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V I S I B I L I T Y A L G O R I T H M S I N T H E P L A N E

A human observer can effortlessly identify visible portions of geometric objects

present in the environment. However, computations of visible portions of objects

from a viewpoint involving thousands of objects is a time-consuming task even

for high-speed computers. To solve such visibility problems, efficient algorithms

have been designed. This book presents some of these visibility algorithms in

two dimensions. Specifically, basic algorithms for point visibility, weak visibility,

shortest paths, visibility graphs, link paths, and visibility queries are all discussed.

Several geometric properties are also established through lemmas and theorems.

With over 300 figures and hundreds of exercises, this book is ideal for graduate

students and researchers in the field of computational geometry. It will also be useful

as a reference for researchers working in algorithms, robotics, computer graphics,

and geometric graph theory, and some algorithms from the book can be used in a

first course in computational geometry.
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Preface

Education is the manifestation of the perfection already in man.

Swami Vivekananda (1863–1902)

This book is entirely devoted to the area of visibility algorithms in computational

geometry and covers basic algorithms for visibility problems in two dimensions. It

is intended primarily for graduate students and researchers in the field of computa-

tional geometry. It will also be useful as a reference/text for researchers working in

algorithms, robotics, graphics and geometric graph theory.

The area of visibility algorithms started as a sub-area of computational geometry

in the late 1970s. Many researchers have contributed significantly to this area in

the last three decades and helped this area to mature considerably. The time has

come to document the important algorithms in this area in a text book. Although

some of the existing books in computational geometry have covered a few visibility

algorithms, this book provides detailed algorithms for several important visibility

problems. Hence, this book should not be viewed as another book on computational

geometry but complementary to the existing books.

In some published papers, visibility algorithms are presented first and then the

correctness arguments are given, based on geometric properties. While presenting

an algorithm in this book, the geometric properties are first established through

lemmas and theorems, and then the algorithm is derived from them. My experience

indicates that this style of presentation generally helps a reader in getting a better

grasp of the fundamentals of the algorithms. Moreover, this style has also helped in

refining several visibility algorithms, which is a significant contribution of this book.

In keeping with the distinctive approach of this book, all the algorithms herein have

been explained using this approach.

xi



xii Preface

Structure of the book

The book consists of eight chapters. The first chapter provides the background

material for visibility, polygons and algorithms. Each chapter from 2 to 8 deals with

a specific theme of visibility. In the first section (i.e., Problems and Results) of these

chapters, results on visibility problems under the theme of the chapter are reviewed.

In each intermediate section of a chapter, one or two algorithms are presented in

detail or some properties of visibility are proved. Sometimes, two algorithms for

the same problem are presented to show the improvement in time complexity or

that the different approaches lead to the same time complexity. Two algorithms for

two different types of polygons are also presented for the same problem. In the last

section (i.e., Notes and Comments) of every chapter from 2 to 8, results on parallel

or on-line algorithms for the problems considered in the chapter are mentioned. In

the same section, some visibility issues connected to the theme of the chapter are

discussed.

Exercises in the book are placed at suitable positions within a section to allow a

reader to solve them while reading that section. This process of solving exercises

will help in gaining a better understanding of the current topic of discussion.

Prerequisites

Some time back, I offered a graduate course in the Tata Institute of Fundamental

Research entitled ‘Algorithmic Visibility in the Plane’ using a preliminary version

of this manuscript. After every lecture, an appropriate section was given to each

student for reading. In the next lecture, I asked them to explain the algorithms

contained in that section. It was very satisfying to see that these students, who did

not have any background in computational geometry prior to my course, had com-

prehensively followed the algorithms. However, the students had prior knowledge

of algorithms and data structures. Courses on algorithms and data structures are

essential prerequisites for understanding this book.

As stated earlier, this book is not meant as a first course in computational

geometry. However, some algorithms herein can certainly be included in such a

course in computational geometry. Moreover, this book can be used for assigning

research projects to students. In addition, this book can be a natural choice for

graduate-level seminar courses.
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Background

1.1 Notion of Visibility

Visibility is a natural phenomenon in everyday life. We see objects around us and

then decide our movement accordingly. Seeing an object means identifying the

portions of the object visible from the current position of an observer. The entire

object may not be visible as some of its parts may be hidden from the observer. The

observer also determines shapes and sizes of visible portions of an object. Visible

portions of an object change as the observer moves from one position to another.

Moreover, the observer may see several objects in different directions from its current

position; the visible portions of these objects form the scene around the observer.

Constructing such a scene continuously is very natural for a human observer as the

human visual system can execute such tasks effortlessly.

Suppose a robot wants to move from a starting position to a target position

without colliding with any object or obstacle around it. The robot constructs the

scene around itself from its current position and then guides its motion in the free

space lying between itself and the visible portion of the objects around it. The

positions of the robot and the objects can be represented in the computer of the

robot by their x, y and z co-ordinates and therefore, the scene consisting of visible

portions of these objects can be computed for the current position of the robot.

The problem of computing visible portions of given objects from a viewpoint has

been studied extensively in computer graphics [115]. Since the scene is constructed

from thousands of objects of different shapes and sizes lying in different positions, it

becomes a complex task from a computational point of view. Even computing visible

portions of one object in the presence of several other objects is a non-trivial task.

Moreover, computing such a scene for every position on the path of the robot is a

time-consuming task even for high-speed computers. Designing efficient algorithms

for executing such movements of a robot in the presence of obstacles in a reasonable

period of time is one of the objectives in the field of robot path planning [226].

1



2 Background

The above problem of robot path planning can be reduced to the corresponding

problem in two dimensions. If a mobile robot that maintains contact with the floor

is projected on the floor, the two-dimensional footprint of the robot can be modeled

as a polygon. Similar projections on the floor can now also be produced for all

obstacles. This process yields a map consisting of polygons in two dimensions. The

polygon corresponding to the robot can be navigated using this map by avoiding

collisions with polygonal obstacles. Thus a collision-free path of the robot can be

computed from its starting position to the target position. While navigating, the

visible portions of polygonal obstacles are computed to construct the scene around

the current position of the robot. Although such a representation in two dimensions

has reduced the complexity of the robot path planning problem, designing efficient

algorithms for such computations remains a challenging task.

The notion of visibility has also been used extensively in the context of the art

gallery problem in computational geometry [271, 310, 333]. The art gallery problem

is to determine the number of guards that are sufficient to see every point in the

interior of an art gallery room. This means that every interior point of the room

must be visible to one of the guards so that all paintings in the gallery remain

guarded. There are many theorems and algorithms for the minimization of the

number of guards and their placement in the art gallery room.

The study of visibility started way back in 1913 when Brunn [67] proved a

theorem regarding the kernel of a set. Today visibility is used in many fields of

computer science including robotics [66, 226, 249, 283], computer vision [139, 168]

and computer graphics [93, 113, 115].

1.2 Polygon

A polygon P is defined as a closed region R in the plane bounded by a finite set

of line segments (called edges of P ) such that there exists a path between any two

points of R which does not intersect any edge of P . Any endpoint of an edge of P is

called a vertex of P , which is a point in the plane. Since P is a closed and bounded

region, the boundary of P consists of cycles of edges of P , where two consecutive

edges in a cycle share a vertex. If the boundary of P consists of two or more cycles,

then P is called a polygon with holes (see Figure 1.1(a)). Otherwise, P is called a

simple polygon or a polygon without holes (see Figure 1.1(b)). The region R is called

the internal region or interior of P . Similarly, the regions of the plane excluding all

points of R are called the external regions or exterior of P . A vertex of P is called

convex if the interior angle at the vertex formed by two edges of that vertex is at

most π; otherwise it is called reflex. Note that the interior angle at a vertex always

faces the interior of P .

As defined above, a simple polygon P is a region of the plane bounded by a cycle

of edges such that any pair of non-consecutive edges do not intersect. In this book,
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Figure 1.1 (a) In this polygon with holes, b and c are visible from a but not d. (b) In this
simple polygon (or a polygon without holes), b and c are visible from a, but not d.

we assume that P is given as a doubly linked list of vertices. Each vertex has two

fields containing x and y co-ordinates of the vertex and it has two pointers pointing

to the next clockwise and counterclockwise vertices of P . It can be seen that if edges

of P are traversed in counterclockwise (or clockwise) order, then the interior of P

always lies to the left (respectively, right) of the edges of P .

Let c0, c1, c2, . . . , ch be the cycles on the boundary of a polygon P with h holes,

where c0 represents the outer boundary of P . Let Rj denote the region of the plane

enclosed by cj for all j ≤ h (see Figure 1.1(a)). Since P is a closed and bounded

region, Rj ⊂ R0 for all j > 0. Moreover, Rj ∩ Rk = ∅ where k 6= j and k > 0.

Therefore, R = R0 − (R1 ∪ R2 ∪ . . . ∪ Rh). Observe that if P is a simple polygon,

then R = R0 as the boundary of P consists of only one cycle c0 (see Figure 1.1(b)).

In this book, we assume that a polygon P with h holes is given in the form of h

cycles, where vertices of each cycle are stored in a doubly linked list as stated above

and there is an additional pointer to one vertex of each cycle of P to access that

cycle.

Two points p and q in P are said to be visible if the line segment joining p and q

contains no point on the exterior of P . This means that the segment pq lies totally

inside P . This definition allows the segment pq to pass through a reflex vertex or

graze along a polygonal edge. We also say that p sees q if p and q are visible in P .

It is obvious that if p sees q, q also sees p. So, we sometime say that p and q are

mutually visible. In Figure 1.1, the point a sees two points b and c, but not the

point d.

Exercise 1.2.1 Given two points p and q inside a polygon P , design a

method to determine whether p and q are visible in P .

Suppose a set of line segments in the plane is given such that they do not form

a polygon. Let A denote the arrangement of these line segments in the plane (see
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Figure 1.2 (a) In this arrangement of line segments A, points b and c are visible from a but
not d. (b) A convex polygon P where any two points are mutually visible. (c) A star-shaped
polygon P where the entire polygon is visible from any point of the kernel K.

Figure 1.2(a)). Two points p and q in the plane are said to be visible in the presence

of A if the line segment joining p and q does not cross any line segment in A. This

definition permits the segment pq to touch a line segment of A. In Figure 1.2, a

point a sees two points b and c, but not the point d.

Using the definition of visibility in a polygon, we define two special classes of

simple polygons called convex and star-shaped polygons. A simple polygon P is

called convex if every pair of points in P is mutually visible [176] (see Figure 1.2(b)).

It can be seen that the internal angle at every vertex of a convex polygon is at most

π [327]. A convex polygon can also be defined as intersections of closed half-planes

which is bounded. A simple polygon P is said to be star-shaped if there exists a

point z inside P such that all points of P are visible from z (see Figure 1.2(c)). The

set of all such points z of P is called the kernel of P . The kernel of P is always

convex [67]. If P is a star-shaped polygon with respect to a point z, it can be seen

that the order of vertices on the boundary of P is same as the angular order of

vertices around z. We refer to this property by saying that the vertices of P are in

sorted angular order around z. It follows from the theorem of Krasnosel’skii [223]

that a simple polygon P is star-shaped if and only if every triple of convex vertices is

visible from some point of P [334]. Note that a convex polygon is also a star-shaped

polygon and all points of the convex polygon belong to the kernel.

Exercise 1.2.2 Prove that a polygon P is star-shaped if and only if every

triple of convex vertices is visible from some point of P [223].

Exercise 1.2.3 Prove that the kernel of a star-shaped polygon is convex.
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Exercise 1.2.4 Draw two star-shaped polygons A and B such that each

edge of A intersects every edge of B [291].

1.3 Asymptotic Complexity

The time and space complexity of the sequential algorithms presented in this book

are measured using the standard notation O(f(n)), where n is the size of the input

to the algorithm. The notation O(f(n)) denotes the set of all functions g(n) such

that there exist positive constants c and n0 with |g(n)| ≤ c|f(n)| for all n ≥ n0. We

say that an algorithm runs in polynomial time if the running time of the algorithm

is O(nk) for some constant k. The notation Ω(f(n)) denotes the set of all functions

g(n) such that there exist positive constants c and n0 with g(n) ≥ cf(n) for all

n ≥ n0.

The idea of evaluating asymptotic efficiency of an algorithm is to know how the

running time (or space) of the algorithm increases with the size of the input. The

running time expressed using O notation gives a simple characterization of the

efficiency of the algorithm, which in turn allows us to compare the efficiency of one

algorithm with another. For more discussion on asymptotic efficiency of algorithms,

see the book by Cormen et al. [96].

The real RAM (Random Access Machine) has become the standard model of

computation for sequential algorithms in computational geometry. As stated in

[291], the real RAM is a random access machine with infinite precision and real

number arithmetic. The real RAM can be used to perform addition, subtraction,

multiplication, division and comparisons on real numbers in unit time. In addition,

various other operations such as indirect addressing of memory (integer address

only), computing the intersection of two lines, computing the distance between two

points, testing whether a vertex is convex are also available. These operations are

assumed to take constant time for execution. For more details of these operations,

see O’Rourke [272].

Exercise 1.3.1 Is O(2n) = O(2O(n))?

Exercise 1.3.2 Given a point z and a polygon P , design an O(n) time

algorithm to test whether z lies in the interior of P [291].

All parallel algorithms mentioned in this book (at the end of chapters) are designed

for the Parallel Random Access Machine (PRAM) model of computations [35, 172,

211]. This can be viewed as the parallel analog of the sequential RAM. A PRAM

consists of several independent sequential processors, each with its own private

memory, communicating with one another through a global memory. In one unit



6 Background

of time, each processor can read one global or local memory location. PRAMs can

be classified according to restrictions on global memory access. An Exclusive-Read

Exclusive-Write (or EREW) PRAM is a PRAM for which simultaneous access to

any memory location by different processors is forbidden for both reading and writ-

ing. In Concurrent-Read Exclusive-Write (or CREW) PRAM, simultaneous reads

are allowed but not simultaneous writes. A Concurrent-Read Concurrent-Write (or

CRCW) PRAM allows simultaneous reads and writes. PRAM models of compu-

tation allow for infinite precision real arithmetic, with all simple unary and binary

operations being computable in O(1) time by a single processor.

We say that a parallel algorithm in the PRAM model of computations runs in

polylogarithmic time if it runs in O(logk n) time using O(nm) processors, where k

and m are constants and n is the size of the input to the algorithm. A problem

is said to be in the class NC if it can be solved in polylogarithmic time using

a polynomial number of processors. A parallel algorithm is called optimal if the

product of the running time of a parallel algorithm and the number of processors

used by the parallel algorithm is within a constant factor of the best sequential

algorithm for the same problem.

1.4 Triangulation

In this section, we provide a brief overview of the results on triangulation of a

polygon as there are visibility algorithms that depend on a first stage of computing

a triangulation of the input polygon. A triangulation of a polygon P is a partition

of P into triangles by diagonals (see Figure 1.3), where a line segment joining any

two mutually visible vertices of P is called a diagonal of P [242]. Note that if a line

segment joining two vertices u and v of P passes through another vertex w of P and

the segment uv lies inside P , then uw and vw are diagonals and not uv.

Exercise 1.4.1 Prove that every simple polygon admits triangulation

[272].

Exercise 1.4.2 Using the proof of Exercise 1.4.1, design an O(n2) time

algorithm for triangulating a simple polygon of n vertices [272].

It can be seen that a triangulation of P is not unique as many subsets of diagonals

give triangulations of the same polygon. The dual of a triangulation of P is a

graph where every triangle is represented as a node of the graph and two nodes are

connected by an arc in the graph if and only if their corresponding triangles share

a diagonal (see Figure 1.3). Since there are three sides of a triangle, the degree of

every node in the dual graph is at most three. A graph with no cycle is called a

tree. In the following lemmas, we state some of the properties of triangulations of

P .
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Figure 1.3 (a) A triangulation of a polygon with holes and its dual graph. (b) A triangula-
tion of a simple polygon and its dual tree.

Lemma 1.4.1 Every triangulation of a simple polygon of n vertices uses n − 3

diagonals and has n− 2 triangles.

Corollary 1.4.2 The sum of the internal angles of a simple polygon of n vertices

is (n− 2)π.

Lemma 1.4.3 Every triangulation of a polygon with h holes with a total of n vertices

uses n+ 3h− 3 diagonals and has n+ 2h− 2 triangles.

Lemma 1.4.4 The dual graph of a triangulation of a simple polygon is a tree.

Lemma 1.4.5 The dual graph of a triangulation of a polygon with holes must have

a cycle.

Exercise 1.4.3 Prove that there is no cycle in the dual graph of a trian-

gulation of a simple polygon.

Exercise 1.4.4 Let a graph G of m vertices denote the dual of a triangu-

lation of a polygon with holes. Design an O(m) time algorithm to locate

a cycle in G.

The first O(n logn) time algorithm for triangulating a simple polygon P was

given by Garey et al. [148]. The first step of their algorithm is to partition P

into y-monotone polygons. A simple polygon is called y-monotone if its boundary

can be divided into two chains of vertices such that each chain has vertices with

increasing y-coordinates. The partition of P into y-monotone polygons can be done

in O(n logn) time by the algorithm of Lee and Preparata [233] for locating a point

in a given set of regions. It has been shown by Garey et al. that each y-monotone

polygon can be triangulated in a time that is proportional to the number of vertices
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of the y-monotone polygon. So, the overall time complexity of the algorithm for

triangulating P is O(n logn). This algorithm also works for polygons with holes, as

pointed out by Asano et al. [29], and it is optimal for this class of polygons.

Another O(n logn) time algorithm for triangulating a simple polygon was pre-

sented by Mehlhorn [257] and uses the plane sweep technique. This algorithm was

generalized for a polygon with holes by Ghosh and Mount [165] with the same

time complexity (see Section 5.3.2). Later, Bar-Yehuda and Chazelle [43] gave an

O(n + h log1+ε h), ε > 0 time algorithm for triangulating a polygon with h holes

with a total of n vertices.

Many researchers worked for more than a decade on the problem of triangulating a

simple polygon P in less than O(n logn) time. One approach was to consider special

classes of simple polygons that could be triangulated in O(n) time [48, 131, 142, 162,

183, 239, 280, 331, 342]. Another approach was to find algorithms whose running

time was based on structural properties of simple polygons [78, 193]. Tarjan and Van

Wyk [326] were the first to establish an improvement by proposing an O(n log log n)

time algorithm for this problem. Later, a simpler O(n log logn) time algorithm was

presented by Kirkpatrick et al. [217]. Finally, an O(n) time optimal algorithm

for this problem was presented by Chazelle [71] settling this long-standing open

problem. We have the following theorem.

Theorem 1.4.6 A simple polygon P of n vertices can be triangulated in O(n) time.

The algorithm of Chazelle [71] uses involved tools and notions such as a pla-

nar separator theorem, polygon cutting theorem and conformality. Although this

algorithm does not use any complex data structure, it is conceptually difficult and

too complex to be considered practical. Moreover, although it has been used as a

preprocessing step for many of the visibility algorithms presented in this book, the

development of a simple O(n) time algorithm for triangulating a simple polygon

remains an open problem.

1.5 The Art Gallery Problem

As stated in Section 1.1, the art gallery problem is to determine the number of

guards that are sufficient to see every point in the interior of an art gallery room.

The art gallery can be viewed as a polygon P of n vertices and the guards are

stationary points in P . A point z ∈ P is visible from a guard g if the line segment

zg lies inside P . If guards are placed at vertices of P , they are called vertex guards.

If guards are placed at any point of P , they are called point guards. Since guards

placed at points or vertices are stationary, they are referred as stationary guards. If

guards are mobile along a segment inside P , they are referred as mobile guards. If

mobile guards move along edges of P , they are referred as edge guards.
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Exercise 1.5.1 Draw a simple polygon of 3k vertices for k > 1 showing

that k stationary guards are necessary to see the entire polygon [91].

In a conference in 1976, V. Klee first posed the art gallery problem (see [198]).

Chavátal [91] showed that for a simple polygon P , bn/3c stationary guards are

always sufficient and occasionally necessary to see or guard the entire P . Later,

Fisk [141] gave a simple proof for this bound. Using this proof, Avis and Toussaint

[41] designed an O(n logn) time algorithm for positioning guards at vertices of P .

For mobile guards, O’Rourke [270] showed that bn/4c mobile guards are always

sufficient and occasionally necessary. For edge guards, bn/4c edge guards appear to

be sufficient, except for some types of polygons (see [333]).

Exercise 1.5.2 Let P be a triangulated simple polygon of n vertices.

Design an O(n) time algorithm for positioning at most bn/3c stationary
guards at vertices of P such the entire P is visible for these guards [41,

141].

A polygon is said to be rectilinear if its edges are aligned with a pair of orthogonal

coordinate axes. For a simple rectilinear polygon P where edges of P are horizontal

or vertical, Kahn et al. [207] showed that bn/4c stationary guards are always suf-

ficient and occasionally necessary to guard P . An alternative proof for this bound

was given later by O’Rourke [269]. These proofs first partition P into convex quadri-

laterals and then bn/4c guards are placed in P . A convex quadrilaterization of P

can be obtained by using the algorithms of Edelsbrunner et al. [121], Lubiw [250],

Sack [299] and Sack and Toussaint [301]. For mobile guards in rectilinear polygons

P , Aggarwal [11] proved that b(3n+4)/16c mobile guards are always sufficient and

occasionally necessary to guard P . Bjorling-Sachs [55] showed later that this bound

also holds for edge guards in rectilinear polygons.

Exercise 1.5.3 Let P be a triangulated simple polygon of n vertices. De-

sign an O(n) time algorithm for partitioning P into convex quadrilaterals

[250, 301].

For a polygon P with h holes, O’Rourke [271] showed that P can always be

guarded by at most b(n+ 2h)/3c vertex guards. For point guards, Hoffmann et al.

[194] and Bjorling-Sachs and Souvaine [56] proved independently that

d(n+h)/3e point guards are always sufficient and occasionally necessary to guard P .

Bjorling-Sachs and Souvaine also presented an O(n2) time algorithm for positioning

guards in P . No tight bound is known on the number of mobile guards sufficient
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for guarding P . However, since d(n+ h)/3e point guards are sufficient for guarding

P , the bound obviously holds for mobile guards. For an rectilinear polygon P with

h holes, Györi et al. [182] showed that b(3n+4h+4)/16c mobile guards are always

sufficient and occasionally necessary for guarding P . For more details on art gallery

theorems and algorithms, see O’Rourke [271], Shermer [310] and Urrutia [333]. We

do not cover this subfield of visibility in this book.

The minimum guard problem is to locate the minimum number of guards for

guarding a polygon with or without holes. O’Rourke and Supowit [276] proved that

the minimum point, vertex and edge guard problems are NP-hard in polygons with

holes. Even for simple polygons, these problems are NP-hard as shown by Lee and

Lin [231].

There are approximation algorithms for these NP-hard problems. Ghosh [152] pre-

sented approximation algorithms for minimum vertex and edge guard problems for

polygons P with or without holes. The approximation algorithms run in O(n5 log n)

time and yield solutions that can be at most O(logn) times the optimal solution.

This means that the approximation ratio of these algorithms is O(logn). These

algorithms partition the polygonal region into convex pieces and construct sets con-

sisting of these convex pieces. Then the algorithms use an approximation algorithm

for the minimum set-covering problem on these constructed sets to compute the

solution for the minimum vertex and edge guard problems in P . Recently, Ghosh

[158] has improved the running time of these approximation algorithms by improv-

ing the upper bound on the number of convex pieces in P . After improvement, the

approximation algorithms run in O(n4) time for simple polygons and O(n5) time

for polygons with holes.

Efrat and Har-Peled [122] also gave approximation algorithms for the minimum

vertex guard problem in polygons with or without holes. Let copt denote the num-

ber of vertices in the optimal solution. Their approximation algorithm for simple

polygons runs in O(nc2opt log
4 n) time and the approximation ratio is O(log copt).

Their other approximation algorithm is for polygons with holes, which runs in

O(nhc3optpolylog n) time, where h is the number of holes in the polygon. The

approximation ratio isO(logn log(copt log n)). For the minimum point guard problem

in simple polygons, they gave an exact algorithm which runs in O((ncopt)
3(copt+1))

time.

Observe that in the worst case, copt can be a fraction of n. So, the approximation

ratio of approximation algorithms of Ghosh [152, 158] and Efrat and Har-Peled [122]

is O(logn) in the worst case. On the other hand, Eidenbenz [123, 124] showed that

the problems of minimum vertex, point and edge guards in simple polygons are

APX-hard. This implies that there exists a constant ε > 0 such that no polynomial

time approximation algorithm for these problems can guarantee an approximation

ratio of 1 + ε unless P = NP .
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Figure 1.4 (a) The points u and v are clearly visible in P but u and w are not. (b) Points
u and v are staircase visible in P . The point w is not staircase visible in P from u or v.

1.6 Special Types of Visibility

In this section, we mention some variations of visibility studied by researchers in

the field of visibility. Breen [62, 63] introduced clear visibility, which is perhaps the

smallest variation of standard visibility possible. Two points u and v in a polygon P

are called clearly visible if the open line segment joining u and v lies in the interior of

P . Note that clear visibility does not permit the line of sight to touch the boundary

of P (see Figure 1.4(a)).

Let us consider staircase visibility between points in rectilinear polygons. This

type of visibility has been studied by Culberson and Reckhow [99], Motwani et al.

[263, 264], Reckhow and Culberson [296], Schiuerer and Wood [305] and Wood and

Yamamoto [343]. If a path inside a rectilinear polygon P is monotone with respect

to both axes, the path is called staircase path in P . Two points u and v in P are

called staircase visible if there is a staircase path between u and v in P (see Figure

1.4(b)). Note that if two points u and v of P are visible under the standard definition

of visibility, u and v are also staircase visible.

Staircase visibility has been generalized to O-visibility, where O represents a set of

two or more orientations between 0◦ and 180◦. If a path inside a rectilinear polygon

P is monotone with respect to every direction in O, the path is called O-staircase

path in P . Two points u and v in P are called O-visible if there is an O-staircase

path between u and v in P . This type of visibility has been studied by Bremner [64],

Bremner and Shermer [65], Rawlins [294], Rawlins and Wood [295], Schuierer et al.

[304] and Schiuerer and Wood [305]. Fink and Wood [140] have studied O-visibility

in connection with convexity.

Like staircase visibility, rectangular visibility is generally used for points inside

rectilinear polygons. If the sides of a rectangle are parallel to the axes, the rectangle

is called aligned. For any two points u and v in a rectilinear polygon P , if the
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Figure 1.5 (a) The points u and v are rectangularly visible in P but u and w are not. (b)
The points u and v are circularly visible in P .

aligned rectangle with u and v as opposite corners lies totally inside P , then u and

v are called rectangularly visible (see Figure 1.5(a)). Rectangular visibility has been

studied by Gewali [149], Gewali et al. [150], Keil [214], Munro et al. [265] and

Overmars and Wood [279].

Circular visibility, another variation of visibility, has been studied by Agarwal

and Sharir [8, 9], Chou and Woo [90] and Garcia-Lopez and Ramos-Alonso [147]. If

two points u and v in a polygon P can be connected by a circular arc such that the

circular arc lies totally inside P , then u and v are called circularly visible (see Figure

1.5(b)). Dean et al. [110] have studied X-ray visibility, which is another variation

of visibility. Two points u and v are X-ray visible in a polygon P if the segment uv

does intersect more than a fixed number of edges of P .
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Point Visibility

2.1 Problems and Results

Determining the visible region of a geometric object from a given source under

various constraints is a well-studied problem in computational geometry [30]. The

visibility polygon V (q) of a point q in a simple polygon P is the set of all points of

P that are visible from q. In other words, V (q) = {p ∈ P | q sees p}. A similar defi-

nition holds in a polygon with holes or an arrangement of segments. The problem

of computing the visibility polygon V (q) of a point q is related to hidden line elimi-

nation problem and it is a part of the rendering process in computer graphics [115].

Figure 2.1 shows V (q) in a simple polygon, a polygon with holes, and a line segment

arrangement. By definition, any V (q) is a star-shaped polygon and q belongs to the

kernel of P . The visibility polygon of a point in a line segment arrangement may

not be always bounded.

Let ab be an edge on the boundary of V (q) such that (i) no point of ab, except

the points a and b, belong to the boundary of P , (ii) three points q, a and b are

Figure 2.1 The visibility polygons of q (a) in a simple polygon, (b) in a polygon with holes,
and (c) in a line segment arrangement.

13
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Figure 2.2 The revolution number of P with respect to q in (a) is two and in (b) is one.

collinear, and (iii) a or b is a vertex of P . Such an edge ab is called a constructed

edge of V (q). It can be seen that once constructed edges of V (q) are known, the

boundary of V (q) can be constructed by adding the boundary of P between two

consecutive constructed edges. Since each constructed edge can be computed in

O(n) time (see Exercise 2.1.1), a naive algorithm for computing V (q) takes O(n2)

time.

Exercise 2.1.1 For each vertex vi of a given polygon P (with or without

holes), determine whether vi is visible from q in O(n) time and if vi is

visible from q, compute the constructed edge at vi (if it exists) in O(n)

time.

This problem for a simple polygon was first considered in a theoretical framework

by Davis and Benedikt [107], who presented an O(n2) time algorithm. Then, El-

Gindy and Avis [128] and Lee [230] presented O(n) time algorithms for this problem.

In Section 2.2.1, we present Lee’s algorithm.

It has been shown in Joe [204] and Joe and Simpson [205] that both algorithms of

ElGindy and Avis, and Lee may fail on some polygons with sufficient winding, i.e.,

if the revolution number is at least two (see Figure 2.2(a)). For a simple polygon

P and a point z ∈ P , the revolution number of P with respect to z is the number

of revolutions that the boundary of P makes about z. If the revolution number of

P with respect to z is one (see Figure 2.2(b)), P is called a non-winding polygon.

Joe and Simpson [205] suggested an O(n) time algorithm for computing V (q) which

correctly handles winding in the polygon by keeping the count of the number of

revolutions around q.

Exercise 2.1.2 Given a point z inside or outside a simple polygon P of

n vertices, design an O(n) algorithm for computing the revolution number

of P with respect to z.
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Observe that the portion of the boundary of the given simple polygon P , that

makes the revolution number of P with respect to q more than one, is not visible

from q. So, it is better to prune P before using the algorithm of ElGindy and Avis

or Lee so that (i) the revolution number of the pruned polygon of P with respect to

q is one, and (ii) the pruned polygon of P contains q and V (q). In Section 2.2.2, we

present the algorithm of Bhattacharya et al. [49] for pruning P that runs in linear

time. This algorithm removes winding by locating a subset of Jordon sequence that

is in the proper order and uses only one stack like the algorithm of Lee [230]. So, the

algorithm of Bhattacharya et al. [49] can be viewed as a preprocessing step before

V (q) is computed by Lee’s algorithm.

For a polygon with h holes with a total of n vertices, Asano [27] presented

O(n log h) algorithms for computing V (q) (see Figure 2.1(b)). Around the same

time, Suri and O’Rourke [321] and Asano et al. [28] proposed O(n logn) time

algorithms for this problem. Later, Heffernan and Mitchell [185] proposed an

O(n+ h log h) time algorithm for this problem. We present the algorithm of Asano

[27] in Section 2.3.

Consider a simple polygon P such that the visibility polygon V (q) of P from some

point q ∈ P is same as P , i.e., P = V (q). Then P is a star-shaped polygon and q

belongs to the kernel of P . For definitions of a star-shaped polygon and its kernel,

see Section 1.2. So, the problem of recognizing the point visibility polygon is to

locate a point q ∈ P such that P = V (q). In other words, a point q ∈ P is to be

located such that V (q) does not have any constructed edge. Lee and Preparata [234]

solved the recognition problem by presenting an O(n) time algorithm for computing

the kernel of P . If the kernel of P is non-empty, then P is the visibility polygon of

P from any point of the kernel. We present the algorithm of Lee and Preparata in

Section 2.4.

Exercise 2.1.3 Let uv be an edge of a star-shaped polygon P , where v is

a reflex vertex. Extend uv from v till it meets a point u′ on the boundary

of P . Prove that all points of the kernel of P lies on the same side of vu′.

Exercise 2.1.4 Let ab and cd be two constructed edges of the visibility

polygon V (q) of a point q inside a simple polygon P such that (i) a and

d are reflex vertices of P , (ii) b and c are some points on the edges of

P and (iii) the counterclockwise boundary from a to d passes through b

and c. Prove that if there exists another such pair of constructed edges in

V (q), then P is not a star-shaped polygon.
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Figure 2.3 (a) The point q lies outside the convex hull of P . (b) The point q lies outside P
but inside the convex hull of P .

2.2 Computing Visibility of a Point in Simple Polygons

2.2.1 Non-Winding Polygon: O(n) Algorithm

In this section, we present the algorithm of Lee [230] for computing the visibility

polygon V (q) of a simple polygon P of n vertices from a point q in O(n) time.

The first step of the algorithm is to determine whether q lies inside or outside P .

If q lies outside P , a simple polygon P ′ is constructed from P such that q ∈ P ′

and V (q) ⊆ P ′. Then, the procedure for computing the visibility polygon from an

internal point can be used to compute V (q) in P ′ as q ∈ P ′.

Let us explain the procedure for constructing P ′ from P when q lies outside P .

There are two situations depending on whether q lies inside the convex hull of P

(see Figure 2.3). The convex hull of P is the smallest convex polygon containing P

and it can be computed in O(n) time by the algorithm of Graham and Yao [175].

If q lies outside the convex hull of P (see Figure 2.3(a)), draw two tangents (say,

qvi and qvj) from q to the convex hull of P . Let bd(P ) denote the boundary of P .

Observe that all points of bd(P ) visible from q lie between vi and vj facing q. So,

bd(P ′) consists of this part of bd(P ) between vi and vj and two tangents qvi and qvj .

Now, q is an internal point of P ′. Consider the other situation when q lies outside

P but inside the convex hull of P (see Figure 2.3(b)). Draw a line from q passing

through any vertex vk of P (denoted as −→qvk). Let q′ be the closest point of q among

all points of intersections of −→qvk with bd(P ). Starting from q′, traverse bd(P ) in

clockwise (and in counterclockwise) order till a convex hull vertex vi (respectively,

vj) is reached. Note that vi and vj are consecutive vertices on the convex hull of P .

So, bd(P ′) consists of bd(P ) between vi and vj containing q′, and the convex hull

edge vivj . Now, q is an internal point of P ′.
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Figure 2.4 (a) The vertex vi is pushed on the stack. (b) The vertices of bd(vi, vk−1) are not
visible from q.

From now on, we consider that the given point q is an internal point of P . If the

boundary of the given polygon P winds around q, the winding is removed from P

by the algorithm in Section 2.2.2. Henceforth, we assume that bd(P ) does not wind

around q. The problem is to compute V (q) of P from q.

Exercise 2.2.1 Let pi = (xi, yi), pj = (xj , yj), and pk = (xk, yk) be three

points in the plane. Let S = xk(yi− yj)+ yk(xj −xi)+ yjxi− yixj. Show

that (i) if S > 0 then pk lies to the left of
−−→pipj, (ii) if S = 0 then pi, pj

and pk are collinear, and (iii) if S < 0 then pk lies to the right of
−−→pipj.

We know that V (q) is a star-shaped polygon, where q is a point in the kernel of

V (q). Let v0 denote the closest point of q among the intersection points of bd(P )

with the horizontal line drawn from q to the right of q (see Figure 2.4(a)). We

assume that the vertices of P are labeled v1, v2, . . . , vn in counterclockwise order

with v1 as the next counterclockwise vertex after v0. So, v1 and vn lie to the left

and right of −→qv0, respectively.
Assume that the procedure for computing V (q) has scanned bd(P ) in counter-

clockwise order from v1 to vi−1 and vi is the current vertex under consideration.

The star-shaped polygon formed by the vertices and points on the stack at any

stage along with q is referred to as the current visibility region Vc(q). Let bd(vj , vk)

denote the counterclockwise boundary of P from vj to vk. We also assume that

vertices (and the endpoints of constructed edges) on bd(v0, vi−1), which are found

to be visible from q by the procedure, are pushed on a stack in the order they are

encountered, where v0 and vi−1 are at the bottom and top of the stack, respectively.

So, the vertices and points in the stack are in sorted angular order around q. The
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Figure 2.5 (a) The edge vi−1vi intersects uq. (b) The edge vi−1vi does not intersect uq.

procedure always ensures that the content of the stack satisfies this property at any

stage of the execution. We have the following cases.

Case 1. The vertex vi lies to the left of −−−→qvi−1 (Figure 2.4(a)).

Case 2. The vertex vi lies to the right of −−−→qvi−1 (Figure 2.4(b) and Figure 2.5(a)).

Case 2a. The vertex vi lies to the right of −−−−−→vi−2vi−1 (Figure 2.4(b)).

Case 2b. The vertex vi lies to the left of −−−−−→vi−2vi−1 (Figure 2.5(a)).

Consider Case 1. Since vi and the vertices and points in the stack are in sorted

angular order with respect to q (see Figure 2.4(a)), vi is pushed on the stack.

Consider Case 2. It can be seen that vi−1 and vi cannot both be visible from

q (see Figure 2.4(b) and Figure 2.5(a)), as either qvi is intersected by bd(v0, vi−1)

(Case 2a) or qvi−1 is intersected by bd(vi+1, vn) (Case 2b).

Consider Case 2a. The vertex vi and some of the subsequent vertices of vi (yet

to be scanned) are not visible from q (see Figure 2.4(b)). Let vk−1vk be the first

edge from vi+1 on bd(vi+1, vn) in counterclockwise order such that vk−1vk intersects
−−−→qvi−1. Let z be the point of intersection. Note that vk lies to the left of −−−→qvi−1 as

bd(P ) does not wind around q. So, no vertices of bd(vi, vk−1) are visible from q

and therefore, z is the next point of vi−1 on bd(vi−1vn) visible from q. So, viz is a

constructed edge of V (q), where q, vi−1 and z are collinear points. Push z and vk
on the stack, and vk+1 becomes the new vi.

Consider Case 2b. The vertex vi−1 and some of the preceding vertices of vi
(currently on the stack) are not visible from q (see Figure 2.5(a)). Pop the stack to

remove vi. Let u denote the vertex on the top of the stack. The edge vi−1vi is called

a forward edge. While vi−1vi intersects uq and u is a vertex of P , pop the stack.
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Figure 2.6 (a) Backtracking ends by pushing m and vi on the stack. (b) Backtracking
continues with vk−1vk as the current forward edge.

Note that popped vertices are not visible from q as their visibility from q is blocked

by vi−1vi. After the execution of this step of backtracking, there are two situations

that can arise: (i) vi−1vi does not intersect uq (see Figure 2.5(b)), and (ii) vi−1vi
intersects uq (see Figure 2.7).

In the first situation, the procedure decides whether further backtracking is

required (see Figure 2.5(b) and Figure 2.6). If vi+1 lies to the right of −→qvi (see Figure
2.5(b)), backtracking continues with vivi+1 as the current forward edge. Otherwise,

vi+1 lies to the left of −→qvi (see Figure 2.6). Let m be the intersection point of −→qvi
with the polygonal edge containing u. If vi+1 lies to the right of −−−→vi−1vi, then the

backtracking ends (see Figure 2.6(a)). Push m and vi on the stack and vi+1 becomes

the new vi. If vi+1 lies to the left of −−−→vi−1vi (see Figure 2.6(b)), scan bd(vi+1, vn) from

vi+1 until a vertex vk is found such that the edge vk−1vk intersectsmvi. Backtracking

continues with vk−1vk as the current forward edge.

In the second situation, u is not a vertex of P (see Figure 2.7). Let w be the

vertex immediately below u on the stack. So, uw is a constructed edge computed

earlier by the procedure in Case 2a. Let p be the point of intersection of uq and

vi−1vi. If p ∈ qw (see Figure 2.7(a)), the visibility of both u and w from q is blocked

by vi−1vi. Pop the stack. Backtracking continues and vi−1vi remains the current

forward edge. Otherwise, vi−1vi has intersected uw as p belongs to uw (see Figure

2.7(b)). Scan bd(vi+1, vn) from vi+1 until a vertex vk is found such that the edge

vk−1vk has intersected wp at some point (say, z). So, the entire bd(w, z) (excluding

w and z) is not visible from q. Pop the stack. Push z and vk on the stack. So,

vk+1 becomes the new vi. Note that we have assumed uw is a constructed edge

computed earlier in Case 2a. It may so happen that the constructed edge ending

at u (say, uu′) has been computed in Case 2b at the end of an earlier backtracking
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Figure 2.7 (a) The edge vi−1vi does not intersect the constructed edge uw. (b) The edge
vi−1vi intersects uw at p, and the edge vk−1vk intersects pw at z.

phase. It means that the vertex u′ is the last vertex popped of the stack in the

current backtracking phase. Therefore, q, w and u are not collinear. Hence, pop the

stack and it becomes the first situation of the current backtracking.

In the following steps, we formally present the algorithm for computing V (q).

As before, we assume that v0 is the closest point of bd(P ) to the right of q, and

the vertex v1 is the next counterclockwise vertex of v0. Push v0 on the stack and

initialize i by 1.

Step 1. Push vi on the stack and i := i+ 1. If i = n+ 1 goto Step 8.

Step 2. If vi lies to the left of −−−→qvi−1 (Figure 2.4(a)) then goto Step 1 (Case 1).

Step 3. If vi lies to the right of both −−−→qvi−1 and −−−−−→vi−2vi−1 then (Case 2a)

Step 3a. Scan from vi+1 in counterclockwise order until a vertex vk is found such

that vk−1vk intersects −−−→qvi−1 (Figure 2.4(b)). Let z be the point of intersection.

Step 3b. Push z on the stack, i := k and goto Step 1.

Step 4. If vi lies to the right of −−−→qvi−1 and to the left of −−−−−→vi−2vi−1 (Figure 2.5(a)) then

(Case 2b)

Step 4a. Let u denote the element on the top of the stack. Pop the stack.

Step 4b. While u is a vertex and vi−1vi intersects uq, pop the stack (Figure 2.5(a)).

Step 5. If vi−1vi does not intersect uq (Figure 2.5(b)) then

Step 5a. If vi+1 lies to right of −→qvi (Figure 2.5(b)) then i := i + 1 and goto Step

4b.

Step 5b. Let m be the point of intersection of −→qvi and the edge containing u. If

vi+1 lies to the right of −−−→vi−1vi (Figure 2.6(a)) then push m on the stack and

goto Step 1.
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Step 5c. Scan from vi+1 in counterclockwise order until a vertex vk is found such

that vk−1vk intersects mvi (Figure 2.6(b)). Assign k to i and goto Step 4b.

Step 6. Let w be the vertex immediately below u on the stack. Let p be the point

of intersection between vi−1vi and uq. If p ∈ qw (Figure 2.7(a)) or q, w and u are

not collinear then pop the stack and goto Step 4b.

Step 7. Scan from vi+1 in counterclockwise order until a vertex vk is found such that

vk−1vk intersects wp (Figure 2.7(b)). Push the intersection point on the stack,

assign k to i and goto Step 1.

Step 8. Output V (q) by popping all vertices and points on the stack and Stop.

Let us discuss the correctness of the algorithm. As stated earlier, V (q) is a

star-shaped polygon with its kernel containing q, i.e., vertices of V (q) are in sorted

angular order with respect to q. The algorithm maintains an invariant that the

vertices and points on the stack at any stage are in sorted angular order with respect

to q. When the algorithm terminates, the current visibility region Vc(q) is V (q).

The algorithm scans the vertices of P starting from v0 in counterclockwise order

and checks in Step 2 whether the current vertex vi is in the sorted angular order

with the vertices and points on the stack. If vi satisfies this property (see Figure

2.4(a)), it means that vi lies to the left of −−−→qvi−1 and vi is pushed on the stack. Since

vi is pushed on the stack, the current region of V (q) is enhanced by the triangle

formed by q, vi−1 and vi. If vi is not in sorted angular order, vi must lie to the right

of −−−→qvi−1. Moreover, vi may lie inside Vc(q).

Consider the situation when vi lies outside Vc(q) and vi also lies to the right of
−−−→qvi−1. Observe that although vi lies outside Vc(q), the edge vi−1vi may pass through

Vc(q) (see Figure 2.7(b)). In the other situation, vi−1vi does not pass through Vc(q)

(see Figure 2.4(b)). Consider the later situation. Observe that qvi is intersected

by bd(v0, vi−1) and therefore, vi cannot be visible from q. Let vk−1vk be the first

edge in counterclockwise order starting from vi such that vk−1vk intersects qvi−1 at

some points (say, z). Since P is a closed and bounded region, such an edge vk−1vk
intersecting −−−→qvi−1 exists. Note that since P does not have winding by assumption,

vk satisfies sorted angular order along with the vertices and points on the stack. So,

the algorithm correctly locates such a vertex vk in Step 3, and Vc(q) is enhanced by

the triangle formed by q, z and vk.

If vi−1vi passes through Vc(q) (see Figure 2.7(b)), it can be seen that vi−1vi has

intersected a constructed edge uw computed by the algorithm earlier, where w is

a vertex of bd(v0, vi−1). So, vi cannot be visible from q as bd(v0, w) intersects qvi.

Let p be the intersection point of vi−1vi and uw. Let vk−1vk be the first edge in

counterclockwise order starting from vi such that vk−1vk intersects pw at some point

(say, z). Since P is a closed and bounded region, such an edge vk−1vk exists. Observe

that all points of bd(w, z) (excluding w and z) cannot be visible from q, and vk is

in sorted angular order with the vertices and points of bd(v0, w) on the stack. So,
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Figure 2.8 (a) Backtracking ends at vk. (b) The edges vj−1vj and vk−1vk are two consecutive
forward edges on bd(vi−1, vt).

the algorithm correctly locates such a vertex vk in Step 7. Vc(q) is reduced triangle

by triangle as vertices are popped off the stack till qw becomes a boundary edge of

Vc(q), and then Vc(q) is enhanced by the triangle formed by q, z and vk (see Figure

2.7(b) and Figure 2.8(a)).

Consider the other situation when vi lies inside Vc(q) (see Figure 2.5(a)). So,

vi−1vi blocks the visibility from q to some of the vertices and points currently on

the stack. These vertices and points are popped off the stack in Step 4. While

popping the stack, Vc(q) is also reduced triangle by triangle until vi no longer lies

inside Vc(q) (see Figure 2.5(b)). The vertex vi is now in sorted angular order with

the vertices and points on the stack. However, vi+1 may lie inside Vc(q) (see Figure

2.5(b)) (which is checked in Step 5a) and therefore, backtracking continues. So,

Step 4b is again executed with vivi+1 as the current forward edge.

Observe that two consecutive forward edges may not always be two consecutive

edges on bd(vi−1, vn). In Figure 2.8(b), vj−1vj and vk−1vk are two consecutive

forward edges. It can happen when the next counterclockwise edge vjvj+1 of the

current forward edge vj−1vj does not lie inside Vc(q) but the visibility from q to

vj+1 is blocked by forward edges on bd(vi−1, vj). Let vk−1vk be the first edge in

counterclockwise order starting from vj+1 such that vk−1vk intersects −→qvj . Since

P is a closed and bounded region, such an edge vk−1vk exists and it becomes the

current forward edge. So, the algorithm correctly locates the next forward edge

in Step 5c. Backtracking finally ends in Step 5b when the visibility of the next

counterclockwise edge (say, vtvt+1) of the current forward edge vt−1vt from q is not

blocked by any forward edge of bd(vi−1, vt) (see Figure 2.8(b)). So, vt+1 and vt are
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Figure 2.9 Alternate segments w1w2, w3w4, w5w6 and w7w8 have divided P into sub-
polygons and the sub-polygon with w0 as a boundary point contains both q and V (q).

in sorted angular order with the vertices and points currently on the stack. Vc(q) is

first enhanced to vt and then to vt+1.

Finally, the algorithm reaches vn and it outputs Vc(q) in Step 8 as V (q). It can be

seen that every vertex of P is considered once by the algorithm while scanning from

v0 to vn. If any vertex vi is pushed on the stack, vi remains on the stack unless it is

removed during backtracking. Once vi is removed of the stack, vi is not considered

again by the algorithm. Hence, the overall time complexity of the algorithm is O(n).

We state the result in the following theorem.

Theorem 2.2.1 The visibility polygon V (q) of a given point q inside an n-sided

simple polygon P can be computed in O(n) time.

Exercise 2.2.2 Let q be a point inside a given triangulated simple polygon

P . Design a procedure for computing the visibility polygon of q in P whose

running time is proportional to the number of triangles, partially or totally

visible from q, in the triangulation of P .

2.2.2 Removing Winding: O(n) Algorithm

In this section, we present an O(n) time algorithm of Bhattacharya et al. [49] to

remove the winding of a simple polygon P with respect to a given point q inside P .

Given a simple polygon P and a point q ∈ P , the problem is to compute a simple

polygon P1 ⊆ P (called a pruned polygon) such that P1 contains both V (q) and q,

and the angle subtended at q is at most 2π while the boundary of P1 is scanned in

clockwise or counterclockwise order (see Figure 2.9). This means that the revolution

number of P1 with respect to q is one. We have the following lemma.
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Lemma 2.2.2 Draw the half-line from q to the right of q intersecting bd(P ) at points

(w0, w1, ..., wk) such that for all j, wj ∈ qwj+1 (Figure 2.9). Alternate segments

w1w2, w3w4,..., wk−1wk lie inside P .

Exercise 2.2.3 Prove Lemma 2.2.2.

Partition P by adding segments w1w2, w3w4,..., wk−1wk to P . Since these seg-

ments lie inside P by Lemma 2.2.2, P splits into several parts and the part with

w0 as a boundary point (say, P1) contains both q and V (q). Analogously, draw a

horizontal line from q to the left of q and remove winding from P1. Since the new

P1 does not have winding with respect to q, the revolution number of the new P1 is

one.

We know that points w0, w1,..., wk can be computed in O(n) time and then they

can be sorted along the half-line in O(n logn) time. Using the property that w0,

w1,..., wk belong to the boundary of simple polygon, which is a closed and bounded

region, Hoffmann et al. [195] showed that the sorting of w0, w1,..., wk along the

half-line can be done in O(n) time. Hence, the pruned polygon P1 containing both q

and V (q) can be computed in O(n) time. However, the algorithm of Hoffmann et al.

[195] is difficult to implement as it uses involved data structures called level-linked

search trees.

Observe that the winding in the polygon P in Figure 2.9 can be removed by

adding only the segments w1w2 or w5w6. This suggests that the winding in P can

be removed by adding a few selected segments. We show that these segments can be

identified in O(n) time using only one stack without the sorting of all intersection

points along the half-line as follows.

Let L denote the horizontal line passing through q. The portion of L to the

right (or left) of q is denoted as Lr (respectively, Ll) (see Figure 2.10(a)). The

closest point of q among the intersection points of bd(P ) with Lr (or Ll) is denoted

as qr (respectively, ql). Since qlqr lies inside P , two sub-polygons Pa and Pb are

constructed by adding the segment qlqr in P , where the boundary of Pa (or Pb)

consists of qlqr and the boundary of P from qr to ql in counterclockwise (respectively,

clockwise) order.

It can be seen that there are four types of sub-segments of L lying inside P

formed by pairs of intersection points of bd(Pa) or bd(Pb) with Lr or Ll (see Figure

2.10(a)). The algorithm identifies some of these sub-segments and by adding these

sub-segments to P , the winding of P is removed. Among these sub-segments, the

sub-segments formed by the intersection of Lr with Pa is located by scanning bd(Pa)

from qr to ql in counterclockwise order; the procedure is called CC(Pa, qr, ql, Lr).

The remaining sub-segments on Lr or Ll are identified by analogous procedures

C(Pa, ql, qr, Ll), C(Pb, qr, ql, Lr) and CC(Pb, ql, qr, Ll). In Figure 2.10(a),

sub-segments z1z2, z3z4, z7z8 and z5z6 are identified by CC(Pa, qr, ql, Lr),
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Figure 2.10 (a) Each procedure identifies one sub-segment on L. (b) Every pair of consec-
utive intersection points on Lr is of opposite type.

C(Pa, ql, qr, Ll), C(Pb, qr, ql, Lr) and CC(Pb, ql, qr, Ll), respectively. Among these

four procedures, only the procedure CC(Pa, qr, ql, Lr) is presented here as other

procedures are analogous.

Let us present CC(Pa, qr, ql, Lr). An intersection point z between bd(Pa) and

Lr is called a downward (respectively, upward) point if the next counterclockwise

vertex of z on bd(Pa) is below (or above) Lr. For example, qr is always an upward

point. Two intersection points of bd(Pa) and Lr are called same type if both of them

are downward or upward points. Otherwise, they are opposite type. For example

in Figure 2.10(a), z1 and z2 are downward and upward points, respectively, and

therefore, (z1, z2) is a pair of opposite type. In the following lemma, we present

properties of pairs of intersection points between Lr and bd(Pa).

Lemma 2.2.3 Let w and z be two intersection points between Lr and bd(Pa).

(i) If w and z are of same type, wz does not lie inside Pa.

(ii) If wz lies inside Pa, then w and z are of opposite type.

(iii) If w is a downward point, z is upward point and wz lies inside Pa, then w

lies on qz.

(iv) If w is a downward point, z is an upward point and wz does not lie inside

Pa, then wz contains a pair of opposite type.

Exercise 2.2.4 Prove Lemma 2.2.3.

The above lemma suggests that for locating sub-segments of Lr lying inside Pa,

locate pairs of opposite type and then test whether a pair contains another pair of

opposite type. Let Z = (z0, z1, ..., zm) be the intersection points from qr to ql along

bd(Pa) in counterclockwise order, where qr = z0 (see Figure 2.10(b)). We say that

(z0, z1, ..., zi−1) is in the proper order if for all k less than i − 1, zk ∈ qzk+1 and
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Figure 2.11 (a) The next pair is formed by zi and zk. (b) The next pair is formed by zi and
zj .

(zk, zk+1) is a pair of opposite type. Observe that if there is no winding in Pa, all

points in Z are in the proper order and therefore, segments connecting alternate

pairs of points in Z lie inside Pa. We have the following properties on the proper

order.

Lemma 2.2.4 Assume that (z0, z1, ..., zi−1) is in the proper order.

(i) If zi preserves the proper order, then zi /∈ qzi−1 and (zi−1, zi) is a pair of

opposite type.

(ii) If zi violates the proper order, then zi ∈ qzi−1 or (zi−1, zi) is a pair of same

type.

(iii) If there is a point zj ∈ zkzk+1, where k < i − 1 and j > i − 1, then zj is a

subsequent point of zi−1 in Z.

Assume that CC(Pa, qr, ql, Lr) has tested points z0, z1, ..., zi−1 and they are in

the proper order (see Figure 2.10(b)). This means that z0 is an upward point,

z1 is a downward point, z2 is a upward point and so on. We know that z0z1,

z2z3, . . . , zi−3zi−2 do not lie inside Pa. We assume that (z1, z2), (z3, z4), . . . , (zi−2, zi−1)

are pushed on the stack by the procedure with (zi−2, zi−1) on top of the stack. Note

that zi−1 is an upward intersection point by assumption. The procedure checks

whether (z0, z1, ..., zi−1, zi) is in proper order. We have the following four cases

depending upon the type and position of zi.

Case 1. The point zi is a downward point and zi /∈ qzi−1 (see Figure 2.10(b)).

Case 2. The point zi is a downward point and zi ∈ qzi−1 (see Figure 2.12(a)).

Case 3. The point zi is an upward point and zi ∈ qzi−1 (see Figure 2.12(b)).

Case 4. The point zi is an upward point and zi /∈ qzi−1 (see Figure 2.14(b)).
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Figure 2.12 (a) The downward point zi belongs to zkzk+1. (b) There is no pair in the stack
whose segment contains the upward point zi.

Consider Case 1. We know from Lemma 2.2.4 that zi preserves the proper order

as zi is a downward point and zi /∈ qzi−1. The procedure checks whether zi and

zi+1 form a pair of opposite type and zi+1 preserves the proper order. Consider the

situation where zi+1 ∈ qzi (see Figure 2.11(a)). By Lemma 2.2.4, zi+1 has violated

the proper order. Starting from zi+2, scan Z to locate a point zk such that zi ∈ qzk.

Points (zi+1, . . . , zk−1) are removed from Z and zk becomes the new zi+1. So,

zi ∈ qzi+1. If zi+1 is an upward point (see Figure 2.10(b)), then (z0, z1, ..., zi, zi+1) is

in the proper order by Lemma 2.2.4. So, the next pair of opposite type (zi, zi+1) is

pushed on the stack. Otherwise, both zi and zi+1 are downward points (see Figure

2.11(b)) and zi+1 has violated the proper order by Lemma 2.2.4. Since bd(zi, zi+1)

has wound around q, scan Z starting from zi+2 and locate a point zj such that

zj ∈ zizi+1. Since zj is an upward point and zi ∈ qzj , (zi, zj) becomes the next pair

of opposite type by Lemma 2.2.4. Remove all points of Z that do not belong to

qzi+1 and push (zi, zj) on the stack. Observe that if zizj lies inside Pa, zizj can be

added to Pa to remove winding in bd(zi, zi+1). Otherwise, by Lemma 2.2.3, there

exists a pair of opposite type in Z (see Figure 2.11(b)) lying on the zizj , which is

detected later.

Consider Case 2. By Lemma 2.2.4, zi has violated the proper order (see Figure

2.12(a)) as zi is a downward point and zi ∈ qzi−1. Pop the stack till the pair (say,

(zk, zk+1)) is on top of the stack such that zi ∈ zkzk+1. We know from Lemma 2.2.3

that there is a pair of opposite type in Z lying on zkzk+1. Therefore scan Z from

zi+1 and locate a point zj such that zj ∈ zkzi. It can be seen that zj is an upward

point. Therefore, (zk, zj) is a pair of opposite type. Hence, (z0, z1, . . . , zk, zj) is

in the proper order by Lemma 2.2.4. Push (zk, zj) on the stack after (zk, zk+1) is

popped from the stack.
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Figure 2.13 (a) The next pair formed by wk and wk+1 is in the proper order. (b) The next
pair in the proper order is formed by wk and wj .

Consider Case 3. By Lemma 2.2.4, zi has violated the proper order as zi is an

upward point and zi ∈ qzi−1 (see Figure 2.12(b) and Figure 2.13(a)). Scan Z from

zi and locate two consecutive downward points zj−1 ∈ qzi−1 and zj ∈ qzi−1 (see

Figure 2.12(b)). Remove (zi, . . . , zj−1) from Z and zj becomes the new zi. Execute

Case 2. If no such points zj−1 and zj exist (see Figure 2.13(a)), the segments formed

by pairs in the stack are added to partition Pa. In the process, the stack becomes

empty. Observe that bd(zi−1, zi) still has winding (see Figure 2.13(a)) which has to

be removed.

Using the same stack, CC(Pa, qr, ql, Lr) locates the sub-segments of qzi (from

zi toward q) lying inside Pa. Traverse bd(Pa) in counterclockwise order starting

from zi, where zi = w0 (see Figure 2.13(a)) and compute intersection points W =

(w0, w1, . . . , wp) between bd(zi, q) and qzi. Observe that although any two consec-

utive points wk−1 and wk in W are of opposite type, wk may not belong to qwk−1

for all k and therefore, W may not be in the proper order in the direction from

w0 towards q. The following lemma, which is analogous to Lemma 2.2.4, states the

properties of the proper order of W .

Lemma 2.2.5 Assume that (w0, w1, . . . , wk−1) is in the proper order.

(i) If wk preserves the proper order, then wk /∈ w0wk−1.

(ii) If wk violates the proper order, then wk ∈ w0wk−1.

(iii) If there is a point wj ∈ wtwt+1, where t < k − 1, then wj is a subsequent

point of wk−1 in W .

Assume that CC(Pa, qr, ql, Lr) has tested points w0, w1, . . . , wk−1 and they are

in proper order (see Figure 2.13(a)). We also assume that (w0, w1), (w2, w3), . . .,

(wk−2, wk−1) are pushed on the stack by the procedure. Note that w0 is an upward

point. If wk /∈ w0wk−1, then (w0, w1, . . . , wk−1, wk) is in the proper order by Lemma
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Figure 2.14 (a) The next pair in the proper order is formed by wj and wr. (b) Pa is
partitioned by adding segments w0w1 and w2w5.

2.2.5. If wk+1 /∈ w0wk (see Figure 2.13(a)), then (w0, w1, . . . , wk, wk+1) is also in

the proper order by Lemma 2.2.5. So (wk, wk+1) is pushed on the stack as it is

the next pair of opposite type. Otherwise, wk+1 has violated the proper order by

Lemma 2.2.5 as wk+1 ∈ w0wk (see Figure 2.13(b)). Scan W starting from wk+2

and locate a point wj such that wj /∈ w0wk. So (w0, w1, . . . , wk, wj) is in the proper

order by Lemma 2.2.5 and push (wk, wj) on the stack. If wk ∈ w0wk−1 (see Figure

2.14(a)), wk has violated the proper order by Lemma 2.2.5. Pop the stack till the

pair (say, (wj , wj+1)) is on top of the stack such that wk ∈ wjwj+1. Scan W from

wk+1 and locate a point wr ∈ wjwk. It can be seen that wr is a downward point

and by Lemma 2.2.5, (w0, w1, . . . , wj , wr) is in the proper order. Push (wj , wr) on

the stack.

Consider Case 4. By Lemma 2.2.4, zi has violated the proper order as zi is an

upward point and zi /∈ qzi−1 (see Figure 2.14(b)). Note that there is a winding

around q in bd(zi−1, zi). Traverse bd(Pa) in counterclockwise order starting from

zi and compute intersection points W = (w0, w1, ..., wp), where zi = w0, between

bd(zi, q) and zi−1zi. Clear the stack. Locate the pairs of opposite type in W from

zi toward zi−1 using the same method stated above for W . Partition Pa by adding

segments corresponding to these pairs and the part containing q on its boundary is

the new Pa. Execute CC(Pa, qr, ql, Lr) with new Pa and new Z. Since Case 4 cannot

occur again, CC(Pa, qr, ql, Lr) terminates after the second round of execution. In

the following, we state the major steps of the procedure CC(Pa, qr, ql, Lr).

Step 1. Compute intersection points Z = (z0, z1, ..., zm) between Lr and bd(Pa) in

the order from qr to ql, where z0 = qr. Initialize i by 1 and h by 0.

Step 2. If zi is a downward point not belonging to qzh (see Case 1) then

Step 2a. Scan Z from zi+1 and locate a point zk on qzi.

Step 2b. If zk is an upward point then push (zi, zk) on the stack and i := k + 1



30 Point Visibility

else locate a point zj ∈ zizk by scanning Z from zk+1, push (zi, zj) on the stack

and i := j + 1.

Step 2c. If all points of Z are considered then goto Step 10 else h := i − 1 and

goto Step 2.

Step 3. If zi is a downward point on qzh (see Case 2) then

Step 3a. Let (zk, zr) denote the top element on the stack. Pop the stack until zi
is a point on zkzr. Scan Z from zi+1 and locate a point zj ∈ zkzi. Pop the

stack and push (zk, zj) on the stack.

Step 3b. If all points of Z are considered then goto Step 10 else i := j+1, h := i−1
and goto Step 2.

Step 4. If zi is an upward point on qzh (see Case 3) then

Step 4a. Scan Z from zi+1 and locate two consecutive downward points zj ∈ qzh
and zj−1 ∈ qzh. If zj and zj−1 are found then i := j and goto Step 3.

Step 4b. Partition Pa by adding segments corresponding to pairs on the stack to

Pa. Clear the stack.

Step 4c. Compute intersection points W = (w0, w1, ..., wp), where w0 = zi,

between qzi and bd(zi, ql) in the order from zi to ql and goto Step 6.

Step 5. If zi is an upward point not belonging to qzh (see Case 4) then

Step 5a. Compute intersection points W = (w0, w1, ..., wp), where w0 = zi,

between zhzi and bd(zi, ql) in the order from zi to ql.

Step 5b. Clear the stack.

Step 6. Initialize the stack by (w0, w1) and k := 2.

Step 7. If wk /∈ w0wk−1 then locate a point wj /∈ w0wk by scanning W from wk+1,

push (wk, wj) on the stack, k := j + 1 and goto Step 9

Step 8. If wk ∈ w0wk−1 then

Step 8a. Let (wj , wt) denote the top element on the stack. Pop the stack till wk

is a point on wjwt.

Step 8b. Scan W from wk+1 and locate a point wr ∈ wjwk. Pop the stack and

push (wj , wr) on the stack.

Step 9. If all points of W are not considered then goto Step 7.

Step 10. Partition Pa by adding the segments corresponding to pairs on the stack

to Pa and Stop.

The correctness of the procedure CC(Pa, qr, ql, Lr) follows from Lemmas 2.2.3,

2.2.4 and 2.2.5. After the modification of Pa by CC(Pa, qr, ql, Lr), Pa is again

modified by the procedure C(Pa, ql, qr, Ll), which gives the portion of the pruned

polygon P1 lying above the line L. Similarly, the portion of the pruned polygon P1

lying below the line L is obtained by executing the procedures C(Pb, qr, ql, Lr) and

CC(Pb, ql, qr, Ll). The union of these two portions gives P1. Since each procedure
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Figure 2.15 (a) The line L has intersected edges of P at u1, u2,..., u7. (b) A balanced binary
tree T is initialized by edges e(u1), e(u2),..., e(u7).

runs in O(n) time, the algorithm takes O(n) time. We summarize the result in the

following theorem.

Theorem 2.2.6 Given a point q inside a simple polygon P of n vertices, a sub-

polygon P1 of P containing both q and the visibility polygon of P from q can be

computed in O(n) time such that the boundary of P1 does not wind around q.

2.3 Computing Visibility of a Point in Polygons with Holes

In this section, we present the algorithm of Asano [27] for computing the visibility

polygon V (q) from a point q inside a polygon P with h holes with a total of n

vertices. We first present an O(n logn) time algorithm based on angular plane

sweep. Then we demonstrate how polygonal structures can be used to improve the

time complexity of the algorithm to O(n log h).

The algorithm starts by drawing the horizontal line L from q to the right of q

(see Figure 2.15(a)). Then it sorts the vertices of P based on their polar angles at

q. The polar angle of a vertex vj of P is the counterclockwise angle subtended by

qvj at q with L. Let θ(vj) denote the polar angle of vj . Vertices of P are labeled as

v1, v2,..., vn such that θ(vi−1) < θ(vi) < θ(vi+1) for all i (see Figure 2.15(a)).

Exercise 2.3.1 A tree with a specific node as root is called a binary tree

T if every node of T has either no child, a left child, a right child or both

a left and a right child [15]. The height of T is the number of nodes in

the longest path from the root to a leaf. Show that the maximum number

of nodes in T of height h is 2h+1 − 1.
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Figure 2.16 (a) Both edges of vi are active edges and they are deleted from T . (b) The
active edge vivk is replaced by the edge vivj in T .

Consider the intersection points of L with the edges of P (see Figure 2.15(a)).

They can be ordered by sorting such that the distance from q to the intersection

point ui in the sorted list is less that of the intersection point uj for all i < j.

Accordingly, the polygonal edges e(u1), e(u2), . . . , e(uk) are ordered from left to

right along L, where e(ui) denotes the polygonal edge containing ui. Let T denote

a balanced binary tree, where e(u1), e(u2), . . . , e(uk) are represented as nodes of T

and if e(ui) is the left (or right) child of e(uj) in T , then i < j (respectively, j < i)

(see Figure 2.15(b)). So, e(u1) and e(uk) are the leftmost and rightmost leaves of

T .

Suppose L is rotated around q in the counterclockwise direction. During the

rotation, if an edge of P is intersected by the current position of L, the edge is

called an active edge of P for that position of L. So, the list of active edges of P

changes during the rotation (or angular sweep) of L and therefore, T also changes

accordingly. Before we state the remaining steps for computing V (q), we explain

how the list of active edges of P changes during the angular sweep of L. We start

with the following observation.

Lemma 2.3.1 The list of active edges of P changes if and only if L sweeps a vertex

of P .

The above lemma suggests that T needs modification at each vertex of P during

the angular sweep. Let us consider the situation when L passes through a vertex vi.

Let vivj and vivk be two polygonal edges incident at vi. If both vj and vk lie to the

right of −→qvi (see Figure 2.16(a)), then vivj and vivk no longer remain active edges

once L crosses vi and therefore, the nodes of T containing vivj and vivk are deleted

from T . Consider the situation when vj and vk lie to the opposite side of −→qvi (see
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Figure 2.17 (a) Both edges vivk and vivj are not active edges and they are inserted in T .
(b) Since wi+1 = wi+2, no constructed edge is introduced at this vertex.

Figure 2.16(b)). Let vk be the vertex lying to the right of −→qvi. It can be seen that

vivj becomes a new active edge. On the other hand, vivk is not an active edge once

L crosses vi. So, vivk is replaced by vivj in T . If both vj and vk lie to the left of
−→qvi (see Figure 2.17(a)), then vivj and vivk become new active edges and therefore,

two nodes representing them are inserted in T .

Let us return to the description of the algorithm. After initializing T , the algo-

rithm traverses the sorted list v1, v2,..., vn starting from v1. Suppose the algorithm

has processed from v1 to vi−1 and vi is currently under consideration. It performs

one of the three operations on T for vi: Delete(T, i), Update(T, i) and Insert(T, i).

Delete(T, i) is performed if both edges of vi are active edges (see Figure 2.16(a)).

So, the nodes corresponding to the edges of vi are deleted from T . Update(T, i) is

performed when one of two edges of vi is an active edge (see Figure 2.16(b)). So, the

active edge of vi in T is replaced by the other edge of vi. Insert(T, i) is performed

if both edges of vi are not active edges (see Figure 2.17(a)). Insert(T, i) locates two

nodes in T by binary search, where one node is the parent of other node in T , such

that vi lies between the two active edges represented by these two nodes in T . Then

both edges of vi are inserted as two new nodes in T in the position of T located by

the binary search. Note that after each operation of Insert(T, i) or Delete(T, i), T

is balanced again. We have the following lemma.

Lemma 2.3.2 Any point z on a polygonal edge e(z) is visible from q if and only if

e(z) is the left most leaf of T at some stage of the angular sweep of L.

The above lemma can be used to construct V (q) as follows. Let W = (w1w2,

w3w4, . . . , wjwj+1) be the ordered set of edges of P appeared in the leftmost leaf of
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Figure 2.18 (a) The segment wi+1z is the constructed edge at wi+1. (b) The segment z′wi+2

is the constructed edge at wi+2.

T during the angular sweep of L from its initial position to the final position (see

Figure 2.17(b)). So, w1w2 is the first active edge in the leftmost leaf of T when T

is initialized, and wjwj+1 is the last active edge in the leftmost leaf of T . We have

the following observation.

Lemma 2.3.3 Two endpoints of every constructed edge of V (q) belong to two con-

secutive edges wiwi+1 and wi+2wi+3 ofW and one of the endpoints of the constructed

edge is either wi+1 or wi+2.

The above lemma can be used for computing constructed edges of V (q). Consider

any two consecutive edges wiwi+1 and wi+2wi+3. If wi+1 is same as wi+2 (see Figure

2.17(b)), then no constructed edge is introduced. Otherwise, either wi+1 or wi+2

is the vertex of the constructed edge (see Figure 2.18). If the extension of the line

segment qwi+1 from wi+1 meets wi+2wi+3 at some point (say, z), then wi+1z is the

constructed edge (see Figure 2.18(a)). Otherwise, the extension of the line segment

qwi+2 from wi+2 meets wiwi+1 at some point (say, z′). So, z′wi+2 is the constructed

edge (see Figure 2.18(b)). Thus, all constructed edges of V (q) can be computed by

considering all pairs of consecutive edges of W . In the following, we present the

major steps for computing V (q).

Step 1. Draw the horizontal line L from q to the right of q and compute the inter-

section points of L with edges of P .

Step 2. Sort the intersection points from left to right along L. Let (u1, u2, . . . , uk)

be the sorted order of intersection points along L.

Step 3. Represent edges e(u1), e(u2), . . . , e(uk) as nodes and connect them according

to the sorted order (u1, u2, . . . , uk) to form a balanced binary tree T .
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Step 4. Sort the vertices of P based on their polar angle and label them accordingly

as v1, v2,..., vn. Initialize the index i by 1.

Step 5. If both edges of vi are active edges then

Step 5a. Delete(T, i).

Step 5b. If there is a change in the leftmost leaf of T then compute the intersection

point z of −→qvi and the edge currently in the leftmost leaf of T and add viz to

the list of constructed edges.

Step 5c. Goto Step 8.

Step 6. If one edge of vi is an active edge then Update(T, i) and goto Step 8.

Step 7. If both edges of vi are not active edges then

Step 7a. Insert(T, i).

Step 7b. If there is a change in the leftmost leaf of T then compute the intersection

point z′ of −→qvi and the edge previously in the leftmost leaf of T and add z ′vi to

the list of constructed edges.

Step 8. If i 6= n then i := i+ 1 and goto Step 5.

Step 9. Output V (q) and Stop.

The correctness of the algorithm follows from Lemmas 2.3.1, 2.3.2 and 2.3.3. Let

us now analyze the time complexity of the algorithm. Intersection points of the

edges of P with L in Step 1 can be computed in O(n) time. Sorting of intersection

points based on their distance to q in Step 2 takes O(n logn) time. Step 3 takes

O(n) time to initialize T . Step 4 takes O(n logn) time to sort the vertices of P

according to their polar angles. Since the height of T is O(logn), one operation of

Insert(T, i) or Delete(T, i) can be done in O(logn) time [15]. Therefore, the total

time taken for these two operations is O(n logn) as there can be at most n such

operations. Since one operation of Update(T, i) takes O(1) time, total time for this

operation is O(n). All constructed edges in V (q) can be computed in O(n) time as

each constructed edge can be computed in O(1) time. Therefore, Steps 5, 6 and 7

together take O(n logn) time. Hence, the overall time complexity of the algorithm

is O(n logn). We summarize the result in the following theorem.

Theorem 2.3.4 The visibility polygon V (q) of a point q in a polygon P with holes

with a total of n vertices can be computed in O(n logn) time.

We modify the above algorithm to derive an O(n log h) time algorithm for com-

puting V (q). Let H1, H2,..., Hh be the holes inside P . For every hole Hi, compute

the boundary of Hi that is externally visible from q (denoted as BV (Hi, q)) by the

algorithm of Lee stated in Section 2.2. So, the line segment joining q and any point

z of BV (Hi, q) is not intersected by any edge of Hi as the vertices of BV (Hi, q) are

in the sorted angular order with respect to q. Since all holes of P except Hi are
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ignored while computing BV (Hi, q), qz may be intersected by an edge of some other

hole Hj for i 6= j.

We know that the boundary of P consists of boundaries of H1, H2,..., Hh and the

outer boundary of P enclosing all holes. So the algorithm also computes the portion

of the outer boundary of P internally visible from q ignoring all holes. Since this

visible boundary is like the visible boundary of any other hole, we can consider that

P has h + 1 holes. However, for simplicity of notation, we assume that no point

of the outer boundary of P belongs to V (q) and therefore, it is enough to consider

holes H1, H2,..., Hh for computing V (q). We have the following observation on

BV (Hi, q).

Lemma 2.3.5 Let z be a point on the boundary of Hi for some i. If z belongs to

the boundary of V (q), then z ∈ BV (Hi, q).

The above lemma suggests that in order to compute V (q), it is sufficient to con-

sider BV (Hi, q) for all i. This property can be used to design an O(n log h) time

algorithm for computing V (q) as follows. The algorithm starts by drawing the hor-

izontal line L from q to the right of q and locates the edges of BV (Hi, q) for all i

that are intersected by L. Ordering these intersected edges from left to right along

L takes O(h log h) time as L can intersect only one edge of BV (Hi, q) for every i.

These edges are represented as nodes of a balanced binary tree T as described in

the earlier algorithm and it can be done in O(h) time. Observe that L intersects

only one edge of BV (Hi, q) not only for the initial position of L but also for any

position of L during the angular sweep, which suggests the following lemma.

Lemma 2.3.6 The number of nodes in T is at most h during the angular sweep of

L.

Corollary 2.3.7 Each Delete(T, i) or Insert(T, i) operation takes O(log h) time.

Let S denote the list of union of vertices of BV (H1, q), BV (H2, q), . . . , BV (Hh, q)

in the sorted angular order around q in the counterclockwise direction. Since S

can have O(n) vertices, direct sorting takes O(n logn) time. To keep the time

complexity of the algorithm bounded by O(n log h), we need a different approach

for constructing S. Let Si denote the list of vertices of BV (Hi, q) in clockwise order.

So, the first vertex and the last vertex of Si make the minimum and maximum polar

angles at q, respectively, among the vertices of Si. We show that S can be obtained

by merging S1, S2, . . . , Sh in O(n log h) time using a heap [15].

Initially, the heap contains all vertices of active edges in T that are above L. These

vertices are placed in the heap based on their polar angles at q. So, the root of the

heap contains the vertex (say w) whose polar angle at q is the smallest in the heap

(see Figure 2.19). The heap is used to find the next vertex in S. After initializing
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Figure 2.19 (a) The first vertex u in S ′ is v1. (b) The vertex w in the root of the heap is v1.

the heap, the algorithm takes only the first and last vertices from every Si and sorts

these 2h vertices according to their polar angles at q in O(h log h) time. Let us

denote this sorted list by S ′. Let u denote the first vertex in S ′. If θ(u) < θ(w) (see

Figure 2.19(a)), then u is the first vertex v1 in S. Let u belong to Sk for some k. So

the next vertex of u in Sk is added to the heap. The new vertex in the root of the

heap becomes the current w and the next vertex of u in S ′ becomes the current u. If

θ(u) > θ(w) (see Figure 2.19(b)), then w is the first vertex v1 in S and w is removed

from the heap. Then the new vertex currently in the root of the heap becomes w.

The process is repeated till the entire S is constructed. Since there can be at most

h vertices in the heap, it takes O(log h) time to find the vertex whose polar angle at

q is the smallest in the heap. Therefore, S can be constructed in O(n log h) time.

After S is constructed, the algorithm performs the angular sweep of L and per-

forms one of the three operations Delete(T, i), Update(T, i) and Insert(T, i) on T at

each vertex of S as in the the earlier algorithm. However, there is a small difference.

Delete(T, i) removes one edge from T instead of two edges. The same is true for

Insert(T, i). Then the algorithm constructs V (q) from the active edges that appear

in the leftmost leaf of T as before.

The above method constructs V (q) correctly if there is no intersection between

a constructed edge of BV (Hk, q) with an edge of a hole Hp for p 6= k. If such

an intersection takes place (see Figure 2.19), ordering of the active edges along L

changes at the place of intersection. The correct order of active edges along L can

be represented in T by modifying the operation Update(T, i) as follows. Suppose

Update(T, i) is to be performed at some vertex vi to replace the active edge of vi
by the other edge of vi (say, vivj) which is a constructed edge of BV (Hk, q) for

some k (see Figure 2.19). Without loss of generality, we assume that vj is the next

clockwise vertex of vi in Sk. Note that one of vi and vj is actually a point on the
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Figure 2.20 (a) The shaded region is the interior half-plane of vi−1vi. (b) The common
intersection region K1 of the interior half-planes of vnv1 and v1v2.

boundary of Hk and the point is treated as a vertex in S. Instead of replacing

one edge of vi by the other edge, the operation Update(T, i) performs Delete(T, i)

and Insert(T, j) operations. Thus, the ordering of active edges along L is correctly

maintained without increasing the overall time complexity of the algorithm. We

summarize the result in the following theorem.

Theorem 2.3.8 The visibility polygon V (q) of a point q in a polygon P with h holes

with a total of n vertices can be computed in O(n log h) time.

Corollary 2.3.9 The visibility polygon of a point in a convex polygon P with h

convex holes with a total of n vertices can be computed in O(n+ h log h) time.

2.4 Recognizing Simple Polygons Visible from a Point

In this section, we present the algorithm of Lee and Preparata [234] for computing

the kernel of a simple polygon P of n vertices in O(n) time. If the kernel of P is not

empty, then P is the visibility polygon of P from any point of the kernel. We assume

that the vertices of P are labeled v1, v2, . . . , vn in counterclockwise order, where v1 is

a reflex vertex. We also assume that the given polygon P is a non-winding polygon

(i.e., the revolution number of P is one) as the kernel of a winding polygon is always

empty.

Suppose an edge vi−1vi of P is extended from both ends and this line vi−1vi
divides the plane into half-planes (see Figure 2.20(a)). The half-plane that lies to

the left (or right) of −−−→vi−1vi is called the interior half-plane (respectively, exterior

half-plane) of vi−1vi. It can be seen that the interior half-plane of vi−1vi is same as

the exterior half-plane of vivi−1. We have the following lemma.
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Lemma 2.4.1 The kernel of P is the intersection of the interior half-planes of v1v2,

v2v3,..., vnv1.

