
Variants of Evolutionary Algorithms for Real-World
Applications

Raymond Chiong, Thomas Weise,
and Zbigniew Michalewicz (Eds.)

Variants of Evolutionary
Algorithms for Real-World
Applications

ABC

Editors

Raymond Chiong
Faculty of ICT
Swinburne University of Technology
Melbourne, VIC 3122, Australia
E-mail: rchiong@swin.edu.au

Thomas Weise
Nature Inspired Computation and
Applications Laboratory
School of Computer Science and
Technology
University of Science and
Technology of China (USTC)
Hefei 230027, Anhui, China
E-mail: tweise@ustc.edu.cn

Zbigniew Michalewicz
School of Computer Science
University of Adelaide
Adelaide, SA 5005, Australia
E-mail: zbyszek@cs.adelaide.edu.au

ISBN 978-3-642-23423-1 e-ISBN 978-3-642-23424-8

DOI 10.1007/978-3-642-23424-8

Library of Congress Control Number: 2011935740

c© 2012 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Dupli-
cation of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always
be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Started as a mere academic curiosity, Evolutionary Algorithms (EAs) first
came into sight back in the 1960s. However, it was not until the 1980s that
the research on EAs became less theoretical and more practical. As a manifes-
tation of population-based, stochastic search algorithms that mimic natural
evolution, EAs use genetic operators such as crossover and mutation for the
search process to generate new solutions through a repeated application of
variation and selection.

Due to their ability to find excellent solutions for conventionally hard and
dynamic problems within acceptable time, EAs have attracted interest from
many researchers and practitioners in recent years. The general-purpose,
black-box character of EAs makes them suitable for a wide range of real-
world applications. Standard EAs such as Genetic Algorithms (GAs) and
Genetic Programming (GP) are becoming more and more accepted in the in-
dustry and commercial sectors. With the dramatic increase in computational
power today, an incredible diversification of new application areas of these
techniques can be observed. At the same time, variants and other classes of
evolutionary optimisation methods such as Differential Evolution, Estimation
of Distribution Algorithms, Co-evolutionary Algorithms and Multi-Objective
Evolutionary Algorithms (MOEAs) have been developed.

When applications or systems utilising EAs reach the production stage,
off-the-shelf versions of these methods are typically replaced by dedicated
algorithm variants. These specialised EAs often use tailored reproduction
operators, search spaces differing significantly from the well-known binary
or tree-based encodings, non-trivial genotype-phenotype mappings, or are
hybridised with other optimisation algorithms. This book aims to promote
the practitioner’s view on EAs by giving a comprehensive discussion of
how EAs can be adapted to the requirements of various applications in the

VI Preface

real-world domains. It comprises 14 chapters, which can be categorised into
the following four sections:

• Section I: Introduction
• Section II: Planning & Scheduling
• Section III: Engineering
• Section IV: Data Collection, Retrieval & Mining

The first section contains only one single chapter – the introductory chap-
ter. In this chapter, Blum et al. re-visit the fundamental question of “what
is an EA?” in an attempt to clearly define the scope of this book. In this
regard, they systematically explore and discuss both the traditional and the
modern views on this question by relating it to other areas in the field. That
is, apart from discussing the main characteristics of conventional EAs they
also extend their discussion to Memetic Algorithms (MAs) and the Swarm In-
telligence algorithms. It appears that establishing semantic borders between
the different algorithm families is never easy, nor necessarily useful. In this
book, however, the focus will be on the traditional set of EAs like GAs, GP,
and their variants.

The second section of the book deals with planning and scheduling prob-
lems. Planning and scheduling activities are among the most important tasks
in Business and Industry. Once orders are placed by a customer, it is neces-
sary to schedule the purchase of raw materials and to decide which machines
are going to be used in order to create the ordered product in the desired qual-
ity. Often, multiple different client requests need to be facilitated at the same
time and the goal is to satisfy all of them in a timely and cost-effective man-
ner. However, it is not only the production steps that need to be scheduled.
In fact, the whole behaviour of a supply chain as well as the work assignments
for employees can be subject to planning. This section contains six chapters,
with different groups of researchers presenting efficient EA approaches to a
variety of real-world planning and scheduling problems.

The first chapter in this section by Mohais et al. introduces a tailor-made
EA for the process of bottling wine in a mass-production environment. Time-
varying (dynamic) constraints are the focus of this chapter. That is, schedul-
ing for job shop problems rarely starts with a blank sheet of paper. Instead,
some production processes will already be in progress. Hence, there is typ-
ically a set of scheduled operations that are fixed and cannot be modified
by optimisation, yet will influence the efficiency and feasibility of new plans.
Mohais et al. successfully approach the wine bottling problem with their
tailor-made evolutionary method.

Following which, Toledo et al. present a similar real-world problem for
soft-drink manufacturing plants known as the synchronised and integrated
two-level lot sizing and scheduling problem. Here, the first production level
has tanks storing the soft drink flavours and the second level corresponds
to the bottling lines. The problem involves capacity limits, different costs
and production times depending on the raw materials involved as well as the

Preface VII

inventory costs. In order to derive production schedules with low associated
costs in this scenario, Toledo et al. propose the use of an MA. This algorithm
has a population structured as tree of clusters. It uses either Threshold Ac-
cepting or Tabu Search as local search, and utilises different operators. These
variants have shown to outperform both the GA and a Relax approach based
on some real-world data sets. In particular, the Tabu Search variant has
turned out to be very efficient and robust.

The third chapter of the section by Lässig et al. considers simulation-based
optimisation of hub-and-spoke inventory systems and multi-location inven-
tory systems with lateral transshipments. Such systems are very common in
the industry, but it is extremely challenging to find the optimal order and
transshipment policies for them in an analytical way. Lässig et al. therefore
suggest a simulation-based evolutionary approach, where the utility of rules
is estimated by simulating the behaviour of the system applying them. This
simulation process is used to compute the fitness of the policies. Lässig et al.
show that Threshold Accepting, Particle Swarm Optimisation, and especially
GAs can effectively tackle the resulting optimisation problems.

Subsequently, Schellenberg et al. present a fuzzy-evolutionary approach
for optimising the behaviour of a multi-echelon supply chain network of an
Australian ASX Top 50 company. They use an EA for synthesising fuzzy
rules for each link of the supply chain in order to satisfy all demands while
adhering to system constraints (such as silo capacity limits which must not be
exceeded due to overproduction further down the chain). Their experimental
studies show that the evolution of behaviour rules that can issue commands
based on the current situation is much more efficient than trying to generate
complete plans scheduling each single supply and production event.

The following chapter by Dasgupta et al. provides a new solution to the
task-based sailor assignment problem faced by the US Navy. That is, a sailor
in active duty is usually reassigned to a different job around every three
years. Here, the goal is to pick new jobs for the sailors currently scheduled
for reassignment in a way that is most satisfying for them as well as the com-
manders. In the work presented by Dasgupta et al., these assignments have
been broken further down to different tasks for different timeslots per sailor.
For this purpose, Dasgupta et al. use a parallel implementation of a hybrid
MOEA which combines the NSGA-II and some intelligent search operations.
The experimental results show that the proposed solution is promising.

In the final chapter of the section, Ma and Zhang discuss how a produc-
tion planning process can be optimised with a GA using the example of
CNC-based work piece construction. A customisable job shop environment
is presented, which can easily be adapted by the users. The optimisation ap-
proach then simultaneously selects the right machines, tools, commands for
the tools, and operation sequences to manufacture a desired product. The
applied GA minimises a compound of the machine costs, the tool costs and
the machine, setup, and tool change cost. It is embedded into a commercial

VIII Preface

computer-aided design system and its utility is demonstrated through a case
study.

The work of Ma and Zhang leads us to the third section of this book, ad-
dressing another crucial division of any industrial company: R & D (Research
and Development) and Engineering. In this area, EA-based approaches again
have shown huge potential for supporting the human operators in creating
novel and more efficient products. However, there are two challenges. On one
hand, the evaluation of an engineering design usually involves complex sim-
ulations and hence, takes quite a long time to complete. This decreases the
utility of common EAs that often require numerous fitness evaluations. On
the other hand, many engineering problems have a high-dimensional search
space, i.e., they involve many decision variables. In this section, three chap-
ters showcase how these challenges can be overcome and how EAs are able
to deliver excellent solutions for hard, real-world engineering problems.

In mechanical design problems, the goal is to find structures with specific
physical properties. The Finite Element Method (FEM) can for example be
used to assess the robustness of composite beams, trusses, airplane wings,
and piezoelectric actuators. If such structures are to be optimised, as is the
case in the chapter presented by Davarynejad et al., the FEM represents an
indispensable tool for assessing the utility of the possible designs. However,
each of its invocations requires a great amount of runtime and thus slows
down the optimisation process considerably. To this end, Davarynejad et al.
propose an adaptive fuzzy fitness granulation approach – a method which
allows approximating the fitness of new designs based on previously tested
ones. The proposed approach is shown to be able to reduce the amount of
FEM invocations and speed up the optimisation process for these engineering
problems significantly.

In the next chapter, Turan and Cui introduce a hybrid evolutionary ap-
proach for ship stability design, with a particular focus on roll on/roll off
passenger ships. Since the evaluation of each ship design costs much run-
time, the MOEA (i.e., NSGA-II) utilised by Turan and Cui is hybridised
with Q-learning to guide the search directions. The proposed approach pro-
vides reasonably good results, where Turan and Cui are able to discover ship
designs that represent significant improvements from the original design.

The chapter by Rempis and Pasemann presents a new evolutionary method,
which they called the Interactively Constrained Neuro-Evolution (ICONE)
approach. ICONE uses an EA for synthesising the walking behaviour of hu-
manoid robots. While bio-inspired neural control techniques have been highly
promising for robot control, in the case when many sensor inputs have to be
processed and many actuators need to be controlled the search space size
may increase rapidly. Rempis and Pasemann therefore propose the use of
both domain knowledge and restrictions of the possible network structures in
their approach. As the name suggests, ICONE is interactive, thus allows the
experimenter to bias the search towards the desired structures. This leads to
excellent results in the walking-behaviour synthesis experiments.

Preface IX

The final section of the book concerns data collection, retrieval, and min-
ing. The gathering, storage, retrieval and analysis of data is yet another essen-
tial area not just in the industry but also the public sectors, or even military.
Database systems are the backbone of virtually every enterprise computing
environment. The extraction of information from data such as images has
many important applications, e.g., in medicine. The ideal coverage of an area
with mobile sensors in order to gather data can be indispensible for, e.g.,
disaster recovery operations. This section covers four chapters dealing with
this line of real-world applications from diverse fields.

A common means to reduce cost in the civil construction industry is to sta-
bilise soil by mixing lime, cement, asphalt or any combination of these chem-
icals into it. The resulting changes in soil features such as strength, porosity,
and permeability can then ease road constructions and foundation. In the
chapter presented by Alavi et al., a Linear GP (LGP) approach is used to
estimate the properties of stabilised soil. GP evolves program-like structures,
and its linear version represents programs as a sequential list of instructions.
Alavi et al. apply LGP in its original (purely evolutionary) version as well as
a version hybridised with Simulated Annealing. Their experimental studies
confirm that the accuracy of the proposed approach is satisfactory.

The next chapter by Bilotta et al. discusses the segmentation of MRI im-
ages for (multiple sclerosis) lesion detection and lesion tissue volume estima-
tion. In their work, Bilotta et al. present an innovative approach based on
Cellular Neural Networks (CNNs), which they synthesise with a GA. This
way, CNNs can be generated for both 2D and 3D lesion detection, which pro-
vides new perspectives for diagnostics and is a stark improvement compared
to the currently used manual lesion delineation approach.

Databases are among the most important elements of all enterprise soft-
ware architectures. Most of them can be queried by using Structured Query
Language (SQL). Skyline extends SQL by allowing queries for trade-off curves
concerning two or more attributes over datasets, similar to Pareto frontiers.
Before executing such a query, it is typically optimised via equivalence trans-
formations for the purpose of minimising its runtime. In the penultimate
chapter of this section (also of this book), Goncalves et al. introduce an al-
ternative approach for Skyline Query Optimisation based on an EA. They
show that the variants of their proposed approach are able to outperform the
commonly-used dynamic programming, especially as the number of tables
increases.

Distributing the nodes of Mobile Ad-hoc Networks (MANETs) as uni-
formly as possible over a given terrain is an important problem across a
variety of real-world applications, ranging from those for civil to military
purposes. The final chapter by Şahin et al. shows how a Force-based GA
(FGA) can provide the node executing it with movement instructions which
accomplish this objective. Here, one instance of the FGA is executed on each
node of the MANET, and only local knowledge obtained from within the
limited sensor and communication range of a node is utilised. The simulation

X Preface

experiments confirm that the FGA can be an effective mechanism for deploy-
ing mobile nodes with restrained communication capabilities in MANETs
operating in unknown areas.

To sum up, we would like to extend our gratitude to all the authors for
their excellent contributions to this book. We also wish to thank all the re-
viewers involved in the review process for their constructive and useful review
comments. Without their help, this book project could not have been satis-
factorily completed. A special note of thanks goes to Dr. Thomas Ditzinger
(Engineering Senior Editor, Springer-Verlag) and Ms Heather King (Engi-
neering Editorial, Springer-Verlag) for their editorial assistance and profes-
sional support. Finally, we hope that readers would enjoy reading this book
as much as we have enjoyed putting it together!

June 2011 Raymond Chiong
Thomas Weise

Zbigniew Michalewicz

Editorial Review Board

Helio J.C. Barbosa National Laboratory for Scientific Computation,
Brazil

Jan van den Berg Delft University of Technology, The Netherlands
Edmund K. Burke University of Nottingham, UK
Bülent Çatay Sabanci University, Turkey
Maurice Clerc http://mauriceclerc.net, France
David W. Corne Heriot-Watt University, UK
Carlos Cotta University of Málaga, Spain
Manuel P. Cuéllar University of Granada, Spain
Dipankar Dasgupta University of Memphis, USA
Mark S. Daskin University of Michigan, USA
Alexandre Devert University of Science and Technology of China,

China
Jonathan Fieldsend University of Exeter, UK
Deon Garrett Icelandic Institute for Intelligent Machines, Iceland
Joerg Laessig International Computer Science Institute,

UC Berkeley, USA
Guillermo Leguizamón Universidad Nacional de San Luis, Argentina
Bob McKay Seoul National University, Korea
Gerard Murray University of Melbourne, Australia
Antonio J. Nebro University of Málaga, Spain
Ferrante Neri University of Jyväskylä, Finland
Eddy Parkinson University of Adelaide, Australia
Nelishia Pillay University of KwaZulu-Natal, South Africa
Rong Qu University of Nottingham, UK
Ralf Salomon University of Rostock, Germany
Patrick Siarry Université de Paris XII Val-de-Marne, France
Yoel Tenne Kyoto University, Japan
Jim Tørresen University of Oslo, Norway
Michael Zapf University of Kassel, Germany
Mengjie Zhang Victoria University of Wellington, New Zealand

Contents

Section I: Introduction

Evolutionary Optimization . 1
Christian Blum, Raymond Chiong, Maurice Clerc,
Kenneth De Jong, Zbigniew Michalewicz, Ferrante Neri,
Thomas Weise

Section II: Planning and Scheduling

An Evolutionary Approach to Practical Constraints in
Scheduling: A Case-Study of the Wine Bottling Problem 31
Arvind Mohais, Sven Schellenberg, Maksud Ibrahimov, Neal Wagner,
Zbigniew Michalewicz

A Memetic Framework for Solving the Lot Sizing and
Scheduling Problem in Soft Drink Plants . 59
Claudio F.M. Toledo, Marcio S. Arantes, Paulo M. França,
Reinaldo Morabito

Simulation-Based Evolutionary Optimization of Complex
Multi-Location Inventory Models . 95
Jörg Lässig, Christian A. Hochmuth, Stefanie Thiem

A Fuzzy-Evolutionary Approach to the Problem of
Optimisation and Decision-Support in Supply Chain
Networks . 143
Sven Schellenberg, Arvind Mohais, Maksud Ibrahimov, Neal Wagner,
Zbigniew Michalewicz

XIV Contents

A Genetic-Based Solution to the Task-Based Sailor
Assignment Problem . 167
Dipankar Dasgupta, Deon Garrett, Fernando Nino, Alex Banceanu,
David Becerra

Genetic Algorithms for Manufacturing Process Planning 205
Guohua Ma, Fu Zhang

Section III: Engineering

A Fitness Granulation Approach for Large-Scale Structural
Design Optimization . 245
Mohsen Davarynejad, Jos Vrancken, Jan van den Berg,
Carlos A. Coello Coello

A Reinforcement Learning Based Hybrid Evolutionary
Algorithm for Ship Stability Design . 281
Osman Turan, Hao Cui

An Interactively Constrained Neuro-Evolution Approach
for Behavior Control of Complex Robots . 305
Christian Rempis, Frank Pasemann

Section IV: Data Collection, Retrieval and Mining

A Genetic Programming-Based Approach for the
Performance Characteristics Assessment of Stabilized Soil . . . 343
Amir Hossein Alavi, Amir Hossein Gandomi, Ali Mollahasani

Evolving Cellular Neural Networks for the Automated
Segmentation of Multiple Sclerosis Lesions 377
Eleonora Bilotta, Antonio Cerasa, Pietro Pantano, Aldo Quattrone,
Andrea Staino, Francesca Stramandinoli

An Evolutionary Algorithm for Skyline Query
Optimization . 413
Marlene Goncalves, Ivette Mart́ınez, Gabi Escuela,
Fabiola Di Bartolo, Francelice Sardá

A Bio-Inspired Approach to Self-Organization of
Mobile Nodes in Real-Time Mobile Ad Hoc Network
Applications . 437
Cem Şafak Şahin, Elkin Urrea, M. Ümit Uyar, Stephen Gundry

Author Index . 463

Evolutionary Optimization

Christian Blum, Raymond Chiong, Maurice Clerc, Kenneth De Jong,
Zbigniew Michalewicz, Ferrante Neri, and Thomas Weise�

Abstract. The emergence of different metaheuristics and their new vari-
ants in recent years has made the definition of the term Evolutionary Algo-
rithms unclear. Originally, it was coined to put a group of stochastic search

Christian Blum
ALBCOM Research Group, Universitat Politècnica de Catalunya, Barcelona, Spain
e-mail: cblum@lsi.upc.edu

Raymond Chiong
Faculty of Information & Communication Technologies, Swinburne University of
Technology, Victoria 3122, Australia
e-mail: rchiong@swin.edu.au

Maurice Clerc
Independent Consultant, Groisy, France
e-mail: Maurice.Clerc@WriteMe.com

Kenneth De Jong
Department of Computer Science, George Mason University, Fairfax,
VA 22030, USA
e-mail: kdejong@gmu.edu

Zbigniew Michalewicz
School of Computer Science, University of Adelaide, South Australia 5005, Aus-
tralia; also at the Institute of Computer Science, Polish Academy of Sciences, ul.
Ordona 21, 01-237 Warsaw, Poland, and the Polish-Japanese Institute of Informa-
tion Technology, ul. Koszykowa 86, 02-008 Warsaw, Poland
e-mail: zbyszek@cs.adelaide.edu.au.

Ferrante Neri
Department of Mathematical Information Technology, P. O. Box 35 (Agora), 40014
University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

Thomas Weise
Nature Inspired Computation and Applications Laboratory (NICAL), School of
Computer Science and Technology, University of Science and Technology of China
(USTC), Héféi 230027, Ānhūı, China
e-mail: tweise@ustc.edu.cn

� Corresponding author.

cblum@lsi.upc.edu
rchiong@swin.edu.au
Maurice.Clerc@WriteMe.com
kdejong@gmu.edu
zbyszek@cs.adelaide.edu.au
ferrante.neri@jyu.fi
tweise@ustc.edu.cn

2 C. Blum et al.

algorithms that mimic natural evolution together. While some people would
still see it as a specific term devoted to this group of algorithms, including Ge-
netic Algorithms, Genetic Programming, Evolution Strategies, Evolutionary
Programming, and to a lesser extent Differential Evolution and Estimation
of Distribution Algorithms, many others would regard “Evolutionary Algo-
rithms” as a general term describing population-based search methods that
involve some form of randomness and selection. In this chapter, we re-visit
the fundamental question of “what is an Evolutionary Algorithm?” not only
from the traditional viewpoint but also the wider, more modern perspectives
relating it to other areas of Evolutionary Computation. To do so, apart from
discussing the main characteristics of this family of algorithms we also look
at Memetic Algorithms and the Swarm Intelligence algorithms. From our
discussion, we see that establishing semantic borders between these algo-
rithm families is not always easy, nor necessarily useful. It is anticipated that
they will further converge as the research from these areas cross-fertilizes
each other.

1 Introduction

Almost any design or decision task encountered in business, industry, or pub-
lic services is, by its nature, an optimization problem. How can a ship be
designed for highest safety and maximum cargo capacity at the same time?
How should the production in a factory be scheduled in order to satisfy all
customer requests as soon and timely as possible? How can multiple sclerosis
lesions on an MRI be identified with the best precision? ... Three completely
different questions and scenarios, three optimization problems as encountered
by practitioners every day.

From the management perspective, an optimization problem is a situation
that requires one to decide for a choice from a set of possible alternatives
in order to reach a predefined/required benefit at minimal costs. From a
mathematical point of view, solving an optimization problem requires finding
an input value x� for which a so-called objective function f takes on the
smallest (or largest) possible value (while obeying to some restrictions on
the possible values of x�). In other words, every task that has the goal of
approaching certain configurations considered as optimal in the context of
pre-defined criteria can be viewed as an optimization problem.

Many optimization algorithms for solving complex real-world problems
nowadays are based on metaheuristic methods as opposed to traditional op-
erations research techniques. The reason is simple – this is due to the com-
plexity of the problems. Real-world problems are usually difficult to solve for
several reasons, some of which include:

Evolutionary Optimization 3

1. The number of possible solutions may be too large so that an exhaustive
search for the best answer becomes infeasible.

2. The objective function f may be noisy or varies with time, thereby requiring
not just a single solution but an entire series of solutions.

3. The possible solutions are so heavily constrained that constructing even
one feasible answer is difficult, let alone searching for an optimum solution.

Naturally, this list could be extended to include many other possible obsta-
cles. For example, noise associated with the observations and measurements,
uncertainties about the given information, problems that have multiple con-
flicting objectives, just to mention a few. Moreover, computing the objective
values may take much time and thus, the feasible number of objective func-
tion invocations could be low. All these reasons are just some of the aspects
that can make an optimization problem difficult (see [76]; and also [106] for
an in-depth discussion on this topic).

It is worth noting that every time a problem is “solved”, in reality what
has been discovered is only the solution to a model of the problem – and all
models are simplification of the real world. When trying to solve the Trav-
elling Salesman Problem (TSP), for example, the problem itself is usually
modeled as a graph where the nodes correspond to cities and the edges are
annotated with costs representing, e.g., the distances between the cities. Pa-
rameters such as traffic, the weather, petrol prices and times of the day are
typically omitted.

In view of this, the general process of solving an optimization problem
hence consists of two separate steps: (1) creating a model of the problem,
and (2) using that model to generate a solution.

Problem ⇒ Model ⇒ Solution.

Again, the “solution” here is only a solution in terms of the model. If the model
has a high degree of fidelity, this “solution” is more likely to be meaningful. In
contrast, if the model has too many unfulfilled assumptions and rough approx-
imations, the solution may be meaningless, or worse. From this perspective,
there are at least two ways to proceed in solving real-world problems:

1. Trying to simplify the model so that conventional methods might return
better answers.

2. Keeping the model with all its complexities and using non-conventional
approaches to find a near-optimum solution.

So, the more difficult the problem is, the more appropriate it is to use a
metaheuristic method. Here, we see that it will anyway be difficult to obtain
precise solutions to a problem, since we have to approximate either the model
or the solution. A large volume of experimental evidence has shown that the
latter approach can often be used to practical advantages.

In recent years, we have seen the emergence of different types of meta-
heuristics. This gives rise to many new variants and concepts, making some
of the fundamental views in the field no longer clear-cut. In this chapter,

4 C. Blum et al.

our focus is to discuss what Evolutionary Algorithms (EAs) – one of the
most popular metaheuristic methods – are and how they differ from other
metaheuristics. The aim is not to give a definitive answer to the question
“What is an EA?” – it is almost impossible for anyone to do so. Instead,
we will systematically explore and discuss the traditional and modern views
of this topic. We start by describing what metaheuristics are, followed by
the core question of what EAs are. We then present some of the most well-
known EAs, such as Genetic Algorithms (GAs), Genetic Programming (GP),
Evolution Strategies (ES) and Evolutionary Programming (EP). After that,
we extend our discussion to Memetic Computing, taking a look at the rele-
vance/connection between EAs and Memetic Algorithms (MAs). Finally, we
also discuss the similarities and differences between EAs and the Swarm In-
telligence algorithms such as Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO).

2 Metaheuristics

The field of metaheuristics has a rich history. During the second half of the
20th century, with the development of computational devices and demands of
industrial processes, the necessity to solve some optimization problems arose
despite the fact that there was not sufficient prior knowledge (hypotheses)
on the optimization problem for the application of an exact method. In fact,
in the majority of industrial cases, the problems are highly nonlinear, or
characterized by a noisy fitness, or without an explicit analytical expression
as the objective function might be the result of an experimental or simulation
process. In this context, the earliest metaheuristics have been designed. The
term metaheuristic, from the greek meta-euriskein which means beyond the
search, refers to a computational method which progressively attempts to
improve one or more candidate solutions while searching for the optimum.

Whenever an optimization problem is to be solved, we expect that there is
some kind of utility measure which defines how good a solution is or how high
the costs are. Usually this measure is given in the form of a mathematical
function f. Then, as stated before, the inputs for which the function takes on
the minimal (or maximal) value is sought. Sometimes, multiple such functions
have to be optimized simultaneously.

A metaheuristic is a method for solving a general class of optimization
problems. It combines utility measures in an abstract and hopefully efficient
manner, typically without utilizing deeper insights into their inner structure.
Metaheuristics do not require hypotheses on the optimization problem nor
any kind of prior knowledge on the objective function. The treatment of
objective functions as “black boxes” [11, 42, 45, 102] is the most prominent
and attractive feature of metaheuristics. Metaheuristics obtain knowledge
about the structure of an optimization problem by utilizing statistics obtained
from the possible solutions (i.e., candidate solutions) evaluated in the past.

Evolutionary Optimization 5

This knowledge is used to construct new candidate solutions which are likely
to have a high utility.

Many different types of metaheuristics emerged during the last 30 years,
and the majority of them have been inspired by some aspects of the nature
(see [19] for a recent collection of nature-inspired algorithms). These include a
variety of Hill Climbing techniques (deterministic and stochastic), the Swarm
Intelligence algorithms (PSO and ACO), Artificial Immune Systems, Differ-
ential Evolution, Simulated Annealing, Tabu Search, Cultural Algorithms,
Iterated Local Search, Variable Neighborhood Search, and – of course – Evo-
lutionary and co-Evolutionary Algorithms.

Metaheuristics can be classified based on different criteria. For example,
some of them process a single solution (e.g., Simulated Annealing), whereas
some others process a set of solutions and are called population-based meth-
ods (e.g., EAs). Some metaheuristics are deterministic (e.g., Tabu Search),
others are stochastic (e.g., Simulated Annealing). Some generate complete
solutions by modifying complete solutions (e.g., EAs), while some others con-
struct new solutions at every iteration (e.g., ACO). Many of these metaheuris-
tics offer unique features, but even within a single approach, there are many
variants which incorporate different representation of solutions and different
modification or construction techniques for new solutions.

3 What Are “Evolutionary Algorithms”?

So, what are EAs? Perhaps the best place to start in answering the question
is to note that there are at least two possible interpretations of the term
evolution. It is frequently used in a very general sense to describe something
that changes incrementally over time, such as the software requirements for
a payroll accounting system. The second meaning is its narrower use in biol-
ogy, where it describes an evolutionary system that changes from generation
to generation via reproductive variation and selection. It is this Darwinian
notion of evolutionary change that has been the core idea in EAs.

3.1 Principles Inspired by Nature

From a conventional point of view, an EA is an algorithm that simulates –
at some level of abstraction – a Darwinian evolutionary system. To be more
specific, a standard EA includes:

1. One or more populations of individuals competing for limited resources.
2. These populations change dynamically due to the birth and death of indi-

viduals.
3. A notion of fitness which reflects the ability of an individual to survive

and reproduce.
4. A notion of variational reproduction: offspring closely resemble their par-

ents, but are not identical.

6 C. Blum et al.

In a nutshell, the Darwinian principles of evolution suggest that, on aver-
age, species improve their fitness over generations (i. e., their capability of
adapting to the environment). A simulation of the evolution based on a set
of candidate solutions whose fitness is properly correlated to the objective
function to optimize will, on average, lead to an improvement of their fitness
and thus steer the simulated population towards the solution.

3.2 The Basic Cycle of EAs

In the following, we try to introduce a very simple EA consisting of a sin-
gle population of individuals exist in an environment that presents a time-
invariant notion of fitness. We will do this from a general perspective, com-
prising most of the conventional EAs.

Like in nature, an individual may have two different representations: the
data structure which is processed by the genetic search procedures and the
format in which it is assessed by the environment (and finally handed to
the human operator). Like in biology, in the context of EAs, the former
representation is referred to as genotype and the latter as phenotype. EAs
usually proceed in principle according to the scheme illustrated in Fig. 1. Its
steps can be described as follows:

Evaluation
compute the objective
values of the candidate
solutions

compute the objective
values of the candidate
solutions

GPM
apply the genotype-
phenotype mapping and
obtain the phenotypes

apply the genotype-
phenotype mapping and
obtain the phenotypes

Fitness AssignmentFitness Assignment

use the objective values
to determine fitness
values

use the objective values
to determine fitness
values

Initial Population

create an initial
population of random
individuals

create new individuals
from the mating pool by
crossover and mutation

create new individuals
from the mating pool by
crossover and mutation

ReproductionReproduction
SelectionSelection

select the fittest indi-
viduals for reproduction
select the fittest indi-
viduals for reproduction

Fig. 1. The basic cycle of EAs

1. In the first generation, a population of n > 0 individuals is created. Usu-
ally, these individuals have random genotypes but sometimes, the initial
population is seeded with good candidate solutions either previously known
or created according to some other methods.

Evolutionary Optimization 7

2. The genotypes, i. e., the points in the search space, are then translated
to phenotypes. In the case that search operations directly work on the
solution data structures, this genotype-phenotype mapping is the identity
mapping.

3. The values of the objective functions are then evaluated for each candidate
solution in the population. This evaluation may incorporate complicated
simulations and calculations.

4. With the objective functions, the utility of different features of the can-
didate solutions has been determined. If there is more than one objective
function, constraint, or other utility measure, then a scalar fitness value is
assigned to each of them.

5. A subsequent selection process filters out the candidate solutions with poor
fitness and allows those with good fitness to enter the mating pool with a
higher probability.

6. In the reproduction phase, offspring are derived from the genotypes of the
selected individuals by applying the search operations (which are called
reproduction operations in the context of EAs). There are usually two dif-
ferent reproduction operations: mutation, which modifies one genotype,
and crossover, which combines two genotypes to a new one. Whether the
whole population is replaced by the offspring or whether they are inte-
grated into the population as well as which individuals to recombine with
each other depends on the applied population handling strategy.

7. If the termination criterion is met, the evolution stops here. Otherwise,
the evolutionary cycle continues with the next generation at point 2.

Of course, such an algorithm description is too abstract to be executed
directly.

3.3 Do All EAs Fit to the Basic Cycle?

According to our discussion so far, a simple answer to the question “What
are EAs?” would be that EAs are those based on the concepts gleaned from
natural evolution and which roughly adhere to the principles and the ba-
sic cycle introduced in the previous sections. From a high-level perspective,
however, the definition is not so clear.

When solving a new challenging problem, often a new optimization method
is designed. It is necessary to specify how the individuals in the population
represent the problem solutions, how the fitness is calculated, how parents
are selected, how offspring are produced, and how individuals are selected for
removal from the population (i. e., to die1). Each of these decisions results
in an EA variant with different computational properties.
1 The “death” of an individual, candidate solution, or agent in terms of meta-

heuristic optimization means that it is removed from the set of elements under
investigation and deleted from memory, possibly due to being replaced by a bet-
ter element.

8 C. Blum et al.

Will these design decisions result in an EA? Before you answer, let us
recall that the (1 + 1) EA does not require a population of solutions but
processes just one individual (and is comparing it with its only offspring).
Many “Evolutionary Algorithms” assume deterministic selection methods,
many “Evolutionary Algorithms” take advantage of smart initialization and
problem-specific operators. Some “Evolutionary Algorithms” have been ex-
tended with memory structures (e.g., when they operate in dynamic envi-
ronments) or by a parameter called temperature (to control mutation rates).
The list could go on.

While there is a well-researched set of “default” EAs which we will intro-
duce in the next section, for many real-world applications it is necessary to
derive new, specialized approaches. Examples for this can be found in [103–
105] as well as the collection in this book [20].

3.4 Conventional EAs

Historically, computer scientists and engineers had started to consider draw-
ing inspiration from evolutionary principles for solving optimization problems
as early as the 1950s (see [4, 5], and [39]). In the 1960s and 1970s, three re-
search lines were developed in parallel [73]: EP [38], ES [91], and GAs [55].
De Jong’s PhD thesis [25] further increased the interest in this field, and his
PhD student Grefenstette, in turn, started the International Conference on
Genetic Algorithms and their Applications (ICGA) [52] in 1985. At the 1991
ICGA [6], the three original research streams came together, with Hans-Paul
Schwefel presenting the ES. At the same venue, Koza [64] introduced the new
concept of Standard GP and Zbigniew Michalewicz outlined the concepts of
different data structures which can undergo the evolutionary process in the
so-called Evolutionary Programs [75]. This was considerably the first time
all major areas of Evolutionary Computation were represented at once. As a
result, the Evolutionary Computation Journal by MIT Press was established,
later followed by the IEEE Transactions on Evolutionary Computation. The
idea of unifying concepts, such as “Evolutionary Algorithms” (or the more
general idea of Evolutionary Computation [73]), was then born. Thereafter,
the first IEEE Congress on Evolutionary Computation [74] was initiated in
1994.

From the 1990s onwards, many new ideas have been introduced. One of
the most important developments is the discovery that EAs are especially
suitable for solving problems with multiple, possibly conflicting optimization
criteria – the Multi-Objective Evolutionary Algorithms (MOEAs) [22, 29].
Today, the second, improved versions of NSGA [30, 98] and SPEA [113, 114]
may be the most popular members of this MOEA family.

There is also growing interest in co-evolutionary EAs, originally introduced
by Hillis [53] back in 1989. Potter and De Jong [88, 89] developed cooperative
co-evolution, which is now regarded as one of the key approaches for tack-
ling large-scale optimization problems because it provides a viable way to

Evolutionary Optimization 9

decompose the problems and co-evolve solutions for the problem parts which
together make up a solution for the original task [18]. Other parallel develop-
ments include the works of Grefenstette [46], Deb and Goldberg [28] as well
as De Jong [26] who considered the issues of deception.

Books such as [22, 43, 75] and [27] have always played a major role in
opening the field of Evolutionary Computation to a wide audience, with
the Handbook of Evolutionary Computation [2] one of the most prominent
examples.

3.4.1 Genetic Algorithms

GAs are the original prototype of EAs. Here, the genotypes of the search
space are strings of primitive elements (usually all of the same type) such as
bits, integers or real numbers. Because of the simple structure of the search
space of GAs, a genotype-phenotype mapping is often used to translate the
genotypes to candidate solutions [43, 54, 55, 108].

The single elements of the string genotypes in GAs are called genes. GAs
usually apply both the mutation and crossover operators. The mutation op-
erator modifies one or multiple genes whereas the crossover operator takes
two genotypes and combines them to form a new one, either by merging or
by exchanging the values of the genes. The most common reproduction op-
erations used in GAs, single-point mutation and single-point crossover, are
sketched in Fig. 2 [43, 56].

Fig. 2.a: Single-gene mutation. Fig. 2.b: Single-point Crossover
(SPX).

Fig. 2. Mutation and Crossover in GAs

3.4.2 Genetic Programming

The term Genetic Programming [54, 64, 87] has two possible meanings. First,
it can be viewed as a set of EAs that breed programs, algorithms, and similar
constructs. Second, it is also often used to subsume EAs that have tree data
structures as genotypes. Tree-based GP, usually referred to as the Standard
GP, is the most widespread GP variant both for historical reasons and be-
cause of its efficiency in many problem domains. Here, the genotypes are tree
data structures. Generally, a tree can represent a rule set [71, 101, 103], a
mathematical expression [64], a decision tree [63, 101], or even the blueprint
of an electrical circuit [65].

10 C. Blum et al.

Fig. 3.a: Sub-tree replacement mutation.

maximum depth

()
Fig. 3.b: Subtree exchange crossover.

Fig. 3. Mutation and Recombination in GP

Of course, mutation and crossover operators as used in GAs cannot be
applied to tree data structures. Instead, new operations have been devel-
oped, such as the sub-tree replacement mutation which replaces a sub-tree
of a genotype with a randomly created one and sub-tree exchange crossover
which exchanges two sub-trees between two parental genotypes, as sketched
in Fig. 3.

3.4.3 Evolution Strategies

ES, introduced by Rechenberg [90, 91, 92] and Schwefel [93, 94, 95], is a
heuristic optimization technique based on the ideas of adaptation and evo-
lution – a special form of EAs [1, 7, 8, 54, 90–92, 96]. The search space of
today’s ES usually consists of vectors from the R

n, but bit strings or integer
strings are common as well [8]. Mutation and selection are the primary re-
production operators and recombination is used less often in ES. Typically,
normally distributed random numbers are used for mutation. The parameter
of the mutation is the standard deviation of these random numbers. ES may
either:

1. maintain a single standard deviation parameter and use identical normal
distributions for generating the random numbers added to each element
of the solution vectors,

2. use a separate standard deviation (from a standard deviation vector) for
each element of the genotypes, i. e., create random numbers from different

Evolutionary Optimization 11

normal distributions for mutations in order to facilitate different strengths
and resolutions of the decision variables, or

3. use a complete covariance matrix for creating random vectors distributed
in a hyperellipse and thus also taking into account binary interactions
between the elements of the solution vectors.

The standard deviations are governed by self-adaptation [50, 66, 72] and may
result from a stochastic analysis of the elements in the population [47–49, 58].
They are often treated as endogenous strategy parameters which can directly
be stored in the individual records and evolve along with them [8].

3.4.4 Evolutionary Programming

EP is less precisely defined as other conventional EAs. There is a seman-
tic difference though: while single individuals of a species are the biological
metaphor for candidate solutions in other EAs, in EP a candidate solution
is thought of as a species itself. Hence, mutation and selection are the only
operators used in EP and recombination is usually not applied. The selection
scheme utilized in EP is normally quite similar to the (μ + λ) method in ES.

EP was pioneered by Fogel [37] in his PhD thesis back in 1964. Fogel et al.
[38] experimented with the evolution of finite state machines as predictors
for data streams [35]. One of the most advanced EP algorithms for numerical
optimization today has been developed by Yao et al. [110].

4 Memetic Computing

Memetic Computing is a growing area in computational intelligence closely
related to EAs. During the creation of the initial population in an EA, a
set of candidate solutions is generated, usually randomly within the decision
space. Other sampling systems that include a certain degree of determinism
for selecting the initial set of solutions are also widely used. The latter, usu-
ally known as intelligent initial sampling, is often considered as a memetic
component within an EA framework [51].

4.1 MAs as an Extension of EAs

The main idea in 1980s and 1990s was to propose EAs with superior per-
formance with respect to all the other algorithms present in the literature.
This approach is visible in many famous texts and papers published in those
years (see Section 3.4). After the publication of the No Free Lunch Theorem
(NFLT) [109], however, researchers in the field have to dramatically change
their view about the subject. The NFLT mathematically proves that the
average performance of any pair of algorithms A and B across all possible
problems with finite search spaces is identical. Thus, if an algorithm performs

12 C. Blum et al.

well on a certain class of problems, then it necessarily pays for that with de-
graded performance on other sets of problems. The concept that there is no
universal optimizer has a significant impact on the scientific community.2 In
light of increasing interest in general-purpose optimization algorithms, it has
become important to understand the relationship between the performance
of an algorithm A and a given optimization problem f. The problem hence
becomes the starting point for building up a suitable algorithm.

In this context, the term Memetic Algorithms was coined, representing an
efficient alternative (or maybe a modification) of EAs. This term was first in-
troduced in [77] with reference to an algorithm proposed in [82, 83] to indicate
an approach that integrates a local search operator within an evolutionary
structure. The metaphor of the term “memetic” was inspired by modern phi-
losophy, more specifically by the meme’s theory of Richard Dawkins [24]. The
meme is an idea, a “unit of cultural transmission”, the basic unit of knowl-
edge. Although in Dawkins’ studies the focus was to prove that evolution
was based on the individual choices rather than collective choices (the self-
ish gene), in Computer Science another concept has been taken and adapted
to computational problem-solving. By interpreting Dawkins’ philosophy, it
can be deduced that the collective culture is the result of an evolutionary
process where ideas (memes) interact and diffuse over individuals modifying
and getting enriched. Transferring this to the computing environment, differ-
ent search operators (e.g., evolutionary framework and local search) compete
and cooperate as different memes and process the solutions, by means of their
harmonic interaction, towards the detection of the global optimum.

A definition which characterizes the structural features of MAs has been
given in [51]. In general, an MA is a population-based hybrid optimization
algorithm composed of an evolutionary framework and a list of local search
algorithms activated within the generation cycle of the framework. In other
words, MAs can be considered as specific hybrid algorithms which combine
an EA framework and local search for enhancing the quality of some solutions
of the population during the EA generation cycle. The sense of MAs is to
compensate, for some specific problems, the limitations of EAs. As with all
other metaheuristics, the functioning of an EA is due to the proper balance
between exploration and exploitation. The generally optimal balance, in ac-
cordance with the NFLT, does not exist but it should be found for each fitness
landscape. In addition, MAs contain multiple search components which can
explore the fitness landscape from complementary perspectives and mitigate
the typical undesired effects of stagnation and premature convergence.

Obviously, in MAs the coordination between the EA framework and local
search operators can be hard to design. For this reason, a lot of research
studies on MAs have been performed by paying great attention to the co-
ordination logic of the various search operators. By updating the classifica-
tion given in [85], MAs can be subdivided as: 1) Adaptive Hyper-Heuristic,
2 Note, however, that it is possible to find algorithms which are best over large

sets of (practically-relevant) problems; see [57].

Evolutionary Optimization 13

see e.g., [14, 23, 59] and [61], where the coordination of the memes is per-
formed by means of heuristic rules; 2) Self-Adaptive and Co-Evolutionary, see
e.g., [97, 111] and [67], where the memes, either directly encoded within the
candidate solutions or evolving in parallel to them, take part in the evolution
and undergo recombination and selection in order to select the most promis-
ing operators; 3) Meta-Lamarckian Learning, see e.g., [62, 81, 84] and [69],
where the success of the memes biases their activation probability, thus per-
forming an on-line algorithmic design which can flexibly adapt to various
optimization problems; 4) Diversity-Adaptive, see e.g., [16, 17, 78–80, 100]
and [99], where a measure of the diversity is used to select and activate
the most appropriate memes. In addition, it is worth to mention about the
Baldwinian systems, i. e., those MAs that do not modify the solutions after
the employment of local search, see [112] and [44]. The latter are basically
EAs where the selection process is influenced by the search potential of each
solution.

4.2 Can All MAs Be Considered EAs?

Generally speaking, MAs are population-based algorithms that evolve so-
lutions under the same rules/logic as conventional EAs while additionally
applying local search. In this sense, if the local search algorithms are to be
considered as special operators, e.g., a hill-climb is seen as a mutation, then
MAs can be considered as a subset of EAs. On the other hand, MAs can
be considered as EAs that allow plenty of unconventional operators. To this
end, MAs can be seen as an extension of EAs.

Regardless of the labeling, it is important to note that all these optimiza-
tion algorithms are de facto the combination of two kinds of operators, i. e.,
search and selection, respectively. In conventional EAs, the search is per-
formed by crossover and mutation operators, which are also known as vari-
ation operators, while the selection is included into the parent and survivor
selection phases. Similarly, the combination of these two kinds of operators
can be spotted within an MA by analyzing its evolutionary framework and
each of its local search components. In this context, the more modern (and at
the same time primitive) concept of Memetic Computing has been recently
defined in a structured and systematic way. Specifically, Memetic Computing
is a broad subject which studies complex and dynamic computing structures
composed of interacting operators (memes) whose evolution dynamics is in-
spired by the diffusion of ideas.

Research in evolutionary optimization has always been closely tied to self-
adaptation, i. e., the development of approaches which can adapt their pa-
rameters to the optimization problem at hand. An important research goal
in this area would thus be to develop an intelligent unit which can choose,
during the optimization run, the most suitable combination of operators for
a given problem. Since a high degree of flexibility is necessary for solving
a wide range of problems, Memetic Computing is strictly connected to the

14 C. Blum et al.

concept of modularity and an evolutionary structure that can be seen as a
collection of interactive modules whose interaction, in an evolutionary sense,
leads to the generation of the solution of the problem.

Concerning the structure of Memetic Computing approaches, there are
two philosophies. On one hand, Memetic Computing can be seen as a broad
subject which includes various kinds of algorithms. In order to solve opti-
mization problems, a structure consisting of multiple operators, each of which
performing a simple action, must be composed. Depending on the underlying
algorithms used, a Memetic Computing approach may or may not be an EA
(or its extension).

On the other hand, Memetic Computing can be considered from a bottom-
up perspective. Here, the optimization algorithm would start as a blank slate
to which components are added one by one. One interesting stream of research
is the automatic design of algorithmic structures. Here, three aspects should
be considered: 1) the memes should be simple operators, 2) the role and
effect of each meme should be clearly understood so that this knowledge
can be encoded and used by the automated designer in a flexible way, and
3) the algorithmic structure should be built up from scratch by means of
the aforementioned bottom-up strategy which aims at including only the
necessary memes and the simplest possible coordination rules.

5 Swarm Intelligence

Swarm Intelligence, another area closely related to EAs, is concerned with
the design of algorithms or distributed problem-solving devices inspired by
the collective behavior of social insects or animals. Two of the most popu-
lar Swarm Intelligence algorithms are PSO and ACO. Other representative
examples include those for routing in communication networks based on the
foraging behavior of bees [36], and those for dynamic task allocation inspired
by the behavior of wasp colonies [15].

The natural role model of Particle Swarm Optimization, originally pro-
posed by Eberhart and Kennedy [33, 34, 60], is the behavior of biological
social systems like flocks of birds or schools of fish. PSO simulates a swarm
of particles (individuals) in an n-dimensional search space, where each par-
ticle has its own position and velocity [40, 41, 86]. The velocity vector of an
individual determines in which direction the search will continue and if it
has an explorative (high velocity) or an exploitative (low velocity) character.
This velocity vector represents an endogenous parameter – while the endoge-
nous information in ES is used for an undirected mutation, the velocity in
PSO is used to perform a directed modification of the genotypes (particles’
positions).

ACO, developed by Dorigo et al. [31], is an optimization technique inspired
by the capability of ant colonies to find short paths between encountered food
sources and their ant hill [12, 13]. This capability is a result of the collective
behavior of locally interacting ants. Here, the ants communicate indirectly via

Evolutionary Optimization 15

chemical pheromone trails which they deposit on the ground. This behavior
can be simulated as a multi-agent system using a pheromone model in order
to construct new solutions in each iteration.

In the following sections, we will take a closer look at PSO and ACO, and
discuss their similarities and differences with EAs.

5.1 Particle Swarm Optimization

In what we refer to as the Standard PSO (SPSO), whose code is freely avail-
able on the Particle Swarm Central http://www.particleswarm.info, there
is typically a unique swarm of agents, called particles, in which each particle
Pi is defined as

Pi = (pi, vi, bi) (1)

where pi is the position, vi the velocity (more precisely the displacement),
and bi the best position ever found so far by the particle. Each particle is
informed by a set N = {Pj} of other particles called “neighborhood”. The
metaphor is that each particle “moves”, and the process at each time step
can be described as follows:

1. each particle asks its neighbors, and chooses the best one (the one that
has the best bj)

2. it computes a new velocity v′i by taking into account vi, pi, bj; the precise
formula is not important here, as it differs from version to version of SPSO
(e.g., compare SPSO 2007 and SPSO 2011) – the most important key
feature is that it contains some randomness and that its general form is

v′i = a (vi) + b (pi) + c (bi) + d (bj) (2)

3. each particle “moves”, by computing the new position as p′i = pi + v′i
4. if the new position is better, then bi is updated, by b′i = p′i

There also exists another possible, formally equivalent but more flexible, point
of view. That is, one may consider three kinds of agents:

1. position agents pi

2. velocity agents vi

3. memory agents mi

Here, mi is in fact the bi of the previous process description. Now, there
are three populations, P = {pi}, V = {vi}, and M = {mi}. Each vi has a
“neighborhood” of informants, which is a subset of M, and the process at
each time step can be described as follows:

1. the velocity agent vi updates its components, thanks to the function a of
Equation 2

2. then it combines them with some information coming from pi, mi, and
from its best informant mj , thanks to the functions b, c, d, in order to

http://www.particleswarm.info

16 C. Blum et al.

define a new velocity v′i (note that the order of the operations may be
equivalently 2 then 1, as Equation 2 is commutative)

3. a new position agent p′i is generated, by p′i = pi + v′i
4. if the new agent is better than mi, the agent mi “dies”, and is replaced

by a better one, by using the formula m′
i = p′i

5. pi “dies”

Mathematically speaking, the behavior here is exactly the same as the pre-
viously described one, but as the metaphor is different, it is now easier to
answer some of the relevant questions we want to address in this chapter.

5.2 Is PSO an EA?

A classical definition of an EA, given in Section 3, states that it uses mech-
anisms such as reproduction, mutation, recombination, and selection. Quite
often, it is also added that some of these mechanisms have to make use of
randomness. It is clear that randomness is used in all stochastic algorithms,
including PSO, so we will not proceed on this point any further. In the fol-
lowing, let us consider, one by one, the four mechanisms of EAs – mutation,
recombination, reproduction and selection – from a PSO point of view.

In molecular biology and genetics, mutations are changes in a genomic
sequence. In a D-dimensional search space, a velocity agent can be written
vi = (vi,1, · · · , vi,D). It is worth noting that, on a digital computer the search
space is necessarily finite and discrete (even if the number of possible vi,k

values is huge). Therefore, vi can be seen as a “genomic sequence”. According
to point 1 in the algorithm description above, the velocity agent can be said
to be “mutated”. Here, however, the mutation rate is almost always equal
to 100% (all components are modified). Also, mutation occurs before the
reproduction.

Genetic recombination is a process by which a molecule of nucleic acid
is broken and then joined to a different one. Point 2 in the PSO algorithm
description can be seen as a recombination of the genomic sequences of three
agents.

Reproduction (or procreation) is the biological process by which new “off-
spring” individual organisms are produced from their “parents”. According
to point 3 of the PSO description, a part of the process can be symbolically
described by

(pi, v
′
i) ⇒ p′i (3)

which can be interpreted as procreation with two “parents”.
Natural selection is the process by which traits become more or less com-

mon in a population due to consistent effects upon the survival or repro-
duction of their bearers. We can see that point 4 of the PSO algorithm is a
selection mechanism: the agent mi may die or survive, according to its “qual-
ity”. Also, it can be proved (see more comments about this in [21]) that there
is always convergence. It means that the mi agents (and also the pi agents)

Evolutionary Optimization 17

ACO problem

solution
components

pheromone

model

ACO

probabilistic
solution

construction

pheromone
value

update

initialization of pheromone values

Fig. 4. A schematic view of ACO algorithms

become more and more similar. In the optimization context, this phenomenon
is called stagnation, and is not very desirable. In other words, there is a kind
of selection, but it has to be carefully controlled for good performance.

So, is PSO an EA or not? The answer to the question itself is not really
interesting. It is just a matter of classification. By studying the question,
however, a new point of view on PSO could be defined, which may suggest
some fruitful variants (not studied in detail here). For instance:

1. The “mutation” rate may be smaller than 100%. In that case, not all
velocity components are modified. In particular, if it is zero, there is no
“generation”, and, as the position agent “dies”, the swarm size decreases.

2. Instead of being informed by always the same memory agent mi, the ve-
locity agent vi may be informed by some others. The “combination” may
make use of more than two memory agents, or even all (for this case,
see [70]). Actually, we may also define a population L of “link agents”.
The existence of a (i, j) agent means there is an information link between
the velocity agent vi and the memory agent mj . It is even possible to de-
sign an algorithm that works by co-evolution of the four populations P ,
V , M, and L.

3. The position agent may not die. In that case, and if the velocity agent is
not null, the swarm size increases.

... and so on.

5.3 Ant Colony Optimization

Like EAs, ACO algorithms [9, 32] are bio-inspired techniques for optimiza-
tion. A schematic view of ACO algorithms is shown in Fig. 4. They are
based on a so-called pheromone model, which is a set of numerical values
that are associated to opportunely defined solution components. In the case
of the well-known TSP, for example, the edges of the underlying graph are

18 C. Blum et al.

the solution components. The pheromone model is used to generate – at each
iteration – a fixed number of solutions to the considered problem. Again
considering the case of the TSP, edges with a high pheromone value have a
greater chance to be chosen during the solution construction process. In this
way, the pheromone model – together with the mechanism for constructing
solutions – implies a parameterized probability distribution over the search
space. In general, the ACO approach attempts to solve an optimization prob-
lem by iterating the following two steps:

1. candidate solutions are constructed in a probabilistic way by using the
pheromone model;

2. the candidate solutions are used to modify the pheromone values in a way
that is deemed to bias future sampling toward high quality solutions.

In other words, the pheromone update aims to concentrate the search in
regions of the search space containing high quality solutions. In particular,
the reinforcement of solution components depending on the solution quality is
an important ingredient of ACO algorithms. It implicitly assumes that good
solutions consist of good solution components. To learn which components
contribute to good solutions can help assembling them into better solutions.

5.4 Is ACO an EA?

While there are some similarities between EAs and ACO algorithms, there
also exist some fundamental differences. Concerning the similarities, ACO al-
gorithms are – just like EAs – population-based techniques. At each iteration
a number of new solutions is generated. In both cases new solutions are gen-
erated based on the search experience. However, while most EAs store their
search experience in the explicit form of a population of solutions, ACO algo-
rithms store their search experience in the values of the pheromone model. Ac-
cordingly, there are also differences in updating the stored information. While
standard EAs perform an explicit update of the population – that is, at each
iteration some solutions are replaced by new ones – ACO algorithms use some
of the generated solutions for making an update of the pheromone values.

Despite the differences, ACO algorithms and certain types of EAs can be
studied under a common framework known as model-based search [115]. Apart
from ACO algorithms, this framework also covers stochastic gradient ascent,
the cross-entropy method, and EAs that can be labeled as Estimation of Dis-
tribution Algorithms (EDAs) [68]. According to [115], “in model-based search
algorithms, candidate solutions are generated using a parametrized probabilis-
tic model that is updated using the previously seen solutions in such a way that
the search will concentrate in the regions containing high quality solutions.”

The development of EDAs was initiated by mainly two observations. The
first one concerns the fact that standard crossover operators were often ob-
served to destroy good building blocks, i.e., partial solutions that are present
in most, if not all, high quality solutions. The second observation is the one

Evolutionary Optimization 19

of genetic drift, i.e., a loss of diversity in the population due to its finite size.
As a result of genetic drift, EAs may prematurely converge to sub-optimal
solutions. One of the earliest EDAs is Population-Based Incremental Learn-
ing (PBIL) [3], developed with the idea of removing the genetics from the
standard GA. In fact, for problems with independent decision variables, PBIL
using only the best solution of each iteration for the update is equivalent to
a specific version of ACO known as the hyper-cube framework with iteration-
best update [10].

Summarizing, while ACO algorithms may be seen as model-based search
algorithms, just like some EAs, ACO algorithms should not be labeled as
“Evolutionary Algorithms”.

6 Concluding Remarks

In this chapter, we have discussed the term “Evolutionary Algorithms” from
various different perspectives. As seen in Section 3, there are at least two
ways to define EAs. Traditionally, “Evolutionary Algorithms” is considered
as a term identifying a set of algorithms (e.g., GAs, GP, ES and EP) which
work according to the same basic cycle. Today, even these terms became
mere names for large algorithm families which consist of many different sub-
algorithms. The justification for such a variety of algorithms has been pointed
out in Section 4.1: the NFLT which signifies that there may be an algorithm
which is best for a certain family of optimization problems, but not for all
possible ones. The variety of “Evolutionary Algorithms” has led to the con-
troversy about what is an EA and what it is not.

One of the factors contributing to this situation is that there exist many
new metaheuristics that share the characteristic traits of EAs but differ signif-
icantly in their semantics. Hybrid EAs incorporating local search algorithms
and other Memetic Computing approaches, for instance, possess a different al-
gorithmic structure. EDAs are population-based randomized algorithms and
involve selection and possibly mutation – but are not related to any process
in nature.

Another possible factor is that researchers nowadays tend to pay more ef-
forts into defining common frameworks which can unite different algorithms,
such as the already mentioned work in [115] or the recent framework proposed
in [107] that unites both the traditional EAs and EDAs. Generally speaking,
metaheuristics can be viewed as the combination of components for search
and selection, i. e., a set of operations for generating one or more trial solu-
tions and/or a set of operations to perform the selection of the solution and
thus of the search directions.

Furthermore, the research communities working on particular algorithms
pursue a process of generalization and formalization during which more simi-
larities between formerly distinct approaches are discovered. These processes
make it easier to construct versatile algorithms and also provide the chance
of obtaining more generally applicable theoretical results.

20 C. Blum et al.

Besides these reasons, there is the basic fact that researchers themselves
are the ones who decide the name of their algorithms. It may indeed be argued
whether a (1 + 1) ES is actually an EA or just a Hill Climbing method, or
whether those very first MAs were special EAs or not. Approaching this issue
from the opposite direction, it is indeed possible to develop algorithms which
improve a set of solutions with a process of choosing the best ones and slightly
modifying them in an iterative way, e.g., by using unary and binary search
operations, without utilizing any inspiration from nature. Would the term
“Evolutionary Algorithm” appropriate for such an algorithm?

The meaning of the term is thus subject to interpretation, and we put
three other metaheuristics, the MA, PSO and ACO, into the context of this
controversy. The sections on PSO and ACO in particular symbolize very
well how different researchers may either tend to generalize an algorithm’s
definition to make it more compatible to the evolutionary framework or may
emphasize more on its individual features in favor of more distinct semantics.

A simple strategy to avoid ambiguity would be to use terms like Nature-
Inspired Algorithms or Evolutionary Computation Techniques for general
methods inspired by nature or evolution and to preserve the term “Evolu-
tionary Algorithm” for GAs, GP, ES, EP and, to a lesser extent, Differential
Evolution and EDAs.

Another idea would be to more strictly divide the theoretical algorithm
structure from its inspirational roots and history, i. e., to totally abandon
terms such as “genetics”, “evolutionary”, “mutation” or “crossover” from
the naming conventions. Of course, this would probably not happen since
these terms have already entered the folklore. However, more frequently using
words such as “unary search operation” instead of “mutation” or “candidate
solution” instead of “phenotype” in favor of a clearer ontology would lead
to more precise definitions, inspire more rigorous analyses, and may reduce
the quack aura sometimes wrongly attributed by industrial engineers to the
so-called Evolutionary Computation techniques.

Yet, it is likely that “Evolutionary Algorithms” would suffer the same fate
as the term “agent” and blur into a state of, on one hand, almost universally
applicable and, on the other hand, lesser semantic values. Then again, this
does not necessarily be bad – since it may open the door for even more cross-
discipline interaction and cross-fertilization of ideas, as can be observed in
the agent community during the past 20 years.

Acknowledgement. Ferrante Neri’s work is supported by Academy of Finland,
Akatemiatutkija 130600, Algorithmic Design Issues in Memetic Computing. Chris-
tian Blum acknowledges support from grant TIN2007-66523 (FORMLISM) and
from the Ramón y Cajal program of the Spanish Government. Thomas Weise
is supported by the Chinese Academy of Sciences (CAS) Fellowship for Young
International Scientists 2011 and the China Postdoctoral Science Foundation Grant
Number 20100470843.

Evolutionary Optimization 21

References

1. Bäck, T., Hoffmeister, F., Schwefel, H.: A Survey of Evolution Strategies.
In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International
Conference on Genetic Algorithms (ICGA 1991), pp. 2–9. Morgan Kaufmann
Publishers Inc., San Francisco (1991)

2. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Com-
putation. Oxford University Press, Inc., USA (1997)

3. Baluja, S., Caruana, R.A.: Removing the Genetics from the Standard Genetic
Algorithm. In: Prieditis, A., Russell, S.J. (eds.) Proceedings of the Twelfth In-
ternational Conference on Machine Learning (ICML 1995), pp. 38–46. Morgan
Kaufmann Publishers Inc., San Francisco (1995)

4. Barricelli, N.A.: Esempi Numerici di Processi di Evoluzione. Methodos
6(21-22), 45–68 (1954)

5. Barricelli, N.A.: Symbiogenetic Evolution Processes Realized by Artificial
Methods. Methodos 9(35-36), 143–182 (1957)

6. Belew, R.K., Booker, L.B. (eds.): Proceedings of the Fourth International Con-
ference on Genetic Algorithms (ICGA 1991), July13–16, pp. 13–16. Morgan
Kaufmann Publishers Inc., USA (1991)

7. Beyer, H.: The Theory of Evolution Strategies, Natural Computing Series,
Springer, New York (May 27, 2001); ISBN: 3-540-67297-4

8. Beyer, H., Schwefel, H.: Evolution Strategies – A Comprehensive Intro-
duction. Natural Computing: An International Journal 1(1), 3–52 (2002);
doi10.1023/A:1015059928466

9. Blum, C.: Ant Colony Optimization: Introduction and Recent Trends. Physics
of Life Reviews 2(4), 353–373 (2005); doi:10.1016/j.plrev.2005.10.001

10. Blum, C., Dorigo, M.: The Hyper-Cube Framework for Ant Colony Opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics – Part B:
Cybernetics 34(2), 1161–1172 (2004); doi:10.1109/TSMCB.2003.821450

11. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison. ACM Computing Surveys (CSUR) 35(3),
268–308 (2003); doi:10.1145/937503.937505

12. Bonabeau, E.W., Dorigo, M., Théraulaz, G.: Swarm Intelligence: From Nat-
ural to Artificial Systems. Oxford University Press, Inc., USA (1999); ISBN:
0195131592

13. Bonabeau, E.W., Dorigo, M., Théraulaz, G.: Inspiration for Optimization from
Social Insect Behavior. Nature 406, 39–42 (2000); doi:10.1038/35017500

14. Burke, E.K., Kendall, G., Soubeiga, E.: A Tabu Search Hyperheuristic
for Timetabling and Rostering. Journal of Heuristics 9(6), 451–470 (2003);
doi:10.1023/B:HEUR.0000012446.94732.b6

15. Campos, M., Bonabeau, E.W., Théraulaz, G., Deneubourg, J.: Dynamic
Scheduling and Division of Labor in Social Insects. Adaptive Behavior 8(2),
83–95 (2000); doi:10.1177/105971230000800201

16. Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A Fast Adap-
tive Memetic Algorithm for Online and Offline Control Design of PMSM
Drives. IEEE Transactions on Systems, Man, and Cybernetics – Part B:
Cybernetics 37(1), 28–41 (2007); doi:10.1109/TSMCB.2006.883271

22 C. Blum et al.

17. Caponio, A., Neri, F., Tirronen, V.: Super-fit Control Adaptation in
Memetic Differential Evolution Frameworks. Soft Computing – A Fusion
of Foundations, Methodologies and Applications 13(8-9), 811–831 (2009);
doi:10.1007/s00500-008-0357-1

18. Chen, W.X., Weise, T., Yang, Z.Y., Tang, K.: Large-Scale Global Optimiza-
tion Using Cooperative Coevolution with Variable Interaction Learning. In:
Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G., et al. (eds.) PPSN XI.
LNCS, vol. 6239, pp. 300–309. Springer, Heidelberg (2010), doi:10.1007/978-
3-642-15871-1-31

19. Chiong, R. (ed.): Nature-Inspired Algorithms for Optimisation, April 30. SCI,
vol. 193. Springer, Heidelberg (2009); ISBN: 3-642-00266-8, 3-642-00267-6,
doi:10.1007/978-3-642-00267-0

20. Chiong, R., Weise, T., Michalewicz, Z. (eds.): Variants of Evolutionary Algo-
rithms for Real-World Applications. Springer, Heidelberg (2011)

21. Clerc, M., Kennedy, J.: The Particle Swarm – Explosion, Stability, and Con-
vergence in a Multidimensional Complex Space. IEEE Transactions on Evo-
lutionary Computation 6(1), 58–73 (2002); doi:10.1109/4235.985692

22. Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Genetic and Evolutionary Com-
putation, vol. 5. Springer, Heidelberg (2002); doi:10.1007/978-0-387-36797-2

23. Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Schedul-
ing a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS,
vol. 2079, pp. 176–190. Springer, Heidelberg (2001); doi:10.1007/3-540-44629-
X-11

24. Dawkins, R.: The Selfish Gene, 1st, 2nd edn. Oxford University Press, Inc.,
USA (1976); ISBN:0-192-86092-5

25. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive
Systems, PhD thesis, University of Michigan: Ann Arbor, MI, USA (1975)

26. De Jong, K.A.: Genetic Algorithms are NOT Function Optimizers. In:
Whitley, L.D. (ed.) Proceedings of the Second Workshop on Foundations of
Genetic Algorithms (FOGA 1992), pp. 5–17. Morgan Kaufmann Publishers
Inc., San Francisco (1992)

27. De Jong, K.A.: Evolutionary Computation: A Unified Approach. Complex
Adaptive Systems, vol. 4. MIT Press, Cambridge (2006)

28. Deb, K., Goldberg, D.E.: Analyzing Deception in Trap Functions. In:
Whitley, L.D. (ed.) Proceedings of the Second Workshop on Foundations of
Genetic Algorithms (FOGA 1992), pp. 93–108. Morgan Kaufmann Publishers
Inc., San Francisco (1992)

29. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley
Interscience Series in Systems and Optimization, John Wiley & Sons Ltd., New
York (2001)

30. Deb, K., Pratab, A., Agrawal, S., Meyarivan, T.: A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6(2), 182–197 (2002); doi:10.1109/4235.996017

31. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a
Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cy-
bernetics Part B: Cybernetics 26(1), 29–41 (1996); doi:10.1109/3477.484436,
ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.10-SMC96.pdf

ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.10-SMC96.pdf

Evolutionary Optimization 23

32. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Books. MIT Press
(July 2004); ISBN: 0-262-04219-3

33. Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory.
In: Proceedings of the Sixth International Symposium on Micro Machine and
Human Science (MHS 1995), pp. 39–43. IEEE Computer Society, USA (1995);
doi:10.1109/MHS.1995.494215

34. Eberhart, R.C., Shi, Y.: A Modified Particle Swarm Optimizer. In:
Simpson, P.K. (ed.) The 1998 IEEE International Conference on Evolutionary
Computation (CEC 1998), pp. 69–73. IEEE Computer Society, Los Alamitos
(1998); doi:10.1109/ICEC.1998.699146

35. Eiben, Á.E., Smith, J.E.: Introduction to Evolutionary Computing, 1st edn.
Natural Computing Series, ch. 10, pp. 173–188. Springer, New York (2003)

36. Farooq, M.: Bee-Inspired Protocol Engineering – From Nature to Networks.
Natural Computing Series, vol. 15. Springer, New York (2009); ISBN: 3-540-
85953-5, doi:10.1007/978-3-540-85954-3

37. Fogel, L.J.: On the Organization of Intellect. PhD thesis, University of Cali-
fornia (UCLA): Los Angeles, CA, USA (1964)

38. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated
Evolution. John Wiley & Sons Ltd., USA (1966); ISBN: 0471265160

39. Fraser, A.S.: Simulation of Genetic Systems by Automatic Digital Computers.
I. Introduction. Australian Journal of Biological Science (AJBS) 10, 484–491
(1957)

40. Gao, Y., Duan, Y.: An Adaptive Particle Swarm Optimization Algorithm with
New Random Inertia Weight. In: Huang, D.-S., Heutte, L., Loog, M. (eds.)
Advanced Intelligent Computing Theories and Applications. With Aspects of
Contemporary Intelligent Computing Techniques - ICIC 2007. LNCS, vol. 2,
pp. 342–350. Springer, Heidelberg (2007), doi:10.1007/978-3-540-74282-1-39

41. Gao, Y., Ren, Z.: Adaptive Particle Swarm Optimization Algorithm With
Genetic Mutation Operation. In: Lei, J., Yao, J., Zhang, Q. (eds.) Proceedings
of the Third International Conference on Advances in Natural Computation
(ICNC’07), vol. 2, pp. 211–215. IEEE Computer Society Press, Los Alamitos
(2007), doi:10.1109/ICNC.2007.161

42. Glover, F., Kochenberger, G.A. (eds.): Handbook of Metaheuristics. Interna-
tional Series in Operations Research & Management Science, vol. 57. Kluwer,
Springer Netherlands, Dordrecht, Netherlands (2003), doi:10.1007/b101874

43. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Longman Publishing Co, USA (1989); ISBN: 0-
201-15767-5

44. Gong, M., Jiao, L., Zhang, L.: Baldwinian Learning in Clonal Selection Al-
gorithm for Optimization. Information Sciences – Informatics and Computer
Science Intelligent Systems Applications: An International Journal 180(8),
1218–1236 (2010); doi:10.1016/j.ins.2009.12.007

45. Gonzalez, T.F. (ed.): Handbook of Approximation Algorithms and Meta-
heuristics, Chapmann & Hall/CRC Computer and Information Science Series.
Chapman & Hall/CRC, Boca Raton, FL (2007)

24 C. Blum et al.

46. Grefenstette, J.J.: Deception Considered Harmful. In: Whitley, L.D. (ed.)
Proceedings of the Second Workshop on Foundations of Genetic Algorithms
(FOGA 1992), pp. 75–91. Morgan Kaufmann Publishers Inc., USA (1992)

47. Hansen, N., Ostermeier, A.: Adapting Arbitrary Normal Mutation Distri-
butions in Evolution Strategies: The Covariance Matrix Adaptation. In:
Jidō, K., Gakkai, S. (eds.) Proceedings of IEEE International Conference on
Evolutionary Computation (CEC 1996), pp. 312–317. IEEE Computer Society
Press, Los Alamitos (1996); doi:10.1109/ICEC.1996.542381

48. Hansen, N., Ostermeier, A.: Convergence Properties of Evolution Strategies
with the Derandomized Covariance Matrix Adaption: The (μ/μI , λ)-CMA-
ES. In: Zimmermann, H. (ed.) Proceedings of the 5th European Congress on
Intelligent Techniques and Soft Computing (EUFIT 1997), vol. 1, pp. 650–654.
ELITE Foundation, Germany (1997)

49. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in
Evolution Strategies. Evolutionary Computation 9(2), 159–195 (2001)

50. Hansen, N., Ostermeier, A., Gawelczyk, A.: On the Adaptation of Arbitrary
Normal Mutation Distributions in Evolution Strategies: The Generating Set
Adaptation. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International
Conference on Genetic Algorithms (ICGA 1995), pp. 57–64. Morgan Kauf-
mann Publishers Inc., San Francisco (1995)

51. Hart, W.E., Krasnogor, N., Smith, J.E.: Memetic Evolutionary Algorithms.
In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic
Algorithms. Studies in Fuzziness and Soft Computing, ch.1, vol. 166, pp. 3–27.
Springer, Heidelberg (2005)

52. Grefenstette, J.J.: Proceedings of the 1st International Conference on Genetic
Algorithms and their Applications (ICGA 1985), June 24-26, pp. 24–26. Carn-
egy Mellon University (CMU), Lawrence Erlbaum Associates, Hillsdale, USA
(1985)

53. Hillis, W.D.: Co-Evolving Parasites Improve Simulated Evolution as an Op-
timization Procedure. Physica D: Nonlinear Phenomena 42(1-2), 228–234
(1990); doi:10.1016/0167-2789(90)90076-2

54. Hitch-Hiker’s Guide to Evolutionary Computation: A List of Frequently Asked
Questions (FAQ) (HHGT) (March 29, 2000)

55. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence.
University of Michigan Press, USA (1975); ISBN: 0-472-08460-7

56. Holland, J.H.: Genetic Algorithms. Scientific American 267(1), 44–50 (1992)
57. Igel, C., Toussaint, M.: On Classes of Functions for which No Free

Lunch Results Hold. Information Processing Letters 86(6), 317–321 (2003);
doi:10.1016/S0020-0190(03)00222-9

58. Jastrebski, G.A., Arnold, D.V.: Improving Evolution Strategies through Ac-
tive Covariance Matrix Adaptation. In: Yen, G.G., et al. (eds.) Proceedings of
the IEEE Congress on Evolutionary Computation CEC 2006, pp. 9719–9726.
IEEE Computer Society, Los Alamitos (2006); doi:10.1109/CEC.2006.1688662

59. Kendall, G., Cowling, P., Soubeiga, E.: Choice Function and Random Hyper-
Heuristics. In: Tan, K.C., et al. (eds.) Recend Advances in Simulated Evo-
lution and Learning – Proceedings of the Fourth Asia-Pacific Conference on
Simulated Evolution And Learning (SEAL 2002). Advances in Natural Com-
putation, vol. 2, pp. 667–671. World Scientific Publishing Co, Singapore (2002)

Evolutionary Optimization 25

60. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings
of the IEEE International Conference on Neural Networks (ICNN 1995),
vol. 4, pp. 1942–1948. IEEE Computer Society Press, Los Alamitos (1995);
doi:10.1109/ICNN.1995.488968

61. Kononova, A.V., Ingham, D.B., Pourkashanian, M.: Simple Scheduled
Memetic Algorithm for Inverse Problems in Higher Dimensions: Appli-
cation to Chemical Kinetics. In: Michalewicz, Z., Reynolds, R.G. (eds.)
Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2008), pp. 3905–3912. IEEE Computer Society Press, Los Alamitos (2008);
doi:10.1109/CEC.2008.4631328

62. Korošec, P., Šilc, J., Filipič, B.: The Differential Ant-Stigmergy Algorithm.
Information Sciences – Informatics and Computer Science Intelligent Systems
Applications: An International Journal (2011)

63. Koza, J.R.: Concept Formation and Decision Tree Induction using the
Genetic Programming Paradigm. In: Schwefel, H.-P., Männer, R. (eds.)
PPSN 1990. LNCS, vol. 496, pp. 124–128. Springer, Heidelberg (1991);
doi:10.1007/BFb0029742

64. Koza, J.R.: Genetic Programming: On the Programming of Computers by
Means of Natural Selection, 1st edn. Bradford Books, MIT Press (1992); 2nd
edn. (1993)

65. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.A.: Use of Automati-
cally Defined Functions and Architecture-Altering Operations in Automated
Circuit Synthesis Using Genetic Programming. In: Koza, J.R., et al. (eds.)
Proceedings of the First Annual Conference of Genetic Programming (GP
1996), Complex Adaptive Systems, Bradford Books, pp. 132–149. MIT Press,
Cambridge (1996)

66. Kramer, O.: Self-Adaptive Heuristics for Evolutionary Computation. SCI,
vol. 147. Springer, Heidelberg (2008); doi:10.1007/978-3-540-69281-2

67. Krasnogor, N., Smith, J.E.: A Tutorial for Competent Memetic Algorithms:
Model, Taxonomy, and Design Issues. IEEE Transactions on Evolutionary
Computation 9(5), 474–488 (2005); doi:10.1109/TEVC.2005.850260

68. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms –
A New Tool for Evolutionary Computation. Genetic and Evolutionary Com-
putation, vol. 2. Springer US, USA (2001)

69. Le, M.N., Ong, Y., Jin, Y., Sendhoff, B.: Lamarckian Memetic Algorithms: Lo-
cal Optimum and Connectivity Structure Analysis. Memetic Computing 1(3),
175–190 (2009); doi:10.1007/s12293-009-0016-9

70. Mendes, R., Kennedy, J., Neves, J.: Fully Informed Particle Swarm: Sim-
pler, Maybe Better. IEEE Transactions on Evolutionary Computation 8(3),
204–210 (2004); doi:10.1109/TEVC.2004.826074

71. Mendes, R.R.F., de Voznika, F.B., Freitas, A.A., Nievola, J.C.: Discovering
Fuzzy Classification Rules with Genetic Programming and Co-evolution. In:
Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp.
314–325. Springer, Heidelberg (2001), doi:10.1007/3-540-44794-6-26

72. Meyer-Nieberg, S., Beyer, H.: Self-Adaptation in Evolutionary Algorithms. In:
Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolu-
tionary Algorithms. SCI, ch. 3, vol. 54, pp. 47–75. Springer, Heidelberg (2007),
doi:10.1007/978-3-540-69432-8-3

26 C. Blum et al.

73. Michalewicz, Z.: A Perspective on Evolutionary Computation. In: Yao, X.
(ed.) AI-WS 1993 and 1994. LNCS, vol. 956, pp. 73–89. Springer, Heidelberg
(1995), doi:10.1007/3-540-60154-6-49

74. Michalewicz, Z., Schaffer, J.D., Schwefel, H.-P., Fogel, D.B., Kitano, H.: Pro-
ceedings of the First IEEE Conference on Evolutionary Computation (CEC
1994), June 27-29, pp. 27–29. IEEE Computer Society Press, Los Alamitos
(1997)

75. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer, Heidelberg (1996)

76. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, 2nd ex-
tended edn. Springer, Heidelberg (2004)

77. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computa-
tion Program C3P 826, California Institute of Technology (Caltech), Caltech
Concurrent Computation Program (C3P), Pasadena (1989)

78. Neri, F., Tirronen, V., Kärkkäinen, T., Rossi, T.: Fitness Diversity
based Adaptation in Multimeme Algorithms: A Comparative Study. In:
Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2007), pp. 2374–2381. IEEE Computer Society, Los Alamitos (2007);
doi:10.1109/CEC.2007.4424768

79. Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.: An Adaptive Multimeme Al-
gorithm for Designing HIV Multidrug Therapies. IEEE/ACM Transactions
on Computational Biology and Bioinformatics (TCBB) 4(2) (April 2007);
doi:10.1109/TCBB.2007.070202

80. Neri, F., Toivanen, J., Mäkinen, R.A.E.: An Adaptive Evolutionary Algorithm
with Intelligent Mutation Local Searchers for Designing Multidrug Therapies
for HIV. Applied Intelligence – The International Journal of Artificial Intel-
ligence, Neural Networks, and Complex Problem-Solving Technologies 27(3),
219–235 (2007); doi:10.1007/s10489-007-0069-8

81. Nguyen, Q.H., Ong, Y., Lim, M.H., Krasnogor, N.: Adaptive Cellular
Memetic Algorithms. Evolutionary Computation 17(2), 231–256 (2009);
doi:10.1162/evco.2009.17.2.231

82. Norman, M.G., Moscato, P.: A Competitive and Cooperative Approach to
Complex Combinatorial Search. Caltech Concurrent Computation Program
790, California Institute of Technology (Caltech), Caltech Concurrent Com-
putation Program (C3P), Pasadena (1989)

83. Norman, M.G., Moscato, P.: A Competitive and Cooperative Approach to
Complex Combinatorial Search. In: Proceedings of the 20th Informatics and
Operations Research Meeting (20th Jornadas Argentinas e Informática e In-
vestigación Operativa) (JAIIO 1991), pp. 3.15–3.29 (1991); Also published
as Technical Report Caltech Concurrent Computation Program, Report. 790,
California Institute of Technology, Pasadena, California, USA (1989)

84. Ong, Y., Keane, A.J.: Meta-Lamarckian Learning in Memetic Algorithms.
IEEE Transactions on Evolutionary Computation 8(2), 99–110 (2004);
doi:10.1109/TEVC.2003.819944

Evolutionary Optimization 27

85. Ong, Y., Lim, M.H., Zhu, N., Wong, K.: Classification of Adaptive
Memetic Algorithms: A Comparative Study. IEEE Transactions on Sys-
tems, Man, and Cybernetics – Part B: Cybernetics 36(1), 141–152 (2006);
doi:10.1109/TSMCB.2005.856143

86. Parrish, J.K., Hamner, W.M. (eds.): Animal Groups in Three Dimensions:
How Species Aggregate. Cambridge University Press, Cambridge (1997);
doi:10.2277/0521460247, ISBN: 0521460247

87. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Program-
ming. Lulu Enterprises UK Ltd., UK (2008)

88. Potter, M.A., De Jong, K.A.: A Cooperative Coevolutionary Approach to
Function Optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.)
PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994);
doi:10.1007/3-540-58484-6-269

89. Potter, M.A., De Jong, K.A.: Cooperative Coevolution: An Architecture for
Evolving Coadapted Subcomponents. Evolutionary Computation 8(1), 1–29
(2000)

90. Rechenberg, I.: Cybernetic Solution Path of an Experimental Problem. Royal
Aircraft Establishment, Farnborough (1965)

91. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. PhD thesis, Technische Universität
Berlin: Berlin, Germany (1971)

92. Rechenberg, I.: Evolutionsstrategie 1994. Werkstatt Bionik und Evolution-
stechnik, vol. 1. Frommann-Holzboog Verlag, Germany (1994)

93. Schwefel, H.: Kybernetische Evolution als Strategie der exprimentellen
Forschung in der Strömungstechnik. Master’s thesis, Technische Universität
Berlin: Berlin, Germany (1965)

94. Schwefel, H.: Experimentelle Optimierung einer Zweiphasendüse Teil I. Tech-
nical Report 35, AEG Research Institute: Berlin, Germany, Project MHD–
Staustrahlrohr 11.034/68 (1968)

95. Schwefel, H.: Evolutionsstrategie und numerische Optimierung. PhD thesis,
Technische Universität Berlin, Institut für Meß- und Regelungstechnik, Insti-
tut für Biologie und Anthropologie: Berlin, Germany (1975)

96. Schwefel, H.: Evolution and Optimum Seeking. Sixth-Generation Computer
Technology Series. John Wiley & Sons Ltd., USA (1995); ISBN: 0-471-57148-2

97. Smith, J.E.: Coevolving Memetic Algorithms: A Review and Progress Report.
IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernet-
ics 37(1), 6–17 (2007); doi:10.1109/TSMCB.2006.883273

98. Srinivas, N., Deb, K.: Muiltiobjective Optimization Using Nondominated Sort-
ing in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994);
doi:10.1162/evco.1994.2.3.221

99. Tang, J., Lim, M.H., Ong, Y.: Diversity-Adaptive Parallel Memetic Algorithm
for Solving Large Scale Combinatorial Optimization Problems. Soft Comput-
ing – A Fusion of Foundations, Methodologies and Applications 11(9), 873–888
(2007); doi:10.1007/s00500-006-0139-6

100. Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: An En-
hanced Memetic Differential Evolution in Filter Design for Defect Detec-
tion in Paper Production. Evolutionary Computation 16(4), 529–555 (2008);
doi:10.1162/evco.2008.16.4.529

28 C. Blum et al.

101. Wang, P., Weise, T., Chiong, R.: Novel Evolutionary Algorithms for Super-
vised Classification Problems: An Experimental Study. Evolutionary Intelli-
gence 4(1), 3–16 (2011); doi:10.1007/s12065-010-0047-7

102. Weise, T.: Global Optimization Algorithms – Theory and Application. it-
weise.de (self-published), Germany (2009),
http://www.it-weise.de/projects/book.pdf

103. Weise, T., Tang, K.: Evolving Distributed Algorithms with Genetic Program-
ming. IEEE Transactions on Evolutionary Computation (to appear, 2011)

104. Weise, T., Podlich, A., Gorldt, C.: Solving Real-World Vehicle Routing Prob-
lems with Evolutionary Algorithms. In: Chiong, R., Dhakal, S. (eds.) Nat-
ural Intelligence for Scheduling, Planning and Packing Problems. SCI, ch.2,
vol. 250, pp. 29–53. Springer, Heidelberg (2009), doi:10.1007/978-3-642-04039-
9-2

105. Weise, T., Podlich, A., Reinhard, K., Gorldt, C., Geihs, K.: Evolutionary
Freight Transportation Planning. In: Giacobini, M., Brabazon, A., Cagnoni,
S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink,
A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 768–777.
Springer, Heidelberg (2009), doi:10.1007/978-3-642-01129-0-87

106. Weise, T., Zapf, M., Chiong, R., Nebro Urbaneja, A.J.: Why Is Optimization
Difficult? In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation.
SCI, ch. 1, vol. 193, pp. 1–50. Springer, Heidelberg (2009); doi:10.1007/978-
3-642-00267-0-1

107. Weise, T., Niemczyk, S., Chiong, R., Wan, M.: A Framework for Multi-
Model EDAs with Model Recombination. In: Proceedings of the 4th Euro-
pean Event on Bio-Inspired Algorithms for Continuous Parameter Optimisa-
tion (EvoNUM 2011), Proceedings of the European Conference on the Ap-
plications of Evolutionary Computation (EvoAPPLICATIONS 2011). LNCS,
Springer, Heidelberg (2011)

108. Whitley, L.D.: A Genetic Algorithm Tutorial. Statistics and Computing 4(2),
65–85 (1994); doi:10.1007/BF00175354

109. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimiza-
tion. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997);
doi:10.1109/4235.585893

110. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster.
IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999);
doi:10.1109/4235.771163

111. Yu, E.L., Suganthan, P.N.: Ensemble of Niching Algorithms. Infor-
mation Sciences – Informatics and Computer Science Intelligent Sys-
tems Applications: An International Journal 180(15), 2815–2833 (2010);
doi:10.1016/j.ins.2010.04.008

112. Yuan, Q., Qian, F., Du, W.: A Hybrid Genetic Algorithm with the Bald-
win Effect. Information Sciences – Informatics and Computer Science Intelli-
gent Systems Applications: An International Journal 180(5), 640–652 (2010),
doi:10.1016/j.ins.2009.11.015

113. Zitzler, E., Thiele, L.: An Evolutionary Algorithm for Multiobjective Op-
timization: The Strength Pareto Approach. 43, Eidgenssische Technische
Hochschule (ETH) Zürich, Department of Electrical Engineering, Computer
Engineering and Networks Laboratory (TIK), Zürich, Switzerland (May 1995)

http://www.it-weise.de/projects/book.pdf

Evolutionary Optimization 29

114. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. 101, Eidgenssische Technische Hochschule (ETH)
Zürich, Department of Electrical Engineering, Computer Engineering and Net-
works Laboratory (TIK), Zürich, Switzerland (May 2001)

115. Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M.: Model-Based Search for
Combinatorial Optimization: A Critical Survey. Annals of Operations Re-
search 132(1-4), 373–395 (2004); doi:10.1023/B:ANOR.0000039526.52305.af

An Evolutionary Approach to
Practical Constraints in Scheduling: A
Case-Study of the Wine Bottling
Problem

Arvind Mohais, Sven Schellenberg, Maksud Ibrahimov,
Neal Wagner, and Zbigniew Michalewicz

Abstract. Practical constraints associated with real-world problems are
a key differentiator with respect to more artificially formulated problems.
They create challenging variations on what might otherwise be considered
as straightforward optimization problems from an evolutionary computation
perspective. Through solving various commercial and industrial problems us-
ing evolutionary algorithms, we have gathered experience in dealing with
practical dynamic constraints. Here, we present proven methods for dealing
with these issues for scheduling problems. For use in real-world situations, an
evolutionary algorithm must be designed to drive a software application that
needs to be robust enough to deal with practical constraints in order to meet
the demands and expectations of everyday use by domain specialists who
are not necessarily optimization experts. In such situations, addressing these
issues becomes critical to success. We show how these challenges can be dealt

Arvind Mohais · Neal Wagner
SolveIT Software Pty. Ltd., Level 1, 99 Frome Street,
South Australia 5000, Australia
e-mail: {am,nw}@solveitsoftware.com

Sven Schellenberg
SolveIT Software Pty. Ltd., Suite 201. 198 Harbour Esplanade,
Docklands, Victoria 3008, Australia
e-mail: ss@solveitsoftware.com

Maksud Ibrahimov · Zbigniew Michalewicz
School of Computer Science, University of Adelaide,
South Australia 5005, Australia
e-mail: {maksud.ibrahimov,zbigniew.michalewicz}@adelaide.edu.au

Zbigniew Michalewicz
Also at Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21,
01-237 Warsaw, Poland and Polish-Japanese Institute of Information Technology,
ul. Koszykowa 86, 02-008 Warsaw, Poland

{am,nw}@solveitsoftware.com
ss@solveitsoftware.com
{maksud.ibrahimov,zbigniew.michalewicz}@adelaide.edu.au

32 A. Mohais et al.

with by making adjustments to genotypic representation, phenotypic decod-
ing, or the evaluation function itself. The ideas presented in this chapter are
exemplified by the means of a case study of a real-world commercial prob-
lem, namely that of bottling wine in a mass-production environment. The
methods described have the benefit of having been proven by a full-fledged
implementation into a software application that undergoes continual and vig-
orous use in a live environment in which time-varying constraints, arising in
multiple different combinations, are a routine occurrence.

1 Introduction

The application of evolutionary algorithms (EAs) to real-world problems
brings us face-to-face with some challenging issues related to the time-varying
nature of such problems. These issues are over and above the fundamental
problems being solved, and in fact, they can be so critical from the stand-
point of creating a robust and truly usable software application that their
consideration significantly alters the approach taken to solve the problem.

From a pure-problem perspective, EAs have been used for quite a long time
to solve scheduling problems [1, 2, 3]. A general scheduling problem requires
that we make decisions on how to assign a number of jobs to a fixed set of
machines able to perform those tasks. The assignment must be done in such
a way as to minimize the amount of time required to complete all of the tasks
(referred to as the makespan). There are many variations to this problem. For
example, the processing of a job may require that it passes through multiple
pre-defined phases, each possibly taking place on a different machine. All of
the variants however are equivalent to the NP-Complete problem of job shop
scheduling [4]. This of course makes it virtually unsolvable in a reasonable
amount of time using currently known techniques. Thus, a usual approach is
to look for an approximate solution using EAs.

The essence of a straightforward evolutionary approach is to represent a
candidate solution as an ordered list of (machine, job) pairs, with the natural
order of the list being representative of the sequence of job execution. Using a
well-constructed fitness function that embodies the problem constraints and
parameters, and perturbing the representation using simple operators will
usually guide the population to a good solution.

This kind of approach is quickly seen to be insufficient when it comes to
creating a fully-fledged solution that is to be used in a real-world business
environment to manage the day-to-day scheduling needs of a large enter-
prise. There are many issues that intrude on the purity of a simple approach
such as the one described above. These issues are usually critical and require
careful consideration so that the business needs can be satisfied in a manner
compatible with the architecture of the EA.

The issues in question arise because of the dynamic nature of real-world prob-
lems. One hardly ever encounters a situation that is static for any significant

An Evolutionary Approach to Practical Constraints in Wine Bottling 33

period of time. In everyday business life, things change almost constantly. The
number of orders to be scheduled in a factory changes, the run rate of a machine
varies due to environmental factors, the quantity of a particular item ordered
is modified after it has already been allocated, machines break down, delivery
trucks arrive late, and so on.

In this chapter we examine examples of such practical time-varying issues
that arise in a specific scheduling problem, namely, what we will refer to
as the Wine Bottling Problem. We show how an EA along with supporting
software components can, by proper design, effectively deal with these issues.

The rest of this chapter is organized as follows. We start with a classifica-
tion of time-varying issues into three categories, alongside a brief literature
review of work in each category in Section 2, and of scheduling problems in
Section 3. Following this, in Section 4, the main case study of this chapter, an
industrial wine bottling problem, is elaborated in sufficient detail to enable
the reader to more easily visualize the kinds of problems being addressed.
We go on to describe the real-world business issues that had to be considered
and resolved in order to build a solution around an EA core in Section 5. The
design and construction of the EA itself is fully specified in Section 6 and
alongside this we illustrate how the various time-varying issues were resolved
in relation to EA components.

2 Dynamic Optimization Problems

The dynamic nature of real-world optimization problems is well known, but
a closer examination reveals a few different aspects of the problem that can
described as dynamic. In this section we introduce a classification of dynamic
optimization problems into three categories, characterized respectively by:

1. Time-varying objective functions.
2. Time-varying input variables.
3. Time-varying constraints.

There is a large body of EA research literature that addresses this dynamic
property of such optimization problems, and we will undertake a brief review
of work in each of these areas. It will be noticed that, while there is an
abundance of work on problems fitting into the categories of time-varying
objective functions and time-varying input variables, there are relatively few
published reports dealing with dynamic optimization problems of the third
kind, that is one that deal with time-varying constraints.

2.1 Time-Varying Objective Functions

These are problems in which the shape of the fitness landscape varies with
time, that is, the location of the optimum value is continually shifting. The
literature shows that there has been a considerable amount of research done

34 A. Mohais et al.

on this kind of problem from the early days of evolutionary methods, to the
present [5, 6, 7, 8, 9]. Some are based on artificially constructed objective
functions and others on real-world applications. In many published reports,
situations were set up wherein during a single run of an EA, the location
of the optimum would move, and researchers were particularly interested
in developing EAs that could detect that there has been a change in the
optimum and continue to alter their search to find the new optimum.

Some examples of the earliest papers related to dealing with time-varying
objective functions using EAs are [10] and [11]. These papers report on at-
tempts to track optima in fluctuating, non-stationary environments (objective
functions). Pettit and Swigger studied environments that fluctuated stochas-
tically at different rates and they envisioned applications to areas such as
voice recognition and synthesis.

Grefenstette extended the work of Krisnakumar [12], by pursuing ideas
related to maintaining diversity. That work considered an abstract problem
that used an optimization surface that would change randomly every 20 gen-
erations of the genetic algorithm, with new peaks appearing and previous
optima being replaced by new ones. Although not addressed as an applica-
tion in that paper, reference was made to real-world dynamic problems such
as optimizing the fuel mixture for a jet engine based on the measurement
of engine output. This problem is dynamic because of both slow and rapid
changes. The components of the engine slowly degrade over time and hence,
slowly alter the function being optimized, and it is also possible to experience
a rapid change due to the sudden failure of a component. It was clear that
the intent of the work was to serve as a foundation for dealing with these
types of problems.

Different authors have worked to create standard test suites that can be
used to study time-varying objective functions. For instance, Branke [13] has
published a test function called the moving peaks benchmark (MPB) prob-
lem. This is an abstract function that represents a landscape with several
peaks. Each peak is defined by a height, a width and a position in the xy-
plane. The function is dynamic because these three characteristics of each
peak are altered slightly as time progresses. It is easy to imagine this func-
tion surface slowly changing with time, with the xy-coordinates of the peak
representing the global optimum slowly moving, and also possibly, the global
optimum shifting from one peak to another.

The case study that will be considered in this chapter does not fall into
the category of dynamic problems discussed in this section. When considered
from a broad perspective, the wine bottling problem can be thought of as
having a time-varying objective function, but it is not one that changes during
the course of an EA run, rather the objective function changes with each run
of the application as business conditions change.

An Evolutionary Approach to Practical Constraints in Wine Bottling 35

2.2 Time-Varying Input Variables

These are problems in which the input data being processed in the optimiza-
tion scenario changes from day to day, or in principle from run to run of the
EA. For example, if we are interested in optimizing the production schedule
of a factory, then each day, or possibly each minute, the set of customer or-
ders to be allocated and sequenced on machines will change. This is because
in a live business environment, as time passes, old orders are completed, and
new ones arrive.

In [14], Johnston and Adorf describe how artificial neural networks can be
used to solve complex scheduling problems with many constraints and report
the real-world problem of scheduling the assigned usage of the NASA/ESA
Hubble Space Telescope was solved using an application based on these
techniques.

Chryssolouris and Subramaniam [15] explore the dynamic job shop prob-
lem where multiple criteria are considered and jobs may be processed by
alternate machines. Although they recognized the lack of work on dynamic
constraints such as random job arrival, in terms of input to the EA, their
work primarily focused on multiple job routes.

Madureira, Ramos and Carmo Silva [16] investigated using a genetic algo-
rithm to study how to produce schedules in a highly dynamic environment
where new input variables require continual re-scheduling. Their work was
based on an extended job-shop in a dynamic environment with simple prod-
ucts and such that require several stages of assembly. Another example of
recent work done in this area include [17].

2.3 Time-Varying Constraints

These are problems in which the constraints of the environment within which
a solution must be found change from day to day. These varying constraints
add an additional level of complexity to the problem because a good EA
approach must be able to operate equally well regardless of how many of
these constraints are in place, and in what particular combination they oc-
cur. For an example of a time-varying constraint, consider a manufacturing
environment in which the problem is to generate a production schedule for
a set of jobs. After a schedule has been produced and passed to the factory
floor for execution, it is customary to freeze a number of days of the sched-
ule. This means that it is mandated that for the specified number of frozen
days, the schedule will remain fixed. Any subsequent revised schedules should
not alter the contents of the current schedule for these days. In this context,
whenever a new schedule needs to be produced, it is a requirement that it
mesh seamlessly with the frozen period of the existing schedule. In general, we
do not know what the current schedule might be at any given moment in time,

36 A. Mohais et al.

yet we must create an EA that generates a new solution that matches up
with the existing one, and still produces an optimal result for the long term.
As new schedules are produced every day, the contents of the frozen period
varies, yielding a time varying constraint.

Good examples of the types of problems that can be categorized as time-
varying constraints can be found in [18], wherein Jain and Elmaraghy describe
circumstances that require the regular generation of new production sched-
ules due to uncertainties (both expected and unexpected) in the production
environment. They touch on typical examples such as machine breakdowns,
increased order priority, rush orders arrival, and cancellations. All of these
issues are also considered in this chapter, from the perspective of an inte-
grated EA-based software solution. There are many other examples of works
regarding this type of problem, for instance in [19, 20, 21].

2.4 Constraints Encountered in Practice

Based on our experience in solving real-world optimization problems for com-
mercial organizations, we have found that the type of problems commonly
experienced in industry belong to the second and third categories. Interest-
ingly we have found that the vast majority of published research in EAs ad-
dresses the first category and to a lesser extent the second category. However,
dynamic optimization of the third kind, i.e., where the problem involves time-
varying constraints, although well-recognized in other domains, has been the
subject of relatively few investigations in the EA literature. This observation
is especially true when we extend our search to fully-fledged application of
an EA to a dynamic real-world problem. Figure 1 illustrates some examples
of issues that typically arise in real-world problems.

Problem
Optimization

Overrides
Manual

Orders
Modified

Job Execution
Poor/Excellent

Machine
Breakdowns

Seamless

Schedule

With Existing

Cancelled

Orders

Prioritization
Re−

Delayed

Raw
Materials

Fig. 1. Typical Issues in Real-World Problems

An Evolutionary Approach to Practical Constraints in Wine Bottling 37

3 Scheduling Problems

The case study examined in this chapter, the wine bottling problem, is pre-
sented as a scheduling problem. It is a textbook example of a real-world
industrial problem whose solution requires finding a production schedule to
run a factory, or multiple factories. Essentially, given a number of tasks that
need to be performed, we need to determine the best way of executing the
required work, in terms of deciding where to assign work, and at exactly what
time, and in what sequence the individual tasks should be carried out. Before
getting into the wine bottling problem properly, in this section, we first take
a brief look at some papers that give the reader a cross-section of examples
of the application of EAs to scheduling applications, both classical academic
problems, as well as real-world problems.

