, a separate task-oriented evaluation was car-
ried out by EFE, in order to demonstrate the better precision afforded by 
disambiguated indexes. A number of testers from EFE were asked to use 
the three systems to find pictures for news articles based on the captions in 
the database. The task was described using words that exhibit ambiguity or 
synonymy with the indexed words. The testers were free to use the search 
engine in their search. The system showed the first 10 results on the direct 
result page, where the results were ranked by the best matching NP. The 
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experiments showed that pictures were found twice as fast with the disam-
biguated system compared to the literal index, and 12.5% faster compared 
to the non-disambiguated system. With all three systems, the testers could 
find a correct picture but with the disambiguated system they needed fewer 
searches and they had to verify fewer results. 

In this chapter a number of approaches to sense disambiguation were pre-
sented that take the wider semantic space of ambiguous words into 
account. Taking this idea to an extreme would imply modeling this seman-
tic space as the first priority in word sense disambiguation. Several argu-
ments might be raised against such a view.  

First of all, it would drive us back to earlier methods that were not very 
robust and required major efforts in adapting to new domains. However, as 
a counter-argument, there are now many robust methods (based on mac-
hine-learning) for lexical acquisition, which would allow for a rapid 
adaptation of semantic resources to a new domain.  

A second main issue would be that, from an evaluation point of view, it 
is important to evaluate the performance of different algorithms, 
independent of a specific domain or application. As a counter-argument 
here, one can ask what such an evaluation proves. Sense disambiguation 
evaluated without a particular (application) domain can only show an 
artificial result, which is hard to interpret and generalize from (see Chaps. 
4 and 11 for more discussion on this point). 

In summary, it seems worthwhile to focus WSD research more directly 
on domain-specific approaches as this is required from an application point 
of view and at the same time allows for more robust, unsupervised methods. 
Currently, the most active domain-specific application area for WSD 
seems to be in bioinformatics (Liu et al. 2004, Schuemie et al. 2005). On 
the other hand, recent work on general WSD has successfully taken up the 
idea of using domains as an important feature for disambiguation (Novis-
chi 2004, Montoyo et al. 2005, Koeling et al. 2005, Gliozzo et al. 2005). 

guation to news language, a more general genre of text. Although recall
was not improved by disambiguation, precision in the first position had a
significant improvement. The problem of retrieval and disambiguation
can be defined as a noise-reduction problem, which can be seen as another
way of approaching a more well-defined semantic-space. 

Concluding, the MEANING project applied domain-based disambi-

10.4 Conclusions 
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When is word sense disambiguation useful in practice? This chapter con-
siders applications of word sense disambiguation in language technology, 
looking at established and emerging applications and at more and less 
traditional conceptions of the task. 

In discussing the role of word sense disambiguation in natural language 
processing, it is helpful to make the distinction between an enabling tech-
nology and an application. An enabling technology produces a result that 
is not useful by itself; an application performs a task that has direct value 
to the end user, to which an enabling technology can contribute. To take an 
everyday example, an electricity adapter converting between 220 volts and 
110 volts is an enabling technology, since by itself it has no direct connec-
tion with a user’s needs. Its value emerges in combination with a larger 
application of technology, such as an electric razor that works in both the 
United States and Europe. As Agirre and Edmonds (Chapter 1) point out, 
word sense disambiguation (WSD) is an enabling technology, as are other 
common NLP tasks like part-of-speech tagging and parsing. These can be 
distinguished from language applications like machine translation and the 
automatic transcription of speech. 

A voltage converter has a well defined task: converting electric current 
from N volts to M volts within some clearly specified tolerance. This task 
is the same whether the converter is used with an electric razor, an es-
presso maker, or a television set. In contrast, there is no universally 
accepted characterization of the WSD “task”, and in fact it has been argued 
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that defining WSD in an application-independent way makes little sense 
(see Chap. 2). In this chapter on applications, therefore, I begin in Section 
11.2 with the basic question of why people believe WSD should matter in 
applications at all. In Sections 11.3 and 11.4, I consider how different con-
ceptions of word sense relate to a variety of specific applications, and in 
Section 10.5 I briefly summarize and conclude with prospects for the 
future. 

Why do so many NLP researchers and developers remain convinced that 
WSD should matter in NLP applications? There seem to be three main 
species of argument. 

A belief in the importance of WSD for applications is a part of the canon 
in natural language processing. It is passed from teacher to student and 
easily accepted on intuitive grounds – it just seems obvious that if bank 
can refer to either a financial institution or a riverbank, a search engine 
query must be more likely to pull back the wrong documents, an MT sys-
tem must be more likely to arrive at the wrong translation, and so forth, 
unless the intended meaning of the word is picked from an enumerated list 
of the meanings it can have. Ide and Véronis (1998:1), in their valuable 
overview of sense disambiguation and its history, begin by saying that 
WSD is “obviously essential for language understanding applications such 
as message understanding, man-machine communication, etc.” and “at 
least helpful, and in some instances required” for applications such as mac-
hine translation and information retrieval where deep understanding may 
not be the goal. Like many firmly held beliefs, this idea is supported by 
widely quoted scriptural references, most notably Bar-Hillel’s (1960) 
famous “the box is in the pen” example, where it is taken as self evident 
that accurate translation of this sentence requires distinguishing among ex-
plicit senses of pen (‘writing utensil’ versus ‘enclosure where small chil-
dren play’).1 

                                                      
1 The example is strained for speakers of American English, where the unambigu-
ous playpen would have to be used. Surprisingly, given the example’s longevity, 
British informants find it unnatural also. 

11.2 Why WSD? 

Argument from Faith 
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Common as this argument is, it must be viewed with suspicion. If pre-
sented without further support, it is nothing more than a variant of what 
Dawkins (1986) terms the “argument from personal incredulity”, which is 
to say, a claim that something must be the case because one cannot imag-
ine it being otherwise.2 

The problem of word sense ambiguity has been a central concern since 
the earliest days of computing – Hutchins (1997) quotes a 1949 letter from 
Warren Weaver to Norbert Wiener on the question of machine translation, 
in which he refers to “the semantic difficulties because of multiple mean-
ings.” And yet, central though it still is in many people’s minds, the facts 
remain that (a) explicit word sense disambiguation plays very little role in 
many current NLP applications, and (b) NLP applications are making fine 
progress anyway. Those facts suggest that rather than taking the impor-
tance of WSD for granted, its role in applications is worth examining. 

Although Bar-Hillel refers specifically to machine translation, his ex-
ample illustrates a common view of sense disambiguation more generally. 
It is widely believed that ultimate success in language processing – human-
quality performance on language-related tasks – will eventually require 
deeper, explicit semantic interpretation that relies on enumerating and ex-
plicitly choosing among the senses of words. While it certainly does 
seem plausible that distinguishing word meanings in context would be a 
requirement for human-like NLP, it is not clear that this requires a process 
that presupposes “determination of all the different senses for every word” 
or which needs to “assign each occurrence of a word to the appropriate 
sense” (Ide and Véronis 1998:3, my emphases). 

The path of language technology development over the last two decades 
presents a tremendous challenge to the traditional breakdown of NLP into 
problems of morphological analysis, syntactic parsing, word sense disam-
biguation, logical-form semantic representation, discourse analysis, and so 
forth. Enabling technologies designed to solve those problems have played 
very little role in the most visible successes of human language technology 
for end users, such as the commercial viability of automatic speech recog-
nition, the ubiquity of spell checking, or the incorporation of Web text 
retrieval into everyday life. Those achievements derive largely from 
                                                      
2 Bar-Hillel also makes an argument from personal incredulity when he dismisses 
the idea of equipping an MT system with “a dictionary [and] also with a universal 
encyclopedia” as “utterly chimerical” (Bar-Hillel 1960, quoted by Hutchins 1999). 

Argument by Analogy 
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linguistically shallow techniques such as n-gram and Hidden Markov 
Modeling, stemming, co-occurrence-based feature vector representations, 
and the like. We have learned that it is possible to accomplish a huge 
amount using shallow methods rather than creating and manipulating lin-
guistically deeper representations.3 

On the other hand, the language technology community is discovering 
that some forms of linguistic depth can make a difference, notably syntac-
tic structure, and one could argue by analogy that this bodes well for WSD. 
As one good example, Chelba and Jelinek (1998) managed to demonstrate 
(after decades of experience to the contrary) that the use of syntactic struc-
ture in stochastic language models can lead to reductions in perplexity and 
word error rate compared to standard trigram modeling, an advance with 
potential repercussions for applications such as speech recognition, statis-
tical MT, and optical character recognition. Other examples include Kumar 
and Byrne (2002), who showed that a syntactic measure of lexical distance 
can be used to improve the performance of stochastic word-alignment 
models for machine translation; Microsoft Word, which has for some years 
incorporated grammar checking based on syntactic parsing; and recent 
success applying synchronous context-free parsing in machine translation 
(Chiang 2005). 

These developments do provide something of a response to the sugges-
tion that linguistically better-informed methods have little to contribute to 
applications in general. However, including WSD in this response has two 
weaknesses. First, the argument really cannot be made without identifying 
what properties of the linguistic representations had value for the relevant 
applications, and then making the analogy to WSD clear and explicit. Sec-
ond, the gains achieved by linguistically better-informed methods have 
generally not been great enough to change the prevailing wisdom among 
practitioners – for example, virtually all language modeling in practical 
applications still uses n-gram models.  

Ultimately, the value of WSD in applications comes down to a question 
of specifics: in which applications does it help, and why? Although no 
application can be cited as an unequivocal success for WSD, there is cer-
tainly one widely noted failure: monolingual information retrieval. Given 
how starkly the results contradict the intuition that word sense disambiguation 
                                                      
3 By “deeper”, I mean further removed from the visible surface form, not neces-
sarily more richly elaborated. 

Argument from Specific Applications 
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should make a difference, monolingual IR is the flagship example for pes-
simism about WSD’s practical potential. WSD is more broadly a focal 
point for examination of all of NLP’s practical utility in IR. Voorhees 
(1999), for instance, uses negative results involving WSD in IR to illus-
trate broader insights into problems of exploiting deeper NLP techniques 
for IR more generally. Voorhees (1999:23) correctly observes that (mono-
lingual) text retrieval “can be viewed as a great success story for natural 
language processing ... a major industry has been built around the auto-
matic manipulation of unstructured natural language text”, but, contrary to 
Ide and Véronis (1998), this world changing phenomenon has taken place 
without the use of explicit disambiguation. 