Exercise 2.4.1 Prove Lemma 2.4.1.

The above characterization immediately suggests an algorithm for computing the

kernel of P in O(n2) time. Using the divide and conquer, the time complexity can

be improved to O(n logn) [291].

Exercise 2.4.2 Let Q1 and Q2 be two convex polygons (without holes)

with a total of m vertices. Design an algorithm for computing the common

intersection region of Q1 and Q2 in O(m) time [291].

Exercise 2.4.3 Using Exercise 2.4.2, design an O(n logn) time algorithm

for computing the common intersection region of n arbitrary half-planes

by divide and conquer [291].

The algorithm of Lee and Preparata incrementally constructs the kernel of P in

O(n) time taking advantage of the structure of a polygon as follows. The algorithm

starts by constructing the common intersection region K1 of the interior half-planes

of vnv1 and v1v2 (see Figure 2.20(b)). Then it constructs two tangents from v1 to

K1, which are two rays from v1, one in the direction of −−→vnv1 and the other in the

direction of −−→v2v1. Note that the two tangents are rays as K1 is unbounded. Next,

it constructs K2 by computing the intersection of K1 with the interior half-plane

of v2v3. While computing K2, tangents from v2 to K2 are also located. Then, it

constructs K3 by computing the intersection of K2 with the interior half-plane of

v3v4 and so on till Kn−1 is computed, which is the kernel of P by Lemma 2.4.1. It

can be seen that K1, K2, . . . ,Kn−1 are convex. We now describe the method for

computing K1, K2, . . . ,Kn−1.

Assume that the algorithm has computed Ki−1 by computing the intersection of

interior half-planes of vnv1, v1v2, . . . , vi−1vi. In the next stage, Ki is computed from

the intersection of Ki−1 and the interior half-plane of vivi+1. We also assume that

two tangents from vi to Ki−1 have been computed. Let vili and viri denote the left

and right tangents from vi to Ki−1 (see Figure 2.21), where li and ri are two corner

points of Ki−1 such that no point of Ki−1 lies to the left of
−→
vili and to the right of

−−→viri. The following cases can arise depending upon the positions of li and ri with

respect to vivi+1.

Case 1. Both points li and ri lie to the right of −−−→vivi+1 (see Figure 2.21(a)).

Case 2. Both points li and ri lie to the left of −−−→vivi+1 (see Figure 2.21(b)).

Case 3. Points li and ri lie on the opposite sides of −−−→vivi+1 (see Figure 2.22).
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Figure 2.21 (a) The entire region Ki−1 lies in the exterior half-plane of vivi+1. (b) The
entire region Ki−1 lies in the interior half-plane of vivi+1.

Consider Case 1. Since both points li and ri lie to the right of −−−→vivi+1, the entire

Ki−1 lies in the exterior half-plane of vivi+1 (see Figure 2.21(a)). Hence, P is not a

star-shaped polygon as the kernel of P is empty.

Consider Case 2. Since both points li and ri lie to the left of −−−→vivi+1, the entire

Ki−1 lies in the interior half-plane of vivi+1 (see Figure 2.21(b)). So, Ki = Ki−1.

Scan the boundary of Ki−1 from li in counterclockwise order till a corner point u is

reached such that no point of Ki lies to the left of −−−→vi+1u. Hence, vi+1u is the left

tangent from vi+1 to Ki and li+1 is u. Similarly, scan the boundary of Ki−1 from ri
in counterclockwise order till a corner point w is reached such no point of Ki lies to

the right of −−−→vi+1w. Hence, vi+1w is the right tangent from vi+1 to Ki and ri+1 is w.

Consider Case 3. Since li and ri lie to the opposite sides of −−−→vivi+1, the line vivi+1

intersects Ki−1 (see Figure 2.22). So, a part of Ki−1 has to be removed to obtain

Ki. Let z and z′ be the intersection points of vivi+1 with the boundary of Ki−1,

where z ∈ z′vi. The following observations help in computing z and z ′.

Lemma 2.4.2 Assume that vivi+1 has intersected Ki−1. If vi is a reflex vertex,

li and ri lie in the exterior and interior half-planes of vivi+1, respectively (Figure

2.22(a)).

Lemma 2.4.3 Assume that vivi+1 has intersected Ki−1. If vi is a convex vertex,

ri and li lie in the exterior and interior half-planes of vivi+1, respectively (Figure

2.22(b)).

The above lemmas suggest a simple way to compute z and z ′ by traversing the

boundary of Ki−1 as follows. Consider the situation when vi is a reflex vertex

(see Figure 2.22(a)). Scan the boundary of Ki−1 from li in counterclockwise (or
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Figure 2.22 (a) Since vi is a reflex vertex, the part of Ki−1 containing li is removed. (b)
Since vi is a convex vertex, the part of Ki−1 containing ri is removed.

clockwise) order to locate the intersection point z (respectively, z ′). Partition Ki−1

using the segment zz′. By Lemma 2.4.2, the portion of Ki−1 containing li does not

belong to Ki. Therefore, the other part (which contains ri) is Ki. Observe that

z is li+1. The right tangent vi+1ri+1 can be located by scanning the boundary of

Ki from ri in counterclockwise order as stated earlier. Consider the situation when

vi is a convex vertex (Figure 2.22(b)). Again, scan the boundary of Ki−1 from ri
in clockwise (respectively, counterclockwise) order to locate the intersection point

z (respectively, z′). Note that z or z′ may lie on the edge vivi+1 as vi is convex.

Partition Ki−1 using the segment zz′ and by Lemma 2.4.3, the portion of Ki−1

containing ri is removed to obtain Ki. Observe that z is ri+1. The left tangent

vi+1li+1 can be located by scanning the boundary of Ki from li in counterclockwise

order as stated earlier. In the following, we present the major steps for computing

the kernel of P .

Step 1. Compute the intersection of the interior half-planes of vnv1 and v1v2 and

assign it to K1. Take a point z on −−→v1v2 lying outside the convex hull of P and

assign z to l2. Take a point z′ on −−→vnv1 lying outside the convex hull of P and

assign z′ to r2. Initialize the index i by 2.

Step 2. If both li and ri lie to the right of −−−→vivi+1 (Figure 2.21(a)) then report that

the kernel of P is empty and Stop.

Step 3. If both li and ri lie to the left of −−−→vivi+1 then (Figure 2.21(b))

Step 3a. Assign Ki−1 to Ki.

Step 3b. Locate the left tangent vi+1li+1 by scanning the boundary of Ki from li
in counterclockwise order.
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Step 3c. Locate the right tangent vi+1ri+1 by scanning the boundary of Ki from

ri in counterclockwise order and goto Step 8.

Step 4. If vi is a reflex vertex then (Figure 2.22(a))

Step 4a. Locate the points of intersection z and z ′ of −−−→vi+1vi and the boundary

of Ki−1 by scanning the boundary of Ki−1 from li in counterclockwise and

clockwise order, respectively.

Step 4b. Partition Ki−1 by zz′ and assign the portion of Ki−1 containing ri to

Ki. Assign z to li+1.

Step 4c. Locate the right tangent vi+1ri+1 by scanning the boundary of Ki from

ri in counterclockwise order and goto Step 8.

Step 5. Locate the points of intersection z and z ′ of −−−→vivi+1 and the boundary of Ki−1

by scanning the boundary of Ki−1 from ri in clockwise and counterclockwise order,

respectively (see Figure 2.22(b)).

Step 6. Partition Ki−1 by zz′ and assign the portion of Ki−1 containing li to Ki.

Assign z′ to ri+1.

Step 7. Locate the left tangent vi+1li+1 by scanning the boundary of Ki from li in

counterclockwise order.

Step 8. If i 6= n− 1 then i := i+ 1 and goto Step 2.

Step 9. Report Kn−1 as the kernel of P and Stop.

Let us discuss the correctness of the algorithm. For computing Ki from Ki−1, the

algorithm checks whether vivi+1 intersects Ki−1. If there is no intersection, Ki−1

lies entirely in the interior or exterior half-plane of vivi+1. If the entire Ki−1 lies

in the exterior half-plane of vivi+1 (see Figure 2.21(a)), the common intersection

region of interior half-planes becomes empty and therefore, P is not a star-shaped

polygon by Lemma 2.4.1. So, the algorithm terminates in Step 2. If the entire Ki−1

lies in the interior half-plane of vivi+1 (see Figure 2.21(b)), the common intersection

region of half-planes is same as Ki−1. So, Ki−1 is assigned to Ki in Step 3. If vivi+1

intersects Ki−1 (Figure 2.22), one part of Ki−1 is the common intersection region of

interior half-planes. The algorithm uses Lemmas 2.4.2 and 2.4.3 in Steps 4 and 6 to

decide which part of Ki−1 is the common intersection region of interior half-planes,

and Ki is assigned accordingly. Thus the algorithm correctly computes Kn−1 which

is the kernel of P by Lemma 2.4.1.

The overall time complexity of the algorithm consists of (i) the time for computing

K1, K2, . . . ,Kn−1, and (ii) the time for locating the left and right tangents for all

vertices. It can be seen that two corner points can be introduced in the common

intersection region by a half-plane and therefore, the total number of corner points

that can be introduced is at most 2n. Since the cost for computing Ki from Ki−1

for all i is proportional to the number of corner points removed from Ki−1, the time

taken for computing K1, K2, . . . ,Kn−1 is O(n). The time for locating the left and
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right tangents for all vertices is O(n), as the tangents move around the common

intersection region of interior half-planes once in counterclockwise order. Hence, the

overall time complexity of the algorithm is O(n). We summarize the result in the

following theorem.

Theorem 2.4.4 The kernel of an n-sided simple polygon P can be computed in

O(n) time.

Corollary 2.4.5 Recognizing an n-sided simple polygon P visible from an internal

point can be done in O(n) time.

2.5 Notes and Comments

Let us consider the parallel algorithms for point visibility problems investigated

in this chapter. Computing the visibility polygon from a point in a polygon P

with holes was first considered by Atallah and Goodrich [38]. Their algorithm

runs in O(log n log log n) time using O(n) processors in the CREW-PRAM model

of computations. Using the cascading divide and conquer technique, Atallah et

al. [37] showed that the visibility polygon of P from a point can be computed in

O(logn) time using O(n) processors in the CREW-PRAM model of computations.

Independently, Bertolazzi et al. [45] gave another algorithm for this problem which

also runs in O(logn) time using O(n) processors in the CREW-PRAM model of

computations.

Although the above algorithms also work for polygons without holes, Atallah and

Chen [32] showed that a faster algorithm is possible for this problem if the given

polygon P is simple. They showed that the visibility polygon of P from a point can

be computed in O(logn) time using O(n/ logn) processors in the CREW-PRAM

model of computations. Finally, Atallah et al. [36] gave an optimal algorithm

for this problem which runs in O(log n) time using O(n/ logn) processors in the

EREW-PRAM model of computations. Their algorithm starts by partitioning the

boundary of P into chains. For each chain, it computes the portion of the chain

whose vertices are in sorted angular order with respect to the given point. Then

these chains are tested for intersections among themselves by exploiting polygonal

properties. Finally, appropriate portions of these chains between intersection points

are combined to form the visible boundary of P . If P is a star-shaped polygon,

the visible boundary of P can be computed by a simple algorithm of Ghosh and

Maheshwari [160], which also runs in O(logn) time using O(n/ logn) processors in

the EREW-PRAM model of computations.

Consider the problem of computing the kernel of a simple polygon P . We know

that the sequential algorithm of Lee and Preparata [234] incrementally constructs

the kernel of P . This means that their method does not directly lead to a parallel
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algorithm. Using a different approach, Chen [81] showed that the kernel of P can

be computed in O(logn) time using O(n/ logn) processors in the EREW-PRAM

model of computations.

Let us mention results on the problems of visibility with reflections. Let q be a

point light source inside a simple polygon P . Let z ∈ P be a point such that z is

not visible from q directly. If light rays from q are allowed to reflect on edges of P ,

z can become visible from q. This means that certain portions of P , which are not

visible directly from q, may become visible due to one or more reflections on the

edges of P . Observe that since rays after reflection may intersect each other, the

boundary of visible portions of P may contain several intersection points of these

rays.

There are two types of reflection. Reflection at a point is called specular reflection

if the reflected ray follows the standard law of reflection; i.e., the angle of incidence

is same as the angle of reflection. If reflecting edges are not perfect, another type of

reflection called diffuse reflection can take place, where a light ray that is incident at

a point is reflected in all possible directions toward the interior of P . Aronov et al.

[25] studied the size of the visibility polygon for one specular or diffuse reflection.

Corresponding problems for multiple specular or diffuse reflections were studied by

Aronov et al. [24], Prasad et al. [289] and Pal et al. [281].

Exercise 2.5.1 Draw a simple polygon P where there exists two points

u and v in P such that if a light source is placed at u, no light ray from

u reaches v by specular reflections on edges of P [328].

Let us consider the visibility-based, pursuit-evasion problem in a polygon P . A

point pursuer is assigned a task of locating moving evaders that are present in P .

The evaders are also assumed to be points and are allowed to move in P continuously

with unbounded speed. To solve the problem, the pursuer must move in P in such

a way that every evader becomes visible to the pursuer eventually. This problem

was first considered by Suzuki and Yamashita [323]. They gave algorithms for

the movement of the pursuer in special classes of polygons having omni-directional

visibility or flashlights. Guibas et al. [180] gave a complete solution for this problem

for the case of omni-directional visibility. The variations of this problem in different

types of polygons with one or more pursuers having omni-directional visibility or

a given number of flashlights have been studied by Crass et al. [98], Lee et al.

[236, 237], Park et al. [282], LaValle et al. [228], Suzuki et al. [322], Suzuki et al.

[324] and Yamashita et al. [344]. For related problems, see LaValle [227] and Zhang

[347].
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Exercise 2.5.2 Let Q be a set of m points inside a simple polygon P of

n vertices. Design an algorithm for locating a point z ∈ P (if it exists)

in O((n+m) log(n+m)) time such that all points of Q are visible from

z in P [153].

Exercise 2.5.3 Let S be a subset of vertices of a polygon P with or

without holes. Design a polynomial time algorithm to test whether every

internal point of P is visible from some vertex of S [152].



3

Weak Visibility and Shortest Paths

3.1 Problems and Results

The notion of weak visibility of a polygon from a segment was introduced by Avis

and Toussaint [42] in the context of the art gallery problem. They considered a

variation of the problem when there is only one guard and the guard is permitted

to move along an edge of the polygon. They defined visibility from an edge vivi+1

in a simple polygon P in three different ways.

(i) P is said to be completely visible from vivi+1 if every point z ∈ P and any

point w ∈ vivi+1, w and z are visible (Figure 3.1(a)).

(ii) P is said to be strongly visible from vivi+1 if there exists a point w ∈ vivi+1

such that for every point z ∈ P , w and z are visible (Figure 3.1(b)).

(iii) P is said to be weakly visible from vivi+1 if each point z ∈ P , there exists

a point w ∈ vivi+1 (depending on z) such that w and z are visible (Figure

3.1(c)).

Figure 3.1 The polygon P is (a) completely, (b) strongly and (c) weakly visible from the
edge vivi+1.

46
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Figure 3.2 The (a) complete and (b) weak visibility polygons of P from the edge vivi+1.

If P is completely visible from vivi+1, the guard can be positioned at any point

w on vivi+1. In other words, P and the visibility polygon V (w) of P from any

point w ∈ vivi+1 are same. If P is strongly visible from vivi+1, there exists at least

one point w on vivi+1 from which the guard can see the entire P , i.e., P = V (w).

Finally, if P is weakly visible from vivi+1, it is necessary for the guard to patrol

along vivi+1 in order to see the entire P .

Exercise 3.1.1 Determine in O(n) time whether a simple polygon P is

completely or strongly visible from a given edge vjvj+1 of P [42].

The above definitions for weak visibility also hold if P is a polygon with holes.

It can be seen that there is no polygon with holes which is completely or strongly

visible from an edge. However, the complete visibility polygon of P with or without

holes can be defined as follows. A point z ∈ P is called completely visible from

an edge vivi+1 if it is visible to every point of vivi+1. The set of all points of P

completely visible from vivi+1 is called the complete visibility polygon of P from

vivi+1 (see Figure 3.2(a)). Similarly, a point z ∈ P is said to be weakly visible from

an edge vivi+1 if it is visible to some point of vivi+1. The set of all points of P

weakly visible from vivi+1 is called the weak visibility polygon of P from vivi+1 (see

Figure 3.2(b)). A more general notion of complete and weak visibility polygons

allows visibility of P from an internal segment pq, not necessary an edge (see Figure

3.3).

Let us consider the problem of computing the complete visibility polygon from

an internal segment pq in a polygon P with or without holes (see Figure 3.3(a)).

Consider any point z ∈ P that is visible from both endpoints p and q. If P is a
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Figure 3.3 The (a) complete and (b) weak visibility polygons of P from an internal segment
pq.

simple polygon, then z is completely visible from pq. If P contains holes, then the

region enclosed by segments pq, qz and zp may contain a hole. In that case z may

not be completely visible from pq. The following lemma suggests a way to compute

the complete visibility polygon from pq inside P .

Lemma 3.1.1 The complete visibility polygon from a line pq in a polygon P with or

without holes is the visibility polygon from q inside the visibility polygon of P from

p.

The above lemma suggests first to compute V (p) inside P which can be done in

O(n logn) time if P has holes (see Section 2.3) and in O(n) time if P is a simple

polygon (see Section 2.2). Then the visibility polygon from q inside V (p) can be

computed in O(n) time to obtain the complete visibility polygon from pq inside P .

On the other hand, it is not a straightforward task to compute the weak visibility

polygon of a segment pq in a polygon P with or without holes (see Figure 3.3(b)).

If P is a polygon without holes, ElGindy [127], Lee and Lin [232], and Chazelle

and Guibas [76] gave O(n logn) time algorithms for this problem. Guibas et al.

[178] showed that this problem can be solved in O(n) time if a triangulation of P

is given along with P . Since P can be triangulated in O(n) time by the algorithm

of Chazelle [71] (see Theorem 1.4.6), the algorithm of Guibas et al. [178] runs in

O(n) time. In Section 3.3.1, we present the algorithm of Lee and Lin [232] which

computes the weak visibility polygon by scanning the boundary of P . We present

the algorithm of Guibas et al. [178] in Section 3.3.2.
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The relation between weak visibility polygons and Euclidean shortest paths was

first observed by Guibas et al. [178] and Toussaint [330]. Their characterization was

in terms of Euclidean shortest paths from p and q to every vertex of a weak visibility

polygon, which was later used by them in computing the weak visibility polygon

from pq. Ghosh et al. [163] generalized this characterization for any two vertices

of a weak visibility polygon, which helped in recognizing weak visibility polygons.

It has been shown by Icking and Klein [200], Das et al. [100] and Bhattacharya

and Mukhopadhyay [50] that weak visibility polygons can also be characterized in

terms of non-redundant components. In the next section (i.e., Section 3.2), we state

these characterizations of weak visibility polygons along with some properties of

Euclidean shortest paths.

The union of Euclidean shortest paths from a vertex to all vertices of a simple poly-

gon is called the shortest path tree (see Figure 3.24(a)). The shortest path tree has

been used extensively as a tool in computational geometry for computing visibility

in a polygon. Guibas et al. [178] presented an O(n) time algorithm for computing

the shortest path tree in a triangulated simple polygon, which they also used in

computing weak visibility polygon from a segment. We present their algorithm in

Section 3.6.1 for computing the shortest path tree.

For computing the weak visibility polygon from a line segment in a polygon with

holes, Suri and O’Rourke [321] presented an O(n4) time algorithm. The algorithm

is worst-case optimal as there are polygons with holes whose weak visibility poly-

gon from a given segment can have O(n4) vertices. In Section 3.4, we present the

algorithm of Suri and O’Rourke [321].

In the paper introducing weak and complete visibility, Avis and Toussaint [42]

gave an O(n) time algorithm for recognizing a given simple polygon P that is weakly

visible from a given edge vivi+1 (see Figure 3.1(c)). Applying this algorithm to each

edge of P , it can be tested in O(n2) time whether P is weakly visible from any edge of

P . Sack and Suri [300] and Shin and Woo [311] improved this result by giving O(n)

time algorithms for determining whether P is weakly visible from an edge. Chen

[83] presented an O(n) time algorithm for computing the shortest sub-segment of

an edge of P from which P is weakly visible.

Exercise 3.1.2 Let uw be an edge of a simple polygon P of n vertices.

Design an O(n) time algorithm for testing whether P is weakly from the

edge uw [42].

Any line segment connecting two boundary points of P and lying inside P is called

a chord of P . The general recognition problem is to construct a chord st (if it exists)

inside a given simple polygon P such that P is weakly visible from st (see Figure

3.4(a)). The chord st is called a visibility chord. Ghosh et al. [163] gave an algorithm

for this problem and their algorithm runs in O(E) time, where E is the number of
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Figure 3.4 (a) The polygon P is weakly visible from the chord st but P is not weakly visible
from any edge. (b) A weakly externally visible polygon P .

edges in the visibility graph of P . We present their algorithm in Section 3.5.1.

For this problem, Doh and Chwa [114] and Kim et al. [215] presented O(n logn)

time algorithms. For the same problem, Das et al. [100] and Bhattacharya and

Mukhopadhyay [50] presented O(n) time algorithms. The algorithm of Das et al.

[100] can also report all visibility chords. Das and Narasimhan [103] presented an

O(n) time algorithm for computing the shortest segment from which P is weakly

visible. In Section 3.5.2, we present the recognition algorithm given by Bhattacharya

et al. [47], which is the combined results of Bhattacharya and Mukhopadhyay [50]

and Das and Narasimhan [103].

Suppose a simple polygon P is given and the problem is to compute the shortest

path tree from a vertex in P , if P has a visibility chord. It has been shown by

Ghosh et al. [162] that the shortest path tree can be computed in P from any

vertex in O(n) time without the prior knowledge of any visibility chord. If the

algorithm terminates without computing the shortest path tree, then P does not

have a visibility chord. If the algorithm computes the shortest path tree, P may

have a visibility chord. The algorithm computes the shortest path tree by scanning

the boundary of P and it does not require a triangulation of P as a preprocessing

step. In fact, a triangulation of P can be constructed once the shortest path has

been computed. This algorithm has been used as a preprocessing step in recognizing

weak visibility polygons in the algorithms of Ghosh et al. [163] and Bhattacharya

and Mukhopadhyay [50]. We present the algorithm of Ghosh et al. [162] in Section

3.6.2.

Avis and Toussaint [42] first considered external visibility of a simple polygon P .

A point z on the boundary of P is said to be externally visible from another point

z′ /∈ P if the line segment zz′ does not intersect the interior of P . If every point



3.2 Characterizing Weak Visibility 51

Figure 3.5 The Euclidean shortest path between s and t (a) in a simple polygon P and (b)
in a polygon P with holes.

on the boundary of P is visible from some point outside the convex hull of P , P

is called a weakly externally visible polygon (see Figure 3.4(b)). Let c1, c2, . . . , ck
be the vertices of the convex hull of P in counterclockwise order. Note that the

convex hull of P can be computed in O(n) time by the algorithm of Graham and

Yao [175]. Using the algorithm of Avis and Toussaint [42], it can be tested whether

the counterclockwise boundary of P from ci to ci+1 is weakly visible from the convex

hull edge cici+1 for all i. Thus, the external weak visibility of P can be determined

in O(n) time. A variation of this problem is to compute the shortest line segment

for which the given simple polygon is weakly externally visible. This problem was

solved in O(n) time by Bhattacharya and Toussaint [54] when P is a convex polygon.

Later, they extended this result along with Mukhopadhyay [52, 53] for arbitrary

simple polygons. In Section 3.7, we present the algorithm of Bhattacharya et al.

[53].

3.2 Characterizing Weak Visibility

We start this section with some properties of Euclidean shortest paths in a polygon

P with and without holes. The Euclidean shortest path between two points s and

t in P (denoted as SP (s, t)) is the path connecting s and t such that (i) the entire

path lies totally inside P , and (ii) the length of the path is smaller than that of any

path connecting s and t (see Figure 3.5). Observe that s and t can be connected

by several paths inside P . In the following lemmas, we prove a few properties of

SP (s, t); some of these properties have been observed by Lozano-Perez and Wesley

[249], Lee and Preparata [235] and Chein and Steinberg [79].
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Lemma 3.2.1 SP (s, t) is a simple path in P .

Proof. If SP (s, t) intersects itself at some point u, by removing the sub-path from u

to itself (i.e., the loop at u) a shorter path can be obtained, which is a contradiction.

Lemma 3.2.2 Let SP (s, t) = (s, ..., u, ..., v, ..., t). Then, SP (u, t) and SP (s, v) pass

through v and u respectively.

Proof. If SP (u, t) does not pass through v, then there exists a shorter path

between s and t consisting of SP (s, u) and SP (u, t) contradicting the assumption

that SP (s, t) is the shortest path. Analogous argument shows that SP (s, v) passes

through u.

Lemma 3.2.3 SP (s, t) turns only at vertices of P .

Proof. Assume that SP (s, t) has turned at some point u where u is not a vertex of

P . Consider two points v and w on SP (s, t) such that (i) they are arbitrary close

to u, (ii) v is on SP (s, u), and (iii) w is on SP (u, t). If the segment vw does not lie

inside P for any choice of v and w, then u is a vertex of P which contradicts the

assumption that u is not a vertex of P . So, we assume that the segment vw lies

inside P . By triangle inequality the length of vw is less than the sum of the length

of SP (v, u) and SP (u,w). So, there exists a shorter path between s and t consisting

of SP (s, v), vw and SP (w, t). Hence, if SP (s, t) has turned at some point u, then

u must be a vertex of P .

Corollary 3.2.4 The angle facing the exterior of the polygon at every vertex of P

on SP (s, t) is convex (called outward convex).

Lemma 3.2.5 If P does not contain a hole, then SP (s, t) is a unique path in P .

Proof. Assume that there are two paths between s and t inside P having the

minimum length. Since both paths are shortest paths between s and t, they satisfy

Lemmas 3.2.1 and 3.2.3. Without loss of generality, assume that both paths meet

only at s and t. Since both paths lie inside P and P does not contains holes, the two

paths form a simple polygon P ′. Let m denote the number of vertices of P ′. From

Corollary 3.2.4, the internal angle at each vertex of P ′ is reflex except at s and t.

Therefore, the sum of the internal angles of P ′ is more than (m−2)π, contradicting

the fact that the sum of internal angles of a simple polygon of m vertices is (m−2)π.
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Corollary 3.2.6 If P contains holes and there exists two paths between s and t

having minimum length, then the region enclosed by these two paths must contain a

hole.

Let us state the relation in a simple polygon P between Euclidean shortest paths

between vertices of P and weak visibility polygons from edges of P as observed

by Guibas et al. [178] and Toussaint [330]. We assume that the vertices of P are

labeled v1, v2, . . . , vn in counterclockwise order. An edge vkvk+1 of P is called a

convex edge if both vk and vk+1 are convex vertices. As before, bd(vi, vj) denote

the counterclockwise boundary of P from a vertex vi to another vertex vj . In the

following lemma, we state the relationship.

Lemma 3.2.7 Let vkvk+1 be a convex edge of a simple polygon P . A vertex vi of

P is visible from some point of vkvk+1 if and only if SP (vk, vi) makes a left turn at

every vertex in the path and SP (vk+1, vi) makes a right turn at every vertex in the

path.

Proof. If vi is visible from a point u on vkvk+1 (see Figure 3.6(a)), then SP (vk, vi)

cannot intersect the segment uvi. So all vertices in SP (vk, vi) must belong to

bd(vi, vk). Therefore, SP (vk, vi) can only make a left turn at every vertex in the

path. Analogously, SP (vk+1, vi) makes a right turn at every vertex in the path. Now

we prove the converse. Let vp and vq denote the next vertex of vi in SP (vk, vi) and

SP (vk+1, vi), respectively (see Figure 3.6(a)). Since SP (vk, vi) makes a left turn at

every vertex in the path, vk lies to the right of −−→vivp. Analogously, since SP (vk+1, vi)

makes a right turn at every vertex in the path, vk+1 lies to the left of −−−−→vivk+1. So, vk
and vk+1 lie on opposite sides of the wedge formed by rays −−→vivp and −−→vivq. Therefore,
the wedge intersects vkvk+1. Hence vi is visible from any point of vkvk+1 lying in

the wedge.

Corollary 3.2.8 If a vertex vi of P is visible from some point of a convex edge

vkvk+1, then SP (vk, vi) and SP (vk+1, vi) are two disjoint paths and they meet only

at vi.

Corollary 3.2.9 If a vertex vi of P is visible from some point of a convex edge

vkvk+1, then the region enclosed by SP (vk, vi), SP (vk+1, vi) and vkvk+1 (called fun-

nel) is totally contained inside P .

Exercise 3.2.1 Draw a simple polygon showing that Lemma 3.2.7 does

not hold if vk or vk+1 is a reflex vertex.

It can be seen that the properties in Lemma 3.2.7 are of the shortest paths from

the vertices vk and vk+1 to one other vertex vi of P. The shortest path between any
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Figure 3.6 (a) The wedge formed by two rays intersects vkvk+1. (b) All vertices of SP (vi, vj)
belong to bd(vi, vj).

two vertices vi and vj of P also satisfy certain properties as shown by Ghosh et al.

[163]. We state these properties in the following lemmas.

Lemma 3.2.10 Assume that P is weakly visible from a convex edge vkvk+1. Let

vi and vj be two vertices of P such that vkvk+1 belongs to bd(vj , vi). All vertices of

SP (vi, vj) belong to bd(vi, vj).

Proof. Since vi is visible from some point zi of vkvk+1 (see Figure 3.6(b)), SP (vi, vj)

does not intersect the segment vizi and therefore, SP (vi, vj) cannot pass through

any vertex of bd(vk+1, vi). Again, since vj is visible from some point zj of vkvk+1

(see Figure 3.6(b)), SP (vi, vj) does not intersect the segment vizj and therefore,

SP (vi, vj) cannot pass through any vertex of bd(vj , vk). Hence SP (vi, vj) passes

only through vertices of bd(vi, vj).

Lemma 3.2.11 Let vkvk+1 be a convex edge of P . Let vi and vj be two vertices

of P such that vkvk+1 belongs to bd(vj , vi). If all vertices of SP (vi, vj) belong to

bd(vi, vj), then SP (vi, vj) makes a right turn at every vertex in the path.

Proof. Consider any vertex vq of SP (vi, vj). Assume on the contrary that SP (vi, vj)

makes a left turn at vq (see Figure 3.7(a)). If the convex angle at vq is facing towards

the interior of P , then by triangle inequality SP (vi, vj) does not pass through vq,

which is a contradiction. If the convex angle at vq is facing toward the exterior of

P , then vq belongs to bd(vj , vi), which is also a contradiction. Therefore SP (vi, vj)

makes a right turn at vq. Hence, SP (vi, vj) makes a right turn at every vertex in

the path.
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Figure 3.7 (a) The vertex vq does not belong to SP (vi, vj). (b) The edge vpvq is an eave in
SP (vi, vj).

Lemma 3.2.12 Let vkvk+1 be a convex edge of P . For every vertex vi of P , if

SP (vk+1, vi) makes a right turn at every vertex in the path and SP (vk, vi) makes a

left turn at every vertex in the path, then P is weakly visible from vkvk+1.

Proof. Proof follows along the line of the proof of Lemma 3.2.7.

Using the above lemmas, Ghosh et al. [163] characterized simple polygons that are

weakly visible from a convex edge. Their characterization is stated in the following

theorem.

Theorem 3.2.13 Let vkvk+1 be a convex edge of a simple polygon P . The following

statements are equivalent.

(i) P is weakly visible from vkvk+1.

(ii) For any two vertices vi and vj of P , where vkvk+1 belongs to bd(vj , vi),

SP (vi, vj) passes only through vertices of bd(vi, vj).

(iii) For any two vertices vi and vj of P , where vkvk+1 belongs to bd(vj , vi),

SP (vi, vj) makes a right turn at every vertex in the path.

(iv) For any vertex vi of P , SP (vk+1, vi) makes a right turn at every vertex in

the path and SP (vk, vi) makes a left turn at every vertex in the path.

Proof. (i) implies (ii) by Lemma 3.2.10, (ii) implies (iii) by Lemma 3.2.11, (iii)

implies (iv) as a special case and (iv) implies (i) by Lemma 3.2.12.

Using Theorem 3.2.13, Ghosh et al. [163] characterized simple polygons that are

weakly visible from a chord st. Their characterization is stated in the following

theorem.
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Theorem 3.2.14 A simple polygon P is a weak visibility polygon if and only if there

is a chord st inside P dividing P into sub-polygons P1 and P2, where the boundary

of P1 consists of bd(t, s) and st, and the boundary of P2 consists of bd(s, t) and ts,

such that the following equivalent conditions hold for P1 and analogously for P2.

(i) For any two vertices vi and vj of P1 where vi belongs to bd(t, vj), SP (vi, vj)

passes only through vertices of bd(vi, vj).

(ii) For any two vertices vi and vj of P1, where vi belongs to bd(t, vj), SP (vi, vj)

makes a right turn at every vertex in the path.

(iii) For any vertex vi of P1, SP (t, vi) makes a right turn at every vertex in the

path and SP (s, vi) makes a left turn at every vertex in the path.

Proof. If P is a weak visibility polygon from a chord st, then it follows from

Theorem 3.2.13 that the three equivalent conditions hold for P1 as well as for P2 as

st is a convex edge of both P1 and P2. Let us prove the converse. If there is a chord

st in P such that the three equivalent conditions hold for P1 and P2, then it follows

from Theorem 3.2.13 that both P1 and P2 are weakly visible from st. Therefore, P

is weakly visible from st.

From Theorem 3.2.14, we know that the shortest path between any two vertices

in a sub-polygon P1 or P2 is convex. However, the shortest path from a vertex

vi of one sub-polygon to another vertex vj of an other sub-polygon may not be

convex (see Figure 3.7(b)). In that case, there exists an edge vpvq in SP (vi, vj)

such that SP (vi, vj) makes a left turn (or, right turn) at vp and makes a right turn

(respectively, left turn) at vq. Such edges vpvq are called eaves. In the following

lemmas, we present the properties of eaves given by Ghosh et al. [163].

Lemma 3.2.15 If st is a visibility chord of a simple polygon P , then the shortest

path between any two vertices in the same sub-polygon has no eaves.

Proof. Proof follows from Theorem 3.2.14.

Lemma 3.2.16 If the shortest path between two vertices vi and vj in a weak visibility

polygon P has an eave vpvq, then every visibility chord st of P intersects the eave

vpvq.

Proof. Proof follows from Lemma 3.2.15.

Lemma 3.2.17 In a weak visibility polygon P , the shortest path between any two

vertices vi and vj of P has at most one eave.

Proof. Proof follows from Lemma 3.2.16.
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Figure 3.8 (a) The counterclockwise C-polygon of vi. (b) The counterclockwise C-polygon
of vi is redundant as it contains the counterclockwise C-polygon of vj . (c) The clockwise
C-polygons of vi and vj lie inside the region P −R.

Exercise 3.2.2 Draw a simple polygon P such that (i) there is no eave in

the shortest path between any two vertices of P , and (ii) P is not weakly

visible from any chord.

Let us present the characterization of weak visibility polygons in terms of non-

redundant components as stated in Bhattacharya et al. [47]. Let vi be a reflex vertex

of P . Extend the edge vi+1vi (and vi−1vi) from vi till it meets a point ui (respec-

tively, wi) on the boundary of P (see Figure 3.8(a)). The clockwise boundary of

P from vi to wi (i.e., bd(wi, vi)) is called the clockwise component of vi. Similarly,

the counterclockwise component of vi is bd(vi, ui). A component is redundant if it

totally contains another component (see Figure 3.8(b)). Otherwise, it is called a

non-redundant component. The region of P enclosed by the chord viwi (or viui) and

bd(wi, vi) (respectively, bd(vi, ui)) is called the clockwise (respectively, counterclock-

wise) C-polygon of vi (see Figure 3.8(a)). We have the following lemma.

Lemma 3.2.18 P is weakly visible from an internal line segment ` if and only if `

intersects every non-redundant C-polygon of P .

Proof. If ` does not intersect a non-redundant C-polygon of some vertex vi, then

` cannot see vi−1 or vi+1. Hence P is not weakly visible from `. Let us prove the

converse. Assume that ` intersects every non-redundant C-polygon of P but there

exists a point z on the boundary of P that is not visible from ` (Figure 3.8(c)). So,

` lies in a region of P (denoted as R) that is not visible from z. Let z ′vi be the

constructed edge on the boundary of R, where the vertex vi is reflex. Observe that

P − R totally contains either the clockwise or the counterclockwise C-polygon of

vi. Moreover, ` does not intersect the C-polygon of vi. If the C-polygon of vi lying

inside P −R is non-redundant, then ` has intersected all non-redundant C-polygons,

which is a contradiction. So, we assume that the C-polygon of vi lying inside P −R
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is redundant. Therefore, there exists another C-polygon of some reflex vertex vj

lying totally inside P −R which is non-redundant. Hence, ` has not intersected this

C-polygon of vj as well, which is a contradiction.

Corollary 3.2.19 Every weak visibility polygon P has at most two disjoint C-

polygons.

Corollary 3.2.20 If P has three or more mutually disjoint C-polygons, then P is

not a weak visibility polygon.

3.3 Computing Weak Visibility in Simple Polygons

3.3.1 Scanning the Boundary: O(n logn) Algorithm

In this section, we present an O(n logn) time algorithm of Lee and Lin [232] for

computing the weak visibility polygon of a simple polygon P of n vertices from a

line segment pq inside P (see Figure 3.3(b)). The weak visibility polygon of P from

pq is denoted as V (pq). So, V (pq) contains all points of P that are visible from some

point of pq.

Let u be the closest point to p among the intersection points of −→qp with bd(P ) (see

Figure 3.9(a)) and let u lie on the edge vivi+1. Similarly, let w be the closest point

to q among the intersection points of −→pq with bd(P ) and let w lie on the edge vkvk+1.

Cut P into two polygons P1 and P2 along uw. Let P1=(vi, u, p, q, w, vk+1, ..., vi−1, vi)

and P2=(vi+1, ..., vk, w, q, p, u, vi+1). It can be seen that V (pq) is the union of weak

visibility polygons of P1 and P2 from pq. So the problem is now to compute the

weakly visible polygons of P1 and P2 from the edge pq. Since pq has become a

convex edge of both P1 and P2, the procedures for computing the weak visibility

polygon from pq in P1 and P2 are analogous.

For simplicity, we assume that pq is a convex edge of the given polygon P and

we present the procedure accordingly. We assume that the vertices of P are labeled

v1, v2, . . . , vn in counterclockwise order, where q = v1 and p = vn. If the revolution

number of P with respect to p or q is more than one, the algorithm in Section 2.2.2

can be used to prune P . Hence, we assume that the revolution number of P with

respect to p or q is one.

In our definition, bd(a, b) denotes the counterclockwise boundary of P from a

point a to another point b. We also denote bd(a, b) as bdcc(a, b). In the same way,

bdc(a, b) denotes the clockwise boundary of P from a to b.

Let SPcc(vj , vk) denote the convex path restricted to bdcc(vj , vk) (see Figure

3.9(b)) such that (i) intermediate vertices of the path belong to bdcc(vj , vk), and

(ii) the path makes only right turns. In general, SP (vj , vk) may not pass through

only the vertices of bdcc(vj , vk) as it can also pass through vertices of bdc(vj , vk).
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Figure 3.9 (a) P is divided by uw into two sub-polygons P1 and P2. (b) SPcc(vj , vk),
SPcc(q, vi−1) and SPcc(q, vi) make only right turns.

Therefore, SP (vj , vk) and SPcc(vj , vk) can be different and hence, SPcc(vj , vk) may

not always lie totally inside P . Again, SPc(vj , vk) denotes the convex path restricted

to bdc(vj , vk) such that (i) intermediate vertices of the path belong to bdc(vj , vk),

and (ii) the path makes only left turns. We have the following lemma.

Lemma 3.3.1 A vertex vi is weakly visible from pq if and only if SP (p, vi) =

SPc(p, vi) and SP (q, vi) = SPcc(q, vi).

Proof. Proof follows from Theorem 3.2.13.

Based on the above lemma, the algorithm scans bdcc(v2, vn−1) in counterclockwise

order, and computes SPcc(q, v2), SPcc(q, v3),..., SPcc(q, vn−1). During the scan,

if SPcc(q, vi) does not make only right turns for some vertex vi, SPcc(q, vi) is

removed. In this process, the algorithm computes SPcc(q, w) for all those vertices

w ∈ bdcc(v2, vn−1) such that SPcc(q, w) makes only right turns. Analogously, the

algorithm scans bdc(vn−1, v2) in clockwise order and computes SPc(p, w) for all those

vertices w ∈ bdc(vn−1, v2) such that SPc(p, w) makes only left turns. After both

scans, those vertices vi of P that have both SPcc(q, vi) and SPc(p, vi) are weakly

visible from pq due to Lemma 3.3.1.

Let us explain the procedure for computing SPcc(q, v2), SPcc(q, v3), SPcc(q, v4)...,

SPcc(q, vn−1). Assume that SPcc(q, v2), SPcc(q, v3),..., SPcc(q, vi−1) have been com-

puted and the procedure wants to compute SPcc(q, vi). The tree formed by the

union of SPcc(q, v2), SPcc(q, v3),..., SPcc(q, vi−1) is denoted as SPTcc(q, vi−1). Let

uj denote the parent of vj in SPTcc(q, vi−1), i.e., uj is the previous vertex of vj in

SPcc(q, vj). We have the following cases.
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Figure 3.10 (a) SPcc(q, vi) = (SPcc(q, vi−1), vi). (b) Since there is a reverse turn at vi−1,
some vertices, including vi−1, are not visible from pq.

Case 1. The vertex vi lies to the left of −−−−−→ui−1vi−1 (see Figure 3.9(b)).

Case 2. The vertex vi lies to the right of −−−−−→ui−1vi−1.

Case 2a. The vertex vi lies to the right of −−−−−→vi−2vi−1 (see Figure 3.10(a)).

Case 2b. The vertex vi lies to the left of −−−−−→vi−2vi−1 (see Figure 3.10(b)).

Consider Case 1. Since vi lies to the left of −−−−−→ui−1vi−1, it means that SPcc(q, vi)

makes only right turns. Let vk be the previous vertex of vi in SPcc(q, vi). It can

be seen that vivk is the tangent from vi to SPcc(q, vi−1) (see Figure 3.9(b)). So,

SPcc(q, vi) = (SPcc(v1, vk), vi), where vk is the first vertex of SPcc(q, vi−1) starting

from vi−1 such that vi lies to the right of −−→ukvk. Hence, vk becomes the parent of vi
in SPTcc(q, vi). In other words, vk becomes ui. The region enclosed by vi−1vi, viui

and SPcc(ui, vi−1) are divided into triangles by extending each edge of SPcc(ui, vi−1)

to vi−1vi.

Consider Case 2a. Since vi lies to the right of both −−−−−→ui−1vi−1 and −−−−−→vi−2vi−1 (see

Figure 3.10(a)), it means that SPcc(q, vi) makes only right turns, and vi−1 is the

previous vertex of vi in SPcc(q, vi) as vivi−1 is the tangent from vi to SPcc(q, vi−1).

So, SPcc(q, vi) = (SPcc(q, vi−1), vi).

Consider Case 2b. Since vi lies to the right of −−−−−→ui−1vi−1 and to the left of −−−−−→vi−2vi−1
(see Figure 3.10(b)), SP (q, vi−1) passes through vertices of bdcc(vi, p) and there-

fore, SP (q, vi−1) and SPcc(q, vi−1) are not the same. So vi−1 is removed from

SPTcc(q, vi−1). We say that there is a reverse turn at vi−1. Observe that there may

be other vertices vk like vi−1 in SPTcc(q, vi−1) such that SP (q, vk) and SPcc(q, vk)

are not the same. This means that the edge vi−1vi has intersected some edges of

SPcc(q, vk). By checking the intersection with vi−1vi (explained later), such vertices

vk are removed from SPTcc(q, vi−1). The edge vi−1vi is called the current inward
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Figure 3.11 (a) Backtracking continues with vivi+1 as the current inward edge. (b) Back-
tracking continues with rvj+1 as the current inward edge.

edge. Let vm be the first vertex from vi−1 on bdcc(q, vi−1) such that vi−1vi does not

intersect SPcc(q, vm) (see Figure 3.10(b)). Locate ui by drawing the tangent from

vi to SPcc(q, vm) as stated in Case 1. If vi+1 lies to the right of −−→uivi (see Figure

3.11(a)), the process of backtracking as stated above for vi−1vi continues with vivi+1

as the current inward edge. Consider the other situation when vi+1 lies to the left

of −−→uivi (see Figure 3.11(b) and Figure 3.13(a)). Let w denote the point of intersec-

tion of vmvm+1 and −−→uivi. If vi+1 lies to the left of −−−→vi−1vi (see Figure 3.11(b)), scan

bdcc(vi+1, p) from vi+1 in counterclockwise order until an edge vjvj+1 is located such

that vjvj+1 intersects wvi at some point r. So, backtracking continues with rvj+1

as the current inward edge. If vi+1 lies to the right of −−−→vi−1vi (see Figure 3.13(a)),

backtracking ends at vi.

Let us explain the procedure for locating the parent ui of vi. Let xyz be a triangle

(see Figure 3.13(a)) such that (i) y and z are two consecutive points or vertices on

bdcc(q, vi−1), (ii) x is the parent of y in SPTcc(q, vi−1), and (iii) if z is a vertex (or a

point), then x is the parent (respectively, grandparent) of z in SPTcc(q, vi−1). Note

that if z is a point (created in Case 1), the parent of z (which is a vertex) is lying

on xz. Observe that there exists one triangle xyz such that vi−1vi has intersected

xy but it has not intersected xz (see Figure 3.13(a)). So, x is the parent ui of vi in

SPTcc(q, vi−1).

The above discussion suggests that the problem of locating ui is to locate the

triangle xyz containing vi. The procedure initializes xyz by the triangle whose

xy is ui−1vi−1. If xz of the current triangle xyz is not intersected by vi−1vi (see

Figure 3.13(a)), then the process of checking for intersections ends as xyz contains

vi. Otherwise, the procedure has to identify the next triangle for checking the



62 Weak Visibility and Shortest Paths

Figure 3.12 (a) The edge vi−1vi has intersected the segment connecting z and its parent z′.
(b) Number of extension points inserted on edges of P can be O(n2).

intersection. If z is not a vertex, then vi−1vi intersects either xz
′ (see Figure 3.13(b))

or z′z (see Figure 3.12(a)), where z′ is the parent of z lying on the segment xz. If

vi−1vi intersects xz′ (or, z′z), the other triangle of the segment xz′ (respectively,

z′z) becomes the current triangle xyz. If z is a vertex of P , then the other triangle

of xz is unique. Observe that the cost of locating ui is proportional to the number

of triangles intersected by vi−1vi.

In the following, we formally present the procedure for computing SPTcc(q, vn−1).

Initialize SPTcc(q, v2) by assigning v1 as the parent of v2 and the index i by 2.

Step 1. If vi lies to the left of −−−−−→ui−1vi−1 (Figure 3.9(b)) then

Step 1a. Scan SPcc(q, vi−1) from vi−1 till a vertex vk is reached such that vi lies

to the right of −−→ukvk. Assign vk as the parent ui of vi in SPTcc(q, vi).

Step 1b. For every intermediate vertex vl in SPcc(ui, vi−1), extend ulvl from vl
to vi−1vi meeting it at some point w, insert w on vi−1vi and assign vl as the

parent of w in SPTcc(q, vi). Goto Step 4

Step 2. If vi lies to the right of both −−−−−→ui−1vi−1 and −−−−−→vi−2vi−1 (Figure 3.10(a)) then

assign vi−1 as the parent ui of vi in SPTcc(q, vi) and goto Step 4.

Step 3. If vi lies to the right of −−−−−→ui−1vi−1 and to the left of −−−−−→vi−2vi−1 (Figure 3.10(b))

then

Step 3a. Locate the parent ui of vi in SPTcc(q, vi−1) by checking for intersections

with triangles. Extend uivi from vi meeting the side of the triangle containing

vi at w (Figure 3.10(b)).

Step 3b. If vi+1 lies to the left of both −−→uivi and −−−→vi−1vi (Figure 3.11(b)) then locate
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Figure 3.13 (a) Backtracking ends at vi. (b) The edge vi−1vi has intersected the segment
connecting the parent z′ and the grandparent x of z.

the edge vjvj+1 intersecting wvi at a point r by scanning bdcc(vi+1, p) from vi+1

and treat r as vi.

Step 3c. Connect ui to vi by an edge in SPTcc(q, vi) and remove the region of P

bounded by viw and bdcc(w, vi). Assign vi as the parent of w in SPTcc(q, vi)

and treat w as vi−1.

Step 3d. If vi+1 lies to the right of −−→uivi (Figure 3.11(a)) then i := i+ 1 and goto

Step 3a.

Step 4. If i 6= n− 1 then i := i+ 1 and goto Step 1.

Step 5. Report SPTcc(q, vn−1) and Stop.

It can be seen that the above procedure has removed some regions of P in Step 3c.

Let P ′ denote the remaining polygon. Using the analogous procedure, SPTc(p, v2)

can be computed by scanning the boundary P ′ in clockwise order. The remaining

portion of P ′ is V (pq).

Let us discuss the correctness of the algorithm. As stated in Lemma 3.3.1, a

vertex vi−1 of P is weakly visible from pq if and only if SP (p, vi−1) = SPc(p, vi−1)

and SP (q, vi−1) = SPcc(q, vi−1). This means that if SP (q, vi−1) 6= SPcc(q, vi−1),

SP (q, vi−1) makes both left and right turns and therefore there is an edge in

bdcc(vi, p) intersecting SPcc(q, vi−1). The procedure for computing SPTcc(q, vn−1)

accepts the current vertex vi in Steps 1 and 2 if vi lies outside the region enclosed

by SPcc(q, vi−1) and bdcc(q, vi−1), which ensures that SPcc(q, vi) makes only right

turns. However, if vi lies inside the region enclosed by SPcc(q, vi−1) and bdcc(q, vi−1),

the procedure locates the first vertex vm in the clockwise order starting from vi−1 in

Step 3 such that vi lies outside the region enclosed by SPcc(q, vm) and bdcc(q, vm).

By maintaining this invariant, the procedure for computing SPTcc(q, vn−1) com-
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putes SPcc(q, w) only for those vertices w ∈ bdcc(v2, vn−1) such that SPcc(q, w)

makes only right turns. Analogous arguments show that the procedure for com-

puting SPTc(p, v2) computes SPc(p, w) only for those vertices w ∈ bdc(vn−1, v2)

such that SPc(p, w) makes only left turns. Therefore, the vertices vi for which both

SPcc(q, vi) and SPc(p, vi) belong to SPTcc(q, vn−1) and SPTc(p, v2), respectively,

are only those vertices of P that are weakly visible from pq. Hence the algorithm

correctly computes V (pq).

Let us analyze the time complexity of the algorithm. It can be seen that the

algorithm runs in O(n+m) time, where m is the number of points inserted on the

boundary during the execution of Step 1b. If m is O(n), then we have O(n) time

algorithm. Can m become O(n2)? Yes, it can become O(n2) as shown in Figure

3.13(b). In this figure, n/2 points are removed during backtracking for one inward

edge and then n/2 points are again inserted in the very next edge. The process can

repeat for every pair of edges. Hence, the algorithm can take O(n2) time in the

worst case.

Recall that the parent ui of vi is located in Step 1a by a linear search on

SPcc(q, vi−1) starting from vi−1 and in the process, extension points are inserted

on edges of P . Instead of a linear search, a binary search can be carried out on

SPcc(q, vi−1) to locate ui as SPcc(q, vi−1) is convex. On the other hand, the proce-

dure needs the extension points to check the intersection of the current inward edge

vi−1vi with the triangles formed by these extension points in Step 3a. To overcome

this difficulty. a binary search can be carried out to locate an edge vmvm+1 of P

such that vi−1vi intersects the tree edge vm+1um+1 but does not intersect the tree

edge vmum. This means that vi lies in the region bounded by vmvm+1, vm+1um+1,

SPcc(um+1, um) and umvm. In other words, vm is the first vertex from vi−1 in clock-

wise order such that vi−1vi does not intersect SPcc(q, vm). Another binary search

can be carried out to locate ui in SPcc(um+1, um). In this process, the parent ui of

vi can be located. So, at most two binary searches are required for each vertex vi

to locate its parent ui. Thus, the overall time complexity of the algorithm can be

reduced to O(n logn).

To facilitate the above binary search, SPTcc(q, vi−1) can be stored in concatenable

queues. Concatenable queues support binary search, split and merge operations

[14]. After locating the parent ui of vi by binary search on SPcc(q, vi−1), a split

operation is performed at ui and then vi is added to SPcc(q, ui). Similarly, merge

operations are performed at vertices during backtracking to obtain SPcc(um+1, um).

We summarize the result in the following theorem.

Theorem 3.3.2 The weak visibility polygon V (pq) of an internal segment pq in an

n-sided simple polygon can be computed in O(n logn) time.
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Figure 3.14 (a) SP (p, vj) makes a first right turn at vi. (b) SP (q, vj) makes a first left turn
at vi.

3.3.2 Using Shortest Path Trees: O(n) Algorithm

In this section, we present an O(n) time algorithm of Guibas et al. [178] for comput-

ing the weak visibility polygon V (pq) of a simple polygon P of n vertices from a line

segment pq inside P . As in Section 3.3.1, we present the algorithm for computing

V (pq) from a convex edge pq of P . We assume that the vertices of P are labeled

v1, v2, . . . , vn in counterclockwise order, where q = v1 and p = vn.

Let SPT (p) and SPT (q) denote the shortest path trees in P rooted at p and q

respectively. The union of Euclidean shortest paths from a vertex to all vertices of

a simple polygon is called the shortest path tree. For more details on the shortest

path tree, see Section 3.6.1. In the following lemmas, we present the main idea used

in the algorithm.

Lemma 3.3.3 Let vi be the parent of vj in SPT (p) such that SP (p, vj) makes a

first right turn at vi (Figure 3.14(a)). Then all descendants of vi in SPT (p) are not

visible from any point of pq.

Proof. Proof follows from Theorem 3.2.13.

Lemma 3.3.4 Let vi be the parent of vj in SPT (q) such that SP (q, vj) makes a

first left turn at vi (Figure 3.14(b)). Then all descendants of vi in SPT (q) are not

visible from any point of pq.

Proof. Proof follows from Theorem 3.2.13.
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Lemmas 3.3.3 and 3.3.4 suggest a simple algorithm to compute V (pq) by traversing

SPT (p) and SPT (q) using depth-first search (see [15]) as follows.

Step 1. Compute SPT (p) in P by the algorithm in Section 3.6.1.

Step 2. Traverse SPT (p) using depth-first search and check the turn at every vertex

vi in SPT (p). If the path makes a right turn at vi then (Figure 3.14(a))

Step 2a. Find the descendant of vi in SPT (p) with the largest index j.

Step 2b. Compute the intersection point z of vjvj+1 and −−→vkvi, where vk is the

parent of vi in SPT (p).

Step 2c. Remove the counterclockwise boundary of P from vi to z by inserting

the segment viz.

Step 3. Let P ′ denote the remaining portion of P . Compute SPT (q) in P ′ by the

algorithm in Section 3.6.1.

Step 4. Traverse SPT (q) using depth-first search and check the turn at every vertex

vi in SPT (q). If the path makes a left turn at vi then (Figure 3.14(b))

Step 4a. Find the descendant of vi in SPT (q) with the smallest index j.

Step 4b. Compute the intersection point z of vjvj−1 and −−→vkvi, where vk is the

parent of vi in SPT (q).

Step 4c. Remove the clockwise boundary of P ′ from vi to z by inserting the

segment viz.

Step 5. Output the remaining portion of P ′ as V (pq).

The correctness of the algorithm follows from Lemmas 3.3.3 and 3.3.4. We analyze

the time complexity of the algorithm. The algorithm for computing SPT (p) and

SPT (q) takes O(n) time (see Section 3.6.1). Every vertex of SPT (p) and SPT (q)

is traversed once and the remaining operations take constant time. So, the overall

time complexity of the algorithm is O(n). We summarize the result in the following

theorem.

Theorem 3.3.5 The weak visibility polygon V (pq) from an internal segment pq in

an n-sided simple polygon can be computed in O(n) time.

3.4 Computing Weak Visibility in Polygons with Holes

In this section, we present an O(n4) time algorithm of Suri and O’Rourke [321] for

computing the weak visibility polygon V (pq) of a polygon P with holes with a total

of n vertices from a line segment pq inside P . We treat the line segment pq as a hole

inside P . In the following lemma, we present the main idea used in the algorithm.
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Figure 3.15 Regions R1(v), R2(v) and R3(v) are added to V (pq).

Lemma 3.4.1 If any point u ∈ P is weakly visible from pq, then u is visible (i)

from p or q, or (ii) from a point y ∈ pq such that there exists a vertex v lying on

the segment uy.

Proof. The first part of the lemma follows from the fact that V (p) ⊂ V (pq) and

V (q) ⊂ V (pq). Consider a point u that is not visible from p or q but is visible from

some point z of pq. As z is moved along pq toward p or q, z continues to see u

till z reaches either p or q or an internal point y of pq such that the segment uy

touches the boundary of P at some vertex v. Since u is not visible from p or q by

assumption, uy contains v.

Corollary 3.4.2 Both y and u belong to the visibility polygon V (v).

Let a1b1, a2b2,..., akbk be the maximal intervals on pq that are visible from v (see

Figure 3.15). For all i, extend vai and vbi from v to the boundary of V (v) meeting

at ci and di, respectively. Let Ri(v) denote the region of V (v) lying between aici and

bidi. For all i, Ri(v) belongs to V (pq) by Lemma 3.4.1. So, the algorithm computes

all such regions Ri(v) for every vertex v of P and then takes the union of all these

regions to construct V (pq). Note that the union of these regions also includes points

that are visible from p or q.

Let us analyze the time complexity of the algorithm. For all vertices v of P , V (v)

can be computed in O(n2) time [28, 165, 339]. All regions Ri(v) inside V (v) can be

computed in O(n) time by scanning the boundary of V (v) once. Since there can be

O(n) regions in each V (v) to be added to V (pq), the total number of such regions
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is O(n2). So, computing the union of these regions takes O(n4) time. Hence the

overall time complexity of the algorithm is O(n4). We summarize the result in the

following theorem.

Theorem 3.4.3 The weak visibility polygon V (pq) from a segment pq inside a

polygon P with holes with a total of n vertices can be computed in O(n4) time.

3.5 Recognizing Weakly Internal Visible Polygons

3.5.1 Using Visibility Graph: O(E) Algorithm

In this section, we present an O(E) time algorithm of Ghosh et al. [163] to determine

whether the given simple polygon P of n vertices is a weak visibility polygon from

some chord, where E is the number of visible pairs of vertices in P . The algorithm

computes a visibility chord st in P by searching for the locations of s and t on

the polygonal edges. The polygon in Figure 3.4(a) is weakly visible from the chord

st but it is not weakly visible from any edge of the polygon. We assume that the

vertices of P are labeled v1, v2, . . . , vn in counterclockwise order. As before, SPT (vi)

denotes the shortest path tree in P rooted at vi. We also use the notation bd(vi, vj)

to denote the counterclockwise boundary of P from vi to vj . We start with the

following lemma.

Lemma 3.5.1 Let st be a visibility chord of P , where s ∈ vivi+1 and t ∈ vjvj+1.

The shortest path between any two vertices of bd(vi+1, vj) (or bd(vj+1, vi)) is convex

(i.e., makes only left turns or only right turns).

Proof. The proof follows from Theorem 3.2.14.

In order to locate a visibility chord st in P , it is necessary to locate the pair of

edges vivi+1 and vjvj+1 (called potential pair of edges) of P that satisfy the above

lemma. For every edge vivi+1 of P , the algorithm identifies the set of edges Ei of

P that can form a potential pair with vivi+1. We call the edges in Ei as potential

edges of vivi+1. Observe that if vivi+1 is a potential edge of an edge vjvj+1 ∈ Ei,

then vivi+1 and vjvj+1 form a potential pair of edges by Lemma 3.5.1. The following

observations on potential edges follow from Lemma 3.5.1.

Lemma 3.5.2 If vjvj+1 is a potential edge of vivi+1, then (i) for any vertex

vk ∈ bd(vi+1, vj), SP (vi+1, vk) makes only right turns, and (ii) for any vertex

vk ∈ bd(vj+1, vi), SP (vi, vk) makes only left turns.

Lemma 3.5.3 If no two edges of P are mutually potential edges of each other, then

P is not a weak visibility polygon.
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Figure 3.16 (a) Right and left constructed edges are in proper order. (b) P has a visibility
chord st but there is no potential edge of vivi+1.

The potential edges of vivi+1 can be identified from constructed edges of the weak

visibility polygon V (vivi+1). A constructed edge vkq of V (vivi+1) is called a left

constructed edge (Figure 3.16(a)) if bd(q, vk) does not contain vivi+1 and a right

constructed edge, otherwise. We have the following lemma.

Lemma 3.5.4 If vjvj+1 is a potential edge of vivi+1, then all right constructed edges

of V (vivi+1) are on bd(vi+1, vj) and all left constructed edges of V (vivi+1) are on

bd(vj+1, vi).

Proof. For any vertex vk ∈ bd(vi+1, vj) (or bd(vj+1, vi)), we know from Lemma

3.5.2 (see Figure 3.16(a)) that SP (vi+1, vk) (respectively, SP (vi, vk)) makes only

right turns (respectively, left turns). So, all right and left constructed edges of

V (vivi+1) belong to bd(vi+1, vj) and bd(vj+1, vi), respectively.

Using the above lemma, the potential edges of vivi+1 for all i can be identified

by scanning the boundary of V (vivi+1) (denoted as bV (vivi+1)) from vi+1 to vi in

counterclockwise order. The following three cases can arise during the scan.

Case 1. If there is no constructed edge, then bV (vivi+1) = bd(P ). It means that the

edge vivi+1 is a visibility chord of P .

Case 2. If a left constructed edge is scanned before a right constructed edge, then

there is no potential edge of vivi+1 (Figure 3.16(b)).

Case 3. If all right constructed edges are scanned before all left constructed edges,

then all edges of P between the last right constructed edge and the first left

constructed edge are potential edges of vivi+1 (Figure 3.16(a)). Note that the

potential edges of vivi+1 are consecutive edges on bd(P ).
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Figure 3.17 (a) Right and left intervals on vivi+1 as well as on vjvj+1 are overlapping. (b)
There is no visibility chord in P .

Once potential edges Ei of vivi+1 are found, check whether vivi+1 has already

been found to be a potential edge of vjvj+1 ∈ Ei. If so, vivi+1 and vjvj+1 form a

potential pair. Thus all potential pairs of edges in P can be located by scanning

bV (vivi+1) for i = 1, 2, ..., n. We have the following observation.

Lemma 3.5.5 If (vivi+1, vjvj+1) and (vivi+1, vkvk+1) are potential pairs, where

j > k, then for any edge vmvm+1 ∈ bd(vk+1, vj), (vivi+1, vmvm+1) is also a potential

pair.

We need another property for a potential pair to contain a visibility chord st.

Consider a potential pair (vivi+1, vjvj+1). Let li denote the furthest point of vi+1

on vivi+1 (Figure 3.17(a)) such that for every vertex vq ∈ bd(vi+1, vj), SP (li, vq)

makes only right turns. The portion livi+1 is called the right interval of vivi+1 for

vjvj+1. Similarly, let ri denote the furthest point of vi on vivi+1 such that for every

vertex vp ∈ bd(vj+1, vi), SP (ri, vp) makes only left turns. The portion viri is called

the left interval of vivi+1 for vjvj+1. We have the following lemma.

Lemma 3.5.6 Let vivi+1 and vjvj+1 be the edges of a potential pair. Assume that

there exists a chord st in P where s ∈ vivi+1 and t ∈ vjvj+1. The chord st is a

visibility chord of P if and only if s belongs to both left and right intervals of vivi+1

for vjvj+1 and t belongs to both left and right intervals of vjvj+1 for vivi+1.

Proof. Assume that st is a visibility chord. Since st is a visibility chord, for any

vertex vp ∈ bd(vj+1, vi), SP (s, vp) makes only left turns by Theorem 3.2.14 (see

Figure 3.17(a)). So s lies in the left interval of vivi+1 for vjvj+1. Similarly, for any
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vertex vq ∈ bd(vi+1, vj), SP (s, vq) makes only right turns. So s lies in the right

interval of vivi+1 for vjvj+1. Hence s belongs to both intervals of vivi+1 for vjvj+1.

Analogous arguments show that t belongs to both intervals of vjvj+1 for vivi+1.

We now prove the converse. Assume that s belongs to both left and right intervals

of vivi+1 for vjvj+1 and t belongs to both left and right intervals of vjvj+1 for vivi+1.

Therefore, for any vertex vp ∈ bd(vj+1, vi), SP (s, vp) (respectively, SP (t, vp)) makes

only left (respectively, right) turns, and for any vertex vq ∈ bd(vi+1, vj), SP (s, vq)

(respectively, SP (t, vq)) makes only right (respectively, left) turns. Hence, st is a

visibility chord of P by Theorem 3.2.14.

Let us state the procedure for computing left and right intervals of vivi+1 for

vjvj+1. For each vertex vp ∈ bd(vj+1, vi) and bV (vivi+1), compute the intersection

point of vivi+1 and −−→vpvk, where vk is the parent of vp in SPT (vi+1) (see Figure

3.17(a)). Among all the intersection points, the intersection point closest to vi is

the point ri. So viri is the left interval of vivi+1 for vjvj+1. Analogously, the right

interval of vivi+1 for vjvj+1 can be computed. Observe that if vivi+1 has two or

more potential edges, the left and right intervals of vivi+1 for all its potential edges

(which are consecutive by Lemma 3.5.5) can be computed by scanning bV (vi, vi+1)

once in clockwise order and once in counterclockwise order. We have the following

lemmas.

Lemma 3.5.7 Let vivi+1 and vjvj+1 be the edges of a potential pair. Assume that

the left interval viri and the right interval livi+1 of vivi+1 for vjvj+1 overlap, and

the left interval vjrj and the right interval ljvj+1 of vjvj+1 for vivi+1 overlap. If

SP (li, rj) and SP (ri, lj) are disjoint, then there is a visibility chord st in P such

that s ∈ liri and t ∈ ljrj.

Proof. Consider SP (li, lj). If SP (li, lj) is just the segment lilj , then s = li and t =

lj . Otherwise, SP (li, lj) contains an eave (see Figure 3.17(a)). Since SP (li, rj) and

SP (ri, lj) are convex and disjoint, the eave in SP (li, lj) is a cross-tangent between

SP (rj , li) and SP (lj , ri). Extend the eave in both directions meeting liri and ljrj
at points s and t, respectively. Hence, st is a visibility chord of P by Lemma 3.5.6.

Lemma 3.5.8 Let vivi+1 and vjvj+1 be the edges of a potential pair. Assume that

the left interval viri and the right interval livi+1 of vivi+1 for vjvj+1 overlap, and

the left interval vjrj and the right interval ljvj+1 of vjvj+1 for vivi+1 overlap. If

SP (li, rj) and SP (ri, lj) share a vertex, then there is no visibility chord in P .

Proof. Let vk be a vertex common to SP (li, rj) and SP (ri, lj) (see Figure 3.17(b)).

Since both SP (ri, lj) and SP (li, rj) pass through vk, there is no chord between liri
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and ljrj . If vk ∈ bd(vj+1, vi), then any visibility chord must have one endpoint on

bd(vk, ri) and the other on bd(lj , vk), which is not possible. Analogous argument

holds if vk ∈ bd(vi+1, vj). Hence, there is no visibility chord in P .

A visibility chord st in P can be computed between the edges in a potential pair

if the edges satisfy Lemma 3.5.7. If no such pair exists or there is a potential pair

of edges which satisfy Lemma 3.5.8, then P does not have a visibility chord. In the

following, we state the major steps for computing a visibility chord st inside P .

Step 1. Compute SPT (v1) by the algorithm of Ghosh et al. [162] stated in Section

3.6.2.

Step 2. Compute V (v1v2), SPT (v2), V (v2v3), SPT (v3),..., SPT (vn), V (vnv1) by

the algorithm of Hershberger [186] stated in Section 5.2.

Step 3. For every edge vivi+1 in P , locate the potential edges of vivi+1 by scanning

bV (vivi+1) from vi+1 to vi in counterclockwise order.

Step 4. For every pair of edges vivi+1 and vjvj+1 that are mutually potential edges

of each other, add (vivi+1, vjvj+1) to the list of potential pairs.

Step 5. For every edge vivi+1 in the list of potential pairs do

Step 5a. Scan bV (vivi+1) once in clockwise order and compute the left interval of

vivi+1 for each edge that has formed a potential pair with vivi+1.

Step 5b. Scan bV (vivi+1) once in counterclockwise order and compute the right

interval of vivi+1 for each edge that has formed a potential pair with vivi+1.

Step 5c. If the left and right intervals of vivi+1 do not overlap for an edge vjvj+1

then remove (vivi+1, vjvj+1) from the list of potential pairs.

Step 6. If the list of potential pairs is empty or if SP (li, rj) and SP (ri, lj) share

a vertex for a potential pair (vivi+1, vjvj+1) then report that P is not a weak

visibility polygon and Stop.

Step 7. Take any potential pair (vivi+1, vjvj+1) from the list of potential pairs,

compute a visibility chord st by extending the eave in SP (li, lj) in both directions

to liri and ljrj , report st as a visibility chord of P and Stop.

The correctness of the algorithm follows from Lemmas 3.5.1, 3.5.4, 3.5.6, 3.5.7 and

3.5.8. We analyze the time complexity of the algorithm. The algorithm of Ghosh

et al. [162] in Step 1 for computing SPT (v1) takes O(n) time. The algorithm of

Hershberger [186] for computing V (v1v2), SPT (v2), V (v2v3), SPT (v3),..., SPT (vn),

V (vnv1) in Step 2 takes O(E) time. To find the list of potential pairs, the algorithm

scans the boundary of each visibility polygon once. Since the sum of the sizes of

bV (vivi+1) for all i is O(E), Step 3 and Step 4 run in O(E) time. Then the algorithm

scans bV (vivi+1) twice to compute intervals for each vivi+1. So, Step 5 also takes

O(E) time. Step 6 and Step 7 together run in O(n) time. Hence, the overall time

complexity of the algorithm is O(E). We summarize the result in the following

theorem.
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Theorem 3.5.9 A visibility chord st in a simple polygon P can be constructed in

O(E) time, where E is the number of visible pairs of vertices in P .

3.5.2 Scanning the Boundary: O(n) Algorithm

In this section, we present an O(n) time algorithm of Bhattacharya et al. [47] for

recognizing a weak visibility polygon P of n vertices. The algorithm constructs

visibility chords of P and then computes the shortest segment from which P is

weakly visible. Here we present only a part of their algorithm which locates a

visibility chord in P in O(n) time. In Section 3.2, weak visibility polygons have

been characterized in terms of non-redundant C-polygons. This characterization

stated in Lemma 3.2.18 is used here to compute a visibility chord of P . We also use

here the algorithm of Ghosh et al. [162], presented in Section 3.6.2, for computing

shortest path trees in P .

We know from Lemma 3.2.18 that it is enough to consider only non-redundant

C-polygons of P as they determine the positions of visibility chords in P . On the

other hand, Corollary 3.2.19 suggests that a weak visibility polygon can have at

most two disjoint C-polygons. Let us first check whether the given simple polygon

P has one, two or more disjoint C-polygons. We assume that the vertices of P

are labeled v1, v2, . . . , vn in counterclockwise order. Without loss of generality, we

assume that v1 is a reflex vertex. Compute SPT (v1) in P by the algorithm of Ghosh

et al. [162]. If the algorithm does not succeed in computing SPT (v1), then P is not

a weak visibility polygon. Henceforth we assume that SPT (v1) has been computed.

Scan bd(P ) in counterclockwise order from v2 (see Figure 3.18(a)) and locate the

first vertex vi such that vi+1 is the parent of vi in SPT (v1). If no such vertex exists,

scan bd(P ) in clockwise order from vn and locate the first vertex vi such that vi−1
is the parent of vi in SPT (v1). If no such vertex exists, then the entire polygon P

is visible from v1 and the algorithm terminates.

Without loss of generality, we assume that vi has been located during the coun-

terclockwise scan (see Figure 3.18(a)). Locate the meeting point wi+1 by extending

vivi+1 from vi+1 (through the edges of SPT (v1)) to bd(v1, vi). So, bd(wi+1, vi+1) and

the bounding chord vi+1wi+1 define a clockwise C-polygon (denoted as polyc(vi+1)).

Observe that this C-polygon does not contain any other clockwise C-polygon. How-

ever, it may contain a counterclockwise C-polygon. Scan from vi−1 in clockwise order

to locate the first vertex vj before reaching wi+1 such that (i) vj−1 is the parent

of vj in SPT (v1), and (ii) −−−−→vjvj−1 does not intersect the bounding chord vi+1wi+1.

Locate the meeting point uj−1 by extending vjvj−1 from vj−1 to bd(vj , vi+1). So, the

counterclockwise C-polygon with bounding chord vj−1uj−1 (denoted as polycc(vj−1))

is contained inside polyc(vi+1). It can be seen that polycc(vj−1) is not contained in

any clockwise or counterclockwise C-polygon. If no such vertex vj is located before
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Figure 3.18 (a) The clockwise C-polygon with bounding chord vi+1wi+1 contains the coun-
terclockwise C-polygon with bounding chord vj−1uj−1. (b) Two disjoint critical polygons
with bounding chords vpwp and vquq.

reaching wi+1, polyc(vi+1) does not contain any C-polygon. Thus the algorithm

locates the first disjoint C-polygon; call it a critical polygon.

Without loss of generality, we assume that the algorithm has located a clockwise

C-polygon as the first critical polygon; call it polyc(vp) (see Figure 3.18(b)). It can

be seen that polyc(vp) is weakly visible from its bounding chord vpwp. If vpwp can

also see the remaining portion of P , then it is a visibility chord of P . This can be

tested, as shown in Section 3.6, by traversing SPT (vp) and SPT (wp). These two

trees can be computed directly by the algorithm of Ghosh et al. [162]. They can

also be computed easily by scanning bd(P ) using SPT (v1).

Exercise 3.5.1 Let vk be a vertex of a simple polygon P of n vertices.

Assume that SPT (vk) has been given along with P . Assume that any path

in SPT (vk) has at most one eave. From any vertex vm of P , compute

SPT (vm) in O(n) time by scanning the boundary of P using SPT (vk).

We assume that vpwp is not a visibility chord and we have SPT (vp) and SPT (wp)

in addition to SPT (v1). Scan bd(vp, wp) and locate a C-polygon using SPT (vp) or

SPT (wp) (as stated above) such that it does not contain another C-polygon and its

bounding chord connects two points of bd(vp, wp) (see Figure 3.18(b)). Without loss

of generality, we assume that it is a counterclockwise C-polygon; call it polycc(vq).

It can be tested again whether entire P is visible from the bounding chord vquq. In

the process, SPT (vq) and SPT (uq) have been computed. Assume that vquq is not

a visibility chord of P . It can be seen that bd(P ) has been partitioned into four
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chains bd(vp, vq), bd(vq, uq), bd(uq, wp) and bd(wp, vp) (see Figure 3.18(b)) and each

of them has a particular structure as shown in the following lemmas.

Lemma 3.5.10 Let vpwp and vquq be bounding chords of two disjoint critical poly-

gons polyc(vp) and polycc(vq) in P , respectively, where vp ∈ bd(wp, vq). One endpoint

of every visibility chord st belongs to bd(wp, vp) and the other endpoint belongs to

bd(vq, uq).

Proof. We know that every visibility chord must intersect both critical polygons

polyc(vp) and polycc(vq) by Lemma 3.2.18. Since polyc(vp) and polycc(vq) are disjoint

(see Figure 3.18(b)), one endpoint of every visibility chord st belongs to bd(wp, vp)

and the other endpoint belongs to bd(vq, uq).

Corollary 3.5.11 Every visibility chord of P lies inside the visibility polygon of P

from vpwq as well as in the visibility polygon of P from vquq.

Lemma 3.5.12 Let vpwp and vquq be bounding chords of two disjoint critical poly-

gons polyc(vp) and polycc(vq) in P , respectively, where vp ∈ bd(wp, vq). If P is a

weak visibility polygon, then for every vertex vk ∈ bd(uq, wp), (i) SP (wp, vk) makes

only left turns, (ii) SP (uq, vk) makes only right turns and (iii) both SP (wp, vk) and

SP (uq, vk) pass through only the vertices of bd(uq, wp).

Proof. If SP (wp, vk) makes a right turn at some vertex vm ∈ bd(wp, vq), then there

exists a critical polygon such that both endpoints of its bounding chord belong

to bd(uq, wp). It means that P has three disjoint critical polygons and therefore,

P is not a weak visibility polygon by Corollary 3.2.20, which is a contradiction.

Analogous arguments show that SP (uq, vk) makes only right turns. If SP (wp, vk)

or SP (uq, vk) pass through a vertex vm ∈ bd(vp, vq), then no point of vpwp is visible

from any point of vquq and vice versa. Therefore, there is no chord with one endpoint

on bd(wp, vp) and other endpoint on bd(vq, uq), contradicting Lemma 3.5.10. So,

SP (wp, vk) and SP (uq, vk) pass through only the vertices of bd(wp, vq).

Lemma 3.5.13 Let vpwp and vquq be bounding chords of two disjoint critical poly-

gons polyc(vp) and polycc(vq) in P , respectively, where vp ∈ bd(wp, vq). If P is a

weak visibility polygon, then for every vertex vk ∈ bd(vp, vq), (i) SP (vp, vk) makes

only right turns, (ii) SP (vq, vk) makes only left turns, and (iii) both SP (vp, vk) and

SP (vq, vk) pass through only the vertices of bd(vp, vq).

From now on we assume that bd(uq, wp) and bd(vp, vq) satisfy Lemmas 3.5.12 and

3.5.13, respectively. Lemma 3.5.12 suggests that there is no critical polygon with

the bounding chord ending at two points on bd(uq, wp). However, it is possible to

have a critical polygon, say polycc(vk), with bounding chord vkuk such that vk ∈
bd(uq, wp) and uk ∈ bd(wp, vp) (see Figure 3.19(a)). Similarly, there can be a critical
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Figure 3.19 (a) Critical polygons polycc(vk), polyc(vm) and polycc(vq) are disjoint. Similarly,
critical polygons polycc(vz), polyc(vr) and polyc(vp) are disjoint. (b) The bounding chords
vkuk and vmwm have intersected. Similarly, vzuz and vrwr have intersected.

polygon polyc(vm) with bounding chord vmwm such that vm ∈ bd(vp, vq) and wm ∈
bd(wp, vp). In the following lemma, we establish the relationship between polycc(vk)

and polyc(vm).

Lemma 3.5.14 Let vpwp and vquq be bounding chords of two disjoint critical poly-

gons polyc(vp) and polycc(vq) in P , respectively, where vp ∈ bd(wp, vq). Let polycc(vk)

and polyc(vm) be critical polygons with bounding chords vkuk and vmwm, respectively,

where vk ∈ bd(uq, wp) and uk ∈ bd(wp, vp), vm ∈ bd(vp, vq) and wm ∈ bd(wp, vp). If

vkuk and vmwm do not intersect, then there is no visibility chord in P .

Proof. If two bounding chords vkuk and vmwm do not intersect, then polycc(vk),

polyc(vm) and polycc(vq) are three disjoint critical polygons in P (see Figure 3.19(a)).

Therefore, P cannot not have a visibility chord by Corollary 3.2.20.

Corollary 3.5.15 If P is a weak visibility polygon (Figure 3.19(b)), then vkuk

and vmwm intersects and one endpoint of every visibility chord of P belongs to

bd(wm, uk).

Let us check whether there exists two disjoint critical polygons polycc(vk) and

polyc(vm) as stated in Lemma 3.5.14. Scan bd(uq, wp) from wp in clockwise order

(see Figure 3.20(a)) until a vertex vi+1 is located such that vi is the parent of vi+1 in

SPT (vp). Extend vi+1vi from vi through edges of SPT (wp) meeting bd(wp, vp) at ui.