The Job-Shop Scheduling problem is a canonical example of a scheduling
problem. It is one of the most difficult combinatorial optimization problems,
and as is the case with most scheduling problems, it is NP-complete [4]. A
very good survey of job-shop scheduling problems and different solution rep-
resentations is given in [22]. [1] discusses the application of genetic algorithms
to the job-shop scheduling problem. Wang and Zheng [3] solve it using a mod-
ified genetic algorithm. In [2], a simulated annealing approach to tackle the
job-shop scheduling problem is discussed.

Yamada and Reeves [23] proposed an EA to solve a scheduling problem
called the permutation flow shop problem. They combined stochastic sam-
pling and best descent methods into one unified method to reach effective
results. Their work was based on a method described by Nowicki and Smut-
nicki in their tabu search algorithm for the flow shop problem [24].

There are also many published reports of the application of EAs to solve
scheduling problems in various domains of application. Marchiori and Steen-
beek in [25] developed an EA for the real-world airline crew scheduling prob-
lem. Results of the real-world benchmark instances were compared with the
results produced by the commercial systems and produced effective compet-
itive results.

Ponnambalam and Reddy [26] developed a multiobjective hybrid search
algorithm for lot sizing and sequencing in flow-line scheduling. The main
idea is in the memetic type of algorithm that combines genetic algorithm
with local search procedure.

A practical problem of optimal oil production planning was discussed by
Ray and Sarker [27]. Production is based on several oil wells, from which a
crude oil is extracted by means of injection of a high pressure gas. The goal
of the problem was to optimize amount of gas needed to be used in each of
wells to maximize output of oil taking in account a limited amount of gas
each day. Single objective and multiple objective versions of the problems
were considered.

38 A. Mohais et al.

Burke and Smith [28] investigated a real-world problem that addressed the
maintenance problem of a British regional electricity grid. They compared the
performance of a proposed memetic algorithm with other methods.

Martinelli shows the optimization of time-varying objective functions using
a stochastic comparison algorithm in [29]. Values of the time-varying func-
tions are known through estimates. Noise filtering was introduced to decrease
probability of wrong moves.

Tinós and Yang introduce a self-organizing random immigrants scheme for
algorithms in dynamic environments in [30]. Newly immigrated individuals
are held in the subpopulation for some time until they develop good fitness
values.

Yang discusses in his chapter [31] a memory scheme approach as a method
of improving the performance of EAs for dynamic environments. Two kinds
of memory schemes are described: direct and associative. These schemes are
applied to genetic algorithms and on univariate marginal distribution algo-
rithms in dynamic environments.

Schönemann [32] considers the application of evolutionary strategies for
numerical optimization problems in dynamic environments. The main pa-
rameters of evolutionary strategies for problems in dynamic environments
are presented and performance measures are discussed with advantages and
disadvantages of each of them.

4 Scheduling Case-Study: Wine Bottling

Wine manufacturing and EAs go particularly well together. From the very
starting point of planting grape vines and reaping the mature fruit, all the
way through the crushing of the grapes, management of bulk tank movements
during the fermentation process, to bottling of the finished product and sales,
the wine manufacturing industry is a rich source of real-world application
areas. Many of these problems are based on classical optimization problems
and on that basis alone are quite difficult to solve. EAs, of course, by their
very nature are natural takers for these kinds of challenges. In this section,
we examine what is involved in one of the wine manufacturing steps just
described, namely the bottling of the finished product.

Before getting to the point where wine is bottled into a finished product,
the liquid would have gone through a series of fermentation and other pro-
cessing steps. We will assume that we are at the point where the liquid is in
a finished, consumable state, and is residing in a bulk storage tank, which
could be anywhere from several tens of thousands of liters, up to more than
one million liters in volume. This bulk liquid remains in storage awaiting the
bottling process wherein it is pumped into a bottling factory and put into
consumer size bottles, with a typical volume of less than one liter each.

A bottling factory houses several bottling lines. These are machines that
are connected to intermediate feeding tanks that contain finished wine, and

An Evolutionary Approach to Practical Constraints in Wine Bottling 39

are used to transfer the wine into glass bottles and hence produce the items
that everyday consumers are accustomed to purchasing. The bottling lines
also take care of related tasks such as capping the bottle with a screw cap or
a cork, applying labels to the bottle, and packaging the bottles into cartons.
Each line is capable of bottling a subset of the types of finished wine products
manufactured by the wine company.

These two elements, the bulk wine liquid, and the bottling lines, constitute
the basic working elements of the wine bottling problem. The bottling process
is illustrated in Figure 2. Customer orders determine which bulk wines are
put into which bottles and the times at which that is done. The wine company
receives orders for particular finished goods from their clients and it is those
orders that must be carefully considered in order to determine the best way
of running the bottling plant. In an ideal situation, customers place their
orders with sufficient notice to ensure timely bottling of their goods.

Large−Scale Bulk Storage
"Tank Farm"

Intermediate

Bottling Tank
Packaging (Boxes)Bottling Line

Fig. 2. The Wine Bottling Process

The problem is to determine a sequence of orders to be carried out on
each bottling machine (hence classifying it as a scheduling problem) such
that optimal use is made of the company’s resources, from the point of view
of making maximum profit, and also maximizing customer satisfaction. Hence
a good schedule will minimize production costs and at the same time ensure
that orders are produced in full, sufficiently before their due dates. This is
the fundamental part of the wine bottling problem: deciding how to schedule
production so as to make the best use of limited resources.

Wine making, as is the case in a multitude of other real-world applications,
is a highly variable and complex business, and what, from the point of view
of using an EA, would otherwise be considered a straightforward scheduling

40 A. Mohais et al.

application, gives rise to a series of significant challenges. These practical day-
to-day business considerations are what make this problem highly dynamic,
and we are led to classify the problem as a dynamic optimization problem
of the third kind, due to the fact that and many of the issues are based on
time-varying constraints.

4.1 Basic Constraints in Wine Bottling

Before getting into the business intricacies that give rise to the time-varying
constraints, we will first consider some more basic issues that affect the
scheduling problem:

Due dates: When a customer places an order, the sales department will as-
sign to it a due date that is acceptable to the customer and which should also
be realistic taking into account the size of the order and available resources
at the bottling plant. Sometimes, for various reasons, due dates are unrealis-
tic, but nevertheless, the scheduling application needs to employ techniques
that strive to maximize the number of orders that are delivered in full on
time (this expression is sometimes abbreviated as DIFOT). In cases where
it is impossible to have orders delivered on time, the algorithm must strive
to minimize the delays incurred on each order. This is a very important ob-
jective in the application, since it is of utmost importance that customers
should not be displeased due to late delivery of orders.

Bulk wine availability: Some orders may need to be inevitably delayed
due to the fact that the bulk wine needed to fill the bottles may not yet be
ready. This could easily happen since the process of creating wine is quite
variable, and batches may not have responded to the fermentation process
as expected, and could require additional processes to get the wine to the
required specification and taste. There are a number of other processes in-
volved in the preparation of the bulk wine that can lead to delays, such as
filtration and temperature stabilization.

Dry Materials: In addition to the liquid wine, there are a few dry goods
that are required to produce a finished bottle of wine. First there is the
glass bottle, then there is its covering which may be a screw cap or a cork,
and several other items such as labels, of which there may be several (for
the front, back and possibly neck of the bottle), and foils and wire hoods for
sparkling wines. If an order is scheduled at a particular time, then to proceed,
the appropriate amounts of each dry good must be ready for installation
into the bottling machine. Hence it is a requirement that the optimization
software checks the availability of these materials in order to produce feasible
schedules.

Job run lengths: It is inefficient to have machines frequently changing from
one type of bottling job to another because this incurs set-up and take-down
time and reduces the overall utilization of the machine. Hence, the scheduling

An Evolutionary Approach to Practical Constraints in Wine Bottling 41

algorithm must attempt to group similar orders for sequential execution so
this type of inefficiency is avoided.

Wine changeovers: Wines are categorized broadly in terms of their color,
there is red, white, and rose (pink). Below this level of classification, there are
more detailed distinctions such as sweet red, dry red, aromatic white, full-
bodied white, sparkling red, sparkling white, fortified wine, and others. Even
for a very large wine company, it may not be the case that there is sufficient
production volume to justify dedicating individual machines exclusively to
the production of one type of wine. Hence the reality is that the same machine
must be used at different times to bottle different types of wine. When a
bottling line finishes working with one type of wine and switches over to
another type, this is referred to as a wine changeover. Bottling lines must
be cleaned during changeovers, to varying degrees, depending on the nature
of the change. Certain types of wine changeovers are undesirable and need
to be avoided where possible by the optimization algorithm. For example, if
we are changing over from a run of white wine to a run of red wine, then
a relatively brief cleaning is required, since residual amounts of white wine
entering into red is not much of a problem. However, the reverse situation
where we go from a run of red to a run of white requires a very extensive
cleaning process, including sterilization. Minute amounts of red wine entering
into a run of white wine are likely to cause a lot of damage.

Other changeovers: Although wine changeovers incur the most time, there
are a variety of other changeovers that could happen, even within a run of
the same color wine. Each different finished good that is being produced
requires a particular size and type of glass bottle, as well as a particular
type of covering, which may be a screw cap or a cork, of which there are
several varieties, and unique labels for each brand of wine. The physical
re-configuration of the bottling line hardware to accommodate these items
requires a strip-down time to remove the items used by the previous run,
and a set-up time to insert the new items required for the next run. The
optimization algorithm needs to try to minimize these changeovers as far as
possible by appropriately grouping orders.

Bottling line availability: Some industries use machines that are kept in
operation continuously. This is sometimes the case in large-scale wine com-
panies, but for only limited periods of time. In most scenarios, bottling lines
have typical hours of operations that correspond to an average workday, which
may be for example 8:00am to 6:00pm. The optimization algorithm needs
to consider the availability of each machine in order to make appropriate
scheduling decisions since one of the critical factors affecting the evaluation
of a proposed schedule is the number of orders that are satisfied on time. In
computing the amount of time that a job will take to perform and making a
decision about where to assign it, machine availability must be factored in.

42 A. Mohais et al.

Routings: Each product can be bottled on a number of different lines. The
choices are usually a proper subset of all of the machines. Although the same
product could be bottled on a few different machines, the performance char-
acteristics on each machine is likely to be different, sometimes significantly so.
Set-up and strip-down time could vary, and also the speed at which the bot-
tles are processed (called the run rate) could vary significantly. Each possible
assignment of a finished good to a bottling line, together with its associated
performance data, is referred to as a routing. The optimization algorithm
must strive to choose the best routing to use under the circumstances. If all
else is equal, then naturally the fastest routing would be chosen. However,
this is often not the case, as some lines may be heavily loaded thus prevent-
ing such a choice from being made. In order to achieve better load balancing
between the machines, alternate routings may have to be used.

4.2 The Software Solution

Our work on the wine bottling problem resulted in a full-featured piece of
software, built around a core EA that deals with all of the above listed issues
and creates feasible, optimal schedules for satisfying customer orders for wine.
The application was launched for a major global wine company and it expe-
riences heavy daily usage at international sites. It is a cornerstone of their
scheduling department, and we think it is a good example of an integrated
EA serving robustly in prime time. The main screen of the application is
shown in Figure 3 with all confidential client information removed. The area
of horizontally adjacent rectangles shown in the upper portion of the pic-
ture is a graphical representation of the schedule produced by the software.
Each rectangle corresponds to a customer order that has been assigned to a
bottling line at a particular time. The length of the rectangle is indicative
of the amount of time required to execute the job and its color coding lets
the user know at a glance the type of wine being produced. The graphical
interface also allow the user to drag and drop the rectangles to make manual
adjustments to the schedule produced by the optimization algorithm.

Figure 4 shows the configuration interface of the software application that
allows the user to enter parameters that define the availability of each bottling
line. This interface needed to be completely flexible in terms of allowing the
user to specify any possible set of available and unavailable times for each line.
In this application, the user is allowed to specify a typical weekly timetable,
for example a machine may be available from Monday to Friday from 8:00am
to 6:00pm, and unavailable otherwise. It also allows the user to specify periods
of time in which there is a deviation from this typical schedule. For example,
ahead of a festive season, it might be desirable to make the machines work
longer hours, and possibly on weekends. This interface also allows the user
to allocate periods of time for regularly scheduled downtime for maintenance
of the machines.

An Evolutionary Approach to Practical Constraints in Wine Bottling 43

Fig. 3. Main Screen of Software Application

Fig. 4. Machine Availability Interface

Figure 5 shows a material requirements dialog that is part of the software
application. For any given order, the user may view the materials required to
produce the required number of bottles of wine, such as caps, corks, labels,
and so on. The application provides the user with information on the avail-
ability of each material based on knowledge of opening inventory stock that it
uses for a running simulation over the time frame of the production schedule.
Additional knowledge of still-open purchase orders for additional materials,
and also knowledge of the lead times of various suppliers of these materials
allows the software’s underlying algorithm to make appropriate scheduling
decisions so as to best ensure that orders are sequenced in a feasible manner.
If scheduled too early, at a time when the materials would not be available,

44 A. Mohais et al.

Fig. 5. Material Requirements Interface

an order would have to be passed over, possibly leading to other disruptions
in the schedule and hence in the factory itself.

5 Time-Varying Challenges in Wine Bottling

In this section, we will look at some business requirements that lead to time-
varying constraints that had to be addressed in the software. Here we will
only consider the issues. Their actual solution, including algorithmic details,
will be covered in a later section.

Manual assignments: There are various scenarios in which the human
scheduler would need the ability to override the schedule produced by the
EA. For instance, it might be that some of the information used as input
by the algorithm such as the availability of dry goods and expected delivery
times of raw materials, which are all imported automatically from the com-
pany’s Enterprise Resource Planning (ERP) system, may for some reason be
inaccurate. Hence the schedule that is created may not be feasible and would
need to be corrected by the human scheduler. Another typical scenario is
that a very important customer makes a late, but urgent request for a large
quantity of wine. Even if this causes severe disruptions to the smooth running
of the bottling plant, this type of request is usually accommodated due to
the high value placed on some customers, and the importance maintaining a
good business relationship with them. In this kind of situation the unusual
placement of that urgent order in the production sequence would create a
different optimization problem – a much more constrained one that would be
pose greater difficulty for the EA to solve. The level of difficulty would in-
crease even more dramatically when there are multiple such constraints. The
software application that we developed had to be flexible enough to allow its
built-in EA to work in such a way that it could actively seek out an optimal
solution that satisfies the constraints described before, but at the same time
allow inefficient manual overrides dictated by a human operator to co-exist

An Evolutionary Approach to Practical Constraints in Wine Bottling 45

with the otherwise optimal solution. Another way of looking at this is that
the structure of the search algorithm had to be flexible enough to find locally
optimal solutions in restricted neighborhoods of the overall search space, with
those neighborhoods being defined by user-specified manual assignments.

The application presents the schedule with both graphical and tabular
representations, each of which may be intuitively manipulated by the user,
simply by dragging and dropping graphical rectangles, or rows of a table.
This provides the capability of altering the sequencing of orders to suit a
human user’s preference. Additionally, as shown in Figure 6, there is a manual
assignment interface that is accessed on a per-order basis and allows the user
to manually specify all details about when and where a particular job should
be scheduled.

Fig. 6. Manual Assignment Interface

Machine breakdowns: From time to time, a bottling line will break down
and become unavailable for use. It may be that a solution found by the
optimizer previously would have been planned around that machine being
available during a period of time that has now become unavailable due to
the breakdown. The software must be flexible enough to repair the previous
solution to take into account the breakdown. A very simple initial solution
to this could be to merely shift the sequence of orders previously assigned
to a machine, starting at the point where the machine breakdown start. All
subsequence orders are scheduled later in time, by an amount that roughly
works out to be the duration of the breakdown period. In some cases, a
more sophisticated approach is required where a complete re-optimization is
performed to repair damage that was done to the percentage of orders that
would be delivered on time. This kind of optimization must attempt to keep

46 A. Mohais et al.

as much of the existing schedule intact while repairing the placement of the
affected orders.

Freeze periods: Every time the EA is run, the possibility exists that a very
different schedule could be produced when compared to the previously gen-
erated one. This happens simply as a result of the EA doing its job of finding
an optimal solution as dictated by its objective function (which changes each
time new orders and constraints appear in the system, which is virtually
always). In a real-world application, it is highly unlikely that this kind of
approach could be tolerated. The preferred mode of operation is the follow-
ing. The software is used to initially create a schedule for a fairly long period
of time, for example 2-4 months. However, once that schedule is accepted
and saved to an internal database, subsequent daily use of the optimizer to
schedule newly arriving customer orders must be done in a controlled manner
so that there is a buffer period at the beginning of the schedule that remains
the same as if it was yesterday. This unchanging portion of the schedule is re-
ferred to as a freeze period. It is usually defined in terms of a number of days,
for example 7 days. In order to achieve this effect, the EA has to perform
what we refer to as seamless meshing with an existing schedule. The first 7
days of the existing schedule are frozen, and some of the previously existing
orders, along with new ones are re-shuffled by the optimization algorithm
and attached in a neat continuous way with the orders in the freeze period.
The contents of the freeze period vary with time, as each day some orders are
executed and so are removed completely from the schedule, and others that
were once outside the freeze period gradually move into it. This is referred
to as a rolling time window.

On a more granular level, freeze periods are affected by live update feed-
back data coming from the factory floor. The current order on a given bot-
tling line is the first order showing up on the schedule. At any given moment,
it usually corresponds to an order that physically is in the process of being
executed in the factory. Our system was designed to receive updates in near-
real-time (every 5 minutes) letting it know how much of that order has been
carried out. That in turn affects the orders in the freeze period because the
size of the current order needs to be gradually reduced to reflect what remains
to be done, and consequently at the right-hand end of the freeze period, more
orders will come in. This sometimes leads to a situation in which there is an
order that straddles the freeze period and the open-optimization period.

Figure 7 shows a screen capture from our software application that illus-
trates how the frozen period is managed. In the graphical area of the window,
where orders are represented by rectangles, on the left-hand side of the screen
there are a number of orders that are surrounded by a thick bold border, in-
dicating that they have been frozen. On the right-hand side, are the orders
that the optimizer is free to move around to find an optimal schedule.

Modified orders: Once a schedule has been created and saved, there might
be a situation in which the next time the software package is opened, it

An Evolutionary Approach to Practical Constraints in Wine Bottling 47

Fig. 7. Freeze Period Illustration

realizes that there was a modification made to one of the scheduled orders
in the database. This might be, for example, a change in quantity. More or
fewer bottles of wine may be required and by adjusting the scheduled order,
the start and end times of all subsequent orders on the same bottling line
become affected.

Poor/Excellent Job Execution: From historical performance data, any
given bottling machine has an expected production rate. This rate is used
by the software to estimate the time required to run a job of a particular
size. However, due to a number of variables, the efficiency of a bottling ma-
chine may be better or worse than the expected rate on any given day, and
the factory manager would expect the scheduling optimizer to take this into
account when creating a new schedule, or when adjusting an existing one.
A machine that is performing poorly will delay jobs scheduled further down
in time, and likewise a machine that is performing unusually well, will bring
jobs up earlier, which could, in some cases, have a detrimental effects when
we take into consideration the availability of dry goods. The optimization
software must be able to deal with this time-varying issue by re-adjusting
the solution, or by re-optimizing as necessary.

6 The Solution Using an EA

In this section, we will look at the structural, algorithmic, and programmatic
details required to solve the problem using an EA. We begin by examining
the representation of a candidate solution and then look at how that abstract
representation is converted (decoded) into an actual schedule with dates and
times. Next we look at the key operators that were employed to alter can-
didate individuals. Finally we re-visit the time-varying problems described
above and show how various elements of the EA had to be modified to ac-
commodate those issues.

48 A. Mohais et al.

6.1 Representation

One of the most important aspects of the solution of a problem using an
EA is the representation used to encode a candidate solution. Forcing the
use of a particular representation may significantly impact on the quality of
the solutions found since many useful operators may be overlooked, or may
be cumbersome to program, thereby slowing down the execution of the algo-
rithm. For this application, we chose a representation that closely matches the
actual assignment of orders to machines. For reasons that will be described
below, we chose to use both a genotypic and phenotypic representation of a
solution.

For the wine bottling scheduling problem, the core of the problem was
conceptualized as having a number of orders that must be placed on a fixed
number of bottling machines in an efficient sequence. Hence the natural rep-
resentation to use is a mapping of lists of orders to machines. This can be
visualized as in Figure 8. The representation illustrated in this diagram is
quite similar to the final schedule presented visually in Figure 3 above. The
difference is that the actual decoding of the individual into a real-world sched-
ule also takes into consideration several other time-varying factors such as
machine availability, splitting of single orders into several sub-jobs, meshing
with an existing schedule, and so on.

The representation shown in Figure 8 is stored programmatically as a map
of machines to variable-length lists of orders. The list for any given machine
is sorted chronologically in terms of which orders will be carried out first.
The individual is constructed in such a way that the assignment of orders to
machines is always valid, in other words, the assigned orders always respect
product routings.

From a formalised perspective, the search space can be thought of as the
set

S = ((m, o))n (1)

m ∈ M , where M is the set of bottling machines, and o ∈ O, where O is
the set of customer orders to be scheduled, and n is the number of such
orders, i.e., n = |O|. Hence an individual (as illustrated in Figure 8) can be
represented mathematically as

I ⊆ S (2)

If we wanted to use a mathematical structure that emphasizes the ease of
accessing the jobs assigned to each machine, then instead, we could think of
each individual as being represented as

I = (a1, a2, . . . , ak) (3)

where, k is the number of bottling machines, and ai = (oi1, oi2, . . . , oiα(i)) is
a sequence of customer orders assigned to machine i, and α(i) is the number
of orders assigned to that machine.

An Evolutionary Approach to Practical Constraints in Wine Bottling 49

Machine 1

Machine 2

Machine 3

Machine n

Fig. 8. Scheduling Individual Representation

6.2 Decoding

In order to manage the decoding process, we employed a concept we referred
to as time blocks. A time block, illustrated in Figure 9 is a data structure that
keeps track of a contiguous period of time. Each such block keeps track of a
start time, an end time and an activity that is performed during that time.
The time block data structure allows for the possibility that nothing is actually
done during the period of time, in which case the time block is referred to as
an available time block. The link to the activity performed during a time block
may point to an external data structure that contains any information on any
level of detail required to accurately model a scenario.

Decoding begins with a series of multiply-linked-lists of time block nodes
associated with each machine. Each machine has a list of available time
blocks, and occupied time blocks. At the outset, before anything is placed on a

Job
Order
Customer
Product
...

Start

Time

End

TimeTask

Associated

External Task Data Structure

Time Block Node

(May be null)

Fig. 9. A Time Block Node

50 A. Mohais et al.

machine, it would only contain a list of available time blocks, each represent-
ing a chunk of time during which the machine is available for use. This is what
would happen in the nominal scenario. If there are manual decisions that were
already made by a human operator, then these would be reflected by the ex-
istence of some occupied time blocks. More detail on this issue is given in sec-
tion 6.5 below.

Decoding proceeds by going through all machine-job pairs found in the in-
dividual representation and proceeding to the corresponding machine, find-
ing an available time block node, and marking it as occupied for the corre-
sponding job. Some jobs may not fit into the first available time block and may
need to be split into multiple parts. How this is done, and if it is permissible
at all, depends on the policies of the business for which the scheduling appli-
cation is being created. In the case of the wine bottling application that we
are considering, orders were split across adjacent available time blocks. This
process is illustrated in Figure 10.

Machine 1

Machine 2

Machine 3

New Order to Schedule

Downtime

Downtime

Downtime

Fig. 10. Illustration of the Decoding Process

An important issue that arises when decoding is performed in this way for
a scheduling problem is the question of in what order should the machine-job
pairs be considered. Should we select Machine-A first and process all of the or-
ders in its list, and then proceed to Machine-B and so on? Alternatively, should
we process one job from Machine-A’s list, then one job from Machine-B’s list
and so on and eventually cycle back to Machine-A, and keep on in that manner
until all jobs have been decoded? The answer to this question depends on the
industry being considered. For the wine bottling problem there is no depen-
dency or constraints between jobs running on different machines and hence,
the former approach was used.

However, there are cases in which the second approach (or yet others)
may be needed. For example in some industries there might be a limit to the
number of changeovers that are permitted to occur across an entire plant in
one day. In those cases, it is important not to bias the decoding (or alterna-
tively to deliberately and carefully bias it) to favor one machine, or a group
of machines.

An Evolutionary Approach to Practical Constraints in Wine Bottling 51

6.3 Operators

A number of operators were used to manipulate the representation given
above. To avoid the problem of having to perform extensive repairs based
on invalid representation states, crossover-type operators were avoided. The
operators listed below, which are typical examples from the set used, may all
be considered as mutation operators.

• Routing Mutation: This operator modifies the machine that was selected to
execute a job. An alternative is randomly chosen from the set of possible
options.

• Load Balancing Mutation: This is a variation to the routing mutation op-
erator which, instead of merely randomly choosing an alternative machine
for an order, chooses from a subset of machines that are under-loaded.
Such an approach would help with load-balancing of the machines.

• Grouping: This operator groups orders based on some common character-
istic, such as wine color, bottle type, or destination export country. There
are several variants of the grouping operators. Some operate quite randomly,
looking for a group of orders based on some characteristic and then looking
left or right for a similar group and then merging the two. Other examples
are given below.

• Recursive Grouping: A more directed variation on grouping is recursive
grouping. This operator seeks out an existing group of jobs based on wine
color, then within that group performs random grouping based on some
other characteristic, such as bottle size. This process may then be repeated
inside one of the subgroups.

• Outward Grouping: Outward grouping is a term we use to describe the pro-
cess of identifying groups in a list of jobs based on a primary characteris-
tic, then randomly selecting one of them and from that location looking left
and right for another group with a common secondary characteristic and
finally bringing together the two. As a concrete example, we may first iden-
tify groups based on a primary attribute, say closure type, that is, whether
a screw cap or a cork is used to close the bottle, and then randomly select a
group that uses screw caps as a starting point. Next a secondary attribute
such as wine color is looked at. Suppose the group of screw caps involves
white wines, then we look randomly to the left or to the right for a group
based on the primary attribute that also involved white wines. In the end
we may end up merging with a group of jobs that involves corks, but which
happens to be all white wines. The end result is that we have a larger con-
tinuous group of white wine, with two sub-groups, one with screw caps and
the other with corks. The process of finding a starting point and then look-
ing outwards for subgroups to merge with gave rise to the name outward
grouping.

• Order Prioritization: Orders that may be showing up as being produced
late after decoding an individual are stochastically prioritized by moving
them left in the decoding queue. This type of operator could be made more

52 A. Mohais et al.

intelligent by moving groups of jobs along with the one that is identified as
being late. That way the job gets prioritized, but at the same time disruption
to grouping is minimized. This operator works on one of the most important
objectives of the solution, to maximize DIFOT.

6.4 A Pseudocode View of the EA

The coding and implementation of the algorithms used to solve the problem of
this chapter are very lengthy, but from the point of view of core principles, the
key parts of the EA can be succinctly summarized as in Algorithms 1, 2 and 3.

Algorithm 1: Main Loop of Algorithm
1 initialize()
2 while numIterations < targetIterationCount do
3 individual = selectRandomIndividual()
4 operator = rouletteSelectionOfOperator()
5 newIndividual = operator.execute(individual)
6 if evaluation(newIndividual) > evaluation(individual) then
7 individual = newIndividual;

Algorithm 2: Population Initialization
1 for i = 1 . . . populationSize do
2 individual[i] = newBlankIndividual()
3 for each order in customerOrdersList do
4 capableMachine = order.getCapableMachines()
5 selectedMachine = uniformRandomSelection(capableMachines)
6 individual[i].assign(order, selectedMachine);

Algorithm 3: Individual Evaluation
1 evaluation = 0
2 evaluation := evaluation - delayedOrdersPenalty()
3 evaluation := evaluation - colourChangeoverTimePenalty()
4 evaluation := evaluation - toolChangeoverTimePenalty()
5 return evaluation

6.5 Solving the Dynamic Issues

We will now look at how we dealt with the time-varying issues that were iden-
tified in Section 5. As will be observed, the problems were addressed by a

An Evolutionary Approach to Practical Constraints in Wine Bottling 53

combination of modifications made to the initial time block node linked-lists,
to the decoding process, by altering the input variables to the optimizer, and by
introducing a step between the optimizer and the human user, called solution
re-alignment.

Solving Manual Overrides: This problem was solved by applying a con-
straint to the decoding process, and indirectly affecting the fitness function.
The software application allows the user to select a particular order, and spec-
ify which machine it should be done on, as well as the date and time of assign-
ment. This becomes a timetable constraint for the genotype decoder. When
a candidate individual is being decoded, the initial state of the machine time
block usages includes the manually assigned orders as part of the list of occu-
pied time blocks. Subsequent decoding of non-manually-assigned jobs would
take place as usual using the remaining available time blocks.

The fitness function would then evaluate how well the individual was de-
coded into the partially occupied initial machine state. As in the case where
there are no manual assignments, it is up to the evolutionary operators to mod-
ify the individual in such a way that its decoded form meshes well with the
fixed orders to reduce changeovers and so on. The initial state of available time
blocks used for decoding is illustrated in Figure 11.

With this approach, it is primarily the fitness function that would guide
the search to a relatively good solution built around the manual assignment.
However it is also important to de-emphasize some of the more structured
and aggressive operators such as recursive grouping and outward grouping,
which were designed with a clean slate in mind. They would still contribute
toward the search for a good solution in parts of the time period that do
not contain manual assignments, but the main EA loop should keep track of
the performance of these operators and adjust their probability of application
accordingly.

Solving Freeze Periods: The application allows the user to select a freeze
date and time on each machine used in the bottling plant. During an op-
timization run, all assignments in the existing schedule that are before the
freeze period cut-off are internally marked as manual assignments, and there-
fore behave in exactly the same way as described above for user-defined manual
assignments.

Machine 1

Machine 2

Machine 3 Downtime

Downtime

Downtime

Manually Locked

Fig. 11. Modified Initial Time Blocks for Manual Locks

54 A. Mohais et al.

It is also important to pay attention to jobs that might straddle the freeze
period cut-off date. Such orders need to be fully frozen to ensure correct results.
Another situation that needs attention is where a job may be split into several
pieces, for example due to relatively low machine availability on consecutive
days, and one some of those split pieces fall into the frozen period. Care must
be taken to also freeze the parts that are outside of the freeze period, but which
belong to the same order.

Solving Machine Breakdowns, Modified Orders, and Poor / Excel-
lent Job Execution: These three problems were solved using a similar ap-
proach. Take Modified Orders for example. When the application re-loads and
realizes that an existing order has been modified, for example its quantity has
been increased or decreased, then the necessary action to be taken is at the level
of modifying the existing solution, prior to it being fed back into the next run
of the EA. This was accomplished using a process called solution re-alignment.

Essentially, on each machine, all assigned orders, sorted by starting date, are
examined for any changes to the underlying orders. A new instance of an avail-
able time block nodes linked-list is created and the assigned orders are then
re-inserted into it. By comparing each order as it last existed in the schedule
with the order record coming from the company’s ERP system allows assign-
ments being shortened or lengthened as needed. Following the re-insertion of a
modified assignment, all subsequent assignments are modified to fit in the re-
sulting changed available space. This process has a direct effect on the number
of orders ending up in the freeze period and therefore on the amount of avail-
able time that the optimizer has at its disposal for the next run. The process
of solution re-alignment is illustrated in Figure 12.

Similarly, if unexpected machine breakdowns were encountered, then the
linked list of available time block nodes into which the existing schedule is re-
aligned is adjusted to reflect the new pattern of available operating times, with
the breakdown periods marked as unavailable.

Solution re-alignment is a step that links the internal decoded represen-
tation of an individual with the dynamic world of the human operator in
which multiple constraints can vary from one use of the application to another.
It allows an existing solution to be adapted to match constraints that may have

Machine 1

O−2

O−3 O−4

O−2 O−3 O−4 O−4

Modified Order (expansion)

Solution

Re−alignment
DowntimeO−1

DowntimeO−1 O−2 Available

Fig. 12. Realigning a Solution

An Evolutionary Approach to Practical Constraints in Wine Bottling 55

changed, and possibly subsequently, allow the EA to run with a freeze period
that now accurately reflects the effect of the changed constraints. Re-alignment
can be thought of as a second-level decoding process that workswith an already
decoded representation as opposed to working with a genotypic representation.

7 Conclusions

In this chapter, we have looked at issues that arise when dealing with dy-
namic optimization problems in real-world applications. A literature review
was presented in line with our classification of dynamic problems according
to time-varying objective functions, input variables and constraints. An im-
portant consideration that was emphasized throughout the chapter was that
complexities arising due to practical, time-varying constraints had to be dealt
with adequately in order to ensure that the solution produced is usable in an
actual business environment. Given that a large real-world software applica-
tion was presented as a main outcome of the research presented here, the need
to ensure that those issues were resolved in a practical way that still allowed
the power of EAs to be applied was a main theme.

The issues raised were exemplified by a case study based on an EA schedul-
ing optimizer that was implemented for use in the wine bottling industry.
The software, having been deployed and put into daily use in a live produc-
tion environment, serves as empirical evidence that the approaches put for-
ward in this chapter have passed the litmus test of suitability for real-world
applications.

Numerical experiments were not included as part of this chapter, for the
simple reason that they would be almost meaningless, given the objective of
the research, which was not to compare one EA method against any other,
but rather to demonstrate a way of marrying an EA with supporting soft-
ware structures to enable the final software application to deal with difficult,
practical day-to-day business realities.

One of the key issues that were dealt with was rooted in the need to be able
to allow a human operator to manually decide certain parts of the eventual
solution. In effect what this does is to modify the search space explored by
the EA. Although there are undoubtedly better solutions that exist in the un-
constrained search space, when we take into account these so-called manual
assignments, the optimal solution based on those restrictions must be found
in order to satisfy the immediate business needs that gave rise to the need for
human intervention into the search process.

Another key issue that was explored was the need to ensure that future
schedules mesh seamlessly with existing ones. This was handled by extending
the concept of manual-assignments to the concept of a freeze period in which
existing scheduled assignments are treated as unchanging, and therefore tan-
tamount to numerous manual assignments. This has the benefit of allowing
factory operators to continue working with the assurance that preparations

56 A. Mohais et al.

made for the next few upcoming days would not be disrupted, and planning
could proceed in a smooth and normal manner.

Overall, what has been illustrated is that in implementing a scheduling EA
for use in a practical commercial application, it is necessary to design almost
everything, from the representation, the decoding process, the operators and
the solution structure, in such a way that maximum flexibility is maintained
with respect to allowing time-varying constraints to be easily considered by
the core algorithm that finds an optimal schedule, and with respect to allow-
ing an easy and natural flow between data structures used directly by the op-
timization algorithm and the user interface that is manipulated by the human
operator.

Acknowledgements. This work was partially funded by the ARC Discovery Grant
DP0985723 and by grant N516 384734 from the Polish Ministry of Science and
Higher Education (MNiSW).

References

1. Davis, L.: Job shop scheduling with genetic algorithms. In: Proceedings of the
1st International Conference on Genetic Algorithms, pp. 136–140. L. Erlbaum
Associates Inc., Mahwah (1985)

2. Van Laarhoven, P.J.M.: Job shop scheduling by simulated annealing. Operations
Research 40(1), 113–125 (1992)

3. Wang, L., Zheng, D.-Z.: A modified genetic algorithm for job-shop schedul-
ing. International Journal of Advanced Manufacturing Technology 20(1), 72–76
(2002)

4. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1(2), 117–129 (1976)

5. Branke, J.: Memory enhanced evolutionary algorithms for changing optimiza-
tion problems. In: Proc. of the 1999 Congress on Evolutionary Computation,
CEC 1999, pp. 1875–1882 (1999)

6. Branke, J.: Evolutionary approaches to dynamic optimization problems - a sur-
vey. In: GECCO Workshop on Evolutionary Algorithms for Dynamic Optimiza-
tion Problems, pp. 134–137 (1999)

7. Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary
environments. In: Proceedings of the 1999 Congress on Evolutionary Computa-
tion, CEC 1999, pp. 2047–2053 (1999)

8. Carlisle, A., Dozier, G.: Adapting particle swarm optimization to dynamic en-
vironments. In: International Conference on Artificial Intelligence, Las Vegas,
NV, USA, pp. 429–434 (2000)

9. Yu, X., Tang, K., Yao, X.: An immigrants scheme based on environmental infor-
mation for genetic algorithms in changing environments. In: Proceedings of the
2008 Congress on Evolutionary Computation, CEC 2008, pp. 1141–1147 (2008)

10. Pettit, E., Swigger, K.M.: An analysis of genetic-based pattern tracking and
cognitive-based component tracking models of adaptation. In: Proceedings of
the National Conference on Artificial Intelligence, pp. 327–332. AAAI Press,
Menlo Park (1983)

An Evolutionary Approach to Practical Constraints in Wine Bottling 57

11. Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary
function optimization. In: Proc. of the SPIE, Intelligent Control and Adaptive
Systems, pp. 289–296 (1989)

12. John, J.: Grefenstette. Genetic algorithms for changing environments. In: Par-
allel Problem Solving from Nature, vol. 2, pp. 137–144. Elsevier, Amsterdam
(1992)

13. Branke, J.: The moving peaks benchmark,
http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/movpeaks/

14. Johnston, M.D., Adorf, H.-M.: Scheduling with neural networks – the case of
the hubble space telescope. Computers & Operations Research 19(3-4), 209–240
(1992)

15. Chryssolouris, G., Subramaniam, V.: Dynamic scheduling of manufacturing job
shops using genetic algorithms. Journal of Intelligent Manufacturing 12(3), 281–
293 (2001)

16. Madureira, A.M., Ramos, C., Silva, S.C.: Madureira, Carlos Ramos, and Slvio C.
Silva. Using genetic algorithms for dynamic scheduling. In: 14th Annual Produc-
tion and Operations Management Society Conference, POMS 2003 (2003)

17. Emperador, J.M., González, B., Winter, G., Galván, B.: Minimum-cost plan-
ning of the multimodal transport of pipes with evolutionary computation. Int.
J. Simul. Multidisci. Des. Optim. 3(3), 401–405 (2009)

18. Jain, A.K., Elmaraghy, H.A.: Production scheduling/rescheduling in flexible
manufacturing. International Journal of Production Research 35(1), 281–309
(1997)

19. Petrovic, D., Alejandra, D.: A fuzzy logic based production schedul-
ing/rescheduling in the presence of uncertain disruptions. Fuzzy sets and
systems 157(16), 2273–2285 (2006)

20. Kutanoglu, E., Sabuncuoglu, I.: Routing-based reactive scheduling policies for
machine failures in dynamic job shops. International Journal of Production Re-
search 39(14), 3141–3158 (2001)

21. Holthaus, O.: Scheduling in job shops with machine breakdowns: an experimen-
tal study. Computers & Industrial Engineering 36(1), 137–162 (1999)

22. Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling
problems using genetic algorithms—i: representation. Computers & Industrial
Engineering 30(4), 983–997 (1996)

23. Yamada, T., Reeves, C.R.: Solving the csum permutation flowshop scheduling
problem by genetic local search. In: Proceedings of the 1998 Congress on Evo-
lutionary Computation, CEC 1998, pp. 230–234 (1998)

24. Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation
flow-shop problem. European Journal of Operational Research 91(1), 160–175
(1996)

25. Marchiori, E., Steenbeek, A.: An evolutionary algorithm for large scale set cover-
ing problems with application to airline crew scheduling. In: Oates, M.J., Lanzi,
P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.)
EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoS-
TIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp.
367–381. Springer, Heidelberg (2000)

26. Ponnambalam, S.G., Mohan Reddy, M.: A ga-sa multiobjective hybrid search
algorithm for integrating lot sizing and sequencing in flow-line scheduling. Inter-
national Journal of Advanced Manufacturing Technology 21(2), 126–137 (2003)

http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/movpeaks/

58 A. Mohais et al.

27. Ray, T., Sarker, R.A.: Optimum oil production planning using an evolution-
ary approach. In: Evolutionary Scheduling, pp. 273–292. Springer, Heidelberg
(2007)

28. Burke, E.K., Smith, A.J.: A memetic algorithm to schedule planned mainte-
nance for the national grid. Journal of Experimental Algorithmics 4, 1 (1999)

29. Martinelli, F.: Stochastic comparison algorithm for discrete optimization with
estimation of time-varying objective functions. Journal of Optimization Theory
and Applications 103(1), 137–159 (1999)

30. Tinós, R., Yang, S.: Genetic algorithms with self-organizing behaviour in dy-
namic environments. In: Evolutionary Computation in Dynamic and Uncertain
Environments, pp. 105–127. Springer, Heidelberg (2007)

31. Yang, S.: Explicit memory schemes for evolutionary algorithms in dynamic en-
vironments. In: Evolutionary Computation in Dynamic and Uncertain Environ-
ments, pp. 3–28. Springer, Heidelberg (2007)

32. Schönemann, L.: Evolution strategies in dynamic environments. Evolutionary
Computation in Dynamic and Uncertain Environments, pp. 51–77. Springer,
Heidelberg (2007)

A Memetic Framework for Solving the
Lot Sizing and Scheduling Problem in
Soft Drink Plants

Claudio F.M. Toledo, Marcio S. Arantes, Paulo M. França,
and Reinaldo Morabito

Abstract. This chapter presents a memetic framework for solving the Syn-
chronized and Integrated Two-level Lot Sizing and Scheduling Problem
(SITLSP). A set of algorithms from this framework is thoroughly evaluated.
The SITLSP is a real-world problem typically found in soft drink plants, but
its presence can also be seen in many other multi-level production processes.
The SITLSP involves a two-level production process where lot sizing and
scheduling decisions have to be made for raw material storage in tanks and
soft drink bottling in various production lines. The work presented here ex-
tends a previously proposed memetic computing approach that combines a
multi-population genetic algorithm with a threshold accepting heuristic. The
novelty and its main contribution is the use of tabu search combined with the
multi-population genetic algorithm as a method to solve the SITLSP. Two
real-world problem sets, both provided by a leading market soft drink com-
pany, have been used for the computational experiments. The results show
that the memetic algorithms proposed significantly outperform the previously
reported solutions used for comparison.

Claudio F.M. Toledo
Institute of Mathematics and Computer Science, University of Sao Paulo,
Av. Trabalhador Sao-Carlense, 400, 13566-590, Sao Carlos, SP, Brazil
e-mail: claudio@icmc.usp.br

Marcio S. Arantes
Department of Computer Science, University of Lavras,
C.P. 3037, 37200-000, Lavras, M.G., Brazil
e-mail: marcio@comp.ufla.br

Paulo M. Franca
Department of Mathematics, Statistics and Computing, UNESP,
C.P. 266, 19060-900, P. Prudente, SP, Brazil
e-mail: paulo.morelato@fct.unesp.br

Reinaldo Morabito
Production Engineering Department, Federal University of Sao Carlos,
C.P. 676, 13565-905, Sao Carlos, SP, Brazil
e-mail: morabito@ufscar.br

claudio@icmc.usp.br
marcio@comp.ufla.br
paulo.morelato@fct.unesp.br
morabito@ufscar.br

60 C.F.M. Toledo et al.

1 Introduction

The present chapter is motivated by a problem commonly found in soft drink
plants and it is established by a two-level production process. In the first
level, raw materials are preprocessed and stored in tanks, and in the second
level, they are spread to bottling lines responsible for producing several types
of soft drinks. In order to compound a final product (raw material plus bottle
type) a proper raw material and a right bottle type must be assigned to the
tanks and bottling lines, respectively.

This synchronization aspect is a crucial issue when defining the lot sizes
and scheduling for raw materials and final products. Therefore, a problem
solution that integrates lot sizing and scheduling decisions for both levels in
this problem is mandatory.

The objective of this work is to present an academic and applied con-
tribution for researchers or practitioners dealing with real-world multi-level
lot sizing and scheduling problems. This research was conducted using data
provided by a soft drink company in Brazil.

The Brazilian soft drink consumption increased by 4.0% in 2008 and by
2.2% in 2009 with more than 14 billions of liters consumed. These numbers
make the Brazilian soft drink market the third largest in the world with more
than 800 plants [1]. These figures show a promising and competitive market,
where applied research can take place.

The production processes in soft drink plants have several lines and tanks
that can be seen as parallel machines in the context of two interdependent lot
sizing and scheduling problems. It is possible to simplify some problem issues
if each tank is previously assigned to a line. The situation of the problem
with and without tanks already assigned to lines will be described through
this chapter.

The memetic algorithms (MAs) presented in this chapter are relatively
simple. However, our major concern is to show some advances from previous
methods that have already found good results when applied to the same
problem. The methods proposed here extend previous studies on the same
problem reported in [2], [3], and [4]. A multi-population genetic algorithm
was presented in [2] to solve artificial and real-world problem instances. These
instances were solved without previous tank assignments, which means that
one tank can feed several production lines at the same time. An MA that
combines a threshold accepting (TA) local search with the multi-population
genetic algorithm was applied to solve a set of 15 real-world instances in [3].
Subsequently, results evaluating relax-and-fix approaches for the same 15
real-world instances were given in [4]. All the instances solved in [3] and [4]
take into account only the case where tanks are previously assigned to lines.

In this chapter, we use the MA presented in [3] as a starting point. Instead
of the TA local search we now use a tabu search (TS) as the local search
procedure embedded in the multi-population genetic algorithm. In order to
deal with larger real-world instances while maintaining the good accuracy

A Memetic Framework for Solving the LSSP in Soft Drink Plants 61

attained in prior tests, we propose to strengthen the method by adding a
TS phase where the best individuals of each sub-population are selected for
further enhancement. Next, a variant of this memetic approach is introduced.
This method is defined by a different strategy to explore the neighborhood of
solutions, as well as a different way to carry out the local search procedure.

The rest of this chapter is organized as follows. The soft drink indus-
try problem is described in Section 2 and the MAs are introduced in Sec-
tion 3. Computational tests are reported in Section 4 and conclusions follow in
Section 5.

2 The Soft Drink Industry Problem

The soft drink industry problem studied in this chapter presents two syn-
chronized and integrated production levels. The first level has storage tanks
with limited capacity that store several soft drink flavors (raw materials). The
second level has bottling lines (production lines) with also limited capacities
within each week that cannot be violated. The line capacity is usually related
to the number of hours available for production by week. Figure 1 illustrates
this production process.

Tanks

Production Lines

Fig. 1. Two-level production process without tanks assigned to line

62 C.F.M. Toledo et al.

The tanks are filled using one soft drink flavor at a time and they have
to be filled by a minimum amount. The process of refilling a tank demands
a cleaning phase. The tank is only filled up again after it becomes empty. It
does not matter if a tank is filled by the same or by a different raw material,
the tank should always be cleaned. The amount of time spent for cleaning a
tank before being able to fill it depends on the raw material previously stored.
Therefore, sequence-dependent setup times and costs take place. It is always
faster and cheaper to clean a tank when filled by the same raw material.

Next, the bottling lines receive raw materials (soft drink flavors) from tanks
producing the final product. This final product is defined as the soft drink
flavor and bottle type. The lines can bottle raw materials in several bottle
types: cans, bag-in-boxes, glass bottles and plastic bottles with different sizes.
The production lines can have different processing times for each final product
and each line usually produces a set of these products.

There are sequence-dependent setup times for lines. This setup occurs
if a bottle type is changed in line or if a tank that provides raw material
stopped to feed the line to be refilled. The sequence-dependent setup time will
also generate a sequence-dependent setup cost for final products. Moreover,
the sequence-dependent setup costs in both levels are proportional to their
sequence-dependent setup times.

The soft drink industry usually has a time horizon of several months with
weekly demands to be met. Inventory costs can occur if an excessive number
of final products can be stored for the next week. However, a lack of products
is not allowed as the demands for each week have to be fulfilled. A tank can
store raw materials for several periods, but inventory costs incur when raw
materials are kept stored.

Decisions about schedule and lot sizing have to be made for raw materials
in tanks and products in the lines, so there are two lot sizing and scheduling
problems. However, the two-level production process can happen appropri-
ately only if there is a synchronization between the two lot size and scheduling
problems. The lines cannot produce any lot sizes of soft drinks without the
necessary amount of raw material scheduled in the tanks.

Let us illustrate these ideas based on the schedule presented in Fig. 2. One
line, one tank, and three raw materials RM1, RM2, and RM3 are required
to produce products P1, P2, and P3, respectively. A time horizon with two
periods is shown, as well as the time spent taking raw materials from the
tank and producing products in the line. The setup time to refill tanks (white
boxes) and the setup time to change products in the line (black boxes) are
also represented.

It is possible to think about the schedule for this production process with-
out taking into account synchronization between the two production levels.
In this case, Fig. 2 shows that it is allowed to try to produce P1 without
available raw material RM1 in the tank in the first period. This situation
can happen because some time is spent filling the tank with RM1 at the
beginning of the production process. In the second period, the setup time to

A Memetic Framework for Solving the LSSP in Soft Drink Plants 63

Tank

Line

0 1 2
Time

RM1 RM3 RM2 RM1

P1 P3 P2 P1

Fig. 2. Schedule without synchronization

change from RM3 to RM2 is shorter than the setup time to change from P3
to P2. Thus, it is not possible to refill the tank from RM2 to RM1 as shown
as the line is still producing P2. Fig. 3 introduces the same schedule with
synchronization.

Tank

Line

0 1 2
Time

RM1 RM3 RM2 RM1

P1 P3 P2 P1

Fig. 3. Schedule with synchronization

Each raw material is being consumed in the tank level at the same time
as the respective product is produced by the line. The problem related with
this synchronization is the available capacity. At the end of the second time
period, the synchronization shows that not enough time is left to produce P1
in the second period. Thus, the demand of P1 is not met following at least
the previous line and tank sequencing.

This soft drink industry problem was called Synchronized and Integrated
Two-level Lot Sizing and Scheduling Problem (SITLSP) in [5] and [2]. A
simplification of the SITLSP was proposed in [3] and [4], where each tank is
dedicated to only one line. However, the dedicated tank can be filled with
any raw material demanded by this line (Fig. 4). This small simplification
of the SITLSP reduces its complexity. The authors in [3] and [4] are able to
describe a more compact mathematical model for the problem.

64 C.F.M. Toledo et al.

Tanks

Production Lines
Fig. 4. Two-level production process with tanks assigned to the line

3 Related Works

The SITLSP covers various lot-sizing and scheduling issues such as capacity
constraints, setup cost and setup time, multi-items and parallel machines.
The capacitated lot sizing problem is proven to be an NP-hard optimization
problem [6]. The SITLSP is a multi-item problem because there are several
raw materials and products whose schedule and lot size have to be defined in
lines and tanks, respectively. The multi-item capacitated lot-sizing problem is
strongly NP-hard [7]. There are sequence-dependent setup times and costs in
both production levels. It was showed in [8] that even finding feasible solutions
for the capacitated lot sizing problem with setup times is an NP-complete
problem.

There are various reviews which discuss models and solution approaches
for the lot sizing and scheduling problem, including multi-level problems, such
as [9], [10], [11], and [12]. An overview on modeling for industrial extensions
of single-level dynamic lot sizing problems is provided by [13]. Meta-heuristics
applied to solving the lot sizing problem are evaluated in [14], where several
issues are discussed such as computational experiments, solution representa-
tion, evaluation functions, neighborhoods and operators.

The discrete lot sizing and scheduling problem with sequence dependent
setup costs is introduced in [15], where the time horizon is subdivided into
several micro-periods with identical capacity. It is a small bucket problem as
the micro-period capacity is fully used or nothing is produced. The problem
is formulated as a travelling salesman problem and lower bounds are found
using Lagrangian relaxation.

A large bucket formulation is presented in [16] for the capacitated lot
sizing problem with sequence dependent setup costs. The time horizon is
subdivided into macro-periods with the same length. Demands for products
are met at the end of some macro-periods. The model proposed in [16] differs

A Memetic Framework for Solving the LSSP in Soft Drink Plants 65

from [15] because it allows continuous lot sizes and preserves the setup state
over idle time. In big bucket problems, many items can be produced in the
same time period without sequencing issues. A review on big bucket problems
is presented in [17].

The general lot sizing and scheduling problem with sequence dependent
setup costs is presented by [18], where a small bucket formulation is used to
describe it. The time horizon is divided into several micro-periods, however
each micro-period length is now defined as the time spent to produce the
product assigned to it. A TA heuristic associated with a greedy method is
used to solve problem instances. The heuristic assigns products to micro-
periods and the greedy method determines lot-sizes.

A lot sizing and scheduling problem with setup costs and setup times is
formulated as a general lot sizing and scheduling problem by [19]. Simulated
annealing and TA heuristics are combined with a dual re-optimization al-
gorithm. This approach is extended by [20] to solve the same problem with
parallel machines.

In [21], one of the few optimal procedures for solving lot sizing and schedul-
ing problems with sequence-dependent setup times is proposed. They define
an enumeration method based on the branch and bound procedure which
was able to optimally solve several instances ranging from 3 to 10 products
and 3 to 15 periods. A model partially based on that proposed by Haase and
Kimms [21] is presented in [22]. The production in some period is modeled
using binary variables and a heuristic defines model parameters. The com-
pact model obtained by the authors can solve large instances in a reasonable
time.

A model is proposed in [23] for the single machine capacitated lot sizing
and scheduling problem with sequence-dependent setup costs and non-zero
setup times. A solver with an exact method was used to find optimal so-
lutions for small-sized instances. Row aggregation and variable relaxation
can determine lower bounds for large-scale instances. A heuristic with three
steps (initialization, sequencing and improvement) is also used to solve prob-
lem instances. In [24] stronger models for the same problem that is solved by
specific-purpose heuristics are proposed.

Rolling-horizon and relax-and-fix heuristics are proposed in [25] to solve
the identical parallel machine lot sizing and scheduling problem with se-
quence dependent setup costs. The relax-and-fix method outperforms rolling-
horizons with cost values closer to instances’ lower bounds. Mixed integer
programming (MIP) models are presented in [26] and [27] for lot sizing and
scheduling in the presence of setup times for problems found in electrofused
grain and animal nutrition industries. Toso et al. [28] studied a lot sizing and
scheduling problem from a manufacturing plant for animal feed compounds.
Model formulations and relax-and-fix heuristics are proposed.

A multi-level capacitated lot sizing problem (MLCLSP) is presented by
Sahling et al. [29] as an extension of a single-level capacitated lot sizing
problem. An uncapacitated MLLSP is solved in [30] using a particle swarm

66 C.F.M. Toledo et al.

optimization algorithm. The results found are compared with those achieved
with genetic algorithms (GAs). Mathematical programming and an ant
colony algorithm are combined in [31] to solve the MLCLSP, where the heuris-
tic fixes values for binary variables and a mixed-integer programming (MIP)
software found values for continuous variables.

A variable neighborhood search (VNS) is used to solve the uncapacitated
MLLSP in [32]. A setup shifting rule is proposed considering the interde-
pendence among various interdependence items. In [33], Stadler described a
multi-level model for a pharmaceutical production problem which is an ex-
tension from the single-level and single machine proportional lot sizing and
scheduling problem. Computational tests are reported based on data provided
by a pharmaceutical company.

A TS is a local search technique with a short-term memory structure that
avoids visiting the same solutions or neighborhoods several times [34]. This
metaheuristic has also been used to solve several lot sizing and scheduling
problems. TS is used by Hung et al. [35] to solve a production planning
problem with setups (time and cost) and multiple products, resources and
periods. The potential solutions (neighbors) are evaluated solving LP prob-
lems whose information can define the ranks of the neighbors. This rank is
used to evaluate different strategy approaches to explore neighborhoods.

TS is proposed as an approach to solve a production planning problem in
a flexible production system by Al-Fawzan [36]. A lot sizing model with back-
order and a set of random test problems are presented. The TS outperforms
a random sequencing procedure within a short computational time. TS is
applied by Buscher and Shen [37] to the job shop scheduling problem taking
into account lot streaming. The heuristic is used in scheduling tasks where
moves are defined to generate new schedules from an initial one. Moves that
can return to previous schedules are kept tabu for several iterations.

GAs are evolutionary computation methods that simulate the evolution
of biological processes. They were formally introduced by Holland [38] and
studies about the implementation of GAs can be found in [39] and [40].
An MA usually combines the population approach of GAs with local search
methods [41].

The MA proposed in this chapter will evolve various populations with
individuals hierarchically structured in ternary trees. Prior works have
demonstrated that evolutionary approaches with individuals hierarchically
structured in trees, when dealing with large scheduling problems, have out-
performed their corresponding unstructured ones. A hybrid population ap-
proach for an MA with individuals hierarchically structured in ternary trees
is presented in [42]. Instances randomly created are solved for the total tar-
diness single machine scheduling problem, where the MA outperforms a GA.

The same approach was applied by França et al. [43] to solve the problem
of scheduling a flowshop manufacturing cell with sequence dependent family
setups. The use of hierarchically structured individuals improved the results
found by the GA and the MA. A group scheduling problem for manufacturing

A Memetic Framework for Solving the LSSP in Soft Drink Plants 67

cells is solved in [44] using a GA and a MA. The population has 13 individuals
structured in ternary trees where an individual encodes two solutions: the
better fitness solution and the current solution. The MA outperforms GA in
a set of 15 instances.

Despite the economical relevance of the SITLSP, only a few solution meth-
ods have been proposed so far. A drink manufacturer problem with a single
canning line was solved by Clark [45]. Sequence-independent setup times and
a mixed-integer programming (MIP) model were proposed. A hybrid heuris-
tic combining local searches and mathematical programming is reported as
the best approach for this problem.

The first mixed-integer mathematical model for the SITLSP is proposed
in [5] combining issues from the General Lot-sizing and Scheduling Problem
(GLSP) and the Continuous Setup Lot-sizing Problem (CSLP). The time
horizon is divided into macro-periods with the same length. Each macro-
period has a maximum number of slots and each slot can determine for which
product or raw material a particular slot in some line or tank is assigned.
The synchronization among slots in the two-levels of the problem is done
using micro-periods as each macro-period is divided into micro-periods with
the same length. The authors were able to solve small-to-moderate sized
instances using GAMS/CPLEX. A multi-population genetic algorithm with
a hierarchically structured population was applied in [2] to solve small-to-
moderate and moderate-to-large sized instances. The authors also solved a
set of real-world instances provided by a soft drink industry. It is reported
that the GA found better results for these problem instances.

As aforementioned, a simplifying formulation for the SITLSP is presented
in [3] and [4] called P2SMM – Two-stage multi-machine lot-scheduling. The
bottling lines here have dedicated tanks and these tanks can be filled with the
liquid flavors needed by the assigned lines. In [3], results found using MAs and
a relax-and-fix approach are presented. Relax-and-fix heuristics are proposed
and evaluated in [4]. The computational results in this work are obtained
using problems created based on real data from a soft drink company. A
MIP model for small-scale soft drink plants is proposed by Ferreira et al. [46].
There is only one production line where the bottleneck is in the production
line.

4 Memetic Algorithm Approaches

The MAs will be described in this section, where issues related with neighbor-
hood exploration and local search execution are explained. To make this text
self-contained, details about the multi-population genetic algorithm used by
Toledo et al. [2] are also presented. For the same reason, the TA local search
built-in the MA introduced by Ferreira et al. [3] is also described.

68 C.F.M. Toledo et al.

4.1 Memetic Algorithm Pseudocode

Algorithm 1 describes the MA introduced in [3]. This pseudo code comes
from the multi-population genetic algorithm, where the MA in Fig. 5 has only
added a local search procedure at line 18. Several overlapping populations

Algorithm 1. MultiPopulationMemeticAlg

begin1

repeat2

for i← 1 to numberOfPopulations do3

initializePopulation(pop(i));4

evaluatePopulationFitness(pop(i));5

structurePopulation(pop(i));6

repeat7

for j ← 1 to numberOfCrossovers do8

selectedParents(ind1,ind2);9

newInd← crossover(ind1,ind2);10

if executedMutation then11

newInd ← mutation(newInd);12

evaluatedFitnessIndividual(newInd);13

insertPopulation(newInd, pop(i));14

structurePopulation(pop(i));15

until populationConvergence(pop(i)) ;16

for i← 1 to numberOfPopulations do17

localSearch(bestId(pop(i)));18

executeMigration(pop(i));19

until StopCriterion ;20

end21

evolve until a convergence criterion has been satisfied. A population stores
individuals structured in a ternary tree with four clusters. A single cluster
is constituted by individuals distributed in two levels: the fittest individual
(node) is the cluster “leader” always positioned in the upper level and three
other supporters in the lower level (Figure 5).

The population illustrated in Figure 5 has 13 individuals hierarchically
structured in ternary trees. The best individual is the one with lowest cost
value associated. Notice that the root node always keeps the best known in-
dividual (here: the node with value 100) of the whole population. First, the
initial population is generated using initializePopulation(pop(i)) and its in-
dividuals are evaluated using a fitness function – evaluatePopulationFitness
(pop(i)). The individual hierarchy is then built by procedure structure
Population(pop(i)).

The genetic operator crossover(ind1,ind2) selects two individuals from the
randomly chosen cluster in such a way that one of them is always the leader

A Memetic Framework for Solving the LSSP in Soft Drink Plants 69

100

120 150 110

130 125 200 170 190 160 115 140 250

Supporters
Clusters

Best Individual Cluster

Fig. 5. Population hierachically structured in ternary tree

and the other is also randomly selected among their supporters. If the new
individual (newInd) is better than the worst parent, it will be inserted into the
population and the parent is discarded (insertPopulation(newInd, pop(i))).

The hierarchical structure must be kept, so structurePopulation(pop(i))
performs an update, rearranging individuals in each cluster so that the fittest
individual becomes the leader of its cluster. Notice that after the updating
process, the root node is always occupied by the fittest individual of the whole
population. New individuals may also be created by means of a mutation
operator mutation(newInd) applied to new offspring. The number of new
individuals generated is defined by the crossoverRate parameter:

numberOfCrossover = crossoverRate ∗ numberOfIndividuals (1)

Convergence is reached when there is no individual insertion. After the last
population has been converged, a local search is made for the best individual
of each population. Finally, a migration operator exchanges the best individ-
uals among the populations.

The local search procedure proposed in [3] is the TA method while here,
TS is used. Other novelties in the MA introduced in this chapter are:

1. The local search will execute only a random selection of neighborhood
moves.

2. The local search is executed only on the best individual from the whole
population.

Thus, an MA with another strategy to select moves has been proposed with
a local search execution which is more constrained. The local search will be
executed after the population convergence in Algorithm 1 and only over the
best individual found so far. There is no local search execution for the best
individual of each population. The random choice aims to avoid an exhaustive

70 C.F.M. Toledo et al.

use of the same type of move over and over again. The constrained use of local
search aims to spend more time only looking for solutions in the neighborhood
of the best individual.

4.2 Individual Codification/Decodification

The individual represents a problem solution. It is represented by a T × N
matrix whose entry (t, n), t ∈ {1...T} (periods) and n ∈ {1...N}, is shown in
Figure 6.

Pt,n | LSt,n
α1 , ... , αk
β1 , ... , βk

Fig. 6. Entry (t, n) in the solution representation

There are four problem data encoded in each entry (t, n): Pt,n is the prod-
uct in position n to be produced in period t, LSt,n is the lot size of product
Pt,n, SLt,n = (α1, . . . , αk) is the sequence of lines where Pt,n can be produced
and STkt,n = (β1, . . . , βk) is the sequence of tanks where raw material for
Pt,n can be stored.

Individuals are initialized by splitting the product demands through these
entries. The demand Di,t of some product i in period t is split into several lots
(LSt,n) and randomly distributed among entries in periods t, t− 1, t− 2,. . . ,
1. The parameter αi ∈ {α1, . . . , αL} is a line number in SLt,n and L is the
number of lines. The parameter βi ∈ {β1, β2, . . . , β2L̄} tells us where and how
the raw material of Pt,n will be stored. The tank number j is defined as:

j =
{

βi, 1 ≤ βi ≤ L;
βi − L, L < βi ≤ 2L.

(2)

Parameter L̄ is the number of tanks. If 1 ≤ βi ≤ L̄, the tank j = βi will
be occupied after the previously stored raw material has been used. If the
same raw material is replaced, this criterion can postpone tank occupation.
If L̄ < βi ≤ 2L̄, the tank j = βi − L̄ will be immediately filled. This criterion
can use the available tank capacity.

There are exceptions for these rules. If tank j stores a raw material different
from the raw material used by product Pt,n, it can be stored only after this
different raw material has been pumped to the lines. Moreover, tank j which
is already empty has to be filled.

A Memetic Framework for Solving the LSSP in Soft Drink Plants 71

Let us suppose two products (P1 and P2) with demands in periods T 1
and T 2, where P1 have demands of 150 units in T 1 and 100 units in T 2.
Product P2 has demands of 110 units in T 1 and 120 units in T 2. Different
raw materials are necessary for each product. There are two lines and two
tanks able to store any raw material and to produce any product. Possible
representations of solutions for this situation are illustrated in Figure 7.

P1 | 70
1 2 2 1
2 2 3 2

P2 | 110
2 2 2 2
3 3 4 2

P1 | 80
1 2 1 2
4 3 1 2

P1 | 100
1 1 2 2
4 2 1 3

P2 | 120
1 1 1 2
1 3 3 2

P2 | 70
2 1 2 2
1 2 3 1

P1 | 70
1 2 1 2
1 3 4 2

P1 | 100
1 2 2 1
3 2 2 1

P2 | 110
1 1 2 1
1 2 1 2

P2 | 50
2 2 1 2
1 2 3 2

P1 | 30
1 1 2 2
1 2 3 3

P1 | 50
1 2 1 1
4 2 4 2

T1

T2

Solution 1 Solution 2

T1

T2

Fig. 7. Possible representation of solutions

The sequence of lines (SLt,n) and tanks (STkt,n) can repeat values of
αi ∈ {1, 2} and βi ∈ {1, 2, 3, 4} for L = L̄ = 2 and k = 4 (sequence length).
Solution 1 has all the demands in their respective periods, but the P1 demand
in T 1 was split into two entries. In solution 2, product P1 has 20 units of
demand in T 1 assigned to the lot size of the first entry in period T 1.

The problem data encoded in each individual is decoded to a problem
solution. This decoding process starts by the first entry in the last period of
the representation of the solution. The procedure is repeated until the data
in the last entry of the first period has been decoded. A backward selection
of entries aiming at postponing setups and processing time was chosen, but
there is no guarantee that all demands will be produced at the end. Figure 8
shows this procedure.

If (αi, βi), with αi ∈ SLmn and βi ∈ STkmn, returns a pair of lines and
tanks able to produce and store the lot size LSt,n, then LSt,n is scheduled
by the Execute(αi, βi) step. If there is no available capacity or it is sufficient
to schedule only a part of LSt,n, the next pair (αi+1, βi+1) is selected for the
remainder of the lot size. The complete decoding of the individual entries
returns a synchronized lot size and schedule for lines and tanks.

This schedule is evaluated by the fitness function, which is determined by
adding up all the problem costs: production, setup, and inventory costs for
products and raw materials in lines and tanks, respectively. A high penalty
cost for demands not satisfied is also added to the fitness value.

72 C.F.M. Toledo et al.

P1 | 70
1 2 2 1
2 2 3 2

P2 | 110
2 2 2 2
3 3 4 2

P1 | 80
1 2 1 2
4 3 1 2

P1 | 100
1 1 2 2
4 2 1 3

P2 | 120
1 1 1 2
1 3 3 2

T1

T2

Ind 1

Tk1

L1

0 1 2
Time

Pt,n | LSt,n
α1 , ... , αk
β1 , ... , βk

Select next
entry

Execute (αi , βi)

Update LSt,n

Select (αi , βi)

LSt,n>0
False

True

Tk2

L2 P2

RM1

RM2

P1

RM1 RM1

RM2RM2

P2P2

P1 P1P2

RM2

Fig. 8. Decoding procedure

4.3 Crossover, Mutation and Migration

New individuals are created using a crossover operator and a uniform
crossover was designed for this representation of a solution in [2]. The authors
reported that, among others, uniform crossover performed better in previous
computational experiments. Figure 9 illustrates how the uniform crossover
works taking into account the two solution representations (Ind1 and Ind2)
from Figure 7.

A random value λ ∈ [0, 1] is generated for each entry in the same position of
Ind1 and Ind2. If λ < 0.5, the entry of Ind1 is inherited by Child. Otherwise,
Child inherits the entry from Ind2. If one period of Ind2 has more entries
than the same period of Ind1, Child will inherit them from Ind2 for λ ≥ 0.5.
Demand surplus or shortage is not allowed in Child. The circled entry of Ind1
is not inherited because it would exceed the total demand of P2 (100 units
in T 2). Those demands that are not met in any period are filled through a
repair procedure.

Crossover and mutation operators are carried out over a cluster that is
selected at random, where two individuals are taken. The first individual is a

A Memetic Framework for Solving the LSSP in Soft Drink Plants 73

P2 | 50
1 2 2 1
2 2 3 2

P1 | 100
2 2 2 2
3 3 4 2

P2 | 50
1 2 1 2
4 3 1 2

P2 | 100
1 1 2 2
4 2 1 3

P1 | 100
1 1 1 2
1 3 3 2

P1 | 45
2 1 2 2
1 2 3 1

P2 | 40
1 2 1 2
1 3 4 2

P1 | 100
1 2 2 1
3 2 2 1

P2 | 60
1 1 2 1
1 2 1 2

P2 | 30
2 2 1 2
1 2 3 2

P1 | 55
1 1 2 2
1 2 3 3

P2 | 70
1 2 1 1
4 2 4 2

T1

T2

Ind 2

Ind 1

T1

T2
New Ind

T1

T2

P2 | 50
1 2 2 1
2 2 3 2

P2 | 50
1 2 1 2
4 3 1 2

P2 | 100
1 1 2 2
4 2 1 3

P1 | 45
2 1 2 2
1 2 3 1

P1 | 100
1 2 2 1
3 2 2 1
P1 | 55
1 1 2 2
1 2 3 3

Fig. 9. Uniform crossover

supporter node that is randomly chosen in this cluster. The second individual
is always the cluster leader. The mutation operator can be applied to this
new individual according to the mutation rate. Next, this new individual is
evaluated and, if it is better, it will replace the parent with the worst fitness
value. Otherwise, the new individual is not inserted into this population.
After these genetic operators, the population is rearranged aiming to keep
the cluster hierarchical structure. Figures 10 and 11 illustrate this process.

The new individual in Figure 10a has a fitness value of 95, so it replaces
the worst parent with value 130 (Figure 10b). The population is reorganized
in such a way that a new individual becomes a cluster leader (Figure 11a)
and then the best individual of the population (Figure 11b).

A population converges when new individuals are not inserted for num-
berOfCrossovers iterations. At this point, the next population evolves follow-
ing the same procedures described in Algorithm 1.

Migration and a new initialization take place when all populations have
converged. However, if the local search has to be applied to the best individual
of each population, this is done before migration as illustrated in 12.

The restart will re-initialize the individuals, but it keeps the best individual
and the migrated individual. If the local search has to be applied to the best
individual from all the populations, this is also done before migration and
new initialization, but only for the best individual as illustrated by Figure 13.

74 C.F.M. Toledo et al.

100

120 150 110

130 125 200 170 190 160 115 140 250

95

(a) New individual is created.

100

120 150 110

95 125 200 170 190 160 115 140 250
(b) New individual is inserted.

Fig. 10. Inserting a new individual.

100

25 150 110

190 195 900 170 120 160 115 140 950
(a) Cluster is rearranged.

10

255 205 225

295 290 955 275 215 265 220 245 905
(b) Best individual is updated.

Fig. 11. Updating the hierarchical structure.

A Memetic Framework for Solving the LSSP in Soft Drink Plants 75

100

120 150 110

130 125 200 170 190 160 115 140 250

130

140 150 180

155 175 220 170 190 160 195 240 250

120

140 150 170

210 225 200 170 190 160 195 180 350

Local Search
100 95

Local Search
130 130

Local Search
120 105

Fig. 12. Migration and local search execution

4.4 Local Search Procedures

A total of five neighborhood moves are defined using the representation of
the solution (individual) previously described (Figure 7):

• Swap: two selected entries of the individual representation are exchanged.
• Insertion: an entry is randomly inserted into another position.
• Merge: take two entries with the same product, select one of them to merge

the lot sizes and the other one to be removed.
• Split: the lot size of some entry is split and it is relocated as a new entry.
• Tank and Line sequences: the sequence of tanks and lines in a selected

entry is reinitialized.

All these moves select entries or macro-periods randomly, but some problem
constraints are checked. For example, it is not possible to insert an entry into
the second period if its lot needs to meet the demand in the first period.
Figure 14 illustrates these moves from an individual.

76 C.F.M. Toledo et al.

100

120 150 110

130 125 200 170 190 160 115 140 250

130

140 150 180

155 175 220 170 190 160 195 240 250

120

140 150 170

210 225 200 170 190 160 195 180 350

Local Search
100 95

Fig. 13. Migration and local search execution about the best individual

Two strategies for neighborhood exploration are evaluated. The first strat-
egy selects a move m randomly among all available moves, which are the
moves previously defined (Figure 14). A selected move m is applied to the
current solution which initially is the best individual of the all the popu-
lations. The move is applied until a maximum number of iterations have
been reached. This procedure creates several neighbors. The neighbors are
evaluated and the best neighbor found is returned.

The second strategy is the same as defined in [3] for the local search TA.
This strategy is executed in three steps. First, a swap or an insertion move
are randomly chosen and executed by the local search. After a maximum
number of iterations, the local search (TA or TS) returns the best individual
found in the neighborhood of these moves.

Next, the local search is executed selecting randomly between a merge or
split move. After the same maximum number of iterations, the local search
returns the best individual found with these moves. Finally, the local search
is executed again randomly selecting a move among swap, insertion, merge
or split moves to be applied to the best individual previously found. If better,

A Memetic Framework for Solving the LSSP in Soft Drink Plants 77

P1 | 70
1 2 2 1
2 2 3 2

P2 | 110
2 2 2 2
3 3 4 2

P1 | 80
1 2 1 2
4 3 1 2

P1 | 100
2 1 1 2
2 3 1 4

P2 | 120
1 1 1 2
1 3 3 2

T1

T2

Restart Rules

P1 | 70
1 2 2 1
2 2 3 2

P2 | 110
2 2 2 2
3 3 4 2

P1 | 100
1 1 2 2
4 2 1 3

P1 | 80
1 2 1 2
4 3 1 2

P2 | 120
1 1 1 2
1 3 3 2

T1

T2

Swap

P1 | 70
1 2 2 1
2 2 3 2

P2 | 110
2 2 2 2
3 3 4 2

P1 | 80
1 2 1 2
4 3 1 2

P1 | 100
1 1 2 2
4 2 1 3

P2 | 120
1 1 1 2
1 3 3 2

P1 | 70
1 2 2 1
2 2 3 2

P2 | 110
2 2 2 2
3 3 4 2

P1 | 80
1 2 1 2
4 3 1 2

P1 | 100
1 1 2 2
4 2 1 3

P2 | 120
1 1 1 2
1 3 3 2

T1

T2

Insertion

P1 | 70
1 2 2 1
2 2 3 2

P2 | 110
2 2 2 2
3 3 4 2

P1 | 180
1 2 1 2
4 3 1 2

P2 | 120
1 1 1 2
1 3 3 2

T1

T2

Merge

P1 | 70
1 2 2 1
2 2 3 2

P2 | 110
2 2 2 2
3 3 4 2

P1 | 30
2 1 1 2
3 4 1 2

P1 | 70
1 1 2 2
4 2 1 3

P2 | 120
1 1 1 2
1 3 3 2

T1

T2

Split
P1 | 80
1 2 1 2
4 3 1 2

Fig. 14. Neighborhood moves

the best individual found at the end is inserted as the new best individual of
the population.

The second strategy attempts to repeat the same subset of moves several
times, where moves that change lot sizes (split and merge) are initially sep-
arated from those moves that change gene positions (swap and insertion). It
is worth mentioning that this strategy for neighborhood exploration is exe-
cuted for the best individual of each population. Thus, it is given a chance
to improve the best individual found in each population.

The pseudo code of TA is presented in Algorithm 2. It is a local search
method that accepts worse individuals when their fitness value remains within
a threshold. Reduction of the threshold leads to method convergence. This
reduction can follow different values considering whether an individual was
or was not accepted.

Algorithm 3 shows the pseudo code for TS, where the method is executed
until tsMax iterations have been reached. First, the current solution S is
initialized as the best individual of the population. Then, S is changed by
procedure executeNeiborhoodMoves(S) that returns the best neighbor (best-
Neighbor) and the respective move that led to this neighbor (bestMove).

The current solution is updated by bestNeigbor and the bestMove is in-
serted into the tabu list. The best solution S∗ can also be updated. The tabu

78 C.F.M. Toledo et al.

Algorithm 2. LocalSearch TA

begin1

individual ← bestIndividual;2

repeat3

newIndividual← moveExecution(individual);4

�f ← fitness(individual)-fitness(newIndividual);5

if (�f > −Th· fitness(individual)) then6

individual ← newIndividual;7

reduce(Th);8

until (maxNumberOfIterations) ;9

end10

list is dynamic, so its length changes after a certain number of iterations. If
the size of the tabu list is reduced, older moves will be freed earlier. Other-
wise, they will stay tabu longer. The size of the tabu list is a random value
tabuListLength ∈ {1, . . . , numberOfMoves− 1}.

Algorithm 3. TabuSearch

begin1

tabuList ← ∅;2

initialize(S);3

S∗ ← S;4

f(S∗)← f(S);5

count ← 0;6

stop ← 0;7

while (stop < tsMax) do8

(bestNeighbor, bestMove)← executeNeighborhoodMoves(S);9

S ← bestNeighbor;10

insertTabuMove(TabuList,mBest);11

if (f(S) < f(S∗)) then12

S∗ ← S;13

count ← count +1;14

if (count > maxCount) then15

tabuListLength ∈ {1, ..., numberOfMoves− 1};16

update(tabuList,tabuListLength);17

count ← 0;18

stop ← stop + 1;19

return (S∗, f(S∗));20

end21

To sum up, four MA variants will be evaluated:

1. MA-TS1: A variant with the first strategy for neighborhood exploration
and with a local search executed only of the best individual of the three
populations.

A Memetic Framework for Solving the LSSP in Soft Drink Plants 79

2. MA-TA1: Identical to MA-TS1, but TA is the local search built-in method.
3. MA-TS2: A variant with the second strategy for neighborhood exploration

and with local search executed before migration of the best individual of
each population.

4. MA-TA2: Identical to MA-TS2, but TA is the local search built-in method.

5 Computational Results

Computational tests are carried out in problem instances defined from data
provided by a large soft drink plant. Two sets of real-world instances will
be solved. As mentioned before, a multi-population genetic algorithm solves
artificial and real-world problem instances in [2]. However, the present chapter
will make comparisons only with the real-world instances from that paper.
This is the first set of instances to be evaluated.

The second set consists of one real-world instance and four instances de-
rived from it as proposed in [3] and [4]. These instances stand for the case
where tanks are previously assigned to lines. The computational tests were
executed using an Intel Core 2 duo processor with 2.66 GHz and 2GB RAM.

5.1 Comparisons with the First Set of Real-World
Instances

The first set has instances based on production plans executed by the soft
drink company in several time periods. Table 1 presents the parameters used
to define each instance.

Table 1. Parameters for instances.

Inst. Lines Tanks Products R.M. Periods

A1 5 9 33 11 1
A2 6 9 49 14 2
A3 6 9 58 15 3
B1 6 10 52 19 1
B2 6 10 56 19 2
B3 6 10 65 21 3

There are six instances in total, separated into the types A and B. Instances
of type A represent production planning where demands must be met at the
end of seven days. Instances B cover a larger period with demands that have
to be met at the end of ten days. There are nine tanks available in instances

80 C.F.M. Toledo et al.

A and ten tanks available in instances B. The number of lines is the same,
except for instance A1 which has five production lines.

Instance A1 is the least complex one with one period (one week), 33 final
products and eleven different raw materials that can be produced using five
lines and nine tanks. Instance B3 is the most complex one with three time
periods (30 days altogether) and 65 products that need 21 raw materials.
This instance has six lines and ten tanks available for production.

The two levels of the production process work 24 hours per day, which
means that tanks and lines are always available for production. Minimum
and maximum tank capacities are 1,000 liters and 24,000 liters, respectively.
The demand in these instances ranges from 47 to 180,000 units and processing
times can vary between 50 to 2,000 units/hour. The inventory and production
costs for products and raw materials are set as 1($/u). All products assigned
to any line spend 0.5 hour for setup time and the setup cost is set as 3,000
($/u) for all products.

There are no setup times and setup costs, if two consecutive products are
the same. This situation changes at tank level. If a raw material is replaced by
the same one, the setup time is 1 hour and it is 2 hours if they are different.
Therefore, there are two different setup costs for the tanks. The values are
estimated at 6,000($/u) if they are the same and at 12,000($/u) if different.
These cost estimates are intended to provide an appropriate trade-off between
costs present in the objective function of the problem.

Table 2 presents computational results obtained by the four MA ap-
proaches introduced in Section 4. The comparisons use the estimated cost for
production plans elaborated by company’s schedulers (Ind) as a benchmark,
shown in the second column. Comparisons also include the results found by
the GA proposed for the same problem in [2].

Both MAs and GA evolved three populations hierarchically structured
in ternary trees. Each population consists of 13 individuals, the crossover
and mutation rates are set to 1.5 and 0.7, respectively. This means that
19 numberOfCrossovers are executed, as well as there being 70% chance of
performing a mutation.

The TS in MA-TS1 was executed 120 times to find the best individual in
each population. It was adjusted to create 40 neighbors (tsMax) for each se-
lected move. Furthermore, the size of the tabu list is updated after parameter
count reaches value 40.

TA in MA-TA1 was executed 30 times also to find the best individual
in each population with Th = 0.2. The reduce(Th) method reduces the Th
value by 0.005 when the individual is not accepted. This value is reduced by
0.01 when the individual is accepted without improving the best individual.
Finally, Th decreases by 0.02 when the new individual is accepted and it is
better than the best individual found so far.

The TS in MA-TS2 was executed ten times to find the best individual
in each population with tsMax = 40 neighbor evaluations. This reduction
was necessary because TS is now executed to find the best individual in

A Memetic Framework for Solving the LSSP in Soft Drink Plants 81

each population when populations have converged. This means that the local
search is called more times during the evolving process of the GA.

The same happens with TA in MA-TA2, but this local search is computa-
tionally less expensive than TS. Therefore, TA is executed 30 times over the
best individual in each population, evaluating 40 neighbors per iteration. The
initial value of Th and the reductions applied to it are the same as defined
for MA-TA1.

The GA and MAs ran 10 times with an execution time of 1hour per exe-
cution in each instance. It is worth mentioning that the soft drink company
decision maker usually spends 4 hours defining a production plan for each
period. Table 2 shows the average values of the best solutions found after 10
executions.

Table 2. Average values of final solutions for instances.

Inst. Ind GA MA-TS1 MA-TA1. MA-TS2 MA-TA2

A1 1692,1 1666,6 1672,4 1664,8 1705,3 1669,3
A2 3511,9 3405,5 3349,0 3359,6 3536,0 3387,3
A3 5002,7 5199,1 4878,5 4882,3 5100,9 5436,1
B1 3378,2 3271,0 3232,5 3240,7 3353,5 3285,8
B2 4278,5 4231,5 4055,3 4104,4 4256,7 4187,7
B3 7943,4 8056,7 7528,2 7548,5 8664,0 8133,8

The MA-TS1 outperforms the GA in 5 out of 6 instances. In instance A1,
MA-TA1 found the best average values for the final solutions. In the most
complex instances of each type, A3 and B3, the GA was not able to improve
the industry solution. However MA-TS1 and MA-TA1 achieved better results
with a relevant improvement in the industry solution for both instances.

MA-TS2 and MA-TA2 were not able to outperform MA-TS1 and MA-TA1
in almost all instances, where the only exception occurred with MAT-TA2
that found better results than MA-TS1 in A1. The GA outperformed MA-
TS2 in 5 out of 6 instances and MA-TA2 in 4 out of 6 instances.

MA-TA2 is related to the MA proposed in [3]. The results in Table 2
indicate that this approach did not perform better solving the industrial
instances proposed in [2]. Indeed, the solutions found by MA-TS2 reveal that
there is no improvement even when the MA executes TS (MA-TS2) instead
of TA (MA-TA2).

The proposed MAs, MA-TS1 and MA-TA1, use a random selection of
moves. MA-TA2 and MA-TS2 always apply the same solution first to a po-
sition (swap and insertion) move, then a lot size (split and merge) move and
finally another move randomly selected. The strategy for neighborhood explo-
ration of MA-TS2 and MA-TA2 seems not to be efficient in these real-world
instances evaluated.

82 C.F.M. Toledo et al.

The local search applied to the best individual found so far returns better
results for these instances. The MAs MA-TS1 and MA-TA1 execute the local
search procedure only of the best individual found, instead of many times
of the best individual found in each population. Table 3 shows the solution
deviation from the industrial solution called Ind.

Table 3. Average deviation values for instances.

Inst. GA MA-TS1 MA-TA1. MA-TS2 MA-TA2

A1 -1.50 -1.17 -1.61 0.78 -1.35
A2 -3.03 -4.64 -4.34 0.69 -3.55
A3 3.93 -2.48 -2.41 1.96 8.66
B1 -3.17 -4.31 -4.07 -0.73 -2.73
B2 -1.10 -5.22 -4.07 -0.51 -2.12
B3 1.43 -5.23 -4.97 9.07 2.40

This deviation is defined as Dev(%) = 100(Z − Ind)/Ind, where Z is the
average value of the best solutions of GA or MAs. It is possible to see that
MA-TS1 and MA-TA1 are able to reduce costs in the original production
planning from the industry. This reduction is more relevant in the complex
instances of type B, where MA-TS1 and MA-TA1 reached values greater than
4% of reduction.

Figure 15 shows the average deviation found by methaheuristics taking
into account all instances. It is possible to see the better performance of
MA-TA1 and MA-TS1 in this set of instances.

GA

-0,58

MA-TS1

-3,84

MA-TA1

-3,58

MA-TS2

1,88

MA-TA2

0,22

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

1,00

2,00

Av
er

ag
e

D
ev

ia
tio

n
(%

)

Fig. 15. Average deviation of methods for all instances

Figure 16 illustrates the outcomes returned by statistical comparisons
using the two-tailed Mann-Whitney U test [47] as directed acyclic graphs
(DAG) as recommended in [48, 49], where a directed edge from a node Mi to

A Memetic Framework for Solving the LSSP in Soft Drink Plants 83

a node Mj indicates that Mj has better outcomes than Mi. Each node repre-
sents one algorithm configuration applied in the experiments. The significance
level of 2% was used as threshold for the significance difference between the
methods outcomes. Thus, this test allowed comparing the results returned by
the 10 executions of each method in each problem instance.

Ind
MA-TS2

GA
MA-TA1

MA-TS1
MA-TA2

(a) DAG for A1.

Ind
MA-TS2

GA MA-TA1

MA-TS1MA-TA2

(b) DAG for A2.

GA
MA-TA2

Ind MA-TS1

MA-TA1MA-TS2

(c) DAG A3.

Fig. 16. Directed acyclic graphs (DAG) for A instances.

In Figure 16a, there is no significant difference among the results found by
all methods, except the MA-TS2 and Ind whose results were outperformed.
There is a similar result in Figure 16b, but now MA-TA1 is better than GA
and MA-TS1 is better than MA-TA2. However, MA-TA1 and MA-TS1 are not
significantly different. Figure 16c shows that MA-TS1 and MA-TA1 do not out-
perform each other, but they return better results than all the other methods.

Figure 17 illustrates the DAG-based presentation of the comparisons of
the approaches based on the Mann-Whitney U test for the problem instances
of type B. MA-TS1 and MA-TA1 outperform the other methods. There is no
significant difference between MA-TS1 and MA-TA1 for instance B1 and B3
(Figures 17a and 17c), but MA-TS1 is better than MA-TA1 for instance B2
(Figure 17b).

84 C.F.M. Toledo et al.

Ind MA-TS2
GA MA-TA1

MA-TS1MA-TA2

(a) DAG for B1.

Ind

MA-TS2

GA

MA-TA1 MA-TS1

MA-TA2

(b) DAG for B2.

GA
MA-TA1
MA-TS1 MA-TS2

MA-TA2
Ind

(c) DAG for B3.

Fig. 17. Directed acyclic graphs (DAG) for B instances.

To have an idea about the behavior of the methods in terms of execution
time, the performance of the average solution values against the execution
time is depicted by Figures 18 to 20. These values are those found by MA-
TS1 which is compared with the GA. It must be mentioned that the first
value plotted is already the best solution found after the first convergence
of populations. This is because the methods have different starting points in
some instances. It is not the value of the best individual after the populations
have been initialized.

In Figure 18, MA-TS1 performed worse than the GA which returned the
average best values since the beginning, for instance A1. The methods return
initially similar values for the best individual found after the first popula-
tion convergence. However, the next results show that the values reach their
respective best values after only 500 seconds of execution time.

The GA did not repeat this performance for instance B1. MA-TS1 outper-
forms the GA during all the execution times for instance B1, where a better
individual with a value above 3260 is found after the first convergence. The
methods did not show relevant improvements in their average results after
2000 seconds of execution time.

In Figure 19, MA-TS1 was able to find better values since the beginning for
both instances. Now the methods spend more time converging, where values
near to their best averagevalues arise only after 1500 seconds of execution time.

In Figure 20, the GA starts with very poor values in instance A3, but quickly
improves the search without outperforming MA-TS1. Both methods start with
high values for the first best individual found in B3, where MA-TS1 is

A Memetic Framework for Solving the LSSP in Soft Drink Plants 85

1666

1668

1670

1672

1674

1676

1678

1680

0 600 1200 1800 2400 3000 3600

Av
g

So
lu

tio
n

Va
lu

e

CPU (sec.)

GA MA-TS1

(a) Instance A1.

3220

3240

3260

3280

3300

3320

3340

3360

0 600 1200 1800 2400 3000 3600

Av
g

So
lu

tio
n

Va
lu

e

CPU (sec.)

GA MA-TS1

(b) Instance B1.

Fig. 18. Average solution values against the execution time for instances A2
and B2.

initially worse than the GA. They are then able to improve these values with
MA-TS1 quickly, outperforming the GA from the beginning of execution.

5.2 Comparisons with the Second Set of Real-World
Instances

A set of problem instances is presented in [4], where problem P1 represents the
real-world instance taken from the soft drink company. This instance includes
two machines (production lines) with one machine responsible for producing

86 C.F.M. Toledo et al.

3300

3350

3400

3450

3500

3550

3600

0 600 1200 1800 2400 3000 3600

Av
g

So
lu

tio
n

Va
lu

e

CPU (sec.)

GA MA-TS1

(a) Instance A2.

4000

4050

4100

4150

4200

4250

4300

4350

4400

0 600 1200 1800 2400 3000 3600

Av
g

So
lu

tio
n

Va
lu

e

CPU (sec.)

GA MA-TS1

(b) Instance B2.

Fig. 19. Average solution values against the execution time for instances A2
and B2.

23 soft drinks (products) and the other machine responsible for producing 13
products. The machines need 18 soft drink flavors (raw materials) to produce
these soft drinks.

The other problem instances P2, P3, P4, and P5 analyzed here are defined
from problem P1. Problem P2 and P3 differ from P1, taking into account
inventory and shortage costs, respectively. The inventory costs are duplicated
in P2, as well as the shortage costs in P3. Problem P4 is identical to P1, except
that the demands are randomly distributed among time periods. Problem P5
has the machine capacity reduced by 25%.

A Memetic Framework for Solving the LSSP in Soft Drink Plants 87

4800

5300

5800

6300

6800

7300

7800

0 600 1200 1800 2400 3000 3600

Av
g

So
lu

tio
n

Va
lu

e

CPU (sec.)

GA MA-TS1

(a) Instance A3.

7000

7500

8000

8500

9000

9500

10000

10500

11000

0 600 1200 1800 2400 3000 3600

Av
g

So
lu

tio
n

Va
lu

e

CPU (sec.)

GA MA-TS1

(b) Instance B3.

Fig. 20. Average solution values against the execution time for instances A3 and B3.

A time horizon of three weeks (periods) was considered and details of other
problem parameters such as inventory costs, setup costs and processing time
can be found in [4]. There, the authors proposed relax-and-fix approaches to
solve these problems. They reported that best results were returned by the so
called Relaxation Approach (RA). This method was executed within a time
limit of 4 hours based on the time spent by decision-makers in the soft-drink
company to plan the weekly production.

The MAs were again executed 10 times for each problem within 1 hour of
execution time, where the average total costs are depicted in Table 5. The pro-
duction cost, which is by far the largest component of total costs, was not con-
sidered in these values as it does not vary by period and all demands should be
met. Thus, only inventory, shortage, and setup costs were considered. Methods

88 C.F.M. Toledo et al.

MA-TS1, MA-TA1, and MA-TS2 outperformed RA in all problem instances.
The MA-TA2 was not better than RA in instances P2 and P5.

Table 4. Solution deviation values for instances.

Inst. RA MA-TS1 MA-TA1. MA-TS2 MA-TA2

P1 306,8 234,2 258,2 233,0 278,0
P2 276,2 268,4 271,0 250,0 276,9
P3 290,8 221,7 260,5 261,5 288,1
P4 317,6 218,6 230,5 216,7 246,6
P5 379,5 272,6 316,9 364,1 423,5

The MA-TS2 outperformed the other methods in 3 out of 5 instances.
MA-TS1 found the best results for P3 and P5. The MA previously designed
for this set of instances (MA-TA2) seems to have its performance improved,
when TS is executed as a local search (MA-TS2). Table 5 lists the deviation
of MA from RA, where the best values are found by MA-TS1 for several
instances.

Table 5. Average deviation values for instances.

Inst. MA-TS1 MA-TA1. MA-TS2 MA-TA2

P1 -23.68 -15.85 -24.06 -9.41
P2 -2.81 -1.88 -9.48 0.27
P3 -23.79 -10.44 -10.08 -0.94
P4 -31.16 -27.42 -31.77 -22.34
P5 -28.17 -16.51 -4.06 11.60
Average -21.92 -14.42 -15.89 -4.16

The methods MA-TA1, MATS2 and MA-TA2 had more than 10% of im-
provement compared to the solutions found by RA, except in problem P2.
It seems that the duplicated inventory cost in P2 reduced the possibility
of improving solutions, as it becomes more expensive to create stocks for
products. MA-TS1 and MA-TS2 performed better, taking into account the
average deviations for the five problems.

The DAG obtained from the outcomes returned by the two-tailed Mann-
Whitney U test in the P instances are depicted by Figure 21. There is no
significant difference between MA-TS1 and MA-TS2 for instance P1 and the
same happen between MA-TA1 and MA-TS1 for instance P5. MA-TS1 out-
performs the other approaches in instance P3. There is no difference between
the methods MA-TA1, MA-TS1, MA-TA2 and MA-TS2 for the results found
in P2 and P4.

A Memetic Framework for Solving the LSSP in Soft Drink Plants 89

MA-TS1

MA-TS2

MA-TA2

MA-TA1

RA

(a) DAG for P1.

RA MA-TA2
MA-TA1

MA-TS2
MA-TS1

(b) DAG for P2.

RA MA-TA2
MA-TA1
MA-TS2

MA-TS1

(c) DAG P3.

RA

MA-TA2 MA-TA1

MA-TS1MA-TS2

(d) DAG P4.

RA
MA-TA2

MA-TA1

MA-TS1 MA-TS2

(e) DAG P5.

Fig. 21. Directed acyclic graphs (DAG) for P instances.

6 Conclusions

In this chapter, we evaluated a number of MA approaches to solve a soft
drink industry problem – the SITLSP. It is a two-level production planning
problem where lot-sizing and scheduling decisions have to be made in an
interrelated way. It comprises parallel machines, capacity constraints and
sequence-dependent setup costs and times.

90 C.F.M. Toledo et al.

The study was conducted by starting from an MA previously applied to
the same problem. The objective was to propose variants of this MA able to
provide improvements when compared with the previous results. A random
selection of moves to explore the neighborhood of a solution representation
was introduced, as well as applying the local search only to the best individual
found so far. In addition, a TS with a dynamic tabu list was presented as an
alternative to the original local search procedure.

The proposed algorithms were compared to solutions found by a GA and
with the estimated costs of production plans elaborated by the soft drink com-
pany schedulers in the first set of benchmark instances. The MAs, MA-TS1
and MA-TA1, using the new ideas introduced in this chapter, outperformed
the GA. The approach that uses the TS found the best results for most of
the instances and it had the best deviation values.

In the second set of instances, the MAs were compared to results found by
a relax approach (RA). This method had already outperformed the solution
developed by decision makers in the soft drink company for one real-world
problem instance. MA-TS1, MA-TA1, and MA-TS2 outperformed the RA
solutions in all instances. MA-TS2 found the best solution values for most
of the instances, but MA-TS1 returned the better average deviations taking
into account all the problem instances.

Statistical tests (i.e., the Mann-Whitney U test) confirmed that MA-TS1
was always among the methods with the better results in the second set
of instances. In several instances from the first set, there was no relevant
difference between the results obtained with MA-TS1 and MA-TA1.

In summary, MA-TS1 shows up as a more robust approach, capable of
solving the proposed large-scale real-world SITLSP instances. This approach
uses a random selection of moves and applies the local search to the best in-
dividuals. Indeed, its fast convergence to minimum values demonstrates that
MA-TS1 is quite valuable for commercial use. The results also indicate that
our Memetic framework could be executed using other local search techniques
or exploitation strategies.

Acknowledgements. This research was supported by Fundação de Amparo a
Pesquissa do Estado de São Paulo (FAPESP). The results reported integrate the
FAPESP project number 2010/10133-0.