Monolingual information retrieval is, however, only one of many appli-
cations. Although I have suggested one should be skeptical of the argu-
ment from faith and I find the argument by analogy to be of limited value, 
the argument from specific applications is worth considering more fully. 
That is the main subject for the remainder of this chapter. 

In Sections 11.3 and 11.4, I look in more detail at traditional and less 
traditional construals of the WSD task, and at current and future NLP app- 
lications. Although this exercise does not lead to fresh optimism for tradi-
tional WSD in current applications, I will suggest that broader conceptions 
of the task have potential given the directions in which NLP applications 
are evolving.  

lexicographic tradition, where the meanings of words are explicitly enu-
merated, sometimes being organized into a hierarchical structure, and they 
are considered to be properties of those words independent of any particular 
application. In a computational setting, most traditional natural language 
processing approaches adopt this sort of characterization of word senses as 
an a priori enumeration of discrete (albeit possibly overlapping) meanings, 
and what I term “traditional WSD” is the problem of selecting one of those 
meanings. 

Kilgarriff (1997) provides an informative discussion of this conceptuali-
zation (together with a host of useful references), and his brief synopsis of 
the traditional conception of the WSD task is worth quoting in its entirety: 

Many words have more than one meaning. When a person understands a sen-
tence with an ambiguous word in it, that understanding is built on the basis of 

The most enduring conception of word senses in NLP comes from the 

11.3 Traditional WSD in Applications 
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just one of the meanings. So, as some part of the human language understand-
ing process, the appropriate meaning has been chosen from the range of pos-
sibilities. (p. 91) 

Although presented as a sub-task of human sentence understanding, rather 
than a component of language technology, this has been the basic concep-
tion of WSD adopted in most NLP applications, as well. Not surprisingly, 
it has also formed the basis thus far for most tasks in the Senseval evalua-
tion exercises (see Chap. 4). 

One might therefore extend Kilgarriff’s synopsis of traditional WSD 
with the following sentence: 

Successful natural language processing applications, therefore, must also pick 
the correct meaning of a word from that range of possibilities.4 

As mentioned above, the traditional characterization of WSD has formed 
the basis for numerous unsuccessful attempts to gain improvements in IR. 
The dominant paradigm in IR is based on “bag-of-words” representations: 
a piece of text is characterized as an unordered collection of terms, and the 
assessment of a document’s relevance in response to a query depends pri-
marily on the terms they have in common. Most intuitively, the terms are 
the words themselves. In practice, common uninformative words are ex-
cluded as terms, and multiple forms of words are mapped down to a single 
form via stemming – for example, connect, connects, connecting, and con-
nection would all be stemmed as connect. As a result, a query about “con-
necting my camera” and a document containing “connection of a digital 
camera” would have terms connect and camera in common.5 

Stemming is useful in IR because it helps to treat connecting and con-
nection as different surface forms for the same essential content. Many 
attempts to apply WSD in IR have followed from the same basic premise. 
As an illustrative example, consider Voorhees’s (1999) case study investi-
gating WSD in a monolingual IR system. A variant of the usual bag-of-words 

                                                      
4 This is consistent with Ide and Véronis (1998:3), whose characterization of the 
WSD task “necessarily involves two steps: (1) the determination of all the differ-
ent senses for every word relevant (at least) to the text or discourse under consid-
eration; and (2) a means to assign each occurrence of a word to the appropriate 
sense.” 
5 See Baeza-Yates & Ribeiro-Neto (1999) for a good introduction to IR. 

11.3.1 WSD in Traditional Information Retrieval 
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model for IR, the idea is to go beyond words to a more conceptual repre-
sentation: for example, if a query or document contains the word bank, 
then its representation contains not only the term bank itself, but also the 
WordNet sense identifier produced by disambiguating bank in context. In 
theory, at least, disambiguating both query and document terms should 
improve precision by avoiding matches where sense bank-1 is intended in 
the query and sense bank-2 is intended in the document. Disambiguation 
would also improve recall in cases where the same concept (say, ‘a con-
tainer for holding money’) is lexicalized by one word in the query (bank) 
and by a synonym in the document (say, cash box). WSD would resolve 
both to the same sense identifier, and thus it no longer matters that the 
query and the document express the same idea differently on the surface. 

In her study, Voorhees found that WSD hurt quite a bit more than it 
helped. Her results confirmed Sanderson’s (1994) finding that even 
relatively low error rates for WSD can have fatal effects on informa-
tion retrieval performance. They also confirmed Krovetz and Croft’s 
(1992) observation that monolingual IR evaluation is a difficult setting in 
which to seek WSD-based improvements. 

Three reasons for this have been widely noted. First, if queries are short, 
there is extremely limited context available for context-based disambigua-
tion of query terms, which makes WSD difficult. Second, even for words 
with multiple senses, the most frequent sense often heavily dominates the 
frequency distribution of the text collection under consideration; in such 
cases using the word itself is likely to be just as good as correct disam-
biguation. Third, most document retrieval models exhibit a tendency 
toward implicit disambiguation of multi-word queries, which helps bag-of-
words IR perform well even in the absence of explicit word senses, 
particularly for longer queries.  

As an example of the last of these, consider what happens when the 
query “interest bank Fed ” is issued against a document collection where 
some documents are about finance and others are about rivers. A document 
about finance is much more likely than a document about riverbanks to 
contain more than one term from this query. As a result, that document 
will score higher than a ‘riverbank’ document in a bag-of-words system, 
even though no explicit disambiguation of query or document terms has 
taken place.6 

                                                      
6 Sanderson (2000) calls this the “query word collocation effect”. See his excellent 
discussion for a more detailed analysis of word sense disambiguation and IR. 
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Implicit disambiguation may have less of an effect, opening up possi-
bilities for explicit WSD, when documents are short, providing less oppor-
tunity for multiple matches with the query. In the context of retrieving 
images by their captions, Smeaton and Quigley (1996) show that the 
potential gains for short documents are significant if WSD can be done 
accurately (they did it manually). On the other hand, Sanderson (2000) 
observes that “any type of expansion on these [short] sorts of documents 
will have been likely to be beneficial.” 

Krovetz (1997, 2002) has stressed that his often-cited 1992 experiments 
do support the potential for improved monolingual IR performance using 
WSD, even though they have often been interpreted as saying the opposite. 
He points to his empirical finding that, given a query term w used in sense s, 
relevant documents containing w are indeed more likely to be using the 
term in sense s rather than in other senses s’. So, for example, if the query 
contains bank used as bank-1 and a document contains bank in a different 
sense, bank-2, then that does predict the document is less likely to be rele-
vant. Sense-based matching therefore has a potential role to play in distin-
guishing between relevant and irrelevant documents. Moreover, query 
terms do turn out to be highly ambiguous, even in restricted domains, 
which means that disambiguation has room to help, whether it occurs im-
plicitly or explicitly. This is still an argument from faith, but it is one 
grounded in empirical, application-specific investigation. 

The operative question, then, is not whether traditional WSD could help 
in IR, but whether it can provide value over and above the implicit disam-
biguation effect or other shallow techniques, particularly in the presence of 
skewed sense frequency distributions, and whether it can be made to help 
more than it hurts. The discussion is somewhat mixed. On the one hand, 
researchers with extensive experience investigating NLP in IR have not 
found explicit WSD to be useful for the reasons discussed above (e.g., 
Voorhees (1999); Tomek Strzalkowski (personal communication); see also 
Sparck Jones (1999)). Sanderson (1994) is widely cited for his result 
showing that a 20–30% error rate is enough to undermine the use of WSD 
in an IR system, and a corresponding suggestion that 90% accuracy must 
be obtained before WSD is of practical use. Prospects for obtaining this 
level of accuracy seem poor for the foreseeable future, at least with regard 
to making fine-grained sense distinctions in an “all words” task (see Chap. 
4). Sanderson (2000) goes on to a further analysis of the factors affecting 
the success of disambiguation in IR, together with relevant literature, and 
concludes that in general, attempts “at automatic disambiguation and IR 
have failed to improve effectiveness”.  
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On the other hand, one can find a few results that might point in a posi-
tive direction. Mandala et al. (1998) report favorable results for a WSD 
technique in IR, evaluating using standard test collections.7 Gonzalo et al. 
(1998) created a test collection from a manually-disambiguated corpus 
(Semcor, the WordNet semantic concordance) to experiment with varying 
levels of disambiguation accuracy, and found that indexing with WordNet 
synsets helped in a known-item retrieval task; see also Gonzalo et al. 
(1999), which revisits the experiments of Sanderson (1994) and Krovetz 
(1997) using the Semcor test collection.  

Moreover, recent results suggest that it is worthwhile to focus on those 
words that can be disambiguated with high precision, rather than disam-
biguating all words. Mihalcea and Moldovan (2000) obtained gains in a 
limited evaluation, using a subset of one standard IR test collection, via a 
combination of synset-based and word-based indexing; their WSD approach 
yielded synset accuracy of greater than 92% when applied to approxi-
mately 55% of the nouns and verbs. Stokoe et al. (2003) also obtained 
above-baseline results using an approach explicitly designed to avoid the 
impact of inaccurate disambiguation, although they qualify these results by 
observing that their baseline model was below the state of the art. Simi-
larly, Kim et al. (2004) focus on exploiting WSD where it can be accurate 
and on mitigating the effects of inaccuracy, applying coarse-grained 
semantic tags to nouns and allowing multiple sense assignment rather than 
one-best tagging; their approach appears to improve performance against 
realistic IR baselines. Liu et al. (2004) employ high-precision disambigua-
tion of query terms for selective query expansion. 

one IR researcher put it, when it comes to convincing results, “it’s all 
pretty thin on the ground.” As discussed above, the effect of implicit dis-
ambiguation, produced by documents matching multiple query terms, is 
one important reason that monolingual IR performance has been hard to 
improve upon using WSD techniques. Another is the traditional formaliza-
tion of the IR task in terms of document-level relevance, which allows 
bag-of-words approaches to identify relevant documents without a deeper 

                                                      
7 This reference does not seem to be widely cited, perhaps because it is less well 
known, or perhaps because their evaluation baseline (the SMART system) did not 
represent state-of-the-art IR system performance. 