Continue the scan to locate another such vertex vk+1 such that (i) vk is the parent

of vk+1 in SPT (vp), and (ii) −−−−→vk+1vk intersects viui. Then vkuk becomes the current
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Figure 3.20 (a) By scanning bd(uq, wp) from wp in clockwise order, polycc(vk) is located.
(b) By scanning bd(vp, vq) from vp in counterclockwise order, polyc(vm) is located.

viui. This process is repeated till all vertices in bd(uq, wp) are scanned. Note that to

locate uk, the algorithm first locates the edge of SP (wp, ui) intersected by −−−−→vk+1vk by

traversing SP (wp, ui) from ui and then it traverses through the edges of SPT (wp) till

uk is found. Essentially, uk moves in the clockwise direction on bd(wp, vp) toward wp.

Analogously, wm can be located by scanning bd(vp, vq) from vp in counterclockwise

order and by moving wm in the clockwise direction on bd(wp, vp) (see Figure 3.20(b)).

If vkuk and vmwm do not intersect, then there cannot be any visibility chord in P

by Lemma 3.5.14 and the algorithm terminates. So we assume that vkuk and vmwm

intersect in P . In the following lemma, we state the corresponding lemma to Lemma

3.5.14 for the bounding chord vquq (see Figure 3.19(a)).

Lemma 3.5.16 Let vpwp and vquq be bounding chords of two disjoint critical poly-

gons polyc(vp) and polycc(vq) in P , respectively, where vp ∈ bd(wp, vq). Let polycc(vz)

and polyc(vr) be critical polygons with bounding chords vzuz and vrwr, respectively,

where vz ∈ bd(vp, vq) and uz ∈ bd(vq, up), vr ∈ bd(uq, wp) and wr ∈ bd(vq, uq). If

vzuz and vrwr do not intersect, then there is no visibility chord in P .

Corollary 3.5.17 If P is a weak visibility polygon (Figure 3.19(b)), then vzuz and

vrwr intersect and one endpoint of every visibility chord of P belongs to bd(vq, uq).

Corollaries 3.5.15 and 3.5.17 suggest that one endpoint, say s, of every visibility

chord st belongs to bd(wm, uk) and the other endpoint t belongs to bd(wr, uz) (see

Figure 3.19(b)). Locating s and t essentially means constructing two sub-polygons

of P partitioned by st. Let Pc and Pcc denote these two sub-polygons, where bd(Pc)

consists of bd(t, s) and st, and bd(Pcc) consists of bd(s, t) and st. We know that



78 Weak Visibility and Shortest Paths

Figure 3.21 (a) The bounding chords viui and vmwm are non-intersecting. (b) The bounding
chords viui, vkuk and vmwm are mutually intersecting.

bd(uq, wp) can be included in bd(Pc). Similarly, bd(vp, vq) can be included in bd(Pcc).

We also know that bd(Pc) must include bd(uz, uq) and bd(wp, wm). Similarly, bd(Pcc)

must include bd(uk, vp) and bd(vq, wr). Let us test whether bd(Pc) can include

bd(uz, uq). Suppose there exists a counterclockwise C-polygon polycc(vi) (see Figure

3.21), where vi ∈ bd(uz, uq) and vi is the parent of vi+1 in SPT (vp). We have the

following cases.

Case 1. The ray −−−→vi+1vi has not intersected vmwm (Figure 3.21(a)).

Case 2. The ray −−−→vi+1vi has intersected both vkuk and vmwm (Figure 3.21(b)).

Case 3. The ray −−−→vi+1vi has not intersected vkuk (Figure 3.22(a)).

Consider Case 1. Since −−−→vi+1vi has not intersect vmwm (see Figure 3.21(a)), then

there is no visibility chord st in P by Lemma 3.2.18 as no st between bd(wm, uk)

and bd(wr, uz) can intersect viui. So, the algorithm terminates. From now on, we

assume that Case 1 has not occurred.

Consider Case 2. Since −−−→vi+1vi has intersected both vkuk and vmwm (see Figure

3.21(b)), viui becomes the new vkuk as any st between bd(wm, uk) and bd(wr, uz)

must intersect viui. So, Case 2 changes uk which means that some consecutive

vertices of the previous bd(wm, uk) have been excluded from the current bd(wm, uk).

Excluded vertices are automatically added to the current bd(uk, vp). Computing the

exact position of ui in Case 2 can be done in the same way as uk has been computed

earlier.

Consider Case 3. Since −−−→vi+1vi has not intersected vkuk (see Figure 3.22(a)), any

st between bd(wm, uk) and bd(wr, uz) also intersects viui satisfying Lemma 3.2.18.

So bd(wm, uk) remains unchanged.
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Figure 3.22 (a) The bounding chords viui and vkuk are non-intersecting. (b) The point t
belongs to bd(vi+1, uz).

The above process of testing is also carried out before including bd(wp, wm) in

Pc, bd(uk, vp) in Pcc and bd(vq, wr) in Pcc. Observe that this process of testing

continues as long as some vertices of the previous bd(wm, uk) or bd(wr, uz) have

been excluded. If the algorithm does not terminate, then this process of testing

ends with new bd(wm, uk) and bd(wr, uz) and all the vertices excluded so far have

been tested. It can be seen that if the testing is again carried out for the vertices

in the present bd(uz, uq), bd(wp, wm), bd(uk, vp) and bd(vq, wr), Case 1 and Case 2

cannot arise and only Case 3 occurs. Observe that the process of testing always

involves a new vertex that has not been tested earlier and it has been excluded only

in the previous pass. This observation keeps the recognition algorithm linear.

It can be seen that the algorithm is yet to test the vertices of the present bd(wm, uk)

and bd(wr, uz). Scan bd(wr, uz) in clockwise order from uz until a vertex vi is found

(see Figure 3.22(b)) such that (i) vi is the parent of vi+1 in SPT (vp), and (ii) −−−→vi+1vi
does not intersect vmwm. If no such vertex vi exists, it means that st can intersect

counterclockwise C-polygons of all reflex vertices in bd(wr, uz). If such vertex vi
exists, then vi+1 can be viewed as the new wr as t must belong to bd(vi+1, uz). So,

the excluded vertices between new wr (i.e., vi+1) and old wr are now added to new

bd(vq, wr) which invokes the process of testing for inclusion of these vertices in Pcc

as stated earlier. While including these excluded vertices in Pcc, both Case 1 and

Case 2 can occur. If Case 1 occurs, the algorithm terminates. If Case 2 occurs, it

changes the current wm, which invokes the process of inclusion of vertices for Pc as

stated earlier. Once the cascading process of testing for inclusion in both Pc and

Pcc is over, it means that new bd(wm, uk) and bd(wr, uz) have been computed.
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Figure 3.23 (b) The point t belongs to bd(wr, vi−1). (c) The visibility chord st is the
extension of a cross-tangent between SP (wm, uz) and SP (wr, uk).

Once the clockwise scan is over, the algorithm scans the present bd(wr, uz) in

counterclockwise order from wr (see Figure 3.23(a)) until a vertex vi is found such

that (i) vi is the parent of vi−1 in SPT (wp), and (ii) −−−→vi−1vi does not intersect vkuk.

If no such vertex vi exists, it means that st can intersect clockwise C-polygons of

all reflex vertices in bd(wr, uz). If such vertex vi exists, then vi−1 can be viewed as

the new uz as t must belong to bd(wr, vi−1). Then the analogous cascading process

of testing for inclusion is carried out as stated earlier. If the algorithm does not

terminate, it means that new bd(wm, uk) and bd(wr, uz) have been computed.

Analogous clockwise and counterclockwise scanning of bd(wm, uk) followed by

testing (if required) are carried out until the cascading process of testing for inclusion

in both Pc and Pcc is over. Hence, the algorithm computes the final bd(wm, uk) and

bd(wr, uz).

Let us now construct a visibility chord st in P . If SP (wm, uz) or SP (wm, wr)

or SP (uk, uz) or SP (uk, wr) is a segment, then the segment is a visibility chord

st. Otherwise, compute a cross-tangent between SP (wm, uz) and SP (wr, uk) (see

Figure 3.23(b)) and extend its both ends to bd(P ), which is a visibility chord st in

P . In the following, we state the major steps for computing a visibility chord st

inside P .

Step 1. Compute SPT (v1) by the algorithm of Ghosh et al. [162].

Step 2. By traversing SPT (v1), locate two disjoint critical polygons polyc(vp) and

polycc(vq) with bounding chords vpwp and vquq, respectively.

Step 3. Compute SPT (vp), SPT (wp), SPT (vq) and SPT (uq).
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Step 4. For each vertex vk of bd(uq, wp), test whether (i) SP (wp, vk) makes only left

turns, and (ii) SP (uq, vk) makes only right turns.

Step 5. For each vertex vk ∈ bd(vp, vq), test whether (i) SP (vp, vk) makes only right

turns, and (ii) SP (vq, vk) makes only left turns.

Step 6. Test whether SP (uq, wp) passes through a vertex of bd(vp, vq) or SP (vp, vq)

passes through a vertex of bd(uq, wp).

Step 7. Locate two critical polygons polycc(vk) and polyc(vm) with bounding chords

vkuk and vmwm, respectively, where vk ∈ bd(uq, wp) and uk ∈ bd(wp, vp), vm ∈
bd(vp, vq) and wm ∈ bd(wp, vp). Test whether vkuk and vmwm intersect.

Step 8. Locate two critical polygons polycc(vz) and polyc(vr) with bounding chords

vzuz and vrwr, respectively, where vz ∈ bd(vp, vq) and uz ∈ bd(vq, uq), vr ∈
bd(uq, wp) and wr ∈ bd(vq, uq). Test whether vzuz and vrwr intersect.

Step 9. Using cascade testing, determine whether (i) bd(uz, wm) can be included in

bd(Pc), and (ii) bd(uk, wr) can be included in bd(Pcc).

Step 10. Scan bd(wr, uz) and bd(wm, uk) in both clockwise and counterclockwise

order to compute the final bd(wr, uz) and bd(wm, uk).

Step 11. Compute a visibility chord in P by extending a cross-tangent between

SP (wm, uz) and SP (wr, uk) to bd(P ) and report st.

Let us discuss the correctness of the algorithm. It follows from Lemma 3.2.18 that

a visibility chord st must intersect all clockwise and counterclockwise C-polygons.

At each stage, the algorithm considers a C-polygon Ci and checks whether it forms a

disjoint critical polygon with any critical polygons CPi−1 = (C1, C2,..., Ci−1) located

so far. The algorithm also maintains two common intersection regions implicitly by

maintaining bd(wm, uk) and bd(wr, uz) formed by the bounding chords of CPi−1

such that one common intersection region can contain s and the other can contain t.

If Ci is a disjoint critical polygon with two other mutually disjoint critical polygons

Cj and Ck in CPi−1, the algorithm terminates. If Ci does not intersect either of the

two common intersection regions, the algorithm terminates. If Ci intersects one of

the two common intersection regions, it updates that common intersection region. If

Ci intersects both common intersection regions, it leaves both common intersection

regions unchanged. Once all C-polygons are considered, the algorithm constructs

st by ensuring that st intersects all C-polygons of P using a cross-tangent between

SP (wm, uz) and SP (wr, uk).

Let us analyze the time complexity of the algorithm. It can be seen that all

shortest paths computed in P in Steps 1 and 3 can be done in O(n) time as it

involves computing five shortest path trees. Two disjoint critical polygons polyc(vp)

and polycc(vq) in Step 2 can be located by traversing SPT (v1) at most four times.

By traversing SPT (vp), SPT (wp), SPT (vq) and SPT (uq) once, turns at all vertices

on bd(uq, wp) and bd(vp, vq) can be tested in Steps 4 and 5 in O(n) time. Since uk

and uz move only on the clockwise direction in two disjoint portions of the boundary
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of P , total cost for updating uk and uz is O(n). Similarly, total cost for updating

wm and wr is O(n) as wm and wr move only in the counterclockwise direction on two

disjoint portions of the boundary of P . Therefore, Steps 7 and 8 can be performed

in O(n) time. Similarly, Steps 9 and 10 take O(n) time. The chord st in Step

11 can be constructed in O(n) time. Therefore, the overall time complexity of the

algorithm is O(n). We summarize the result in the following theorem.

Theorem 3.5.18 A visibility chord st in a simple polygon P of n vertices can be

constructed in O(n) time.

3.6 Computing Shortest Path Trees

3.6.1 In Simple Polygons: O(n) Algorithm

In this section, we present an O(n) time algorithm of Guibas et al. [178] for com-

puting Euclidean shortest paths inside a simple polygon P of n vertices from a

given point s to all vertices of P . This algorithm is a generalization of the linear

time algorithm of Lee and Preparata [235] for computing the shortest path from a

point s to another point t inside P . Here, we also present the algorithm of Lee and

Preparata.

It can be seen that the union of shortest paths from s to all vertices of P form a

tree (see Figure 3.24(a)) and it is called the shortest path tree rooted at s (denoted

as SPT (s)). Observe that the parent of a vertex v in SPT (s) is the previous vertex

u of v in SP (s, v) (see Figure 3.24(a)). The algorithm for computing SPT (s) first

triangulates the given simple polygon P (denoted as T (P )). This can be done by the

algorithm of Chazelle [71] in O(n) time (see Theorem 1.4.6). Then the algorithm

traverses triangle by triangle using the dual graph of T (P ) and it computes the

shortest paths from s to the vertices of triangles in T (P ). Thus, the algorithm

computes SPT (s) in P . For properties of triangulations of P and their dual graphs,

see Section 1.4.

Let Ts denote the triangle containing s. So, s can be connected to all three vertices

of Ts in SPT (s). Note that s is currently the least common ancestor of the vertices

of Ts in SPT (s). Assume that the algorithm has computed SP (s, u) and SP (s, v),

where uv is an edge of T (P ) (Figure 3.24(b)). Let w be the least common ancestor

of u and v in SPT (s). The region of P bounded by SP (w, u), SP (w, v) and uv is

called a funnel F, where w is the apex of the funnel, SP (w, u) and SP (w, v) are the

sides of the funnel, and uv is the base of the funnel. Observe that SP (w, u) and

SP (w, v) are convex paths facing toward the interior of F . Let 4uvz be the next

triangle of F in T (P ). So, z lies outside F and the diagonal uv is not a polygonal

edge. The vertex z is called the next vertex of F in T (P ). We have the following

observation.
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Figure 3.24 (a) The shortest path tree SPT (s) from a point s to all vertices of P . The
vertex u is the parent of the vertex v in SPT (s). (b) The tangent yz splits the funnel F
into two funnels Fu and Fv.

Lemma 3.6.1 Let 4uvz be the next triangle in T (P ) of a funnel F , where w is

the apex of F and uv is the base of F . Let y be the vertex of F such that yz is the

tangent to SP (w, u) or SP (w, v). The vertex y is the parent of z in SPT (s).

Proof. Since w is the least common ancestor of u and v in SPT (s) (see Figure

3.24(b)), the line segment joining z and any vertex on SP (s, w), excluding w, does

not lie inside P . Therefore, the previous vertex of z on SP (s, z) belongs to F . Since

the internal angle at the previous vertex of z on SP (s, z) is reflex by Corollary 3.2.4,

the last edge in SP (s, z) is the tangent yz from z to SP (w, u) or SP (w, v). Hence,

y is the parent of z in SPT (s).

Corollary 3.6.2 If yz is the tangent to both SP (w, u) and SP (w, v), then y = w.

The above lemma suggests a procedure for locating the parent of z in SPT (s)

as follows. Traverse F starting from u or v (see Figure 3.24(b)) till a vertex y

is reached such that yz is the tangent to the side of the funnel at y. Once yz is

added to F , F splits into two funnels Fu and Fv. If y ∈ SP (w, u) , then Fu =

(SP (y, u), z, y) and Fv = (SP (w, z), SP (v, w)) (see Figure 3.24(b)). Otherwise,

Fu = (SP (w, u), SP (z, w)) and Fv = (y, z, SP (v, w)). Note that uz and zv are the

bases of Fu and Fv, respectively.

It can be seen that after splitting F into two funnels Fu and Fv, both Fu and Fv

may have their respective next vertices (see Figure 3.24(b)) and therefore, it is again

necessary to split both Fu and Fv by drawing tangents from their respective next

vertices. Repeat the process of splitting a funnel as long as it has a next vertex.

In other words, the process of splitting funnels terminates when the base of each
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funnel is a polygonal edge. Thus, SPT (s) is computed. In the following, we state

the major steps of the algorithm for computing SPT (s) in P .

Step 1. Triangulate P by the algorithm of Chazelle [71].

Step 2. Locate the given point s in a triangle Ts of T (P ). Assign s as the parent of

all three vertices of Ts in SPT (s). Initialize the list of funnels L by these three

funnels.

Step 3. While a funnel F in L has a next vertex then

Step 3a. Let z the next vertex of F . Compute the tangent yz to F and assign y

as the parent of z in SPT (s).

Step 3b. Add yz to F and split F into two new funnels. Add these two funnels

to L.

Step 4. Output SPT (s) and Stop.

The correctness of the algorithm follows from Lemma 3.6.1. Let us analyze the

time complexity of the algorithm. It can be seen that the algorithm runs in O(n)

time if the total cost for computing tangents in Step 3a for all funnels is O(n).

Suppose the algorithm uses a linear search to locate y in F in Step 3a. It means

that y is located by traversing vertices in F starting from u or v. So, the cost for

locating y is proportional to the number of vertices traversed in F . Suppose y is the

adjacent vertex of v in F and the linear search is performed starting at u (see Figure

3.25(a)). If m is the number of vertices in F , the number of vertices traversed for

locating y is m − 1. Now Fu has all vertices of F except v, and z is added to Fu.

Hence the size of Fu is same as F . If the same situation again occurs while splitting

the funnel Fu, the number of vertices traversed again is m − 1. If such a situation

occurs repeatedly for subsequent splitting, the total time required for splitting all

funnels can be O(n2).

Let us consider a special situation. Assume that the dual graph of T (P ) does

not have any node of degree 3 (see Figure 3.25(b)). This means that whenever F is

split into Fu and Fv by yz, uz or vz is a polygonal edge. Therefore, only one of Fu

and Fv can have a next vertex which requires further splitting. If uz is a polygonal

edge (see Figure 3.25(b)), a linear search in F can start from u. In that case, the

cost for locating y in F is proportional to the size of Fu. Since Fu does not have a

next vertex as uz is a polygonal edge, the vertices of Fu are not considered again

for subsequent splitting of any other funnel. Similarly, if vz is a polygonal edge, a

linear search in F for locating y can start from v instead of u. Using this strategy of

choosing the starting vertex of a linear search, the total cost for splitting all funnels

can be bounded by O(n) in this special situation.

In light of above discussion, let us consider the problem of computing the shortest

path SP (s, t) between two given points s and t in P . Let Ts and Tt denote the

triangles in T (P ) containing s and t, respectively. Let pst denote the path from Ts
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Figure 3.25 (a) Splitting all funnels takes O(n2) time by a linear search. (b) One side of
every triangle in the triangulation of P is a polygonal edge.

to Tt in the dual of T (P ). Construct the sub-polygon P ′ of P consisting of only

those triangle of T (P ) that are on pst. In Figure 3.25(b), P ′ is same as P as one side

of every triangle in T (P ) is a polygonal edge. Since SP (s, t) lies inside P ′, P ′ can

be considered for computing SP (s, t) in place of P . Since the dual graph of T (P ′)

is a path, the above strategy of linear search can be used for computing SP (s, t) in

O(n) time as shown by Lee and Preparata [235]. We have the following theorem.

Theorem 3.6.3 The shortest path between two points inside a simple polygon P of

n vertices can be computed in O(n) time.

Let us return to the discussion on the cost of computing tangent yz in F in Step

3a of the algorithm for computing SPT (s). In order to obtain the desired linear

time complexity for computing SPT (s), a different searching strategy for locating y

is required at the time of splitting F . Is it possible to perform binary search (instead

of a linear search) on F to locate y? Before we answer this question affirmatively,

we need a suitable representation of F .

Observe that the current funnel F can be maintained as a sorted list [ul, ul−1, ..., u1,

w, v1, v2, ...., vk], where u0 = v0 = w is the apex of F , and the sides of F are

SP (u0, ul) = [u0, ..., ul] and SP (v0, vk) = [v0, ..., vk]. The list representing F is

stored in a search tree. To perform search for locating the vertex y, store two

pointers with each vertex x of F appearing in the search tree, pointing to its two

neighbors x′ and x′′ in F . This allows to calculate the slope of two edges xx′ and

xx′′ of F in constant time. By comparing the slopes of xx′ and xx′′ with that of

xz, it can be decided in constant time on which side of x the binary search should

continue in order to locate y. Therefore, this data structures supports searching for
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y in O(log(l+ k+1)) time. Since there can be at most O(n) operations of splitting

funnels in P , the total time required for splitting all funnels is O(n logn).

Although the binary search gives a better time complexity than a linear search,

it is still possible to improve the time complexity by storing F in a finger search

tree. A finger search tree is essentially a search tree equipped with fingers. A finger

is a pointer to an element of the list and searching is performed in the search tree

between two fingers. In a search tree, searching starts from the root of the tree,

whereas in a finger search tree the searching starts from a finger. For more details

on finger search trees, see Mehlhorn [256].

In our application, the fingers are placed at the first and the last node of the tree

in symmetric order, i.e., at ul and vk. We now discuss the procedure for locating y

in our finger search tree. Let d be the distance from ul to y in F . Observe that the

number of nodes in the path Au from ul to y in the finger search tree is O(log d).

The next node in the path can be determined from the current node by comparing

slopes as stated earlier. If m is the size of F , then y is at a distance m− d from vk

in F . So, the number of nodes in the path Av from vk to y in the finger search tree

is O(log(m − d)). Using both paths Au and Av, then y can be located as follows.

Move from ul to the next node in Au. Move from vk to the next node in Av. Move

from the current node to the next node in Au. Move from the current node to the

next node in Av and so on, until y is reached either from ul or from vk. So y can

be located in O(min(log d, log(m− d)) time.

The finger search tree therefore supports searching for the tangent from the next

vertex in time O(log δ), where δ is the distance from y to the nearest finger. It also

supports operations that split the tree into two sub-trees at y in amortized time

O(log δ).

To bound the time required for splitting all funnels recursively using finger search

trees, we argue as follows. Let T denote the dual tree of a triangulation of P and

it has n − 2 nodes. If s lies in one triangle Ts, take that triangle as the root of

T . Otherwise, s is a vertex and lies in several triangles of the given triangulation.

There exists at least one triangle with a polygonal edge incident to s and take that

triangle as the root of T . Thus each node of T (including the root) has 0, 1, or 2

children. The algorithm is a depth-first traversal of T [15].

We know that the cost for processing the node of x is O(min(log d, log(m− d))),

where m is the size of the funnel before the node of x is processed and, d and m− d

are the size of two funnels after splitting. Let C∗(m) denote the cost of processing

the sub-tree rooted at the node of x. So,

C∗(m) = C∗(d) + C∗(m− d) + O(min(log d, log(m− d))),

where C∗(d) and C∗(m − d) denote the cost of processing the sub-trees rooted at

the children of the node of x. Taking all possible partitions of m, we obtain the

formula
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C∗(m) = max1≤d≤m−1[C
∗(d) + C∗(m− d) + O(min(log d, log(m− d)))].

It can be shown by induction on m that C∗(m) is maximum for d = m/2. Therefore,

C∗(m) ≤ C ′(m) = 2C ′(m/2)+ O(logm/2). So,

C ′(m) = O(m) +O(log{(m1.m2.m4...m2log m
)/(21.22.2.23.2

2
.24.2

3
...2logm.2log m−1

)}).
Assuming m is power of 2,

C ′(m) = O(m) +O(log{(mm−1)/(2m logm+1−m)})
= O(m) +O(log{(mm−1)/(mm21−m)})
= O(m) +O(m− 1− logm).

Hence C∗(m) is O(m). So the total time required for splitting all funnels is O(n).

Thus the overall time complexity of the algorithm is O(n). We summarize the result

in the following theorem.

Theorem 3.6.4 The shortest path tree rooted at a point inside a simple polygon P

of n vertices can be computed in O(n) time.

3.6.2 In Weak Visibility Polygons: O(n) Algorithm

In this section, we present an O(n) time algorithm of Ghosh et al. [162] for com-

puting the shortest path tree from a vertex in a simple polygon P of n vertices

without the prior knowledge of a visibility chord in P . If the algorithm terminates

without computing the shortest path tree, it means that P is not a weak visibility

polygon because it does not satisfy the characterization of weak visibility polygons

presented in Theorem 3.2.14. If the algorithm computes the shortest path tree, P

may or may not have a visibility chord. The algorithm computes the shortest path

tree by scanning the boundary of P using simple data structures. This algorithm

can be viewed as a preprocessing step for recognizing weak visibility polygons as

shown in Sections 3.5.1 and 3.5.2.

Exercise 3.6.1 Assume that a simple polygon P of n vertices is given

along with a visibility chord. Design an O(n) time algorithm for comput-

ing the shortest path tree from a vertex of P by scanning the boundary of

P [162].

We assume that the vertices of the given simple polygon P are labeled v1, v2, . . . , vn
in counterclockwise order. The algorithm chooses v1 as the root and then computes

SPT (v1). In presenting the algorithm, we use the same notations and definitions

introduced in Section 3.3.1. The algorithm starts by scanning bdcc(v2, vn) in counter-

clockwise order, and computes SPcc(v1, v2), SPcc(v1, v3),..., SPcc(v1, vn−1) (see Fig-

ure 3.26(a)). During the counterclockwise scan, if it is found that SP (v1, vi−1) does

not make only right turns for some vertex vi−1 (i.e., SP (v1, vi−1) 6= SPcc(v1, vi−1)),
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Figure 3.26 (a) SPcc(v1, vi) = (SPcc(v1, vk), vi). (b) SPcc(v1, vi) = (SPcc(v1, vi−1), vi). (c)
There is a reverse turn at vi−1.

then the algorithm marks the vertex vi−1 as vcc (see Figure 3.26(c)), and starts the

clockwise scan from vn for computing SPc(v1, vn−1), SPc(v1, vn−2),..., SPc(v1, v2).

During the clockwise scan, if it is found that SPc(v1, vi−1) does not make only

left turns for some vertex vi−1 (i.e., SP (v1, vi−1) 6= SPc(v1, vi−1)), then the algo-

rithm marks the vertex vi−1 as vc. If the counterclockwise scan reaches vn, then

SPTcc(v1, vn) is SPT (v1) (see Figure 3.26(a)). Similarly, if the clockwise scan

reaches v2, then SPTc(v1, v2) is SPT (v1). Otherwise, the algorithm has located

vcc and vc. We say that there are reverse turns at vcc and vc.

Let us explain the procedure for locating vcc during the counterclockwise scan.

The vertex vc can be located by the analogous procedure. Assume that SPcc(v1, v2),

SPcc(v1, v3),..., SPcc(v1, vi−1) have been computed and the procedure wants to com-

pute SPcc(v1, vi). Let uj denote the parent of vj in SPTcc(v1, vi−1). We have the

following cases.

Case 1. The vertex vi lies to the left of −−−−−→ui−1vi−1 (Figure 3.26(a)).

Case 2. The vertex vi lies to the right of −−−−−→ui−1vi−1.

Case 2a. The vertex vi lies to the right of −−−−−→vi−2vi−1 (Figure 3.26(b)).

Case 2b. The vertex vi lies to the left of −−−−−→vi−2vi−1 (Figure 3.26(c)).

Consider Case 1. Since vi lies to the left of−−−−−→ui−1vi−1 (see Figure 3.26(a)), SPcc(v1, vi)

makes only right turns. Let vk be the first vertex of SPcc(v1, vi−1) starting from

vi−1 such that vi lies to the right of −−→ukvk. Therefore, vk becomes the parent

ui of vi in SPTcc(v1, vi) as vivk is the tangent from vi to SPcc(v1, vi−1). Hence,

SPcc(v1, vi) = (SPcc(v1, vk), vi).
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Figure 3.27 (a) The vertex vc belongs to bdcc(v1, vcc). (b) The vertex vc does not belong to
bdcc(v1, vcc).

Consider Case 2a. Since vi lies to the right of both −−−−−→ui−1vi−1 and −−−−−→vi−2vi−1 (see

Figure 3.26(b)), it means that SPcc(v1, vi) makes only right turns, and vi−1 is the

parent ui of vi in SPTcc(v1, vi) as vivi−1 is the tangent from vi to SPcc(v1, vi−1).

So, SPcc(v1, vi) = (SPcc(v1, vi−1), vi).

Consider Case 2b. Since vi lies to the right of −−−−−→ui−1vi−1 and to the left of −−−−−→vi−2vi−1
(see Figure 3.26(c)), SP (v1, vi−1) passes through vertices of bdcc(vi, vn−1) and there-

fore, SP (v1, vi−1) and SPcc(v1, vi−1) are not same. The vertex vi−1 is marked as

vcc.

Exercise 3.6.2 Let v be a vertex of a simple polygon P of n vertices.

Assume that the shortest path from v to each vertex of P does not make

a right turn at any vertex in the path. Design an O(n) time algorithm to

compute the shortest path tree in P from the next counterclockwise vertex

of v by scanning the boundary of P .

From now on we assume that the algorithm has located vc and vcc, and has

computed SPTc(v1, vc) and SPTcc(v1, vcc). We have the following two cases.

Case A. The vertex vc belongs to bdcc(v1, vcc) (Figure 3.27(a)).

Case B. The vertex vc does not belong to bdcc(v1, vcc) (Figure 3.27(b)).

It will be shown later that Case A can be solved using the method presented

for Case B. Consider Case B. From the definitions of vc and vcc, it is clear that

SPc(v1, vc) is not SP (v1, vc) as SP (v1, vc) passes through at least a vertex of

bdcc(v1, vc). Similarly, SPcc(v1, vcc) is not SP (v1, vcc) as SP (v1, vcc) passes through
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at least a vertex of bdc(v1, vcc). We have the following observation on the relationship

of vc and vcc with a visibility chord st in P .

Lemma 3.6.5 Let v1, vc and vcc be any three vertices of P such that SP (v1, vcc)

and SP (v1, vc) pass through a vertex of bdc(v1, vcc) and bdcc(v1, vc), respectively. If

P is weakly visible from a chord st, then one endpoint of st lies on bdcc(v1, vcc) and

the other endpoint of st lies on bdc(v1, vc).

Proof. Since SP (v1, vcc) passes through a vertex of bdc(v1, vcc) (see Figure 3.27(b)),

stmust intersect the eave vivj of SP (v1, vcc) by Lemma 3.2.16, where vi ∈ bdcc(v1, vcc)

and vj ∈ bdc(v1, vcc). Therefore, one endpoint of st lies on bdcc(v1, vcc). The argu-

ments also hold for the special situation when vi = v1. Analogous arguments show

that the other endpoint of st lies on bdc(v1, vc).

Corollary 3.6.6 The vertex v1 belongs to one sub-polygon of st, and vertices vc and

vcc belong to the other sub-polygon of st.

Corollary 3.6.7 For any vertex vk ∈ bdcc(vcc, vc), SP (vc, vk) makes only left turns

and SP (vcc, vk) makes only right turns.

Corollary 3.6.7 suggests the next step of the algorithm. Scan bdcc(vcc, vc) in

counterclockwise order and compute SPTcc(vcc, vc). If a reverse turn is encountered

during the scan, i.e., Corollary 3.6.7 does not hold, the algorithm terminates as there

is no visibility chord in P . So, we assume that SPTcc(vcc, vc) has been computed.

Analogously, scan bdc(vc, vcc) in clockwise order and compute SPTc(vc, vcc). Hence,

four trees SPTcc(v1, vcc), SPTcc(vcc, vc), SPTc(v1, vc) and SPTc(vc, vcc) have been

computed.

The above four partial trees computed by the algorithm can be merged to com-

pute SPT (v1). We know that SPc(vc, vcc) and SPcc(v1, vcc) are intersecting (see

Figure 3.27(b)). So, the two paths SPc(vc, vcc) and SPcc(v1, vcc) share a point other

that vcc. It can be seen in Figure 3.28(a) that SPc(vc, vcc) and SPcc(v1, vcc) meet

only at vcc but two paths cannot be called non-intersecting as the previous vertices

of vcc in the two paths are in the reverse order at vcc. So, we need a proper def-

inition of intersecting paths. For any vertex vk ∈ bdcc(v1, vcc), two convex paths

SPc(vc, vk) = (vc, ..., wk, vk), and SPcc(v1, vk) = (v1, ..., uk, vk) are said to be inter-

secting if wk lies to the right of −−→ukvk (see Figure 3.28). In order to rectify the inter-

section of SPc(vc, vcc) and SPcc(v1, vcc), a vertex vm ∈ bdcc(v2, vcc) is located such

that (i) SPc(vc, vm) and SPcc(v1, vm) are not intersecting, and (ii) SPc(vc, vm+1)

and SPcc(v1, vm+1) are intersecting (see Figure 3.27(b)). Note that no such vertex

vm exists for the polygon in Figure 3.28(a) and therefore, this polygon does not

have any visibility chord. From now on we assume that vm always exists (see Figure

3.27(b)). We have the following observations.
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Figure 3.28 (a) Two paths SPcc(v1, vcc) and SPc(vc, vcc) intersect. (b) A reverse turn is
encountered at vk before vm is reached.

Lemma 3.6.8 Let vk be a vertex of bdcc(v1, vcc). If SPc(vc, vk) and SPcc(v1, vk)

intersect, then SP (v1, vk) contains an eave.

Proof. Proof follows from the definition of intersecting paths.

Lemma 3.6.9 If st is a visibility chord of P , where s ∈ bdcc(v1, vcc) and t ∈
bdc(v1, vc), then every path in SPTc(vc, s) makes only left turns and every path in

SPTcc(vcc, t) makes only right turns.

Proof. Proof follows from Theorem 3.2.13 (see Figure 3.27(b)).

Lemma 3.6.9 suggests a method to locate vm. The merging procedure scans

bdc(vcc, v1) in clockwise order starting from vcc and it computes SPc(vc, vk), where

vk is the current vertex under consideration. If SPc(vc, vk) and SPcc(v1, vk) are

non-intersecting, then vk is vm (see Figure 3.27(b)). Otherwise, vk−1 becomes the

current vertex under consideration. During the scan, if a reverse turn is encountered

at vk (see Figure 3.28(b)), s belongs to bdc(vcc, vk) by Lemmas 3.6.5 and 3.6.9. On

the other hand, there is no chord connecting a point of bdc(vcc, vk) to another point

of bdc(v1, vc) in P . Therefore, there is no visibility chord in P and the algorithm

terminates. From now on we assume that vm is reached by the algorithm by scanning

bdc(vcc, v1).

Exercise 3.6.3 Let Q1 and Q2 be two disjoint convex polygons of m1 and

m2 vertices. Let a ∈ Q1 and b ∈ Q2 be two vertices such that Q1 and Q2

lie on the opposite sides of the line drawn through a and b. The segment

ab is called a cross-tangent between Q1 and Q2. Design an algorithm for

locating both cross-tangents between Q1 and Q2 in O(m1+m2) time [291].
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Figure 3.29 (a) The parent uj of vj in SPTc(vc, vm+1) becomes the current vj . (b) The
parent ui of vi in SPTcc(v1, vm) becomes the current vi.

After locating vm, the merging procedure draws the cross-tangent vivj between

SPc(vc, vm+1) and SPcc(v1, vm), where vi ∈ SPcc(v1, vm) and vj ∈ SPc(vc, vm+1)

(see Figure 3.27b). So, vi is the parent of vj in SPTcc(v1, vj). Concatenate the

subtree at vj of SPTc(vc, vm+1) as the subtree at vj in SPTcc(v1, vj).

Let us explain how the cross-tangent vivj is computed. Assign vm+1 to vj . Assign

the parent of vm in SPTcc(v1, vm) to vi. If the parent uj of vj in SPTc(vc, vm+1) lies

to the right of −−→vivj (see Figure 3.29(a)), then assign uj to vj . Otherwise, if vj lies to

the left of −−→uivi (see Figure 3.29(b)), where ui is the parent of vi in SPTcc(v1, vm),

assign ui to vi. This process is repeated till vivj becomes the cross-tangent, i.e.,

SPc(vc, vm+1) and SPcc(v1, vm) lie on opposite sides of the line drawn through vi

and vj .

After computing SPTcc(v1, vj), the merging procedure analogously locates the

vertex vk ∈ bdc(v1, vc) by scanning bdc(v1, vc) in clockwise order starting from vc
(see Figure 3.27(b)) such that (i) SPc(v1, vk) and SPcc(vcc, vk) are non-intersecting,

and (ii) SPc(v1, vk−1) and SPcc(vcc, vk−1) are intersecting. Then the merging proce-

dure locates the cross-tangent vpvq between SPc(v1, vk) and SPcc(vcc, vk−1), where

vp ∈ SPc(v1, vk) and vq ∈ SPcc(vcc, vk−1). Finally, SPTc(v1, vk) is extended to

SPTc(v1, vq).

Exercise 3.6.4 Draw a figure showing SPTcc(v1, vj) and SPTc(v1, vq)

are overlapping.

After computing SPTcc(v1, vj) and SPTc(v1, vq), the procedure checks whether

they are disjoint or overlapping. Let va and vb be the next vertex of v1 in SPcc(v1, vj)

and SPc(v1, vq), respectively. If vb lies to the left of −−→v1va, then SPTcc(v1, vj) and
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SPTc(v1, vq) are disjoint (see Figure 3.27(b)). Otherwise, they are overlapping. We

have the following observations.

Lemma 3.6.10 If SPTcc(v1, vj) and SPTc(v1, vq) are disjoint, then (i) for every

vertex vd ∈ bdc(v1, vq), SPc(v1, vd) is same as SP (v1, vd), and (ii) for every vertex

vd ∈ bdcc(v1, vj), SPcc(v1, vd) is same as SP (v1, vd).

Lemma 3.6.11 If SPTcc(v1, vj) and SPTc(v1, vq) are overlapping, then there is no

visibility chord in P .

Exercise 3.6.5 Prove Lemma 3.6.11.

From now on, we assume that SPTcc(v1, vj) and SPTc(v1, vq) are disjoint.

Extend vivb from vb to bdc(vq, vj) meeting it at z (see Figure 3.27(b)). The merging

procedure scans bdcc(vj , z) in counterclockwise order starting from vj and computes

SPTcc(v1, z) by drawing a tangent from the current vertex vr to SPcc(v1, vr−1).

Note that the tangent from vr can be computed by the procedure stated earlier

in Case 1 and Case 2a. A reverse turn in Case 2b can be avoided by computing

the cross-tangent between SPc(vc, vr) and SPcc(v1, vr−1) as stated earlier. Observe

that while locating the cross-tangent, some vertices of bdcc(vj , z) are skipped when

the current vertex vr is assigned to its parent in SPTc(vc, vr). As before, appro-

priate sub-trees of SPTc(vc, vj) at some of these skipped vertices are concatenated

to complete the construction of SPTcc(v1, z). Similarly, SPTc(v1, vq) is extended to

SPTc(v1, z) with the help of SPTcc(vcc, vq). Hence, the union of SPTc(v1, z) and

SPTcc(v1, z) gives SPT (v1).

Consider Case A. In this case, vc belongs to bdcc(v1, vcc) (see Figure 3.27(a)). The

algorithm checks whether SPTc(v1, vcc) and SPTcc(v1, vc) are disjoint or overlap-

ping. If they are disjoint, the algorithm locates the intersection point z as before

by extending the first edge of SPc(v1, vcc) to bdcc(vc, vcc). Then the algorithm takes

the union of SPTc(v1, z) and SPTcc(v1, z) to construct SPT (v1).

Consider the other situation when SPTc(v1, vcc) and SPTcc(v1, vc) are overlapping

(see Figure 3.27(a)). Let va and vb be the next vertex of v1 in SPcc(v1, vcc) and

SPc(v1, vc), respectively. It can be seen that if bd(P ) intersects both v1va and

v1vb, then there is no visibility chord in P by Lemma 3.2.17 as there are more

than one eave in SP (v1, vcc) or SP (v1, vc). So, we assume that bd(P ) intersects

either v1vb or v1va. Consider the situation when bd(P ) intersects v1vb but does not

intersect v1va (see Figure 3.27(a)). Scan bdc(z, vc) in counterclockwise order until

a vertex vk ∈ bdc(vcc, vc) is found such that (i) SPc(z, vk) and SPcc(v1, vk) are not

intersecting, and (ii) SPc(z, vk+1) and SPcc(v1, vk+1) are intersecting. If no such

vertex vk exists, it means that SPc(v1, vcc) and SPcc(v1, vc) have overlapped more

than once and therefore, there are two or more eaves in SP (v1, vcc) or SP (v1, vc).

By Lemma 3.2.17, there is no visibility chord in P . So, we assume that vk exists.
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Draw the cross-tangent between SPc(z, vk+1) and SPcc(v1, vk) and using the cross-

tangent, complete the construction of SPT (v1) by choosing the appropriate sub-

trees as discussed earlier. The other situation, i.e, when bd(P ) intersects v1va but

does not intersect v1vb, can be handled analogously.

In the following, we state the major steps of the algorithm for computing SPT (v1)

in P under the assumption that both vc and vcc exist, and vcc ∈ bdcc(v1, vc) (i.e.,

Case B).

Step 1. Scan bd(P ) in counterclockwise order and compute SPTcc(v1, vcc), where

the reverse turn is encountered at the vertex vcc.

Step 2. Scan bd(P ) in clockwise order and compute SPTc(v1, vc), where the reverse

turn is encountered at the vertex vc.

Step 3. Scan bdcc(vcc, vc) in counterclockwise order and compute SPTcc(vcc, vc). If

a reverse turn is encountered at some vertex of bdcc(vcc, vc) then goto Step 12.

Step 4. Scan bdc(vc, vcc) in clockwise order and compute SPTc(vc, vcc). If a reverse

turn is encountered at some vertex of bdc(vc, vcc) then goto Step 12.

Step 5. Let vm be a vertex of bdc(vcc, v1) such that (i) SPc(vc, vm) and SPcc(v1, vm)

are non-intersecting, and (ii) SPc(vc, vm+1) and SPcc(v1, vm+1) are intersecting.

Scan bdc(vcc, v1) in clockwise order and extend SPTc(vc, vcc) to SPTc(vc, vm). If

no such vertex vm exists or a reverse turn is encountered before reaching vm then

goto Step 12.

Step 6. Compute the cross-tangent vivj between SPc(vc, vm+1) and SPcc(v1, vm),

where vi ∈ SPcc(v1, vm) and vj ∈ SPc(vc, vm+1). Assign vi as the parent of vj in

SPTcc(v1, vj). Concatenate the sub-tree at vj of SPTc(vc, vm+1) as the sub-tree

rooted at vj in SPTcc(v1, vj).

Step 7. Let vk be a vertex of bdc(v1, vc) such that (i) SPc(v1, vk) and SPcc(vcc, vk)

are non-intersecting, and (ii) SPc(v1, vk−1) and SPcc(vcc, vk−1) are intersecting.

Scan bdc(vc, v1) in clockwise order and extend SPTcc(vcc, vc) to SPTcc(vcc, vk). If

no such vertex vk exists or a reverse turn is encountered before reaching vk then

goto Step 12.

Step 8. Compute the cross-tangent vpvq between SPc(v1, vk) and SPcc(vcc, vk−1),

where vp ∈ SPc(v1, vk) and vq ∈ SPcc(vcc, vk−1). Assign vq as the parent of vp
in SPTc(v1, vq). Concatenate the sub-tree at vq of SPTcc(vcc, vc) as the sub-tree

rooted at vq in SPTc(v1, vq).

Step 9. If SPTc(v1, vq) and SPTcc(v1, vj) are overlapping then goto Step 12.

Step 10. Extend the first edge of SPc(v1, vq) to bdc(vq, vj) meeting it at a point z.

Extend SPTc(v1, vq) to SPTc(v1, z) using SPTcc(vcc, vq). Extend SPTcc(v1, vj)

to SPTcc(v1, z) using SPTc(vc, vj).

Step 11. Output the union of SPTc(v1, z) and SPTcc(v1, z) as SPT (v1) and Stop.

Step 12. Report that there is no visibility chord in P and Stop.
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Let us discuss the correctness of the algorithm. Steps 1 and 2 identify two vertices

of P as vcc and vc in the counterclockwise and clockwise scans, respectively, where

vcc ∈ bdcc(v1, vc). As there are reverse turns at vcc and vc, one endpoint (say,

s) of any visibility chord st in P belongs to bdcc(v1, vcc) and the other endpoint

t belongs to bdc(v1, vc) by Lemma 3.6.5. So, all vertices in bdcc(vcc, vc) belong to

the same sub-polygon of st by Corollary 3.6.6. Therefore, the shortest paths from

vcc and vc to any vertex of bdcc(vcc, vc) must be convex by Corollary 3.6.7, which

are checked in Steps 3 and 4. Consider a vertex vm+1 ∈ bdcc(v1, vcc) such that

there is an eave in SP (v1, vm+1). Since st intersects every eave in SPT (v1) by

Lemma 3.2.16, v1 and vm+1 must belong to different sub-polygons of st. So, s

belongs to bdcc(v1, vm+1) and by Lemma 3.6.9, SP (vc, vm+1) makes only left turns.

Step 5 locates the edge vmvm+1 by scanning bdc(vcc, v1) in clockwise order such

that SPcc(v1, vm) is convex but SPcc(v1, vm+1) is not convex. Step 6 locates the

eave vivj in SPcc(v1, vm+1) by drawing the cross-tangent between SPcc(v1, vm) and

SPc(vc, vm+1) and extends SPTcc(v1, vm) to SPTcc(v1, vj). Analogously, Steps 7 and

8 construct SPTc(v1, vq). Step 9 checks whether SPTcc(v1, vj) and SPTc(v1, vq) are

overlapping. If they are overlapping, P cannot have a visibility chord by Lemma

3.6.11 since either SP (v1, vcc) or SP (v1, vc) must have two or more eaves. If they are

disjoint, then the paths in SPTcc(v1, vj) and SPTc(v1, vq) are the shortest paths in

P by Lemma 3.6.10. The algorithm completes the construction of SPT (v1) in Steps

10 and 11. It can be seen that the algorithm runs in O(n) time since the vertices

of P are scanned at most four times. We summarize the result in the following

theorem.

Theorem 3.6.12 The shortest path tree rooted at a vertex of a simple polygon P of

n vertices can be computed in O(n) time without the prior knowledge of a visibility

chord of P .

3.7 Recognizing Weakly External Visible Polygons

In this section, we present an O(n) time algorithm of Bhattacharya et al. [53] for

computing a line segment pq outside a given simple polygon P such that P is weakly

externally visible from pq. A polygon P is called weakly externally visible if every

point on the boundary of P is visible from some point on the convex hull of P (see

Figure 3.4(b)). This means that a ray can be drawn from each boundary point of P

such that the ray does not intersect the interior of P . In the following, we present

a recognition algorithm of P that runs in O(n) time.

Step 1. Compute the convex hull of P by the algorithm of Graham and Yao [175]

(see Figure 3.30(a)). Let C = (c1, c2, ..., ck) denote the convex hull of P where

ci+1 is the next counterclockwise vertex of c1.

Step 2. Scan bd(P ) in counterclockwise order (see Figure 3.30(a)) and compute the
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Figure 3.30 (a) The boundary of P is weakly visible from the convex hull edges of P . (b)
The boundary of P is weakly visible from both p1q1 and p2q2.

shortest path tree SPTcc(c1) rooted at c1 by the scanning procedure mentioned

in Section 3.6.2 as Case 1 and Case 2. Avis and Toussaint [42]. Analogously, scan

bd(P ) in clockwise order (see Figure 3.30(b)) and compute SPTc(c1).

Step 3. If any reverse turn is encountered during either scan then report that P is

not weakly externally visible else report SPTcc(c1) and SPTc(c1).

Once we know that P is weakly externally visible, the problem is now to construct

a segment pq such that P is also weakly externally visible from pq. Two vertices

ci and cj are said to be antipodal if there exists two parallel lines passing through

ci and cj such that they do not intersect the interior of P [291]. In the following

lemma, we establish a property of pq.

Exercise 3.7.1 Prove that there are at most 3m/2 antipodal pairs of

vertices in a convex polygon of m vertices [291].

Lemma 3.7.1 If P is weakly externally visible from a line segment p1q1, then P is

also weakly externally visible from another line segment p2q2 which passes through

a vertex of the convex hull of P .

Proof. We prove only for the case when p1q1 and the convex hull of P are disjoint

(see Figure 3.30(b)). Let ci be a vertex of the convex hull of P such that the triangle

formed by three segments p1q1, p1ci and q1ci contains P . Observe that such a vertex

ci always exists as P is weakly externally visible from p1q1. Translate p1q1 parallel

to itself toward the interior of the triangle till it touches a vertex cj of the convex

hull of P . Let p2 ∈ p1ci and q2 ∈ q1ci be the endpoints of the translated segment
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Figure 3.31 (a) P is weakly externally visible form pq. (b) The points p and q are moved
to the points of intersection of the rays and L1.

passing through cj . It can be seen that P is also weakly externally visible from p2q2.

Corollary 3.7.2 The vertices ci and cj are antipodal vertices of P .

Suppose a line L1 is given and it passes through a vertex cj of the convex hull

of P (see Figure 3.31(a)). Assume that P is weakly externally visible from L1. We

wish to locate the positions of p and q on L1 closest to cj such that P is weakly

externally visible from pq.

Let ci be an antipodal vertex of cj such that a line parallel to L1 touches ci. Assign

p to the intersection point of L1 and −−−→cici+1. Similarly, assign q to the intersection

point of L1 and −−−→cici−1. If P is weakly externally visible from pq, then p and q are

located correctly. Observe that the polygonal boundary bd(cj , ci) is visible from qcj
and the remaining polygonal boundary bd(ci, cj) is visible from pcj . Note that pq

satisfies Lemma 3.7.1.

Consider the other situation when P is not weakly externally visible from the

current pq (see Figure 3.31(b)). This means that pcj cannot see the entire polygonal

boundary of bd(ci, cj) or qcj cannot see the entire polygonal boundary of bd(cj , ci).

Consider the later situation. Move q along L1 away from cj to the point q′ such that

q′cj sees the entire polygonal boundary of bd(cj , ci) (see Figure 3.31(b)). It can be

seen that q′ is the intersection point of L1 and −−−−−→vmvm−1, where vmvm−1 is an edge

on the polygonal boundary of bd(cj , ci). Observe that vm−1 is the parent of vm in

SPTcc(cj), where SPTcc(cj) is the union of (i) the sub-tree of SPTcc(c1) rooted at

cj , and (ii) the sub-tree of SPTc(c1) rooted at cj . Analogously, p can be moved along

L1 away from cj till the point p′ such that p′cj sees the entire polygonal boundary

bd(ci, cj) (see Figure 3.31(b)). This means that p′ is the intersection point of L1
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Figure 3.32 (a) The line L1 is rotated around cj in the counterclockwise direction to L′
1.

(b) The right envelope (ci, cj) is the locus of the point q along rays.

and some −−−−→vkvk+1, where vkvk+1 is an edge on the polygonal boundary of bd(ci, cj)

and vk+1 is the parent of vk in SPTc(cj). The segment p′q′ becomes new pq as P is

weakly externally visible from p′q′.

The above discussion shows how to locate the segment pq on a given line L1. Let

L′1 denote another line passing through cj (see Figure 3.32(a)) such that there exists

a line parallel to L′1 that passes through ci and does not intersect the interior of P .

So, L′1 can be viewed as the new position of L1 after L1 is rotated around cj (say, in

the counterclockwise direction) and ci remains the antipodal vertex of cj with respect

to L′1. Let p′ (or q′) denote the intersection point of −−−−→vkvk+1 (respectively, −−−−−→vmvm−1)

with L′1. This rotation from L1 to L′1 can also be achieved by moving p along −−−−→vkvk+1

away from vk and q along −−−−−→vmvm−1 toward vm such that (i) the new segment p′q′

still passes through cj , and (ii) ci remains the antipodal vertex of cj . Observe that

though P is weakly externally visible from pq, P may not be weakly externally

visible from p′q′. For example, P is weakly externally visible from p′q′ in Figure

3.32(a) but not in Figure 3.32(b). This can happen if the polygonal boundaries of

bd(ci, cj) and bd(cj , ci) are not weakly visible from p′cj and q′cj , respectively.

Suppose q′cj cannot see the entire polygonal boundary of bd(cj , ci) (see Figure

3.32(b)). This means that q must move away from cj along L′1 to the intersection

point of L′1 with some ray −−−−→vsvs−1, where vs−1 is the parent of vs in SPTcc(cj) and

vsvs−1 is an edge on bd(vm, ci). Let z2 be the intersection point of −−−−→vsvs−1 and
−−−−−→vmvm−1. In order to see the entire polygonal boundary of bd(cj , ci) continuously, q

must follow −−−−−→vmvm−1 toward vm till it reaches z2 and then it has to follow −−−−→vsvs−1
toward vs. Thus q can be moved along rays through their intersection points which

gives the locus of q. In other words, the locus of q is the boundary of the intersection

of the left half-planes of these rays −−−−−→vmvm−1, −−−−→vsvs−1.... emitted from the vertices on
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Figure 3.33 (a) P is not weakly externally visible from any segment. (b) The right envelope
(ci, cj) consists of segments ciz1, z1z2,..., zs−1zs, zsy.

the polygonal boundary of bd(cj , ci). Analogously the locus of p is the boundary of

the right half-planes of rays like −−−−→vkvk+1 emitted from the vertices on the polygonal

boundary of bd(ci, cj).

The above discussion suggests a method to locate pq passing through cj with-

out any given line like L1 or L′1. Take any antipodal vertex ci of cj . Construct

the envelope of the intersection of the left half-planes of the rays by traversing

bd(cj , ci) in clockwise order starting from ci; call it right envelope (ci, cj). Analo-

gously, construct the envelope of the intersection of the right half-planes of the rays

by traversing bd(ci, cj) in counterclockwise order starting from ci; call it left envelope

(ci, cj). We have the following lemma for locating pq.

Lemma 3.7.3 Let ci and cj form an antipodal pair of vertices of P . Any segment

through cj which connects a point (say, q) of the right envelope (ci, cj) to a point (say,

p) of the left envelope (ci, cj) is the segment pq from which P is weakly externally

visible.

Exercise 3.7.2 Prove Lemma 3.7.3.

Assume that no pair of points p and q satisfy Lemma 3.7.3 (see Figure 3.33(a)).

Then the algorithm considers another antipodal pair and tries to construct pq by

constructing left and right envelopes for this antipodal pair. By repeating the process

for all antipodal pairs (ci, cj) of the convex hull of P , the algorithm can locate a

segment pq (if it exists) from which P is weakly externally visible. Since there are

at most 2n antipodal pairs in P and constructing the left and right envelopes for an

antipodal pair takes O(n) time as shown below, the algorithm takes O(n2) time in

the worst case to construct pq.
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Figure 3.34 (a) The current ray intersects the last ray of right envelope (ci, cj). (b) The
current ray intersects an intermediate segment of right envelope (ci, cj).

Let us explain the procedure for constructing the right envelope (ci, cj) (see Figure

3.33(b)). Initialize the right envelope (ci, cj) by −−−→cici−1. Scan the polygonal boundary

bd(cj , ci) in clockwise order starting from ci until a vertex vm is located such that

vm−1 is the parent of vm in SPTcc(cj). Let z1 be the intersection point of −−−−−→vmvm−1
and −−−→cici−1. The current right envelope (ci, cj) is the segment ciz1 followed by −→z1y,
where z1 lies on the segment yvm. So the current right envelope (ci, cj) consists of

segments starting for c1, where the last segment ending at y represents a ray.

Assume that the current right envelope (ci, cj) consists of segments ciz1, z1z2,...,

zs−1zs, zsy. Let −−−−−→vmvm−1 be the current ray under consideration. We have the

following cases.

Case 1. The point zs lies to the left of −−−−−→vmvm−1, and −→zsy does not intersect −−−−−→vmvm−1
(see Figure 3.33(b)). The right envelope (ci, cj) remains unchanged.

Case 2. Two rays −→zsy and −−−−−→vmvm−1 intersect (see Figure 3.34(a)). Call the intersec-

tion point as zs+1. Update the current right envelope (ci, cj) by replacing zsy by

zszs+1. Choose a point y, where zs+1 lies on the segment vmy. Append zs+1y to

the right envelope (ci, cj).

Case 3. The point zs lies to the right of −−−−−→vmvm−1 (see Figure 3.34(b)). Scan the right

envelope (ci, cj) from zs till zt is located such that −−−−−→vmvm−1 intersect ztzt+1 at a

point x. Delete all segments of the right envelope (ci, cj) from zt+1zt+2 to zsy.

Replace ztzt+1 by ztx. Choose a point y, where x lies on the segment vmy, and

append xy to the right envelope (ci, cj).

Once all such vertices vm on bd(cj , ci) are considered, the procedure has con-

structed the right envelope (ci, cj). Analogously, the left envelope (ci, cj) can be

constructed by scanning vertices on the polygonal boundary of (ci, cj). After con-



3.7 Recognizing Weakly External Visible Polygons 101

structing both envelopes of (ci, cj) the procedure locates pq, if it exists. Hence,

constructing pq for an antipodal pair can be done in O(n) time.

Instead of constructing the left and right envelopes in O(n) time for each antipodal

pair, both envelopes for all antipodal pairs can be constructed in O(n) as follows.

Assume that the algorithm could not find any segment pq passing through cj for its

antipodal vertex ci, and the algorithm is currently considering the next antipodal

vertex ci−1 of cj . To construct the right envelope (ci−1, cj), the algorithm removes

those segments from the right envelope (ci, cj) that are contributed by the rays

emitted from the vertices of the polygonal boundary bd(ci−1, ci). Observe that

these segments, say, ciz1, z1z2,..., zt−1zt are consecutive segments starting from

ci. Assume that zt and zt+1 lie on −−−−−→vmvm−1. Let x be the point of intersection of
−−−−−→ci−1ci−2 and −−−−−→vmvm−1. So the right envelope (ci−1, cj) consists of segments ci−1x,

xzt+1, zt+1zt+2,..., zsy.

To construct the left envelope (ci−1, cj), the algorithm scans the polygonal

boundary bd(ci−1, ci) in counterclockwise order starting from ci−1 and construct

a partial left envelope (ci−1, cj) up to ci. Let x be the point of intersection of the left

envelope (ci, cj) and the ray, which corresponds to the last segment in the partial

left envelope (ci−1, cj). The left envelope (ci−1, cj) is the concatenation of the partial

left envelope (ci−1, cj) up to x and the portion of the left envelope (ci, cj) from x to

its end.

If ci−2 is also an antipodal vertex of cj , the above method of updating can be used

to construct the left and right envelopes (ci−2, cj). Otherwise, ci−1 is an antipodal

vertex of cj−1. Analogous method of updating can be used to construct the left and

right envelopes (ci−1, cj−1). When the algorithm returns to the antipodal pair ci
and cj after going around the boundary once in clockwise order, it can be seen that

the total cost of updating both envelopes is proportional to the number of vertices

of P . Thus the algorithm constructs both envelopes for all antipodal pairs in O(n)

time. In the following, we state the major steps of the algorithm.

Step 1. Compute the convex hull of P by the algorithm of Graham and Yao [175]

and label the vertices of the convex hull as c1, c2, ..., ck in counterclockwise order.

Step 2. Scan bd(P ) in counterclockwise order and compute SPTcc(c1). If there is

any reverse turn then goto Step 9.

Step 3. Scan bd(P ) in counterclockwise order and compute SPTc(c1). If there is

any reverse turn then goto Step 9.

Step 4. Locate all antipodal pairs of vertices of the convex hull of P and add them

in clockwise order to the list of antipodal pairs. Initialize (ci, cj) by the first

antipodal pair in the list.

Step 5. Construct the left and right envelope (ci, cj) and goto Step 7.

Step 6. Assign (ci, cj) by the next antipodal pair of (ci, cj) in the list of antipodal
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pairs. Construct the left and right envelope (ci, cj) by updating the envelopes of

the previous antipodal pair.

Step 7. If there is a point p on the left envelope (ci, cj) that can be connected through

cj to a point q on the right envelope (ci, cj) then report the segment pq and Stop.

Step 8. If all antipodal pairs of vertices have not been considered then goto Step 6.

Step 9. Report that P is not weakly externally visible from any segment and Stop.

Let us discuss the correctness of the algorithm. The algorithm first computes the

convex hull of P in Step 1 and then checks in Steps 2 and 3 whether P is weakly

externally visible from the boundary of the convex hull of P by computing SPTcc(c1)

and SPTc(c1). Assume that that the given polygon P is weakly externally visible.

We know from Lemmas 3.7.1 and 3.7.3 that P is also weakly externally visible from

a segment if there is a segment pq and an antipodal pair (ci, cj) such that pq passes

through cj , and p and q are two points on the left and right envelope (ci, cj). So,

the algorithm locates all antipodal pairs of P in Step 4 and then constructs both

envelopes of each antipodal pair (ci, cj) in Steps 5 and 6 until a segment pq is found

in Step 7 satisfying Lemmas 3.7.1 and 3.7.3. Hence the algorithm correctly locates

a segment pq from which P is weakly externally visible. It has already been shown

that the algorithm runs in O(n) time as both envelopes for all antipodal pairs of

vertices can be computed in O(n) time. We summarize the result in the following

theorem.

Theorem 3.7.4 Recognizing a simple polygon P of n vertices weakly externally

visible from a segment can be done in O(n) time.

3.8 Notes and Comments

We have presented algorithms in Section 3.5 for recognizing a weak visibility polygon

P by constructing a chord st inside P . The first algorithm proposed for this problem

was given by Ke [212]. However, it has been pointed out by Aleksandrov et al. [16]

that Ke’s algorithm is not correct.

Ghosh [155] studied the problem of computing the complete and weak visibility

polygons of a set Q inside a simple polygon P . He presented O(n + k) algorithms

for both of these problems, where k is the number of corner vertices of Q. This

problem has been studied by Briggs and Donald [66] for polygon with holes.
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Exercise 3.8.1 Let P be an n-sided, star-shaped polygon containing a

convex set C. Assume that C is given in the form of a k-sided convex

polygon where every extreme point of C is a vertex of the convex polygon.

Two points of P or C are visible if the line segment joining them lies

inside P . Design an O(n+ k) time algorithm for computing the complete

visibility polygon of P from C.

A simple polygon P is said to be a palm polygon if there exists a point z ∈ P

such that the shortest path from z to any point y ∈ P makes only left turns or only

right turns. Palm polygons were introduced by ElGindy and Toussaint [131], and

this class of polygons has been characterized in terms of eaves of shortest paths by

Ghosh et al. [164] as follows. Let vivj be an eave in the shortest path between any

two vertices of P . Extend vivj from vi (or vj) to bd(P ) meeting it at ui (respectively,

uj). Cut P into two parts by the segment uivi (or ujvj). The portion of P not

containing vj (respectively, vi) is called a forbidden region of the eave vivj . We have

the following lemma from Ghosh et al. [164].

Lemma 3.8.1 A simple polygon P is a palm polygon if and only if there exists a

point z ∈ P such that z is not in the forbidden region of any eave in the shortest

path between any two vertices of P .

Using the above characterization, Ghosh et al. [164] presented an O(E) time

recognition algorithm for palm polygons where E is the number of visible pairs of

vertices in P .

Exercise 3.8.2 Design an O(E) time algorithm for recognizing a palm

polygon P where E is the number of visible pairs of vertices in P [164].

Let us mention parallel algorithms for weak visibility and shortest path problems

considered in this chapter. Consider the problem of computing the shortest path

SP (s, t) between two given points s and t inside a simple polygon P . ElGindy and

Goodrich [129] and Goodrich et al. [173, 174] showed that SP (s, t) can be computed

in O(logn) time using O(n) processors in the CREW-PRAMmodel of computations.

ElGindy and Goodrich also showed that the shortest path tree from a point inside

a simple polygon P can be computed in O(log2 n) time by keeping the number of

processors and the model of computation the same. Later, Goodrich et al. showed

that the running time can be reduced from O(log2 n) to O(logn) for this problem.

If the triangulation of P is given, the shortest path tree in P can be computed by

the algorithm of Hershberger [187] in O(log n) time using O(n/ logn) processors in

the CREW-PRAM model of computations. Note that P can be triangulated in

O(logn) time using O(n) processors in the CREW-PRAM model of computations

by the algorithm of Yap [345] or Goodrich [171].
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Consider the problem of computing the weak visibility polygon of a simple polygon

P from a segment inside P . Goodrich et al. [173, 174] designed an algorithm for

this problem using their own algorithm for computing the shortest path tree in P .

For computing the complete and weak visibility polygons of a set Q inside a simple

polygon P of total n vertices, Chandru et al. [69] gave an algorithm for this problem,

which also uses the algorithm of Goodrich et al. mentioned above, for computing

the shortest path tree in P . Both these algorithms run in O(logn) time using O(n)

processors in the CREW-PRAM model of computations. If the triangulation of

P is given, both these problems can be solved by the algorithm of Hershberger

[187] in O(log n) time using O(n/ logn) processors in the CREW-PRAM model of

computations.

Consider the problem of detecting the weak visibility polygon of a simple polygon

P from a given edge of P . We know that this problem can be solved using shortest

path trees after P is triangulated. Chen [84] showed that without using the trian-

gulation of P and shortest path trees, the problem can be solved in O(logn) time

using O(n/ logn) processors in the CREW-PRAM model of computations. Chen

[82] also showed that whether P is weakly visible from an edge can be determined

in O(logn) time using O(n/ logn) processors in the CREW-PRAM model of com-

putations. Once P is found to be weakly visible, triangulating P and computing the

shortest path tree in P can be done in O(log n) time using O(n/ logn) processors

in the CREW-PRAM model of computations as shown by Chen [84].

Exercise 3.8.3 Let S be a subset of edges of a polygon P with or without

holes. Design a polynomial time algorithm to test whether every internal

point of P is visible from some point on an edge of S [152].
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LR-Visibility and Shortest Paths

4.1 Problems and Results

A simple polygon P is said to be an LR-visibility polygon if there exists two points

s and t on the boundary of P such that every point of the clockwise boundary of

P from s to t (denoted as L) is visible from some point of the counterclockwise

boundary of P from s to t (denoted as R) and vice versa (see Figure 4.1(a)). LR-

visibility polygons can be viewed as a generalization of weak visibility polygons

(discussed in Chapter 3). We know that a simple polygon P is a weak visibility

polygon from a chord if there exists two points s and t on bd(P ) such that (i) s and

t are mutually visible, and (ii) every point of the clockwise boundary from s to t

is visible from some point of the counterclockwise boundary from s to t and vice

versa. If the condition (i) is removed, then it defines LR-visibility polygons, which

contains weak visibility polygons as a subclass. It can be seen that if a point moves

along any path between s and t inside an LR-visibility polygon, it can see the entire

polygon. LR-visibility polygons are also called streets and this class of polygons

was first considered while studying the problem of walking in a polygon. For more

details, see Icking and Klein [200] and Klein [219].

Like weak visibility polygons, LR-visibility polygons can also be characterized

in terms of shortest paths and non-redundant C-polygons. Heffernan [184], and

Bhattacharya and Ghosh [48] characterized LR-visibility polygons using shortest

paths between vertices of the polygon, and their characterization is similar to the

characterization of weak visibility polygons given by Ghosh et al. [163] presented

in Section 3.2. It has been observed by Icking and Klein [200] that LR-visibility

polygons can be characterized in terms of non-redundant C-polygons. In the next

section (i.e., Section 4.2), we state these characterizations of LR-visibility polygons.

The LR-visibility polygon inside a simple polygon P for a pair of s and t is the set

of all points of P that are visible from some point of SP (s, t). The characterization

of Heffernan [184], and Bhattacharya and Ghosh [48] gives a straightforward O(n)

105
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Figure 4.1 (a) P is a LR-visibility polygon with respect to s1 and t1 but not with respect
to s2 and t2. (b) The polygon P is walkable but not straight walkable.

time algorithm for computing the LR-visibility polygon inside P . We present this

algorithm in Section 4.3.

Heffernan [184], and Bhattacharya and Ghosh [48] presented a linear time algo-

rithm for recognizing LR-visibility polygons with respect to a given s and t. The

general problem of recognizing LR-visibility polygons is to locate s and t such that

the given polygon is an LR-visibility polygon with respect to s and t. For this

problem, Tseng et al. [332] presented an O(n logn) time algorithm and Das et al.

[101] gave an O(n) time algorithm. In fact, the algorithm of Das et al. [101] locates

all pairs of points s and t that the polygon is LR-visible with respect to. In Sec-

tion 4.4, we present an O(n) time recognition algorithm for LR-visibility polygons,

which follows a method similar to the algorithm in Section 3.5.2 for recognizing

weak visibility polygons.

Bhattacharya and Ghosh [48] presented an O(n) time algorithm for computing

the shortest path tree from a vertex for a class of polygons which contains LR-

visibility polygons as a subclass. If the algorithm terminates without computing

the shortest path tree in a given polygon P , then P is not an LR-visibility polygon.

If the algorithm computes the shortest path tree, then P may be an LR-visibility

polygon. We present the algorithm of Bhattacharya and Ghosh [48] in Section

4.6. This algorithm is used here as a step in our recognition algorithm presented

in Section 4.4 and it is also used in the algorithm for walking in an LR-visibility

polygon presented in Section 4.5.

The algorithm of Bhattacharya and Ghosh [48] computes the shortest path tree by

scanning the boundary of a given polygon P and it does not require a triangulation
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of P as a preprocessing step unlike the algorithm of Guibas et al. [178]. It may be

noted that since the class of LR-visibility polygons contains many special classes

of polygons such as spiral polygons, star-shaped polygons, weak visibility polygons,

monotone polygons, etc., their algorithm can compute the shortest path tree in

linear time in any of these special classes of polygons and therefore, triangulating

these special classes of polygons is also possible in linear time.

Exercise 4.1.1 Assume that a simple polygon P of n vertices is given

along with the shortest path tree rooted at some vertex of P . Design an

algorithm for constructing a triangulation of P in O(n) time from the

shortest path tree.

Suppose two police officers have to patrol a street and they walk along the opposite

sides of the street. Can two officers proceed in such a way that they are always

mutually visible? Formally, assume that a simple polygon P is given with two

distinguished vertices s and t. Can two points be moved from s to t, one along the

clockwise boundary of P and the other along the counterclockwise boundary of P ,

such that the line segment connecting them always lies totally inside P? The points

are allowed to backtrack locally but they must arrive at t eventually. A movement

subject to these constraints is called a walk. If P admits such a walk (see Figure

4.1(b)), P is called 2-guard walkable (or, simply, walkable) and P is an LR-visibility

polygon.

Icking and Klein [200] introduced this problem, and presented an O(n logn) time

algorithm to test whether P is walkable for a given pair s and t. Later, Heffernan

[184] gave an O(n) time algorithm for this problem. One special case arises when the

points do not backtrack during their walk. Such a walk is called straight (see Figure

4.2(a)). During a straight walk, the line segment connecting the points sweeps the

polygon in an ordered way. To determine whether P is straight walkable for a given

pair s and t, Heffernan [184] gave O(n) time algorithm for this problem. Tseng et

al. [332] presented an O(n logn) time algorithm for this problem when no pair s

and t is given. They also showed within the same time bound how to generate all

such pairs of s and t.

A straight walkable polygon P is said to be discretely straight walkable if only

one of the two points is allowed to move at a time, while the other point remains

stationary at a vertex (see Figure 4.2(b)). It has been observed by Arkin et al. [21]

that P is discretely straight walkable if only if P has a Hamiltonian triangulation. A

simple polygon P is said to have a Hamiltonian triangulation if it has a triangulation

whose dual graph is a Hamiltonian path. Such triangulations are useful in fast

rendering engines in computer graphics, since visualization of surfaces is normally

done via triangulations [21]. It has been shown by Narasimhan [266] that testing

discrete straight walkability and computing all discrete straight walkable pairs of s

and t can be performed in O(n logn) time. Bhattacharya et al. [51] presented O(n)
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Figure 4.2 (a) The polygon P is straight walkable but not discretely straight walkable. (b)
The polygon P is discretely straight walkable.

time algorithms for testing all pairs of s and t of P for which P is walkable, straight

walkable and discretely straight walkable. In Section 4.5, we present their algorithm

for testing whether a simple polygon P is walkable for any pair of boundary points s

and t. In the same section, we also present an O(n2) time algorithm for constructing

a walk between a pair of boundary points s and t of P based on the properties derived

by Icking and Klein [200].

Exercise 4.1.2 Let P be an LR-visibility polygon with respect to a given

pair of points s and t on the boundary of P . Assume that SPT (s) and

SPT (t) are given. Construct a Hamiltonian triangulation of P (if it

exists) in O(n) time, where n is the number of vertices of P .

4.2 Characterizing LR-Visibility

In this section, we present the characterization of LR-visibility in polygons in terms

of shortest paths and non-redundant C-polygons. We start with the characteriza-

tion of Heffernan [184], and Bhattacharya and Ghosh [48] who used shortest paths

between vertices to characterize LR-visibility polygons. For every point z ∈ L, the

same chain and the opposite chain of z refer to L and R, respectively. Similarly,

for every point z ∈ R, the same chain and the opposite chain of z refer to R and L

respectively. In the following theorem, we characterize LR-visibility polygons.

Theorem 4.2.1 Let P denote a simple polygon. The following statements are

equivalent.

(i) P is an LR-visibility polygon with respect to vertices s and t.
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Figure 4.3 (a) Since SP (vi, vj) and SP (vk, vj) meet only at vj , vj is visible from the opposite
chain of vj . (b) SP (s, vj) and SP (t, vj) meet at a vertex vm other than vj .

(ii) Let vi, vj and vk be any three vertices of L (or R) (including s and t) such that

they are in clockwise (respectively, counterclockwise) order while traversing

L (respectively, R) from s to t. SP (vi, vj) and SP (vk, vj) meet only at vj.

(iii) For any vertex vj ∈ L (or, vj ∈ R), SP (s, vj) makes a left turn (respectively,

a right turn) at every vertex of L (respectively, R) in the path. Analogously,

for any vertex vj ∈ L (or, vj ∈ R), SP (t, vj) makes a right turn (respectively,

a left turn) at every vertex of R (respectively, L) in the path.

Proof. Firstly, we show that (i) implies (ii). Since P is an LR-visibility polygon with

respect to s and t, vj is visible from some point y of the opposite chain of vj (Figure

4.3(a)). So, the line segment yvj partitions P into two polygons, one containing s

and vi, and the other containing t and vk. So, SP (vi, vj) and SP (vk, vj) cannot

cross the line segment yvj and therefore, they meet only at vj .

Secondly, we show (ii) implies (iii). We prove only for the case when vj belongs

to L (Figure 4.3(b)). Assume on the contrary that SP (s, vj) makes a right turn

at some vertex vm ∈ L. Consider the convex angle formed by SP (s, vj) at vm.

If the convex angle is facing toward the interior of P , then by triangle inequality

SP (s, vj) does not pass through vm, a contradiction. If the convex angle is facing

toward the exterior of P , then SP (s, vj) and SP (t, vj) meet at the vertex vm other

than vj contradicting (ii) (Figure 4.3(b)). Hence, SP (s, vj) makes a left turn at vm.

Analogous arguments show that SP (t, vj) makes a right turn at every vertex of L

in the path.

Thirdly, we show that (iii) implies (i). It suffices to show that any vertex vj of

P is visible from some point of the opposite chain of vj (Figure 4.3(a)). We prove

only for the case when vj belongs to L. Let zc and zcc be the vertices preceding vj
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on SP (s, vj) and SP (t, vj) respectively. If zc or zcc belongs to the opposite chain

of vj , then the claim holds. So we assume that zc, zcc and vj belong to the same

chain. From the condition (iii) we know that SP (s, vj) makes a left turn at zc and

SP (t, vj) makes a right turn at zcc. It means that extensions of vjzc and vjzcc from

zc and zcc, respectively, cannot meet the same chain of vj . So, both extensions meet

at points of the opposite chain of vj . Therefore, vj is visible for some point of the

opposite chain of vj . Hence, P is an LR-visibility polygon with respect to s and t.

Let us characterize LR- visibility polygons in terms of non-redundant C-polygons

as observed by Icking and Klein [200]. We use the same notions used in Section 3.5.2.

The clockwise (or, counterclockwise) C-polygon of a vertex vi is said to contain a

point z if z lies on the clockwise (respectively, counterclockwise) boundary of the

C-polygon. We have the following lemma.

Lemma 4.2.2 A simple polygon P is an LR-visibility polygon with respect to bound-

ary points s and t if and only if each non-redundant C-polygon of P contains s or

t.

Proof. If a non-redundant C-polygon of some vertex vi does not contain s or t,

then SP (s, t) does not intersect the bounding chord of the C-polygon. Then vi−1 or

vi+1 is not visible form any point of SP (s, t). Therefore, P is not an LR-visibility

polygon, which is a contradiction. We now prove the converse. Since every non-

redundant C-polygon of P contains s or t, SP (s, t) intersects the bounding chord

of every non-redundant C-polygon of P . Therefore, every point of P is visible from

some point of SP (s, t). Hence, P is an LR-visibility polygon with respect to s and

t.

Corollary 4.2.3 If an LR-visibility polygon P has two disjoint C-polygons, then

one C-polygon contains s and the other contains t.

Corollary 4.2.4 If P has three or more mutually disjoint C-polygons, then P is

not an LR-visibility polygon.

4.3 Computing LR-Visibility Polygons

In this section, we present an O(n) time algorithm for computing the LR-visibility

polygon inside a simple polygon P for a given pair of boundary points s and t. The

LR-visibility polygon inside P for a pair s and t is defined as the set of all points

of P that are visible from some point of SP (s, t). The algorithm is similar to the

algorithm of Guibas et al. [178], presented in Section 3.3.2, for computing the weak

visibility polygon of a simple polygon from an internal segment. We assume that
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Figure 4.4 All descendants of vi in SPT (s) are not visible from any point of SP (s, t).

P is given as a counterclockwise sequence of vertices v1, v2, ..., vn with two marked

vertices s and t. In the following lemmas, we present the main idea used in the

algorithm. The proofs of the lemmas follow from Theorem 4.2.1.

Lemma 4.3.1 Let vi, vj and vm be the three distinct vertices in SPT (s) such that

(i) vi is the parent of vj in SPT (s), (ii) vm is the least common ancestor of t and

vi in SPT (s), (iii) SP (vm, vi) makes a left turn at every intermediate vertex in the

path, and (iv) SP (s, vj) makes a right turn at vi (Figure 4.4(a)). If vi ∈ L, then all

descendants of vi in SPT (s) are not visible from any point of SP (s, t).

Lemma 4.3.2 Let vi, vj and vm be the three distinct vertices in SPT (s) such that

(i) vi is the parent of vj in SPT (s), (ii) vm is the least common ancestor of t and

vi in SPT (s), (iii) SP (vm, vi) makes a right turn at every intermediate vertex in

the path, and (iv) SP (s, vj) makes a left turn at vi (Figure 4.4(b)). If vi ∈ R, then

all descendants of vi in SPT (s) are not visible from any point of SP (s, t).

Lemma 4.3.3 Let vi, vj and vm be the three distinct vertices in SPT (t) such that

(i) vi is the parent of vj in SPT (t), (ii) vm is the least common ancestor of s and

vi in SPT (t), (iii) SP (vm, vi) makes a right turn at every intermediate vertex in

the path, and (iv) SP (t, vj) makes a left turn at vi (Figure 4.5(a)). If vi ∈ L, then

all descendants of vi in SPT (t) are not visible from any point of SP (s, t).

Lemma 4.3.4 Let vi, vj and vm be the three distinct vertices in SPT (t) such that

(i) vi is the parent of vj in SPT (t), (ii) vm is the least common ancestor of s and

vi in SPT (t), (iii) SP (vm, vi) makes a left turn at every intermediate vertex in the



112 LR-Visibility and Shortest Paths

Figure 4.5 All descendants of vi in SPT (t) are not visible from any point of SP (s, t).

path, and (iv) SP (t, vj) makes a right turn at vi (Figure 4.5(b)). If vi ∈ R, then all

descendants of vi in SPT (t) are not visible from any point of SP (s, t).

Exercise 4.3.1 Prove Lemmas 4.3.1, 4.3.2, 4.3.3 and 4.3.4.

Lemmas 4.3.1, 4.3.2, 4.3.3 and 4.3.4 suggest a simple procedure to compute the

LR-visibility polygon as follows.

Step 1. Compute SPT (s) in P by the algorithm of Guibas et al. [178]. Traverse

SPT (s) in depth first order and check the turn at every vertex vi in SPT (s).

Step 2. If it is a right turn at vi and vi ∈ L (see Lemma 4.3.1) then (Figure 4.4(a))

Step 2a. Find the descendant of vi in SPT (s) with the largest index j.

Step 2b. Compute the intersection point z of vjvj+1 and −−→vkvi, where vk is the

parent of vi in SPT (s). Remove the counterclockwise boundary of P from vi

to z by inserting the segment viz.