References

1. ABIR. Brazilian Association of Soft Drink Industry (2011),
http://abir.org.br/2010/12/23/projecao0912/ (April 15, 2011)

2. Toledo, C.F.M., França, P.M., Kimms, A., Morabito, R.: A multi-population
genetic algorithm approach to solve the synchronized and integrated two-level
lot sizing and scheduling problem. International Journal of Production Re-
search 47, 3097–3119 (2009)

http://abir.org.br/2010/12/23/projecao0912/

A Memetic Framework for Solving the LSSP in Soft Drink Plants 91

3. Ferreira, D., França, P.M., Kimms, A., Morabito, R., Rangel, S., Toledo,
C.F.M.: Heuristics and Metaheuristics for lot sizing and scheduling in the soft
drinks industry: a comparison study. In: Xhafa, F., Abraham, A. (eds.) Meta-
heuristics for Scheduling in Industrial and Manufacturing Applications. SCI,
ch. 8, vol. 128, pp. 169–210. Springer, Heidelberg (2008)

4. Ferreira, D., Morabito, R., Rangel, S.: Solution approaches for the soft drink
integrated production lot sizing and scheduling problem. European Journal of
Operational Research 196, 697–706 (2009)

5. Toledo, C.F.M., França, P.M., Morabito, R., Kimms, A.: An optimization model
for the synchronized and integrated two-level lot sizing and scheduling problem
in soft drink industries. Pesquisa Operacional 27(1), 155–186 (2007)

6. Bitran, G.R., Yanasse, H.H.: Computational complexity of the capacitated lot
size problem. Management Science 28(10), 1174–1186 (1982)

7. Chen, W.H., Thizy, J.M.: Analysis of relaxations for the multi-item capacitated
lot-sizing problem. Annals of Operations Research 26, 29–72 (1990)

8. Maes, J., McClain, J.O., Van Wassenhove, L.N.: Multilevel capacitated lot siz-
ing complexity and LP-based heuristics. European Journal of Operational Re-
search 53(2), 131–148 (1991)

9. Drex, A., Kimms, A.: Lot-sizing and scheduling - survey and extensions. Euro-
pean Journal of Operational Research 99, 221–235 (1997)

10. Kimms, A.: Multi-level lot sizing and scheduling: methods for capacitated, dy-
namic, and deterministic models. Physica-Verlag, Heidelberg (1997)

11. Karimi, B., Ghomi Fatemi, S.M.T., Wilson, J.M.: The capacitated lot sizing
problem: a review of models and algorithms. Omega 31, 365–378 (2003)

12. Robinson, P., Narayananb, A., Sahinc, F.: Coordinated deterministic dynamic
demand lot-sizing problem: A review of models and algorithms. Omega 37, 3–15
(2009)

13. Jans, R., Degraeve, Z.: Modeling industrial lot sizing problems: A review. In-
ternational Journal of Production Research 46(6), 1619–1643 (2008)

14. Jans, R., Degraeve, Z.: Metaheuristics for dynamic lot sizing: A review and com-
parison of solution approaches. European Journal of Operational Research 177,
1855–1875 (2007)

15. Fleischmann, B.: The discrete lot sizing and scheduling problem with sequence-
dependent setup costs. European Journal of Operational Research 75, 395–404
(1994)

16. Haase, K.: Capacitated lot-sizing with sequence dependent setup costs. OR
Spektrum 9, 51–59 (1996)

17. Buschkuhl, L., Sahling, F., Helbeer, S., Tempelmeier, H.: Dynamic capacitated
lot sizing problems: a classification and review of solution approaches. Opera-
tions Research Spectrum 32, 231–261 (2010)

18. Fleischmann, B., Meyr, H.: The general lot-sizing and scheduling problem. OR
Spektrum 19, 11–21 (1997)

19. Meyr, H.: Simultaneous lotsizing and scheduling by combining local search with
dual reoptimization. Europena Journal of Operational Research 120, 311–326
(2000)

20. Meyr, H.: Simultaneous lotsizing and scheduling on parallel machines. Eu-
ropena Journal of Operational Research 139, 277–292 (2002)

92 C.F.M. Toledo et al.

21. Haase, K., Kimms, A.: Lot-sizing and scheduling with sequence dependent setup
costs and times and efficient rescheduling opportunities. International Journal
of Production Economics 66, 159–169 (2000)

22. Kovacs, A., Brown, K.N., Tarim, S.A.: An efficient MIP model for the ca-
pacitated lot-sizing and scheduling problem with sequence-dependent setups.
International Journal of Production Economics 118, 282–291 (2009)

23. Gupta, D., Magnusson, T.: The capacitated lot-sizing and scheduling problem
with sequence-dependent setup costs and setup times. Computers & Operations
Research 32, 727–747 (2005)

24. Almada-Lobo, B., Klabjan, D., Carravilla, M.A., Oliveira, J.F.: Single machine
multi-product capacitated lotsizing with sequence-dependent setups. Interna-
tional Journal of Production Research 45(20), 4873–4894 (2007)

25. Beraldi, P., Ghianib, G., Griecob, A., Guerriero, E.: Rolling-horizon and relax-
and-fix heuristics for the parallel machine lot-sizing and scheduling problem
with sequence-dependent set-up costs. Computers & Operations Research 35,
3644–3656 (2008)

26. Luche, J.R.D., Morabito, R., Pureza, V.: Combining process selection and
lot sizing models for production scheduling of electrofused grains. Asia-Pacific
Journal of Operational Research 26(3), 421–443 (2009)

27. Clark, A.R., Morabito, R., Toso, E.: Production setup-sequencing and lot-sizing
at an animal nutrition plant through ATSP subtour elimination and patching.
Journal of Scheduling 13(2), 111–121 (2009)

28. Toso, E., Morabito, R., Clark, A.R.: Lot sizing and sequencing optimisation at
an animal-feed plant. Computers & Industrial Engineering 57, 813–821 (2009)

29. Sahling, F., Buschkuhl, L., Tempelmeir, H., Helber, S.: Solving a multi-level
capacitated lot sizing problem with multi-period setup carry-over via a fix-and-
optimize heuristic. Computers & Operations Research 37, 2546–2553 (2009)

30. Han, Y., Tang, J., Kaku, I., Mu, L.: Solving uncapacitated multilevel lot-sizing
problems using a particle swarm optimization with flexible inertial weight.
Computers and Mathematics with Applications 57, 1748–1755 (2009)

31. Almeder, C.: A hybrid optimization approach for multi-level capacitated lot-
sizing problems. European Journal of Operational Research 200, 599–606 (2010)

32. Xiao, Y., Kaku, I., Zhao, Q., Zhang, R.: A variable neighborhood search based
approach for uncapacitated multilevel lot-sizing problems. Computers & Indus-
trial Engineering 60(2), 218–227 (2011)

33. Stadler, H.: Multi-level single machine lot-sizing and scheduling with zero lead
times. European Journal of Operational Reserach 209, 241–252 (2011)

34. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell
(1997)

35. Hung, Y.F., Chen, C.P., Shih, C.C.: Using tabu search with ranking candidate
list to solve production planning problems with setups. Computers & Industrial
Engineering 45, 615–634 (2003)

36. Al-Fawzan, M.A.: An algorithm for production planning in a flexible produc-
tion system. Computers & Industrial Engineering 48(4), 681–691 (2003)

37. Buscher, U., Shen, L.: An integrated tabu search algorithm for the lot stream-
ing problem in job shops. European Journal of Operational Research 199(2),
385–399 (2009)

A Memetic Framework for Solving the LSSP in Soft Drink Plants 93

38. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cam-
bridge (1992)

39. Goldberg, D.E.: Genetic Algorithms in search, optimization, and machine learn-
ing. Addison-Wesley, Reading (1989)

40. Michalewicz, Z.: Genetic Algorithms + data structure = evolution programs.
Springer, Heidelberg (1996)

41. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Mar-
tial Arts: Towards Memetic Algorithms. Technical report, Caltech Concurrent
Computation Program, report 826 (1989)

42. França, P.M., Mendes, A.S., Moscato, P.: A memetic algorithm for the total
tardiness single machine scheduling problem. European Journal of Operational
Research 132, 224–242 (2001)

43. França, P.M., Gupta, J.N.D., Mendes, A.S., Moscato, P., Veltinky, K.J.: Evolu-
tionary algorithms for scheduling a flowshop manufacturing cell with sequence
dependent family setups. Computers & Industrial Engineering 48(3), 491–506
(2005)

44. Moghaddam, R., Kanani, Y., Cheraghalizadeh, R.: A genetic algorithm and
memetic algorithm to sequencing and scheduling of cellular manufacturing sys-
tems. International Journal of Management Science and Engineering Manage-
ment 3(2), 119–130 (2008)

45. Clark, A.R.: Hybrid heuristics for planning lot setups and sizes. Computers &
Industrial Engineering 45, 545–562 (2003)

46. Ferreira, D., Morabito, R., Rangel, S.: Relax and fix heuristics to solve one-stage
one-machine lot-scheduling models for small-scale soft drink plants. Computers
& Operations Research 37, 684–691 (2010)

47. Mann, H.B., Whitney, D.R.: On a Test of whether One of Two Random Vari-
ables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18(1), 50–60 (1947)

48. Weise, T.: Illustration of statistical test results for experiment evaluation. Tech-
nical report, www.it-weise.de (March 2, 2011),
http://www.it-weise.de/documents/files/W2011IOSTRFEE.pdf

(May 03, 2011)
49. Weise, T.: Global Optimization Algorithms – Theory and Application. Ger-

many (2009), http://www.it-weise.de, http://www.it-weise.de
(May 03, 2011)

http://www.it-weise.de/documents/files/W2011IOSTRFEE.pdf
http://www.it-weise.de
http://www.it-weise.de

Simulation-Based Evolutionary
Optimization of Complex
Multi-Location Inventory Models

Jörg Lässig, Christian A. Hochmuth, and Stefanie Thiem

Abstract. Real-world problems in economics and production often cannot
be solved strictly mathematically, and no specific algorithms are known for
these problems. A common strategy in such cases is a simulation-based opti-
mization approach, which requires the complete simulation of the system to
evaluate its configuration. This principle is introduced using the example of
hub-and-spoke inventory systems. By comparing evolutionary approaches
with Particle Swarm Optimization and ensemble-based Metropolis-type strate-
gies, we show that evolutionary algorithms with elitism perform very com-
petitively for the discussed optimization task. Hub-and-spoke systems serve
as proof of concept for evolutionary simulation-based optimization of inven-
tory models. Subsequently, we introduce the optimization of multi-location
inventory models with lateral transshipments. As a consequence of recent
economic developments, these very general models are in the spotlight of
scientific discussions. In contrast to current approaches, we consider assump-
tions about the future behavior of the system for deciding how to reallocate
and to increase assets. Our experiments show that this approach is suited for
a broad class of systems and reveals interesting insights about their optimal
structure.

Jörg Lässig
Algorithms Group, International Computer Science Institute,
Berkeley 94704, California, USA
e-mail: jla@icsi.berkeley.edu

Christian A. Hochmuth
Manufacturing Coordination and Technology, Bosch Rexroth AG,
97816 Lohr am Main, Germany
e-mail: christian.hochmuth@boschrexroth.de

Stefanie Thiem
Institute of Physics, Chemnitz University of Technology,
09107 Chemnitz, Germany
e-mail: stefanie.thiem@cs.tu-chemnitz.de

jla@icsi.berkeley.edu
christian.hochmuth@boschrexroth.de
stefanie.thiem@cs.tu-chemnitz.de

96 J. Lässig, C.A. Hochmuth, and S. Thiem

1 Introduction

In recent years, information technology has become a vital element of
industrial engineering. Production processes are planned, controlled, and
monitored by means of centralized and decentralized systems [1]. Today it
is possible to track the complete production cycle from suppliers and sub-
contractors along the supply chain to the customers [2]. Machine data ac-
quisition systems collect machine and facility data in order to enable fast
reactions to failures and to determine the workload, efficiency, performance,
and quality for a specific time period in a comparative way. Task manage-
ment systems extract data from production planning and control systems to
support the coordination of production tasks on the production layer [3]. All
these achievements aim for an increase of efficiency and flexibility in the pro-
duction process, for a reduction of cycle times as well as for better capacity
utilization while reducing the costs [4].

Focusing on today’s complex production and distribution networks, the
availability of straightforward application tools for the control of the mate-
rial flow through the different stations of the system has gained an increasing
importance [5]. In the field of storage management and warehousing, shorter
delivery times and reduced assets are desired. To achieve progress for both
of these seemingly contradicting objectives, different strategies exist. Single-
level storage policies apply decision rules whose parameter values have to be
optimized. However, currently these rules consider only the current state of
the inventory system. Assumptions about the future behavior of the system
are not considered while deciding questions of asset reallocation and asset
increase. Additional strategies for the control of transshipments between dif-
ferent locations are also the current questions of research. Compared to the
increase of the assets in a single location, lateral transshipments between
different locations have the advantage that surplus can balance shortages
in other locations, which increases the availability, while the assets do not
increase on average [6].

This chapter focuses on two major concerns. The first one is the modeling
of complex inventory and logistics systems to evaluate different layouts and
strategies and the special requirements for optimizers to find close to optimal
setups and policies. We specifically emphasize on the question of how eligi-
ble evolutionary approaches are able to fulfill this task by first comparing
them to other common iterative improvement schemes. Secondly, two differ-
ent application classes within the inventory and logistics simulation domain
are chosen, while the first application serves as a proof of concept.

The rest of this chapter is structured as follows. In Section 2 we first intro-
duce the inventory models under investigation and related results from the
literature as well as general approaches to the optimization of these inven-
tory systems. Then, Section 3 describes global optimization methods which

Evolutionary Simulation of Complex Multi-Location Inventory Models 97

are eligible for this optimization task, focusing especially on Genetic Algo-
rithms, Threshold Accepting and Particle Swarm Optimization for reasons
of comparison. Readers who are more interested in the problems under in-
vestigation can skip this section and continue in Section 4, which considers
the specific case of the simulation-based optimization of hub-and-spoke in-
ventory systems, and Section 5, which considers the more general case of
multi-location inventory systems with lateral transshipments. We conclude
the chapter with Section 6 and give a prospect to future work in Section 7.

2 Related Work

This section consists of two parts. First, we describe how the modeling of
inventory systems changed over the last decades and how the investigated
problems became increasingly complex. Subsequently, we focus on the devel-
opment of different strategies to optimize these systems.

2.1 Inventory Systems and Related Optimization
Problems

Inventory studies discuss strategies that determine when to order what
amount at which location from which source. The objective of these strate-
gies is to optimize a given performance measure for a defined planning hori-
zon. In the 50s of the past century, first theoretical investigations of systems
with stochastic demand at one location and a planning horizon of one pe-
riod were presented. Examples of this research originate from Arrow, Harris,
and Marschak [7] as well as Dvoretzky, Kiefer, and Wolfowitz [8]. An ex-
pansion to several periods was obtained by Bellman’s proposal for dynamic
optimization [9].

The step to the consideration of systems consisting of several locations was
made by Allen [10–12] and by Clark and Scarf [13]. In these studies, Allen
discussed strategies for the redistribution of stock between the locations, and
Clark and Scarf introduced so-called multi-echelon models, which can be
distinguished by either a vertical or a hierarchical structure. The results of
Clark and Scarf laid the foundation for a wide range of subsequent exami-
nations of multi-echelon systems. Such systems consist of sections which are
arranged to stages (echelons) representing physical locations or processing
steps. In this representation, serial manufacturing systems are described by
concatenated stages, where, e.g., assembly systems converge to a defined point
and distribution systems diverge from a defined point. As an analytical tool,

98 J. Lässig, C.A. Hochmuth, and S. Thiem

especially dynamic programming was used. The hub-and-spoke inventory sys-
tem introduced in the forthcoming sections is an example of a model with
vertical structure. Spokes have to meet a certain demand and control their
stock by ordering product units from a central hub. In this case simulation-
based optimization allows us to resolve restrictions of analytical models such
as zero lead times.

In contrast to models with vertical structure, models distinguished by a
horizontal structure consist of equal elements, which are not ordered in a
predefined way. Consequently, a certain flow direction of product units is
not defined in advance for such a model. Even though the first research by
Allen [10] about inventory systems with horizontal structure dates back to
1958, only few results are available for these systems. This can be explained
by the complexity of the analytical models which arise in the case that fu-
ture orders have to be considered at the ordering time at a location [14].
These orders usually change the state of the system. Thus, for a long time,
only single-period models were investigated, e.g., as described by Krishnan
and Rao [15], Aggarwal [16], and Köchel [17]. As an analytical tool, Köchel
proposed a periodic-stationary Markov decision model, which allows to de-
rive first results based on a dynamic model [18]. The multi-location inven-
tory system with lateral transshipments discussed in the second part of this
chapter is a very general horizontal system. To surmount restrictions of an-
alytical models simulation-based evolutionary optimization is proposed. As
a consequence, completely arbitrary systems can be modeled, in contrast to
analytical models, which rely heavily on strong assumptions.

Fewer results are known in the literature concerning models with mixed
structure. Such models describe systems which define predecessor-successor
rules for the flow of product units through a defined set of locations whereas
lateral transshipments between the locations are allowed [14, 19–21]. Thus,
these models combine aspects of models with vertical and horizontal
structure.

Due to the complexity which arises by modeling the system as realistic
as possible, an analytical approach is not advisable. Simulation-based evolu-
tionary optimization represents a suitable way to find optimal solutions for
systems with vertical, horizontal, or even mixed structure as models can be
formulated in almost arbitrary detail.1 Although this leads to a disadvanta-
geously fast increase in computation time, the extent of that increase can be
partly confined by the application of techniques to accelerate the algorithm
and, especially, by the parallelization of the simulation task. To obtain an
accurate estimate of the objective function, the simulated time period must
be sufficient. However, the vast increase in computation speed during the
last decades and the broad availability of multi-core processors support the
adoption of simulation as an evaluation tool for real-world problems.
1 Of course this is limited by the available resources for the optimization procedure

afterwards.

Evolutionary Simulation of Complex Multi-Location Inventory Models 99

2.2 Optimization of Complex Systems

In the context of systems, optimization can be part of the design process on
the one hand in order to construct systems which behave optimally under
certain fixed aspects, and on the other hand to control systems to achieve
optimal parameter setups and characteristics. For an objective function g and
the decision set Θ comprising all solutions ϑ ∈ Θ an optimization problem
can be formally described by

min
ϑ∈Θ

{g(ϑ)} . (1)

To denote all current solutions of an algorithm with N concurrent individuals
as introduced later we use a vector notation ϑ = (ϑ1, . . . , ϑN). The objective
function g : Θ −→ R serves for the performance evaluation of the system.
Each given solution ϑ ∈ Θ is mapped to a real value which describes the
performance of the system under a certain aspect. We consider the set Θ� as
the set of optimal decisions with regard to the objective function g. Formally
Θ� is given by

Θ� := {ϑ� ∈ Θ : g(ϑ�) = min
ϑ∈Θ

{g(ϑ)}} . (2)

The objective function value g(ϑ�) of an optimal decision is called optimal
objective value. Local optima are a problem in searching the optimal value.
A decision ϑ′ is called local optimal decision with regard to g(ϑ′), if there is
an environment U for each element in Θ such that

g(ϑ′) = min
ϑ∈Θ∩U

{g(ϑ)} . (3)

An optimization problem P(g, Θ) is solved if an optimal decision ϑ� and the
optimal value g� = g(ϑ�) have been determined. A pair (g�, ϑ�) is called
optimal solution of P(g, Θ).

2.2.1 Complexity of Stochastic Optimization Problems

In case of stochastic systems it is often not possible to formulate an ana-
lytical objective function g. For the determination of the objective value of
a decision ϑ ∈ Θ the performance of a stochastic system is determined by
an evaluation function B(ϑ, X(ϑ)). The random variable X(ϑ) describes the
stochastic influences on the system. The evaluation function B is itself a ran-
dom variable and, hence, difficult to compare. Therefore, the performance
measure of a stochastic system is usually the expectation value 〈B(ϑ, X(ϑ))〉
of an evaluation function. This means that we have to consider the expected
performance of the decision ϑ ∈ Θ if a stationary state is reached, i.e., the
performance of the system does not depend on the initial state. This is the

100 J. Lässig, C.A. Hochmuth, and S. Thiem

case if the cost functions are approximately constant over time. Consequently,
a stochastic optimization problem can be formally described by

min
ϑ∈Θ

{g(ϑ)} = min
ϑ∈Θ

{〈B(ϑ, X(ϑ))〉} . (4)

Usually the solution of a stochastic optimization problem is more complex
than the solution of a deterministic problem and, hence, in general specific
solution methods are required.

2.2.2 Simulation-Based Optimization

In practice the objective function g is replaced by an approximate objec-
tive function gapp, which is determined by averaging the evaluation function
B(ϑ, Xi(ϑ)) over several runs i, i.e.,

gapp =
1
M

M∑

i=1

B(ϑ, Xi(ϑ)) . (5)

Simulation-based optimization suffers mainly from two problems. First, it is
obviously not possible to calculate any gradient of the objective function,
and secondly, there is a difference between the objective function g and the
approximate objective function gapp, and any method can only optimize gapp.
There are two basic approaches for simulation-based optimization – the non-
iterative approach and the iterative approach, see Fu [22], Fu and Healy [23],
and Pflug [24].

Non-iterative simulation-based optimization. For this approach two
consecutive problems have to be solved, the simulation problem to estimate
the objective values and the optimization problem to search for a minimum.
In a first step, realizations of the relevant random variables are determined,
which are either used as real values or which are used to calculate an esti-
mation of the objective function. The resulting deterministic approximated
objective function is then used as objective of the actual optimization prob-
lem, which has to be solved in a second step. This approach is also called
the retrospective approach and was proposed by Healy and Schruben [25].
For increasing problem complexity the realization of this approach gets more
difficult [23, 26] because for complex problems the necessary sample size be-
comes too large to approximate the function precisely enough. Additionally, it
is hard to predict what sample size is necessary to get sufficiently good results.
Often this motivates an additional analytical investigation of the objective
function to determine its structure. There are also other non-iterative ap-
proaches, e.g., the SPO-Approach or the response-surface method described
by Greenwood, Rees, and Siochi [27].

Iterative simulation-based optimization. In contrast to the non-iterative
retrospective approach, iterative prospective methods can be applied, which

Evolutionary Simulation of Complex Multi-Location Inventory Models 101

are characterized by a cycle where simulation and optimization alternate.
Each suggested parameter setup of the optimizer is evaluated by the simulator
and the simulation result is then used by the optimizer to proceed with the
next iteration. This strategy is repeated until an acceptable solution to the
problem has been found. The procedure is visualized in Figure 1.

Optimizer
Performance

analysis

Candidate
solutions Simulator

. . .

. . .

Problem Solution

Fig. 1. Scheme for iterative simulation-based optimization.

Initially, some set of candidate solutions is chosen by a starter, usually
uniformly at random. The complete system is simulated once for each can-
didate solution in this set with the corresponding parameter setup.2 Then
the solutions can be evaluated based on the results of the simulation to get
the value gapp(ϑ) as approximation for the objective function value g(ϑ).
Then either the algorithm terminates or a new search point is calculated,
i.e., the optimizer suggests new candidate solutions based on the current
solutions, which are then treated equivalently in a new iteration. The iter-
ative approach is more generally applicable compared to the non-iterative
approach. Resources are used more efficiently and information is only calcu-
lated if it is really required. Our investigations focus on the iterative approach
to simulation-based optimization.

3 Applied Optimization Methods

The approach of iterative simulation-based optimization works only together
with methods which use only search point and value pairs for the optimiza-
tion. This covers relatively simple iterative improvement approaches such as
2 It is possible to add further logic here, e.g., to simulate each system more than

once to reduce stochastic influences.

102 J. Lässig, C.A. Hochmuth, and S. Thiem

Simulated Annealing or Threshold Accepting [28, 29] but also more elaborate
techniques which deal with more than one candidate solution, e.g., classical
Evolutionary Strategies [30], Genetic Algorithms [31] or newer paradigms like
Particle Swarm Optimization [32]. Also ensemble-based techniques [33] can
be competitive, as we will see [34, 35].

Besides the obvious quest for competitive and thorough optimization re-
sults, for practical applications also acceptable running times are important.
Especially for the considered case of simulation-based optimization, the eval-
uation of a single solution is extremely expensive and, hence, fast converging
methods with a relatively small number of required function evaluations are
suited best for this case. Another pitfall, which does not exist for classical
problems, is the fact that a simulation with the same parameter set can re-
turn different objective function values due to the stochastic nature of the
problem as argued above, which results in the same behavior as adding noise
when searching the parameter space. An additional complication is that the
objective function takes on very similar values for most candidate solutions
near the global optimum. Not all methods applicable in principle can manage
these additional requirements equally well.

The chapter comprises results for the application of Ensemble-based
Threshold Accepting, Particle Swarm Optimization, and Genetic Algorithms
with elitism. The performance of the different methods is compared for differ-
ent setups and suggests that the evolutionary approaches perform compet-
itively, showing some advantages when compared to the other approaches.
Independently of the algorithmic insights, also quite surprising results for
the different logistics strategies themselves are described.

3.1 Ensemble-Based Threshold Accepting

Threshold Accepting (TA) is a simple iterative improvement scheme which
has been introduced by Dueck and Scheuer in 1990 [36]. It fits into the scheme
of Monte Carlo-type techniques, which is described by Algorithm 1. The
degrees of freedom within this template are the initial state, the temperature
schedule, the move class, the acceptance condition and the stopping condition.
The initial state can be chosen uniformly at random, while the stopping
condition is in our case given by a fixed number of unsuccessful iterations. For
different designs of the acceptance probability Pϑ′ϑ depending on the current
solution ϑ and a new solution ϑ′ and of course on the objective function g,
the algorithm shows a different behavior. The simplest approach is random
search with P

(RA)
ϑ′ϑ = 1.

The parameter Δg = g(ϑ′) − g(ϑ) is the difference between the objective
function values of the new and the current solution. For TA an elementary
step function is applied:

Evolutionary Simulation of Complex Multi-Location Inventory Models 103

Algorithm 1. Metropolis-type techniques
Data: problem P(g,Θ) with a solution space Θ.
Result: solution ϑfinal ∈ Θ.
begin1

ϑ←− generate_initial_state(Θ);2
for t←− 1 to ∞ do3

T ←−get_new_temperature(ϑ, t, T);4
ϑ′ ←−get_new_state(ϑ, t, Θ);5
acceptance_condition←− true with probability Pϑ′ϑ,6
false otherwise;
if (acceptance_condition) then7

ϑ← ϑ′;8

if (stopping_condition) then9
return ϑ;10

end11

P
(TA)
ϑ′ϑ =

{
1 if Δg ≤ T
0 otherwise ,

(6)

where a temperature parameter T is introduced, which in general gets re-
duced during the algorithm execution. Franz et al. were able to prove that
Equation (6) is an optimal decision rule for this kind of algorithm [37].3

An obvious generalization of these methods is to increase the number of
solutions for which exactly the same process is done in parallel. This is called
ensemble-based approach. One advantage of this procedure is that more in-
formation about the current situation is known which can be used, e.g., to
establish adaptive temperature schedules. Considering Metropolis-type algo-
rithms, several strategies for the temperature schedule have been investigated
in the literature. Especially, adaptive schedules show excellent performance
such as, e.g., constant thermodynamic speed scheduling by Salamon, Sibani,
and Frost [38], which is applied for the comparison in this chapter.

Using the mean ensemble objective value4 〈g〉t at time t and its standard
deviation in the equilibrium at temperature T , defined by σg(T) = σg =√
〈g2〉t − 〈g〉2t , where this equation is evaluated at the end of a fixed temper-

ature run, the rule is to reduce the temperature if

〈g〉t−1 − 〈g〉t >
c1 · σg√

N
(7)

is satisfied, where c is a constant and N the ensemble size. The temperature
is then reduced using
3 Note that this depends on the choice of other parameters, especially on the choice

of the temperature schedule, for which the optimal choice is in practice unknown.
4 Using E for energy instead of g is more common in this context, but here we

stick to g to denote the objective function.

104 J. Lässig, C.A. Hochmuth, and S. Thiem

Tt+1 = Tt − c2 · T 2
t

σg
. (8)

In the application case of the optimization approach to hub-and-spoke inven-
tory systems, the current solution is represented by a vector of real values.
The move class creates a new solution by altering each element of the vector
adding a perturbation to the current value which is chosen in the interval
[−cstep, cstep] uniformly at random. This is equivalent to choosing a new po-
sition in a small hypercube around the current solution.

3.2 Particle Swarm Optimization

Another approach which uses also more than one candidate solution at the
same time is Particle Swarm Optimization (PSO), originally proposed by
Kennedy and Eberhart [32]. PSO uses the dynamics of swarms to find solu-
tions to optimization problems with continuous solution space. Meanwhile,
many different versions and additional heuristics were introduced, where we
restrict our considerations here to the Standard PSO 2007 algorithm [39].

PSO is, similar to Genetic Algorithms, an iterative population-based ap-
proach, i.e., PSO works with a set of feasible solutions, the swarm. Let N
denote the number of swarm individuals (particles) or the swarm size, re-
spectively. The basic idea of PSO is that all swarm individuals move partly
randomly through the solution space Θ. Thereby individuals can share in-
formation about their so far best previous position ϑbsf ≡ rbsf, where each
particle has a number of K informants. Additionally, each individual i has an
internal memory to store its best so far (locally best) solution ϑlbsf

i ≡ rlbsf
i .

In every iteration the movement of each individual beginning from its actual
position ϑi ≡ ri is then given by a tradeoff between its current velocity vi,
a movement in the direction of its locally best solution rlbsf

i (cognitive com-
ponent) and of its so far best known solution rbsf

i of its informants in the
swarm (social component) (cp. Figure 2). Thus, the equations of motion for
one individual i and a discrete time parameter t are given by

vt+1
i = w · vt

i + c1 · R1 ·
(
rlbsf,t

i − rt
i

)
+ c2 · R2 ·

(
rbsf,t

i − rt
i

)
(9)

rt+1
i = rt

i + vt+1
i . (10)

The diagonal matrices R1 and R2 contain uniform random numbers in [0, 1)
and thus randomly weight each component of the connecting vector (rlbsf

i −ri)
from the current position ri to the locally best solutions rlbsf

i . The vector
(rbsf

i − ri) is treated analogously. Since every component is multiplied with
a different random number, the vectors are not only changed in length but
also perturbed from their original direction. The new position follows then
from the superposition of the three vectors as it is visualized in Figure 2. By

Evolutionary Simulation of Complex Multi-Location Inventory Models 105

choosing the cognitive parameter c1 and the social parameter c2, the influence
of these two components can be adjusted.

The Standard PSO 2007 setup uses c1 = c2 = 0.5+ ln(2) 	 1.193 and w =
1/(2 ln 2) 	 0.721 as proposed by the stability analysis by Clerc and Kennedy
[40]. Depending on the problem dimension d, a number of N =
10 + 2

√
d�

particles are chosen with a number of K = 3 informants.

y

x

c1(r

rlbsf,t
i

rbsf,t
i

rt
i

rt+1
i

wvt
i

lbsf,t
i − rt

i)

c2(rbsf,t
i − rt

i)

Fig. 2. Iterative solution update in PSO. From the current particle position rt
i the

new position rt+1
i is obtained by vector addition of the velocity, the cognitive and

the social component. Here, the random influence by the matrices R is omitted,
which usually further scales the length and perturbs the direction of the vectors.

The pseudocode is shown in Algorithm 2. The position and the veloc-
ity components for the different particles i and dimension d are written
as subscripts, i.e., vid is the dth component of the velocity vector vi of
particle i.

3.3 Genetic Algorithm

Finally, we introduce Genetic Algorithms (GAs) as an optimization method
which can be used to optimize complex inventory systems. Because GAs
are not only applied to the optimization of hub-and-spoke inventory systems

106 J. Lässig, C.A. Hochmuth, and S. Thiem

Algorithm 2. Position and velocity update rule in PSO

Data: position ϑi ≡ ri, velocity δi ≡ vi, locally best position ϑlbsf
i ≡ rlbsf

i and
globally best position ϑbsf

i ≡ rbsf
i for each particle i, cognitive

parameter c1 and social parameter c2.
Result: ϑ, with ϑi ∈ Θ, the solution space, and updated velocities δ.
begin1

forall particles i do2
forall dimensions d do3

r1 ← get_uniform_random_number(0, 1);4
r2 ← get_uniform_random_number(0, 1);5

vid ← w · vid + c1 · r1 ·
(
xlbsf

id − xid

)
+ c2 · r2 ·

(
xbsf

id − xid

)
;6

xid ← xid + vid;7

return ϑ ≡ {ri}, δ ≡ {vi};8

end9

but also for the more complex case of multi-location inventory systems with
lateral transshipments, we introduce them in more detail here.

GAs are heuristic optimization methods which are predestined for prob-
lems whose solution is not closed or cannot be efficiently evaluated. Further,
GAs can be applied without specific knowledge about the application domain,
and they are thus appropriate for very general optimization problems [14].
Since less information about the objective function is necessary, they are eas-
ily transferable to new optimization tasks. With respect to the initial solutions
of the optimization process, GAs show a robust behavior. In the context of
simulation-based optimization they have the positive property of processing
the seemingly random objective values of simulation experiments well. How-
ever, in general it is not guaranteed that the best candidate solution found
represents in fact the global optimum. The consideration of a high number
of candidate solutions, randomly distributed initial states and a sufficiently
large number of optimization cycles increase the quality of the optimization
result. Also, the implementation of appropriate genetic operators, which are
described in the following paragraphs, is not trivial. Their parameter values
strongly depend on the problem under consideration and should therefore be
adapted to obtain reasonably good results. Furthermore, the use of GAs is
difficult if the evaluation of candidate solutions leads to a categorization of
right and wrong only. Because the cost criteria are real-valued objective func-
tions and due to the properties described, GAs are suitable to find adequate
solutions to the presented systems.

For our application, a candidate solution, i.e., an individual, is represented
by a vector of parameters to be optimized, the alleles of the genome. In the first
step, the initialization, a sufficiently large set of individuals with randomly dis-
tributed values is generated, constituting the initial population. Subsequently,
the evaluation assigns a numerical value g(ϑi) to each individual i. On this ba-
sis the fitness function may be analytically calculated or, in our case, estimated

Evolutionary Simulation of Complex Multi-Location Inventory Models 107

by a simulation experiment. In the following, a fraction of the population is ex-
tracted by selection, whereas the selection probability for each individual cor-
responds to its fitness value. Next, in the recombination step, new individuals
are created by merging randomly advantageous partial candidate solutions of
selected individuals to new candidate solutions. In the last step, the mutation
step, the values of individuals selected according to a defined probability are
altered slightly. Thus, the population of the next generation is represented by
individuals selected and newly created and, depending on the implementation,
by the individuals of the previous generation. The cycle is completed by re-
evaluating the population. If a defined stopping condition is satisfied after the
evaluation, the current optimum and, depending on the design, the best solu-
tions of the last generation are returned, otherwise the cycle is continued. The
procedure is formally given in Algorithm 3.

3.3.1 Initialization

The initial population is represented by individuals whose values have been
chosen uniformly at random. To ensure a wide coverage of the search space
and to prevent early convergence to a local optimum, the interval limits of
the uniform distribution should be chosen sufficiently large. Thus, less ad-
vantageous candidate solutions are created intentionally. The interval limits
correspond to the reference values of the inventory model and will be specified
in Sections 4 and 5.

3.3.2 Evaluation

Each new individual has to be evaluated. Therefore, discrete simulation is
used. Thus, for large population sizes N it is crucial that the simulator is
implemented as efficient as possible and, if possible, parallelized to take ad-
vantage of current multi-core architectures. For the evaluation of a given
candidate solution during the simulation run, values of stochastic variables
are generated by a mixed-linear congruential random number generator. Its
seed is initialized in the first generation, and the sequence of random num-
bers is inductively passed on to the next generations. This can be interpreted
as fluctuating environmental conditions and, hence, prevents overfitting, i.e.,
the emergence of candidate solutions which perform well only under specific
circumstances – represented here by sequences of random numbers – but not
necessarily on average. However, in a fixed generation, all simulation runs are
conducted on the basis of the same seed so that for individuals within one
generation comparability is guaranteed using the same sequence of random
numbers. The final optima of all generations are eventually re-evaluated, ap-
plying the initial seed to guarantee comparability. The evaluation function
B(ϑ, X(ϑ)) assigns a specific value to each candidate solution ϑ ∈ Θ, whereas

108 J. Lässig, C.A. Hochmuth, and S. Thiem

X(ϑ) denotes the observed stochastic influences on the system as described
above, i.e., the specific sequence of random numbers generated during the
simulation run. In our case, the value B(ϑ, X(ϑ)) that is assigned to each
evaluated candidate solution ϑ corresponds to the sum of the total costs
ctotal,j(X(ϑ)) over all locations j. Thus, we obtain

B(ϑ, X(ϑ)) =
n∑

j=1

ctotal,j(X(ϑ)). (11)

3.3.3 Selection

After evaluating the individuals of a population, their fitness values are esti-
mated based on the simulation results. These fitness values F (ϑ) describe the
performance of each candidate solution ϑ comparatively. As the simulation
returns cost function values over a defined planning horizon, a minimization
problem is defined. However, a candidate solution is preferable by definition
if it displays a high fitness value, and in order to achieve this, the sign of the
objective values is alternated. Furthermore, negative fitness values have to
be excluded, and in case that all values are positive, comparability of large
positive values has to be ensured. Thus, all values are rescaled so that a
fitness value of zero is assigned to the least performing candidate solution.
Consequently, the fitness value F (ϑ) of all candidate solutions ϑ ∈ Θ is given
by the sum of its negated objective value −B(ϑ, X(ϑ)) and an upper bound5

on B(ϑ′, X(ϑ′)) such as max{B(ϑ′, X(ϑ′)) : ϑ′ ∈ Θ}, and the fitness for all
candidate solutions ϑ′ ∈ Θ is given by

F (ϑ) = −B(ϑ, X(ϑ)) + max{B(ϑ′, X(ϑ′)) : ϑ′ ∈ Θ} (12)

with

F (ϑ) ∈ [0,−min{B(ϑ′, X(ϑ′)) : ϑ′ ∈ Θ} + max{B(ϑ′, X(ϑ′)) : ϑ′ ∈ Θ}] .
(13)

The fitness values measure the performance of the individuals relative to
the current population rather than representing their absolute performance.
Thus, slight deviations in the cost function values become more important
as the interval limits of the population converge, which is not the case for an
analysis in absolute terms. Although the sequence of the candidate solutions
according to their fitness values is not affected by rescaling, selection proba-
bilities are fitness-proportional, and therefore, the selection pressure is higher
if fitness values are rescaled to the interval limits of the population. Assigning
fitness values without rescaling would probably lead to the optimum, too, but
slower due to lower selection pressure.
5 This upper bound corresponds to the objective values of the worst performing

individual.

Evolutionary Simulation of Complex Multi-Location Inventory Models 109

Selection now describes the process to choose a set of individuals from the
current generation in order to generate new offspring. In our implementation
the next generation of size M consists of three groups of individuals:

◦ The best individual of the current population is always selected and un-
conditionally passed to the next generation without any further changes by
recombination or mutation (see below). This approach is called elitism [41],
constituting the first group of individuals in the new generation.

◦ Further m − 1 individuals are chosen according to their (rescaled) fitness
values to constitute a mating pool M. The individuals of the mating pool
are used twice. First, they are mutated (see below) and then uncondition-
ally added to the new generation. This constitutes the second group of
individuals in the new generation.

◦ In order to generate the third group of individuals which are added to
the new generation, the mating pool M is utilized again, i.e., M − m
individuals are generated by choosing individuals from M, uniformly at
random, and subsequently recombining and mutating them (see below).

Thereby, the parameter m is prescribed by the recombination probability PC,
which is determined by Equation (14) for a fixed population size M . The re-
combination probability describes the probability that an arbitrary but fixed
individual of the mating pool M is chosen at least once for recombination to
generate M −m new individuals. Equation (14) can be explained as follows:
The probability that an arbitrary but fixed individual ϑ′ of M is not chosen
for recombination in any of the M −m selection steps is (m−2

m−1)M−m because
one of m − 2 individuals has to be chosen M − m times from m − 1 = |M|
available individuals. Hence, the probability that ϑ′ is chosen at least once
is given by the complementary event, and the recombination probability PC

for an individual is given by

PC = 1 −
(

m − 2
m − 1

)M−m

. (14)

Note that this equation is utilized to determine the parameter m iteratively
for given values of PC and M . Here PC = 0.6 has been applied.

For the random, fitness-proportional selection of m − 1 individuals out
of all M individuals we use stochastic universal sampling [42]. It offers the
advantage of using a single random value uniformly distributed in [0, 1) to
select a fixed number of individuals out of a population, while it is optimal
in terms of the absolute difference between the normalized fitness value of an
individual and its selection probability (bias) as well as regarding the range
of the possible number of offspring (spread). Conceptually, this procedure
corresponds to mapping the fitness onto a disc, whereas a sector is assigned
to each individual. The angle fraction of such a sector is equivalent to the
fitness value of an individual related to the overall fitness of the population.
Around the disc m − 1 pointers are arranged equally spaced, each pointing

110 J. Lässig, C.A. Hochmuth, and S. Thiem

to an individual to be selected. The disc is then figuratively put in motion
by the random number, whereby the selected individuals are indicated. Con-
sequently, an individual may be selected several times, given that its fitness
value is high and thus the angle fraction of its sector is wide. Note that also
the elitist individual may be among the further selected m − 1 individuals.
In fact this individual is probably represented several times, due to its fitness
value.

3.3.4 Recombination

As described, the recombination operation produces in each generation M−m
new offspring from m − 1 individuals previously selected, so that the next
population contains again a number of M individuals including the elitist
individual. The objective is in general to combine good parts of different
individuals in order to create a new potentially better one. The resulting
steps in the search space are therefore large, especially in comparison to the
mutation operation (see below). For each recombination step, two parents
are chosen uniformly at random from M to generate two new individuals.
However, since elitism ensures that the best candidate solution is passed on
besides the new individuals, the recombination probability for this individual
should not be disproportionately high and, hence, the elitist individual is not
considered as a potential parent. After copying the chosen individuals, for
each value of the first child it is checked whether to swap that value with the
corresponding one of the other child according to the recombination probabil-
ity per value PC,x, a parameter set to PC,x = 0.5 in our case by observing the
convergence of the algorithm. This crossover operation is similar to uniform
crossover [43]. However, not single bits are swapped, but complete values, as
bitwise operations on floating point values lead to chaotic results.

3.3.5 Mutation

The mutation operation randomly alters slightly the values of individuals to
perform a kind of local search on the objective function. Thus, it complements
the recombination operation, which works on a larger scale. As described in
the selection step, M − 1 individuals have to be mutated to generate a new
population. In accordance with elitist selection the best candidate solution
of the previous generation is not altered to let a good solution persist. Also,
this individual is probably present in the remaining M −1 individuals several
times corresponding to its high fitness value. Therefore, it is also possible
to evolve this candidate solution further by a slight change. An individual
is mutated according to the mutation probability PM. With respect to the

Evolutionary Simulation of Complex Multi-Location Inventory Models 111

convergence behavior we here set PM = 0.2. However, mutation is constrained
to a single, randomly chosen location (in the simulated model) of this candi-
date solution, which has been proven empirically to be advantageous for our
application. Each value in the representation of this location, e.g., reorder
level sj and order-up-to level Sj , is then changed according to the mutation
probability per value PM,x, fixed in this context to PM,x = 0.2. The extent
of this change depends on the relative mutation variance σ2

M(X/xref), in our
case empirically set to σ2

M(X/xref) = 0.0004 for the reference value xref of the
parameter. Similarly to the initialization, this reference value xref equals the
capacity y+

max,j of each location j. Thus, the local search is performed on a
smaller scale for smaller reference values. The actual change X/xref is a uni-
formly distributed random variable with limits determined by the variance
σ2

M(X/xref) and the expectation value 〈X/xref〉M = 0.

Algorithm 3. Genetic Algorithm
Data: Problem P(g,Θ) with a solution space Θ.
Result: Solutions ϑfinal ∈ Θ.
begin1

ϑ ← generate_initial_states(Θ);2
m← calculate_m(M , PC) /* according to3

Equation (14) */
for t← 1 to ∞ do4

ϑelitist ← get_best_individual(ϑ, P);5
G← ∅;6
for i← 1 to m− 1 do7

ϑ← get_individual_by_stochastic_universal_sampling(ϑ, P);8
G← G ∪ {ϑ};9

H ← ∅;10
for i← 1 to �(M −m)/2� do11

ϑ1 ← choose_individual_for_recombination(G);12
ϑ2 ← choose_individual_for_recombination(G);13
ϑ′

1, ϑ
′
2 ← recombine_individuals(ϑ1, ϑ2, PC,x);14

H ← H ∪ {ϑ′
1};15

if (i ≤
(M −m)/2�) then16
H ← H ∪ {ϑ′

2};17

I ← ∅ ∪ {ϑelitist};18
forall ϑ ∈ G ∪H do19

if (get_uniform_random_number(0, 1) ≤ PM) then20
ϑ← mutate_individual(ϑ, PM,x);21

I ← I ∪ {ϑ};22

ϑ← assign_new_population(I);23
if (stopping_condition) then24

return ϑ;25

end26

112 J. Lässig, C.A. Hochmuth, and S. Thiem

3.3.6 Stopping Condition

The mutation operation finally returns the individuals of the next generation.
According to the cycle of evolutionary optimization these individuals are
again evaluated and eventually selected, recombined, and mutated, unless a
certain stopping condition is satisfied after the evaluation. A minimum cycle
count is suitable to increase the possibility to find new optima. Further, a
minimum cycle count after the last cycle which returned a new optimum has
been found to adapt the overall cycle count to the convergence speed of a
specific optimization task. For the optimization of multi-location inventory
systems with lateral transshipments we propose a combination of both, i.e.,
at least 3000 cycles under all circumstances, but additionally at least 1000
cycles after the last optimum has been found.

4 Simulation-Based Optimization of Hub-and-Spoke
Inventory Systems

The first simulation-based optimization task to investigate is the optimization
of the transport resources and order policies in a hub-and-spoke inventory sys-
tem. Such systems are of special interest because they can often be found in
real-world applications which deal with the problem how to control the flow
of goods from the production locations to the points of demand, i.e., to define
optimal transshipment resources and using them efficiently to serve demands
with a given number of transport units as described by Köchel, Kunze, and
Nieländer [44] and Köchel and Nieländer [14]. Hub-and-spoke systems, which
consist of one central hub that is connected to all spokes, arranged similarly
to a bicycle wheel, have several benefits including the fact that for a net-
work of n spokes, only n routes are necessary to connect all nodes and this
generally leads to a more efficient use of scare transport resources. Thus, the
model is commonly used in the industry, in particular in transport, telecom-
munications and freight, as well as in distributed computing. Additionally,
complicated operations can be consolidated at the hub, rather than main-
tained separately at each node and, therefore, the spokes are simpler and
new spokes can be connected easily.

4.1 General System Description

Inventory systems with hub-and-spoke structure have been investigated be-
fore by Köchel et al. [44] and Zhou, Min, and Gen [45]. In this section results
are shown which combine approaches from inventory theory and logistics to
investigate the following problem as described by Köchel and Thiem [46, 47]:

Evolutionary Simulation of Complex Multi-Location Inventory Models 113

◦ The system consists of one single warehouse, the hub, and a number of n
retailers, the spokes (cp. 3).

◦ The hub owns an infinite amount of one specific product, which can be or-
dered by the retailers, and can rent as many transport units as needed from
an external rental service up to a maximum number, which is optimized.
Transportation orders from retailers, which cannot be served immediately
due to a stock-out or no available transport units, are queued in an order
queue with given capacity. Ordering and storing of products as well as
holding and leasing of transport units and realizing transshipments gener-
ates costs.

◦ The systems allows the realization of different classes of transport units
(trucks, pickups, ships, etc.).

◦ Each spoke has a storage for product units with the current inventory
position r, and there is stochastic demand according to certain probability
distributions for these product units, which is specified in Section 4.2.
Depending on the order policy each retailer can order new product units
from the hub. Arriving demand is handled corresponding to an acceptance-
rejection policy.

It is worth noting that a comparison to previous results from literature is
not reasonable because previous models only include certain aspects of our
model. To find optimal values for the fleet size allocation problem, an analyt-
ical queuing model can be used. However, such a model would define limiting
restrictions, e.g., a Poisson demand process, or would only allow approxima-
tive solutions. The purpose of our approach is to assess the behavior of the
system and to surmount these restrictions.

The whole system is modeled in a simulation tool developed by Hochmuth
[48], which we will use as an integrated part in the optimization process. A
visualization of this system is shown in Figure 3. Concretizing the setup and
corresponding criteria to be optimized allows us to model and to optimize a
large variety of real-world hub-and-spoke inventory systems.

In our examples the optimization problem is to find an optimal order
policy. This includes the optimization of the reorder levels sj for each retailer
j and the maximum number of available transportation units for each type.
We have the choice between two different options for the order policy:

◦ The (sj , Sj)-order policy is the restocking to rj = Sj product units when
the current inventory position rj of the retailer j has fallen below the
reorder point sj .

◦ The (sj , nQj)-order policy is the ordering of an integer multiple n of the
order quantity Qj of product units (lot size) when the inventory level rj

of the retailer j has fallen below the reorder point sj . For the current
inventory position r the parameter n is set according to n =
(s − r)/Q�.

For our inventory system, the solution ϑi of an individual i encodes the vari-
ables for the order policy, i.e., the reorder levels sj for all retailers j and, if
necessary, the number of transport units tk for each class k as a real-valued

114 J. Lässig, C.A. Hochmuth, and S. Thiem

Fig. 3. Simulation for a hub-and-spoke inventory system with five spokes.

vector, which is necessary for continuous methods such as classical PSO algo-
rithms. Since a feasible solution can only contain integer numbers, we simply
round the real-valued entries of ϑi to obtain the input variables for the sim-
ulation of the hub-and-spoke inventory system. In our view this approach
leads to the most natural movement of the swarm individuals in an integer
solution space and further allows the unchanged use of the common PSO
variants originally designed for continuous optimization problems. Also the
move classes of the Monte-Carlo type techniques and the mutation operator
of GA are based on this representation of the solution.

Another problem we faced for these systems is the stochastic noise in
the objective function, which adds non-static local maxima and minima to
the solution space. To reduce this effect a sufficiently long time period for the
simulation has to be defined and it is also advisable to average the results
over several optimization runs.

Since an evaluation of the objective function requires the complete simu-
lation of the whole system, we are dealing with a very time-consuming op-
timization problem. Therefore, it is desirable to use optimization algorithms
with powerful operators in order to minimize the number of objective func-
tion evaluations. In the forthcoming examples we compare the three different
optimization algorithms as introduced in Section 3.

Evolutionary Simulation of Complex Multi-Location Inventory Models 115

4.2 Experimental Settings for the Hub-and-Spoke
System

In the following we present the optimization results for two different test
cases. The first one deals with a system of identical retailers and the second
case with retailers varying either in their distances to the hub or in their
demand structure. We first define the general setup for all model elements.
For the warehouse we assume

◦ a FIFO service policy, and
◦ an allocation policy with priority sequence according to maximum velocity,

maximum loading, minimum empty units, and minimum transport costs.

The retailers are specified by

◦ 200 km distance from the warehouse,
◦ a demand with exponentially distributed inter-arrival times with mean 1

hour and deterministic demand of 1 product unit per client,
◦ impatient clients with zero waiting time (i.e., the lost-sales case),
◦ a storage capacity of 500 product units,
◦ cost parameters: inventory costs 50e per day and product unit, rejection

costs 50e per rejected client and reward 200e per satisfied demand unit,
and

◦ all retailers j use an (sj , nQj) order policy with an order quantity Qj ,
which is equal to the capacity of the used transport units.

For the transport units we distinguish between two different classes:

◦ fast, small transport units (delivery vans) and not quite as fast but larger
transport units (trucks),

◦ their average velocity is equal to 80 km/h and 50 km/h, respectively,
◦ the capacities are 1 product unit or 4 product units, respectively, and
◦ the corresponding cost parameters: using a transport unit costs 50e and

100e per day, 0.10e and 0.20e per km and transported product unit, and
10e and 30e for loading/unloading, respectively.

The optimization criterion is the maximum total profit over the planning
period, which is chosen to equal 3 years. The starting inventory is 10 product
units for each retailer.

Based on few pre-considerations, we obtain that the average demand per
day is about 120 product units. One fast transport unit can deliver at max-
imum 4.8 product units per day, whereas a slow transport unit can deliver
12 product units. This corresponds to either the usage of 25 fast or 10 slow
transport units a day and also motivates the first example, where we will
investigate the influence of different numbers of available transport units.

116 J. Lässig, C.A. Hochmuth, and S. Thiem

4.3 Experimental Results

4.3.1 Example 1 – 5 Identical Retailers

In this example we use the setup for the model components as specified above
and the numbers of transport units are chosen according to the following
cases:

a) 20 transport units with velocity 80 km/h and capacity 1 product unit,
b) 8 transport units with velocity 50 km/h and capacity 4 product units,
c) 10 fast transport units and 4 slow transport units with capacities according

to a) and b),
d) optimization of the number of fast and slow transport units.

Additionally, we consider two setups for the reorder levels sj . Because we as-
sume identical retailers, we first choose identical sj for all retailers j. Subse-
quently, we optimize sj individually for each retailer. The results are expected
to be nearly identical for both cases and are shown in the format ϑ� = (s�, t�)
with the optimal reorder levels s� = (s�

1, . . . , s
�
5) and the number of transport

units t� = (t�fast, t
�
slow).

For our test cases the initial values for the reorder levels are chosen ran-
domly in a region of the solution space with sj ≤ 100, and for PSO the initial
velocities are set to zero. For TA, the initial temperature is chosen to be
T = 5 · 106 and we apply thermodynamic speed scheduling with c1 = 0.5 and
c2 = 0.05 and a move class with cstep = 10. The number of individuals in one
generation has been adapted to N = 20 for the GA and N = 10 for TA. The
swarm size in PSO is set to the standard value N = 15 for seven degrees of
freedom in the considered examples. For reasons of fair comparison we allow
each algorithm only a fixed number of objective function evaluations, which
are 500 for the simple cases with identical reorder levels (first four lines in
Tables 1 through 3) and 3000 for the cases with individual reorder levels
(lines 5 to 8 in Tables 1 through 3). Tables 1 through 3 present for each of
the three algorithms the best obtained solution with the corresponding to-
tal profit as well as the average objective value over 100 optimization runs.
The results show that the GA performs very competitive compared to the
other algorithms in any case. For identical reorder levels (first four lines of
the tables) PSO performs sometimes slightly better, e.g. in the case a) (first
line) if the average total profit is considered as measure. These differences
are not significant as statistical tests show. For the case of individual reorder
levels the results of the statistical tests are presented in Table 7 and also
visualized in Figure 4. This shows that the GA never performs significantly
worse compared to the other algorithms for individual reorder levels, which
correspond to the bottom lines in the Tables 1 through 3 and is denoted as
setup 1a to 1d in Table 7.

In many cases the GA performs significantly better, which is denoted by a
+ sign in the Table 7. For identical reorder levels, all algorithms find solutions

Evolutionary Simulation of Complex Multi-Location Inventory Models 117

with relatively high order levels for the setups b) and c), due to a lack of
transport units in these cases. For the case in which the reorder levels sj are
optimized for each retailer j individually, we expect to obtain similar results.
This is not the case for all setups. In a few cases, the average total profit
for individual reorder levels is better compared to the results for identical
reorder levels, e.g. for PSO in the setups 1b) and 1c). Interestingly, all three
algorithms perform worse in setup a) for individual reorder levels compared
to the setup a) for identical reorder levels. This indicates that the solution
space for individual reorder levels is already too complex to find the global
optimum. This can be seen also if the reorder levels themselves are compared.

For all cases of this example it can be seen that the best solutions found
by the different algorithms are very different in some cases, where the total
profit is not too different. Also if the cases of identical reorder levels and the
cases with individual reorder levels are compared for the same algorithm, the
reorder levels can be very different. This shows that the search space is very
shallow, so that many good solutions exist. This makes it hard for the algo-
rithms to converge to the global optimum. Another reason for the differences
is the statistical nature of the problem: even for the same parameters the
simulation returns different results for the total profit. In particular in case
b), i.e., when 8 large transport units are used, there are noticeable fluctua-
tions in the reorder levels, which seems to be caused by only small differences
between different order policies in this area of the solution space. However,
for some setups, e.g. setup d), the solutions are very close to that of identi-
cal sj , which shows that the optimization algorithms are able to adequately
optimize inventory systems with more degrees of freedom.

Comparing the different setups it can be seen that when optimizing also the
number of transport units, we can increase the solution quality considerably.
The results show that the operation of fast transport units yields in this
example much better results, and hence, the optimized solution uses hardly
slow transport units, where the optimal number of fast transport units is

Table 1. PSO optimization results for the reorder levels s� and the transportation
units t� for the hub-and-spoke inventory system with 5 identical spokes of Example
1. The upper (lower) results are obtained by assuming identical (different) reorder
levels for each spoke.

Case Order policy Best total Average total
profit in e profit in e

identical reorder
levels s for each
retailer

a) s� = 6 14,802,081 14.750.390
b) s� = 60 15,107,527 15,079,495
c) s� = 94 15,022,905 15,005,687
d) s� = 7 t� = (50, 4) 19,615,544 19,099,452

individual reorder
levels s for each
retailer

a) s� = (65, 80, 64, 80, 84) 14,695,688 14,685,395
b) s� = (141, 46, 148, 129, 226) 15,105,961 15,088,160
c) s� = (145, 222, 74, 117, 55) 15,025,249 15,011,521
d) s� = (7, 8, 7, 7, 7) t� = (57, 4) 19,639,569 18,040,788

118 J. Lässig, C.A. Hochmuth, and S. Thiem

Table 2. GA optimization results for the same system as in Table 1.

Case Order policy Best total Average total
profit in e profit in e

identical reorder
levels s for each
retailer

a) s� = 6 14,805,119 14,743,772
b) s� = 91 15,108,690 15,080,055
c) s� = 53 15,037,343 15,005,075
d) s� = 7 t� = (72, 32) 19,647,434 19,494,856

individual reorder
levels s for each
retailer

a) s� = (104, 83, 31, 67, 44) 14,700,701 14,686,095
b) s� = (79, 88, 93, 61, 47) 15,115,583 15,043,077
c) s� = (97, 82, 91, 95, 30) 15,025,800 15,011,041
d) s� = (7, 7, 8, 8, 7) t� = (52, 19) 19,657,910 18,801,212

Table 3. TA optimization results for the same system as in Table 1.

Case Order policy Best total Average total
profit in e profit in e

identical reorder
levels s for each
retailer

a) s� = 6 14,798,201 14,710,025
b) s� = 115 15,102,836 15,073,917
c) s� = 99 15,013,344 14,992,152
d) s� = 7 t� = (32, 0) 19,532,798 19,087,389

individual reorder
levels s for each
retailer

a) s� = (102, 37, 23, 31, 44) 14,697,488 14,671,210
b) s� = (111, 91, 64, 131, 38) 15,107,413 14,930,035
c) s� = (99, 40, 36, 74, 96) 15,016,770 14,996,140
d) s� = (8, 7, 9, 8, 9) t� = (40, 0) 19,382,452 18,345,893

greater than necessary for the satisfaction of the average daily demand, given
by 25 fast TUs. The reason might be that it is optimal for the system to have
enough products on-hand in order to avoid rejection costs.

Comparing the three different algorithms, GAs seem to be the best suited
approach for the given problem. The particles in PSO contract usually rela-
tively fast and once the swarm converged the system seems to be frozen and
often no further improvement is possible. Also for TA, even if the adaptive
temperature schedule is used, the algorithm does not accept worse solutions
after some time. Our GA approach, as described in the previous section,
retains some explorative behavior until it is finally stopped. Especially, mu-
tations help to maintain this explorative character. Probably some diversity
preserving mechanisms such as fitness sharing or deterministic crowding could
increase the performance further.

4.3.2 Example 2 – 5 Different Retailers, 2 Types of TUs

In this example we use the setup for the model components as specified above
and optimize the reorder levels of the retailers as well as the number of fast
and slow TUs for the following cases:

Evolutionary Simulation of Complex Multi-Location Inventory Models 119

a) Different demand at the retailers: The demand at the retailers is given by
an exponential distribution with average inter-arrival times 〈T1〉 = 1.5h,
〈T2〉 = 1.2h, 〈T3〉 = 1h, 〈T4〉 = 6/7h and 〈T5〉 = 3/4h. This results in an
average daily demand of 16, 20, 24, 28 and 32 product units respectively,
which also sums up to the former 120 product units.

b) Different distances from the warehouse: Again this is based on Example 1,
but with different retailer-warehouse distances: d1 = 50km, d2 = 100km,
d3 = 200km, d4 = 300km, d5 = 400km.

c) Same as setup of b) but with distances: d1 = 100km, d2 = 150km, d3 =
200km, d4 = 250km, d5 = 300km.

For the setup in a) we expect a general tendency towards an increase of
the reorder levels from retailer 1 to 5 since the average daily demand also
increases in this order. The results are summarized in Tables 4 through 6. For
case a) we clearly see the expected increase in the reorder levels. Further, the
results are almost identical to the total profit of about 19 Mio. e as obtained
in Example 1.

In case b) we again obtain for both variants the expected increase in the re-
order levels. This has been expected because the retailers with larger distance
have to hold more product units on-hand to compensate the longer delivery
times. Since variant c) has a shorter average distance than variant b), the
total profit of variant c) is slightly better. Further, comparing the results of
setup c) with the results for identical reorder levels in Example 1, which has
the same average setup, we obtain very similar results for the total profit as
expected.

Also for the more complicated cases, where the distances of the spokes to
the hub are not identical, GAs perform significantly better than the other
two approaches, see also Table 7 and Figure 4. The reason may again be that
the applied GA is more explorative and, hence, able to return good results
on a very bumpy and shallow search landscape.

The three algorithms have been compared using statistical tests for the
final best objective values of each run, based on 100 runs for each setup.
We use Mann-Whitney tests for the comparison of two such distributions.
Separate tests are made for each setup. Table 7 shows the resulting exact
significance probability of the test statistic. Low values indicate that the two
algorithms have different underlying distributions of the final best objective
values. In case of large values no conclusion can be made.

Table 4. PSO optimization results for the reorder levels s� and the transportation
units s� for the hub-and-spoke inventory system with 5 different spokes of Example 2.

Case Order policy Best total Average total
profit in e profit in e

a) diff. demand s� = (6, 6, 8, 8, 10) t� = (33, 0) 19.691.730 19.307.838
b) diff. distan. var. 1 s� = (4, 5, 7, 9, 11) t� = (48, 3) 19.621.243 17.464.169
c) diff. distan. var. 2 s� = (5, 6, 7, 8, 9) t� = (46, 3) 19.648.951 17.850.843

120 J. Lässig, C.A. Hochmuth, and S. Thiem

Table 5. GA optimization results for the same system as in Table 4.

Case Order policy Best total Average total
profit in e profit in e

a) diff. demand s� = (5, 7, 7, 7, 9) t� = (61, 1) 19.628.163 19.469.835
b) diff. distan. var. 1 s� = (4, 5, 7, 9, 10) t� = (50, 6) 19.597.861 18.436.872
c) diff. distan. var. 2 s� = (5, 6, 7, 9, 9) t� = (42, 15) 19.628.663 18.820.892

Table 6. TA optimization results for the same system as in Table 4.

Case Order policy Best total Average total
profit in e profit in e

a) diff. demand s� = (5, 6, 7, 8, 11) t� = (45, 0) 19.398.392 19.046.810
b) diff. distan. var. 1 s� = (4, 4, 7, 11, 11) t� = (48, 0) 19.256.950 18.182.436
c) diff. distan. var. 2 s� = (7, 6, 8, 8, 11) t� = (35, 0) 19.466.977 18.282.670

Table 7. Significance levels from the Mann-Whitney test for a hub-and-spoke in-
ventory system. For the + (−) sign the first algorithm is significantly better (worse)
than the second one and for the ◦ sign the results are non-significant. For Example
1 (setup 1a–1d) only results for different reorder levels are shown. Setups 2a–2c
belong to Example 2.

Setup 1a Setup 1b Setup 1c Setup 1d Setup 2a Setup 2b Setup 2c
GA⇔PSO ◦ 0.2058 ◦ 0.2439 ◦ 0.8189 + 0.0001 + 0.0014 + 1.3e-5 − 7.4e-7
GA⇔TA + 0.0 + 1.3e-6 + 0.0 + 6.2e-9 + 2.9e-5 + 0.0 + 2.2e-41
PSO⇔TA + 0.0 + 3.0e-6 + 2.4e-29 ◦ 0.9764 − 0.0002 − 0.9788 ◦ 2.9e-11

 13

 14

 15

 16

 17

 18

 19

 20

 21

setup 1a*

setup 1b*

setup 1c*

setup 0d*

setup 1a

setup 1b

setup 1c

setup 1d

setup 2a

setup 2b

setup 2c

av
er

ag
e

pr
of

it
in

 1
06 E

U
R

genetic algorithm
threshold accepting

particle swarm optimization

Fig. 4. Comparison of the solution quality of a hub-and-spoke inventory system for
TA, PSO and the GA. For each of the problems stated above we show the average
value of 100 optimization runs. The error bars represent the corresponding standard
deviations. The first four cases marked by a star share identical reorder levels.

The examples of the simulation-based optimization of hub-and-spoke in-
ventory systems show that GAs perform competitive compared to the other

Evolutionary Simulation of Complex Multi-Location Inventory Models 121

approaches. For PSO we obtain sometimes the contraction of the swarm to
local optima and it is almost impossible to revert this. Also ensemble-based
TA performs well but the probability to accept worse individuals gets lower
and lower during the optimization, which sometimes also causes convergence
to some local optimum. GAs keep different explorative components all the
time, i.e., worse individuals from crossover are accepted without specific con-
ditions and also mutated individuals manage to be passed on to the next
generation unconditionally. Especially, for the often bumpy search landscape
of problems in simulation-based optimization with additional stochastic in-
fluences, this seems to be a good choice. This can be seen in particular in the
second example, which is more difficult to optimize. Hence, for the second
part of the chapter we restrict ourselves to the GA to optimize more complex
multi-location inventory systems with lateral transshipments. But it is worth
to remark that the other methods showed competitive results as well.

5 The Hard Case: Simulation-Based Optimization of
Multi-Location Inventory Systems with Lateral
Transshipments

A multi-location inventory system with lateral transshipments is far more
general compared to the systems investigated in the first part of the chapter.
A given number of locations faces customer demands and each of them man-
ages its stock individually. In contrast to a hub-and-spoke system as discussed
above, the locations can receive new product units in different ways, i.e., ei-
ther by ordering from an outside supplier or by transshipments from other
locations. The problem of defining order and transshipment policies, which
optimize the performance measures for the whole system in the long run, is a
very demanding optimization task. Often the optimizer prefers certain flows
of transshipments if customer demands and costs are defined differently for
each location throughout the model. Also, different pitfalls have to be avoided
here. Especially, undesirable forth-and-back transshipments have to be ruled
out. As a consequence, suitable policies increase the set of parameters and the
optimization task becomes more complicated. These very complex systems
have been especially optimized by the application of evolutionary strategies.
The second part of the chapter covers the optimization of these generalized
systems in detail.

5.1 Introduction

To be competitive, companies are challenged to improve service levels
and to reduce costs at the same time. Despite these objectives seem to be

122 J. Lässig, C.A. Hochmuth, and S. Thiem

contradictory, they may be reached. Spreading of service locations is expected
to improve customer service while lateral transshipments between the loca-
tions help to balance stock levels to decrease costs. For the design and con-
trol of such multi-location systems, suitable mathematical models are needed.
Multi-location inventory models with lateral transshipments (MLIMT) model
the following situation. A given number of locations have to meet a demand
for some products during a defined planning horizon. Each location can get
new product units either by ordering from an outside supplier or by trans-
shipments from other locations. Figure 5 illustrates the system topology of a
general MLIMT. The problem arises to define such ordering and transship-
ment decisions (OD and TD) that optimize given performance measures for
the whole system.

1 2 . . . n

Demand Orders

Transshipments

Fig. 5. Topology of a general MLIMT. Each of the n locations can refill its stock
by ordering from an outside supplier or by transshipments from other locations.

Up to date a great variety of models and approaches exist to solve this
problem. The most common and broadly studied class of models assumes a
single product, discrete review, independent and identically distributed de-
mand, backlogging, i.e., allowing clients to wait, complete pooling of product
units between locations, emergency transshipments at the end of an order
period, zero lead times, linear cost functions, and the total expected costs as
performance measure (see Köchel [49] for a review). In this case analytical
examination is an option, but in the general case, analytical solutions are not
feasible for MLIMTs due to the transshipments. TDs change the state of the
system and thus influence the OD. Hence the total consequences of an OD
cannot be calculated directly. Approximate models and simulation are alter-
natives [49–51]. Further difficulties connected with TDs arise for continuous
review models, e.g., the prevention of forth-and-back transshipments. This
is closely connected with the task to forecast demand. Therefore, continu-
ous MLIMTs are usually investigated under several simplifying assumptions,
such as two locations [52, 53], Poisson demand [6], a fixed order policy not
considering future transshipments [54], restriction to basic strategies such as
a one-for-one ordering policy [6], and an all-or-nothing transshipment pol-
icy [52], or the constraint that at most one transshipment with insignificant
time and a single shipping point is possible over an order period [53]. In
none of these approaches the question for optimal order and transshipment

Evolutionary Simulation of Complex Multi-Location Inventory Models 123

policies has been answered. All models assume certain order policies and
heuristic transshipments. In a few cases simulation is employed either to test
approximate analytical models [53, 54] or for the definition of the best re-
order point sj for an (sj , Sj)-order policy [55] by linear search and simulation.
Consequently, the results are restricted to models with small system sizes.

Herer, Tzur, and Yücesan [56] find optimal order-up-to quantities S by
sample-path-based optimization. Under the assumption of instantaneous
transshipments, optimal transshipment quantities are calculated using
simulation-based optimization combining a network flow formulation with in-
finitesimal perturbation analysis (IPA) to estimate the gradient. Extensions
include finite transportation capacities [57] and positive replenishment lead
times [58]. We introduce positive lead times for ordering as well as for lat-
eral transshipments. Furthermore, we investigate the effect of non-stationary
transshipment policies under continuous review. Thus, the complexity of this
general model motivates the application of evolutionary simulation-based op-
timization instead of gradient-based methods. In this regard, we follow an
approach similar to Arnold and Köchel [59], and recently Belgasmi, Saïd,
and Ghédira [60], who analyze the effect of different parameters using evolu-
tionary optimization. The MLIMT presented here has been developed with
respect to three aspects:

◦ connection of discrete review for ordering and continuous review for trans-
shipments,

◦ creating a simulator as general as possible to abandon restrictions of ex-
isting studies and to ensure broad applicability, and

◦ iteratively connecting an MLIMT simulator with an evolutionary opti-
mization algorithm to investigate the search space by simulation-based
evolutionary optimization [61].

Most advantageous is that various performance measures can be optimized
for a large class of MLIMTs. Compound renewal demand processes as well
as arbitrary ordering, demand satisfaction and transshipment modes can be
investigated thanks to this approach (see [62, 63] for details). Because com-
puting time increases fast for a higher dimensionality of the problem, paral-
lelization is useful.

5.2 Experimental Settings

Despite a simulation model can represent any real system with arbitrary
accuracy, our objective is not to design an oversized simulator for all multi-
location inventory systems but to describe a simulator which can be used
to find efficient solutions for the optimal control of an important class of
MLIMTs in reasonable time. In addition that class of MLIMTs should go

124 J. Lässig, C.A. Hochmuth, and S. Thiem

beyond models which can be analytically investigated [62]. Consequently the
application domain is extended considerably.

The most common class of models defines emergency lateral transship-
ments at the end of a period [49]. However, even for simple models of this
type, an analytical solution cannot be formulated in general, because poten-
tial transshipments have to be considered for the ordering decision at the
beginning of a period. But after the demand has been realized at the end
of a period, the optimal transshipment decision is the solution of an open
(linear) transportation problem. Such problems do not have closed form so-
lutions. Thus, prior to the demand realization, no expression is available for
cost savings as a result of transshipments. Hence, the overall costs of an order
decision cannot be defined.

Approximate models and simulation are approaches to solve this dilemma
[49–51]. Here we propose the latter one. The essential elements of a multi-
location inventory model with lateral transshipments are listed below.

5.2.1 Number of Locations

With respect to the analytical tractability for the number of locations n the
cases n = 2 and n > 2 are distinguished. The simulator is suited for MLIMTs
with an arbitrary number of independent non-homogeneous locations, but
the optimization task becomes more difficult if they increase in number. A
longer simulation time is necessary to ensure sufficient accuracy for a higher
number of locations, and a higher optimization cycle count is essential to
converge to the global optimum. To limit this increasing complexity, potential
transshipments between locations may be excluded by defining pooling groups
(cp. 5.2.6 Pooling Mode).

5.2.2 Number of Products

There may be a single product or a finite number of different products,
whereas a substitution order between products may be defined in the lat-
ter case. Most approaches as well as the MLIMT simulator assume a single
product. For multiple products, sequential simulation and optimization is vi-
able in general, provided that shared fixed costs are insignificant relative to
total fixed and variable costs, and capacities for storage and transportation
are considered to be infinite.

5.2.3 Ordering Mode

The ordering mode defines when to order, i.e., the review scheme, and what
order policy to use. The review scheme defines the time moments for ordering,

Evolutionary Simulation of Complex Multi-Location Inventory Models 125

where discrete or continuous review is possible. Under the discrete review
scheme, the planning horizon is divided into periods, which is the case for
most analytical models. In most practical applications, order requests are
sent in certain intervals. Therefore, we define a periodic review scheme with
fixed length tP,j of the review period for orders at location j. Arbitrary order
policies based on the inventory position at the end of the order period are
allowed. So far, (sj , Sj) and (sj , nQj)-order policies are available, and in the
experimentation we concentrate on the first one as visualized in Figure 6.
To balance shortage and excess in the system, a continuous review scheme is
defined for transshipments. Thus, a transshipment request may be released
at any time.

rj(t), yj(t)

t

Sj − rj(t)

yj(t)

rj(t)Sj

sj

Fig. 6. (sj , Sj)-order policy.

5.2.4 Demand Process

Demand may be deterministic or random, identical or different for all loca-
tions, stationary or non-stationary in time, independent of or dependent on
locations and time as well as with complete or incomplete information. The
most common class of models assumes demand independently and identically
distributed over time. We define a compound renewal demand process, which
is distinguished by two independent random variables Tj for the inter-arrival
time of clients at location j and Bj for their demand, j = 1, 2, . . . , n. Thus,
exact holding and penalty costs can be calculated, which is an extension of
analytical models with discrete review, where the whole demand of a pe-
riod is transformed to the end of a period. That disadvantage does not exist

126 J. Lässig, C.A. Hochmuth, and S. Thiem

for models with continuous review, but in almost all such models, a Poisson
demand process is assumed, which is a limiting restriction as well.

5.2.5 Demand Satisfaction Mode

The mode for demand satisfaction describes how to process arriving demand
for each location. It is common to assume a queue for backlogged demand.
In dependence on an infinite, finite, or zero queuing capacity there exist the
backlogging, intermediate, and lost-sales cases. Waiting demand is served ac-
cording to a service policy and may finally have a random impatient time,
after which clients leave unserved. The MLIMT presented here defines several
service policies, such as FIFO (first in, first out), LIFO (last in, first out),
SAN (smallest amount next), BAN (biggest amount next) and EDF (earliest
deadline first). In the experimentation we focus on FIFO for demonstration
purposes. The impatient time Wj is a random variable which is sampled ac-
cording to an arbitrary (e.g. uniform, normal, exponential, etc.) distribution
for each location j.

5.2.6 Pooling Mode

The pooling mode comprises all rules by which the on-hand stock is used to
respond to shortages. Pooling may be complete or partial, defining which lo-
cation and what quantity of product units are pooled. The MLIMT simulator
includes all pooling modes from complete pooling to time-dependent partial
pooling. A symmetric n×n matrix P = (pjj′) defines pooling groups in such
a way that two locations j and j′ belong to the same group if on only if
pjj′ = 1 (otherwise pjj′ = 0). Transshipments are useful to balance shortages
within an order cycle, but may be counterproductive near the end of such a
cycle. Therefore, the pooling time tpool,j ∈ [0, tP,j] is defined for each location
j. After the kth order request, location j may receive transshipments from
all other locations as long as for the actual time t ≤ ktP,j + tpool,j holds. Sub-
sequently, location j may obtain product units only from locations within
the same pooling group. Note that this parameter suppresses the effect of
other transshipment parameters and thus increases the requirements on the
evolutionary optimization. In the experiments we assume that all locations
belong to the same pooling group.

5.2.7 Transshipment Mode

The transshipment mode describes when to transship and which transship-
ment policy to apply. The objective is to use a finite quantity of product units
as efficiently as possible for the whole system. Therefore, shortage and excess

Evolutionary Simulation of Complex Multi-Location Inventory Models 127

at different locations are balanced. There may be preventive lateral transship-
ments to anticipate a stock-out or emergency lateral transshipments after a
stock-out is observed. Most existing models define the latter ones at the end
of a period. According to continuous review, the MLIMT simulator allows
transshipments at any time over an order period as well as multiple shipping
points and partial deliveries to release a TD. To control the flow of trans-
shipments, a great variety of rules can be defined. Three basic ideas ensure
broad applicability: priorities, the generalization of common transshipment
rules and the introduction of a state function.

Difficulties arise in calculating the effects of a TD. Therefore, TDs should
be based on appropriate forecasts for the dynamics of the model, especially
the stock levels. For each location, transshipment orders (TO) and product
offers (PO) are distinguished. Moments for TOs or POs are the arrival events
of clients or transshipments and order deliveries, respectively. Priorities de-
fine a certain sequence of transshipments in one-to-many and many-to-one
situations. Because of the continuous time, only these occur. The priorities
result from arbitrary combination of the following three rules: BAN (biggest
amount next), MTC (minimum transshipment costs per unit), and MTT
(minimum transshipment time). State functions are observed to decide if a
TO or a PO should be released. The following notations for each location j
and time t ≥ 0 are useful for further statements.

yj(t) Inventory level at time t
y±

j (t) = max(±yj(t), 0) On-hand stock (+) respectively shortage
(−) at time t

bord,j(t) Product units ordered but not yet delivered
at time t

bord,k,j Product units ordered in the k-th request
btr,j(t) Transshipments on the way to location j at

time t
rj(t) = yj(t) + bord,j(t) + btr,j(t) Inventory position at time t
tP,j Order period time
tA,j Delivery lead time of an order
nord,j =
tA,j/tP,j� Number of periods to deliver an order

To decide at time t and location j about a TO or PO, the state func-
tions fTO,j(t) and fPO,j(t) are defined based on the available stock plus
expected transshipments fTO,j(t) = yj(t) + btr,j(t) and the on-hand stock
fPO,j(t) = y+

j (t) respectively. Since fixed cost components for transshipments
are feasible, a heuristic (hj , Hj)-rule for TOs is proposed in the following way,
which is inspired by the (sj , Sj)-rule for order requests (hj ≤ Hj):

If fTO,j(t) < hj then release a TO for Hj − fTO,j(t) product units. (15)

However, in case of positive transshipment times, it might be advantageous
to consider expected demand, i.e., a TO is released on the basis of a forecast

128 J. Lässig, C.A. Hochmuth, and S. Thiem

of the state function fj(t′) for a time moment t′ ≥ t. The MLIMT simulator
offers three such moments in time, the current time (i.e., no forecast) t′ = t,
the next order review time t′ = t1, and the next time of a potential order
delivery t′ = t2. In the experimentation we focus on the comparison of time
t and t1. For example the state function fTO,j(t) = yj(t) + btr,j(t), t ≥ 0 is
considered. Let ktP,j ≤ t < (k + 1)tP,j, i.e., we assume that we are in the
review period after the kth order request. Then t1 is defined as follows:

t1 = (k + 1)tP,j . (16)

For t2 we introduce two events:

ev(t) ↔ {in the actual period was no order delivery until t} and
ev(t) ↔ {there was an order delivery until t} .

Then the following holds:

t2 = (k − nord,j)tP,j + tA,j +

{
0 if ev(t) ↔ t < (k − nord,j)tP,j + tA,j

tP,j if ev(t) ↔ t ≥ (k − nord,j)tP,j + tA,j

.

(17)

Considering mj = 〈Bj〉/〈Tj〉, the expected demand per time unit at location
j, the following forecasts are used:

f̂TO,j(t) = fTO,j(t) = yj(t) + btr,j(t) , (18)

f̂TO,j(t1) = fTO,j(t) − mj(t1 − t) +

{
bord,k′,j , k′ = k − nord,j if ev(t)
0 if ev(t)

,

(19)

f̂TO,j(t2) = fTO,j(t) − mj(t2 − t) . (20)

Thus, by replacing function fTO,j(t) in (15) by various forecast functions a
great variety of transshipment modes can be described, which control the
release of TOs by several locations. Figures 7 and 8 illustrate general forecast
functions for both events. We point out that in case of linear transshipment
cost functions without set-up component, the (hj , Hj)-rule degenerates to
the (Hj , Hj)-rule. As a well-designed evolutionary optimization algorithm is
expected to approximate that solution, we generally work with the (hj , Hj)
rule.

A condition to serve a TO is that at least one location offers product
units. To decide what quantity is offered at time t, an additional control
parameter is introduced, the offering level oj , corresponding to the hold-back
level in Xu et al. [53]. Since only physically available stock is offered, the
state function fPO,j(t) = y+

j (t) is defined. To prevent undesirably small and
frequent transshipments, the offered quantity y+

j (t)− oj must not be smaller

Evolutionary Simulation of Complex Multi-Location Inventory Models 129

f̂j(t)

t

Order
k

Order
k + 1

Supply
k − nord,j

Supply
k + 1− nord,j

fj(t)

f̂j(t2)

f̂j(t1)

t t2

t1

Fig. 7. Forecast functions for ev(t)↔ t < (k − nord,j)tP,j + tA,j .

f̂j(t)

t

Order
k

Order
k + 1

Supply
k − nord,j

Supply
k + 1− nord,j

fj(t)

f̂j(t2)

f̂j(t1)

t t2

t1

Fig. 8. Forecast functions for ev(t)↔ t ≥ (k − nord,j)tP,j + tA,j .

than a certain value Δomin,j . Similar forecasts are applied to take future
demand into account with forecast times t, t1 and t2 (see [62] for details).
Thus, the PO rule is as follows:

If f̂PO,j(t)−oj ≥ Δomin,j then release a PO for f̂PO,j(t)−oj product units .
(21)

Hence, the most important transshipment mode generalizations are as fol-
lows: First, introducing various control parameters we have extended the set

130 J. Lässig, C.A. Hochmuth, and S. Thiem

of available transshipment policies considerably, including all commonly used
policies. Second, multiple shipping points with partial deliveries are allowed.
Finally, introducing time-dependent forecasts for the state function, the pro-
posed decision rules become non-stationary in time.

5.2.8 Lead Times

Lead times for order deliveries and transshipments of product units may be
negligible, positive constants, or random. Most analytic models assume zero
lead times, while the MLIMT simulator defines location-specific order lead
times and a not necessarily symmetric distance matrix for all locations. In con-
junction with the transport velocity, transshipment lead times are determined.

5.2.9 Cost and Gain Functions

Costs may occur for ordering, storing and transshipping product units as
well as for waiting and lost demand. These functions may be linear, linear
with set-up part, or generally non-linear. A location may also receive gain
from product units sold to clients. To solve models analytically, often linear
cost functions are assumed. With respect to the MLIMT simulator order cost
functions, holding cost functions, shortage cost functions and transshipment
cost functions contain components which are fixed, linear in time and quantity
as well as components which are linear in time. Fixed costs arise from each
non-served demand unit. All cost parameters are location-specific and the
gain from a unit sold is a constant.

5.2.10 Planning Horizon

The planning horizon may be finite or infinite. In case of periodic review,
it may consist of a single period. Simulating infinite planning horizons by a
finite simulation is of course not possible. Thus, appropriate approximations
are used. An adequate estimation of the stationary properties can be achieved
by a sufficiently long simulation time. The only difficulty is the fast increase
of necessary computation time.

5.2.11 Objective Function

As objective function, various cost criteria can be formulated, such as total
expected costs, total expected discounted costs, long-run average costs, and
non-cost criteria like service rates or expected waiting times. Both criteria
types may form a multi-objective problem. Alternatively, one criterion can

Evolutionary Simulation of Complex Multi-Location Inventory Models 131

be optimized while given restrictions have to be satisfied. Existing models
commonly observe the total expected costs criterion. For the MLIMT simu-
lator, different objectives can be optimized by choosing corresponding cost
functions. For example the service rate or average waiting times can be ex-
pressed by corresponding shortage cost functions. Thus several criteria are
applicable.

5.3 Experimental Results

To get an impression of simulation-based evolutionary optimization applied
to multi-location inventory models with lateral transshipments, the results
of the GA for two experiments on a four-location model are discussed in this
section. The system topology is visualized in Figure 9. In both experiments
we assume identical location-dependent model characteristics, excluding the
client demand distributions, which are uniform distributions in example 1
and exponential distributions in example 2. However, equal mean values are
assumed. Although simulation-based evolutionary optimization is applicable
to in fact general models, the following assumptions are made.

1. All locations j use an (sj , Sj)-order policy. For all locations j, an order
period is equal to 10 days, i.e., tP,j = 10 days. The order lead times are
tA,1 = 48 h, tA,2 = 60 h, tA,3 = 72 h and tA,3 = 84 h for locations 1 to 4,
respectively.

2. Transshipment times are 8.66 h between the outer locations 1–3 and 5 h
between an outer location and the central location 4. The priority sequence
for transshipment orders and product offers is MTC, BAN, and MTT.
Stocks of all locations j are completely pooled, i.e., tpool,j = tP,j , and
transshipments are therefore not constrained.

3. The inter-arrival time of customers to each location j is an exponentially
distributed random variable with 〈Tj〉 = 2 h. The customer demand Dj

is uniformly distributed in the interval (0, 5(j + 1)) in example 1 and
exponentially distributed with mean 〈Dj〉 = 2.5(j + 1) in example 2 for
each location j. The service policy is FIFO, and the impatient time is
triangularly distributed in the interval (0 h, 8 h), thus, 〈Wj〉 = 4 h.

4. The inventory costs are 1e per unit and day, whereas the linear order and
transshipment costs are 1e per unit and per day transportation time. The
fixed transshipment costs equal 500e for each location and the gain per
unit sold is 100e. Out-of-stock costs are fixed to 50e per lost client and
1e per hour. The objective function is total costs over the simulation time
of 260 weeks excluding the transition time of 52 weeks.

The state function chosen for transshipment orders and product offers is
fTO,j(t) = yj(t) + btr,j(t) and fPO,j(t) = y+

j (t), respectively. To analyze
the effect of forecasting, all four combinations of the current time t and the

132 J. Lässig, C.A. Hochmuth, and S. Thiem

forecast moment t1 are compared for both state functions. For optimization
the GA as introduced in Section 3.3 is used with a population of 50 individu-
als, where an individual is a candidate solution, i.e., a vector of the following
policy parameters for each location j.

sj Periodic reorder level
Sj Periodic order-up-to level
hj Transshipment reorder level
Hj Transshipment order-up-to level
oj Offer level
Δomin,j Minimum offer quantity

The optimization stops if a new optimum has not occurred for the last
1,000 cycles, but at least 3,000 cycles are realized. The cycle count to find
the actual optimum and the total cycle count, respectively, are stated next to
the results. The number of function evaluations is determined by the product
of the total cycle count and the population size (50). In most cases, 3,000
cycles, i.e., 150,000 function evaluations, are calculated for each state function
combination.

For the initialization of the GA, inventory-related values are set in accor-
dance with the capacity y+

max,j for each location j. The reorder level sj is
uniformly distributed in the interval [−y+

max,j , y
+
max,j). In case of an (sj , Sj)-

order policy, the order-up-to level Sj is uniformly distributed in the inter-
val (sj , sj + 2y+

max,j), and in case of an (sj , nQj)-order policy, the order
quantity Qj is uniformly distributed in the interval (0, 2y+

max,j). Similarly
the (hj , Hj)-transshipment request policy is initialized for each location j.
Thus, the request level hj and the request-up-to level Hj are uniformly dis-
tributed in the intervals [−y+

max,j , y
+
max,j) and (hj , hj +2y+

max,j), respectively.
The product offer policy defines an offer level oj , uniformly distributed in the
interval [−y+

max,j , y
+
max,j), and a minimum offer quantity Δomin,j, uniformly

distributed in the interval (0, y+
max,j/4).

For all experiments, the total results, optimized parameter values and cost
function values are discussed. Prohibitive parameter values are enclosed in
brackets, i.e., values that prevent ordering or offering product units. In gen-
eral, the GA may choose values arbitrarily if there is no difference in the
objective function. This is the case for values below or above a certain limit.
Thus, after the optimization, the minimum absolute values of all parameters
not changing the cost function values are determined using binary search.

5.3.1 Example 1 – Uniformly Distributed Demand

Tables 8–10 show the results for Example 1. For uniformly distributed de-
mand, solution 3 gives the least total costs, taking advantage of forecasting
demand for transshipment order decisions. This solution also shows the least

Evolutionary Simulation of Complex Multi-Location Inventory Models 133

1

2

3

4

Fig. 9. Topology of a four-location model with lateral transshipments.

out-of-stock costs, closely followed by solution 2. Except for solution 2, all
solutions use transshipments to compensate shortages. However, only solu-
tion 4 shows a directed flow of transshipments from location 4 to location 2,
whereas transshipments in both directions are observed in case of solutions 1
and 2. Thus, the system has evolved an implicit structure as a result of evo-
lutionary optimization, although all locations share identical parameters at
the beginning. For all solutions displaying transshipments there is one loca-
tion controlling its inventory level completely via transshipments instead of
releasing periodic orders.

5.3.2 Example 2 – Exponentially Distributed Demand

Tables 11–13 show the results for Example 2. For exponentially distributed
demand, solutions 2 and 3 have the lowest total costs and lowest out-of-stock
costs. While the first one uses demand forecast for product offers and thus
has less out-of-stock costs, the latter one applies demand forecast for trans-
shipment orders resulting in less total costs. For all solutions transshipments
are observed, but only solution 2 shows a directed flow. For the solutions 1, 3
and 4, alternating transshipments are released, i.e., flows in both directions
occur. Again, the development of an implicit structure can be observed. In
each case there is one location substituting periodic orders completely by
transshipments from other locations.

134 J. Lässig, C.A. Hochmuth, and S. Thiem

Table 8. Overall results for Example 1.

Transshipment order Product offer Result Cycle Rank
1 current time t current time t –54,885,174 1,784 (3,000) 3
2 current time t time of next order t1 –54,938,874 1,784 (3,000) 2
3 time of next order t1 current time t –55,149,067 1,784 (3,000) 1
4 time of next order t1 time of next order t1 –54,386,423 2,710 (3,710) 4

Table 9. Optimized parameter values for Example 1. Values that prevent ordering
or offering of product units are enclosed in brackets.

Periodic order Transshipment order Product offer
j sj Sj hj Hj oj Δomin,j

1 1 356 795 [0] [0] [0] [806]
2 [0] [0] 914 1,462 0 1,042
3 1,200 1,701 1,250 1,250 [297] [1,216]
4 1,019 3,124 1,573 2,043 1,577 0

2 1 365 804 [0] [0] [0] [317]
2 578 1,257 [0] [0] [0] [436]
3 887 1,732 [0] [0] [0] [623]
4 1,093 2,244 [0] [0] [0] [1,332]

3 1 379 818 [–48] [0] [135] [663]
2 576 1,255 [0] [0] [0] [1,241]
3 1,200 3,224 0 1,276 208 1,057
4 [0] [0] 948 2,439 1,526 0

4 1 367 806 [0] [0] [0] [355]
2 [0] [0] 312 1,205 [0] [0]
3 885 1,730 [0] [0] [472] [427]
4 1,116 3,191 [0] [0] 815 321

6 Conclusions

The major benefit of applying simulation-based optimization is that simula-
tion models and the layout of the system under investigation can be changed
or extended by further features in a relatively straightforward manner. For
analytical approaches, this is often not the case. Especially for very complex
systems that cannot be handled analytically, the simulation approach pro-
vides a powerful tool for practical applications. Of course, the optimization
methods under consideration have to meet specific assumptions and have
to be adjusted to avoid pitfalls of the specific problem under investigation.
Nevertheless, the results for different meta-heuristics – in particular for evolu-
tionary approaches – have been quite satisfactory and hence, a best practice
example for the application of evolutionary methods for solving real-world
planning problems has been presented, with a particular focus on the layout
and system design in the logistics and transportation domain.

One of the findings is that GAs seem to be predestinated for shallow
and bumpy objective functions, which is often the case for simulation-based

Evolutionary Simulation of Complex Multi-Location Inventory Models 135

Table 10. Cost function values for Example 1.

Inventory Out-of-stock Periodic order Transshipment
j costs in e costs in e costs in e costs in e Gain in e

1 1 557,741 7,155 244,099 0 8,613,278
2 816,789 9,723 0 25,543 13,062,067
3 1,136,491 4,016 573,325 0 17,483,570
4 1,314,275 15,885 1,311,993 51,619 21,794,912∑

3,825,296 36,779 2,129,417 77,162 60,953,827
2 1 570,168 5,684 244,321 0 8,624,377

2 858,426 6,371 398,649 0 13,087,921
3 1,124,607 9,541 593,731 0 17,422,405
4 1,413,377 9,347 833,417 0 21,871,808∑

3,966,578 30,942 2,070,118 0 61,006,512
3 1 588,592 3,762 244,560 0 8,636,330

2 855,411 6,647 398,600 0 13,085,942
3 891,662 6,703 1,246,027 169,650 17,460,357
4 1,312,262 12,459 0 124,626 21,827,396∑

3,647,927 29,570 1,889,186 294,276 61,010,025
4 1 572,078 5,272 244,349 0 8,625,792

2 898,369 50,474 0 0 12,702,304
3 1,121,349 9,763 593,651 0 17,419,721
4 1,512,392 1,339 1,279,337 27,794 21,954,773∑

4,104,188 66,848 2,117,337 27,794 60,702,591

Table 11. Overall results for Example 2.

Transshipment order Product offer Result Cycle Rank
1 current time t current time t –54,299,368 1,784 (3,000) 3
2 current time t time of next order t1 –54,505,197 1,784 (3,000) 2
3 time of next order t1 current time t –54,820,380 1,592 (3,000) 1
4 time of next order t1 time of next order t1 –53,437,920 1,784 (3,000) 4

optimization problems. The algorithm applied in this work performed quite
well for the described examples and has been adapted to the problem by using
specific selection, recombination, and mutation operators which fit well to the
problem and also the parameter setup has been adapted specifically. There
is an ample number of other possibilities to apply evolutionary approaches,
such as parallel evolutionary algorithms with certain communication struc-
tures or other global optimization heuristics to the problem. One specific idea
would be the integration of further diversity preserving mechanisms.

Quite remarkable is also the optimization result for the simulation-based
optimization of multi-location inventory systems with lateral transshipments
as described in the chapter. It has been demonstrated that a four-location
model with transshipments can be optimized by applying simulation-based
optimization and the practitioner gets a detailed description of how to achieve
this. For the future, it would be interesting to standardize the approach and

136 J. Lässig, C.A. Hochmuth, and S. Thiem

Table 12. Optimized parameter values for Example 2. Values that prevent ordering
or offering of product units are enclosed in brackets.

Periodic order Transshipment order Product offer
j sj Sj hj Hj oj Δomin,j

1 1 428 832 [0] [0] [0] [823]
2 664 1,288 [0] [0] [0] [1,286]
3 [0] [0] 826 2,237 0 1,386
4 1,369 3,468 1,269 3,259 1,685 0

2 1 [0] [0] 610 642 [0] [523]
2 654 1,278 [0] [0] [0] [656]
3 868 1,700 1,157 1,187 [0] [889]
4 1,131 3,003 [0] [0] –839 1,537

3 1 368 1,019 [0] [0] 703 0
2 632 1,256 [0] [0] [0] [1,254]
3 1,200 3,161 0 1,684 120 1,164
4 [0] [0] 991 2,773 1,386 0

4 1 421 825 [0] [0] [0] [423]
2 1,021 2,988 946 1,010 –675 1,432
3 1,433 2,819 1,643 1,670 [1,082] [931]
4 [0] [0] 0 2,153 643 68

Table 13. Cost function values for Example 2.

Inventory Out-of-stock Periodic order Transshipment
j costs in e costs in e costs in e costs in e Gain in e

1 1 611,801 4,805 243,755 0 8,589,685
2 900,869 7,816 399,531 0 13,123,242
3 1,193,483 27,144 0 8,864 17,159,198
4 1,452,823 9,624 1,429,314 45,857 21,762,930∑

4,158,977 49,389 2,072,600 54,721 60,635,056
2 1 604,484 2,512 0 0 8,601,402

2 886,560 8,859 399,252 0 13,112,049
3 1,211,481 1,644 545,235 0 17,422,146
4 1,539,422 6,566 1,187,311 30,139 21,793,064∑

4,241,946 19,581 2,131,797 30,139 60,928,660
3 1 591,947 6,227 301,900 7,522 8,586,351

2 858,075 11,975 398,600 0 13,085,992
3 870,787 2,546 1,158,381 300,270 17,410,444
4 1,331,795 2,571 0 261,276 21,841,466∑

3,652,603 23,320 1,858,882 569,068 60,924,253
4 1 602,220 5,622 243,645 0 8,584,211

2 1,057,626 49,876 951,486 86,419 12,735,925
3 2,009,390 6,876 531,654 0 17,375,827
4 1,355,478 15,394 0 41,249 21,698,890∑

5,024,714 77,768 1,726,784 127,667 60,394,853

Evolutionary Simulation of Complex Multi-Location Inventory Models 137

to offer services for the simulation-based optimization of given systems. This
could be possible by sending the description of a specific inventory model to
a web-service which calculates optimized parameters and strategies for the
inventory system under consideration.

7 Future Work

Considering the simulation-based optimization of multi-location inventory
systems with lateral transshipments, several extensions of the model are fea-
sible. Functional extensions include new policies for periodic orders, trans-
shipment orders, and product offers. Furthermore, we have shown that the
demand distribution has a significant impact on the optimization result. As
such, investigations of more complex and empirically derived distribution
functions are expected to lead to parameters that are suited best for certain
classes of models. Extensions of the parameter set itself comprise the capac-
ity of the locations. Therefore, the introduction of costs for unused storage is
necessary, constituting estate and energy costs. The analysis of such a system
would result not only in optimal parameters to control the flows of product
units, but also in the reallocation of capacities. In addition to these static
aspects of the model, dynamic properties such as the location-specific order
period time might be added to the parameter set. However, there certainly
are restrictions in real-world applications.

Besides these extensions, there is another fundamental idea regarding or-
ders from more than one location at a time. The examples show that under
specific circumstances one location may take the role of the supplier, which
orders product units periodically and then distributes these to other loca-
tions. This results in a directed flow of product units. The basic idea is that
a periodic order or a transshipment order may be released by several loca-
tions. Thus, extended order policies referring not only to one location but
to a group of locations are necessary. Moreover, for each order the Traveling
Salesman Problem with minimal costs has to be solved. However, the exam-
ples suggest that such a transportation logic can already be approximated
by applying heuristics, and thus, the inclusion of more elaborate policies
is expected to lead to a higher complexity without considerable advantages.
Further research may also focus on model characteristics that promote such a
flow through a location network. The examples show that a vertical or mixed
model structure may be advantageous under certain conditions, although the
model shows a horizontal structure prior to the application of evolutionary
optimization.

Acknowledgements. The authors would like to thank the German Academic Ex-
change Service (DAAD), the Robert Bosch doctoral program and the Foundation
of German Business (SDW) for funding their research.