Traditional IR has been a difficult proving ground for traditional WSD – as 

11.3.2 WSD in Applications Related to Information Retrieval 
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understanding of the specific information sought by the query. These ob-
stacles for WSD’s impact in traditional IR may be less of an issue in two 
emerging retrieval applications: cross language IR, where translation am-
biguity complicates implicit disambiguation, and question answering, 
where the nature of the task is less likely to reward bag-of-words models. 
Categorizing (or disambiguating) search-engine queries for advertising 
purposes may also be bringing new attention to text classification. 

Cross-language information retrieval (CLIR) is an application developing 
at a rapid pace, thanks to the increasingly global nature of information 
seeking on the Web, global commerce, and the needs of the intelligence 
community. WSD may well have greater potential in CLIR than in IR, 
owing to the interaction of sense ambiguity with translation ambiguity. 

In a CLIR setting, the user presents a query of the usual kind, but some 
of the relevant documents may be written in a different language – let us 
call the query language LQ and imagine seeking documents in language LD. 
In one common approach, known as query translation, query terms in LQ 
are translated into LD (e.g., using a bilingual dictionary), effectively reduc-
ing the problem to monolingual retrieval in LD. The problem, however, is 
that in addition to the usual problem of sense ambiguity within LD, the 
translation from LQ into LD often is also ambiguous, in that each LQ query 
term can typically translate into multiple words in LD, representing differ-
ent senses of the LQ term. In most CLIR systems all the translations are in-
cluded, though often with different weights. Despite the amelioration of 
weighting schemes, the noise added by the additional translation “fan out” 
can interfere with the implicit disambiguation effect. 

Consider, for example, a situation where word x in an English query can 
translate into any of x1, x2, and x3 in, say, Chinese, and where word y in 
the English query can translate into any of y1, y2, y3, and y4. Furthermore, 
suppose that x1 and y1 are the correct Chinese translations. As one would 
hope, Chinese documents containing both x1 and y1 will score higher than 
documents containing only one or the other, yielding the implicit disam-
biguation effect. But notice that documents containing both of x1 and y2 
will also score higher, even though y2 is the wrong translation for y in this 
context, and the same holds for x2 and y3, as well as all the other combina-
tions. In practice, for at least some of the eleven unintended xi, yj combina-
tions, there will be at least some documents containing both terms, and 
those documents will be rewarded in their scores even though they may 
not contain concepts corresponding to the original query terms x and y. 

Cross-language IR 
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This effect is the reason behind Oard and Dorr’s (1996) observation that 
polysemy appears to be more of a “key limiting factor” in multilingual 
retrieval than in monolingual retrieval. They note that “polysemy can be 
reduced using syntactic and semantic information, of which the simplest 
type is phrase formation.” For example, the word interest is ambiguous in 
English between a financial sense and a hobby sense, expressed in Chinese 
by distinct words,  [li4 xi5] and  [xing4 qu5], respectively. If an Eng-
lish query contains the words interest and rate, and the words are consid-
ered independently, then the incorrect translation of interest as the latter is 
likely to hurt precision. For example, the system might give a high score to 
a news article in Chinese that, say, comments on the increasing rate at 
which people in China have taken up an interest in browsing the Internet. 

In contrast, if linguistic analysis of the English query were to identify 
interest rate as a phrase, translating the phrase would be preferable: being 
more specific, interest rate will likely have fewer translations in Chinese 
than either interest or rate alone, leading to fewer chance matches. The 
benefit of query language phrase formation, then, arises at least in part 
from the fact that in the query language, phrases will tend to have less 
sense ambiguity than words. As a result, in CLIR, “word sense disam-
biguation, which, like phrase formation, has demonstrated limited utility in 
a monolingual context might be a productive avenue for further investiga-
tion” (Oard and Dorr 1996:24; for more discussion of translation granular-
ity in CLIR, see Levow, Oard, and Resnik 2005). And, indeed, a number 
of results in the CLIR literature suggest the value of improving translation 
selection (e.g., Ballesteros and Croft 1997, Gao et al. 2001, Qu et al. 
2002). The majority of such results do not make use of explicit WSD. Two 
recent exceptions are Clough and Stevenson (2004) and Vossen et al. 
(2006), both using EuroWordNet. This latter work presents positive results 
for domain-specific WSD in CLIR, and is presented in detail in Chapter 10 
(Sect. 10.3.3). 

In some respects, question answering (QA) is one of the oldest NLP appli-
cations: natural language interfaces to databases and knowledge bases date 
back at least as far as the LUNAR system for answering questions about 
rock samples that were brought back by the Apollo expeditions (Woods 
and Kaplan 1971). In its most recent incarnation, the aim of QA is to find 
answers in open-domain natural language text. Rather than querying an IR 
system with “Edison light bulb patent” – receiving, say, full articles on 
Edison and the light bulb in response – the goal is to ask a QA system specific 

Question Answering 
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questions such as “When did Edison patent the light bulb?” and receive 
back a concise answer rather than a set of relevant documents.8 

QA has seen a significant increase in research activity, and the first 
standardized comparison of systems took place at TREC-8 (Voorhees and 
Tice 2000).9 Voorhees (1999) suggests that QA might be fertile ground for 
NLP because “determining the relationships that hold among words in a 
text is likely to be important in this task” and, similarly, Sparck Jones 
(1999) mentions extraction of information for question answering as a task 
that “in general depends on linguistic analysis, even if this may sometimes 
be done by linguistically shallow means.” As an illustration, although pars-
ing to derive the syntactic relationships in the above question – SUBJECT 
(PATENT, EDISON), OBJECT (PATENT, BULB), and MODIFIER (BULB, LIGHT) – 
may not be particularly necessary in a model where relevant documents are 
sought, it is likely to be useful in distinguishing between relevant and ir-
relevant answers such as Edison patented the light bulb in 1879 versus Jo-
seph Swan’s earlier light bulb patent in 1878 gave Edison some trouble. 

With syntactically elaborated “terms”, the “paraphrase problem” (Oard 
and Dorr 1996, Woods 1995) is more acute: the bag-of-words system will 
happily give high marks to a (relevant) document containing Edison’s 
1879 patent of the light bulb, but this text fragment contains syntactic rela-
tions that mostly do not match the ones found in the question. Because a 
noun phrase patent of the light bulb is used, for example, the SUBJECT 
(PATENT, EDISON) relation is not present in the document. Recognizing a 
match between Edison’s patent and Edison patented suggests taking a step 
closer to semantics – a step that was less necessary in document-level 
retrieval, where stemming accounts for the noun/verb divergence and sur-
face co-occurrence is enough to reward the presence of both Edison and 
patent regardless of the relationship between them.  

There is some reason to believe that in the step toward more use of 
semantics, explicit sense distinctions are useful in QA. Among NLP practi-
tioners, the LCC-SMU system of Harabagiu and colleagues (Pa ca and 
Harabagiu 2001a) is most often mentioned in this regard, both because it 
uses NLP more extensively than most other systems and because it has 
outperformed other systems in community-wide QA evaluations. Among 

                                                      
8 The goals of QA are also evolving beyond “factoid” questions of this kind; e.g., 
see Harabagiu and Lacutusu (2004), particularly Prange (2004). 
9 TREC (Text REtrieval Conference) is the highly successful series of annual 
evaluation events for information retrieval systems, organized by NIST (National 
Institute of Standards and Technology) in the United States.  
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their techniques, the analysis of questions and possible answers includes 
syntactic representations at the level of dependencies, and assessing the 
quality of a match includes using lexical, morphological, and semantic 
knowledge to “expand the question and answer words to account for as 
many similarities as possible.” For example, their system determines that 
maker of greeting cards is related to sells greeting cards because the gloss 
(i.e., definition) of make (in WordNet 1.6, sense 6) is expressed in terms of 
manufacture, whose gloss explicitly identifies that goods are made “for 
sale”, which is morphologically related to sell. (See also Moldovan and 
Rus (2001), who discuss the transformation of WordNet’s knowledge into 
a logical form in order to draw conclusions of this kind.) Sense distinctions 
are used implicitly in some of their techniques, but explicit WSD does also 
appear to be used: Pa ca and Harabagiu (2001b) discuss a disambiguation 
process that disambiguates words in the relevant syntactic dependency re-
lationships – for example, sells:cards – by taking advantage of both 
WordNet and the Web (Mihalcea and Moldovan 1999). 

An interesting related development, with regard to the role of semantics, 
is the “Recognising Textual Entailment Challenge” (Dagan, Glickman, and 
Magnini 2004), an exploratory evaluation exercise designed to focus on 
paraphrase issues. Participating systems are expected to receive a text 
snippet such as Yahoo took over search company Overture Services Inc 
last year paired with the snippet Yahoo bought Overture, and determine 
whether the former entails the latter (yes, in this case). In a panel discus-
sion about future evaluations at the Senseval-3 workshop (see Chap. 4 
(Sect. 4.7)), Ido Dagan suggested a variation of the textual entailment task 
designed to focus on word sense issues. The idea would be to specify a 
word or lexical phrase in each text snippet, and to ask whether the mean-
ings of the specified items are in an entailment relationship; for example, 
took over in the preceding context entails bought. Like the snippet entail-
ment task, this lexically-focused task would not require either explicit 
sense representations or explicit disambiguation, though either might prove 
helpful.10 If adopted, the task could form a useful bridge between intrinsic 
(or in vitro) WSD evaluation and system level evaluation in applications 
like QA where it is important to identify entailment relations.11 

                                                      
10 See Resnik (1993:22–26) for an initial foray into formally characterizing 
WordNet’s semantics in terms of entailment. 
11 Textual entailment could also form a bridge between WSD and MT evaluation, 
since “correct translation” can be thought of as mutual entailment between items 
in different languages. 
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Another important consideration in QA is answering the right question. 
In order to find the right types of answers for a given question type (who 
versus where versus when, for example), many approaches to QA rely on 
some variant of named entity tagging: identifying phrases that can be cate-
gorized into high-level semantic categories such as Person, Organization, 
Location, Date, and so forth. For example, Prager et al. (2000) tag text en-
tities with their types as a part of the indexing process, and then extend the 
query into an IR system with a term designating the expected answer type 
in order to retrieve text passages containing the right sorts of entities. Thus 
the sentence Edison patented the light bulb in 1879 might be indexed as 
something like Edison <Person> patented the light bulb in 1879 <Date>. 
Given a “When did …” question, their system would add the term 
“<Date>” to the IR query. Other systems do this sort of analysis further 
downstream in the process. As research on QA continues to develop, the 
small number of named entity types is giving way to a much larger set of 
semantic categories (Hovy et al. 2002, Pa ca and Harabagiu 2001a). And 
as the set grows, categorization into entity types more and more closely 
approaches the general problem of word sense disambiguation. 