Step 3. If it is a left turn at vi and vi ∈ R (see Lemma 4.3.2) then (Figure 4.4(b))

Step 3a. Find the descendant of vi in SPT (s) with the smallest index j.

Step 3b. Compute the intersection point z of vjvj−1 and −−→vkvi, where vk is the

parent of vi in SPT (s). Remove the clockwise boundary of P from vi to z by

inserting the segment viz.

Step 4. Let P ′ denote the remaining portion of P . Compute SPT (t) in P ′ by the

algorithm of Guibas et al. [178]. Traverse SPT (t) in depth first order and check

the turn at every vertex vi in SPT (t).

Step 5. If it is a left turn at vi and vi ∈ L (see Lemma 4.3.3) then (Figure 4.5(a))
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Step 5a. Find the descendant of vi in SPT (t) with the smallest index j.

Step 5b. Compute the intersection point z of vjvj−1 and −−→vkvi, where vk is the

parent of vi in SPT (t). Remove the clockwise boundary of P ′ from vi to z by

inserting the segment viz.

Step 6. If it is a right turn at vi and vi ∈ R (see Lemma 4.3.4) then (Figure 4.5(b))

Step 6a. Find the descendant of vi in SPT (t) with the largest index j.

Step 6b. Compute the intersection point z of vjvj+1 and −−→vkvi, where vk is the

parent of vi in SPT (t). Remove the counterclockwise boundary of P from vi

to z by inserting the segment viz.

Step 7. Let P ′′ denote the remaining portion of P ′. Output P ′′ as the LR-visibility

polygon.

The correctness of the algorithm follows from Lemmas 4.3.1, 4.3.2, 4.3.3 and

4.3.4. The algorithm for computing SPT (s) and SPT (t) takes O(n) time [178].

Every vertex of SPT (s) and SPT (t) is traversed once and the remaining operations

take constant time. So, the overall time complexity of the algorithm is O(n). We

summarize the result in the following theorem.

Theorem 4.3.5 The LR-visibility polygon for a given pair of boundary points s and

t inside a simple polygon P of n vertices can be computed in O(n) time.

4.4 Recognizing LR-Visibility Polygons

In this section, we present an O(n) time algorithm for recognizing LR-visibility

polygons. Given a simple polygon P , the problem is to locate two points s and

t (if they exist) on bd(P ) such that P is an LR-visibility polygon with respect

to s and t. The recognition algorithm follows steps similar to the algorithm for

recognizing weak visibility polygons presented in Section 3.5.2. The algorithm uses

the characterization of LR-visibility polygons presented in Lemma 4.2.2 and also

uses the algorithm of Bhattacharya and Ghosh [48], presented in Section 4.6, for

computing the shortest path tree in P by scanning bd(P ). We use the same notions

used in Section 3.5.2 for presenting the algorithm here.

The algorithm starts by computing SPT (v1) by the algorithm of Bhattacharya

and Ghosh [48]. By traversing SPT (v1), it locates two disjoint critical polygons

polycc(vp) and polyc(vq) with bounding chords vpwp and vquq respectively (see Fig-

ure 4.6). Then, it computes SPT (vp), SPT (wp), SPT (vq) and SPT (uq). For each

vertex vk of bd(uq, wp), it tests whether (i) SP (wp, vk) makes only left turns, and

(ii) SP (uq, vk) makes only right turns. Similarly, for each vertex vk ∈ bd(vp, vq), it

tests whether (i) SP (vp, vk) makes only right turns, and (ii) SP (vq, vk) makes only

left turns. Note that LR-visibility polygons allow SP (uq, wp) to pass through a

vertex of bd(vp, vq) and SP (vp, vq) to pass through a vertex of bd(uq, wp) (see Figure
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Figure 4.6 (a) Locations of s and t on bd(P ) when SP (uq, wp) and SP (vp, vq) are disjoint.
(b) Locations of s and t on bd(P ) when SP (uq, wp) and SP (vp, vq) share vertices.

4.6(b)). It tests whether vkuk and vmwm intersect after locating two critical poly-

gons polycc(vk) and polyc(vm) with bounding chords vkuk and vmwm, respectively,

where vk ∈ bd(uq, wp) and uk ∈ bd(wp, vp), vm ∈ bd(vp, vq) and wm ∈ bd(wp, vp).

Similarly, it tests whether vzuz and vrwr intersect after locating two critical poly-

gons polycc(vz) and polyc(vr) with bounding chords vzuz and vrwr, respectively,

where vz ∈ bd(vp, vq) and uz ∈ bd(vq, up), vr ∈ bd(uq, wp) and wr ∈ bd(vq, uq). Then

it performs cascade testing to determine whether (i) bd(uz, wm) can be included in

L, and (ii) bd(uk, wr) can be included in R.

If SP (uq, wp) and SP (vp, vq) do not share a vertex (see Figure 4.6(a)), then the

algorithm scans bd(wr, uz) and bd(wm, uk) in both clockwise and counterclockwise

order to compute the final bd(wr, uz) and bd(wm, uk). The algorithm reports that

P is an LR-visibility polygon with respect to pairs (i) wm and wr, and (ii) uk and

uz. In Figure 4.6(a), the final uk is taken as s and the final uz is taken as t. If

SP (uq, wp) and SP (vp, vq) share a vertex (see Figure 4.6(b)), it locates four vertices

t1, t2, s1 and s2 as follows. The vertex t1 belongs to bd(wr, uz) and it is the first

vertex in clockwise order from uz whose parent in SPT (wp) is its next clockwise

vertex. If no such vertex exists, t1 is wr. Similarly, the vertex t2 also belongs to

bd(wr, uz) and it is the first vertex in counterclockwise order from wr whose parent

in SPT (vp) is its next counterclockwise vertex. If no such vertex exists, t2 is uz.

If t2 does not belong to bd(t1, uz), then P is not an LR-visibility polygon. So, we

assume that t2 ∈ bd(t1, uz). Any point of bd(t1, t2) can be taken as the point t.

Analogously, s1 and s2 can be located using SPT (uq) and SPT (vq) and then s is

chosen appropriately. We summarize the result in the following theorem.



4.5 Walking in an LR-Visibility Polygon 115

Theorem 4.4.1 Two points s and t can be located in O(n) time on the boundary of

a simple polygon P of n vertices such that P is an LR-visibility polygon with respect

to s and t.

4.5 Walking in an LR-Visibility Polygon

In this section, we present an O(n2) time algorithm for constructing a walk between

a pair of boundary points s and t of a simple polygon P . The algorithm is based

on the properties derived by Icking and Klein [200]. We also present an O(n) time

algorithm given by Bhattacharya et al. [51] for testing whether or not a simple

polygon P is walkable for a given pair of boundary points s and t. We assume that

P is given as a counterclockwise sequence of vertices v1, v2, ..., vn with two marked

vertices s and t. As in Section 3.5.2, for any reflex vertex vi of P , let polyc(vi)

(or polycc(vi)) denote the clockwise (respectively, counterclockwise) C-polygon of

vi, where viui (respectively, viwi) is the bounding chord of polyc(vi) (respectively,

polycc(vi)).

Let gc and gcc be two moving points along the boundary of P starting from s

such that (i) gc moves along bd(t, s) (denoted as L), and (ii) gcc moves along bd(s, t)

(denoted as R). As stated in Section 4.1, P is 2-walkable if the line segment gcgcc
lies inside P during the entire movement of gc and gcc (see Figure 4.7(a)). We start

with the following lemma from Icking and Klein [200].

Lemma 4.5.1 If a simple polygon P is 2-walkable then P is an LR-visibility polygon.

Exercise 4.5.1 Prove Lemma 4.5.1.

Using the recognition algorithm presented in Section 4.4, it can be determined

whether P is an LR-visibility polygon. If P is an LR-visibility polygon, the recog-

nition algorithm also locates a pair of points s and t on bd(P ). In fact, all pairs

of points s and t, for which P is an LR-visibility polygon, can be located by the

method presented by Tseng et al. [332]. They have shown that locating a pair of s

and t is same as locating two cut points in a 2-cut circular arc problem.

Exercise 4.5.2 Let S be a set of n ≥ 2 closed arcs on a unit circle

K, where no arc totally contains another arc. Find pairs of intervals

((p, q), (r, s)) in O(n) time such that for every point c1 ∈ (p, q) and c2 ∈
(r, s), each arc of S contains a cut point c1 or c2 [332].

From now on, we assume that P is an LR-visibility polygon. Observe that

although P can have several pairs of s and t, P may be 2-walkable only for some

pairs of s and t. The algorithm of Bhattacharya et al. [51] starts with a pair of s

and t, and during the process of checking, if it encounters the next pair of s and t,
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Figure 4.7 (a) The movements of gc and gcc: (i) gc walks to vi, (ii) gcc walks to ui, (iii) gc

walks to vj , (iv) gcc walks to uj , (v) gc walks to t and (vi) gcc walks to t. (b) The vertex
vk−1 is not visible from vi. (c) The vertices vi and vk form an s-deadlock in P .

it switches to that pair, and continues the process until P is checked for all pairs

of s and t. Thus, the algorithm identifies all pairs of s and t on bd(P ) for which

P is 2-walkable. Here we consider only one pair of boundary points s and t in the

presentation of their algorithm.

Suppose, gc starts from s and moves along L as long as it is visible from gcc which

is currently waiting at s. Assume that gc has reached a reflex vertex vi (see Figure

4.7(a)) and it cannot move ahead without losing sight of gcc. This means that there

is a constructed edge in the visibility polygon V (s) with vi as one of its endpoints.

Then, gcc must move along R until the edge vivi−1 is visible from gcc so that gc can

move ahead from vi. This means that gcc must enter into the clockwise C-polygon

of vi whose bounding chord is viui. Therefore, gcc must walk at least up to ui and

it should remain visible from gc while walking from s to ui. If the entire bd(s, ui)

is visible from vi, then gcc can walk to ui without losing sight of gc. If some point

of bd(s, ui) is not visible from vi (see Figure 4.7(b) and Figure 4.7(c)), gcc cannot

remain visible from gc while walking from s to ui. This means that there exists a

reflex vertex vk ∈ bd(s, ui) such that vk is visible from vi but either vk+1 or vk−1 is

not visible from vi.

If vk−1 is not visible from vi (see Figure 4.7(b)), gc has to walk backward till it

enters the clockwise C-polygon of vk whose bounding chord is vkuk. So, gc walks

backward up to uk and checks whether gcc can walk up to vk. If gcc can walk up

to vk without losing sight of gc who is waiting at uk, then gc can move forward

after gcc reaches vk. If gcc cannot walk up to vk, then gc walks backward as before

until it enters the clockwise C-polygon of another reflex vertex vm ∈ bd(s, vk). This

discussion suggests that instead of gc moving all the way up to vi in greedy manner,
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Figure 4.8 (a) The entire boundary bd(wj , ui) is visible from x. (b) There is an s-deadlock
in P as viui and vkwk have intersected. (c) There is a t-deadlock in P as vjwj and vkuk

have intersected.

gc should wait at one endpoint of the bounding chord until gcc reaches the other

endpoint. Since all bounding chords in P can be computed, gc and gcc can coordinate

their walk as they encounter endpoints of bounding chords.

If vk+1 is not visible from vi (see Figure 4.7(c)), gcc cannot walk beyond vk even

if gc moves backward toward s. This situation is called s-deadlock. A polygon P is

said to have s-deadlock, if there exists two reflex vertices vi ∈ L and vk ∈ R such

that the bounding chord viui of polyc(vi) intersects the bounding chord vkwk of

polycc(vk). Analogously, a polygon P is said to have t-deadlock, if there exists two

reflex vertices vi ∈ L and vk ∈ R such that the bounding chord viwi of polycc(vi)

intersects the bounding chord vkuk of polyc(vk). We have the following theorem

from Icking and Klein [200].

Theorem 4.5.2 A simple polygon P is 2-walkable if and only if P does not have

an s-deadlock or a t-deadlock.

Proof. Assume that P has an s-deadlock formed by the reflex vertices vi ∈ L and

vk ∈ R. Therefore, two bounding chords viui and vkwk intersect in P by definition.

So, vi ∈ bd(wk, s) and vk ∈ bd(s, ui). Before gc starts walking on the edge vivi−1,

gcc must reach ui so that gc and gcc remain mutually visible. Similarly, before gcc
starts walking on the edge vkvk+1, gc must reach wk so that gc and gcc remain

mutually visible. This is a deadlock and hence, there is no walk between s and t in

P . Analogous arguments show that if P has a t-deadlock, there is no walk between

s and t in P .
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Figure 4.9 (a) The entire boundary bd(ui, wj) is visible from vi. (b) The vertex vk is visible
from vi but not vk−1. (c) The vertex vk is visible from vi but not vk+1.

We now prove the converse. By assumption, P does not have an s-deadlock or

t-deadlock. We show that there exists a walk from s to t in P . Assume that gc and

gcc are currently at two endpoints of a bounding chord. Without loss of generality,

assume that gc has walked from s up to a reflex vertex vi ∈ L and gcc has also

walked from s up to the point ui ∈ R, where viui is the bounding chord of polyc(vi)

(see Figure 4.8). We also assume that they were mutually visible during the walk.

They wish to walk to the endpoints of another bounding chord. Let vj ∈ L be the

next reflex vertex while traversing from vi to t. Consider the bounding chords vjuj

and vjwj of polyc(vj) and polycc(vj), respectively. There are three cases that can

arise.

Case 1. The bounding chord viui has intersected both vjuj and vjwj (see Figure

4.8).

Case 2. The bounding chord viui has intersected vjuj but has not intersected vjwj

(see Figure 4.9).

Case 3. The bounding chord viui has not intersected vjuj and vjwj (see Figure

4.11(a)).

Consider Case 1 (see Figure 4.8). This condition suggests that gc must walk ahead

from vi to vj while gcc walks backward from ui to wj . We show that gc and gcc can

remain mutually visible during this walk. Let x be the point of intersection of viui

and vjwj . It is obvious that every point of bd(vj , vi) is visible from x. If every

point of bd(wj , ui) is also visible from x (see Figure 4.8(a)), then gc and gcc can

coordinate their walk in such a way that the segment gcgcc always passes through

x. We show that every point of bd(wj , ui) is indeed visible from x. Suppose there is

a point z ∈ bd(wj , ui) which is not visible from x. Since z and x are not mutually

visible by assumption, SP (x, z) must pass through at least one reflex vertex vk. If
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Figure 4.10 (a) There is an s-deadlock in P as vkvm and vmum have intersected. (b) The
bounding chords vkvm and viui have intersected. (c) The bounding chords vkvm and viui

have not intersected.

vk ∈ bd(wj , z) (see Figure 4.8(b)), then vi and vk form an s-deadlock in P as viui

intersects vkwk, a contradiction. If vk ∈ bd(z, ui) (see Figure 4.8(c)), then vj and vk
form a t-deadlock in P as vjwj intersects vkuk, which is a contradiction. Therefore,

the entire boundary bd(wj , ui) is visible from x. Hence gc can walk from vi to vj
and gcc can also walk from ui to wj while they remain mutually visible. Thus, gc
and gcc can reach the endpoints of another bounding chord.

Consider Case 2. We know that ui ∈ bd(uj , wj) (see Figure 4.9). If the entire

boundary bd(ui, wj) is visible from vi (see Figure 4.9(a)), gcc walks from ui to wj

and then gc walks from vi to vj . So, gc and gcc have reached the endpoints of another

bounding chord vjwj . Otherwise, if the entire boundary bd(ui, wj) is visible from vj ,

gc walks to vj and then gcc walks to wj . Again, gc and gcc are at the endpoints of the

bounding chord vjwj . Consider the situation when the entire boundary bd(ui, wj) is

not visible either from vi or from vj (see Figure 4.9(b) and (c)). Let vk ∈ bd(ui, wj)

be the first reflex vertex, while traversing from ui to wj , such that vk is visible from

vi but either vk−1 or vk+1 is not visible from vi. If vk−1 is not visible from vi (see

Figure 4.9(b)), then gc moves backward from vi to uk while gcc moves forward from

ui to vk using the analogous method stated in Case 1. Thus gc and gcc move to

the endpoints of another bounding chord vkuk. If vk+1 is not visible from vi (see

Figure 4.9(c)), then gc walks to vk and gcc walks to wk. Thus gc and gcc move to

the endpoints of another bounding chord vkwk.

It may happen that wk does not belong to bd(vj , vi) (see Figure 4.10). In that

case, gc can still walk up to wk if bd(wk, vj) is entirely visible from vk. Otherwise, the

first reflex vertex vm ∈ bd(wk, vj) can be located while traversing from vj to wk (see

Figure 4.10(a)) such that vm is visible from vk but either vm−1 or vm+1 is not visible
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Figure 4.11 (a) The bounding chord viui has not intersected both vjuj and vjwj . (b) By
scanning from s, P is partitioned into sub-polygons using non-intersecting bounding chords
of same type. (c) By scanning from t, P is partitioned into similar sub-polygons.

from vk. If vm−1 is not visible from vk, then vm and vk form an s-deadlock in P as

the bounding chords vmum and vkwk intersect, which is a contradiction. Consider

the other situation when vm+1 is not visible from vk (see Figure 4.10(b) and (c)). If

vmwm intersects viui (see Figure 4.10(b)), then it becomes Case 1 treating vm as vj .

Thus gc and gcc move to the endpoints of another bounding chord vmwm. If vmwm

does not intersect viui (see Figure 4.10(c)), then wm belongs to bd(ui, vk). We know

that bd(ui, wm) is entirely visible from vi. So, gcc walks from ui to wm and then gc
moves from vi to vm. Thus gc and gcc move to the endpoints of another bounding

chord vmwm.

Consider Case 3. This is essentially Case 2 as wk must belong to bd(vj , vi) (see

Figure 4.11(a)) otherwise there is an s-deadlock due to the intersection of bounding

chords vjuj and vkwk.

It can be seen that gc and gcc always walk from the endpoints of a bounding chord

to another which has not been considered before. In this process of walking, gc and

gcc walk from one clockwise C-polygon containing t to another C-polygon which is

contained in the previous C-polygon. Thus, gc and gcc always succeed in reaching

t keeping themselves mutually visible as there is no s-deadlock or t-deadlock in P .

The above theorem suggests that before any attempt is made to construct a walk

from s to t, it is necessary to test whether P has any s-deadlock or t-deadlock. Let

us proceed to test whether P has any s-deadlock. The main idea of the testing

procedure given by Bhattacharya et al. [51] is to partition P into sub-polygons

using non-intersecting bounding chords of the same type as follows. Scan L from s
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to t till a reflex vertex vi is located such that ui ∈ R (see Figure 4.11(b)). Continue

the scan till another reflex vertex vj is located such that uj ∈ R and vjuj does not

intersect viui. Treating vj as vi, repeat the process. We have the following lemma

for s-deadlock.

Lemma 4.5.3 Let Pi denote the sub-polygon of P bounded by two consecutive bound-

ing chords viui and vjuj, where vi ∈ L, vj ∈ bd(t, vi), ui ∈ R and uj ∈ bd(ui, t)

(Figure 4.11(b)). If there exists a reflex vertex vk ∈ bd(ui, uj) such that vkwk inter-

sects vjuj, then P has an s-deadlock formed by vj and vk.

Using the above lemma, P can be tested whether there exists an s-deadlock

formed by two reflex vertices in any sub-polygon Pi. If no sub-polygon of P has an

s-deadlock, P does not have an s-deadlock. Then, the same process is used to test

whether P has a t-deadlock. Starting from t (see Figure 4.11(c)), partition P using

bounding chords viui, vjuj ,... where vi, vj ,... belong to R and ui, uj ,... belong to L.

For every sub-polygon bounded by two such consecutive bounding chords viui and

vjuj , check whether there exists a reflex vertex vk ∈ bd(ui, uj) forming a t-deadlock

with vj . If P does not have s-deadlock or t-deadlock, a walk can be constructed

in P for gc and gcc from s to t using Cases 1 and 2 in the proof of Theorem 4.5.2.

In the following, we present the major steps of the algorithm under the assumption

that P does not have s-deadlock or t-deadlock.

Step 1. Locate two points s and t on bd(P ) such that P is an LR-visibility polygon

with respect to s and t.

Step 2. Traverse L from s to t in clockwise order and partition P into sub-polygons

using the non-intersecting bounding chords of clockwise C-polygons. Check whether

any sub-polygon has a pair of reflex vertices forming an s-deadlock.

Step 3. Traverse R from t to s in clockwise order and partition P into sub-polygons

using the non-intersecting bounding chords of counterclockwise C-polygons. Check

whether any sub-polygon has a pair of reflex vertices forming a t-deadlock.

Step 4. Introduce a point t′ ∈ R arbitrarily close to t. Treat t as a reflex vertex of L

and tt′ as the clockwise bounding chord of C-polygon of the reflex vertex t. Also,

treat t′ as a reflex vertex of R and tt′ as the counterclockwise bounding chord of

the C-polygon of the reflex vertex t′. Introduce a point s′ ∈ R arbitrary close to

s. Treat s as a reflex vertex of L and ss′ as the clockwise bounding chord of the

C-polygon of the reflex vertex s.

Step 5. Place gc at s and gcc at s′. Initialize vi by s and ui by s′.

Step 6. (Remark: gc at vi and gcc at ui). If gc is currently at t and gcc is currently

at t′ then goto Step 14.

Step 7. Initialize vj by the next counterclockwise vertex of vi. While vj is not a

reflex vertex do j := j − 1.
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Step 8. If vjwj intersects viui thenmove simultaneously gc and gcc from their present

positions to vj and wj respectively, i := j and goto Step 11.

Step 9. If vjuj intersects viui then

Step 9a. Initialize vk by the next counterclockwise vertex of ui.

Step 9b. While vk is not a reflex vertex and vk ∈ bd(ui, wj) do k := k + 1.

Step 9c. If vk 6∈ bd(ui, wj) then move gc from its present position to vj and move

gcc from its present position to wj , i := j and goto Step 11.

Step 9d. If vkuk intersects viui then move simultaneously gc and gcc from their

present positions to uk and vk respectively (Figure 4.9(b)), i := k and goto Step

12.

Step 9e. If vkwk intersects vjwj then move gcc from its present position to vk,

move gc from its present position to wk (Figure 4.10), i := k and goto Step 13.

Step 9f. If wk ∈ bd(vj , vi) then move gcc from its present position to vk, move gc
from its present position to wk, i := k and goto Step 13.

Step 9g. If uk ∈ bd(vj , vi) then move gcc from its present position to vk, move gc
from its present position to uk, i := k and goto Step 12.

Step 9h. Increment k by 1 and goto Step 9b.

Step 10. If vjuj does not intersect viui (Figure 4.11(a)) then perform Step 9 by

considering bd(ui, uj) in place of bd(ui, wj).

Step 11. If gc is currently at vi and gcc is currently at wi then perform Step 6 to

Step 10 starting from the bounding chord viwi in place of viui.

Step 12. If gcc is currently at vi and gc is currently at ui then perform steps analogous

to Step 6 to Step 11 by locating vj in R and vk in L.

Step 13. If gcc is currently at vi and gc is currently at wi then perform Step 12

starting from the bounding chord viwi in place of viui.

Step 14. Report the walk of gc and gcc from s to t and Stop.

The correctness of the algorithm follows from Theorem 4.5.2. Let us analyze the

time complexity of the algorithm. The points s and t on bd(P ) can be located in

O(n) time by the recognition algorithm presented in Section 4.4. It has been shown

by Bhattacharya et al. [51] that testing for s-deadlock and t-deadlock in Steps 2 and

3 can be done in O(n) (explained later). Remaining steps of the algorithm can take

O(n2) as gc and gcc can move back and forth along L and R, respectively. Hence the

overall time complexity of the algorithm is O(n2) time. We summarize the result in

the following theorem.

Theorem 4.5.4 A walk between two boundary points s and t of a simple polygon P

of n vertices can be constructed in O(n2) time.
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Let us explain how the testing for s-deadlock and t-deadlock in P can be done in

O(n) time using SPT (s) and SPT (t). Note that SPT (s) and SPT (t) can be com-

puted in O(n) time using the algorithm of Bhattacharya and Ghosh [48] presented

in Section 4.6. We present here the procedure of Bhattacharya et al. [51] only for

testing s-deadlock in P as the procedure for testing t-deadlock is analogous. Assume

that the procedure has located the bounding chord viui where vi ∈ L and ui ∈ R.

The procedure wishes to locate the first reflex vertex vj by scanning L from vi−1 in

clockwise order such that uj ∈ R and the bounding chord vjuj does not intersect

viui. We have the following lemma.

Lemma 4.5.5 Let viui be a bounding chord in P , where vi ∈ L and ui ∈ R. Let vj be

a reflex vertex in bd(t, vi) such that vj is the previous vertex of vj−1 on SP (ui, vj−1)

(Figure 4.11(a)). Then the bounding chord vjuj does not intersect viui.

Based on the above lemma, the procedure for testing s-deadlock scans L from vi−1

in clockwise order and computes SP (ui, vm) for every vertex vm until vj is located.

It can be seen that SP (ui, vm) follows SP (ui, t) from ui up to a vertex vq ∈ R and

then jumps to a vertex vp ∈ L of SP (t, vm) and then follows SP (t, vm) from vp to

vm. Note that vp and vm may be the same vertex. For example, vp is vj and vq
is vk+2 in SP (ui, vj) in Figure 4.11(a). It can be seen that vpvq is a tangent from

vp ∈ SP (t, vm) to SP (ui, t) at vq. Since all such tangents vpvq computed until vj
is located are ordered from viui to vjuj , the time required for computing all these

tangents is proportional to the sum of the sizes of bd(vj , vi) and bd(ui, uj).

In order to locate uj , the procedure scans R from ui in counterclockwise order

until it locates the first vertex vr (see Figure 4.11(a)) such that −−−−→vj−1vj does not

intersect SP (t, vr). It can be seen that entire SP (t, vr) lies to the left of −−−−→vj−1vj
and uj ∈ vrvr−1. The cost of locating vr is proportional to the size of bd(ui, vr).

For more details on computing the intersection of a ray with the shortest path,

see Section 3.5.2. As the sub-polygons are disjoint in P , all sub-polygons can be

computed in O(n) time. Once P is partitioned into sub-polygons, the procedure

proceeds to test whether there is an s-deadlock in any sub-polygon Pi. We have the

following lemma.

Lemma 4.5.6 Let Pi denote the sub-polygon of P bounded by two consecutive bound-

ing chords viui and vjuj, where vi ∈ L, vj ∈ bd(t, vi), ui ∈ R and uj ∈ bd(ui, t). If

there exists a reflex vertex vk ∈ bd(ui, uj) (Figure 4.11(b)) such that (i) SP (vj , vk+1)

and SP (uj , vk+1) meet only at vk+1 and (ii) vk is the previous vertex of vk+1 on

SP (vj , vk+1), then vkwk intersects vjuj.

Based on the above lemma, the procedure for testing s-deadlock scans R from

uj to ui in counterclockwise order and computes SP (vj , vm) for every vertex vm ∈
bd(ui, uj) by drawing tangents, as stated above, in time proportional to the sum

of the size of bd(vj , vi) and bd(ui, uj). If any reflex vertex vk ∈ bd(ui, uj) satisfies
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Lemma 4.5.6, then P has an s-deadlock. Thus, it can be determined in O(n) whether

P has an s-deadlock. We summarize the result in the following theorem.

Theorem 4.5.7 Given a simple polygon P of n vertices, it can be determined in

O(n) time whether P is 2-walkable between two boundary points s and t.

4.6 Computing Shortest Path Trees using LR-Visibility

In this section, we present an O(n) time algorithm of Bhattacharya and Ghosh [48]

for computing the shortest path tree from a vertex (say, v1) in a simple polygon P if

P satisfies the characterization of LR-visibility polygons presented in Theorem 4.2.1.

If the algorithm terminates without computing the shortest path tree SPT (v1), it

means that P is not an LR-visibility polygon with respect to any pair of boundary

points of P . If the algorithm computes SPT (v1), P may be an LR-visibility poly-

gon. If P is an LR-visibility polygon, the algorithm always succeeds in computing

SPT (v1). Like the algorithm of Ghosh et al. [162] presented in Section 3.6.2, the

algorithm computes SPT (v1) by scanning bd(P ) and it uses pointers and a dou-

bly linked list as its data structures. In presenting this algorithm, we use the same

notions of Sections 3.3.1 and 3.6.2. We assume that P is given as a counterclockwise

sequence of vertices v1, v2, ..., vn.

The algorithm starts by computing the visibility polygon V (v1) of P from v1 by

the algorithm of Lee [230] presented in Section 2.2.1 (see Figure 4.12). It can be seen

that if constructed edges of V (v1) are used to partition P , they split P into disjoint

regions of P . All such regions, except V (v1), are called pockets of V (v1). Since the

vertices of V (v1) are visible from v1, they are children of v1 in SPT (v1). So, the

remaining task for computing SPT (v1) is to compute the shortest path from v1 to

each vertex of every pocket. Since the shortest path from v1 to any two vertices

vi and vj of different pockets are disjoint, i.e., SP (v1, vi) and SP (v1, vj) meet only

at v1, the shortest path from v1 to the vertices of one pocket can be computed

independent of other pockets of V (v1). So, it is enough to state the procedure for

computing SPT (v1) to all vertices in one pocket. We have the following lemma.

Lemma 4.6.1 If P is an LR-visibility polygon with respect to some pair of boundary

points s and t, then at most one of s and t can lie in a pocket of V (v1).

Proof. If both s and t lie in one pocket of V (v1), then either the entire L or the

entire R lies in the pocket of V (v1). If the entire R lies in the pocket, v1 belongs to

L. So, there is a point (i.e. v1) of L which is not visible for any point of R. So, P is

not an LR-visibility polygon, which is a contradiction. Analogous arguments hold

if the entire L lies in the pocket.
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Figure 4.12 The disjoint regions of P − V (vi) are pockets of V (v1).

Corollary 4.6.2 Let P be an LR-visibility polygon with respect to s and t. If both

endpoints of a constructed edge of V (v1) belong to either L or R (Figure 4.12), then

the entire pocket is weakly visible from the constructed edge.

Corollary 4.6.3 Let P be an LR-visibility polygon with respect to s and t. If one

endpoint of a constructed edge of V (v1) belongs to L and the other belongs to R

(Figure 4.12), then the pocket of V (v1) contains either s or t.

After computing V (v1), the algorithm proceeds to compute the shortest paths to

vertices of each pocket of V (v1) separately. Let vjv
′
j be a constructed edge, where vj

is a vertex of P and v′j is some boundary point of P (Figure 4.12). Note that v1, vj
and v′j are collinear. Without loss of generality, we assume that bd(P ) is traversed

from v1 to v′j in counterclockwise order. So, vj is encountered before reaching v′j .

The boundary of the pocket consists of the counterclockwise boundary of P from vj

to v′j and the segment vjv
′
j . The counterclockwise (or clockwise) boundary from a

boundary point z to another boundary point z′ is denoted as bdcc(z, z
′) (respectively,

bdc(z, z
′)). Since the shortest path from v1 to any vertex of this pocket passes

through vj , it is enough to compute SPT (vj) in the pocket of V (v1) bounded by

vjv
′
j .

The procedure for computing SPT (vj) scans bdcc(vj , v
′
j) in counterclockwise order

starting from vj+1 till it encounters a reverse turn at a vertex vcc or it reaches v′j .

This procedure is similar to the procedure mentioned in Section 3.6.2 as two cases.

Assume that SPcc(vj , vj+1), SPcc(vj , vj+2),..., SPcc(vj , vi−1) have been computed

and the procedure wants to compute SPcc(vj , vi). For any vertex vm ∈ bdcc(vj , v
′
i−1),

let um denote the parent of vm in SPTcc(vj , vi−1), i.e., um is the previous vertex of

vm in SPcc(vj , vm). We have the following two cases.
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Figure 4.13 (a) SPcc(vj , vi) = (SPcc(vj , vk), vi). (b) SPcc(vj , vi) = (SPcc(vj , vi−1), vi).
(c) There is a reverse turn at vi−1.

Case 1. The vertex vi lies to the left of −−−−−→ui−1vi−1 (Figure 4.13(a)).

Case 2. The vertex vi lies to the right of −−−−−→ui−1vi−1.

Case 2a. The vertex vi lies to the right of −−−−−→vi−2vi−1 (Figure 4.13(b)).

Case 2b. The vertex vi lies to the left of −−−−−→vi−2vi−1 (Figure 4.13(c)).

Consider Case 1. Since vi lies to the left of −−−−−→ui−1vi−1 (see Figure 4.13(a)),

SPcc(vj , vi) makes only right turns. Let vk be the first vertex of SPcc(vj , vi−1)

starting from vi−1 such that vi lies to the right of −−→ukvk. Therefore, vk becomes

the parent ui of vi in SPTcc(vj , vi) as vivk is the tangent from vi to SPcc(vj , vi−1).

Hence, SPcc(vj , vi) = (SPcc(vj , vk), vi). The region enclosed by vi−1vi, viui and

SPcc(ui, vi−1) is divided into triangles by extending each edge of SPcc(ui, vi−1) to

vi−1vi.

Consider Case 2a. Since vi lies to the right of both −−−−−→ui−1vi−1 and −−−−−→vi−2vi−1 (see

Figure 4.13(b)), it means that SPcc(vj , vi) makes only right turns, and vi−1 is the

parent ui of vi in SPTcc(vj , vi) as vivi−1 is the tangent from vi to SPcc(vj , vi−1). So,

SPcc(vj , vi) = (SPcc(vj , vi−1), vi).

Consider Case 2b. Since vi lies to the right of −−−−−→ui−1vi−1 and to the left of −−−−−→vi−2vi−1
(see Figure 4.13(c)), SP (vj , vi−1) passes through vertices of bdcc(vi, v

′
j) and there-

fore, SP (vj , vi−1) and SPcc(vj , vi−1) are not same. The vertex vi−1 is marked as vcc
as there is a reverse turn at vi−1.

It can be seen that the above procedure of scanning bdcc(vj , v
′
j) may not reach

v′j if Case 2b occurs. Otherwise the procedure has reached v′j , which means that

SPTcc(vj , v
′
j) has been computed. We have the following lemma.
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Figure 4.14 (a) The cross-tangent is drawn between SP (v′j , vi) and SP (vj , vi−1). (b) The
vertex vc belongs to bdcc(vj , vcc), and SPcc(vj , vi) and SPc(v

′
j , vi) meet only at vi.

Lemma 4.6.4 If no reverse turn is encountered during the counterclockwise scan

of bdcc(vj , v
′
j) (Figure 4.13(a)), then SPTcc(vj , v

′
j) is same as SPT (vj).

The above lemma suggests that if the scanning procedure does not terminate

before reaching v′j , it has computed SPT (vj). Otherwise, it has computed

SPTcc(vj , vcc). This means that (i) SP (vj , vcc) passes through vertices of

bdc(v
′
j , vcc+1), and (ii) s or t belongs to bdcc(vj , v

′
j) by Corollary 4.6.3. From now on,

we assume that the procedure has not reached v′j . The procedure scans bdc(v
′
j , vj)

in clockwise order starting from the next clockwise vertex of v′j by the analogous

procedure of the above counterclockwise scan. We have following lemma.

Lemma 4.6.5 If no reverse turn is encountered during the clockwise scan of

bdc(v
′
j , vj), then SPTc(v

′
j , vj) is same as SPT (v′j) (Figure 4.14(a)).

Exercise 4.6.1 Prove Lemma 4.6.5.

The above lemma suggests that if the clockwise scan reaches vj , then it has

computed SPT (v′j). Otherwise the clockwise scan has located a reverse turn at

some vertex vc (see Figure 4.14(b)). If SPT (v′j) has been computed, SPT (vj)

can be computed from SPT (v′j) using the algorithm of Hershberger [186] presented

in Section 5.2. The main step in computing SPT (vj) from SPT (v′j) (see Figure

4.14(a)) is to draw the cross-tangent between SP (v′j , vi) and SP (vj , vi−1) for every

vertex vi ∈ bdcc(vj , v
′
j) starting from vj+1 (see Exercises 3.6.2 and 3.6.3). All cross-

tangents in the pocket can be drawn in time proportional to the size of SPT (v ′j).
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From now on we assume that the procedure has located vc and vcc, and has

computed SPTc(v
′
j , vc) and SPTcc(vj , vcc). Although there are reverse turns at vc

and vcc, P can still be an LR-visibility polygon. We have the following two cases.

Case A. The vertex vc belongs to bdcc(vj , vcc) (Figure 4.14(b)).

Case B. The vertex vc does not belong to bdcc(vj , vcc) (Figure 4.15(a)).

Consider Case A. The algorithm computes SPT (vj) by merging SPTc(v
′
j , vc) and

SPTcc(vj , vcc). Before we state the procedure for merging, we present the overall

approach of the merging procedure in the following lemmas.

Lemma 4.6.6 Let vjv
′
j be a constructed edge of V (v1) in P satisfying Corollary

4.6.3. If vc ∈ bdcc(vj , vcc), then either s or t belongs to bdcc(vc, vcc).

Proof. We know from Corollary 4.6.3 that either s or t (say, s) must belong to

bdcc(vj , v
′
j). If s ∈ bdc(v

′
j , vcc+1), then there cannot be any reverse turn at vcc as

both vcc and vj belong to L. An analogous argument shows that s cannot belong

to bdcc(vj , vc−1). Hence, s ∈ bdcc(vc, vcc).

Lemma 4.6.7 Let vp and vq be the parents of a vertex vi ∈ bdcc(vc, vcc) in

SPTcc(vj , vcc) and SPTc(v
′
j , vc), respectively. If vp lies to the left of −−→vivq, then

SPcc(vj , vi) is same as SP (vj , vi), and SPc(v
′
j , vi) is same as SP (v′j , vi).

Proof. If vp lies to the left of −−→vivq (see Figure 4.14(b)), SPcc(vj , vi) and SPc(v
′
j , vi)

meet only at vi because SPcc(vj , vi) makes only right turns and SPc(v
′
j , vi) makes

only left turns. So, vi is visible from some point of vjv
′
j . By Theorem 4.2.1,

SPcc(vj , vi) is same as SP (vj , vi) and SPc(v
′
j , vi) is same as SP (v′j , vi).

The above lemma suggests that if there exists such a vertex vi ∈ bdcc(vc, vcc),

SPT (vj , vi) is same as SPTcc(vj , vi). Similarly, SPT (v′j , vi) is same as SPTc(v
′
j , vi).

For each vertex vk starting from vi+1 in counterclockwise order, draw the cross-

tangent between SP (v′j , vk) and SP (vj , vk−1) as stated earlier, which gives SPT (vj).

Consider the other situation when no vertex of bdcc(vc, vcc) satisfies the above

lemma (see Figure 4.15(b)). This means that for every vertex vi ∈ bdcc(vc, vcc),

SP (vj , vi) passes through vertices of bdc(v
′
j , vi) or SP (v′j , vi) passes through vertices

of bdcc(vj , vi). In order to identify all vertices of SP (vj , vi) and SP (v′j , vi), we need

the following lemmas.

Lemma 4.6.8 For any vertex vi ∈ bdcc(vj+1, vcc), all vertices of SPcc(vj , vi) belong

to SP (vj , vi).

Proof. If SPcc(vj , vi) is same as SP (vj , vi), then the lemma holds. So, we assume

that all edges of SPcc(vj , vi) do not lie inside P (see Figure 4.15(b)). Consider any

edge vkvm of SPcc(vj , vi) not lying inside P . This edge can be intersected only
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Figure 4.15 (a) The vertex vc does not belong to bdcc(vj , vcc). (b) SP (vj , vi) and SP (v′j , vi)
pass through vertices of bdc(v

′
j , vi) and bdcc(vj , vi) respectively. (c) All points of bdc(zq, zk)

are not visible from R.

by the edges of bdc(v
′
j , vi). So, vkvm in SPcc(vj , vi) is replaced by SP (vk, vm) in

SP (vj , vi). Hence, vk and vm remain in SP (vj , vi).

Lemma 4.6.9 For any vertex vi ∈ bdc(v
′
j , vc), all vertices of SPc(v

′
j , vi) belong to

SP (v′j , vi).

Although Lemma 4.6.8 suggests that all vertices of SPcc(vj , vi) belong to SP (vj , vi),

all edges of SPcc(vj , vi) may not belong to SP (vj , vi). In order to compute SP (vj , vi),

the problem is to replace each such edge vkvm of SPcc(vj , vi) by SP (vk, vm) (see

Figure 4.15(b)). Observe that since vkvm is intersected by edges of bdc(v
′
j , vi),

SP (vk, vm) must pass through some vertices of bdc(v
′
j , vi). Moreover, SP (vk, vm)

may pass through some more vertices of bdcc(vj , vi) (excluding vk and vm). Observe

that there exists an order in which edges of bdc(v
′
j , vi) intersect edges of SPcc(vj , vi)

in LR-visibility polygons (see Figure 4.15(b)) as shown in the following lemmas.

Lemma 4.6.10 Assume that the pocket bounded by the constructed edge vjv
′
j of

V (v1) satisfies Lemma 4.6.6. Let vi be a vertex of bdcc(vc, vcc). Let z1, z2,..., zp = vi
be the points of intersection of bdc(v

′
j , vi) with SPcc(vj , vi) in the order from vj to vi

on SPcc(vj , vi) (Figure 4.15(b)). Let z0 denote vj. If P is an LR-visibility polygon,

then for every intersection point zk, where 0 < k < p, zk belongs to bdc(zk−1, vi).

Proof. Assume on the contrary that there exist two intersection points zk and zq
(Figure 4.15(c)), where 0 < k < q < p, such that (i) zk lies on SPcc(vj , vi) between

vj and zq, and (ii) zk ∈ bdc(zq, vi). If vi ∈ L or s ∈ bdc(zk, vi), then all points of

bdc(zq, zk) are not visible from R. So, P is not an LR-visibility polygon, which is
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Figure 4.16 (a) All children of vj in SPTcc(vj , vcc) are not above vjv
′
j . (b) The inward edge

xy is entering in the counterclockwise pocket bounded by uw and bdcc(u,w). (c) The inward
edge xy is entering in the clockwise pocket bounded by uw and bdc(u,w).

a contradiction. If s ∈ bdc(v
′
j , zk), then s does not belong to bdcc(vc, vcc), which

contradicts Lemma 4.6.6.

Lemma 4.6.11 Assume that the pocket bounded by the constructed edge vjv
′
j of

V (v1) satisfies Lemma 4.6.6. Let vi be a vertex of bdcc(vc, vcc). Let z1, z2,..., zp = vi
be the points of intersection of bdcc(vj , vi) with SPc(v

′
j , vi) in the order from v′j to

vi on SPc(v
′
j , vi). Let z0 denote v′j. If P is an LR-visibility polygon, then for every

intersection point zk, where 0 < k < p, zk belongs to bdcc(zk−1, vi).

Lemma 4.6.12 Assume that the pocket bounded by the constructed edge vjv
′
j of

V (v1) satisfies Lemma 4.6.6. Let vi be a vertex of bdcc(vc, vcc). Let vkvm be an

edge of SPcc(vj , vi) where vk ∈ SPcc(vj , vm). Let x the point of intersection of −−−→vkvm
and bdc(v

′
j , vm) lying on an edge vlvl−1 of bdc(v

′
j , vm) (see Figure 4.15(b)) such

that (i) x does not lie on vkvm, and (ii) x is the first point of intersection while

traversing bdc(v
′
j , vm) in clockwise order from v′j. If P is an LR-visibility polygon,

then bdc(vl−1, vm+1) does not intersect the segment xvm.

Proof. The proof follows along the line of the proof of Lemma 4.6.10.

Lemma 4.6.13 Assume that the pocket bounded by the constructed edge vjv
′
j of

V (v1) satisfies Lemma 4.6.6. Let vi be a vertex of bdcc(vc, vcc). Let vkvm be an

edge of SPc(v
′
j , vi) where vk ∈ SPc(v

′
j , vm). Let x the point of intersection of −−−→vkvm

and bdcc(vj , vm) lying on an edge vlvl−1 of bdcc(vj , vm) such that (i) x does not lie

on vkvm, and (ii) x is the first point of intersection while traversing bdcc(vj , vm) in
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Figure 4.17 (a) The inward edge xy has intersected the extension ww′. (b) The inward edge
xy has intersected the ray drawn from u through w. (c) The inward edge xy is updated to
the next clockwise edge of xy.

counterclockwise order from vj. If P is an LR-visibility polygon, then bdcc(vl, vm−1)

does not intersect the segment xvm.

The ordered properties of intersection points in the above lemmas suggest a

method for locating all edges of bdc(v
′
j , vi) intersecting SPcc(vj , vi) as follows. Let

vjvk be the first edge of SPcc(vj , vi). Scan bdc(v
′
j , vi) from v′j until an edge of

bdc(v
′
j , vi) intersects the current edge vjvk or −−→vjvk. If −−→vjvk is intersected, take the

next edge of vjvk in SPcc(vj , vi) as the current edge and repeat the process of check-

ing the intersection. If an edge of bdc(v
′
j , vi) intersects vjvk, then continue the scan

until another edge of bdc(v
′
j , vi) intersects vjvk. Once another edge is found in-

tersecting vjvk, continue the scan as before to check for intersection with vjvk or
−−→vjvk. This method is used in the merging procedure for locating edges of bdc(v

′
j , vi)

intersecting edges of SPcc(vj , vi) for all vi using SPTcc(vj , vcc).

The merging procedure maintains two current edges xy (called an inward edge),

and uw (called a lid) and it checks the intersection between the current inward

edge and the current lid. The merging procedure starts by assigning v ′j to x, the

next clockwise vertex of x on bdc(v
′
j , vi) to y, vj to u, and the next vertex of vj on

SPcc(vj , vcc) to w. The above initialization of xy and uw is correct if all children of

vj in SPTcc(vj , vcc) lie on the same side of
−−→
vjv

′
j . If children of vj lie on both sides

of
−−→
vjv

′
j (see Figure 4.16(a)), w is assigned to the last child of vj in counterclockwise

order around vj , lying to the right of
−−→
vjv

′
j .

Intuitively, the situation after initialization can be viewed as the inward edge xy

entering the pocket induced by uw. In general, there are two situations: either the

inward edge xy from bdc(v
′
j , vc) is entering in the counterclockwise pocket bounded
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Figure 4.18 (a) The inward edge xy is updated to vkvk−1. (b) The point z ∈ bdc(y, vcc).
(c) The point z ∈ bdcc(vc, vcc).

by uw and bdcc(u,w) (see Figure 4.16(b)) or the inward edge xy from bdcc(vj , vcc)

is entering in the counterclockwise pocket bounded by uw and bdc(u,w) (see Fig-

ure 4.16(c)). Since these two cases are symmetric, we present the procedure only

for the former situation, i.e., the inward edge xy from bdc(v
′
j , vc) is entering the

counterclockwise pocket bounded by uw and bdcc(u,w) (see Figure 4.16(b)).

Step 1. While xy intersects uw do remove uw from SPTcc(vj , vcc) and w := the next

clockwise child of u in SPTcc(vj , vcc) (see Figure 4.16(b)).

Step 2. If xy intersects the extension ww′ (if it exists) of uw (see Figure 4.17(a))

then u := w, w := the next clockwise child of w in SPTcc(vj , vcc) and goto Step 1.

Step 3. If xy intersects −→uw (see Figure 4.17(b)) then u := w, w:= the next vertex

of w on SPcc(vj , vcc) and goto Step 1.

Step 4. Let y′ be the next counterclockwise vertex of y. If y′ lies to the right of −→uy
(see Figure 4.17(c)) then x := y, y := y′ and goto Step 1.

Step 5. If y′ lies to the right of −→xy (see Figure 4.18(a)) then scan the boundary in

counterclockwise order starting from y′ until an edge vkvk−1 intersecting uy is

found, assign vkvk−1 as the inward edge xy and goto Step 1.

Step 6. (Remark: y′ lies to the left of −→xy). Extend uy from y to bd(P ) meeting it

at a point z. Assign u as the parent of y in SPTcc(vj , vcc).

Step 6a. If z belongs to an edge of bdc(y, vcc) (see Figure 4.18(b)) then concatenate

the sub-tree of SPTc(v
′
j , vc) rooted at y to SPTcc(vj , v

′
j) by assigning u as the

parent of y, assign the edge containing z as the inward edge xy and goto Step

1.

Step 6b. If z belongs to an edge of bdcc(vc, vcc) (see Figure 4.18(c)) then concate-
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Figure 4.19 (a) The point z ∈ bdcc(vj , vc). (b) The parents of vertices vp−1, vp−2,..., vq+1

in SPTcc(vj , v
′
j) are yet to be computed.

nate the sub-tree of SPTc(v
′
j , vc) rooted at y to SPTcc(vj , v

′
j) by assigning u as

the parent of y and goto Step 7.

Step 6c. If z belongs to an edge of bdcc(vj , vc) (see Figure 4.19(a)) then locate

the child y′′ of y in SPTc(v
′
j , vc) such that −→uy passes between y′′ and its next

sibling in clockwise order, w := y′′, u := y, assign the edge containing z as the

inward edge xy and call the analogous procedure for checking the intersection

of inward edge xy entering into the clockwise pocket induced by uw.

Step 7. Let vpvp−1,..., vq+1vq be the consecutive edges such that the parents of

intermediate vertices vp−1, vp−2,..., vq+1 in SPTcc(vj , v
′
j) are not yet computed

(see Figure 4.19(b)). Compute the parent of every vertex vi ∈ bdcc(vq+1, vp−1)

in SPTcc(vj , v
′
j) starting from vq+1 by drawing the tangent from vi meeting

SPcc(vj , vp) or SPcc(vj , vi−1). If SPTcc(vj , v
′
j) is not computed completely goto

Step 7.

Step 8. Output SPTcc(vj , v
′
j) as SPT (vj) and Stop.

Consider Case B. We know that the vertex vc does not belong to bdcc(vj , vcc)

(Figure 4.15(a)). We have the following lemma.

Lemma 4.6.14 Let vjv
′
j be a constructed edge of V (v1) in P satisfying Corollary

4.6.3. If vc does not belong to bdcc(vj , vcc), then the parent of vcc in SPT (vj) is a

vertex of bdc(v
′
j , vc) or the parent of vc in SPT (v′j) is a vertex of bdcc(vj , vcc).

Proof. Let vp and vq be the parents of vcc and vc in SPT (vj) and SPT (v′j), respec-

tively (see Figure 4.15(a)). Since there is a reverse turn at vcc, vp ∈ bdc(v
′
j , vcc+1).

If vp ∈ bdc(v
′
j , vc), then the lemma holds. So we assume that vp ∈ bdc(vc, vcc+1). In
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that case, s ∈ bdcc(vj , vp−1). It means that there cannot be any reverse turn at any

vertex vc in bdc(v
′
j , s) as both s and v′j belong to L, which is a contradiction. So

s ∈ bdcc(vj , vcc) or vp ∈ bdc(v
′
j , vc). Analogous arguments show that s ∈ bdc(v

′
j , vc)

or vq ∈ bdcc(vj , vcc). If s ∈ bdcc(vj , vcc), then vq must belong to bdcc(vj , vcc), or if

s ∈ bdc(v
′
j , vc), then vp must belong to bdc(v

′
j , vc).

Corollary 4.6.15 The boundary bdcc(vj , vcc) intersects the last edge of SPc(v
′
j , vc) or

bdc(v
′
j , vc) intersects the last edge of SPcc(vj , vcc).

The above corollary suggests that by checking the intersection of bdc(v
′
j , vc) with

SPcc(vj , vcc), the parent of vcc in SPTcc(vj , v
′
j) can be located. The intersection can

be checked by the merging procedure stated as Step 1 to Step 8 in Case A. If the

parent of vcc in SPTcc(vj , vcc) changes after checking the intersection (i.e. vccvcc−1
becomes an inward edge), the procedure scans in counterclockwise order from vcc

till it finds a new vcc. Again, the merging procedure is used to find the parent of

the new vcc. This process of scanning and merging is repeated till SPTcc(vj , v
′
j)

is computed completely. Consider the other situation when the parent of vcc in

SPTcc(vj , vcc) has not changed after vcc is reached by the merging procedure. In that

case, the analogous steps of the merging procedure is used to check the intersection

between bdcc(vj , vcc) with SPc(v
′
j , vc). If the parent of vc changes in SPTc(v

′
j , vc),

the procedure scans in clockwise order from vc till it finds a new vc, and the entire

process is repeated with new vc and vcc. If the parent of vc also does not change

in SPTc(v
′
j , vc) after vc is reached by the merging procedure, then P is not an LR-

visibility polygon by Lemma 4.6.14. Finally, the procedure gives SPTcc(vj , v
′
j) or

SPTc(v
′
j , vj). If the procedures gives SPTc(v

′
j , vj), SPTcc(vj , v

′
j) can be constructed

from SPTc(v
′
j , vj) by drawing cross-tangents as stated earlier.

The correctness of the merging procedure follows from Lemmas 4.6.6, 4.6.10,

4.6.11, 4.6.12, 4.6.13 and 4.6.14. Let us analyze the time complexity of the merging

procedure. For each constructed edge vjv
′
j , SPTcc(vj , vcc) and SPTc(v

′
j , vc) can be

computed in time proportional to the number of vertices of bdcc(vj , v
′
j). The merging

procedure considers each edge of SPTcc(vj , vcc) and SPTc(v
′
j , vc) at most twice. Note

that all such points z in Step 6 of the merging procedure can be computed using

SPTcc(vj , vcc) and SPTc(v
′
j , vc) in a time that is proportional to the sum of sizes

of SPTcc(vj , vcc) and SPTc(v
′
j , vc). Therefore, SPT (vj) can be computed in a time

that is proportional to the number of vertices in bdcc(vj , v
′
j). Therefore, the merging

takes O(n) time for all pockets of V (v1). We summarize the result in the following

theorem.

Theorem 4.6.16 The shortest path tree from a vertex inside an n-sided simple

polygon P can be computed in O(n) time if P is a LR-visibility polygon.
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4.7 Notes and Comments

In the recent years, several on-line algorithms have been designed for LR-visibility

polygons (also called streets) in the context of robot path planning. These algo-

rithms are designed for situations where a robot moves in an environment without

completely knowing the geometry of the environment, navigating on the basis of

local information provided by acoustic, visual or tactile sensors. A natural scenario

in robotics is that of searching for a goal in an unknown polygonal region, i.e., a

robot with an on-board vision system is placed at a starting point s in a polygon

and it must traverse a path to some target point t in the polygon. A problem in the

above scenario is to design efficient algorithms which a robot can use to search for

the target. Any such algorithm is on-line in the sense that decisions must be made

based only on what the robot has seen so far.

For target-searching problems (searching a point t from a starting point s),

researchers have designed algorithms that minimize the Euclidean distance traveled

by a robot in reaching the target point. They have also investigated this problem

for streets for which better performance could be obtained. In the spirit of analyz-

ing on-line algorithms by following the concept introduced by Sleator and Tarjan

[312] for problems in computer science in general, the efficiency of such algorithms

is determined by their competitive ratio: the worst-case ratio of the length of the

path from s to t traversed by the on-line algorithm to the length of the Euclidean

shortest path between s and t.

Klein [219] proposed an on-line algorithm with competitive ratio 1+3π/2 for the

target-searching problem in a street. He also showed for this problem that
√
2 is

the lower bound on the competitive ratio. Since then, several on-line algorithms

have been designed improving the upper bound of the competitive ratio [105, 220,

246, 247] and finally, an optimal on-line algorithm has been designed by Icking et al.

[202]. For the corresponding problem of minimizing the number of links in the link

path between s and t, Ghosh and Saluja [166] proposed an optimal on-line algorithm

whose competitive ratio is 1 + 1/m, where m is the link distance between s and t.

For the target-searching problem in a generalized street, on-line algorithms were

proposed by Datta and Icking [106] and Lopez-Ortiz and Schuierer [247]. There are

on-line algorithms also for the target-searching problem in an unknown star-shaped

polygon, where t is any point in the kernel of the star-shaped polygon [201, 238, 248].
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Visibility Graphs

5.1 Problems and Results

The visibility graph is a fundamental structure in computational geometry; some

early applications of visibility graphs include computing Euclidean shortest paths

in the presence of obstacles [249] and in decomposing two-dimensional shapes into

clusters [306]. The visibility graph (also called the vertex visibility graph) of a polygon

P with or without holes is the undirected graph of the visibility relation on the

vertices of P . The visibility graph of P has a node for every vertex of P and an

edge for every pair of visible vertices in P . Figure 5.1(b) shows the visibility graph

of the polygon in Figure 5.1(a). We sometimes draw the visibility graph directly

on the polygon, as shown in Figure 5.1(c). It can be seen that every triangulation

of P corresponds to a sub-graph of the visibility graph of P . The visibility graph

of a line segment arrangement is defined similarly, where the endpoints of the line

segments are represented as the nodes of the visibility graph.

Consider the problem of computing the visibility graph of a polygon P (with or

without holes) having a total of n vertices. The visible pairs of vertices in P can

Figure 5.1 (a) A polygon. (b) The visibility graph of the polygon. (c) The visibility graph
drawn on the polygon.

136
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Figure 5.2 (a) The visibility graph of this polygon with holes has O(n2) edges. (b) The
visibility graph of this polygon with holes has O(n) edges.

be computed by checking intersections of segments connecting pairs of vertices in P

with each polygonal edge of P . This naive method takes O(n3) time as in the first

algorithm for computing the visibility graph given by Lozano-Perez andWesley [249].

Lee [229] and Sharir and Schorr [307] improved the time complexity by designing

O(n2 log n) time algorithms. Asano et al. [28] and Welzl [339] later developed O(n2)

time algorithms for this problem. Since, at its largest, the visibility graph can

be of size O(n2) (see Figure 5.2(a)), the algorithms of Asano et al. and Welzl are

worst-case optimal. In Section 5.3.1, we present the algorithm of Welzl [339].

Exercise 5.1.1 Draw a simple polygon of n vertices whose visibility graph

has 2n− 3 edges (including n polygonal edges) [271].

The visibility graph may be much smaller than its worst-case size of O(n2) (in

particular, it can have O(n) edges (see Figure 5.2(b)) and therefore, it is not nec-

essary to spend O(n2) time to compute it. In other words, the lower bound on the

time to compute a visibility graph can be expressed as Ω(n2), but a more exact lower

bound is Ω(E), where E is the number of edges in the visibility graph. Matching

this lower bound, Hershberger [186] developed an O(E) algorithm for computing the

visibility graph of a simple polygon which we present in Section 5.2. An algorithm

that takes time depending on its output size E is called output-sensitive. Over-

mars and Welzl [278] gave an O(E log n) time, O(n) space algorithm for computing

the visibility graph for a polygon with holes. Ghosh and Mount [165] presented

O(n logn + E) time, O(E + n) space algorithm for this same problem; we present

this algorithm in Section 5.3.2. Keeping the same time complexity, Pocchiola and

Vegter [286] improved the space complexity to O(n). Kapoor and Maheshwari [209]

proposed another algorithm for this problem for a polygon with h holes that runs
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in O(h logn + T + E) time, where T is the time for triangulating a polygon. Note

that a polygon with h holes can be triangulated in O(n+ h log1+ε h) time [43].

Consider the problem of computing the Euclidean shortest path SP (s, t) between

two points s and t inside a polygon P having a total of n vertices. If P is a

simple polygon, SP (s, t) can be computed in O(n) time by the algorithm of Lee and

Preparata [235] (see Section 3.6.1). If P contains holes, SP (s, t) can be computed

using the visibility graph of P as follows. Compute the visibility graph of P using

the algorithm of Ghosh and Mount [165] in O(n logn + E) time. Represent s as a

node in the visibility graph and connect it by edges to those nodes in the visibility

graph whose corresponding vertices in P are visible from s. This can be done in

O(n logn) time using the algorithm of Asano [27] (see Section 2.3). Similarly, the

node corresponding to t is connected to the visibility graph of P . Once the visibility

graph of n+2 nodes is constructed, the Euclidean distance between every visible pair

of vertices in P are assigned as the weight to the corresponding edge in the visibility

graph. Thus a weighted visibility graph is constructed, and using the algorithm of

Fredman and Tarjan [143], the shortest path from the node corresponding to s to

all nodes in the weighted visibility graph can be computed in O(n logn+ E) time.

We have the following theorem.

Theorem 5.1.1 The Euclidean shortest path between two points inside a polygon

P with holes of total n vertices can be computed in O(n logn+E) time, where E is

the number of edges in the visibility graph of P .

Suppose a partial visibility graph of P is computed such that all edges of SP (s, t)

belong to the partial visibility graph. So, SP (s, t) can still be computed from the

partial visibility graph using the algorithm of Fredman and Tarjan [143]. It is better

to compute such a partial visibility graph of P because it reduces the running time

of the algorithm of Fredman and Tarjan [143]. This approach of computing a partial

visibility graph of P (also called the tangent visibility graph [285]) has been taken by

Rohnert [298] and Kapoor et al. [210]. Rohnert [298] has proposed an O(n+h2 log h)

time algorithm for computing the tangent visibility graph of P , where P contains

h convex holes. If the holes in P are non-convex, the graph can still be computed

in the same time complexity as shown by Kapoor et al. [210]. We present the

algorithm of Rohnert [298] in Section 5.4.1 and the algorithm of Kapoor et al. [210]

in Section 5.4.2.

5.2 Computing Visibility Graphs of Simple Polygons

In this section, we present the algorithm of Hershberger [186] for computing the

visibility graph of a given simple polygon P in O(E) time, where E is the number of

edges in the visibility graph of P . We assume that P is given as a counterclockwise

sequence of vertices v1, v2, . . . , vn.
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Suppose, for every vertex vi ∈ P , the visibility polygon V (vi) of P is computed

using the algorithm of Lee presented in Section 2.2. For every vertex vj belongs

to V (vi), the corresponding nodes of vi and vj are connected by an edge in the

visibility graph of P . We call such segment vivj as visible segment in P . Since

every visible segment vivj for all i and j in P occurs in two visibility polygons V (vi)

and V (vj), the union of all visible segments in V (v1), V (v2),..., V (vn) gives the

visibility graph of P . Since, the algorithm of Lee runs in O(n) time, this process

of computing the visibility graph of P by computing V (v1), V (v2),..., V (vn) takes

O(n2) time. Suppose, the shortest path trees SPT (v1), SPT (v2),..., SPT (vn) are

computed in P instead of computing V (v1), V (v2),..., V (vn). Since each visible

segment must appear at least in two such trees, the visibility graph of P can also

be computed by computing SPT (v1), SPT (v2),..., SPT (vn). If these trees are

computed independently, this process again takes O(n2) time, as the algorithm of

Guibas et al. [178] for computing the shortest path tree from a vertex in P takes

O(n) time (see Section 3.3.2). It has been shown by Hershberger that SPT (v1),

SPT (v2),..., SPT (vn) can be computed in O(E) time.

Assume that SPT (vi) has been computed and the procedure wants to compute

SPT (vi+1). In order to compute SPT (vi+1), it is enough to locate those vertices vj

of P such that the parents of vj in SPT (vi) and SPT (vi+1) are different. For the

remaining vertices of P , the parents are the same in both SPT (vi) and SPT (vi+1).

Hence, the cost of computing SPT (vi+1) is same as the cost of locating such vertices

vj and their parents in SPT (vi+1). We show later that the sum of these costs for

computing SPT (vi+1) for all i is O(E). In the following lemma, we present the

main idea used by the algorithm for locating such vertices vj .

Lemma 5.2.1 For every vertex vj of P , the parents of vj in SPT (vi) and SPT (vi+1)

are different if and only if vj is visible from some internal point of the edge vivi+1.

Proof. If vj is visible from some internal point u on vivi+1 (see Figure 5.3(a)), then

both SP (vi, vj) and SP (vi+1, vj) cannot intersect the segment uvj (except at vj).

So, all vertices in SP (vi, vj) must lie on the clockwise boundary from vi to vj (i.e.,

bd(vj , vi)). Hence, the parent of vj in SPT (vi) belongs to bd(vj , vi). Analogously,

all vertices in SP (vi+1, vj), including the parent of vj in SPT (vi+1), belong to

bd(vi+1, vj). Therefore, the parents of vj in SPT (vi) and SPT (vi+1) are different.

Now we prove the converse. Assume on the contrary that vj is not visible from any

internal point of the edge vivi+1 but the parents of vj in SPT (vi) and SPT (vi+1)

are different. Let vp and vq denote the parents of vj in SPT (vi) and SPT (vi+1),

respectively (see Figure 5.3(a)). Consider −−→vjvp and −−→vjvq. If SP (vi, vp) intersects
−−→vjvp other than at vp, then vp cannot be the parent of vj in SPT (vi). So, SP (vi, vp)

does not intersect −−→vjvp. Analogously, SP (vi+1, vq) does not intersect −−→vjvq (except

at vq). So, vi and vi+1 lie on opposite sides of the wedge formed by rays −−→vjvp and
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Figure 5.3 (a) The vertex vj is visible from an internal point u of vivi+1. (b) There are
three types of vertices in V (vivi+1).

−−→vjvq. Therefore, the wedge intersects vivi+1. Hence vj is visible from some internal

point u of vivi+1, which is a contradiction.

The above lemma suggests that the parents of those vertices of P , that do not

belong to the weak visibility polygon V (vivi+1) of P from vivi+1, remain unchanged

while computing SPT (vi+1) from SPT (vi). This means that once SPT (vi+1) is

computed within V (vivi+1), the entire SPT (vi+1) has been computed. The task is

now to compute SPT (vi+1) within V (vivi+1) using the structure of SPT (vi).

Observe that there can be three types of vertices in V (vivi+1) (see Figure 5.3(b)):

(i) the vertices of V (vivi+1) that are visible from some internal point of vivi+1

satisfying Lemma 5.2.1, (ii) the vertices of V (vivi+1) that are only visible from vi (if

vi is a reflex vertex), and (iii) the vertices of V (vivi+1) that are only visible from vi+1

(if vi+1 is a reflex vertex). For vertices of type (ii), the shortest path from vi+1 to any

such vertex passes through vi. So, the sub-tree rooted at vi in SPT (vi) containing

vertices of type (ii) and their descendants becomes the sub-tree of SPT (vi+1) with

vi+1 as the parent of vi. For vertices of type (iii), the sub-tree rooted at vi+1 in

SPT (vi) becomes the sub-tree of SPT (vi+1).

The parent of vertices of type (i) in SPT (vi+1) can be computed using the shortest

path map of SPT (vi) as follows (see Figure 5.4(a)). It can be seen that SPT (vi)

partitions the internal region of P into funnels, where the edges of P are the bases

of funnels. The apex of a funnel F with base vjvj+1 is the least common ancestor

(say, vk) of vj and vj+1 in SPT (vi). So, SP (vk, vj) and SP (vk, vj+1) are two sides

of F . For more details on the properties of a funnel, see Section 3.6.1. If F is not a

triangle, then extend each edge of SP (vk, vj) and SP (vk, vj+1) to vjvj+1 and insert

the extension points on vjvj+1. It can be seen that these extensions partition F into
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Figure 5.4 (a) The shortest path map SPM(vi) gives the right constructed edges of
V (vivi+1). (b) The segment xvk is the tangent from x to SP (vi+1, y).

triangles. Similarly, partition all funnels in P into triangles and it gives the shortest

path map of SPT (vi) (denoted as SPM(vi)). The extensions of the sides of a funnel

are called extension edges of SPM(vi).

We know that only the endpoints of a constructed edge of V (vivi+1) lie on bd(P ),

and one of them is a vertex of P . For a constructed edge vpq, if vp precedes q in

clockwise order on the boundary of V (vivi+1), then we say vpq is a left constructed

edge and a right constructed edge (see Figure 5.4(a)), otherwise. We have the

following observation.

Lemma 5.2.2 The right and left constructed edges of V (vivi+1) are extension edges

of SPM(vi) and SPM(vi+1), respectively.

Exercise 5.2.1 Prove Lemma 5.2.2.

The above lemma suggests that the right constructed edges of V (vivi+1) can be

identified from SPM(vi). However, the left constructed edges of V (vivi+1) are not

readily available as SPM(vi+1) is yet to be constructed. So the task is to construct

SPM(vi+1), which can be done by traversing SPM(vi) and using Lemma 5.2.1 as

follows.

Assume that the procedure has computed SPT (vi+1) up to a vertex or point y

by traversing bd(P ) in counterclockwise order starting from vi+1. Initially, y is vi+1.

Let x denote the current vertex or point under consideration. If vi+1 is a convex

vertex, x is initialized to the next counterclockwise vertex or point of vi+1 on bd(P ).

Otherwise, x is initialized to the endpoint of the extension edge of SPM(vi) whose

other endpoint is vi+1. So, the segment xy is partially or totally an edge of P , or

a right constructed edge of V (vivi+1). If x is a vertex, then z denotes the parent
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Figure 5.5 (a) The visible segment uvm is the cross-tangent between SP (vi, x) and
SP (vi+1, y). (b) The vertex x is not a leaf of SPT (vi).

of x in SPT (vi). Otherwise, zx denotes the extension edge of SPM(vi). We have

following steps for computing SPT (vi+1) and SPM(vi+1) for vertices of type (i).

Step 1. Scan SP (vi+1, y) starting from y until a vertex vk is reached such that xvk
is either the tangent from x to SP (vi+1, y) (Figure 5.4(b)) or z lies to the left of
−→xvk (Figure 5.5(a)).

Step 2. If z lies to the left of −→xvk then

Step 2a. Draw the cross-tangent uvm between SP (vi, z) and SP (vi+1, vk) where

u ∈ SP (vi, z) and vm ∈ SP (vi+1, vk) (Figure 5.5(a)).

Step 2b. Add uu′ as an extension edge of SPM(vi+1), where u′ is the intersection

point of −−→vmu and xy.

Step 2c. Connect the sub-tree of SPT (vi) rooted at u (along with the map) to

SPT (vi+1) by assigning vm as the parent of u.

Step 2d. Extend each edge of SP (vm, y) to xy to form the extension edges of

SPM(vi+1).

Step 2e. Assign u to y and goto Step 7.

Step 3. Extend each edge of SP (vk, y) to xy to form extension edges of SPM(vi+1).

Step 4. If x is a point or a leaf of SPT (vi) then assign vk as the parent of x in

SPT (vi+1), assign x to y and goto Step 7.

Step 5. Add the extension edge xw of SPM(vi) as an extension edge of SPM(vi+1)

(Figure 5.5(b)).

Step 6. Connect the sub-tree of SPT (vi) rooted at x (along with the map) to

SPT (vi+1) by assigning vk as the parent of x. Assign w to y.
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Step 7. Assign the next counterclockwise vertex or point of y on bd(P ) to x. If x is

not vi then goto Step 1.

Step 8. Assign vi+1 as the parent of vi. Remove from bd(P ) the endpoints of the

extension edges of SPM(vi) that are on the boundary of V (v1vi+1) and Stop.

Once SPT (v1) is computed, the above procedure can be used to compute V (v1v2),

SPT (v2), V (v2v3), SPT (v3),..., V (vn−1vn), SPT (vn). Using the algorithm of Guibas

et al. [178] (see Section 3.3.2), SPT (v1) can be computed in O(n) time.

The correctness of the algorithm follows from Lemmas 5.2.1 and 5.2.2. We analyze

the time complexity of the algorithm. Consider a visible segment vjvk. It is obvious

that vjvk appears as an edge in SPT (vj) and SPT (vk). Let vjv
′
j and vkv

′
k denote

the two extension edges of vjvk, where v′j ∈ vpvp+1 and v′k ∈ vqvq+1. So, vjvk
appears as an edge in at least two trees among SPT (vp), SPT (vp+1), SPT (vq) and

SPT (vq+1). Therefore, the algorithm considers a visible segment and its extension

edges at most four times while computing tangents inside a weak visibility polygon.

Hence, the overall time complexity of the algorithm is O(E). We summarize the

result in the following theorem.

Theorem 5.2.3 The visibility graph of a simple polygon P can be computed in O(E)

time, where E is the number of edges in the visibility graph of P .

5.3 Computing Visibility Graphs of Polygons with Holes

5.3.1 Worst-Case: O(n2) Algorithm

In this section, we present the algorithm of Welzl [339] for computing the visibility

graph of a set S of n disjoint line-segments in O(n2) time. The endpoints of the

line-segments s1, s2, . . . , sn are marked as v1, v2, . . ., v2n, where v2i−1 and v2i are

endpoints of si. Any segment vivj is said to be a visible segment if vivj does not

intersect any line-segment in S. We know that the visibility polygon V (vi) from

each vertex vi can be computed in O(n logn) time by the algorithm of Asano [27]

presented in Section 2.3. Once V (vi) is known, then all visible segments with vi as

one endpoint are also known. Hence, the visibility graph of S can be computed in

O(n2 log n) time. Welzl [339] has shown that V (vi) can be computed in O(n) time

once slopes of all segments between vi and all other endpoints in S are given in the

sorted angular order around vi. We show later that this sorted angular order for all

vertices can be computed in O(n2).

Let Li denote the list of all segments connecting vi with every other endpoint of

S. Assume that the segments in Li are given in the counterclockwise angular order

around vi. The problem is to identify those segments in Li that are visible segments.

Let sk be the first line-segment in S intersected by the ray emanating from vi in the

vertical direction downward (see Figure 5.6(a)). In other words, sk is the current
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Figure 5.6 (a) The vertical ray is drawn from each endpoint of line-segments of S. (b) The
segment vivj is not a visible segment.

line-segment visible from vi in the direction vertically downward from vi. Let ui

denote the current point on the boundary of V (vi) visible from vi. Initialize ui by

the intersection point of sk and the downward vertical ray from vi.

In general, let vivj be the next counterclockwise segment of viui in Li. Without

loss of generality, we assume that vj+1 is the other endpoint of vj of the same

line-segment in S. We have the following cases.

Case 1. The segment vivj intersects sk (Figure 5.6(b)).

Case 2. The segment vivj does not intersect sk.

Case 2a. The vertex vj+1 is the vertex vi (Figure 5.7(a)).

Case 2b. The vertex vj+1 lies to the left of −−→vivj (Figure 5.7(b)).

Case 2c. The vertex vj+1 lies to the right of −−→vivj (Figure 5.7(c)).

In Case 1, vivj is not a visible segment. So, sk remains the same and the

intersection point of vivj and sk is assigned to ui. Consider Case 2. We know

that vivj is a visible segment (see Figure 5.7). If vivj itself is a line-segment in S

(i.e., Case 2a), then it is not a new visible segment and the intersection point of −−→vivj
and sk is assigned to ui. Otherwise, vivj is added to the list of visible segments of

vi. If vj+1 lies to the left of −−→vivj (i.e., Case 2b), then vjvj+1 becomes the current

visible line-segment in place of sk and vj becomes the current ui. If vj+1 lies the

right of −−→vivj (i.e., Case 2c), locate the line-segment sm intersecting −−→vivj such that

the intersection point on sm is the closest to vi among all other intersection points

on −−→vivj . If −−→vivj does not intersect any line-segment in S, we assume that there is a

line-segment sn+1 at infinity and sm is sn+1. Once the testing of vivj is over, the

algorithm takes the next counterclockwise segment of viui in Li and proceeds as

before. This process of rotation at vi is repeated till all segments in Li have been
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Figure 5.7 (a) The vertex vj+1 is the vertex vi. (b) The vertex vj is visible from vi. (c) The
segment vjvj+1 is the line-segment sk.

considered. It can be seen that each vivj of Li can be tested in O(1) time pro-

vided locating sm in Case 2c can also be done in O(1) time. We have the following

observation.

Lemma 5.3.1 Let vivj be the next segment of viui in the counterclockwise order

around vi, where ui is a point on the current visible line-segment sk of vi (Figure

5.7(c)). If vj is an endpoint of sk, then the next visible line-segment sm of vi is the

current visible line-segment of vj in the direction −−→vivj.

The above lemma suggests that if the current visible line-segment in the direction
−−→vivj is known for all vj at the time of processing Li, then each vivj of Li can be tested

in O(1) time. Suppose, starting from the initial vertical direction, the algorithm has

also processed all segments in Lj up to a segment vjvp where −−→vivj is lying between

vjvp and its next segment in Lj . In that case sm is the current visible line-segment

of vj . So, vjvp should be processed before processing vivj , which suggests an order

of processing. It can be seen that the segments in Li and Lj can be merged into

one list, say Lij , according to their angle with the initial vertical directions at vi

and vj respectively. Then, the rotation can be done at either vi or vj depending

upon the next segment in Lij . In the same way, a combined merged list L can be

constructed by merging L1, L2, . . . , L2n. We call L as the order of rotation for S.

The merging of 2n sorted lists having n elements in each list takes O(n2 log n) time

using pair-wise merging. This can be improved to O(n2) by computing L directly

from S without going through merging, using duality of lines and points as shown

in the following lemma.
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Lemma 5.3.2 Let D denote the set of all segments between any two endpoints of n

line-segments in S. The order of rotation for the segments in D can be constructed

in O(n2) time.

Proof. Let A be the arrangement of 2n lines which is the dual to the configuration

of endpoints v1, v2, . . . , v2n. This means that every endpoint vi = (ai, bi) is mapped

to a line Ti with equation y = aix + bi. We know that every intersection point

wij = (aij , bij) in A of two lines Ti and Tj corresponds to the line y = −aijx + bij
passing through vi and vj . Hence, the direction of every segment in D with slope k

corresponds to an intersection in A with x-coordinate −k and vice versa. Consider

all intersection points on Ti in the order along Ti. It can be seen that this order

is same as the angular order around vi of all segments in D with endpoint vi. For

any two consecutive intersection points wij and wik on every Ti, a direction can be

assigned from wij to wik if wij is to the right of wik. Let G represent an acyclic

directed graph, where every intersection point in A is represented as a node in G

and every direction assigned in A is represent as a corresponding directed edge in G.

It has been shown by Chazelle et al. [77] and Edelsbrunner et al. [120] that G can

be constructed from A in O(n2) time. Once G is constructed, topological sorting of

G gives the order of rotation for S, which can also be computed in O(n2) time (see

Kozen [221]).

In the following, we state the major steps of the algorithm.

Step 1. Compute the order of rotation for all segments between any two endpoints

of the given n line-segments in S.

Step 2. Traverse the order of rotation and test whether the current segment vivj in

the order is a visible segment.

Step 3. Output the visibility graph of S.

The correctness of the algorithms follows from Lemmas 5.3.1 and 5.3.2. We

summarize the result in the following theorem.

Theorem 5.3.3 The visibility graph of a set of n disjoint line-segments can be

computed in O(n2) time.

Exercise 5.3.1 Design an algorithm for computing the visibility graph of

a polygon with holes with a total of n vertices in O(n2) time.

5.3.2 Output-Sensitive: O(n logn+ E) Algorithm

In this section, we present an O(n logn + E) time algorithm given by Ghosh and

Mount [165] for computing the visibility graph of a polygon P with holes, where n
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Figure 5.8 (a) The edges of vi are on the opposite side of li. (b) Both edges of vi are on the
left of li. (c) Both edges of vi are on the right of li.

and E are the number of vertices and edges of the visibility graph of P , respectively.

This algorithm uses four key ideas. The first is a plane-sweep triangulation of P .

The second is the funnel sequence of every edge in the triangulation of P . The third

is the funnel sequence enhanced with appropriate data structures, which is called

the enhanced visibility graph. The final one is the fast traversal of the enhanced

visibility graph to locate visible segments in P .

Plane-Sweep Triangulation

Let us present the procedure for plane-sweep triangulation of P . This triangu-

lation procedure can be viewed as the generalization of the algorithm described by

Mehlhorn [257] for triangulating a simple polygon. We assume that the interior of

P lies to the left of every edge of P . This means that the outer boundary of P has

counterclockwise orientation and the boundaries of holes have clockwise orientation.

Like any plane-sweep algorithm, the vertices of P are sorted by increasing order of

their x-coordinates. Let v1, v2, . . . , vn be the sorted list of the vertices of P . For

every vertex vi, draw the vertical line li through vi. It can be seen that l1 and ln
do not intersect any polygonal edge except at v1 and vn, respectively (see Figure

5.8(a)). Remaining vertical lines l2, l3, . . . , ln−1 intersects some polygonal edges and

the intersection points on each line li can be ordered along li. The order of polygonal

edges corresponding to their intersection points on li is called the vertical ordering

of li.