138 J. Lässig, C.A. Hochmuth, and S. Thiem

References

1. Shaw, M.J., Fulkerson, W.F.: Introduction to the Technology Strategy and
Industrial Applications of Information-Based Manufacturing, pp. 920–6299.
Springer, Heidelberg (2001)

2. Heinrich, S., Lässig, J., Dürr, H.: Generating, Planning and Control of Cross-
Company Cooperation in Production and Supply Chain Networks. In: Proceed-
ings of the 2nd International Conference on Changeable, Agile, Reconfigurable
and Virtual Production, Toronto, Canada, pp. 1087–1096 (July 2007)

3. Lässig, J.: Algorithms and Models for the Generation and Control of Compe-
tence Networks, Mensch und Buch Verlag (2009); ISBN: 978-3-86664-648-3

4. Adeleye, E.O., Yusuf, Y.Y.: Towards Agile Manufacturing: Models of Compe-
tition and Performance Outcomes. International Journal of Agile Systems and
Management 1(1), 93–110 (2006)

5. Lässig, J., Heinrich, S., Dürr, H.: An Online Solution for SME Service En-
hancement with Short Term Cooperation Networks. In: Proceedings of the 24th
International Manufacturing Conference, pp. 545–552. Waterford Institute of
Technology, Ireland (2007)

6. Kukreja, A., Schmidt, C.P., Miller, D.M.: Stocking Decisions for Low-
Usage Items in a Multilocation Inventory System. Management Science 47,
1371–1383 (2001)

7. Arrow, K.J., Harris, T., Marschak, J.: Optimal Inventory Policy. Economet-
rica 19, 250–272 (1951)

8. Dvoretzky, A., Kiefer, J., Wolfowitz, J.: The Inventory Problem. Economet-
rica 20, 187–222 (No. 2), 450–466 (No. 3) (1952)

9. Bellman, R.E.: On the Theory of Dynamic Programming. Proceedings of the
National Academy of Sciences 38, 716–719 (1952)

10. Allen, S.G.: Redistribution of Total Stock over Several User Locations. Naval
Research Logistics Quarterly 5, 337–345 (1958)

11. Allen, S.G.: A Redistribution Model with Set-up Charge. Management Sci-
ence 8, 98–108 (1962)

12. Allen, S.G.: Computation for the Redistribution Model with Set-up Charge.
Management Science 8, 482–489 (1962)

13. Clark, A.J., Scarf, H.: Optimal Policies for a Multi-Echelon Inventory Problem.
Management Science 6, 475–490 (1960)

14. Köchel, P., Nieländer, U.: Simulation-based Optimisation of Multi-Echelon
Inventory Systems. International Journal of Production Economics 93-94(1),
505–513 (2005)

15. Krishnan, K.S., Rao, V.R.K.: Inventory Control in N Warehouses. Journal of
Industrial Engineering 16, 212–215 (1965)

16. P. Aggarwal, S.: Inventory Control Aspects in Warehouses. In: Symposium on
Operational Research, Indian National Science Academy, New Delhi (1967)

17. Köchel, P.: A Stochastic Inventory Model for some Interconnected Locations.
Mathematische Operationsforschung und Statistik 6(3), 413–426 (1975) (in
German)

18. Köchel, P.: A Dynamic Multi-Location Inventory Model with Transshipments
between Locations. Mathematische Operationsforschung und Statistik 13(2),
267–286 (1982) (in German)

Evolutionary Simulation of Complex Multi-Location Inventory Models 139

19. Ekren, B.Y., Heragu, S.S.: Simulation Based Optimization of Multi-Location
Transshipment Problem with Capacitated Transportation. In: WSC 2008: Pro-
ceedings of the 40th Conference on Winter Simulation, pp. 978–971 (2008);
ISBN 978-1-4244-2708-6

20. Chiou, C.-C.: Transshipment Problems in Supply Chain Systems: Review and
Extensions. In: Kordic, V. (ed.) Supply Chain, Theory and Applications, pp.
558–579. I-Tech Education and Publishing, Austria (2008)

21. Tlili, M., Moalia, M., Bahroun, Z., Campagne, J.P.: A Simulation-Optimization
Model for Two-Echelon Multi-Location Inventory Systems with Transshipment
and Lost Sales. In: ILS 2008: Proceedings of the International Conference on
Information Systems, Logistics and Supply Chain, pp. 89–100 (2008)

22. Fu, M.C.: Sample Path Derivates for (s, S) Inventory Systems. Annals of Op-
erations Research 53, 351–364 (1994)

23. Fu, M.C., Healy, K.J.: Techniques for Optimization via Simulation: An Exper-
imental Study on an (s, S) Inventory System. IIE Transactions 29, 191–199
(1997)

24. Pflug, G.C.: Optimization of Stochastic Models: The Interface Between Simu-
lation and Optimization. Kluwer Academic Publishers, Dordrecht (1996)

25. Healy, K.J., Schruben, L.W.: Retrospective Simulation Response Optimization.
In: Nelson, B.L., Kelton, W.D., Clark, G.M. (eds.) Proceedings of the 1991
Winter Simulation Conference, Piscataway, NY, pp. 901–906 (1991)

26. Köchel, P.: Retrospective Optimization of a Two-Location Inventory Model
with Lateral Transshipments. In: Proceedings of the 2nd International Confer-
ence on Traffic Science ICTS 1998, pp. 129–139 (1998)

27. Greenwood, A.G., Rees, L.P., Siochi, F.C.: An Investigation of the Behavior of
Simulation Response Surfaces. European Journal of Operational Research 110,
282–313 (1998)

28. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated An-
nealing. Science 220(4598), 671–680 (1983); doi:10.1126/science.220.4598.671

29. Dueck, G., Scheuer, T.: Threshold Accepting: a General Purpose Optimization
Algorithm Appearing Superior to Simulated Annealing. Journal of Computa-
tional Physics 90(1), 161–175 (1990); doi:10.1016/0021-9991(90)90201-B

30. Rechenberg, I.: Evolutionsstrategie 1994. k Frommann Holzboog, Stuttgart Bad
Canstatt (1994); doi:10.1002/biuz.19950250620, ISBN 978-3-772-81642-0

31. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading (1989)

32. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948
(November-December 1995); doi:10.1109/ICNN.1995.488968

33. Ruppeiner, G., Pedersen, J.M., Salamon, P.: Ensemble Approach to Simulated
Annealing. Jounal de Physique 1, 455–470 (1991); doi:10.1051/jp1:1991146

34. Thiem, S., Lässig, J.: Empirical Comparisons of Different Global Optimiza-
tion Heuristics. Journal of the University of Applied Sciences Mittweida 7, 3–6
(2008); ISSN: 1437-7624

35. Lässig, J., Thiem, S.: An Integrated Framework for the Realtime Investigation
of State Space Exploration. International Journal of Intelligent Systems and
Technologies 3(1), 24–29 (2008)

140 J. Lässig, C.A. Hochmuth, and S. Thiem

36. Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization
algorithm appearing superior to simulated annealing. Journal of Computational
Physics 90(1), 161–175 (1990)

37. Franz, A., Hoffmann, K.H., Salamon, P.: Best Possible Strategy for Find-
ing Ground States. Physical Review Letters 86(23), 5219–5222 (2001);
doi:10.1103/PhysRevLett.86.5219

38. Salamon, P., Sibani, P., Frost, R.: Facts, Conjectures and Improvements for
Simulated Annealing. SIAM, Philadelphia (2002)

39. Clerc, M.: Standard PSO 2007,
http://www.particleswarm.info/Programs.html (Online: accessed July 31,
2010)

40. Clerc, M., Kennedy, J.: The Particle Swarm – Explosion, Stability, and Con-
vergence in a Multidimensional Complex Space. IEEE Transactions on Evolu-
tionary Computation 6(1), 58–73 (2002)

41. De Jong, K. A.: An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, Ann Arbor (1975)

42. Baker, J.E.: Reducing Bias and Inefficiency in the Selection Algorithm. In:
Proceedings of the Second International Conference on Genetic Algorithms
and their Application, pp. 14–21 (1987)

43. Syswerda, G.: Uniform Crossover in Genetic Algorithms. In: Proceedings of the
3rd International Conference on Genetic Algorithms, pp. 2–9 (1989)

44. Köchel, P., Kunze, S., Nieländer, U.: Optimal Control of a Distributed Service
System with Moving Resources: Application to the Fleet Sizing and Allocation
Problem. International Journal of Production Economics 81(1), 443–459 (2003)

45. Zhou, G., Min, H., Gen, M.: The Balanced Allocation of Customers to Mul-
tiple Distribution Centers in the Supply Chain Network: a Genetic Algorithm
Approach. Computers & Operations Research 43(1-2), 251–261 (2002)

46. Köchel, P.: Hub-and-Spoke-Systems: On Optimal Allocations of Transportation
Resources in the Hub under Optimal (s, nQ) Ordering Policies at the Spokes.
In: Proceedings of the 2nd German-Russian Logistics Workshop (May 2007)

47. Köchel, P., Thiem, S.: Search for Good Policies in a Single-Warehouse, Multi-
Retailer System by Particle Swarm Optimisation. In: 15th International Sym-
posium on Inventories, International Society for Inventory Research, Hungary
(August 2008)

48. Hochmuth, C.A.: Modeling, Simulation and Visualization of a Hub-and-Spoke-
System. Term Subject, Chemnitz University of Technology (2007) (in German)

49. Köchel, P.: A Survey on Multi-Location Inventory Models with Lateral Trans-
shipments. In: Papachristos, S., Ganas, I. (eds.) Inventory Modelling in Pro-
duction and Supply Chains, Research Papers of the 3rd ISIR Summer School,
Ioannina, Greece, pp. 183–207 (1998)

50. Köchel, P.: About the Optimal Inventory Control in a Sys-
tem of Locations: An Approximate Solution. Mathematis-
che Operationsforschung und Statistik, Serie Optimisation 8,
105–118 (1977)

51. Robinson, L.W.: Optimal and Approximate Policies in Multi-Period Multi-
Location Inventory Models with Transshipments. Operations Research 38, 278–
295 (1990)

52. Evers, P.T.: Heuristics for Assessing Emergency Transshipments. European
Journal of Operational Research 129, 311–316 (2001)

http://www.particleswarm.info/Programs.html

Evolutionary Simulation of Complex Multi-Location Inventory Models 141

53. Xu, K., Evers, P.T., Fu, M.C.: Estimating Customer Service in a Two-Location
Continuous Review Inventory Model with Emergency Transshipments. Euro-
pean Journal of Operational Research 145, 569–584 (2003)

54. Minner, S., Silver, E.A., Robb, D.J.: Silver, and D.J. Robb. An Improved
Heuristic for Deciding on Emergency Transshipments. European Journal of
Operational Research 148, 384–400 (2003)

55. Kukreja, A., Schmidt, C.P.: A Model for Lumpy Parts in a Multi-Location
Inventory System with Transshipments. Computers & Operations Research 32,
2059–2075 (2005)

56. Herer, Y.T., Tzur, M., Yücesan, E.: The Multilocation Transshipment Problem.
IIE Transactions 38, 185–200 (2006)

57. Özdemir, D., Yücesan, E., Herer, Y.T.: Multi-Location Transshipment Prob-
lem with Capacitated Transportation. European Journal of Operational Re-
search 175(1), 602–621 (2006); ISSN 0377-2217

58. Gong, Y., Yucesan, E.: The Multi-Location Transshipment Problem with Posi-
tive Replenishment Lead Times. Technical Report ERS-2006-048-LIS, Erasmus
Research Institute of Management, ERIM (2006)

59. Arnold, J., Köchel, P.: Evolutionary Optimization of a Multi-Location Inven-
tory Model with Lateral Transshipments. In: Proceedings of the 9th Interna-
tional Working Seminar on Production Economics, vol. 2, pp. 401–412 (1996)

60. Belgasmi, N., Saïd, L.B., Ghédira, K.: Evolutionary Multiobjective Optimiza-
tion of the Multi-Location Transshipment Problem. Operational Research 8(2),
167–183 (2008)

61. Köchel, P.: Simulation Optimisation: Approaches, Examples, and Experiences.
Technical Report CSR-09-03, Chemnitzer Informatik-Berichte (2009)

62. Hochmuth, C. A.: Design and Implementation of a Software Tool for Simula-
tion Optimization of Multi-Location Inventory Systems with Transshipments.
Master’s thesis. Chemnitz University of Technology (2008) (in German)

63. Köchel, P., Hochmuth, C.A.: Optimization Experiments with a New Simulator
for Inventory Systems with Multiple Locations and Lateral Transshipments. In:
Ivanov, D., Meinberg, U. (eds.) Logistics and Supply Chain Management: Mod-
ern Trends in Germany and Russia, Proceedings of the 4th German-Russian
Logistics Workshop, pp. 67–81. Cuvillier Verlag, Göttingen (2009)

A Fuzzy-Evolutionary Approach to the
Problem of Optimisation and
Decision-Support in Supply Chain
Networks

Sven Schellenberg, Arvind Mohais, Maksud Ibrahimov,
Neal Wagner, and Zbigniew Michalewicz

Abstract. This chapter deals with the problem of balancing and optimising
the multi-echelon supply chain network of an Australian ASX Top 50 com-
pany which specialises in the area of manufacturing agricultural chemicals. It
takes into account sourcing of raw material, the processing of material, and
the distribution of the final product. The difficulty of meeting order demand
and balancing the plants’ utilisation while adhering to capacity constraints is
addressed as well as the distribution and transportation of the intermediate
and final products. The aim of the presented system is to minimise the time
it takes to generate a factory plan while providing better accuracy and visi-
bility of the material flow within the supply chain. The generation of factory
plans within a short period of time allows for what-if-scenario analysis and
strategic planning which would not have been possible otherwise. We present
two approaches that drive a simulation to determine the quality of the gen-
erated solutions: an event-based approach and a fuzzy rule-based approach.
While both of them are able to generate valid plans, the rule-based approach
substantially outperforms the event-based one with respect to convergence
time and quality of the solution.

1 Introduction

Understanding and managing a company’s supply chain is one of the hard-
est tasks procurement planners and supply chain managers face in today’s

Sven Schellenberg · Arvind Mohais · Neal Wagner
SolveIT Software, Pty Ltd., 99 Frome Street, Adelaide, SA 5000 Australia
e-mail: {ss,am,nw}@solveitsoftware.com

Maksud Ibrahimov · Zbigniew Michalewicz
School of Computer Science, University of Adelaide,
South Australia 5005, Australia
e-mail: {maksud.ibrahimov,zbigniew.michalewicz}@adelaide.edu.au

{ss,am,nw}@solveitsoftware.com
{maksud.ibrahimov,zbigniew.michalewicz}@adelaide.edu.au

144 S. Schellenberg et al.

business environment. Ideally, a supply chain is driven by demands generated
from customers placing orders. An order may include one or many order items
composed of processed and unprocessed raw materials and components. In
addition to the customers’ orders which, generally speaking, draw final prod-
ucts out of the supply chain network (i.e., pull factors), supply chain networks
are often subject to push factors which are caused by suppliers feeding raw
material into the supply chain [1]. In most cases, the supply of unfinished
goods cannot be synchronised with the demand generated at the other end
of the supply chain, or an adjustment is delayed. Suppliers constantly, peri-
odically, or spontaneously deliver raw material or components into the supply
chain network. An arbitrary imbalance is created by customers and suppliers
which the supply chain network tries to even out or trade-off (see Figure 1).

Supply

Supply

Supply

Plant

Plant

Plant

D
is

tr
ib

u
ti

o
n

N
et

w
o
rk

Plant

Plant

D
is

tr
ib

u
ti

o
n

N
et

w
o
rk

Plant

Demand

Demand

Demand

Fig. 1. Schematic view of multi-echelon supply chain network (3-echelon in this
case)

Reconciling supply and demand by determining the amount of finished
goods to produce becomes a labour-intense and time-consuming endeavour.
It involves sourcing decisions when there are more than one internal or ex-
ternal suppliers of raw material, factory management decisions to define pro-
duction plans and to determine maintenance outages, and decisions on how
to effectively distribute the finished goods within the supply chain and to the
end customer. Generating an optimal plan which takes all the previous con-
siderations into account becomes virtually impossible for human operators
who are in most cases only equipped with spreadsheet tools.

This chapter presents ways to synchronise and reconcile the drivers of
multi-echelon supply chain networks demonstrated on a real-world example
of an Australian manufacturer of agriculture chemicals. Although the model
presented in this chapter aims to represent a specific supply chain model of
a particular manufacturer, the components the network is based on repre-
sent supply chain entities as they can be found in many other businesses.
We present two approaches which generate optimised production and ma-
terial procurement plans. The system spawned off this project is currently
evaluated and fine-tuned, and final completion and total business integration
are expected to be finished in a few months. When deployed, the system

Supply Chain Network Optimisation 145

will facilitate the planning process. The planning includes determining the
production across the supply chain (type and quantity of final and intermedi-
ate products), scheduling trains and trucks, making sourcing decisions based
on contractual obligations, internal supply, and potential supplement deliv-
eries. The operators will have the opportunity to regenerate plans as soon
as the environment changes, obtaining a response within a few minutes. The
prompt generation of plans allows for strategic planning which could not be
achieved by the previous mode of operation. The power of what-if-scenarios
can be harnessed to benefit from early structural decisions of the supply
chain, such as added production, storage or transportation capacities.

This chapter details two approaches on how to balance the output of pro-
ducing entities such as plants and factories with storage facilities like tanks,
stock piles, or silos. The aim is to generate an optimised production plan for
each site including decisions such as sourcing of raw material and production
rate while honouring storage capacity constraints.

Although both approaches employ a simulation as part of the solution eval-
uation, the kind of simulation differs. In the first approach, an Evolutionary
Algorithm (EA) tries to find a sequence of events. An event is defined by
the date it occurs and an impact it has to the simulation state. The events
are stored in a priority queue and executed in chronological order. An event
could for instance cause a material changeover or a wind down of the pro-
duction rate of a plant. An actual simulation only occurs at these discrete
events (Discrete Event Simulation, DES); in between any two adjacent sample
points (events), the system’s state is assumed to be linearly changing, which
means a tank’s level can be inferred at any given time between two sequential
events. In this particular implementation, the reduction of plant’s utilisation
in order to comply with capacity constraints is performed deterministically,
by taking the excess production of a storage and propagating back to its
supplying nodes, reducing their production proportionally to their share of
the excess amount.

The second approach presented in this chapter does not use events to
change the state of the system. As opposed to the previous approach, it tries
to find the underlying rules that will balance the supply chain’s producers
and product changeovers. During the optimisation process, an EA generates a
rule base and compares its performance on the simulation run at a predefined
interval.

The two above approaches are compared in terms of their overall perfor-
mance comprising violation of hard constraints such as storage capacity, total
final product yield at the end of the run, and satisfaction of demand.

This chapter is structured as follows: After this introduction, the descrip-
tion of the problem is presented in detail followed by the description of the
approaches to tackle the stated problem. Experimental results are given in
the following Section 4. Before finishing the chapter with a conclusion and
outlook of future work, the result of a literature review on related problems
is briefly summarised in Section 5.

146 S. Schellenberg et al.

2 The Problem

In many industries which base their operations on multi-echelon production
systems, procurement planners and factory operators often face the same sort
of problems when they create production plans for a short or medium term
planning horizon:

• What is the best supplier for raw materials (in terms of reliability, con-
tractual bindings, availability, costs)?

• How much of it should be sourced in a given period?
• How much finished or intermediate product should be produced?
• When is the best time to schedule maintenance outages?

There are many more questions that can be considered. The bottom line
is that the problem is rather complex, involves trade-offs which cannot be
made in isolation, that is disregarding processes that happen further down
the supply chain, and all decisions are heavily interdependent. Applying rule-
of-thumb reasoning will not lead to an optimal or not even to a feasible plan
if hard-constraints such as capacity limits are violated.

In order to understand the complexity of the presented problem and the
manual interaction involved, let us consider the following example: A factory
plan is supposed to be developed that balances the production and storage
capacities of the supply chain presented in Figure 2.

P1
S1

P3

P2
S2

S3

Fig. 2. Simple supply chain example to demonstrate complexity of balancing the
components involved.

The network is composed of 3 plants (P1. . .P3) producing material M1,
M2 and M3 (P1 produces M1, P2 M2, and P3 M3) at a rate of 50 units
per time unit t, and 3 storage tanks (S1, S2, and S3). Assume that all the
tanks have the same capacity of 100 units, and S1 and S3 are already filled
to 80% of their maximum capacity. The planner tries to run the plants as
hard as possible, that is, it is desired to run them on maximum production
capacity. Running P1 hard within a period of t means it produces 50 units
of M1 which are stored into S1. Since there is a constant consumption of

Supply Chain Network Optimisation 147

M1 by plant P3 an overflowing of the tank does not occur. P2 also produces
its material M2 and conveys it into its tank S2. P3 is sourcing its two input
products and converting it at a ratio of 1:1 (which means we obtain 50 units of
M3 at the end of t from P3). Since S3 is already filled by 80 units (assume no
consumption at this point), an excess amount of 30 units has been produced at
the end of the time period. As the excess amount cannot be stored elsewhere,
the production of the plant feeding into S3 has to be reduced.

In this example, a utilisation of 40% would avoid the excess capacity to
be created and storage S3 to contain 100 units at the end of the period.
Winding down the production in P3 however reduces the demand of M1

which is produced by P1. The planner has to go back to the producer of
M1 and also reduce the production rate of this plant, as the material cannot
be stored in S1 (which is also filled to 80% of its capacity). This process of
propagating back the plant utilisation has to be done for every storage facility
that is exceeding its capacity. In this case, only two plants were affected, but
for multi-echelon networks, it can be easily conceived that the amount of work
that has to be done once a storage constraints are violated is enormous. The
dynamics of the environment the plan is going to be implemented in often
force the planners to re-create a plan multiple times (imagine unplanned
outages of production plants as an example).

In essence, the process of creating such a plan can be very labour-intense,
particularly in a real-world dynamically changing environment. Expanding
the planning horizon to generate long-term plans (for instance yearly plans) is
even more prone to change, as uncertainties and the level of their impact have
implications on larger parts of the plan. A benefit of long term planning, the
ability to plan strategically by evaluating what-if-scenarios, becomes virtually
impossible when plans are generated manually. Analysing the impact of an
event and generating a sufficient number of contingency plans is only possible
if the time to generate those plans is very low and involves minimal amount
of user interactions.

The proposed system automates the planning process to the extent that
constraints are entered via an intuitive user interface and a plan is delivered
within minutes after the optimisation process has been started. This allows
for strategic planning as well as a prompt update as soon as new orders are
placed which impact on the production schedule.

3 The Approach

In this section we describe two approaches that we developed to optimise the
supply chain of the given business. Both approaches perform a simulation in
order to determine the quality (or fitness) of the solution. The first approach
generates a sequence of events and applies these to a discrete event simulation
(DES). We call this one “Event-Based Optimisation” approach. A simulation
is performed at any event occurring (next-event time advance [2]). In contrast,
the second approach uses rules to make decisions for factory utilisation and

148 S. Schellenberg et al.

sourcing. The “Rule-Based Optimisation” approach uses also a simulation to
evaluate evolved solutions, but advances the time at a fixed interval (fixed-
increment time advance [2]). In addition to the supply chain model being used
and the common parts of the EA, this section describes both approaches in
detail and lists advantages and disadvantages.

3.1 The Supply Chain Model

When modelling a real-world system, careful attention has to be paid to the
level of abstraction of the model. On the one hand, a high level of details
improves the fidelity of the examined properties of the system, but on the
other hand, the simulation process becomes computational expensive which
prolongs the run time of the actual optimisation. A trade-off has to be made
between reflecting as much as possible to draw the required conclusions from
the system and minimisation of details. The model we employ for both of our
optimisation approaches is described as follows:

The supply chain network can be thought of as a directed graph G = (V, E)
with V = {0, . . ., n} as a set of vertices and E = {0, . . ., m} as the set of edges.
Each vertex/node can be of any of the three following types:

1. Plant
2. Storage
3. Switch

Although nodes of different type process material differently, the three node
types have common properties. Each node has a set of predecessors which
they depend on with respect to their source products. These predecessors are
defined by the incoming edges of the vertex. Figure 3 illustrates a very simple
supply chain network. Plant 1 produces two products, stores both of them
in separate storages and Plant 2 converts Product A into Product C which is
finally stored into Storage 3. Note that in this simplified version, Plant 1 has
no predecessors, whereas Plant 2’s predecessor is Storage 2. The conversion
from a raw material into an intermediate or final product can be thought of
as a chemical reaction with arbitrary input and output products.

A switch, the third kind of supply chain node, is not a physical entity,
but it serves to route the material through the supply chain network. Due to
the internal design and the paradigm to keep functional units as simple as
possible, plants and storages are only allowed to source a material from one
predecessor node. In case there is more than one predecessor nodes which
output the same product, a switch has to be inserted which controls the ma-
terial flow (see Figure 4). A switch can either implement a local heuristic to
determine which successor to deliver to or it may be controlled by the opti-
miser which evolves the routing as part of its usual individual reproduction
process (the switch becomes part of an individual’s genotype). An example
for the former may be that Switch A is implemented in a way such that it
always exhausts the capacity of a tank before it starts filling up another tank

Supply Chain Network Optimisation 149

Plant 1

Plant 2

Storage 1

Storage 2

Product A

Product B

Product A

Storage 3

Product C

Fig. 3. Supply Chain model showing relationship between supply chain nodes

Plant A Plant B

Storage B

Storage A

Product A

Storage C

Product ASwitch A

Switch B

Fig. 4. Supply Chain illustrating material flow routed by Switches

(see Figure 4, Switch A). The local deterministic heuristic incorporated into
Switch B may reduce the storage’s level evenly draining all tanks at the same
time.

In addition to nodes having predecessors, nodes also contain output buffers
(one per product) in which the products they produce or store and their quan-
tity are temporarily kept. Switches do not contain output buffers, but delegate
requests for material to their predecessors depending on their implemented
routing logic.

The previously described node-predecessor relationship only works for con-
tinuous material flow such as liquids that are pumped from a producing
plant into a storage tank. In many supply chain networks, the distribution
of material is done via transportation means with limited capacity or infre-
quent transportation times (trucks, ships, air planes or railway). Therefore,
an additional property of the edge between two nodes is a schedule defining
the availability of the transportation means and its capacity. Only when the
transportation means is available at the plant or storage, it can empty the

150 S. Schellenberg et al.

node’s buffers and store the material temporarily in its own buffer. Plants
either have to shut down or store their products into adjacent tanks at times
at which the transportation means is not available.

Given the supply chain network of the particular business, a simulation
process can be performed that is mostly similar for both optimisation ap-
proaches. The only difference is in the way the decisions are inferred that
change the state of the supply chain network.

Before the simulation is started, the supply chain nodes have to be ini-
tialised and a list of the sample points (event queue) will be created. During
the initialisation process of the nodes, the buffers of some storage entities are
filled to simulate an opening stock. The next step is to determine the points
of the planning horizon at which the system is sampled. These points are the
set of all events that occur during the planning horizon, such as

• Change of availability of a plant (plants may run at reduced run rate due
to partial maintenance or outages).

• Product changeovers.
• Arrival/departure of transportation means travelling between two nodes.

It is of paramount importance to the validity of the simulation to add all
events that cause a discontinuous change of the supply chain network’s state,
that is, a change that causes nonlinearity which would prevent inference of
nodes’ properties in between two adjacent sample points, to this event queue.
If desired, additional sample points can be added to verify the result of the
simulation.

Once the event queue is filled, the nodes are sorted by precedence. Nodes
without predecessors occur first whereas terminal nodes that base their
buffer’s material and quantity on the result of all previous components’ pro-
duction are located last in this list. The next step is to iterate through the
list of predecessors (beginning with the least dependant node) and process
the node. Processing a node breaks down into three steps:

1. Pull resources (raw material, intermediate material, final product, etc)
from predecessor.

2. Apply the conversion rule.
3. Push the converted material into output buffer(s).

The first step is straightforward: Since each node knows about its predecessors
and the material it required, it pulls the maximum amount of this material
from each of its predecessor nodes. Switches forward the call to their pull
method to the appropriate predecessor. Essentially, the pull step boils down
to copying the content of the predecessor’s output buffers and passing it on
to the conversion step.

In the conversion step, the actual business logic for each plant is imple-
mented. If we consider a chemical formula like 1A + 2B → 2C + 1D with
hypothetical elements A, B, C and D, the factory that processes this formula
would source all the material it could get for product A and B and deter-
mine the quantities of the resulting product C and D (taking into account

Supply Chain Network Optimisation 151

the ratio of A:B=1:2). The amount of input material, which has actually
been used during the conversion process, is reduced from the predecessor’s
output buffers to account only for the actual consumption and to determine
overproduction. While switches do not implement a conversion routine, they
pass on the incoming materials to their output buffers.

Finally in the last step, the produced material is stored into its output
buffers to be available for the successor node’s processing procedure. At the
end of the sample cycle, that is, once all nodes have been processed, the simu-
lator captures the state of the system by storing the buffers which contain the
quantity/products tuple for each node. The final buffer capacity allows deter-
mining the plants’ utilisation or storages’ remaining capacity. The simulation
terminates once the planning horizon’s end date is reached.

3.2 Features of the Optimiser

The meta-heuristic used to optimise the supply chain network is a steady-
state EA, that is, only one individual alteration occurs at each generational
step, replacing a parent. EAs are well understood, reliable and they can be
customised to solve a variety of problems of different domains. They have
been applied to other problems of similar level of difficulty and performed
satisfactory. This section recapitulates the general working principle of the
EA and elaborates on the specific implementation used here.

The EA operates as follows: The population contains a number of individu-
als (approximately 100 individuals) which encode a solution in their genotype.
After initialising and evaluating the individuals of the population, the recom-
bination process is started. As part of it, an operator from the set of available
operators is chosen to alter the individual. These operators are application-
specific as their operation strongly depends on the encoding chosen as well as
the particular business problem they try to solve. Some operators may have
the ability to consider certain business constraints to operate in the feasible
search space which reduces the search space and leads to faster convergence.
The specific operators used for both optimisation approaches are explained
in the following sections.

After the operator changed the individual, the new individual is imme-
diately evaluated. A self-tuning procedure compares the fitness value of the
individual before and after the operation and adjusts operator weights ac-
cording to whether the new individual yields a better solution or not. The
weight is taken into account the next time an operator is chosen. In case
an operator performed poorly, it is less likely to be selected for evolving the
next individuals (similar to roulette-wheel selection). After a defined num-
ber of generations, the weights are reset, so dominating operators have to
proof again their performance. This is particularly important if the opti-
miser prematurely converges and the optimisation process gets stuck at a
local optimum. The previously preferred operator would not contribute to

152 S. Schellenberg et al.

improving the solution’s quality which means other (potentially more explo-
rative) operators come into play.

The evaluation procedure uses application-specific measures to determine
the fitness of the individual. For this particular optimisation problem, both
optimisation approaches use an identical fitness evaluation function. Part of
the evaluation is the simulation. Once finished, the system state is evaluated.
The objectives of the optimisation process for supply chains include, but are
not limited to, (a comprehensive list of measures of supply chains can be
found at [3]):

• Maximisation of product yield.
• Minimisation of product changeovers.
• Adherence to a specified product ratio for the remaining planning period.
• Satisfaction of demand.
• Minimising transportation, inventory, backlogging costs.

The optimisation process is terminated once a pre-defined number of genera-
tions is reached or if the search stagnates over a certain period of generations.
The best individual that was found throughout the optimisation process is
returned (keep-the-best strategy [4]).

Both techniques used in this chapter leverage of the same optimisation
engine described in this section (and in fact applications for other customers
do as well). Different business rules are encoded within the individual and as
operators which makes the EA reusable for other optimisation problems.

3.3 Event-Based Optimisation

The event-based optimisation approach tries to determine a sequence of
events that, when applied to the simulation, results in an optimal solution.
Events are defined by the date they occur and the action they perform, i.e.,
the state change they cause to the system. Examples are a changeover event
in a factory which causes a factory to produce a different product, a change
in the factory’s utilisation, a change of the availability of the factory or a
factory specific event such as a cleanout of storage tanks. The event-based
approach has a very shallow hierarchy of representations. From the event se-
quence (which can be understood as the genotype) a conversion into the final
solution is made by means of the simulation.

At the start of the optimisation run, each individual is initialised with a
random sequence of events. The operators alter the event queue in different
ways. They change the type of event (which changes the action they perform)
or the date of their occurrence as illustrated in Figure 5. Some of them insert
a delay at a specific time which causes all subsequent events to be delayed. A
crossover operator randomly determines an event of the event queue of two
individuals and swaps all of the following events with the other individual,
similar to the classical crossover operation for genetic algorithms.

Supply Chain Network Optimisation 153

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

EA EB EC ED

(a) Event queue before mutation

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

EA EB EC ED

(b) Mutation operator in action changing date of EC to t3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

EA EBEC ED

(c) Event queue after mutation. EC now alters the state at t3 according to its
encoded type.

Fig. 5. Timeline of the simulated horizon illustrating the impact of the date muta-
tion operator on the event queue (dashed lines indicate the time events occur, i.e.
when they cause a change of the state of the simulated system).

One part of the evaluation process is to transform the genotype of the
individual (the representation of the solution we apply the operators to) into a
representation that can be evaluated (the other part is to aggregate the fitness
value components). The transformation is done by running the simulation
according to the encoded sequence of events. At each of the event dates, a
simulation is executed which samples the state of the system (e.g., fill level of
storage tanks, excess level, utilisation, amount of raw material sourced, etc).
After the event date, the system state will change non-linearly (for instance,
a different product is produced; a plant shuts down its operation, etc). Once
the first simulation pass is completed a repair function is triggered. Before
the repair, each plant’s produced products are consumed by their subsequent
storages, disregarding the current available storage capacity.

The repair function deterministically winds down the producers (the
plants) in order to balance the production with the available storage ca-
pacity. This process starts at the last storage in the supply chain, i.e., the
one that relies on all of the previous nodes, and works back to the first node

154 S. Schellenberg et al.

in the supply chain (i.e., the one without any predecessor nodes). The excess
amount of an overflowing storage is proportionally reduced from the previ-
ous producers in order to determine the appropriate production rate (planned
utilisation). Each time a plant’s utilisation is adjusted, a partial simulation
has to be performed again as the minimised production has implications to
other supply chain nodes downstream in the supply chain network. The ad-
vantage of this deterministic method to compute the utilisation is that these
kinds of events do not fall into the search process and, therefore, decrease it.

On the other hand, this way of adjusting the plant’s utilisation is rather
expensive as the simulation is rerun every time the utilisation is changed.
An optimisation process not honouring the storage constraints, that is, with
disabled repair function, was able to evaluate about 1500 individuals per
minute, whereas a normal optimisation process (repair-enabled) could only
evaluate a maximum of 150 to 200 individuals on the same machine and the
same supply chain network (this comparison of course is not exact as violated
storage constraints result in more raw material being available which skews
the production plan and the obtained product yield).

3.4 Rule-Based Optimisation

The approach proposed in this section is based on a combination of fuzzy logic
and EAs. Rather than directly evolving decisions made during the simulation
of the supply chain (in form of events), rules are generated which drive the
decision making process.

Since this book is mainly about EAs, a very short introduction into Fuzzy
Logic is given in this section. Thereafter, the application of fuzzy logic to the
subject of this chapter, optimising supply chains, is demonstrated and the
particular implementation is discussed by providing examples on encoding
and decoding of the individual’s genotype.

3.4.1 Fuzzy Logic

Fuzzy logic is based on the fuzzy set theory in which values are expressed as
degree of membership rather than crisp inputs like discrete measurements.
If we were to classify the age of a person having two categories (young and
old), classical Boolean logic would either map a given age to young or old.
Let’s say the cut-off point separating old from young would be exactly 40
years of age. In Boolean logic, every person below 40 years would be young,
whereas everyone with an age greater or equal to 40 is classified as old.
Instead, in fuzzy logic, an age can belong to multiple categories (or degrees
of membership). The degree of membership is denoted by a number between
0 and 1. Given two membership functions young and old, a person aged
30 years could be young to the degree of 0.8 and old to the degree of 0.3
(depending on the shape of the membership functions). Fuzzy terms such as

Supply Chain Network Optimisation 155

“age is young” are called linguistic terms (“age” is a linguistic variable and
“young” a linguistic value). Those terms can be combined by Fuzzy-And or
Fuzzy-Or (or other fuzzy operators, or T-Norms [5]) and further extended
to IF-THEN rules of the form “IF age IS old AND health IS bad THEN
health-insurance-premium IS high” (The IF part is called “antecedent” and
THEN part is named “consequent”). Many of these rules can make up a rule
base.

The type of fuzzy logic system (FLS) as it is used for this approach is called
Mamdani-type FSL [6]. The fuzzy inference process can be decomposed into
three major steps. First of all, the crisp input data obtained by measurements
is transformed into fuzzy sets (fuzzification step) by determining the degree
of membership of the fuzzy terms specified in the fuzzy rule applied. The
next step combines the degrees of the fuzzy sets by the given fuzzy-operators
and summarises each term into a rule weight. This rule weight is used to
determine the output of the rule by limiting the shape of the output function.
The last steps, the defuzzification, combines all reshaped output functions
and applies a defuzzification function in order to obtain a crisp output value.
This function is usually the centre of mass or a weighted average function.

3.4.2 Application of FL to SC Optimisation

Translated to our actual problem of generating decisions to drive a supply
chain simulation, the fuzzy rules determine in their consequent part when
to schedule product changeovers (that is which products are produced at
which time) or the utilisation of the factories (utilisation of the facility).
The advantage for using fuzzy logic to encode the rules driving the supply
chain decisions is that these natural language rules facilitate diagnostics and
audit features of the system. A planner controlling the system can deduct the
reasoning of the system by analysing the rule bases which is more intuitive
than the previous event-based approach.

Another downside of the event-based approach is also that the EA has to
find the correct event for each time, albeit the conditions may be similar to
a previous point in the plan at which the correct decision was made. Say a
product changeover has to be triggered every time a storage tank is about to
overflow, as the product is consumed from the overflowing tank as soon as
the changed-over product is produced. This changeover may not be triggered
at another point in time as the EA has not yet generated such an event
at this time. It may or may not randomly generate such an event at the
particular time. The rule-based system however would have had developed a
rule that triggers a changeover upon reaching of maximal storage capacity of
the tank, which means every time the condition holds (storage tank is high),
the changeover is triggered. The application of rules makes the generated
plan become more predictive and coherent. In addition, the underlying logic
can be investigated and manually fine-tuned.

156 S. Schellenberg et al.

The individuals that are evolved in the evolutionary process encode the
rule base. We decided to generate the rules by the EA as they may differ
for different settings and different products. Evolving the rule base by the
EA allows adaptation to the current constraints and environment. There are
many other means to combine EAs with fuzzy logic. They differ in the part of
the fuzzy inference system that is subject to the optimisation. Genetic tuning
for instance changes the database (shape or number membership functions,
linguistic terms) of the fuzzy inference system. Other methods evolve the
knowledge base or generate new knowledge base components. An elaborate
taxonomy and survey on methods to combine genetic algorithms and fuzzy
logic systems (GFS) can be found at [7].

A fuzzy rule (consider this example for explanatory purposes: IF Level Of
Tank IS high THEN Utilisation Of Plant is low) of the structure con-
sists of an antecedent part (IF ...) and a consequent part (THEN ...). The
antecedent can contain multiple linguistic terms (Level Of Tank IS high)
which can be combined by different operators (T-Norm). For our purposes,
Fuzzy-And and Fuzzy-Or are sufficient. A linguistic term has two parts, the
linguistic variable (Level Of Tank) and the linguistic value (high). The num-
ber of linguistic values can be arbitrary, but in order to reduce the complex-
ity, we opted for 5 linguistic values and triangle membership functions (see
Figure 7).

The possible linguistic variables are the level of each storage tank, the
currently produced product of a plant and previous utilisation. A set of rules
forms a rule base. For the proposed system, a number of rule bases is created,
one rule base per possible consequent part. Since the linguistic variables for
all the rules of a rule base are the same (that is, all rules in one rule base
pertain to the utilisation of a specific plant), the only additional information

0

1

0 400 800 1200 1600

Very Low Low Medium High Very High

Degree of
Membership

Storage Tank
Fill Level

0.15

0.85

Fig. 6. Overlay of 5 membership functions denoting the fill level of a tank. At a level
of 740l, the tank level is member of the “low” function by 0.15 and member of the
“medium” function by 0.85. For each storage, the parameters for each membership
function are different as the maximum capacity may differ (and hence “very high”
would relate to a different maximal level).

Supply Chain Network Optimisation 157

that needs to be encoded in the chromosome is the linguistic value of the
consequent part. Figure 6 displays the integer number vectors encoding each
rule. A rule base to n rules encoded as sketched in Figure 9: The first index
represents whether the rule is enabled, the second specifies the fuzzy opera-
tion which combines the linguistic terms (Fuzzy-And or Fuzzy-Or) and the
following pairs of integer values contain a pointer to a look-up-table of lin-
guistic variables and linguistic values. The last cell holds the linguistic value
for the rule base’s consequent part.

Enable/disable rule

Linguistic
Variable V1

Linguistic
Value v1

Linguistic
Variable V2

Linguistic
Value v2

Linguistic value
of consequent

Rule Base 1

Rule Base 2

Fig. 7. Encoding the rule bases. Elements in squares are of type integer number and
stand either for booleans or indices in look-up-tables that hold linguistic variables
and values.

3.4.3 Generation of Rules

As in the previous section, the same EA with its self-calibrating capabilities
is employed. The only differences lie in the method of evaluation, that is,
how the simulation is carried out, and the set of operators used to evolve the
individuals (as the encoding of the individuals). The evaluation function itself
is exactly the same. It takes into account the maximal production yield, a

158 S. Schellenberg et al.

penalty is deducted in case storage constraints are violated and also a penalty
in case of a delay in providing enough final product to satisfy firmed orders
is applied.

Unlike the event-based optimisation, the rule-based approach samples the
system at pre-defined intervals. At these sample points, all properties of the
simulated system are evaluated and actions are derived from the current
state. These actions are triggered by the rules described above. A rule may
pertain to the fill level of a storage shed and cause a reduction of the feeding
plant upon reaching of a “high” fill level.

Different operators modify the genotype of the individual at each recom-
bination step. A mutation operator randomly changes bits of the genes by
honouring the feasible maximal possible integer number value at the position
in the chromosome. The meaning of such a mutated chromosome changes in
the decoding step which leads to different rules and thus different decisions
in the simulation step (see Figure 8).

2 3 3 -1 4 1

2 3 3 -1 4 4

(a) Mutation of chromosome (before

and after mutation)

Before: IF Level(TankC) IS high

THEN Util.(PlantA) IS low

After : IF Level(TankC) IS high

THEN Util.(PlantA) IS very high

Index Ling. Variable Ling. Term

0 Level(TankA) very low
1 Level(TankB) low

2 Level(TankC) medium full

3 Level(TankD) high
4 Util(PlantA) very high
5 Util(PlantB)

7

. . .

(b) Phenotype decoding

Fig. 8. Impact of mutation on decoded phenotype (‘-1’ means the term is not
considered in the rule)

Another typical operator for genetic algorithms, the crossover operator,
was also adapted and implemented. Two flavours of single point crossover
are employed. One of them cuts individual rules of two parent individuals
into two pieces (at a random crossover point) and swaps its right-hand part
with the other parent. The other crossover operator swaps entire rules at
once by determining again a crossover point and replacing one part with the
parent’s rule set.

Supply Chain Network Optimisation 159

4 Experimental Results

We have tested the two approaches on two identical supply chain networks.
The aim was to maximise production while honouring storage constraints.
The EA was configured to terminate its search after a maximum of 5000
generations, or prematurely if the search would not yield any improvement
within 1000 generations. By virtue of the system, the event-based approach
runs a simulation whenever an event occurs. The rule-based approach was
configured to sample the system at a fixed interval of one day and change
the system state by applying its rules.

Both algorithms were able to generate feasible solutions without violating
constraints. The quality of the averaged solutions of each approach, however,
differed significantly. While the event-based approach managed to fill up the
final product storage shed to 172, 000 tonnes (see Figure 9), the rule-based
approach exceeded this value by 37% (233, 000 tonnes). In addition, the search
procedure of the latter one terminated much earlier (on average at about
1300 generations) while the event-based algorithm used up the full span of
available generational cycles. Another interesting observation is that the time
it takes to evaluate an individual is much less for the rule-based approach
(approx. 800 individuals per minute vs. 150 i/min). This and the premature
termination caused the rule-based approach to find an (even better) solution
after a few minutes of run time only.

As already stated in the introduction of this chapter, the system presented
is applied to a real-world problem and, as such, it is difficult to compare it to
synthetic problems as they are usually used as a baseline in academia. The
only plausible baseline can be obtained by comparing the factory planner’s
schedule and the expected product yield with the schedule generated by the
system. Preliminary test results indicate a high degree of similarity between
human and system generated factory schedules with respect to the length of
product runs (or in other words, the date of scheduled product changeovers)
and accumulated product yield at the end of the planning horizon. Taking
only these few measures into account, one can conclude that the model ad-
equately represents the supply chain. The time it takes to generate a yearly
plan by the planning personnel is tremendous. This means a what-if-scenario
analysis becomes virtually impossible. Unless we deal with strategic what-if-
scenarios, the result of such a scenario would become obsolete by the time it
is obtained. Using the proposed system, a near-optimal plan for an entire year
could be created in less than 10 minutes for the event-based approach and
about 2 minutes for the rule-based approach respectively (carried out on a
standard Dual Core 1.6GHz computer optimising a 5-echelon supply chain).
This allows for what-if-scenario analysis especially for short term planning
horizons.

Another observation worth mentioning is that in some instances, the opti-
miser made decisions that were, by a human operator, hard to justify. These
decisions dealt with production trade-offs that were done early in the planning

160 S. Schellenberg et al.

0

50

100

150

200

250

0 2 4 6 8 10 12
��

��

��

��

��
��

��

��
��

��

��
��

��

��

��

��

��

��

��
��

��
��

��

��

Week

Accumulated

Production (kt)

Event-based

Rule-based

Fig. 9. Total product yield of event-based and rule-based approach (in kilotonnes)

period in order to benefit from an event that happened later with the aim to
increase the overall production. This may be a valid decision with respect to
the evaluation function (higher production means fitter individual), but, since
we deal with a real-world environment, one has to consider the uncertainties
that the future may bear (especially for long-term plans). The future benefit
the optimiser was speculating for may in reality never materialise which would
result in an overall inferior plan (compared to one that would not have made
the trade-off decision in the first place). As a consequence, we introduced a
staged optimisation that partitions the planning horizon in periods which are
optimised in isolation. Once a period has been optimised, the resulting stock
is carried over into the next period serving as opening stock.

We ran a trial to determine the impact of partitioning the optimisation.
To obtain a normalised result we limited each period’s runtime according
to its share on the overall planning horizon. Optimising the whole period
at once took about 8 minutes. For the test case with two periods, a maxi-
mum optimisation time of 4 minutes was allocated for each of the periods.
Essentially, this means we allocated the processing time evenly, as opposed
to allowing the EA to exhaust the maximum of 2000 generations for each
period (in which case the result would be skewed as the search space is only

Supply Chain Network Optimisation 161

half the size, but the same amount of computational resources are applied
to optimise). The simulation was run four times over the whole period and
the planning horizon split in 2, 4 and 8 periods. Figure 10 confirms our ini-
tial assumption. The total yield drops by about 25% when comparing the
optimisation over the entire period to the 8-segments-run. The segmented
solutions are of lower quality in terms of the individual’s fitness, but when
audited by human planners they are much more viable as they exploit short
term opportunities while ignoring higher, yet more unlikely, long-term gains.

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8 9

�

�

�

�

Optimisation Periods

Accumulated Production (kT)

Fig. 10. Decline of total yield when optimising periods in isolation

5 Related Work

The optimisation of supply chain networks has been an ongoing research topic
for many years. The research work can be categorised into two major streams.
Either a supply chain has to be built from scratch with optimal location of
production facilities, storage and distribution centres, or an existing supply
chain has to be managed in order to make decisions that pertain sourcing
of raw materials, amount of production, etc. A combination of both is also
possible in which case an existing supply chain is supposed to be structurally
altered (e.g., by adding new sites or negotiating new supply contracts). Struc-
tural or management decisions can also be considered with regards to their
planning horizon. The former decisions are of strategic and the latter ones
of tactical and operational nature. This section identifies and discusses a col-
lection of related work undertaken in the area of optimising supply chains
focussing on both streams: Operational/tactical as well as tactical planning.

162 S. Schellenberg et al.

An approach that addresses long and short term planning questions is pre-
sented in [8]. In this paper, the authors describe a system that uses a hybrid
technique of mixed integer programming, a genetic algorithm, and discrete
event simulation to make optimal decisions of where to produce (internally
or externally), production planning, transportation as well as strategic deci-
sions on location and capacity of facilities. While the genetic algorithm is em-
ployed to optimise sourcing policies and qualitative variables, mixed integer
programming reduces computational costs by solving quantitative variables.
The effectiveness of the obtained supply chain configuration is evaluated by
a simulation.

In [9], an discrete-event simulation facilitates the evaluation of supply chain
scenarios of a food supplier. The results obtained from the simulations suggest
ways to improve the supply chain by changing inventory strategies. As a
result, the stock level could be reduced which was beneficial to the freshness
of the products, and additional products could be introduced as shelf space
was freed.

Other researchers concentrate only on isolated parts of the supply chain.
[10] describes a hybrid simulation-optimisation approach with the objective
to select the best supplier of a supplier portfolio (in a strategic way rather
than for daily sourcing: the supplier found is used throughout the planning
horizon). A genetic algorithm is employed to search for possible configura-
tions of suppliers. As with the previous approach, a discrete-event simulation
determines the key performance indicators (KPIs) that form the input for
the evaluation function.

Another approach concentrating on parts of the supply chain in isolation is
discussed by Xie and Petrovic in [11]. Their approach defines a new decision-
making system for stock allocation that is based on fuzzy IF-THEN rules.
Initially, the rule base is generated by domain experts, but they allow for
alteration by changing the rule’s weights. A simulation on a 2-echelon sup-
ply chain (1 warehouse, and multiple retailers) is run to demonstrate the
effectiveness of this approach.

Fuzzy set theory is also applied in [12]. Unlike [11], Wang and Shu use fuzzy
logic to model uncertainty such as demand, processing time and delivery of
supplies. The objective of their work is to develop a supply chain model that
minimises the inventory costs by meeting the demands. A genetic algorithm
tries to find the optimal order-up-to levels for all stock-keeping units. Again,
this approach only looks at one objective (minimisation of inventory costs)
and one method to achieve this objective (reduction of inventory).

The common denominator of the above papers is the application of a
simulation (mostly DES) in order to obtain properties of the supply chain
and evaluate the performance of the optimisation method. This observation
is also backed by several surveys such as [13, 14, 15]. Methods used to obtain
inputs for the simulation are mainly genetic algorithms (GA). However, even
though GAs seem to dominate, recent publications indicate an advent of
fuzzy logic systems as drivers for the simulation process.

Supply Chain Network Optimisation 163

Another aspect worth considering when building a solution that is meant
to be reusable is the structure of the building blocks of the supply chain, that
is, the model. Many attempts have been made to develop a unified supply
chain model and terminology. Some of them like [16] represent common termi-
nology or [17], which emphasises configurability and proposes event-discrete
simulation as means to analyse supply chains, but this work has its empha-
sis on business processes rather than the definition of reusable component as
they are desirable to create a programming model. Others like [18, 19, 20] use
special modelling languages to express the complexity of business processes
and automatically generate simulation models. Although all of them suggest
employing simulations to analyse supply chain networks, they require expert
knowledge of modelling languages like Rockwell Software’s ARENA, one of
the prevalent languages for modelling supply chain networks. The resulting
models may be generated in a programming language that is incompatible
to the rest of the system. We believe that a generic supply chain model can
be developed that supports both, flexibility and ease of use when creating
the model without the necessity to acquire expert knowledge on simulation
languages. The ideas presented in this chapter are implemented in a frame-
work which is employed to model the supply chain operations of a real-world
business.

6 Conclusion and Future Work

In this chapter, we looked at the application of an EA to the problem of
optimising the key decision points in the supply chain network of a major
agricultural chemicals company. Modelling the highly complex nature of that
company’s operations was the first part of the challenge of successfully ac-
complishing this endeavour. A balanced mix of discrete and continuous event
simulation had to be used. Furthermore, the model was designed in such a
way as to be amenable to use within the framework of an EA.

Of key importance was developing the ability to represent the decision
points in the supply chain network simulation as entities that could be ma-
nipulated by evolutionary operators. This was achieved in different ways. For
the event-based approach, firstly by allowing the timing of decision events
to be determined by values within the candidate individual representation,
and also the types of those decision events. Thus, for example, a candidate
individual could specify that the operation of “change from product A to
product B” could be scheduled to happen in a particular part of the network
on a given date and time. Secondly, the processing logic of “switching” nodes
of the network could be manipulated by evolutionary operators. For example,
the production of a particular chemical could involve a number of ingredients
which have to be drawn from a variety of sources. In some cases, it might be
easy to determine a set of rules to express the correct routing logic to use. In
other situation, it may not be obvious and thus it would be preferable to let
the individual represent decision making logic, as part of the encoding, and

164 S. Schellenberg et al.

then evaluate the performance of evolved logic as a component of the overall
fitness evaluation process.

The rule-based approach abandons the idea of having isolated nodes that
handle the sourcing. In contrast to the event-based system, a decision is made
at each sample point based on the current state of the system. The resulting
plan produces consistent and traceable decisions. Despite the fact that this
approach adds the process of balancing supply and storage capacities to the
search space (as opposed to running a deterministic repair function), it is able
to find a solution much faster while generating even better solutions. Reasons
for this observation may be that the search space of the event-based approach,
that is all combinations of type and date of events, seems to be larger than
the permutation of rules used in the rule-based approach. In addition, many
infeasible solutions seem to be generated which demand for repair by running
a costly re-evaluation.

Using rules to make decisions constricts the search space. However, only
those potential solutions seem to be neglected that are less viable, as indicated
by the better solutions obtained. The reason is less surprising when consid-
ering the nature of the problem. Changeovers, reduced plant production and
sourcing of material are based on rules. A changeover occurs once a tank is
reaching its maximum capacity, the production is reduced upon downstream
bottlenecks and a sourcing decision depends on minimal procurement costs.
Trying to find these decisions without understanding their natural cause is
more expensive and bears many lost opportunities compared to a supply
chain that is driven by a condition-decision scheme as we presented it.

The results presented in this chapter also illustrate the trade-off that is
frequently accepted by business managers in practice. By running the soft-
ware in a global mode over a large time-frame, an excellent result could
be achieved, but the validity of such a result could be doubted by human
managers who would rightly point out that the further out into the future
that assumptions are made about supply chain conditions, the less reliable
those assumptions would be. Hence we chose to apply the simulation/evo-
lution algorithm over the whole time-frame in phases, starting with a short
term phase of a few months, and then looking further into the future. This
gave our approach the benefit of seeking higher levels of optimisation in the
short term, wherein knowledge of conditions is quite firm, and then freezing
those results and progressively expanding the scope of inclusion to seek out
optimisation further into the future.

As constructed, the software application arising from the rule-driven sim-
ulation model and the EA presented in this chapter was able to provide
invaluable insight and speculative modelling (“what-if”) capabilities to man-
agers of the client company, allowing them to find ways to optimise their
supply chain network, and of course maximise production. This is the litmus
test of the value of this application, and it is a rewarding application of the
power of evolutionary computation to a real-world business.

Supply Chain Network Optimisation 165

In addition to our work presented in this chapter, several promising ideas
may improve the results obtained. As an example, we aim to expand the
linguistic terms that can be taken into account by adding future availabil-
ity of plants as well as past utilisation to smoothen out the plant’s overall
utilisation.

A promising method to improve the evolution of the rule bases is to em-
ploy a co-evolutionary approach in which rule bases would be developed in
isolation. An instance of an EA would only concentrate on its designated rule
base (i.e. one EA instance could be employed per plant to evolve rules for its
utilisation, one EA instance for sourcing, etc.) passing on the best of its rule
bases to form the overall solution rule bases.

This chapter has presented only the current state of our endeavour to
find a common model and methodology for optimising supply chain networks
which caters for many business cases and industries. We expect the current
method to be fine-tuned and extended to allow maximal generalisation and
applicability.

References

1. Hinkelman, E.G.: Dictionary of International Trade Handbook of the Global
Trade Community, 6th edn. World Trade Press (2005)

2. Law, A.: Simulation Modeling and Analysis (McGraw-Hill Series in Indus-
trial Engineering and Management). McGraw-Hill Science/Engineering/Math.
(2006)

3. Gunasekaran, A., Patel, C., Tirtiroglu, E.: Performance measures and metrics
in a supply chain environment. Internation Journal of Operations & Production
Management 21(1), 71–87 (2001)

4. Michalewicz, Z. (ed.): Genetic algorithms + data structures = evolution pro-
grams, 2nd edn. Springer-Verlag New York, Inc., New York (1996)

5. Hájek, P.: Mathematics of Fuzzy Logic (Trends in Logic), 1st edn. Springer,
Heidelberg (1998)

6. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy
logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)

7. Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and
prospects. Evolutionary Intelligence 1(1), 27–46 (2008)

8. Truong, T.H., Azadivar, F.: Simulation optimization in manufacturing analysis:
simulation based optimization for supply chain configuration design. In: WSC
2003: Proceedings of the 35th Conference on Winter Simulation, pp. 1268–1275
(2003)

9. van der Vorst, J.G.A.J., Beulens, A.J.M., van Beek, P.: Modelling and sim-
ulating multi-echelon food systems. European Journal of Operational Re-
search 122(2), 354–366 (2000)

10. Ding, H., Benyoucef, L., Xie, X.: Simulation optimization in manufacturing
analysis: a simulation-optimization approach using genetic search for supplier
selection. In: WSC 2003: Proceedings of the 35th Conference on Winter Simu-
lation, pp. 1260–1267 (2003)

166 S. Schellenberg et al.

11. Xie, Y., Petrovic, D.: Fuzzy-logic-based decision-making system for stock al-
location in a distribution supply chain. Intelligent Systems in Accounting, Fi-
nance and Management 14(1-2), 27–42 (2006)

12. Wang, J., Shu, Y.-F.: Fuzzy decision modeling for supply chain management.
Fuzzy Sets and Systems 150(1), 107–127 (2005)

13. Semini, M., Fauske, H., Strandhagen, J.O.: Applications of discrete-event sim-
ulation to support manufacturing logistics decision-making: a survey. In: WSC
2006: Proceedings of the 38th Conference on Winter Simulation, pp. 1946–1953
(2006)

14. Simulation Study Group. Simulation in the uk manufacturing industry (1991)
15. Terzi, S., Cavalieri, S.: Simulation in the supply chain context: a survey. Com-

puters in Industry 53(1), 3–16 (2004)
16. Supply Chain Council. Supply-Chain Operations Reference-model Version 9.0

(2008), http://www.supply-chain.org/ (January 15, 2010)
17. Rabe, M., Jaekel, F.-W., Weinaug, H.: Reference models for supply chain design

and configuration. In: WSC 2006: Proceedings of the 38th conference on Winter
Simulation, pp. 1143–1150 (2006)

18. Mackulak, G.T., Lawrence, F.P., Colvin, T.: Effective simulation model reuse:
a case study for amhs modeling. In: WSC 1998: Proceedings of the 30th Con-
ference on Winter Simulation, pp. 979–984. IEEE Computer Society Press, Los
Alamitos (1998)

19. Ding, H., Benyoucef, L., Xie, X., Hans, C., Schumacher, J.: One a new tool for
supply chain network optimization and simulation. In: WSC 2004: Proceedings
of the 36th Conference on Winter Simulation, pp. 1404–1411 (2004)

20. Ganapathy, S., Narayanan, S., Srinivasan, K.: Logistics: simulation based deci-
sion support for supply chain logistics. In: WSC 2003: Proceedings of the 35th
Conference on Winter Simulation, pp. 1013–1020 (2003)

http://www.supply-chain.org/

A Genetic-Based Solution to the
Task-Based Sailor Assignment
Problem

Dipankar Dasgupta, Deon Garrett, Fernando Nino,
Alex Banceanu, and David Becerra

Abstract. This chapter presents a study investigating a multi-objective for-
mulation of the United States Navy’s Task-based Sailor Assignment Problem
and examines the performance of a widely used multi-objective evolutionary
algorithm (MOEA), namely NSGA-II, on large instances of this problem.
The performance of the evolutionary algorithm is examined with respect to
both solution quality and diversity and has shown to provide inadequate di-
versity along the Pareto front. Domain-specific local improvement operators
were introduced into the MOEA, producing significant performance increases
over the evolutionary algorithm alone. Thus, hybrid MOEAs provided greater
diversity along the Pareto front. Also a parallel version of the evolutionary
algorithm was implemented. Particularly, an island model implementation
was investigated. Exhaustive experimentations of the sequential and parallel
implementations were carried out. The experimental results show that the
genetic-based solution presented here is suitable for these types of problems.

1 Introduction

According to the United States Navy’s personnel policies, roughly every three
years sailors serving on active duty are reassigned to a different job. As a
result, at any given time there exists a sizable population of sailors to be

Dipankar Dasgupta · Alex Banceanu
Department of Computer Science, University of Memphis, Memphis, TN, USA
e-mail: ddasgupt@memphis.edu,alexbanceanu@gmail.com

Deon Garrett
Icelandic Institute for Intelligent Machines/School of Computer Science,
Reykjavik University, Reykjavik, iceland
e-mail: deon@iiim.is

David Becerra · Fernando Nino
Department of Computer Science, National University of Colombia,
Bogota, Colombia
e-mail: {dcbecerrar,lfninov}@unal.edu.co

ddasgupt@memphis.edu,alexbanceanu@gmail.com
deon@iiim.is
{dcbecerrar,lfninov}@unal.edu.co

168 D. Dasgupta et al.

reassigned to available jobs. The Navy’s goal is to identify sailor and job
matches that maximize some overall criterion of satisfiability of sailors and
commanders and is referred to as the Sailor Assignment Problem (SAP).

In this research, the SAP and a “fine-grained” and more complex ver-
sion of SAP, called the Task-based Sailor Assignment Problem (TSAP), were
studied. In the TSAP, sailors have to be assigned to different jobs (tasks) in
different time slots. In this case, instead of assigning a single task to a sailor,
a sailor is assigned to multiple tasks, which are distributed in a certain num-
ber of time frames. Thus, it may be considered that each day is divided into
several shifts and sailors need to be assigned to particular tasks in each shift.
Accordingly, in this TSAP, a sailor can be assigned to different tasks in dif-
ferent time shifts, whereas in the case of SAP, a sailor cannot be assigned to
two different jobs at the same time.

In reality, the utility of a possible solution to the SAP/TSAP is not deter-
mined by a single measure. Instead, there are a number of attributes that go
into deciding whether a solution is good. Typically, each of these attributes is
represented by a distinct objective function. One approach to these types of
problems is to attempt to formulate a single metric that encompasses all as-
pects of solution quality and optimization based on this metric. Such a single-
objective formulation has the advantage that the resulting problem can be
solved using any of a vast set of classical optimization methods. However, con-
structing the metric requires detailed knowledge of the structure of each ob-
jective function. Therefore, it can be difficult for a decision maker to specify an
appropriate set of parameters to obtain a solution. To overcome the difficul-
ties mentioned above, multi-objective evolutionary algorithms (MOEAs) can
be applied to the multi-objective instance of the SAP/TSAP. In this chapter,
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) was run to obtain
multiple diverse solutions to the SAP/TSAP in a single run of the algorithm.
However, the results produced by this MOEA lack diversity when compared
to the solutions produced by perfect solvers (in the case of SAP).

Multi-objective optimization has its roots in the late 19th century welfare
economics, in the works of Edgeworth and Pareto. A mathematical formula-
tion of a multi-objective optimization problem (MOP) is as follows. Find a
vector x = [x1, x2, . . . , xn]T which:

1. satisfies the r equality constrains, hi(x) = 0, 1 ≤ i ≤ r,
2. is subject to the s inequality constrains, gi(x) ≥ 0, 1 ≤ i ≤ s, and
3. which optimizes the vector function z = f(x) = [f1(x), f2(x), . . . , fm(x)]T

It is clear that solving a MOP is focused on searching for the optimal values
of the decision variables (vector x) that minimize/maximize the objective
functions (vector f(x)) while satisfying the constraints. The vector x is an
n-dimensional decision vector or solution and X is the decision space, i.e.,
the set of all expressible solutions. z = f(x) is an objective vector that maps
X into �m, where m ≥ 2 is the number of objectives. The image of X in
objective space is the set of all attainable points Z (see Fig. 1).

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 169

xn

x1

x2

z1

zm

X
Z

decision
space

objective
space

z2

Fig. 1. The n-dimensional parameter space maps to the m-dimensional objective
space.

The scalar concept of optimality does not apply directly in the multi-
objective setting. A useful replacement is the notion of Pareto optimality.
Essentially, a vector x∗ ∈ X is said to be Pareto optimal for a given MOP if
all other vectors x ∈ X have a higher value for at least one of the objective
functions z = f(x), and no smaller value for all objectives. Pareto optimal
points are also known as efficient, non-dominated, or non-inferior points. We
can also speak of locally Pareto optimal points, for which the definition is
the same as the one just given, except that we restrict attention to a feasible
neighborhood of x∗. Typically, there is an entire curve or surface of Pareto
points, whose shape indicates the nature of the tradeoff between different
objectives.

Over the past ten years, a large amount of research has been conducted
on the use of evolutionary techniques to solve MOPs. The inherent use of
a population of candidate solutions provides benefits unattained by other
techniques when applied to problems with two or three objectives. In recent
years, some attention has been devoted to the experimental study of the
performance of evolutionary techniques in problems with many objectives.
These are optimization problems with more than three conflicting objectives.
The experimental studies conducted lead to the conclusion that the perfor-
mance of evolutionary techniques is severely hindered when the dimension of
the objective space grows. A recent study [1] shows that for problems with
more than ten objectives, a purely random search may perform favorably
when compared with an evolutionary technique. It is well-known that for
single-objective problems the performance of evolutionary algorithms can of-
ten be improved through the introduction of a local search operator. These
combinations of evolutionary and local searches are known by the names of
Memetic Algorithms (MAs) [2, 3], Hybrid Evolutionary Algorithms [4, 5, 6],
and Genetic Local Search [7]. These hybrids of evolutionary and local search
algorithms have been shown to provide state-of-the-art performance on a wide
range of hard single-objective combinatorial optimization problems [8, 9] and
have also proven to provide an effective performance on MOPs [10, 11, 12].

170 D. Dasgupta et al.

Garrett et al. [13] used genetic algorithms (GAs) to solve single-objective
SAPs and compared the results they obtained with an existing algorithm,
the Gale-Shapley algorithm [14]. The Gale-Shapley algorithm is a quadratic
time algorithm for finding an optimal set of stable matches (i.e., marriages)
and produces a set of marriages that is stable and optimal with respect to the
preferences of one group after O(n2) steps. If minimizing the total permanent
change of cost is not one of the objectives in the SAP, the results produced
by the Gale-Shapley algorithm are optimal sets of assignments with respect
to the preferences of the sailors and commanders, and such a match may not
necessarily involve all sailors. The work in [13] examined an alternative GA
approach to the SAP in order to allow outside constraints to influence the
quality of the match and also investigated the ability of a GA to generate
multiple good solutions to the SAP through niching techniques. The solu-
tions produced by the GA were significantly better with respect to coverage
and fulfilling the objectives of SAP when compared to the Gale-Shapley al-
gorithm. Due to the scalarization of the objective functions (to convert the
multi-objective SAP to a single-objective problem), however, the impact of
a change in a weight vector on the solution is unpredictable, thus making it
necessary to run the algorithm several times with different parameter settings
to get a broad view of the solution space. For this reason, diversity (cover-
age) of the solutions is highly dependent upon the ability of the algorithm
to find Pareto optimal solutions as well as the proper selection of parameters
employed by the user.

Therefore, to overcome such problems, Dasgupta et al. [4] extended the
earlier work to incorporate each objective directly into the optimization prob-
lem. Two well-known MOEAs – NSGA-II [15] and SPEA2 [16] – were im-
plemented to solve the multi-objective SAP. The results produced by these
algorithms lacked diversity when compared to the CHC algorithm, a single-
objective GA, repeated for many weight vectors. Then, a local search oper-
ator was constructed and integrated into the MOEAs in such a way as to
emphasize the importance of finding diverse solutions across the Pareto set
approximation. Specifically, a hybrid GA featuring an efficient SAP solver,
the Kuhn-Munkres (KM) algorithm [17, 18], was used to further improve the
performance. The KM algorithm solves linear assignment problems in O(n3)
time and it was chosen due to the fact that the single-objective versions of
SAP with small modifications are linear assignment problems. This approach,
while yielding very good solutions, suffers from very long run times as the
problem size increases. Therefore, a way to find more diversified solutions is
to combine the solutions produced by the perfect solver KM with a MOEA
in what was called an “informed initialization”.

Dasgupta et al. in [19] presented an extension of the SAP (i.e., the TSAP).
In the TSAP, the SAP is no longer considered as a static assignment but as a
time-dependent multi-task SAP, making it a more complex problem; in fact,
an NP-complete problem. Subsequently, a multi-objective formulation of the

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 171

United States Navy’s TSAP was studied and the performance of NSGA-II
was examined on large instances of this problem.

This chapter is a more comprehensive version of the work presented in [19].
The rest of the chapter is organized as follows. Section 2.5 presents the TSAP
in detail. The proposed multi-objective evolutionary approach to solve the
TSAP is then described in Section 3. In addition, Section 4 presents a parallel
implementation of the evolutionary algorithm to solve the TSAP based on
an island model. Section 5 describes the experiments carried out and a dis-
cussion of the results of the MOEA based approach is also presented. Finally,
Section 6 presents the conclusions of this work as well as discusses possible
improvements in future work.

2 Types of Assignment Problems

2.1 Assignment Problem

The assignment problem [20] is a well-studied and important combinatorial
optimization problem. This problem can be stated as: Given a number of
agents n and a number of tasks m to be performed by the agents, the goal
is to find an assignment of the tasks to the agents in such a way that some
objective measures (objectives) such as cost, training, and satisfaction, are
optimized. In general, there are some restrictions that have to be satisfied;
for example, workload limitations on the agents.

2.2 Linear Assignment Problem

The Linear Assignment Problem (LAP) [20] is the simplest assignment prob-
lem, in which the number of agents and number of tasks are equal and every
agent can perform every task, but only one task can be assigned to each
agent. In most cases, there is only one goal to be optimized, usually called
cost. Then the problem is equivalent to the problem of finding an optimum
weight vertex matching in an n × n cost-weighted complete bipartite graph.

Formally, the LAP can be stated as follows: given a set of agents A =
{a1, a2, . . . , an} and a set with the same number of tasks T = {t1, t2, . . . , tn}
and the cost function C : A×T → R, find a bijection (matching) m : A → T
such that the cost function:

∑

a∈A

C(a, m(a)) (1)

172 D. Dasgupta et al.

is minimized (or profit maximized). Usually the cost function is also viewed
as square real-valued matrix C with elements Cij = C(ai, tj). This problem
can be expressed as an integer linear program with the objective function:

n∑

i=1

n∑

j=1

Cijxij (2)

subject to the constraints:

n∑

i=1

xij = 1 ∀j ∈ {1, 2, . . . , n} (3)

n∑

j=1

xij = 1 ∀i ∈ {1, 2, . . . , n} (4)

xij ∈ {0, 1} ∀i, j ∈ {1, 2, . . . , n} (5)

xij = 1 if agent i is assigned to perform task j and it is 0 otherwise.

2.3 General Assignment Problem

The General Assignment Problem (GAP) is a generalization of the assign-
ment problem that was originally studied as the problem of scheduling parallel
machines with costs [9]. In this scenario, a number of agents n and a number
of tasks m to be performed by the agents are given. Any agent (sailor) can
perform any task, but each agent has a budget and the sum of resources
required for tasks assigned to it cannot exceed this budget. When an agent is
assigned to perform a task, it incurs some costs and resources associated with
it. The solution to this problem is to find an assignment in which all agents
do not exceed their budget and total cost of the assignment is minimized.
Let bi be the budget of agent i, let Rij be the resources and Cij be the cost
incurred when agent i is assigned to perform task j, then the GAP can be
expressed as the following integer linear program:

minimize

n∑

i=1

m∑

j=1

Cijxij (6)

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 173

subject to the constraints:

summ
j=1xijRij ≤ bi ∀ i ∈ {1, 2, . . . , n} (7)

m∑

j=1

xij ≤ 1 ∀ i ∈ {1, 2, . . . , n} (8)

n∑

i=1

xij = 1 ∀ j ∈ {1, 2, . . . , m} (9)

xij ∈ {0, 1} ∀ i ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . , m} (10)

2.4 Sailor Assignment Problem

Every two years, each sailor in the Navy is required to change jobs. As a
result, at any given time, there are many sailors who require assignment to
new jobs. The problem the Navy faces is to find a set of assignments, also
called a match, of sailors to jobs which keeps the sailors happy and maintains
fleet readiness while minimizing the cost of implementing those assignments.
Formally, the SAP can be formulated as follows:

Maximize

n∑

i=1

m∑

j=1

Fi,jdi,j (11)

subject to the constraints:

n∑

i=1

di,j ≤ 1 ∀ j ∈ {1, 2, . . . , m} (12)

m∑

j=1

di,j ≤ 1 ∀ i ∈ {1, 2, . . . , n} (13)

where Fi,j denotes the fitness of assigning sailor i to job j and D is an
assignment matrix such that

di,j =
{

1 sailor i assigned to job j
0 otherwise (14)

2.5 The Problem: Task-Based Sailor Assignment
Problem

Compared to the SAP, this problem is specifically designed for naval bases
of the United States Navy, where there are a limited numbers of sailors and
during one day, the same task may have to be done by different sailors. So

174 D. Dasgupta et al.

depending upon the requirements, a day or a week is divided into different
time shifts where different tasks have to be performed by sailors. However,
the same task may not continue the next day or the next time shift requiring
the sailor to be moved to another task.

This shows that a sailor may have to do different tasks in a day but, clearly
the same sailor cannot perform more than one task in the same time shift.
The goal here is to minimize the number of sailors working on the naval base.
In short, instead of assigning a single task to a sailor, a sailor has to perform
multiple tasks, which are distributed in a certain number of time frames. It
may be considered that each day is divided into several shifts and sailors need
to be assigned to particular tasks that are required to be completed in that
shift. Accordingly, a sailor can be assigned different tasks in different shifts
(see Figure 2).

Fig. 2. Graphical description of the TSAP

Similar to the SAP, here also sailors are examined for a variety of qualifica-
tions and limitations to determine if each sailor is a valid match for one of the
tasks, and a score is computed determining the extent to which the sailor is a
valid match. The training score encompasses many factors, including the pay
grades of the sailor and the proposed task, the amount of training required
for the sailor to be able to perform the duties of the proposed job, among
others. In addition, the monetary cost of assigning the sailor to the proposed
task is computed.

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 175

After all candidates have been identified, the sailors are allowed to rate
those tasks for which they are qualified. The final set of assignments must
satisfy Navy regulations and must do so at a reasonable cost to the Navy. In
this work, we will assume that sailors may be assigned only those tasks for
which the sailors applied and were ranked.

After the command preview stage, the detailer must construct the set of
assignments in accordance with the regulations and preferences of the Navy.
The complexity of the detailing process limits the Navy’s ability to make
effective decisions. Therefore, an automated system for quickly finding good
solutions to the problem is needed. Formally, the TSAP can be described as
follows:

Let n be the number of sailors, m be the number of task classes and
t be the number of time slots. Any eligible sailor can be assigned to any
task in a time slot. Each sailor has his/her own capacity and consumes some
resources for doing tasks assigned to him/her. The problem is to find a sailor-
task assignment for each time slot in such a way that minimizes the number
of sailors along with fulfilling the previous objectives of the SAP, namely,
to maximize the total training score, the sailor preference, the commander
preference, and to minimize the task sailor assignment cost. Additionally, the
following constraints are involved in the TSAP:

1. the sum of the resources for a sailor-task assignment over given time should
not exceed its capacity,

2. the same sailor cannot be assigned to multiple tasks in one time slot, and
3. the number of sailors working in one time slot should be equal to the

number of tasks required to be done in that time slot.

Let capi be the capacity of sailor i, Rij be the resources and Cijk be the
cost of assigning sailor i to perform task j on time slot k . Let yjk be the
requirement of the number of class j tasks in time slot k, and xijk be an
indicator of whether the sailor i performs task class j in timeslot k or not.

Then the TSAP can be formally expressed as the following multidimen-
sional integer linear program:

minimize F(x) = (f1(x), . . . , fN (x)) (15)

where x = (xijk)i,j,k; fobj for obj = 1, . . . , N are the objectives to be mini-
mized defined as

fobj(x) =
n∑

i=1

m∑

j=1

t∑

k=1

xijkCobj
ijk (16)

with Cobj
ijk the cost of assigning sailor i to task j on time slot k determined

by objective obj; and F(x) is subject to the constraints:

176 D. Dasgupta et al.

m∑

j=1

xijkRij ≤ capi ∀ i ∈ {1, 2, . . . , n} , ∀ k ∈ {1, 2, . . . , t} (17)

m∑

j=1

xijk ≤ 1 ∀ i ∈ {1, 2, . . . , n} , ∀ k ∈ {1, 2, . . . , t} (18)

n∑

i=1

xijk = yjk ∀ j ∈ {1, 2, . . . , m} , ∀ k ∈ {1, 2, . . . , t} (19)

xijk ∈ {0, 1} ∀ i ∈ {1, 2, . . . , n} , ∀ j ∈ {1, 2, . . . , m} (20)
∀ k ∈ {1, 2, . . . , t} (21)

Without major difficulty, it can be shown that the TSAP is NP-Complete.
Since there is no notion of time slot in the General Assignment Problem
(GAP), for reducing the instances of GAP to TSAP, consider a time slot
which has all tasks to be done by sailors listed in the GAP. As no sailor
will be repeated in this time slot and the sum of the resources for sailor-task
assignments will be less than or equal to the capacity and as there is only
one time slot covering all the tasks, it is ensured that all tasks are assigned
to different sailors. In this way all the constraints are fulfilled and a GAP
instance is reduced to a TSAP instance. Hence by this reduction process, it
can be shown that the solution for the TSAP and GAP will be identical.

3 The Approach: A MOEA for the TSAP

Some of the most promising approaches to many MOPs arise from evolution-
ary techniques. One of the primary benefits touted by practitioners is the
ability of MOEAs to cover the Pareto front in a single run of the algorithm.
Any multi-objective EA must push the initial population in the direction of
Pareto optimal solutions and, ideally, the algorithm would terminate with a
set of non-dominated solutions such that no possible solution could dominate
any member of the Pareto front. This set is called the true Pareto optimal set,
or true Pareto front. In practice, we often wish only to find solutions that are
very good and non-dominated with respect to one another. This requires that
the algorithm routinely improve the quality of the initial randomly generated
solutions until some level of acceptability has been met. Several MOEAs have
been proposed in the literature with varying degrees of success. Among these
algorithms, the Non-dominated Sorting Genetic Algorithm by Deb and others
(NSGA-II) [15] and the Strength Pareto Evolutionary Algorithm (SPEA2) of
Zitzler et al. [16] have been widely studied and found to be effective across a
range of common test functions as well as combinatorial optimization prob-
lems. In this work, NSGA-II is used to solve the TSAP.

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 177

3.1 Chromosome Representation Scheme

One of the main decisions to be made when adapting a GA to a particular
problem is how to encode solutions to the problem in a manner amenable to
genetic search. In this work, we utilize an integer encoding. A chromosome
consists of a set of integers, each representing a sailor assigned to perform a
particular task. Each sailor and job is given an identifying integer number.
The length of the chromosome is equal to the total number of tasks that
should be assigned to sailors along all the time slots. Each integer is chosen
from a subset of possible numbers, precisely those representing valid sailors
for that task. In this way, we try to ensure that only those sailors qualified
to perform a task may be assigned. However, it may be possible that in the
middle of the search process, no sailor can be assigned to a task, then a ‘-1’
is assigned meaning that this task has not yet been assigned.

A linear chromosome representation is used as follows: the week is divided
into a number of days d which are subdivided into k time slots. Each time slot
contains variable number of tasks to be done by eligible sailors. Figure 3 shows
the representation of a chromosome where each day is divided into multiple
time slots and tasks contained in each time slot are done by the eligible
sailors; here, tm,j represents the task class m and its jth instance to be done
by sailor Si. Decoding a chromosome is simply performed by assigning sailor
Si to the corresponding task on location i of the chromosome, which occurs
at the corresponding time slot k.

It is important to note that tasks are associated with corresponding sailors
but they are not explicitly specified in the chromosome, which contains sailors
only. Therefore, it is necessary to map the sailors to tasks in the decoding
process.

Fig. 3. Chromosome representation

Note that in Figure 3 a random crossover or mutation could easily result in
a violation of the constraints. The second and third constrains of the TSAP
(see Section 2.5) ensure that feasible solutions do not assign two different
tasks to the same sailor at a particular time slot, the sailor’s capacity should
not be exceeded and that all the tasks are assigned a sailor to perform it. But,
the proposed encoding cannot prevent violations of the constraints to occur.
Notice that it can also happen that a sailor or task may be left unassigned.

178 D. Dasgupta et al.

3.2 Objectives and Fitness Measure

The objective functions of this entire problem are following:

1. Minimize the number of sailors assigned to navy tasks
2. Minimize the sailor-task assignment cost
3. Maximize the training score (TS) of a particular sailor
4. Maximize the sailor preference (SR) of specific tasks
5. Maximize the commander preference (CR)

The multi-objective optimization process used in this work consists of min-
imizing all of the five objectives defined above. Also the values of all the
objectives are normalized in the [0, 1] interval. However, it should be noticed
that while in principle, these values are scaled such that the objective func-
tion values range from 0 to 1, in practice the extreme values never occur. The
reason is that multiple sailors are in contention for the same tasks. Also it is
assumed that each sailor can be assigned to those tasks which maximize or
minimize the values of each objective function. However, constraints make it
very unlikely that all such situations can be simultaneously attained. Thus,
the actual upper and lower bounds for each objective are unknown for any
problem instance of any size. As a result, it is unlikely that a single solution
(slate) reaches the value 1.0 in all or in any objectives.

A crucial issue here is the assurance that all necessary constraints (Sec-
tion 2.5) need to be satisfied. Therefore, during the evolutionary optimiza-
tion process, an infeasible solution is penalized for constraint violation as
explained below. These necessary characteristics of the TSAP are taken into
account by the inclusion of the following penalization functions. (These pe-
nalization functions were already used in [19]):

1. Unassigned Tasks Penalty (UTP): This value is used to penalize solutions
which contain unassigned tasks and is defined as:

UTP =
No. of unassigned tasks

Total no. of tasks
(22)

2. Redundant Sailors Penalty (RSP): This value penalizes solutions contain-
ing same sailors repeated in a single time slot and is computed as

RSP =
No. of redundant sailors

Total no. of tasks
(23)

3. Capacity Exhaustion Penalty (CEP): CEP enforces penalty in a solu-
tion once it finds a sailor assigned to a task though his/her capacity gets
exhausted already in that solution. It can be calculated as:

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 179

CEP =
Capacity exhaustion

Sum of max. resources to do all tasks
(24)

A single penalization valued was computed as the sum of UTP , RSP , and
CEP . Then this penalty value is divided and an equal “portion” of it is added
to each objective. Therefore, the penalization is equally distributed among
all the objectives.

After further analysis some additional constraints were introduced to take
care of balancing the workload among all sailors, attempting to assign the
sailor to consecutive tasks while guaranteeing a minimum of hours per day
as follows:

1. Excessive fluctuations penalty (EFP): This value is used to penalize those
solutions that assign the work to the sailors in such a way that they keep
working for the whole day with very short breaks in between. It is com-
puted as:

EFP =
∑n

i=0 TFi

n × TS × TD
(25)

where n is the total number of sailors, TFi is the total fluctuations for
sailor i in a week, TS is the total number of time slots per day and TD is
the total number of days in a week.

2. Uneven distribution of working hours penalty (UDWP): This constraint
penalizes those solutions that allow timeslots very haphazardly, placing
too much burden on some sailors and giving very little work to others.

UDWP = tanh

(
σ

k × μ

)
(26)

where μ is the average number of timeslots worked by a sailor per week,
σ is the standard deviation of the number of timeslots worked from the
mean μ and k is a constant which has been set to the value 8 after rigorous
experimentation.

3. Instability in 24 hour time frame penalty (IP): This constraint penalizes
the solution to make sure that the sailor does not have to switch his state
(i.e., work to rest and vice versa) too frequently

IP =
∑n

i=0 MF x
k

n × TSx
(27)

where n is the number of sailors, MF is the maximum number of fluctu-
ations in a 24 hour time frame for sailor k and TS is the number of time
slots per day. All these latest constraints have been normalized and scaled
to the range of 0 to 0.3.

180 D. Dasgupta et al.

3.3 Genetic Operators

One simple mutation operator is performed by choosing a particular task
at random and then assigning a new qualified sailor to that task. However,
after mutating a solution, the capacity of the newly assigned sailor could be
exhausted. Also, a crossover operator is implemented by swapping the sailors
assigned to do all the tasks in a particular time slot in two solutions. As in
mutation, after performing crossover, it is likely that the offspring violate
the capacity constraint. Therefore, a repair operator is implemented to try
to maintain feasible solutions. These genetic operators are described in the
following sections.

3.3.1 Mutation

The mutation operator works as follows: Initially, it chooses one random
location from the chromosome. It finds out the sailor who has been assigned
to that task. Then it determines the list of possible sailors who can perform
that task and randomly picks a sailor out of them and substitutes the current
sailor with the new one keeping two constraints in mind: the new sailor is not
repeated in that time slot and has enough capacity to perform that particular
task. This process continues until a new sailor can be assigned to that task or
all the eligible sailors are checked, in which case, the sailor assigned to that
task remains unchanged.

It is important to notice that given a specified mutation rate Pm, the
effective mutation rate, the percentage of attempted mutations that actually
effect some change in the individual, is less than Pm, since only some of the
attempted mutations are completed successfully. As the proper setting of the
mutation rate is a crucial aspect of any evolutionary algorithm, it is important
to understand the relationship between the specified mutation rate and the
effective mutation rate on the TSAP. Clearly, this relationship is intricately
linked to the amount of contention for tasks, which in turn depends critically
on the ratio of tasks to sailors in a particular instance of the problem. As this
ratio increases, the likelihood of finding a sailor to perform a particular task
which is not currently assigned to another sailor increases, thereby increasing
the percentage of mutations that can be completed successfully.

Randomization of a newly created chromosome utilizes the same process as
the mutation operator described above. Each task is assigned to a randomly
selected qualified sailor if one is available. If no sailor is available, then the
randomization procedure marks the task unassigned.

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 181

3.3.2 Crossover

The crossover operator picks a time slot at random from one parent and swaps
it with the same time slot of another parent. This operator does not need to
check for redundant sailors on the same time slot that is being swapped as
the entire time slot is swapped instead of single sailor of the time slot. The
crossover operator is depicted in Figure 4.

Fig. 4. The offspring produced by swapping of time slots between two parents

3.3.3 Repair Operator

A repair operator is implemented to attempt to recover from possible con-
straint violations after mutation and crossover and works as follows. First, the
chromosome is traversed to look for unassigned tasks and for each unassigned
task, a qualified sailor whose capacity has not been exhausted is assigned to
this task. If no sailor is available to perform assigned to the task, it remains
unassigned. Then each time slot is checked for redundant assigned sailors.
If a solution contains the same sailor assigned to two different tasks in a
single timeslot, then the list of eligible sailors for a randomly chosen task is
examined and a new sailor is assigned. If after trying to assign a new sailor
to that particular task this constraint is still violated, the task is marked as
unassigned.

In order to perform a repair mechanism on the sailor capacity constraint,
the sailor capacity exhaustion is defined as the number of extra resources
(hours) a particular solution assigns to a particular sailor. Accordingly, for
each sailor whose capacity has been exceeded, the repair operator attempts
to assign a different sailor to the task he/she has been assigned until the
capacity is no longer exhausted. Note that even after repair it is likely that
the capacity of some sailors remains exhausted.

182 D. Dasgupta et al.

3.4 Hybrid Approach

The proposed genetic-based technique was combined with some local search
operators as follows. Specifically, two local search operators were imple-
mented: a sailor shift operator and a sailor swap operator. The sailor shift
search operator performs a random shift of a sailor on a solution in the same
way as the TSAP mutation operator. On the other hand, the sailor swap op-
erator picks a particular sailor assigned to perform a task and tries to swap
it with another sailor chosen at random, previously checking feasibility and
constraint violations. This process is repeated for a pre-specified number of
times. Several experiments were carried out for all four versions of GAs: one
for standard NSGA-II and other three for hybrid NSGA-II.

4 Parallel Implementation of the Proposed Approach

The processing elements in parallel computation can be diverse and include
resources such as a single computer with multiple processors, several net-
worked computers, specialized hardware, or a combination of the above. Op-
timization problems are among the most interesting and challenging tasks
suitable for the use of parallelization techniques.

Parallelization techniques have always been a focus of research in evolu-
tionary algorithms for single-objective optimization because of their
population-based nature. As a natural extension, parallelization techniques
have also been used for evolutionary multi-objective optimization. Thus, dif-
ferent parallel approaches applied to single-objective optimization problems
have been widely suited and reported, particularly, their modeling, perfor-
mance and behavior have been investigated. However, a modest insight has
been given to parallel approaches to solve MOPs. Different parallel models
have been proposed in the design of multi-objective optimization algorithms,
but only a few of the reported parallel approaches are accessible to compare
the performance of those implementations. Then, determining the efficiency
and effectiveness of parallel implementations is usually difficult.

The advances in the use of multi-objective evolutionary approaches for
real-world applications, containing multiple objectives and high dimensional-
ity, have led to the exploitation of the inherent parallelism of such algorithms.
Since the United States Navy’s TSAP is a complex NP-hard, CPU time con-
suming process, these features make it a perfect candidate to be solved using
a parallel model. Then, the efficiency (i.e., how well it performs computa-
tionally) and effectiveness (i.e., how good its reported solutions are) of the
model used to solve the TSAP could be improved by increasing the number
of processors allocated to it.

Given that a MOEA approach for the TSAP was already implemented,
the main idea of the proposed parallel implementation is to study how a

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 183

parallelization model affects the MOEA performance. Specifically, the focus
of the proposed approach in this work is to improve the effectiveness (i.e.,
how good its reported solutions are) of the algorithm to find the solutions
to TSAP, discovering what solutions arise from simultaneous execution of
multiple TSAP instances. Additionally, we are interested in investigating the
effects of varied parallel algorithmic parameters, and in determining how the
used policies affect the MOP solution process.

Accordingly, some groups or categories can be defined based on the shared
features of the algorithms. Specifically, the most common parallel evolution-
ary algorithms can be grouped into one of three categories: master-slave, is-
lands, and diffusion models. In the master-slave model the objective function
evaluations are distributed among several slave processors while a master pro-
cessor executes the MOEA, and other overhead functions. In the island model,
the MOEA’s populations are relatively isolated from each other but individ-
uals within some particular island occasionally migrate to another one. As in
the master-slave model, the diffusion model deals with one conceptual popu-
lation, except that each processor holds only a few individuals [21]. Clearly,
in all these models a different trade-off between exploration and exploitation
of the search space is required.

4.1 Parallel Implementation Tools

The proposed parallel version of the MOEA for solving the TSAP was
implemented using the JavaSpaces technology. JavaSpaces was the chosen
high-level coordination tool for gluing processes together into the distributed
application because it allowed the development of a simple design and
implementation.

In addition, the proposed approach uses an island MOEA model as its par-
allel paradigm. Particularly, a master processor was used for managing tasks
and several slave processors to execute the TSAP algorithm. Accordingly,
the master processor generates tasks, writes them into a space and collects
results from the space.

4.1.1 JavaSpaces

Building distributed applications with conventional network tools usually en-
tails passing messages between processes or invoking methods on remote ob-
jects. Therefore, several technologies can be used to build these applications,
including low-level sockets, message passing, and remote method invocation
(RMI). In contrast, in JavaSpaces applications, the processes do not commu-
nicate directly, but their activities are coordinated by exchanging objects
through persistent object exchange areas (i.e., space or shared memory).

184 D. Dasgupta et al.

Then, JavaSpaces provides a different programming model that views an
application as a collection of processes cooperating via the flow of objects
into and out of one or more spaces. This approach can simplify the design
and implementation of sophisticated distributed applications. Hence, a pro-
cess can write new objects into a space, take objects from a space, or read
(make a copy of) objects in a space, as depicted in Figure 5 [22, 23].

Fig. 5. Processes use spaces and simple operations to coordinate activitiesCopy-
right Sun Microsystems, Inc.

The JavaSpaces technology provides a significant number of utility inter-
faces and classes that provide a valuable set of tools for developers. One of
these tools is the compute-server implementation, which is an implementa-
tion of an all-purpose computing engine using a JavaSpace. A compute-server
provides a service that accepts tasks, computes them, and returns results.
The server itself is responsible for computing the results and managing the
resources that complete the job. Behind the scenes, the service might use
multiple CPUs or special-purpose hardware to compute the tasks faster than
a single-CPU machine. The typical space-based compute-server is depicted
in Figure 6.

4.1.2 Island Models

The island paradigm is based on the biological evolution of natural popula-
tions in relative isolation, such as those that might occur within an ocean
island chain with limited migration. Then, in the island model, every pro-
cessor runs an independent MOEA using a separate sub-population. The
processors might cooperate by regularly exchanging migrants which are good
individuals in their sub-populations [24].

The island models can be categorized into two main groups, cooperating
subpopulations and a multi-start approach. The cooperating subpopulation

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 185

Fig. 6. A space-based compute-server(Illustration by James P. Dustin, Dustin
Design)

methods are based on partitioning the objective/search space. In this group,
the population is divided into subpopulations. These algorithms attempt to
distribute the task of finding the entire Pareto optimal front among partic-
ipating processors. This way each processor is destined to find a particular
portion of the Pareto-optimal front. In the multi-start approach, each pro-
cessor independently runs an optimization algorithm. The basic idea of using
such a model is that running several optimization algorithms with different
initial seeds is more valuable than executing only one single run for a very
long time [21].

The island paradigm is termed coarse-grained parallelism because each
island contains a large number of individual solutions. Communication back-
bones can connect processors in logical or physical geometric structures such
as rings, meshes, toruses, triangles, and hypercubes. The communication
backbone, the island model architecture (as the number of islands) and the
migration policies (such as how often migration occurs, the number of so-
lutions to migrate, how to select emigrating solutions, and which solutions
are replaced by immigrants) are some of the key issues that should be faced
when an island model is implemented.

4.2 The Proposed Parallel Implementation

As mentioned earlier, the proposed approach is based on an island model
as parallel paradigm and on a compute-server model with regard to the

186 D. Dasgupta et al.

JavaSpace implementation. The implemented island model is categorized as
a multi-start approach, and it used a ring geometric structure as its commu-
nication backbone. The proposed implementation performs three main tasks:
initiating work and slave registration, handling migrations, and finishing work
and sending and collecting results. Figure 7 depicts the main components of
the JavaSpace technology. Note that the arrow represents one of the three
actions (write, take, or read) that can be performed by the different clients
(either master or slave) in order to communicate and synchronize through
the shared JavaSpace area.

Fig. 7. JavaSpace technology components

4.2.1 Initiating Work and Slave Registration

The proposed implementation requires that the master keeps an updated list
of the slaves working for it at any time so it can properly synchronize them.
In order to accomplish this, all the clients must register with their master.

Once a master starts, the first step consists of writing (W) an entry (Ini-
tEntry) into the JavaSpace. This entry will then be taken by slaves that can
perform the task. This entry is read (R) by the slaves. It is important to
note that the entry must only be read (instead of being taken) by the slaves,
this is because the entry “Init” must be kept in the JavaSpace during all the
processes so that new slaves can be added at any time.

Subsequently, once a slave receives the InitEntry, it requests registration
from the master. The slave then writes an unapproved SlaveEntry. Then,
the master takes this entry. The master then writes the same entry that was
taken before. The only difference is that this entry has been already approved
by the master.

In the last step, the slave takes this entry, and writes it back. The reason
for this rewriting is that the slave must be the author of the entry in the space
in order to keep its lease alive. This entry lease is renewed in the background
by the slave so that the master can know when the slave is not working on
the task anymore, either because it completed the task successfully or due to
an unexpected error, such as a network error or unavailability of the entry.
At the end of this step, the master has a list of all the slaves that are working
for it. The master will periodically check the status of its current slaves.

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 187

4.2.2 Handling Migrations

At a given point of the execution of the algorithm a migration will occur,
and each of the slaves will send EmigrantEntries to the JavaSpace and then
wait for an ImmigrantEntry to be sent to it by the master. The master will
then collect all EmigrantEntries that are sent out by its slaves and will store
them. After all slaves have sent their emigrants, the master creates an Im-
migrantEntry for each one of its slaves based on the emigrant populations
that it has collected in the previous step, and it will write all of them to the
JavaSpace. Finally, each slave is able to take its corresponding immigrant
and continue the execution of its task, i.e., the MOEA.

4.2.3 Finishing Work and Sending Results

When a slave client has reached the maximum number of evaluations in the
TSAP algorithm, it writes a ResultEntry into the JavaSpace. These entries
are then taken by the master, which adds them into its final result set. When
the first ResultEntry is taken by the master, it also cancels the InitEntry,
so that no new slaves begin working on it past this point in time. After
this point the master waits for its slave list to empty, either because the
slaves complete their work or due to an unexpected error that prevented a
slave from finishing its computation. Once this occurs, the master presents
its final result set, comprised of all the results received.

5 Experiments and Results

To test the evolutionary algorithm, a set of sample problems is produced
which contain a reasonable ratio of sailors to tasks. Each problem was gen-
erated according to a specified number of sailors, tasks and time slots. Also,
the mean and standard deviation of a normally distributed random variable
determine number of tasks each sailor can perform.

The complexity of the problem and the time constraints prevented us from
performing more rigorous statistical analysis of the results. Nonetheless, we
believe that our experiments shed valuable light on the problem and can serve
as a fruitful base for future research on the SAP and its variants.

In all the problems, 7 days with 12 time slots per day were considered
which makes the problem harder since it increases the number of tasks for
all the time slots. Also, a variable expected ratio of sailors per task was used.
Table 1 shows the parameters of each sample problem used in this work.

188 D. Dasgupta et al.

5.1 Metrics Used for Evaluating the Solution

Many existing performance metrics in multi-objective optimization require
knowing the set of Pareto-optimal solutions, and such solutions are used to
compare against the approximate solutions obtained. It is also important to
notice that many existing performance metrics for evaluating the distribu-
tion of solutions cannot be used in higher dimensions because the calcula-
tion of diversity measure is not straightforward and often computationally
expensive [25].

In case of the SAP, to measure the performance of the algorithms, the
coverage and proximity metrics [26] were used while on the other hand, for
the TSAP, since Pareto-optimal solutions for the considered TSAP instances
are not known, some of the existing performance metrics cannot be used to
evaluate the results of the proposed approach. Therefore, the hypervolume
was then used as a quality measure. Explanation about various performance
metrics are as follows:

1. Hypervolume. The hypervolume indicator is a metric used in evolutionary
multi-objective optimization that measures the volume of the dominated
portion of the objective space. An important feature of this metric is that
it is strict Pareto compliant.

2. Proximity. The distance between the approximation set S and the Pareto
front PF is defined as the average of the minimum distance between a
solution and the Pareto optimal front over each solution in S, as in [26]:

DS→PF (S) =
1
|S|

∑

Z0∈S

minZ1∈PF
d(Z0, Z1), (28)

where d(Z0, Z1) is the Euclidean distance between the two solutions. A
small value for this indicator means that all the points in the approxima-
tion set are, on average, close to the true Pareto front. An ideal value of 0
is obtained when all the points are actually in the Pareto front.

3. Diversity. To measure the diversity of the approximation set the reverse
of the proximity metric is used, as defined in [26]:

DPF →S(S) =
1

|PF |
∑

Z1∈PF

minZ0∈Sd(Z0, Z1). (29)

In this indicator, for each solution in the Pareto front the distance to
the closest solution is calculated, and the average is taken as the value for
the indicator. A small value for this indicator means that all the points
in the true Pareto front have, at least, one point in the approximation set
which is very close. The ideal value of 0 is obtained when all the points in
the Pareto front are also contained in the approximation set.