Most work on classifying texts into predetermined categories (text classifi-
cation, categorization, or routing) is based on the same bag-of-words rep-
resentations that are typical in information retrieval. Some attempts to 
enrich text representations with word sense information have not 
yielded improvements in performance (e.g., Kehagias et al. 2003, Moschitti 
and Basili 2004) for reasons similar to those discussed in Section 11.3.1. 
However, Vossen et al. (2006) present a study using the Reuters news col-
lection in which they obtain improvements for document classification us-
ing a WSD technique that emphasizes the importance of topical domains. 
In similar work, Bloehdorn and Hotho (2004) show that the integration of 
features into the document representations for text document classification 
improves the result, achieving highly competitive results on the Reuters-
21578 and OHSUMED datasets (for IR and information extraction re-
search). Some improvements can be attributed to the detection of multi-
word expressions and to the conflation of synonyms. Further improve-
ments can be achieved by generalizing concepts. In closely related work, 
Hotho et al. (2003) report improved results in document clustering. 

In addition, a particular variety of text classification has become a topic 
of interest in the context of search engines: categorizing users’ queries, for 
example, in order to do a better job of targeting advertising. To adapt an 

Document Classification 
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example from Chris Brew (personal communication), does a user querying 
with “duck soup washington d.c.” want to see pointers to restaurant listings 
or advertisements for a Marx Brothers film revival? Assessing users’ intent 
is closely related to disambiguating the intended meaning of their queries, 
and Li and Zheng (2005) report on a competition designed around this 
task.  

Discussions of MT conventionally make a distinction between interlingual 
systems and transfer systems.12 In interlingual systems, traditional WSD is 
necessary in order to identify the correct interlingual or “meaning” repre-
sentation for a concept expressed in the source language. Translating The 
news of the attack broke at 6am, one might select the communication sense 
of broke rather than the destruction sense (cf. The glass in the window 
broke at 6am). This monolingual analysis task produces an interlingual 
representation; monolingual generation for the target language then maps 
from that representation to a surface realization. 

Consider Dorr’s (1993) interlingual translation framework. The lexicon 
contains multiple entries for the same English verb, and the syntactic con-
text helps narrow down which entries are viable – for example, the source 
sentence I broke the news to Mary permits only the communication sense 
(cf. *I broke the glass to Mary). This filtering during the analysis phase is 
accomplished by lexical representations that allow a possible goal/recipient 
argument for the communication sense of break, but not for the ‘break into 
pieces’ sense. The result of the analysis is a semantic representation built 
from the component lexical representations of the words in the sentence; 
crucially, the building blocks for these representations consist of interlin-
gual semantic elements such as CAUSE, BE, and the like. The generation 
phase proceeds by searching among the combinations of target-language 
lexical items to find a set that fully covers the sentence’s interlingual se-
mantic representation, in a sense reversing the disambiguation process: 
lexical items are chosen by virtue of their fit to the semantics of the ex-
pression being translated. (See also Habash (2003)). 

                                                      
12 “Direct” systems are a third conventional category, but, as the term suggests, 
they do not use intermediate representations such as word senses. See Dorr et al. 
(1999) for a good article-length overview of MT that discusses a wide range of 
ambiguity types. 

11.3.3 WSD in Traditional Machine Translation 
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Transfer systems similarly face the need to determine which source lan-
guage representation to use for mapping to the target language. In some 
transfer systems, the link between lexical items is mediated by a mapping 
between sense inventories in the source and target languages. However, 
transfer-based systems have an opportunity unavailable to interlingual sys-
tems, which eschew (at least in principle) any direct knowledge of how 
source language expressions map to the target expressions: they can map 
directly from words to words, in effect treating the set of target-language 
translations of a word as if it is the word’s sense inventory. 

However, commenting on the effectiveness of explicit WSD in tradi-
tional MT systems is difficult for a number of reasons. First, sense ambi-
guity is only one of a large variety of forms of ambiguity that challenge 
MT systems, and perhaps for that reason WSD does not tend to be dis-
cussed as a separate component. Second, standardized, community-wide 
MT evaluations are a fairly recent phenomenon. Explicit WSD does not 
appear to have played a visible role in any of the systems that participated 
in the ARPA evaluations of the early 1990s (White and O’Connell 1994), 
and most participants in more recent comparative evaluations have been 
either statistical MT systems (discussed below) or commercial systems, for 
which system details are often kept confidential.13 

That said, however, Systran, one of the classic transfer-based MT sys-
tems, illustrates one way that traditional WSD techniques can be used with 
target-language terms in the place of sense identifiers. Laurie Gerber (per-
sonal communication) comments that for some language pairs, Systran se-
lects the meaning in the target language by first doing monolingual source 
language disambiguation, and then separately assigning target language 
meaning, a process akin to what happens in an interlingual framework. 
However, “word-specific lexical rules”, taking linguistic context into 
account, are also used to assign meaning in the target language; as a result, 
as for other traditional systems, it is difficult to truly isolate the role of 
WSD in the translation process.14 

                                                      
13 WSD also does not appear to play a role in translation memory systems, one of 
the more widely used applications of translation technology (Webb 2001). 
14 Zajic and Miller (1998) analyze the errors of two commercial MT systems in-
cluding word sense issues, in the context of Cybertrans, a fusion of MT technolo-
gies widely used by the U.S. National Security Agency “for purposes of document 
triage, filtering, and pointing to text that may require human skills” (Long 2004). 
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Explicit WSD generally does not appear to play a role in statistical MT 
systems. However, lexical choice in statistical models involves many of 
the same issues as sense disambiguation and it is informative to look at 
how they address the problem. 

Statistical MT originated with the approach of Brown et al. (1990) at 
IBM. Within IBM-style statistical MT, the disambiguation of word mean-
ings occurs primarily within two component models. The first, dubbed the 
“Model 1” probability for historical reasons, is the word-to-word condi-
tional probability Pr( f | e ), where f and e are source language and target 
language words, respectively.15 Within this model, for example, one would 
likely find that Pr( huile | oil ) is much greater than Pr( vin | oil ), signifying 
that huile is a much more likely French translation for oil than is vin. (Or at 
least one would hope so, since vin means wine!) 

Notice, however, that the Model 1 probabilities do not make use of any 
contextual information. The role of context in lexical choice appears pri-
marily in a second component model: the language model for the target 
language. This is typically an n-gram model, that is, one that computes the 
probability of a word based on the previous n–1 words, where typically 
n is 2 or 3. For example, consider the French word essence, which can 
translate into English as the cognate essence (as in essential, the main 
thing) or as gas(oline). The choice of translation will depend not only on 
the non-contextual word translation probabilities, but also on the context in 
the target language. If the statistical model considers out of to be most 
likely as the previous two words in the target sentence, then gas will be fa-
vored strongly over essence as the word that follows.16 
                                                      
15 The careful reader may wonder why the relevant probability is Pr( f |e ), not 

reversal is explained by the application of Bayes Rule; see Knight (1999) for an 
extremely lucid statistical MT primer that introduces other component models not 
covered here, such as the ones that govern word-order differences. 
16 Salim Roukos (personal communication) observes that although the target lan-
guage model is a primary source of contextual constraint on word choice, the 
source language can also contribute contextually through the mechanism of sum-
ming over multiple alignments. For example, in the training process some credit 
may have been assigned to the alignment of the word voiture ‘car’ with gas (incor-
rectly), so given a French sentence containing both voiture and essence, summing 
over alternative alignments could result in both words supporting the presence of 
gas. This seems like an instance of the right effect for the wrong reason. 

Pr( e| f ), if we are translating from the source language to the target language. The 

11.3.4 Sense Ambiguity in Statistical Machine Translation 
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Within the past several years, phrase-based models (Och 2002), Koehn 
et al. 2003) have emerged as the dominant model in statistical MT. Statis-
tical phrase-based translation is similar in spirit to example-based machine 
translation (EBMT) (Nagao 1984, Brown 1996), in which a target sentence 
is constructed by covering the source sentence with “chunks” stored in a 
translation memory. The statistical version employs a probabilistic model 
of the mapping between “phrases” in the source and target language.17 For 
example, it might capture the fact that the English sequence we have 
appears frequently as the translation of French sequence nous avons. The 
translation process can be viewed as segmenting the source sentence into 
phrases, reordering them, and translating the phrases as units based on the 
mappings. As in many other statistical approaches, “decoding” is the pro-
cess of searching for the optimal way to accomplish this, where “optimal” 
is defined by models learned from training data (Koehn et al. 2003, Koehn 
2004). 

 The move from words in the IBM models to phrases in this approach 
was motivated in part by the observation that local context in the source 
language provides strong cues for lexical selection, which word-to-word 
models do not capture well. In some cases, the problem appears to be 
related not to word-to-word modeling per se, but to its particular realiza-
tion in the IBM models. To use one of Och’s (2002) examples, German 
Druckertreiber is a single word that would translate in English as the two-
word phrase printer driver; the IBM models fail to account for this be-
cause they do not permit many-to-one alignments between target (English) 
and source (German), and because they analyze complex German words as 
undivided units. On the other hand, Och points out problems involving 
non-literal phrase translations (e.g., that will not be easy for das wird 
schwierig; Babelfish/Systran translates this as the less natural that becomes 
difficult), as well as the problem of translating of function words such as 
prepositions, articles, and particles, where “the correct translation depends 
mainly on the context in the source language.” These are cases where tar-
get language lexical selection benefits from local context provided by 
phrase-to-phrase mapping, an effect consistent with Yarowsky’s (1993, 
2000) widely cited observation that local collocations provide very strong 
clues for the intended sense. 