The vertical ordering on each line li can be computed (or updated) by sweeping

a vertical line over P from left to right by stopping at each vertex vi. It starts by

constructing the vertical ordering of l1 by inserting both polygonal edges incident

at v1. The clockwise edge of v1 is inserted above the counterclockwise edge of v1 in

the vertical ordering of l1. Assume that vertical ordering of l1, l2, . . . , li−1 have been



148 Visibility Graphs

computed and the sweep-line has currently stopped at vi. If two edges incident at

vi are on the opposite side of li (see Figure 5.8(a)), the vertical ordering of li is the

same as li−1, except that the edge incident on vi in the vertical ordering of li−1 is

replaced by the other edge of vi in the vertical ordering of li. If both edges incident

on vi are on the left of li (see Figure 5.8(b)), then remove both edges of vi from the

vertical ordering of li−1 to obtain the vertical ordering of li. If both edges incident

on vi are on the right of li (see Figure 5.8(c)), then locate two edges e and e′ by

binary search in the vertical ordering of li−1 such that e is the nearest edge above

vi and e′ is the nearest edge below vi. Insert two edges incident on vi between e

and e′ in the vertical ordering of li−1 to obtain the vertical ordering of li. Note

that if no such edge e (or e′) exists, it means that two edges of vi are inserted at

the top (respectively, bottom) of the vertical ordering of li−1. For more details on

plane-sweep techniques, see Preparata and Shamos [291].

While updating the vertical ordering of li from li−1, the triangles can be added

to the existing triangulation Ti−1 (of the polygonal region Pi−1) to form the trian-

gulation Ti, by adding diagonals between vi and the vertices on the outer boundary

of Ti−1 that are visible from vi. As before, we have three situations.

Consider the first situation when two edges of vi are on opposite sides of li (see

Figure 5.9(a)). Let vj be the vertex such that the edge vjvi is in the vertical ordering

of li−1. Let vpvq be the nearest edge below (or above) vjvi such that there are an

odd (respectively, even) number of edges below (respectively, above) vjvi in the

vertical ordering of li−1, where vp is to the left of li. To construct Ti, add diagonals

between vi and the vertices on the boundary of Ti−1 (facing vi) between vj and vp,

that are visible from vi. Observe that the boundary of Ti−1 between vj and vp (say,

chain(vj , vp)) is convex. Starting from vj , traverse chain(vj , vp) until a vertex vt
is reached such that vtvi is a tangent to chain(vj , vp). Diagonals are added from

vi to all vertices of chain(vj , vt). Note that the new triangles form one connected

sequence about vi and they are called the interior triangles of vi. The edges of

chain(vj , vt) are called windows of vi as vi can see vertices of Pi−1 only through

these windows. Note that some of these windows may be polygonal edges.

Consider the second situation when both edges of vi are on the left of li (see

Figure 5.9(b)). Let vmvi and vkvi be two edges of vi, where vmvi is above vkvi in

the vertical ordering of li−1. Treating vmvi and vkvi separately as vjvi, add diagonals

to construct Ti from Ti−1 as stated above. Observe that the new triangles form two

connected sequences about vi, one is above vmvi and the other is below vkvi. Note

that if vi is same as vn, then Ti is same as Ti−1 and Ti is the triangulation of the

entire polygon P .

Consider the third situation when both edges of vi are on the right of li (see Figure

5.9(c)). Let vpvq and vjvk be the nearest edge below and above vi in the vertical

ordering of li, where vp and vj lie on the left of li. If there are an odd number of

edges below vi in the vertical ordering of li, then construct Ti from Ti−1 by adding



5.3 Computing Visibility Graphs of Polygons with Holes 149

Figure 5.9 Diagonals are added between vi and the visible vertices on the boundary of Ti−1.

diagonals between vi and the visible vertices of chain(vj , vp) on the boundary of

Ti−1 as stated earlier. Observe that the new triangles form one connected sequence

about vi.

It can be seen that diagonals can be added in time proportional to the number

of diagonals in Tn, which is O(n). The vertical ordering can be maintained in a

height-balanced tree. Therefore, searching in the vertical ordering for nearest edges

on both sides of the current vertex vi takes O(log n) time. Since there are n vertical

orderings, the time taken to update vertical orderings is O(n logn). Sorting of n

vertices takes O(n logn) time. We have the following theorem.

Theorem 5.3.4 Using plane-sweep techniques, a polygon P with holes with a total

of n vertices can be triangulated in O(n logn) time.

Exercise 5.3.2 Given n line segments in the plane, design an O(n logn)

time algorithm for detecting whether there is an intersection between any

two segments using vertical orderings [291].

The Funnel Sequence

Before we define the structure and properties of a funnel sequence, we explain the

need for a funnel structure. As defined in earlier sections, a segment vivj is called a

visible segment if it lies inside P . We start with the following observations.

Lemma 5.3.5 Let vi and vj be two vertices of P such that j < i. If vjvi is a visible

segment, then vj is weakly visible from a window of vi.

Proof. It can be seen that the segment joining vj and vi intersects one of the

windows of vi and therefore, vj is weakly visible from a window of vi.
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Figure 5.10 (a) The unique funnel (with vq as the apex and vsvt as the base) contains the
segment zvq. (b) Two funnels sharing a single apex vq with common base vsvt.

Lemma 5.3.6 Let vi and vj be two vertices of P such that j < i. If vj is not weakly

visible from a window of vi, then the segment vjvi does not lie inside P .

The above lemmas suggest that in order to locate all such visible segments vjvi
in P , it is enough to consider those vertices of Pi−1 that are weakly visible from

windows of vi. Once weakly visible vertices of Pi−1 are known, they can be tested

for visibility from vi. After this process of testing for visibility has been carried out

for all vertices of P in sorted order, all visible segments between the vertices in P

are located.

Let us explain the structure of the funnel sequence. Let vsvt be a window of vi.

Let vq be a vertex of Pi−1 that is weakly visible from some point z on vsvt. So, the

segment zvp lies inside P . The lower chain of vq with respect to vsvt is defined as

the unique convex chain from vq to vs inside P (see Figure 5.10(a)) such that the

region enclosed by this chain and by the segments zvq and zus does not contain any

hole. The upper chain of vq with respect to vsvt is defined analogously. The region

of P bounded by these two chains and vsvt is called a funnel. The vertex vq is called

the apex of the funnel and vsvt is called the base of the funnel. The upper and lower

chains are also referred to as upper and lower sides of the funnel. Unlike funnels

that arise in polygons without holes (see Section 3.6), there may be several funnels

sharing a single apex with common base in a polygon with holes. In Figure 5.10(b),

one funnel goes below the hole in the middle and the other funnel goes above it.

These apexes may be viewed as being distinct vertices occupying the same physical

location in the polygon.

Consider all vertices of P that are visible from a vertex vq. Let u0, u1, ..., um be

the clockwise sequence of vertices around vp that are visible from vq, where vqu0
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and vqum are edges of P . For every pair of adjacent vertices uj−1 and uj (see Figure

5.10(b)), there is a unique edge e of P that can be seen from vq looking between

these vertices. Thus there is a unique funnel with apex vq such that its base is e, its

upper chain starts with vquj−1 and its lower chain starts with vquj . Hence, a funnel

is uniquely determined by the first (directed) segment vquj of its lower chain. As a

consequence of this, we have the following lemma.

Lemma 5.3.7 The total number of funnels in the visibility graph of P with E

undirected edges is at most 2E.

For a given window vsvt of vi, let FNL(vsvt) denote the set of all funnels with

vsvt as their common base. Since the apexes of these funnels are assumed to be

on the left of vsvt, these funnels are also on the left of vsvt. We have the following

observation.

Lemma 5.3.8 If vq is the apex of a funnel F in FNL(vsvt) and vqvp is the first

segment on the lower chain of F , then the region of F contains another funnel with

vp as the apex.

Proof. The proof follows from the convexity of funnels.

The above observation suggests that if we consider the apex vp as the parent of

the apex vq, then the lower chains of all funnels in FNL(vsvt) form a tree rooted at

vs and each path from the root to a leaf in this tree is a convex chain that makes

only counterclockwise turns (see Figure 5.11(a)). We call this tree the lower tree

for vsvt. Analogously, the upper tree rooted at vt consists of the upper chains of all

funnels in FNL(vsvt) (see Figure 5.11(b)). Note that each path from the root to

a leaf in the upper tree makes only clockwise turns. We differentiate vertices from

apexes because a vertex can appear many times as an apex in FNL(vsvt) but each

apex appears only once.

Consider the clockwise preorder traversal of the lower tree rooted at vs. It can

be seen that the sequence of this traversal gives a natural linear ordering on the

funnels of FNL(vsvt), whose first element is the degenerate funnel with apex at

vs, and whose last element is the degenerate funnel with apex at vt. We call this

clockwise ordering of funnels as the funnel sequence for vsvt. Similarly, a natural

linear ordering on the funnels of FNL(vsvt) can be obtained by considering the

clockwise postorder traversal of the upper tree rooted at vt. We have the following

observation.

Lemma 5.3.9 The linear orders on FNL(vsvt) arising from a clockwise preorder

traversal of the lower tree and a clockwise postorder traversal of the upper tree are

the same.
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Figure 5.11 (a) The lower tree rooted at vs. (b) The upper tree rooted at vt.

Exercise 5.3.3 Prove Lemma 5.3.9.

The Enhanced Visibility Graph

Once FNL(vsvt) is computed for the window vsvt of vi, for every vertex vj of

FNL(vsvt), it can be tested to determine whether vjvi is a visible segment. It can

be seen that if vjvi is a visible segment, then the segment vjvi lies inside the region

bounded by the triangle 4vsvtvi and the funnel F in FNL(vsvt) with the apex vj
and the base vsvt. This means that the segment vjvi lies between two first segments

of F and this criteria can be used for testing whether vjvi is a visible segment.

Observe that there may be vertices in FNL(vsvt) that are not visible from vi. If

such vertices are also traversed, then the running time of the algorithm cannot be

output sensitive. In order to keep the running time of the algorithm proportional to

the number of visible segments, all vertices of FNL(vsvt) cannot be traversed during

the process of locating such visible segments vjvi. This difficulty can be overcome

using the enhanced visibility graph for vi−1, which is the union of the enhanced

visibility graph for vi−2 and all visible segments vkvi−1 where vk ∈ Pi−2, with a few

pointers at vk and vi. These pointers are used in traversing only those vertices of

FNL(vsvt) that form visible segments with vi. Note that these visible vertices of vi
form sequences of consecutive vertices on the sides of the funnels in FNL(vsvt) due

to the convexity of the funnels.

Let us define these pointers for visible segments incident on a vertex vq in the

entire visibility graph of P . Let u0, u2, ..., um be the clockwise sequence of vertices

around vq that are visible from vq in P , where vqu0 and vqum are edges of P (see

Figure 5.12). For any uj , let CCW (vquj) denote the counterclockwise successor of

vquj . This means that CCW (vquj) is the next counterclockwise visible segment of

vquj around vq, which is vquj−1. Analogously, the clockwise successor CW (vquj) of
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Figure 5.12 The pointers CCW (vquj), CW (vquj), CCX(ujvq), CX(ujvq) and REV (ujvq)
are shown in the figures.

vquj is vquj+1. The counterclockwise extension of vquj , denoted as CCX(ujvq), is

defined as follows (see Figure 5.12(a)). Rotate −−→vquj counterclockwise by 180◦ about

vq. During the rotation, if −−→vquj remains entirely inside the interior of P locally

about vq, then the extension is the very next visible segment incident on vq after

the 180◦ rotation. Otherwise, there is no counterclockwise extension of vquj (see

Figure 5.12(b)). The clockwise extension CX(ujvq) of vquj is defined analogously

by rotating −−→vquj clockwise around vq (see Figure 5.12(c)). Finally, the reversal

REV (ujvq) of (directed) segment vquj is the (directed) segment ujvq.

We observe that the enhanced visibility of P , consisting of funnel structures for

every edge of the triangulation of P equipped with the pointers mentioned above

for each visible segment of P , permits traversal of the lower and upper trees, which

is proved in the following lemma.

Lemma 5.3.10 Let vpvq be a directed segment in the lower tree (or upper tree) for

a window vsvt of vi in the enhanced visibility graph of Pi−1 such that vp is the parent

of vq. The following relatives of vp and vq in the lower tree (respectively, upper tree)

can be computed in constant time: (i) the parent of vp, (ii) the extreme clockwise and

counterclockwise children of vq, and (iii) the clockwise and counterclockwise siblings

of vq.

Proof. We prove the lemma only for the lower tree as the proof for the upper tree

is analogous. We know that vpvq is the first segment of a funnel F with apex vq and

vsvt as the base (see Figure 5.13(a)). Let vlvp be the next segment of vpvq on the

same side of F . So, vl is a parent of vp in the lower tree. To prove (i), it is enough

to show that vpvl is the same as CX(vqvp) (i.e., CW (REV (vqvp)). If CX(vqvp)

is not vpvl, it means that vpvq belongs to both sides of F and therefore, the line
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Figure 5.13 (a) Locating the next edge on the same side of a funnel F . (b) Locating the
children of vq in the lower tree.

segment joining vq with any point of the base of F does not lie inside F , which is a

contradiction. Hence, vpvl is same as CX(vqvp).

To prove (ii), let CCW (vqvp) be vqvk (see Figure 5.13(b)). So, vqvk is the first

segment on the other side of F , and vk is a parent of vq in the upper tree. It can be

seen that all children of vq in the lower tree lie between −−→vpvq and −−→vkvq because for

any child vj , the funnel F
′ with vj as the apex must contain F by Lemma 5.3.8. So,

CCX(vpvq) is the edge connecting vq with one of its extreme children. The edge

connecting vq with its other extreme child is CW (CCX(vkvq)).

To prove (iii), observe that CW (vpvq) is the edge connecting vp with the clockwise

sibling of vq. A symmetric statement holds for the counterclockwise sibling of vq.

Corollary 5.3.11 Clockwise and counterclockwise traversals of the lower and upper

trees in the enhanced visibility graph of Pi−1 can be executed in time proportional to

the number of vertices in the trees.

Corollary 5.3.12 A funnel in the enhanced visibility graph of Pi−1 can be traversed

in time proportional to the number of vertices in the funnel.

Traversal of Enhanced Visibility Graph

The enhanced visibility graph of P can be build up by successively incorporating

visible segments of each vertex vi with the enhanced visibility graph of Pi−1. Assume

that the enhanced visibility graph of Pi−1 has been computed and the algorithm

wants to locate all visible segments vjvi, where j < i. For every window vsvt of

vi, the algorithm traverses FNL(vsvt) in the enhanced visibility graph of Pi−1 to
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Figure 5.14 (a) The apex vj is weakly visible from both vsvi and vtvi. (b) The apex vj is
weakly visible only from vsvi. (c) The apex vj is weakly visible only from vtvi.

locate such vertices vj that can be seen from vi through window vsvt. We have the

following observation.

Lemma 5.3.13 Let vj be the apex of a funnel in FNL(vsvt), where vsvt is a window

of vi. The apex vj is visible from both edges vsvi and vtvi if and only if vj is visible

from vi.

Corollary 5.3.14 If vj is visible from vi, then all vertices in the lower and upper

chains of the funnel with apex vj are also visible from vi.

The above lemma suggests that the visible segments from vi can be added to only

those apexes in FNL(vsvt) that are weakly visible from both vsvi and vtvi; they are

referred to as visible apexes. Adding a visible segment from vi to a visible apex vj
amounts to splitting this funnel F into two funnels Fs and Ft (see Figure 5.14(a)),

where Fs is for FNL(vsvi) and Ft is for FNL(vivt). The lower chain of Fs is the

lower chain of F , and the upper chain of Fs is only the visible segment vjvi. On the

other hand, the lower chain of Ft is the visible segment vjvi, and the upper chain of

Ft is the upper chain of F .

Consider the situation when the apex vj is weakly visible only from vsvi (see

Figure 5.14(b)). Let vivk be the tangent from vi to the upper chain of F . So, vkvi
splits F into two funnels Fs and Ft. The lower chain of Fs is the lower chain of F

and the upper chain of Fs is the upper chain of F between the apex vj and vk and

the visible segment vkvi. On the other hand, the lower chain of Ft is the visible

segment vjvi, and the upper chain of Ft is the upper chain of F between vk and

vt. If the apex vj is weakly visible only from vtvi, the new funnels Fs and Ft can

be defined analogously (see Figure 5.14(c)). This procedure of splitting a funnel is

referred as SPLIT .
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Figure 5.15 (a) SPLIT is called for the window vsvt of vi. (b) SPLIT is called for the
window vkvp of vi.

The recursive procedure SPLIT traverses the lower tree rooted at vs in the linear

order (see Lemma 5.3.9 for this order) from vs to vt in FNL(vsvt), and it locates

the next visible apex in FNL(vsvt) from the current visible apex. Initially, vs is the

current visible apex as SPLIT (vsvtvi) is called for4vsvtvi. Let vj be the next vertex

of vs in the linear order (see Figure 5.15(a)). Assume that vj is a visible apex. So,

the segments from vi to all vertices of the upper chain between vj and vt are visible

segments by Corollary 5.3.14 and therefore, they can be added to the enhanced

visibility graph of Pi−1. For every such visible segment vkvi, SPLIT (vsvtvi) adds

the pointers CW (vkvi), CCW (vkvi), CX(vivk), CCX(vivk). It is shown later that

the cost of adding these pointers for every visible segment can be amortized to

O(1) time. Each edge vkvp in the upper chain between vj and vt can be viewed as a

window of vi (see Figure 5.15(a)) and therefore, SPLIT (vsvtvi) calls SPLIT (vkvpvi)

for each vkvp. Note that if any vkvp happens to be a polygonal edge, SPLIT is not

called for this edge as it does not serve as a window of vi.

Consider any recursive call SPLIT (vkvpvi) (see Figure 5.15(b)). We know that

vkvp is a window of vi, vp is the parent of vk in the upper tree rooted at vt and vkvp
is not a polygonal edge. We also know the pointers of vkvp and vkvi. The task is to

locate the next visible apex of vk in the linear order. Let vj be the next vertex of

vk in the linear order. We have the following cases.

Case 1. The vertex vj is a visible apex (Figure 5.15(b)).

Case 2. The vertex vj is not a visible apex and it lies to the right of −−→vivk (Figure

5.16(a)).

Case 3. The vertex vj is not a visible apex and it lies to the left of −−→vivk (Figure

5.16(b)).
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Figure 5.16 The next vertex vj of vk in the linear order is not a visible apex.

In Case 1, SPLIT (vkvpvi) carries out its task for this funnel with visible apex vj

as stated above for SPLIT (vsvtvi). Consider Case 2. Let vm be the next visible

apex of vk in the linear order (see Figure 5.16(a)). Note that there may be several

vertices between vk and vm in linear order and they are not visible from vi. This

means that once vj is found not to be visible from vi, SPLIT (vkvpvi) has to “jump”

from vj to vm in O(1) amortized time. It can be seen that the vertex vm lies in

upper chain between vj and vp as vivm is the tangent from vi to the upper chain

of the funnel with apex vj . So, SPLIT (vkvpvi) traverses the upper chain from vp
toward vj till it locates vm. Note that all vertices from vp to vm in the path are

visible from vi. Observe that this traversal from vp toward vj in the upper chain

can be done by using the pointer CX successively as vk and vj are two consecutive

vertices in the linear order. Note that the vertices from vj to the previous vertex of

vm in linear order, which form the sub-tree of upper tree rooted at vm, are visible

only from vsvi and therefore, they are incorporated in FNL(vsvi). In case vp and

vm are same, then no vertex of Pi−1 is visible from vi through window vkvp.

Exercise 5.3.4 Let Fk and Fj be two funnels of FNL(vsvt) with apexes

vk and vj, respectively, such that vj is the next apex of vk in the linear

order of FNL(vsvt). Prove that the region (which is called a hourglass)

bounded by (i) the lower chain of Fk, (ii) the visible segment vkvj, (iii)

the upper chain of Fj, and (iv) the window vtvs, does not contain any

hole.

Consider Case 3. Locate the first sibling (say, vq) of vj in the clockwise order in

the lower tree such that vq lies to the right of −−→vivk (see Figure 5.16(b)). If no such

vertex vq exists, i.e., all siblings of vj lie to the left of −−→vivk, then the next clockwise

sibling of vk in the lower tree is the vertex vq. If vk does not have a clockwise sibling,

then take the parent of vk in the lower tree and check its next clockwise sibling. By
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repeating this process, vq can be located. If vq is same as vp, then no vertex of Pi−1

is visible from vi through window vkvp. So, we assume that vp is not same as vq.

This implies that the visible segment connecting vq and its parent in the lower tree

has intersected vkvp. We have the following two sub-cases.

Case 3a. The vertex vq is a visible apex.

Case 3b. The vertex vq is not a visible apex (see Figure 5.16(b)).

Consider Case 3a. The vertex vq is the next visible apex vm of vk and

SPLIT (vkvpvi) has located vm. Then, SPLIT (vkvpvi) carries out its task for this

funnel with visible apex vq as stated earlier. It can be seen that the vertices between

vk and vq in the linear order are vertices that are visible only from vivt and therefore,

they are incorporated in FNL(vivt).

Consider Case 3b. The next visible apex vm lies in the upper chain between vq
and vp as vmvi is the tangent from vi to the upper chain. Observe that vk and vq
are not adjacent vertices in the linear order and therefore, the upper chain from vp

toward vq cannot be traversed to locate vm using the pointer CX successively as in

Case 2. Let vh be the previous vertex of vq in the linear order. Let vl be the parent

of vh in the upper tree. Observe that vl is visible from vi and it lies in the upper

chain between vm and vp. So, all vertices in the upper chain between vl and vp are

visible from vi and all vertices from vl to vm in the upper chain are also visible from

vi. The upper chain from vl to vp can be traversed using the parent pointer in the

upper tree successively. The upper chain from vl to vq can now be traversed using

the pointer CX successively as vh and vq are adjacent vertices in the linear order.

This traversal toward vq stops once vm is found and hence, SPLIT (vkvpvi) has

located vm. It can be seen that the vertices between vk and vq in the linear order,

which form the sub-tree of the lower tree rooted at vk, are visible only from vivt
and therefore, they are incorporated in FNL(vivt). Similarly, the vertices between

vh and vm in the linear order, which form the sub-tree of the upper tree rooted at

vm, are visible only from vivs and therefore, they are incorporated in FNL(vsvi).

We have the following lemma.

Lemma 5.3.15 The recursive procedure SPLIT (vsvtvi) correctly locates all vertices

of Pi−1 that are visible from vi through window vsvt.

Exercise 5.3.5 Prove Lemma 5.3.15.

Once SPLIT (vsvtvi) is executed, FNL(vsvt) splits into the lower funnel sequence

FNL(vsvi) and the upper funnel sequence FNL(vivt). It can be seen that SPLIT

produces two such funnel sequences for each window of vi. All lower funnel sequences

are concatenated to form one lower funnel sequence for vi and this can be done

easily as a funnel sequence is maintained in a doubly linked list which permits
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Figure 5.17 (a) The vertices u0, u2, . . . , um are visible from vi. (b) Figure shows the visible
segments and their extensions in the sorted angular order around vk.

concatenation in O(1) time. Similarly, all upper funnel sequences are concatenated

to form one upper funnel sequence for vi.

The Overall Algorithm

We present the overall algorithm for computing the enhanced visibility graph of

Pn. We assume that the vertices of P are numbered v1, v2, . . . , vn from left to right

in the sorted order. Compute the enhanced visibility graph of P1 and initialize the

index i by 2. We have the following steps for computing the enhanced visibility

graph of Pn.

Step 1. Add vi to Pi−1.

Step 2. For each convex chain u0, u1, . . . , um of vertices of Pi−1 visible to vi (Figure

5.17(a)), add diagonals u0vi, u1vi, . . . , umvi to form the triangulation of Pi.

Step 3. For each window uj−1uj of vi, call SPLIT (uj−1ujvi).

Step 4. Concatenate the lower funnel sequences FNL(u0vi), FNL(u1vi), . . .,

FNL(um−1vi) to form FNL(u0vi).

Step 5. Concatenate the upper funnel sequences FNL(viu1), FNL(viu2), . . .,

FNL(vium) to form FNL(vium).

Step 6. If i 6= n then i := i+ 1 and goto Step 1.

Step 7. Output the enhanced visibility graph of Pn and Stop.

The correctness of the algorithm essentially follows from Theorem 5.3.4 and

Lemma 5.3.15. Let us analyze the time complexity of the algorithm. We know

from Theorem 5.3.4 that P can be triangulated in O(n logn) time. In the following,

we show that all visible segments in P can be computed in O(E) time.
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Consider the cost of adding visible segments to the enhanced visibility graph of

Pi−1 by the recursive procedure SPLIT (uj−1ujvi). The cost consists of two parts.

The first part is the time taken to locate the visible segments and the second part

is the time taken to add pointers to these visible segments. Since SPLIT (uj−1ujvi)

moves from one visible apex to the next visible apex in

FNL(uj−1uj), the time taken in the first part is proportional to the number of

visible segments located by SPLIT (uj−1ujvi). For estimating the time taken in the

second part, we need a particular data structure at each vertex of P .

The algorithm maintains a doubly linked adjacency list for each vertex vk of P

such that the visible segments incident on vk and their extensions are stored in the

sorted angular order around vk (see Figure 5.17(b)). Consider any visible segment

vkvi added by SPLIT (uj−1ujvi), where k < i. Since vk is a visible apex of some

funnel F with base uj−1uj , the first segment in the lower (or upper) chain of F is

CW (vkvi) (respectively CCW (vkvi)). So, the pointers CW (vkvi) and CCW (vkvi)

can be added in O(1) time. It can be seen that the extensions of CX(vivk) and

CCX(vivk) are two neighbors of vkvi at vk. So, the position of vkvi in the angular

order at vk has to be located among the extensions of the visible segments incident on

vk that are lying between CW (vkvi) and CCW (vkvi) (see Figure 5.17(b)). We show

later that the cost of searching for locating the position of vkvi at vk can be amortized

to O(1) time. Let us now look at the cost of adding all such visible segments vkvi at

vi. It can be seen that the procedure SPLIT inserts visible segments at vi according

to their position in the sorted angular order at vi. Therefore, their extensions are

also in sorted angular order around vi. Hence every visible segment vkvi and its

extension can be inserted in the linked list at vi in amortized O(1) time. So, we can

conclude that the cost of the second part for adding all pointers to a visible segment

is O(1) time.

Let us now calculate how two neighbors of a visible segment vkvi among the

extension of visible segments incident at vk can be located in amortized O(1) time.

Let m and d be the numbers of extensions of visible segments incident on vk that

are lying between CW (vkvi) and CCW (vkvi), and between vkvi and CCW (vkvi)

respectively. So, the position of vkvi can be located in min(log d, log(m− d)) using

binary search from both directions. It has been shown in Section 3.6.1 how to carry

out this search using finger search trees. However, the same binary search can also

be carried out using SPLIT-FIND operation developed by Gabow and Tarjan [146]

once integers (i.e. the slopes of visible segments incident on vk) are stored in the

data structure at vk. If this cost is added over all visible segments in P , we get the

following recurrence,

T (m) = max1≤d≤m−1[T (d) + T (m− d) + O(min(log d, log(m− d)))].

It has been shown in Section 3.6.1 by induction on m that T (m) is O(m). There-

fore, the time required to locate the position of vkvi among the extensions is amor-

tized O(1). Hence, the total time taken by the algorithm to locate all visible seg-
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Figure 5.18 (a) SP (s, t)=(s, u1, u2, u3, u4, t) consists of tangents and polygonal edges. (b)
Four tangents can be constructed between two convex holes Hi and Hj .

ments in P and add pointers to these visible segments is O(E). We summarize the

result in the following theorem.

Theorem 5.3.16 The visibility graph of a polygon P with holes with a total of n

vertices can be computed in O(n logn+E) time and O(E+n) space, where E is the

number of edges in the visibility graph of P .

5.4 Computing Tangent Visibility Graphs

5.4.1 Convex Holes: O(n+ h2 log h) Algorithm

In this section, we present an O(n+h2 log h) time algorithm given by Rohnert [298]

for computing the tangent visibility graph inside a convex polygon P with h convex

holes with a total of n vertices. This graph contains all those edges of the visibility

graph of P that are relevant in computing the Euclidean shortest path SP (s, t)

between two given points s and t inside P .

A line segment vivj is called a tangent between two convex holes, where vertices

vi and vj belong to different holes, if the line passing through vi and vj meets the

holes only at vi and vj . Let SP (s, t)=(s, u1, ..., uk, t). Observe that (i) su1 is a

tangent from s to some vertex u1 of a convex hole, (ii) ukt is a tangent from t to

some vertex uk of a convex hole, and (iii) for any edge uiui+1, uiui+1 is either an

edge of a convex hole or a tangent between two convex holes (Figure 5.18(a)). This

observation helps in defining the tangent visibility graph of P .

Let G be the partial visibility graph of P such that s, t and every vertex of holes

in P are represented as nodes in G and two nodes wi and wj are connected by an

edge in G if and only if (i) the corresponding vertices of wi and wj are mutually
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visible in P , and (ii) the segment corresponding wiwj in P is an edge of P or a

tangent between two convex holes or a tangent from s or t to some convex hole.

The graph G is called the tangent visibility graph of P . Then the length of these

edges and tangents in P are assigned as weights to their corresponding edges in G.

Since there can be at most four tangents between two convex holes (Figure 5.18(b))

and there are h holes, the total number of tangents between convex holes can be at

most O(h2). So, the number of edges in G is O(n+ h2). Running the algorithm of

Fredman and Tarjan [143] on G, SP (s, t) can be computed in O(n logn+ h2) time.

Assuming h2 greater than n, the running time for computing SP (s, t) can also be

written as O(n+ h2 log n).

Observe that the tangents from s (or t) to convex holes can be computed from

the visibility polygon of P from s (respectively, t) in O(n) time. The visibility

polygons of P from s and t can be computed by the algorithm of Asano [27] in

O(n + h log h) time (see Section 2.3). Let us explain how to construct tangents

between convex holes H1, H2, . . . , Hh. The algorithm of Rohnert first constructs

four tangents between each pair of convex holes and then checks whether or not

these tangents are lying inside P . Let Hi and Hj be two convex holes of P (Figure

5.18(b)). Let pi ∈ Hi and pj ∈ Hj denote the closest pair of points between Hi and

Hj . Draw the line L perpendicular to the segment pipj . Let qi ∈ Hi be the furthest

point of Hi from L. The clockwise and counterclockwise boundaries of Hi from qi
to ui are referred to as the upper and lower chains of Hi, respectively. Analogously,

let qj ∈ Hj be the furthest point of Hj from L. The clockwise and counterclockwise

boundaries of Hj from qj to uj are referred to as the lower and upper chains of

Hj , respectively. Tangents are drawn between the lower chain of Hi and the upper

chain of Hj , between the lower chains of Hi and Hj , between the upper chains of Hi

and Hj , and between the upper chain of Hi and the lower chain of Hj . It has been

shown by Edelsbrunner [116] that these four tangents between Hi and Hj can be

drawn in O(log ni + lognj) time, where ni and nj are the number of vertices of Hi

and Hj , respectively. So, the total time required to compute four tangents between

O(h2) pairs of convex holes is bounded by O(h2 log(n/h)).

Exercise 5.4.1 Prove that the sum of (log ni + log nj) for 1 ≤ i, j ≤ h

and i 6= j is O(h2 log(n/h)), where n = n1 + n2 + . . .+ nh.

After constructing four tangents between every pair of holes in P , it is tested

whether these tangents lie inside P . If we test for intersection of each tangent with

every polygonal edge, the naive method takes O(nh2) time. We show that this can

be improved to O(h2 log h) time as follows. Observe that the lower chain of Hi for

Hj is different from the lower chain of Hi for another hole Hk as the closest points

between Hi and Hj are different from that of Hi and Hk. Two tangents between

Hi and Hj touching the lower chain of Hi are called lower tangents of Hi for Hj .

In Figure 5.18(b), vavb and vcvd are two lower tangents of Hi for Hj . The other
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Figure 5.19 (a) Tangent tk between holes Hi and Hm has intersected hole Hj . (b) Lower
diagonals of holes for Hi are drawn as segments (d1, d2, . . . , d6) along with the ray drawn
from vl−1 through vl. Lower tangents of Hi are (t1, t2, . . . , t12) in counterclockwise order.

two tangents touching the upper chain of Hi are called upper tangents of Hi for Hj .

So there are 2(h − 1) lower tangents (or upper tangents) of Hi in P . The segment

connecting two vertices of Hj touched by the lower tangents of Hi is called the lower

diagonal of Hj for Hi. The segment vbvd in Figure 5.18(b) is the lower diagonal of

Hj for Hi. The upper diagonal of Hj for Hi is defined analogously. In the following

lemma, we state how to identify the lower tangents of Hi that are lying inside P .

Lemma 5.4.1 Let vavb and vcvd be the lower tangents of Hi for Hj (Figure 5.19(a)),

where (i) va and vc are vertices of Hi, (ii) vb and vd are vertices of Hj, and (iii) Hj

lies to the left of −−→vavb. Let tk be a lower tangent of Hi for a hole Hm where m 6= j.

The tangent tk intersects Hj if and only if tk intersects the lower diagonal vbvd of

Hj.

Exercise 5.4.2 Prove Lemma 5.4.1.

Corollary 5.4.2 If any lower tangent tk of Hi intersects Hj, then the vertex of tk
belonging to Hi lies in the counterclockwise boundary from va to vc.

The above lemma and its corollary suggest a procedure for identifying lower tan-

gents of Hi (for all i) lying inside P . Traverse the boundary of Hi in counterclockwise

order starting from any vertex vl of Hi, and at each vertex vp of Hi, add the lower

tangents of Hi incident at vp to the ordered list Li according to their counterclock-

wise angle at vq with the clockwise edge of Hi at vp. Consider −−−→vl−1vl, where vl−1 is

the next clockwise vertex of vl in Hi (see Figure 5.19(b)). Compute the intersection

points of −−−→vl−1vl with the lower diagonal of every hole for Hi and sort these diagonals

along −−−→vl−1vl according to the distance of their intersection points from vl. Construct

a balanced binary tree T with nodes representing these diagonals and if a diagonal
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dj is the left child of the diagonal dk in T , then the intersection point of dj with
−−−→vl−1vl lies between vl and the intersection point of dk with −−−→vl−1vl. So the diagonal

closest to vl along
−−−→vl−1vl is the leftmost leaf of T . The diagonals in T are called

active diagonals.

Let Li = (t1, t2, . . . , tf ). Starting from t1, consider each tangent tk of Li. Let

dm denote the lower diagonal of some hole (say, Hq) for Hi such that tk is a lower

tangent from Hi to Hq. We have the following two cases.

Case 1. The diagonal dm is a node in T .

Case 2. The diagonal dm is not a node in T .

Consider Case 1. If dm is not the diagonal in the leftmost leaf of T , then remove

tk from Li because tk has intersected the lower diagonal in the leftmost leaf of T .

Remove the node of T containing dm from T as dm is no longer an active edge and

balance T .

Consider Case 2. Insert dm as a node in T such that tk intersects only the diagonals

in the left sub-tree of dm in T . Balance T . If dm is not the leftmost leaf of T , then

remove tk from Li as tk intersects the lower diagonal in the leftmost leaf of T .

In the following, we state the major steps of the algorithm for computing the

tangent visibility graph G of P .

Step 1. Compute the visibility polygons of P from s and t by the algorithm of Asano

[27] and traverse them to locate the tangents from s and t to the holes of P .

Step 2. Draw the four tangents between every pair of holes in P .

Step 3. For every hole Hi of P do

Step 3a. Traverse the boundary of Hi in counterclockwise order and form the

ordered list Li of all lower tangents of Hi in the order they are incident at Hi.

Step 3b. Traverse the ordered list Li and remove the tangents in Li that are

intersected by any diagonal of a hole in P .

Step 3c. Traverse the boundary of Hi in clockwise order and form the ordered list

Ri of all upper tangents of Hi in the order they are incident at Hi.

Step 3d. Traverse the ordered list Ri and remove the tangents in Ri that are

intersected by any diagonal of a hole in P .

Step 3e. Output the remaining tangents in Li and Ri.

Step 4. Form the tangent visibility graph G and Stop.

The correctness of the algorithm follows from Lemma 5.4.1 and its corollary.

Let us analyze the time complexity of the algorithm. We know that Step 1 takes

O(n+ h log h) time and Step 2 takes O(h2 log(n/h)). Steps 3a and 3c are problems

of sorting and they can be performed in O(h log h) time. Insert or delete operations

in T take O(log h) time as the size of the tree T is at most h. Since there are 4(h−1)
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Figure 5.20 (a) The vertices of the relative convex hull of Hi are v1, v2, v3, v4, v5, v6 and
v7. (b) SP (s, t) passes through edges of relative convex hulls of holes and tangents between
holes.

such operations in T for the lower and upper tangents of Hi, Steps 3b and 3d can

be performed in O(h log h). Hence the overall time complexity of the algorithm is

O(n+ h2 log h). We state the results in the following theorems.

Theorem 5.4.3 The tangent visibility graph of a polygon P with h convex holes

with a total of n vertices can be computed in O(n+ h2 log h) time.

Theorem 5.4.4 The Euclidean shortest path between two given points inside a

polygon P with h convex holes with a total of n vertices can be computed in O(n+

h2 log n) time.

5.4.2 Non-Convex Holes: O(n+ h2 log h) Algorithm

In this section, we present an O(n + h2 log h) time algorithm given by Kapoor et

al. [210] for computing the tangent visibility graph inside a polygon P with h non-

convex holes and a total of n vertices. This graph contains a subset of edges of the

visibility graph of P , relevant for computing the Euclidean shortest path SP (s, t)

between two given points s and t inside P (see Section 5.4.1).

We assume that holes H1, H2, . . . , Hh inside P are arbitrary simple polygons.

Suppose the convex hull of every hole is computed and each of these convex hulls

lies inside P . Then the problem of computing the tangent visibility graph in P is

reduced to that of computing the tangent visibility graph in a polygon containing

only convex holes. Therefore, the algorithm of Rohnert [298] stated in Section 5.4.1

can be used to solve the problem.



166 Visibility Graphs

Figure 5.21 (a) The dual graph GT of the triangulation of P after including s and t. (b) All
triangles corresponding to the nodes of degree 1 in GT are removed from the triangulation
of P .

In general, convex hulls of holes do not lie inside P . Suppose the relative convex

hull of every hole is computed (see Figure 5.20(a)). The relative convex hull of a

hole Hi is the smallest perimeter polygon containing Hi. In other words, for any

convex hull vertex vj of Hi, the region enclosed by the shortest path from vj inside

P that goes around Hi and terminates at vj is called the relative convex hull of Hi.

Observe that SP (s, t) passes through the edges of relative convex hulls of holes and

tangents between holes (see Figure 5.20(b)). So, the tangent visibility graph G can

be constructed such that (i) the edges of relative convex hulls of holes, (ii) tangents

from s and t to holes, and (iii) tangents between holes, are represented as edges in

G. Once G is constructed, the algorithm of Fredman and Tarjan [143] can be used

on G for computing SP (s, t).

The algorithm of Kapoor et al. starts by triangulating P in O(n + h log1+ε h)

time by the algorithm of Bar-Yehuda and Chazelle [43]. Let Ts and Tt denote the

triangles containing s and t, respectively. Connect s and t to all three vertices of

Ts and Tt, respectively. Let T denote the resulting triangulation and let GT denote

the dual graph of T (Figure 5.21(a)). For more details on the dual graph of a

triangulation, see Section 1.4. We have the following observation on GT .

Lemma 5.4.5 The dual graph GT is a planar graph with O(n) nodes, O(n) edges

and h + 1 faces (including the outer face), and at least one of three nodes of GT

incident on each of s and t has degree 3.

It can be seen that SP (s, t) does not pass through a triangle if the degree of the

corresponding node of the triangle in GT is one. So, all nodes in GT corresponding

to such triangles are deleted from GT . Two polygonal edges forming the sides of



5.4 Computing Tangent Visibility Graphs 167

Figure 5.22 (a) The corridor is a hourglass bound by vavb, SP (va, vc), vcvd and SP (vb, vd).
(b) The corridor consists of two funnels with bases vavb and vcvd, and the shortest path
between the apexes of these two funnels.

each of these triangles are replaced by the third edge of the triangle, which is treated

as a polygonal edge for the subsequent computation. This process is repeated until

all remaining nodes in GT have degree 2 or 3 (see Figure 5.21(b)). The triangles

corresponding to the nodes of degree 3 in GT are called junction triangles. If all

junction triangles are removed from P , P is divided into simple polygons which are

called corridors. Corridors are sleeves in P because the nodes in GT corresponding

to the triangles in a corridor have degree 2.

Let C be a corridor bounded by the triangulating edges vavb and vcvd of two

different junction triangles (see Figure 5.22). Since no triangle inside C is a junction

triangle, two vertices of va, vb, vc and vd belong to one hole and other two vertices

belong to another hole. Without loss of generality, we assume that va and vc belong

to one hole and vb and vd belong to another hole. Since C is a sleeve, the algorithm

of Lee and Preparata [235] (see Section 3.6.1) can be used to compute SP (va, vc)

and SP (vb, vd). We have the following two cases.

Case 1. SP (va, vc) and SP (vb, vd) are disjoint (Figure 5.22(a)).

Case 2. SP (va, vc) and SP (vb, vd) are not disjoint (Figure 5.22(b)).

Consider Case 1. Since SP (va, vc) and SP (vb, vd) are disjoint, the segment

vavb, SP (va, vc), the segment vcvd and SP (vb, vd) form a hourglass (see Figure

5.22(a)). Replace the polygonal boundary of C between va and vc by SP (va, vc) in P .

Analogously, replace the polygonal boundary of C between vb and vd by SP (vb, vd)

in P .

Consider Case 2. Since SP (va, vc) and SP (vb, vd) are not disjoint, the union of

SP (va, vc) and SP (vb, vd) forms two funnels with bases vavb and vcvd, and a path
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connecting the apexes of the funnels (see Figure 5.22(b)). Add these two funnels in

P and remove the polygonal boundaries of C from P between va and vc and between

vb and vd. Observe that the edges in the path between the two apexes of the funnels

in a corridor are represented as edges in G as SP (s, t) can use these edges. This

process is carried out for all corridors in P .

Let P ′ be the polygon obtained from P after the above-mentioned modifications.

Let Hi be any hole in P . In P ′, Hi is a convex polygon or the boundary of Hi is

a convex chain. So, the algorithm of Rohnert [298] stated in Section 5.4.1 can be

used to compute tangents in P ′ between convex boundaries of holes.

In the following, we state the major steps of the algorithm for computing the

tangent visibility graph G of P .

Step 1. Triangulate P by the algorithm of Bar-Yehuda and Chazelle [43]. Connect

s and t to all three vertices of the triangles containing them. Form the dual graph

GT .

Step 2. While GT has a node of degree 1 do remove the triangle corresponding to

the node from the triangulation of P .

Step 3. Generate corridors by removing junction triangles from P .

Step 4. Construct two funnels or a hourglass for each corridor in P and use them

to replace the corridor.

Step 5. Compute the tangents between the convex chains of every pair of holes by

the algorithm of Rohnert [298].

Step 6. Form the tangent visibility graph G and Stop.

The correctness of the algorithm directly follows from the properties of SP (s, t)

and the dual graph of a triangulation of P . Let us analyze the time complexity of

the algorithm. The algorithm of Bar-Yehuda and Chazelle [43] for triangulating P in

Step 1 takes O(n+h log1+ε h) time. Since GT can be constructed in O(n) time from

the triangulation of P , Step 1 takes O(n+h log1+ε h) time. Steps 2 and 3 take O(n)

time. Since the corridors are disjoint and the time for computing the shortest paths

between two pairs of vertices in a corridor is proportional to the number of vertices

in a corridor, the time required in Step 4 to replace all corridors in P by funnels and

hourglasses is O(n). Since there can be at most h convex boundaries of holes in the

modified polygon P ′, the algorithm of Rohnert in Step 5 runs in O(h2 log h) time.

Hence the tangent visibility graph G can be computed in O(n+ h2 log h) time. We

state the results in the following theorems.

Theorem 5.4.6 The tangent visibility graph of a polygon P with h non-convex holes

with a total of n vertices can be computed in O(n+ h2 log h) time.



5.5 Notes and Comments 169

Theorem 5.4.7 The Euclidean shortest path between two given points inside a

polygon P with h non-convex holes with a total of n vertices can be computed in

O(n+ h2 log n) time.

5.5 Notes and Comments

Goodrich et al. [173, 174] have given the only parallel algorithm for computing

visibility graphs of simple polygons. Their algorithm computes the visibility graph

by exploiting a duality relationship between a visibility graph and intersections

of segments, and runs in O(logn) time using O(n logn + E/ log n) processors in

the CREW-PRAM model of computations, where E is the number of edges of the

visibility graph. There is no parallel algorithm for computing visibility graphs of

polygons with holes.

In the beginning of this chapter, we have shown how visibility graphs help in

computing the Euclidean shortest path SP (s, t) between two given points s and t

inside a polygon P with holes. SP (s, t) can also be computed without computing the

visibility graph of P partially or totally. Using the ‘continuous Dijkstra’ paradigm,

Mitchell [259] presented an O(n1.5+ε) time algorithm for computing SP (s, t). Using

the same paradigm, Hershberger and Suri [189] first presented an O(n log2 n) time

algorithm for computing SP (s, t) and then improved the time complexity of their

algorithm to O(n logn) [192], which is optimal. Recently, Wein et al. [338] showed

that a short and smooth path from s to t in P can be constructed by combining the

visibility graph with the Voronai diagram of P . The path may not be SP (s, t) but

it keeps a fixed amount of clearance with holes in P wherever possible.

Euclidean shortest paths in a polygon are also called geodesic paths. The length of

a geodesic path between two points is called the geodesic distance of the path. The

geodesic diameter of a simple polygon P is the maximum geodesic distance among

all pairs of vertices of P . The geodesic diameter can be computed in O(n) time by

the algorithm of Hershberger and Suri [191]. The geodesic center of a simple polygon

P is a point in P which minimizes the maximum geodesic distance to any point in

P ; such a point can be located in O(n log2 n) time by the algorithm of Pollack et al.

[288]. Earlier, Asano and Toussaint [31] proposed an O(n4 logn) time algorithm for

this problem. It is still open whether the problem can be solved in O(n) time [260].

For related problems on geodesic paths, see the review article of Mitchell [260].

Let us mention some results on shortest paths in L1 metric. For any two points

p = (xp, yp) and q = (xq, yq), the distance between p and q in Lm metric is defined

by (|xp − xq|m + |yp − yq|m)1/m. So, the length of a polygonal path in Lm metric is

the sum of the lengths in Lm metric of edges in the path. A polygonal path is called

a rectilinear path if each edge of the path is parallel to a coordinate axis. Observe

that the length of a rectilinear path is the same in both L1 and L2 metric.
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The problem of computing a shortest rectilinear path in L1 metric in polygons P

has been studied by several researchers including Clarkson [92], de Rezende et al.

[109], Larson and Li [225] and Mitchell [258]. Clarkson et al. [92] showed a method

for constructing a sparse graph which contains a shortest rectilinear path between

any two vertices of P . Then a shortest rectilinear path in P can be computed from

the sparse graph treating it as the visibility graph of P . Their algorithm runs in

O(n log2 n) time and O(n logn) space. Using the ‘continuous Dijkstra’ paradigm,

Mitchell [258] improved the time complexity by showing that a shortest rectilinear

path in P can be computed in O(n logn) time and O(n) space.

Exercise 5.5.1 Let Q be a set of m points inside a simple polygon P of

n vertices. Design an algorithm to identify all pairs of points of Q that

are mutually visible in P in O(n+m logm logmn+ k logm) time, where

k is the total number of visible pairs [44].

Consider the problem of locating the closest visible pair of vertices between two

disjoint simple polygons P and Q. The problem is to locate two vertices u ∈ P and

v ∈ Q such that the segment uv does not intersect the interior of P or Q. Take

a convex polygon C containing both P and Q and compute the visibility graph of

C treating P and Q as holes in C. The problem of closest visible pair can now be

solved by locating the shortest edge of the visibility graph connecting a vertex u of

P with a vertex v of Q, and the entire process can be done in O(n logn+E), where

n is the total number of vertices of P and Q.

The problem can directly be solved without computing the visibility graph. If

both P and Q are convex polygons, the problem can be solved in O(n) time by the

algorithms of Chin et al. [88], McKenna and Toussaint [255] and Toussaint [329].

If either P or Q is a convex polygon, the problem can also be solved in O(n) time

by the algorithm of Chin et al. [88]. If both P and Q are non-convex polygons,

Wang and Chan [337] gave an O(n logn) time algorithm for this problem. Later,

optimal O(n) time algorithms for this problem were given by Aggarwal et al. [13],

and Hershberger and Suri [191]. Following the method of Aggarwal et al. [13], Hsu

et al. [199] designed a parallel algorithm for this problem. Using a different method,

Amato [19] also gave a parallel algorithm for this problem and the method of this

algorithm gives another O(n) time optimal sequential algorithm for this problem.

Exercise 5.5.2 Design an O(n) time algorithm for computing the closest

visible pair of vertices between two disjoint convex polygons P and Q of

total n vertices [88, 255].

Exercise 5.5.3 Design an O(n logn) time algorithm for computing the

closest visible pair of vertices between two disjoint non-convex polygons

P and Q of total n vertices [337].
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Visibility Graph Theory

6.1 Problems and Results

In the previous chapter we discussed how to compute the visibility graph of a poly-

gon P with or without holes. Consider the opposite problem: let G be a given

graph. The problem is to determine whether there is a polygon P whose visibility

graph is the given graph G. This problem is called the visibility graph recognition

problem. The problem of actually drawing one such polygon P is called the visibility

graph reconstruction problem. The visibility graph recognition and reconstruction

problems are long-standing open problems. So far, only partial results have been

achieved. It has been shown by Everett [133] that visibility graph reconstruction

is in PSPACE. This is the only upper bound known on the complexity of either

problem.

Ghosh [154] presented three necessary conditions in 1986 for recognizing visibility

graphs of simple polygons under the assumption that a Hamiltonian cycle of the

given graph, which corresponds to the boundary of the simple polygon, is given

as input along with the graph. It has been pointed out by Everett and Corneil

[133, 135] that these conditions are not sufficient as there are graphs that satisfy the

three necessary conditions but they are not visibility graphs of any simple polygon.

These counter-examples can be eliminated once the third necessary condition is

strengthened. It has been shown by Srinivasraghavan and Mukhopadhyay [314]

that the stronger version of the third necessary condition proposed by Everett [133]

is in fact necessary. On the other hand, the counter-example given by Abello et

al. [4] shows that the three necessary conditions of Ghosh [154] are not sufficient

even with the stronger version of the third necessary condition. In a later paper

by Ghosh [157], another necessary condition is identified which circumvents the

counter-example of Abello et al. [4]. These four necessary conditions are presented

in Section 6.2.1. It has been shown more recently by Streinu [316, 317] that these

four necessary conditions are also not sufficient.

171
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In Section 6.2.2, we present the algorithm given by Ghosh [157] for testing his

first two necessary conditions which runs in O(n2) time. The time complexity for

checking the other two necessary conditions is not known. Earlier, Everett [133]

gave an O(n3) time algorithm for testing the first necessary condition.

Let us state other results on the problems of recognizing and reconstructing visibil-

ity graphs for special classes of simple polygons. The earliest result is from ElGindy

[126] who showed that every maximal outerplanar graph is a visibility graph of a

simple polygon, and he suggested an O(n logn) algorithm for reconstruction. If

all reflex vertices of a simple polygon occur consecutively along its boundary, the

polygon is called a spiral polygon. Everett and Corneil [133, 134] characterized visi-

bility graphs of spiral polygons by showing that these graphs are a subset of interval

graphs, which leads to an O(n) time algorithm for recognition and reconstruction.

We present their characterization and recognition algorithm in Section 6.4.1. Choi

et al. [89] characterized funnel-shaped polygons called towers and they gave an

O(n) time recognition algorithm. Visibility graphs of towers have also been charac-

terized by Colley et al. [95] and they have shown that visibility graphs of towers are

bipartite permutation graphs with an added Hamiltonian cycle. We present their

characterization and their O(n) time recognition algorithm in Section 6.4.2. If the

internal angle at each vertex of a simple polygon is either 90◦ or 270◦, then the

polygon is called a rectilinear polygon. If the boundary of a rectilinear polygon is

formed by a staircase path with two other edges, the polygon is called a staircase

polygon. Visibility graphs of staircase polygons have been characterized by Abello

et al. [1]. Lin and Chen [243] have studied visibility graphs that are planar.

The above-mentioned results show that there are characterizations of visibility

graphs for some special classes of polygons. However, the problem of characterizing

visibility graphs of arbitrary simple polygons is still an open problem. Ghosh has

shown that visibility graphs do not possess the characteristics of perfect graphs,

circle graphs or chordal graphs. On the other hand, Coullard and Lubiw [97] have

proved that every triconnected component of a visibility graph satisfies 3-clique

ordering. This property suggests that structural properties of visibility graphs may

be related to well-studied graph classes, such as 3-trees and 3-connected graphs.

Everett and Corneil [133, 135] have shown that there is no finite set of forbidden

induced sub-graphs that characterize visibility graphs. Abello and Kumar [2, 3] have

suggested a set of necessary conditions for recognizing visibility graphs. However, it

has been shown in [157] that this set of conditions follow from the last two necessary

conditions of Ghosh. The efforts to characterize the visibility graphs are presented

in Section 6.3.

Let us mention some of the later approaches on the visibility graph reconstruction

problem. Abello and Kumar [3] studied the relationship between visibility graphs
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and oriented matroids, Lin and Skiena [244] studied the equivalent order types, and

Streinu [316, 317] and O’Rourke and Streinu [274] studied psuedo-line arrangements.

The reconstruction problem with added information has been studied by Coullard

and Lubiw [97], Everett et al. [137, 138] and Jackson and Wismath [203].

There are other types of visibility graphs. Vertex-edge visibility graphs are graphs

that represent the visibility relationship between the vertices and edges of a polygon.

O’Rourke and Streinu [275] studied the properties of vertex-edge visibility graphs

which are presented in Section 6.6. A one-directional variation of this graph was

studied earlier by Fournier and Montuno [142]. Edge-edge visibility graphs are

graphs indicating which edges see which edges; these have been studied by O’Rourke

[271] and Srinivasaraghavan and Mukhopadhyay [315]. Point visibility graphs are

infinite visibility graphs, where each point of a polygon is represented as a vertex

of the graph. This graph has been studied by Bremner [64], Bremner and Shermer

[65] and MacDonald and Shermer [251], The representation of visibility graphs has

been studied by Agarwal et al. [7], Kant [208] and Tamassia and Tollis [325].

The segment visibility graph is a graph whose 2n vertices represent the endpoints

of n disjoint segments and whose edges represent visible segments between the end-

points (see Figure 6.15(a)). Everett et al. [136] have characterized those segment

visibility graphs that do not have K5, the complete graph of 5 vertices, as a minor.

This characterization leads to a polynomial time algorithm for recognizing this spe-

cial class of segment visibility graphs. We present their characterization in Section

6.5. Segment visibility graphs have also been studied for different problems under

various conditions by Andreae [20], Hoffmann and Toth [196, 197], Kirkpatrick and

Wismath [218], O’Rourke and Rippel [273], Rappaport [292], Rappaport et al. [293],

Shen and Edelsbrunner [308], and Wismath [340, 341].

Exercise 6.1.1 Draw n disjoint line segments whose segment visibility

graph has 5n− 4 edges (including n given segments) [308].

Let us consider the standard graph-theoretic problems on visibility graphs. The

minimum dominating set problem in visibility graphs corresponds to the art gallery

problem in polygons. Lee and Lin [231] showed that the problem is NP-hard.

Independent sets in visibility graphs are known as hidden vertex sets. Shermer

[309] proved that the maximum hidden vertex set problem on visibility graphs is

also NP-hard. If the Hamiltonian cycle corresponding to the boundary of the sim-

ple polygon is given as an input along with the visibility graph, Ghosh et al. [167]

showed that it is possible to compute in O(nE) time the maximum hidden vertex

set in the visibility graph of a very special class of simple polygons called convex fans,
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where n and E are the number of vertices and edges of the input visibility graph

of the convex fan, respectively. We present this algorithm in Section 6.8. Hidden

vertex sets have also been studied by Eidenbenz [124, 125], Ghosh et al. [163] and

Lin and Skiena [244].

In visibility graphs of simple polygons, the problems of finding a minimum vertex

cover and a maximum dominating set are NP-hard as shown by Lin and Skiena [244].

Everett [133] proved that the problem of determining whether the visibility graphs

of two polygons with holes are isomorphic is isomorphic-complete. This problem

remains isomorphic-complete even for the visibility graphs of two simple polygons

as shown by Lin and Skiena [244]. In Section 6.9, we discuss isomorphic visibility

graphs and similar polygons.

The problem of computing the maximum clique in the visibility graph is not known

to be NP-hard. Observe that the maximum clique in a visibility graph corresponds

to the largest empty convex polygon inside the corresponding polygon. Ghosh et

al. [167] have recently presented an O(n2E) time algorithm for computing the

maximum clique in the visibility graph of a simple polygon, under the assumption

that the Hamiltonian cycle in the visibility graph corresponding to the boundary

of the polygon is given along with the visibility graph as an input. We present the

algorithm of Ghosh et al. [167] in Section 6.7.

6.2 Recognizing Visibility Graphs of Simple Polygons

6.2.1 Necessary Conditions

In this section, we present the four necessary conditions of Ghosh [157] for recogniz-

ing visibility graphs of simple polygons. During the presentation of these conditions,

we have included the counter-examples given by Everett and Corneil [133, 135],

Abello et al. [4] and Streinu [316, 317].

Given a graph G and a Hamiltonian cycle C of G, the recognition problem is

to determine if G is the visibility graph of a simple polygon P whose boundary

corresponds to the cycle C. This problem is easier than the actual recognition

problem as the edges of G that correspond to the boundary edges of P have already

been identified. We assume that the vertices of G are labeled with v1, v2, . . . , vn and

the cycle C = (v1, v2, . . . , vn) is in counterclockwise order. A cycle is a simple and

closed path in G. An edge in G connecting two non-adjacent vertices of a cycle is

called a chord of the cycle. A cycle u1, u2, . . . , uk in G is said to be ordered if the

vertices u1, u2, . . . , uk follow the order in C. The Hamiltonian cycle C is an ordered

cycle of all n vertices in G. We make the following observations on the structure of

an ordered cycle.
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Figure 6.1 (a) The blocking vertex for the invisible pair (v4, v6) is v5. (b) There is no
blocking vertex for the invisible pair (v2, v5).

Necessary condition 1. Every ordered cycle of k ≥ 4 vertices in a visibility graph

has at least k − 3 chords.

Proof. Since an ordered cycle of k vertices in a visibility graph of a simple polygon

P corresponds to a sub-polygon P ′ of k vertices in P , the ordered cycle has at least

k − 3 chords in the visibility graph as P ′ requires k − 3 diagonals for triangulation

of P ′.

A pair of vertices (vi, vj) in G is a visible pair (or invisible pair) if vi and vj are

connected (respectively, not connected) by an edge in G. Without loss of generality,

we assume i is always less than j for an invisible pair (vi, vj). For any two vertices

vi and vj in G, the vertices from vi to vj on C, including vi and vj , in clockwise and

counterclockwise order are called the upper and lower chain of (vi, vj), respectively.

The vertices from vi to vj on C in counterclockwise order are also referred to as

chain(vi, vj).

A vertex va is a blocking vertex for an invisible pair (vi, vj) if no two vertices

vk ∈ chain(vi, va−1) and vm ∈ chain(va+1, vj) are connected by an edge in G. Since

the line of sight between vi and vj in P can be blocked using va, va is called a

blocking vertex. In Figure 6.1(a), v5 is the blocking vertex for the invisible pair

(v4, v6). On the other hand, the invisible pair (v2, v5) in Figure 6.1(b) does not have

any blocking vertex and therefore, this graph is not a visibility graph of any simple

polygon. Intuitively, blocking vertices are meant to correspond to reflex vertices of

the polygon. However, all blocking vertices in G may not be reflex vertices in P .

On the other hand, the reflex vertices in P are always blocking vertices in G as

they introduce pockets on the boundary of P with the property that every pair of

pockets are not mutually visible (see Figure 6.2(a)). This observation suggests the

following necessary condition.
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Figure 6.2 (a) No two pockets are mutually visible. (b) Two invisible pairs (vi, vj) and
(vk, vl) are separable with respect to a blocking vertex va.

Necessary condition 2. Every invisible pair in a visibility graph has at least one

blocking vertex.

Proof. For an invisible pair (vi, vj), the Euclidean shortest path in P between vi

and vj makes turns at one or more reflex vertices, and each of these reflex vertices

is a blocking vertex for (vi, vj) in G.

The above proof suggests that an invisible pair (vi, vj) can have more than one

blocking vertex as the Euclidean shortest path in P between vi and vj may turn at

more than one reflex vertex. It means that blocking vertices in the lower chain or

upper chain of an invisible pair form a chain of consecutive reflex vertices in P (see

Figure 6.2(a)). This observation leads to the following lemmas on the structure of

blocking vertices.

Lemma 6.2.1 Let va and vb be the blocking vertices in the lower chain (or up-

per chain) for an invisible pair (vi, vj), where i < a < b < j (Figure 6.2(a)).

Vertices va and vb are also blocking vertices for the invisible pairs (vi, vb) and (va, vj),

respectively.

Lemma 6.2.2 Let va and vb be the blocking vertices in the lower chain (or upper

chain) for invisible pairs (vi, vb) and (va, vj), respectively, where i < a < b < j

(Figure 6.2(a)). Vertices va and vb are also blocking vertices for the invisible pair

(vi, vj).

The above lemmas suggest that it is sufficient to consider only those invisible

pairs in G which have one blocking vertex in the lower chain or one blocking vertex

in the upper chain or one blocking vertex in each chain. Henceforth, we consider

only such invisible pairs of G and they are called minimal invisible pairs.
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Figure 6.3 (a) The visibility of separable invisible pairs (v2, v7) and (v4, v7) cannot be
simultaneously blocked by the blocking vertex v3. (b) This graph was proposed by Everett
and Corneil as a counter-example to Ghosh’s earlier conjecture for sufficiency.

Exercise 6.2.1 Let va and vb be the blocking vertices of G in the lower

and upper chains of a minimal invisible pair (vi, vj) respectively. If there

is an edge in G connecting a vertex of chain(va+1, vb−1) to another vertex

of chain(vb+1, va−1), then prove that both va and vb are reflex vertices in

the polygon [157].

Let va be a blocking vertex in G for two invisible pairs (vi, vj) and (vk, vl) (see

Figure 6.2(b)). Consider the situation when the Hamiltonian cycle C is traversed

from va in counterclockwise order. If vk and vl are encountered before vi and vj
during the traversal, then (vi, vj) and (vk, vl) are called separable with respect to

va. In Figure 6.3(a), v3 is the blocking vertex for both invisible pairs (v2, v7) and

(v4, v7). Since (v2, v7) and (v4, v7) are separable with respect to v3 and v3 is the

only blocking vertex, v3 cannot simultaneously block the visibility of both (v2, v7)

and (v4, v7). We have the following necessary conditions.

Necessary condition 3. Two separable invisible pairs in a visibility graph must

have distinct blocking vertices.

Proof. Let va be the only blocking vertex for two separable invisible pairs (vi, vj)

and (vk, vl). We prove only for the case when va belongs to the lower chain of (vi, vk)

(see Figure 6.2(b)). Observe that va is a reflex vertex in P because the visibility

in P between vi and vj as well as between vk and vl can only be blocked by va.

Since the sub-polygons of P corresponding to ordered cycles vi, va, vj , . . . , vi and

va, vk, . . . , vl, va are disjoint, va cannot simultaneously block the visibility between

vi and vj and between vk and vl in P .
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Ghosh conjectured in the earlier version of his work [154] that if G satisfies these

three necessary conditions, G is the visibility graph of a simple polygon P . However,

it is not true for the graph in Figure 6.3(b). It can be seen that this graph satisfies

the three necessary conditions of Ghosh. On the other hand, blocking vertices v2 and

v4 cannot block simultaneously the visibility between three invisible pairs (v1, v8),

(v3, v8) and (v5, v8). Therefore, the graph is not the visibility graph of any simple

polygon. This counter-example to Ghosh’s earlier conjecture was given by Everett

and Corneil [133, 135].

An assignment is a mapping from vertices of G to minimal invisible pairs in G

such that:

• a vertex assigned to any minimal invisible pair must be one of its blocking vertices,

• every minimal invisible pair has been assigned by one of its blocking vertices, and

• if a vertex va is assigned to a minimal invisible pair (vi, vj), then va is also assigned

to every minimal invisible pair (vk, vm) where vk ∈ chain(vi, va−1) and vm ∈
chain(va+1, vj).

Everett [133] proposed the following stronger version of Necessary condition 3,

which is in fact necessary as shown by Srinivasraghavan and Mukhopadhyay [314].

Necessary condition 3′. There is an assignment in a visibility graph such that

no blocking vertex va is assigned to two or more minimal invisible pairs that are

separable with respect to va.

Exercise 6.2.2 Prove Necessary condition 3′.

Abello et al. [4] gave another counter-example as shown in Figure 6.4(a) to

Ghosh’s earlier conjecture of sufficiency [154]. This graph satisfies Necessary con-

ditions 1 and 2, and there exists an unique assignment of blocking vertices v1, v2,

v5 and v8 to all minimal invisible pairs in G as follows. The vertex v1 is assigned

to (v2, v9) and (v2, v10), the vertex v2 is assigned to (v1, v3) and (v1, v4), the vertex

v5 is assigned to (v1, v6), (v2, v6), (v3, v6), (v4, v6), (v4, v7) and (v4, v8), and the ver-

tex v8 is assigned to (v1, v7), (v2, v7), (v5, v9), (v6, v9), (v7, v9) and (v7, v10). This

assignment shows that no blocking vertex is assigned to two or more of its sepa-

rable invisible pairs and therefore, this graph also satisfies Necessary condition 3′.

However, the graph is not the visibility graph of any simple polygon.

Consider the ordered cycle (v1, v2, v4, v5, v8, v9, v1) in the same graph of Figure

6.4(a). Let P ′ be the sub-polygon corresponding to this ordered cycle. Observe

that the blocking vertices v1, v2, v5, v8 are reflex vertices in P ′. Therefore, there

are four reflex vertices in P ′ with a total of six vertices, which is not possible. This

observation suggests the following necessary condition.
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Figure 6.4 (a) Abello et al. gave this graph as a counter-example to Ghosh’s earlier
conjecture for sufficiency. (b) Streinu gave this graph as a counter-example to Ghosh’s
new conjecture for sufficiency.

Necessary condition 4. Let D be any ordered cycle of a visibility graph. For any

assignment of blocking vertices to all minimal invisible pairs in the visibility graph,

the total number of vertices of D assigned to the minimal invisible pairs between the

vertices of D is at most |D| − 3.

Proof. Assume on the contrary that there is an assignment in the visibility graph

which maps |D| − 2 or more vertices of D to the minimal invisible pairs that are

between the vertices of D. Let P ′ be the sub-polygon which corresponds to D. Since

every blocking vertex va is assigned to some minimal invisible pair between vertices

of D, va is a reflex vertex in P ′. So, the sum of internal angles of P ′ is more than

(|D| − 2)180◦ contradicting the fact that the sum of internal angles of any simple

polygon of |D| vertices is (|D| − 2)180◦.

Ghosh again conjectured in [157] that these four necessary conditions (1, 2, 3′,

and 4) are sufficient to recognize the visibility graphs of simple polygons.. Recently,

Streinu [316, 317] has given a counter-example to his new conjecture by providing the

graph shown in Figure 6.4(b). This graph can be viewed as five symmetric ordered

cycles each sharing an edge with the ordered cycle (v1, v5, v9, v13, v17) in the middle.

This graph satisfies all four necessary conditions but it is not the visibility graph

of any simple polygon. It is not clear whether either another necessary condition

is required to circumvent this counter-example or there is a need to strengthen the

existing necessary conditions.

We hope that the visibility graph recognition problem will be settled in the near

future.
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Figure 6.5 (a) The graph does not satisfy Necessary condition 1. (b) The vertices va and
vk are two consecutive visible vertices of va+1.

6.2.2 Testing Necessary Conditions: O(n2) Algorithm

We present an O(n2) time algorithm of Ghosh [157] for testing his first two necessary

conditions (see Section 6.2.1), where n is the number of vertices of the given graph

G. As in the previous section, we assume that the vertices of G are labeled with

v1, v2, . . . , vn and the Hamiltonian cycle C = (v1, v2, . . . , vn) is in counterclockwise

order. We also assume that G is stored in an adjacency matrix. We use the notions

and definitions of Section 6.2.1 in presenting the algorithm.

It can be seen that Necessary condition 1 can be tested by checking the number

of chords in every ordered cycle in G. As the number of vertices in an ordered cycle

varies from 4 to n, visibility graphs have an exponential number of ordered cycles.

Hence, this naive algorithm for testing Necessary condition 1 is an exponential-time

algorithm. Consider any three vertices vi, vj and vk of G, where vk ∈ chain(vj , vi).

If (vi, vj) and (vi, vk) are visible pairs in G and (vi, vl) is an invisible pair for every

vl ∈ chain(vj+1, vk−1), then vj and vk are called consecutive visible vertices of vi in

G. For example, v6 and v4 are consecutive visible vertices of v1 in Figure 6.5(a).

Intuitively, vj and vk are two consecutive vertices on the boundary of the visibility

polygon of P from vi. We have the following lemma.

Lemma 6.2.3 If the given graph G satisfies Necessary condition 1, then any two

consecutive visible vertices of every vertex in G are connected by an edge in G.

Proof. Let vj and vk be two consecutive visible vertices of vi. If (vj , vk) is a visible

pair in G, then the lemma holds. So, we assume that (vj , vk) is an invisible pair and

vk ∈ chain(vj , vi). Let D be an ordered cycle of minimum number of vertices in G

such that D passes through vk, vi, vj and vertices of chain(vj , vk). Since (vj , vk)

is an invisible pair, |D| ≥ 4. Moreover, there is no diagonal between vertices on D



6.2 Recognizing Visibility Graphs of Simple Polygons 181

because D is the smallest ordered cycle. Since D is an ordered cycle without any

diagonal, G does not satisfy Necessary condition 1, which is a contradiction. Hence

(vj , vk) is a visible pair in G.

Consider the graph in Figure 6.5(a). This graph does not satisfy Necessary condi-

tion 1 as there is an ordered cycle (v1, v3, v5, v7) without any diagonal. On the other

hand, the graph satisfies the condition that any two consecutive visible vertices of

every vertex are connected by an edge. Observe that there is no blocking vertex for

invisible pairs (v1, v5) and (v3, v7). Therefore, the graph does not satisfy Necessary

Condition 2. We have the following lemma.

Lemma 6.2.4 If the given graph G satisfies the condition that any two consecutive

visible vertices of every vertex in G are connected by an edge in G, but G does not

satisfy Necessary condition 1, then G fails to satisfy Necessary condition 2.

Exercise 6.2.3 Prove Lemma 6.2.4.

For testing Necessary condition 1, the above lemmas suggest that it is enough to

check whether or not any two consecutive visible vertices of every vertex in G are

adjacent in G. Since G is stored in an adjacency matrix, the time required to check

this condition for any vertex is O(n).

For every invisible pair (vi, vj) in G, Necessary condition 2 can be tested by

checking whether there exists a blocking vertex va in the lower (or upper) chain of

(vi, vj). Since this checking for each invisible pair in G can be performed in O(n2)

time, and the number of invisible pairs in G can be O(n2), this naive method takes

O(n4) time. Using another approach, the time complexity for checking Necessary

condition 2 can be improved to O(n2). The new approach is to locate those invisible

pairs in G that can be blocked by a particular vertex va. We have the following

lemma.

Lemma 6.2.5 Let vk and va be two consecutive visible vertices of va+1 in G (Figure

6.5(b)). For every vertex vl ∈ chain(vk+1, va−1), va is a blocking vertex for the

invisible pair (va+1, vl).

Corollary 6.2.6 If vk is the next clockwise vertex of va in C (i.e., k = a− 1), then

va is not a blocking vertex for any invisible pair in G.

Corollary 6.2.7 If va is a blocking vertex for any invisible pair in G, then one of

the vertices of such an invisible pair belongs to chain(vk+1, va−1).

The above lemma suggests a method for locating all invisible pairs in G that can

be blocked by va by traversing C in counterclockwise order starting from va+1. At

va+1, the procedure takes two consecutive visible vertices va and vk of va+1 (see
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Figure 6.5(b)). A variable span for va is maintained which is initialized by k. So, va
is a blocking vertex for all invisible pairs (va+1, vl), where vl ∈ chain(vspan+1, va−1).

Let vm and va be two consecutive visible vertices of va+2 in G. If vm belongs to

chain(vspan, va−1), assign m to span. So, va is a blocking vertex for all invisible

pairs (va+2, vl), where vl ∈ chain(vspan+1, va−1). This process is repeated till span

becomes a− 1. Thus, all invisible pairs in G can be located whose va is a blocking

vertex. In the following, we state the major steps of the algorithm for testing

Necessary conditions 1 and 2. The variables i is initialized by 1.

Step 1. For each of the consecutive visible vertices vm and vk of vi in G, if (vm, vk)

is not a visible pair in G then goto Step 8.

Step 2. Initialize j by i + 1. Initialize span by the index of some vertex which is

adjacent to vj .

Step 3. Initialize l by i − 1. While (vl, vj) is an invisible pair in G and vl ∈
chain(vspan+1, vi), assign vi as a blocking vertex to (vl, vj) and l := l − 1.

Step 4. If vl ∈ chain(vspan+1, vi) then span := l.

Step 5. If (vi−1, vj+1) is an invisible pair in G then j := j + 1 and goto Step 3.

Step 6. If i 6= n then i := i+ 1 and goto Step 1.

Step 7. If every minimal invisible pair in G has a blocking vertex then report that

G satisfies Necessary conditions 1 and 2 and goto Step 9.

Step 8. Report that G does not satisfy Necessary conditions 1 and 2.

Step 9. Stop.

The correctness of the testing algorithm follows from Lemmas 6.2.3, 6.2.4 and

6.2.5. Let us analyze the time complexity of the algorithm. Step 1 takes O(n) time

as G is stored in an adjacency matrix. Let qi denote the number of invisible pairs

located in Step 3 for vi. It can be seen that all invisible pairs in G, which can be

blocked by vi, are located in time proportional to qi. Since Step 3 is executed for

all vertices of G, blocking vertices for all invisible pairs in G can be located in time

proportional to (q1 + q2 + . . .+ qn). If G has only minimal invisible pairs, then this

sum is bounded by O(n2) as each invisible pair is consider once for its upper chain

and once for its lower chain.

Consider the situation when G has invisible pairs that are not minimal. In such

a situation, (q1 + q2 + . . .+ qn) may not be bounded by O(n2) as the same invisible

pair (vl, vj) is considered once for each of its blocking vertices. This repetition can

be avoided by restricting the variable l in Step 3 up to the blocking vertex located

last. Thus, all of the invisible pairs in G that are not minimal are also considered

at most twice. Hence, Necessary conditions 1 and 2 can be tested in O(n2) time.

We have the following theorem.
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Figure 6.6 (a) The vertices v2, v8, v4, v10 and v6 have formed a chordless cycle. (b) The
vertices v2, v6, v5, v4 and v8 have formed a chordless cycle.

Theorem 6.2.8 Given a graph G of n vertices and a Hamiltonian cycle in G,

Necessary conditions 1 and 2 can be tested in O(n2) time.

6.3 Characterizing Visibility Graphs of Simple Polygons

As mentioned in Section 6.1, the problem of characterizing visibility graphs of simple

polygons is still an open problem in spite of the efforts made by several researchers

over the last two decades. In this section, we present the properties and counter-

examples that have evolved out of the studies of Ghosh [154, 157], Coullard and

Lubiw [97], Everett and Corneil [133, 135] and Abello and Kumar [2, 3] in their

attempts to characterize visibility graphs of simple polygons.

Special Classes of Graphs

Necessary conditions presented in Section 6.2.1 show that visibility graphs of

simple polygons have natural structures. It appears from Ghosh’s Necessary con-

dition 1 that visibility graphs may fall into one of the well known special classes

of graphs, e.g., perfect graphs, circle graphs, or chordal graphs. However, Ghosh

[154, 157] has found counter-examples in all cases. In the following, we present these

counter-examples.

We say that a graph G′ is a sub-graph of another graph G if G′ consists of a subset

of vertices and edges of G. If G′ consists of a subset of vertices V ′ of G and all edges

of G between these vertices in V ′, then G′ is called an induced sub-graph of G′. If

all vertices of an induced sub-graph G′ of G are adjacent to each other, then G′

is called a clique. The chromatic number of a graph G is the smallest number of

colors required to color vertices of G such that two vertices of every edge in G have
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different colors. An undirected graph G is called a perfect graph [170] if for every

induced sub-graph G′ of G (including G itself), the size of the maximum cardinality

clique of G′ is the chromatic number of G′.

Consider the visibility graph G of a simple polygon shown in Figure 6.6(a). Let

G′ be the induced sub-graph of G formed by the vertices v2, v8, v4, v10 and v6. It

can be seen that the vertices v2, v8, v4, v10 and v6 have formed an odd cycle without

chord in G′. Therefore, the chromatic number of G′ is not equal to the size of the

maximum clique in G′. Hence, G is not a perfect graph. Note that this cycle is an

unordered cycle in G.

An undirected graph G is called a chordal graph if every cycle having four or more

vertices has a chord [170]. The above counter-example also shows that visibility

graphs of simple polygons are not chordal graphs as the visibility graph contains an

unordered cycle v2, v8, v4, v10 and v6 without a chord.

Consider a simple polygon such that its visibility graph G does not have any

unordered cycle of four or more vertices without a chord. In that case, G is a

chordal graph because by Necessary Condition 1 in Section 6.2.1, every ordered

cycle of four or more vertices in G has a chord. Therefore, visibility graphs of this

class of simple polygons are chordal graphs. On the other hand, any chordal graph

having a Hamiltonian cycle may not be the visibility graph of a simple polygon.

For example, the graph in Figure 6.1(b) is a chordal graph but the graph is not

the visibility graph of a simple polygon. We state this observation in the following

lemma.

Lemma 6.3.1 If every unordered cycle of four or more vertices in the visibility

graph of a simple polygon has a chord, then the visibility graph is a chordal graph.

A simple polygon P is called a fan if there is a vertex in P which can see all other

vertices of P . Such a vertex of P is called a fan vertex. Note that a fan is a star-

shaped polygon but a star-shaped polygon need not be a fan. If the internal angle

at a fan vertex is convex, the polygon is called a convex fan. Visibility graphs are

not perfect graphs even for convex fans. Consider the convex fan shown in Figure

6.6(b). Since the vertices v2, v6, v5, v4 and v8 have formed an odd cycle without a

chord, the visibility graph of a convex fan is not a perfect graph.

An undirected graph G is called a circle graph [68, 145] if every vertex of G can be

represented as a chord of a circle C such that two chords in C intersect if and only

if the corresponding vertices are adjacent in G. A graph H is not a circle graph if

there exists a vertex in H which is adjacent to all vertices of any cycle having five or

more vertices [68]. In the visibility graph of the convex fan shown in Figure 6.6(b),

the vertex v1 is adjacent to all vertices of the cycle v2, v6, v5, v4 and v8. Hence,

visibility graphs of simple polygons are not circle graphs. We state these facts in

the following lemma.
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Lemma 6.3.2 Visibility graphs of simple polygons do not belong to the union of

perfect graphs and circle graphs.

Clique Ordering

A graph G is 3-connected if there is no set of fewer than three vertices whose

removal disconnects G. In other words, there exists three or more disjoint paths in

G between any two vertices of G. A 3-clique ordering of a graph G is an ordering of

vertices of G (say, v1, v2, . . . , vn) such that the first three vertices (i.e., v1, v2 and

v3) form a clique and for every vertex vi for i > 3, there exists a clique of three

vertices vj , vk and vl such that (i) vj , vk and vl are adjacent to vi in G, and (ii)

j < i, k < i and l < i. We have the following condition from Coullard and Lubiw

[97].

Lemma 6.3.3 Each 3-connected component of the visibility graph of a simple poly-

gon has a 3-clique ordering starting from any 3-clique.

Although the above property shows some structure in the visibility graph of a

simple polygon, it does not lead to the characterizing of a visibility graph as any

graph satisfying this condition is not necessarily the visibility graph of a simple

polygon [4, 97, 135].

Exercise 6.3.1 Draw a graph G such that (i) G satisfies Lemma 6.3.3

and (ii) G is not the visibility graph of any simple polygon.

Forbidden Induced Sub-graphs

A graph H is said to be forbidden for a class of graphs if H is not an induced

sub-graph of any graph in this class. The readers may know that the planar graphs

can be characterized in terms of forbidden induced sub-graphs. In the same spirit,

Everett and Corneil [133, 135] have asked the following question: is there a finite

set of forbidden induced sub-graphs that characterize visibility graphs? They have

shown that there is no such set that characterize visibility graphs. We start with a

lemma of Everett and Corneil [133, 135], which follows from Necessary condition 1

of Ghosh presented in Section 6.2.1.