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 189

5.2 Experimental Results for the Serial
Implementation

Simulated instances to test the MOEA contain values for all the objectives
along with the resource requirements for performing tasks and capacities
of the sailors. These values were generated assuming normal distributions.
In previous works [5], it was found that one of the most important factors
governing the difficulty of a problem instance was the contention for tasks.
Given a fixed number of sailors, the more total tasks available for the sailors
to choose from, the less difficult the problem is.

In a real world scenario, it is unlikely that there will exist many more
available tasks in all time slots than sailors to fill them. Accordingly, a set of
sample problems is produced which contain a reasonable ratio of sailors to
tasks. Each problem was generated according to a specified number of sailors,
tasks and time slots. Also, the mean and standard deviation of a normally
distributed random variable determine number of task types each sailor can
perform.

In all the problems, 7 days with 12 time slots per day were considered
which makes the problem harder since it increases the number of tasks for
all the time slots. Table 1 shows the parameters of each sample problem used
in this work. The task-sailor ratio is defined here as the rate of task types a
sailor can perform on average.

Table 1. Parameters of the randomly generated TSAP instances used in this work

No. sailors No. tasks Task/sailor ratio

Problem 1 1,000 500 0.25
Problem 2 2,000 1,000 0.05
Problem 3 4,000 2,000 0.05

5 Problem 4 5,000 200 0.01

For each problem, 10 runs of the evolutionary algorithm were performed for
three different population sizes: 100, 200 and 400 individuals where each run
consists of 500,000 evaluations of the objectives. Binary tournament selection,
where two individuals are chosen at random and the fittest one is selected, and
mutation with probability (1.0/Total no. of tasks to be performed) were used.
Also, all individuals in the population were chosen to be crossed over and
the same amount of offspring was produced. The populations of parents and
offspring were combined and the non-dominated solutions go to the mutation
process. Additionally, after performing crossover and mutation, the repair
operator function was executed.

Figure 8 depicts the change in the hypervolume in one run of NSGA-II
for a 5,000 sailor instance of the TSAP with 100 population size. Notice

190 D. Dasgupta et al.

that after a certain number of evaluations (about 250,000 evaluations) the
hypervolume will remain almost constant. The reference point used to com-
pute hypervolume was [1,1,1,1,1]). Note that the reference point has the same
dimensionality as the objective space.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100000 200000 300000 400000 500000

H
yp

er
vo

lu
m

e

Evaluations

Change in the Hypervolume

Hypervolume

Fig. 8. Change in the hypervolume during 500,000 objective evaluations for a 5,000
sailor instance of the TSAP with 100 population size.

In this work, several approaches were implemented and thus the results ob-
tained were also compared. Particularly, the results of the standard NSGA-II
were compared against the hybrid NSGA-II. Accordingly, in each run, the
final Pareto set approximation was recorded. The mean and standard devia-
tion of the final hypervolumes over the specific number of trials are reported
in Table 2 and Table 3. It can be seen from Table 2 that as the difficulty of the
problem increases (see Table 1), correspondingly the standard deviation in-
creases. As the size of the population increases, the number of non-dominated
solutions also increases, which in turn gives more precise values of the hyper-
volume, which can be noticed from the value of the standard deviation for
the corresponding population sizes.

Figure 9 shows a parallel plot for sample solution by applying NSGA-II for
1,000 sailors, while Figure 10 shows the results for the same problem instance
obtained by the hybrid approach. In these figures, each objective is plotted
along the x-axis, whereas ranges of these objectives are represented by y-axis
and each line represents a complete solution, i.e., a particular assignment

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 191

Table 2. Mean and standard deviation of the hypervolume for the number of
specified runs on each instance of the TSAP

Population size
Sailors 100 200 400

1,000 .1844±.0103 .1648±.0055 .1529±.0040
2,000 .2223±.0015 .1963±.0015 .1665±.0019
4,000 .2745±.0019 .2451±.0014 .2096±.0023
5,000 .2565±.0029 .2449±.0023 .2305±.0019

Table 3. Mean and standard deviation of the hypervolume for 10 runs of NSGA-
II and the three different hybrid approaches based on local search (LS) operators
(shift, swap and a combination of both) for different instances of the TSAP

Approaches
Sailors 1000 2000 4000 5000

NSGA-II .1843±.0103 .2222±.0015 .274480±.00190 .25650±.0029
shift LS .1864±.0106 .2228±.0017 .274500±.00190 .25590±.0028
swap LS .1809±.0126 .2229±.0014 .274300±.00140 .25510±.0026
both LS .1906±.0056 .2231±.0017 .275700±.00014 .25670±.0031

of sailors to tasks in all time slots. In general, the hybrid approach, includ-
ing local search operators, provided better diversity in all the objectives as
observed in the sample solutions shown in Figures 9 and 10. Particularly,
notice in Figure 10, solutions with lower values for objectives 1, 3 and 5 are
found. For instance, a specific solution that assigns only 201 sailors, which
corresponds to only 20.1% of the total number of sailors, is provided.

Same as above, Figure 11 shows a parallel plot for a sample solution by
applying NSGA-II for 5,000 sailors, while Figure 12 shows the results for the
same problem obtained by the hybrid approach combining both local search
operators. Specifically, the shift local search operator is performed in every
10,000th evaluation whereas swap local search operator is executed in every
15,000th evaluation. From Figure 10 it is observed that solutions with lower
values are found for all objectives. Moreover, in the case of last objective
(number of assigned sailors) the hybrid approach provides a solution with
less number of sailors, such as 83 (0.0166) whereas NSGA-II comes with a
solution with 87 sailors (0.0174). It is worth noticing that the diversity of the
last objective depends entirely on the task-sailor ratio.

Table 3 summarizes the results of comparing 17 runs of NSGA-II to three
different hybrid approaches based on local search operators (shift, swap and a
combination of both) for the same problems defined in Table 1 and population
size 100. It is observed that the hybrid approach that alternates both local
search operators provides better solutions from a hypervolume point of view,
i.e., better approximations towards the optimal Pareto front.

192 D. Dasgupta et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

O
bj

1

O
bj

2

O
bj

3

O
bj

4

O
bj

5

Fig. 9. Diversity of solutions found in the Pareto front using NSGA-II on a 1,000
sailor instance of the TSAP and population size equal to 100.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

O
bj

1

O
bj

2

O
bj

3

O
bj

4

O
bj

5

Fig. 10. Diversity of solutions found in the Pareto front using a hybrid approach
alternating both local search operators on a 1,000 sailor instance of the TSAP and
population size equal to 100.

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 193

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

O
bj

1

O
bj

2

O
bj

3

O
bj

4

O
bj

5

Fig. 11. Diversity of solutions found in the Pareto front using NSGA-II on a 5,000
sailor instance of the TSAP and population size equal to 100.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

O
bj

1

O
bj

2

O
bj

3

O
bj

4

O
bj

5

Fig. 12. Diversity of solutions found in the Pareto front using a hybrid approach
alternating both local search operators on a 5,000 sailor instance of the TSAP and
population size equal to 100.

194 D. Dasgupta et al.

Further experimentation was carried out after adding three new constraints
to the EA. Experiments were performed on problems of variable sizes like 40
sailors and 400 job types problems or 1000 sailors and 500 job types problems
etc. Following is the parallel plot comparison for the 1000 sailors problem,
Figure 13 is the parallel plot of the GA run without the three new constraints
and Figure 14 is the parallel plot of the GA run after adding the three new
constraints

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

O
bj

1

O
bj

2

O
bj

3

O
bj

4

O
bj

5

Fig. 13. Diversity found on the pareto front for a 1000 sailors instance and a
population of size 100 using a GA without adding the new constraints.

Notice that the diversity of the Pareto front in Figure 13 is less as compared
to Figure 14, one possible reason for this behavior is that, as we add more
and more constraints, the size of the set of feasible solutions decreases as they
have to fulfill all the constraints. Following is a comparison of the schedules
of a 40 sailor instance. In Figure 15 and 16, the X-axis is the timeslots in the
entire week and y-axis is the sailor number. Each dark block in the picture
indicates that a job has been assigned to sailor y in timeslot x.

As is clearly shown in the two figures below, Figure 16 has a highest number
of continuous horizontal dark blocks as compared to Figure 15 for each sailor.
This indicates that due to the introduction of the new constraints, the GA
selects the solutions which have continuous work periods and continuous rest
periods alternatively for all sailors, rather than having constant fluctuation
and switches between work and rest for the sailor. However, it also shows that
the new GA is not a perfect one, the parameters need further fine tuning to
get better results.

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 195

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

O
bj

1

O
bj

2

O
bj

3

O
bj

4

O
bj

5

Fig. 14. Diversity found on the Pareto front for 1000 sailors instance and a popu-
lation size of 100 using a GA with the newly added constraints.

Fig. 15. A diagram of the schedule of the sailors for the entire week. This schedule
was generated using the GA without the newly added constraints.

196 D. Dasgupta et al.

Fig. 16. A diagram of the schedule of the sailors for the entire week. This schedule
was generated using the GA with the newly added constraints.

5.3 Parallel Implementation Results

5.3.1 Parallel Experimental Framework

An experimental framework was developed in order to study the impact of
the proposed parallel model over the TSAP. A number of experiments were
carried out to see if the parallel algorithm provides adequate results. Specifi-
cally, the experimental framework analyzes different parameters in the island
model architecture and the migration policies; it also studies how those pa-
rameters affect the TSAP outcomes. Those experiments aim to determine
the set of parameters that provide an adequate cover of the search space
improving the precision of the model and the quality of the obtained Pareto
fronts.

Although island models have been widely studied, there is still no full
understanding of the role of the model’s basic parameters. Since there are
so many possible parameter settings for an island model, it is important to
understand what influence each parameter has, how it interacts with the
other parameters and how these interactions impact the results of a specific
problem, for instance the TSAP.

5.3.2 Experimental Details

To thoroughly study the impact of the parallel implementation on the behav-
ior of the TSAP algorithm, some parameters were fixed and several experi-
ments for all combinations of those parameters were performed. Specifically,
to evaluate the impact of the number of islands, a ring topology was used
with three different numbers of islands (four, eight and sixteen islands). To
study the impact of the migration policies three different migration rates

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 197

(five, ten and twenty times) and three different portions of the population to
be migrated (10%, 20%, and 30%) were used. The MOEAs parameters were
fixed to perform 500.000 evaluations for 1000 sailors and 500 task types. The
probability of mutation and crossover were set to 0.01 and 0.7, respectively.
Those parameters are summarized in Table 4.

Table 4. Island architecture and migration policies.

Name Values

Number of islands 4 and 8
Migration rates 5,10 and 20 times
Population to be migrated 10%, 20% and 30%
Number of evaluations 500000
Number of sailors 1000
Number of jobs 500
Crossover 70%
Mutation 1%

In order to compare the algorithm performance, the hypervolume metric
has been used. The experimental framework allowed us to draw charts rep-
resenting the average and standard deviation of the computed hypervolumes
as a function of the parameters (island architecture and policies). Addition-
ally, it allowed us to observe improvements and degradations of the algorithm
with respect to its sequential version. The computational specifications of the
implementation are as follows:

1. Server. Dual Intel Xeon Quad core 2.6 GHz CPU; 12 GB Memory; De-
bian Linux v4.3.2 Operating System; and 1 G Ethernet Communication
Network;

2. Workstations. Dell Optiplex 755 Intel Core2 Quad 2.4 GHz CPU; 2 GB
Memory; and Debian Linux v4.3.2 Operating System.

5.3.3 Parallelization Experimental Results

For each specific parameter configuration, five independent runs were per-
formed. For each run, the improvement of the hypervolume with respect to
the hypervolume obtained by the sequential algorithm was computed. Fig-
ure 17 and 18 report the average of the runs for a 4 island and an 8 island
configuration. Figure 19 and Figure 20 depict the dispersion of the improve-
ments. Note that a configuration is built as the combination of the parameters
shown in Table 4. For example a configuration labeled as s4.p10.m5 means
that a problem with 4 different islands, migrating 10 percent of the popula-
tion, during 5 times in the 500,000 evaluations was executed.

198 D. Dasgupta et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

s4
p1

0m
5

s4
p1

0m
10

s4
p1

0m
20

s4
p2

0m
5

s4
p2

0m
10

s4
p2

0m
20

s4
p3

0m
5

s4
p3

0m
10

s4
p3

0m
20

s8
p1

0m
5

s8
p1

0m
10

s8
p1

0m
20

s8
p2

0m
5

s8
p2

0m
10

s8
p2

0m
20

s8
p3

0m
5

s8
p3

0m
10

s8
p3

0m
20

Im
pr

ov
em

en
t (

%
)

1000 sailor problem

Hipervolume

Fig. 17. Average of the improvement of the hypervolume of the parallel conforma-
tions with respect to its serial counterpart in the 1000 sailor problem.

From Figures 19, 20, 17 and 18, it is possible to derive the following
conclusions:

1. When the number of evaluations is fixed at 500.000, the parallel imple-
mentation of TSAP provides better solutions than its sequential version,
for all the tested configurations, i.e., the parallel implementation never ob-
tains worse solutions than the sequential algorithm. The best performance
is obtained by an island of 8 processors migrating 20 times for 20 percent
of the population. Using this configuration an improvement of 7.11% in
the hypervolume measure was obtained with respect to the hypervolume
obtained by the sequential counterpart.

2. In general, the results obtained for all the configurations using 4 islands
were outperformed by those using 8 islands.

3. The obtained improvements in hypervolume measures for the 2000 sailor
problem are higher than those of the 1000 sailor problem (See Figures 17
and 18). It is clear that the 2000 sailor problem is a more difficult prob-
lem than the 1000 counterpart, and the parallel implementation seems
to work better in this kind of harder problems. In the 1000 problem the
hypervolume value is stabilized before the 500,000 thousand evaluations
are exhausted. In the two thousand sailors problem this point is harder

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 199

 0

 5

 10

 15

 20

 25

s4
p1

0m
5

s4
p1

0m
10

s4
p1

0m
20

s4
p2

0m
5

s4
p2

0m
10

s4
p2

0m
20

s4
p3

0m
5

s4
p3

0m
10

s4
p3

0m
20

Im
pr

ov
em

en
t (

%
)

2000 sailor problem

Hipervolume

Fig. 18. Average of the improvement of the hypervolume of the parallel conforma-
tions with respect to its serial counterpart in the 2000 sailor problem.

Fig. 19. Box plot diagrams for configurations using 4 islands.

200 D. Dasgupta et al.

Fig. 20. Box plot diagrams for configurations using 8 islands.

to achieve. Then, the effectiveness of the two thousand problem benefits
from the parallel implementation because more solutions arise from the
simultaneous executions of the TSAP instances spreading the cover of the
Pareto front.

4. However, in the TSAP, the iterations involving a higher number of proces-
sors working on it have a beneficial effect as they provide a way to improve
the quality of the obtained Pareto fronts. It is not clear if this improvement
is significant compared with the additional quantity of computational re-
sources invested in a parallel approach. Serial iterations with the whole
population seem to work well in the TSAP for the chosen number of eval-
uations (500.000), and that makes it unclear if this is the reason for the
real improvement of the parallel approach. It has been reported in [4] that
in the sequential algorithm for the TSAP, after a certain number of eval-
uations, the hypervolume value will remain almost constant. Thus, more
tests should be performed in order to identify that point of stabilization
to perform the comparison of convergence time.

5. It is not clear how the policies of migration impact the Pareto solutions.
Thus, more experiments need to be carried out to get conclusions about
how those parameters provide a beneficial effect to increment the diversity
of the solutions to the TSAP.

6 Conclusions

In this chapter, a multi-objective evolutionary approach to solve the TSAP
was presented. The proposed approach, based on the multi-objective NSGA-
II, provided a good diversity of solutions along the Pareto set approximation.

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 201

An improvement of the TSAP results was obtained using a parallel ap-
proach. This has been verified by running several experiments over two TSAP
instances (1000 and 2000 sailor problems) and changing the combinations of
the parameters in the model. Although the standard island approach to the
TSAP with migration seems to be quite robust and efficient, it is difficult to
prove and compare the real improvement of the model. Specifically, it is not
clear how the policies of migration impact the Pareto solutions. Therefore,
more experiments need to be performed to conclusively determine how those
parameters provide a beneficial effect to increment the diversity of the TSAP
solutions.

Further work is needed to improve the MOEAs by including some local
search operators or other hybridization mechanisms. In addition, implement-
ing some domain specific genetic operators could potentially provide further
improvements. In particular, a crossover operator which better maintains fea-
sibility would reduce the need to repair individuals. Such an operator could po-
tentially provide benefits both in solution quality as well as computation time.

Another potential improvement of the algorithm could be obtained through
the injection of good solutions into the initial population. While the proposed
approach currently incorporates five distinct objectives, there are several ad-
ditional components which require further investigation (e.g., not all tasks
are equally important to fill). An effective algorithm should bias solutions to-
wards filling the most important tasks. Further work is needed to determine
the effect on the performance of the algorithm. Also, a fair comparison with
other approaches is necessary to better evaluate the proposed approach.

In this work, the degree of constraint violation was equally distributed
among all the objectives. Thus, extensive experimentation is required to in-
vestigate other weighting schemes of the penalty functions. Also, a more
exhaustive experimentation could be performed to fine-tune the parameters
of the proposed MOEA.

Acknowledgements. The authors would like to thank James Simien for his contri-
butions to this work. This research work is a better product due to his constructive
help and comments.

This project is funded under the Scientific Services Program (TCN: 08179 Mod 1

and 07192), which is sponsored by the US Research Office and is managed by Bat-

telle under Prime Contract No: W911NF-07-D-0001. The views, opinions, and/or

findings contained in this report are those of the author(s) and should not be con-

strued as an official Department of the Army position, policy, or decision, unless so

designated by other documentation.

202 D. Dasgupta et al.

References

1. Knowles, J.D., Corne, D.W.: Quantifying the effects of objective space dimen-
sion in evolutionary multiobjective optimization. Multi-Criterion Optimization,
757–771 (2007)

2. Moscato, P.: On evolution, search, optimization, genetic algorithms, and mar-
tial arts: Towards memetic algorithms. Technical Report 826, Caltech Concur-
rent Computation Program, C3P (1989)

3. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Hand-
book of Metaheuristics, pp. 105–144 (2003)

4. Dasgupta, D., Hernandez, G., Garrett, D., Vejandla, P., Kaushal, A., Yerneni,
R., Simien, J.: A comparison of multiobjective evolutionary algorithms with
informed initialization and kuhn-munkres algorithm for the sailor assignment
problem. In: Proceedings of the 2008 Genetic and Evolutionary Computation
Conference (GECCO 2008). ACM Press, New York (2008)

5. Garrett, J.D., Vannucci, J., Silva, R., Dasgupta, D., Simien, J.: Genetic algo-
rithms for the sailor assignment problem. In: Proceedings of the 2005 Genetic
and Evolutionary Computation Conference, (GECCO 2005). ACM Press, New
York (2005)

6. Knowles, J.D., Corne, D.W.: Memetic algorithms for multiobjective optimiza-
tion: Issues, methods, and prospects. In: Krasnogor, N., Smith, J.E., Hart, W.E.
(eds.) Recent Advances in Memetic Algorithms. Springer, Heidelberg (2004)

7. Jaszkiewicz, A.: On the performance of multiple objective genetic local search
on the 0/1 knapsack problem: A comparative experiment. Technical Report
RA-002/2000, Institute of Computing Science, Poznan University of Technol-
ogy (July 2000)

8. López-Ibáñez, M., Paquete, L., Stützle, T.: Hybrid population-based algorithms
for the bi-objective quadratic assignment problem. Technical Report 1, FG
Intellektik, FB Informatik, TU Darmstadt, Journal of Mathematical Modelling
and Algorithms (2004)

9. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized
assignment problem. Mathematical Programming 62(1), 461–474 (1993)

10. Knowles, J., Corne, D.: Towards Landscape Analyses to Inform the Design of
Hybrid Local Search for the Multiobjective Quadratic Assignment Problem. In:
Abraham, A., Ruiz del Solar, J., Koppen, M. (eds.) Soft Computing Systems:
Design, Management and Applications, pp. 271–279. IOS Press, Amsterdam
(2002)

11. Knowles, J.D., Corne, D.W.: M-PAES: A memetic algorithm for multiobjective
optimization. In: Proceedings of the 2000 Congress on Evolutionary Computa-
tion (CEC 2000), pp. 325–332. IEEE Press, Los Alamitos (2000)

12. Krasnogor, N.: Towards robust memetic algorithms. In: Hart, W.E., Krasnogor,
N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms, pp. 185–208.
Springer, Heidelberg (2004)

13. Garrett, J.D., Vannucci, J., Dasgupta, D., Simien, J.: Applying hybrid multi-
objective evolutionary algorithms to the sailor assignment problem. In: Jain,
L., Palade, V., Srinivasan, D. (eds.) Advances in Evolutionary Computing for
System Design, pp. 269–301. Springer, Heidelberg (2007)

14. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The
American Mathematical Monthly 69, 9–15 (1962)

A Genetic-Based Solution to the Task-Based Sailor Assignment Problem 203

15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Compu-
tation 6(2), 182–197 (1991)

16. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto
evolutionary algorithm. Technical Report 103, Computer Engineering and Net-
works Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland (May 2001)

17. Munkres, J.: Algorithms for the assignment and transportation problems. Jour-
nal of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)

18. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Re-
search Logistic Quarterly 2, 83–97 (1955)

19. Dasgupta, D., Nino, F., Garrett, D., Chaudhuri, K., Medapati, S., Kaushal, A.,
Simien, J.: A multiobjective evolutionary algorithm for the task based sailor as-
signment problem. In: Proceedings of the 2009 Genetic and Evolutionary Com-
putation Conference (GECCO 2009), pp. 1475–1482. ACM, New York (2009)

20. Akgul, M.: The linear assignment problem. Combinatorial Optimization, 85–
122 (1992)

21. Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello
Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke,
J., Deb, K., Miettinen, K., S�lowiński, R. (eds.) Multiobjective Optimization.
LNCS, vol. 5252, pp. 349–372. Springer, Heidelberg (2008)

22. Sun. Javaspaces,
http://Java.sun.com/developer/technicalArticles/tools/JavaSpaces

23. Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces principles, patterns, and prac-
tice. E Addison-Wesley Longman Ltd., Amsterdam (1999)

24. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary al-
gorithms for solving multi-objective problems. Springer-Verlag New York Inc.
(2007)

25. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective opti-
mization test problems. In: Proceedings of the 2002 Congress on Evolutionary
Computation (CEC 2002), pp. 825–830. IEEE Press, Los Alamitos (2002)

26. Bosman, P.A.N.: Design and Application of Iterated Density-Estimation Evo-
lutionary Algorithms. PhD thesis, Institute of Information and Computing Sci-
ences, Universiteit Utrecht, Utrecht, The Netherlands (2003)

http://Java.sun.com/developer/technicalArticles/tools/JavaSpaces

Genetic Algorithms for Manufacturing
Process Planning

Guohua Ma and Fu Zhang

Abstract. Process planning has been defined as the systematic determina-
tion of the machining methods (operations, machine, tool, fixture) by which
a product is to be manufactured economically and competitively. A process
plan describes the manufacturing processes for transforming a raw material
to a completed part, within the available machining resources. This chapter
presents the application of genetic algorithms (GAs) in computer aided pro-
cess planning (CAPP), and the development of a CAPP system based on a
GA. The key to successfully applying GAs to a real-world application such as
process planning is to model the problem from an optimization perspective,
and to design a special representation mechanism, operators, and constraints
to introduce the domain knowledge into the algorithms. These steps are dis-
cussed in great detail to show how evolutionary algorithms such as GAs can
be used to solve a difficult real-world problem along with their advantages.

1 Introduction

Process planning is a production organization activity that transforms a
product design into a set of instructions (machines, tools, set-ups, etc.) to
manufacture the product. Over the last 30 years, there have been numerous
attempts to develop computer-aided process planning (CAPP) systems in
order to assist human planners. A process plan describes the manufacturing
processes for transforming a raw material to a completed part, within the

Guohua Ma
Faculty of Department of Electronics & Mechanical,
Wentworth Institute of Technology, Boston, MA, USA
e-mail: mag@wit.edu

Fu Zhang
The MathWorks, Natick, MA, USA
e-mail: zhangfu@hotmail.com

mag@wit.edu
zhangfu@hotmail.com

206 G. Ma and F. Zhang

available machining resources. The role of process planning in a manufactur-
ing environment is illustrated in Figure 1 [1].

Process
Planning

Technological
Process
Capabilities

Production
Resources

CONTROL

Part/Product
Description

Production
Requirements

I
N
P
U
T

Process Plan
Tools, Set-ups &
Resources

Process Time,
Cost

O
U
T
P
U
T

Machine
Instruction

Human
Planner

Computer
Planning
System

MECHANISM

Fig. 1. The role of process planning in the manufacturing environment.

The use of CAPP systems has the following advantages [1]:

• Reduction of the demand on the skilled planner,
• Reduction of the process planning time,
• Reduction of both process planning and manufacturing costs,
• Creation of consistent plans,
• Production of accurate plans, and
• Increase of productivity.

Traditional CAPP approaches mainly aim at generating a single feasible plan
for a given part. However, the introduction of new manufacturing technolo-
gies, such as design for manufacturing (DFM) and the integration of process
planning and scheduling, have resulted in some new demands from CAPP.
For example, to support DFM, the best process plan for a given part in a
designated machining environment must be generated and fed back to the de-
signer for evaluation. To support dynamic scheduling, a CAPP system must
be able to generate plans with alternative routes and sequences to suit the
variable status of the shop floor.

GAs for Manufacturing Process Planning 207

This chapter presents an optimization-centered CAPP model and search
methods for prismatic parts machined in any given conventional job shop.
For the traditional job shop, the approach aims to address the new roles of
CAPP within the concept of concurrent engineering. The initial input is a
solid model of a part. Machining features are then extracted, and each fea-
ture is mapped to all possible sets of operations, based on its geometrical
and technological requirements and available machining resources in the job
shop. Precedence relationships among all the operations are identified as con-
straints for operation sequencing. The process planning problem modeled in
such a way contains the entire solution space constructed by the multiple
choices of machines (M), tools (T), tool approach directions (TADs), and
operation sequences. Several objective functions are provided for plan evalu-
ation that minimizes the number of machines, set-ups, and tool changes. To
find the optimal solution, genetic algorithms (GA) have been developed in
which process planning heuristics are incorporated. A CAPP system based
on the developed model and GAs has been implemented with Unigraphics, a
commercial computer-aided design (CAD) software. The developed algorithm
is able to achieve an optimal or near-optimal process plan by simultaneously
considering operation sequences and selection of machines, tools, and TADs.
Several case studies show that the developed CAPP system can generate
multiple process plans to respond to dynamic events in the job shop, and
also provide valuable information to support design for manufacturing. The
main contributions of this chapter are:

• The process planning problem is modeled from an optimization perspec-
tive by considering all the possible combinations of M/T/TAD (operation
selection) and operation sequencing concurrently.

• A GA has been successfully applied to solve this optimization problem by
developing domain knowledge related GA operators.

• A CAPP system on top of a commercial CAD system is developed by
embedding our GA into the system.

2 Related Work

CAPP has attracted much research interests for the past three decades.
Numerical materials, including comprehensive reviews, have been reported
in [2, 3]. The review in this chapter is unique in that it addresses the CAPP
literature mainly from an optimization perspective, which reflects some trends
of CAPP research in recent years.

2.1 Trends of CAPP: Towards Integration

The introduction of numeric control (NC), CAD, computer-aided manu-
facturing (CAM), and CAPP in manufacturing has resulted in enormous

208 G. Ma and F. Zhang

improvements in product quality, efficiency, and productivity. However, it
also resulted in decreased flexibility, caused by the inability of the various
departments to generate the required information adequately, accurately, and
quickly. Departments have become isolated islands of automation. Integra-
tion is more than just communication and interfacing, such as the exchange
of product, tool, and machine tool data. Co-operation is more important, i.e.,
how should different departments work together to come to joint solutions
with regard to improved product quality, reduced cost and times-to-markets.
New manufacturing philosophies, such as concurrent engineering (CE) and
design for manufacturing (DFM), require CAPP to be fully integrated with
other manufacturing activities. According to Bedworth et al. [4], the essence
of CE is the integration of product and process planning into one common
activity. In last three decades, the focus of the CAPP research has been on
the partial integration of various planning tasks [3, 5, 6, 7, 8, 9, 10, 11, 12].
Some of the researchers focus on one manufacturing process in detail, i.e.,
boring of the turned component [13], or fix-axis mill-turn parts [14].

The content of integration of CAPP can be roughly categorized into two
parts: integration of CAPP and scheduling, and integration of CAPP and
product design.

2.1.1 Integration of CAPP and Scheduling

Scheduling is the allocation of resources over time to perform a collection
of tasks in such a way that some relevant criteria are met. Traditionally, the
output of process planning is used as the input to scheduling. These two parts
are carried out as sequential, non-collaborative tasks. This situation leads to
several drawbacks [2, 15]:

1. Process planning takes place without input from the job shop.
2. Scheduling follows process planning but only a fixed process plan is the

input of the scheduling stage. Such a process plan gives unnecessary con-
straints to scheduling.

To overcome these shortcomings, the question of integration of process plan-
ning arose in the middle of the 1980s. Since then, this issue has been fre-
quently addressed and has become a major issue in CAPP research [16, 17,
18]. Researchers have been attempting to build an integrated system that
offers advanced production management by closely linking scheduling to pro-
cess planning. Recently, more such works are reported [19, 20].

2.1.2 Integration of CAPP and Product Design

The integration of CAPP and product design has advanced from a concern
with an interface to a state where the two systems can work in a shared
information environment. It is a bi-directional activity: a) Design informa-
tion must be transformed to CAPP for creating a process plan, and b)

GAs for Manufacturing Process Planning 209

Manufacturability information must be feedback from CAPP to design. In
concurrent engineering, it is no longer sufficient to ensure a uni-directional
flow of information from design to process planning. It is essential to feed-
back information from process planning to assist the designer in assessing the
various features, not only from a functional point of view but also regarding
manufacturability, assemblability, manufacturing time and cost, at an early
stage [2]. One of the approaches to enable such an integration is called plan-
based manufacturability analysis and redesign [8, 21]. An intelligent CAPP
system to support early manufacturability analysis, cost estimation, and pro-
vide redesign suggestions will be most useful.

2.2 Integration Approach: An Optimization
Perspective

One of the most widely used approaches to support the integration of pro-
cess planning and scheduling is non-linear process planning [16, 17]. From
an optimization perspective, integration in the context of non-linear process
planning is to search for all the possible plans for each part before it enters
the shop floor and a schedule is generated based on the best plans. However,
some researchers [17] think this approach to be a kind of interface rather
than “integration” because planning and scheduling are still carried out se-
quentially. The integration level between planning and scheduling of such an
approach is low. They have tried to search a large combined space in order
to generate optimal or near optimal plans and schedules concurrently. Never-
theless, in this case, it is necessary to perform deep search in a space that is
usually too large in most real time settings [22]. This approach requires high
capacity and capability from both hardware and software.

Process planning is a constrained optimization problem. Plans generated
must meet various constraints imposed by the design specifications and the
availability of manufacturing resources, as well as satisfy complex optimiza-
tion criteria. Optimization in the context of process planning can be consid-
ered from the perspective of routing (machine tools and cutting tools assign-
ment), sequencing (determination of set-ups and operations order), definition
of tool path and machining parameters. Analytical models exist only for ma-
chining parameter selection. The other problems are dealt with largely by a
heuristic or algorithmic approach [23].

During the last 20 years, process planning optimization has received sig-
nificant research attention. Related research issues are: identify precedence
constraints, plan evaluation and selection, and optimization strategy.

2.2.1 Identifying Precedence Constraints

For a given part, the machining operations cannot be performed in an ar-
bitrary order. A number of geometric and technological constraints require

210 G. Ma and F. Zhang

some operations to be performed before or after certain other operations.
Precedence constraints will highly influence operations sequencing and set-
up planning. How to identify all these precedence constraints is essential for
solving the plan optimization problem. Hayes and Wright [24] use feature
interactions (mainly due to fixturing considerations) to guide the search for
process plans. Feature interactions happen when the results of an operation
destroy some of the requirement of others. Constraints (due to interaction)
are used to cut down the search space. Gupta and Nau [25] present a sys-
tematic approach to find precedence constraints, which are used to generate
all possible process plans. Chu and Gadh [6] use a rule-based approach to
generate process plans with minimum set-ups. In their approach, features
are classified according to the number of possible tool approach directions
that can be used to machine them. Features are divided into two classes:
single tool approach direction features and multiple tool approach direction
features. Rules are applied to guide the search for proper ordering between
operations and set-ups of a part. Generally, precedence relations are repre-
sented by a) precedence matrices [26], and b) precedence graphs [27, 28, 29],
and precedence networks [30].

2.2.2 Plan Evaluation and Selection

In integration manufacturing systems, finding the most suitable process plan
is a very complex task [31]. Ideally, the quality of a process plan should be
evaluated from a technological as well as an economical standpoint. Mean-
while, the objectives in process plan selection might be imprecise and conflict-
ing [32]. Therefore, some researchers use fuzzy approaches to deal with the
process plan selection problem [31, 32]. Most of these approaches are useful
if the micro-planning stage has been finished and the detailed process plans
are available. In the macro planning stage, researchers always use a single
value variable such as set-up change times, tool change times or some cost
functions like weighted sum, to be the criterion [27, 33].

2.2.3 Optimization Strategy

As mentioned earlier, process planning optimization contains routing and se-
quencing tasks. How to deal with the relationship between the two tasks is a
signature characterizing different optimization strategies. The first strategy
is called the sequential decision making strategy. It treats routing and se-
quencing tasks as two separate, sequentially connected planning stages. This
approach can certainly reduce the search space significantly, but the opti-
mal plan may be lost. Search methods used in this approach are classical
operations research (OR) algorithms such as A* [27], dynamic programming
(DP) [34], and heuristic rules [35].

Typically, assignment of the machine, tool, and tool approach direction
(TAD) has been performed before sequencing. In other words, the routing

GAs for Manufacturing Process Planning 211

space is narrowed before search begins. For example, in [36], sequencing is
carried out in three sequentially connected phases. In the initial phase, ma-
chining operations for a part are selected. Machines, fixtures, TADs, and se-
quence of the set-ups are determined in the second phase. The final planning
phase determines all the detailed sequence of operations in each set-up, using
some heuristic rules. Irani et al. [29] use a precedence graph (PG) represen-
tation for alternative process plans. Each Hamiltonian path in the PG that
represents a feasible process plan is enumerated by the Latin multiplication
method. However, the machining route is limited by the constraint that each
feature is produced by only one feasible machine, tool, and TAD. This will
reduce the flexibility to react to dynamic workshop disturbances. Sometimes,
sequencing is performed before routing [34, 35]. Khoshnevis et al. [34] divide
process planning into two stages. In the first stage, a sequence for process-
ing the feature in such a way that the least amount of change of state with
regards to machine, tool, and set-up is found. Search in this stage is based
on “generation and best selection” rules. The specified machines, tools, and
resting faces to be used are identified at the next stage by using dynamic
programming, a form of OR search algorithm.

It is clear that neither of the above two approaches, adopting the sequential
strategy, can obtain optimal results. Optimal plans can be obtained only
by making these decisions concurrently. This is because the two tasks are
interrelated; separating them would mean that decisions have to be taken in
the absence of relevant information [27].

Some researchers have adopted the concurrent search strategy. They have
tried to concurrently sequence operations and assign machining capacity to
the operations. New search algorithms, such as simulated annealing (SA) [27]
and GAs [37, 38], are often used in the concurrent approach. This approach
is not widespread most likely due to the high complexity of the combined
routing and sequencing tasks. This kind of approach could be extended to
generate process plans and production schedules simultaneously [18, 27, 38].
Literature also shows that conventional operations research algorithms are
not powerful enough to search for the large space if routing and sequencing
are considered concurrently [27]. Thus, many newly developed optimization
algorithms, especially evolutionary algorithms (EAs), have been used to find
optimal process plans.

2.3 EAs for Process Planning

An EA is a generic population-based metaheuristic optimization algorithm.
An EA uses some mechanisms inspired by biological evolution: selection, mu-
tation, recombination [39]. Evolution algorithms (EAs) have been applied
in many engineering fields [40, 41, 42]. EAs also have been applied for the
process and scheduling problem in a multi-plant environment [43], and in
forming machine cells and product families [44]. In [44], GAs are combined

212 G. Ma and F. Zhang

with a local search heuristic to minimize inter-cellular movement and maxi-
mize the utilization of the machines within a cell. GAs are well implemented
in finding the optimal process plans, or integrating process planning and
scheduling [20]. Dereli and Filiz [45] employed a GA for finding the optimal
sequence of machining operations based on either minimum tool change or
minimum tool traveling distance or safety. A comprehensive survey about
evolutionary techniques for optimization problems in integrated manufactur-
ing system is conducted by Gen et al. [46].

3 Modeling Process Planning from an Optimization
Perspective

In this section, process planning is modeled as a constrained optimization
problem. The modeling process contains the following steps:

1. Constructing the search space;
2. Finding constraints; and
3. Building the objective function.

3.1 Constructing the Search Space

The search space for process planning optimization is composed of all the
feasible process plans. Several concepts are described as follows:

Feature, a concept used by the designer to describe the geometric shape of
a design, such as a hole, a slot etc. The design of a part can be described as
a set of features. A feature can be manufactured through several operations.
For example, several operations such as drilling and milling are needed to
finish a hole.

xxx

+z

+x +y

F1
(slot)

 F3
(slant face)

 F4
(hole)

F2
(slot)

 F5
(slant face)

F6 (hole)

Fig. 2. Features and precedence relationships.

GAs for Manufacturing Process Planning 213

Operation, a part of a machining process such as milling, grinding or other
treatment of a workpiece at a single workplace. This is the basic unit to
compute the manufacturing cost and time. A process plan is composed of a
set of operations.

Tool approach direction (TAD), the TADs of an operation are the unob-
structed directions from which a cutting tool can access the feature to be man-
ufactured by this operation. For example, in Figure 2, the feature F2 (slot) can
be access from −z with a vertical mill or −y, +y with a horizontal mill.

3.1.1 Job Shop: The Environment of Process Planning
Optimization

As mentioned earlier, one way to support integration is to increase the flexi-
bility of process planning. In order to do so, the manufacturing environment
that the CAPP system is developed for must be flexible enough to support al-
ternate manufacturing capacities. Some traditional planning approaches are
developed for handling planning tasks within a rather simple machining en-
vironment, such as a single CNC machine center. Such CAPP systems have
little flexibility in terms of the ability to adjust to changes in their internal or
external environment [28]. In the case of a dynamic event where a machine
may break down, process plans generated as well as re-planning tasks cannot
be executed.

On the other hand, a job shop is one of the basic forms of manufacturing,
and its primary advantage is that it provides much flexibility. These include:
1) machine flexibility, 2) routing flexibility, 3) process flexibility, 4) product
flexibility, and 5) volume flexibility [28]. A CAPP system developed for a job
shop should have the following degrees of flexibility:

1. Route flexibility

a. Machine flexibility refers to executing an operation on different ma-
chines. For example, drilling on a press drill or a CNC machine center.

b. Tool flexibility refers to executing an operation with different cutting
tools.

c. TAD flexibility refers to executing an operation with different tool ap-
proach direction.

2. Sequence flexibility refers to executing an operation with different orders
in the process plan.

Inside the job shop environment, the above-mentioned flexibility can be ex-
pressed by depicting the operation as a tree in Figure 3. The feasible M/T/-
TAD and order of an operation are called operations attributes. An operation
can be described as a collection of these attributes, i.e., [order, M/T/TAD].

Each unique, feasible combination of machine, tool, and TAD is called
an operation event (OpE). An operation can be treated as a collection of

214 G. Ma and F. Zhang

Operation

M1 M2

T1 T2 T3 T4 T5

TAD1 TAD2 TAD3 TAD4

T6

Fig. 3. Operation and its attributes.

operation events. A process planning problem in a job shop environment can
be defined as follows:

1. Operation selection. For each feature, determine one or several operations
required. This includes the selection of machines, tools, and TADs based
on the feature geometry and available machining resources.

2. Operation sequencing. Determine the sequence of executing all the opera-
tions required for the part so that the precedence relationships among all
the operations are maintained.

The decision-making tasks of operation selection and operation sequencing
must be carried out simultaneously in order to achieve an optimal plan against
a pre-determined criterion, such as minimum machine changes.

3.1.2 Tool Approach Directions (TADs)

For prismatic parts, six possible TAD’s, i.e., the six normal directions of a
prismatic block (±x, ±y, ±z), are assumed. For a tool acting on a feature
alone, the theoretical TADs are fixed. However, interference may occur when
considering the part and tool geometry. In the current approach, the solid
model of a tool is moved from a pre-defined path towards the feature along
its theoretical TADs. After reaching the feature, it is moved to cover the
entire feature. During this simulation, any TAD that causes interference is
discarded. For example in Figure 2, feature F4 can be machined through +z
and −z direction. If the feature is a blind hole, it can only be approached
from −z direction.

3.1.3 Machine and Cutting Tool Selection

Selecting a machine capable of accommodating the individual processing
needs of each operation can be a difficult job. Machine selection can be di-
vided into two distinct aspects: technical and economical machine selection.
Technical machine selection deals with the selection of machines, which can

GAs for Manufacturing Process Planning 215

be used to produce a part in a technical sense. In the economical machine
selection procedure, it is determined which machine is the preferable one with
respect to availability and cost. In our approach, the machine is selected in a
technical sense. All the possible machines that are capable of doing the job
in the job shop are selected.

Due to the complexity of the cutting tool geometry, cutting tool selection
heavily depends on the process planner’s experience. Certain rules are sum-
marized from the experienced process planners. Most rules specify cutting
tool attributes in a range of values rather than a fixed value. According to
the shape of each feature and the operation selected, the tool selection module
searches in the cutting tool database, and analyzes sets of tool descriptions
to find all possible cutting tools that match each operation.

Assuming that the part in Figure 2 is to be machined on a CNC vertical
mill (CVM) and a drill press (Dril) with only one end-mill cutter (T1) and one
drill (T2), the alternative OpE’s for F1, F2, F4, and F6 are (CVM/T1/+z),
(CVM/T1/-z), (CVM/T2/+z; CVM/T2/-z; Dril/T2/+z; Dril/T2/-z), and
(CVM/T2/-y; Dril/T2/-y), respectively.

The final result of operation selection for a feature is expressed in a tree
structure as shown in Figure 4. It has three levels: feature, Op sets, and OpE
(M, T, TAD) sets. The OpE sets will construct the final search space.

Feature
Op: Operation n: total number of Op sets

set 1 set n
(Op 1, Op 2, … Op i), …, … …, (Op 1, Op 2, …, Op j)

{(M, T, TAD), … …, (M,T,TAD)}, … … … …. … … … …, {(M,T,TAD), … …, (M,T, TAD)}

Fig. 4. Tree data structure of operation selection for a feature. The structure
proceeds from features, to Op sets, to OpE sets (M, T, TAD).

3.2 Finding Constraints – Precedence Relationships
Between Operations

The OpE sets form the basic elements of the plan solution space. This space
is further enlarged by the possible sequences among the OpE in the final plan.
However, not all possible sequences are valid. A valid sequence must satisfy
the precedence relationships (PRs) between operations caused by geometrical
and technological consideration. In the present approach, the PRs between
operations are identified from the following:

1. Three types of constraints are considered to determine the PRs between
features.

216 G. Ma and F. Zhang

a. Fixture constraint : A PR between two features exists when machining
one feature first may cause another to be unfixturable. An example is
given in Figure 2, where F1 must be milled before F3 and F5 are milled.
Otherwise, the supporting area for milling F1 is not sufficient.

b. Datum dependency: When two features have a dimensional or geomet-
rical tolerance relationship, the feature containing the datum should be
machined first. For example, F1 needs to be machined before F4 since
the side face of F1 is the datum of F4 (see Figure 2).

c. Good machining practice: Good manufacturing practice or rules-of-
thumb may also result in precedence relationships between features.
Referring to Figure 2, if F4 is a blind-hole, F4 should be drilled before
F3 in order to avoid cutter damage.

2. PRs among the set of operations of a feature: For every set of operations
obtained through mapping from a feature, there exists a fixed PR among
those operations, i.e., roughing operations come before finishing opera-
tions. Some examples are: drilling comes before reaming, milling comes
before grinding, etc.

The PRs between two features can then be converted to the PRs between
their OpEs according to the following rules.

If F (X) −→ F (Y), Op(i) ∈ F (X), and Op(j) ∈ F (Y)
Then Op(i) −→ Op(j)

The PRs between two operations are represented in the following manner.

If Op(i) −→ Op(j)
Then Op(i) is the predecessor of Op(j).

For a part needing n operations, all the PRs obtained can then be stored in
an n by n matrix: {PRij , |i = 1, . . . , n, j = 1, . . . , n}. If operation i must be
performed before operation j, PRij = 1; otherwise, PRij = 0.

3.3 The Process Planning Model – A Network
Representation

Given the operation sets of the part, the process planning optimization prob-
lem can be conveniently described by a network constrained by their PRs.
The network consists of parent node: the operation Op. Each Op consists
of several child node: OpEs, the combinations of (M, T, TAD). There is a
link between any two Ops that represents the PR between them, i.e., the one
that the arrow points to must be performed after the other, while a link with
double arrows means that there is no PR between the two Ops it connects.
An example of OpE network is shown in Figure 5.

GAs for Manufacturing Process Planning 217

Drilling
(M1, T1, -y) Op1
(M2, T1, -y)

Milling Op2
(M1, T2, -z)

Drilling
(M1, T3, -z) Op4
(M2, T3, -z)

 Milling Op3
(M1, T4, -z), (M1, T4, +y),
(M1, T5, -z), (M1, T5, +y)

Milling
(M1, T2, +z) Op5
(M1, T6, +y)

Fig. 5. The operation network representation.

3.4 Building the Objective Function: Plan Evaluation
Criteria

Currently, the most commonly used criteria for evaluating process plans in-
clude the minimum number of set-ups, the shortest process time, and the
minimum machining cost, etc. Since the detailed information on tool paths
and machining parameters is not available at this stage, the total machining
time and cost cannot be used for plan evaluation. Instead, the following five
cost factors are identified as the plan evaluation criteria:

1. Machine cost (MC)

MC =
n∑

i=1

MCIi (1)

where n is the total number of Ops and MCI i is the machine cost index
for using machine-i, a constant for a particular machine.

2. Tool cost (TC)

TC =
n∑

i=1

TCIi (2)

where TCI i is the tool cost index for using tool-i, a constant for a partic-
ular tool.

3. Machine change cost (MCC): a machine change is needed when two adja-
cent operations are performed on different machines.

218 G. Ma and F. Zhang

MCC = MCCI ×
n−1∑

i=1

Ω(Mi+1 − Mi) (3)

where MCCI is the machine change cost index, a constant and Mi is the
ID of the machine used for operation i.

Ω(Mi − Mj) =
{

1 if Mi �= Mj

0 if Mi = Mj
(4)

4. Setup change cost (SCC): a setup change is needed when two adjacent
Ops performed on the same machine have different TADs.

SCC = SCCI ×
n−1∑

i=1

((1 − Ω(Mi+1 − Mi)) × Ω(TADi+1 − TADi)) (5)

where SCCI is the setup change cost index, a constant.
5. Tool change cost (TCC): a tool change is needed when two adjacent Ops

performed on the same machine use different tools.

TCC = TCCI ×
n−1∑

i=1

((1 − Ω(Mi+1 − Mi)) × Ω(Ti+1 − Ti)) (6)

where TCCI is the tool change cost index, a constant.

These cost factors can be used either individually or collectively as a cost
compound, based on the requirement and the data availability of the job
shop.

Up to this point, the optimization process planning problem can be defined
as follows: find the feasible process plan that traverses all the operations and
the sequence among its Ops that satisfies their precedence relationships.

4 GA Implementation

To apply GAs to process planning problems, we model process planning as an
optimization problem. The modeling process introduces the domain knowl-
edge through plan evaluation criteria, GA string representation design, op-
erators design, constraints design. The principles and procedures presented
can be applied to many real-world problems.

4.1 Applying GAs to Process Planning

A GA is a stochastic search technique based on the mechanism of natural
selection and natural genetics. The basic idea of GAs is that an initial pop-
ulation of candidate states of size n is chosen at random, and each state

GAs for Manufacturing Process Planning 219

is evaluated according to the optimization function. Through crossover and
mutation, good performing individuals have higher possibility go survive. Af-
ter several generations, the algorithm converges to the best solution of the
problem. The general algorithm is shown in Algorithm 1.

Algorithm 1. A General GA

begin1

n←− 0;2

initialize population P (n);3

evaluate initial population P (n);4

while some convergence criteria is not satisfied do5

Perform competitive selection6

Apply genetic operators to generate new solutions Pnew(n));7

evaluate solutions in the population Pnew(n));8

n←− n + 19

end10

The key steps to modify a general GA to a special, domain specified GA
in order to solve process planning problems are described in the following
section. The same steps and principles can be applied to solve other real-
world problems.

4.1.1 Knowledge-Based Representation of Process Plans

The first step in formulating a GA for process planning is to map the problem
solutions (process plans) to string representations. Inspired by the works of
Burns [42], we use a knowledge-dependent string to represent all possible ele-
ments in the solution space. For an n-operation problem, a string representing
a process plan is composed of n gene segments. Each gene segment contains
a child node OpE (M-ID, T-ID, TAD) from a unique parent node and its
order number in the string. This representation is illustrated in Figure 6. It
is clear that this string representation can cover all the solution space due to
the selection of machine tools, cutting tools, TADs, and the sequence among
operations.

Gene Segment

 Op1
 Machine 1
 Tool 1
 TAD +x

 Op2
 Machine 1
 Tool 1
 TAD +x

 Op4
 Machine 7
 Tool 7
 TAD +x

 Op5
 Machine 7
 Tool 4
 TAD +y

 Op3
 Machine 5
 Tool 5
 TAD +y

 Op6
 Machine 6
 Tool 5
 TAD -z

Fig. 6. A string representing a process plan with six operations.

220 G. Ma and F. Zhang

4.1.2 Enforcing the Precedence Relationships

With the string representation, the first generation of gene strings can be gen-
erated randomly, and searching for a better solution can be carried out through
the basic GA operators, i.e., selection, crossover, and mutation. However, for
process planning problems, the precedence relationships (PRs) between oper-
ations must be maintained in the final solution. In other words, the challenge
is how to enforce the PRs between operations throughout the GA operations.

Initially, we did not add any restriction on the generation of solution strings
during the GA operations. In other words, the solution strings in each gen-
eration may include valid as well invalid sequences of operations. In order
to eliminate the invalid strings, a penalty function was added to the com-
pound cost function for every precedence violation. The invalid strings were
expected to be eliminated during selection. This algorithm was tested on a
range of process planning cases with the number of PRs in ascending order.
The results showed that this algorithm was only able to find an optimal or
near-optimal solution for cases with little precedence constraints. For cases
having relatively large number of PRs, however, the solutions were often
trapped at local minima formed by invalid solutions. This may be attributed
to the limitation of the population of every generation. We are still investi-
gating methods of solving this problem.

In the current approach, we use different methods to enforce the PRs in
two stages of the GA, i.e., initialization and evolution. During initialization,
we use a PRs filter to check every randomly generated solution string against
all the non-zero PRij . If any precedence relationship is violated, this string
is eliminated and a new solution string is generated. This process is repeated
until a valid solution string is found. Enforcing PRs during the evolution
stage, i.e., selection, crossover, and mutation, will be discussed with the in-
troduction of these operators in the later sections.

4.1.3 Generation of Initial Population

Initial populations cannot be generated randomly. They must satisfy the PR
constraints. A method similar to that reported in [47] has been adopted. The
algorithm is described in Algorithm 2.

Algorithm 2. Generating initial Solution Based on Given PRs

begin1

Start with an empty string2

repeat3

Select (at random) an OpE (M, T, TAD) among those which have4

“no predecessors” and append it to the end of sequence;
Delete the OpE just handled from the OpE network, as well as from5

PR matrix.
until All OpEs are processed ;6

end7

GAs for Manufacturing Process Planning 221

4.1.4 Fitness Evaluation

Fitness is the measure of the quality of plans represented by the strings.
The higher the fitness, the better the plan. Once all the solution strings in a
generation are generated, the cost compound (CC) for the plan alternatives
represented by these strings can be calculated using Eq.(1)–Eq.(6). CC is
used as the fitness of the solution string. Since the objective is to search for
a solution with minimum CC, the fitness of a solution string is calculated as:

fitness = UB − CC (7)

where UB is an upper bound, is chosen to ensure a positive fitness value for
all the solution strings. Therefore, a solution string possessing a high CC will
have a low fitness value.

4.1.5 Domain-Related GA Operators

With the initial population of solution strings, our GA starts running by
applying three operators – selection, crossover, and mutation. Specific domain
knowledge must be incorporated into the design of GA operators.

1. Selection. In the selection process a new population is chosen with respect
to the probability distribution based on fitness values. A widely known se-
lection method is proportionate selection or roulette wheel selection. Here,
the basic idea is to determine selection probability for each chromosome
proportional to the fitness value. For chromosome k with fitness fk, its
selection probability Pk is calculated as follows:

pk =
fk

Popsize∑
j=1

fj

(8)

where Popsize is the population size.
In order to enhance the selection pressure, the raw fitness function was

scaled by a non-linear scaling: Fitness = fitness2

a , where a is a constant
dependent on the UB of the given problem. The scaled fitness is used in-
stead of the raw fitness acquired by Equation 8. The aim of using scaling
is to maintain a reasonable differential between relative fitness ratings of
chromosomes. For example, for two stings, s1 and s2 with fit1 = 2000,
fit2 = 2050, fit2/fit1 = 1.025, the competition between s1 and s2
is scaled to be more remarkable. We call this strategy “biased roulette
wheel”.

Meanwhile the “elite” mechanism developed by De Jong [41] is also
incorporated. It works as follows: Let p∗(t) be the best string generated
up to generation t. If, after generating P (t + 1) in the usual fashion p∗(t)
is not in P (t + 1), then include p∗(t) to P (t + 1) as the (N + 1)th number,

222 G. Ma and F. Zhang

where N is the population size. “Elitist” can be understood as the “best
always survive” mechanism to enforce preserving the best chromosome.
Numerical experiments show that this mechanism significantly increases
the search speed. More importantly, it has been proven that simple GAs
with standard genetic operators are not of global convergence [48] while
GAs with “elitist” are of global convergence [49]. This mechanism is even
more important in GAs for process planning problem since the mutation
rate is very high.

2. Crossover. The strings obtained from selection are then mated at a given
probability (crossover rate Pc). This operation is called crossover. To en-
sure that the crossover will not destroy the precedence constraint, and
that each operation in the offspring must be executed once and only once,
the cyclic crossover operator proposed by Dagli and Sittisathanchai [50]
is adopted and modified to cross two strings (process plans). By applying
this operator to two strings, the offspring generated is still a legal pro-
cess plan that satisfies all the constraints. The algorithm is described in
Algorithm 3.

Algorithm 3. Crossover of two process plan string-1 and string-2

begin1

Determine a cut point randomly from the all the positions of a string.2

Each string is then divided into two parts, the left side and the right
side, according the cut point.
Copy the left side of string-1 to form the left side of offspring-1. The3

operator constructs the right side of offspring-1 according to the order of
operations in string-2.
Copy the left side of string-2 to form the left side of offspring-2. The4

operator constructs the right side of offspring 2 according to the order of
operations in string-1.

end5

This process is illustrated with an example shown in Figure 7. A pair of
strings, parent-1 and parent-2, undergoes the crossover operation in which
the cut point is chosen between positions 3 and 4. The left side of parent- 1,
Op4-Op1-Op2, is used to form the left side of offspring-1. The order of the
right side of parent-1, Op5-Op7-Op8-Op3-Op6-Op9 is adjusted according
to the order of parent-2 to form the right side of offspring-1. By doing
so, the sequences among the operations in both parent-1 and parent-2 are
maintained in offspring-1. A similar operation is applied to parent-2 and
parent-1 to form offspring-2.

3. Mutation. So far, it can be seen that our GA traverses the solution space
based on the alternative sequence between operations using crossover. The
solution space, due to the assignment of machines, cutting tools, and TADs
to each operation, must be also covered. This is achieved by using the

GAs for Manufacturing Process Planning 223

Cyclic Crossover selected a string pair with possibility Pc

Parent-1: op4 op1 op2 op5 op7 op8 op3 op6 op9

Parent-2: op1 op7 op4 op8 op2 op5 op3 op6 op9

Offspring-1: op4 op1 op2 op7 op8 op5 op3 op6 op9

offspring-2: op1 op7 op4 op2 op5 op8 op3 op6 op9

Cut point

Fig. 7. An example of applying the cyclic crossover for changing operations
sequence.

mutation operation. Mutation for a simple GA was described as the occa-
sional (with small probability) random alternation of the value of a string
position. For process planning, mutation can be defined as the random
alternation of the child node OpE (M-ID, T-ID, TAD) of an operation.
Therefore, we developed four advanced mutators to carry out mutation
for process planning. They are described as follows:

a. Machine mutator: Machine mutator is used to change the machine to
perform an operation if more than one machine can be applied. In order
to reduce the total machine changes, machine mutation does not stop
at the selected position. Instead, the “machine space” for every other
operation is also checked to determine if a mutation can heuristically
reduce machine changes. Algorithm 4 shows that the machine mutator
operates on the solution strings in a generation.

This mutation is illustrated with an example shown in Figure 8. It
can be seen that Op3 (M1) is selected for mutation where M1 is the
current machine. M3 is then assigned to Op3 to replace M1. It is also
found that M1 is currently used by Op1, Op4, Op5, and Op2. Among
them, Op1, Op4, and Op5 have M3 as one of their alternative machines.

224 G. Ma and F. Zhang

Algorithm 4. Machine Mutation

begin1

For every solution string, select an operation (a position in the string)2

randomly and use a predetermined probability (mutation rate) to
determine if the machine needs to be changed. How the mutation rates
are selected is determined in the following section.
Randomly choose a machine (M-b) from all the alternatives to replace3

the current machine (M-a).
Identify all the other operations in the same string whose current4

machine is M-a. If any one of these operations has M-b as an alternative,
assign M-b to replace M-a.

end5

Related Machine Mutation
Before mutation

Op1 Op3 Op4 Op5 Op2 Op6

M1 M1 M1 M1 M1 M2

M5
M3

M5
M3

M2
M3

M4
M3

M2
M4

M1
M5

After mutation
Op1 Op3 Op4 Op5 Op2 Op6

M3 M3 M3 M3 M1 M2

M5
M1

M5
M1

M2
M1

M4
M1

M2
M4

M1
M5

Currently used
machines

Machine
Alternatives

Related
Machine

Mutation point

Fig. 8. An example of machine mutation.

Therefore, M3 is assigned to Op1, Op4, and Op5 to replace M1. The
mutation rate of machine mutator is denoted as PM

m .
b. Tool Mutator: The tool mutator operates on the solution strings after

machine mutation is carried out. It has exactly the same mechanism as
the machine mutator except the mutation rate is denoted as PT

m.
c. TAD Mutator: The TAD mutator operates on the solution strings after

machine mutation and tool mutation are carried out. It has exactly the
same mechanism as the machine mutator except the mutation rate is
denoted as PTAD

m .

GAs for Manufacturing Process Planning 225

d. Sequence Mutator: The function of sequence mutator is used to intro-
duce new sequence patterns. It was mentioned earlier that, by using
cyclic crossover only, some of the sequence patterns will be lost. The
sequence mutator is used to overcome this. It works as follows: select
two gene segments randomly and then swap them, i.e., exchange their
position in the whole string. The mutation rate is denoted as PSeq

m .

By using the above four mutation operators, the machine, tool, and TAD
mutators traverse the space of routing while the sequence mutator and
cyclic crossover traverse all the space of sequencing. Therefore, the con-
current decision making mechanism can be realized, i.e., operations se-
quencing and routing are carried out concurrently.

4.1.6 Repairing Mechanism

By employing the sequence mutator, the shortcoming of cyclic crossover can
be overcome. However, it is clear that such mutation may make a string
infeasible because the precedence constraints may be violated by sequence
mutation. A repairing mechanism is therefore developed to repair an infea-
sible string and make it feasible. This mechanism is called Corrector. The
Corrector algorithm is shown in Algorithm 5, where Opernum is the number
of operations to finish the part; i, j are the numbers to identify the opera-
tions, called OpID. Sequence(i) is the order of the operation whose ID = i.
For example, if a process plan is Op1-Op3-Op4-Op2, then Sequence(4) = 2.

Algorithm 5. Corrector

begin1

i←− 1;2

j ←− 1;3

while (i, j < Opernum) do4

if (PRij = 1 and Sequence(i) > Sequence(j)) then5

k←− j + 1;6

while k < i + 1 do7

Sequence(k) = Sequence(k)− 18

k = k + 19

Sequence(j) = Sequence(i) + 110

end11

4.2 GA Parameters

The settings of GA parameters in our experiments are as follows:

1. Population size n = 50. In principle, the population size should be large
enough such that the population associated with the solution domain can be

226 G. Ma and F. Zhang

adequately represented. A larger population, however, needs higher compu-
tation costs, e.g., in terms of memory and runtime. Experimental results [51]
have shown that 50 < Popsize < 200 works quite well for most problems.

2. Crossover probability In the present GA formulation, crossover is equiv-
alent to a change of operation sequence that should therefore be vigorously
performed to traverse more points in the solution space. Most GA litera-
ture suggests that 0.5 < Pc < 1.0.

3. Mutation probability Generally, mutation acts as a background oper-
ator which provides a small amount of random search. Its purpose is to
maintain diversity within the population, and inhibit premature conver-
gence due to loss of information. Mutation alone induces a random walk
through the search space. Pm is often in the range of [0.001, 0.1]. How-
ever, in process planning, the search space is constructed by two parts:
sequencing space and routing space. Crossover cannot cover all the search
space. The three group mutators play a similar role as crossover since
the extended solution space due to the existence of alternative machines,
tools, and TADs must be adequately traversed in the optimizing process.
Meanwhile, sequencing will influence mutation since they interact, and
the sequence mutator must re-introduce lost sequence pattern. Therefore,
the four mutation probabilities should be similar to the crossover rate.
Through numerical experiments by running GA with different Pm, the
four mutation rates are determined as:

PM
m = PT

m = PTAD
m = PSeq

m = 0.6

Table 1 shows the comparison of GAs with different Pm, where “> 8000”
means that after 8000 generations, the best fitness did not reach the best
result ever found before; when computing the average value, if generation
> 8000, let generation = 8000. It shows that the GA with Pm ⊂ [0.5, 0.8]
performs better.

Table 1. Influence of mutation rate Pm on the searching speed of GA.

Pm 0.2 0.4 0.6 0.8 1.0

1 >8000 1060 1480 >8000 940

2 >8000 >8000 6040 >3400 1940

3 >8000 3840 600 1300 4060

4 >8000 4240 380 560 >8000

5 >8000 1480 520 1340 5860

6 4920 3900 5860 >8000

7 1780 1180 1280 3560

8 6400 3520 2360 4380

9 >8000 460 360 4580

10 3420 180 2420 >8000

Average* 4314 1826 2688 4932

GAs for Manufacturing Process Planning 227

This value of Pm is much larger than the value suggested by literature.
However, new research results in GA provided some bases for using such
a large Pm. Firstly, some researchers [52] use mutation as the only genetic
operator in solving combinational optimization problems. Secondly, they
point out that the practical applications of GAs often favor larger or non-
constant settings of the mutation rate. For example, in solving a scheduling
problem [53], the mutation rate is set to 0.8 at the first generation and
then gradually reduced by P

(t+1)
m = aP t

m, where t is the generation number
and a = 0.99. Thirdly, some studies by Fogel and Atmar [54] have shown
that a GA with lower mutation rate is likely to outperform (slightly) a
the GA with higher mutation rate in terms of average performance, but
the GA with higher mutation rate has a higher variance and finds a better
solution in a higher proportions of the trials. This indicates that, if only
the best overall solution is sought, the mutation rate should be set higher
than what has been normally perceived. The same phenomenon is found
in [55]. Numerical experiments also show that in order to find a better
solution with higher mutation rates, the “elitist” mechanism must be used
to keep the best solution that has been found; otherwise higher mutation
rates would soon cause it to be lost since the better strings are mutated.
A GA with variable mutation rates was also tested and the results show
that it performs as well as the constant mutation rate, Pm = 0.6. The
mutation schedule used is:

Pm(t) = Pmax
m ∗ e−aτ (9)

where Pmax
m = 0.8, τ=t/8000, a = 1 + ln10, t is the generation number.

4. Stopping criterion When to stop the GA is a rather difficult and spe-
cific problem. At least three termination criteria are proposed in [56]. The
most common practice is to terminate the GA after a pre-specified number
of generations. A more intricate one is a number of generations in which
no improvement is gained. More flexible termination criteria are based on
a diversity test of the population. The degree of diversity is measured by
entropy [56]. When the entropy drops below a given threshold, the GA
is terminated. This is a convergence criterion. Since GA is a stochastic
search method, it is quite difficult to formally specify the convergence cri-
terion. As the fitness of a population may remain static for a number of
generations before a superior string is found, the application of conven-
tional termination criteria becomes problematic [41]. In this research, the
mutation rate is rather high, so the strings keep high diversity for a large
number of generations although no improvements are found. If the muta-
tion rate is lowered, the convergence criterion will stop the GA in a locally
optimal point. The stopping criterion sometimes reflects the goals of opti-
mization. For some very complex problems, “the most important goal of
optimization is improvement, to get some good, ‘satisfying’ level of per-
formance quickly,. . . it is nice to be perfect: meanwhile, we can only strive

228 G. Ma and F. Zhang

to improve.” According to the above reasons and numerical experiments,
all cases (number of operations less than 40) tested achieved very good re-
sults and showed no improvements after 8000 generations for a long time.
Therefore, the stop criterion chosen is a static number of generations =
8000.

In summary, this section describes how domain specific knowledge is incorpo-
rated into the GAs. The overview of the GA-based process planner is shown
in Figure 9. The ability of the proposed algorithms is demonstrated by ex-
amples in next section.

5 Case Study

5.1 Flexible Process Plan Generation

The chuck jaw shown in Figure 10b is used to test the developed algorithm.
It consists of 9 features such as C bores, slots, steps, pocket, and chamfer.
The dimensions and tolerances of the part are shown in Figure 11. Since the
feature F6 (C bore) has partial intersection with F8 (Slot), in case of damag-
ing the cutting tool, F6 should be machined before F8. The bottom surface
of F1 (Slot) is the datum plane of F6, therefore, F1 should be processed
before F6. The machining process starts from the raw stock shown in Fig-
ure 10a: a regular block. It is assumed that the block is pre-machined to size,
120mmX70mmX50mm. The features and PRs among them are extracted and
shown in Table 2.

A job shop is assumed in this test, where there are 17 cutting tools, and
5 machines. The available machines and cutting tools are shown in Table 3
and Table 4. The MCI column in Table 3 lists the cost of each machine and
the TCI column in Table 4 lists the cost of each cutting tool.

In order to test the capability of the developed GAs for generating optimal
plans, as well as dealing with the dynamic characteristics of job shops, process
planning for the part is carried out under two different settings. Setting-1
assumes that all the facilities are available while Setting-2 assumes that M2
(vertical mill) is down. For each setting, 60 trials (same set up, different initial
plan) were conducted.

1. Setting-1: all machines and tools available Table 5 shows the OpE alter-
natives for machining each feature with all machines and tools available.
The criterion used is the sum of the costs of setup and tool changes. The
GA found the optimal plans (cost=833) 55 times out of the 60 trials. The
parameters are set as follows: population size: 50, crossover rate: 0.7, mu-
tation rate: 0.6 and the stopping criterion is 8000 generations. One of the
best plans found is shown in Table 6.

GAs for Manufacturing Process Planning 229

Operation selection

Identify PRs between
operations

PRs between features
Fixturability
Tolerances
Good practice

PRs within a set of
operations

features

M, T, TADs

mapping

OperE Network

PRs: Precedence
Relationships

GA-based Process Planner

Operation ID
Machine ID
Tool ID
TAD

Operations
in Sequence

Start

ID TADs Tol SF

F1 xxx xx xx
F2 xxx xx xx
… … … …
Fn xxx xx xx

Feature-based
product model

 ID Type Accuracy Tools

 M1 xxx xxx xxx
 M2 xxx xxx xxx
 … … … …
 Mk xxx xxx xxx

Job Shop
Resources

Op2
(M, T, TAD)

Op5
(M, T, TAD)

Op1
(M, T, TAD)

Op3
(M, T, TAD)

Op4
(M, T, TAD)

Fig. 9. Overview of the GA-based process planner.

230 G. Ma and F. Zhang

(a) Raw stock.

F6(C_bore Hole)

F1(Slot)

F7(C_bore Hole)

F9(Step)

F2(Slot)

F4(Pocket)
F3(Chamfer)

F5(Slot)

F8(Slot)

(b) Machined part: chuck jaw.

Fig. 10. An example.

Fig. 11. Dimensions and tolerances of the chuck jaw.

2. Setting-2: M2 broken In this setting, it is assumed that M2 is down. The
process planning information is listed in Table 7. The cost index is the
same with those in setting-1 (see Table 5). The best solution found to
date has a total cost of 1288. The obtained plan is shown in Table 8.
Compared with the optimal plan of setting-1, the total cost increases from

GAs for Manufacturing Process Planning 231

Table 2. Precedence relationships between the features.

Feature Predecessors Feature Predecessors

F1 F2, F9 F6 F1, F4

F2 Nil F7 Nil

F3 Nil F8 F6

F4 Nil F9

F5 F4

Table 3. Machines and their cost indices used in the job shop.

MachinesType Table size Travel Dim. Accuracy MCI

M1 CNC Vertical Mill 1400x650 1200x600x700 0.01 70

M2 Vertical Mill 1300x280 850x400x400 0.02 30

M3 Drill press 1000x280 850x400x400 0.1 10

M4 CNC Horizontal Mill 1300x550 930x750x1380 0.02 40

M5 Horizontal Mill 1800x12001400x1120x1000 0.01 85

Table 4. Cutting tools and their cost indices used in the job shop.

Tools Type(diameter, flute
length)

TCI Tools Type(diameter, flute
length)

TCI

T1 End mill(20,30) 10 T10 Centre drill (20, 5) 2

T2 End mill(30, 50) 10 T11 Angle cutter (40, 45) 10

T3 End mill(15, 20) 10 T12 Drill (70, 100) 5

T4 End mill(40, 60) 12 T13 Drill (8, 30) 6

T5 Side mill (50, 10) 8 T14 Drill (10, 35) 3

T6 T slot cutter (30, 15) 16 T15 T slot cutter (20, 5) 6

T7 Drill (20, 55) 3 T16 Drill (5, 30) 3

T8 Drill (30, 50) 3 T17 Drill (15, 50) 4

T9 Drill (50, 80) 4

833 to 1288. All the operations are machined in M1 instead of M2. A near
optimal plan obtained is shown in Table 9. This plan can be used when
M1 is very busy; some of the drilling operations can be changed to the
other machines such as drill press. The total cost increases; however, it
will decrease the burden of M1 and improve the working efficiency. This
demonstrates that the GA is able to handle changes in terms of machining
resources and find a better plan with additional resources.

5.2 A GA Embedded in a Generative CAPP System

A generative CAPP system is built based on the GAs. The system is de-
veloped under Unigraphics (UG). The user interface is shown in Figure 12.

232 G. Ma and F. Zhang

Table 5. The process planning information for Setting-1.

Operation Feature OpT Ms Ts TADs Cost index

Op1 F1 Milling
M1, M2 T1, T3 +z MCI(M1)=70
M4, M5 T5, T15 +y, -y MCI(M2)=30

Op2 F2 Milling
M1, M2 T1, T2,

T3, T4
+z, +x MCI(M3)=10

M4, M5 T5 +z MCI(M4)=40

Op3 F3 Milling
M1, M2 T4 +y, -y MCI(M5)=85
M4, M5 T11 -z, +x MCCI=150

Op4 F4 Milling M1, M2 T1, T2,
T4

-z SCCI=90

Op5 F5 Milling M1, M2 T15 -z TCCI=20
Op6

F6

Center drilling M1, M2,
M3, M4, M5

T10 -z

Op7 Drilling M1, M2,
M4, M5

T14 -z

Op8 Milling M1, M2 T3 -z
Op9

F7

Center drilling M1, M2,
M3, M4, M5

T10 -z

Op10 Drilling M1, M2,
M4, M5

T14 -z

Op11 Milling M1, M2 T3 -z
Op12 F8 Milling M1, M2, T1, T2,

T3, T4
-z

Op13 F9 Milling
M1, M2, T1, T2,

T3, T4
-x, +y

M4, M5 T5 +z, -x

Table 6. A plan found for Setting-1.

Operation M T TAD Summary

Op13 M2 T1 +z Total Cost: 833
Op2 M2 T1 +z
Op1 M2 T1 +z No. of machine changes: 0
Op4 M2 T1 -z
Op5 M2 T15 -z No. of set-up changes: 2
Op9 M2 T10 -z No. of tool changes: 5
Op6 M2 T10 -z
Op10 M2 T14 -z
Op7 M2 T14 -z
Op8 M2 T3 -z
Op11 M2 T3 -z
Op12 M2 T3 -z
Op3 M2 T4 +y

GAs for Manufacturing Process Planning 233

Table 7. The process planning information for Setting-2.

Operation Feature OpT Ms Ts TADs

Op1 F1 Milling
M1 T1, T3 +z
M4, M5 T5, T15 +y, -y

Op2 F2 Milling
M1 T1, T2, T3, T4 +z, +x
M4, M5 T5 +z

Op3 F3 Milling
M1 T4 +y, -y
M4, M5 T11 -z, +x

Op4 F4 Milling M1 T1, T2, T4 -z

Op5 F5 Milling M1 T15 -z

Op6

F6

Centre drilling M1, M3, M4,
M5

T10 -z

Op7 Drilling M1, M4, M5 T14 -z
Op8 Milling M1 T3 -z

Op9

F7

Centre drilling M1, M3, M4,
M5

T10 -z

Op10 Drilling M1, M4, M5 T14 -z
Op11 Milling M1 T3 -z

Op12 F8 Milling M1 T1, T2, T4 -z

Op13 F9 Milling
M1 T1, T2, T3, T4 -x, +y
M4, M5 T5 +z, -x

Table 8. An optimal plan found for Setting-2.

Operation M T TAD Summary

Op13 M1 T1 +z Total Cost: 1288
Op2 M1 T1 +z
Op1 M1 T1 +z No. of machine changes: 0
Op4 M1 T1 -z
Op5 M1 T15 -z No. of set-up changes: 2
Op9 M1 T10 -z
Op6 M1 T10 -z No. of tool changes: 5
Op10 M1 T14 -z
Op7 M1 T14 -z
Op8 M1 T3 -z
Op11 M1 T3 -z
Op12 M1 T3 -z
Op3 M1 T4 +y

Once the part is designed in the UG environment, the user can click “CAPP”
button and the sub-menu will show up. The system contains several modules:
feature analysis, process evaluation, plan generation and optimization, and
database management. The architecture of the system is shown in Figure 13.
In next section, detailed information about each module is introduced.

234 G. Ma and F. Zhang

Table 9. A near-optimal plan found for Setting-2.

Operation M T TAD Summary

Op2 M1 T1 +z Total Cost: 1308
Op13 M1 T1 +z
Op1 M1 T1 +z No. of machine changes: 2
Op4 M1 T1 -z
Op5 M1 T15 -z No. of set-up changes: 2
Op3 M1 T4 +y
Op6 M4 T10 -z No. of tool changes: 3
Op9 M4 T10 -z
Op10 M4 T14 -z
Op7 M4 T14 -z
Op8 M1 T3 -z
Op11 M1 T3 -z
Op12 M1 T3 -z

CAPP menu

Fig. 12. System interface.

5.2.1 The Details of the CAPP System

There are four modules of the CAPP system. The functionalities of each
module are list below.

1. Feature Analysis This module serves as a bridge from CAD to CAPP.
It extracts the geometric information from the CAD model, interprets the

GAs for Manufacturing Process Planning 235

Designer Operator

Interface of the process planning system

Feature Analysis

Recognize each feature,

analyze the precedence

relationships between features

Process Evaluation

Manufacturability analysis,

selection of machines, cutting

tools, TADs and fixtures

Job-Shop

Facilities

Machine database

Cutting tool database

Fixture database

All features can

be machined?

Operation Procedence relationship analysis

Generating alternative operations (M,T,TAD)

Optimization of operation sequence with Genetic Algorithms (GA)

Process plan

NoNo

Yes

In
fo

rm
a

ti
o

n
 t
o

 o
p

e
ra

to
r

In
fo

rm
a

ti
o

n
 t
o

 d
e

s
ig

n
e

r

Fig. 13. System architecture.

236 G. Ma and F. Zhang

manufacturing information, maps the design features to manufacturing
features, generates the relationship between different features, and deals
with the intersection features. Features that can be recognized by the
system are shown in Figure 14.

Step Simple hole

Through rectangle slot

Notch C-bore hole

Blind rectangle slot Chamfer (slant face)

Sink-bore hole

T-slot Boss Pad Dovetail slot

U-slot Ball-end-slot

Blend

Round pocketRectangle pocket

Fig. 14. Recognizable features.

2. Process Evaluation Due to the ability to generate several process plans
simultaneously with this CAPP system, plan evaluation and manufactura-
bility analysis can be integrated with CAPP. When a part comes into
manufacturing, the process planner first checks the manufacturability by
analyzing the geometry and tolerance to see whether the part can be made
in the current job shop. This module determines the required machining
operations, which include process selection, machine selection, cutting tool
selection, operation selection, etc. These are tightly coupled among them-
selves and with the job shop database. If the part is machinable, the output
of the module are alternative operations, which serve as the input infor-
mation for the optimization module. If some of the features could not
machined within the job shop environment, the output will be some feed-
back information. There are two kinds of information the process planner
should provide as feedback: information for the designer and information
for the operator.

a. Information to the designer As mentioned before, some of the parts
cannot be machined because the designer mainly considers the function,
instead of the manufacturability of the part during design. For example,
if a blind slot with sharp corners is designed, there is no way that the

GAs for Manufacturing Process Planning 237

feature can be machined; therefore some suggestion should be made to
the designer to round the sharp corners.

b. Information to the process planner or job shop operator Sometimes an
operation cannot be performed due to lack of proper cutting tools or
machines. This information should be given as feedback to the process
planner or job shop operators. Some new tools are suggested to be added
in the database.

3. Plan Generation and Optimization This module generates the opti-
mal or near-optimal process plan for a part. The presented GAs are em-
bedded in this module. The input of the module is the OpE network, and
the output of the module is the sequence of the optimal or near optimal
process plan.

4. Job Shop Information and Database Management This module
contains all job shop resources. The job shop information, in terms of its
machining capability and current status, is to be input by the user. An
open architecture is provided to the user to input the currently available
machining resources (machines, tools) along with their technological at-
tributes, e.g. the maximum size, achievable accuracy and surface finish.
The machines used include milling, drilling, grinding and CNC machining
center.

There are three databases: machine database, cutting tool database and
fixture database. Users can construct their own database by selecting from
the existing database, adding, deleting, and modifying the database. These
databases are used for the plan evaluation module.

5.2.2 A Case Study

A part (socket) used in [8] (see Figure 15) is used here to test the developed
system. After the part had been analyzed that all features can be machined,
all available machining methods are generated by the plan evaluation module.
A feature analysis module is applied to get the PRs between features. These
then are converted to PRs between operations. The features and PRs among
them are extracted and shown in Table 10. The available tools are assumed
the same as in [8]. However, three machines (M1: vertical milling center,
M2: 3-axis vertical milling, M3: drill machine) are assumed in the job shop,
whereas only M2 is available in [8]. The cost indices are given in Table 11.

The CAPP system can generate a best plan based on the given job shop
information shown in Table 11. The optimal process plan generated is shown
in Table 12.With our GA embedded in the CAPP system, similar results, in
terms of operation sequence, are obtained. Compared to Gupta’s case that
considers only one machine, the presented method can handle more complex
job shop environments, i.e., more machines and cutting tools are available.
In addition, in [8] each feature is machined by one single operation, which is
not true for most practical cases. For example, holes are normally done by
several steps based on the geometry and tolerance requirement.

238 G. Ma and F. Zhang

A A0.1
+z

+x +y

Fig. 15. A socket used in [8].

Table 10. PRs for the features shown in Figure 15.

Feature Predecessors Feature Predecessors

F1 Nil F8 Nil

F2 F8, F9, F10,
F13

F9 F4, F12

F3 Nil F10 F4, F12

F4 Nil F11 F1, F12

F5 F4, F10, F12 F12 Nil

F6 F3, F4, F13 F8, F9, F10

F7 F4, F9, F12

Table 11. The process planning information.

Feature TADs Ms Ts Cost Index

F1 +z;
+y

M2 Mil50 MCI(M1)=70

F2 -z M2 Mil40 MCI(M2)=30
F3 +z; -y M2 Mil50 MCI(M3)=15
F4 -z; -y M2 Mil50 TCI(Mil50)=5
F5 -y M2 Dril30 TCI(Mil40)=4
F6 +z; -z M2 Dril20 TCI(Dril75)=5
F7 -y M2 Dril30 TCI(Dril30)=3
F8 -z M2 Dril75 TCI(Dril20)=2
F9 +y; -y M2 Dril20 MCCI=150
F10 +y; -y M2 Dril20 SCCI=90
F11 +z; -z M2 Dril20 TCCI=20
F12 -z; +y M2 Mil50
F13 -z M2 Mil50

GAs for Manufacturing Process Planning 239

Table 12. A plan found for the socket shown in Figure 15.

Feature M T TAD Summary

F1 M2 Mil50 +y
F12 M2 Mil50 +y Total Cost: 738
F4 M2 Mil50 -y
F3 M2 Mil50 -y No. of machine changes: 0
F10 M2 Dril20 -y
F9 M2 Dril20 -y No. of setup changes: 2
F7 M2 Dril30 -y
F5 M2 Dril30 -y No. of tool changes: 6
F8 M2 Dril75 -z
F11 M2 Dril20 -z
F6 M2 Dril20 -z
F13 M2 Mil50 -z
F2 M2 Mil40 -z

In summary, by changing the job shop database dynamically, the CAPP
system can react to dynamic events that occur in a job shop, such as machine
breakdown. In addition, the ability to generate more than one process plan
provides a good interface to integrate this CAPP system with scheduling and
production control. For a more complex part case, please see [57, 58]. Detailed
information about the presented work can be found in [59, 57, 60, 61, 62].

6 Conclusions

This chapter describes a process planning approach that integrates the tasks
of routing and sequencing for obtaining a globally optimal process plan for a
machined part. A GA-based algorithm has been developed to search for the
globally optimal solution based on the proposed process-planning model. Re-
sults in the case studies suggest that the methods are effective. The approach
employed has advantages over previous approaches in the following aspects:

1. The system is developed based on a customizable job shop environment
so that users can modify the manufacturing database to suit their needs.
This makes the system more realistic compared to the approaches in which
a fixed machining environment is assumed.

2. By concurrently considering the selection of machines, tools, and TADs
for each operation type and the sequence among the operations, together
with the constraints of PR, the resulting process plan model successfully
retains the entire solution space. This makes it possible to find a globally
optimal process plan.

3. The system provides flexible optimization criteria that will satisfy the
various needs from different job shops and/or job batches. The GA solves
the problem effectively.

240 G. Ma and F. Zhang

Our major contributions are:

• The process planning problem is modeled from an optimization perspec-
tive by considering all the possible combinations of M/T/TAD (operation
selection) and operation sequencing concurrently.

• A GA has been successfully applied to solve this optimization problem by
developing domain knowledge related GA operators.

• A CAPP system on top of a commercial CAD system was developed by
embedding our GAs into the system.

7 Future Work

A limitation of this approach is that the dynamic aspects of the fixture con-
straints are not considered. First, only modular fixture elements are consid-
ered, and it is assumed that a fixture solution for an OpE can be found if the
part under the TAD has sufficient base area, and clamping does not cause
too much deformation. Secondly, it is assumed that two OpEs sharing the
same machine and TAD also share the same fixture solution, therefore, no
set-up change is required. These assumptions may affect the flexibility on
fixture device choices and over-constrain the solution space. Currently, work
is underway to consider other fixture devices and include the fixture solution
as another attribute of OpEs, in addition to M, T, and TAD. The proposed
methods to find the optimal plans for traditional manufacturing processes
can be extended to the following areas:

• Integration of process planning with scheduling, design, and other activi-
ties,

• Green process planning,
• Process planning for layered manufacturing, and
• Process planning in the conceptual design phase.

The integration of process planning has been discussed in previous sections.
Following are some details about the remaining areas.

7.1 Green Process Planning

Environmental factors are becoming an emerging dimension in manufactur-
ing due to increasingly stringent regulations on health and safety of workers,
the importance of manufacturing wastes on the product life cycle, emerging
international standards on environmental performance, and a growing con-
sumer preference for green products. Thus, cleaner manufacturing processes
are becoming an important competitive advantage in many industries. Pro-
cess planning provides a crucial framework to make robust decisions which
decrease the environmental impact, while maintaining expected levels of pro-
duction rate and quality. The criteria to evaluate a green process plan are
quite different from the traditional process plan. However, using GAs, one

GAs for Manufacturing Process Planning 241

can easily integrate “green evaluation” into an existing traditional CAPP
system.

7.2 Process Planning for Layered Manufacturing

Layered manufacturing (LM) is a newly developed method to manufacture
the part directly from geometry modeling. There are a number of LM pro-
cesses currently available, such as stereo-lithography (SLA), fused deposition
modeling (FDM), and 3D printing (3DP). The core of the process planning
of layered manufacturing is the part orientation problem. The part orienta-
tion problem has multiple objectives such as minimum building time, better
surface quality, etc. EAs can also be used to solve LM orientation problems.

7.3 Process Planning in the Conceptual Design Phase

Traditionally, a process plan will be generated after a design is finished and
before the manufacturing starts. Sometimes it is too late to feed manufac-
turability information from CAPP back to the design engineers to modify
the design. Thus there is a need to generate process plans in the early design
phase or conceptual design phase.

Conceptual design is a key activity in early product development. It deter-
mines product functions, form, and the basic structure. Major manufacturing
cost is committed in the early conceptual design process. The difficulty of gen-
erating a process plan in this phase is the lack of accurate design information.
Because of this, a “co-evolution” concept will be introduced. The idea is to
evolve the process plan along with the design development. In the conceptual
design phase, the string to represent a process plan will be very different from
the string to represent a traditional process plan, due to the lack of accurate
design information, such as dimensions. Alternatively, a set of carefully de-
signed string operators that represent the manufacturability of the part will
be presented. Meanwhile, when the design evolves, the corresponding process
plan will evolve as well.

References

1. Chang, T.C.: Expert Process Planning of Manufacturing. Addison-Wesley,
Reading (1990)

2. ElMaraghy, H.A., Agerman, E., Davies, B.J.: Evolution and future perspective
of capp. Annals of the CIRP 42(2), 739–755 (1993)

3. Alting, L., Zhang, H.C.: Computer aided process planning: The state-of-the-art
survey. International Journal of Production Research 27(4), 553–585 (1989)

4. Bedworth, D., Henderson, M.R., Wolfe, P.M.: Computer-integrated Design and
Manufacturing. McGraw-Hill, New York (1991)

5. Chen, C.L.P., LeClair, S.R.: Integration of design and manufacturing solving
setup generation and feature sequencing using an unsupervised-learning ap-
proach. Computer Aided Design 26(1), 59–75 (1994)

242 G. Ma and F. Zhang

6. Chu, C.C.P., Gadh, R.: Feature-based approach for set-up minimization of pro-
cess design from product design. Computer Aided Design 28(5), 321–332 (1996)

7. Demey, S., van Brussel, H., Derache, H.: Determining set-ups for mechanical
workpieces. Robotics & Computer-Integrated Manufacturing 12(2), 195–205
(1996)

8. Gupta, S.K.: Using manufacturing planning to generate manufacturability feed-
back. Journal of Mechanical Design 119, 73–80 (1997)

9. Khoshnevis, B., Park, J.Y., Sormaz, D.: A cost based system for concurrent
part and process design. The Engineering Economist 40(1), 101–119 (1994)

10. Usher, J.M., Bowden, R.O.: The application of genetic algorithms to operation
sequencing for use in computer-aided process planning. Computer and Indus-
trial Engineering 30(4), 999–1013 (1996)

11. Hoi, D.Y., Dutta, D.: A genetic algorithm application for sequencing operations
in process planning for parallel machining. IIE Transaction 28(1), 55–68 (1996)

12. Kiritsis, D., Porchet, M.: A generic petri net model for dynamic process plan-
ning and sequence optimization. Advances in Engineering Software 25, 61–71
(1996)

13. Motipalli, V.V.S.K., Krishnaswami, P.: Automation of process planning for bor-
ing of turned components with arbitrary internal geometry from a semi-finished
stock. Journal of Computing and Information Science in Engineering 6(1),
49–59 (2006)

14. Waiyagan, K., Bohez, E.L.J.: Intelligent feature based process planning for five-
axis mill-turn parts. Journal of Computers in Industry 60(5), 296–316 (2009)

15. Khoshnevis, B., Chen, Q.: Integration of process planning and scheduling func-
tions. Journal of Intelligent Manufacturing 1, 165–176 (1990)

16. Krith, J.P., Detand, J.: A capp system for nonlinear process plans. Annals of
the CIRP 41(1), 489–492 (1992)

17. Zhang, H.C.: Ippm–a prototype to integrate process planning and job shop
scheduling functions. Annals of the CIRP 42(1), 513–518 (1993)

18. Huang, S.H., Zhang, H.C., Smith, M.L.: A progressive approach for the integra-
tion of process planning and scheduling. IIE Transactions 27, 456–464 (1995)

19. Kim, Y.K., Park, K., Ko, J.: A symbiotic evolutionary algorithm for the integra-
tion of process planning and job shop scheduling. Computers and Operations
Research 30(8), 1151–1171 (2003)

20. Wang, Z.J., Tian, J., Chen, W.: Integration of process planning and produc-
tion scheduling based on genetic algorithm. Journal of Communication and
Computer 6(6), 12–16 (2009)

21. Hayes, C.C.: p3 a process planner for manufacturability analysis. IEEE Trans-
actions on Robotics and Automation 12(2), 220–234 (1996)

22. Tan, W.: Integrated Process Planning and Scheduling: a mathematical Pro-
gramming Modeling Approach. PhD thesis, University of Southern California
(1997)

23. Leung, H.C.: Annotated bibliography on computer-aided process planning. In-
ternational Journal of Advanced Manufacturing Technology 12, 309–329 (1996)

24. Hayes, C.C., Wright, P.: Automating process planning: Using feature interac-
tions to guide search. Journal of Manufacturing Systems 8(1), 1–14 (1990)

25. Gupta, S.K., Nau, D.S.: Systematic approach to analysing the manufacturabil-
ity of machined parts. Computer–Aided Design 27(5), 323–342 (1995)

26. Rho, H.M., Geelink, R., et al.: An integrated cutting tool selection an dopera-
tion sequencing method. Annals of the CIRP 41(1), 517–520 (1992)

GAs for Manufacturing Process Planning 243

27. Palmer, G.J.: An Integrated Approach to Manufacturing Planning. PhD thesis,
University of Huddersfield (1994)

28. Mettala, E.G., Hoshi, S.: A compact representation of alternative process
plans/routings for fms control activities. Journal of Deisgn and Manufactur-
ing 3, 91–104 (1993)

29. Irani, S.A., Koo, H.Y., Raman, S.: Feature based operation sequence generation
in capp. International Journal of Production Research 33(1), 17–39 (1995)

30. Prabhu, P., Elhence, S., Wang, H., Wysk, R.: An operations network generator
for computer aided process planning. Journal of Manufacturing Systems 9(4),
283–291 (1990)

31. Noto La Deiga, S., Perrone, G., Piacentini, M.: Multiobjectives approach for
process planning selection in ims environment. Annuals of the CIRP 45(1),
471–474 (1996)

32. Zhang, H.C., Huang, S.H.: A fuzzy approach to process plan selection. Inter-
national Journal of Production Research 32(6), 1265–1279 (1994)

33. Hayes, C.C.: Plan–based manufacturability analysis and generation of shape–
changing redesign suggestion. Journal of Intelligent Manufacturing 7, 121–132
(1996)

34. Khoshnevis, B., Park, J.Y., Smoraz, D.: A cost based system for concurrent
part and process design. The Engineering Economist 40(1), 101–119 (1994)

35. Wong, T.N., Siu, S.L.: A knowledge–based approach to automated manufac-
turing process selection and sequencing. International Journal of Production
Research 33(12), 3465–3484 (1995)

36. Gu, P., Zhang, Y.: Operation sequencing in an automated process planning
system. Journal of Intelligent Manufacturing 4, 219–232 (1993)

37. Váncza, J., Márkus, A.: Genetic algorithms in process planning. Computers in
Industry 17(23), 181–184 (1991)

38. Husbands, P., Mill, F., Warrington, S.: Generating optimal process plans from
first principle. In: Expert Systems for Management and Engineering, Ellis Hor-
wood (1990)

39. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer,
Heidelberg (2003)

40. Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive
memetic algorithm for off-line and on-line control design of pmsm drives. IEEE
Transactions on Systems, Man and Cybernetics – Part B, Special Issue on
Memetic Algorithms 37(1), 28–41 (2007)

41. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading (1989)

42. Bruns, R.: Direct chromosome representation and advanced genetic operators
for production scheduling. In: The Fifth International Conference on Genetic
Algorithms, pp. 352–359 (1993)

43. Moon, C., Seo, Y.: Evolutionary algorithm for advanced process planning
and scheduling in a multi-plant. Computers and Industrial Engineering 48(2),
311–325 (2005)

44. Gonçalves, J.F., Resende, M.G.C.: An evolutionary algorithm for manufactur-
ing cell formation. Computers and Industrial Engineering 47(1), 247–273 (2004)

45. Dereli, T., Filiz, H.I.: Optimization of process planning functions by genetic
algorithm. Computers and Industrial Engineering 36(2), 281–308 (1999)

46. Gen, M., Lin, L., Zhang, H.: Evolutionary techniques for optimization problems
in integrated manufacturing state-of-the-art-survey. Computers and Industrial
Engineering 56(3), 779–808 (2009)

244 G. Ma and F. Zhang

47. Brown, K., Cagan, J.: Optimized process planning by generative simulated
annealing. Artificial Intelligent for Engineering Design, Analysis and Manufac-
turing 11, 219–235 (1997)

48. Rudolph, G.: Convergence properties of canonical genetic algorithms. IEEE
Transactions on Neural Networks 5(1), 11–96 (1994)

49. Eiben, A.E., Aarts, E.H., Van Hee, K.M.: Global convergence of genetic algo-
rithms: An infinite markov chain analysis. In: Proceeding of the First Interna-
tional Conference on Parallel Problme Solving from Nature, pp. 4–17. Springer,
Heidelberg (1991)

50. Dagli, C., Sittisathanchai, S.: Genetic neuro-scheduler for job shop scheduling.
Computers and Industrial Engineering 25(1/4), 267–270 (1993)

51. Alander, J.T.: On optimal population size of genetic algorithms. In: Com-
puEuro 1992, pp. 65–70 (1992)

52. Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic
algorithms. In: The 9th International Symposium on Foundation of Intelligent
Systems, pp. 155–167 (1996)

53. Reeves, C.: A genetic algorithm for flow shop sequencing. Computers and Op-
erations Research 22, 5–13 (1996)

54. Fogel, D.B., Atmar, J.W.: Comparing genetic operators with gaussian muta-
tions in simulated evolutionary processes using linear systems. Biological Cy-
bernetics 63, 111–114 (1990)

55. Chu, P.C.H.: A Genetic Algorithm Approach for Combinatorial Optimization
Problems. PhD thesis, University of London (1997)

56. Mattfeld, D.C.: Evolutionary Search and the Job Shop: Investigation on Genetic
Algorithms for Production Scheduling. PhD thesis, University of Bremen (1995)

57. Zhang, F., Zhang, Y.F., Nee, A.Y.C.: Using genetic algorithms in process plan-
ning for job shop machining. IEEE Transactions on Evolutionary Computa-
tion 1(4), 278–289 (1997)

58. Zhang, F.: Genetic algorithm in computer-aided process planning. Master’s
thesis, National University of Singapore (1997)

59. Ma, G.H., Zhang, Y.F., Nee, A.Y.C.: A simulated annealing-based optimization
algorithm for process planning. Internal Journal of Product Research 38(12),
2671–2687 (2000)

60. Zhang, Y.F., Ma, G.H., Nee, A.Y.C.: Modeling process planning problems in
an optimization perspective. In: Proceedings of IEEE International Conference
on Robotics and Automation, pp. 1764–1769 (1999)

61. Ma, G.H., Zhang, F., Zhang, Y.F., Nee, A.Y.C.: An automated process plan-
ning system based on genetic algorithm and simulated annealing. In: Proceed-
ings of ASME Design Engineering Technical Conferences and Computer and
Information in Engineering Conference, September 29-October 2 (2002)

62. Wang, L.: Database in process planning. Master’s thesis, National University
of Singapore (1999)

A Fitness Granulation Approach for
Large-Scale Structural Design
Optimization

Mohsen Davarynejad, Jos Vrancken, Jan van den Berg,
and Carlos A. Coello Coello

Abstract. The complexity of large-scale mechanical optimization problems
is partially due to the presence of high-dimensional design variables, the na-
ture of the design variables, and the high computational cost of the finite
element simulations needed to evaluate the fitness of candidate solutions.
Evolutionary algorithms are ruled by competitive games of survival and not
merely by absolute measures of fitness. They can also exploit the robustness of
evolution against uncertainties in the fitness function evaluations. This chap-
ter takes up the complexity challenge of mechanical optimization problems
by proposing a new fitness granulation approach that attempts to cope with
several difficulties of fitness approximation methods that have been reported
in the specialized literature. The approach is based on adaptive fuzzy fitness
granulation having as its main aim to strike a balance between the accuracy
and the utility of the computations. The adaptation algorithm adjusts the
number and size of the granules according to the perceived performance and
level of convergence attained. Experimental results show that the proposed
method accelerates the convergence towards solutions when compared to the
performance of other, more popular approaches. This suggests its applicabil-
ity to other complex finite element-based engineering design problems.

Mohsen Davarynejad · Jos Vrancken · Jan van den Berg
Faculty of Technology, Policy and Management,
Delft University of Technology, NL-2600 GA, Delft, The Netherlands
e-mail: {m.davarynejad;j.l.m.vrancken;j.vandenberg}@tudelft.nl

Carlos A. Coello Coello
CINVESTAV-IPN, Departmento de Computación
(Evolutionary Computation Group), Av. IPN No. 2508,
Col. San Pedro Zacatenco,
México D.F. 07300, México
e-mail: ccoello@cs.cinvestav.mx

{m.davarynejad; j.l.m.vrancken; j.vandenberg}@tudelft.nl
ccoello@cs.cinvestav.mx

246 M. Davarynejad et al.

1 Introduction

Since the 1960s, and due to the significant development in numerical methods
and computing, the finite element analysis (FEA) has become a frequent tool
to solve engineering problems that arise in systems with several interacting
components, complex geometries, and which are under the effect of differ-
ent physical phenomena. These (complex) systems elude a thorough physical
analysis with exact techniques which is made possible by means of a system-
atic discretization approach known as the finite element method (FEM) [1].
At the same time that the FEM was developed, efficient and fast optimiza-
tion algorithms have arisen for solving various kinds of mathematical and
optimization problems (OPs). Both trends contributed to the development
of large-scale structural design and optimization problems (SDOPs) and to
the discipline of structural optimization. The aim of structural optimization
is to generate automated procedures for finding the best possible structure
with respect to at least one criterion (the objective), and having to satisfy a
set of constraints, by selecting from a set of geometrical dimensions, material
properties and/or topological parameters [2].