                                                      
17 One should note that the term “phrase” is used – misleadingly, for linguists – to 
describe any contiguous subset of words in a source or target sentence, sometimes 
generalized to sequences of statistically derived word classes. 
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Recently, a number of researchers have begun to investigate the rela-
tionship between automatic WSD techniques and statistical machine trans-
lation. Carpuat and Wu (2005a) attempt to integrate dedicated WSD (using 
an external sense inventory) into an IBM-style statistical MT system, with 
negative results. However, in a follow-up paper, Carpuat and Wu (2005b) 
explore the empirical strengths and weaknesses of statistical MT versus 
WSD in a Senseval lexical disambiguation task, and in this setting, WSD 
outperforms statistical MT – which, they argue, supports the claim that sta-
tistical MT “should benefit from the better predictions made by the WSD 
models.” Jiménez et al. (2005) demonstrate that lexical translation corre-
spondences extracted from a multilingual sense inventory are useful in 
improving the statistical translation of dictionary entries. An alternative 
approach to using WSD in MT is to dissociate WSD techniques from 
explicit sense inventories entirely; instead, the problem of lexical selection 
in statistical MT can be cast as a WSD problem in which the “senses” are 
simply target-language words, and supervised classifiers can be trained us-
ing word-aligned parallel text to provide observable word/“sense” training 
pairs. This idea has been operationalized independently by Cabezas and 
Resnik (2005), who integrate lexical classification into a statistical phrase-
based MT system, and Vickrey et al. (2005), who evaluate on a simplified 
MT task. We continue this discussion below in Section 11.4.3. 

Beyond cross-language IR and question answering, discussed above, a 
number of other emerging applications share a need to identify the seman-
tic categories of entities. These include the extraction and mining of in-
formation in text, and the acquisition of semantic knowledge. 

In information extraction, the goal is to take a natural language text as 
input and fill in a “template” describing the basic relations that hold, for a 
particular, domain-specific set of template relations; in text data mining, 
the goal is to discover patterns of relationships that occur in large bodies of 
text. 

The bioinformatics domain provides a nice illustration. A vast molecular 
biology literature discusses the relationships between genes, proteins, and 
enzymatic functions, and enormous databases are under construction tabu-
lating such relationships, but there is a gap between the free text data in ar-
ticles and the structured data in the databases. The KDD Cup competition 
for 2002 (Yeh et al. 2002) challenged researchers with the task of analyz-
ing scientific articles in order to extract information useful for human 

11.3.5 Other Emerging Applications 
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annotators of the Drosophila genome – specifically, with identifying all 
the genes mentioned in an article and determining for each one whether the 
article reports a relationship between that gene and a gene product (protein 
and/or RNA). A serious complicating factor in the task, and in the molecu-
lar biology literature more generally, is that the same term can often refer 
to a gene, a protein, or an RNA molecule. Disambiguation of these possi-
bilities in context is therefore valuable, and this specialized problem is 
amenable to techniques familiar from the WSD literature (Hatzivassiloglou 
et al. 2001). 

Weeber et al. (2001) discuss ambiguity resolution in medical NLP more 
generally, mentioning such applications as medical decision support, in-
dexing, and literature-based discovery. Other problems of ambiguity 
include abbreviations, e.g., whether MG refers to milligram or magnesium 
(Yu et al. 2002, Yu et al. 2004) and the interpretation of acronyms, for ex-
ample, whether or not COLD should be interpreted as chronic obstructive 
pulmonary disease.18 

One should note that these issues clearly go beyond the medical domain, 
and affect traditional as well as emerging applications. Readers of this 
chapter may have searched for NLP on the Web and found pages on neuro-
linguistic programming rather than natural language processing, or may 
have sought information about the Association for Computational Linguis-
tics and found the Association of Catholic Libraries instead. Search engine 
developers have commented that place names (e.g., whether New York re-
fers to the city or the state) and person names (e.g., whether George Bush 
refers to George W. or his father) are a particularly noteworthy problem 
for which good solutions would be valuable. 

These problems may be most severe, and hence disambiguation most 
valuable, in scenarios where there is a large skew creating rare senses or 
usages, but where it is important that the rare cases not be missed. For ex-
ample, Daqing He is a professor at the School of Information Sciences of 
the University of Pittsburgh. If for some reason it were vitally important to 
locate documents containing Dr. He’s opinion about, say, a new develop-
ment in Chinese information retrieval, an analyst using current technology 
either would find that his last name was excluded altogether by a stop list 
of common words, or buried in false positives (e.g., He wrote …, He thinks 
…, etc.). 

                                                      
18 The National Library of Medicine has made available a biomedical WSD test 
collection (http://wsd.nlm.nih.gov/). 
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Finally, there is one more class of emerging application for which ex-
plicit WSD may have particular value: tasks where the goal is to place 
terms or phrases into an explicit knowledge structure. These include the 
development of better user interfaces – Hearst (2000) argues for task-
oriented search interfaces that more thoroughly integrate metadata, such as 
topical categories, into the user’s experience. Yee et al. (2003) and Stoica 
and Hearst (2004) illustrate these ideas in an interface searching a collec-
tion of fine arts images, creating categories for the collection automatically 
from image captions using WordNet; however, when faced with sense am-
biguity they were forced to either ignore ambiguous terms or choose the 
first WordNet sense. The MALACH project (Gustman et al. 2002) is simi-
larly concerned with the human-machine interface: it aims to provide 
access to a very large archive of oral histories related to the Holocaust – 
116,000 hours of recorded speech in 32 languages resulting from 52,000 
interviews. Beyond transcription of these materials, Gustman et al. are 
faced with the challenge of mapping from segments of transcribed speech 
to categories in a thesaurus containing topics, place names, etc. Sawyer 
et al. (forthcoming) suggest that shallow semantic tagging can be useful 
for organizing and presenting users with the contents of documents in a 
new problem domain, during early-phase requirements engineering.  

Although it is not really an application per se, the Semantic Web is an 
ambitious effort to give all information on the Web “well-defined mean-
ing, better enabling computers and people to work in cooperation” (Bern-
ers-Lee et al. 2001). Semantic Web developers are expending significant 
effort on the definition of ontological knowledge structures, and there are 
already efforts to apply automatic semantic tagging to the Web on an 
enormous scale (Dill et al. 2003). Connections between language techno-
logy and resources and the Semantic Web are discussed in Wilcock et al. 
(2004) and Oltramari et al. (2004).  

Pre-dating the Semantic Web, there is, of course, a long tradition of 
work on building ontologies in support of computational applications. In 
some cases WSD is an explicit part of the process. For example, Dorr and 
Jones (2000) employ WSD to improve the creation of large-scale semantic 
lexicons; Rigau et al. (2002) describe a bootstrapping process including 
WSD and knowledge acquisition in a multilingual setting; and Basili et al. 
(2004) discuss the creation of multilingual knowledge sources in the con-
text of ontology-based QA. Knowledge resources for WSD are discussed 
in Chapter 9. 

As a final example of an application involving explicit knowledge struc-
tures, consider lexicography: Kilgarriff and Tugwell’s (2001) WASP-Bench 
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is an application in which explicit WSD supports lexicographers, rather 
than the reverse, and Löfberg et al. (2004) discuss coarse-grained semantic 
tagging for context-sensitive dictionary search. Kilgarriff discusses lexi-
cography in detail in Chapter 2. 

Kilgarriff (1997; see also Chap. 2) notes that there is a rich variety of theo-
retical literature, ranging from cognitive linguistics (Lakoff and Johnson 
1980) to generative lexicon theory (Pustejovsky 1995), that argues for 
much richer representations of word meaning than a simple enumeration of 
senses. This literature is driven to a great extent by two observations. First, 
word meanings can be extended much more freely than fixed sense enu-
merations would suggest; for example, it is possible to extend the interpre-
tation of eat to a more general notion of ‘destroy by consuming’ in the 
process of understanding sentences like The computer ate my document. 
Second, the lexicon contains a variety of systematic relationships between 
word senses; for eat, these include, for example, ‘animal’ and ‘food’ 
meanings (chicken, lamb, goose), ‘container’ and ‘amount contained’ (cup, 
bowl, bottle), and many others.  

Wilks (1997, 1998) points out that such ideas have a long history in the 
traditional NLP literature, developed and implemented in theories such as 
preference semantics (Wilks and Fass 1992). Despite the theoretical inter-
est of such models, however, it seems fair to say that these more sophisti-
cated, flexible approaches to word sense have not yet found their way into 

In this chapter I focus primarily on sense disambiguation with respect to 
explicitly specified senses, but, as already noted in the discussion of 
machine translation and cross-language information retrieval, there is sig-
nificant utility for applications in distinguishing among word meanings 
even if the alternative meanings are not enumerated explicitly. Giving this 
topic proper attention would require a much more thorough consideration 
of the question “what is a word sense?” – I cannot approach that here, 
though see relevant discussion in Chapters 1, 2, 3, and 6, as well as dis-
cussion of subtle sense distinctions in Chapter 4. In this section, I briefly 
consider several alternative conceptions of word sense including richer 
representations, patterns of usage, and cross-language relationships.  

11.4 Alternative Conceptions of Word Sense 

11.4.1 Richer Linguistic Representations 
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language technology applications to any great extent, largely because they 
tend to be knowledge intensive or difficult to formalize and implement on 
a comprehensive scale. I will therefore not be considering them further 
here. 

Alternative conceptions of lexical organization driven by patterns of usage, 
on the other hand, have been more influential in language technology ap-
plications. Relevant ideas can be traced back at least as far as Firth’s 
(1957)  often-quoted pronouncement that “you shall know a word by the 
company it keeps”, to Sparck Jones’s (1964) characterization of synonymy 
in terms of related sentential contexts, and to Harris’s (1968:12) distribu-
tional hypothesis, which proposed that “the meaning of entities, and the 
meaning of grammatical relations among them, is related to the restriction 
of combinations of these entities relative to other entities.” 

There is an extensive literature on techniques for organizing words 
and/or word meanings according to distributional patterns in corpora (see 
Chapter 6). In applications that use them, the underlying semantics of dis-
tributionally-derived similarity measures or clusters is usually secondary to 
whether or not they improve performance. For example, Latent Semantic 
Indexing (LSI) (Deerwester et al. 1990) is an information retrieval tech-
nique in which the vocabulary of a document collection is represented as a 
matrix V, where element Vij is a weighted function of the frequency with 
which word wi appears in document dj. Words that appear in many of the 
same documents are therefore represented by similar rows in the matrix. 
The heart of the technique is a singular value decomposition (SVD) per-
formed on V in order to produce a lower dimensionality matrix; as a result, 
words with similar patterns of usage wind up closer to each other in 
the new representation space. Information retrieval performance can im-
prove as a result – if dentist and hygienist are given similar reduced-
dimensionality representations as a result of LSI, a document discussing 
hygienists can be highly ranked in response to a query that only men-
tions dentists, even if the query and document have no words in common. 