Lemma 6.3.4 Let H be a graph containing an ordered chordless cycle of length at

least 4 for every Hamiltonian cycle in H. Then, H is a forbidden induced sub-graph

of visibility graphs of simple polygons.

Consider the graph in Figure 6.7(a), which is known as Grötsch graph. It can

be seen that this graph is a forbidden induced sub-graph of a visibility graph as it
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Figure 6.7 (a) Grötsch graph. (b) A variation of Grötsch graph.

satisfies Lemma 6.3.4. This graph can be shown to be minimal using an exhaustive

search by considering all induced sub-graphs of this graph. Starting from a variation

of this graph which is obtained by replacing the outer cycle of Grötsch graph by an

inner cycle (see Figure 6.7(b)), Everett and Corneil have suggested a method for

constructing an infinite family of minimal forbidden sub-graphs of visibility graphs.

For more details of this construction, see [133, 135]. We state the result in the

following lemma.

Lemma 6.3.5 There exists an infinite family of minimal forbidden induced

sub-graphs of visibility graphs of simple polygons.

Euclidean Shortest Paths

Abello and Kumar [2, 3] have introduced a class of graphs called quasi-persistent

graphs, which is equivalent to the class of graphs satisfying Necessary conditions 1

and 2 of Ghosh [154, 157] presented in Section 6.2.1. This equivalence also suggests

that this class of graph can be recognized by the testing algorithm of Ghosh for

Necessary conditions 1 and 2 (see Section 6.2.2).

Abello and Kumar [2, 3] have suggested four necessary conditions for quasi-

persistent graphs to be visibility graphs of simple polygons. Their first necessary

condition, which is called locally-inseparable, is essentially same as Necessary Condi-

tion 3′ presented in Section 6.2.1. The second, third and fourth necessary conditions

correspond to the properties of Euclidean shortest paths between vertices in a sim-

ple polygon. Here we state these three necessary conditions of Abello and Kumar

[2, 3] under the assumption that the given graph G is a quasi-persistent graph. We

follow the same notions used in Section 6.2.1 for presenting these conditions. For

an invisible pair (vi, vj) in G and an assignment β of blocking vertices to invisible
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pairs in G, an occluding path between vi and vj under β (denoted as pathβ(vi, vj))

is defined as the path from vi to vj in G consisting of vertices assigned by β such

that only the adjacent vertices in the path is connected by an edge in G.

Necessary condition 2. If a quasi-persistent graph G can be realized as a simple

polygon under an assignment β of blocking vertices to invisible pairs in G, then for

every invisible pair (vi, vj) in G, pathβ(vi, vj) is the same as pathβ(vj , vi) in the

reverse order.

Necessary condition 3. If a quasi-persistent graph G can be realized as a simple

polygon under an assignment β of blocking vertices to invisible pairs in G, and if

vk ∈ pathβ(vi, vl) and vl ∈ pathβ(vk, vj), then vk, vl ∈ pathβ(vi, vj).

Necessary condition 4. If a quasi-persistent graph G can be realized as a simple

polygon under an assignment β of blocking vertices to invisible pairs in G, and if

vp ∈ pathβ(vi, vj) is a blocking vertex of (vi, vj), then for all vk on chain(vi, vp) and

vl on chain(vp, vj), vp ∈ pathβ(vk, vl).

We know from Lemma 3.2.5 that the Euclidean shortest path in a simple polygon

is unique and it follows from the fact that the sum of the internal angles of a simple

polygon of n vertices is (n−2)180◦. Therefore, the above three conditions of Abello

and Kumar, which correspond to the uniqueness property of Euclidean shortest

paths, naturally follow from Ghosh’s Necessary condition 4.

Exercise 6.3.2 Prove that Necessary conditions 2, 3 and 4 of Abello and

Kumar follow from Ghosh’s Necessary condition 4 [157].

6.4 Recognizing Special Classes of Visibility Graphs

6.4.1 Spiral Polygons: O(n) Algorithm

In this section, we present an O(n) time algorithm of Everett and Corneil [133, 134]

for recognizing visibility graphs of spiral polygons. Given a graph G, the recognition

problem is to determine whether G is the visibility graph of a spiral polygon S. The

recognition algorithm is based on their characterization of visibility graphs of spiral

polygons as interval graphs, which we also present in this section. It may be noted

that although visibility graphs of simple polygons are not perfect graphs (see Lemma

6.3.2), it is not true for all special classes of polygons such as spiral polygons. We

assume that the vertices of G are labeled with v1, v2, . . . , vn.

In a spiral polygon, all reflex vertices occur consecutively along its boundary. So,

the problem of recognizing the visibility graph of a spiral polygon Sn is to identify
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Figure 6.8 (a) A spiral polygon S7. (b) The visibility graph G of S7. (c) A non-spiral
polygon Q.

a Hamiltonian cycle C = (v1, v2, . . . , vn) (in counterclockwise order) in the given

graph G such that there exists two special vertices vi and vj in Sn with the property

that vi, vi+1, . . ., vj are convex vertices in Sn and vj+1, vj+2, . . ., vi−1 are reflex

vertices in Sn. A spiral polygon S7 is shown in Figure 6.8(a) and its visibility graph

G is shown in Figure 6.8(b). Consider the non-spiral polygon Q in Figure 6.8(c).

It can be seen that the visibility graph of Q is also G. However, the boundary of

Q corresponds to another Hamiltonian cycle C = (v1, v2, v6, v5, v4, v3, v7) in G. So,

the choice of a Hamiltonian cycle in G is crucial in recognizing the visibility graph

of a spiral polygon.

Let L denote the boundary of Sn from vi to vj (including vi and vj) containing a

convex chain of vertices vi, vi+1, . . ., vj (see Figure 6.9). Similarly, let R denote the

boundary of Sn from vj to vi (including vi and vj) containing reflex vertices vj+1,

vj+2, . . ., vi−1. Suppose vi is removed from Sn by adding the diagonal vi+1vi−1 in

Sn. This gives another spiral polygon Sn−1. If the angle at vi−1 is convex in Sn−1

(see Figure 6.9(a)), then L in Sn−1 consists of vertices vi−1, vi+1, vi+2, . . ., vj and R

in Sn−1 consists of vj , vj+1, . . ., vi−1. Note that the role of vi−1 in Sn−1 is the same

as the role of vi in Sn. In the other situation, the angle at vi−1 in Sn−1 is reflex

(see Figure 6.9(b)). Therefore, L in Sn−1 consists of vertices vi+1, vi+2, . . ., vj and

R in Sn−1 consists of vj , vj+1, . . ., vi−2, vi+1. Note that the role of vi+1 in Sn−1

is same as the role of vi in Sn. If this process of deletion is carried out recursively

on Sn (see Figure 6.9(c)), we get a numbering of vertices of Sn starting from vi in

the order they are removed from the polygon. Observe that the similar process of

deletion can also be carried out starting from vj in Sn. The diagonals that are used

to construct Sn−1, Sn−2, . . . , S3 along with the boundary of Sn form a Hamiltonian

triangulation of Sn as the dual of this triangulation is a path. We have the following

lemmas.
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Figure 6.9 (a) The angle at vi−1 in Sn−1 is convex. (b) The angle at vi−1 in Sn−1 is reflex.
(c) The vertices are numbered in the order they are deleted.

Lemma 6.4.1 There exists a Hamiltonian triangulation for every spiral polygon.

Lemma 6.4.2 In a spiral polygon, there exists two vertices vi and vj such that the

vertices of the polygon visible from either vi or vj form a clique in the visibility graph

of the polygon.

The above properties can be used for deriving properties in visibility graphs of

spiral polygons. A vertex vk in a graph is called simplicial if the adjacent vertices

of vk in the graph form a clique. The adjacent vertices of any vertex vk in a graph

are called neighbors of vk. Locate a simplicial vertex vk in G and mark it as u1.

Construct the graph G − {u1} by removing the vertex u1 from G and all edges

incident on u1 in G. Again, locate a simplicial vertex vp in G − {u1} such that vp
is a neighbor of u1 in G, and mark it as u2. Construct the graph G − {u1, u2} by

removing the vertex u2 from G − {u1} and all edges incident on u2 in G − {u1}.
Repeat this process until all vertices are numbered. If the given graph G is the

visibility graph of a spiral polygon, then this process of deletion always succeeds

due to Lemma 6.4.1. Any ordering of vertices {u1, u2, . . . , un} of G is called a

perfect vertex elimination scheme if each ui is simplicial in the induced sub-graph

G−{u1, u2, . . . , ui−1}. A graph is called chordal if it has no chordless cycle of length

greater than or equal to 4 [170]. We have the following lemmas.

Lemma 6.4.3 The visibility graph of a spiral polygon admits a perfect vertex elim-

ination scheme.

Lemma 6.4.4 A graph is chordal if and only if it has a perfect vertex elimination

scheme [144].
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Figure 6.10 (a) A spiral polygon S. (b) The visibility graph of S is drawn as an interval
graph with the ordering of maximal cliques {c1, c2, c3, c4, c5}.

Lemma 6.4.5 The visibility graph of a spiral polygon is a chordal graph.

Proof. Proof follows from Lemmas 6.4.3 and 6.4.4.

Consider three mutually non-adjacent vertices vp, vq and vk in G. If vp, vq and

vk cannot be ordered such that every path in G from the first vertex vp to the third

vertex vk passes through a neighbor of the second vertex vq, then vp, vq and vk are

called an asteroidal triple in G. We have the following lemma.

Lemma 6.4.6 A graph G is an interval graph if and only if G is a chordal graph

containing no asteroidal triple [240].

Consider a graph G that can be represented as a set of intervals of a linearly

ordered set such that (i) every vertex of G is represented as a distinct interval and

(ii) two intervals overlap if and only if their corresponding vertices are connected by

an edge in G. The graph G is called an interval graph [170]. Figure 6.10(a) shows

a spiral polygon and its visibility graph is drawn in Figure 6.10(b) as an interval

graph. We have the following necessary condition.

Necessary condition 1. If G is the visibility graph of a spiral polygon S, then G

is an interval graph.

Proof. We know from Lemma 6.4.5 that G is a chordal graph. Let vp, vq and vk
be any three pairwise non-adjacent vertices of G. Consider the sub-graph G′ of G

which corresponds to a Hamiltonian triangulation T (S) of S. By Lemma 6.4.1, T (S)

always exists. Since the dual of T (S) is a path, vp, vq and vk can always be ordered

in such a way that any path in G′ between the first and the third vertex (say, vp

and vk, respectively) must pass through vertices of G corresponding to a triangle in
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T (s), one of whose vertices is vq. Therefore, G does not have any asteroidal triple.

Hence, G is an interval graph by Lemma 6.4.6.

Exercise 6.4.1 Design a linear time algorithm for recognizing interval

graphs [59].

Using the recognition algorithm of Booth and Lueker [59], it can be tested in O(n)

time whether the given graph G is an interval graph. From now on, we assume that

G is an interval graph. A clique in G is called maximal if it is not a sub-graph

of any other clique of G. In the following lemma, we present a property on the

ordering of maximal cliques in an interval graph, which is used to identify vertices

of G belonging to L or R.

Lemma 6.4.7 For every vertex vk of an interval graph, the maximal cliques of

the graph can be linearly ordered such that the maximal clique containing vk occur

consecutively [169].

During the process of testing for interval graphs, the algorithm of Booth and

Lueker [59] computes an ordering of maximal cliques {c1, c2, . . . , cm}. Figure 6.10(b)
shows an ordering of maximal cliques {c1, c2, . . . , c5} in the visibility graph for a

spiral polygon S. A vertex vl ∈ ci for all i is called a conductor of a clique ci, if

vl also appears in the clique ci+1. It can be seen that for any three consecutive

vertices vk−1, vk and vk+1 in either R or L, the middle vertex vk is a conductor

in G. Moreover, if vk−1 ∈ ci and vk+1 ∈ cj in the ordering of maximal cliques in

G, then vk belongs to all maximal cliques between ci and cj by Lemma 6.4.7. In

order to find a Hamiltonian cycle C in G which corresponds to the boundary of a

spiral polygon, we have to find an order of conductors in G from c1 to cm and then

split the conductors according to their own properties so that one part forms L and

the other part forms R. We have the following observations on the conductors that

belong to R = (vj , vj+1, . . . , vi−1, vi).

Lemma 6.4.8 The vertex vi belongs only to the first maximal clique c1 in G and

the vertex vj belongs only to the last maximal clique cm in G.

Corollary 6.4.9 The vertices vi and vj are not conductors in G.

Lemma 6.4.10 If G is the visibility graph of a spiral polygon, then

(i) each maximal clique in G has at most two vertices of R,

(ii) all vertices in R− {vi, vj} are conductors in G, and

(iii) every maximal clique in G has a vertex of R and a vertex of L.

Corollary 6.4.11 If two vertices of R belong to any maximal clique, then one of

them can be a conductor of that clique.
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It can be seen that the path between vi to vj in G corresponding to R is a path

where no two non-adjacent vertices in the path is connected by an edge inG. In other

words, vk ∈ R is the sole blocking vertex for the minimal invisible pair (vk−1, vk+1).

For the definition of a blocking vertex, see Section 6.2.1. An induced path in G

between vertices vi and vj covers an interval graph G if (i) vi ∈ c1 and vj ∈ cm, (ii)

all vertices in the path excluding vi and vj are conductors in G, and (iii) the path

contains only one conductor from each maximal clique between c1 and cm−1. An

induced path in the graph of Figure 6.10(b) is the path formed by v1, v10, v9, v8,

and v7. We have the following lemma.

Lemma 6.4.12 If G is the visibility graph of a spiral polygon, then an induced path

in G, which corresponds to R in the spiral polygon, covers G.

Proof. Proof follows from Lemma 6.4.8 and Corollaries 6.4.9 and 6.4.11.

Let us consider the path in G that corresponds to L. It can be seen that v4 ∈ L is

a conductor of c3 in the graph shown in Figure 6.10(b) but v3 ∈ L is not a conductor

of c3. So, v3 must precede v4 in L. Let bi denote the conductors of ci, i.e., bi is

the set of vertices that belong to both ci and ci+1. In the interval graph of Figure

6.10(b), b1 = {v2, v3, v10}, b2 = {v3, v4, v10}, b3 = {v4, v5, v9}, b4 = {v6, v8}. Note

that if |bi| < 2 for 1 ≤ i ≤ m − 1, then G does not have any Hamiltonian cycle.

A path in an interval graph G is called straight if (i) all vertices of ci − bi precedes

the vertices of bi in the path, where 1 ≤ i ≤ m and, (ii) all vertices of ci − bi−1
succeeds the vertices of bi−1 in the path, where 1 ≤ i ≤ m. For any vertex vk in

G, let low(vk) denote the smallest index clique containing vk. Similarly, high(vk)

denotes the largest index clique containing vk. We have the following lemma.

Lemma 6.4.13 If G is the visibility graph of a spiral polygon, then a path in G

which corresponds to either L or R is straight.

Corollary 6.4.14 If there is no edge in G between any two non-adjacent vertices

in a straight path in G, then the path corresponds to R.

Corollary 6.4.15 (i) For every vertex vk of L in G, low(vk) ≤ low(vk+1) and

high(vk) ≤ high(vk+1). (ii) For every vertex vk of R in G, low(vk) ≤ low(vk−1)

and high(vk) ≤ high(vk−1).

Consider a vertex vk in G such that low(vk) < high(vk) − 1 (see Figure 6.11).

Consider another vertex vp such that low(vk) < low(vp) and high(vp) < high(vk).

Intuitively, the interval of vp is properly contained in the interval of vk in the interval

graph G. It can be seen that if (i) low(vp) = high(vp) (see Figure 6.11(a)) or (ii) vp
belongs to L (see Figure 6.11(b)), then G cannot be the visibility graph of a spiral
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Figure 6.11 (a) The vertex vp belongs to only one clique. (b) The vertex vp must belong to
R.

polygon. Such a vertex vp is called overlaying vertex. Note that the second condition

suggests a way to identify some vertices of G that must belong to R. Observe that if

there exists such a vertex vp with respect to vk, then vp must belong to R provided

low(vp) 6= high(vp) (see Figure 6.11(b)). However, for every reflex vertex vp in R,

there may not always be a corresponding vertex vk. So, using this condition, not all

reflex vertices of R may be identified. We have the following lemma.

Lemma 6.4.16 If G is the visibility graph of a spiral polygon, then G does not have

any overlaying vertex.

The above three lemmas constitute the following necessary condition.

Necessary condition 2. If G is the visibility graph of a spiral polygon S, then

(i) an induced path in G, which corresponds to R in S, covers G, (ii) a path in G,

which corresponds to L of S, is straight, and (iii) G does not have any overlaying

vertex.

Exercise 6.4.2 Prove Necessary condition 2.

Assume that the given graph G has satisfied Necessary Conditions 1 and 2, and

some vertices of R (say, u2, u3, . . . , uq−1) have been identified. Take any vertex from

c1 − b1 as u1. Take any vertex from cm − bm−1 as uq. So, u1 is vi and uq is vj .

Let U = (u1, u2, . . . , uq). Assume that for any vertex ui ∈ U , low(ui) ≤ low(ui+1)

and high(ui−1) ≤ high(ui), i.e., the vertices of U are ordered in the same way they

are identified. Observe that if any two vertices of U are conductors of the same

clique, then G is not the visibility graph of a spiral polygon by Corollary 6.4.11. If

every pair of two consecutive vertices of U are connected by an edge in G, then the
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path formed by U corresponds to R. So, we assume that no two vertices of U are

connected by an edge in G.

In order to identify other vertices of R, straight paths satisfying Corollary 6.4.14

from u1 to u2, u2 to u3, . . ., uq−1 to uq have to be constructed so that these paths

contain the remaining vertices of R. To construct such a path between ui and ui+1

for all i, a depth-first search (DFS) method [221] starting from ui can be used to

construct such a path to ui+1. To ensure that the path constructed by DFS satisfies

Corollary 6.4.14, the next vertex vk−1 is chosen by DFS from the current vertex vk

satisfies the conditions that The path constructed in this manner is added between

ui and ui+1. By concatenating these paths, the entire path in G, which corresponds

R, is constructed. The remaining vertices of G are added to L preserving the order

of ci − bi precedes bi in L for all i. Once the paths corresponding to R and L

are identified, the reverse order of the perfect vertex elimination scheme can be

used to construct spiral polygons S3, S4, . . . , Sn. For more details of this polygon

construction, see [133, 134]. We have the following theorem.

Theorem 6.4.17 A graph G is the visibility graph of a spiral polygon if and only if

G satisfies Necessary conditions 1 and 2.

Exercise 6.4.3 Let G be a given graph satisfying Necessary conditions 1

and 2. Design a polynomial-time algorithm for drawing a spiral polygon

such that G is its visibility graph [133, 134].

In the following, we state the major steps of the algorithm for identifying two

paths in the given graph G, which correspond to L and R of an n-sided spiral

polygon.

Step 1. Using the algorithm of Booth and Lueker [59], construct an interval graph

representation ofG and compute the ordered set of maximal cliques {c1, c2, . . . , cm}.
Step 2. Construct the ordered set of conductors {b1, b2, . . . , bm−1}.
Step 3. For every vertex vk of G, compute low(vk) and high(vk).

Step 4. Check whether the paths in G are straight.

Step 5. Check whether G has any overlaying vertex.

Step 6. Locate the ordered set of those vertices U of G that must belong to R.

Step 7. Construct a straight path between two consecutive vertices of U using the

modified DFS and concatenate these paths to form the path corresponding to R.

Step 8. Construct another path in G, corresponding to L, consisting of the

remaining vertices of G in the proper order.

Step 9. Report both paths which correspond to L and R.

Step 10. Stop.
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Let us analyze the time complexity of the algorithm. Step 1 takes O(n) time as

the recognition algorithm of Booth and Lueker [59] runs in O(n) time. Since the

number of maximal cliques in a chordal graph is proportional to n [213], we use this

fact in our analysis of the remaining steps. Since the total number of conductors in G

is n−2 and a maximal clique is considered twice, Step 2 takes O(n) time. For every

vertex vk of ci in the order from c1 to cm, assign i to high(vk). If vk does not belong

to ci−1 or vk belongs to c1, then assign i also to low(vk). Considering each maximal

clique once in the order, Step 3 can be performed in O(n) time. Step 4 and Step

5 can also be performed in O(n) time using the order of the cliques. Constructing

two paths corresponding to L and R in Steps 7 and 8 take O(n) time as DFS runs

in O(n) time [221]. Hence, the overall time complexity of the recognition algorithm

is O(n). We summarize the result in the following theorem.

Theorem 6.4.18 The visibility graph of a spiral polygon of n vertices can be recog-

nized in O(n) time.

6.4.2 Tower Polygons: O(n) Algorithm

In this section, we present an O(n) time algorithm of Colley et al. [95] for recognizing

visibility graphs of tower polygons. Given a graph G, the recognition problem is

to determine if G is the visibility graph of a tower polygon F . Their recognition

algorithm is based on the characterization that visibility graphs of tower polygons

are bipartite permutation graphs with an added Hamiltonian cycle. We assume that

the vertices of G are labeled with v1, v2, . . . , vn.

A tower polygon F is a simple polygon formed by two reflex chains of vertices with

only one boundary edge connecting two convex vertices (see Figure 6.12(a)). The

polygon F is also called a funnel. The convex vertex of F shared by two reflex chains

is called the apex of F and the edge connecting two convex vertices of F is called

the base of F . Let vj denote the apex of a tower polygon F (see Figure 6.12(a)).

Let vi and vi+1 denote the other two convex vertices of F . Let us denote two reflex

chains of vertices of F as R1 and R2, where R1 = (vj , vj+1, . . ., vi), R2 = (vi+1,

vi+2, . . ., vj), and vertices in R1 and R2 are in counterclockwise order. Let V1 and

V2 denote the vertices, excluding vj , of R1 and R2, respectively. It can be seen that

vj is always visible from some point z on the boundary edge vivi+1. Since V1 and

V2 are on opposites sides of zvj , every visible segment in F connecting a vertex of

V1 to a vertex of V2 intersects zvj . We have the following properties on V1 and V2
in F .

Lemma 6.4.19 If a vertex vp of V1 (or V2) is visible from two vertices vl and vm
of V2 (respectively, V1), then vp is also visible from all vertices of V2 (respectively,

V1) between vl and vm (Figure 6.12(a)).



196 Visibility Graph Theory

Figure 6.12 (a) A tower polygon F . (b) A permutation graph and its geometric represen-
tation.

Corollary 6.4.20 If a vertex vp of V1 (or V2) is visible from a vertex vl of V2
(respectively, V1), then vp is also visible from the next clockwise or counterclockwise

vertex of vl on the boundary of F .

Lemma 6.4.21 Assume that vp ∈ V1 is visible from vm ∈ V2 and vq ∈ V1 is visible

from vl ∈ V2 (i.e., vpvm and vqvl are visible segments). If vq is a vertex of R1

between vp and vi and if vm is a vertex of R2 between vl and vi+1, then segments

vpvl and vqvm lie inside F (Figure 6.12(a)).

Let us state a property of bipartite permutation graphs which corresponds to

Lemma 6.4.21. Let V = {1, 2, . . . , n} denote the vertex set of a graph H. The graph

H is a permutation graph if there is a permutation π of V such that for every pair

of vertices u < w, (u,w) is an edge in H if and only if π(u) > π(w) [132, 284].

Figure 6.12(b) shows the permutation of vertices of a permutation graph. A graph

is a bipartite graph if its vertices can be partitioned into two sets such that there

is no edge of the graph connecting vertices of the same set. A graph is called a

bipartite permutation graph if it is both bipartite and a permutation graph [61]. A

strong ordering of a bipartite graph B with vertex sets V1 and V2 is an ordering of

V1 and V2 such that if there are edges (u,w′) and (u′, w) in B, where u, u′ ∈ V1,

u < u′, w,w′ ∈ V2 and w < w′, then B has also edges (u,w) and (u′, w′). We have

the following lemma.

Lemma 6.4.22 A bipartite graph is a permutation graph if and only if it has a

strong ordering [313].

Let us look at the geometric structures of a tower polygon F in the light of

bipartite permutation graphs. For all of the consecutive vertices vm and vm+1 of

V2, let um denote the intersection point of R1 and −−−−−→vmvm+1. It can be seen that for

any three consecutive points um−1, um and um+1, the point um lies between um−1
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Figure 6.13 (a) A tower polygon F with extension of edges of R1 and R2. (b) The geometric
representation of the permutation of V1 ∪ V2 of F .

and um+1 on R1. By extending each edge of R2, locate the position of um on R1

for every vertex vm of V2. Construct the merged order of vertices of V1 ∪ V2 for R1

by traversing R1 from vi to vj in the clockwise order and by inserting each vertex

vm of V2 in the merged order according to the position of um on R1. For the tower

polygon in Figure 6.13(a), the merged order of vertices for R1 is 6, 5, 4, 7, 3, 8, 2,

9, 10 and 11. Similarly, by extending the edges of R1 to R2, the merged order of

vertices of V1 ∪ V2 for R2 can be constructed by traversing R2 from vi+1 to vj in

counterclockwise order. For the tower polygon in Figure 6.13(a), the merged order

of vertices for R2 is 7, 8, 9, 6, 10, 5, 11, 4, 3 and 2. The geometric representation

of these two merged lists for the tower polygon in Figure 6.13(a) is shown in Figure

6.13(b), which corresponds to a permutation of V1 ∪ V2. This structure in a tower

polygon is used for characterizing visibility graphs of tower polygons.

Let G be the visibility graph of a tower polygon F . Remove the edges from G

that correspond to the edges of R1 and R2 in F and remove the vertex from G that

corresponds to the apex of F . The remaining graph of G, denoted as G′, is called

the cross-visible sub-graph of G. It can be seen that G′ is a bipartite graph and it

satisfies Lemma 6.4.22. We have the following necessary and sufficient condition for

recognizing visibility graphs of a tower polygon.

Theorem 6.4.23 A graph G is the visibility graph of a tower polygon if and only if

its cross-visible sub-graph G′ is a bipartite permutation graph.

Exercise 6.4.4 Prove Theorem 6.4.23.

The above theorem suggests that in order to recognize a given graph G as the

visibility graph of a tower polygon, construct G′ from G and test whether G′ is a

bipartite permutation graph. It can be tested in linear time whether G′ is a bipartite

permutation graph [61, 313]. However, to construct G′ from G, it is necessary to
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identify a Hamiltonian cycle C in G which corresponds to the boundary of a tower

polygon. Moreover, three vertices of C have to be identified, which correspond to

convex vertices of a tower polygon. So, the problem of recognizing visibility graphs

of tower polygons is now reduced to the problem of locating a Hamiltonian cycle C

in G and identifying three special vertices in C.

Exercise 6.4.5 Design a linear time algorithm for recognizing bipartite

permutation graphs [61, 313].

Let w be a vertex of the given graph G such that it is adjacent to exactly two

other vertices of G. If no such vertex w exists, then G is not the visibility graph of

a tower polygon as the apex of any tower polygon F can see only its two adjacent

vertices on the boundary of F . So, we assume that such a vertex w exists in G. If

there are two such vertices w in G, then one of them corresponds to the apex of F

and the other one corresponds to a vertex of the base of F . If there are three or more

such vertices w in G, then G cannot be the visibility graph of any tower polygon.

Since there can be at most two such vertices w, considering each vertex w as the

vertex corresponding to the apex of F , the recognition algorithm tests whether G

is the visibility graph of a tower polygon. If it fails for both vertices, then G is not

the visibility graph of a tower polygon.

Without loss of generality, we assume that there is only one such vertex w in G.

Treating w as the vertex corresponding to the apex of F , the remaining vertices of

G are partitioned into two ordered sets V1 and V2 such that the vertices of V1 and V2
correspond to the sequence of vertices of R1 and R2 of F , respectively. Label w as vj
(see Figure 6.14). Label two neighbors of vj in G as vj+1 and vj−1. Observe that if

vj+1 and vj−1 are not connected by an edge in G, then G is not the visibility graph

of any tower polygon. So, we assume that vj+1 and vj−1 are connected by an edge

in G. The vertex vj+1 becomes the first vertex in V1 and similarly, vj−1 becomes

the first vertex of V2. The ordered sets V1 and V2 are constructed by labeling a pair

of vertices of G at each iteration, one belonging to V1 and the other belonging to

V2, until all vertices of G are labeled. Assume that vp and vm are the last vertices

added to V1 and V2, respectively. We know that vp and vm are connected by an edge

in G. The vertices vm, vm+1, . . . , vp−1, vp are called labeled vertices of G, and the

remaining vertices of G are called unlabeled vertices. We have the following lemma

on the labeling of the next pair of vertices of G.

Lemma 6.4.24 Let vp and vm be the last pair of vertices of G that has been labeled.

Let K be a maximal clique such that (i) vp and vm are vertices of K, and (ii) the

remaining vertices of K are unlabeled vertices of G. If K has five or more vertices,

then G is not the visibility graph of a tower polygon.
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Figure 6.14 (a) The labeled vertices vj+1 and vp belong to V1, and labeled vertices vj−1

and vm belong to V2. The other vertices are not yet labeled. (b) The unlabeled vertex u is
added to V1. (c) The unlabeled vertex u is added to V2.

Corollary 6.4.25 If G is the visibility graph of a tower polygon, then K is the

maximal clique in G having one or two unlabeled vertices.

Let W be the set of all unlabeled vertices of G that are neighbors of both vp and

vm in G. If the vertices of W do not form a clique or the size of W is more than

two, then G is not the visibility graph of a tower polygon by Lemma 6.4.24. So,

we assume that the vertices of W ∪ {vp} ∪ {vm} is a clique K of size three or four.

If K has four vertices (see Figure 6.14(a)), one unlabeled vertex of K is labeled as

vp+1 and the other unlabeled vertex of K is labeled as vm−1. Then vp+1 and vm−1
are added to V1 and V2, respectively. If K has three vertices, then the unlabeled

vertex u of K is added to either V1 or V2. For the graph in Figure 6.14(b), u is

added to V1. The vertex u is added to V1 (or V2) if (i) there is no unlabeled vertex

in G that forms a clique with u and vp (respectively, vm), and (ii) there exists a

unlabeled vertex that forms a clique with u and vm (respectively, vp). For the graph

in Figure 6.14(c), u is added to V2. If u cannot be added to either V1 or V2, then G

is not the visibility graph of a tower polygon. By repeating this process of labeling

of vertices of G, the ordered sets of vertices V1 and V2 can be constructed. We have

the following lemma.

Lemma 6.4.26 If the given graph G is the visibility graph of a tower polygon F ,

then using the method of labeling, the vertices of G can be partitioned into three

sets of vertices {vj}, V1 = {vj+1, vj+2, . . . , vi} and V2 = {vj−1, vj−2, . . . , vi+1} such
that vj corresponds to the apex of F , and the ordered sets of vertices V1 and V2
correspond to the sequence of vertices of R1 and R2 of F respectively.
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Once V1 and V2 are known, the cross-visible sub-graph G′ can be constructed from

G. If G′ satisfies Theorem 6.4.23, then G is the visibility graph of a tower polygon.

In the following, we state the major steps of the algorithm for recognizing the given

graph G of n vertices as the visibility graph of a tower polygon.

Step 1. Locate the vertex w of degree two in G which has formed a clique with two

of its neighbors. Label w as v1 and the neighbors of w as v2 and vn. Add v2 and

vn to V1 and V2, respectively. Assign 2 to p and n to m.

Step 2. Locate the maximal clique K consisting of vp, vm and unlabeled vertices of

G.

Step 3. If |K| = 2 or |K| > 4 then goto Step 8.

Step 4. If |K| = 4 then

Step 4a. Increment p by 1, label an unlabeled vertex of K as vp and add it to V1.

Step 4b. Decrement m by 1, label the unlabeled vertex of K as vm, add it to V2
and goto Step 6.

Step 5. Let u be the unlabeled vertex of K. If K is the only clique with u and vp

in the remaining unlabeled graph of G then increment p by 1, label u as vp and

add it to V1 else decrement m by 1, label u as vm and add it to V2.

Step 6. If all vertices of G are not labeled then goto Step 2.

Step 7. Construct the cross-visible sub-graph G′ of G using V1 and V2. If G
′ is a

bipartite permutation graph then report that G is the visibility graph of a tower

polygon and goto Step 9.

Step 8. Report that G is not the visibility graph of a tower polygon.

Step 9. Stop.

The correctness of the algorithm follows from Lemma 6.4.26 and Theorem 6.4.23.

Let us analyze the time complexity of the algorithm. Step 1 can be performed

in O(n) time. Step 2 involves locating the maximal clique K containing vp and

vm in the unlabeled graph of G. Let W1 be the unlabeled vertices of G that are

adjacent to vp. Let W2 ⊂ W1 be the vertices in G that are adjacent to vm. So,

the vertices of W2 with vp and vm have formed the current maximal clique K. It

can be seen that the vertices in W1 − W2 must belong to V2 and these vertices

can be ordered as they correspond to consecutive reflex vertices of R2 in a tower

polygon. This ordering helps to locate the maximal clique containing a vertex of

W2 for subsequent iterations. It means that the current maximal clique K can be

located in time proportional to its size. Therefore, Step 2 can be executed in O(n)

time. Similarly, Step 5 can also be executed in O(n) time. Constructing and testing

G′ in Step 7 can be done in O(n) time [61, 313]. Hence, the overall time complexity

of the recognition algorithm is O(n). We summarize the result in the following

theorem.
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Figure 6.15 (a) The segment visibility graph Gs of a set S of disjoint line segments. (b)
The segment visibility graph Gf of these three line segments is 4-connected. (c) There are
four empty convex quadrilaterals in this set S of seven line segments.

Theorem 6.4.27 The visibility graph of a tower polygon of n vertices can be recog-

nized in O(n) time.

6.5 Characterizing a Sub-Class of Segment Visibility Graphs

In this section, we present the characterization of a special class of segment visibility

graphs given by Everett et al. [136]. They have characterized those segment visibility

graphs that do not have K5 (a complete graph of five vertices) as a minor. This class

of graphs is called K5-free segment visibility graphs. Their characterization gives a

straightforward polynomial time algorithm for recognizing this class of graphs.

Let S be a set of n disjoint line segments in the plane. If the line segment uw

joining two endpoints u and w of different segments in S does not intersect any

segment in S (except at u and w), then uw is called visible segment in S. The

segment visibility graph Gs of S is a graph whose 2n vertices represent 2n endpoints

of line segments in S and whose edges represent visible segments in S (see Figure

6.15(a)). A graph M is called a minor of a graph G if M can be obtained from

G by a sequence of vertex deletions, edge deletions and edge contractions. It can

be seen that K4 in any segment visibility graph corresponds to an empty convex

quadrilateral formed by four endpoints of segments in S assuming no three-segment

endpoints of K4 are collinear. Figure 6.15(c) shows four empty convex quadrilaterals

in a set of seven line segments. We have the following lemma.

Lemma 6.5.1 There are at least n−3 empty convex quadrilaterals in S for |S| ≥ 4.

Exercise 6.5.1 Prove Lemma 6.5.1.

A graph is called planar if it can be embedded on the plane such that no two

edges intersect. We know that Kuratowski’s theorem characterizes planar graphs as
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those graphs that do not have K5 or K3,3 as a minor [58, 224], where K3,3 denotes

the complete bipartite graph with three vertices in each vertex set.

The similarity between planar graphs and K5-free segment visibility graphs is

that both do not have K5 as a minor. A graph G is called k-connected if there are

k disjoint paths in G between any two vertices of G [58]. A cutset in a graph G is

a set of minimum number of vertices in G whose removal disconnects G. If G is

k-connected, then k is the size of cutset in G (denoted as k(G)). If k(G) = 1,

the vertex in the cutset is called a cut vertex. The characterization of K5-free

segment visibility graphs is based on the property that this class of graphs are not

4-connected graphs (except for one particular segment visibility graph). The only

S whose segment visibility graph (say, Gf ) is K5-free and 4-connected is shown in

Figure 6.15(b). We have the following lemmas.

Lemma 6.5.2 The graph Gf is the only K5-free segment visibility graph of S which

is 4-connected.

Proof. We know from Lemma 6.5.1 that there exists at least an empty convex

quadrilateral in S. It means that in a K5-free segment visibility graph Gs for

|S| ≥ 4, there exists a sub-graph H of Gs isomorphic to K4. If Gs is 4-connected,

it follows from Menger’s theorem [58] that for every vertex u of Gs not in H, u is

connected to each vertex of H by four disjoint paths in Gs. It means that Gs has

K5 as a minor, which is a contradiction. For |S| < 4, the result can be checked by

enumeration.

Corollary 6.5.3 The size of a cutset in any K5-free segment visibility graph except

Gf is less than four.

Lemma 6.5.4 No K5-free segment visibility graph of S contains a cut vertex.

Proof. Since S can always be triangulated and triangulated graphs are 2-connected,

Gs contains no cut vertex.

Lemma 6.5.5 If a segment visibility graph Gs of a set of n disjoint line segments

S does not contain K5 as a minor, then at least one endpoint of every segment in

S is a vertex of the convex hull of S.

Proof. If S has a segment pq such that neither p nor q is a vertex of the convex

hull of S, then by contacting the corresponding edge of pq in Gs, a minor in Gs can

be constructed which is K5, and this is a contradiction.
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In order to recognize a given graph G as a K5-free segment visibility graph, it can

be checked whether G is Gf . If G is isomorphic to Gf , then G is Gs. Otherwise,

if k(G) is not 2 or 3, then G is not Gs. We assume from now on that the size of a

cutset in G is 2 or 3. We need some more properties of Gs before the edges of G

that correspond to segments of S can be identified. We have the following lemma.

Lemma 6.5.6 There is a path in a K5-free segment visibility graph Gs consisting

of only the vertices of a cutset in Gs.

Exercise 6.5.2 Prove Lemma 6.5.6.

Any path that satisfies Lemma 6.5.6 is called a separating path in Gs. We know

from Lemma 6.5.5 that one endpoint of every segment in S is a vertex of the convex

hull of S. Suppose there is a segment pq in S such that both endpoints p and q are

vertices of the convex hull of S. Assume that p and q are not two consecutive vertices

on the boundary of the convex hull of S (see Figure 6.15(c)). In such situations,

k(Gs) = 2. In fact, this is the only situation when Gs can have a cutset of size 2 as

stated in the following lemma.

Lemma 6.5.7 If a cutset consists of two vertices u and v in a K5-free segment

visibility graph Gs of S (Figure 6.15(c)), then u and v correspond to endpoints of

the same segment pq in S and p and q are two non-adjacent vertices on the boundary

of the convex hull of S.

Exercise 6.5.3 Prove Lemma 6.5.7.

The above lemma suggests that if the given G has a cutset of size 2, the edge

in G connecting these two vertices, which is a separating path in G, corresponds

to a segment in S. Remove both vertices of the cutset and all edges incident on

these vertices from G. This removal decomposes G into two disjoint components

as no vertex of one component is connected by an edge in G to any vertex of

other component. Again, if any component has a cutset of size 2, decompose this

component again into two components. This process is repeated till the size of a

cutset in every component is 3 or all those edges of G, that correspond to segments

in S, are identified. The remaining problem is to identify those edges of every

component which correspond to segments in S. This can be solved by treating each

component as the given graph G having a cutset of size 3.

In order to recognize a given graphG, we need a characterization ofGs for k(Gs) =

3. Since a cutset inGs consists of three vertices, by Lemma 6.5.6 there is a separating

path in Gs consisting of these three vertices. It can be seen that this separating

path must correspond to a geometric path in S that contains a segment of S. We

have the following lemmas on separating paths in Gs.
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Figure 6.16 (a) The ray drawn from p through q intersects a segment of S. (b) A segment
visibility graph of a set of vertical segments which is 3-connected and K5-free. (c) A planar
embedding (up to u4w4) of the graph in the previous figure.

Lemma 6.5.8 If k(Gs) = 3, then one of the edges in every separating path in Gs

corresponds to a segment in S.

Proof. Let Q be a separating path consisting of three vertices of a cutset in Gs.

Let Q′ be the geometric path in S corresponding to Q. Since Q is a separating path

in Gs which has connected two non-adjacent vertices on the exterior face of Gs, no

two endpoints of a segment in S can see each other across Q′. Therefore, one of the

edges in Q′ must be a segment of S. Hence, one of the edges of Q corresponds to a

segment of S.

Corollary 6.5.9 The geometric path Q′ connects two non-adjacent vertices of the

convex hull of S.

Lemma 6.5.10 Let pq be a segment in S such that (i) the corresponding edge of

pq belongs to a separating path in the segment visibility graph of S which is K5-free

and 3-connected, and (ii) p is a vertex of the convex hull of S. No segment of S is

intersected by −→pq.

Proof. The proof follows from the fact that if −→pq intersects any segment in S (see

Figure 6.16(a)), the segment visibility graph of S contains K5 as a minor.

Exercise 6.5.4 Prove Lemma 6.5.10.

The above lemma suggests that segments in S, whose segment visibility graph is

K5-free and 3-connected, can be considered to be vertical segments. Let us consider

a class of graphs D such that any graph H in this class can be constructed from a

set of edges {u1w1, . . . , unwn} as follows (see Figure 6.16(b)). For 1 ≤ i ≤ n, ui and

wi are connected in H to ui+1 and wi+1 by four edges forming K4. Moreover, for
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1 ≤ i ≤ n − 1, if ui−1ui+1 is not an edge of H, uiui+2 can be an edge in H and if

wi−1wi+1 is not an edge of H, wiwi+2 can be an edge in H. The edges u1w1 and

unwn are called the first and last links of H, respectively. The embedding in Figure

6.16(c) shows that the graph H is a maximal planar graph which corresponds to a

triangulation of S.

Observe that H is a segment visibility graph, where links in H correspond to

vertical segments in S. In fact, every graph in D is a segment visibility graph and

its 3-connected components can be embedded similar to Figure 6.16(b). Recall that

Gs can be 2-connected but it may have 3-connected components (see Lemma 6.5.7).

The embedding of 3-connected components of Gs is essentially unique as long as the

extension of any segment in S does not intersect any other segment of S, except

may be for the first and last links (see Lemma 6.5.10). We have the following

characterization.

Theorem 6.5.11 The class of K5-free segment visibility graph is exactly the class

D ∪ {Gf}.

Proof. Proof follows from Lemmas 6.5.5, 6.5.7, 6.5.8 and 6.5.10.

To recognize a given graph G as a segment visibility graph, which is K5-free and

3-connected, start from a vertex of G of degree 3 and label link by link using the

similar method as stated in the algorithm for recognizing a tower polygon in Section

6.4.2. We have the following theorem.

Theorem 6.5.12 A K5-free segment visibility graph of 2n vertices can be recognized

in polynomial time.

Exercise 6.5.5 Design an O(n) time algorithm for identifying the links

in segment visibility graphs of 2n vertices, which are 3-connected and

K5-free [136].

6.6 A Few Properties of Vertex-Edge Visibility Graphs

In this section, we present a few properties of vertex-edge visibility graphs of simple

polygons given by O’Rourke and Streinu [275]. We assume that the vertices of a

simple polygon P are labeled v1, v2, . . . , vn in counterclockwise order, and no three

vertices are collinear in P . So, the edges on the boundary of P in counterclockwise

order are v1v2, v2v3, . . . , vnv1. Let Vv and Ve denote the ordered set of vertices and

edges of P in counterclockwise order. The vertex-edge visibility graph Gve of P is

a bipartite graph with nodes Vv and Ve, and arcs between vi ∈ Vv and vjvj+1 ∈ Ve

if and only if vi is visible from some internal point z of vjvj+1 in P . Note that

z is some point of vjvj+1 other that vj and vj+1. Figure 6.17(a) shows a simple
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Figure 6.17 (a) A simple polygon P . (b) The visibility graph of P . (c) The vertex-edge
visibility graph of P .

polygon P , and its visibility graph Gv is shown in Figure 6.17(b). The vertex-edge

visibility graph Gve of P is shown in Figure 6.17(c). Given a simple polygon P , Gve

of P can be constructed with a little modification of Hershberger’s algorithm [186]

for computing the visibility graph Gv of a simple polygon (see Section 5.2). In the

sequel, Gv is also referred as a vertex visibility graph.

We know that two consecutive vertices vi and vi+1 are mutually visible in P . If

vi−1 is not visible in P from any internal point of vivi+1, then vi is a reflex vertex in

P . Therefore, vi−1 is not connected by an arc to vivi+1 in Gve. Conversely, if vi−1
is not connected by an arc to vivi+1 in Gve, then vi is a reflex vertex in P . Thus,

the reflex vertices of P can be determined uniquely from Gve. On the other hand, it

is not a straightforward task to identify reflex vertices of P from Gv as discussed in

Section 6.2.1. It appears that vertex-edge visibility graphs capture more geometric

structures of polygons than vertex visibility graphs. In the following lemmas, we

establish the relationship between Gv and Gve of the same polygon P .

Lemma 6.6.1 If vi is connected by arcs to vj−1vj and vjvj+1 in Gve, then (vi, vj)

is a visible pair in Gv.

Lemma 6.6.2 If (vi, vj) is a visible pair in Gv, then vi is connected by an arc to

vj−1vj or vjvj+1 (or both) in Gve.

Lemma 6.6.3 Assume that vi is connected by arcs to two non-adjacent nodes vjvj+1

and vkvk+1 in Gve and no intermediate node in Gve is connected by an arc to vi.

Then, exactly one of Cases A or B holds.

Case A: (i) In Gv, (vi, vj+1) is a visible pair but not (vi, vk), and (ii) in Gve, vj+1

is connected to vkvk+1 by an arc but there is no arc connecting vk to vjvj+1 (Figure

6.18(a)).
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Figure 6.18 (a) The extension of vivj+1 from vj+1 meets vkvk+1. (b) The extension of vivk

from vk meets vjvj+1. (c) The vertices vj and vk are blocking vertices of invisible pairs
(vi, vm) and (vi, vm+1) respectively.

Case B: (i) In Gv, (vi, vk) is a visible pair but not (vi, vj+1), and (ii) in Gve, vk is

connected to vjvj+1 by an arc but there is no arc connecting vj+1 to vkvk+1 (Figure

6.18(a)).

Corollary 6.6.4 In Gv, vj+1 and vk are the blocking vertices for invisible pairs

(vi, vk) and (vi, vj+1) in Case A and Case B, respectively.

Exercise 6.6.1 Prove Lemma 6.6.3.

The above lemmas can be used to construct Gv from Gve as follows. For each

node vi ∈ Vv, consider the nodes Ni in Ve that are connected to vi by arcs in Gve.

Consider two nodes vjvj+1 and vkvk+1 consecutive in Ni. If j+1 = k, then connect

vi to vj+1 by an edge in Gv as they are visible in P by Lemma 6.6.1. Otherwise,

if Case A (or Case B) of Lemma 6.6.3 is satisfied, then vi is connected to vj+1

(respectively, vk) by an edge in Gv. We have the following theorem.

Theorem 6.6.5 The vertex visibility graph Gv can be constructed from the

vertex-edge visibility graph Gve in time proportional to the size of Gve.

Using Corollary 6.6.4, the shortest path tree in P rooted at any vertex (say,

SPT (vi)) can be constructed from Gve as follows. For details on shortest path

trees, see Section 3.6. From a given Gve, locate all vertices of P that are visible

from vi using Gv and they are connected to vi as children of vi in SPT (vi). Recall

that Gv can be computed from Gve. Consider two nodes vj and vk of Ni consecutive

in the counterclockwise order in Ni. Assume that vk belongs to the counterclockwise

boundary of P from vj to vi (see Figure 6.18(c)). If vj and vk are two consecutive
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vertices of P , then vj and vk are leaves of SPT (vi). Otherwise, test whether vj or vk
are blocking vertices using Corollary 6.6.4. If vj is a blocking vertex for an invisible

pair, say, (vi, vm), then we know that vj is the root of the sub-tree of SPT (vi)

in the sub-polygon of P determined by the extension of vivj from vj to the edge

vmvm+1. Treating vj as the root in this sub-polygon, compute SPT (vj) recursively.

Analogously, if vk is a blocking vertex, compute the sub-tree of SPT (vi) rooted at

vk in the corresponding sub-polygon of P . We have the following theorem.

Theorem 6.6.6 Given the vertex-edge visibility graph Gve of a simple polygon P ,

the shortest path tree from a vertex inside P can be constructed from Gve in time

proportional to the size of Gve.

The edge-edge visibility graph Ge of P is a graph with nodes Ve, and arcs between

nodes vivi+1 ∈ Ve and vjvj+1 ∈ Ve if and only if some internal point of vivi+1 is

visible from an internal point of vjvj+1 in P . Although Ge is a natural extension of

Gve, Ge does not seem to capture more geometric structure of P than Gve. In fact

Ge can be constructed from Gve using the following lemma.

Lemma 6.6.7 Nodes vivi+1 and vjvj+1 are connected by an arc in Ge if and only

if the shortest paths SP (vi, vj+1) and SP (vi+1, vj) in P do not share any vertex.

The above lemma suggests that Ge can be constructed once the shortest paths

between every pair of vertices in P are known. Since they can be computed from Gve

using Theorem 6.6.6, Ge can be constructed from Gve. Using the method similar to

the method of constructing Gv from Gve stated earlier in this section, Gve can also

be constructed from Ge. So, it may be concluded that Gve and Ge are equivalent.

6.7 Computing Maximum Clique in a Visibility Graph

In this section, we present the algorithm of Ghosh et al. [167] for computing the

maximum clique in the visibility graph G of a simple polygon P in (n2E) time, where

n and E are the number of vertices and edges of G, respectively. The algorithm

assumes that G is given along with the Hamiltonian cycle C, where C corresponds

to the boundary of P . The maximum clique in G is a complete sub-graph of G with

the largest number of vertices. For example, the maximum clique in G shown in

Figure 6.19(a) consists of vertices v1, v3, v5, v6, v7, v8, v9 and v10. There may be two

or more maximum cliques in G with the same number of vertices. We are interested

in locating any one of them. Observe that the maximum clique in G corresponds

to a convex polygon inside P formed by the largest number of vertices (see Figure

6.19(b)).
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Figure 6.19 (a) The maximum clique in G consists of vertices v1, v3, v5, v6, v7, v8, v9

and v10. (b) The vertices forming the largest convex polygon in P are the vertices of the
maximum clique in the visibility graph of P .

Exercise 6.7.1 Let S be a set of n points in the plane. Design an O(n3)

time algorithm for computing the largest subset S ′ of S such that points

in S′ form a convex polygon Q with no point of S−S ′ lying inside Q [40].

Assume that the vertices of C are labeled v1, v2, . . . , vn in counterclockwise order.

Let C(vj , vm) denote the portion of C from vj to vm in counterclockwise order. For

each vertex vi ∈ G, Gi denotes the induced sub-graph of G formed by vi with its

neighboring vertices in G. In Figure 6.19(a), G3 is the entire visibility graph since

all vertices of the graph are neighbors of v3. The sub-polygon of P formed by the

vertices of Gi is called the fan Fi with vi as the fan vertex. The fan Fi is referred as

convex fan if the internal angle at vi is convex in Fi. It can be seen that the order

of vertices on the boundary of Fi follows the order in C.

Observe that if the maximum clique in G contains a vertex vi, then all vertices

of the maximum clique belong to Gi as they are neighbors of vi in G. Using this

observation, the algorithm first computes maximum cliques in G1, G2, . . . , Gn and

then takes the clique with the largest size as the maximum clique in G. So, it is

enough to present the procedure for computing the maximum clique in Gi.

Without loss of generality, we assume that all vertices of G are neighbors of vi.

This assumption implies that Fi is P and therefore, the angular order of vertices

around vi in Fi is same as the order of vertices in C. For any edge (vp, vq) ∈
Gi, if there exists an edge (vk, vm) in Gi such that vk ∈ C(vp+1, vq−1) and vm ∈
C(vq+1, vp−1), we say that there is a cross-visibility across (vp, vq) [154, 157]. For any

vertex vj , if there is no cross-visibility across (vi, vj) (see Figure 6.20(a)), then all

vertices of the maximum clique in Gi belong to either C(vi, vj) or C(vj , vi). So, Gi

can be partitioned into two induced sub-graphs formed by vertices of C(vi, vj) and
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Figure 6.20 (a) There is no cross-visibility across (vi, vj) as well as across (vi, vp). (b) The
vertex vj is the sole blocking vertex for (vj−1, vj+1).

C(vj , vi). So, the maximum clique in Gi can be computed by computing maximum

cliques in these two sub-graphs. Let vp be a vertex of C(vj , vi). Again, if there is

no cross-visibility across (vi, vp) (see Figure 6.20(a)), then the induced sub-graph

formed by vertices of C(vj , vi) can again be partitioned into two sub-graphs as stated

earlier. This process of partitioning sub-graphs continues till no further partition is

possible. We have the following lemmas.

Lemma 6.7.1 The graph Gi can be partitioned into sub-graphs using the criteria of

cross-visibility such that one of them totally contains the maximum clique in Gi.

Corollary 6.7.2 There can be at most one sub-graph of Gi whose corresponding

fan is not a convex fan.

Proof. Since the edges used for partitioning Gi are all incident at vi, these edges

divide the reflex angle at vi in Fi. After the division, only one of them can be

reflex at vi. Hence, there can be at most one sub-graph of Gi after partition whose

corresponding fan is not a convex fan.

Lemma 6.7.3 All edges of Gi used for partitioning Gi can be located in O(E) time.

Exercise 6.7.2 Prove Lemma 6.7.3.

Without loss of generality, we assume that there is a cross-visibility across (vi, vj)

in Gi for every vj ∈ C(vi+2, vi−2). If (vj−1, vj+1) is an edge in Gi, then vj is a convex

vertex in Fi. If (vj−1, vj+1) is not an edge in Gi (see Figure 6.20(b)), vj is a blocking

vertex for (vj−1, vj+1). For properties of blocking vertices, see Section 6.2.1. The

vertex vi is the only other blocking vertex for (vj−1, vj+1) as (vi, vj−1) and (vi, vj+1)
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are edges in Gi (see Figure 6.20(a)). If vi is used to block the visibility between

vj−1 and vj+1 in Fi, then there is no cross-visibility across (vi, vj) contradicting

the assumption that there is a cross-visibility across (vi, vj) (see Figure 6.20(a)).

Therefore, vj must be a reflex vertex in Fi (see Figure 6.20(b)). We state this

observation in the following lemma.

Lemma 6.7.4 If (vj−1, vj+1) is not an edge in Gi but cross-visibility exists across

(vi, vj), then vj must be a reflex vertex in Fi.

By traversing C once, all reflex vertices of Fi can be identified using the above

lemma. For computing the maximum clique in Gi, the algorithm needs the property

that vi is a convex vertex in Fi. If (vi−1, vi+1) is not an edge in Gi, then vi is not a

convex vertex in Fi and there is no clique in Gi with vertices vi−1 and vi+1. So, sub-

graphs of Gi are constructed in such way that their corresponding fans are convex

fans as follows (see Figure 6.21(a)). Let (vi+1, vk) be the edge in Gi such that no

vertex of C(vk+1, vi−1) is a neighbor of vi+1. The vertex vk is called the furthest

adjacent vertex of vi+1. It can be seen that the corresponding fan of the induced

sub-graph of Gi formed by vi with vertices of C(vi+1, vk) is a convex fan. Let vm
be the first vertex of C in counterclockwise order from vi+1 such that vi−1 is the

furthest adjacent vertex of vm. Using the furthest adjacent vertices of vi+2, . . . , vm
as stated earlier, the corresponding sub-graphs of Gi are constructed, and they are

visibility graphs of convex fans. Since the maximum clique in Gi belongs to one of

these sub-graphs, the maximum clique is computed by computing maximum cliques

in these sub-graphs of Gi.

From now on, we assume that vi is a convex vertex in Fi, i.e., (vi−1, vi+1) is an

edge in Gi. Let (vk, vl) and (vp, vk) be two edges of Gi such that vp ∈ C(vi, vk−1)

and vl ∈ C(vk+1, vi−1). We know that the three vertices vl, vk and vp belong to a

clique in Gi if and only if (vl, vp) is an edge in Gi. All pairs of such edges (vk, vl)

and (vp, vk) satisfying this property are called valid pairs of edges at vk. So, every

valid pair of edges at any vertex vk ∈ C(vi+1, vi−1) forms a clique of three vertices in

Gi. The edge (vp, vk) is called an incoming edge of vk and the other edge (vk, vl) is

called an outgoing edge of vk. Note that any edge is an incoming edge of one vertex

and an outgoing edge of the other vertex. We have the following lemma on valid

pairs of edges in Gi.

Lemma 6.7.5 If an outgoing edge (vk, vl) at vk forms a valid pair with an incoming

edge (vp, vk) at vk, then for every incoming edge (vq, vk) at vk, where vq ∈ C(vi, vp),

(vk, vl) forms a valid pair with (vq, vk) at vk.

Proof. Since (vk, vl) has formed a valid pair with (vp, vk), the internal angle at vk
in Fi (say, α) formed by (vk, vl) and (vp, vk) is convex. Since any incoming edge

(vq, vk) divides α in Fi, the internal angle at vk in Fi formed by (vk, vl) and (vq, vk)
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Figure 6.21 (a) The vertices vk and vi−1 are the furthest adjacent vertices of vi+1 and vm,
respectively. (b) Weights are assigned to the outgoing edges at vi, vi+1, . . . , vk.

is also convex. So, (vl, vq) must be an edge in Gi as vl and vq are visible in Fi.

Therefore, (vk, vl) forms a valid pair with (vq, vk) at vk.

Using valid pairs of edges, weights are assigned to edges of Gi for comput-

ing the maximum clique in Gi. The weight of 2 is assigned to edges (vi, vi+1),

(vi, vi+2), . . . (vi, vi−2). Consider vi+1. Since (vi, vi+1) is the only incoming edge at

vi+1 and all vertices of Gi are connected to vi (see Figure 6.21(b)), (vi, vi+1) forms

a valid pair with every outgoing edge at vi+1. Assign the weight of 3, which is the

size of the clique, to every outgoing edge at vi+1. For the next vertex vi+2, (vi, vi+2)

and (vi+1, vi+2) are incoming edges at vi+2 and each of them forms a valid pair with

every outgoing edge at vi+2. Therefore, assign the weight of 4, which is the size of

the clique, to every outgoing edge at vi+2. Note that the weight of 4 is obtained by

adding one to the maximum among weights of incoming edges at vi+2.

Consider any vertex vk (see Figure 6.21(b)). Assume that the weight on every

incoming edge at vk has already been assigned. For every outgoing edge (vk, vl)

at vk, find the maximum among weights on those incoming edges at vk that have

formed valid pairs with (vk, vl), add one to the maximum weight, and assign the

weight to (vk, vl). In this method, weights on all outgoing edges at vk are assigned.

By traversing C(vi+1, vi−1) in counterclockwise order, weights are assigned to all

edges in Gi. We have the following lemma.

Lemma 6.7.6 The size of the maximum clique in Gi is the same as the largest

weight among weights on edges of Gi.

Exercise 6.7.3 Prove Lemma 6.7.6.
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Let (vk, vl) be an edge in Gi with the maximum weight. Starting from (vk, vl),

all vertices of the maximum clique in Gi can be located by traversing backward as

follows. Without loss of generality, (vk, vl) is considered as an outgoing edge at vk.

Let MC denote the ordered set of vertices of the maximum clique in Gi from vl to

vi. Initialize MC by adding vl and vk to MC. Locate an incoming edge at vk (say,

(vp, vk)) such that (vk, vl) has formed a valid pair with (vp, vk) at vk, and the weight

on (vp, vk) is one less than that of (vk, vl). Add vp to MC as it is the next vertex

of vk in MC. In the same way, the next vertex of vp in MC can again be found by

locating an appropriate incoming edge at vp. The process is repeated till vi is added

to MC. Thus all vertices of MC can be located using weights on edges of Gi and

valid pairs of edges in Gi. We have the following lemma.

Exercise 6.7.4 Write the procedure for locating the maximum clique

in the visibility graph Gi of a convex fan Fi under the assumption

that there exists cross-visibility across every edge connecting a vertex of

C(vi+2, vi−2) to the fan vertex vi.

Lemma 6.7.7 The vertices of the maximum clique MC in Gi can be located O(E)

time.

Proof. We first show that the time complexity of assigning weights to all outgoing

edges at any vertex vk is proportional to the degree of vk. Assume that the weight

on every incoming edge at vk has already been assigned. Consider the outgoing

edges at vk in counterclockwise order starting from (vk, vk+1). Also consider the

incoming edges of vk in counterclockwise order starting from (vi, vk). Consider the

first outgoing edge (vk, vk+1). Let (vp, vk) be the incoming edge of vk such that

(vp, vk+1) is an edge in Gi but the next incoming edge of vk does not form a valid

pair with (vk, vk+1). While considering incoming edges of vk from (vi, vk) to (vp, vk),

the procedure can compute the maximum among weights on these edges, which

gives the weight of (vk, vk+1). For assigning the weight on the next outgoing edge

of (vk, vk+1), it is enough to consider the incoming edges of vk from (vp, vk) rather

than from (vi, vk) (see Lemma 6.7.5). In this process, weights on all outgoing edges

of vk can be computed in time proportional to the degree of vk. Therefore, assigning

weights to all outgoing edges at vk for all k takes O(E) time. Since vertices of MC

can also be located in O(E) time by scanning backward starting from an edge of Gi

with maximum weight, the maximum clique MC in Gi can be computed in O(E)

time.

In the following, we state the major steps for locating the vertices of the maximum

clique in the given visibility graph G.
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Step 1. Construct G1, G2, . . . , Gn from G.

Step 2. Initialize the set S to empty. For every graph Gi, partition Gi into sub-

graphs using cross-visibility and add them to S.

Step 3. For every sub-graph Q in S, if Q is not the visibility graph of a convex fan

then decompose Q into visibility graphs of convex fans and replace Q by these

decomposed sub-graphs in S.

Step 4. For each sub-graph Q of S, assign weights on edges of Q using valid pairs

of edges and locate the vertices of the maximum clique in Q from the weighted

sub-graph Q.

Step 5. Choose the largest clique among the maximum cliques in sub-graphs of S

and assign the clique as the maximum clique in G.

Step 6. Output the maximum clique in G and Stop.

The correctness of the algorithm follows from Lemmas 6.7.1, 6.7.4, 6.7.5 and

6.7.6. Let us analyze the time complexity of the algorithm. Step 1 takes O(nE)

time as each sub-graph can be constructed in O(E) time. By Lemma 6.7.3, Gi can

be partitioned in O(E) time and therefore, partitioning G1, G2, . . . , Gn in Step 2

takes O(nE) time. After the decomposition in Step 3, there can be at most O(n2)

sub-graphs in S due to Corollary 6.7.2. So, Step 3 can be executed in O(n2E) time.

By Lemma 6.7.7, the maximum clique in a sub-graph of S can be computed in O(E)

time and there are O(n2) sub-graphs in S. So, Step 4 takes O(n2E) time. Hence,

the overall time complexity of the algorithm is O(n2E). We summarize the result

in the following theorem.

Theorem 6.7.8 Assume that the visibility graph G of a simple polygon is given along

with the Hamiltonian cycle in G corresponding to the boundary of the polygon. The

maximum clique in G can be computed in O(n2E) time, where n and E denote the

number of vertices and edges of G.

6.8 Computing Maximum Hidden Vertex Set in a Visibility Graph

In this section, we present an O(nE) time algorithm given by Ghosh et al. [167] for

computing the maximum hidden vertex set in the visibility graph G of a convex fan

F , where n and E denote the number of vertices and edges of G. A maximum hidden

vertex set in G is the set of maximum number of vertices in which no two vertices

are neighbors in G. Assume that the Hamiltonian cycle C in G corresponding to

the boundary of F is given along with G. We also assume that the vertices of C are

labeled v1, v2, . . . , vn in counterclockwise order. Let vi be a vertex of G such that

all vertices G are neighbors of vi, and (vi−1, vi+1) is an edge in G. We take vi as the

fan vertex of F .



6.8 Computing Maximum Hidden Vertex Set in a Visibility Graph 215

Figure 6.22 (a) The vertex vm is the next vertex of vk in the Euclidean shortest path between
vj and vk in F . (b) The vertex vi is placed either at ui or wi to construct convex fans with
v1 as the fan vertex.

Recall that for any two vertices vj and vk, C(vj , vk) denotes the portion of C in

counterclockwise order from vj to vk. Assume that vj ∈ C(vi, vk). If (vj , vk) ∈ G,

then both vj and vk cannot be in a hidden vertex set in G. If (vj , vk) is not an edge

in G, then both vj and vk can be in a hidden vertex set in G. Suppose, there exists

a vertex vm ∈ C(vj , vk) such that (vk, vm) ∈ G and no vertex of C(vj , vm−1) is a

neighbor of vk in G. This implies that the the Euclidean shortest path between vj

and vk in F passes through vm, and vm is the next vertex of vk in the path (see Figure

6.22(a)). Using this property, the maximum hidden vertex set in C(vj , vk) (denoted

as H(vj , vk)) can be located by the following lemma of Ghosh et al. [163] (after a

minor modification). Let |H(vj , vk)| denote the number of vertices of H(vj , vk).

Lemma 6.8.1 For any two vertices vj and vk of G where vk ∈ C(vj , vi−1),

|H(vj , vk)| = max(|H(vj , vm−1)|+ |H(vm+1, vk)|, |H(vj , vk−1)|), where (vm, vk) ∈ G

and no vertex of C(vj , vm−1) is a neighbor of vk in G.

Proof. If vk does not belong to H(vj , vk), then H(vj , vk) = H(vj , vk−1). If vk ∈
H(vj , vk), then H(vj , vk) does not contain vm as (vk, vm) ∈ G. Since no vertex of

C(vj , vm−1) is a neighbor of any vertex of C(vm+1, vk) in G, H(vj , vk) = H(vj , vm−1)

∪ H(vm+1, vk). So, |H(vj , vk)| = max(|H(vj , vm−1)|+ |H(vm+1, vk)|, |H(vj , vk−1)|).

Using the above lemma, |H(vj , vk)| can be computed for all pairs of vj and vk in

C(vi+1, vi−1). Let |H(vp, vq)| be the largest in G for some pair of vertices vp and

vq. Vertices in H(vp, vq) are located by scanning C in clockwise order from vq to vp.

The overall time complexity of the algorithm is O(nE) as the algorithm takes O(E)

time for every vertex vj . We summarize the result in the following theorem.
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Figure 6.23 Two simple polygons are not similar but their visibility graphs are isomorphic.

Theorem 6.8.2 Assume that the visibility graph G of a convex fan is given along

with the Hamiltonian cycle in G corresponding to the boundary of the fan. The

maximum hidden vertex set in G can be computed in O(nE) time, where n and E

denote the number of vertices and edges of G.

Exercise 6.8.1 Design an O(n2) time algorithm for computing the max-

imum hidden vertex set in a simple polygon P of n vertices, where P is

weakly visible from one of its convex edges [163].

6.9 Notes and Comments

In Section 6.7, it was shown that the problem of computing the maximum clique in

a visibility graph G can be solved in polynomial time. However, the algorithm needs

an additional input in the form of a Hamiltonian cycle. Can this problem be solved

in polynomial time without any additional information? The algorithm presented in

Section 6.8 is for computing the maximum hidden vertex set in the visibility graph

of a very special class of polygons. Can this problem be solved for the visibility

graph G of other classes of simple polygons in polynomial time if the Hamiltonian

cycle in G corresponding to the boundary of the polygon is given along with G?

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if and only if there is

a bijection f that maps vertices of V1 to vertices of V2 such that an edge (u,w) ∈ E1 if

and only if the edge (f(u), f(w)) ∈ E2. We show that the number of non-isomorphic

visibility graphs of simple polygons of n vertices can be exponential. Construct

convex fans of n vertices v1, v2 . . . vn (in counterclockwise order) with v1 as the

fan vertex as follows (see Figure 6.22(b)). Let u2, u3, u4, . . . un be a convex chain

of points in counterclockwise order. Mark u2 and un as v2 and vn, respectively.

Connect v1 with v2 by an edge. Similarly, connect v1 with vn by an edge. For all i

between 3 and n− 1, take a point wi on the segment viui such that w3, w4, . . . wn−1

form a chain of reflex points facing v1. For every vertex vi of 2 < i < n, place vi
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either at ui or wi and connect vi to vi−1 by an edge. Finally, connect vn to vn−1
by an edge to complete the construction of the fan. So, the number of convex fans

that can be constructed in this way by all possible combinations of two positions

of v3, v4 . . . vn−1 is 2n−3. However, the visibility graph of each fan in this family

of 2n−3 fans is isomorphic to the visibility graph of one other fan in the family

due to symmetry. Therefore, there are 2n−4 convex fans in this family that have

non-isomorphic visibility graphs. We have the following lemma.

Lemma 6.9.1 The number of non-isomorphic visibility graphs of simple polygons

of n vertices is at least 2n−4.

Let G1 and G2 be the visibility graphs of simple polygons P1 and P2, respec-

tively. Let C1 (or C2) denote the Hamiltonian cycles in G1 (respectively, G2) that

corresponds to the boundary of P1 (respectively, P2). Polygons P1 and P2 are called

similar if and only if there is a bijection f that maps adjacent vertices on the bound-

ary of P1 to that of boundary of P2 such that f(G1) = G2 [244]. It has been shown

by Avis and ElGindy [39] that the similarity of P1 and P2 of n vertices can be

determined in O(n2) time. Therefore, given G1 and G2 along with C1 and C2, the

corresponding visibility graphs similarity problem can also be solved in O(n2) time.

It can be seen that the two simple polygons in Figure 6.23 are not similar but their

visibility graphs are isomorphic. We have the following observation from Lin and

Skiena [244].

Lemma 6.9.2 Two simple polygons with isomorphic visibility graphs may not be

similar polygons.

Exercise 6.9.1 Let S be a set of n disjoint line segments in the plane

such that one endpoint of every segment of S belongs to the convex hull of

S. Design an O(n logn) time algorithm for computing a simple polygon

P (if it exists) such that all segments of S appear as edges of P and

the remaining edges of P are visible segments between the endpoints of S

[293].
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Visibility and Link Paths

7.1 Problems and Results

Assume that a point-robot moves in straight-line paths inside a polygonal region

P . Every time it has to change its direction of the path, it stops and rotates

until it directs itself to the new direction. In the process, it makes several turns

before reaching its destination. If straight line motions are ‘cheap’ but rotations are

‘expensive’, minimizing the number of turns reduces the cost of the motion although

it may increase the length of the path. This motivates the study of link paths inside

a polygonal region P . For more details on applications of such paths, see the review

article of Maheshwari et al. [253].

A link path between two points s and t of a polygon P (with or without holes) is

a path inside P that connects s and t by a chain of line segments (called links). A

minimum link path between s and t is a link path connecting s and t that has the

minimum number of links (see Figure 7.1). Observe that there may be several link

paths between s and t with the minimum number of links. The link distance between

any two points of P is the number of links in the minimum link path between them.

The problem of computing the minimum link path between any two points inside

a simple polygon were first studied by ElGindy [126] and Suri [318]. Using weak

visibility, Suri gave an O(n) time algorithm for this problem [318, 319] which we

present in Section 7.2.1. Using a different method involving complete visibility,

Ghosh [155, 156] later gave an alternative algorithm for this problem which also

runs in O(n) time. In Section 7.2.2, we present Ghosh’s algorithm. One of the steps

of Ghosh’s algorithm was simplified by Hershberger and Snoeyink [188] and this is

also presented in Section 7.2.2. For this problem in a polygon with holes, Mitchell

et al. [262] gave an algorithm that runs in O(Eα(n) log2 n) time and O(E) space,

where E is the number of edges in the visibility graph of the polygon and α(n) is

the inverse Ackermann function. We present their algorithm in Section 7.3.

Suri [318, 319] showed that minimum link paths from a point s to all vertices

of a simple polygon can also be computed in O(n) time. For this problem in a

218
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Figure 7.1 A minimum link path and the Euclidean shortest path between two points s and
t are shown (a) inside a simple polygon and (b) inside a polygon with holes.

polygon with holes, Mitchell et al. [262] presented an algorithm that runs in O((E+

ln)2/3n2/3l1/3 log3.11 n+E log3 n) time and O(E) space, where l is the length of the

longest link path from s to any vertex of the polygon.

The link diameter of a simple polygon P is the maximum link distance between

any two points inside P . The link distance between s and t in Figure 7.1(a) is the

link diameter of the polygon. Since there always exists a pair of vertices in P such

that their link distance is the diameter of P , the link diameter of P can be computed

in O(n2) time by computing minimum link paths in O(n) time from each vertex to

all other vertices of P . Using an involved method, Suri [319] showed that the link

diameter of P can be computed in O(n logn) time. Suri [320] also presented an

algorithm for computing an approximate link diameter of P which can be less than

the link diameter of P by at most two links.

Consider any point w inside P . Let rw denote the maximum among link distances

between w and any point of P . For every other point u in P , if ru ≥ rw, then rw is

called the link radius of P . The set of all such points w in P is called the link center

of P . Lenhart et al. [241] gave an O(n2) time algorithm for computing the link

center and link radius of P . We present their algorithm in Section 7.4. Consider the

problem of locating a diagonal vivj in a triangulation of P such that the maximum

link distance from vivj to any point of P is minimized. Note that vivj may not

always intersect the link center of P . However, it lies very close to the link center of

P . Using a central diagonal of P , Djidjev et al. [111] showed that the link center

and link radius of P can be computed in O(n logn) time. It is still open whether

the link center of P can be computed in O(n) time.

A simple polygon P is said to be k-visible if there exists a segment st inside P

such that the link distance from each point on st to any point of P is at most k.
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The problem of locating such a segment st inside P for the smallest k is called the

k-visibility problem. With the help of a central diagonal of P and the link center of

P , this problem can be solved in O(n logn) time by the algorithm of Aleksandrov

et al. [16].

Link paths have been used to solve minimum nested polygon problems. A polygon

K is called nested between two given simple polygons P and Q, where Q ⊂ P , when

it circumscribes Q and is inscribed in P (i.e. Q ⊂ K ⊂ P ). The problem here is

to compute a nested polygon K with the minimum number of vertices. If both P

and Q are convex, Aggarwal et al. [12] gave an O(n log k) algorithm for computing

a minimum nested polygon K, where n is the total number of vertices of P and

Q, and k is the number of vertices of K. We present their algorithm in Section

7.5.1. If P or Q is not convex, K can still be a convex polygon. Ghosh [155]

presented an O(n) time algorithm to determine whether K is a convex polygon.

When K is a convex polygon, Wang [336] and Wang and Chan [337] showed that

the algorithm of Aggarwal et al. [12] can be used to compute K after pruning

some regions of P ; they presented an O(n logn) algorithm for pruning P . Using

the notion of complete visibility, Ghosh [155] showed that the pruning of P can

be done in O(n) time and therefore, a minimum nested convex polygon K can be

computed in O(n log k) time. If K is not a convex polygon, Ghosh and Maheshwari

[159] presented an O(n) time for computing such K. We present their algorithm in

Section 7.5.2 along with the algorithm of Ghosh [155] for determining whether K is a

non-convex polygon. For special classes of polygons, Dasgupta and Veni Madhavan

[104] presented approximation algorithms for computing nested polygons. Bhadury

et al. [46] studied the problem of computing nested polygons in the context of art

gallery problems.

Alsuwaiyel and Lee [17] proved that the problem of computing a minimum link

path between a pair of points inside a simple polygon such that the entire

polygon is weakly visible from the link path is NP-hard. They gave an O(n2)

time approximation algorithm for this problem and the link path computed by the

approximation algorithm is at most thrice the optimal. Alsuwaiyel and Lee [18] also

gave approximation algorithms for a minimum link path watchman route in simple

polygons. This problem for a polygon with holes has been studied by Arkin et al.

[22]. A watchman route in a polygon is a polygonal path such the every point of the

polygon is visible from some point on the path.

Guibas et al. [179] studied the problem of simplifying a polygon or polygonal

subdivision using the minimum number of links. They showed that approximat-

ing subdivisions and approximating with simple chains are NP-hard. They also

suggested approximation algorithms for some variation of the problem.

Link paths of a given homotopy class were studied by Hershberger and Snoeyink

[188]. Two link paths between the same pair of points are said to be homotopic

if there is a continuous function that maps one path to the other. The problem
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of minimizing both the length and the number of links in a path was studied by

Arkin et al. [23] and Mitchell et al. [261]. Kahan and Snoeyink [206] studied the bit

complexity of link distance problems for a computational model with finite precision

arithmetic.

Link path problems have also been studied for rectilinear polygons. A polygon

P is said to be rectilinear if the edges of P are aligned with a pair of orthogonal

coordinate axes. In other words, P is a rectilinear polygon if the internal angle at

every vertex of P is 90◦ or 270◦. Link paths in a rectilinear polygon P are rectilinear

paths as the links in the path are parallel to edges of P . De Berg [108] presented an

O(n) time algorithm for computing a minimum rectilinear link path between any two

points in a rectilinear polygon P without holes. He also showed that the rectilinear

link diameter of P can be computed in O(n logn) time. Later, Nilsson and Schuierer

[267] presented an O(n) time algorithm for this problem. Nilsson and Schuierer [268]

also presented an O(n) time algorithm for computing the rectilinear link center of P .

Das and Narasimhan [102] presented an O(n logn) time algorithm for computing a

minimum rectilinear link path between any two points in a polygon with rectilinear

holes. Maheshwari and Sack [252] gave O(n) time algorithms for nested polygon

problems in rectilinear polygons. The problem of computing a watchman tour in

rectilinear polygons was studied by Kranakis et al. [222]. Rectilinear polygons can

be viewed as a special case of c-oriented polygons, where edges are parallel to a fixed

set of c orientations. Link paths in c-oriented polygons were studied by Hershberger

and Snoeyink [188] and Adegeest et al. [5].

7.2 Computing Minimum Link Paths in Simple Polygons

7.2.1 Using Weak Visibility: O(n) Algorithm

In this section, we present an O(n) time algorithm of Suri [318] for computing a

minimum link path between two given points s and t inside a simple polygon P . We

assume that the vertices of P are labeled v1, v2, . . . , vn in counterclockwise order.

Let MLP (s, t) denote a minimum link path between s and t in P .

Exercise 7.2.1 Let s and t be two points inside a simple polygon P of n

vertices. Let u1 and d1 be the boundary points of P such that the segment

u1d1 lies inside P . Cut P into two sub-polygons using u1d1. Design an

O(n) time algorithm to determine whether s and t belong to the same or

different sub-polygons of P .

Compute the visibility polygon V (s) of P from s by the algorithm of Lee [230]

(see Section 2.2.1). It can be seen that V (s) is the set of all points of P that can be

reached by one link from s (see Figure 7.2). If t ∈ V (s), then the segment st is the
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Figure 7.2 Every MLP (s, t) intersects u1d1, u2d2 and u3d3, which are constructed edges of
visibility polygons R1, R2 and R3, respectively.

minimum link path from s to t. Let us denote the region V (s) as R1 and P as P0.

We have the following lemma.

Lemma 7.2.1 The visibility polygon of P0 from s is the set R1 of all points of P0

that can be reached from s by one link.

Consider the other situation when t cannot be reached from s by one link. Since

t ∈ P0 − R1, every MLP (s, t) must intersect a constructed edge of R1 in order to

reach t. In fact, every MLP (s, t) intersects the same constructed edge (say, u1d1)

of R1 (see Figure 7.2), as P is a closed and bounded region. However, they intersect

at different points of u1d1. We have the following lemma.

Lemma 7.2.2 There exists a MLP (s, t) such that the first turning point of the

MLP (s, t) lies on the constructed edge u1d1.

Proof. Consider any MLP (s, t). Let w1 be the point of intersection of u1d1 and

MLP (s, t). So, the path of MLP (s, t) between s and w1 can be replaced by the

link sw1 to construct another MLP (s, t) whose first turning point is w1.

Let us identify the constructed edge u1d1 among all constructed edges of R1.

Remove R1 from P0 and it splits P0 into sub-polygons. Identify the sub-polygon

(say, P1) containing t. So, the constructed edge of R1, which is on the boundary of

P1, is u1d1.

The problem is now to locate the first turning point w1 on u1d1. Let us compute

the set of all points R2 of P1 that can be reached from s by two links (see Figure

7.2). In other words, R2 is the set of all points of P1 that can be reached by one

link from some point of u1d1. It can be seen that R2 is the weak visibility polygon
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of P1 from u1d1. Compute R2. If t ∈ R2, take any point on u1d1 as w1 such that

tw1 is a link lying inside R2. So, MLP (s, t) consists of sw1 and w1t. Otherwise,

remove R2 from P1. Again, P1 splits into sub-polygons and one of the sub-polygons

of P1 (say, P2) contains t. Let u2d2 be the constructed edge of R2 such that it is an

edge on the boundary of P2. This process of locating Pi and computing Ri+1 from

the constructed edge uidi continues until t becomes visible from um−1dm−1, where

m is the link distance between s and t. We state the above facts in the following

lemmas.