Structural optimization problems are often challenging due to their high
computational demands 1, multi-modality, non-convexity, high dimension-
ality, and multi-objectivity. Because of this, many structural optimization
problems are weakly amenable to conventional mathematical programming
approaches, which motivates the use of alternative solution methods.

Randomized search heuristics are among the simplest and most robust
strategies that are applicable to a wide range of optimization problems in-
cluding structural design (SD). While they can normally provide near optimal
solutions, they cannot guarantee convergence to the optimum. Their compu-
tational requirements are typically high too. Among the randomized search
heuristics currently available, evolutionary algorithms (EAs) have become
very popular in the last few years, mainly because of their ease of use and
efficacy. EAs are stochastic search techniques that operate on a set of solu-
tions (the so-called population), which are modified based on the principles
of natural evolution (i.e., the survival of the fittest) [3]. EAs have been com-
monly adopted for solving complex SD problems. For example, Walker and
Smith [4] combined the FEM and EAs to minimize a weighted sum of the
mass and deflection of fiber-reinforced structures. Similarly, Abe et al. [5]
used the FEM and an EA for structural optimization of the belt construction
of a tire. More recently, Giger and Ermanni [6] applied the FEM and an EA to
minimize the mass of composite fiber-reinforced plastic (CFRP) rims subject
to strength and stiffness constraints. However, EAs may suffer from a slow
rate of convergence towards the global optimum, which implies that they may
be too (computationally) expensive for certain SD problems. Consequently,

1 FEA is computationally costly and may require several days to complete its
calculations, even for a relatively simple problem.

Fitness Granulation for Large-Scale Structural Design Optimization 247

it is challenging to develop computationally efficient evolution-based search
methods.

To alleviate the problem of converging time of computationally expensive
optimization problems, a variety of techniques have been proposed in the
literature. Perhaps the most obvious choice is to use parallelization tech-
niques [7]. However, another alternative is to rely on fitness approximation
techniques, which avoid evaluating every individual in the population of an
EA. In order to do this, these approaches estimate the quality of some indi-
viduals based on an approximate model of the fitness landscape. This is the
sort of approach this chapter is focused on. Section 4 provides a review of
fitness approximation techniques in evolutionary computation. When using
fitness approximation techniques, it is necessary to strike a balance between
exact fitness evaluation and approximate fitness evaluation. In this chapter,
with a view to reducing computational cost, we employ the concept of fuzzy
granulation to effectively approximate the fitness function. The advantage of
this approach over others is the fact that no training samples are required,
and the approximate model is dynamically updated with no or negligible
overhead cost.

The remainder of this chapter is organized as follows. The following section
elaborates upon four SD optimization problems before explaining the genetic
algorithm (GA) approach proposed here for the SD optimization task (see
Section 3). This is followed by a review of the variety of fitness approximation
approaches that have been proposed for EAs in Section 4. In order to accel-
erate the convergence speed of the GA with a minimum number of fitness
function evaluations, a novel method is presented in Section 5. The approach
is based on generating fuzzy granules via an adaptive similarity analysis.
To illustrate the efficiency of the proposed method in solving the four SD
problems introduced in Section 2, the performance results of different opti-
mization algorithms are presented in Section 6. A further statistical analysis
confirms that the proposed approach reduces the computational complexity
of the number of fitness function evaluations by over 50% while reaching sim-
ilar or even better final fitness values. Finally, in Section 8 we provide our
conclusions.

2 Structural Design Optimization Problems

Four SD optimization problems with increasing complexity are investigated
here. They are the following: (1) the design of a 3-layer composite beam with
two optimization variables, (2) the design of an airplane wing with six deci-
sion variables, (3) the design of a 2D truss frame with 36 decision variables,
and (4) the voltage/pattern design of piezoelectric actuators. We discuss in
more detail the last problem, because of its complexity. It consists of find-
ing the best voltage and pattern arrangement for static shape control of a

248 M. Davarynejad et al.

piezoelectric actuator with 200 design variables. Clearly, this is a more
challenging and heavy optimization task from a fitness/computational
perspective.

2.1 Easier/Smaller Problems

The first three SD problems are covered in this section. The ultimate goal
in these optimization problems is to maximize the first natural frequency2 of
the given structure. To allow more space for the last problem (described in
subsections 2.2 and 6.4), we limit ourselves here to a short description of the
three problems.

2.1.1 3-Layer Composite Beam

A multi-layered composite beam is constructed from a combination of two or
more layers of dissimilar materials that are joined together to act as a unit
in which the resulting combination is lighter, stronger and safer than the
sum of its parts. An FEA model has been developed to analyze the multi-
layer composite beams and plates. The objective is to raise the first natural
frequency of the beam.

2.1.2 Airplane Wing

An airplane wing is an elastic structure that, in the presence of aerodynamic
loads, starts to vibrate. In this study, we treated the natural frequency as
the design objective since it is quite intuitive and natural to raise the nat-
ural frequencies of the wing so that it is not easily excited by undesirable
disturbances.

2.1.3 2D Truss Frame

Trusses are the most commonly used structure and in comparison to heavily-
built structures, they have a relatively small dead weight. A truss con-
sists of bar-elements (members) connected by hinged joints to each other
and supported at the base. Truss design problems belong to the class of
load-supporting structure design problems that are usually finite-dimension
2 Resonance occurs when the excitation frequency is the same as the natural fre-

quency. For the same excitation energy, the resulting vibration level at resonance
frequency is higher than other exiting frequencies. The importance of maximizing
the first natural frequency is to avoid the resonance phenomenon to occur.

Fitness Granulation for Large-Scale Structural Design Optimization 249

optimization problems. The design of load-supporting structures plays a key
role in engineering dynamics. The objective (fitness) here is to raise the struc-
ture’s first natural frequency to reduce the vibration domain and to prevent
the resonance phenomenon (in dynamic response) of the structure.

2.2 Voltage and Pattern Design of a Piezoelectric
Actuator

Piezoelectric materials exhibit both direct (electric field generation as a re-
sponse to mechanical strains) and converse (mechanical strain is produced
as a result of an electric field) piezoelectric effects. The direct effect is
used in piezoelectric sensors while the converse effect is used in piezoelectric
actuators.

Apart from ultrasound applications, energy harvesting, sensor applications
(e.g., strain gauges and pressure sensors), and vibration/noise control do-
mains, piezoelectric materials are widely used as actuators in smart struc-
tures. Smart structures with integrated self-monitoring, self-diagnosis, and
control capabilities have practical uses ranging from MEMS, biomedical en-
gineering, control engineering, aerospace structures, ground transportation
systems and marine applications. The smart structures technology is widely
used in biomechanics, i.e., to expand obstructed blood vessels or to prevent
further enlargement of blood vessels damaged by aneurysms [8] which most
commonly occurs in arteries. Another apparent practical use of smart and
adaptive structural systems is to properly control the undesirable motions of
geometry-changing structures.

Piezoelectric actuators are also found in an enormous range of applica-
tions for distributed actuation and control of mechanical structures for shape
correction and modification. One example for this is their use in flexible air-
crafts where they improve the aerodynamic performance and deformation
control of conformal antennas [9], through their incorporation within the
structure. For instance, in [10], an optimization algorithm is used to deal
with the shape control of functionally graded material (FGM) plates which
are actively controlled by piezoelectric sensor and actuator patches. A com-
putational intelligence-based algorithm is used to derive the optimal voltage
distribution, by adopting the elements of the gain control matrix as the design
variables.

The optimal shape control and correction of small displacements in com-
posite structures using piezoelectric actuators concern complex engineering
problems. To achieve a predefined shape of the structure of the metal plate,
in this chapter we will present a fast converging global optimization algo-
rithm to find the optimal actuation voltages that need to be applied to the
piezoelectric actuators and to the pattern of piezoelectric patches.

250 M. Davarynejad et al.

3 GAs for Structural Optimization Problems

GAs are perhaps the most popular type of EAs nowadays and have been
applied to a wide variety of problems [11]. The GA optimization procedure
for solving SD problems begins with a set of randomly selected parents (design
parameters). If any of these parents does not meet all the physical constraints,
they are modified until they do. In subsequent generations, each offspring’s
phenotype is also checked for its feasibility. Furthermore, the fitness values
of the parents and their offspring are compared and the worst individuals
are rejected, preserving the remaining ones as parents of the new generation
(known as steady-state population treatment). This procedure is repeated
until a given termination criterion is satisfied.

Due to their robustness, GAs have been frequently used in a variety of
real world optimization applications including optimizing the placement of
actuators on large space structures [12], the design of a low-budget lightweight
motorcycle frame with superior dynamic and mechanical properties [13], and
the evolution of the structural configuration for weight minimization of a
space truss structure [14]. The implementation of a GA can be summarized
as follows:

1. Initialization: Initialize P design vectors X = {X1, X2, . . . , Xi, . . . , XP },
where P is the population size.

2. Constraints check: If satisfied, continue, else modify Xi until the can-
didate solution becomes feasible.

3. Evaluation (Analysis): Evaluate the fitness function f(Xi), i = {1, 2,
. . . , P}.

4. Convergence check:

a. if satisfied stop,
b. else select the next generation parent design vectors, apply genetic

operators (mutation, recombination) and generate the next offspring
design vectors X . Go to step 2.

EAs in general are often expensive in the sense that they may require a high
number of computationally costly objective function evaluations. As a result,
it may be necessary to forgo an exact evaluation and use approximated fitness
values that are computationally efficient. In the design of mechanical struc-
tures, for instance, each exact fitness evaluation requires the time-consuming
stage of FEA which, depending on the size of the problem, may consume from
several seconds up to several days. If we assume a conventional GA with a
fixed and modest population size of 100, a maximum of 100 generations, and
a very small-scale structural problem that requires 10 seconds for each fitness
evaluation, the total execution of the GA would require 30 hours! This should
make evident the inhibiting role of the computational complexity associated
to GAs (and EAs, in general) for non-trivial and large-scale problems.

Fitness Granulation for Large-Scale Structural Design Optimization 251

Since one of the crucial aspects for solving large-scale SD optimization
problems using EAs is the computational time required, in the following
section we outline a few existing strategies that have been proposed to deal
with this issue.

4 Fitness Approximation in Evolutionary Computation

As indicated before, one possibility to deal with time-consuming problems
using a GA is to avoid evaluating every individual and estimate instead the
quality of some of them based on an approximate model of the search space.
Approximation techniques may estimate an individuals’ fitness on the basis
of previously observed objective function values of neighboring individuals.
There are many possible approximation models [15]. Next, we will briefly
review some of the most commonly adopted fitness approximation methods
reported in the specialized literature.

4.1 Fitness Inheritance

This is a very simple technique that was originally introduced by Smith et
al. [16]. The mechanism works as follows: when assigning fitness to an indi-
vidual, sometimes we evaluate the objective function as usual, but the rest
of the time, we assign fitness as an average (or a weighted average) of the
fitness of the parents. This fitness assignment scheme will save us one fit-
ness function evaluation, and operates based on the assumption of similarity
between an offspring and its parents. Clearly, fitness inheritance cannot be
applied all the time, since we require some true fitness function values in
order to obtain enough information to guide the search. This approach uses
a parameter called inheritance proportion, which regulates how many times
we do apply fitness inheritance (the rest of the time, we compute the true
fitness function values). As will be seen next, several authors have reported
the use of fitness inheritance.

Zheng et al. [17] used fitness inheritance for codebook design in data com-
pression techniques. They concluded that the use of fitness inheritance did
not degrade, in a significant way, the performance of their GA.

Salami et al. [18] proposed a Fast Evolutionary Strategy (FES) in which
a fitness and associated reliability value were assigned to each new individ-
ual. Considering two decision vectors pi

1 = (X i
1, F

i
1, r

i
1) and pi

2 = (X i
2, F

i
2 , r

i
2)

where X i
1 and X i

2 are the chromosomes 1 and 2 at generation i with fitness
values F i

1 and F i
2 and reliabilities ri

1 and ri
2, respectively. In this scheme, the

true fitness function is only evaluated if the reliability value is below a certain

252 M. Davarynejad et al.

threshold. Otherwise, the fitness of the new individual and its reliability value
is calculated from:

F i+1 =
S1r

i
1F

i
1 + S2r

i
2F

i
2

S1ri
1 + S2ri

2

(1)

and

ri+1 =
(S1r

i
1)

2 + (S2r
i
2)

2

S1ri
1 + S2ri

2

(2)

where S1 is the similarity between X i+1
1 and X i

1 and S2 is the similarity
between X i+1

1 and X i
2. Also, they incorporated random evaluation and error

compensation strategies. Clearly, this is another (more elaborate) form of
fitness inheritance. Salami et al. reported an average reduction of 40% in the
number of evaluations while obtaining similar solutions. In the same work,
they presented an application of (traditional) fitness inheritance to image
compression obtaining reductions ranging from 35% up to 42% of the total
number of fitness function evaluations.

Pelikan et al. [19] used fitness inheritance to estimate the fitness for only
part of the solutions in the Bayesian Optimization Algorithm (BOA). They
concluded that fitness inheritance is a promising concept, because population-
sizing requirements for building appropriate models of promising solutions
lead to good fitness estimates, even if only a small proportion of candidate
solutions is evaluated using the true fitness function.

Fitness inheritance has also been used for dealing with multi-objective op-
timization problems. Reyes-Sierra and Coello Coello [20, 21] incorporated the
concept of fitness inheritance into a multi-objective particle swarm optimizer
and validated it in several test problems of different degrees of difficulty. They
generally reported lower computational costs, while the quality of their results
improved in higher dimensional spaces. This was in contradiction with other
studies (e.g., [22] as well as this chapter) that indicate that the performance
of the parents may not be a good predictor for their children’s composition
in sufficiently complex problems, rendering fitness inheritance inappropriate
under such circumstances.

4.2 Surrogates

A common approach to deal with expensive objective functions is to construct
an approximation function which is much cheaper to evaluate (computation-
ally speaking). In order to build such an approximation function which will be
used to predict promising new solutions, several sample points are required.
The meta-model built under this scheme aims to reduce the total number of
(true objective function) evaluations performed, while producing results of a
reasonably good quality.

Fitness Granulation for Large-Scale Structural Design Optimization 253

Evidently, the accuracy of the surrogate model depends on the number of
samples provided (and their appropriate distribution) and on the approxi-
mation model adopted. Since surrogate models will be used very frequently,
it is very important that the construction of such models is computationally
efficient [15]. The following are examples of the use of surrogates of different
types.

Sano et al. [23] proposed a GA for optimization of continuous noisy fitness
functions. In this approach, they utilized the history of the search to reduce
the number of fitness function evaluations. The fitness of a novel individual
is estimated using the fitness values of the other individuals as well as the
sampled fitness values for it. So, as to increase the number of individuals
adopted for evaluation, they not only used the current generation but also the
whole history of the search. To utilize the history of the search, a stochastic
model of the fitness function is introduced, and the maximum likelihood
technique is used for estimation of the fitness function. They concluded that
the proposed method outperforms a conventional GA in noisy environments.

Branke et al. [24] suggested the use of local regression for estimation, taking
the fitness of neighboring individuals into account. Since in local regression it
is very important to determine which solutions belong to the neighborhood of
a given individual, they studied two different approaches for setting the value
of the size of the local neighborhood (relative neighborhood and adaptive
neighborhood). They concluded that local regression provides better estima-
tions than previously proposed approaches. In their more recent work [25],
a comparison between two estimation methods, interpolation and regression,
is done. They concluded that regression seems to be slightly preferable, par-
ticularly if only a very small fraction of the individuals in the population is
evaluated. Their experiments also show that using fitness estimation, it is
possible to either reach a better fitness level in a given time, or to reach a
desired fitness level much faster (using roughly half of the original number of
fitness function evaluations).

Ong et al. [26] proposed a local surrogate modeling algorithm for par-
allel evolutionary optimization of computationally expensive problems. The
proposed algorithm combines hybrid evolutionary optimization techniques,
radial basis functions, and trust-region frameworks. The main idea of the pro-
posed approach is to use an EA combined with a feasible sequential quadratic
programming solver. Each individual within an EA generation is used as an
initial solution for local search, based on Lamarckian learning. They employed
a trust-region framework to manage the interaction between the original ob-
jective and constraint functions and the computationally cheap surrogate
models (which consist of radial basis networks constructed by using data
points in the neighborhood of the initial solution), during local search. Exten-
sive numerical studies are presented for some benchmark test functions and an
aerodynamic wing design problem. They show that the proposed framework
provides good designs on a limited computational budget. In more recent
work, Ong et al. [27] presented a study on the effects of uncertainty in the

254 M. Davarynejad et al.

surrogate model, using what they call Surrogate-Assisted Evolutionary Algo-
rithms (SAEA). In particular, the focus was on both the curse of uncertainty
(impairments due to errors in the approximation) and blessing of uncertainty
(benefits of approximation errors). Several algorithms are tested, namely the
Surrogated-Assisted Memetic Algorithm (SAMA) proposed in [26], a stan-
dard GA, a memetic algorithm (considered as the standard hybridization of
a GA and the feasible sequential quadratic programming solver used in [26]),
and the SAMA-Perfect algorithm (which is the SAMA algorithm but using
the exact fitness function as surrogate model), on three multi-modal bench-
mark problems (Ackley, Griewank and Rastrigin). The conclusion was that
approximation errors lead to convergence at false global optima, but turns
out to be beneficial in some cases, accelerating the evolutionary search.

Regis and Shoemaker [28] developed an approach for the optimization of
continuous costly functions that uses a space-filling experimental design and
local function approximation to reduce the number of function evaluations in
an evolutionary algorithm. The proposed approach estimates the objective
function value of an offspring by means of a function approximation model
over the k-nearest previously evaluated points. The estimated values are used
to identify the most promising offspring per function evaluation. A Sym-
metric Latin Hypercube Design (SLHD) is used to determine initial points
for function evaluation, and for the construction of the function approxi-
mation models. They compared the performance of an Evolution Strategy
(ES) with local quadratic approximation, an ES with local cubic radial ba-
sis function interpolation, an ES whose initial parent population is obtained
from a SLHD, and a conventional ES (in all cases, the They used a (μ, λ)-ES
with uncorrelated mutations). The algorithms were tested on a groundwa-
ter bioremediation problem and on some benchmark test functions for global
optimization (including Dixon-Szegö, Rastrigin and Ackley). The obtained
results (which include an analysis of variance to provide stronger and solid
claims regarding the relative performance of the algorithms) suggest that the
approach that uses SLHDs together with local function approximations has
potential for success in enhancing EAs for computationally expensive real-
world problems. Also, the cubic radial basis function approach appears to
be more promising than the quadratic approximation approach on difficult
higher-dimensional problems.

Lim et al. [29] presented a Trusted Evolutionary Algorithm (TEA) for
solving optimization problems with computationally expensive fitness func-
tions. TEA is designed to maintain good trustworthiness of the surrogate
models in predicting fitness improvements or controlling approximation er-
rors throughout the evolutionary search. In this case, the most interesting
part was to predict search improvement as opposed to the quality of the
approximation, which is regarded as a secondary objective. TEA begins its
search using the canonical EA, with only exact function evaluations. Dur-
ing the canonical EA search, the exact fitness values obtained are archived
in a central database together with the design vectors (to be used later for

Fitness Granulation for Large-Scale Structural Design Optimization 255

constructing surrogate models). After some initial search generations (spec-
ified by the user), the trust region approach takes place beginning from the
best solution provided by the canonical EA. The trust region approach uses
a surrogate model (radial basis neural networks) and contracts or expands
the trust radius depending on the ability of the approximation model in pre-
dicting fitness improvements, until the termination conditions are reached.
An empirical study was performed on two highly multi-modal benchmark
functions commonly used in the global optimization literature (Ackley and
Griewank). Numerical comparisons to the canonical EA and the original
trust region line search framework are also reported. From the obtained re-
sults, the conclusion was that TEA converges to near-optimum solutions more
efficiently than the canonical evolutionary algorithm.

4.2.1 Kriging

A more elaborate surrogate model that has been relatively popular in engi-
neering is the so-called Gaussian Process Model, also known as Kriging [30].
This approach builds probability models through sample data and estimates
the function values at every untested point with a Gaussian distribution.

Ratle [31] presented a new approach based on a classical real-encoded GA
for accelerating the convergence of evolutionary optimization methods. A
reduction in the number of fitness function calls was obtained by means of an
approximation model of the fitness landscape using kriging interpolation. The
author built a statistical model from a small number of data points obtained
during one or more generations of the evolutionary method using the true
fitness landscape. The model is updated each time a convergence criterion is
reached.

4.3 Artificial Neural Networks

In the last few years, artificial neural networks (ANNs), including multi-layer
perceptrons [32] and radial basis function networks [33] have also been em-
ployed to build approximate models for design optimization. Due to their
universal approximation properties, ANNs can be good fitness function esti-
mators if provided with sufficient structural complexity and richness in their
training data set. Next, some representative applications of the use of ANNs
for building approximate models will be briefly reviewed.

Khorsand et al. [34] investigated structural design by a hybrid of neural
network and FEA that only selectively used the neuro-estimation when either
interpolation was expected (interpolation is generally expected to be more
accurate) or the individual was not deemed to be highly fit (error in esti-
mation may not be important). The methodology used in [34] is presented

256 M. Davarynejad et al.

Fig. 1. The GA-ANN algorithm that is proposed in [34]. Only if the approxi-
mate fitness of an individual is better than the maximum fitness found in the last
population, its fitness is re-evaluated in order to reflect its real fitness value.

in Figure 1 where r is considered as the maximum fitness of the individuals
in the last generation. As with any other numerically driven approximation
method, the performance of ANNs is closely related to the quality of the
training data.

Jin et al. [35] investigated the convergence properties of an evolution strat-
egy with neural network-based fitness evaluations. In this work, the concept
of controlled evolution is introduced, in which the evolution proceeds using
not only the approximate fitness function value, but also the true fitness func-
tion value. They also introduce two possibilities to combine the true with the
approximate fitness function value: (1) the controlled individuals approach
and (2) the controlled generation approach. Jin et al. defined “controlled” as
evaluated with the true fitness function. Both approaches were studied and
some interesting conclusions/recommendations for the correct use of such
techniques are provided. A comprehensive survey of fitness approximation
applied in evolutionary algorithms is presented in [36].

4.4 Final Remarks about Fitness Approximation

Lack of sufficient training data is the main problem in using most of the fit-
ness approximation models currently available. Hence they may fail to build
a model with sufficient approximation accuracy. Since evaluation of the orig-
inal fitness function is very time-consuming and/or expensive, the approx-
imate model may be of low fidelity and may even introduce false optima.
Furthermore, if the training data does not cover all the domain range, large

Fitness Granulation for Large-Scale Structural Design Optimization 257

errors may occur due to extrapolation. Errors may also occur when the set
of training points is not sufficiently dense and uniform. In such situations, a
combination of methods may be more desirable. For example, Ong et al. [26]
combined radial basis functions with transductive inference to generate local
surrogate models.

Alternatively, if individuals in a population can be clustered into several
groups as in [37], then only the individual that represents its cluster can be
evaluated. The fitness value of other individuals in the same cluster will be
estimated from the representative individual based on a distance measure.
This is termed fitness imitation in contrast to fitness inheritance [15]. The
idea of fitness imitation has been extended and more sophisticated estima-
tion methods have been developed in [38]. A similarity based model is intro-
duced in [39] and is applied to constrained and unconstrained optimization
problems.

In multi-objective optimization problems (MOPs), the complexity of the
problem is normally higher, compared to that of single-objective optimiza-
tion problems (SOPs) [40]. In general, although the fitness approximation
approaches used in SOPs can be simply extended and adapted for MOPs,
such adaptation may require more elaborate mechanisms. One example of
this is constraint-handling.3 It is well-known that in real-world optimization
problems there are normally constraints of different types (e.g., related to
the geometry of structural elements to completion times, etc.) that must be
satisfied for a solution to be acceptable. Traditionally, penalty functions have
been used with EAs to handle constraints in SOPs [43]. However, because
of the several problems associated to penalty functions (e.g., the definition
of appropriate penalty values is normally a difficult task that has a serious
impact on the performance of the EA), some researchers have proposed al-
ternative constraint-handling approaches that require less critical parameters
and perform well across a variety of problems (see for example [41, 44, 43]).
However, when dealing with MOPs, many of these constraint-handling tech-
niques cannot be used in a straightforward manner, since in this case, the
best trade-offs among the objectives are always located in the boundary be-
tween the feasible and the infeasible region. This requires the development of
different approaches specially tailored for MOPs (see for example [45, 46]). A
similar problem occurs when attempting to migrate single-objective fitness
approximation models to MOPs. For more details on this topic, see [47].

While the above methods aim to reduce the computational cost by ap-
proximating the fitness function, the prevalent problems with interpolation
in rough surfaces remains. If the assumption of smooth continuity is not valid,
interpolation may even yield values that are not physically realizable. Fur-
thermore, we may be blinded to the optimal solutions using interpolation as
3 Although constraint-handling techniques are very important in real-world op-

timization problems, their discussion is beyond the scope of this chapter, due
to space limitations. Interested readers are referred to other references for more
information on this topic (see for example [41, 42]).

258 M. Davarynejad et al.

interpolation assumes a pattern of behavior that may not be valid around
optimal peaks. The next section addresses this problem by introducing the
concept of information granulation.

5 Adaptive Fuzzy Fitness Granulation

Fuzzy granulation of information is a vehicle for handling information, as well
as a lack of it (uncertainty), at a level of coarseness that can solve problems
appropriately and efficiently [48]. In 1979, the concept of fuzzy information
granulation was proposed by Zadeh [49] as a technique by which a class of
points (objects) are partitioned into granules, with a granule being a clump
of objects drawn together by indistinguishability, similarity, or functionality.
The fuzziness of granules and their attributes is characteristic of the ways by
which human concepts and reasoning are formed, organized and manipulated.
The concept of a granule is more general than that of a cluster, potentially
giving rise to several conceptual structures in various fields of science as well
as mathematics.

In this chapter, with a aim to reducing computational costs, the concept
of fitness granulation is applied to exploit the natural tolerance of EAs in fit-
ness function computations. Nature’s survival of the fittest is not about exact
measures of fitness; rather it is about rankings among competing peers. By
exploiting this natural tolerance for imprecision, optimization performance
can be preserved by computing fitness only selectively and only to keep this
ranking among individuals in a given population. Also, fitness is not interpo-
lated or estimated; rather, the similarity and indistinguishability among real
solutions is exploited.

In the proposed algorithm, an adaptive pool of solutions (fuzzy granules)
with an exactly computed fitness function is maintained. If a new individual
is sufficiently similar to a known fuzzy granule [49], then that granules’ fitness
is used instead as a crude estimate. Otherwise, that individual is added to the
pool as a new fuzzy granule. In this fashion, regardless of the competitions’
outcome, the fitness of the new individual is always a physically realizable one,
even if it is a crude estimate and not an exact measurement. The pool size
as well as each granules’ radius of influence is adaptive and will grow/shrink
depending on the utility of each granule and the overall population fitness.
To encourage fewer function evaluations, each granule’s radius of influence
is initially large and gradually shrinks at later stages of the evolutionary
process. This encourages more exact fitness evaluations when competition is
fierce among more similar and converging solutions. Furthermore, to prevent
the pool from growing too large, unused granules are gradually replaced by
new granules, once the pool reaches a certain maturity.

Fitness Granulation for Large-Scale Structural Design Optimization 259

5.1 Algorithm Structure

Given the general overview in the preceding section, the concrete steps of the
algorithm are as follows:

Step 1: Create a random parent population P1 = {X1
1 , X1

2 , . . . , X1
j , . . . ,

X1
t } of design variable vector, where, more generally, X i

j = {xi
j,1, xi

j,2, . . . ,

xi
j,r, . . . , xi

j,m} is the jth parameter individual in the ith generation, xi
j,r

the rth parameter of X i
j , m is the number of design variables and t is the

population size.
Step 2: Define a multi-set G of fuzzy granules (Ck, σk, Lk) according to

G = {(Ck, σk, Lk)|Ck ∈ �m, σk ∈ �, Lk ∈ �, k = 1, . . . , l}. G is initially
empty (i.e., l = 0). Ck is an m-dimensional vector of centers, σk is the width of
membership functions (WMFs) of the kth fuzzy granule, and Lk is the granule’s
life index. A number of granules with different widths are shown in Figure 2.

Fig. 2. A number of Gaussian granules with different widths in a 2-D solution
space. Once a new individual is sufficiently similar to a granule in the granule pool,
then that granules’ fitness is used instead as a crude estimate. Otherwise, that
individual is added to the pool as a new fuzzy granule. Each granules’ radius of
influence is determined based on equation (4).

Step 3: Choose the phenotype of the first chromosome (X1
1 = {x1

1,1,
x1

1,2, . . . , x1
1,r, . . . , x1

1,m}) as the center of the first granule (C1 =
{c1,1, c1,2, . . . , c1,r, . . . , c1,m} = X1

1).
Step 4: Define the membership μk,r of each xi

j,r to each granule member
by a Gaussian similarity neighborhood function according to

μk,r

(
xi

j,r

)
= exp

(
− (xi

j,r − ck,r

)2

(σk)2

)

, k = 1, 2, . . . , l , (3)

where l is the number of fuzzy granules.

260 M. Davarynejad et al.

Remark: σk is the distance measurement parameter that controls the degree
of similarity between two individuals. Like in [50], σk is defined based on
equation (4). According to this definition, the granules shrink or enlarge in
reverse proportion to their fitness:

σk = γ
1

(
eF (Ck)

)β , (4)

where β > 0 is an emphasis operator and γ is a proportionality constant. The
problem arising here is how to determine the parameters β and γ as design
parameters. The fact is that these two parameters are problem dependent
and, in practice, a number of trials is needed to adjust them. This trial is
based on a simple rule with respect to the acceleration of the parameter
optimization procedure: high speed needs to have enlargement in the granule
spread and, as a consequence of this, less accuracy is obtained in the fitness
approximation, and vice versa. To deal with this rule, a fuzzy controller is
presented in [50].

Step 5: Compute the average similarity of every new design parameter
X i

j = {xi
j,1, xi

j,2, . . . , xi
j,r, . . . , xi

j,m} to each granule Gk using equation (5)

μj,k =

m∑

r=1

μk,r

(
xi

j,r

)

m
(5)

Step 6: Either calculate the exact fitness function of X i
j or estimate the

fitness function value by associating it to one of the granules in the pool
in case there is a granule in the pool with higher similarity to X i

j than a
predefined threshold, i.e.

f
(
X i

j

)
=

⎧
⎨

⎩

f (Ck) if max
k∈{1,2,...,l}

{μj,k} > θi ,

f
(
X i

j

)
otherwise.

(6)

where f(Cx) is the fitness function value of the fuzzy granule, f(X i
j) is the

real fitness calculation of the individual, θi = α(max{f(X i−1
1), f(X i−1

2), . . . ,
f(X i−1

t)}/f
i−1

), K = argmax{μj,k} when k ∈ {1, 2, . . . , l}, f
i

=
∑i

j=1 f(X i
j)/t and α > 0 is a proportionality constant that is usually set

at 0.9 unless otherwise indicated. The threshold θi increases as the best in-
dividual’s fitness at generation i increases. As the population matures and
reaches higher fitness values (i.e., while converging more), the algorithm be-
comes more selective and uses exact fitness calculations more often. There-
fore, with this technique we can utilize the previous computational efforts
during previous generations. Alternatively, if

Fitness Granulation for Large-Scale Structural Design Optimization 261

max
k∈{1,2,...,l}

{μj,k} < θi (7)

X i
j is chosen as a newly created granule.
Step 7: If the population size is not completed, repeat Steps 5 to 7.
Step 8: Select parents using a suitable selection operator and apply the

genetic operators of recombination and mutation to create a new generation.
Step 9: When termination/evolution control criteria are not met, then

update σk using equation (4) and repeat Steps 5 to 9.
In [48] and [51], additional details on the convergence speed of the algo-

rithm on a series of mathematical testbeds are provided along with a simple
example to illustrate the competitive granule pool update.

5.2 How to Control the Length of the Granule Pool?

As the evolutionary procedures are applied, it is inevitable that new granules
are generated and added to the pool. Depending on the complexity of the
problem, the size of this pool can be excessive and become a computational
burden itself. To prevent such unnecessary computational effort, a forgetting
factor is introduced in order to appropriately decrease the size of the pool. In
other words, it is better to remove granules that do not win new individuals,
thereby producing a bias against individuals that have low fitness and were
likely produced by a failed mutation attempt. Hence, Lk is initially set to N
and subsequently updated as below,

Lk =

{
Lk + M if k = K ,

Lk otherwise ,
(8)

where M is the life reward of the granule and K is the index of the winning
granule for each individual at generation i. At each table update, only the
NG granules with the highest Lk index are kept, and the others are discarded.
In [52], an example has been provided to illustrate the competitive granule
pool update law.

Adding a new granule to the granule pool and assigning a life index to it,
is a simple way of controlling the size of the granule pool, since the granules
with the lowest life index will be removed from the pool. However, it may
happen that the new granule is removed, even though it was just inserted
into the pool. In order to prevent this, the pool is split into two parts with
sizes εNG and (1−ε)NG. The first part is a FIFO (First In, First Out) queue
and new granules are added to this part. If it grows above εNG, then the top
of the queue is moved to the other part. Removal from the pool takes place
only in the (1− ε)NG part. In this way, new granules have a good chance to
survive a number of steps. In all of the simulations that are conducted here,
ε is set at 0.1.

262 M. Davarynejad et al.

The distance measurement parameter is completely influenced by the gran-
ule enlargement/shrinkage in the widths of the produced membership func-
tions. As in [52], the combined effect of granule enlargement/shrinkage is in
accordance with the granule fitness and it requires the fine-tuning of two pa-
rameters, namely β and γ. These parameters are problem dependent and it
seems critical to have a procedure to deal with this difficulty. In [50] and [53],
an auto-tuning strategy for determining the width of membership functions
is presented which removes the need of exact parameter settings – without a
negative influence on the convergence speed.

6 Numerical Results

To illustrate the efficacy of the proposed granulation algorithm, the result of
applying it to the problems introduced in Section 2 are studied and analyzed
in the two following sections. The commercial FEA software ANSYS [54] is
used during the analysis and numerical simulation study.

The GA routines utilize initially random populations, binary-coded chro-
mosomes, single-point crossover for the first three problems and 15-point
crossover for the piezoelectric actuator design problem, mutation, fitness
scaling, and an elitist stochastic universal sampling selection strategy. The
crossover rate PXOV ER is set to 1, the mutation rate PMUTATION = 0.01,
and the population size chosen is 20. However, due to the number of param-
eters and complexity of the structural problems, the number of generations
is set to 50 for the first three problems and 600 for the piezoelectric actuator
design problem. These settings were determined during several trial runs to
reflect the best performing set of parameters for the GA. Finally, the chromo-
some length varies depending on the number of variables in a given problem
but each variable is still allocated 8 bits.

For performing the FES, a fitness and associated reliability value are as-
signed to each new individual that is truly evaluated if the reliability value
is below a certain threshold T . The reliability value varies between 0 and 1
and depends on two factors: The first factor is the reliability of parents and
the second one is how close parents and children are in the solution space, as
explained in equation (2). Also, as mentioned in [18], T = 0.7 is used for the
threshold as we empirically found that it generally produces the best results.
The parameters of the GA-ANN are the same as in the GA alone. In the GA-
ANN approach for solving optimization problems, a two-layer neural network
is used, having as input the design variables and as outputs the fitness values.

Furthermore, due to the stochastic nature of EAs, each of the simulations
was repeated ten times, and a paired Mann-Whitney U test was performed
except for the last optimization problem. There, for each algorithm, it was
performed only once, due to the running time needed. The significance level
α represents the maximum tolerable risk of incorrectly rejecting the null hy-
pothesis H0, indicating that the mean of the 1st population is not significantly

Fitness Granulation for Large-Scale Structural Design Optimization 263

different from the mean of the 2nd population. The p-value or the observed
significance level of a statistical test is the smallest value of α for which H0

can be rejected. If the p-value is less than the pre-assigned significance level
α, then the null hypothesis is rejected. Here, the significance level α was as-
signed, and the p-value was calculated for each of the following applications.

The results are presented in Tables 1, 2, 3 and 5, in which FFE stands
for the number of fitness function evaluations needed to perform the opti-
mization task and the training data column presents the number of initial
input/output pairs needed in order to build up the approximation model.
Since the most computationally expensive part of an evolutionary algorithm
is usually, by far, its fitness evaluation, the convergence time improvement
of different algorithms, compared to the standard GA, can be estimated in
terms of the number of fitness evaluations. So, the time improvement per-
centage column is calculated as one minus the difference between the sum
of FFE and training data divided by the number of FFE of the standard
algorithm, i.e., a GA, multiplied by 100.

6.1 3-Layer Composite Beam

A 3-layer composite beam has been modeled numerically by using the ANSYS
program. The composite layout is represented by the design variables that
change in the region [0, 180]. The objective here is to raise the first natural
frequency by appropriately choosing two composite layers’ angles. In this
example, the Young’s modulus [55] is EX = 210GPa, EY = 25GPa, EZ =
25GPa, GXY = GY Z = GXZ = 30GPa, Poisson’s ratio ν = 0.2 and
the density ρ = 2100kg/m3. There are two design variables (two degrees of
freedom) for this optimization problem each varying between 0 and 180. For
this case, a 2-100-1 ANN architecture is consequently chosen and used for the
optimization runs. The proposed algorithm (called AFFG, for adaptive fuzzy
fitness granulation) is compared to other methods in Table 1. The results
indicate that, while there is not a significant statistical difference between
the three algorithms in terms of solution fitness, i.e., rigidity of the beam,
the time savings provided by the proposed method are much higher than that
of the GA-ANN. In particular, the proposed AFFG algorithm finds better
solutions on the average with less computational time as compared with the
GA-ANN. Also, while FES seems to have found better solutions, the proposed
GA-AFFG used less than half as many evaluations.

6.2 Airplane Wing Design

Figure 3(a) shows the initial design of an airplane wing. The wing is of uni-
form configuration along its length, and its cross-sectional area is defined to

264 M. Davarynejad et al.

Table 1. Performance of the optimization methods (average of 10 runs) for the
3-layer composite beam, α = 0.9, β = 0.1, γ = 30, M = 5, NG = 250, T = 0.7.

FFEs Training data Time improvement (%) Optimum S−1 p-value

GA 1000.0 Not Needed 19.3722
FES 228.1 Not Needed 77.19 19.3690 0.0211
GA-ANN 155.9 100 74.41 19.3551 0.0026
GA-AFFG 97.5 Not Needed 90.25 19.3681 0.0355

be a straight line and a spline. It is held fixed to the body of the airplane at
one end and hangs up freely at the other. The objective here is to maximize
the wing’s first natural frequency by appropriately choosing three key points
of the spline. The material properties are: Young’s modulus = 261.820GPa,
density ρ = 11031kg/m3, and Poisson’s ratio ν = 0.3.

The optimized shape found by a simple GA is shown in Figure 3(b) and
that found by GA-AFFG is shown in Figure 3(c). A 6-100-1 architecture is
chosen for the ANN used as fitness approximator. Table 2 illustrates that
while the GA-ANN finds inferior solutions as compared with the GA, the
use of the ANN significantly reduces computational time. The application
of AFFG shows an improvement in the search quality while maintaining
a low computational cost. Specifically, the average ten-run performance of
the AFFG solutions is higher than that of any of the competing algorithms
including the GA, FES and GA-ANN. Furthermore, while the Mann-Whitney
U test confirms that the proposed algorithm solutions are at least as good as
those produced by the GA, the proposed algorithm is over 82% faster.

Table 2. Performance of the optimization methods (average of 10 runs) for Airplane
wing, α = 0.9, β = 0.5, γ = 1, M = 5, NG = 250, T = 0.7.

FFEs Training data Time improvement (%) Optimum S−1 p-value

GA 1000.0 6.0006
FES 481.6 51.84 5.9801 0.9698
GA-ANN 172.1 100 72.79 5.9386 0.4274
GA-AFFG 173.5 82.65 6.0527 0.3075

6.3 2D Truss Frame

A typical truss designed by an engineer is illustrated in Figure 4(a). The
objective (fitness) here is to raise the structure’s first natural frequency to
reduce the vibration domain and to prevent the resonance phenomenon (in

Fitness Granulation for Large-Scale Structural Design Optimization 265

Fig. 3. Airplane wing: (a) initial shape, (b) GA optimized shape, and (c)
GA-AFFG.

dynamic response) of the structure by appropriately choosing the 18 key
point locations (our design variables) as illustrated in Figure 3(a).

In this benchmark, isotropic material properties are assumed (Young’s
modulus E = 210GPa, Poisson’s ratio ν = 0.3, and density ρ = 7800kg/m3).
The optimized shapes produced by the GA and the new proposed method
AFFG are shown in Figures 4(b) and 4(c), respectively. The 36-100-1 ANN
architecture is chosen and used for the optimization runs.

The search begins with an initial population. The maximum fitness in
the initial population is nearly 9.32. Over several generations, the fitness
gradually evolves to a higher value of 11.902. Figure 5 shows a plot of best,
average and worst fitness vs. the generation number for one run of our GA-
AFFG. This performance curve shows the learning activity or adaptation
associated with the algorithm. The total number of generations is 50. For a
population size of twenty, this requires 1000 (50 × 20) fitness evaluations for
the GA while the proposed GA-AFFG required only 570.4 fitness evaluations.
Figure 6 shows the plot of the number of FEA evaluations vs. generation
number corresponding to one run [48].

266 M. Davarynejad et al.

Fig. 4. 2D truss frame: (a) initial configuration, (b) GA optimized shape, and (c)
GA-AFFG optimized shape.

Table 3. Performance of the optimization methods (average of 10 runs) for the 2D
truss, α = 0.9, β = 0.11, γ = 3.05, M = 5, NG = 550, T = 0.7.

FFEs Training data Time improvement (%) Optimum S−1 p-value

GA 1000.0 12.1052
FES 1000.0 0.00 11.8726 0.0058
GA-ANN 293.0 100 60.66 11.8697 0.0257
GA-AFFG 570.4 42.96 12.1160 0.9097

6.4 Voltage and Pattern Design of Piezoelectric
Actuator

Piezoelectric materials have coupled mechanical and electrical properties
making them able to generate a voltage when subjected to a force or de-
formation (this is termed as the direct piezoelectric effect). Conversely, they
exhibit mechanical deformation when subjected to an applied electric field
(this is called the converse piezoelectric effect) [51]. Various applications of
piezoelectric actuators/sensors have appeared in the literature. Lin et al. [56]
investigated the modeling and vibration control of a smart beam by using
piezoelectric damping-modal actuators/sensors. They presented theoretical

Fitness Granulation for Large-Scale Structural Design Optimization 267

Fig. 5. Plot of generation number vs. fitness value for the 2D truss frame using
GA-AFFG: best (circle), average (cross) and worst (asterisk) individuals at each
generation.

formulations based on damping-modal actuators/sensors and numerical solu-
tions for the analysis of a laminated composite beam with integrated sensors
and actuators. A proof-of-concept design of an inchworm-type piezoelectric
actuator of large displacement and force for shape and vibration control of
adaptive truss structures is proposed by Li et al. in [57]. The applications of
such actuators include smart or adaptive structural systems for the car and
aerospace industries.

A fiber composite plate with initial imperfections and under in-plane com-
pressive loads is studied by Adali et al. [58] with a view towards minimizing
its deflection and optimizing its stacking sequence by means of the piezoelec-
tric actuators and the fiber orientations. Krommer [59] studied a method to
control the deformation of a sub-section of a beam. His intention was to apply
a distributed control by means of self-stresses within the sub-section to keep
the sub-section in its non-deformed state. In practical applications such as
deformation control of conformal antennas, this strategy is highly valuable.

Global optimization algorithms [60] along with a finite element formula-
tion are widely used in shape control. For instance in [10], a computational

268 M. Davarynejad et al.

Fig. 6. Plot of the generation number vs. number of FEA evaluations for the 2D
truss frame in a single run using GA-AFFG.

intelligence based optimization algorithm along with a modified finite element
formulation is used to deal with the shape control of functionally graded ma-
terial (FGM) plates that contain piezoelectric sensor and actuator patches. In
this study, an optimal voltage distribution or a gain control matrix are used
as design variables for the shape control of smart structures. Numerical sim-
ulations have been successfully carried out on the shape control of the FGM
plates by optimizing the voltage distribution for the open loop shape control
or gain values for the closed loop shape control. A finite element formulation
with non-rectangular shaped actuators for laminated smart composite struc-
ture is studied in [61]. For smart cantilever plates, the actuated deflections
are measured and are used to validate the presented formulation. They also
investigated the effect of the actuator pattern on the optimum values of the
applied voltages and the shape match factors. Numerical results showed that
the actuator patterns may have an important influence on the values of the
optimum voltages applied to each individual actuator and the final shape
match factor.

Fitness Granulation for Large-Scale Structural Design Optimization 269

6.4.1 Piezoelectric Equations (Constitutive Equations)

In this study, the assumption is that the thermal effect is negligible. The
piezoelectric constitutive relationships describe how two piezoelectric me-
chanical and electrical quantities (stress, strain, electric displacement, and
electric field) interact and it is expressed by the direct and the converse
piezoelectric equations respectively [62]:

{D} = [e]{ε} + [ε]{E} , (9)

{σ} = [Q]{ε} + [e]T {E} , (10)

where {σ} is the stress vector, [Q] is the elastic stiffness matrix, {ε} is the
strain vector, [e] is the piezoelectric constant matrix, {E} = −∇ϕ is the
electric field vector. Also, ϕ is the electrical potential, {D} is the electric dis-
placement vector and [ε] is the permittivity coefficient matrix. Equations (9)
and (10) describe the electromechanical coupling. Assuming that a laminated
beam consists of a number of layers and each layer possesses a plane of ma-
terial symmetrically parallel to the x-y plane, the constitutive equations for
the kth layer can be written according to [63] as:

{
D1

D3

}

k

=
[

0 e15

e31 0

]

k

×
{

ε1

ε5

}

k

+
[
ε11 0
0 ε33

]

k

×
{

E1

E3

}

k

(11)

{
ε1

ε3

}

k

=
[
Q11 0
0 Q55

]

k

×
{

ε1

ε5

}

k

+
[

0 ε31

ε15 0

]

k

×
{

E1

E3

}

k

(12)

where Q11 = E11
1−v12v21

and Q55 = G13 are the reduced elastic constants of
the kth layer, E11 is the Young’s modulus and G13 is the shear modulus. The
piezoelectric constant matrix [e] can be expressed in terms of the piezoelectric
strain [d] as:

[e] = [d][Q] (13)

where

[d] =
[

0 d15

d31 0

]
(14)

Using the above piezoelectricity analysis and formulation, a finite element
model (FEM) of piezoelectric patches and a metal plate [64] was built by
ANSYS [54]. Also, a small deflection and the thin plate theory are assumed
to hold for the FEM of the plate.

To validate the software, a clamped free aluminum plate with four piezo-
electric patches is modeled and the results are compared with the experi-
mental model of reference [65]. A close agreement between our model and

270 M. Davarynejad et al.

our experimental results is observed. Also, in order to achieve an acceptable
mesh density, a mesh sensitivity analysis4 method is applied.

6.4.2 Piezoelectric Design for Static Shape Control

The shape control problem considered here is to find the optimal actuator
pattern design vector P and exiting voltage vector V as design variables.
This (quasi-) static shape control problem can be defined, in the context of
an optimization formulation, as follows: Find S = [P, V]T to minimize:

f(S) =
Nx∑

j=1

Ny∑

i=1

∣
∣
∣dd

i,j − df
i,j

∣
∣
∣

∣∣max
(
dd

i,j

)∣∣/ (Nx × Ny) (15)

S is the design variable vector with two components: i) the pattern variable
vector P , and ii) the applied voltage variable vector V . Here, f(S) is the
objective function. P is the distribution of the active piezoelectric actuator
material (pattern variable) whereas the voltage variables in vector V are the
electrical potentials applied across the thickness direction of each actuator.
The objective function f(S) in equation (15) is a weighted sum of all the abso-
lute differences between the desired and designed shapes at all nodes. dd

i,j and
df

i,j are the desired and designed (calculated by the FE model) transversal
displacements of the (i, j)-location, respectively and max(dd

i,j) is the max-
imum displacement in the desired structural shape. As the displacement is
small here, there is no need to consider stress or strain constraint variables
for the shape control problem.

6.4.3 Model Description

A cantilever plate clamped at its left edge and subjected to a non-applied
mechanical load is assumed here. The plate has a length of 154 mm; width
of 48 mm and consists of one layer of 0.5 mm in thickness. The piezoelectric
actuators (thickness of 0.3 mm each) are attached to the top surfaces of the
plate (Figure 7). The desired pre-defined surface [65] is defined as:

dd
i,j =

(
1.91x2 + 0.88xy + 0.19x

)× 10−4 . (16)

The piezoelectric electro-mechanical actuators have the properties shown in
Table 4 according to specification PX5-N from Philips Components. After a
careful mesh sensitivity analysis, a FEM is built as illustrated in Figure 8.
4 The mesh sensitivity analysis is used to reduce the number of elements and nodes

in the mesh while ensuring the accuracy of the finite element solution [66].

Fitness Granulation for Large-Scale Structural Design Optimization 271

Table 4. Material properties for the PX5-N piezoelectric material [65].

CE
11(N m−2) 13.11 × 1010 d15(m V −1) 515 × 10−12

CE
12(N m−2) 7.984 × 1010 d31(m V −1) −215 × 10−12

CE
13(N m−2) 8.439 × 1010 d33(m V −1) 500 × 10−12

CE
33(N m−2) 12.31 × 1010 εt

11/ε0 1800

CE
44(N m−2) 2.564 × 1010 εt

33/ε0 2100

CE
66(N m−2) 2.564 × 1010 ρ(kg m−3) 7800

Fig. 7. Geometrical model of the piezoelectric patch adopted here.

Fig. 8. Finite element model built by ANSYS.

272 M. Davarynejad et al.

For this SD and optimization problem, there are 200 design variables.
Half of these design variables belong to actuation voltage of piezoelectric
patches which vary between −10 and 20V . The rest of the design variables
are Boolean, indicating whether or not the voltage should be applied to the
piezoelectric patches. When the ith (i = 1, . . . , 100) piezoelectric pattern vari-
able is zero, the piezoelectric patch is not built so that there is no actuation
voltage, and vice versa. Figure 9 shows the graph of the best, average and
worst fitness vs. generation number and Figure 10 shows the number of FEA
evaluations vs. the generation number for a single GA-AFFG run. Table 4
presents the results of the four optimization algorithms obtained from one
run each.

Fig. 9. Generation number vs. fitness for the piezoelectric actuator using our pro-
posed GA-AFFG for a single run: best (circle), average (cross) and worst (asterisk)
of individuals at each generation.

Fitness Granulation for Large-Scale Structural Design Optimization 273

Fig. 10. Generation number vs. number of FEA evaluations, for the piezoelectric
actuator, using our proposed GA-AFFG for a single run.

Table 5. Piezoelectric actuator performance of the optimization methods, α = 0.9,
β = 0.11, γ = 3.05, M = 5, NG = 550, T = 0.7.

FFEs Training data Time Improved (%) Error (%)

GA 12000 7.313
FES 12000 0.00 12.820
GA-ANN 2617 5000 36.52 8.093
GA-AFFG 5066 Not needed 57.64 7.141

7 Analysis of Results

Tables 1, 2, 3 and 5, illustrate the performance of the proposed GA-AFFG
method in comparison with a GA, FES, and GA-ANN [48] in terms of com-
putational efficiency and performance for the 3-layer composite beam, the
airplane wing, and the 2D truss design problems as well as for the piezo-
electric actuator problem. Due to the stochastic nature of the GA, the first

274 M. Davarynejad et al.

three design simulations are repeated ten times and a statistical analysis is
performed. However, for the piezoelectic actuator we could not run the GA
that many times, because of its high computational cost.

The second column in these tables makes a comparison of the three al-
gorithms in terms of the number of FEA evaluations as compared to those
of the GA, while the fourth column makes a comparison in terms of per-
formance. Results indicate that our proposed GA-AFFG finds statistically
equivalent solutions by using more than 90%, 82%, 42% and 57% fewer finite
element evaluations. The GA-ANN also significantly reduces the number of
FEA evaluations, but its average performance is inferior when compared with
our proposed GA-AFFG due to the ANNs approximation error. It must be
noted that the improvement in time by GA-ANN takes into account the time
spent on constructing the training data set.

For the piezoelectric actuator design problem, Table 5 illustrates a com-
parison of the GA, FES, and GA-ANN [51] with respect to our proposed
GA-AFFG in terms of computational efficiency and performance. The sec-
ond column of this table makes a comparison of the four algorithms in terms
of the number of FEA evaluations as compared with a GA, while the fifth
column makes a comparison in terms of the quality of the optimal solutions.
Results indicate that GA-AFFG finds at least equivalent solutions by using
57% fewer finite element evaluations as compared to the GA. Also, when com-
pared with the GA-ANN, the proposed algorithm finds better solutions while
being more computationally efficient. The main difference here is ANN’s need
for pre-training. Trying various sizes of initial training sets and considering
the 200 design parameters, the ANN required at least 5000 training data
pairs for comparable performance, see Table 5.

Overall, when compared with a GA, the two sets of applications indicate
that FES, GA-ANN and GA-AFFG improve the computational efficiency
by reducing the number of exact fitness function evaluations. However, the
neuro-approximation as well as fitness inheritance fail with a growing size
of the input-output space. Consequently, the utility of AFFG becomes more
significant in larger and more complex design problems. Furthermore, our
statistical analysis confirms that fitness inheritance has comparable perfor-
mance when the size of the search space is small (Tables 1 and 2), but its
efficiency deteriorates as the complexity of the problem increases (Tables 3
and 5).

A comparison of the number of exact fitness function evaluations in terms
of mean and variance that shows the improvement in computational time
is presented in Tables 6, 7 and 8 for the first three mechanical optimiza-
tion problems described before. A Mann-Whitney U test is also performed
to study the significance of lower computation cost. Since the fourth opti-
mization problem (piezoelectic actuator design) could not be repeated due
to its FEA time-consuming nature, a Mann-Whitney U test could not be
performed in that case.

Fitness Granulation for Large-Scale Structural Design Optimization 275

Table 6. A Mann-Whitney U test of the number of real fitness calculations for the
3-layer composite beam (10 runs).

Simulation results
3-layer composite beam Mean Var p-Value

FES 228.1 4601.2 6.39×10−05

GA-ANN 155.9 511.9 6.34×10−05

GA-AFFG 97.5 406.7 6.39×10−05

Table 7. A Mann-Whitney U test of the number of real fitness calculations for the
airplane wing (10 runs).

Simulation results
Airplane wing Mean Var p-Value

FES 481.6 38648.0 6.39×10−05

GA-ANN 172.1 6392.1 6.39×10−05

GA-AFFG 173.5 1600.3 6.39×10−05

Table 8. A Mann-Whitney U test of the number of real fitness calculations for the
2D truss (10 runs).

Simulation results
2D truss Mean Var p-Value

FES 100.0 0.0 Not available
GA-ANN 293.0 2394.2 6.39×10−05

GA-AFFG 570.4 18477.0 6.39×10−05

8 Conclusions

In this chapter, we have proposed a systematic and robust methodology for
solving complex structural design and optimization problems. The proposed
methodology relies on the use of the FEA and adaptive fuzzy fitness granula-
tion. By considering the similarity/indistinguishability of an individual to a
pool of fuzzy information granules, adaptive fuzzy fitness granulation provides
a method to selectively reduce the number of actual fitness function evalua-
tions performed. Since the proposed approach does not use approximation or
online training, it is not caught in the pitfalls of these techniques such as false
peaks, large approximation error due to extrapolation, and time-consuming
online training.

The effectiveness and functionality of the proposed approach was verified
through four structural design problems. In the first three of them, the ob-
jective was to increase the first natural frequency of the structure. In the last
problem, a piezoelectric actuator was considered for the purposes of shape

276 M. Davarynejad et al.

control and/or active control for correction of static deformations. The design
variables were the voltage and the actuator locations and the performance
index was considered as the square root of the error between the nodal pre-
defined displacement and the observed displacement.

Acknowledgements. The work in this chapter is in the context of the Con4Coord
project, supported by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. INFSO-ICT-223844, the Next Gener-
ation Infrastructures Research Program of Delft University of Technology and the
Mexican CONACyT Project No. 103570.

References

1. Reddy, J.: Introduction to the Finite Element Method. McGraw-Hill, New York
(1993)

2. Papadrakakis, M., Lagaros, N.D., Kokossalakis, G.: Evolutionary Algorithms
Applied to Structural Optimization Problems. In: High Performance Comput-
ing for Computational Mechanics, pp. 207–233 (2000)

3. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs.
Springer-Verlag New York, Inc., New York (1994)

4. Walker, M., Smith, R.E.: A technique for the multiobjective optimisation of
laminated composite structures using genetic algorithms and finite element
analysis. Composite Structures 62(1), 123–128 (2003)

5. Abe, A., Kamegawa, T., Nakajima, Y.: Optimization of construction of tire
reinforcement by genetic algorithm. Optimization and Engineering 5(1), 77–92
(2003)

6. Giger, M., Ermanni, P.: Development of CFRP racing motorcycle rims using
a heuristic evolutionary algorithm approach. Structural and Multidisciplinary
Optimization 30(1), 54–65 (2005)

7. Alba, E., Tomassini, M.: Parallelism and Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation 6(5), 443–462 (2002)

8. Mackerle, J.: Smart materials and structures–a finite element approach–an ad-
dendum: a bibliography (1997- 2002). Modelling and Simulation in Materials
Science and Engineering 11(5), 707–744 (2003)

9. Joseffsson, L., Persson, P.: Conformal Array Antenna Theory and Design. IEEE
Press Series on Electromagnetic Wave Theory. Wiley-IEEE Press (2005)

10. Liew, K.M., He, X.Q., Ray, T.: On the use of computational intelligence in the
optimal shape control of functionally graded smart plates. Computer Methods
in Applied Mechanics and Engineering 193(42-44), 4475–4492 (2004)

11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Co., Reading (1989)

12. Furuya, H., Haftka, R.T.: Locating actuators for vibration suppression on space
trusses by genetic algorithms, vol. 38. ASME-Publications-AD (1993)

13. Rodŕıguez, J.E., Medaglia, A.L., Coello Coello, C.A.: Design of a motorcycle
frame using neuroacceleration strategies in MOEAs. Journal of Heuristics 15(2),
177–196 (2009)

Fitness Granulation for Large-Scale Structural Design Optimization 277

14. Lemonge, A., Barbosa, H., Fonseca, L.: A genetic algorithm for the de-
sign of space framed structures. In: XXIV CILAMCE–Iberian Latin-American
Congress on Computational Methods in Engineering, Ouro Preto, Brazil (2003)

15. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary com-
putation. Soft Computing 9(1), 3–12 (2005)

16. Smith, R., Dike, B., Stegmann, S.: Fitness inheritance in genetic algorithms. In:
Proceedings of ACM Symposiums on Applied Computing, pp. 345–350. ACM,
New York (1995)

17. Zhang, X., Julstrom, B., Cheng, W.: Design of vector quantization codebooks
using a genetic algorithm. In: Proceedings of the IEEE Conference on Evolu-
tionary Computation, pp. 525–529. IEEE, Los Alamitos (1997)

18. Salami, M., Hendtlass, T.: A fast evaluation strategy for evolutionary algo-
rithms. Applied Soft Computing 2, 156–173 (2003)

19. Pelikan, M., Sastry, K.: Fitness inheritance in the Bayesian optimization al-
gorithms. In: Genetic and Evolutionary Computation Conference, pp. 48–59.
Springer, Heidelberg (2004)

20. Reyes Sierra, M., Coello Coello, C.A.: Fitness Inheritance in Multi-Objective
Particle Swarm Optimization. In: 2005 IEEE Swarm Intelligence Symposium
(SIS 2005), pp. 116–123. IEEE Press, USA (2005)

21. Reyes Sierra, M., Coello Coello, C.A.: A Study of Fitness Inheritance and Ap-
proximation Techniques for Multi-Objective Particle Swarm Optimization. In:
Proceedings of the 2005 Congress on Evolutionary Computation (CEC 2005),
pp. 65–72 (2005)

22. Ducheyne, E., De Baets, B., De Wulf, R.: Is fitness inheritance useful for
real-world applications? In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K.,
Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 31–42. Springer, Heidelberg
(2003)

23. Sano, Y., Kita, H.: Optimization of noisy fitness functions by means of genetic
algorithms using history. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J.,
Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917,
pp. 571–580. Springer, Heidelberg (2000)

24. Branke, J., Schmidt, C., Schmeck, H.: Efficient fitness estimation in noisy envi-
ronment. In: Spector, L. (ed.) Proceedings of Genetic and Evolutionary Compu-
tation Conference (GECCO), pp. 243–250. Morgan Kaufmann, San Francisco
(2001)

25. Branke, J., Schmidt, C.: Fast convergence by means of fitness estimation. Soft
Computing Journal 9(1), 13–20 (2005)

26. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computation-
ally expensive problems via surrogate modeling. American Institute of Aero-
nautics and Astronautics Journal 41(4), 687–696 (2003)

27. Ong, Y.S., Zhu, Z., Lim, D.: Curse and blessing of uncertainty in evolution-
ary algorithm using approximation. In: Proceedings of the 2006 Congress on
Evolutionary Computation (CEC 2006), pp. 2928–2935 (2006)

28. Regis, R.G., Shoemaker, C.A.: Local function approximation in evolutionary
algorithms for the optimization of costly functions. IEEE Transactions on Evo-
lutionary Computation 8(5), 490–505 (2004)

29. Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B.: Trusted evolutionary algorithm. In:
Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006),
pp. 149–156 (2006)

278 M. Davarynejad et al.

30. Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer
experiments (with discussion). Statistical Science 4, 409–435 (1989)

31. Ratle, A.: Accelerating the convergence of evolutionary algorithms by fitness
landscape approximation. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. V, pp. 87–96. Springer, Heidelberg (1998)

32. Hong, Y.-S., Lee, H., Tahk, M.-J.: Acceleration of the convergence speed of
evolutionary algorithms using multi-layer neural networks. Engineering Opti-
mization 35(1), 91–102 (2003)

33. Won, K.S., Ray, T., Tai, K.: A framework for optimization using approximate
functions. In: Proceedings of IEEE Congress on Evolutionary Computation,
pp. 1077–1084 (2003)

34. Khorsand, A.-R., Akbarzadeh, M.: Multi-objective meta level soft computing-
based evolutionary structural design. Journal of the Franklin Institute, 595–612
(2007)

35. Jin, Y., Olhofer, M., Sendhoff, B.: On evolutionary optimization with approxi-
mate fitness functions. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp. 786–792. Morgan Kaufmann, San Francisco (2000)

36. Shi, L., Rasheed, K.: A survey of fitness approximation methods applied in
evolutionary algorithms. In: Hiot, L.M., Ong, Y.S., Tenne, Y., Goh, C.K. (eds.)
Computational Intelligence in Expensive Optimization Problems. Adaptation
Learning and Optimization, vol. 2, pp. 3–28. Springer, Heidelberg (2010)

37. Kim, H.-S., Cho, S.-B.: An efficient genetic algorithms with less fitness evalua-
tion by clustering. In: Proceedings of IEEE Congress on Evolutionary Compu-
tation, pp. 887–894. IEEE, Los Alamitos (2001)

38. Bhattacharya, M., Lu, G.: A dynamic approximate fitness based hybrid ea
for optimization problems. In: Proceedings of IEEE Congress on Evolutionary
Computation, pp. 1879–1886 (2003)

39. Fonseca, L.G., Barbosa, H.J.C.: A similarity-based surrogate model for en-
hanced performance in genetic algorithms. Opsearch 46, 89–107 (2009)

40. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Al-
gorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York
(2007)

41. Mezura-Montes, E. (ed.): Constraint-Handling in Evolutionary Optimization.
Springer, Berlin (2009); ISBN 978-3-642-00618-0

42. Runarsson, T.P.: Constrained evolutionary optimization by approximate rank-
ing and surrogate models. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J.,
Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwe-
fel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 401–410. Springer, Heidelberg
(2004)

43. Coello Coello, C.A.: Theoretical and Numerical Constraint Handling Tech-
niques used with Evolutionary Algorithms: A Survey of the State of the
Art. Computer Methods in Applied Mechanics and Engineering 191(11-12),
1245–1287 (2002)

44. Runarsson, T.P., Yao, X.: Stochastic Ranking for Constrained Evolutionary
Optimization. IEEE Transactions on Evolutionary Computation 4(3), 284–294
(2000)

45. Woldesenbet, Y.G., Yen, G.G., Tessema, B.G.: Constraint Handling in Multiob-
jective Evolutionary Optimization. IEEE Transactions on Evolutionary Com-
putation 13(3), 514–525 (2009)

Fitness Granulation for Large-Scale Structural Design Optimization 279

46. Kumar Singh, H., Ray, T., Smith, W.: C-PSA: Constrained Pareto simu-
lated annealing for constrained multi-objective optimization. Information Sci-
ences 180(13), 2499–2513 (2010)

47. Santana-Quintero, L.V., Arias Montaño, A., Coello Coello, C.A.: A Review of
Techniques for Handling Expensive Functions in Evolutionary Multi-Objective
Optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in
Expensive Optimization Problems, pp. 29–59. Springer, Berlin (2010)

48. Davarynejad, M.: Fuzzy Fitness Granulation in Evolutionary Algorithms for
Complex Optimization. Master’s thesis, Ferdowsi University of Mashhad (June
2007)

49. Zadeh, L.A.: Fuzzy sets and information granularity. Advances in Fuzzy Set
Theory and Applications, 3–18 (1979)

50. Davarynejad, M., Ahn, C.W., Vrancken, J.L.M., van den Berg, J., Coello Coello,
C.A.: Evolutionary hidden information detection by granulation-based fitness
approximation. Applied Soft Computing 10(3), 719–729 (2010)

51. Akbarzadeh-T, M.R., Davarynejad, M., Pariz, N.: Adaptive fuzzy fitness gran-
ulation for evolutionary optimization. International Journal of Approximate
Reasoning 49(3), 523–538 (2008)

52. Davarynejad, M., Akbarzadeh-T, M.-R., Pariz, N.: A novel general framework
for evolutionary optimization: Adaptive fuzzy fitness granulation. In: Proceed-
ings of the 2007 Congress on Evolutionary Computation (CEC 2007), pp. 951–
956 (2007)

53. Davarynejad, M., Akbarzadeh-T, M.R., Coello Coello, C.A.: Auto-tuning fuzzy
granulation for evolutionary optimization. In: Proceedings of the 2008 Congress
on Evolutionary Computation, pp. 3572–3579 (2008)

54. Ansys, I.: ANSYS users manual. ANSYS Inc., Southpointe, 275 (2004)
55. Freudenberger, J., Gllner, J., Heilmaier, M., Mook, G., Saage, H., Srivastava,

V., Wendt, U.: Materials science and engineering. In: Grote, K.H., Antonsson,
E.K. (eds.) Springer Handbook of Mechanical Engineering. Springer, Heidel-
berg (2009)

56. Lin, J., Nien, M.: Adaptive control of a composite cantilever beam with piezo-
electric damping-modal actuators/sensors. Composite Structures Journal 70,
170–176 (2005)

57. Li, J., Sedaghati, R., Dargahi, J., Waechter, D.: Design and development of a
new piezoelectric linear Inchworm actuator. Mechatronics Journal 15, 651–681
(2005)

58. Adali, S., Sadek, I., Bruch Jr., J., Sloss, J.: Optimization of composite plates
with piezoelectric stiffener-actuators under in-plane compressive loads. Com-
posite Structures Journal 71, 293–301 (2005)

59. Krommer, M.: Dynamic shape control of sub-sections of moderately thick
beams. Computers & Structures 83(15-16), 1330–1339 (2005)

60. Weise, T.: Global Optimization Algorithms–Theory and Application. Abrufda-
tum, 1 (2008), http://www.it-weise.de

61. Nguyen, Q., Tong, L.: Shape control of smart composite plate with non-
rectangular piezoelectric actuators. Composite Structures 66(1-4), 207–214
(2004)

62. Aryana, F., Bahai, H., Mirzaeifar, R., Yeilaghi, A.: Modification of dynamic
characteristics of FGM plates with integrated piezoelectric layers using first-
and second-order approximations. International Journal for Numerical Methods
in Engineering 70(12), 1409–1429 (2007)

http://www.it-weise.de

280 M. Davarynejad et al.

63. Khorsand, A.-R., Akbarzadeh-T, M.-R., Moin, H.: Genetic Quantum Algorithm
for Voltage and Pattern Design of Piezoelectric Actuator. In: Proceedings of
the 2006 Congress on Evolutionary Computation (CEC 2006), pp. 2593–2600
(2006)

64. Piefort, V.: Finite element modelling of piezoelectric active structures. PhD
thesis, Université Libre de Bruxelles (2001)

65. da Mota Silva, S., Ribeiro, R., Rodrigues, J.D., Vaz, M.A.P., Monteiro, J.M.:
The application of genetic algorithms for shape control with piezoelectric
patches-an experimental comparison. Smart Materials and Structures 13, 220–
226 (2004)

66. Kelly, D.W., De, J.P., Gago, S.R., Zienkiewicz, O.C., Babuska, I.: A posteriori
error analysis and adaptive processes in the finite element method: Part i–
error analysis. International Journal for Numerical Methods in Engineering 19,
1593–1619 (1983)

A Reinforcement Learning Based
Hybrid Evolutionary Algorithm for
Ship Stability Design

Osman Turan and Hao Cui

Abstract. Over the past decades, various search and optimisation methods
have been used for ship design – a dynamic and complicated process. While
several advantages of using these methods have been demonstrated, one of
the main limiting factors of optimisation applications in ship design is the
high runtime requirement of the involved simulations. This severely restricts
the number of real applications in this area. This chapter presents a hybrid
evolutionary algorithm that uses reinforcement learning to guide the search.
Through giving and correcting the search direction, the runtime of optimisa-
tion can be effectively reduced. The NSGA-II, a well known multi-objective
evolutionary algorithm, is utilised together with reinforcement learning to
form the hybrid approach. As an important optimisation application field,
the ship stability design problem has been selected for evaluating the perfor-
mance of this new method. A Ropax (roll on/roll off passenger ship) damage
stability problem is selected as a case study to demonstrate the effectiveness
of the proposed approach.

1 Introduction

Ship design is an important optimisation application field in engineering.
Especially in recent years, more and more optimisation methods have been
introduced for ship design. However, due to its complex characteristics, most
of the optimisation applications lack pertinence and are very time-consuming.
As ship design is usually a large-scale and complex problem, naval architects
often have to utilise professional naval architecture software suites to perform

Osman Turan · Hao Cui
Group of Marine Design, Operations and Human Factors,
Department of Naval Architecture and Marine Engineering,
University of Strathclyde, UK
e-mail: {o.turan,hao.cui}@strath.ac.uk

{o.turan,hao.cui}@strath.ac.uk

282 O. Turan and H. Cui

simulation and evaluation in order to solve practical problems. These design
activities could take up a lot of time, which may make the optimisation runs
consume several weeks or months.

Evolutionary Algorithms (EAs) have attracted much attention in ship de-
sign, but to obtain good results with them, a large population size and a high
number generations are very important [1]. However, the fitness evaluations
in this area usually depend on professional naval architecture software which
takes plenty of time to run – this is a challenging issue that requires attention
in practical optimisation.

Therefore, the questions of how to construct a practical framework for op-
timisation and how to select an efficient optimisation approach to reduce the
time cost are extremely important. One possible answer is our combined re-
inforcement learning method, which can provide appropriate guidance during
the search process.

Subdivision and damage stability are very important for the whole ship
design. Over the last two decades, stability standards have increased signif-
icantly, which improves safety and prevents large scale maritime losses such
as the Herald of Free Enterprise, Estonia, and Al Salem. The regulations and
calculation methods on ship stability have been improved continuously by
the International Maritime Organization (IMO), classification societies, and
flag nations, resulting in stricter stability standards. The ship owners and
designers have been seeking for the best compromise between ship safety and
economic benefits, which is a typical multi-objective problem.

The IMO is a specialized agency of the United Nations devoted to mar-
itime affairs. The Maritime Safety Committee (MSC) is the committee of the
IMO concerned with maritime safety, and the MSC develops and implements
marine safety standards in the form of a set of rules and regulations. Cur-
rently, a passenger ship has to satisfy the requirements of the related chapter
(Chapter II-1) of SOLAS 2009 [2] on damage stability probabilistic regula-
tions. The International Convention for the Safety of Life at Sea (SOLAS)
is one of the most important international treaties protecting the safety of
merchant ships. For the currently applied SOLAS 2009, the calculation of
stability is complex and manual verification has become virtually impossible.
Therefore the utilisation of optimisation methods to solve the subdivision
and stability problem is important for practical ship design.

This chapter presents an efficient framework for design optimisation with
regards to stability and subdivision via a new hybrid EA, which utilises a rein-
forcement learning approach. Q-learning, one of most effective reinforcement
learning approaches, is selected to integrate with the NSGA-II, a popular
Multi-Objective Evolutionary Algorithm (MOEA), to provide better search-
ing ability and to reduce the runtime. A comparison between the original
NSGA-II and the new improved method on real-world ROPAX subdivision
design is presented to evaluate the performance of the proposed approach.

Reinforcement Learning for Ship Stability 283

2 The Problem

2.1 Problem Definition

This chapter focuses on improving the performance of Ropax vessels in terms
of not only maximizing the ship-related parameters but also reducing the
time to perform the multi-objective design iteration. Ropax ships are vessels
designed for freight transport, to carry vehicles, and passengers. As this study
is based on the previous work of Olcer et al. [3], Turkmen et al. [4] and Cui
et al. [5], the same problem is selected and used. The optimisation problem
is an internal hull subdivision optimisation for a Ropax vessel and the main
aim is to maximize the survivability as well as to improve the cargo capacity,
which is an important indicator of economic performance. The optimisation
problem has three objectives and 16 design variables.

The first objective is the attained subdivision index A. The index A is
the main criterion of ship stability performance in SOLAS 2009 and is com-
posed of the partial indices As, Ap, and Al, which correspond to the subdi-
vision, intermediate, and light draughts respectively. As is the partial index
calculated according to the deepest subdivision draught (ds) and ds is the
waterline which corresponds to the summer load line draught of the ship.
Al is the partial index and corresponds to the light service draught (dl). Ap

is calculated under the partial subdivision draught (dp), which is the light
service draught plus 60% of the difference between the light service draught
and the deepest subdivision draught. The calculation formula of index A is
defined in Equation 1.

A = 0.4As + 0.4Ap + 0.2Al (1)

Index R is the required index of subdivision defined in [2].

R = 1− 5000
Ls + 2.5N + 15225

(2)

where: N = N1 + 2N2. Here,
N1: number of persons for whom lifeboats are provided.
N2: number of persons (including officers and crew) the ship is permitted to
carry in excess of N1.

Ls is the subdivision length of the ship and it is defined in SOLAS 2009
as the greatest projected moulded length of that part of the ship, at or be-
low deck or decks, limiting the vertical extent of flooding with the ship at
the deepest subdivision draught. The numbers in Equation 2 are defined by
SOLAS 2009.

The subdivision of a ship is considered sufficient if the attained subdivision
index A is greater than the required subdivision index R [2]. In addition, for
passenger ships, the partial indices As, Ap, and Al should not be less than

284 O. Turan and H. Cui

0.9R. In this study, the simulation and calculation of index A are processed
via the third party software NAPA [6].

Fig. 1. Definition of KG, GM , and GZ in ship design.

The second objective is limitingKG. The parameter KG in ship design
stands for the vertical centre of gravity for a ship. The limitingKG is the
maximum value of KG which satisfies the requirement of the stability cri-
teria. The limitingKG is used to check whether the ship is safe with certain
loading conditions. In SOLAS 2009, it is also defined that the ship’s master
shall be provided with clear intact and damaged stability requirements which
normally are achieved by determining limiting GM/KG curves, containing
the admissible stability values for the draught and trim range to be covered.
In ship stability design, the GM should equal or exceed the minimum re-
quired GM which ensures the ship has safe stability and the GZ is used to
measure the stability at any particular angle of heel. The optimisation of
limitingKG is seeking the maximum value. The calculation of limitingKG,
GM , and GZ are again evaluated via the NAPA software. In Figure 1 (b),
KG is the distance between K and G, in where, K usually means kneel and
G is defined as the gravity centre of the ship. GM is the distance between G
and M when M is the metacentre of the ship. GZ (shown in Figure 1 (c)) is
known as the righting arm which is defined as the horizontal distance between
the centre of buoyancy and the centre of gravity.

The last objective is the cargo capacity of the Ropax ships as the ship
owners always want to maximise the cargo capacity while satisfying the sta-
bility requirements. When the main dimensions of the vessel are fixed, the
designers always try to increase the number and length of the cargo lanes
as much as possible to improve the cargo capacity. This objective is directly
measured from the model in NAPA.

Reinforcement Learning for Ship Stability 285

There are 16 design variables in this work. Three of them are shown in
Figure 2: the depth of the ship to the car deck “Car Deck Height” which is
the height from the baseline of ship to the car deck, the “Lower Hold Height”,
and the width of the side casing at the car deck, “Side Casing Width”. The
“Lower Hold Height” (shown in Figure 2) is usually used to extend the storing
space in the ship. Here, the original design has a 9.7m depth to the car deck,
a 2.6m lower deck height and no side casings at the car deck. The remaining
13 design parameters (as shown in Figure 3) are the locations of transverse
bulkheads given in the format of frame numbers (starting from the stern of
the ship).

Fig. 2. Three design variables: Car Deck Height, Lower Hold Height and Side
Casing Width.

Fig. 3. The design variable of transverse bulkhead.

286 O. Turan and H. Cui

2.2 Motivation

As stability-based subdivision optimisation has become one of the critical
design problems in ship design, naval architects have attempted to deploy
different kind of approaches to deal with this problem. MOEAs have proven
to be efficient in practical engineering applications and have gradually be-
come a hot topic that attracts great attention. However, the runtime is still a
restrictive factor for optimisation in ship stability. Following the introduction
of SOLAS 2009, which is based on a probabilistic method, the stability calcu-
lations of passenger and cargo ships based on this probabilistic approach have
become mandatory. This method makes a manual calculation impossible and
so the computer-aided analysis becomes the only reasonable method. It does,
however, require a lot of computing time. At the same time, MOEAs have
provided limited improvement on reducing runtime. Combining MOEAs with
a learning method from the area of artificial intelligence in order to speed up
the optimisation is an effective way to improve their applicability in the ship
design process.

3 Related Work

3.1 Background

History of Ship Design

Modern ship design, an era of complex concurrent engineering, begins with
two significant events: the replacement of sail power with steam powered
propulsion in the 1780s and William Froude’s scientific approach to vessel
performance prediction in the 1860s. Before that, ships were usually designed
by simply developing a new ship based on an existing one. The new ship would
be of the scale of the old designs with minimal alterations. The results were
random because no scientific principles were applied.

In the middle of the twentieth century, computer technology brought a
new leap in ship design. Computer-Aided Ship Design (CASD) has evolved
since the 1960s with the synchronous development of Computer-Aided Design
(CAD) [7]. To describe the ship design process, the design spiral was proposed
by Professor J. Harvey Evans (shown in Figure 4) [8]. In this spiral, the
ship design is viewed as a sequential iterative process (design spiral) and in
every phase, ranging from concept design to detail design, every important
aspect of the ship design is re-evaluated, starting from mission requirements
to hydrostatics, powering, and cost estimates. In every cycle of the design
spiral, the complexity increases and the number of possible designs decreases.
In this design method, the computer became an effective tool to assist naval
architects with their work on design. Buxton [9] proposed to embed cost
estimates into the design spiral in 1972. Andrews [10, 11] proposed to include
constraints into the ship design spiral concerning the three categories: design,

Reinforcement Learning for Ship Stability 287

Fig. 4. The Ship Design Spiral.

design process, and design environment. This design spiral has been used until
now.

In 1990, Mistree [12] proposed the decision-based design paradigm for the
design of ships which encompasses systems thinking and embodies the con-
cept of concurrent engineering design for the life cycle. In this new design
method, the role of the computer would be changed from the tool to the
partner of design work, and put the designer in the role of decision maker.
Therefore the design procedure can be seen as an optimisation process and
naval architects can decide the final designs from the optimisation solutions.

While the concept of probabilistic damage stability assessment of ships
was introduced in the early 1960s, applications of risk-based approaches in
the maritime industry were proposed only in 2009 [13]. This method supports
a safety culture paradigm in the ship design process by treating safety as a
design objective rather than a constraint. It is pointed out that the notion of
“risk” is usually associated with undesirable events and shipping operations
being undoubtedly “risky”. So the ships should be designed with this as a
basic principle and safety is the primary requirement of this method.

288 O. Turan and H. Cui

From the above introduction of the ship design history, it can be seen that
computer-aided design and safety are the two most important trends of ship
design.

There are various stages in modern ship design which may be referred to
the different titles due to the varying design phases of different ships. At
the same time the key points of design are different between navy ships and
merchant ships, and this is also one of the reasons why there are different
definitions of the design stages. The design stages adopted in this chapter are
categorised as shown in Figure 5.

Fig. 5. Ship Design Phases.

Ship stability is one of the most important aspects of ship design and the
stability design proposed in this chapter occurs at the stage of Basic Design in
Figure 5. Especially for passenger ships including Ropax ships, the stability
standards must be at a very high level. At the same time, the requirements
of ship stability vary depending on the types of ships.

3.1.1 Development of Ship Damage Stability

Following the Titanic disaster in 1912, the SOLAS conference was organized
and a series of safety regulations were developed. The first version of SOLAS
was adopted in 1914, the second in 1929, the third in 1948, and the fourth in
1960. IMO, formerly known as the Inter-Governmental Maritime Consultative
Organization (IMCO), was established in 1948, and then in 1982 the name
of IMCO was changed to IMO.

Reinforcement Learning for Ship Stability 289

The IMO performed a study on probabilistic damage stability regulations
in 1960s and then published Resolution A.265 (VIII) which was adopted in
1973 [14]. The flooding and subsequent capsize of the roll on/roll off (RORO)
passenger ferry The Herald of Free Enterprise in 1987 created a lot of atten-
tion for RORO ship design resulting in research and regulatory activities
for the safety of RORO passenger ships. The SOLAS 90 and 92 amendments
further improved the survivability characteristics of damaged passenger ships
and cargo ships. SOLAS 2009 [2] was accepted as the probabilistic damage
stability standard and introduced the index A (see Equation 1) as a mea-
sure of damage stability standards. As a result, the calculation of stability
has become even more complex and naval architects have to perform the
calculations using computers. Following the acceptance of the new stability
assessment, the runtime to perform the calculations becomes a key factor
that affects the optimisation of the ship design as the simulations and the
calculations, not the optimisation, take a lot of time.

3.1.2 MOEAs

MOEAs are now used in Computer Aided ship Design (CAD) and Computer
Aided Engineering (CAE). The recent trend in the ship industry is to build
large-scale and high technology ships while the safety standards of ships are
continually improved. At the same time, fast design and production become
key issues to be addressed. Especially in ship stability-based hull subdivision
design, with the increasing improvement of the standards of ship safety, the
calculations become more and more complex, and the computational work-
load tends to become heavier when the ships get larger. Therefore, it is critical
that a well developed methodology for this problem is found.

As an important sub-discipline of optimisation, the studying of MOEAs
began in the 1960s, but the first complete algorithm, the Vector Evaluated
Genetic Algorithm (VEGA) created by Schaffer, was not proposed until the
mid-1980s [15]. Since then, MOEAs have remained an active research area,
many MOEAs have been introduced, and more and more applications in
engineering have been developed. The reasons for the fast development of
MOEA are many, but one of the main reasons is that the MOEA can find
the Pareto solutions [16] without being affected by the shape or continuity
of the Pareto front. Hence a MOEA can find Pareto-optimal solutions even
in complicated practical engineering situations.

Because of the specific requirements of different disciplines, there are sev-
eral classification methods for MOEAs. Coello et al. [15] provided a very sim-
ple method for this purpose, based on the type of selection mechanism used
by MOEAs. This chapter adopts this classification approach and divides ex-
isting MOEAs into three categories: Aggregating Function, Population-based
Approaches, and Pareto-based Approaches.

Using an aggregating function means to directly combine all the objec-
tives into a single function which is usually called an aggregating function.

290 O. Turan and H. Cui

This aggregating function can be linear or nonlinear. MOGA proposed by
Fonseca and Fleming [17] can be seen as an example for this class of meth-
ods. Population-based approaches use the population of EAs to diversify the
search.

Pareto-based approaches use Pareto optimality in the selection mechanism
and are the most popular approaches in recent years. The Non-dominated
Sorting Genetic Algorithm (NSGA) [18], NSGA-II [19], the Niched Pareto
Genetic Algorithm (NPGA) [20], the Strength Pareto Evolutionary Algo-
rithm (SPEA) [21], SPEA2 [22], the Pareto Archived Evolution Strategy
(PAES) [23] all belong to this category.

3.2 Optimisation in the Subdivision of Ship Stability

In response to the new SOLAS 2009 regulations, the shipping industry is in
search of new modern designs to match these high safety standards while max-
imizing the cargo capacity of vehicles in a cost effective approach. The changes
in design focus on the damage stability and survivability, cargo, and passen-
ger capacity. Therefore, the internal hull subdivision layout is an important
problem especially for damage stability, survivability, internal cargo capacity,
and the general arrangement of the vessel. Different solution methods have
been proposed in the previous work. Sen and Gerick [24] suggested using a
knowledge-based expert system for subdivision design using the probabilis-
tic regulations for passenger ships. Zaraphonitis et al. [25] proposed an ap-
proach for the optimisation of RoRo ships in which centre-casing, side-casing,
bulkhead deck height, and locations of transverse bulkheads are treated as
optimisation variables. Olcer et al. [3] studied the subdivision arrangement
problem of a Ropax vessel and evaluated conflicting designs in a totally crisp
environment where all the parameters are deterministic. They also examined
the same case study in a fuzzy multiple attributive group decision-making en-
vironment, where multiple experts were involved and available assessments
were imprecise and deterministic. Turan et al. [26] studied the subdivision
problem by the case-based reasoning approach. Turkmen et al. [4] proposed
NSGA-II with TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) to perform design optimisation for internal subdivision. Cui
et al. [5] introduced a multi-PSO (particle swarm optimisation) for the same
problem.

4 The Approach

4.1 Mathematical Description of Pareto-style
Multi-objective Optimization

The goal of solving a general multi-objective optimisation problem (also called
multiple criteria optimisation, multi-performance, or vector optimisation) is

Reinforcement Learning for Ship Stability 291

to find the design variable settings that optimize a vector objective function
(F (Y) = f1, . . ., ft) over the feasible design space [27]. The objective functions
are the quantities that the designer wishes to minimize, maximize, or attain a
certain value for. This problem can be formulated as follows:

Minimize F (Y) = {f1(Y), f2(Y), . . ., ft(Y)} (3)

Subject to:
p inequality constraints gδ(Y) ≥ 0, δ = 1, . . ., p
q equality constrains hΦ(Y) = 0, Φ = 1, . . ., q
where Y = [y1, y2, . . . , yn] is the vector of decision variables.

In multi-objective optimisation, the objectives are usually in conflict with
each other. The aim of multi-objective optimisation is to find a compromise
solution which is acceptable for the decision makers. Design variables are the
numerical quantities for which values are to be chosen in an optimisation
problem. In most engineering applications, the design variables can be con-
trolled by designers according to actual problems. Design variables usually
have maximum and minimum boundaries which can be treated as separate
restrictions. These restrictions are from the environment or resources (e.g.,
physical limitations, time restrictions, etc.), which must be satisfied by an ac-
ceptable solution in an optimisation problem. These restrictions are generally
called constraints.

In multi-objective optimisation, the aim is not to only find a single globally
optimal solution but to discover good compromises (or “tradeoffs”). There-
fore, Pareto Optimality is introduced. For a multi-objective optimisation
problem, any two solutions y1 and y2 can have one of two relations: one
dominates the other or none dominates the other. In a minimization prob-
lem, without loss of generality, a solution y1 dominates y2 if the following
two conditions are satisfied:

∀γ ∈ {1, 2, . . ., t} : fγ(y1) ≤ fγ(y2) (4)

∀λ ∈ {1, 2, . . ., t} : fλ(y1)<fλ(y2) (5)

If any of the above conditions are violated, the solution y1 does not dominate
the solution y2. If y2 is not dominated by solution y1, y2 is called the non-
dominated solution. The solutions that are non-dominated within the entire
search space are denoted as Pareto-optimal and constitute the Pareto-optimal
set or Pareto-optimal frontier [27].

4.2 Optimization Approach

To reduce the runtime in the application of stability optimisation, one of the
most efficient methods is to find the hidden relationships among data via real-
time learning during optimisation and to use these relationships to guide the

292 O. Turan and H. Cui

search for optimisation. Reinforcement learning, as one of the most impor-
tant machine learning approaches, is introduced here to assist the optimisa-
tion algorithm to find these relationships [28]. Reinforcement learning solves
the problem via an agent reaction mechanism, which learns the behaviour
through trial-and-error interactions and delayed rewards in a dynamic envi-
ronment. In other words, the reinforcement learning tries to find a mapping
from environment to action via reward. Sutton and Barto provide a detailed
explanation of reinforcement learning in [29]. Here, a brief introduction is
given to provide basic knowledge about reinforcement learning.

In a typical reinforcement learning model, an agent is connected to the
environment via perception and action. In the model shown in Figure 6, B
is an agent and T is the environment. In the first step, agent B receives
an input i. In the second step, agent B chooses an action a to generate an
output. This action a changes the environment T and in the third step, the
value of this state transition is communicated to the agent B through a scalar
reinforcement signal, r. The agent’s behaviour, B, should choose actions that
tend to increase the long-term sum of the values of reinforcement signal. It
can learn to do this over time by systematic trial and error, guided by a wide
variety of algorithms.

From the model in Figure 6, it can be seen that there are four basic mod-
ules in reinforcement learning: a policy, a reward function, a value function,
and, optionally, a model of the environment [29]. The policy represents the
mapping from environment to action. This module is the core of reinforce-
ment learning and there are many ways to implement a policy, for example
as a lookup table, as functions, or as an artificial neural network. The second
module is the reward function which is the goal of reinforcement learning.
The aim of an agent in a reinforcement learning scenario is to maximize the
total reward in the lifetime run. The third factor, the function value, is a

Fig. 6. The standard reinforcement learning model.

Reinforcement Learning for Ship Stability 293

formula to synthesise all the rewards that an agent expects to get over the
future.

Q-learning, as an efficient approach for reinforcement learning, is selected
to assist the optimisation algorithm to find hidden relationships. Q-learning,
developed by Watkins [30, 31], works via learning an action-value function
that gives the expected utility of taking a given action in a given state and
following a fixed policy thereafter. Q-learning is a form of model-free rein-
forcement learning, which means that it can compare the expected utility of
the available actions without requiring a special environment. The require-
ments of Q-learning for the environment are flexible. However, this does not
mean Q-learning is applicable for any situation. Compared to a continuous
environment, a discrete environment is more suitable for the current version
of Q-learning. Luckily, a discrete and finite engineering environment is one
of the characteristics of ship stability design optimisation. The combination
of Q-learning and ship stability design optimisation thus is reasonable.

In practice, it is computationally impossible to find the necessary integrals
without additional knowledge or some modification. Q-learning solves the
problem by taking the maximum value over a set of integrals. Rather than
finding a mapping from states to state values (as in value iteration), Q-
learning finds a mapping from state/action pairs to values (called Q-values).
Instead of having an associated value function, Q-learning makes use of the
Q-function. In each state, there is a Q-value associated with each action. The
Q-value is defined as the sum of the (possibly discounted) reinforcements
received when performing the associated action and then following the given
policy thereafter. Likewise, the definition of an optimal Q-value is the sum of
the reinforcements received when performing the associated action and then
following the optimal policy thereafter. Equation 6 is a general expression for
this situation.

Q(st, at)← Q(st, at) + α[rt+1 + γ max
a

Q(st+1, at+1)−Q(st, at)] (6)

According to Equation 6, Q-learning differs from other value-iterating re-
inforcement learning methods in that it displays the relationship of given
actions and expected values of the successor states. It does not require that
each action is performed in a given state and the expected values of the
successor states are calculated.

In the initial phase of to the Q-learning process (before the learning has
started), Q returns a constant value chosen by the designer. In the following
iterations, the agent is given a reward every time the state has changed
and the Q value will be changed according to this reward. New values are
calculated for each combination of a state ‘s’ from the statement set ‘S’ and
action ‘a’ from the action set ‘A’. It assumes the old value and makes a
correction based on the new information as shown in Equation 6. Equation 6
is equivalent to:

294 O. Turan and H. Cui

Q(st, at)← Q(st, at)(1− α) + α[rt+1 + γ max
a

Q(st+1, a)] (7)

In this study, we use Equation 7.
The NSGA-II has been proposed by Deb et al. [19] as a fast and elitist

multi-objective algorithm. This algorithm uses the crowding distance param-
eter to keep the population diverse and also defines the constraint-dominance
principle in order to work better with constrained optimisation problems. It
has been employed to solve the ship stability design problem in the past [4].

The NSGA-II can be divided into three main parts: non-dominated sorting,
crowding distance assignment, and offspring selection with respect to fitness
and crowding distance. In the sorting procedure, non-dominated individuals
are found in the population and are assigned to the rank zero. Then the
algorithm begins to seek the next front and so on. The crowding distance
assignment is used to penalize the individuals that are close to each other.

The NSGA-II combines the parent and child populations for every gener-
ation. The child population selection in the NSGA-II can use roulette wheel
selection, historically the default selection method used in GAs [16]. Here, a
Q-learning operation is introduced to improve the child population selection.

According to the Q-learning theory, the child population can be gener-
ated by forecasting through learning from a known value. Since the changing
steps are discrete, the hybrid algorithm will calculate the Q-value from ev-
ery parent and utilize the previously calculated fitness to select the child
population. As shown in Figure 7a, the evolutionary method adopted in the
NSGA-II generates the offspring via the crossover and mutation operations.
Two parents, parent1 and parent2 in Figure 7a, are randomly selected from
the parent group. Then the crossover operation is applied to these two par-
ents and two new individuals are obtained as the two children. In the next
step, these new individuals will undergo mutation according to the mutation

Fig. 7. The methods of selecting offspring.

Reinforcement Learning for Ship Stability 295

rate [16]. In the last step, the two children, child1 and child2 form a new par-
ent group with parent1 and parent2 in the NSGA-II. Figure 7b displays the
new hybrid method which is generating offspring via Q-learning. The parents
are randomly selected from the parent group. The crossover and mutation
operation are applied as in the traditional EA, but this time, only one child
is selected as offspring from child1 and child2. Here we assume that child1
is selected and child2 will be recalculated from Q-learning approach.

Figure 8 illustrates the method of direction selection on a parent point in
the new hybrid algorithm. The hybrid algorithm will calculate the Q-value
around parent1 and parent2. For sampling the process of calculation, the
calculating range is usually defined by the user. Then the algorithm com-
pares all calculated Q-values. The child which has the biggest Q-value will be
selected as child2 in the next generation. The algorithm uses the Q-value cal-
culation to replace random selection and a look-up table is used to calculate
the Q-value.

If the Q-learning function in this new algorithm is studied, it can be seen
that in the offspring selection period in the NSGA-II, Q-learning can forecast
the moving direction of the parents. In other words, Q-learning can select the
maximum expected utility of the moving direction of the parent point. When
selecting offspring, Q-learning will first calculate the expected utility of all
the possible moving directions of the parent point. Then the algorithm will
compare these values and select the maximum expected utility. Finally, the
algorithm will select the corresponding moving direction as a real action to
determine the child point instead of random selection. It is noteworthy that
this new algorithm is suitable for special optimisation problems which have
two characteristic features.

Fig. 8. The detailed method of selecting offspring in new hybrid algorithm.

296 O. Turan and H. Cui

One is that the ranges of design variables and searching step lengths are
discrete and finite. For example, in the problem specified in Section 2, the
locations of transverse bulkheads are limited in several integral states, which
is the restriction of real engineering. At the same time, the changes that can
be applied to the design variables are also limited to integer values.

The other feature is that the time cost of optimisation is smaller than the
simulation necessary for the engineering process. For instance, in stability
design, the time required for every simulation via the NAPA software needed
for the fitness evaluation will be 4 to 8 minutes, which is far larger than
the time requirement for the optimisation operations. Thus, the new hybrid
algorithm will improve the time cost of optimisation by greatly reducing the
simulation time which, in turn, will reduce the overall time.

4.3 Integration Optimization System

The language Java is used to implement the optimisation system based on a
multi-agent structure and the calculation is processed between the optimisa-
tion system and the NAPA software. Visual Basic (VB) is used to form the
interface between them. The optimisation system uses NAPA to calculate
the Index A, limitingKG, and Cargo Capacity and after optimisation, the
modified design variables are transferred to NAPA. The vessel is modelled
in NAPA and can be modified for each design experiment (or design layout)
with respect to each optimisation parameter via the NAPA macro language.
For each design experiment, the relevant adjustments of draught and dis-
placements are made during the optimisation process. The whole process is
shown in Figure 9. Notepad is used as a media to transfer the information
between the optimisation program and the NAPA software.

Fig. 9. The integration optimization system.

Reinforcement Learning for Ship Stability 297

5 Results of the Case Study

5.1 Case Study Setting

The main dimensions of the Ropax ship used as basis for this case stury are
listed in Table 1. Table 2 presents the design variables together with the lower
and upper boundaries of the parameters with assigned increments to be used
in the optimisation study.

Table 1. Main dimensions of the vessel in case study.

Length Overall(Loa) 194.4 m

Length between perpendiculars (Lbp) 172.2 m

Breadth molded (B) 28.4 m

Depth to car deck 9.7 m

Lower Hold Height (m) 2.6 m

Depth to upper deck 15.0 m

Draught design (T) 6.6 m

Displacement 20200 ton

Max number of persons on board 2660

Number of car lanes 8

Table 2. Optimisation variables with their types, bounds, and objectives.