The representational similarity of dentist and hygienist in the LSI repre-
sentation space is consistent with the intuition that they mean similar 
things; both are health care professionals who help take care of teeth. And 
if, say, doctor is represented nearby in the representational space, it may 
indicate that in this document collection, its ‘health care professional’ 
sense is more prevalent than the ‘holder of a doctoral degree’ sense. LSI, 

11.4.2 Patterns of Usage 
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then, would seem to be a technique that uncovers word sense relationships 
on the basis of noisy distributional patterns of usage.  

However, one must be cautious about interpreting the new representa-
tion space as possessing a coherent organization in terms of word senses. 
In addition to dentist and hygienist moving closer in the LSI representation 
space, dentist and tooth will probably also receive more similar representa-
tions, as will dentist and cavity, and many others. What is the semantic 
relationship between dentists and the teeth they take care of? Between 
dentists and cavities? When LSI is based on a word/document matrix, 
greater proximity in the representational space does not correspond to se-
mantic or even conceptual relationships in any obvious way, other than 
perhaps to say that it identifies words that tend to occur in documents that 
are about similar things, under some interpretation of “aboutness”. 

For document retrieval, this matters very little. The conceptual relation-
ships between the words are less important than the effect on performance 
of the representational choices: when a query contains dentist, the words 
tooth and cavity in a document are indicators of relevance, and using dis-
tributionally-derived representations the documents containing them are 
more likely to be retrieved. This observation has been borne out in formal 
evaluations (Schütze and Pedersen 1995; Schütze 1998; Jing and Tzouker-
mann 1999; see Chap. 6). There is also a related body of research on using 
distributional representations to improve interactive retrieval on the basis 
of clustering documents (see discussion in Hearst and Pedersen (1996)) 
and on the basis of distributional organizations of word meanings (e.g., 
Véronis (2004)). See Mihalcea, Tarau, and Figa (2004) and Erkan and 
Radev (2004) for recently introduced techniques, inspired by Google’s 
PageRank algorithm, that take a graph-oriented rather than vector-oriented 
view of the distributional representation space.  

The preceding examples involving dentist, tooth, and so on illustrate a 
basic point about distributional patterns of usage: although the distribu-
tional techniques can detect patterns that reflect underlying facts about 
word senses, they can also pick up patterns that bear no obvious relation-
ship to the traditional linguistic conception of word senses. One could 
argue that the relationship is there, even if it is not obvious; for example, 
perhaps distributional techniques help because they approximate facts 
about meaning, much as trigram models work partly because they allow a 
finite-state approximation to “real” grammatical relations, which are often 
governed by syntactic locality. Or one could argue that one can more 
closely approximate linguistically relevant word sense distinctions by using 
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a more refined set of distributional features such as syntactic dependency 
relationships (Lin and Pantel 2001). 

Interestingly, one can also argue in the other direction, that the so-called 
approximations are themselves the more basic phenomenon. Kilgarriff 
(1997), for example, has suggested a model of word senses in which sense 
distinctions are defined as “clusters of word usages” that exist “relative to 
a set of interests” as determined by an NLP application or corpus of inter-
est. He goes so far as to say that “a task-independent set of word senses for 
a language is not a coherent concept.” He is echoed by Krovetz (2002), 
who suggests that “different natural language applications will need differ-
ent [sense] distinctions.” Schütze’s (1998) context group discrimination 
system implements these ideas in an informational retrieval application 
(see Chapter 6). Agirre and Edmonds (Chapter 1) categorize task-dependent 
WSD as one of the most important open issues for WSD. 

Translation between languages provides a window on word meanings that 
is not available monolingually. In a monolingual setting, words are obser-
vable but meanings are not. In the context of bilingual dictionaries or 
parallel translations, however, a single “hidden” meaning underlies not one 
but two observable representations, one in each language (Resnik 2004). 

One attempt to exploit this parallelism is cross-language Latent Seman-
tic Indexing (CL-LSI) (Littman et al. 1998). Like LSI, CL-LSI uses 
dimensionality reduction to construct a “semantic” space for information 
retrieval in which similar terms are situated more closely to each other. 
Applying the process to parallel text produces a cross-language LSI space, 
one in which similarity implies closeness regardless of whether the two 
terms are from the same language or not. To some extent, therefore – bear-
ing  in mind the caveats discussed earlier – CL-LSI seeks to induce a space 
of language independent regions of semantic similarity, which are some-
what akin to cross-language word senses. These are then exploited in 
cross-language retrieval in a manner analogous to monolingual LSI. 

Another direction for research is the characterization of discrete knowl-
edge structures using cross-language correspondences. Dyvik (2002) uses 
bi-directional translations in a bilingual dictionary to derive intuitively 
plausible WordNet-like word sets and relations between them. Work by 
Resnik and Yarowsky (2000), extended by Chugur, Gonzalo, and Verdejo 
(2002), provides an empirical demonstration that the more distinct two 
monolingual senses are, the more likely those concepts are to be lexicalized 

11.4.3 Cross-Language Relationships 
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with different words in other languages; this fact is then exploited to pro-
vide an empirical measure of between-sense distance that gives rise to 
structures closely corresponding to lexicographic distinctions in a mono-
lingual dictionary. Ide (2000) and colleagues have explored the automation 
of this idea on a large scale using a multi-way parallel corpus, also apply-
ing the approach to sense tagging (Ide et al. 2002, Tufi  et al. 2004). Diab 
(2003) developed an unsupervised algorithm that uses word-level corre-
spondences in bilingual text to achieve monolingual sense disambiguation 
in both languages (tagging words with labels from a sense inventory in one 
of the languages), an approach recently formalized probabilistically and 
extended by Bhattacharya et al. (2004). Ng et al. (2003) present a related 
approach in which bilingual corpora are used to obtain training examples 
for a supervised classifier. See Chapter 6 (Sect. 6.4.) for additional discus-
sion. 

A third line of research, dating back to the early 1990s, focuses on the 
idea of using words in a second language as sense labels. Brown et al. 
(1991) took advantage of aligned parallel text as training material for tag-
ging source-language words with target language “senses” – for example, 
in the sentence pair Me gustan las flores / I like the flowers, a word align-
ment link between gustan and like, can be thought of as “sense tagging” 
the occurrence of gustar in the Spanish sentence with the label LIKE. Gale 
et al. (1992) similarly proposed aligned words as sense labels for WSD, 
and Dagan and Itai’s (1994) exploration of this idea introduced techniques 
that required only monolingual corpora in the two languages. Li and Li 
(2004) extend Yarowsky’s (1995) WSD bootstrapping technique to a bi-
lingual setting in order to address the problem of lexical selection (word 
translation disambiguation) using Chinese words in lieu of explicit English 
senses.  

This last approach is regaining currency in the WSD community – it 
was explored initially in Senseval-2 (Japanese task) and formed the basis 
for one of the tasks in Senseval-3 (see Chapter 4 (Sect. 4.7), as well as dis-
cussion related to statistical MT in Section 11.3.4). Tagging words with 
words has two very attractive features. First, it has the potential to enor-
mously increase the availability of training data for supervised WSD 
algorithms, since aligned parallel corpora are more easily obtained than 
manually sense-tagged text.19 Second, it connects WSD, and particularly 

                                                      
19 Automatically word-aligned corpora do suffer from noise, however. For a recent 
look at the state of the art in word alignment for parallel corpora, see Mihalcea and 
Pedersen (2003) and Martin et al. (2005). 
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WSD evaluation, to specific end-user applications such as machine trans-
lation and cross-language IR where the value of the techniques can be 
demonstrated. 

In this chapter, I have discussed the relationship between WSD research 
and NLP applications. Traditional WSD is characterized as the selection of 
one meaning for a word from a range of possibilities. So conceived, the 
role of WSD with respect to an explicit sense inventory appears to be ques-
tionable in two of the most heavily researched language technology appli-
cations, monolingual information retrieval and machine translation. However, 
there is evidence that traditional WSD and directly analogous techniques 
are useful in emerging applications such as question answering and 
biomedical information extraction. In addition, there appears to be a 
promising argument for the utility of WSD techniques in disambiguating 
specialized terms such as person and place names, abbreviations, 
and acronyms. Finally, I discussed several application areas worth watch-
ing, including the creation and navigation of metadata, computer-assisted 
lexicography, and ontology-driven frameworks such as the Semantic Web. 

In addition to traditional WSD, I also briefly reviewed some alternative 
conceptions of word sense. These include distributional characterizations 
of word meaning, which have been useful in monolingual and cross-
language information retrieval, and characterizations based on bilingual 
correspondences, which show promise in cross-language applications such 
as CLIR and machine translation. The discussion suggests that focusing on 
applications provides more than just practical benefit: it is one of the best 
ways to ensure that, as a community, we are validating our ideas against 
empirical data. Attention to practical considerations may lead to new and 
interesting ways to look at word senses and semantics more generally. 

I would like to acknowledge with gratitude the patience of Phil Edmonds 
and Eneko Agirre as I wrote, revised, and struggled with this very chal-
lenging chapter. Many thanks to Phil, Eneko, Adam Kilgarriff, and an 
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acknowledge valuable discussion at the Senseval-3 workshop and on the 
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A Resources for WSD 

Research into WSD has produced and used numerous resources, many of 
which are freely available on the Internet. This appendix surveys the main 
resources. It covers sense inventories, including dictionaries, thesauri, and 
lexical knowledge bases; corpora, including both untagged and sense-
tagged corpora; and various other resources such as web sites, software, 
and data. Lexical resources usually provide additional linguistic informa-
tion that can be used by WSD systems. Corpora, both untagged and sense-
tagged provide examples of words (and word senses) in use. 

Many of the resourced below have been discussed in the book, but others 
are less used or more novel. For each, we give a short description, includ-
ing its relevance to WSD and information on availability. 