Lemma 7.2.3 Let uidi be the constructed edge of Ri such that after removing Ri

from Pi−1, uidi is an edge on the boundary of the sub-polygon Pi containing t. For

1 ≤ i < m, every MLP (s, t) intersects uidi and there exists a MLP (s, t) whose i-th

turning point lies on uidi.

Lemma 7.2.4 For 1 ≤ i < m, the set of all points Ri+1 of Pi that can be reached

from s by i+ 1 links is the weak visibility polygon of Pi from uidi.

Based on the above lemmas, we present the major steps of the algorithm for

computing MLP (s, t) in P0. The index i is initialized to 1.

Step 1. Compute the visibility polygon Ri of Pi−1 from s. If t is visible from s, then

report st as MLP (s, t) and goto Step 6.

Step 2. Locate the sub-polygon of Pi−1 containing t and call it Pi. Locate the

constructed edge of Ri on the boundary of Pi and call it uidi.

Step 3. If i > 1 then assign the intersection point of ui−1di−1 and
−−→
diui to wi−1.

Step 4. Compute the weak visibility polygon Ri+1 of Pi from uidi. If t is not visible

from uidi then i := i+ 1 and goto Step 2.

Step 5. Locate a point wi ∈ V (t) on uidi and reportMLP (s, t) = (sw1, w1w2, . . . , wit).

Step 6. Stop.

Correctness of the algorithm follows from Lemmas 7.2.1, 7.2.2, 7.2.3 and 7.2.4.

Let us analyze the time complexity of the algorithm. Using the algorithm of Lee

[230] (see Section 2.2.1), the visibility polygons from s in Step 1 can be computed

in O(n) time. Let us explain how to locate Pi in Step 2. Let ud be any constructed

edge of Ri. We know that one of the endpoints of every constructed edge is a vertex

of P . Without loss of generality, we assume that u is a vertex vj of P . Let vkvk+1

be the edge of P such that d ∈ vkvk+1. Let vp be a vertex visible from t, i.e.,

vp ∈ V (t). If ud intersects tvp, the intersection point becomes wi. Otherwise, by

comparing j, k, p, the portion of the boundary of Pi−1 forming the boundary of Pi

can be determined. Once Pi is known, the constructed edge of Ri associated with

Pi becomes uidi. Therefore, by spending O(1) time for each constructed edge of Ri,

uidi can be located. Since there can be only one constructed edge for every reflex
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vertex of P , Step 2 can be executed in O(n) time. The running time of Step 4 is

O(n) as each visibility polygon Ri+1 from uidi can be computed in time proportional

to the number of vertices of Ri+1 as follows.

Compute the shortest path tree SPT (s) in P0 rooted at s in O(n) time by the

algorithm of Guibas et al. [178] (see Section 3.6.1) and then compute the shortest

path map SPM(s) in O(n) time by the algorithm of Hershberger [186] (see Section

5.2). It can be seen that vertices of R1 are children of s in SPT (s) and u1d1
is an extension edge of SPM(s). Assume that u1 is a vertex of P0 and d1 is a

point on the boundary of P0. Take the sub-tree SPT (u1) of SPT (s) rooted at u1
and compute SPT (d1) by shifting the root from u1 to d1 as in the algorithm of

Hershberger [186]. It follows from Lemma 5.2.1 that vertices of R2 are only those

vertices of P1 whose parents in SPT (u1) and SPT (d1) are different. Since SPT (u1)

and SPT (d1) are the same in R3, R4, . . . , Rm−1, the time taken for locating vertices

of R2 is proportional to the number of vertices of R2. Compute SPM(d1). It follows

from Lemma 5.2.2 that constructed edges of R2 are extension edges of SPM(u1)

and SPM(d1). Repeating this process of computations for u2d2, u3d3, . . . um−1dm−1,

weak visibility polygons R3, R4, . . . , Rm−1 can be computed in a total time of O(n).

Note that whether or not t belongs to Ri+1 can be determined in time proportional

to the size of Ri+1. Hence the overall time complexity of the algorithm is O(n). We

summarize the result in the following theorem.

Theorem 7.2.5 A minimum link path between two given points inside a simple

polygon of n vertices can be computed in O(n) time.

Exercise 7.2.2 Design an O(n) time algorithm for computing minimum

link paths from a given point inside a simple polygon P to all vertices of

P [318, 319].

7.2.2 Using Complete Visibility: O(n) Algorithm

In this section, we present an alternative algorithm given by Ghosh [155, 156] for

computing a minimum link path in O(n) time between two given points s and t

inside a simple polygon P . While presenting this algorithm, we also present the

simplification suggested by Hershberger and Snoeyink [188] for one of the steps of

Ghosh’s algorithm.

Let SP (s, t) = (s, u1, ..., uk, t). We know that SP (s, t) can be computed in O(n)

time by the algorithm of Lee and Preparata [235] (see Section 3.6.1), once P is

triangulated in O(n) time by the algorithm of Chazelle [71] (see Theorem 1.4.6).

From now on, we assume that P is given along with a triangulation of P . An edge

ujuj−1 of SP (s, t) is called eave if uj−2 and uj+1 lie on the opposite sides of the
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Figure 7.3 The portion of the link path L1 between z1 and z2 can be replaced by the segment
z1z2.

line passing through uj and uj−1 (see Figure 7.3). If an edge ukuk+1 of SP (s, t) is

a sub-segment of a link in a link path, we say that the link path contains ukuk+1.

We have the following lemma on eaves of SP (s, t).

Lemma 7.2.6 There exists a minimum link path between s and t that contains all

eaves of SP (s, t).

Proof. Consider a minimum link path L1 between s and t such that L1 does not

contain an eave uj−1uj of SP (s, t). Let w1 and w2 be the closest points among

the intersection points of bd(P ) with −−−−→ujuj−1 and −−−−→uj−1uj respectively (see Figure

7.3). So w1w2 partitions P into four disjoint regions and two of these regions (say

R1 and R2) do not contain s or t. Since P is a closed and bounded region, there

exists a link ` in L1 with one endpoint in R1 and the other endpoint in R2 as every

link path from s must intersect uj−1uj in order to reach t. Let z1 and z2 be the

intersection points of L1 with uj−1w1 and ujw2, respectively. A new link path L2

can be constructed from L1 by removing the portion of L1 between z1 and z2, and

adding the segment z1z2. This modification has removed ` totally and therefore, L2

is a minimum link path between s and t containing the eave uj−1uj . If there exists

another eave ui−1ui that is not contained in L2, remove the portion of L2 as before

to construct another minimum link path L3 between s and t containing both eaves

uj−1uj and ui−1ui. By repeating this process, a minimum link path between s and

t can be constructed that contains all eaves of SP (s, t).

The above lemma suggests a procedure for constructing a minimum link path

between s and t in P .
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Figure 7.4 The construction of the sub-polygon Pij .

(i) Decompose P into sub-polygons by extending each eave from both ends to

bd(P ).

(ii) If two consecutive extensions intersect at a point z, then z is a turning point

of the minimum link path between s and t.

(iii) Construct minimum link paths connecting the extensions of every pair of

consecutive eaves on SP (s, t) to form a minimum link path between s and t.

Let us consider one such sub-polygon between the non-intersecting extensions of

two consecutive eaves uiui+1 and uj−1uj of SP (s, t) (see Figure 7.4). Let wi+1 and

wj−1 be the extension points on bd(P ) of the eaves uiui+1 and uj−1uj , respectively.

Since wi+1 and wj−1 belong to the counterclockwise boundary of P from uj to ui

(i.e., bd(uj , ui)), they can be computed by checking the intersection of −−−−→uiui+1 and
−−−−→ujuj−1 with the edges on bd(uj , ui). This means that the extension points of all

eaves of SP (s, t) can be computed in O(n) time. Let Pij denote the sub-polygon

bounded by bd(wj−1, wi+1), the segment wi+1ui+1, SP (ui+1, uj−1) and the segment

uj−1wj−1. Note that since SP (ui+1, uj−1) does not contain any eave, no vertex of

bd(wj−1, wi+1) belongs to SP (ui+1, uj−1), and therefore, Pij is a simple sub-polygon.

Let Lij denote a minimum link path from a point on ui+1wi+1 to some point on

uj−1wj−1. A link path is called convex if it makes only left or only right turns at

every turning point in the path. It has been observed by Ghosh [155] that Lij is a

convex path inside Pij and this has been proved formally by Chandru et al. [69].

We prove this observation in the following lemma.

Lemma 7.2.7 A minimum link path Lij is a convex path inside Pij.

Proof. Without loss of generality, we assume that SP (ui+1, uj−1) makes a right

turn at every vertex in the path (see Figure 7.5). Let Lij=(z1z2, ..., zq−1zq), where
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Figure 7.5 (a) The segment xy intersects Lij at four points. (b) Lij makes a left turn at zr.

z1 ∈ ui+1wi+1 and zq ∈ uj−1wj−1. To prove the lemma, it suffices to show that Lij

makes a right turn at turning points z2, z3, ..., zq−1 while it is traversing from z1 to

zq.

Consider an edge upup+1 of SP (ui+1, uj−1) (see Figure 7.5). Let x and y de-

note the closest points of intersection on bd(wj−1, wi+1) with −−−−→up+1up and −−−−→upup+1

respectively. Let R denote the region of Pij bounded by xy and bd(y, x). If Lij

intersects xy at three or more points (Figure 7.5(a)) or R contains three or more

turning points of Lij , then the number of links in Lij can be reduced using xy,

contradicting its minimality. So, we assume that Lij intersects xy at two points and

R contains at most two turning points (say, zr and zr+1) of Lij (see Figure 7.5(b)).

If Lij makes a left turn at zr, then extend the link zr−1zr from zr meeting the link

zr+1zr+2 at a point z′. It means that there exists another link path z1z2, . . ., zr−1z
′,

z′zr+2, . . . , zq−1zq, which has one link less that Lij , and this is a contradiction. So,

Lij makes a right turn at zr. Analogous arguments show that Lij also makes a

right turn at zr+1. Since every turning point of Lij lies in one such region of Pij

corresponding to an edge of SP (ui+1, uj−1), Lij makes a right turn at z2, z3, ...,

zq−1.

The above arguments also show that Lij does not cross any edge of SP (ui+1, uj−1)

and therefore, it remains inside Pij .

In order to compute a convex link path Lij , we need the definitions of left and

right tangents from a point z ∈ Pij to SP (ui+1, uj−1). The segment zup is called

the left tangent (or right tangent) of z at the vertex up ∈ SP (ui+1, uj−1) (see Figure

7.4) if zup lies inside Pij and z lies to the right of −−−−→up−1up (respectively, −−−−→upup−1) and

to the left of −−−−→upup+1 (respectively, −−−−→up+1up). Note that for all points z′ ∈ Pij that lie

to the right of −−−−→up−1up and to the left of −−−−→upup+1, z
′up may not be the left tangent of
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Figure 7.6 (a) The greedy path z1z2, z2z3, z3z4 inside Pij is a minimum link path connecting
ui+1wi+1 to uj−1wj−1. (b) The convex set Cp is the region enclosed by SP (up, uq) and the
segment upuq.

z′ if the segment z′up does not lie inside Pij . So, some points of Pij may not have

the left or right tangent to SP (ui, uj). We have the following lemma.

Lemma 7.2.8 If a point z ∈ Pij is on a convex path between ui+1wi+1 and uj−1wj−1

inside Pij, then z has both left and right tangents.

Proof. We prove the lemma only for the left tangent of z. The proof for the

right tangent of z is analogous. Let up be the vertex of SP (ui+1, uj−1) such that

z lies to the right of −−−−→up−1up and to the left of −−−−→upup+1. If the segment zup lies

inside Pij , then zup is the left tangent of z. If zup does not lie inside Pij , it means

that bd(wj−1, wi+1) has intersected zup. Since z belongs to a convex path between

ui+1wi+1 and uj−1wj−1 inside Pij by assumption, bd(wj−1, wi+1) has intersected zup

by intersecting the convex path, which is a contradiction. So, zup is the left tangent

of z.

Let Rij denote the set of all points of Pij such that every point of Rij has both left

and right tangents to SP (ui, uj) (see Figure 7.6(a)). We explain later the procedure

for computing Rij . Assume that Rij has been computed. Lij can be constructed in

Rij as follows (see Figure 7.6(a)). Let z1 ∈ ui+1wi+1 denote the first turning point

of Lij . If wi+1 belongs to Rij then z1 = wi+1. Otherwise, z1 is the furthest point

of ui+1 on ui+1wi+1 that belongs to Rij (i.e., the next clockwise vertex of ui+1 in

Rij). Draw the right tangent from z1 to SP (ui+1, uj−1) and extend the tangent

until it meets the boundary of Rij at some point z2. Again, draw the right tangent

from z2 to SP (ui+1, uj−1) and extend the tangent until it meets the boundary of

Rij at some point z3. Repeat this process of construction until a point zq is found
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on uj−1wj−1. Thus, the greedy path z1z2, z2z3,...,zq−1zq is constructed between

ui+1wi+1 and uj−1wj−1. We have the following lemma.

Lemma 7.2.9 The greedy path z1z2, z2z3, ..., zq−1zq is a minimum link path inside

Pij, where z1 ∈ ui+1wi+1 and zp ∈ uj−1wj−1.

Proof. Since no link of any minimum link path connecting ui+1wi+1 to uj−1wj−1 can

intersect more than one of the left tangents from z1, z2,...,zq−1 to SP (ui+1, uj−1),

the greedy path z1z2, z2z3, ..., zq−1zq is a minimum link path.

Considering the first and the last edge of SP (s, t) as eaves on SP (s, t), the greedy

paths between the extensions of every pair of consecutive eaves on SP (s, t) are

computed and then they are connected as stated earlier to form a minimum link

path between s and t.

Let us discuss the procedure for computing Rij . For computing Rij , the algorithm

of Ghosh [155, 156] partitions Pij into sub-polygons by extending some of the edges

of SP (ui+1, uj−1) to the boundary of Pij such that (i) no two extensions pass through

the same triangle in the triangulation of P , and (ii) the portion of SP (ui+1, uj−1)

in each sub-polygon (say, SP (up, uq)) does not make a total turn of more than 2π

(see Figure 7.6(b)). Treating the region enclosed by SP (up, uq) and the segment

upuq as a convex set Cp, compute the complete visibility polygon from Cp of the

sub-polygon of Pij bounded by uqwq, bd(wq, wp), wpup and upuq (see Figure 7.6(b)).

It can be seen that the union of these complete visibility sub-polygons from such

convex sets Cp is Rij (see Section 3.8) and the time taken to compute Rij from Pij

is proportional to the size of Pij .

The region Rij can also be computed using shortest path trees as shown by Chan-

dru et al. [69]. In the following lemma, we present their main idea used in computing

Rij (see Figure 7.7(a)).

Lemma 7.2.10 For any vertex vi ∈ bd(wj−1, wi+1), the left and right tangents of

vi lie inside Pij if and only if the parents of vi in SPT (ui+1) and SPT (uj−1) are

vertices of SP (ui+1, uj−1).

Proof. If a vertex up ∈ SP (ui+1, uj−1) is the parent of vi in SPT (ui+1), then viup is

the left tangent of vi by the definition of left tangent. Conversely, if the left tangent

of vi (say, viup) lies inside Pij , then viup is tangential to SP (ui+1, uj−1) at up by

the definition of left tangent of vi. Therefore, up is the parent of vi in SPT (ui+1).

Analogous arguments hold for the right tangent of vi.

Using the above lemma, vertices of Pij that belong to Rij can be identified by

traversing SPT (ui+1) and SPT (uj−1). Hence, Rij can be computed in time pro-

portional to the size of Pij (see Section 3.3.2).
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Figure 7.7 (a) The parent of each vertex of Rij is a vertex of SP (ui+1, uj−1) in both
SPT (ui+1) and SPT (uj−1). (b) The vertex up is the last vertex of SP (ui+1, uj−1) visible
from ui+1wi+1.

It has been shown by Hershberger and Snoeyink [188] that there is no need to com-

pute Rij as the greedy path z1z2, z2z3, ..., zq−1zq connecting ui+1wi+1 to uj−1wj−1

can be computed directly inside Pij as follows. Let up be the vertex of SP (ui+1, uj−1)

such that the first link z1z2 passes through up (see Figure 7.7(b)). Let us explain how

up can be identified. Since z1up is the right tangent of z1, each vertex of SP (ui+1, up)

is visible from some point of ui+1wi+1 and no vertex of SP (up+1, uj−1) is visible from

any point of ui+1wi+1. This means that while traversing SP (ui+1, uj−1) from ui+1

to uj−1, up is the last vertex such that SP (ui+1, up) and SP (wi+1, up) are disjoint

(see Corollary 3.2.8).

Using the triangulation of Pij , compute SP (wi+1, ui+2), SP (wi+1, ui+3), . . . till

a vertex ul is reached such that SP (ui+1, ul) and SP (wi+1, ul) are not disjoint.

So, ul−1 is the vertex up. Let vr ∈ bd(wj−1, wi+1) be the previous vertex of up in

SP (wi+1, up) (see Figure 7.7(b)). Observe that if vr is same as wi+1, then z1 = wi+1.

Otherwise, the intersection point of −−→upvr and ui+1wi+1 is the point z1. Using the

triangulation of Pij , extend z1up from up to the boundary of Pij meeting it at a point

z′2. Treating vpz
′
2 as ui+1wi+1, z2 can be located on upz

′
2 as before. By repeating

this process, the greedy path z1z2, z2z3, ..., zq−1zq can be computed in Pij without

computing Rij .

Observe that vertices of SP (wi+1, up) are the vertices of the convex hull of

bd(vd, wi+1), where vdup is a diagonal in the triangulation of Pij . It means that

all vertices of SP (wi+1, up) belong to those triangles that are on the path from wi+1

to up in the dual of the triangulation of Pij. Therefore, it is enough to consider
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these triangles to compute SP (wi+1, up). Hence, the greedy path inside Pij can be

computed in time proportional to the number of vertices of Pij .

In the following, we present the main steps of the algorithm for computing a

minimum link path between two given points s and t inside a simple polygon P .

Step 1. Compute SP (s, t) using the algorithm of Lee and Preparata [235].

Step 2. Decompose P into sub-polygons by extending each eave of SP (s, t) from

both ends to bd(P ). Also extend the first and the last edges of SP (s, t) to bd(P ).

Step 3. In each sub-polygon of P , construct the greedy path between the extensions

of the eaves.

Step 4. Connect the greedy paths using the extension of the eaves to form a mini-

mum link path between s and t.

The correctness of the algorithm follows from Lemmas 7.2.6, 7.2.7 and 7.2.9. We

have already shown that the algorithm runs in O(n) time. We summarize the result

in the following theorem.

Theorem 7.2.11 A minimum link path between two given points inside a simple

polygon of n vertices can be computed in O(n) time.

7.3 Computing Minimum Link Paths in Polygons with Holes

In this section, we present the algorithm of Mitchell et al. [262] for computing a

minimum link path between two given points s and t inside a polygon P with holes.

The algorithm runs in O(Eα(n) log2 n) time and O(E) space, where E is the number

of edges in the visibility graph of P and α(n) is the inverse of Ackermann’s function.

This algorithm can be viewed as the generalization of that of Suri [318] (see Section

7.2.1). Let MLP (s, t) denote a minimum link path between s and t in P .

Compute the visibility polygon V (s) of P from s. This can be computed by the

algorithm of Asano [27] in O(n logn) time (see Section 2.3). Observe that V (s) is

the set of all points of P that can be reached by one link from s (see Figure 7.8(a)).

If t ∈ V (s), then the segment st is the minimum link path from s to t. Let us denote

the region V (s) as R1 and P as P0. We have the following lemma.

Lemma 7.3.1 The visibility polygon of P0 from s is the set R1 of all points of P0

that can be reached from s by one link.

Consider the other situation when t cannot be reached by one link. Observe

that since the given polygon P0 contains holes, removing R1 from P0 does not split

P0 into disjoint sub-polygons as in the case of a simple polygon and therefore, all
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Figure 7.8 (a) The target point t can be reached from s in four links as t ∈ R4. (b) The
region H1 is a cell formed due to the intersection of two constructed edges of Ri+1.

constructed edges of R1 (denoted as E1) are considered for computing MLP (s, t), as

any one of them can be intersected by MLP (s, t). Let P1 denote the region P0−R1.

Let R2 denote the set of all points of P1 that can be reached from s by two

links (see Figure 7.8(a)). In other words, R2 is the set of all points of P1 that can

be reached by one link from some point of any constructed edge in E1. It can be

seen that R2 is the union of weak visibility polygons of P1 from constructed edges

in E1. Compute R2. If t ∈ R2, take any point w1 on a constructed edge in E1

such that tw1 lies inside R2. So, MLP (s, t) consists of sw1 and w1t. Otherwise,

compute R3, which is the union of weak visibility polygons of P1 − R2 (denoted

as P2) from constructed edges of R2 (say, E2). This process of computing Ri+1 in

Pi from constructed edges in Ei continues till t becomes visible from a constructed

edge in Em−1, where m is the link distance between s and t. We have the following

lemmas.

Lemma 7.3.2 For 1 ≤ i < m, the set of all points Ri+1 of Pi that can be reached

from s by i+ 1 links is the union of weak visibility polygons of Pi from constructed

edges in Ei.

Lemma 7.3.3 For 1 ≤ i < m, there exists a MLP (s, t) in P0 whose i-th turning

point lies on a constructed edge in Ei.

Once t becomes visible from some constructed edge ud ∈ Em−1, turning points

w1, w2, . . . , wm−1 of MLP (s, t) can be located using Lemma 7.3.3 as follows. Take

a point wm−1 ∈ ud such that wm−1t lies inside Rm. Locate a point wm−2 on a

constructed edge in Em−2 such that wm−2, u and d are collinear and the segment



7.3 Computing Minimum Link Paths in Polygons with Holes 233

Figure 7.9 (a) Cells H1 and H2 do not contain t. (b) Cells H1 and H2 and the holes enclosed
by them are included in the enhanced Ri+1.

wm−2wm−1 lies inside Rm−1. Similarly, other turning points wm−3, wm−4, . . . , w1

can also be located in this manner. Hence, MLP (s, t) consists of links sw1, w1w2, . . .,

wm−1t.

Let us discuss the problem of computing Ri+1 in Pi for i ≥ 1. We know that

Ri+1 is the union of weak visibility polygons of Pi computed from every constructed

edge in Ei. Suppose Ei has only one constructed edge ud. Using the algorithm

of Suri and O’Rourke [321] (see Section 3.4), the weak visibility polygon V (ud)

of Pi from ud can be computed in O(n4) time. It has been shown by Suri and

O’Rourke that there can be O(n2) constructed edges in V (ud) and some of them

may be intersecting each other. As a result, there can be O(n4) boundary edges

of V (ud). It means that for computing Ri+2, the weak visibility polygon has to be

computed from each of the O(n4) boundary edges of V (ud). The discussion suggests

that a large computation time is required to carry out this process. Therefore, the

construction of a full boundary representation of Ri+1 is avoided for i ≥ 1.

Exercise 7.3.1 Let P be a polygon with holes with a total of n vertices.

Draw a diagram showing that the number of constructed edges of the weak

visibility polygon of P from a given segment inside P can be O(n4) [321].

Observe that due to intersections of constructed edges of Ri+1 among themselves,

there can be several bounded regions (called cells) which are not visible from any

constructed edge in Ei but every such region is enclosed by the points of Ri+1. In

Figure 7.8(b), the region H1 is a cell as it is formed due to the intersection of two

constructed edges of Ri+1. If a cell H1 contains t (see Figure 7.8(b)), it is enough to

consider H1 as Pi+1 as every path from s to t intersects boundary edges of H1 and

therefore non-polygonal boundary edges of H1 constitute Ei+1. If t is not contained
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in a cell H1 (see Figure 7.9(a)), H1 and the regions of holes enclosed by H1 are

included in Ri+1 (see Figure 7.9(b)), which simplifies the boundary of Ri+1. We

state this fact in the following lemma.

Lemma 7.3.4 If a cell, formed in Pi due to constructed edges of Ri+1, does not

contain t, then the cell along with the regions of holes enclosed by the cell can be

added to Ri+1.

Consider another type of cell H2 that is not enclosed by points of Ri+1 but all its

non-polygonal boundary edges are parts of constructed edges of Ri+1. If H2 does not

contain t (see Figure 7.9(a)), it means that no MLP (s, t) passes through any point

of H2 and therefore, H2 can also be included in the enhanced Ri+1 as Lemma 7.3.4

holds for H2 (see Figure 7.9(b)). Since only one cell of either type contains t (see

Figure 7.9(b)), all other cells can be included in Ri+1 and therefore, the enhanced

Ri+1 becomes a simple polygon, which is denoted as Qi. So, by enhancing Ri+1, a

simple polygon Qi is constructed inside Pi.

The cell in Pi containing t can be identified as follows. Construct the single face

f containing t in the arrangement of constructed edges of Ei+1 and all polygonal

edges of Pi using the algorithm of Edelsbrunner et al. [118]. For computing a single

face in an arrangement of N line segments, this algorithm takes O(Nα(N) log2 N)

time. Observe that the same polygonal edge can occur on the boundary of the face

containing t at every iteration and therefore, the total cost becomes O(n2α(n) log2 n)

in the worst case. However, Mitchell et al. showed that the total cost can be reduced

to O(Eα(n) log2 n), where E is the number of edges in the visibility graph of P .

Their algorithm first constructs the arrangement consisting of only the constructed

edges in Ei+1 along with those polygonal edges in Pi that contain the endpoints of

these constructed edges in Ei+1, and then identifying the face in the arrangement,

which is a part of f . For more details on identifying f , see the original paper.

Observe that the algorithm for computing arrangements needs only the con-

structed edges of Ri+1 to locate the face f in Pi. This means that there is no

need to compute the entire Ri+1. Later, we explain how constructed edges of Ri+1

can be computed using the visibility graph of P without computing the region Ri+1.

Before the algorithm computes weak visibility polygons from the non-polygonal

boundary edges of Qi, Qi is further simplified using the paths of minimum length

between appropriate boundary points of Qi as stated in the following lemma.

Lemma 7.3.5 Let chain(z1, zk) denote a portion of the boundary of Qi such that z1
and zk are points on the boundary of P and all edges of chain(z1, zk) are constructed

edges of Qi (Figure 7.10(a)). Let mpath(z1, zk) denote the path between z1 and zk
inside Pi of minimum length such that the region enclosed by mpath(z1, zk) and

chain(z1, zk) lies inside Pi. If a point y ∈ Pi − Qi is visible from some point on

mpath(z1, zk), then y is also visible from some point on chain(z1, zk).
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Figure 7.10 (a) The region bounded by mpath(z1, zk) and chain(z1, zk) is added to Qi to
form the relative convex hull Q′

i. (b) The boundary of Qi consists of only one closed chain
consisting of sub-segments of constructed edges in Ei+1.

Exercise 7.3.2 Prove Lemma 7.3.5.

The above lemma suggests that by replacing each portion of non-polygonal bound-

ary of Qi by its corresponding mpath, Qi can be modified to another simple polygon

Q′i. So, the non-polygonal edges of Q′i can be used to compute weak visibility poly-

gons for the next stage. The polygon Q′i is called the relative convex hull of Qi.

Let us explain how mpath(z1, zk) can be computed (see Figure 7.10(a)). Scan the

edges of chain(z1, zk) from z1 till a point m1 is reached such that the segment z1m1

passes through a vertex r1 of Pi. It can be seen that m1 is the intersection point of

chain(z1, zk) with the boundary of the visibility polygon of Pi from z1. So, r1 is the

next vertex of z1 in mpath(z1, zk). Continue the scan treating r1 as z1 till a point

m2 (and the vertex r2) is located or zk is reached. Thus, the intermediate vertices

r1, r2, . . . of mpath(z1, zk) can be located.

It may so happen that Qi is bounded only by the constructed edges in Ei+1 (see

Figure 7.10(b)). In such a situation, we have only one closed chain and no point of

the chain belongs to the polygonal boundary. Therefore, the boundary of Q′i is the

boundary of the convex hull of those holes that are lying inside the closed chain.

In the following, we present the major steps of the algorithm for computing

MLP (s, t) in P ′0, where P ′0 = P . The index i is initialized to 0.

Step 1. Compute the visibility polygon Ri+1 of P ′i from s. If t is visible from s,

report st as MLP (s, t) and goto Step 7.

Step 2. Add the constructed edges of Ri+1 to Ei+1.

Step 3. Construct the single face f containing t in the arrangement of constructed
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edges of Ei+1 and all polygonal edges of P ′i using the algorithm of Edelsbrunneret

al. [118]. Assign the region of P ′i excluding the face f to Qi.

Step 4. Compute the relative convex hull Q′i of Qi and assign P ′i -Q
′
i as P ′i+1.

Step 5. If t is not visible from any non-polygonal edge of Q′i then i := i+1, compute

all constructed edges of Ri+1 in P ′i from non-polygon edges of Q′i−1 and goto Step

2.

Step 6. Locate a point wi+1 on an edge ui+1di+1 in Ei+1 that is visible from t. While

i ≥ 1 do

Step 6a. Locate a point wi on an edge uidi in Ei that is collinear with ui+1 and

di+1 and is visible from wi+1. Assign i− 1 to i.

Step 7. Report MLP (s, t) = (sw1, w1w2, . . . , wi+1t).

Step 8. Stop.

The correctness of the algorithm follows from Lemmas 7.3.1, 7.3.2, 7.3.3, 7.3.4

and 7.3.5. Before we analyze the time complexity of the algorithm, we state a pre-

processing step which allows constructed edges of all weak visibility polygons in P

to be computed in O(E) time. Compute the visibility graph of P in O(n logn+E)

time by the algorithm of Ghosh and Mount [165] (see Section 5.3.2). This algorithm

first triangulates P using plane-sweep and then constructs funnel sequences for all

triangulating edges and polygonal edges in P , giving the visibility graph of P . So,

by traversing a funnel sequence using the pointers CCW , CW , CCX, CX and

REV , the vertices of P that are weakly visible from the base of the funnel can be

located.

Let ud be a constructed edge of Ri, where d is a point on a polygonal edge vjvj+1

(see Figure 7.11(a)). In order to compute the constructed edges of the weak visibility

polygon from ud, it is necessary to locate vertices of P visible from ud, and this can

be done by traversing the funnel sequence for the base ud. On the other hand, there

is no funnel sequence in the visibility graph P with ud as the base because d is not

a vertex of P . So, the algorithm incorporates d as a vertex in the visibility graph

of P by adding all edges dd′ to the visibility graph of P , where d′ is a vertex visible

from d. It can be seen that all vertices of P visible from d are also weakly visible

from the edge vjvj+1. Therefore visible vertices of d belong to the funnel sequence

for vjvj+1, which can be located by traversing the funnel sequence for vjvj+1.

Observe that there can be several constructed edges that are incident on vjvj+1. If

the non-vertex endpoint of every constructed edge incident on vjvj+1 is incorporated

as a vertex of the visibility graph of P , it may involve repeated traversal of the

same vertices of the funnel sequence for vjvj+1. On the other hand, we need the

visibility polygons only from those non-vertex endpoints on vjvj+1 that are on the

boundary of the relative convex hulls. Since there can be at most two such non-

vertex endpoints on vjvj+1 that can belong to the relative convex hulls, the funnel

sequence for vjvj+1 can be traversed at most twice. Hence the total time required to
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Figure 7.11 (a) The vertices of Ri+1 visible from non-vertex endpoint d belong to the funnel
sequence for vjvj+1. (b) The funnels F2 and F3 share edges of the visibility graph of P .

compute the visibility polygons from two non-vertex endpoints on every polygonal

edge is O(E).

Assume that the algorithm has incorporated the non-vertex endpoint d of a con-

structed edge ud as a vertex in the visibility graph of P (see Figure 7.11(b)). Con-

sider a constructed edge u1d1 of the weak visibility polygon from ud, where u1 is a

vertex of P and d1 is a point on some polygonal edge vkvk+1. Observe that u1d1 is

an extension of an edge on the side of a funnel F1 (with ud as a base) from the apex

u1 to vkvk+1. In fact, u1 is also the apex of another funnel F2 with base vkvk+1. This

polygonal edge vkvk+1 can be located by traversing the visibility graph of P from

the apex u1 using pointers CCX or CX at each vertex of P in the path, (which is a

side of F2) until vkvk+1 is reached. Once vkvk+1 is located, u1d1 can be constructed.

It may happen that another constructed edge u2d2 of the weak visibility polygon

from ud is also incident on vkvk+1 (see Figure 7.11(b)). Let F3 be the funnel with

the apex u2 and the base vkvk+1. It can be seen that the sides of F2 and F3 may

have the same edges up to a vertex before they bifurcate to u1 and u2. Keeping the

history of the earlier traversal of the side of F2, repeated traversal of the common

edges of F2 and F3 can be avoided. This means that the entire funnel sequence for

vkvk+1 can be traversed only once for computing all constructed edges in P incident

on vkvk+1. Therefore, the total time required for computing all constructed edges

in P is O(E).

Let us analyze the time complexity of the algorithm after the visibility graph

of P has been computed in O(n logn + E) time by the algorithm of Ghosh and

Mount [165]. Consider Step 1. Locate the triangle in the plane-sweep triangulation
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of P containing s. Considering each side of this triangle as a base, traverse their

funnel sequences to locate vertices of P that are visible from s. Then compute

all constructed edges E1 of R1 by traversing the visibility graph of P as stated

above. So, Step 1 takes O(n) time. It has been discussed earlier that Step 3 takes

O(Eα(n) log2 n) time. Step 4 takes O(Eα(n)) time as the total number of edges on

the boundaries of Q0, Q1, . . . , Qm−2 can be O(Eα(n)), where m is the link distance

between s and t. Consider Step 5. Compute the visibility polygon V (t) of P from

t in the same way V (s) has been computed in Step 1. Then it can be tested in

O(log |V (t)|) time whether any given segment lies inside V (t). Since a vertex of

P can belong to only two edges of Q′0, Q
′
1, . . . , Q

′
m−2, the total time for testing all

edges of Q′0, Q
′
1, . . . , Q

′
m−2 until t becomes visible is O(n logn). It has been shown

earlier that all constructed edges of R1, R2, . . . , Rm−1 can be computed in O(E)

time. Hence, the overall time complexity of the algorithm is O(Eα(n) log2 n). We

summarize the result in the following theorem.

Theorem 7.3.6 A minimum link path between two given points inside a polygon

P with holes with a total of n vertices can be computed in O(Eα(n) log2 n) time,

where E is the number of edges in the visibility graph of P and α(n) is the inverse

of Ackermann’s function.

7.4 Computing Link Center and Radius of Simple Polygons

In this section, we present an O(n2) time algorithm of Lenhart et al. [241] for

computing the link center, link radius and link diameter of a simple polygon P . We

assume that the vertices of P are labeled v1, v2, . . . , vn in counterclockwise order.

As defined earlier, the link center of P is the set of all points w ∈ P at which the

maximum link distance from w to any point of P is minimized (see Figure 7.12(a)).

Recall that the maximum link distance of w is called the link radius of P . In Figure

7.12(a), the link radius of P is 2.

We know that the link distance between any two points u and u′ of P can be

computed by computing a minimum link path from u to u′. Suppose, P is partitioned

into regions Q1, Q2,..., Qm such that for 1 ≤ i ≤ m, all points of Qi is reachable by i

links from u (see Figure 7.12(b)). This means that Q1 is the visibility polygon of P

from u, Q2 is the union of weak visibility polygons of P −Q1 from constructed edges

of Q1, Q3 is the union of weak visibility polygons of P −Q1 −Q2 from constructed

edges of Q2 and so on. This partition helps in computing the link distance from u

to any other point u′ in P by locating the region Qi containing u′. The partition of

P into regions Q1, Q2,..., Qm has been introduced by Suri [318, 319] and is called

the window partition of P for u. We refer to the union of regions Q1, Q2,..,Qk as

k-visibility regions of u, where 1 ≤ k ≤ m.
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Figure 7.12 (a) Shaded region is the link center of P and all points of P can be reaches by
two links from any point w of the link center. (b) The window partitioning of P for u.

Consider first the problem of computing the link radius r of P . If a point w in

the link center of P is known, then compute the window partition Q1, Q2,..., Qm

of P for w. So, r is same as m. If no point of the link center is known, then r can

be computed once the link diameter d of P is known. As defined earlier, the link

diameter of P is the maximum link distance between any two points inside P . In

Figure 7.12(a), the link diameter of P is 4. We have the following lemmas on the

link diameter of P .

Lemma 7.4.1 Let r and d be the link radius and link diameter of P . Then dd/2e ≤
r ≤ d(d/2)e+ 1.

Lemma 7.4.2 The maximum of link distances among all pairs of vertices of P is

the link diameter of P .

Exercise 7.4.1 Prove Lemmas 7.4.1 and 7.4.2.

Compute the window partition of P for each vertex of P and choose a pair of

vertices which have the maximum link distance (say d′). By Lemma 7.4.2, d′ is

same as d. Once d is known, r can be computed from d using Lemma 7.4.1. Once

r is known, the link center of P can be computed using the following lemma.

Lemma 7.4.3 The link center of P is the intersection of all r-visibility regions of

P for every convex vertex in P .

Proof. Let w be a point in the common intersection region of all r-visibility regions

of P for every convex vertex in P . If w belongs to the link center of P , then the
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lemma holds. So, we assume that w does not belong to the link center of P . This

means that there exists a point u ∈ P such that the r-visibility region of P for u does

not include w. Therefore, the link distance between w and u is more that r. Let u′

be the point on the boundary of P such that uu′ is the extension of the last link w′u

in the minimum link path from w to u. Let vj and vk be two convex vertices such

that all vertices of bd(vj , vk) are reflex vertices and u′ belongs bd(vj , vk). If vj or vk
is visible from w′, then the link distance between w and u cannot be more than r as

w belongs to the r-visibility region of P for both vj and vk, which is a contradiction.

If both vj and vk are not visible from w′, it means that the link distance between

w and u is less than r as at least two links from w′ are necessary to reach vj and

vk in minimum link paths from w to vj and vk, which is a contradiction. Hence, w

belongs to the link center of P .

Exercise 7.4.2 Prove that the link center of a simple polygon is a convex

region [241].

In the following, we present the major steps of the algorithm for computing the

link radius r, link diameter d and link center lc of P . Initialize i, d and r by 1.

Step 1. Compute the window partition of P for vi and assign the number of regions

in the partition to d′.

Step 2. If d′ > d then d := d′.

Step 3. If i 6= n then i := i+ 1 and goto Step 1.

Step 4. Assign dd/2e to r.

Step 5. Initialize lc by P . Initialize i by 1.

Step 6. If vi is a convex vertex then

Step 6a. Compute r-visibility region of P for vi and take its intersection with lc.

Step 6b. Assign the common intersection region to lc.

Step 7. If lc is empty then r := r + 1 and goto Step 5.

Step 8. If i 6= n then i := i+ 1 and goto Step 6.

Step 9. Report lc as the link center of P . Report r and d as the link radius and link

diameter of P , respectively.

The correctness of the algorithm follows from Lemmas 7.4.1, 7.4.2 and 7.4.3. Note

that Step 5 can be executed at most twice as the link radius r of P can be dd/2e or
d(d/2)e+ 1.

Let us analyze the time complexity of the algorithm. The window partition of P

for a vertex vi in Step 1 can be computed in O(n) as follows. Compute the shortest

path tree SPT (vi) in P rooted at vi in O(n) time by the algorithm of Guibas et

al. [178] (see Section 3.6.1). It can be seen that vertices of Q1 are children of vi in
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SPT (vi). Let V1 denote these vertices. Compute the shortest path map SPM(vi) in

O(n) time by the algorithm of Hershberger [186] (see Section 5.2). Observe that all

non-polygonal edges on the boundary of Q1 are those extension edges of SPM(vi)

whose one endpoint is a vertex of V1. Thus, the boundary of Q1 can be identified in

time proportional to the size of Q1 after SPT (vi) and SPM(vi) have been computed

in O(n) time.

Let vju be an extension edge of SPM(vi) on the boundary of Q1. We know that vj
belongs to V1 and u is a point on the boundary of P . Take the sub-tree SPT (vj) of

SPT (vi) and compute SPT (u) by shifting the root from vj to u as in the algorithm of

Hershberger [186]. It follows from Lemma 5.2.1 that vertices of SPT (vj) belonging

to Q2 are only those vertices of SPT (vj) whose parents in SPT (u) are different.

Therefore, vertices of SPT (vj) that are weakly visible from vju can be identified

in a time that is proportional to the number of such vertices. Note that although

SPM(vj) is available from SPM(vi), SPM(u) needs to be computed in order to

identify the extension edges of SPM(u) that are on the boundary of Q2. This can

also be done in a time that is proportional to the number of vertices that are weakly

visible from vju. Repeat this process for all extension edges of SPM(vi) on the

boundary of Q1. Thus, entire Q2 can be constructed in a time that is proportional

to its size as the shifting of roots along extension edges involve disjoint sub-trees

of SPT (vi). Analogously, Q3, Q4, . . . , Qm can also be computed in a time that is

proportional to their respective sizes. Hence, the window partitioning of P in Step

1 for each vertex can be done in O(n) time. Since Step 1 is executed for each vertex

of P , Step 1 takes O(n2) time.

Let us discuss the time complexity of Step 6a. Since the window partitioning of

P for vi has already been computed in Step 1, the r-visibility region of P for vi (say,

V Ri) is known. To compute V Ri ∩ lc, the procedure traverses the boundary of lc

in counterclockwise order and checks whether the current vertex vp is an endpoint

of a non-polygonal edge (say vpu) of V Ri. If so, it computes the intersection point

u′ of vpu with the boundary of lc by traversing lc from vp in the clockwise or

counterclockwise direction depending upon the position of u. So, vpu
′ divides lc

into two parts and one part is removed from lc. It may so happen that there is

no intersection point u′ as the entire vpu (except the vertex vp) lies outside lc,

which can be tested in constant time. In that case, either lc remains unchanged or

lc becomes empty. Once the intersection of lc and all non-polygonal edges of V Ri

with common vertices have been computed, the remaining portion of lc is considered

as the current lc. The procedure then traverses the boundary of V Ri and checks

whether the current vertex vq is an endpoint of a non-polygonal edge (say, vqu) of

V Ri and vq is not a vertex of lc. If so, compute the intersection of lc with vqu

using a method that is similar to the procedure for computing the kernel of a simple

polygon (see Section 2.4). Thus, V Ri ∩ lc can be computed in O(n) time. Since

Step 6a is executed for each convex vertex of P , Step 6a can take O(n2) time in
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Figure 7.13 (a) The polygon K is a minimum nested polygon between two convex polygons
P and Q. (b) The nested polygon K ′ has one more vertex than a minimum nested polygon
K.

the worst case. Hence, the overall time complexity of the algorithm is O(n2). We

summarize the result in the following theorem.

Theorem 7.4.4 The link center, link radius and link diameter of a simple polygon

P of n vertices can be computed in O(n2) time.

7.5 Computing Minimum Nested Polygons

7.5.1 Between Convex Polygons: O(n log k) Algorithm

In this section, we present an O(n log k) algorithm of Aggarwal et al. [12] for com-

puting a minimum nested polygon K between two given convex polygons P and Q,

where Q ⊂ P , n is the total number of vertices of P and Q, and k is the number of

vertices of K (see Figure 7.13(a)). A simple polygon K is called nested between P

and Q, when it circumscribes Q and is inscribed in P (i.e. Q ⊂ K ⊂ P ). The prob-

lem here is to compute a nested polygon K with the minimum number of vertices.

We assume that the vertices of P and Q are labeled in counterclockwise order p1,

p2, . . . , pm and q1, q2, . . . , ql, respectively, where m+ l = n.

Let R denote the annular region between P and Q, i.e., R = P − Q. Draw the

tangent from a point z ∈ R to Q meeting Q at a vertex qi such that both vertices

qi−1 and qi+1 lie to the left of −→zqi (see Figure 7.13(a)). We call zqi as the left tangent

of z. The right tangent from z to Q is defined analogously. It can be seen that

both tangents of z lie inside R as P and Q are convex. Let z1 be a point on the

boundary of P (denoted as bd(P )). Draw the left tangent from z1 to Q and extend

the tangent until it meets bd(P ) at some point z2 (see Figure 7.13(b)). Again, draw
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the left tangent from z2 to Q and extend the tangent until it meets bd(P ) at some

point z3. Repeat this process of construction until a point zq ∈ bd(P ) is found such

that the segment zqz1 lies inside R. This greedy path z1z2, z2z3, . . . , zq−1zq along

with the link zqz1 gives a nested polygon K ′ in R. Note that K ′ can be computed

in O(n) time. For any two turning points zi and zj for i < j, zj is called the forward

projection point of zi and zi is called the backward projection point of zj . We have

the following observations.

Lemma 7.5.1 Let z1z2, z2z3, . . . , zqz1 be the edges of a convex polygon K ′ nested

between P and Q such that vertices z1, z2, . . . , zq are on the boundary of P and

edges z1z2, z2z3, . . . , zq−1zq are tangential to Q. The polygon K ′ has at most one

more vertex than a minimum nested polygon K between P and Q.

Proof. Since no edge of K can intersect more than one of the left tangents from

z1, z2, . . . , zq−1 (see Figure 7.13(b)), the polygon K ′ has at most one more vertex

than K.

Corollary 7.5.2 For 1 ≤ i ≤ q − 1, the region of R bounded by zizi+1 and the

counterclockwise boundary of P from zi to zi+1 contains a vertex of K.

Lemma 7.5.3 There exists a minimum nested polygon K between P and Q such

that all vertices of K belong to the boundary of P .

Exercise 7.5.1 Prove Lemma 7.5.3.

Let us explain the procedure for computing K from K ′. We know from Corollary

7.5.2 and Lemma 7.5.3 that there is a vertex of K lying on the counterclockwise

boundary of P from z1 to z2 (denoted as bdp(z1, z2)). If the position of a vertex

(say, u1) of K on bdp(z1, z2) is known (see Figure 7.13(b)), the edges u1u2, u2u3,

. . . , uku1 of K can be computed by constructing the greedy path starting from u1.

Note that q − 1 ≤ k ≤ q by Lemma 7.5.1. Therefore, the problem of computing K

has been reduced to finding the position of u1 on bdp(z1, z2).

Suppose a point w is moved along bdp(z1, z2) starting from z1 and for each position

of w, the greedy path from w is computed. It can be seen that when w reaches u1

(see Figure 7.13(b)), the last link in the greedy path from w ‘collapses’ to a point,

which gives K as it has one edge less than K ′. On the other hand, it is not feasible

to compute the greedy path from every point w on bdp(z1, u1). So, the algorithm

first divides bdp(z1, z1) into intervals and then composes a unique function for every

interval which maps any point w in the interval to the last turning point of the greedy

path from w. Using these functions, the algorithm locates a point u1 ∈ bdp(z1, z2)

such that u1 is same as uk+1 and then constructs K by computing the greedy path

from u1 to u1.
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Figure 7.14 (a) The reverse greedy path from s1 is (s1s2, s2s3, s3s4). (b) The intervals on
bdp(z1, z2) in R1 ∪R2 are computed using backward projection points of A2 on bdp(z1, z2).

Let us first explain the procedure for computing intervals on bdp(z1, z2). Recall

that the greedy path z1z2, z2z3, . . . , zq−1zq alternatively touches a vertex qj of

Q and meets an edge ei of P . This alternating sequence (ei1, qj1, ei2, qj2, .., eiq) of

vertices and edges (see Figure 7.13(b)), where z1 ∈ ei1 and zq ∈ eiq, is called the

link sequence of z1 [69]. Observe that there is a neighborhood of z1 on bd(P ) such

that for any point in the neighborhood, the link sequence is the same. We define an

interval on bd(P ) to be the largest such neighborhood forming a segment, which is

an edge or a subset of an edge on bd(P ). We have the following observation.

Lemma 7.5.4 A point w is an endpoint of an interval on bdp(z1, z2) if and only if

(i) w is a vertex of P on bdp(z1, z2), or (ii) the greedy path from w turns at some

vertex of P or passes through an edge of Q.

Proof. Proof of the lemma follows from the definition of the link sequence.

Using the above lemma, bdp(z1, z2) can be divided into intervals using backward

projection points of (i) vertices of P , and (ii) those points that are extensions of

edges of Q to bd(P ). Backward projection points can be computed as follows. For

any point s1 on bd(P ), draw the right tangent from s1 to Q and extend the tangent

meeting bd(P ) at some point s2 (see Figure 7.14(a)). If s2 ∈ bdp(z1, z2), then s2 is

the backward projection point of s1 on bdp(z1, z2). If s2 /∈ bdp(z1, z2), compute s3
by drawing the right tangent from s2 and extend the tangent meeting bd(P ) at s3.

This process of computing backward projection points continues until a point on

bdp(z1, z2) is reached. We call this path s1s2, s2s3, . . . the reverse greedy path from

s1.

Observe that the intervals on bdp(z1, z2) can be computed in O(nk) time by

traversing the boundaries of P and Q once in counterclockwise order and by comput-
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ing the reverse greedy path (of size at most k) from each vertex or extension point

on bd(P ). Once the intervals are computed, the greedy paths from every endpoint

of all intervals on bdp(z1, z2) can also be computed in O(nk) time.

Let us show that there is a unique function associated with each interval of

bdp(z1, z2). We start with the link sequence (ei1, qj1, ei2, qj2, .., eiq) of z1 (see Figure

7.13(b)). We know the coordinates of z1 and qj1, and the equation of ei2. Therefore,

the coordinates of z2 can be obtained from those of z1 using the following pair of

bilinear functions.

x(z2) = (a1.x(z1) + b1.y(z1) + c1)/(d1.x(z1) + f1.y(z1) + g1)

y(z2) = (a2.x(z1) + b2.y(z1) + c2)/(d1.x(z1) + f1.y(z1) + g1)

where x(), y() denote the abscissa and ordinate values of a point. The coefficients

a1, b1, c1, d1, f1, g1, a2, b2 and c2 depend on the coordinates of qj1 and the equation

of ei2. It can be seen that the above pair of bilinear functions map points in the

neighborhood of z1 to points in the neighborhood of z2. Similarly, we have a pair

of bilinear functions that map points in the neighborhood of z2 to points in the

neighborhood of z3. By composing these two pairs of functions, we obtain a pair

of bilinear functions which map points in the neighborhood of z1 to points in the

neighborhood of z3. By composing k times, a pair of bilinear functions can be

obtained which map points in the neighborhood of z1 to points in the neighborhood

of zq. This pair of functions is called the projection function of z1. Observe that the

coefficients of the projection function of z1 depend on the vertices and edges of the

link sequence of z1. This multiple composition shows that there is a unique function

for each interval of bdp(z1, z2) and it takes constant time to evaluate the function.

Exercise 7.5.2 Prove that given the coefficients of a projection function,

its fixed point can be computed in O(1) time [69].

Once the projection functions for each interval of bdp(z1, z2) are composed, it can

be checked whether there is a fixed point u1 of the projection function of any interval

on bdp(z1, z2) (see Figure 7.13(b)). The fixed point of a projection function can be

found in O(1) time by finding eigenvalues and their corresponding eigenvectors of

the matrix formed by the coefficients of the projection function [69]. We have the

following theorem.

Theorem 7.5.5 Given two convex polygons P and Q with a total of n vertices

(Q ⊂ P ), a minimum nested polygon K between P and Q can be computed in O(nk)

time, where k is the number of vertices of K.

It can be seen that the above algorithm runs in O(nk) time because the number

of backward projection points in a reverse greedy path can be at most k. We show

that it is possible to restrict the number of backward projection points to log k using

projection functions and a divide and conquer strategy. In presenting our divide
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and conquer algorithm, we adopt the method of merging intervals as suggested by

Chandru et al. [69].

Let us define regions R1, R2, . . . , Rq with respect to the greedy path z1z2, z2z3,

. . . , zqzq+1, where zqzq+1 intersects z1z2 (see Figure 7.14(b)). Without loss of gen-

erality, we assume that z1 is p1. We also assume that z1z2 and zqzq+1 are tangential

to Q at vertices q1 and ql respectively. The counterclockwise boundary of Q from

a vertex qr to a vertex qt is denoted as bdq(qr, qt). Let R1 denote the region of R

bounded by the segment q1z1, bdp(z1, z2) and the segment z2q1 (see Figure 7.14(b)).

So, the initial intervals on bdp(z1, z2) are p1p2, p2p3, . . . , piz2, where z2 belongs to

the edge pipi+1. The endpoints of the intervals are stored in the list A1 in counter-

clockwise order, where the first and last elements in A1 are z1 and z2. Assume that

z2z3 is tangential to Q at the vertex qj . Let R2 denote the region of R bounded by

the segment q1z2, bdp(z2, z3), the segment z3qj and bdq(q1, qj) (see Figure 7.14(b)).

Extend the edges in bdq(q1, qj) to bdp(z2, z3) and insert the extension points on

bdp(z2, z3), which divides edges of bdp(z2, z3) into intervals. The endpoints of inter-

vals on bdp(z2, z3) are then stored in the list A2 in counterclockwise order, where

the first and last elements in A2 are z2 and z3. The regions R3, R4, . . . , Rq and the

intervals on their boundaries are defined analogously. Note that R1, R2, . . . , Rq−1

are disjoint, whereas R1 and Rq are overlapping.

Starting from A1, final intervals on bdp(z1, z2) can be computed by combining R1,

R2, . . . , Rq as follows. Firstly, intervals on bdp(z1, z2) are computed in R1 ∪R2. It

can be seen that backward projection points of A2 on bdp(z1, z2) and points in A1 can

be merged according to their counterclockwise order to form intervals on bdp(z1, z2)

in R1∪R2 (see Figure 7.14(b)). The endpoints of these intervals are again stored in

A1. Moreover, projection functions of all intervals in R1∪R2 are composed and they

map points of an interval on bdp(z1, z2) to points in the corresponding interval on

bdp(z2, z3). Since the forward projection points of A1 on bdp(z2, z3) can always be

computed using these projection functions, there is no need to store these forward

projected points on bdp(z2, z3) in A2. Similarly, intervals on bdp(z3, z4) in R3 ∪ R4

are computed using A3 and A4, and the endpoints of these intervals are again stored

in A3 along with the projection functions of these intervals.

Let us compute intervals on bdp(z1, z2) in R1∪R2∪R3∪R4. The task is to compute

backward projection points of A3 on bdp(z1, z2), which can be done in two steps. The

backward projection points of A3 on bdp(z2, z3) are first computed by drawing right

tangents from points of A3 and extending them to bdp(z2, z3) as in a reverse greedy

path. Then, these backward projected points on bdp(z2, z3) are projected backward

on bdp(z1, z2) using the inverse of the projection functions associated with A1 which

map points of bdp(z1, z2) to points of bdp(z2, z3). Now, backward projection points of

A3 on bdp(z1, z2) and points in A1 can be merged according to their counterclockwise

order to form intervals on bdp(z1, z2) in R1 ∪ R2 ∪ R3 ∪ R4. The endpoints of

these intervals are again stored in A1. The projection functions of intervals formed
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by points in A1 to intervals on bdp(z4, z5) can be composed using the projection

functions (i) from bdp(z1, z2) to bdp(z2, z3) (composed in R1∪R2), (ii) from bdp(z2, z3)

to bdp(z3, z4) (composed after drawing right tangents in this iteration), and (iii) from

bdp(z3, z4) to bdp(z4, z5) (composed in R3 ∪R4).

Observe that the first set of backward projection points of A3 (on bdp(z2, z3)) have

been computed by drawing right tangents and only then the last set of backward

projection points (on bdp(z1, z2)) are computed using the inverse of the projection

functions. During the merging step in general, the first and the last backward

projection points in any reverse greedy path are computed and computation of all

intermediate backward projection points in the path are skipped using the inverse

of the projection functions. Therefore, at most log k backward projection points (or

turning points) are computed in the reverse greedy path from a point on bd(P ) to

bdp(z1, z2), which helps in computing K in O(n log k) time.

The above process of computation can be repeated until the intervals on bdp(z1, z2)

are computed in R1∪R2∪. . .∪Rq−1∪Rq. In the following, we present the major steps

of the algorithm for computing a minimum nested polygon K under the assumption

that q is a power of 2.

Step 1. Construct the greedy path z1z2, z2z3, . . . , zq−1zq, zqzq+1, where z1 ∈ bd(P )

and zqzq+1 intersects z1z2. Introduce points z1, z2, . . . , zq as vertices of P .

Step 2. Construct the regions R1, R2, . . . , Rq with respect to the greedy path from

z1. Initialize the ordered lists A1, A2, . . . , Aq by the vertices of P and extension

points of edges of Q to bd(P ). Assign q to j.

Step 3. For i = 1 to j/2 do

Step 3a. Compute the intervals on bdp(z2i−1, z2i) in R2i−1∪R2i by merging points

in A2i−1 and the backward projection points of A2i on bdp(z2i−1, z2i) in coun-

terclockwise order and store their endpoints in A2i−1.

Step 3b. Compose the projection functions in R2i−1 ∪ R2i of intervals on

bdp(z2i−1, z2i) formed by the points in A2i−1.

Step 3c. Ri := R2i−1 ∪R2i and Ai := A2i−1.

Step 4. If j 6= 1 then j := j/2 and goto Step 3.

Step 5. Locate a fixed point u1 in an interval of bdp(z1, z2).

Step 6. Construct a minimum nested polygon K by computing the greedy path

from u1 and Stop.

It can be seen that the above algorithm runs in O(n log k) time as Step 3 takes

O(n) time and it is repeated log k times. We summarize the result in the following

theorem.
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Figure 7.15 (a) Although P and Q are non-convex polygons, K is a convex polygon which
contains the convex hull C of Q. (b) Rays are drawn from z through every vertex of C and
V (z) to form wedges.

Theorem 7.5.6 Given two convex polygons P and Q with a total of n vertices

(Q ⊂ P ), a minimum nested polygon K between P and Q can be computed in

O(n log k) time, where k is the number of vertices of K.

7.5.2 Between Non-Convex Polygons: O(n) Algorithm

In this section, we present two algorithms for computing a minimum nested polygon

K between two given simple polygons P and Q given by Ghosh [155] and Ghosh

and Maheshwari [159], where Q ⊂ P , n is the total number of vertices of P and Q

and k is the number of vertices of K. If K is convex, the algorithm of Ghosh [155]

computes K in O(n log k) time. If K is not convex, the algorithm of Ghosh and

Maheshwari [159] computes K in O(n) time.

As defined earlier, a simple polygon K is called nested between P and Q , when

it circumscribes Q and is inscribed in P (i.e. Q ⊂ K ⊂ P ). The problem here is

to compute a nested polygon K with the minimum number of vertices. We assume

that the vertices of P and Q are labeled in counterclockwise order p1, p2, . . . , pm

and q1, q2, . . . , ql, respectively, where m + l = n. The boundaries of P and Q are

denoted as bd(P ) and bd(Q), respectively.

It has been shown in Section 7.5.1 that if both P and Q are convex, K is also a

convex polygon. If P or Q is not a convex polygon, K can still be a convex polygon

as shown in Figure 7.15(a). Therefore, we first determine whether K is convex or

not. This can be checked in O(n) time by the algorithm of Ghosh [155]. We start

our presentation of Ghosh’s algorithm with the following lemma.
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Lemma 7.5.7 There exists a nested convex polygon between P and Q if and only

if the boundary of P does not intersect the convex hull of Q.

Proof. If bd(P ) does not intersect the convex hull ofQ, there exists a point z ∈ bd(P )

such that both tangents from z to Q lie inside P . Since the entire boundary of P

(including z) lies outside the convex hull ofQ by assumption, the region of P enclosed

by the two tangents of z and the convex hull of Q form a nested convex polygon.

Let us prove the converse. If a nested convex polygon K exists, bd(P ) must lie in

the exterior of K by definition. Since K is a convex polygon containing Q and the

convex hull of Q is the smallest convex set containing Q, the convex hull of Q also

lies inside K. Therefore, bd(P ) does not intersect the convex hull of Q.

The above lemma suggests that it is necessary to check whether bd(P ) intersects

the convex hull of Q (denoted as C), which can be done in O(n) time using the

algorithm of Ghosh [151] for detecting the intersection between two star-shaped

polygons. We state this algorithm in the following steps as presented in Ghosh

[155].

Step 1. Compute the convex hull C of Q by the algorithm of Graham and Yao [175].

Step 2. Take a point z of Q and compute the visibility polygon V (z) of P from z

by the algorithm of Lee [230] (see Section 2.2.1).

Step 3. Divide the plane into wedges by drawing rays from z through every vertex

of C and V (z) (Figure 7.15(b)).

Step 4. Merge the angular order of vertices of C and V (z) around z to form the

sorted angular order of wedges.

Step 5. Check the intersection between the pair of edges in each wedge by traversing

the wedges in sorted angular order around z.

Step 6. If an intersection is detected then report that K is not a convex polygon

else report that K is a convex polygon.

Exercise 7.5.3 Let Q be a star-shaped polygon inside an arbitrary simple

polygon P (Q ⊂ P ). Prove that the boundary of the visibility polygon of P

from a point z in the kernel of Q intersects Q if and only if the boundary

of P intersects Q [151].

The correctness and the time complexity of the above algorithm follow from Gra-

ham and Yao [175], Lee [230] and Ghosh [151]. We summarize the result in the

following theorem.

Theorem 7.5.8 Given two simple polygons P and Q with a total of n vertices

(Q ⊂ P ), it can be determined in O(n) time whether there exists a convex nested

polygon between P and Q.



250 Visibility and Link Paths

Let us consider the situation when K is convex. Before K can be computed, P is

pruned to another polygon P ′ such that every nested convex polygon K lies inside

P ′. We have the following observation.

Lemma 7.5.9 Let P ′ be the set of all points of P such that both tangents from any

point z ∈ P ′ −C to C lie inside P . Every nested convex polygon K ′ between P and

C lies inside P ′.

Proof. Let z be a point inside K ′−C. Since K ′ is a convex polygon and lies inside

P , two tangents drawn from z to C lie inside K ′ as well as P . Hence K ′ lies inside

P ′ by the definition of P ′.

Corollary 7.5.10 Every minimum nested convex polygon K lies between P ′ and C.

Exercise 7.5.4 Let C be a convex polygon inside a simple polygon P i.e.

C ⊂ P . Let P ′ be the set of all points of P such that both tangents from

any point z ∈ P ′ − C to C lie inside P . Design an O(n) time algorithm

for computing P ′, where n is the total number of vertices of P and C

[155].

The polygon P ′ is called the complete visibility polygon of P from C. Since P ′ can

be computed in O(n) time, a minimum nested polygon K between P ′ and C can

be computed in O(n log k) time by the algorithm of Aggarwal et al. [12] (presented

in Section 7.5.1). Note that though P ′ is not a convex polygon, the algorithm of

Aggarwal et al. [12] can still be used as P ′ is completely visible from C as shown

by Wang [336] and Wang and Chan [337]. In the following, we present the major

steps for computing a convex nested polygon K.

Step 1. Compute the convex hull C of Q by the algorithm of Graham and Yao [175].

Step 2. Check the intersection between bd(P ) and C by the algorithm of Ghosh

[151]. If an intersection is detected then report that there is no convex nested

polygon between P and Q and goto Step 5.

Step 3. Compute the complete visibility polygon P ′ of P from C (see Exercises 3.8.1

and 7.5.3).

Step 4. Construct a minimum nested convex polygon K between P ′ and C by the

algorithm of Aggarwal et al. [12] and report K.

Step 5. Stop.

The correctness of the algorithm follows from Lemma 7.5.9, Theorem 7.5.8 and

Aggarwal et al. [12]. Let us analyze the time complexity of the algorithm. We know

that Steps 1, 2 and 3 can be performed in O(n) time. Step 4 takes O(n log k) time.

Hence, the overall time complexity of the algorithm is O(n log k). We summarize

the result in the following theorem.
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Figure 7.16 (a) The boundary of the relative convex hull Q′ of Q is the union of SPc(qs, qt)
and SPcc(qs, qt). (b) A minimum nested non-convex polygon K is formed by the greedy
path and the extensions of the eaves of Q′.

Theorem 7.5.11 Given two simple polygons P and Q with a total of n vertices

(Q ⊂ P ), a minimum nested convex polygon K between P and Q can be computed

in O(n log k) time, where k is the number of vertices of K.

Let us consider the other situation where K is not convex. This means that bd(P )

has intersected the convex hull C of Q. So, a simple polygon Q′ ⊂ C is constructed

such that Q′ is the smallest perimeter polygon inside P containing Q (see Figure

7.16(a)). This polygon Q′ is called the relative convex hull of Q with respect to P .

Note that all vertices of C belong to Q′. To compute Q′, we need a triangulation of

the region P −Q.

Without loss of generality, we assume that the vertex q1 of Q is a vertex of C (see

Figure 7.16(a)). Extend q1q2 from q1 meeting bd(P ) at a point q′ on an edge pipi+1.

Cut P−Q along q′q1 to construct a simple polygon (q2, q1, q
′, pi+1, pi+2, . . . , pi, q

′, q1,

ql, ql−1, . . . , q2) and triangulate this polygon in O(n) time using the algorithm of

Chazelle [71] (see Theorem 1.4.6). This triangulation can be considered a triangu-

lation of P −Q with an additional vertex q′.

Let qs and qt be two vertices of C (see Figure 7.16(a)). It can be seen that there

exists two disjoint paths in P −Q from qs to qt passing through two disjoint set of

triangles Tc and Tcc in the triangulation of P −Q. Compute the Euclidean shortest

path from qs to qt in Tc using the algorithm of Lee and Preparata [235] and call it

SPc(qs, qt). Similarly, compute the Euclidean shortest path from qs to qt in Tcc and

call it SPcc(qs, qt). It can be seen that the union of SPc(qs, qt) and SPcc(qs, qt) is

the boundary of Q′.
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Let Q′ = (u1, u2, . . . , ur, ur+1, . . . , u1), where u1 = qs and ur = qt. As defined

in Section 7.2.2, an edge uj−1uj of Q′ is called an eave if uj−2 and uj+1 lie on the

opposite side of the line passing through uj−1 and uj (see Figure 7.16(b)). Observe

that there exists an eave on the boundary of Q′ as bd(P ) has intersected C. In the

following lemmas, we present the main idea of the algorithm for computing K (see

Figure 7.16(b)).

Lemma 7.5.12 There exists a minimum nested polygon K between P and Q con-

taining all eaves of Q′.

Proof. Proof follows along the line of the proof of Lemma 7.2.6.

Lemma 7.5.13 The greedy paths inside P − Q connecting the extensions of eaves

of Q′ form a minimum nested non-convex polygon K between P and Q.

Exercise 7.5.5 Prove Lemmas 7.5.13.

In the following, we present the major steps of the algorithm for computing K

under the assumption that bd(P ) has intersected C.

Step 1. Construct a triangulation of P −Q using the algorithm of Chazelle [71].

Step 2. Let qs and qt be two vertices of both Q and C. Compute SPc(qs, qt) and

SPcc(qs, qt) inside P − Q by the algorithm of Lee and Preparata [235] and take

their union to form the boundary of Q′.

Step 3. Extend each eave of Q′ from both ends to the boundary of P −Q.

Step 4. Compute the greedy path inside P −Q connecting the extensions of every

pair of consecutive eaves ofQ′ by the algorithm of Ghosh [155] presented in Section

7.2.2.

Step 5. Connect the greedy paths using the extension of eaves to construct a mini-

mum nested polygon K and Stop.

The correctness of the algorithm follows from Lemmas 7.5.12 and 7.5.13, and

Theorem 7.5.8. Let us analyze the time complexity of the algorithm. We know

that Steps 1 and 2 take O(n) time. Extensions of eaves of Q′ to the boundary of

P − Q can be computed in Step 3 in O(n) time as shown in Section 7.2.2. Since

the extension of eaves partitions P − Q into disjoint regions, the greedy paths in

these regions can also be computed in O(n) time. Therefore, Step 4 takes O(n)

time. Hence, the overall time complexity of the algorithm is O(n). We summarize

the result in the following theorem.

Theorem 7.5.14 Given two simple polygons P and Q with a total of n vertices (Q ⊂
P ), a minimum nested non-convex polygon K between P and Q can be computed in

O(n) time.
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Figure 7.17 (a) The path of bounded curvature from s to t is simple but not convex. (b)
The path of bounded curvature is self-intersecting.

7.6 Notes and Comments

Link paths going around a convex chain, like convex nested polygons, can be used

to define isomorphism between points of two polygons. Note that in Section 6.9, iso-

morphism between two polygons is defined with respect to vertices of the polygons.

Here, two simple polygons are called isomorphic if there is one-to-one mapping be-

tween their internal points (including vertices) that preserves visibility. Using link

paths structure, MacDonald and Shermer [251] established necessary and sufficient

conditions for isomorphism between two spiral polygons and gave an O(n2) time

algorithm for detecting such isomorphism.

Consider the following problem on path planning of a point robot, whose path is

of bounded curvature. Given two points s and t inside a polygon P with or without

holes and two directions of travel at s and t, the bounded curvature problem is to

compute a path inside P from s to t consisting of straight-line segments (or links)

and circular arcs such that (i) the radius of each circular arc is at least 1, (ii) each

link on the path is the tangent between the two consecutive circular arcs on the

path, (iii) the given initial direction at s is tangent to the path at s, and (iv) the

given final direction at t is tangent to the path at t. Figure 7.17(a) shows that there

exists a simple but non-convex path of bounded curvature from s to t. A path of

bounded curvature is called convex if it makes only right turns or only left turns.

Note that there is no convex and simple path of bounded curvature between s and

t in the polygon of Figure 7.17(a). On the other hand, a path of bounded curvature

may not always be simple as shown in Figure 7.17(b).

For this problem, Agarwal et al. [10] proposed an O(n2 log n) time algorithm

for computing a shortest path of bounded curvature in a convex polygon P with-

out holes. If P is a simple polygon and there exists a convex and simple path of

bounded curvature from s to t inside P , the path can be computed in O(n4) time
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by the algorithm of Boissonnat et al. [57]. Their algorithm computes the path

exploiting the relationship between Euclidean shortest paths, link paths, paths of

bounded curvature and complete visibility. These are the only two polynomial time

algorithms known for this problem in a polygon with or without holes.

Let us mention parallel algorithms for the minimum link path and nested polygon

problems considered in this chapter. Consider the problem of computing the mini-

mum link path MLP (s, t) between two given points s and t inside a simple polygon

P . Chandru et al. [69] gave an algorithm for computing MLP (s, t) following the

sequential algorithm of Ghosh [155, 156] (presented in Section 7.2.2), combining

a divide and conquer strategy with projection functions in computing the greedy

path. Their algorithm runs in O(log n log logn) time using O(n) processors in the

CREW-PRAM model of computations. Using this algorithm, Chandru et al. [69]

gave another algorithm for computing the minimum nested polygon between two

simple polygons, which also runs in O(logn log log n) time using O(n) processors in

the CREW-PRAM model of computations.

Using the above algorithm of Chandru et al. [69], Ghosh and Maheshwari [161]

showed that minimum link paths from a point in a simple polygon P to all vertices of

P can be computed in O(log2 n log log n) time using O(n) processors in the CREW-

PRAM model of computations. They also gave an algorithm for computing the link

center of a simple polygon P in O(log2 n log log n) time using O(n2) processors in the

CREW-PRAM model of computations. Lingas et al. [245] gave parallel algorithms

for rectilinear link paths in rectilinear polygons.

Exercise 7.6.1 Design an O(n logn) time algorithm for locating a di-

agonal uw in a simple polygon P of n vertices such that the difference

between the maximum link distances from uw to opposite sides of uw in

P is at most one [111].
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Visibility and Path Queries

8.1 Problems and Results

Let q1, q2, . . . , qm be a set of internal points of a polygon P with holes with a total

of n vertices. Consider the problem of computing visibility polygons of points q1, q2,

. . . , qm in the polygon P . Since the visibility polygon of P from each point qi can

be computed in O(n logn) time by the algorithm of Asano [27] (see Section 2.3),

the problem can be solved in O(mn logn) time. Suppose m is quite large compared

to n. In that case, it may be a good idea to construct data structures by processing

P once so that the visibility polygon from each query point qi can be computed in

less than O(n logn) time with the help of these data structures. In fact, it has been

shown by Asano et al. [28] that after spending O(n2) time in preprocessing of P ,

the visibility polygon from each query point qi can be computed in O(n) time. Thus

the overall time complexity for solving this problem is reduced from O(mn logn)

to O(mn). Such problems, that require a large number of computations of similar

type on the same polygonal domain, are known as query problems in computational

geometry [291]. Efficiency of a query algorithm is judged on the basis of the query

time of the algorithm, the space occupied by the data structure of the algorithm,

and the time required during the preprocessing of the algorithm. Here, we consider

query problems on visibility, shortest paths and link paths.

Exercise 8.1.1 Design a query algorithm for determining whether a

query point lies inside a convex polygon C of m vertices in O(logm)

query time taking O(m) preprocessing time and space [291].

Let us start with the ray-shooting problem. Let q be a point inside a simple

polygon P . Let −→q denote the ray from q in the given direction. Let q′ be the closest

point of q among all the intersection points of −→q with the boundary of P . So, the

segment qq′ lies inside P and q′ is visible from q. For a given query −→q in P , the

problem of ray shooting is to answer the query by locating q′. We know that the

visibility polygon V (q) of P from q can be computed in O(n) time by the algorithm

255
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of Lee [230] (see Section 2.2.1). So, by traversing the boundary of V (q), q ′ can be

located in O(n) time.

Chazelle and Guibas [76] first showed that q′ can be computed in optimal O(logn)

query time. Using the geometric transformation of point-line duality, they developed

data structures for answering each ray-shooting query in optimal query time. To

build the data structures, their algorithm requires preprocessing of P which takes

O(n logn) time and O(n) space. Using hourglass structures, Guibas et al. [178]

showed that the preprocessing time of P can be improved to O(n) keeping the

query time and the space requirement unchanged.

Using a different method, Chazelle et al. [73] later developed another query algo-

rithm for the same problem which also answers each ray-shooting query in optimal

O(logn) query time. Their algorithm requires O(n) preprocessing time and space.

In a preprocessing step, P is decomposed into geodesic triangles. A region of P

bounded by the shortest paths between three vertices of P is called a geodesic trian-

gle. It has been shown by Chazelle et al. [73] that the path of −→q in P can be traced

in O(log2 n) query time using this geodesic triangulation. The query time is then

improved to O(logn) using a weight-balanced binary search tree [256] and a data

structuring technique called fractional cascading [74, 75]. Soon after, Hershberger

and Suri [190] showed an alternative method for answering a query in O(logn)

query time using weight assignments in place of fractional cascading. Their query

algorithm also requires O(n) preprocessing time and space. We present the query

algorithms of Chazelle et al. [73] in Sections 8.2.

Consider the ray-shooting problem in a polygon P with h holes. For a given query
−→q in P , q′ can be located in O(n) time by traversing the boundary of the visibility

polygon V (q) of P . Since computing V (q) takes O(n log h) time [27] (see Section

2.3), each query can be answered in O(n log h) time. It has been shown both by

Chazelle et al. [73] and Hershberger and Suri [190] that each ray-shooting query

can be answered in O(
√
h log n) query time, where n is the total number of vertices

of P . The preprocessing of P takes O(n
√
h+ h3/2 log h+ n logn) time. The query

time of their algorithms is an improvement by a factor of O(logn) over that of an

earlier algorithm proposed by Agarwal [6].

Let q be a query point inside a simple polygon P . Consider the problem of

reporting the visibility polygon V (q) of P from q (see Figure 2.1(a)). We know

that V (q) can be computed in O(n) time without any preprocessing of P by the

algorithm of Lee [230] (see Section 2.2.1). Recall that this algorithm always requires

O(n) time even though the number of vertices of V (q) (say, k) is less than n, i.e., the

algorithm is not output sensitive. Guibas et al. [181] showed that it is possible to

report V (q) in O(logn+ k) query time. During the preprocessing of P , their query

algorithm decomposes P into visibility cells in O(n3) time and then these cells are

stored using O(n3) space. Using a similar method of decomposing P into visibility

cells, Bose et al. [60] developed another query algorithm which also reports V (q)
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in O(logn+k) query time. The algorithm takes O(n3 log n) preprocessing time and

O(n3) space. If the query point q lies outside P , the algorithm can also report the

external visibility polygon of P from q in the same query time. Representing P as an

union of disjoint canonical pieces, Aronov et al. [26] showed that the preprocessing

time and space requirement can be reduced to O(n2 logn) and O(n2), respectively.

However, the query time of their algorithm increases to O(log2 n + k). We present

the query algorithm of Bose et al. [60] in Section 8.3.1.

Consider the corresponding problem of reporting V (q) in a polygon P with h

holes (see Figure 2.1(b)). We know that V (q) can be computed in O(n log h) time

by the algorithm of Asano [27] (see Section 2.3). Asano et al. [28] first showed that

V (q) can be reported in O(n) query time after preprocessing steps taking O(n2)

time and O(n2) space. Their query algorithm uses point-line duality to find the

angular sorted order of vertices of P around q, and then uses triangulation and

set-union operations to compute portions of edges of P that are visible from q. It

may be noted that the query time of this algorithm is always O(n) even though

the number of vertices of V (q) (of size k) may be less than n. Vegter [335] showed

that the query time can be a function of the output size k. His query algorithm

reports V (q) inO(k log(n/k)) query time after preprocessing steps takingO(n2 log n)

time and O(n2) space. Recently, Zarei and Ghodsi [346] showed that V (q) can be

reported in O((1 +min(h, k)) log n+ k) query time after preprocessing steps taking

O(n3 log n) time and O(n3) space. If P is a convex polygon containing only convex

holes, Pocchiola and Vegter [287] presented a query algorithm that reports V (q) in

O(k log n) query time. During the preprocessing of P , their algorithm decomposes

P into a visibility complex taking O(n logn+E) time and O(E) space, where E is

the number of edges in the visibility graph of P . We present the query algorithm of

Asano et al. [28] in Section 8.3.2.

Let pq be a query segment inside a simple polygon P . Consider the problem of

reporting the weak visibility polygon V (pq) of P from pq (see Figure 3.3(b)). We

know that without preprocessing of P , V (pq) can be computed in O(n) time by the

algorithm of Guibas et al. [178] (see Section 3.3.2). Aronov et al. [26] showed that

V (pq) of size k can be reported in O(k log2 n) query time after preprocessing steps

taking O(n2 log n) time and O(n2) space. Recently, Bose et al. [60] showed that the

query time can be reduced to O(k logn). However, their algorithm takes O(n3 log n)

preprocessing time and O(n3) space. Consider a related problem for a fixed segment

pq inside P . Let u ∈ P be a query point. Let p′q′ ⊆ pq be the segment visible from

u. The problem is to report p′q′ for each query point u. Guibas et al. [178] showed

that p′q′ can be reported in O(logn) query time after P is processed taking O(n)

time and O(n) space.

Consider the query problem of reporting the Euclidean shortest path SP (s, t)

between two points s and t inside a simple polygon P (see Figure 7.1(a)). If s is

fixed and t is a query point, SP (s, t) can be reported in O(logn + k) query time
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by the query algorithm of Guibas et al. [178], where k is the number of edges in

SP (s, t). The preprocessing step takes O(n) time and O(n) space as it involves

computing the shortest path tree from s to all the vertices of P . If both s and

t are query points, SP (s, t) can still be answered in O(logn + k) query time with

O(n) preprocessing time and O(n) space as shown by Guibas and Hershberger [177].

The algorithm decomposes P into sub-polygons in a balanced fashion by diagonals

in a triangulation of P and uses these sub-polygons to construct O(n) funnels and

hourglasses in P . The funnels and hourglasses, that are lying in the path between

s and t in P , are then combined to compute SP (s, t). This problem in a polygon

with holes has been studied by Chen et al. [85] and Chiang and Mitchell [86]. We

present the query algorithm of Guibas and Hershberger [177] for reporting SP (s, t)

in Section 8.4.1.

Consider the query problem of reporting the minimum link path MLP (s, t) be-

tween two points s and t inside a simple polygon P (see Figure 7.1(a)). If s is fixed

and t is a query point, MLP (s, t) can be reported in O(logn+k) query time by the

query algorithm of Suri [320], where k is the number of links in MLP (s, t). In the

preprocessing step, the algorithm computes a window tree from s in P taking O(n)

time and O(n) space and, using this tree, the query algorithm reports MLP (s, t)

in O(logn+ k) query time. If the query problem is to report just the link distance

k between s and t and not the path, k can be reported in O(logn) query time by

this algorithm of Suri. In fact, the problem of reporting k was considered earlier

by ElGindy [126] and Reif and Storer [297]. Their query algorithms report k in

O(logn) query time although the preprocessing time is O(n logn). If both s and t

are query points, Arkin et al. [23] showed that k and MLP (s, t) can be reported in

O(logn) query time and O(logn+ k) query time, respectively. Preprocessing steps

take O(n3) time and space. Reducing the preprocessing cost to O(n2), they showed

that k can be reported in O(logn) query time with an error of at most 1. Related

query problems on link paths between two simple polygons were studied by Arkin

et al. [23] and Chiang and Tamassia [87].