No Variables
Original
design

Type Bounds
Discrete Lower Upper Increment

1 Car deck height 9.7 m
√

9.6m 9.9m 0.025m

2 Lower-hold height 2.6m
√

2.6m 5.2m 2.6

3 Side casing width No
√

1m 2m 0.5m

4 Transverse Bulkhead 02 27
√

25 29 1

5 Transverse Bulkhead 03 39
√

37 41 1

6 Transverse Bulkhead 04 51
√

49 53 1

7 Transverse Bulkhead 05 63
√

61 65 1

8 Transverse Bulkhead 06 81
√

79 83 1

9 Transverse Bulkhead 07 99
√

97 101 1

10 Transverse Bulkhead 08 117
√

115 119 1

11 Transverse Bulkhead 09 129
√

127 131 1

12 Transverse Bulkhead 10 141
√

139 143 1

13 Transverse Bulkhead 11 153
√

151 155 1

14 Transverse Bulkhead 12 165
√

163 167 1

15 Transverse Bulkhead 13 177
√

175 179 1

16 Transverse Bulkhead 14 189
√

187 191 1

Boundaries for transverse bulkheads are given in frame numbers

298 O. Turan and H. Cui

In Table 2, there are sixteen design variables in this real-world case and all
of them are discrete attributes which provide a perfect environment for Q-
learning. The graphical illustrations of the first, second and third design vari-
able are presented in Figure 2. The “car deck height” is limited between 9.6m
and 9.9m with the increment of 0.025m as the original design is 9.7m. The
performance of the ship (including sea keeping, stability, structural strength
etc.) is very sensitive to the height of the car deck and therefore, these design
variables have limited boundaries.

The second design variable “Lower-hold height” is an important parameter
as it will determine the number of cars that can be placed in the lower hold.
The lower-hold height, which is 2.6m in the existing design, limits the height
of the cars that can be stored in this space. Due to the size of the lower hold,
trailers cannot be stored in this space. In order to increase the car capacity,
the height of the lower hold can be increased by 2.6m. In ship construction,
an excessive size of lower hold is impractical due to the constructional and
loading/unloading constraints. Therefore, the boundary for the lower hold
height is set to 5.2m.

Increasing the third design variable, “side case”, is beneficial to the sta-
bility in damaged conditions but reduces the cargo capacity. In other words,
a bigger side case will decrease the total car lanes and therefore the bound-
aries are selected between 1m and 2m. The freedom of this design variable
is very small because of the limitation imposed by the practical production
requirements. The increment for side casing is set as 0.5m for the construc-
tion convenience and structural feasibility. All the design variables numbered
between 4 and 16 are presented in Figure 3. The values of these design vari-
ables are frame numbers. As the frame numbers are integer numbers, the
increments have to be integer numbers too, and in this situation the incre-
ment is set to 1. The NSGA-II uses the parameters setting of prior research
in the same environment as shown in Table 3 [5].

Table 3. The parameters setting of NSGA-II.

Parameters Name Parameters Value

SBX (Simulated binary crossover) 10

Polynomial mutation 20

Crossover probabilities 0.9

Mutation probabilities 0.1

Population 30

Generation 100

5.2 Experimental Results

All the experiments are processed in the same computer environment and run
several times. Since we set a population size of 30 and a maximum generation

Reinforcement Learning for Ship Stability 299

number of 100 for our EA, it can at most explore 3000 different designs.
With the NSGA-II, 2517 different designs were obtained in the final design
space with 722 of them being infeasible designs resulting in 1795 (= 2517−
722) feasible designs. The hybrid algorithm discovered 2326 different designs,
including 603 infeasible ones, resulting in 1723 feasible designs. “different”
in this context means that each design is unique. During the optimization
process, designs usually are discovered more than once. The duplicate results
are insignificant and should be deleted in the engineering application. The
results of NSGA-II and of the new hybrid algorithm are presented in Table 4,
while the convergence generation and runtime of both methods are listed in
Table 5. In this study, in order to better judge the algorithm performance,

Table 4. Comparison between the new hybrid design and NSGA-II design.

Original Design NSGA-II-based Hybrid-based

No Decision Variables Design Design Design

1 Car deck height 9.7 m 9.9m 9.9m

2 Lower-hold height (from car

deck)

2.6m 5.2m 5.2m

3 Side Casing width(m) No side-casing 1m 1m

Watertight transverse bulk-

heads (In frame numbers)

4 Transverse Bulkhead 02 27 27 28

5 Transverse Bulkhead 03 39 40 40

6 Transverse Bulkhead 04 51 52 52

7 Transverse Bulkhead 05 63 64 65

8 Transverse Bulkhead 06 81 82 82

9 Transverse Bulkhead 07 99 100 101

10 Transverse Bulkhead 08 117 118 118

11 Transverse Bulkhead 09 129 129 130

12 Transverse Bulkhead 10 141 142 143

13 Transverse Bulkhead 11 153 154 155

14 Transverse Bulkhead 12 165 165 166

15 Transverse Bulkhead 13 177 178 179

16 Transverse Bulkhead 14 189 189 190

Optimization Objectives

1 Index A (m) 0.8028 0.8695 0.8664

2 limitingKG value (m) 14.012 14.8089 14.8762

3 Cargo capacity value (lines) 8 14 14

runtime (hours) 198 196

Table 5. The convergence generation and time cost.

Approach Convergence Generation Time (Hours)

NSGA-II 45-48 88-97

Hybrid Method 32-35 64-80

300 O. Turan and H. Cui

0.75

0.8

0.85

0.9

0.95 13
13.5

14
14.5

15
15.5

8

9

10

11

12

13

14

KG limiting (m)
Index A (m)

C
ar

go
 c

ap
ac

ity
 (

lin
es

)

Fig. 10. Visualizations of the obtained Pareto frontiers.

the ‘convergence generation’ measure is used. During the data analysis after
optimization, we check the Pareto line of every generation. If the Pareto
line cannot move forward within five generations, we define the beginning
generation of this phenomenon as convergence generation.

6 Comparison of the Results

In the solution presented in Table 4, compared to the original design, the
index A using the hybrid algorithm is increased by almost 0.06 (7.5%) while
the number of car lanes is increased from 8 to 14 (this is mainly due to the
increase in the height of the lower hold). This means the final optimum design
successfully improves the cargo capacity while the safety index A is increased.
The bigger index A has many advantages in the concept design stage as well
as during the ship’s operational life. The index A may be decreased during
further design stages and construction because of the possible deviations from
the original estimations/plans (changes to compartment definitions, general
arrangement and using material with different thicknesses than in the initial
plan). In order to improve the robustness of the design and to provide a
bigger stability margin, the designers rightly may seek a larger index A.

Reinforcement Learning for Ship Stability 301

The limitingKG value is also increased significantly and provides flexibil-
ity for future modifications on the basis of changing passenger demands as
well as machinery requirements without compromising the safety. When the
NSGA-II and the new hybrid algorithm are compared, they provide very sim-
ilar results for the final design. However, when the convergence generation
and the runtime of both the NSGA-II and the hybrid algorithm are com-
pared, it can be clearly seen that the convergence generation of the hybrid
algorithm is reached 50% faster than the original NSGA-II, which means that
the searching ability and speed of the hybrid algorithm is significantly bet-
ter. In Figure 10, the “*” points are initial values and the “o” points are the
obtained Pareto frontiers.

7 Conclusions and Future Work

In this chapter, we have presented a new hybrid algorithm that combines
machine learning and the NSGA-II. The proposed hybrid approach was tested
and validated successfully, utilizing the most widely used real-world task
in ship design. In this study, internal subdivision optimisation of a Ropax
vessel where there is a conflict between survivability, damage stability and
cargo capacity was carried out. The proposed algorithm provides reasonably
good results in terms of design objectives. In the study, the final solution is
an improvement from the original design in every chosen objective with a
significant margin, which clearly demonstrates the value of this system. The
proposed algorithm is structured via a multi-agent system and every agent
works remarkably well. It can be concluded that the proposed system has
shown great potential and can be applied to similar and even more complex
optimisation problems in ship design, as well as to related areas within the
maritime industry.

Future work will focus on two aspects. The first being the selection prin-
ciple and a sensitivity analysis of the parameters. In the current study, the
parameters of Q-learning and NSGA-II have been selected according to the
default setting for numerical calculations. The special character of the engi-
neering application should be considered to improve the performance of this
new hybrid algorithm. The comparisons of different parameters in terms of
convergence rate are necessary. Moreover, a sensitivity analysis of parameters
will be helpful in order to improve the performance of the algorithm.

The second aspect is to take into account a range of different applications
in this area. The presented algorithm can be considered as very efficient for
general ship design problems. However, we would also like to test its utility
on problems that have features which are different from this kind of task.
Applying this new algorithm to different ship design problems is useful to
check the applicability of this algorithm.

302 O. Turan and H. Cui

References

1. Yang, X.: Engineering Optimization: An Introduction with Metaheuristic Ap-
plications. Wiley- Blackwell (2010)

2. International Maritime Orgnization (IMO). International convention for the
safety of life at sea (SOLAS), 2009 amendment (June 2009)

3. Ölçer, A., Tuzcu, C., Turan, O.: Internal hull subdivision optimisation of Ro-
Ro vessels in multiple criteria decision making environment. In: Proceedings of
the 8th International Marine Design Conference, vol. 1, pp. 339–351 (2003)

4. Turkmen, B.S., Turan, O.: A new integrated multi-objective optimisation algo-
rithm and its application to ship design. Ship and Offshore Structures 2, 21–37
(2007)

5. Cui, H., Turan, O.: An Improved PSO Approach in a Multi Criteria Decision
Making Environment. Ship Technology Research 56(1), 14–21 (2009)

6. NAPA. NAPA Release (2009), http://www.napa.fi/
7. Nowacki, H.: Five decades of Computer-Aided Ship Design. Computer Aided

Design (2009); doi:10.1016/j.cad.2009.07.006
8. Evans, J.H.: Basic design concepts. American Society of naval Engineers Jour-

nal, 671–678 (1959)
9. Buxton, I.L.: Engineering economics applied to ship design. Transactions of

RINA 114, 409–428 (1972)
10. Andrews, D.: Creative ship design. Transactions of RINA 123, 447–471 (1981)
11. Andrews, D.: A comprehensive methodology for the design of ships (and other

complex systems). Royal Society of London Proceedings 454, 447–471 (1988)
12. Mistree, F., Smith, W.F., Bras, B.A., Allen, J.K., Muster, D.: Decision-based

design: a contemporary paradigm for ship design. Transactions of Society of
Naval Architects and Marine Engineers 98 (1990)

13. Papanikolaou, A. (ed.): Risk-based ship design methods, tools and applications.
Springer, Heidelberg (2009)

14. International Maritime Orgnization (IMO). Resolutions of A.265 (VIII)
(November 1973)

15. Coello, C.A.C., Lamont, G.B., van Veldhuizen, D.A. (eds.): Evolutionary Al-
gorithms for Solving Multi-Objective Problems, 2nd edn. Springer Science +
Business Media (2007)

16. Weise, T.: Global optimisation algorithms: Theory and application,
http://www.it-weise.de/

17. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective optimiza-
tion: Formulation, Discussion and Generalization. In: Proceedings of the Fifth
International Conference on Genetic Algorithms, pp. 416–423. Morgan Kauff-
man, St. Monteo (1993)

18. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sort-
ing in Genetic Algorithms. Evolutionary Computation 2, 221–248 (1994)

19. Deb, K., Pratap, A., Agrawal, S., Meyarivian, T.: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6(2), 182–197 (2002)

20. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm
for Multiobjective Optimization. In: Proceedings of the First IEEE Confer-
ence on Evolutionary Computation, IEEE World Congress on Computational
Intelligence, vol. 1, pp. 82–87 (1994)

http://www.napa.fi/
http://www.it-weise.de/

Reinforcement Learning for Ship Stability 303

21. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Compara-
tive Case Study and the Strength Pareto Approach. IEEE Transactions on
Evolutionary Computation 3(4), 257–271 (1999)

22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. In: EUROGEN 2001. Evolutionary Methods for De-
sign, Optimization and Control with Applications to Industrial Problems,
Athens, Greece, vol. 1, pp. 313–324 (2001)

23. Knowles, J.D., Corne, D.W.: M-PAES: A Memetic Algorithm for Multiobjective
Optimization. In: 2000 Congress on Evolutionary Computation, Piscataway,
New Jersey, vol. 1, pp. 325–332 (2000)

24. Sen, P., Gerigk, M.: Some aspects of a knowledge-based expert system for
preliminary ship subdivision design for safety. In: The 6th International Sym-
posium on Practical Design of Ships and Other Floating Sturctures PRADS
1992 , Newcastle upon Tyne, UK, vol. 2, pp. 1187–1197 (1992)

25. Zaraphonitis, G., Boulougouris, E., Papanikolaou, A.: An integrated optimiza-
tion procedure for the design of Ro-Ro passenger ships of enhanced safety and
efficiency. In: Proceedings of the 8th International Marine Design Conference ,
Athens, Greece, vol. 1, pp. 313–324 (2003)

26. Turan, O., Turkmen, B., Tuzcu, C.: Case-based reasoning approach to internal
hull subdivision design. In: 4th International Conference on Advanced Engi-
neering Design, Glasgow, UK (2004)

27. Ölçer, A.: A hybrid approach for multi-objective combinatorial optimisation
problems in ship design and shipping. Computers & Operation Research 35(9),
2760–2775 (2008)

28. Kaelbling, L., Littman, M., Moore, A.: Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research 4, 237–285 (1996)

29. Sutton, R.S., Barto, A.G. (eds.): Reinforcement Learning: An Introduction.
MIT Press, Cambridge (1998)

30. Watkins, C.: Learning from delayed rewards. PhD thesis, University of Cam-
bridge, UK (1989)

31. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279–292 (1992)

An Interactively Constrained
Neuro-Evolution Approach for
Behavior Control of Complex Robots

Christian Rempis and Frank Pasemann

Abstract. Behavior control of complex technical systems, such as robots, is a
challenging problem. In this context, embodied neuro-control is a bio-inspired
method for handling this type of problems, and evolutionary robotics has
taken up some essential research topics in this field. However, for systems with
many multi-modal sensor inputs and actuating outputs, new evolutionary
methods have to be applied because the search spaces are high-dimensional
and comprise many local optima. This becomes even harder when functional
recurrent network structures cannot be given in advance and have to be
evolved together with other parameters like synaptic weights and bias terms.
This chapter describes a new evolutionary method, called Interactively Con-
strained Neuro-Evolution (ICONE), which restricts large search spaces by
utilizing not only domain knowledge and user experience but also by apply-
ing constraints to the networks. The interactive use of this tool enables the
experimenter to bias the solution space towards desired control approaches.
The application of the ICONE method is demonstrated by evolving a walk-
ing behavior for a physical humanoid robot, for which a whole library of
behaviors has been developed.

1 Introduction

Although a great deal of work has been done along this line of research, be-
havior control of complex technical systems remains a challenging problem.
Apart from the classical artificial intelligence approaches, embodied neural
control is one of the promising methods to further advance this field. On the

Christian Rempis · Frank Pasemann
Neurocybernetics Group, Institute of Cognitive Science,
University of Osnabrück
49069 Osnabrück, Germany
e-mail: {christian.rempis,frank.pasemann}@uni-osnabrueck.de

{christian.rempis,frank.pasemann}@uni-osnabrueck.de

306 C. Rempis and F. Pasemann

other hand, robots have served for a long time now as paradigmatic target
systems for real-world applications and as versatile research platforms. In this
context, evolutionary robotics [1, 2] takes up a manifold of different research
problems associated with bio-inspired neural control techniques. To demon-
strate the validity of this approach for the control of complex systems, one
has to use evolutionary algorithms to generate neuro-controllers for robots
with many sensors and actuators.

For relatively simple machines, evolutionary robotics has already proven
to be able to generate interesting neural behavior control. Among the ba-
sic behaviors achieved for such robots were – depending on the provided
sensors – all kinds of negative and positive tropisms. Often these behaviors
relied on very simple neural controllers, for which specific relations concern-
ing structure, dynamics and functions could be easily identified. Even more
challenging problems could be addressed, for instance the goal-driven be-
havior and swarm behavior [3]. Although evolutionary robotics has already
presented interesting capabilities demonstrating basic properties of embodied
cognition, most of the targeted machines were quite simple when compared
to the richness of sensors and actuators of animals.

Furthermore, truly autonomous systems will use internal needs for driving
their behaviors; especially if they have to switch between different behav-
iors when interacting with their dynamically changing environments. Hence,
they have to be equipped not only with exterior sensors, but also with pro-
prioceptors which monitor their body states concerning body poses, energy
consumption, temperature, and the like.

In using the artificial life approach to evolutionary robotics [4] to develop
neural behavior control systems which come closer to the abilities of biologi-
cal nervous systems, a new class of challenges emerges. This mainly originates
from the fast growing search space when the robot complexity scales up by
adding many new sensors and actuators. The chance of finding interesting,
non-trivial neural controllers at a certain complexity level thereby often be-
comes unsatisfyingly low.

Therefore, at this point new evolutionary algorithms have to be investi-
gated. It is suggested in this chapter that these new evolutionary algorithms
have to make use of domain knowledge, such as insights in the organiza-
tion of behaviors, local neural processing, symmetries, hierarchical feedback
loops and other topological and hierarchical organizations of neural networks.
Such algorithms may use neuro-modules that serve as hierarchical organiza-
tion structures and functional building blocks. Using high-level neural build-
ing blocks as primitive elements instead of only single neurons allows larger,
functionally interesting networks, while still ending up with a smaller search
space. Also it is suggested that evolution is used rather as an assistant tool
than as an autonomous problem solver, thus favoring user interactions and
reactions to the progress of the evolution.

Interactively Constrained Neuro-Evolution for Robot Behavior Control 307

This chapter introduces a new evolutionary method called Interactively
Constrained Neuro-Evolution (ICONE) and demonstrates, as an example,
how the method can be used to evolve neuro-controllers for a humanoid robot.

2 Evolving Large-Scale Recurrent Neural Networks for
a Humanoid Robot

For the EU project ALEAR (Artificial Language Evolution on Autonomous
Robots)1, humanoid robots are used for so called language games [5]. In these
experiments, humanoid robots interact with each other and develop a lan-
guage, based on their actions and responses. Therefore the humanoid robots
need a wide variety of behaviors and gestures, such as pointing, walking and
hand waving.

Fig. 1. The A-Series humanoid robot. The black arrows mark the locations of the
AccelBoards.

The humanoid robots used during these language games are called A-Series
robots [6] (Figure 1). They have been developed by the Neurorobotics Re-
search Lab of Humboldt University Berlin based on the commercial robotics
kit Biolid2. Each robot is about 45 cm high and equipped with 21 servo
1 http://www.alear.eu
2 http://www.robotis.com

308 C. Rempis and F. Pasemann

motors, 21 angular sensors and 16 acceleration sensors. Eight so-called Accel-
Boards, small electronic boards responsible for the control of the motors, for
reading the sensors and for calculating the activity of the artificial neural net-
work controllers, are distributed over the body. The boards communicate over
a synchronized bus with an update rate of 100 Hz. During each update step,
each board knows the state of all motors and sensors of the robot. Because of
the limited capacity of the AccelBoards, the neural controller networks have
to be distributed over the available boards. Accordingly there is no central
control, but rather a number of interacting autonomous networks. To allow
the exchange of state information between the networks and thus a synap-
tic connection between the networks, each AccelBoard can communicate the
state of up to four of its neurons to all other boards.

The control of such a robot is, because of its comparably large number
of sensors and actuators, a challenging task. One common approach – as is
used here – is to control the robots by artificial recurrent neural networks.
This approach has the advantage, that controllers can be assembled from rel-
atively simple, uniform processing elements. This facilitates the use of auto-
matic network construction and optimization algorithms, including learning
approaches and evolutionary algorithms [2, 7].

The A-Series robot requires already comparably large neural networks.
Each motor of the A-Series robot is controlled by two motor neurons, one
controlling the desired angular position, the other controlling the maximal
motor torque during movements. Altogether the robot has 42 motor neurons,
37 sensor neurons and a number of hidden neurons for local processing, which
make up a very large search space. Naive structure evolution approaches to
construct networks by randomly inserting and altering synapses and bias
values have no realistic chance to solve the targeted behavior problems in
reasonable time.

Another problem is that evolution cannot practically take place on the
physical robot. Accordingly a simulation of the robot has to be used. Because
a perfect simulation of the physical robot is not feasible, neuro-controllers will
adapt to the simulated system and hence may not work on the physical robot.
Therefore it is important to evolve controllers to be robust with respect to
the target platform, so that small differences between the platforms do not
lead to an entire failure.

The remainder of this chapter describes the application of the evolutionary
approach called the ICONE method, which allows the restriction of the search
space of large networks based on modular structures, reuse of functional
building blocks, domain knowledge and interactive control of the evolution
process. This increases the chance of finding solutions and keeps evolved
networks much more structured and comprehensible. With this method a
number of behaviors for the A-Series have been realized and successfully
transferred to the physical robot. Section 4 describes the method in detail. As
an example, in Section 5 the application of the method is shown by evolving
a walking behavior for the A-Series humanoid and by integrating it to the

Interactively Constrained Neuro-Evolution for Robot Behavior Control 309

physical system. In the final sections 6 and 7, the results are discussed and
an outlook for future work is given.

3 Related Work

The evolution of neuro-controllers for autonomous robots has a long tradition
in the evolutionary robotics community [1,8–10]. Embodied neural networks
utilizing the sensors of a robot (sensori-motor loop [11]) can result in astonish-
ing robust behaviors in noisy environments. Also, using neural networks for
behavior control may give insights into the neural organization of biological
organisms. However, the construction of such networks is – apart from simple
behaviors like tropisms [12,13] – difficult to design by analytical approaches.
This requires algorithms and techniques to create and optimize neural net-
works in an efficient manner. Robot control tends to rely on recurrent neural
networks, because behaviors are usually dependent on inner states and re-
quire the use of feedback loops in the network and through the environment.
As a promising approach to create such networks, a number of different types
of evolutionary algorithms have been developed in the last decades.

Evolutionary approaches for artificial neural networks can be roughly di-
vided into fixed topology algorithms [14–18] and structure construction algo-
rithms [19–30]. The former class of algorithms usually works with networks
having a fixed number of fully interconnected neurons or with layers of neu-
rons with a fixed interconnection pattern. One problem with fixed topology
networks is that (1) the chosen number of neurons and their interconnec-
tion structure may not be appropriate and (2) that the search space is very
large right from the beginning. Many structure construction algorithms on
the other hand have the ability to start with a small network [31] and to
add neurons and synapses to gradually increase the search space only when
it seems necessary [32, 33]. These algorithms can also be used to shrink al-
ready well performing solutions to smaller, easier understandable network
structures [32, 34].

The genome representation of neural networks differs widely between the
different algorithms. As a main distinction two classes can be identified: direct
encoding and indirect encoding. Direct encoding genomes directly specify the
weights of all synapses of the network. In contrast, indirect encoding genomes
specify parameters that are used to derive structure and synaptic weights.
This may involve the application of grammars or rule sets to construct the
network. Such algorithms are referred to as developmental algorithms [23,28,
30, 35–37]. Developmental approaches have the advantage that the genome
size is often much more compact compared to direct encoding if applied to
large networks. This can speed up evolution, but usually also induces a strong
bias to evolution, because often not all kinds of networks can be encoded
with this type of algorithm. Some developmental algorithms, like simulated
growing axons [38], may even slow down evolution, because the mapping from
genotype to phenotype is computationally expensive.

310 C. Rempis and F. Pasemann

As the experiments in evolutionary robotics become more and more diffi-
cult, neuro-evolution approaches try to increase the success rate of the evo-
lutionary search with different strategies. Three important strategies should
be mentioned here: structure reuse, search space restriction and diversity
conservation.

Structure reuse means, that a single neural structure encoded directly or
indirectly in the genome, can be reused in different parts of the network. This
often relates to modular structures, or neuro-modules [39]. The main advan-
tage of reusing sub-networks is the possibility to develop functional building
blocks, that can be reused in many parts of the network, without being rein-
vented by evolution multiple times. An example in biological systems are
the cortical columns in the brain of mammals [40]. Modular sub-networks
are explicitly addressed in algorithms like Modular NEAT [41], ModNet [29],
CoSyNE [15], Cellular Encoding [22, 37], ENSO [42], ESP [43] and to some
extent in SGOCE [30]. Another approach is the usage of CPPNs [17] and
the related evolution method HyperNEAT [18,44,45]. HyperNEAT does not
evolve neural networks, but evolves function networks (CPPNs) that gener-
ate the weights of a fixed network topology, resulting in repetitive, symmetric
structures similar to neuro-modules.

In fact, structure reuse is one efficient method to reduce the search space.
However the evolutionary search can be enhanced significantly by further
restricting the search space. One common strategy is the incremental com-
plexification of networks, as done in NEAT [33] and its derivates, ESP [43],
ModNet [29], ENS3 [32, 46, 47] and most developmental approaches. Evolu-
tion starts with minimal networks – for instance only including the sensor
and motor neurons – and explores this search space until no further improve-
ment is observed. Then, repeatedly, the search space is extended by adding
additional neurons and synapses and the new search space is explored. The
assumption is, that if solutions with simple network structures exist, then
it would be beneficial, if these are found first, because they are expected to
be evolved faster than complex networks doing the same task. This strategy
has been shown to accelerate the evolution process in a number of experi-
ments [33].

Another way to reduce the structural search space is the consideration
of symmetries and other topological peculiarities, like the positions of neu-
rons. Developmental approaches with growing synapses for instance have a
higher probability to connect neurons close by [24, 30, 38]. Also HyperNEAT
depends strongly on the positions of the neurons and can exploit topologi-
cal neighborhoods. Symmetries can be used in many experimental scenarios,
because the bodies of most robots have one or more symmetry axes. This
can be reflected in the network topology and shrinks the search space by the
number of neurons affected by the symmetry. ENSO [42] is an example of an
algorithm that systematically breaks down symmetry step by step, starting
with a highly symmetric network, hereby exploring the more symmetric and
thus smaller search spaces first. Other search space restrictions may include

Interactively Constrained Neuro-Evolution for Robot Behavior Control 311

the temporary protection of certain neurons or synapses from being changed
during evolution, as with ENS3.

The conservation of a certain level of diversity seems to be very beneficial
for neuro-evolution. One reason is that networks with very different topolo-
gies and weight distributions can show a very similar behavior. Furthermore
even small enhancements of the behavior may require large changes to the
network structure. Therefore a premature convergence to a single class of
topologies easily leads to an invincible local optimum. To protect different
lineages during evolution, NEAT uses a niching method based on historical
markings [33], which allow a dynamic grouping of the networks into similar-
ity classes. Then, only similar networks have to compete against each other.
ESP [16] and SANE [48] increase the diversity by not evolving complete neu-
ral networks, but instead by evolving single neurons, that are assembled to
a full network for each evaluation (cooperative co-evolution). Because the
neurons are always combined in other ways, the resulting networks remain
diverse longer. In addition ESP makes use of fixed niches that further en-
hance diversity. Using a similar approach on the synaptic level, CoSyNE [15]
also uses niches to delay convergence.

4 The Approach: Interactively Constrained
Neuro-Evolution

The ICONE method (Interactively COnstrained Neuro-Evolution) tackles
the described difficult problem domain by applying a number of strategies to
structure the networks and to restrict the search space [49]. Restrictions are
based on domain knowledge, user experience and on-line operations on the
evolving individuals during evolution.

4.1 Genome

Genomes in ICONE use direct encoding, not making distinctions between the
genome representation and the actual phenotype of an individual. Therefore
no separate mapping operator from genotype to phenotype is necessary. The
genomes are fully configured neural networks, building up an object structure
from primitive elements, like neurons, synapses, neuron-groups and neuro-
modules. Each of these elements provides a number of evolvable attributes,
such as the bias and the transfer function of a neuron, and the weight of a
synapse. All mutation operators work directly on these networks. In addition
to the evolvable attributes, each element provides a list of properties, which
can be used to control details of the neural network or the evolution process.
These properties comprise string pairs, which combine a property key with a
property value. With this, all kinds of tags and markings can be attached to
any element by the user or the evolution operators. Table 1 shows an overview
of the main attributes and properties of each element.

312 C. Rempis and F. Pasemann

During evolution, both the network weights and the network structure
can be evolved, so neurons, synapses and neuro-modules can be added and
removed by the mutation operators. Exceptions are the so-called interface
neurons, which are marked with a specific tag (Input/Output). These neurons
are the interface to the motors and sensors of the robot and thus cannot be
removed during evolution.

Table 1. An overview of the network elements, their attributes and their supported
main properties. The meanings of specific properties are explained in the text.

Element Attributes Common Properties

Neuron Bias ProtectBias
TransferFunction ValidBiasRange
ActivationFunction ProtectTransferFunction

ProtectActivationFunction
NoSynapseSource/Target
Input/Output
ModuleInput/ModuleOutput
ExtendedModuleInterface
FlipActivity

Synapse Weight ProtectWeight
ValidWeightRange

NeuronGroup Member Neurons
Constraints

Neuro-Module Member Neurons ModuleType
Constraints CompatibleTypes

PreventModuleReplacements
MaxNumberOfSubModules
MaxNumberOfMemberNeurons

All Elements Position Protected
ProtectExistence

4.2 Neuro-Modules

Neuro-modules are groups of neurons with a fixed interface to the surrounding
network parts. A neuron can be a member of only one neuro-module at the
same time. That way neuro-modules partition the network into well-defined
sub-networks. As neuro-modules can be composed of other sub-modules,
neuro-modules provide a way to organize a neural network in a specific topo-
logical and hierarchical manner.

Neuro-modules are usually treated as functional building blocks, e.g. an
oscillator, a classifier, a reflex loop or a memory unit. Because of this, the

Interactively Constrained Neuro-Evolution for Robot Behavior Control 313

neural implementation of the module – thus its inner structure – is not of
relevance for other parts of the neural network, which utilize such a mod-
ule. Important for using a module is solely the neural interface it provides.
Neurons in a module can be tagged as module interface neurons (ModuleIn-
put/ModuleOutput) which makes them visible from outside of the module.
By default a module interface neuron is visible only for all neurons of the
direct parent module. To increase the visibility of an interface neuron, it may
be tagged as ExtendedModuleInterface, associated with a number, specifying
the depth of its visibility. Figure 2 shows some examples.

Module interfaces reduce the search space, because they reduce the number
of valid synaptic connections to a well defined subset, preventing arbitrary
connections, which would make the development of functionally distinct sub-
networks more difficult.

Fig. 2. Visibility of interface neurons in neuro-modules. Neurons marked as input
(output) may be the target (source) of synapses from neurons outside of a module.
The visibility is indicated by the module name after the underscore. The extended
interface depth is given in square brackets. Neuron Output ACD is also visible
outside of A.

4.3 Constraints

To restrict the search space further, the network can be constrained by the
user. One method to do this is the usage of the already mentioned property
lists of each element. With this mechanism local properties of the evolution
can be influenced, e.g. to prevent certain connections or to forbid the manip-
ulation of specific network attributes.

Apart from these low level restrictions ICONE also supports high level
constraints on neuron groups and neuro-modules. Table 2 shows some useful
examples.

In addition to such standard constraints, the user may define custom con-
straints, that can be very specific. This allows the definition of functional

314 C. Rempis and F. Pasemann

Table 2. Some useful neuron group constraints to restrict the search space.

Name Constraint

Cloning Clones all elements of a group or module to the target group.
Symmetry Makes two modules or groups symmetric/antisymmetric horizon-

tally or vertically. The symmetry may include incoming, outgoing
and mutual synapses. Symmetry may be on structure only or
including weights and biases.

PreventConnections Prevents synaptic connections between members of the group.
ForceConnections Forces synaptic pathways between all members of two groups.
AttributeCalculation Evaluates equations to calculate the weight or bias of

neurons and synapses depending on other synapses and neurons.

modules, that may be mutated during evolution, but whose function is pre-
served by a specialized constraint. An example may be an oscillator: changes
of the synaptic weights during evolution may influence frequency and ampli-
tude of the oscillation, while destructive changes are prevented by a constraint
through corrections at the synapses.

Allowing fully configured functional neuro-modules as building blocks dur-
ing the evolution speeds up the search process. Thus, already known neural
structures do not have to be reinvented over and over again. Therefore, ex-
periences from already completed experiments can be transferred to a library
of modules, which may be exploited during future experiments.

Constraints are the main contributors to search space restriction. Applying
for instance a symmetry constraint on parts of the control network reduces
the search space by half of the constrained network section. Using the clone
constraint to reuse a module in many places of the network without losing its
evolvability reduces the search space to the original module only. All cloned
modules are automatically adapted and can benefit from enhancements im-
mediately. And even the simple constraints to prevent or force connections
between neurons avoid the evaluation of individuals whose structure does not
fulfill the requirements to be a potential solution.

4.4 ICONE Evolution Algorithm

The main algorithm of ICONE is – similar to most evolutionary algorithms
– a cyclic application of evaluation, selection, reproduction and variation to
a population of individuals (Algorithm 1). The initial networks hereby are
networks prepared by the user with the search space restriction methods
described above. The initial generation contains all starting networks and a
number of randomly modified versions of these networks.

Interactively Constrained Neuro-Evolution for Robot Behavior Control 315

Algorithm 1. Main Evolution Loop

Data: Iinit a set of domain specific, constrained start networks
begin1

P ←− Iinit2

if sizeOf(P) < popSize then3

P ←− P ∪ completeInitialPopulation(popSize− sizeOf(P))4

repeat5

foreach individual pi ∈ P do6

Evaluate(pi)7

Pbest = keepBestIndividuals(P)8

Pnew = CreateOffspring(P, popSize− sizeOf(Pbest))9

foreach individual pni ∈ Pnew do10

VariationChain(pni)11

P ←− Pbest ∪ Pnew12

until sufficient solution found13

end14

4.4.1 Evaluation

During the Evaluation phase, each individual is evaluated in one or more
slightly randomized environments, so that the start conditions for each ex-
periment vary from trial to trial. The fitness of each individual is calculated
from all trials during its evaluation. Usually this is the minimum or mean
fitness of all trials, because this supports the evolution of controllers, being
robust to environmental noise. Fitness functions can have parameters that
can be adjusted during the evolution to adapt the fitness to the progress
of the evolution. Because of the many necessary evaluations and the related
personnel and material overhead, networks cannot be practically evaluated
directly on the physical hardware. Therefore neuro-controllers are evaluated
in a physical simulator. In our implementation, the evaluation of the individ-
uals is additionally distributed on a computer cluster, so that the interactive
control of the algorithm is possible in real-time.

4.4.2 Selection

Each generation is composed of the best individuals of the parent genera-
tion (elitist selection) and new individuals, which are created as variations
of selected parents. The selection method in ICONE can be exchanged and
supports approaches like tournament selection, rank based selection and se-
lection with ecological niches [50,51]. The chosen selection method creates the
required number of offspring (CreateOffspring phase), which only contain
pointers to their parents, but not already a network. The actual network is
later created during the reproduction and variation phase (see Section 4.4.3).

316 C. Rempis and F. Pasemann

4.4.3 Reproduction and Variation

The genomes of new individuals are created by the so-called VariationChain
(Algorithm 2). This algorithm first prepares new individuals without genomes
by cloning their first parent. Then modular crossover is applied (see Sec-
tion 4.4.4) to exchange genetic material with the second parent. The resulting
network then gets modified through the actual variation chain.

Algorithm 2. VariationChain(P)

Data: P a set of individuals
Data: M an ordered list of mutation operators
begin1

foreach individual pi ∈ P do2

if hasNoGenome(pi) then3

setGenome(pi, CloneFirstParent(pi))4

if hasTwoParents(pi) then5

ModularCrossover(pi)6

n←− maxIterations7

repeat8

valid←− true9

foreach mutation operator mj ∈M do10

executeOperator(mj, pi)11

if isNotV alid(mj , pi) then12

valid←− false13

execute ConstraintResolver(pi)14

if ConstraintResolver failed then15

valid←− false16

n←− n− 117

until valid = true or n = 018

if valid = false then19

remove pi from P20

end21

This chain contains an extensible number of variation and filter operators.
These operators can directly modify the neural network, e.g. to add neurons,
remove synapses or change properties. Common operators are listed with a
brief description in Table 3.

The variation chain is executed at least once on each genome. However,
variation operators may reject a genome, if it does not meet operator specific
requirements. If at least one variation operator rejects a genome, then the
entire variation chain is applied again to give all operators the chance to fur-
ther modify the genome until all requirements of all operators are met. If this
cannot be achieved during a given maximal number of chain iterations, then

Interactively Constrained Neuro-Evolution for Robot Behavior Control 317

Table 3. Variation operators of the variation chain.

Name Function

Add/Remove Neuron Adds or removes neurons to/from the network.
Add/Remove Synapse Adds or removes synapses to/from the network.
Add Neuro-Modules Inserts predefined functional neuro-modules from a library.
ChangeBias/Weight Changes neuron bias or synapse weights.
Custom Filters Rejects networks not fulfilling user defined requirements.

the individual is entirely removed from the generation. This avoids the eval-
uation of networks that do not fulfill user defined requirements and therefore
cannot be a solution to the problem.

The final operator in this chain is the ConstraintResolver (Algorithm 3).
This operator tries to resolve all constraints in the target network. Because
constraints may influence each other by modifying the network, all constraints
are applied repeatedly until all constraints have been successfully resolved,
or if the maximum number of iterations has been exceeded. Individuals with
unresolved constraints are removed from the generation, hence networks with
conflicting constraints cannot evolve.

4.4.4 Modular Crossover

The exchange of genetic material between individuals has the potential to
speed up evolution, because useful sub-networks do not have to be reinvented
in each direct lineage. To prevent destructive effects during crossover, the
modular crossover (Algorithm 4) operator exchanges only compatible sub-
modules while keeping the in- and outgoing synapses.

The compatibility of two modules is defined by the module type, a module’s
type compatibility list and the module’s interface structure. If a module m1

has a type listed in the compatibility list of module m2 and if the number of
input and output neurons in the modules are equal, then m1 is compatible
with m2 and therefore can replace m2. That way, modules can be separated
into compatible module classes, which enhances the probability that networks
with exchanged modules still perform well.

4.4.5 Incremental Complexification and User Interaction

To keep the search space size low, evolution is started with as few neurons and
synapses in the networks as possible. The insertion probabilities for neurons
and synapses should be low and thoroughly controlled by the user during evo-
lution. Smaller networks do not only lead to a smaller search space, but also
to networks, for which structure and dynamical properties can be understood
more easily.

318 C. Rempis and F. Pasemann

Algorithm 3. ConstraintResolver(p)

Data: p a single individual
Data: C the set of all constraints used in the network of individual p
begin1

n←− maxIterations2

repeat3

modified←− false4

foreach constraint ci ∈ C do5

applyConstraint(ci)6

if ci made changes to the network then7

modified←− true8

n←− n− 19

until modified = false or n = 010

if modified then11

report resolver failed12

else13

report success14

end15

Algorithm 4. ModularCrossover(p)

Data: p a single individual
Data: N1 the neural network of individual p
Data: N2 the neural network of the second parent of p
begin1

M1←− all unprotected modules of N12

M2←− all unprotected modules of N23

foreach module mi ∈M1 do4

if rand() < crossoverProbability then5

Mmatch ←− all modules of M2 matching type and interface of mi6

mflip ←− randomly chosen module from Mmatch7

replace mi in M1 with a copy of mflip8

end9

During evolution, the user can observe and examine each individual and re-
act on the development process. This is assisted by using a computer cluster to
evaluate the individuals. Interactions may involve adaptations of parameters
of the mutation operators or the fitness function, implantations of promis-
ing network structures into individuals, removal of undesired structures and
changes of the simulation environment. Thus, evolution is not used (only) as
a batch process, that autonomously finds solutions to the problem. Rather it
serves as a search assistant to support the user to validate the suitability of
certain neural approaches. The focus in searching with ICONE is not only to
get a solution to the problem, whatever it may be. In contrast, the problem

Interactively Constrained Neuro-Evolution for Robot Behavior Control 319

should be solved in very specific, previously specified ways. This allows the
systematic investigation of specific neural paradigms and organizations.

5 Evolving a Walking Behavior for the A-Series Robot

The evolution of behaviors for the A-Series robot is shown exemplarily with
the evolution of a humanoid walking behavior. Walking, as the main loco-
motion behavior for a humanoid robot, has been realized with evolutionary
approaches in different ways for a number of robots. Most of the approaches
evolve walking controllers in simulation with a simplified robot morphology
and a small neural interface. A popular approach is the evolutionary opti-
mization of weights in predefined fixed-topology neural networks [52–55] or
the optimization of network model parameters [56,57]. The evolution of such
networks is often successful when the network topology is known or the num-
ber of fully interconnected neurons is low. When the morphology of the robot
is not fixed, then co-evolving the robot body and the controller becomes an
option [58, 59]. This can lead to simpler controllers due to the evolutionary
development of bodies that are optimized for walking. However evolving a
neural controller for a given physical humanoid robot using structure evolu-
tion is difficult to achieve.

The evolution of a walking behavior for the A-Series humanoid is a chal-
lenging task because of several reasons. First, almost all joints are involved
in the behavior and hence also their sensors. Because of the many input (38)
and output neurons (42), the search space is quite large. Second, the behav-
ior is very sensitive to the implementation of the motor and sensor models
and the modeling of the physical body properties. Small differences between
the simulated model and the physical robot can easily prevent a successful
transfer of the evolved controllers to the physical machine. Third, trying to
evolve walking from scratch without restrictions in a single step often leads
to many undesired local optima, which do not represent behaviors close to
the desired type of walking.

To cope with the given problems – large search space, difficult fitness
function, transfer to hardware – the experiment has been divided into three
consecutive evolution experiments: learning to march in place (Section 5.1),
learning to walk forwards (Section 5.2), and transferring the walking behavior
to the physical robot (Section 5.3). This incremental evolution approach [12,
31, 60] allows a start with a simple, relatively easy solvable task, which is
then iteratively made more complex. This leads to simpler fitness functions
and an improved convergence behavior. Furthermore, partial solutions can be
used as starting points for many different consecutive evolution experiments.
Therefore they serve as a kind of fall-back point for different routes towards
the desired target behavior.

320 C. Rempis and F. Pasemann

The evolution experiment takes place in a physical simulator for the A-
Series humanoid. The simulator uses the Open Dynamics Engine (ODE)3

to simulate the rigid body dynamics. The simulation models of motors and
sensors have been modeled according to data recorded on the physical robot.
The interface to the neural networks is similar to the one on the physical
robot, so that neuro-controllers from simulation can be transferred to the
robot without modifications. To obtain a similar behavior on both target
platforms, the limited accuracy of weights, bias values and neural activities
on the AccelBoards have also been modeled in the simulator. All recurrent
neural network controllers use the additive discrete-time neuron model with
tanh transfer function [61]. Both, the simulation and the ICONE evolution al-
gorithm have been implemented within the Neurodynamics and Evolutionary
Robotics Development kit (NERD) [62].

5.1 Learning to March in Place

The A-Series robot cannot – due to its physical constraints – stand stable
on a single leg. The motors of the A-Series, especially in the ankles, are too
weak to simultaneously counteract the weight of the robot and to do fine
control of a desired angular position. Therefore walking is not assumed to be
a static movement from a stable one-legged standing position to another, as
often seen in humanoid robots. Instead a dynamic, pendulum-like walking is
implemented. The stability for the A-Series robot has to originate primarily
from the dynamics of the pendulum-like lateral swinging of the robot while
staggering from one leg to the other.

As starting point for walking it is assumed that the robot should be able
to lift its legs in a regular, periodic way. To achieve this the first task for the
robot is to step from one leg to the other on the spot without falling over.

5.1.1 Simulated Environment and Fitness Function

The environment of the robot consists of four balks at 10 cm height that
restrict the operational range of the robot (Figure 3). These balks support
the development of stepping behaviors that keep the robot near its starting
position. All collisions between the robot and the balks or the ground (except
with its feet) stop the evaluation immediately. The approach to stop evalua-
tion at the violation of hard constraints has shown its benefit in many other
experiments. It speeds up evolution by preventing wasteful evaluation time
on controllers that do not fulfill all constraints on the behavior. Combined
with a suitable fitness function, that prefers individuals with longer evalua-
tion time, the evolution of controllers outside the desired specifications can
be avoided right from the beginning.
3 http://www.ode.org/

Interactively Constrained Neuro-Evolution for Robot Behavior Control 321

Fig. 3. The simulated A-Series robot in its evaluation environment for marching
in place with constrained operational range.

The fitness function combines several aspects of the stepping motion, that
can be weighted separately with parameters δ and γ. The first aspect is the
maximal stepping height h during one step. This favors controllers that lift
the leg as high as possible. The second aspect is the step duration d. The
longer a footstep takes, the better, because large steps are desired for walking,
which require some time.

We use footsteps j as the measuring unit in the fitness function. Due to
missing foot contact sensors, footsteps are detected monitoring the height of
the feet. A new footstep is assumed to take place when the difference between
the minimal heights of both feet changes its sign. To avoid the false detection
of footsteps caused by noise or vibrating behaviors, the feet have to reach a
minimal distance |dmin| after the sign change. dmin hereby can be adjusted
as a parameter of the fitness function. The current footstep count at time
step i is s. The fitness at time step i is given by

fi =
s−1∑

j=0

(δhj + γdj) (1)

that is, fi is the sum of the maximal heights hj at footsteps j and their
duration dj up to the previous footstep (s − 1). Only summing up to the
previous footstep avoids controllers that try to maximize duration or height
in an uncorrectable one-time attempt, such as lifting the leg very high by
falling over to the side. Fitness therefore is only gained for motions that lead
to another footstep.

5.1.2 Neural Network Templates

The starting network for this behavior is constrained with the techniques
described in section 4. As can be seen in Figure 4 the basic neural network

322 C. Rempis and F. Pasemann

Fig. 4. The neural network template for marching in place. Neurons with names
are interface neurons of the robot (motors and sensors). The actual names are not
important here. Interface neurons of modules are marked with an I (input) or O
(output). Allowed synaptic pathways are indicated by black dotted lines.

with its 38 sensor and 42 motor neurons would be difficult to understand
without structuring the network.

All modules with names starting with AB (the abbreviation for Accel-
Board) represent the hardware controller boards on the robot. Using mod-
ules to structure the network according to the hardware boards allows an
intuitive understanding of the location of the sensors and motors. Further-
more, constraints on these modules enforce evolved networks to satisfy all
constraints originating from the hardware, like the maximum number of neu-
rons and synapses per board (limited by memory and execution time), and
the maximum number of neurons visible to other boards (limited by the
communication bus). Obviously, neurons outside of the AB** modules are
prevented, because otherwise the network could not be transferred to the
hardware.

Interactively Constrained Neuro-Evolution for Robot Behavior Control 323

To restrict the search space for the evolutionary algorithm, all motors
and sensors not needed for the transversal movements, have been protected
and hence cannot be targeted by mutation operators. This affects all motors
and sensors, except the transversal hip and ankle motors, including their
corresponding angular sensors, and the transversal acceleration sensors at one
shoulder and the feet. Arms and knees have been fixed at suitable angles to
support the task statically. The motor torque neurons have been fixed with
a bias of 1.5, so the networks in this experiment are forced to control the
motor angles with maximum torque. As stated in section 4.4.5 this induces
a certain kind of desired solution, namely to control the motion with the
angular motors, based on acceleration sensors. Different constraints would
lead to very distinct solutions, e.g. when the motors would be forced to be
controlled by torque or by including other sensors.

As an additional constraint the lower six AB** modules have been orga-
nized into two larger modules to realize symmetry between the left and the
right side. All elements on the left side are horizontally mirrored to the right
side. All incoming synapses of these two modules have been chosen to be
anti-symmetric, i.e. they get synapses coming from the same external neu-
rons, but with reverse signs. All mutual synapses between both sides have
been chosen to be symmetric.

The A-Series motor neurons represent the desired joint angle of a motor.
Thus no additional controller is required to hold a given angle. Nonetheless,
it makes sense to connect each motor neuron with a controller that limits
the rate of change of an angle setting to smoothen the motions, in order
to protect the motors and to simplify the transfer of the controllers to the
hardware later on. The latter is the case because the motors behave less
predictably near their operational limits and hence are difficult to simulate
adequately for this case.

The structure of these controller modules is given in advance, but the
synapse weights are open for mutations to manipulate their reactivity and
characteristics. Because each motor neuron should be equipped with such a
controller, it makes sense to use only a single mutable controller prototype in
the network, and a clone of this prototype in each place where a controller is
needed. That way only a single controller module is part of the search space.

The same holds true for the filter modules used at each acceleration sen-
sor. The signals of the acceleration sensors are not smooth and hence difficult
to use. Filtering the signal reduces the effect of spikes, but induces a delay.
Therefore, the filter properties of one prototypic filter module should be open
for evolution to find the best suitable filter behavior, while every other accel-
eration sensor is filtered by a clone of this mutable module.

Finally synaptic pathways (black dotted arrows) have been introduced
to restrict the possible connections between modules. These pathways force
all new synaptic connections to be added only between the specified mod-
ules, including visible interface neurons of their sub-modules. Here, only

324 C. Rempis and F. Pasemann

connections from the shoulder sensors to the hip and feet modules, and from
the feet modules to the hip modules, are allowed.

The search space is illustrated in Figure 4: all modules that can be modi-
fied during evolution are highlighted with black dotted boundaries. All other
modules are either fixed, or depend on one of the other modules due to a con-
straint. However some of the fixed modules contain mutable elements, which
are also part of the search space.

Fig. 5. Some examples of neural oscillator modules [63, 64] that can be used as
building blocks during evolution.

Other network templates used for the experiments were variations of the
above described network. In some networks, additional functional modules
have been allowed, such as oscillatory pattern generators like those shown
in Figure 5. These networks can exploit and adapt the periodic pattern sig-
nals for the behaviors, without having to (re-)invent the oscillators during
evolution.

5.1.3 Evolution Settings

The experiments have been conducted with a variety of parameter settings
for the evolutionary algorithm (see Table 4). These parameters were interac-
tively adapted during the evolution according to the convergence behavior of
the algorithm. Therefore instead of exact parameter settings for each experi-
mental run only general ranges are given, in which the parameters have been
varied during each evolution run.

As a rule of thumb, all operators mentioned in Table 4 have been active,
starting with very low probabilities for search space extensions (Add Neuron,
Add Synapse) and with a relatively high probability for changes of synapse
weights and bias values (Change Bias, Change Weight). During the evolu-
tion, the probabilities for structural changes were increased when the results

Interactively Constrained Neuro-Evolution for Robot Behavior Control 325

Table 4. Settings of the main evolution operators. The settings are given as ranges
in which the parameters have been varied during interactive evolution. The func-
tions of the operators are listed in Table 3

.

Operator Parameter Setting

General Population Size [100, 200]
Max Simulation Steps per Trial [500, 3000]
Number of Trials per Evaluation [2, 5]

Tournament Selection Tournament Size [3, 5]
Keep Best Parents 1

Modular Crossover Crossover Probability 0.5
Crossover Probability per Module 0.5

Add Synapse Probability [0, 0.02]
Number of Insertion Trials [0, 5]

Add Neuron Probability [0, 0.005]
Number of Insertion Trials [0, 2]

Change Bias Change Probability [0.005, 0.015]
Deviation [0.005, 0.02]

Change Weight Change Probability [0.01, 0.2]
Deviation [0.005, 0.2]

converged to an undesired local optimum, so that more complex structures
could evolve to overcome the local optimum. The probabilities of weight and
bias changes and their average amount of change were decreased when a
promising area of the solution space was reached, so that the behavior of the
network could be fine-tuned.

The probability for modular crossover usually was about 0.5 to support the
transfer of genetic material between lines of ancestries. The number of trials
indicates how often each individual is evaluated with slightly randomized
environments, e.g. alterations of the starting angles. As selection method an
implementation of the standard Tournament selection [65] was used.

5.1.4 Results

The evolution was performed 33 times for about 100 to 300 generations per
evolution, depending on the observed progress. In 21 cases, networks have
been found that solve the task and provide a valid starting condition for the
next evolution scenario. The fitness progress during the evolution (maximal
and mean fitness, variance) for the best solution is shown in Figure 6. The
progress of the maximal fitness for the next best 10 evolution runs are shown
in Figure 7.

Because of the constrained network, the implemented strategies are not
too surprising. In the networks driven by the acceleration sensors, the main
strategy was to destabilize the robot with the transversal hip or ankle motors

326 C. Rempis and F. Pasemann

0 50 100 150 200 250 300
0

5

10

15

20

25

Max
Mean
Variance

Fig. 6. Maximal and mean fitness of the best evolution run for the march-in-place
task.

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

Fig. 7. Maximal fitness of the 10 best evolution runs not including the very best
run (Figure 6) for scaling reasons. Fitness curves dropping to zero indicate evolution
runs that were interactively stopped due to stagnation.

according to the swing phase. Once swinging, the transversal acceleration
sensors provide an oscillatory signal, that is used to control the hip or ankle
motors. An example of such an acceleration sensor driven behavior is shown
in the time series in Figure 8.

However, 12 evolutions did not come up with satisfactory solutions. Even
with the symmetry constraints between the left and the right side, many be-
haviors resulted in unstable, irregular motions. This was especially the case
when the acceleration sensors of the feet were connected to the ankle motors.
As the movement of the ankle motors directly influences the acceleration sen-
sors on the feet, this leads to an isolated, unsynchronized swinging behavior
local to each leg, which could not generate a stable global behavior. This sug-
gests that the feet sensors may only be useful if the feet remain at fixed angles
while their sensor signal is used to control the hips. Such solutions can be

Interactively Constrained Neuro-Evolution for Robot Behavior Control 327

Fig. 8. Time series of the robot controlled by a resulting network for the march-
in-place task.

avoided interactively during evolution by preventing this kind of connections
and, therefore, by excluding this type of frequent local optimum.

Network solutions based on neural oscillators (Figure 5) usually worked out
fine for a while. But because these networks did not respond to the sensors,
these pattern generator-based networks tended to be unstable on the long
run due to their inability to adapt to the (noisy) state of the robot’s motion.

Figure 7 gives a rough overview on the performance of the algorithm for
this experiment. As comparisons with other algorithms are difficult due to
the interactive approach and therefore due to the involved user experience,
these graphs should give a general idea about the usability of the method.
Nevertheless, one observation can be made: Applying the ENS3 algorithm
or NEAT to an unconstrained, empty starting generation with networks of
this size, solutions for this problem have not been found at all.

5.2 Learning to Walk Forwards

Based on the results of Section 5.1 the next step towards walking was con-
ducted: modifying a stepper network to move forwards. Adding forward move-
ment is only one next possible step. A possibility could have been first to
stabilize the stepping behavior to make it more robust to small bumps on the
ground or a shaking floor. Another next step could have been an optimization
of the leg lifting by involving the motors and sensors of the sagittal plane of
the knees, ankles and the hip. However in this document we continue directly
with walking forward due to space limitations.

5.2.1 Simulated Environment and Fitness Function

The environment for the walking experiment (Figure 9) gives the robot space
to walk forwards, but still restricts its operational range to the sides and
backwards. In these directions, balks obstruct the path of the robot. As in
the experiment before, collisions with these balks immediately stops evalu-
ation. Thus, undesired behaviors, like moving backwards or in circles, can
be avoided efficiently. To avoid a common local optimum during evolution,

328 C. Rempis and F. Pasemann

namely moving by vibrations instead of steps, obstacles have been introduced
in regular intervals. To overcome these obstacles, the robot has to lift its legs
high enough to get the feet over the obstacle. To avoid the robot from tilt-
ing when the obstacle gets below the feet, the obstacles are implemented as
sliders, that are lifted to their target height with a soft spring. Stepping on
such an obstacle just makes it slide back below the ground without result-
ing in a bump. Therefore the obstacles hinder the feet only when colliding
horizontally, not vertically.

Fig. 9. The simulated A-Series robot in its evaluation environment for walking
with constrained operational range and obstacles.

In the fitness function a new term is introduced: xmax is the maximally
reached distance along the x-axis up to time step i. The fitness function
extends the one from Section 5.1.1 by a weighted factor that rewards moving
along the x-axis:

fi = σxmax

s−1∑

j=0

(δhj + γdj) (2)

that is, fi is the sum of feet height and footstep duration multiplied by the
weighted distance xmax. The distance from the origin at time step i, xi, is the
minimum of the distances of the head, waist and both feet from the origin
at that time step. Taking the minimum distance of several parts of the body
prevents the robot from becoming easily trapped in a common local optimum,
where the robot catapults the single relevant body part, e.g. the head or one
of the feet, as far as possible. Such optima have to be avoided right from the
start, because they are often dominant in the beginning of the evolution and
in general do not provide a suitable path towards desired solutions.

Interactively Constrained Neuro-Evolution for Robot Behavior Control 329

5.2.2 Neural Network Templates

Based upon solution networks for the previous task, the network templates
for the walking experiments have been derived (Figure 10). It was chosen
to use one of the accelerator sensor driven solutions. The base network was
pruned to get the smallest working version of the network, so that evolution
may start with a minimal network again.

The major modification of the network constraints is the activation of
additional motors and sensors by removing their protected property. The
networks now can also connect synapses to the sagittal motors of the hip,
the feet, the knees and the arms, and to their corresponding angular sensors.
This enables the robot to bend its knees to make higher steps, to move the
legs forwards and backwards, to use the feet tilt to push the robot forwards,
or to use the arms to keep balance during walking.

To prevent evolution from destroying the already achieved basic mo-
tion, the existence of all involved synapses and neurons has been protected.

Fig. 10. The neural network template for walking, based on a cleaned, slightly
adapted solution of the march-in-place task.

330 C. Rempis and F. Pasemann

However the weights of these synapses and the bias values of the neurons
have not been fixed and remain mutable.

In the upper modules, additional module interface neurons have been in-
troduced. This new interface facilitates new neural structures in the upper
part of the body to make use of the arm motors and sensors. To include these
arm control modules, the synaptic pathways have been adapted, so that a
new pathway leads to these modules. It is assumed that the arm movement
may depend on the state of the hip joints, so the synaptic pathway runs from
the middle module to the arm module.

5.2.3 Evolution Settings

The evolution settings were similar to the previous experiments (see Table 4).
Again, for the evolution no fixed parameter sets have been used, because the
parameters are targets of an online observation and modification.

5.2.4 Results

The evolution was able to generate walking control networks in 26 of 100
performed evolution runs. The fitness progress of the best 10 evolution runs
is shown in Figure 11. The higher number of unsuccessful evolution runs may
be partly a result of the interactive evolution. Undesired approaches, that do
not seem to lead to a solution, can be stopped in early generations. There-
fore, evolution runs have been stopped prematurely to focus the search on
more promising areas of the search space. In fact, all unsuccessful evolutions
together had a average runtime of 44 generations, which is low compared to
the successful evolution runs, that had an average runtime of 156 generations.

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

Fig. 11. Maximal fitness of the 10 best evolution runs to solve the walking prob-
lem. Fitness curves dropping to zero indicate evolution runs that were interactively
stopped due to stagnation or runtime limitations (at 150 generations).

Interactively Constrained Neuro-Evolution for Robot Behavior Control 331

As expected, the sagittal hip or feet motors usually were used to realize
the forward motion. In some networks (like in Figure 13) also the knees and
arms were utilized to get a better walking performance. The time series of
such a network is shown in Figure 12.

Fig. 12. Time series of the robot controlled by a resulting network for the walking
task.

The walking behavior still is not very human-like or elegant. Also, depend-
ing on noise and the obstacles on the ground, the robot turns from time to
time by a few degrees and continues its movement. This behavior is difficult
to overcome, because the robot does not have feedback sensors for the direc-
tion and therefore is not able to correct such deviations. On the other hand,
taking the robot’s limited motor and sensor equipment into account, these
behaviors seem quite satisfactory.

5.3 Controller Transfer to the Physical A-Series
Robot

Controllers evolved in the simulator usually cannot be transferred without
modifications, because the differences between the simulated robot model and
the physical machine are significant. Although the main behavior in simula-
tion and on the physical robot is very similar, even small differences between
the two target platforms may cause a dynamic behavior – like walking – to
fail. Some differences may be reduced by implementing more and more de-
tailed models of the motors, the sensors, and the body structure. In practice,
however, this approach is limited by the performance of the utilized com-
puters and the time spent for the implementation of such a model. Some
aspects may not be taken into account at all, like small variations during the

332 C. Rempis and F. Pasemann

assembly of the robot, fabrication related differences in the motor or sensor
behavior, or just behavioral differences caused by aging or heat. Other aspects
are restricted by the utilized physics engine, which may not support elastic
material, such as the plastic material of the robot’s body parts. Therefore
adaptations of the behaviors to the target robot are usually unavoidable.

5.3.1 Evolving Robustness through Robot Model Rotation

Using simulated robots during evolution will provide neuro-controllers that
adapt to the simulated robot, but not necessarily to the physical one. Con-
troller networks will optimize for all aspects of the simulated system, taking
advantage of any implementation detail. This includes modeling errors and
simplifications of the model. Because a convenient, error free robot model
is not feasible, any model will have implementation details that can – and
will – be exploited by evolution.

To reduce this effect, a number of approaches have been proposed, such
as adding sensor noise [66], (post-)evolving or adapting individuals directly
on the hardware [67], or co-evolving the simulation properties along with
the behavior controllers [68]. We use an approach called Model Rotation.
The idea is not to evolve controllers for a single simulated robot, but for a
variety of similar, but slightly differing robots. The fitness of a controller is
then the minimum achieved on all of the target platforms. Thus, the fitness
corresponds to the robot model with the weakest performance. To get a high
fitness, a neuro-controller has to perform well on all given robot models.

Because of this, the behaviors cannot exploit flaws of the models, as long as
each model has different weaknesses and strengths. Resulting controllers are
expected to work on a variety of similar robots, which means, that they are
robust to small variations between the robots. Such robust networks have a
higher chance to work also on other similar robots not used during evolution,
including the physical robot.

The robot models used during model rotation should not be seen just as
random variations (noise). Simple randomization works out only for some
parameters, like the angles at which body parts are assembled to each other
or the absolute size of the body parts. Randomly changing parameters of
more complex parts of the robot, like the motor and sensor models, often
does not lead to behaviors similar to the physical robot. This is due to the
high dependencies between parameters. Therefore entire sets of parameters,
or even different model implementations, have to be found that produce a
similar behavior, but have significant modeling differences. During evolution,
each controller then can be evaluated with each of the given model parameter
sets.

Model rotation can be used during the entire evolution. This avoids partial
solutions that are too dependent on a specific motor model. On the other
hand, model rotation results in a much higher number of evaluations and
slows down the evolution process. Therefore it is often useful to start without

Interactively Constrained Neuro-Evolution for Robot Behavior Control 333

or with a limited model rotation and do a separate final evolution with full
model rotation to optimize the results for robustness.

5.3.2 Manual Adaption

The final step to transfer a controller to the physical robot is manual adap-
tion. Even robust controllers often do not work out-of-the-box and require
some fine-tuning. During this step, the hierarchical, modular structure of the
networks is advantageous. The structured networks are easier to understand,
they assist in identifying the sub-networks responsible for specific functions,
and help to isolate the synapses that have to be modified to optimize the
performance of the controllers for the physical robot.

5.3.3 Results

For the transfer to the physical A-Series humanoid, the network in Figure 13
was chosen, because its pruned structure is easy to understand and allows
some adaptations if necessary. Figure 15 shows the time series of the trans-
ferred walking controller shown in Figure 13.

This network was optimized for robustness with model rotation. Five dis-
tinct parameter sets for the motors have been used during the optimization,
each behaving closely to the physical machine for some test behaviors, but
each differing in friction and control parameters. Figure 14 shows the fitness
progression of the model rotation optimization. As can be seen the fitness
started low compared to the fitness achieved without model rotation. This
is due to the fact that the minimal performance determines the fitness of a
controller. Therefore a single failing attempt reduces the fitness significantly.
During evolution, the fitness increased to a fitness level close to the one with-
out model rotation. This indicates that the controllers became more robust
with respect to small differences in the motor model.

For some solutions, adaptations were necessary due to the flexible body
parts and the stronger friction on the ground. The legs had to be straddled
wider and the upper part of the body had to be bent a bit forwards. Apart
from these small bias changes, the behavior control performed well on the
physical robot. Some solutions, as the one used in Figure 15, did not require
any changes to the network at all and worked directly on the physical robot.
Nevertheless, due to friction, elastic body parts and a missing vertical sta-
bilization behavior, walking on the physical robot is by far not as stable as
in simulation, where the simulated robot could walk hundreds of footsteps
without falling over.

334 C. Rempis and F. Pasemann

Fig. 13. Successful acceleration sensor based walking network for the A-Series
humanoid.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

Max
Mean

Fig. 14. Fitness progress of a walking network during robustness evolution using
model rotation.

Interactively Constrained Neuro-Evolution for Robot Behavior Control 335

Fig. 15. Time series of the physical robot controlled by the walking network of
Figure 13.

6 Discussion and Conclusion

This chapter introduced the interactive neuro-evolution method ICONE de-
signed for the development of large-scale networks serving as control systems
of autonomous robots. For demonstration, a humanoid robot with 37 sensors
(proprioceptors) and 21 motors was chosen as a target system. The goal then
was to generate recurrent neural networks able to control specific behaviors
of this robot. Because an effective structure of such neuro-controllers cannot
be given right from the beginning, the connectivity also has to be evolved.
The challenge for evolutionary algorithms is to cope with the corresponding
high-dimensional search spaces.

Our previous neuro-evolution technique, the ENS3 algorithm [32], works
well for small neural networks with the network size having less than about
30 neurons. In this domain many interesting experiments have been con-
ducted [32,69–71]. But with more complex robots, such as humanoid robots,
having a much larger number of neurons, the probability to produce a suc-
cessful behavior drops significantly. In this domain the algorithm cannot prac-
tically be used to evolve the structure of the network. The optimization of
the weights of predefined network topologies often still leads to successful

336 C. Rempis and F. Pasemann

solutions, but with the drawback that there is no evolutionary discovery of
interesting neural structures.

The ICONE approach tries to tackle these problems by a number of search
space restriction strategies. The method does, of course, not solve the scal-
ing problem of evolutionary robotics, but may shift the frontier of solvable
behavioral problems a bit further.

These strategies however also restrict the way a behavioral problem can
be solved. This aspect may be an advantage, because it allows the experi-
menter to specify own solution strategies in advance and guide the evolution
through a predefined solution space. A difficult behavior can then be tack-
led with a number of neural approaches using, for instance, networks driven
by acceleration sensors, central pattern generators (CPG), feedback-loops or
sensor-modulated CPGs. Such an approach can be specified by a suitable re-
striction of the search space and by selecting a suitable set of building blocks
(neuro-modules) for evolution. The usage of functional neuro-modules also
allows the reuse of neural structures from previous experiments, even from
very different target systems. To do so, general functional neuro-modules
can be isolated and worked up to neural building blocks, which can be uti-
lized by evolutionary operators during upcoming experiments. That way, even
complex structures, like oscillators, memory structures, filters, controllers or
behavior coordination modules can be exploited during evolution.

As the evolution process is interactive and highly dependent on the ex-
perience of the experimenter, this method is difficult to compare with other
(batched) algorithms. Also, in the proposed high-dimensional search space,
the goal of the evolution is not so much to find solutions with focus on evolu-
tion performance, but on finding solutions at all. Therefore, the given empiri-
cal information about run-time and number of evaluations of the experiments
are rather rough indications of the performance, than detailed performance
ratings. They should give the reader a general idea about the usability of the
method.

In the discussed example of a humanoid robot it was demonstrated how a
difficult behavior – like walking – is divided into easier to evolve successive
subtasks, and how the resulting behavior can be integrated on the physical
machine. The walking behavior is only one example of a number of behaviors
that have been realized for the A-Series robot. These behaviors include:

• different kinds of walking,
• stabilized standing on a shaking and tilting platform,
• stabilized squatting to arbitrary knee angles in rough terrain,
• dynamic pointing to objects and appropriate switching of the pointing

arm,
• gestures and fun motions, like hand waving, playing air guitar, saluting,

taking a bow, and others.

Interactively Constrained Neuro-Evolution for Robot Behavior Control 337

All of these behaviors were successfully transferred to the physical robot.
The corresponding library of neural behaviors now is part of the A-Series
humanoid platform and can be used to conduct experiments with communi-
cating robots.

7 Future Work

The presented ICONE method is now applied also to other types of advanced
machines like the modular multi-legged walking machine Octavio4 and also to
a new class of mid-scale humanoid robots, the so called Myon humanoids [72].
These 1.25 meter tall Myon robots are developed, as the A-Series robots, by
the Humboldt University of Berlin, and have been engineered from scratch,
integrating a number of interesting new features.

Equipped, for instance, with force sensors in the feet, current consumption
sensors in the motors, the use of multiple separate motors to control single
joints, the use of spring couplings at motors and the possibility to let joints
swing with minimal friction, this humanoid robot allows the exploration of
new types of controllers which can be very different from those developed
for the A-Series robot. Certainly, the corresponding neural networks again
become much larger, using now 178 sensor neurons and 80 motor neurons.
Therefore additional constraint techniques will be examined and integrated
into the ICONE method, so that a library of new functional units and whole
neural networks for behavior control can be realized.

Acknowledgements. This work was partly funded by EU-Project Number
ICT – 214856 (ALEAR Artificial Language Evolution on Autonomous Robots.
http://www.alear.eu). Thanks go to Verena Thomas, Ferry Bachmann, Robert
Muil and Chris Reinke for contributions to the simulation environment, and to
Tanya Beck for proofreading the chapter. We also thank the entire team of the
Neurorobotics Workgroup at the Humboldt University of Berlin for providing and
maintaining the A-Series robot hardware.

References

1. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2004);
ISBN-13: 978-0-262-14070-6

2. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to
learning. Evolutionary Intelligence 1(1), 47–62 (2008)

3. Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-Organising Be-
haviours in Groups of Autonomous Robots. SCI. Springer Publishing Company,
Heidelberg (2008)

4. From animals to animats 10, Proceedings of 10th International Conference on
Simulation of Adaptive Behavior, SAB 2008, Osaka, Japan, July 7-12 (2008)

4 http://www.ikw.uni-osnabrueck.de/∼neurokybernetik/projects/octavio.html

338 C. Rempis and F. Pasemann

5. Steels, L.: Language games for autonomous robots. IEEE Intelligent Sys-
tems 16(5), 16–22 (2001)

6. Hild, M., Meissner, M., Spranger, M.: Humanoid Team Humboldt Team De-
scription 2007 for RoboCup 2007, Atlanta, USA (2007)

7. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9),
1423–1447 (1999)

8. Harvey, I., Husbands, P., Cliff, D., Thompson, A., Jakobi, N.: Evolutionary
robotics: the sussex approach. Robotics and Autonomous Systems (1997)

9. Harvey, I., Di Paolo, E., Wood, R., Quinn, M., Tuci, E.: Evolutionary robotics:
A new scientific tool for studying cognition. Artificial Life 11(1-2), 79–98 (2005)

10. Lungarella, M., Mettay, G., Pfeifer, R., Sandiniy, G.: Developmental robotics:
a survey. Connection Science 15(4), 151–190 (2003)

11. Pfeifer, R.: On the role of embodiment in the emergence of cognition: Grey
walter’s turtles and beyond. In: Proc. of the Workshop The Legacy of Grey
Walter (2002)

12. Hülse, M., Wischmann, S., Pasemann, F.: The Role of Non-linearity for Evolved
Multifunctional Robot Behavior. In: Moreno, J.M., Madrenas, J., Cosp, J.
(eds.) ICES 2005. LNCS, vol. 3637, pp. 108–118. Springer, Heidelberg (2005)

13. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press,
Cambridge (1984)

14. Yamauchi, B.M., Beer, R.D.: Sequential behavior and learning in evolved dy-
namical neural networks. Adaptive Behaviour 2(3), 219–246 (1994)

15. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution
through cooperatively coevolved synapses. Journal of Machine Learning Re-
search 9, 937–965 (2008)

16. Gomez, F. J.: Robust Non-Linear Control through Neuroevolution. PhD thesis,
August 1, Tue, 6 Jan 104 19:10:41 GMT (2003)

17. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction
of development. Genetic Programming and Evolvable Machines 8(2), 131–162
(2007)

18. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for
evolving large-scale neural networks. Artificial Life 15(2), 185–212 (2009)

19. Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture
for a neural network. In: International Joint Conference on Neural Networks
(1991)

20. Pasemann, F., Steinmetz, U., Hülse, M., Lara, B.: Robot control and the evolu-
tion of modular neurodynamics. Theory in Biosciences 120(3-4), 311–326 (2001)

21. Angeline, P.J., Saunders, G.M., Pollack, J.P.: An evolutionary algorithm that
constructs recurrent neural networks. IEEE Transactions on Neural Net-
works 5(1), 54–65 (1994)

22. Gruau, F.: Neural Network Synthesis using Cellular Encoding and the Ge-
netic Algorithm. Laboratoire de l’Informatique du Parallilisme, Ecole Normale
Supirieure de Lyon (1994)

23. Hornby, G.S., Pollack, J.B.: Body-brain co-evolution using L-systems as a gen-
erative encoding. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B.,
Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke,
E. (eds.) Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 2001), July 7-11, pp. 868–875. Morgan Kaufmann, San Francisco
(2001)

Interactively Constrained Neuro-Evolution for Robot Behavior Control 339

24. Cangelosi, A., Parisi, D., Nolfi, S.: Cell division and migration in a ’genotype’
for neural networks. Network: Computation in Neural Systems 5(4), 497–515
(1994)

25. Belew, R.K.: Interposing an ontogenetic model between genetic algorithms and
neural networks. In: Advances in Neural Information Processing Systems 5,
NIPS Conference, p. 106. Morgan Kaufmann, San Francisco (1992)

26. Moriaty, D.E.: Symbiotic Evolution of Neural Networks in Sequential Decision
Tasks. PhD thesis, The University of Texas at Austin, 1 (1997)

27. Clune, J., Beckmann, B.E., Pennock, R.T., Ofria, C.: HybrID: A hybridization
of indirect and direct encodings for evolutionary computation. In: Kampis, G.,
Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part II. LNCS, vol. 5778, pp.
134–141. Springer, Heidelberg (2011)

28. Inden, B.: Stepwise Transition from Direct Encoding to Artificial Ontogeny
in Neuroevolution. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey,
I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1182–1191.
Springer, Heidelberg (2007)

29. Doncieux, S., Meyer, J.-A.: Evolving modular neural networks to solve chal-
lenging control problems. In: Proceedings of The Fourth International ICSC
Symposium on Engineering of Intelligent Systems (EIS 2004), Acta Press (2004)

30. Meyer, J.-A., Doncieux, S., David, Guillot, A.: Evolutionary approaches to
neural control of rolling, walking, swimming and flying animats or robots. Bi-
ologically Inspired Robot Behavior Engineering, 1–43 (2003)

31. Jeffrey, L., Elman, J.L.: Learning and development in neural networks: The
importance of starting small. Cognition 48, 71–99 (1993)

32. Hülse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved
neuro-controllers for autonomous robots. Connection Science 16(4), 249–266
(2004)

33. Stanley, K.O., Miikkulainen, R.P.: Efficient evolution of neural networks
through complexification. PhD thesis, The University of Texas at Austin (2004)

34. Lee Giles, C., Omlin, C.W.: Pruning recurrent neural networks for improved
generalization performance. IEEE Transactions on Neural Networks/A Publi-
cation of The IEEE Neural Networks Council 5(5), 848 (1994)

35. Bongard, J.C., Pfeifer, R.: Evolving complete agents using artificial ontogeny.
Morpho-Functional Machines: The New Species Designing Embodied Intelli-
gence, 237–258 (2003)

36. Nolfi, S., Parisi, D.: Evolving Artificial Neural Networks that Develop in Time.
In: Proceedings of the Third European Conference on Advances in Artificial
Life, p. 367. Springer, Heidelberg (1995)

37. Gruau, F.: Automatic definition of modular neural networks. Adaptive Be-
haviour 3(2), 151–183 (1995)

38. Nolfi, N., Parisi, D.: Growing neural networks. Technical Report PCIA-91-15,
Institute of Psychology (December 1991)

39. Pasemann, F.: Neuromodules: A dynamical systems approach to brain mod-
elling. In: Herrmann, H.J., Wolf, D.E., Poppel, E. (eds.) Workshop on Super-
computing in Brain Research: From Tomography to Neural Networks, Novem-
ber 21-23. World Scientific Publishing Co., Germany (1995)

40. Horton, J.C., Adams, D.L.: The cortical column: a structure without a
function. Philosophical Transactions of the Royal Society B: Biological Sci-
ences 360(1456), 837 (2005)

340 C. Rempis and F. Pasemann

41. Reisinger, J., Stanley, K.O., Miikkulainen, R.: Evolving Reusable Neural Mod-
ules. In: Deb, K., Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E., Darwen, P.,
Dasgupta, D., Floreano, D., Foster, J., Harman, M., Holland, O., Lanzi, P.L.,
Spector, L., Tettamanzi, A., Thierens, D., Tyrrell, A., et al. (eds.) GECCO
2004. LNCS, vol. 3103, pp. 69–81. Springer, Heidelberg (2004)

42. Valsalam, V.K., Miikkulainen, R.: Evolving symmetric and modular neural net-
works for distributed control. In: Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, pp. 731–738. ACM, New York (2009)

43. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behav-
ior. Technical Report AI96-248, The University of Texas at Austin, Department
of Computer Sciences, June 1, November 7, 106 21:26:08 GMT (1997)

44. Gauci, J., Stanley, K.O.: Generating large-scale neural networks through dis-
covering geometric regularities. In: Proceedings of the 9th Annual Conference
on Genetic and Evolutionary Computation, p. 1004. ACM, New York (2007)

45. David, B., D’Ambrosio, D.B., Stanley, K.O.: A novel generative encoding for
exploiting neural network sensor and output geometry. In: Genetic and Evolu-
tionary Computation Conference: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation. Association for Computing Machinery,
Inc., New York (2007)

46. Dieckmann, U.: Coevolution as an autonomous learning strategy for neuromod-
ules. In: Herrmann, H.J., Wolf, D.E., Poppel, E. (eds.) Workshop On Supercom-
puting In Brain Research: From Tomography To Neural Networks, November
21-23. World Scientific Publishing Co., Germany (1995)

47. Pasemann, F., Steinmetz, U., Dieckman, U.: Evolving structure and function of
neurocontrollers. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X.,
Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation,
July 6-9, vol. 3, pp. 1973–1978. IEEE Press, USA (1999)

48. Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through sym-
biotic evolution. Technical Report AI94-224, The University of Texas at Austin,
Department of Computer Sciences (September 1, 1994)

49. Christian, W., Rempis, C.W., Pasemann, F.: Search space restriction of neuro-
evolution through constrained modularization of neural networks. In: Mandai,
K. (ed.) Proceedings of the 6th International Workshop on Artificial Neural
Networks and Intelligent Information Processing (ANNIIP), in Conjunction
with ICINCO 2010, pp. 13–22. SciTePress, Portugal (2010)

50. Mahfoud, S.W.: Niching methods for genetic algorithms. Department of Com-
puter Science, University of Illinois at Urbana-Champaign (1995)

51. Hancock, P.J.B.: An empirical comparison of selection methods in evolutionary
algorithms. To appear in the Proceedings of the AISB Workshop on Evolution-
ary Computation, vol. 1 (1994)

52. Reil, T., Husbands, P.: Evolution of central pattern generators for bipedal walk-
ing in a real-time physics environment. IEEE Transactions on Evolutionary
Computation 6(2), 159–168 (2002)

53. Hein, D., Hild, M., Berger, R.: Evolution of biped walking using neural oscilla-
tors and physical simulation. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F.
(eds.) RoboCup 2007: Robot Soccer World Cup XI. LNCS (LNAI), vol. 5001,
pp. 433–440. Springer, Heidelberg (2008)

54. Geng, T., Porr, B., Wörgötter, F.: A reflexive neural network for dynamic biped
walking control. Neural computation 18(5), 1156–1196 (2006)

Interactively Constrained Neuro-Evolution for Robot Behavior Control 341

55. Manoonpong, P., Geng, T., Kulvicius, T., Porr, B., Wörgötter, F.: Adaptive,
Fast Walking in a Biped Robot under Neuronal Control and Learning. PLoS
Computational Biology 3(7) (2007)

56. McHale, G., Husbands, P.: GasNets and other evolvable neural networks ap-
plied to bipedal locomotion. In: From Animals to Animats 8: Proceedings of
the Seventh [ie Eighth] International Conference on Simulation of Adaptive
Behavior, p. 163. The MIT Press, Cambridge (1994)

57. Ishiguro, A., Fujii, A., Hotz, P.E.: Neuromodulated control of bipedal locomo-
tion using a polymorphic cpg circuit. Adaptive Behavior 11(1), 7 (2003)

58. Hase, K., Yamazaki, N.: Computational evolution of human bipedal walking
by a neuro-musculo-skeletal model. Artificial Life and Robotics 3(3), 133–138
(1999)

59. Josh, C.: Making evolution an offer it can’t refuse: Morphology and the ex-
tradimensional bypass. Advances in Artificial Life, 401–412 (2001)

60. Cliff, D., Harvey, I., Husbands, P.: Incremental evolution of neural network
architectures for adaptive behaviour. In: Proceedings of the First European
Symposium on Artificial Neural Networks, ESANN 039, vol. 93, pp. 39–44. D
facto Publishing (1992)

61. Pasemann, F.: Complex dynamics and the structure of small neural networks.
Network: Computation in Neural Systems 13(2), 195–216 (2002)

62. Rempis, C., Thomas, V., Bachmann, F., Pasemann, F.: NERD Neurodynam-
ics and Evolutionary Robotics Development Kit. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 121–132. Springer, Heidelberg (2010)

63. Pasemann, F.: Characterization of periodic attractors in neural ring networks.
Neural Networks 8(3), 421–429 (1995)

64. Pasemann, F., Hild, M., Zahedi, K.: So(2)-networks as neural oscillators. In:
Computational Methods in Neural Modeling, vol. 2686, pp. 144–151 (2003)

65. Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and
the effects of noise. Urbana 51, 61801 (1995)

66. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis.
Adaptive behavior 6(2), 325 (1997)

67. Pollack, J.B., Lipson, H., Ficici, S., Funes, P., Hornby, G., Watson, R.A.: Evo-
lutionary techniques in physical robotics. Evolvable Systems: from biology to
hardware, 175–186 (2000)

68. Bongard, J.C., Lipson, H.: Automating Genetic Network Inference with Min-
imal Physical Experimentation Using Coevolution. In: Deb, K., et al. (eds.)
GECCO 2004. LNCS, vol. 3102, pp. 333–345. Springer, Heidelberg (2004)

69. von Twickel, A., Pasemann, F.: Reflex-oscillations in evolved single leg neuro-
controllers for walking machines. Natural Computing 6(3), 311–337 (2007)

70. Rempis, C.W.: Short-term memory structures in additive recurrent neural net-
works. Master’s thesis, University of Applied Sciences Bonn-Rhein-Sieg, Ger-
many (2007)

71. Wischmann, S., Pasemann, F.: The emergence of communication by evolving
dynamical systems. From Animals to Animats 9, 777–788 (2006)

72. Sidel, T., Hild, M., Weidner, M.: Concept and Design of the Modular Actua-
tor System for the Humanoid Robot MYON. In: International Conference on
Intelligent and Applications, ICIRA 2011 (2011)

A Genetic Programming-Based
Approach for the Performance
Characteristics Assessment of
Stabilized Soil

Amir Hossein Alavi�, Amir Hossein Gandomi, and Ali Mollahasani

Abstract. This chapter presents a variant of genetic programming, namely
linear genetic programming (LGP), and a hybrid search algorithm coupling
LGP and simulated annealing (SA), called LGP/SA, to predict the perfor-
mance characteristics of stabilized soil. LGP and LGP/SA relate the un-
confined compressive strength (UCS), maximum dry density (MDD), and
optimum moisture content (OMC) metrics of stabilized soil to the properties
of the natural soil as well as the types and quantities of stabilizing addi-
tives. Different sets of LGP and LGP/SA-based prediction models have been
separately developed. The contributions of the parameters affecting UCS,
MDD, and OMC are evaluated through a sensitivity analysis. A subsequent
parametric analysis is carried out and the trends of the results are compared
with previous studies. A comprehensive set of data obtained from the litera-
ture has been used for developing the models. Experimental results confirm
that the accuracy of the proposed models is satisfactory. In particular, the
LGP-based models are found to be more accurate than the LGP/SA-based
models.

Amir Hossein Alavi
School of Civil Engineering, Iran University of Science and Technology,
Tehran, Iran
e-mail: ah_alavi@hotmail.com,am_alavi@civileng.iust.ac.ir

Amir Hossein Gandomi
Intelligent Structural Engineering and Health Monitoring Laboratory,
Department of Civil Engineering, University of Akron, Akron, OH, USA
e-mail: a.h.gandomi@gmail.com

Ali Mollahasani
Department of Civil, Environmental and Material Engineering,
University of Bologna, Bologna, Italy
e-mail: ali.mollahasani2@unibo.it

� Corresponding author.

ah_alavi@hotmail.com,am_alavi@civileng.iust.ac.ir
a.h.gandomi@gmail.com
ali.mollahasani2@unibo.it

344 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

1 Introduction

Chemical stabilization involves the addition of chemicals such as lime, ce-
ment, and asphalt, or a combination of these to soil. When mixed into a
particular type of soil, the additives react with natural soil constituents. This
results in strength increases, changes in porosity, volume, permeability and
density, waterproofing, and reduction of surface abrasion including cemen-
tation of the soil particles [1, 2, 3]. The chemical stabilization of soils often
leads to savings in construction costs of various civil engineering applications
such as road construction, earth wall construction, foundation, and other
earthworks purposes. A variety of properties including measures of strength,
density, durability, and shrinkage can be measured as outcomes of the soil
stabilization.

Besides the emphasis on other characteristics of the stabilized soil, the
experts generally agree on the unconfined compressive strength (UCS) and
maximum dry density (MDD) as the most important measures for the out-
come of the stabilization [1, 2, 4]. The UCS and MDD of the stabilized soils
are important factors in determining the soil suitability or unsuitability for a
stabilization process. The optimum moisture content (OMC) of soil-stabilizer
mixes is also an explanatory variable in stabilizing soils. The moisture content
influences the properties of a compacted soil mixture stronger than any other
factor. Bryan [5] and Osula [6] employed the OMC as a discriminator variable
to assess the suitability of some soil samples for the stabilization purposes. In
order to obtain effective compaction in the chemical stabilization, the OMC
of the compacted soil must be measured for any of the available soils. The
UCS, MDD, and OMC of soils are generally determined from extensive and
cumbersome laboratory tests on every new construction site. The appropri-
ate selection of a chemical stabilizer is also a major concern for successful
soil stabilization. Therefore, it is desirable to develop precise mathematical
models relating UCS, MDD, and OMC to the properties of natural soil as
well as quantities and types of stabilizers.

There were several studies in the literature dealing with the estimation of
the compaction parameters (OMC and MDD) of natural soil using empirical
regression models [7, 8, 9, 10, 11] or neural networks (NNs) [12, 13]. Most
of the models in the stabilization literature were particularly developed to re-
late the strength to the important variables involved [14, 15, 16, 17]. Nearly
all of the available models are essentially statistical correlations between the
natural and stabilized soil compaction properties and quality control param-
eters (i.e., UCS, MDD, and OMC), classification data (or index properties)
of soil, and stabilizer type or quantity [5, 7, 8, 9, 10, 11, 16, 17]. The clas-
sification data used generally include plasticity characteristics (such as the
liquid limit, the plastic limit, the shrinkage limit, and the plasticity index),
the specific gravity, and the grain size distribution. It can be observed that
the specific index properties adopted in various correlation equations differ
significantly.

A GP-Based Approach for Soil Stabilization 345

Although the conventional statistical models can provide reasonable pre-
dictions, they have significant limitations. Different statistical models need
to be developed for different conditions of the same soil. Moreover, several
assumptions are incorporated into these models. On the other hand, NNs are
black-box models. That is, they usually do not give a deep insight into the
way in which they use the available information to obtain a solution. Hence,
they do not provide a better understanding of the nature of the derived re-
lationship between different interrelated input and output data.

Genetic programming (GP) [18, 19] is another alternative approach for
behavior modeling of civil engineering problems. GP belongs to the family
of evolutionary algorithms (EA) [20], which are inspired by Darwin’s evo-
lution theory. It may generally be defined as a supervised machine learning
technique that searches a program space instead of a data space [19]. Some
example application areas of GP include symbolic regression, grammar induc-
tion, data mining and data analysis, circuit design and layout, and evolving
game players [21]. GP has a great ability to learn from data examples pre-
sented to it in order to capture the subtle functional relationships among
the data. Linear genetic programming (LGP) [22] is a GP approach where
programs have a linear structure similar to string genomes employed in the
earliest EAs. LGP is a machine learning approach that uses sequences of
imperative instructions as genetic material. More specifically, LGP operates
on programs that are represented as linear sequences of instructions of an
imperative programming language [22, 23].

Simulated annealing (SA) is a general stochastic search algorithm used for
solving optimization problems. The Metropolis algorithm, the foundation of
SA, was proposed by Metropolis et al. [24] to simulate the annealing process
in metalworking. The SA algorithm was first applied to optimization prob-
lems by Kirkpatrick et al. [25] and Cerny [26]. SA is very useful for solving
different types of optimization tasks with nonlinear functions and multiple lo-
cal optima [27, 28]. The ability and shortcomings of SA are well summarized
by Ingber in [29]. Folino et al. [30] combined GP and SA to produce a hybrid
algorithm with better efficiency. They used the SA acceptance strategy to
select new individuals and showed that introducing this strategy into the GP
process improves its resulting outcome.

This study investigates the potential of LGP and a hybrid search algo-
rithm that couples LGP and SA, called LGP/SA, in simulating the nonlinear
behavior of the UCS, MDD and OMC of the soil-stabilizer mixes. These tech-
niques are useful in deriving empirical models for UCS, MDD, and OMC by
directly extracting the knowledge contained in the experimental data. The
rest of the chapter is organized as follows: Section 2 presents brief descriptions
of the traditional GP, LGP, and LGP/SA algorithms. Section 3 outlines the
model development using LGP and LGP/SA and reviews the existing results.
The detailed performance analyses of the proposed models are then discussed
in Section 4. The results of sensitivity and parametric analyses are given in

346 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

Sections 5 and 6, respectively. Finally, concluding remarks and future research
directions are outlined in Section 7.

2 Genetic Programming

GP is a symbolic optimization technique that creates computer programs to
solve a problem using principles copied from the Darwinian theory of evo-
lution in nature. The breakthrough in GP came in the late 1980s with the
experiments of Koza [18] on symbolic regression [21]. Like genetic algorithms
(GAs), GP belongs to the family of evolutionary algorithms. This classical
tree-based GP technique is also referred to as standard GP [18]. In GP, an ini-
tial, highly diverse population of individuals (computer programs) is created
randomly. A population member in standard GP is a hierarchically structured
tree comprising functions and terminals. These functions and terminals are
selected from a set of functions and a set of terminals. For example, the
function set F can contain the basic arithmetic operations (+, −, ×, /, etc.),
Boolean logic functions (∧, ∨, ¬, and so on), or any other mathematical func-
tions. The terminal set T contains the arguments for the functions and can
consist of, for instance, numerical constants, logical constants, and variables.
The functions and terminals are chosen at random and constructed together
to form a tree-like structure with a root point with branches extending from
each function and ending in a terminal. An example instance of such a tree
representation of a program is illustrated in Figure 1.

 Terminal Nodes

 Functional Node

Link

+

SQ

3

/

X2

X1

Root Node

Fig. 1. The tree representation of a GP model (X1 + 3/X2)
2.

In addition to traditional tree-based GP, there are other types of GP where
programs are represented in different ways (see Figure 2). These are linear
and graph-based GP [31]. The emphasis of the present study is placed on the
linear GP techniques. Several linear variants of GP have been proposed such

A GP-Based Approach for Soil Stabilization 347

as linear genetic programming (LGP) [22] and multi-expression programming
(MEP) [32]. The linear variants of GP make a clear distinction between the
genotype and phenotype of an individual. In these variants, individuals are
represented as linear strings [33]. Such linear programs can have a complex
control flow similar to the trees of standard GP when executed. There are
some main reasons for using linear GP. Basic computer architectures are
fundamentally the same now as they were twenty years ago, when GP began.
Almost all architectures represent computer programs in a linear fashion. In
other words, computers do not naturally run tree-shaped programs. Hence,
slow interpreters have to be used as part of tree-based GP. Hence, by evolving
the machine code patterns actually obeyed by the computer, the use of an
expensive interpreter (or compiler) is avoided and GP can run several orders
of magnitude faster [31].

GP

Tree-Based GP Linear GP Graph-Based
GP

Fig. 2. Different types of genetic programming.

2.1 Linear Genetic Programming

LGP is a subset of GP with a linear representation of individuals. The main
characteristic of LGP in comparison with traditional tree-based GP is that
expressions of a functional programming language (like LISP) are substi-
tuted by programs of an imperative language (like C/C++) [22, 23]. Figure 3
presents a comparison of the program structures in LGP and tree-based GP.
A linear genetic program can be seen as a data flow graph generated by mul-
tiple usage of register content. That is, on the functional level, the evolved
imperative structures denote directed graphs. In tree-based GP, the data flow
is more rigidly determined by the tree structure of the program [23].

In the LGP system described here, an individual program is interpreted
as a variable-length sequence of simple C instructions. The instruction set or
function set of LGP consists of arithmetic operations, conditional branches,
and function calls. The terminal set of the system is composed of variables
and constants. The instructions are restricted to operations that accept a
minimum number of constants or memory variables, called registers (r), and
assign the result to a destination register, e.g., r[0] = r[1] + 1. Part of a
program in linear representation in C code is represented in Figure 4. In this
figure, register r[0] holds the final program output.

348 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

y = f[0] = (v[1] / 3) + v[4]

 f[0] =0;
 L0: f[0] += v[1];
 L1: f[0] /= 3;
 L2: f[0] += v[4];
 return f[0];

 +

 v[4] /

 v[1] 3

(a) (b)

Fig. 3. Comparison of GP program structures. (a) Tree-based GP (b) LGP.

Fig. 4. An excerpt of a linear genetic program.

The Automatic Induction of Machine code by Genetic Programming
(AIMGP) system is a well-known implementation of LGP. In AIMGP, evolved
programs are stored as linear strings of native binary machine code and are
directly executed by the processor during fitness calculation. The absence of
an interpreter and complex memory handling results in a significant speedup
in the AIMGP execution compared to tree-based GP [23]. This machine-
code-based LGP approach searches for the computer program structure and
the constants at the same time. The machine-code based LGP performs the
following steps for a single run [23, 34]:

I. A population of randomly generated programs is initialized and the
fitness values of these individuals are calculated.

II. Select four programs randomly from the population for a tournament.
Based on their fitness, two programs are picked as the winners and two
as the losers.

III. After that, the two winner programs are copied and transformed in a
randomized fashion as follows:

• Parts of the winner programs are exchanged with each other to create
two new programs (crossover), and/or

A GP-Based Approach for Soil Stabilization 349

• Each of the tournament winners are modified randomly to create two
new programs (mutation).

IV. The loser programs of the tournament are replaced with the trans-
formed winner programs. The winners of the tournament remain with-
out change.

V. Repeat steps two through four until the termination or convergence
conditions are satisfied.

Crossover occurs between instruction blocks. Figure 5 demonstrates a two-
point linear crossover used in LGP for recombining two tournament winners.
As it is seen, a segment of random position and arbitrary length is selected
in each of the two parents and exchanged. If one of the two children would
exceed the maximum length, crossover is aborted and restarted with exchang-
ing equally sized segments [23]. The mutation operation occurs on a single
instruction. Two types of standard LGP mutations are commonly used: micro
and macro mutation. Micro mutation changes an operand or an operator of
an instruction [23]. The macro mutation operation inserts or deletes a random
instruction [23]. Comprehensive descriptions of the basic parameters used to
direct the search in linear genetic programming can be found in [22]. Accord-
ing to Francone and Deschaine [35], the LGP system can be regarded as an
efficient modeling tool for complex problems for several reasons including:

• Its speed permits conducting many runs in realistic timeframes. This leads
to deriving consistent, high-precision models with little customization;

• it is well-designed to prevent overfitting and to evolve robust solutions;
and

• the solutions evolved by the LGP system execute very quickly when called
by an optimizer.

2.2 Hybrid Linear Genetic Programming/Simulated
Annealing Algorithm

In this chapter, LGP with a SA-based selection strategy is employed for
developing the prediction models. In this coupled algorithm, the SA strategy
is used to select new individuals [30, 36]. SA makes use of the Metropolis
algorithm [24] for computer simulation of annealing. Annealing is a process
in which a metal is heated to a high temperature and then is gradually cooled
to relieve thermal stresses. During the cooling process, each atom takes a
specific position in the crystalline structure of the metal. By changing the
temperature this crystalline structure changes to a different configuration. An
internal energy, E, can be measured and assigned to each state of crystalline
structure of the metal which is achieved during the annealing process.

At each step of the cooling process, if the temperature does not decrease
too quickly, the atoms are allowed to adjust to a stable equilibrium state
of least energy. It is evident that changing of the crystalline structure of

350 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

v[1] = v[2] – 3;

Parent I

Parent II

Child I

Child II

Fig. 5. Crossover in LGP [23].

a metal, through the annealing, is associated with changing of the internal
energy by an amount ΔE. As the metal temperature drops down gradually,
the overall trend of changing internal energy follows a decreasing process.
However, sometimes the energy may also increase by chance. The probability
of acceptance of an increase in internal energy by ΔE is given by Boltzmann’s
probability distribution function as follows:

P (ΔE) = e(−ΔE
KT) (1)

where T is the temperature of the metal measured in Kelvin and K is the
Boltzmann’s constant. The crystalline structure of a metal achieves near
global minimum energy states during the process of annealing. This pro-
cess is simulated by SA to find the minimum of a function in a certain design
space. The objective function corresponds to the energy state and moving
to any new set of design variables corresponds to a change of the crystalline
structural state.

2.2.1 A Coupled Algorithm of LGP and SA

Considering the above explanations for LGP and SA, the coupled LGP/SA
algorithm uses the following main steps to evolve a computer program
[30, 36]:

I. A single program is initially created at random. This is the “parent”
program for the first repetition of the learning cycle.

II. The parent program is copied.
III. A search operator – crossover or mutation – transforms the copy of

the parent program. The transformed copy is called “child” program
or “offspring” program. The crossover operator produces two children
programs. But only one of these programs is compared with the parent
as a candidate to replace the parent program. Which of the two children
is used depends on the value of the offspring choice parameter.

IV. The fitness values of both, the parent and the child program, are calcu-
lated.

A GP-Based Approach for Soil Stabilization 351

V. Based on these values, the SA algorithm decides whether to replace the
parent program with the child program. If the child has better fitness
than the parent, the child always replaces its parent. If the child has
worse fitness than the parent, the child replaces the parent probabilis-
tically. The probability of replacement depends on how much worse the
fitness of the child is than the parent and also on the temperature pa-
rameter T in SA. As the annealing process continues, T is gradually
reduced at each nth iteration. This means that, for the program, the
probability of replacing a better parent with a worse child gets lower
and lower as the run continues. If the child program replaces the parent
program, then the child program becomes the new parent for the next
cycle. Alternatively, if the parent program is not replaced by the child,
it remains as the parent program for the next cycle.

VI. If the termination or convergence conditions are satisfied, the process is
terminated. Otherwise, the process is continued at step III.

2.3 Related Works on Applications of GP, LGP, and
LGP/SA

For the last ten years, tree-based GP has been pronounced as an alterna-
tive and robust method for solving civil engineering problems. Some of these
applications include structural optimization [37], modeling of a municipal
wastewater treatment plant [38], the prediction of the soil-water character-
istic curve [39], and the evaluation of liquefaction induced lateral displace-
ments [40]. Narendra et al. [17] have recently conducted research with the
specific objective of applying tree-based GP to the soil stabilization problem.