In the current world of rapid progress, an appendix such as this is 
doomed to become outdated. We may also be unaware of some resources. 
For these reasons, the authors, with the help of the community, will main-
tain a evolving webpage at http://www.wsdbook.org/. 

A.1 Sense Inventories  

In this section, we present dictionaries, thesauri and lexical knowledge 
bases. All WSD systems that use an explicit sense inventory need to make 
reference to a particular resource. The knowledge-based WSD methods in 
Chapter 5 also use the linguistic information coded in dictionaries and 
knowledge bases. Other methods that use the information in dictionaries, 
thesauri and knowledge bases can be found in Chapters 9 and 10. Many of 
the knowledge sources referred to in Chapter 8 are also related to these 
resources. 

A.1.1 Dictionaries 

Resource Longman Dictionary of Contemporary English (LDOCE) 
Description LDOCE is one of the most widely used dictionaries in language 

research. It has 55,000 entries or word definitions.  
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Definitions are written exclusively in the Longman’s Defining 
Vocabulary, which is a set of approximately 2,000 words (plus 
derived forms). Another of LDOCE’s most characteristic fea-
tures is the inclusion of subject field labels, which are roughly 
equivalent to domain tags for each word sense. LDOCE entries 
also contain so-called box codes, primitives like “abstract”, 
“animate”, “human”, etc. which are used to represent selec-
tional preference information for verbal word senses. 

Longman has released a version specially suited to NLP 
called LDOCE3 NLP database, which is based on the 3rd edi-
tion of the regular LDOCE. It has been widely used in WSD 
experiments. 

Availability LDOCE3 NLP Database: freely for research. 
Web http://www.longman.com/ldoce 

http://www.longman.com/dictionaries/research/dictres.html 
 
Resource OED – Oxford English Dictionary – and DIMAP 
Description The 2nd edition of the Oxford English Dictionary (OED) was 

released in October 2002 and contains 170,000 entries covering 
all varieties of English. Available in XML and in SGML, this 
dictionary includes phrases and idioms, semantic relations and 
subject tags corresponding to nearly 200 major domains. A 
computer-tractable version of the machine-readable OED was 
released by CL Research. This version comes along with the 
DIMAP software, which allows the user to develop computa-
tional lexicons by parsing and processing dictionary definitions. 
It has been used in a number of experiments. 

Availability DIMAP version: available for a fee. 
Web http://www.oed.com 

http://www.clres.com 
 
Resource Hector 
Description The Hector dictionary was the outcome of the Hector project 

(1992–1993) and was used as a sense inventory in Senseval-1. 
It was built by a joint team from Systems Research Centre of 
Digital Equipment Corporation, Palo Alto, and lexicographers 
from Oxford Univ. Press. The creation of this dictionary in-
volved the analysis of a 17.3 million word corpus of 80-90s 
British English. Over 220,000 tokens and 1,400 dictionary 
entries were manually analyzed and semantically annotated. It 
was a pilot for the BNC (see below). Senseval-1 used it as the 
English sense inventory and testing corpus. 

Availability n/a 
Web n/a 



A Resources for WSD      341 

A.1.2 Thesauri  

Resource Roget’s Thesaurus 
Description The older 1911 edition has been made freely available by Pro-

ject Gutenberg. Although it lacks many new terms, it has been 
used to derive a number of knowledge bases, including Facto-
tum. In a more recent edition, Roget’s Thesaurus of English 
Words and Phrases contains over 250,000 word entries ar-
ranged in 6 classes and 990 categories. Jarmasz and Szpakowicz, 
at the University of Ottawa, developed a lexical knowledge 
base derived from this thesaurus. The conceptual structures ex-
tracted from the thesaurus are combined with some elements of 
WordNet.  

Availability 1911 version and Factotum: freely available. 
Web http://gutenberg.org/etext91/roget15a.txt 

http://www.cs.nmsu.edu/~tomohara/factotum-roles/node4.html 

A.1.3 Lexical Knowledge Bases 

Resource WordNet 
Description The Princeton WordNet (WN), one of the lexical resources 

most used in NLP applications, is a large-scale lexical database 
for English developed by the Cognitive Science Laboratory at 
Princeton University. In its latest release (version 2.1), WN 
covers 155,327 words corresponding to 117,597 lexicalized 
concepts, including 4 syntactic categories: nouns, verbs, adjec-
tives and adverbs. WN shares some characteristics with mono-
lingual dictionaries. Its glosses and examples provided for word 
senses resemble dictionary definitions. However, WN is organ-
ized by semantic relations, providing a hierarchy and network 
of word relationships. 

WordNet has been used to construct or enrich a number of 
knowledge bases including Omega and the Multilingual Central 
Repository (see addresses below). The problems posed by the 
different sense numbering across versions can be overcome us-
ing sense mappings, which are freely available (see address be-
low). It has been extensively used in WSD. 

WordNet was used as the sense inventory in English Sen-
seval-2 and Senseval-3. 

Availability Free for research. 
Web http://wordnet.princeton.edu 

http://omega.isi.edu 
http://nipadio.lsi.upc.edu/cgi-bin/wei4/public/wei.consult.perl 
http://www.lsi.upc.es/~nlp/tools/mapping.html 
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Resource EuroWordNet 
Description EuroWordNet (EWN) is a multilingual extension of the Princeton 

WN. The EWN database built in the original projects comprises 
WordNet-like databases for 8 European languages (English, 
Spanish, German, Dutch, Italian, French, Estonian and Czech) 
connected to each other at the concept level via the “Inter-
Lingual Index”. It is available through ELDA (see below). Be-
yond the EWN projects, a number of WordNets have been de-
veloped following the same structural requirements, such as 
BalkaNet. The Global WordNet Association is currently en-
dorsing the creation of WordNets in many other languages, and 
lists the availability information for each WordNet. EWN has 
been extensively used in WSD. 

Availability Depends on language. 
Web http://www.globalwordnet.org 

http://www.ceid.upatras.gr/Balkanet 
 

Resource WordNet Domains 
Description WordNet Domains is an extension of the Princeton English 

WordNet, in which synsets have been annotated by domain 
labels, such as Medicine, Architecture, and Sport. It has been 
used in research on domain-specific WSD. 

Availability Free for research. 
Web http://wndomains.itc.it 

 
Resource FrameNet (and annotated examples) 
Description The FrameNet database contains information on lexical units 

and underlying conceptual structures. A description of a lexical 
item in FrameNet consists of a list of frames that underlie its 
meaning and syntactic realizations of the corresponding frame 
elements and their constellations in structures headed by the 
word. For each word sense a documented range of semantic and 
syntactic combinatory possibilities is provided. Hand-annotated 
examples are provided for each frame.  

At the time of printing FrameNet contained about 6,000 
lexical units and 130,000 annotated sentences. The develop-
ment of German, Japanese, and Spanish FrameNets has also 
been undertaken. Although widely used in semantic role dis-
ambiguation, it has had a very limited connection to WSD. 
Still, it has the potential in work to combine the disambiguation 
of semantic roles and senses. 

Availability Free for research. 
Web http://framenet.icsi.berkeley.edu/ 
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Resource UMLS 
Description The Unified Medical Language System (UMLS) is composed 

of several knowledge sources. The Metathesaurus is a very 
large, multi-purpose, and multi-lingual, vocabulary database 
that contains information about biomedical and health-related 
concepts, their various names, and the relationships among 
them. The Semantic Network provides a consistent categoriza-
tion of all concepts represented in the UMLS Metathesaurus 
and provides a set of useful relationships between these con-
cepts. The current release of the Semantic Network contains 
135 semantic types and 54 relationships. It has been used to de-
velop sense-annotated corpora (see NLM WSD Test Corpus 
below) 

Availability Free for research. 
Web http://www.nlm.nih.gov/research/umls 

A.2 Corpora 

Corpora contain direct evidence about the frequency and cooccurrence of 
linguistic elements that can not be extracted from dictionaries or other 
sense inventories. We have classified them into three groups: raw corpora 
without sense annotations, annotated corpora, and automatically acquired 
corpora. Many corpora now exist for English and other languages. We in-
clude below several that have been discussed in the book. 

A.2.1 Raw Corpora 

By raw corpora, we mean corpora that have no annotation for word mean-
ing, though they may have other annotations, such as part-of-speech tags. 
Raw corpora are useful for unsupervised WSD systems (Chapter 9). 

 
Resource The Brown Corpus 
Description The Brown Corpus is a million-word “balanced” collection of 

texts published in United States in 1961. It contains samples of 
written prose, ranging from a variety of press articles (news, 
reviews, and reportage), fragments of scientific texts, to fiction, 
classified into 15 categories. There are 500 documents of about 
2,000 words each. Part of the hand-annotated Semcor corpus 
(see below) is a subset of the Brown Corpus. 
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The Brown Corpus is available through ICAME (Interna-
tional Computer Archive of Modern and Medieval English). 
The corpus can be also accessed on-line at the LDC site (see 
below). 

Availability Free for research. 
Web http://nora.hd.uib.no/whatis.html 

 
Resource The British National Corpus 
Description The British National Corpus (BNC) is the result of joint work 

of leading dictionary publishers (Oxford University Press, 
Longman, and Chambers-Larousse) and academic research cen-
ters (Oxford University, Lancaster University, and the British 
Library). The BNC has been built as a reasonably balanced cor-
pus: for written sources, samples of 45,000 words have been 
taken from various parts of single-author texts. Shorter texts up 
to a maximum of 45,000 words, or multi-author texts such as 
magazines and newspapers, were included in full, avoiding 
over-representing idiosyncratic texts.  

Availability Available for a fee. 
Web http://www.natcorp.ox.ac.uk 

 
Resource The Wall Street Journal Corpus 
Description This corpus has been widely used in NLP. It is the base of the 

manually annotated DSO, Penn Treebank, and PropBank cor-
pora. It is not directly available in raw form, but can be accessed 
through the Penn Treebank. 

Availability Available for a fee at LDC. 
Web http://www.ldc.upenn.edu/Catalog/LDC2000T43.html 

 
Resource The New York Times Corpus (English Gigaword Corpus) 
Description This corpus is not available, but is part of the larger English 

Gigaword corpus.  
Availability Available for a fee at LDC. 
Web http://www.ldc.upenn.edu/Catalog/LDC2003T05.html 

 
Resource The Reuters News Corpus 
Description This corpus has been widely used in NLP, especially in docu-

ment categorization. It is currently being used to develop a spe-
cialized hand-tagged corpus (see the domain specific Sussex 
corpus below). An earlier Reuters corpus (for information ex-
traction research) is known as Reuters-21578. 