Let us state the method used by the query algorithm of Arkin et al. [23] for

computing MLP (s, t) in P . The algorithm computes window partitioning of P

during preprocessing (i) from every vertex of P , and (ii) from every extension point

on bd(P ) of edges of the visibility graph of P . It can be seen that endpoints of these

windows divide edges of P into intervals and these intervals satisfy the property

that the link sequence of the greedy link path in P from any point of an interval

to a point of some other interval is the same. For every such pair of intervals,

projection functions are composed which are used during queries for computing

MLP (s, t). Adopting this method for computing MLP (s, t), we design a simpler

query algorithm for this problem, which is presented in Section 8.4.2. Although

the query time of our algorithm for computing MLP (s, t) remains O(logn + k),
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preprocessing steps take O(n3 logn) time and space, which is a factor of O(logn)

more than the cost in preprocessing of the query algorithm of Arkin et al. [23].

Query problems on shortest paths and minimum link paths in L1 metric are

studied for rectilinear polygons. As defined earlier, P is a rectilinear polygon if the

internal angle at every vertex of P is 90◦ or 270◦. Consider the query problem of

reporting the rectilinear shortest path RSP (s, t) between two points s and t inside a

simple rectilinear polygon P . RSP (s, t) can be reported in O(logn+ k) query time

by the query algorithm of de Berg [108], where k is the number of edges in RSP (s, t).

Preprocessing steps take O(n logn) time and O(n logn) space. Later, Lingas et al.

[245] and Schuierer [303] reduced the preprocessing cost to O(n) keeping the same

query time. If both s and t are vertices of P , the query time of their algorithms

becomes O(1 + k). Their method computes the rectilinear path which is optimal

in both L1 and the rectilinear link metric (known as the smallest path [254]). For

the corresponding query problems on rectilinear link paths, the same query time

and preprocessing cost can be achieved using the query algorithms of de Berg [108],

Lingas et al. [245] and Schuierer [303]. The shortest path query problem in P

with rectilinear holes was studied by Atallah and Chen [33, 34], Chen et al. [80]

and ElGindy and Mitra [130]. The corresponding query problem on rectilinear link

paths was studied by Das and Narasimhan [102] and de Rezende et al. [109].

8.2 Ray-Shooting Queries in Simple Polygons

In this section, we present the query algorithm of Chazelle et al. [73] for answering

ray-shooting queries inside a simple polygon P . The ray-shooting problem is to

locate the intersection point q′ of a given query −→q with bd(P ) such that q′ is visible

from q. The algorithm of Chazelle et al. answers each ray-shooting query −→q in op-

timal O(log n) query time by locating q′. The algorithm partitions P into geodesic

triangles and using this triangulation, a query can be answered in O(log2 n) query

time. The query time is then improved to O(logn) using a weight-balanced binary

tree [256] and fractional cascading [74, 75]. Preprocessing steps require O(n) time

and O(n) space. The algorithm of Chazelle et al. [73] used the query algorithm of

Guibas and Hershberger [177] (presented in Section 8.4.1) for decomposing P into

geodesic triangles in O(n) time. Here we use a different method for this decomposi-

tion. We assume that the vertices of P are labeled v1, v2, . . . , vn in counterclockwise

order.

The algorithm starts by partitioning P into a balanced geodesic triangulation.

Compute shortest paths (i.e., geodesic paths) SP (v1, vbn/3c), SP (vbn/3c, vb2n/3c) and

SP (vb2n/3c, v1) (see Figure 8.1). Taking the middle vertex vbn/6c of bd(v1, vbn/3c),

compute SP (v1, vbn/6c) and SP (vbn/6c, vbn/3c). Analogously, taking middle vertices

vbn/2c and vb5n/6c of bd(vbn/3c, vb2n/3c) and bd(vb2n/3c, v1), respectively, compute (i)

SP (vbn/3c, vbn/2c) and SP (vbn/2c, vb2n/3c), (ii) SP (vb2n/3c, vb5n/6c) and
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Figure 8.1 The polygon P is partitioned into geodesic triangles up to the stage k = 2.

SP (vb5n/6c, v1). Repeat this process of computing shortest paths taking middle

vertices till the shortest paths connect pairs of vertices, one vertex apart. So, these

shortest paths partition P into disjoint regions called geodesic triangles of P . Ob-

serve that since the boundary of a geodesic triangle is formed by three shortest

paths, each shortest path contributes a reflex chain of vertices on the boundary of

the triangle. It can be seen that the total number of shortest path edges used for

partitioning P into geodesic triangles cannot not exceed n− 3.

Exercise 8.2.1 Let R be the region of P bounded by bd(v1, vbn/3c) and

SP (v1, vbn/3c). Prove that SP (v1, vbn/6c) and SP (vbn/3c, vbn/6c) lie totally

inside R.

Exercise 8.2.2 Design an algorithm to partition P into geodesic triangles

in O(n logn) time.

Let u1, ubn/3c and ub2n/3c be three vertices of P (see Figure 8.1) such that (i)

SP (vbn/3c, v1) and SP (vb2n/3c, v1) meet at u1, (ii) SP (v1, vbn/3c) and

SP (vb2n/3c, vbn/3c) meet at ubn/3c, and (iii) SP (v1, vb2n/3c) and SP (vbn/3c, vb2n/3c)

meet at ub2n/3c. If u1 is same as v1, this means that SP (vbn/3c, v1) and SP (vb2n/3c, v1)

are disjoint. Similarly, it is possible to have ubn/3c = vbn/3c or ub2n/3c = vb2n/3c. It

can be seen that the region of P enclosed by SP (u1, ubn/3c), SP (ubn/3c, ub2n/3c) and

SP (ub2n/3c, u1) is a geodesic triangle. We refer SP (v1, u1), SP (vbn/3c, ubn/3c) and

SP (vb2n/3c, ub2n/3c) as tails of this geodesic triangle. A geodesic triangle along with

its three tails is called a kite. A kite may have an empty geodesic triangle if the

shortest path between two end vertices of the kite passes though the third end vertex

of the kite.

It can be seen that each kite appears at a unique stage k while partitioning P

into geodesic triangles. For example, the kite with end vertices v1, vbn/3c and vb2n/3c
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Figure 8.2 (a) The polygon P is decomposed into kites τ0, τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9.
(b) Kites of the polygon P are represented in the geodesic tree.

appear when k = 1 (see Figure 8.1). Observe that for k > 1, one of the sides of a

kite at stage k shares an edge with a kite at stage k − 1 and the other two sides

share edges with two kites at stage k + 1 (if they exist). At the kth stage, there

are at most 3.2k−1 shortest paths and some of these shortest paths share edges with

shortest paths computed at earlier stages. We have the following observation.

Lemma 8.2.1 The number of kites constructed at the k-th stage during the partition

of P is 1 for k = 1 and at most 3.2k−2 for k > 1.

Let us represent the kites of P computed by the above method by a free tree of

degree 3 called the geodesic tree, which is denoted as GT (see Figure 8.2). The kite

computed in the first stage is represented as the root of GT and the three kites at

stage k = 2 are represented as children of the root of GT as each of them share an

edge with the kite at stage k = 1. Similarly, the kites at stage k are represented as

nodes of GT at depth k−1 with their parents at depth k−2. We have the following

lemma.

Lemma 8.2.2 The height and diameter of GT are at most log n and 2 log n, respec-

tively.

Observe that after P is partitioned into geodesic triangles, a non-polygonal edge

in the partition is shared by two geodesic triangles but the same edge can be present

in the tails of several kites. For example, the edge v1v2 in Figure 8.2(a) is shared by

kites τ0, τ1, τ2 and τ5. Therefore, if a node α of GT corresponds to a kite τ , then only

the geodesic triangle of τ is stored at α and not the tails of τ . This method helps

in keeping the space complexity linear as each non-polygonal edge of the partition
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is stored twice. So, GT can also be viewed as a representation of geodesic triangles

of P . We have the following lemma.

Lemma 8.2.3 A query −→q intersects at most 2 log n geodesic triangles (or kites) in

P .

Proof. Let q′ be the boundary point of P hit by −→q (see Figure 8.2(a)). In order to

reach from q to q′, the segment qq′ has intersected geodesic triangles of P that are

on the path in GT , where the the first and last nodes of GT represent the geodesic

triangles containing q and q′, respectively. Since the number of such triangles inter-

sected by qq′ is at most the diameter of GT (see Figure 8.2(b)), qq′ can intersected

at most 2 log n geodesic triangles of P by Lemma 8.2.2.

The above proof suggests a method for locating q′ as follows. Locate the geodesic

triangle α1 containing q. Using binary search on each concave side of α1, locate

the edge of α1 intersected by −→q . Let w be the point of intersection. If the edge

containing w is a polygonal edge, w is q′. Otherwise, w is the entry point to the

next geodesic triangle α2 in the path from q to q′. Let −→w be the ray starting from

the point w in the same direction as −→q . Using binary searches again on the concave

sides of α2, locate the intersection point of −→w with the boundary of α2. This process

is repeated until q′ is found.

Let us analyze the time complexity of the above method. It has been shown

by Edelsbrunner et al. [119] and Kirkpatrick [216] that by preprocessing a planar

subdivision of triangles of having n edges in O(n) time, data structures can be built

so that a query point can be located in the planar subdivision in O(log n) time.

Note that the geodesic triangles in P can be partitioned into triangles in O(n) time.

Using this method, the geodesic triangle α1 containing q can be located in O(logn)

time. We know that the binary search for checking the intersection of −→q with a

side of a geodesic triangle can be performed in O(logn) time. We also know from

Lemma 8.2.3 that −→q intersects at most 2 log n geodesic triangles of P . Therefore,

q′ can be located in O(log2 n) time. We have the following theorem.

Theorem 8.2.4 A given simple polygon P of n vertices can be preprocessed in

O(n logn) time and O(n) space so that each ray-shooting query −→q in P can be

answered in O(log2 n) query time.

Let us explain how the query time can be improved to O(log n). Let α1, α2, . . . , αm

be the geodesic triangles intersected by qq′ in the order from q to q′, where q ∈ α1,

q′ ∈ αm and m ≤ 2 log n. For any geodesic triangle αi for 1 ≤ i ≤ m, the concave

chain of αi intersected by −→q is called the front chain of αi (see Figure 8.3(a)). Note

that if −→q intersects two concave chains of αi, the closer one is the front chain of

αi. Consider the other two chains of αi. If there exists a parallel line of −→q which

is tangential to one of the chains of αi, the chain is called the side chain of αi (see
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Figure 8.3 (a) The front and side chains of a geodesic triangle αi are shown with respect to
a query ray. (b) The segment rs lies inside P .

Figure 8.3(a)). The problem is now to identify front chains of α1, α2, . . . , αm and

then locate intersection points of −→q with these chains. Moreover, the entire task

has to be carried out in O(logn) time.

The intersection point of −→q with the front chain of αi on some edge vlvr can

be located using a binary search. It can be seen that the total number of binary

searches required to locate subsequent intersection points depends on the size of the

pocket of vlvr, where the pocket of vlvr is bd(vl, vr) (or bd(vr, vl)) if q′ ∈ bd(vl, vr)

(respectively, q′ ∈ bd(vr, vl). So, we use a weight-balanced binary tree, with each

leaf, representing an edge of the front chain and being weighted by the number of

vertices in the pocket of the corresponding edge of the chain. In this tree, the cost

of locating vlvr is O(1 + log(W/w)), where w is the size of the pocket of vlvr and

W is the total size of all pockets of the front chain of αi. Let n1, n2, . . . , nm be the

size of the successive pockets into which −→q enters. Then, the cost of locating q′ is

bounded by

log n+
∑

j

log
nj

nj+1

which is O(logn).

The above analysis is based on the assumption that every time −→q enters into

a geodesic triangle, it can be determined in O(1) time which is the front chain

of the geodesic triangle before the intersection point is computed on the chain by

binary search. So, it is necessary to calculate the cost of identifying side chains of

α1, α2, . . . , αm. For each geodesic triangle α of P , create a fictitious node and link

it to the three roots of weight balanced binary trees representing the three concave

sides of α. It can be seen that each non-polygonal edge of a geodesic triangle is a leaf
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in two such trees. All such pairs of leaves are also connected by edges giving a big

free tree whose every node has degree at most three. For each geodesic triangle α,

an array representing the slopes of all edges of α is assigned to the node representing

α in the big free tree. This gives the fractional cascading structure which allows

searching along a path of length m in O(m + log n) time [74, 75]. Since m can be

at most 2 log n by Lemma 8.2.3, q′ can be located in O(logn) time. We have the

following lemma.

Lemma 8.2.5 Each ray-shooting query −→q in P can be answered in O(logn) time

using fractional cascading.

In the following we present the major steps of the query algorithm for locating q ′.

Step 1. Partition P into geodesic triangles and construct the geodesic tree GT .

Step 2. Construct the data structure by the algorithm of Kirkpatrick [216] for lo-

cating a query point in the geodesic triangle.

Step 3. Represent each side of every geodesic triangle α by a weight balanced binary

tree and connect them to form a big free tree.

Step 4. For each geodesic triangle α, construct the array representing the slopes of

all edges of α and then assign it to the node representing α in the big free tree.

Step 5. For each query −→q do
Step 5a. Locate the geodesic triangle of P containing the point q.

Step 5b. Using fractional cascading, locate the point q′.

Step 5c. Report q′.

Step 6. Stop.

The correctness of the algorithm follows from Theorem 8.2.4 and Lemma 8.2.5.

Let us analyze the time complexity of the algorithm. It has already been established

in Lemma 8.2.5 that q and q′ can be located in Step 5 in O(log n) time. We know that

the data structures in Steps 2, 3 and 4 can be constructed in O(n) time. Partitioning

P into geodesic triangles in Step 1 can also be done in O(n) time as follows.

Compute SPT (v1) by the algorithm of Guibas et al. [178] in O(n) time (see

Section 3.6.1). So, SP (v1, vbn/3c) and SP (v1, vb2n/3c) have been computed. To com-

plete the computation of the geodesic triangle at the first stage, SP (vbn/3c, vb2n/3c)

has to be computed. We take a different approach in computing SP (vbn/3c, vb2n/3c).

We know that vbn/2c is the middle vertex of bd(vbn/3c, vb2n/3c) (see Figure 8.3(b)).

Suppose SP (vbn/2c, vb2n/3c) and SP (vbn/2c, vbn/3c) are known. Then,

SP (vbn/3c, vb2n/3c) can be computed by drawing the tangent between

SP (vbn/2c, vb2n/3c) and SP (vbn/2c, vbn/3c) provided the tangent (say, rs) lies

inside P . Initialize r and s by the next vertex of vbn/2c on SP (vbn/2c, vbn/3c) and

SP (vbn/2c, vb2n/3c) respectively. Note that if SP (vbn/2c, vbn/3c) and
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Figure 8.4 (a) The segment r′s′ is the cross-tangent between SP (v1, w) and SP (vbn/3c, r).
(b) The cross-tangent between SP (v1, w) and SP (vbn/3c, r), does not lie inside P .

SP (vbn/2c, vb2n/3c) meet at some vertex vj other than vbn/2c, then SP (vj , vbn/2c)

is common to both the paths. In that case, r and s are assigned to the next vertices

of vj . Without loss of generality, we assume that vj is vbn/2c. We have the following

four cases.

Case 1. The parent of s in SPT (v1) lies to the left of −→rs and the parent of r in

SPT (v1) lies to the right of −→sr (Figure 8.3(b)).

Case 2. The parent of s in SPT (v1) lies to the right of −→rs and the parent of r in

SPT (v1) lies to the right of −→sr (Figure 8.4).

Case 3. The parent of s in SPT (v1) lies to the left of −→rs and the parent of r in

SPT (v1) lies to the left of −→sr (Figure 8.5(a)).

Case 4. The parent of s in SPT (v1) lies to the right of −→rs and the parent of r in

SPT (v1) lies to the left of −→sr (Figure 8.5(b)).

Consider Case 1. It can be seen that the current rs lies inside P (see Figure

8.3(b)). If rs is the tangent between SP (vbn/2c, vbn/3c) and SP (vbn/2c, vb2n/3c), then

SP (vbn/3c, vb2n/3c) is the concatenation of SP (vbn/3c, r), rs and SP (s, vb2n/3c). Oth-

erwise, if rs is not a tangent to SP (vbn/2c, vb2n/3c) at s, then assign s to the next

vertex of s on SP (vbn/2c, vb2n/3c). Otherwise, assign r to the next vertex of r on

SP (vbn/2c, vbn/3c). Test the above four cases for the new rs.

Consider Case 2. It can be seen that the current rs does not lie inside P (see Figure

8.4). This means that SP (v1, vb2n/3c) has intersected rs. Let ww′ be the first edge

on SP (vbn/2c, vb2n/3c) while moving from s to vb2n/3c such that w′ ∈ SP (w, vb2n/3c)

and w it is the parent of w′ in SPT (v1) (see Figure 8.4(a)). Observe that w and

its parent in SPT (v1) have formed an eave on SP (vbn/3c, vb2n/3c), and w is the
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Figure 8.5 (a) The segment r′s′ is the cross-tangent between SP (v1, u) and SP (vb2n/3c, s).
(b) The segment r′s′ is the tangent between SP (v1, u) and SP (v1, w).

vertex where SP (r, vb2n/3c) and SP (v1, vb2n/3c) meet. Locate the cross-tangent r′s′

between SP (v1, w) and SP (vbn/3c, r), where s′ ∈ SP (v1, w) and r′ ∈ SP (vbn/3c, r).

So, SP (vbn/3c, vb2n/3c) is the concatenation of SP (vbn/3c, r
′), r′s′, SP (s′, w) and

SP (w, vb2n/3c).

Observe that there may not always be a cross-tangent between SP (v1, w) and

SP (vbn/3c, r) that lies inside P (see Figure 8.4(b)). In that case, a similar approach

as above is taken by locating r′ on SP (v1, SP (vbn/3c) instead of SP (vbn/3c, r). There-

fore, r′s′ becomes the tangent (and not the cross-tangent) between SP (v1, SP (vbn/3c)

and SP (v1, SP (vb2n/3c). The remaining task is to construct SP (vbn/3c, r
′). Let u be

the vertex where SP (r, vbn/3c) and SP (r′, SP (vbn/3c) meet. So, SP (vbn/3c, vb2n/3c)

is the concatenation of SP (vbn/3c, u), SP (u, r′), r′s′, SP (s′, w) and SP (w, vb2n/3c).

It can be seen that Case 3 is analogous to Case 2 (see Figure 8.5(a)). In Case

4, the tangent r′s′ is drawn between SP (v1, SP (vbn/3c) and SP (v1, SP (vb2n/3c) (see

Figure 8.5(b)), and the remaining portions of SP (vbn/3c, vb2n/3c) are constructed as

before by locating vertices w and u on SP (s, vb2n/3c) and SP (r, vbn/3c), respectively.

The above method shows that with the help of SPT (v1), SP (vbn/3c, vb2n/3c) can

be computed correctly from SP (vbn/2c, vb2n/3c) and SP (vbn/2c, vbn/3c). It can be

seen that the time for computing SP (vbn/3c, vb2n/3c) is proportional to the sum

of (i) the number of vertices of SPT (v1) included in SP (vbn/3c, vb2n/3c), and (ii)

the number of vertices of SP (vbn/2c, vb2n/3c) and SP (vbn/2c, vbn/3c) not included in

SP (vbn/3c, vb2n/3c).

The above method suggests that once the shortest paths between the vertices

at the leaves of GT are computed, the entire geodesic partitioning of P can be

computing by drawing tangents and cross-tangents with the help of SPT (v1). Since
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there can be at most one intermediate vertex between the pair of vertices at the leaf

level of GT , all shortest paths at the leaf level of GT can be computed in O(n) time.

Applying the above method at each intermediate node of GT , P can be partitioned

into geodesic triangles in O(n) time. We have the following lemma.

Exercise 8.2.3 Let vj be a vertex in the shortest path between a pair of

vertices at some stage k > 1. Prove that if vj is not in the shortest path

of any pair of vertices at the stage k − 1, then no shortest path at stages

k′ < k passes through vj.

Lemma 8.2.6 A geodesic triangulation of P can be constructed in O(n) time.

We summarize the result in the following theorem.

Theorem 8.2.7 A given simple polygon P of n vertices can be preprocessed in

O(n) time and O(n) space so that each ray-shooting query −→q in P can be answered

in O(logn) query time.

8.3 Visibility Polygon Queries for Points in Polygons

8.3.1 Without Holes: O(logn+ k) Query Algorithm

In this section, we present the query algorithm of Bose et al. [60] for report-

ing the visibility polygon V (q) of a query point q inside a simple polygon P in

O(logn+ k) query time, where k is the number of vertices of V (q). The algorithm

takes O(n3 logn) preprocessing time and O(n3) space. In a preprocessing step, the

algorithm decomposes P into a set of disjoint regions and stores their adjacency re-

lationship. To answer a query, the algorithm locates the region (say, ci) containing

the query point in O(logn) time, and then traverses a subset of regions starting from

ci using the adjacency relationship to extract V (q), taking O(k) time. We assume

that the vertices of P are labeled v1, v2, . . . , vn in counterclockwise order.

Consider the visibility polygon V (vj) from a vertex vj . We know that each con-

structed edge vlu of V (vj) defines a region or pocket of P that is not visible from vj

(see Figure 8.6(b)). If the pocket is bounded by vlu and bd(vl, u), then the pocket

and vlu are called a right pocket and a right constructed edge of V (vj), respectively.

Otherwise, the pocket and vlu are called a left pocket and a left constructed edge of

V (vj), respectively.

The algorithm starts by decomposing P into disjoint regions called visibility cells.

Compute visibility polygons V (v1), V (v2), . . . , V (vn). Let Wj denote the set of

all constructed edges of V (vj). For all j, add Wj to P . These constructed edges

decompose P into a planar subdivision C = (c1, c2, . . . , cm), where each face ci of
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Figure 8.6 (a) Since q1 and q2 are two points in the same visibility cell ci, vertices in V (q1)
and V (q2) are the same. (b) The disjoint regions of P − V (vj) are pockets of V (vj).

the subdivision C is called a visibility cell (see Figure 8.6(a)). We have the following

observations.

Lemma 8.3.1 For any two points q1 and q2 in any visibility cell ci of C, the vertices

of P in V (q1) and V (q2) are the same.

Proof. Assume on the contrary that there exists a vertex vp in P such that vp ∈
V (q1) but vp /∈ V (q2). This means that q1 lies inside V (vp) and q2 lies inside a

pocket of V (vp). Therefore, a constructed edge in V (vp) has intersected ci with one

part of ci containing q1 and the other part containing q2. Hence, ci is not a visibility

cell, which is a contradiction.

Lemma 8.3.2 The number of visibility cells in the planar subdivision C is O(n3).

Proof. We know that the number of constructed edges in the visibility polygon

of a vertex in P is O(n). So, the total number of constructed edges in V (v1),

V (v2), . . . , V (vn) is O(n2). Let vlu be a constructed edge in the visibility polygon

of a vertex vj . It can be seen that at most two constructed edges of V (vi) for i 6= j

can intersect vlu. So, there are O(n) intersection points on vlu. Therefore, there

are O(n3) intersection points on all constructed edges in V (v1), V (v2), . . . , V (vn)

giving the bound on the number of vertices and edges of C. Since C is a planar

subdivision, the number of faces of C is O(n3). Hence, the number of visibility cells

in the planar subdivision C is O(n3).

Exercise 8.3.1 Draw a simple polygon P such that the number of visi-

bility cells in the planar subdivision C of P is Ω(n3).
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For every visibility cell ci, take a point qi ∈ ci and compute V (qi) in O(n) time by

the algorithm of Lee [230] (see Section 2.2.1). By Lemma 8.3.1, the vertices of V (qi)

are the vertices of the visibility polygon of any query point q lying in ci. However,

the boundaries of V (qi) and V (q) are not identical as constructed edges on the two

boundaries are different. Let vlu be a constructed edge of V (qi). Let vsvs+1 be the

edge of P containing the point u. It can be seen that −→qvl intersects vsvs+1 at some

point (say, u′) and vlu
′ is a constructed edge of V (q). Thus, for every constructed

edge in V (qi), the corresponding constructed edge of V (q) can be computed. Hence,

V (q) can be obtained from V (qi) in time proportional to the size of V (q).

Let us discuss the procedure for locating the visibility cell in C containing a

query point q. The planar subdivision C can be constructed from constructed

edges in O(n3 log n) time using sweep-line methods given in Edelsbrunner [117]. If

constructed edges are in general position, C can be computed in O(n3) time by the

algorithm of Chazelle and Edelsbrunner [72]. Since constructed edges may not be

in general position, the cost of computing C is considered O(n3 logn) time. After

this construction, C is preprocessed for planar point location in O(n3 logn) time by

the algorithm of Kirkpatrick [216]. After this preprocessing, the visibility cell in C

containing a query point q can be located in O(logn) time. In the following, we

present the major steps of the query algorithm for computing V (q) in P .

Step 1. Compute visibility polygons V (v1), V (v2), . . . , V (vn) by the algorithm of

Lee [230] and form the set W containing all constructed edges of these visibility

polygons.

Step 2. Compute the planar subdivision C using constructed edges in W by the

algorithm given in Edelsbrunner [117].

Step 3. Construct the data structure for locating a query point in C by the algorithm

of Kirkpatrick [216].

Step 4. For every visibility cell ci of C, take a point qi ∈ ci and compute V (qi) by

the algorithm of Lee [230].

Step 5. For each query point q do

Step 5a. Locate the visibility cell ci of C containing the point q.

Step 5b. Compute V (q) from V (qi).

Step 5c. Report V (q).

Step 6. Stop.

Theorem 8.3.3 A given simple polygon P of n vertices can be preprocessed in O(n4)

time and O(n4) space so that the visibility polygon V (q) of each query point q in P

can be computed in O(logn + k) query time, where k is the number of vertices of

V (q).
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Figure 8.7 (a) The dual graph G of C. (b) Each edge of G is assigned a direction to indicate
the loss of a visible vertex.

It can be seen that the preprocessing cost of the above algorithm is dominated by

the cost of computing visibility polygons from O(n3) points q1, q2, . . . , qm in Step 4.

In order to reduce the cost, we modify the algorithm showing that it is enough to

compute visibility polygons from one representative point of O(n2) visibility cells

having special properties. Let cj be a visibility cell in C (see Figure 8.7(a)) such

that for every adjacent visibility cell ct of cj , qt sees all vertices of V (qj), where qt
and qj are points of ct and cj , respectively, and in addition, qt sees one more vertex

of P (say, vf ). Intuitively, if the segment separating cj and ct is crossed from cj to

ct, one more vertex becomes visible. Observe that the segment separating cj and

ct is a part of a constructed edge of V (vf ) and cj lies inside the pocket of that

constructed edge. All visibility cells of C satisfying the property of cj are referred

to as minimal visibility cells. We have the following observation.

Lemma 8.3.4 The number of minimal visibility cells in C is O(n2).

Proof. Let vlu be a constructed edge of V (vs) (see Figure 8.7(a)). Let ab be

a boundary segment of a minimal visibility cell cj such that ab is a part of vlu.

Without loss of generality, we assume that vlu is a left constructed edge of V (vs).

Let bc be the next clockwise segment of ab on the boundary of cj and it is a part

of a constructed edge vhw of V (vf ). Since cj is a minimal visibility cell, cj lies in

the pocket of V (vs) as well as in the pocket of V (vf ). Observe that since vhw has

intersected vlu, vhw does not intersect any other left constructed edge of V (vs) as

pockets in a visibility polygon are disjoint. This observation suggests that although

there can be O(n2) intersection points on all left constructed edges of V (vs), only

O(n) intersection points can be on the boundary of minimal visibility cells that

are also points on left constructed edges of V (vs). The same bound holds for right
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constructed edges of V (vs). Since there are n visibility polygons, there are O(n2)

minimal visibility cells in C.

Exercise 8.3.2 Draw a simple polygon P such that the number of mini-

mum visibility cells in the planar subdivision C of P is Ω(n2).

Let us identify minimal visibility cells from the dual graph G of C. Represent

every visibility cell of C as a node in G and connect two nodes by an edge in G if

and only if their corresponding visibility cells are adjacent in C (see Figure 8.7(a)).

Let ab be a segment on the boundary of two adjacent visibility cells ct and cg (see

Figure 8.7(b)), where ab is a part of a constructed edge of the visibility polygon

of some vertex vs. We know that vs is visible from every point of one of ct and

cg (say, cg) and is not visible from any point of other visibility cell ct. Assign a

direction from cg to ct in the corresponding edge in G. Intuitively, a directed edge

in G represents the loss of a visible vertex in the direction from one visibility cell to

its adjacent visibility cell. We have the following observation.

Lemma 8.3.5 If there is no outward edge from a node in G, the corresponding

visibility cell of the node is a minimal visibility cell in C (Figure 8.7(b)).

For every minimal visibility cell cj , take a point qj ∈ cj and compute V (qj) in O(n)

time by the algorithm of Lee [230] (see Section 2.2.1). Note that O(n2) visibility

polygons can be computed in O(n3) time. Let ci be the visibility cell containing the

query point q. If ci is a minimal visibility cell ci, V (q) can be computed from V (qi)

as stated earlier. Consider the other situation when ci is not a minimal visibility cell

(see Figure 8.7(b)). Consider any directed path α in G from the node representing ci
to a node representing a minimal visibility cell (say, cj). Let ct be the next visibility

cell of cj on α. Let vf be the vertex of P such that the boundary segment separating

cj and ct is a part of a constructed edge vlu of V (vf ). We know that vl belongs to

V (qj). If vlu is a right (or, left) constructed edge, insert vf in V (qj) as the next

clockwise (or counterclockwise) vertex of vl to obtain V (qt), where qt ∈ ct. If vlvf
is not a polygonal edge, add the appropriate constructed edge at vl to V (qt). Take

the next visibility cell cg of ct on α and compute V (qg) from V (qt). Repeat this

process till V (q) is computed. It can be seen that the length of α is less than k and

therefore, V (q) can be computed from V (qj) in O(k) time. We have the following

lemma.

Lemma 8.3.6 The visibility polygon V (q) can be computed from the visibility poly-

gon from a point in a minimal visibility cell using the dual graph G of C in O(k)

time.

In the following, we present the major steps of the modified query algorithm for

computing V (q) in P .
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Step 1. Compute visibility polygons V (v1), V (v2), . . . , V (vn) by the algorithm of

Lee [230] and form the set W containing all constructed edges of these visibility

polygons.

Step 2. Compute the planar subdivision C using constructed edges in W by the

algorithm given in Edelsbrunner [117].

Step 3. Construct the data structure for locating a query point in C by the algorithm

of Kirkpatrick [216].

Step 4. Compute the dual graph G of C and assign a direction to each edge of G.

Identify all minimal visibility cells in C using depth-first search on G.

Step 5. For every minimal visibility cell cj of C, take a point qj ∈ cj and compute

V (qj) by the algorithm of Lee [230].

Step 6. For each query point q do

Step 6a. Locate the visibility cell ci of C containing the point q.

Step 6b. Take a directed path α in G from the node representing ci to a node

representing a minimal visibility cell cj .

Step 6c. Traverse α in the opposite direction and obtain V (q) by inserting the

remaining visible vertices of q in V (qj).

Step 6d. Report V (q).

Step 7. Stop.

The correctness and the time complexity of the algorithm follow from Lemmas

8.3.2, 8.3.4 and 8.3.6. We summarize the result in the following theorem.

Theorem 8.3.7 A given simple polygon P of n vertices can be preprocessed in

O(n3 log n) time and O(n3) space so that the visibility polygon V (q) of each query

point q in P can be computed in O(logn+ k) query time, where k is the number of

vertices of V (q).

8.3.2 With Holes: O(n) Query Algorithm

In this section, we present the query algorithm of Asano et al. [28] for computing

the visibility polygon V (q) of a query point q in a polygon P with holes (see Figure

8.8(a)). The algorithm reports V (q) in O(n) query time after preprocessing steps

taking O(n2) time and O(n2) space. The algorithm uses point-line duality to find

the sorted angular order of vertices of P around q, and then uses triangulation and

set-union operations to compute portions of edges of P that are visible from q. It

may be noted that the query time of this algorithm is always O(n) even though the

number of vertices of V (q) may be less than n.

As in the algorithm of Asano [27] for computing V (q) once for one point q (see

Section 2.3), we need to sort the vertices of P in angular order around q. On the
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Figure 8.8 (a) The visibility polygon V (q) of a query point q in a polygon P with holes. (b)
Six regions are formed by lines d1, d2 and d3 drawn through the sides of a triangle D.

other hand, the vertices of P cannot be sorted directly for every query point q as

it costs O(n logn) time for each query point. Using the duality transform between

points and lines, the sorted angular order of vertices of P with respect to any query

point q can be obtained in O(n) query time.

In the first preprocessing step of the algorithm, the vertices of P are transformed

into lines in the dual plane forming an arrangement of lines. For more details of

this transformation, see the proof of Lemma 5.3.2. The planar subdivision formed

by this arrangement can be constructed in O(n2) time and space by the algorithm

of Chazelle et al. [77] or Edelsbrunner et al. [120]. For any point u ∈ P , let

L(u) denote the line in the the dual plane. Given a query point q, the line L(q) is

inserted in the arrangement taking O(n) time. Observe that the line connecting q

and a vertex vi of P in the original plane corresponds to the intersection point of

L(q) and L(vi) in the dual plane. By properties of the duality transformation, the

ordering by slope of the lines passing through q and every vertex vi corresponds to

the ordering by x-coordinates of intersection points of L(q) with every line L(vi) in

the dual plane. Using this property, the ordering of vertices of P in increasing order

of angle at q can be obtained from their ordering of slopes in O(n) time. We have

the following lemma.

Lemma 8.3.8 The sorted angular order of vertices of P around a query point q can

be computed in O(n) query time using O(n2) space and O(n2) preprocessing time.

Once the sorted angular order of vertices of P around q is known, V (q) can be

computed by angular sweep following the algorithm of Asano [27] (see Section 2.3).

However, this method takes O(n logn) time. The query algorithm adopts a different

method for computing V (q) and takes O(n) time.
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Figure 8.9 (a) Vertices v17, v18 and v19 are introduced in P on the vertical ray drawn from
q. (b) Each edge of Sq is represented on orthogonal axes as a horizontal segment.

The algorithm uses another preprocessing step for assigning ranks to edges of P

with respect to q. Let ei and ej be two edges of P such that ei is closer to q than

ej (see Figure 8.8(a)). Then the rank assigned to ej is greater than that of ei, i.e.,

rank(ei) < rank(ej). Let S denote the set of edges e1, e2, . . . , en of P . To assign

ranks to all edges in S, we need a relation ≺q on S. For every pair of edges ei and

ej in S, ei ≺q ej if a ray from q intersects both ei and ej and the intersection point

with ei is closer to q than the intersection point with ej . Observe that the directed

graph of the ≺q can have cycles, and therefore, ≺q may not be a partial order. To

convert it to a partial order, each edge in S, intersecting the upward vertical ray

from q, is split into two parts at the point of intersection (see Figure 8.9(a)). Let

Sq denote the set of all edges of S including split edges of S. It can be seen that

the relation ≺q is now a partial order on the edges of Sq. We have the following

observation.

Lemma 8.3.9 The rank of an edge in Sq is its rank in a total order compatible with

the relation ≺q.

Triangulate P by the algorithm of Ghosh and Mount [165] in O(n logn) time and

O(n) space (see Section 5.3.2). Using the triangles, construct the data structure

by the algorithm of Kirkpatrick [216] so that a query point q can be located in the

triangle containing q in O(logn) query time. Also triangulate the internal region of



8.3 Visibility Polygon Queries for Points in Polygons 275

every hole of P by the algorithm of Ghosh and Mount. Let T (P ) denote the resulting

triangulation of P and its holes (see Figure 8.8(a)). Note that the computation of

T (P ) and the construction of the data structure for planar point location are done

in preprocessing steps of the algorithm.

Let us return to the discussion of assigning ranks to edges of Sq. The algorithm

first computes a total order on the edges of T (P ) in which ≺q on Sq is embedded.

Then, a total order on Sq is computed from the total order on the edges of T (P ).

From the total order on Sq, ranks of edges in Sq are computed as suggested in

Lemma 8.3.9.

Connect q by diagonals to three vertices of the triangle containing q. Locate the

triangles of T (P ) intersected by the vertical ray from q (see Figure 8.9(a)). Cut these

triangles into two parts using this vertical ray and triangulate each non-triangular

face by adding a diagonal. The resulting triangulation is denoted as Tq. It can be

seen that the above method computes Tq from T (P ) in O(n) time and each edge of

Sq is an edge of Tq.

Let us construct a directed graph G(Tq) on the edges of Tq. Consider a triangle

D formed by triangulating edges d1, d2, and d3 of Tq (see Figure 8.8(b)). Let d1,

d2 and d3 denote the lines containing edges d1, d2, and d3, respectively. Let h(d1),

h(d2) and h(d3) denote the half-planes of d1, d2 and d3, respectively such that

they do not contain D. Let R1 = h(d1) − (h(d2) ∪ h(d3)). Similarly, let R2 =

h(d2) − (h(d1) ∪ h(d3)) and R3 = h(d3) − (h(d1) ∪ h(d2)). Let R′1 = h(d2) ∩ h(d3).

Similarly, let R′2 = h(d1)∩h(d3) and R′3 = h(d1)∩h(d2). It can be seen that R1, R2,

R3, R
′
1, R

′
2, R

′
3 and D are faces of the arrangement of lines d1, d2 and d3. Directed

edges in G(Tq) are introduced between d1, d2, and d3 depending upon the location

of q in the arrangement of d1, d2 and d3 as follows (see Figure 8.8(b)).

Case 1. If q is an internal point of R1, add edges from d2 to d1 and from d3 to d1
in G(Tq) as rays from q intersect d1 before intersecting either d2 or d3. The cases

where q is an internal point of R2 or R3 are analogous.

Case 2. If q is an internal point of R′1, add edges from d1 to d2 and from d1 to d3
in G(Tq) as rays from q intersect either d2 or d3 before intersecting d1. The cases

where q is an internal point of R′2 or R′3 are analogous.

Case 3. If q is a boundary point of both R2 and R′3, add an edge from d3 to d2 in

G(Tq) as rays from q intersect d2 before intersecting d3. The cases where q is a

boundary point of other faces (excluding D) are analogous.

Case 4. If q ∈ D, add no edges to G(Tq) as rays from q do not cross any pair of

edges of D.

Using the above four cases, all directed edges are introduced between edges in Tq

which gives G(Tq). We have the following observation on G(Tq).
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Lemma 8.3.10 The directed graph G(Tq) is acyclic. Moreover, for every pair of

edges ei and ej in Sq such that ei ≺q ej, there is a directed path from ej to ei in

G(Tq).

Exercise 8.3.3 Prove Lemma 8.3.10.

It can be seen that a topological order of G(Tq) is a total order on Tq in which

≺q is embedded. Therefore, a total order on Sq can be obtained, which gives the

ranking of edges in Sq by Lemma 8.3.9. Since the number of vertices and edges of

G(Tq) is O(n), the topological sort [221] as well as the ranking of edges in Sq can

be done in O(n) time. We have the following lemma.

Lemma 8.3.11 For a query point q, the ranking of edges in Sq can be done in O(n)

query time using O(n) space and O(n logn) preprocessing time.

Let us label the edges e1, e2, . . . , em of Sq according to their ranks, where m < 2n.

After relabeling, ei in Sq represents the edge with rank i, i.e., rank(ei) = i. We also

define ranks for two endpoints of ei according to their positions in the sorted angular

order around q. For every edge ei of Sq, ai and bi denote the ranks of two endpoints

of ei in the sorted angular order around q in the counterclockwise direction, where

ai < bi.

Let us identify the edges in Sq that are partially or totally visible from q. It can

be seen that e1 is totally visible from q. Consider the next edge e2. If no ray from

q intersects both e1 and e2, then e2 is also totally visible from q. In other words, if

b2 < a1 or b1 < a2, then e2 is also entirely visible from q. If every ray from q that

intersects e1 also intersects e2, then no point of e2 is visible from q. Otherwise, a

part of e2 is visible from q. Consider the next edge e3. Again, comparing with e1
and the visible portion of e2, the portion of e3 visible from q can be determined. In

this process, the visible portions of edges in Sq can be determined in O(n2) time.

We show that the above method of considering edges in the increasing order of

ranks can be implemented in O(n) time. Let us represent each edge ei of Sq on

orthogonal axes as a horizontal segment si connecting two points with co-ordinates

(ai, i) and (bi, i) (see Figure 8.8(b)). Consider the vertical line Li with ai as x-

coordinate in the orthogonal representation of Sq. Let sj be the segment with the

smallest y-coordinate (i.e., the lowest segment) intersected by Li. It can be seen

that ej is partially or totally visible from q in P because ej is the edge with the

smallest rank intersected by the ray drawn from q through the endpoint of ei which

corresponds to ai. Therefore, the problem of computing V (q) now becomes the

problem of computing the lowest segment at each x-coordinate in the orthogonal

representation of Sq.

This problem is solved using the set-union algorithm of Gabow and Tarjan [146].

The set-union algorithm starts with disjoints sets, and allows two operations f ind(k)
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and link(k) on these sets. The operation f ind(k) returns the maximum element of

the set containing k, and link(k) unites the set containing k with the set containing

k + 1. The algorithm of Gabow and Tarjan can perform a sequence of f ind(k) and

link(k) operations, on-line, in time proportional to the number of operations.

In the context of identifying lowest segments, the set-union algorithm starts with

Nx + 2 disjoint sets {0}, {1}, . . . , {Nx}, {Nx + 1}, where Nx is the maximum x-

coordinate in the orthogonal representation of Sq. For any segment si, the operation

f ind(k) takes ai as the value of k and locates the x-coordinate c such that (i) the

lowest segments intersected by the vertical lines with x-coordinates from ai to c

have already been computed, and (ii) the lowest segment intersected by the vertical

line with c+ 1 as the x-coordinate is yet to be computed. In other words, f ind(ai)

gives the leftmost x-coordinate that is at least ai and immediately to the right of

which the lowest segment is not known. The set-union algorithm for determining

lowest segments in the orthogonal representation of Sq is given below. The index i

is initialized to 0.

Step 1. Increment i by 1 and c := find(ai).

Step 2. While c < bi do begin visible(c) := si; link(c); c := find(c) end.

Step 3. If i < |Sq| then goto Step 1.

Step 4. Report the visible segments of Sq by scanning the array visible[0..Nx] and

Stop.

The above algorithm performs link(k) operation at most once for each x-coordinate.

Observe that once link(c) is performed, the value c is never returned again by any

f ind operation. Therefore, f ind and link operations are performed at most O(n)

times. Hence, the above algorithm runs in O(n) time. We have the following lemma.

Lemma 8.3.12 The lowest segments in the orthogonal representation of Sq can be

determined in O(n) time.

Once lowest segments and their order in the orthogonal representation of Sq are

known, V (q) can be constructed easily from their corresponding edges in P . In the

following, we present the major steps of the query algorithm for computing V (q) in

P .

Step 1. Transform every vertex of P into a line in the dual plane and compute the

planar subdivision A formed by the arrangement of these lines using the algorithm

of Chazelle et al. [77].

Step 2. Triangulate P and its holes by the algorithm of Ghosh and Mount [165].

Step 3. Construct the data structure by the algorithm of Kirkpatrick [216] for

locating a query point q in the triangle of the triangulation of P .

Step 4. For each query point q do
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Step 4a. Transform q into a line L(q) in the dual plane and compute the intersec-

tion points of L(q) with edges in A. From the intersection points, obtain the

sorted angular order of vertices P around q.

Step 4b. Let T (P ) denote a copy of the triangulation of P and its holes. Locate

the triangle of T (P ) containing q and add three diagonals connecting q to

the vertices of the triangle. Cut the triangles of T (P ) that are intersected by

the vertical ray from q, and triangulate each non-triangular face by adding a

diagonal to obtain a new triangulation Tq.

Step 4c. Form a directed graph G(Tp) by assigning direction between edges of Tp

using Cases 1 to 4.

Step 4d. Take the polygonal edges of T (P ) to form the set Sq. Assign the ranks

to edges in Sq from the total order in G(Tp).

Step 4e. Construct the orthogonal representation of Sq and find the lowest seg-

ments using the set-union operations f ind(k) and link(k).

Step 4f. Compute V (q) using the lowest segments and their order.

Step 4g. Report V (q).

Step 5. Stop.

The correctness and the time complexity of the query algorithm follow from Lem-

mas 8.3.8, 8.3.11 and 8.3.12. We summarize the result in the following theorem.

Theorem 8.3.13 A polygon P with holes with a total of n vertices can be prepro-

cessed in O(n2) time and space so that the visibility polygon V (q) of each query point

q in P can be computed in O(n) query time.

8.4 Path Queries Between Points in Simple Polygons

8.4.1 Shortest Paths: O(logn+ k) Query Algorithm

In this section, we present the query algorithm of Guibas and Hershberger [177] for

computing the Euclidean shortest path SP (s, t) between two query points s and t

inside a simple polygon P . The algorithm computes SP (s, t) in O(logn+ k) query

time, where k is the number of edges in SP (s, t). Preprocessing steps take O(n) time

and space. The algorithm decomposes P into sub-polygons in a balanced fashion

by diagonals in a triangulation of P and uses these sub-polygons to construct O(n)

funnels and hourglasses in P . The funnels and hourglasses lying in the path between

s and t in P are then combined to compute SP (s, t). We assume that the vertices

of P are labeled v1, v2, . . . , vn in counterclockwise order.

The algorithm starts by decomposing P into sub-polygons. In order to compute

SP (s, t) in O(logn + k) query time, P is decomposed in such a way that SP (s, t)

passes through only a logarithmic number of sub-polygons. For decomposing P , the
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Figure 8.10 (a) The polygon P is decomposed into triangles in a balanced fashion by diag-
onals d0, d1, . . . , d14. (b) Additional edges are added to the decomposition tree Td to form
the factor graph T ∗

d .

polygon cutting theorem of Chazelle [70] is used recursively. The theorem states

that any simple polygon P of n vertices for n ≥ 4 has a diagonal that divides P

into two sub-polygons with at least ((n/3) + 1) vertices and at most (2(n/3) + 1)

vertices. Applying the theorem recursively on each sub-polygon, P can be decom-

posed into triangles (see Figure 8.10(a)) and the decomposition is called a balanced

decomposition of P .

Exercise 8.4.1 Assume that the given polygon P has been triangulated.

Design an algorithm for a balanced decomposition of P of n vertices in

O(n logn) time [70].

We know that P can be triangulated in O(n) by the algorithm of Chazelle [71]

(see Theorem 1.4.6). From the triangulation of P , a balanced decomposition of P

can be computed in O(n) time by the algorithm of Guibas et al. [178]. We have the

following lemma.

Lemma 8.4.1 A balanced decomposition of P can be constructed by diagonals in a

triangulation of P in O(n) preprocessing time.

Let us construct a binary tree Td whose nodes represent diagonals used in the

balanced decomposition of P (see Figure 8.10(b)). Let d0 be the diagonal used to

cut P into two sub-polygons P1 and P2. So, d0 is at the root of Td. Let d1 and d2
be the diagonals used to cut P1 and P2, respectively. So, d1 and d2 are the children

of d0 in Td. The children of d1 in Td are those diagonals that are used to cut two

sub-polygons of P1. Similarly, the children of d2 in Td are those diagonals that are

used to cut two sub-polygons of P2. In this fashion, the decomposition tree Td is

constructed from the diagonals used in the balanced decomposition of P .
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Let P (d) denote the sub-polygon which has been cut by the diagonal d during

the balanced decomposition of P . So, P (d0) is P , P (d1) is P1 and P (d2) is P2.

Let depth(d) denote the depth of the diagonal d in Td. So, P (d) has no more

than O((23)
depth(d)n) vertices because of the balanced decomposition of P . This fact

suggests the following lemma.

Lemma 8.4.2 The height of Td is O(log n).

We know that every time a sub-polygon P (d) is cut by a diagonal d into two sub-

polygons (say, P ′(d) and P ′′(d)), d becomes an edge on the boundary of both P ′(d)

and P ′′(d). This implies that all the diagonals that are on the boundary of P (d) are

ancestors of d in Td and therefore, there can be at most depth(d) diagonals on the

boundary of P (d), which is O(log n). We state this fact in the following lemma.

Lemma 8.4.3 The number of diagonals on the boundary of P (d) is at most depth(d).

Let the diagonal d′ be the parent of d in Td. We know that d′ is a diagonal on

the boundary of P (d), depth(d) > depth(d′), and depth(d′) is the largest among

the depths of other diagonals on the boundary of P (d). Connect d by edges to all

diagonals (including d′) on the boundary of P (d). Once such edges are added in Td

for all d ∈ Td, the resulting graph is called the factor graph of Td and is denoted as

T ∗d (see Figure 8.10(b)). We have the following lemmas on T ∗d .

Lemma 8.4.4 The degree of a node in T ∗d is O(log n).

Proof. For any diagonal d as a node in T ∗d , there are at most depth(d) edges in T ∗d
connecting d to diagonals of lesser depth in T ∗d due to Lemma 8.4.3. Moreover, d

has edges in T ∗d to diagonals of higher depth. Observe that once P (d) is cut by d, d

is an edge on the boundary at most two sub-polygons at every level of subsequent

decompositions and therefore, d has edges to at most two diagonals at each depth

greater than depth(d) in T ∗d . Hence, the degree of d in T ∗d is O(logn).

Lemma 8.4.5 The number of edges in T ∗d is O(n).

Proof. Let d and d′ be two diagonals in T ∗d such that d′ is a leaf in the sub-tree

of T ∗d rooted at d. Let height(d) denote the height of d in T ∗d . So, height(d) =

depth(d′) − depth(d). If height(d) is h, it can be proved by induction that P (d)

contains at least b( 32)h−1 + 1c triangles of a triangulation of P (d). As the sub-

polygons corresponding to diagonals with the same height h are disjoint, there can

be O((23)
hn) diagonals in T ∗d with height h. We know that T ∗d has n−3 diagonals as

nodes in T ∗d and from each diagonal d, there are 2× height(d) edges to descendants

in T ∗d as there are at most two edges from d to nodes at each depth in T ∗d . So, the

number of edges in T ∗d is
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∑

d∈T ∗
d

2× height(d) = O(
∑

k≤1+log3/2 n

h

(

2

3

)h

n) = O(n).

Let us define separating diagonals in the triangulation of P . Consider any diagonal

d in Td. We know that d partitions P into two sub-polygons. If query points s

and t lie on different sub-polygons of d, then SP (s, t) must intersect d in order to

reach t from s. Such diagonals d are called separating diagonals. In Figure 8.10(a),

separating diagonals in the order from s to t are d3, d1, d9, d4, d10, d0, d11, d5, d12.

Note that separating diagonals may be different for different pairs of query points s

and t. We have the following lemma.

Lemma 8.4.6 There can be O(n) separating diagonals in Td for a pair of query

points.

Let ds (or dt) denote the first (respectively, last) separating diagonal that is in-

tersected by SP (s, t) while traversing from s to t. Let dmin denote the separating

diagonal having minimum depth in Td. It can be seen that dmin is the least com-

mon ancestor of ds and dt in Td. In Figure 8.10, d3, d0 and d12 are ds, dmin and dt

respectively. All separating diagonals in the path in Td from ds to dmin and from

dmin to dt (including ds, dt and dmin) are called principal separating diagonals. The

set of all principal separating diagonals in the order from ds to dt is denoted as Dst.

In Figure 8.10(b), ds = d3, dmin = d0 and dt = d12 and Dst = (d3, d1, d0, d5, d12).

Note that d2 is not a principal separating diagonal although it is in the path from

d12 to d0 in Td. On the other hand, although d9 is a separating diagonal, d9 is not a

principal separating diagonal because d9 is not in the path from d3 to d0 in Td. We

have the following lemmas.

Lemma 8.4.7 There are at most O(logn) principal separating diagonals in Dst.

Proof. Since the diagonals in Dst in the order from ds (and dt) to dmin are of

strictly decreasing depth, there are O(logn) principal separating diagonals in Dst

due to Lemma 8.4.2.

Lemma 8.4.8 Any two consecutive principal separating diagonals in Dst are con-

nected by an edge in T ∗d .

Proof. Let d and d′ denote two consecutive diagonals in Dst. We know that either

d′ is an edge on the boundary of P (d) or d is an edge on the boundary of P (d′). So,

d and d′ are connected by an edge in T ∗d .
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Let us state the procedure for locating diagonals in Dst. Construct the data

structure in O(n) preprocessing time by the algorithm of Kirkpatrick [216] for planar

point location. Using this data structure, the triangles containing s and t in the

triangulation of P are located in O(logn) query time. Let vi, vj and vk be the

vertices of the triangle containing s. Assume that vk belongs to bd(vi, vj). If vivj is

ds, then all three vertices of the triangle containing t belong to bd(vj , vi), which can

be tested in O(1) time by comparing the numbering of these vertices. Otherwise,

similar tests are carried out for vjvk and vkvi to identify ds. Using the analogous

method, dt can also be located in O(1) time. For every diagonal d from ds to dt in Td,

check whether d is a separating diagonal. Thus, all principal separating diagonals in

Dst are located in O(log n) query time. We state this fact in the following lemma.

Lemma 8.4.9 All principal separating diagonals in Dst can be identified in O(logn)

query time using O(n) preprocessing time and space.

Once the diagonals in Dst are known, SP (s, t) is computed in O(logn) query time

by ‘combining’ hourglasses formed by adjacent diagonals in Dst. Hourglasses for all

pairs of diagonals connected by edges in T ∗d are computed during preprocessing so

that the hourglasses formed by adjacent diagonals in Dst are readily available for

computing SP (s, t). Before we explain how adjacent hourglasses can be combined in

order to compute SP (s, t), we state a preprocessing step for computing hourglasses

corresponding to edges of T ∗d .

Let vavb and vcvd be two non-intersecting diagonals in P such that va, vb, vd and

vc are in counterclockwise order on the boundary of P . Let H(ab, cd) be the region of

P bounded by vavb, vcvd, SP (va, vc) and SP (vb, vd) (see Figure 8.11(a)). The region

H(ab, cd) is called a hourglass in P for diagonals vavb and vcvd. We refer SP (va, vc)

and SP (vb, vd) as the upper and lower chains of H(ab, cd), respectively. If SP (va, vc)

and SP (vb, vd) are disjoint, H(ab, cd) is called an open hourglass (see Exercise 5.3.4).

Otherwise, H(ab, cd) is called a closed hourglass as no point of vavb is visible from

any point of vcvd (see Figure 8.11(b)). This implies that H(ab, cd) is the union of

two funnels with bases vavb and vcvd, and the shortest path connecting apexes of

these two funnels. We know that SP (va, vc) and SP (vb, vd) can be computed by the

algorithm of Lee and Preparata [235] in time proportional to the number of vertices

of H(ab, cd) (see Section 3.6.1). For every edge of T ∗d connecting diagonals d and d′,

the hourglass for d and d′ is constructed during preprocessing. Computing all these

hourglasses takes O(n2) preprocessing time and space as there are O(n) edges in T ∗d
by Lemma 8.4.5.

Consider the problem of combining hourglasses for adjacent pairs of diagonals in

Dst. Let vavb, vcvd and vevf three consecutive diagonals in Dst in the order from

s to t (see Figure 8.11(a)). As before, we assume that vf , vc, va, vb, vd and vf ,

are in counterclockwise order on the boundary of P . Consider the case where both

H(ab, cd) and H(cd, ef) are open hourglasses (see Figure 8.11(a)). The problem is
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Figure 8.11 (a) Both H(ab, cd) and H(cd, ef) are open hourglasses. (b) H(ab, cd) is a closed
hourglass whereas H(cd, ef) is an open hourglass.

to compute SP (va, ve) and SP (vb, vf ). Draw the tangent between SP (va, vc) and

SP (vc, ve). Let vivj be the tangent where vi ∈ SP (va, vc) and vj ∈ SP (vc, ve).

If vivj lies inside P , then SP (va, ve) is the concatenation of SP (va, vi), vivj and

SP (vj , ve). If the tangent between SP (vb, vd) and SP (vd, vf ) also lies inside P (see

Figure 8.11(a)), SP (vb, vf ) can be computed analogously.

Consider the other situation where vivj does not lie inside P . So, vivj is

intersected by SP (vb, vd) or SP (vd, vf ) (see Figure 8.12). If the cross-tangent

between SP (vb, vd) and SP (vc, ve) is incident on a vertex vh ∈ SP (vc, vj) (see Fig-

ure 8.12(a)), then SP (vb, vd) has intersected vivj . Similarly, if the cross-tangent

between SP (va, vc) and SP (vd, vf ) is incident on a vertex vh ∈ SP (vi, vc) (see Fig-

ure 8.12(b)), then SP (vd, vf ) has intersected vivj . In such a situation, SP (va, ve) is

the concatenation of SP (va, vi), SP (vi, vj) and SP (vj , ve). Note that H(ab, ef) is a

closed hourglass. If vivj has been intersected by SP (vb, vd) or SP (vd, vf ), SP (vi, vj)

can be computed using appropriate cross-tangents between lower and upper chains

of H(ab, cd) and H(cd, ef).

Exercise 8.4.2 Let H(ab, cd) and H(cd, ef) be two open hourglasses such

that the tangent between upper chains is intersected by both lower chains.

Draw H(ab, cd) and H(cd, ef) and mark all edges (including tangents) of

SP (va, ve).

Consider the case where H(ab, cd) is a closed hourglass and H(cd, ef) is an open

hourglass (see Figure 8.11(b)). We know that H(ab, cd) consists two funnels and the

shortest path connecting the apexes of these two funnels. Let vg ∈ SP (va, vc) be the

apex of the funnel with base vcvd. Treating vg as both va and vb, draw the tangents

and cross-tangents as stated in the previous case. Using these tangents, compute
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Figure 8.12 The tangent vivj between upper chains of H(ab, cd) and H(cd, ef) is intersected
by the lower chain of (a) H(ab, cd) or (b) H(cd, ef).

SP (vg, ve) and SP (vg, vf ). So, SP (va, ve) is the concatenation of SP (va, vg), and

SP (vg, ve). Similarly, SP (vb, vf ) is the concatenation of SP (vb, vg) and SP (vg, vf ).

If H(ab, cd) is an open hourglass and H(cd, ef) is a closed hourglass, they can be

combined to form H(ab, ef) using the method analogous to the previous case. If

both H(ab, cd) and H(cd, ef) are closed hourglasses, tangents are drawn between

those two funnels having vcvd as the common base.

Exercise 8.4.3 Let H(ab, cd) and H(cd, ef) be two closed hourglasses.

Draw H(ab, cd) and H(cd, ef) and mark all edges (including tangents) of

SP (va, ve) and SP (vb, vf ).

In the procedure for combining H(ab, cd) and H(cd, ef), the query algorithm uses

binary search for computing the tangent or a cross-tangent between the convex parts

of two chains following the method of Overmars and Leeuwen [277] for computing

tangents between two convex chains of points for dynamic maintenance of the convex

hull. Using their method, all tangents and cross-tangents for any pair of adjacent

hourglasses (of total m vertices) during the process of combining can be located in

O(logm) time. We have the following lemma.

Lemma 8.4.10 Two adjacent hourglasses of total m vertices can be combined in

O(logm) time.

Using the above procedure, combine the adjacent pair of hourglasses formed by

diagonals in Dst. Combine the resulting hourglasses again in the pairwise manner by

the above procedure. Repeat this process till the hourglass (say, Hst) for diagonals

ds and dt is formed. Take the triangle formed by s with ds, and treating this triangle

as a funnel with s as the apex and ds as the base, combine the funnel with Hst (see
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Figure 8.13 (a) Two funnels with apexes s and t are combined with Hst to compute SP (s, t).
(b) Hourglasses for diagonals (i) ds and d−s , (ii) d−s and d+

s , (iii) d+
s and d+

t , (iv) d+
t and d−t ,

and (v) d−t and dt are combined to form Hst.

Figure 8.13(a)). The resulting hourglass, consisting of a path (which can be empty)

and a funnel with base dt, is again combined with the funnel whose apex is t and

base is dt. It can be seen that the final hourglass has degenerated into a path which

is SP (s, t).

Exercise 8.4.4 Let q be a query point lying outside the given convex

polygon C of m vertices. Design a query algorithm for computing both

tangents from q to C in O(logm) query time and O(m) preprocessing

time [291].

Let us calculate the query time required for computing SP (s, t). The lower (and

upper) chain of every hourglass computed during preprocessing is stored as a con-

catenable queue which can be realized by a height-balanced tree. Concatenable

queues support binary search, split and merge operations [14]. Since adjacent hour-

glasses are combined in a pairwise manner, which takes O(logn) time by Lemma

8.4.10, and there are O(logn) diagonals in Dst by Lemma 8.4.7, the entire process

of combining adjacent hourglasses can be done in O(log2 n) query time.

Consider the problem of concatenating two chains of H(ab, cd) and H(ab, ef) to

form a chain of H(ab, ef). Since chains of H(ab, cd) and H(ab, ef) are stored as

concatenable queues, two portions of the chains, connected by the tangent, can be

concatenated in O(1) time without any extra space. In Figure 8.11(a), the upper

chain of H(ab, cd) is split at vi to form two convex chains. Similarly, the upper

chain of H(cd, ef) is split at vj to form two convex chains. Now, the convex chain

formed by SP (va, vi) is concatenated with the convex chain formed by SP (vj , ve)

giving the upper chain of H(ab, ef). Observe that the portions of chains of H(ab, cd)
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and H(ab, ef), that are not included after concatenation, should be preserved be-

cause chains of H(ab, cd) and H(ab, ef) before concatenation may again be required

for subsequent queries. So, additional pointers to these portions are stored along

with the tangent at the time of concatenation. Once the computation of SP (s, t)

is complete, converse operations of concatenations are performed using the stored

pointers to restore the starting concatenable queues [277, 291]. The entire process

of restoration takes O(log2 n) time. We have the following theorem.

Theorem 8.4.11 A simple polygon P of n vertices can be preprocessed in O(n2)

time and space so that the shortest path between two query points s and t in P can

be computed in O(log2 n + k) query time, where k is the number of edges in the

shortest path.

Exercise 8.4.5 Design a query algorithm for computing the shortest path

between two query points s and t in a simple polygon P of n vertices taking

O(logn + k) query time and O(n3) preprocessing time and space, where

k is the number of edges in the shortest path.

During preprocessing, hourglasses for pairs of diagonals corresponding to edges in

T ∗d are constructed directly by the algorithm of Lee and Preparata [235]. Using the

procedure for combining two adjacent hourglasses explained above, the preprocess-

ing time and space for constructing hourglasses corresponding to edges in T ∗d can

be reduced to O(n) as follows.

Let P (d) be a sub-polygon of m vertices. Let P ′(d) and P ′′(d) be two sub-polygons

that can be obtained by cutting P (d) using the diagonal d. Assume that for every

diagonal d′ on the boundary of P ′(d), the hourglass for d and d′ has been computed.

Similarly, we assume that for every diagonal d′′ on the boundary of P ′′(d), the

hourglass for d and d′′ has been computed. Using the procedure for combining two

adjacent hourglasses, all hourglasses across d can be computed. Observe that the

diagonals of each combined hourglass are connected by an edge in T ∗d .

We know that the time required for computing each such hourglass is O(logm),

which is proportional to height(d). Using involved analysis, Guibas and Hershberger

have shown that the additional space required to store each combined hourglass

is also O(height(d)). This procedure of combining two hourglasses across their

common diagonal d can be used in the bottom-up fashion starting with the diagonals

represented in the leaves of Td. It can be seen that all hourglasses computed in this

fashion are the hourglasses represented by edges in T ∗d .

We know that the cost of combining two hourglasses across their common diagonal

d is proportional to height(d), which in turn is less than height(w), where w and

w′ are the diagonals of the combined hourglass with height(w) > height(w′). Since

there are O(height(w)) edges in T ∗d connecting w with the diagonals of lower height,

the hourglasses corresponding to these edges can be constructed in O((height(w))2)
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time and space. So, the construction of all hourglasses takes time and space

proportional to

∑

w∈T ∗
d

(height(w))2 = O(
∑

h≤1+log3/2 n

h2
(

2

3

)h

n) = O(n).

Let us explain how the query time for computing SP (s, t) can be improved to

O(logn + k) without increasing the preprocessing time and space as suggested by

Exercise 8.4.5. Observe that if many shortest path queries are answered, hourglasses

for diagonals with low depths in T are used many times. In order to avoid combining

these hourglasses over and over again, additional hourglasses are constructed during

preprocessing to provide the necessary bypass structure for cutting a logarithmic

factor off the query time for computing Hst.

Consider Td. Since Td represents a balanced decomposition of P , there can be

at most O(n/ log2 n) nodes in Td with at least α log2 n descendents, where α is a

parameter which can be used to trade off between preprocessing time and query

time. Let U denote the set of nodes of Td with at least α log2 n descendants (see

Figure 8.13(b)). Since nodes in U have low depths in Td, they are referred to as

upper nodes in Td. Note that all ancestors of every upper node are also upper nodes

in Td. For every upper node d, add edges in T ∗d between d and all its ancestors.

Since d has O(logn) ancestors, the number of edges added to T ∗d is O(n/ logn).

Let us calculate the preprocessing time and space required for constructing hour-

glasses corresponding to additional edges in T ∗d . For every upper node d, (i) hour-

glasses are constructed for diagonals along the path from d to the root of Td, (ii)

at most O(logn) hourglasses are combined during this construction, and (iii) the

time required to compute each intermediate hourglass is O(log n). Since there are

O(n/ log2 n) upper nodes, the construction of hourglasses corresponding to addi-

tional edges in T ∗d takes O(n) time and space. We have the following lemma.

Lemma 8.4.12 Hourglasses in P corresponding to edges of T ∗d can be computed in

O(n) time and space.

With these additional hourglasses, computing Hst becomes faster. Consider the

diagonals in Dst. If dmin does not belong to U , then there are O(log2 n) edges

in P (dmin) by the definition of U , and ds and dt are diagonals on the boundary

of P (dmin). So, the number of hourglasses combined in order to produce Hst is

O(log(log2 n)) = O(log log n) and the time required for combining a pair of hour-

glasses is O(log(log n)) = O(log logn). So, Hst can be computed in O(log logn)2

time.

Consider the other situation where dmin belongs to U (see Figure 8.13(b)). Let d−s
and d+s be two ancestors of ds in Td such that d−s is a child of d+s , d

−
s does not belong

to U , and d+s belongs to U . In other words, d−s /∈ U is an ancestor of ds having
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minimum depth in Td and d+s ∈ U is an ancestor of ds having maximum depth

in Td. Two such nodes d−t and d+t for dt are defined analogously. The hourglass

for diagonals d−s and d+s , the hourglass for diagonals d+s and d+t and the hourglass

for diagonals d+t and d−t are already computed during preprocessing. We know

from the analysis mentioned earlier that the hourglass for diagonals ds and d−s and

the hourglass for diagonals d−t and dt can be computed in O(log logn)2 time. By

combining these five hourglasses, Hst can be computed in O(log log n)2+O(log n) =

O(logn) time. We have the following lemma.

Lemma 8.4.13 The hourglass Hst can be computed in O(logn) query time.

Corollary 8.4.14 The next vertex of s and the previous vertex of t on SP (s, t) can

be identified in O(logn) query time.

Once Hst is computed in O(logn) time, computing SP (s, t) takes O(log n + k)

query time as all other steps of the query algorithm take O(log n) time. In the

following, we present the major steps of the query algorithm for computing SP (s, t)

in P for a pair of query points s and t.

Step 1. Triangulate P by the algorithm of Chazelle [71].

Step 2. Decompose P in a balanced fashion by the algorithm of Guibas et al. [178]

and construct the corresponding decomposition tree Td.

Step 3. For each pair of diagonals d and d′ on the boundary of every sub-polygon

formed during the decomposition of P , add an edge between d and d′ in Td to

form the factor graph T ∗d .

Step 4. Identify upper nodes of Td and connect them to all their ancestors by edges

in T ∗d .

Step 5. Compute hourglasses corresponding to edges in T ∗d by combining hourglasses

pairwise across their common diagonals in the button up fashion starting with the

diagonals represented in the leaves of Td.

Step 6. Construct the data structure by the algorithm of Kirkpatrick [216] for

locating a query point in the triangle of the triangulation of P .

Step 7. For each pair of query points s and t in P do

Step 7a. Locate s and t in the triangles of the triangulation of P and identify

diagonals ds and dt.

Step 7b. Form the set Dst by locating principal separating diagonals between ds

and dt. Identify the diagonal dmin in Dst.

Step 7c. If dmin is not an upper node in Td then construct the hourglass Hst by

combining hourglasses across the diagonals between ds and dt in Dst and goto

Step 7e.
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Step 7d. Identify nodes d−s , d
+
s , d

−
t and d+t in Td. Construct the hourglass Hst by

combining hourglasses across a subset of diagonals between ds and dt in Dst.

Step 7e. Draw tangents from s and t to Hst and identify vertices of SP (s, t).

Step 7f. Report SP (s, t).

Step 8. Stop.

The correctness and the time complexity of the query algorithm follow from Lem-

mas 8.4.1, 8.4.9, 8.4.10, 8.4.12 and 8.4.13. We summarize the result in the following

theorem.

Theorem 8.4.15 A simple polygon P of n vertices can be preprocessed in O(n) time

and space so that the shortest path between two query points s and t in P can be

computed in O(logn+ k) query time, where k is the number of edges in the shortest

path.

8.4.2 Link Paths: O(logn+ k) Query Algorithm

In this section, we present a query algorithm for computing the minimum link path

MLP (s, t) between two query points s and t inside a simple polygon P in O(log n+

k) query time (see Figure 7.1(a)), where k is the number of links in MLP (s, t).

Preprocessing steps of the algorithm take O(n3 logn) time and space. We assume

that the vertices of P are labeled v1, v2, . . . , vn in counterclockwise order.

During preprocessing, the algorithm considers all pairs of vertices of P , and for

each pair of vertices vi and vj , a sub-polygon Rij ⊂ P is computed by the algorithm

of Ghosh [155] (see Section 7.2.2) such that turning points of MLP (vi, vj) lie on

the boundary of Rij and links of MLP (vi, vj) pass through vertices of SP (vi, vj)

(see Figure 8.14(a)). Then, using the algorithm of Aggarwal et al. [12] (see Section

7.5.1), the edges on the boundary of Rij are divided into intervals such that the link

sequence of the greedy path in Rij from any point of an interval is same. From link

sequences, projection functions of intervals in Rij are composed and stored along

with the intervals. For a pair of query points s and t, the algorithm locates the

sub-polygon containing all turning points of MLP (s, t) on its boundary and then

locates these turning points using projection functions of intervals on the boundary

of the sub-polygon.

Let us explain the preprocessing step of the algorithm for computing Rij using the

algorithm of Ghosh [155] presented in Section 7.2.2. Compute SP (vi, vj) (see Figure

8.14(a)). Let ui and uj be adjacent vertices of vi and vj on SP (vi, vj), respectively.

Extend viui from ui to bd(P ) meeting it at a point z. Take a point wi arbitrary

close to z on bd(P ) such that viwi meets SP (vi, vj) only at vi and viwi lies inside P .

Analogously, extend vjuj from uj to bd(P ) meeting it at a point z′. Take a point
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Figure 8.14 (a) The sub-polygon Pij is obtained by cutting P by viwi, vjwj and those edges
of SP (vi, vj) that are not eaves of SP (vi, vj). (b) The vertices vi, ui, vj and uj are identified
for a pair of points s and t.

wj arbitrary close to z′ on bd(P ) such that vjwj meets SP (vi, vj) only at vj and

vjwj lies inside P . Cut P by viwi, vjwj and those edges of SP (vi, vj) that are not

eaves of SP (vi, vj). So, P is split into several parts and the part containing both

vi and vj is denoted as Pij . If SP (vi, vj) does not contain an eave, compute the

sub-polygon Rij ⊆ Pij such that both tangents from any point z ∈ Rij to SP (vi, vj)

lie inside Rij . If SP (vi, vj) contains eaves, Pij is partitioned by extending eaves and

from these parts of Pij , the sub-polygon Rij is computed.

Consider a pair of points s and t in P such the adjacent vertices of s and t

on SP (s, t) are ui and uj respectively, and sui and twj intersect viwi and vjuj ,

respectively (see Figure 8.14(b)). Extend sui from ui to the boundary of Rij meeting

it at zs. Similarly, extend tuj from uj to the boundary of Rij meeting it at zt.

Construct the greedy path from zs to a point of ujzj in Rij by the algorithm of

Ghosh [155], which gives MLP (s, t). Let us use this method to compute MLP (s, t)

for any pair of query points s and t in P . Using the query algorithm of Guibas

and Hershberger [177] (see Section 8.4.1), locate the adjacent vertices of s and t

on SP (s, t) and call them ui and uj , respectively (see Figure 8.14(b)). Take the

adjacent vertex of ui on bd(P ) as vi, where sui intersects viwi. Similarly, take the

adjacent vertex of uj on bd(P ) as vj , where tuj intersects vjwj . Since Rij has been

computed for all pairs of vertices vi and vj of P during preprocessing, MLP (s, t)

can be computed in Rij by the above method.

We know from Corollary 8.4.14 that for a pair of query points s and t, locating

ui and uj takes O(logn) query time. However, computing MLP (s, t) in Rij by

the algorithm of Ghosh [155] takes time proportional to the size of Rij . We show

that MLP (s, t) can be computed in Rij in O(log n + k) query time. After the
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computation of Rij for all pairs of vertices vi and vj of P during preprocessing,

each Rij is considered again. By the algorithm of Aggarwal et al. [12] presented in

Section 7.5.1, the edges on the boundary of Rij are divided into intervals. From link

sequences of these intervals, projection functions of intervals in Rij are composed

and stored along with intervals. Once zs is located by binary search on an interval

I of Rij during query, the forward projection point of zs on ujzt (say, zp) can be

located using the projection function (say, f) of I. Therefore, the link distance

between s and t can be computed in O(log n) query time.

To compute turning points of MLP (s, t), we follow the method suggested by

Chandru et al. [69]. Assume that f has been composed of projection functions

f1, f2, . . . , fg, where f1 is composed with f2, (f1 ∗ f2) is composed with f3 and so

on. This means that (f1) gives the first turning point of zs, (f1 ∗ f2) gives the

second turning point of zs, (f1 ∗ f2 ∗ f3) gives the fourth turning point of zs, and

so on. We know that f3 is composed of two projection functions (say, f ′3 and

f ′′3 ). So, the third turning point of zs can be computed by the projection function

(f1 ∗ f2 ∗ f ′3). Therefore, turning points of MLP (s, t) between zs and zp can be

computed using these intermediate projection functions in time proportional to the

number of turning points. Thus all turning points of MLP (s, t) can be computed

in O(logn+ k) query time.

In the following, we present the major steps of the query algorithm for computing

MLP (s, t) in P for a pair of query points s and t.

Step 1. Triangulate P by the algorithm of Chazelle [71].

Step 2. Construct the data structure by the algorithm of Kirkpatrick [216] for

locating a query point in the triangle of the triangulation of P .

Step 3. For every pair of vertices vi and vj of P do

Step 3a. Compute SP (vi, vj) by the algorithm of Lee and Preparata [235].

Step 3b. Let ui and uj be adjacent vertices of vi and vj on SP (vi, vj), respec-

tively. Extend viui from ui to bd(P ) and take a point wi ∈ bd(P ) close to the

intersection point. Extend vjuj from uj to bd(P ) and take a point wj ∈ bd(P )

close to the intersection point.

Step 3c. Cut P by viwi, vjwj and the edges of SP (vi, vj) that are not eaves of

SP (vi, vj) and identify the sub-polygon Pij containing both vertices vi and vj .

Step 3d. Compute the sub-polygon Rij from Pij by the algorithm of Ghosh [155].

Step 3e. By the algorithm of Aggarwal et al. [12], compute intervals on the

boundary of Rij , compose projection functions of these intervals and store them

along with intervals.

Step 4. For each pair of query points s and t in P do

Step 4a. Locate s and t in the triangles of the triangulation of P .
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Step 4b. Locate adjacent vertices of s and t on SP (s, t) by the algorithm of Guibas

and Hershberger [177] and label them as ui and uj , respectively.

Step 4c. Choose the appropriate adjacent vertices of ui and uj on bd(P ) as vi and

vj , respectively.

Step 4d. Extend sui from ui to the boundary of Rij meeting it at a point zs.

Extend tuj from uj to the boundary of Rij meeting it at a point zt.

Step 4e. Locate the interval containing zs on the boundary of Rij by binary

search. Using the projection function of the interval, compute the forward

projection point zp of zs on ujzt.

Step 4f. Compute turning points of MLP (s, t) between zp to zs by intermediate

projection functions associate with intervals of Rij .

Step 4g. Report MLP (s, t).

Step 5. Stop.

The correctness of the algorithm follows from the algorithms of Ghosh [155],

Aggarwal et al. [12], Guibas and Hershberger [177] and Chandru et al. [69]. Let

us analyze the time complexity of the algorithm. We know that Steps 1 and 2 take

O(n) time. Since Steps 3a and 3d take O(n) time and Step 3e takes O(n logn)

time and space, Step 3 can be executed in O(n3 log n) time and space. So, the

preprocessing of P can be done in O(n3 log n) time and space. It has already been

shown that the query time for Step 4 is O(logn + k). We summarize the result in

the following theorem.

Theorem 8.4.16 A simple polygon P of n vertices can be preprocessed in O(n3 log n)

time and space so that the minimum link path between two query points s and t in

P can be computed in O(logn+k) query time, where k is the number of links in the

path.

8.5 Notes and Comments

The algorithm of Kirkpatrick [216] has been used for locating positions of query

points in a given triangulated polygon P in query algorithms presented in this chap-

ter. Kirkpatrick’s algorithm builds subdivision hierarchies of P using triangulation

in O(n) time and space. These hierarchies are represented as a layered, directed

graph, where the degree of each node of the graph is constant and the total depth

of the graph is O(logn). Using this graph, the query point is located in a triangle

inside P in O(logn) query time.

There are other query algorithms for locating query points in a given planar

subdivision P . The first algorithm for this problem was given by Dobkin and Lipton

[112]. Their algorithm partitions P into slabs by drawing vertical lines through



8.5 Notes and Comments 293

vertices of P taking O(n2 log n) preprocessing time and O(n2) space. During a

query, the slab containing a query point is located by binary search and then another

binary search is performed to locate the position of the query point in the region

of the slab bounded by two edges of P . Thus, the algorithm answers a query in

O(logn) query time. Preparata [290] showed that by partitioning P into trapezoids

in place of slabs, preprocessing time and space can be reduced to O(n logn) keeping

the query time the same.

Lee and Preparata [233] introduced an alternative method and their method par-

titions P into monotone chains taking O(n logn) preprocessing time and O(n) space.

During a query, discrimination of a query point with monotone chains is performed

by binary search to locate the region of P containing the point. However, the query

time of the algorithm is O(log2 n). Using fractional cascading, the query time of this

chain method was improved to O(logn) by Edelsbrunner et al. [119] keeping the

preprocessing time and space requirements the same. Sarnak and Tarjan [302] gave

another algorithm for point location in O(logn) query time taking O(n logn) prepro-

cessing time and O(n) space. Their method combined techniques of slab method,

plane sweep and persistence to build a data structure for answering queries. A

similar method was also suggested by Cole [94].

Let us mention parallel algorithms for query problems considered in this chapter.

Consider the problem of ray shooting in a simple polygon P . For this problem,

Goodrich et al. [173, 174] gave an algorithm following the sequential algorithm of

Chazelle and Guibas [76]. They also gave an algorithm for computing the shortest

path between query points in a simple polygon P following the sequential algorithm

of Guibas and Hershberger [177]. Both these algorithms run in O(logn) time using

O(n) processors in the CREW-PRAM model of computations. If the triangulation

of P is given, Hershberger [187] showed that both these problems can be solved in

O(logn) time using O(n/ logn) processors in the CREW-PRAM model of compu-

tations. A parallel algorithm for the problem of computing the minimum link path

between two query points in a simple polygon P can be designed by parallelizing

each step of the sequential algorithm presented in Section 8.4.2.
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