Availability Freely available. 
Web http://trec.nist.gov/data/reuters/reuters.html 
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A.2.2 Sense-Tagged Corpora  

Sense-tagged corpora are the primary resource for supervised WSD algo-
rithms and the only way of testing and comparing WSD systems in gen-
eral. We briefly review here the main sense-tagged corpora available, and 
additional details can be found in Chapter 4. The use of sense-tagged cor-
pora for supervised WSD is discussed in Chapter 7. 
 
Resource DSO Corpus 
Description This corpus was compiled by a team at the Defence Science 

Organisation (DSO) of Singapore. It contains texts from the 
Brown and Wall Street Journal corpora. 192,800 sense-tagged 
tokens of 121 nouns and 70 verbs which, according to the au-
thors, represent some of the most frequently occurring and am-
biguous words in English, were manually annotated with 
WordNet 1.5 synsets by linguistics students at the National 
University of Singapore. 

Availability Available for a fee at LDC. 
Web http://www.ldc.upenn.edu/Catalog/LDC97T12.html 

 
Resource Semcor 
Description Semcor, created at Princeton University by the same team who 

created WordNet, is the largest publicly available sense-tagged 
corpus. It is composed of documents extracted from the Brown 
Corpus that were tagged both syntactically and semantically. 
The POS tags were assigned by the Brill tagger, and the seman-
tic tagging was done manually, using WordNet 1.6 senses.  

Semcor is composed of 352 texts. In 186 texts all of the 
open class words (192,639 nouns, verbs, adjectives, and ad-
verbs) are annotated with POS, lemma, and WordNet synset, 
while in the remaining 166 texts only verbs (41,497 occur-
rences) are annotated with lemma and synset. 

Although the original Semcor was annotated with WordNet 
version 1.6, the annotations have been automatically mapped 
into newer versions (available from the same website below). 

Availability Freely available. 
Web http://www.cs.unt.edu/~rada/downloads.html 

 
Resource Open Mind Word Expert 
Description This corpus has been annotated with WordNet 1.7 senses by 

regular Web users, in a collaborative annotation effort.  
Availability Freely available. 
Web http://teach-computers.org/word-expert.html 

http://www.cs.unt.edu/~rada/downloads.html 
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Resource Senseval Test Suites 
Description The various Senseval competitions have produced training and 

test data for lexical sample evaluation in a considerable number 
of languages.  

Availability Freely available. 
Web http://www.senseval.org/ 

 
Resource MultiSemCor 
Description MultiSemCor is an English/Italian parallel corpus, aligned at 

the word level and annotated with POS, lemma and word sense. 
The corpus was built aligning the Italian translation of Semcor 
at word level and transferring the word sense annotations from 
English to the aligned Italian words. 

Availability Free for research. 
Web http://multisemcor.itc.it 

 
Resource Line-Hard-Serve Corpus 
Description 

the Blind, and the San Jose Mercury. 
Availability Freely available. 
Web http://www.d.umn.edu/~tpederse/data.html 
 
Resource Interest Corpus 
Description This corpus contains 2,396 sense-tagged examples from the 

WSJ corpus of the noun interest according to 6 LDOCE senses 
Availability Freely available. 
Web http://www.d.umn.edu/~tpederse/data.html 

 
Resource National Library of Medicine WSD Test Collection 
Description The NLM WSD Test Corpus consists of 50 ambiguous words 

that occur in medical journal abstracts (from Medline) that have 
been manually sense tagged with UMLS concepts (see above). 

Availability Freely available. 
Web http://wsd.nlm.nih.gov 

 
 

each of the words line (noun), hard (adjective), and serve 
(verb) with subsets of their WordNet 1.5 senses. Examples are 
drawn from the WSJ corpus, the American Printing House for 

This corpus contains around 4,000 sense-tagged examples of 
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Resource Domain-Specific Sussex Corpus 
Description Koeling et al. built a domain-specific sense-tagged corpus 

based on the BNC and Reuters corpus. 
Availability Contact authors (robk@sussex.ac.uk). 
Web n/a 

 
Resource Orwell’s 1984 Test Data 
Description Tufis et al. describe a hand-tagged portion of the multilingual 

1984 corpus, comprising Bulgarian, Czech, Greek, Romanian, 
Serbian, and Turkish translations and the English original 
aligned at word level. Wordnet was used as the inventory. 

Availability Contact authors (tufis@racai.ro). 
Web n/a 

 
Resource PropBank 
Description PropBank is an annotation of the Wall Street Journal portion of 

the Penn Treebank II with dependency structures (or “predi-
cate-argument” structures), using sense tags for each word and 
argument labels for each dependency. The sense tags are related 
to the VerbNet lexical knowledge base (see above). Although 
widely used in semantic role disambiguation, it has had a very 
limited connection to WSD as yet. 

Availability Available for a fee from the LDC. 
Web http://www.cis.upenn.edu/~mpalmer/project_pages/ACE.htm 

 
Resource FrameNet Examples 
Description See FrameNeet entry above. 
Availability Free for research. 
Web http://framenet.icsi.berkeley.edu/ 

A.2.3 Automatically Tagged Corpora 

Only a few automatically-tagged corpora exist. We briefly mention two, 
which are publicly available. 

 
Resource Sensecorpus 
Description This corpus, containing thousands of examples of WordNet 1.6 

nominal senses, constructed using the monosemous relatives 
method. 

Availability Freely available. 
Web http://ixa.si.ehu.es/Ixa/resources/sensecorpus 
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Resource ODP Corpus 
Description The ODP corpus contains WordNet 1.7 nominal senses con-

structed by associating Open Directory Project (ODP) catego-
ries to synsets. 

Availability Freely available. 
Web http://nlp.uned.es/ODP 

http://dmoz.org 

A.3 Other Resources 

In this section we list a variety of resources related to WSD, many of 
which have been mentioned in the book, including software, miscellaneous 
data, and language providers. 

A.3.1 Software  

Resource Sense Learner 
Description All-words minimally-supervised WSD implementation. 
Availability Freely available. 
Web http://www.cs.unt.edu/~rada/downloads.html 

 
Resource WSD Shell 
Description All-words supervised WSD implementation. 
Availability Freely available. 
Web http://www.d.umn.edu/~tpederse/wsdshell.html 

 
Resource WordNet::Sense Relate 
Description All-words knowledge-based WSD implementation, based on 

WordNet::Similarity (below). 
Availability Freely available. 
Web http://www.d.umn.edu/~tpederse/senserelate.html 

 
Resource WordNet::Similarity 
Description This Perl package provides a number of word-sense similarity 

measures based on WordNet. 
Availability Freely available. 
Web http://www.d.umn.edu/~tpederse/similarity.html 
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Resource Senseclusters 
Description This software clusters similar contexts together using unsuper-

vised knowledge-lean methods. These techniques have been 
applied to word sense discrimination, email categorization, and 
name discrimination. 

Availability Freely available. 
Web http://www.d.umn.edu/~tpederse/senseclusters.html 

A.3.2 Utilities, Demos, and Data 

Resource Ted Pedersen’s Page 
Description This webpage includes various corpora and pieces of software. 

Apart from those already mentioned above, it includes several 
useful utilities, e.g., for format changing. 

Availability Freely available. 
Web http://www.d.umn.edu/~tpederse 

 
Resource Rada Mihalcea’s Page 
Description This webpage includes various corpora and useful utilities.  
Availability Freely available. 
Web http://www.cs.unt.edu/~rada 

 
Resource Topic Signatures 
Description Topic signatures are context vectors built for word senses and 

concepts. This webpage provides topic signatures for all nomi-
nal senses in WordNet 1.6. They were built on the Sensecorpus 
data (see above). 

Availability Freely available. 
Web http://ixa.si.ehu.es/Ixa/resources/sensecorpus 

 
Resource Selectional Preferences from Semcor 
Description Downloadable selectional preferences for WordNet 1.6 verb 

senses built from Semcor 
Availability Freely available. 
Web http://ixa.si.ehu.es/Ixa/resources/selprefs 

 
Resource Clustering By Committee Online Demo 
Description Online demo of Clustering By Committee (CBC) for inducing 

concepts. 
Availability Freely available. 
Web http://www.isi.edu/~pantel/Content/Demos/LexSem/cbc.htm 
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A.3.3 Language Data Providers 

Resource Linguistic Data Consortium  
Description The Linguistic Data Consortium (LDC) is an open consortium 

of more than 100 universities, companies, and government re-
search laboratories, founded in 1992. Its main objective is to 
create, collect, and distribute speech and text databases, lexi-
cons, and other linguistic resources for research and develop-
ment purposes. 

Availability n/a 
Web http://www.ldc.upenn.edu 

 
Resource Evaluation and Language Resources Distribution Agency  
Description The Evaluation and Language Resources Distribution Agency 

(ELDA) is the operational body of the European Language Re-
sources Association (ELRA), a non-profit organization founded 
in Luxembourg in 1995 with the purpose of providing language 
resources for research and development. Its activities include 
the collection and distribution of linguistic resources, their 
evaluation and standardization. 

Availability n/a 
Web http://www.elda.fr 

A.3.4 Organizations and Mailing Lists 

 
Resource Senseval Organization 
Description Senseval runs competitions to evaluation WSD systems. The 

website provides data from the competitions, a program to 
score WSD systems, and the proceedings of the Senseval work-
shops. 

Availability Freely available 
Web http://www.senseval.org 

 
Resource Senseval Mailing List 
Description This is a low-traffic list, primarily for competition issues 
Availability n/a 
Web http://listserv.hum.gu.se/mailman/listinfo/senseval-discuss 
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Resource SIGLEX 
Description SIGLEX, the Special Interest Group on the Lexicon of the As-

sociation for Computational Linguistics (ACL), provides an 
umbrella for research interests on lexical issues ranging from 
lexicography and the use of online dictionaries to computa-
tional lexical semantics. SIGLEX is also the umbrella organiza-
tion for SENSEVAL, evaluation exercises for Word Sense 
Disambiguation. 

Availability n/a 
Web http://www.clres.com/siglex.html 
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