Unlike tree-based GP and other soft computing tools like NNs, applications
of LGP are restricted to relatively fewer areas. They include the prediction
of compressive and tensile strength of limestone [41], behavior appraisal of
steel semi-rigid joints [42], the formulation for compressive strength of CFRP
confined concrete cylinders [43], time-series modeling of daily flow rates [44],
and the prediction of circular pile scour [45]. Applications of LGP/SA to solve
problems in civil engineering are conspicuous by their near absence. Recently,
Gandomi et al. [46] utilized this hybrid method to simulate the behavior of
the beam-column steel joints.

3 Modeling of Performance Characteristics of
Stabilized Soil

The complexity of analysis of the chemical stabilization is due to the partic-
ipation of a considerable number of factors in this process. UCS, MDD, and
OMC, as the performance characteristics of the stabilized soil, are functions
of variables such as properties of the soil used, and the type and quantity

352 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

of the stabilizer used. It is difficult to isolate the effects of these parameters
on the stabilized material. This chapter considers the feasibility of using the
LGP and LGP/SA algorithms to predict the UCS, MDD, and OMC metrics
of the stabilized soil. The most important factors representing the behavior
of UCS, MDD, and OMC were selected based on an extensive trial study
and literature review [5, 13, 16, 17, 47]. Consequently, the general models for
UCS, MDD, and OMC were considered to be as follows:

⎛
⎝

UCS
MDD
OMC

⎞
⎠ = f(LL, PI, LS, C, S, LC, CC, AC) (2)

where,
LL (%): Liquid limit
PI (%): Plasticity index
LS (%): Linear shrinkage
C (%): Clay/silt content
S (%): Sand content
LC (%): Lime content
CC (%): Cement content
AC (%): Asphalt content
The above variables represent the natural soil properties such as textural

properties, plasticity and linear shrinkage, and different types of stabilizers.
After developing and controlling several models with different combinations
of the input parameters, the best models were selected and presented.

3.1 Experimental Database and Data Preprocessing

The models were evolved with LGP and LGP/SA based on a comprehensive
database obtained from the literature. Burroughs [47] provided a total of 230
determinations of the UCS of 28-day cured stabilized earth samples. These
data have been accumulated over a period of 8 years from 29 rammed earth
construction sites in New South Wales, Australia. The database includes mea-
surements of percentages of liquid limit (%LL), plastic limit (%PL), plastic-
ity index (%PI), linear shrinkage (%LS), gravel (%G), clay/silt (%C), sand
(%S), lime (%LC), cement (%CC), and asphalt (%AC). UCS (MPa), MDD
(ton/m3) and OMC (%) were also measured as the quality control parame-
ters of the stabilized soil. Data samples that missed the required data were
eliminated. Out of 230 data samples, 219 samples were considered for devel-
oping the UCS prediction models and 192 samples were taken for developing
the prediction models for MDD and OMC.

It is noteworthy that some of the soil property variables are fundamentally
interdependent. This interdependency can cause problems in analysis as it
will tend to exaggerate the strength of the relationships between the variables.
Gravel is calculated by subtracting the sum of sand and clay/silt from 100,

A GP-Based Approach for Soil Stabilization 353

and the plastic limit is the difference between the plasticity index and the
liquid limit. Hence, both gravel and plastic limit were excluded from the
models. Sand, clay/silt, liquid limit, or plasticity index could potentially have
been excluded rather than the gravel and plastic limit. They were retained
since traditionally, they have been more frequently used as indicators of soil
condition. Also, they have more favorable distributions of values. The ranges
of different input and output parameters involved in the model development
are given in Table 1.

The minimum ratio of the number of objects over the number of selected
variables for model acceptability is 3, but often a suffer value of 5 is sug-
gested [48]. In the present study, this ratio is much higher and is at least
equal to 192/8 = 24. Although normalization is not strictly necessary in
the GP-based analysis, better results are usually reached after normalizing
the variables. This is mainly due to influence of unification of the variables,
no matter their range of variation. Thus, the input and output variables
were normalized in this study. After controlling several normalization meth-
ods [49, ?], the following method was used to normalize the variables to a
range of [L, U]:

Xn = ax + b (3)

Table 1. The ranges of different input and output parameters.

Parameters Minimum Maximum Standard deviation Mean

LL (%) 18.00 95.00 36.54 14.67

PI (%) 0.00 70.00 17.30 13.73

LS (%) 1.00 19.80 7.54 4.43

C (%) 5.00 53.00 24.98 10.54

S (%) 30.00 94.00 64.98 15.59

UCS (MPa) 1.00 5.40 2.65 0.96

MDD (ton/m3) 1.52 2.20 0.16 1.88

OMC (%) 6.00 22.70 3.20 10.63

LC (0%, 2%, 3%, 4%, 5%, and 6%)

CC (0%, 2%, 3%, 4%, 5%, and 6%)

AC (0%, 3%)

354 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

where a = (U − L)/(Xmax − Xmin) and b = U − aXmax, in which Xmax and
Xmin are the maximum and minimum values of the variable and Xn is the
normalized value. In the present study, L and U were respectively set to 0.05
and 0.95. 0 and 1 were not selected as the lower and upper limits since some
of the functions used by the LGP and LGP/SA algorithms are sensitive to 0
(e.g., division).

3.2 Performance Measures

The correlation coefficient (R), mean squared error (MSE) and the mean
absolute error (MAE) were used to evaluate the capabilities of the LGP
and LGP/SA models. R, MSE and MAE are calculated using the following
equations:

R =
∑n

i=1(hi − hi)(ti − ti)√∑n
i=1(hi − hi)2

∑n
i=1(ti − ti)2

(4)

MSE =
∑n

i=1(hi − ti)2

n
(5)

MAE =
1
n

n∑
i=1

|hi − ti| (6)

where hi and ti respectively are the experimental and predicted output values
for the ith output; hi is the arithmetic mean of the experimental outputs, and
n is the number of sample.

3.3 Model Development Using LGP

The available database was used for developing comprehensive LGP-based
models relating the UCS, MDD, and OMC of the chemically stabilized soil
to LL (%), PI(%), LS(%), S(%), C(%), LC(%), CC(%), and AC(%). Three
LGP prediction models were separately developed, one each for UCS, MDD,
and OMC. The parameters of the applied LGP algorithm are shown in Ta-
ble 2. The parameter selection will affect the model generalization capability
of LGP. In this study, four basic arithmetic operators (+, −, ×, /), basic
mathematical functions (

√
, ‖, power, sin, cos), a comparison instruction

(<), and conditional branches (if <=) were utilized to get the optimum
LGP models. Several runs were conducted to come up with a parameteri-
zation of LGP that provided enough robustness and generalization to solve
the problem. The LGP parameters were changed for different runs. Three
levels were set for the population size and two levels were considered for
the maximum program size and crossover rate. One level was considered for
the other parameters based on some previously suggested values [41, 42, 43,
50] and also after performing several preliminary runs and observing the

A GP-Based Approach for Soil Stabilization 355

performance behavior. The number of demes presented in Table 2 defines
how the population of programs is divided. Demes are semi-isolated subpop-
ulations. Evolution proceeds faster in such smaller populations in comparison
to a single big population of equal total size [22]. There are 3×2×2 = 12 dif-
ferent combinations of the parameters. All of these combinations were tested
and for each combination, 10 replications were carried out. This makes 120
runs for each of UCS, MDD, and OMC. Therefore, the overall number of runs
is equal to 120×3 = 360 (the considered outputs is 3). A fairly large number
of generations were tested on each run to find models with minimum error.
For each case, the program was run until there no longer was any significant
improvement in the performance of the models. Each run was observed for
overfitting while in progress. In order to do this, situations were searched
in which the fitness on the samples for the training of LGP was negatively
correlated with the fitness on the validation data sets. For the runs showing
signs of overfitting, the LGP parameters were progressively changed so as
to reduce the computational power available to the LGP algorithm until the
observed overfitting was minimized. The resulting run was then accepted as
the production run. The programs with the best performance on both of the
training and validation data sets were finally selected as the outcomes of the
experiment. For the LGP-based analysis, the Discipulus ProTM [51] software
was used which works on the basis of the AIMGP platform.Two types of
LGP models were used in this chapter:

1. a program model/evolved program, which is a single solution, and
2. a team model, which is a combination of single program models.

Table 2. Parameter settings for the LGP algorithm.

Parameters Settings

Population size 2500, 3500, 6000
Generations since start of run 1000
Crossover rate (%) 90
Homologous crossover (%) 30
Mutation rate %) 30
Block mutation rate (%) 30
Instruction mutation rate (%) 30
Data mutation rate (%) 40
Maximum program size 256, 512
Initial program size 80
Function set +, −, ×, /,

√
, ‖, power, sin, cos, <, if <=

Numerical Constants Randomize (min− : 10, max + : 10)
Number of demes 20
Fitness function Squared error

356 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

The team solution employs a combination of an odd number of single solu-
tions (minimum 1; maximum 9). After completing an experiment, the evolved
single and team solutions are transformed in Java, C++, or Intel assembler
source code [52]. Discipuls’ interactive evaluator mode was employed to run
the resulting C codes evolved by LGP.

Overfitting is one of the principal problems in machine learning general-
ization. It is a case in which the error on the training set is driven to a very
small value, but when new data is presented to the model, the error is large.
An efficient approach to prevent overfitting is to test other individuals from
the run on a validation set to find a better generalizer [19]. This technique
was used in this study for improving the generalization of the models. For
this purpose, the available data sets were randomly divided into training,
validation and testing subsets. The training data were used for learning (ge-
netic evolution). The validation data were used to specify the generalization
capability of the evolved programs on data they did not train on (model se-
lection). In other words, the training and validation data sets were used to
select the best evolved programs. This technique provides decent results as
long as the models perform well on the training data sets [19]. The testing
data were finally used to measure the performance of the models obtained
by LGP on data that played no role in building the models. Out of 219 data
samples for the prediction of UCS, 111 vectors were used for the training,
54 samples for the validation, and 54 for the testing of the models. Out of
192 data samples for the prediction of MDD and OMC, 100 data vectors
were used for the training, 46 for the validation, and 46 for the testing of the
models. In order to obtain a consistent data division, several combinations
of the training, validation and testing sets were considered. The selection
was such that the maximum, minimum, mean, and the standard deviation of
parameters were consistent in the datasets.

3.3.1 LGP Single Solutions

The model architectures that gave the best results for predicting UCS, MDD,
and OMC were built using all the eight parameters. An excerpt of the best
LGP single solution for the prediction of UCS is given in Appendix as C++
source. Comparisons of the experimental and predicted UCS (MPa), MDD
(ton/m3), and OMC (%) values using the best single solutions found by LGP
are illustrated in Figures 6a-f.

3.3.2 LGP Team Solutions

In the best LGP team solutions, too, eight variables were used as the in-
puts. The prediction results obtained by the best LGP team solutions are
illustrated in Figures 7a-f.

A GP-Based Approach for Soil Stabilization 357

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Pr
ed

ic
te

d
U

C
S

V
al

ue

Experimental UCS Value

Train (R = 0.9721)
Validation (R = 0.9523)

(a)

Measured =
0.85Predicted

Measured = 1.1Predicted

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Pr
ed

ic
te

d
U

C
S

V
al

ue

Experimental UCS Value

Test (R = 0.9420)

(b)

Measured = 0.85Predicted

Measured = 1.1Predicted

1.2

1.4

1.6

1.8

2

2.2

2.4

1.2 1.4 1.6 1.8 2 2.2 2.4

Pr
ed

ic
te

d
M

D
D

 V
al

ue

Experimental MDD Value

Train (R = 0.9521)
Validation (R = 0.9422)

(c)

Measured = 0.95Predicted

Measured = 1.05Predicted

1.2

1.4

1.6

1.8

2

2.2

2.4

1.2 1.4 1.6 1.8 2 2.2 2.4

Pr
ed

ic
te

d
M

D
D

 V
al

ue

Experimental MDD Value

Test (R = 0.9372)

(d)

Measured = 0.95Predicted

Measured = 1.05Predicted

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Pr
ed

ic
te

d
O

M
C

 V
al

ue

Experimental OMC Value

Train (R = 0.9477)
Validation (R = 0.9415)

(e)

Measured = 0.9Predicted

Measured = 1.1Predicted

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Pr
ed

ic
te

d
O

M
C

 V
al

ue

Experimental OMC Value

Test (R = 0.9281)

(f)

Measured = 0.9Predicted

Measured = 1.1Predicted

Fig. 6. Experimental versus predicted UCS, MDD, and OMC using the LGP single
solutions.

3.4 Model Development Using LGP/SA

The LGP/SA-based models were trained, validated and tested using the avail-
able stabilization experimental results. The eight predictor variables used in
the LGP/SA modeling process were LL (%), PI(%), LS(%), S(%), C(%),
LC(%), CC(%), and AC(%). Three LGP/SA prediction models were sepa-
rately developed for UCS, MDD, and OMC. Various parameters involved in
the LGP/SA prediction algorithm are shown in Table 3. Again, basic arith-
metic operators and mathematical functions were used to get the optimum
LGP/SA models. Similar to LGP, several runs were conducted considering
different values for the control parameters of the LGP/SA algorithm. The
proper number of temperature levels until the algorithm should terminate

358 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Pr
ed

ic
te

d
U

C
S

V
al

ue

Experimental UCS Value

Train (R = 0.9913)
Validation (R = 0.9653)

(a)

Measured =
0.85Predicted

Measured = 1.1Predicted

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Pr
ed

ic
te

d
U

C
S

V
al

ue

Experimental UCS Value

Test (R = 0.9597)

(b)

Measured = 0.85Predicted

Measured = 1.1Predicted

1.2

1.4

1.6

1.8

2

2.2

2.4

1.2 1.4 1.6 1.8 2 2.2 2.4

Pr
ed

ic
te

d
M

D
D

 V
al

ue

Experimental MDD Value

Train (R = 0.9626)
Validation (R = 0.9561)

(c)

Measured = 0.95Predicted

Measured = 1.05Predicted

1.2

1.4

1.6

1.8

2

2.2

2.4

1.2 1.4 1.6 1.8 2 2.2 2.4

Pr
ed

ic
te

d
M

D
D

 V
al

ue

Experimental MDD Value

Test (R = 0.9528)

(d)

Measured = 0.95Predicted

Measured = 1.05Predicted

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Pr
ed

ic
te

d
O

M
C

 V
al

ue

Experimental OMC Value

Train (R = 0.9539)
Validation (R = 0.9470)

(e)

Measured = 0.9Predicted

Measured = 1.1Predicted

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Pr
ed

ic
te

d
O

M
C

 V
al

ue

Experimental OMC Value

Test (R = 0.9416)

(f)

Measured = 0.9Predicted

Measured = 1.1Predicted

Fig. 7. Experimental versus predicted UCS, MDD, and OMC using the LGP team
solutions.

depends on the number of possible solutions and complexity of the problem.
The number of iterations per temperature level defines the number of times
a new child program is created from the parent program at each temperature
level. In order to find models with minimum error, each run was performed
with large numbers of temperature levels and iterations. The program was
run until no significant error decrease could be observed anymore.

Three different values were tested as number of temperature levels. 1500
iterations were considered for each temperature level. The crossover rate pa-
rameter in the LGP/SA algorithm sets the balance between the uses of the
search operators (crossover and mutation). The crossover rate was set to val-
ues between 50% and 95%. A value of 50% means that 50% of time the used
search operator will be the crossover operator. The mutation operator will
therefore be employed in the other 50% of reproduction steps by the LGP/SA

A GP-Based Approach for Soil Stabilization 359

Table 3. Parameter settings for the LGP/SA algorithm.

Parameters Settings

Number of temperature levels 9000, 1100, 12000
Number of iterations per temperature level 1500
Start temperature 5
Stop temperature 0.01
Crossover rate (%) 50, 95
Homologous crossover (%) 95
Probability of randomly generated parent in
crossover (%)

99

Mutation rate (%) 90
Block mutation rate (%) 30
Instruction mutation rate (%) 30
Data mutation rate (%) 40
Offspring choice rate (%) 50
Replacement scaling factor 1
Maximum program size 256, 512
Initial program size 80
Function set +, −, ×, /,

√
, ‖, power, sin, cos, tan

Numerical Constants Randomize (min : −10, Max : +10)
Fitness function Squared error

algorithm [36]. Two levels were set for the maximum program size. The val-
ues of the other involved parameters were selected based on some previously
suggested values [45] and also after performing many preliminary runs and
checking the performance. Hence, in total, there are 3 × 2 × 2 = 12 different
parameter settings. All of these combinations were tested and 10 replications
were performed for each combination. Thus, 120 runs were carried out with
the LGP/SA algorithm for each quantity subject to prediction. Therefore, the
total number of runs was equal to 120×3 = 360 since there are three metrics
(UCS, MDD, OMC). The best programs during the training and validation
processes were chosen as the outcomes of the LGP/SA algorithm. A similar
strategy to that considered for deriving the LGP models was followed during
the LGP/SA runs to prevent overfitting. The LGP/SA algorithm was im-
plemented using the Discipulus LiteTM [53] software. The programs evolved
by LGP/SA are written in C++ or inline assembler code. The TurboC en-
vironment was employed to run the C codes evolved by LGP/SA. Similar to
the LGP models, the data sets were divided into the training, validation and
testing subsets.

360 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

3.4.1 LGP/SA Solutions

The model architectures that gave the best results for predicting UCS, MDD,
and OMC were built using eight predictor variables. An excerpt of the best
LGP/SA solution for the prediction of UCS is given in the Appendix as C++
source. Comparisons of the predicted and experimental UCS (MPa), MDD
(ton/m3) and OMC (%) of the soil-stabilizer mixes are illustrated in Figures
8 a-f.

4 Performance Analysis of the Models

The LGP and LGP/SA prediction models were developed to relate UCS,
MDD, and OMC to a number of influencing variables. Detailed performance
statistics of the models are summarized in Tables 4, 5, and 6. Based on a
logical hypothesis [54], if a model gives R > 0.8, and the error values (e.g.
MSE and MAE) are at minimum, there is a strong correlation between the
predicted and measured values. The model can therefore be judged as very
good. It can be observed in the Figures 6, 7, and 8 and Tables 4, 5, and 6
that the LGP and LGP/SA models with high R and low MSE and MAE
values predict the target values with high accuracy. The results indicate that
the models have memorized the training examples and have also learned to
generalize to new situations. As it is seen, the best team solutions obtained
by LGP have produced the best results on the training, validation and testing
data for the UCS, MDD, and OMC prediction. Also, the best single solutions
evolved by LGP perform superior than the LGP/SA solutions in nearly all
cases. The exception is the prediction results for the UCS and MDD testing
data sets. Considering the corresponding MSE and MAE values for these
cases, the performance of the LGP/SA solutions is slightly better than or
similar to the LGP single solutions.

Furthermore, new criteria recommended by Golbraikh and Tropsha [55]
were checked for external verification of the LGP and LGP/SA solutions on
the testing data sets. It is suggested that at least one slope of regression
lines (k or k′) through the origin should be close to 1. Also, the performance
indexes of m and n should be lower than 0.1. Recently, Roy and Roy [56]
introduced a confirmation indicator of the external predictability of models
(Rm). For Rm > 0.5, the condition is satisfied. Either the squared correlation
coefficient (through the origin) between predicted and experimental values
(Ro2), or the coefficient between experimental and predicted values (Ro’2)
should be close to 1. The considered validation criteria and the relevant results
obtained by the models are presented in Table 7. As can be observed in this
table, the derived solutions satisfy the required conditions. The validation
phase ensures the LGP and LGP/SA-based solutions are strongly valid, have
prediction power, and are not chance correlations.

Multilayer perceptrons (MLP) [57] are one of the most widely used classes
of neural networks (NNs). An MLP is essentially capable of approximating

A GP-Based Approach for Soil Stabilization 361

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Pr
ed

ic
te

d
U

C
S

V
al

ue

Experimental UCS Value

Train (R = 0.9518)
Validation (R = 0.9459)

(a)

Measured =
0.85Predicted

Measured = 1.1Predicted

0

1

2

3

4

5

6

0 1 2 3 4 5 6

Pr
ed

ic
te

d
U

C
S

V
al

ue

Experimental UCS Value

Test (R = 0.9346)

(b)

Measured =
0.85Predicted

Measured = 1.1Predicted

1.2

1.4

1.6

1.8

2

2.2

2.4

1.2 1.4 1.6 1.8 2 2.2 2.4

Pr
ed

ic
te

d
M

D
D

 V
al

ue

Experimental MDD Value

Train (R = 0.9507)
Validation (R = 0.9370)

(c)

Measured = 0.95Predicted

Measured = 1.05Predicted

1.2

1.4

1.6

1.8

2

2.2

2.4

1.2 1.4 1.6 1.8 2 2.2 2.4

Pr
ed

ic
te

d
M

D
D

 V
al

ue

Experimental MDD Value

Test (R = 0.9271)

(d)

Measured = 0.95Predicted

Measured = 1.05Predicted

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Pr
ed

ic
te

d
O

M
C

 V
al

ue

Experimental OMC Value

Train (R = 0.9437)
Validation (R = 0.9287)

(e)

Measured = 0.9Predicted

Measured = 1.1Predicted

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Pr
ed

ic
te

d
O

M
C

 V
al

ue

Experimental OMC Value

Test (R = 0.9149)

(f)

Measured = 0.9Predicted

Measured = 1.1Predicted

Fig. 8. Experimental versus predicted UCS, MDD, and OMC using the LGP/SA
evolved solutions.

any continuous function to an arbitrary degree of accuracy [57]. The LGP and
LGP/SA models were benchmarked against MLP models derived by Alavi
et al. [58] for predicting the MDD and OMC of the stabilized soil. A new
MLP-based prediction model was also developed for UCS in this study. The
MLP models were trained using the total of the training and validation data
sets used for developing the LGP and LGP/SA models. The generalization
capabilities of the MLP models were tested on the same testing data con-
sidered for the GP-based solutions. The results made by the MLP models
are presented in Tables 4, 5, and 6. The prediction results for UCS, MDD,
and OMC indicate that, in all cases, the results obtained by the LGP team
solutions are better than or comparable with those of the MLP models. The
MLP models with higher R and lower MSE and MAE values provide slightly

362 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

better results than the single solutions obtained by LGP and LGP/SA. In
case of OMC, the MAE values of the LGP and LGP/SA models are lower
than those of the MLP model.

Although NNs are successful in prediction, they usually do not give a def-
inite solution to calculate the outcome using the input values. They also
require the structure of the neural network (e.g. number of inputs, transfer
functions, number of hidden layers, etc.) to be identified a priori. On the
other hand, LGP and LGP/SA introduce completely new characteristics and
traits. The best solutions evolved by these techniques are determined after
controlling numerous preliminary models, even millions of linear and non-
linear models. LGP and LGP/SA provide transparent human-interpretable
solutions which can be represented in Java, C++, or assembler codes. The
evolved solutions are a knowledge representation of the underlying data infor-
mation. They can be used for further analysis of the UCS, MDD, and OMC
of the soil-stabilizer mixes. The LGP and LGP/SA methods are especially
practical for cases where the behavior is too complex and the conventional
models are unable to effectively describe various aspects of the behavior.
However, it is notable that the LGP and LGP/SA techniques are extremely
parameter sensitive, especially when difficult experimental training data sets
like the one used in this chapter are employed. Using any form of optimally
controlling the parameters of the run (e.g., GAs), can significantly improve
the performance of these algorithms.

Table 4. Performance statistics of the models for the prediction of UCS.

Models Training Validation Testing
LGP
(Sa)

LGP
(Tb)

LGP
/SA

MLP LGP
(S)

LGP
(T)

LGP
/SA

LGP
(S)

LGP
(T)

LGP
/SA

MLP

R 0.972 0.991 0.952 0.979 0.952 0.965 0.946 0.942 0.960 0.935 0.944
MSE 0.065 0.031 0.091 0.043 0.092 0.063 0.139 0.114 0.072 0.099 0.086
MAE 0.203 0.132 0.234 0.181 0.218 0.184 0.256 0.267 0.205 0.252 0.228
SDc 0.087 0.058 0.113 0.084 0.129 0.104 0.135 0.140 0.094 0.117 0.111

a Single
b Team
c Standard deviation.

5 Sensitivity Analysis

A sensitivity analysis is of utmost concern for selecting the important in-
put variables. The contribution of each input parameter in the LGP and
LGP/SA models was evaluated through such an analysis. In order to evalu-
ate the importance of the input parameters, their frequency values [35, 43]
were obtained. A frequency value equal to 1.00 for an input indicates that

A GP-Based Approach for Soil Stabilization 363

Table 5. Performance statistics of the models for the prediction of MDD.

Models Training Validation Testing
LGP
(Sa)

LGP
(Tb)

LGP
/SA

MLP LGP
(S)

LGP
(T)

LGP
/SA

LGP
(S)

LGP
(T)

LGP
/SA

MLP

R 0.952 0.963 0.951 0.958 0.942 0.956 0.937 0.937 0.953 0.927 0.954
MSE 0.003 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.003 0.004 0.003
MAE 0.042 0.037 0.044 0.044 0.047 0.044 0.05 0.054 0.041 0.054 0.042
SDc 0.028 0.024 0.029 0.028 0.031 0.027 0.034 0.032 0.028 0.034 0.027

a Single
b Team
c Standard deviation.

Table 6. Performance statistics of the models for the prediction of OMC.

Models Training Validation Testing
LGP
(Sa)

LGP
(Tb)

LGP
/SA

MLP LGP
(S)

LGP
(T)

LGP
/SA

LGP
(S)

LGP
(T)

LGP
/SA

MLP

R 0.948 0.954 0.944 0.950 0.941 0.947 0.929 0.928 0.942 0.915 0.944
MSE 1.337 1.243 1.652 0.882 1.574 1.881 1.712 1.043 1.386 2.052 0.896
MAE 0.856 0.907 1.054 1.184 1.007 1.056 0.903 0.813 0.936 1.122 1.130
SDc 0.122 0.106 0.122 0.099 0.114 0.108 0.114 0.099 0.121 0.131 0.090

a Single
b Team
c Standard deviation.

this variable has been appeared in 100% of the best thirty programs evolved
by LGP and LGP/SA.

The frequency values of the input parameters of the UCS, MDD, and OMC
prediction models are presented in Figures 9 a-c. According to these results,
it can be found that the UCS of the soil-stabilizer mix is more sensitive to LS
and S in comparison with the other inputs. For MDD and OMC, the results
are somewhat different and indicate that C and LL are the most significant
variables. Since LL and PI represent the Atterberg limits of soils, they were
categorized into one group referred to as Plasticity. LS was individually con-
sidered as a category named as Linear Shrinkage. Similarly, S and C are the
soil particle size distribution parameters and were categorized into a sepa-
rate group as Textural Properties. In addition, AC, CC, and LC illustrate the
type and quantity of stabilizing additives and were categorized into another
separate group as Stabilizer Treatments.

The essential observation from the results of the sensitivity analysis is
that different stabilizer types or quantities (LC, CC and AC), for the ranges
investigated, are much less important to explain variations in UCS, MDD,

364 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

T
a
b
le

7
.

S
ta

ti
st

ic
a
l
p
a
ra

m
et

er
s

o
f
th

e
L
G

P
a
n
d

L
G

P
/
S
A

so
lu

ti
o
n
s

fo
r

ex
te

rn
a
l
va

li
d
a
ti

o
n
.

It
em

F
o
rm

u
la

C
o
n
d
it

io
n

U
C

S
M

D
D

O
M

C
L
G

P
(S

a
)

L
G

P
(T

b
)

L
G

P
/
S
A

L
G

P
(S

)
L
G

P
(T

)
L
G

P
/
S
A

L
G

P
(S

)
L
G

P
(T

)
L
G

P
/
S
A

1
k

=

∑
n i=

1
(h

i
×

t i
)

h
2 i

0
.8

5
<

K
<

1
.1

5
0
.9

9
0

1
.0

0
1

1
.0

1
2

0
.9

8
8

0
.9

9
4

0
.9

9
9

0
.9

8
5

0
.9

7
8

0
.9

6
5

2
k
′
=

∑
n i=

1
(h

i
×

t i
)

t2 i

0
.8

5
<

K
′
<

1
.1

5
0
.9

9
7

0
.9

9
2

0
.9

7
7

1
.0

1
2

1
.0

0
5

1
.0

0
0

1
.0

0
6

1
.0

1
0

1
.0

2
0

3
m

=
R

2
−

R
o2

R
2

m
<

0
.1

- 0
.1

2
6

-0
.0

8
6

-0
.1

4
3

-0
.1

1
6

-0
.0

9
7

-0
.1

6
3

-0
.1

6
-0

.1
2

-0
.1

7

4
n

=
R

2
−

R
o′

2

R
2

n
<

0
.1

- 0
.1

2
7

-0
.0

8
5

-0
.1

3
8

-0
.1

2
0

-0
.0

9
8

-0
.1

6
3

-0
.1

6
-0

.1
3

-0
.1

9

5
R

m
=

R
2
×

(1
−

√
|R

2
−

R
0
2
|)

R
m

>
0
.5

0
.5

9
1

0
.6

6
2

0
.5

6
4

0
.5

9
8

0
.6

3
8

0
.5

3
7

0
.5

4
5

0
.5

9
8

0
.5

2
0

w
h
er

e
R

o2
=

1
−

∑
n i=

1
(t

i
−

h
0 i
)2

)
∑

n i=
1
(t

i
−

t i
)2

,
0
.9

9
9

1
.0

0
0

0
.9

9
8

1
.0

1
2

1
.0

0
5

1
.0

0
0

0
.9

9
7

0
.9

9
3

0
.9

8
0

h
0 i

=
k
×

t i

R
o′

2
=

1
−

∑
n i=

1
(h

i
−

t0 i
)2

)
∑

n i=
1
(h

i
−

h
i
)2

,
1
.0

0
0

0
.9

9
9

0
.9

9
4

0
.9

8
1

0
.9

9
6

1
.0

0
0

0
.9

9
9

0
.9

9
9

0
.9

9
6

t0 i
=

k
′ ×

h
i

a
S
in

g
le

b
T
ea

m
.

A GP-Based Approach for Soil Stabilization 365

and OMC than the soil type. There are earlier findings for UCS and MDD
that are in close agreement with this observation. Burroughs [47] assessed
the contribution of the predictor variables to explain the variations in the
UCS and MDD of the chemically stabilized soil using p-values. The p-values
measure the degree of significance of each variable by means of analysis of co-
variance (ANCOVA). Table 8 presents the p-values obtained from ANCOVA.
This table decomposes the variability of UCS and MDD into contributions
due to three stabilizers and five soil property variables. The contribution of
each variable is measured having removed the effects of all other variables,
and the p-values reported test the statistical significance of each of the vari-
ables. As can be observed from this table, overall, there are no statistically
significant differences in UCS and MDD between different percentages of sta-
bilizer treatment for any of the stabilizers, as the relevant p-values all exceed
0.05. LS and C respectively have the most significant effects on the variations
of the UCS and MDD values regarding their significant p-values. The data
analysis results presented in Table 8 clearly indicate that the soil type, not
the stabilizer type or quantity, exerts dominant influence on the variations of
UCS and MDD. Similar results were obtained by Osula [6], Bryan [59], and
Walker [60] for lime and cement stabilization.

0

0.2

0.4

0.6

0.8

1

LL PI LS C S LC CC AC

Fr
eq

uc
en

cy

UCS

LGP
LGP/SA

(a)

0

0.2

0.4

0.6

0.8

1

LL PI LS C S LC CC AC

Fr
eq

uc
en

cy

MDD

LGP
LGP/SA

(b)

0

0.2

0.4

0.6

0.8

1

LL PI LS C S LC CC AC

Fr
eq

uc
en

cy

OMC

LGP
LGP/SA

(c)

Fig. 9. Contributions of the predictor variables in the LGP and LGP/SA models.

366 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

Table 8. Pearson correlations and p-values from AN-
COVA (after [47]).

Item
UCS MDD OMC

P-value PCCa P-value PCC P-value PCC

LL 0.536 -0.27 0.323 -0.37 NAb 0.38
PI 0.473 -0.35 0.680 -0.4 NA 0.46
LS 0.000 -0.46 0.689 0.4 NA 0.46
C 0.012 -0.1 0.046 -0.14 NA 0.24
S 0.001 -0.22 0.422 -0.05 NA 0.03
LC 0.726 NA 0.866 NA NA NA
CC 0.556 NA 0.71 NA NA NA
AC 0.982 NA 0.755 NA NA NA

a Pearson correlation coefficient
b Not available.

6 Parametric Analysis

For further verification of the proposed models, a parametric study was per-
formed using the solutions evolved by LGP and LGP/SA. The main goal was
to find the effect of each input parameter on the values of UCS, MDD, and
OMC. The methodology was based on the change of only one input variable
at a time while other input variables were kept constant at the average values
of their entire data sets. Figures 10 to 12 present the predicted values of UCS,
MDD, and OMC as functions of each parameter, respectively. The sensitivity
of prediction to each of the input parameters, LL(%), PI(%), LS(%), S(%),
C(%), LC(%), and CC(%) can be determined according to these figures. Since
there were not significant variations in the percentages of asphalt (AC) in the
database, no sensitivity analysis was done on it.

The results of the parametric analysis indicate that UCS continuously de-
creases due to increasing LL, PI, LS, C, and S. It can be observed that, within
the ranges of LC and CC used for the training of the models evolved with
LGP and LGP/SA, UCS is not sensitive to the changes in the percentages of
lime and cement.

The results of the parametric study for the MDD prediction models in-
dicate that MDD continuously decreases due to increasing LL, PI, C, and
S. The results of the LGP models demonstrate that MDD continuously in-
creases due to increasing LS. Those of the LGP/SA model indicate that MDD
increases when LS increases up to about 10% and afterwards its increment
rate declines for larger LS. It can be seen that MDD slightly increases when
LC and CC increase up to about 3% and 2%, respectively, and then it starts
decreasing. It is obvious that MDD is not sensitive to the changes in LC and
CC. Considering the results of the parametric analysis for OMC, the moisture
content increases due to increasing LL, PI, LS, C, S, LC, and CC. Similar to

A GP-Based Approach for Soil Stabilization 367

0

1

2

3

4

5

10 30 50 70 90 110

U
C

S
(M

Pa
)

LL (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(a)

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80

U
C

S
(M

Pa
)

PI (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(b)
�

0

1

2

3

4

5

0 5 10 15 20 25

U
C

S
(M

Pa
)

LS (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(c)

� �

1

2

3

4

5

0 10 20 30 40 50 60

U
C

S
(M

Pa
)

C (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(d)
�

1

2

3

4

5

20 30 40 50 60 70 80 90 100

U
C

S
(M

Pa
)

S (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(e)

� �

0.5

1.5

2.5

3.5

4.5

5.5

0 2 4 6 8

U
C

S
(M

Pa
)

LC (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(f)
� �

0.5

1.5

2.5

3.5

4.5

5.5

0 2 4 6 8

U
C

S
(M

Pa
)

CC (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(g)

Fig. 10. Parametric analysis of UCS in the LGP and LGP/SA models.

UCS and MDD, it can be seen that OMC is less sensitive to LC and CC com-
pared to other inputs. The results of our parametric study for the stabilizer
types are also in agreement with those of the sensitivity analysis.

Table 8 shows the Pearson correlation coefficients between the soil prop-
erty variables (LL, PI, LS, C, and S) and the UCS, MDD, and OMC of the
chemically stabilized soil. These correlations give a simple insight into the
degree of (linear) relationship between two variables. As can be seen in this

368 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

0.5

1.5

2.5

3.5

10 20 30 40 50 60 70

M
D

D
 (t

/m
3)

LL (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(a)

0

1

2

3

0 10 20 30 40 50

M
D

D
 (t

/m
3)

PI (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(b)

0

1

2

3

0 5 10 15 20

M
D

D
 (t

/m
3)

LS (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(c)

0

1

2

3

4

5

0 10 20 30 40 50 60

M
D

D
 (t

/m
3)

C (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(d)

�

1

1.5

2

2.5

20 30 40 50 60 70 80 90 100

M
D

D
 (t

/m
3)

S (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(e)

0.5

1.5

2.5

0 2 4 6 8

M
D

D
 (t

/m
3)

LC (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(f)

� �

0.5

1.5

2.5

0 2 4 6 8

M
D

D
 (t

/m
3)

CC (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(g)

Fig. 11. Parametric analysis of MDD in the LGP and LGP/SA models.

table, all of the soil properties are negatively correlated with UCS, with the
highest negative correlations being between UCS, LS, and PI. The correla-
tion of MDD with LS is highly positive while the other soil properties are
negatively correlated with MDD. The highest negative correlations for MDD
are with PI and LL. Table 8 also reveals that the correlation of OMC with
the soil properties is positive. Contrary to those of UCS, the highest positive
correlations for OMC are with LS and PI. It is obvious that the results of the
parametric analysis of UCS, MDD, and OMC are in close agreement with
those presented by Burroughs [47]. The only difference is that the results

A GP-Based Approach for Soil Stabilization 369

0

10

20

30

40

50

10 20 30 40 50 60 70 80

O
M

C
 (%

)

LL (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(a)

0

10

20

30

40

50

10 20 30 40 50 60 70 80

O
M

C
 (%

)

LL (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(a)

0

10

20

30

0 5 10 15 20

O
M

C
 (%

)

LS (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(c)

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

O
M

C
 (%

)

C (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(d)

�

3

6

9

12

15

20 30 40 50 60 70 80 90 100

O
M

C
 (%

)

S (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(e)

� �

0

4

8

12

16

20

0 2 4 6 8

O
M

C
 (%

)

LC (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(f)

� �

0

4

8

12

16

20

0 2 4 6 8

O
M

C
 (%

)

CC (%)

LGP (Single Solution)
LGP (Team Solution)
LGP/SA

(g)

Fig. 12. Parametric analysis of OMC in the LGP and LGP/SA models.

obtained by the LGP/SA model (Figure 11c) indicate that LS is positively
correlated with MDD just up to about 10% and thereafter the correlation
becomes negative. Another observation from the parametric study results is
that increases in LL, PI, C, and S respectively decrease and increase the
MDD and OMC. These trends indicate to the high negative correlation be-
tween MDD and OMC as presented by other researchers [2, 47].

370 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

7 Conclusions

In this chapter, a linear variant of genetic programming, namely LGP, and a
hybrid search algorithm combining LGP and SA, called LGP/SA, were em-
ployed for the prediction of UCS, MDD, and OMC of soil-stabilizer mixes.
A large number of soil types and stabilizers and considerable variations in
their characteristics were considered to develop the models. The database
was obtained from previously published test results. Results of the LGP and
LGP/SA analyses provided six sets of prediction models. The following con-
clusions may be drawn based on the results presented:

i. Despite high nonlinearity in the geotechnical behavior of the stabilized
soil, the proposed models give precise estimates of the target UCS, MDD,
and OMC values. The team solutions evolved by LGP have produced
the best results followed by the LGP single solutions and the LGP/SA-
based solutions. The performance of the LGP team solutions is better
than or similar to that of the models developed using MLP.

ii. In general, LGP has better behavior compared to LGP/SA. This in-
dicates that applying the SA strategy to the LGP process (LGP/SA)
does not improve the efficiency of the LGP algorithm for the investigated
problem. A possible reason is that LGP/SA learns by randomly creating
a single parent program rather than using a population of programs like
LGP.

iii. Unlike the majority of the constitutive modeling approaches, LGP and
LGP/SA simultaneously take into account the role of several important
factors representing the engineering behavior of the chemically stabilized
soil.

iv. LGP and LGP/SA simultaneously take into account the role of several
important factors representing the engineering behavior of the chemi-
cally stabilized soil.

v. An important finding from the results of the sensitivity analysis is that
the types and quantities of stabilizers are less important variables to
explain variations in UCS, MDD, and OMC as compared to the other
properties.

vi. The sensitivity of the proposed models to the variation of the influencing
parameters was evaluated through a parametric analysis. The results
were confirmed with the results obtained by other researchers.

vii. In addition to the acceptable accuracy, LGP and LGP/SA provide trans-
parent programs of an imperative language or machine language. These
programs can easily be inspected and evaluated. The interested readers
may consult the corresponding author for free C++ codes of the LGP
and LGP/SA evolved solutions.

viii. A major distinction of LGP and LGP/SA for determining the stabilized
soil performance characteristics lies in their powerful ability to model
the mechanical behavior without any need to establish a pre-defined
function.

A GP-Based Approach for Soil Stabilization 371

ix. Using the LGP and LGP/SA algorithms, UCS, MDD, and OMC can
be estimated without carrying out sophisticated and time-consuming
laboratory or field tests.

Further research can focus on both the problem domain and the computing
one. As more data become available, including those for other test conditions,
the LGP and LGP/SA-based models can be improved to make more accurate
predictions for a wider range of the data. LGP and LGP/SA are quite robust
in the modeling of nonlinear relationships. However, the underlying assump-
tion that the input parameters are reliable is not always the case. Since fuzzy
logic can provide a systematic method to deal with imprecise and incomplete
information, the process of developing hybrid fuzzy and linear GP models
can be a suitable topic for further studies. Hybridizing LGP with other op-
timization algorithms such as Tabu Search can also be investigated in order
to improve the proficiency of LGP.

References

1. Akpokodje, E.G.: The stabilization of some arid zone soils with cements and
lime. Quarterly Journal of Engineering Geology London 18, 173–180 (1985)

2. Bell, F.G.: Lime stabilization of clay minerals and soils. Engineering Geol-
ogy 42(40), 223–237 (1996)

3. Soil engineering and stabilization. Technical report, USACE (2000)
4. Ngowi, A.B.: Improving the traditional earth construction: a case study of

Botswana. Construction and Building Materials 11(1), 1–7 (1997)
5. Bryan, A.J.: Criteria for the suitability of soil for cement stabilization. Building

and Environment 23(4), 309–319 (1988)
6. Osula, D.O.A.: A comparative evaluation of cement and lime modification of

laterite. Engineering Geology 42, 71–81 (1996)
7. Jumikis, A.R.: Geology and soils of the Newark (NJ) metropolitan area. Journal

of the Soil Mechanics and Foundations Division ASCE 93 (SM2), 71–95 (1946)
8. Linveh, M., Ishai, I.: Using indicative properties to predict the density-moisture

relationship of soil. Transportation Research Record 60P, 22–28 (1978)
9. Wang, M.C., Huang, C.C.: Soil compaction and permeability prediction models.

Journal of Environmental Engineering ASCE 110, 1063–1083 (1984)
10. Blotz, L.R., Benson, C.H., Boutwell, G.P.: Estimating optimum water content

and maximum dry unit weight for compacted clays. Journal Geotechnical and
Geo-Environmental Engineering ASCE 124(9), 907–912 (1998)

11. Sridharan, A., Nagaraj, H.B.: Plastic limit and compaction characteristics of
fine-grained soils. Ground Improvement 9(1), 17–22 (2005)

12. Sinha, S.K., Wang, M.C.: Artificial neural network prediction models for soil
compaction and permeability. Geotechnical and Geological Engineering 26, 47–
64 (2008)

13. Gunaydin, O.: Estimation of soil compaction parameters by using statistical
analyses and artificial neural networks. Environmental Geology 10, 1300–1306
(2008)

14. Horpibulsuk, S.: Analysis and assessment of engineering behavior of cement
stabilised clays. PhD thesis, Saga University, Japan (2001)

372 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

15. Tan, T.S., Goh, T.L., Yong, K.Y.: Properties of singapore marine clays im-
proved by cement mixing. Geotechnical Testing Journal 25, 422–433 (2002)

16. Horpibulsuk, S., Bergado, D.T., Lorenzo, G.A.: Compressibility of cement-
admixed clays at high water content. Geotechnique 54(2), 151–154 (2004)

17. Narendra, B.S., Sivapullaiah, P.V., Suresh, S., Omkar, S.N.: Prediction of un-
confined compressive strength of soft grounds using computational intelligence
techniques: A comparative study. Computers and Geotechnics 33, 196–208
(2006)

18. Koza, J.R.: Genetic programming: On the programming of computers by means
of natural selection. MIT Press, Cambridge (1992)

19. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming
– An introduction on the automatic evolution of computer programs and its
application. Morgan Kaufmann Publishers, Heidelberg, San Francisco (1998)

20. Bäck, T.: Evolutionary algorithms in theory and practice: Evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, USA
(1996)

21. Weise, T.: Global optimization algorithms-Theory and application (2007),
http://www.it-weise.de

22. Brameier, M., Banzhaf, W.: Linear genetic programming. Springer Science +
Business Media, New York (2007)

23. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and
neural networks in medical data mining. IEEE Transactions on Evolutionary
Computation 5(1), 17–26 (2001)

24. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.:
Equation of state calculations by fast computing mechanics. Journal of Chem-
ical Physics 21(6), 1087–1092 (1953)

25. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671–680 (1983)

26. Cerny, V.: Thermo-dynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applica-
tions 45, 41–52 (1985)

27. Aarts, E.: Simulated annealing and boltzmann machines: A stochastic approach
to combinatorial optimization and neural Computing. Wiley, New York (1989)

28. Kita, H.: Simulated annealing. Japan Society for Fuzzy Theory and Intelligent
Informatics 9(6), 870–875 (1997)

29. Ingber, L.: Simulated annealing: Practice versus theory. Mathematical and
Computer Modeling 18(11), 29–57 (1993)

30. Folino, G., Pizzuti, C., Spezzano, G.: Genetic programming and simulated
annealing: A hybrid method to evolve decision trees. In: Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000,
vol. 1802, pp. 294–303 (2000)

31. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: Genetic programming: An
introductory tutorial and a survey of techniques and applications. Technical
Report ces-475, UK: University of Essex (2007)

32. Oltean, M., Dumitrescu, D.: Multi expression programming. Technical Report
UBB-01-2002, Babeş-Bolyai University, Cluj-Napoca, Romania (2002)

33. Oltean, M., Grosan, C.: A comparison of several linear genetic programming
techniques. Complex Systems 14(4), 1–29 (2003)

34. Francone, F.D.: Discipulus(TM) owner’s manual, version 4.0. Register Machine
Learning Technologies (2001)

http://www.it-weise.de

A GP-Based Approach for Soil Stabilization 373

35. Francone, F.D., Deschaine, L.M.: Extending the boundaries of design opti-
mization by integrating fast optimization techniques with machine-code-based,
linear genetic programming. Information Sciences 161, 99–120 (2004)

36. Francone, F.D.: Discipulus Lite(TM) owner’s manual, version 4.0. Register Ma-
chine Learning Technologies (2004)

37. Soh, C.K., Yang, Y.: Genetic programming-based approach for structural op-
timization. Journal of Computing in Civil Engineering 14(1), 31–37 (2000)

38. Hong, Y.S., Rao, B.: Evolutionary self-organising modeling of a municipal
wastewater treatment plant. Water Research 37(6), 1199–1212 (2003)

39. Johari, A., Habibagahi, G., Ghahramani, A.: Prediction of soil-water charac-
teristic curve using genetic programming. Journal of Geotechnical and Geoen-
vironmental Engineering ASCE 132(5), 661–665 (2006)

40. Javadi, A.A., Rezania, M., Mousavinezhad, M.: Evaluation of liquefaction
induced lateral displacements using genetic programming. Computers and
Geotechnics 33(4-5), 222–233 (2006)

41. Baykasoglu, A., Gullub, H., Canakci, H., Ozbakir, L.: Prediction of compressive
and tensile strength of limestone via genetic programming. Expert Systems with
Applications 35(1-2), 111–123 (2008)

42. Gandomi, A.H., Alavi, A.H., Kazemi, S., Alinia, M.M.: Behavior appraisal of
steel semi-rigid joints using linear genetic programming. Journal of Construc-
tional Steel Research 65(1-2), 1738–1750 (2009)

43. Gandomi, A.H., Alavi, A.H., Sahab, M.G.: New formulation for compressive
strength of CFRP confined concrete cylinders using linear genetic program-
ming. Materials and Structures 43(7), 963–983 (2010)

44. Guven, A., Azamathulla, H.M., Zakaria, N.A.: Linear genetic programming for
prediction of circular pile scour. Ocean Engineering 36(12-13), 985–991 (2009)

45. Gandomi, A.H., Sahab, M.G., Alavi, A.H., Heshmati, A.A.R., Gandomi, M.,
Arjmandi, P.: Application of a coupled simulated annealing-genetic program-
ming algorithm to the prediction of bolted joints behavior. American-Eurosian
Journal of Scientific Research 3(2), 153–162 (2008)

46. Burroughs, V.S.: Quantitative criteria for the selection and stabilization of
soils for rammed earth wall construction. PhD thesis, University of New South
Wales, Australia (2001)

47. Frank, I.E., Todeschini, R.: The data analysis handbook. Elsevier, Amsterdam
(1994)

48. Swingler, K.: Applying neural networks a practical guide. Academic Press, New
York (1996)

49. Mesbahi, E.: Application of artificial neural networks in modelling and control
of diesel engines. PhD thesis, University of Newcastle upon Tyne (2000)

50. Guven, A.: Linear genetic programming for time-series modelling of daily flow
rate. Journal of Earth System Science 118(2), 137–146 (2009)

51. Conrads, M., Dolezal, O., Francone, F.D., Nordin, P.: Discipulus-fast genetic
programming based on aim learning technology. Technical report, Register Ma-
chine Learning Technologies Inc., Littleton, CO (2000)

52. Deschaine, L.M.: Using genetic programming to develop a c/c++ simulation
model of a waste incinerator. Technical report, Science Applications Interna-
tional Corp. (2000)

53. Conrads, M., Dolezal, O., Francone, F.D., Nordin, P.: Discipulus-fast genetic
programming based on aim learning technology. Technical report, Register Ma-
chine Learning Technologies Inc., Littleton, CO. (2004)

374 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

54. Smith, G.N.: Probability and statistics in civil engineering. Collins, London
(1986)

55. Golbraikh, A., Tropsha, A.: Beware of q2. Journal of Molecular Graphics and
Modelling 20(4), 269–276 (2002)

56. Roy, P.P., Roy, K.: On some aspects of variable selection for partial least squares
regression models. QSAR & Combinatorial Science 27, 302–313 (2008)

57. Cybenko, J.: Approximations by superpositions of a sigmoidal function. Math-
ematics of Control, Signals, and Systems 2, 303–314 (1989)

58. Alavi, A.H., Gandomi, A.H., Mollahasani, A., Heshmati, A.A.R., Rashed, A.:
Modeling of maximum dry density and optimum moisture content of stabi-
lized soil using artificial neural networks. Journal of Plant Nutrition and Soil
Science 173(3), 368–379 (2010)

59. Bryan, A.J.: Soil/cement as a walling material. i: Stress/strain properties.
Building and Environment 23(4), 321–330 (1988)

60. Walker, P.J.: Strength durability and shrinkage characteristics of cement sta-
bilised soil blocks. Cement and Concrete Composites 17, 301–310 (1995)

Appendix

The optimum LGP and LGP/SA programs can be run in the Discipulus
interactive evaluator mode or may be compiled in the C++ environment.
(Note: v[0], . . . , v[7] respectively represent LL, PI, LS, S, C, LC, CC, and AC
in their normalized forms. f[0] is the normalized UCS.)

A GP-Based Approach for Soil Stabilization 375

float DiscipulusCFunction(float v[])

{

 long double f[8];

 long double tmp = 0;

 int cflag = 0;

f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0;

 L0: if (!cflag) f[0] = f[3];

 L1: f[0]=sin(f[0]);

 L2: f[0]+=f[1];

 L3: f[0]=sqrt(f[0]);

 L4: f[0]+=v[1];

 L5: f[0]=sqrt(f[0]);

 L6: f[0]*=pow(2,TRUNC(f[1]));

 L7: f[0]=-f[0];

 L8: f[0]=sin(f[0]);

 L9: f[0]-=-1.026116609573364f;

 L10: f[0]=fabs(f[0]);

 L11: f[0]*=pow(2,TRUNC(f[1]));

 L12: f[0]*=pow(2,TRUNC(f[1]));

 L13: f[2]/=f[0];

 L14: f[0]=-f[0];

 L15: f[2]-=f[0];

 L16: cflag=(f[0] < f[3]);

 L17: f[0]*=f[0];

 L18: cflag=(f[0] < f[3]);

 L19: f[0]-=-1.026116609573364f;

 L20: tmp=f[1]; f[1]=f[0]; f[0]=tmp;

 L21: f[0]*=pow(2,TRUNC(f[1]));

 L22: f[0]*=pow(2,TRUNC(f[1]));

 L23: f[0]=fabs(f[0]);

 L24: f[0]=-f[0];

 L25: f[0]=sin(v[4]);

 L26: f[0]-=-1.026116609573364f;

Fig. 13. Part of the best LGP single solution for the prediction of UCS.

376 A.H. Alavi, A.H. Gandomi, and A. Mollahasani

float DiscipulusCFunction(float v[])

{

 long double f[8];

 long double tmp = 0;

 f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0;

 l0: f[0]-=v[0];

 l1: f[0]*=f[0];

 l2: f[0]*=v[0];

 l3: f[0]+=f[1];

 l4: f[3]-=f[0];

 l5: f[0]+= v[7];

 l6: f[0]+=f[1];

 l7: tmp=f[0]; f[0]=f[0]; f[0]=tmp;

 l8: tmp=f[0]; f[0]=f[0]; f[0]=tmp;

 l9: f[0]-=-1.115510215114008f;

 l10: f[0]=fabs(f[0]);

 l11: tmp=f[1]; f[1]=f[0]; f[0]=tmp;

 l12: f[0]*=f[1];

 l13: f[0]-=v[6];

 l14: f[0]*=v[3];

 l15: f[0]=sin(f[0]);

 l16: f[0]-=v[2];

 l17: f[0]-=f[1];

 l18: tmp=f[0]; f[0]=f[0]; f[0]=tmp;

 l19: f[0]+=f[3];

 l20: f[0]-=v[7];

 l21: f[0]/=f[1];

 l22: f[0]-=v[0];

 l23: f[0]-=0.005032832622528f;

 l24: f[0]-=v[0];

 l25: f[0]-=v[4];

 l26: f[0]+=f[1];

 l27: f[0]/=f[1];

 l28: f[0]=-f[0];

Fig. 14. Part of the best LGP/SA solution for the prediction of UCS.

Evolving Cellular Neural Networks for
the Automated Segmentation of
Multiple Sclerosis Lesions

Eleonora Bilotta, Antonio Cerasa, Pietro Pantano, Aldo Quattrone,
Andrea Staino, and Francesca Stramandinoli

Abstract. This chapter presents an innovative approach for the segmenta-
tion of brain images that contain multiple sclerosis (MS) white matter lesions.
Quantitative research of Magnetic Resonance Images (MRI), aimed at detect-
ing and studying lesion load and tissue volumes, has turned out to be very
useful for the re-evaluation of patients and clinical assessment of therapy.
Until now, the standard procedure for this purpose has been the manual
delineation of MS lesions, which makes the analysis a time-consuming pro-
cess. The application presented in this work is a genetic algorithm (GA) that
evolves a Cellular Neural Network (CNN) for pattern recognition. This net-
work is capable to automatically segment the brain areas affected by lesions
in MRI and also to immediately eliminate the parts of the brain that are
not directly connected to the disease (like the skull, the optic nerve, etc.) in
the segmentation process. In comparison to manual segmentations, the pro-
posed method shows a very high level of reliability. It must also be reported
that the relative algorithm is more accurate and it adapts to different con-
ditions of the stimulus. Furthermore, it can create 3D images of the brain
regions affected by MS, providing new perspectives of the diagnostic analy-
sis of this disease. The work has practical applications in the medical field.
Future industrial development of this work could lead to the embodiment of
the algorithm directly into the MRI equipment, because CNNs can be imple-
mented in hardware (via discrete off-the-shelf components) or fabricated as
a Very Large Scale Integrated (VLSI) chip.

Eleonora Bilotta · Pietro Pantano · Andrea Staino · Francesca Stramandinoli
Evolutionary Systems Group, University of Calabria,
87036, Arcavacata di Rende, Italy
e-mail: {bilotta,piepa}@unical.it,

{andreastaino,francescastramandinoli}@gmail.com

Antonio Cerasa · Aldo Quattrone
Neuroimaging Research Unit, Institute of Neurological Sciences,
National Research Council, 88100 Catanzaro, Italy
e-mail: {a.cerasa,a.quattrone}@isn.cnr.it

{bilotta,piepa}@unical.it,
{andreastaino,francescastramandinoli}@gmail.com
{a.cerasa,a.quattrone}@isn.cnr.it

378 E. Bilotta et al.

1 Introduction

The introduction of functional brain imaging technology into the neuroscience
field has opened the door to new frontiers in the diagnosis of brain diseases.
However, it has also created a major problem affecting the medical diagnosis,
which consists of distinguishing, identifying, and recognizing the salient parts
of the information produced by the technology, within a very large amount of
available data. Indeed, one of the most important problems in medicine is to
carry out an accurate diagnosis, based on this huge amount of data. Human
beings make mistakes because of their limited cognitive capacity in manag-
ing all this information. Furthermore, subjectivity is a significant drawback
in medical diagnosis. Often, the physicians do not use objective criteria in
extracting salient clues from Magnetic Resonance Images (MRI), but simply
their experience closely related to other, previously made, diagnoses. This
means that the diagnostic results do not depend on quantitative data in a
clear systematized diagnostic picture, but rely merely on the interpretation
of signals from the patient, correlated with data from the MRI [1].

Usually, Artificial Neural Networks (ANNs) are a very effective tool in
medical diagnosis and in predicting of clinical outcomes. As well as in other
important fields of research such as business, finance, artificial intelligence,
mathematics, cognitive modelling, and evolutionary robotics, the most im-
portant strong points of ANNs are:

1. they can be trained on examples instead of rules;
2. they do not have the human limitations;
3. they can identify the problem quickly;
4. they can achieve a real-time analysis and make the specific performance

related to the application field.

Until recently, ANNs were considered to be a suitable system for the recog-
nition of brain damage in neurodegenerative diseases [2, 3] and for the man-
agement of huge amount of data coming from MRI [4, 5, 6]. Currently, this
paradigm has been proved to be ineffective in managing and processing of
information on a wide scale [7]. This is why other paradigms are taking the
place of ANNs. In particular, for their exceptional performance as well as
for their ability to process data in parallel and in order to ease the use and
implementation in both hardware and software, Cellular Neural Networks
(CNNs) [8, 9, 10] start to become a dominant model in the field of neuro-
science [7, 11, 12, 13].

A CNN “is a large-scale non linear analog circuit which processes signals
in real time. Like Cellular Automata (CA), it is made of a massive aggregate
of regularly spaced circuit clones, called cells, which communicate directly
only with their nearest neighbors. Each cell is made of a linear capacitor, a
nonlinear voltage-controlled current source, and a few resistive linear circuit
elements” [8]. In comparison with other kinds of neural networks, these sys-
tems have the advantage of being easily implemented in a silicon chip. The

Evolving CNNs for the Automated Segmentation of MS Lesions 379

dynamics of a CNN are always governed by a set of Ordinary Differential
Equations (ODEs), which is as large as the number of cells in the system.
The important characteristic of a CNN is to be a meta-model for other sys-
tems, both discrete as CAs [14] and continuous [15, 16]. This makes them
particularly suitable for image processing tasks.

The latest evolution of this system, which is the CNN Universal Machine, is
a powerful computer built on a chip. The system has a compiler, an operating
system, and a programming system, based on the C language, that enables
us to implement any kind of algorithm for image processing. The sequence
of algorithms for image processing is incorporated into the chip, which has
the same functions as a digital computer. The CNN paradigm is achieving
more and more importance in image processing applications; in fact, a great
number of algorithms based on it can be found in the literature and are used
for the treatment of images in the many different disciplines.

In this chapter, our focus is to use CNNs in the field of medical diag-
nosis, where very encouraging and satisfactory results have been obtained.
Medical images segmentation and signal processing form one of the most im-
portant areas of medical diagnosis, which has been successfully supported by
CNNs [17]. This diagnosis involves magnetic resonance imaging [7, 13], com-
puted tomography (CT) [18, 19] and Electro Encephalo Gramme (EEG) [11].
A CNN-based approach to classify MRI with respect to the presence of mesial
temporal sclerosis has been presented by Döhler et al. in 2008 [7]. Multiple
sclerosis (MS) is a demyelinizing disease of the central nervous system that
leads to inflammatory pathology. MS pathology is primarily expressed as focal
lesions in the white matter of the brain. Because of its superior contrast, MRI
serves as the modality of choice for clinical evaluation of MS. Generally, man-
ual delineation of MS lesions is time-consuming, because three-dimensional
information from several magnetic resonance contrasts must be integrated.

In recent years, there has been increasing interest in developing novel tech-
niques for automated MS lesions segmentation. This chapter presents an au-
tomated approach to segment MS lesions in MRI. Through the evolution
of CNNs, based on genetic algorithms (GAs), we have developed a system
that precisely identifies demyelinized brain areas due to the neurodegenera-
tive disease. This approach has been tested on a dataset of 11 patients, who
underwent structural MRI and who have been diagnosed with MS. For each
patient, 24 slices which cover the whole brain were analyzed. The results show
a very high percentage of agreement (almost 80%) with manual segmenta-
tion. The exposed method has given satisfactory results, showing that, after
the learning process, the CNN is capable to detect MS lesions with different
shapes and intensities. The technique we propose is a fully automatic method
and does not require manually segmented data.

The rest of this chapter is organized as follows. After the introduction,
the second section clearly identifies the problem we intend to address and
solve. It also presents the most relevant aspects of this research field and
their implications for the future development of this sector. Related works,

380 E. Bilotta et al.

itemizing the most important issues concerning both the medical diagnosis
and the use of CNNs in the neuroscience discipline are presented in the third
section. The fourth section discusses the approach we have used. This sec-
tion presents the mathematical aspects of both CNN and GA models, the
optimization approach we have implemented and the integration in the real
life context of medical diagnosis. The fifth section presents the experimental
results on the performance measurements, the statistical evaluation of the re-
sults, and the comparison with manual segmentation. Conclusions and future
work, contained in sections six and seven respectively, finalize the chapter.

2 Automatic Segmentation of MS by Using a CNN

MS is a debilitating and progressive autoimmune disease that causes inflam-
mation, demyelination, and axonal damage of the Central Nervous System
(CNS) [20, 21, 22]. Used in most clinical trials, the Expanded Disability Status
Scale (EDSS) is a method to analyze the functional damage to motor, cogni-
tive and sensory systems [23] in people with MS damages. This method not
only provides a quantification of disability, but also serves to monitor changes
in the level of disability over time. Devised by John Kurtzke in 1983 [24] and
following his previous assessment system (Disability Status Scale, or DSS),
the EDSS ranges from 0 to 10, with increments of 0.5 units. The score is
based on an examination done by a neurologist and based mainly on the
impairment of motor activity. EDSS steps 1.0 − 4.5 identify people who are
able to walk without help, even if they have MS. EDSS steps 5.0−9.5 catego-
rize the complete impairment of motor activity. The method also recognizes
eight functional systems (FS) that may be affected, which can produce a huge
amount of symptoms, from the speech to the sensory modality impairments,
without any patterns. Each functional system is scored on a scale from 0 (no
disability) to 5 or 6 (severe disability).

Regarding the cognitive disability, the Paced Auditory Serial Addition
Test (PASAT) [25] is a frequently used test for capturing deficits of attention
and working memory in MS subjects. The assessment of onset and progres-
sion of MS diseases is critically dependent on the identification of lesions or
changes in white matter regions of the brain, through many techniques of
brain imaging, and especially through MRI. The most important problems
that researchers encounter in this domain are the following:

1. the inhomogeneous, dramatically complex structure of the brain [26];
2. the unpredictability of the disease that affects different areas of the brain

and other nervous structures, without a defined pattern;
3. the lack of clear correlation between the amount of damaged brain areas

and the related clinical symptoms [27];

Evolving CNNs for the Automated Segmentation of MS Lesions 381

4. the lack of highly defined technical standards in brain imaging process-
ing, that introduces in MS lesions segmentation methods a wide range of
technological bias [28].

Many mathematical models have been used to develop methods for brain MRI
segmentation [29, 30]. They are concerned to discriminate lesions for different
diseases [31, 32, 33], to identify changes in anatomical structures [34], and also
to create hardware and software applications for 3D brain visualization. The
process of image segmentation precisely allows to achieve this analysis both
for training the neurologists and for research purposes (The Whole Brain
Atlas, http://www.med.harvard.edu/AANLIB/home.html).

As Filippi et al. [35] pointed out, MS diagnosis can be done by analyzing
T2-weighted images, while for monitoring the evolution of the disease, it is
necessary to obtain efficient measures of the Total Lesion Load (TLL) by
using lesion segmentation techniques based on signal intensity thresholds.
To analyze these problems, Souplet et al. [36] present a comprehensive state
of the art classification of the most representative systems for MS lesions
segmentation.

Shiee et al. [37] use a segmentation method based on topological and statis-
tical atlases, while all the segmented structures are topologically constrained,
allowing a further segmentation of shapes. In the literature on these topics, it
is noted that the processes of segmentation usually require a trade-off between
accuracy and computation time. Due to these problems, many segmentation
algorithms, based on artificial neural networks, have failed to give satisfactory
results [7].

ANNs, developed in the past decades, are connectionist systems that sim-
ulate the biological mechanisms of information processing. They have been
widely used in medical science and biomedical research, especially as pat-
tern recognition systems, as medical expert systems to make predictions,
as systems to monitor the status of some diseases such as cancer and as
MRI segmentation systems. Recently, ANNs with many layers have been
established [38], and usable algorithms have been implemented. Although
the ANNs, one of the leading paradigms of machine learning during the
1980’s [39], have been dropped in favor of simpler methods of classification
to define and manage the tasks of recognition / segmentation / forecast,
methods more efficient from the computational point of view, achieving su-
perior performance compared to ANN approaches, have been implemented.
The main reason lies in the fact that the algorithm of back propagation is
not practical for training a network that has more than two or three layers,
and the computational load of multi-layers ANN architectures is very high.

CNNs allow to solve, or at least, to mitigate, those problems; they can be
regarded as one of the paradigms of the Science of Chaos and Complexity.
CNNs are massively parallel systems, easily integrated in silicon, and mainly
used for advanced image recognition, especially in medical and graphic fields.

In this chapter, we describe a new application based on GAs that evolves
a CNN capable to automatically determine the TLL in MS patients. Our

http://www.med.harvard.edu/AANLIB/home.html

382 E. Bilotta et al.

study aims to analyze MRI and to obtain reliable and reproducible measures
of the total lesion load in patients with MS. The process of segmentation,
that we have developed, is based on adaptive approaches. These approaches
can be applied to different clinical settings, having as output different types
of images. It must be noted that CNNs are chaotic nonlinear systems. The
introduction of nonlinear dynamics in the field of brain imaging will lead to
the acquisition of already well established methods and concepts [40].

Many important results can be achieved by using the methods, concepts
and visualization systems already developed in the field of nonlinear dynamic
systems [41, 42, 43, 44, 45, 46]. The segmentation of MRI, the study of
brain shapes and their 3D visualization, can be revisited in the light of the
chaos theory, which may represent a powerful tool to study the dynamics and
the patterns with which the neurodegenerative diseases occur. The future
implications of those new methods and concepts in the field of brain imaging
are promising because, by improving the traditional approach, they could
lead to the development of fully automated tools, highly efficient from the
computational point of view and very reliable in diagnosing the evolution of
the disease.

The scientific potentials in the intersection of Chaos and Complexity Theo-
ries and the brain imaging technologies are to be fully explored and exploited
for the future development of this sector.

3 Related Works

3.1 Related Work in the Problem Domain

In the last decades, the rapid collection of brain images of healthy and un-
healthy people has inspired the development of mathematical algorithms, that
compare sets of brain data in a huge number of subjects all over the world.
New methods of machine vision [47, 48, 49, 50, 51], new interfaces [52], the
construction of the anatomical model [53], and the use of differential geom-
etry [54, 55] were developed to represent the great variations in the brain,
and to identify disease specific models [56]. These models can also identify
qualitative and quantitative patterns of their anatomy in relation to their
function [57], highlighting the surprising relationships between genotype and
phenotype.

As we have already said in the previous sections, MS pathology presents
focal lesions in the white matter of the brain. For its particular proper-
ties of providing much greater contrast for the different soft tissues of the
body, magnetic resonance is the technology used for clinical evaluation of
MS. The delineation of the disease is performed manually by experienced
neurologists. It varies from person to person and it is a very labor-intensive

Evolving CNNs for the Automated Segmentation of MS Lesions 383

and time-consuming task. Many mathematical models have been used to im-
plement automated MS lesion segmentation algorithms and systems. There
are many segmentation methods: the automated methods and the Atlas-
based segmentation methods. Among the automated methods, there are also
several classes. The first one classifies the lesions as outliers of the normal
brain tissues, together with a system for the delineation of the lesion bor-
ders [58, 59, 60, 61, 62]. Contrariwise, the second class of methods instead
shapes the lesions as a separate set [63]. All these methods try to establish
an increasingly precise delineation to make the process of identification of
MS lesions accurate and to define the total MS lesion load. These techniques
have many problems [37]. Several of these methods are only based on the
lesions segmentation process, ignoring the quantification of the volume of the
brain injured area [64]. These methods also do not pay attention to the sub-
cortical structures of the brain, to the cortical surface analysis and they do
not consider the degree and the location of brain atrophy, which is a crucial
variable for evaluating the evolution of MS. None of these methods consider
the special topology of patients with MS, altered by the lesions. Furthermore,
in order to define the outliers, many algorithms are heavily dependent on the
threshold choice, and often the process is not completely automated.

3.2 Related Work in the Optimization Domain

The domain of optimization of this chapter relates to processes for automatic
segmentation of MRI. As we said earlier, the mapping of the brain covers
often hundreds or even thousands of images [65, 66, 67]. To address these
problems in terms of processing speed, computational effectiveness, auto-
mated image registration and warping methods, many algorithms must filter
the information from these images automatically [68]. For fast image seg-
mentation and labeling, other techniques were also developed and even the
modern technology of ’IC was used in this field.

Databases with topics related to active brain are active and they increase
worldwide at a almost exponentially rate (http://www.sfn.org/index.
aspx?pagename=NDG main; http://brancusi.usc.edu/bkms/).A huge com-
munity of researchers analyzes brain images through client-server software
technologies. The intensive analysis can be performed on a remote server,
with the help of supercomputing resources, aimed to discover many general
trends for many degenerative diseases [69]. These advances in technology and
infrastructure have enabled the creation of a population-based atlas of the
brain [70]. Such atlases combine imaging data from healthy and diseased
populations and are leading to the creation of communities of users in the
field of neuroscience. The atlases are an important source of information for
scientists as they describe how the brain varies with age, sex and demograph-
ics. They also provide a comprehensive approach to the study of a particular

384 E. Bilotta et al.

subgroup of the population, with a specific disease or a specific disorder, such
as that discussed in this chapter on MS. Generally in the MRI segmentation
domain, supervised segmentation algorithms normally work according to one
of two paradigms for guiding the automatic or semiautomatic process. The
steps are as follows:

1. Specification of sections of the borders of the chosen object or of a closed
complete border that develops to the chosen border;

2. Specification of a small set of pixels, belonging to the chosen object and
to a set of pixels, belonging to the background.

Furthermore, any of the automatic segmentation algorithms might be con-
sidered supervised by following expert clinician’s selection of the desired seg-
ment. However, if the desired object is not an entire segment, another cluster-
ing/segmentation algorithm must be used to divide or combine the automatic
segments. In fact, while semiautomatic methods are highly dependent on the
choice of an appropriate threshold (to effectively detect lesions) and on the
experts selection of the desired target brain areas, our algorithm, improving
the method already developed by Döhler [7], allows for obtaining the desired
output by programming a fully automated strategy on the entire dataset,
without the need of external calibration. The images, acquired by the mag-
netic resonance scanning, have, from patient to patient, sometimes significant
differences in the intensity of grey and in the area of the injuries. Differences
can be observed also from a slice to another one. For this reason, it is nec-
essary to train the CNN to become adapted to different input conditions,
not encountered before. By evolving the CNN templates, we have been able
to determine most of the lesions in all the patients, optimizing the present
problem. The system could provide a useful support tool for the evaluation
of lesions in MS, and particularly to assess the evolution of the lesions. It is
worth noting that our analysis was carried out on two-dimensional slices.

Another improvement, about what was already reported in the work of
Döhler et al. [7], is the possibility to extend our results by working on volumes
of data, rather than processing planar images. 3D CNNs [71] may represent a
new and powerful tool for the development of applications for supporting of
medical diagnosis. By exploiting information provided by a three dimensional
representation of the brain, the evolution of the 3D network can lead to a
significant improvement of the performances. For this reason, by modifying
the architecture of the standard CNN, we propose a 3D CNN model that is
able to handle and perform different functions on objects in a three dimen-
sional space. An innovative library of 3D templates has been implemented,
that allows the execution of interesting and efficient operations. We used GAs
for 3D template learning. This means that even a 3D CNN can be trained by
a learning algorithm in such a way that the network learns the configuration
for performing the desired operation during the training process.

Evolving CNNs for the Automated Segmentation of MS Lesions 385

4 The Approach

The approach, adopted in this work, is based on GAs and CNNs, that rep-
resent the mathematical tools that we have used to tackle the problem of
automatically detecting MS lesions in MRI, which presence is revealed by
regions in the brain that are brighter than their surroundings (Figure 1).

Fig. 1. MS lesions in the white matter of the brain. Lesions are brighter than other
tissues in MRI.

In what follows, we give a short description of the CNN paradigm and
we present the key features of GAs. CNNs [8] are an array of nonlinear pro-
grammable analog processors, called cells, that perform parallel computation.
The key idea behind the CNN paradigm was that to combine the main ad-
vantages of cellular automata and artificial neural networks [8]. Like neural
networks, a CNN is a nonlinear analog circuit which is capable of processing
a large amount of data in real time and in an asynchronous way. At the same
time, the structure of CNNs is similar to that found in cellular automata,
because interactions between cells are only local, that is each cell is physi-
cally connected only with its nearest neighbors. From a mathematical point
of view, each cell is a dynamical system whose state evolves in time, according
to a specific mathematical model, and whose output is a nonlinear function
of the state. For the image processing purpose, the most usual architecture
is a regular two dimensional grid, in which each processing unit directly in-
teracts only with the neighboring cells, located within a prescribed sphere of
influence; given a CNN of M × N cells, the neighborhood Sij(r) of radius
r ≥ 0 for the cell Cij is the set of cells, satisfying the following property:

Sij(r) = {Ckl : max (|k − i|, |l − j|) ≤ r}, 1 ≤ k ≤ M , 1 ≤ l ≤ N (1)

The grey box in Figure 2 highlights the sphere of influence Sij(1) of the
cell at position (i, j), whose neighborhood comprises nine elements (the eight
adjacent units and the cell itself).

386 E. Bilotta et al.

Fig. 2. A cellular array whose elements represent nonlinear dynamic systems.

A sphere of influence of radius r = 1 corresponds to a 3× 3 neighborhood,
one of radius r = 2 to a 5 × 5 neighborhood and so on. Referring to the
central grey unit, neighborhood of different sizes are shown (Figure 3).

Fig. 3. Neighbourhood of radius r=1 (a), r=2 (b) r=3 (c) for the considered grey
unit.

Each cell Cij is characterized by four time variables, called the state
xij(t) ∈ R

n, that generally is not observable from the outside, the input
uij(t) ∈ R

u, corresponding to external stimuli provided to the cell, the out-
put yij(t) ∈ R

p, that represents the value that can be observed and measured,
and an additional input zij(t) ∈ R

z called bias. The dynamics of a M × N
CNN are described by M × N coupled differential equations (2), modeling
the evolution of the state of each cell and its interaction with its neighbors
(“coupling laws”).

Evolving CNNs for the Automated Segmentation of MS Lesions 387

ẋij(t) = g(xij(t), zij(t), ukl(t), f(xkl(t))), (k, l) ∈ Sij(r),

i = 1 . . .M , j = 1 . . .N
(2)

where ukl(t) and f(xkl(t)) denote vectors, whose components are the input
and the output of the neighbors of Cij . The output of each cell is obtained
by applying the nonlinear algebraic function f(xij(t)), such that:

yij(t) = f(xij(t)) (3)

Standard nonlinearity for the output equation is given by the following ex-
pression:

yij(t) = f(xij(t)) =
1
2
[|xij(t) + 1|] − [|xij(t) − 1|] (4)

which characteristic is shown in Figure 4.

Fig. 4. Standard nonlinearity for the output equation.

It is worth noting that (1) is not completely defined for cells lying on
the boundaries of the array, whose sphere of influence extends beyond the
boundary of the given CNN. Therefore, it is necessary to introduce some
additional elements to the array, called virtual cells, whose state and input
are given in accordance with the boundary conditions of the network. The
following types of boundary conditions are proposed:

1. Fixed (or Dirichlet): the values of the virtual cells are given as a prescribed
constants;

2. Zero-flux (or Neumann): the values of the virtual cells are the same as the
corresponding boundary cells;

3. Periodic (or toroidal): values of the virtual cells are the same as the bound-
ary cells on the opposite side (e.g., top virtual cells have the value of
bottom boundary cells).

388 E. Bilotta et al.

Fig. 5. Boundary conditions commonly used for CNNs.

Different kinds of boundary conditions for a 3×3 CNN (whose cells belong
to the shaded grey area) are shown in Figure 5; the values for the virtual
cells are set according to the corresponding chosen boundary conditions. By
choosing an appropriate g function in (2), different models of CNNs can be
defined. In this work, we will deal with the standard CNN model, in
which each cell Cij is a first order dynamical system, i.e., its state is a scalar
quantity (xij(t) ∈ R) that can be associated with the intensity of a physical
variable at the corresponding point in space at time t. For ease of notation,
we will omit the time argument of the variables associated to Cij . The set of
ODEs that describes the dynamics of a standard CNN is:

dxij

dt
= −xij +

∑

C(k,l)∈Sr(i,j)

A(i, j; k, l; t)ykl+
∑

C(k,l)∈Sr(i,j)

B(i, j; k, l; t)ukl+zij

(5)
where A(i; j; k; l; t) and B(i; j; k; l; t) represent respectively the weights by
which outputs and inputs of the cells in the neighborhood contribute to
changes in the state of Cij . The feedback coupling parameters A(i, j; k, l, t)
and input coupling parameters B(i, j; k, l, t) can be used to change and con-
trol the strength of interactions between cells and, in general, can vary
both in space and time. Being given input, initial state, and boundary con-
ditions for each cell Cij such that 1 ≤ i ≤ M , 1 ≤ j ≤ N , the dy-
namics of a two-dimensional standard CNN are uniquely specified by the
synaptic weights between a cell and its neighbors. These parameters, to-
gether with the bias zij(t), define a CNN template that can be expressed
in the form {A(i, j; k, l, t), B(i, j; k, l, t), zij(t)}. The operation performed by
a CNN on the input data is fully defined by the set of coefficients in the
CNN template. If the pattern of interconnection is the same for each cell
and does not vary in time, the weighting coefficients can be arranged in a
feedback matrix A ∈ R

(2r+1)×(2r+1), and a feed-forward or control matrix
B ∈ R

(2r+1)×(2r+1), while the bias zij(t) = z ∈ R for each (i, j) and t;
in this case, the template reduces to the triple {A, B, z}. As we will see, an
evolutionary approach can be used in order to find a template that allows
obtaining a desired operation.

Evolving CNNs for the Automated Segmentation of MS Lesions 389

As it was stated in the introduction, the key feature of CNNs is their ease
in implementation in VLSI chips; in fact, the main difference between CNN
and other neural network paradigms is that in the former information is di-
rectly exchanged just between neighboring units so, when it comes to physical
realization, CNNs show more flexibility than ANNs, allowing easier integra-
tion in silicon devices and greater efficiency in computation. In the original
model [8], each CNN cell is a simple nonlinear analog circuit (Figure 6), com-
posed of a linear capacitor, an independent current source, an independent
voltage source, two linear resistors, and at most 2m linear voltage-controlled
current sources, m being the number of neighbor cells of the considered unit.
The voltage vxij (t) across the capacitor is the state of the cell Cij , while vuij

and vyij (t) represent the input and the output respectively.

Fig. 6. Original CNN cell model.

The characteristics of the generators Ixy(i, j; k, l; t) and Ixu(i, j; k, l) are
defined as:

Ixy(i, j; k, l; t) = A(i, j; k, l) vykl
(t)

Ixu(i, j; k, l) = B(i, j; k, l) vukl

(6)

The equations (6) state that the current sources Ixu(i, j; k, l) are controlled
by the input voltage of the neighbors Ckl, while the others Ixy(i, j; k, l; t) get
a feedback from the output voltages of the neighbor cells. In such a way,
it is possible to control the strength of interactions between cells by setting
the coupling parameters A(i, j; k, l) and B(i, j; k, l). The output vyij (t) is
determined by the nonlinear voltage controlled current source Iyx that is the
only nonlinear element of the cell and it is characterized by the following
equation:

Iyx =
1

Ry
f(vxij (t)) (7)

where f is the characteristic function of the nonlinear controlled current
source defined as:

f(vxij (t)) =
1
2
(|vxij (t) + 1| − |vxij (t) − 1|) (8)

Using the Kirchhoff laws, the state of a CNN cell can be described by the
following nonlinear differential equation:

390 E. Bilotta et al.

C v̇xij (t) = − 1

Rx
vxij (t) + I +

∑

Ckl∈Sij(r)

(A(i, j; k, l)f (vxkl (t)) + B(i, j; k, l)vukl)

(9)

that, by considering 1 ≤ i ≤ M , 1 ≤ j ≤ N , corresponds to the system
of ODEs (5). Chua and Roska [10] propose CNNs as a parallel computing
paradigm, especially suited for processing analog array signals, with impor-
tant applications in image processing, pattern recognition, numerical solution
of PDEs and investigation of nonlinear phenomena. CNNs have been success-
fully applied in various image processing applications, especially because of
the high pay-off offered by the CNN based architectures [40].

CNNs can be trained by learning algorithms in such a way that, during the
training process, the network learns which is the best configuration for per-
forming a given task. In this work, GAs have been applied in order to evolve
a CNN capable of detecting MS lesions from MRI. As is shown in the work
of J.H. Holland in 1975 [72], GAs are computational bio-inspired methods
for solving problems; inspired by Darwinian evolution, GAs are based on the
principles of genetic variation and natural selection. These algorithms simu-
late the evolution of a population of individuals (Figure 7), which represent
possible solutions to a given problem.

Fig. 7. Population of a GA.

To evaluate the performance of each individual in relation to the problem,
it is possible to define an appropriate fitness function, which quantitatively
measures the performance of each individual, in a given generation and for
all the generations. The standard method for developing a GA is to choose
a genetic representation, a fitness function and then proceeding with the
following steps:

1. Generating a random number of strings (initial population), that encode
possible solutions to the problem;

2. Decoding of the genotypes of the population and assessment of each indi-
vidual (phenotype), according to the fitness function;

Evolving CNNs for the Automated Segmentation of MS Lesions 391

3. If the current population contains a satisfactory solution, the algorithm
stops.

4. If the system does not find a good solution, a new evolution starts, generat-
ing a new population of individuals, by applying the operators of selection,
crossover and mutation.

The process continues with the evaluation of new individuals through the
fitness function cyclically in this manner until a satisfactory solution to a
given problem is obtained (Figure 8).

Fig. 8. Steps of a GA.

The Selection, Crossover, and Mutation operators proposed by Hol-
land are inspired by natural selection and genetics; in particular:

1. Selection: takes place according to a probability that is proportional to
the fitness value, in order to give preference to best performing individuals,
allowing them to transmit their genes to the next generation.

2. Crossover: two individuals are randomly chosen from the population,
using the selection operator and new “child” genotypes are created.

3. Mutation: once new individuals are generated by the crossover operator,
some of their genes may undergo a mutation process, which means that,
according to a given probability, newly created genotypes will have some
of their bits flipped.

In image processing applications, a neighborhood of radius r = 1 is commonly
used and, in most cases, space-invariant templates are chosen, that is the
operators A(i, j; k, l) and B(i, j; k, l) depend only on the relative position of
a cell with respect to its neighbors. With this assumption, the whole system
is characterized by a 3 × 3 feedback matrix A, a 3 × 3 control matrix B
and a scalar z. Therefore, 19 parameters are needed to “program” a CNN;

392 E. Bilotta et al.

this means that, once the initial state and boundary conditions have been
assigned, the operation performed by the CNN on a given input image is
determined only by 19 real values that completely define the properties of
the network.

For our aim, which is to design a GA to search for the weights of a standard
two-dimensional space invariant CNN, in which each cell has a radius of in-
fluence r = 1, it is convenient to adopt a representation of templates in vector
form. To this purpose, the 19 parameters that define the triple {A, B, z} are
arranged in an array consisting of 9 feedback synaptic weights defining the A
matrix, 9 control synaptic weights defining the B matrix and the threshold
z (Figure 9). These 19 coefficients represent a gene for the CNN, associated
with a particular function performed by the network.

Fig. 9. Representation of a CNN template in vector form.

The GA has been designed to get a template to be used for image process-
ing applications. For this reason, we have chosen to impose that the matrices
A and B are symmetric with respect to their central element. In this way,
we set the conditions for the stability of the CNN, provided in the complete
stability theorem [8], which ensures the convergence of the network. It also
reduces the computational load of the algorithmic search, since it is neces-
sary to determine only 11 coefficients, 5 belonging to the matrix A, 5 to the
matrix B and 1 corresponding to the threshold z. Each genotype is therefore
represented by a vector G of 11 elements:

G = [a11 a12 a13 a21 a22 b11 b12 b13 b21 b22 z]. (10)

To assess the fitness of a CNN gene compared to an assigned problem, we
introduce a target image T of M × N pixels to be used for training the
network. Applying the template corresponding to G and providing an input
image to the CNN, it generates as an output an image IG which can be
compared with T , through the cost function:

Evolving CNNs for the Automated Segmentation of MS Lesions 393

diff(G) =
M∑

i=1

N∑

j=1

IG
ij ⊕ Tij . (11)

where the operator ⊕ denotes the logical exclusive or (xor) between the el-
ement in position (i, j) of the target image and the corresponding pixel in
the CNN output. The fitness function for each phenotype CNNG, then, is
evaluated by calculating the number of equal pixels between T and the CNN
output:

fitness(CNNG) = M x N − diff(G) . (12)

Hence, the fitness measures the number of equal pixels between the target
image and that obtained from the CNN simulation. In this way, higher values
of fitness are associated with phenotypes corresponding to templates that
produce outputs with a high number of pixels, that coincide with the image
target.

4.1 Optimization Approach

A set of evolutionary runs has been performed in order to reach the best level
of performance of the developed systems. In our implementation, we have run
an initial random population of 35− 60 individuals, making them evolve for
a maximum of 500 generations; “weighted roulette wheel selector” and “best
chromosome selector” were used as selection methods; mutations and elitism
strategies were applied. In order to reduce the computational effort due to the
large search space, we have chosen to constrain the elements of each genotype
to be in the range [−8, 8].

The GA was conducted as follows: after evaluating the fitness of each phe-
notype, the elite individual, i.e., the best performing one, has been directly
copied in the next generation; a number of single-point crossover operations,
depending on the population size, has been performed. In our experiments,
we have used a crossover rate in the range from 30% to 70%. Mutations have
been randomly applied in order to prevent trapping into local minima. The
elements of the genotypes in the population have been randomly mutated
according to a given mutation rate, each coefficient had a given probability
of being changed by a randomly selected real number that falls in the cho-
sen interval [−8, 8]. Using a mutation rate of 0.05, each component had 5%
probability of being changed, resulting in one every twenty of the parameters
being mutated on average.

Once genetic operators have been applied, a fixed number of genotypes
has been selected and moved on the next generation. Obviously, the selection
has been guided by the fitness, i.e. higher probabilities of survival have been
associated to phenotypes providing higher fitness values. Figures 10-11 show
two of the evolutionary runs that we have performed.

394 E. Bilotta et al.

input target

output

0 20 40
8

8.5

9

9.5

10

10.5

x 10
4

generation

fi
tn

es
s

va
lu

e

results

best fitness
mean fitness

Population Generations % Crossover Mutation rate Selection method Max fitness

35 50 35 0.05 weighted roulette wheel 107464

Fig. 10. Results of an evolutionary run that we have performed. The initial pop-
ulation is composed of 35 individuals; the run has evolved for 50 generations with
a mutation rate of 0.05 and a 35% as crossover rate. The weighted roulette wheel
selector has been the selection method we have used. The highest fitness reached
is 107464; by referring that value to the size of the target image, we have obtained
an overlapping of 0.9851 with respect to the target (1 being a total agreement).

A number of trials have been performed according to the GA scheme de-
scribed above, some of which are reported in Table 1. In our experiments,
the GA achieved a maximum fitness value of 0.9851, resulting in 98.51% of
overlapping between the CNN output and the corresponding target image.
The average fitness value obtained over the evolutionary runs performed is
0.9820.

Table 1. Evolutionary runs performed according to the proposed GA based learn-
ing process.

Population Generations % Crossover Mutation Selection Max Normalized
rate method fitness fitness

35 50 0.35 20 weighted roulette wheel 107464 0.9851
35 100 0.35 20 weighted roulette wheel 289617 0.9833
30 300 0.3 20 best chromosomes 107392 0.9845
30 500 0.5 7 best chromosomes 142902 0.9830
60 50 0.5 5 best chromosomes 142456 0.9799
40 40 0.7 5 best chromosomes 142697 0.9816

Evolving CNNs for the Automated Segmentation of MS Lesions 395

input target

output

0 100 200 300 400
0.8

1

1.2

1.4

x 10
5

generation

fi
tn

es
s

va
lu

e

result

best fitness
mean fitness

Population Generations % Crossover Mutation rate Selection method Max fitness

30 500 50 0.14 best chromosomes 142902

Fig. 11. Evolutionary run we have performed. The initial population is composed
of 30 individuals; the run has been evolved for 500 generations with a mutation
rate of 1/7 and a 50% crossover rate. The best chromosomes selector has been the
selection method we have used. The highest fitness reached is 142902, resulting in
0.9830 of overlapping with the target.

At the end of the training process, the following template has been selected:

A =

⎡

⎣
−3.51879 3.42019 −3.48386
6.47032 7.75293 6.47032
−3.48386 3.42019 −3.51879

⎤

⎦ B =

⎡

⎣
1.33076 −3.86887 1.53728
−2.30849 −7.76398 −2.30849
1.53728 −3.86887 1.33076

⎤

⎦ z = −4.81797

(13)

Given a MRI slice, by tuning the CNN standard model (5) according to the
parameters (13), the system is able to generate images in which MS lesions
are isolated from the brain matter, as learned during training; this is the
key-step on which the segmentation algorithm is based.

4.2 Application of the Optimization Approach

One practical application based on the optimization performed by GAs con-
sists of evolving a CNN capable of supporting neurological diagnosis in order
to determine the lesion load in patients affected by MS. To evaluate the evo-
lution of the disease, images acquired by magnetic resonance can be used by
neurologists in order to detect the presence of lesions in the white matter of

396 E. Bilotta et al.

the brain. The main issue is to develop a CNN algorithm for supporting im-
age analysis and identifying brain areas affected by lesions in MRI. Magnetic
resonance scanners acquire gray scale images; each image represents a “slice”
corresponding to a volumetric portion of the brain. The main purpose of the
algorithm, for each slice, is to generate a binary image as output, in which
the lesions are isolated from healthy tissue. In this way, knowing the size of
the voxels of the slice, it is possible to calculate an estimate of the lesion load
due to the pathology. Although the pixels corresponding to the lesions are
always brighter than the others in healthy tissue, they are not the brightest
in the image, therefore it is not enough to simply apply a single template that
performs a binarization according to a given threshold. The CNN, therefore,
must be trained to distinguish and classify only the areas actually affected
by injuries.

(a) input slice (b) lesion detection
and binarization

(c) lesions extraction
and isolation

(d) final result of
processing

Fig. 12. CNN algorithm for lesions detection in patients affected by MS.

As shown in Figure 12, the algorithm proposed for the segmentation of the
MS lesions consists of three principal steps:

1. Lesions detection and their binarization;
2. Segmentation of the white matter of the brain;
3. Lesions extraction and isolation.

The first step of the algorithm has been faced by using GAs, to determine the
weights that allow CNN to generate as output a binary image in which the

Evolving CNNs for the Automated Segmentation of MS Lesions 397

healthy brain matter is removed. Then, templates in the CNN library [19]
were applied for extracting features of interest, eliminating the pixels corre-
sponding to the skull. Lesions have different shapes and intensities that vary
from slice to slice, even for the same patient. It is thus necessary to iterate
the training process of the network more times, for each iteration providing
target images showing different characteristics. Then, the CNN can be able
to “learn” how to perform the task in a more accurate way (Figure 13).

(a)

(b)

Fig. 13. Training of CNN by GA for the detection of lesions in MRI.

To implement the second step of the algorithm, we have performed a mask-
ing operation based on the templates proposed in the library [19] for the
extraction of objects. The idea is to extract, from the image obtained in the
previous step, only objects lying in the slice corresponding to the brain mat-
ter; thus at the end of the simulation only lesions will emerge, while areas
related to the skull will be deleted.

Simulations (Figure 14) have allowed to verify the validity of the proposed
algorithm; the output generated by CNN can be viewed in the MRICro med-
ical image viewer (http://www.mricro.com). Once the number of pixels cor-
responding to the injury has been determined and knowing the size of the
voxel in the performed scan, it is possible to estimate the total lesion load

http://www.mricro.com

398 E. Bilotta et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Segmentation of MRI for MS lesions detection by using CNN.

Evolving CNNs for the Automated Segmentation of MS Lesions 399

for a given patient. This provides an important parameter to monitor the
progression of the disease. It should be emphasized that the results in Fig-
ure 14 were obtained without operating any manual thresholding operation;
in other words, the proposed algorithm allows to fully automate the process
of estimating the lesion load for a given patient. Obviously, operating a man-
ual tuning of the network, the algorithm is able to produce more accurate
results. Overlapping the slices and the output of CNN, is possible to obtain
a 3D reconstruction of the brain of the patient, which displays an estimate
of brain tissue sclerosis (Figure 15).

(a)

(b)

Fig. 15. Three-dimensional recontruction of the lesions detected by using CNN.

Sometimes, the images acquired by MRI systems have, from patient to
patient, significant differences in the intensity of grey and injuries, as indeed it
has been observed also from a slice to another. For this reason, it is necessary
to train the network for adapting it to conditions not encountered before.
However, the results obtained by applying the proposed algorithm have been
very convincing, since CNN can determine most of the lesions and thus it

400 E. Bilotta et al.

could provide a useful support tool for the diagnosis of pathology in particular
to assess the presence and the evolution of the lesions. Efforts are under way
for improving templates obtained by GA. Some snapshots of the software we
have implemented are shown in Figure 16.

(a) (b)

(c)

Fig. 16. Snapshots of the software we have developed. (a) Main window of the
software (b) Input of the simulation (c) Output of the simulation.

The experiments presented above have been carried out by using an algo-
rithm based on two-dimensional data. The new idea is to extend our results
by working on volumes of data, rather than processing planar images. 3D
CNNs may represent a new and powerful tool for the development of appli-
cations for supporting medical diagnosis; in fact, by exploiting information
provided by a three dimensional representation of the brain, the evolution of
a 3D network can lead to a significant improvement of the performances. For
this reason, by modifying the architecture of the standard CNN, we propose

Evolving CNNs for the Automated Segmentation of MS Lesions 401

a 3D-CNN model that is able to handle and perform different functions on
objects in a three-dimensional space. We consider an array of M × N × P
cells representing dynamical systems. In this case, each cell is referenced by
the triple (i, j, k), and the evolution of the state is described by the following
set of ODEs:

dxijk(t)
dt

= −xijk(t) +
∑

C(l,m,n)∈Sr(i,j,k) A(i, j, k; l, m, n) ylmn(t) +
∑

C(l,m,n)∈Sr(i,j,k) B(i, j, k; l, m, n)ulmn + zijk

yijk(t) = f(xijk(t)) =
1
2
[|xijk(t) + 1|] − [|xijk(t) − 1|] (14)

where A and B contain the synaptic weights between Cijk and its neighbors,
and zijk denotes the bias of the cell. We define the sphere of influence of
radius r of Cijk , denoted by Sijk(r), as the set of cells satisfying the following
property:

Sijk(r) = {C(l, m,n) | max
1≤l≤M,1≤m≤N,1≤n≤P

{|l − i|, |m − j|, |n − k|} ≤ r}, r ≥ 0

(15)

This means that, assuming r = 1, a 3 × 3 × 3 neighborhood is associated to
each cell, i.e., each processing unit has 27 neighbors (including the cell itself).
Figure 17 shows the 3×3×3 neighborhood for the cell at the position (i, j, k)
(reported as grey). To avoid cluttering, only the connections between Cijk

and its neighbors are shown.

Fig. 17. Neighbourhood for the cell Cijk of a 3D-CNN.

Therefore, for a space-invariant 3D-CNN, the feedback operator is given
by the array A ∈ R

3×3×3, the control operator is B ∈ R
3×3×3 and so 55

parameters are needed in order to define a template {A, B, z} for a 3D-CNN.

402 E. Bilotta et al.

An innovative library of 3D templates has been implemented, that allows to
execute interesting and efficient operations, as shown in Figures 18 and 19.

(a) Input (b) Output

Fig. 18. Edge corners detection.

(a) Input (b) Output

Fig. 19. Spherical objects detection.

We used GAs for 3D template learning. This means that even a 3D-CNN
can be trained by a learning algorithm in such a way that, during the training
process, the network learns which the configuration for performing the de-
sired operation is. The slices acquired from a MRI scanning can be recasted
into a three dimensional array and provided as input to the 3D-CNN; a 3D
visualization of the input, obtained by superimposing 24 slices for a given
patient, is shown in Figure 20. In this way, the analysis of MRI images can
be performed according to the CNN model (14). The template used for the
segmentation of MS lesions on planar images (13) has been adapted in order
to construct a 3 × 3 × 3 template to be used for 3D-CNNs.

Again, after detecting lesions inside the brain area (Figure 21(a)), by ap-
plying 3D templates we have found for operations on volumetric data, “noise
removal” is performed and voxels corresponding to MS lesions are segmented,
as shown in Figure 21(b).

Evolving CNNs for the Automated Segmentation of MS Lesions 403

Fig. 20. 3D visualization of MRI slices re-casted into an array 256 × 256 × 24.

(a) (b)

Fig. 21. CNN processing of MRI volumetric data. A 3D surface representation of
sub-cortical structure and lesions, generated from the results of our method. Note
how the 3D rendering outlines the global structure of the lesions.

4.3 Integration into the Productive System and with
other Software or Hardware Components

We are integrating this system within the Institute of Neurological Sciences,
National Research Council, Piano Lago di Mangone, Cosenza, in collabora-
tion with the Faculty of Medicine, University “Magna Græcia” of Catanzaro.
Meanwhile we are expanding the number of patients to least 10 for each
step of the EDSS scale, for a total of 100 patients. We are trying to corre-
late TLLs, found via the automated approach that we have developed, with

404 E. Bilotta et al.

clinical signs of MS, in correlation with the EDSS. We are also conducting a
study on the evolution of the disease, in correlation with the increase of lesion
load. We are trying to find “the clinical impossible”, i.e., intermediate lesion
load observed in the scale of functional systems, that cannot be assessed by
neurologists. Instead, by using the CNN automated segmentation method, we
could research interstitial values of lesion load related to different disabilities
in both cognitive and motor skills.

These results could be very useful in the management of MS patients’ ther-
apies, thus allowing this method to work in a real life situation. Moreover,
given the possibility of implementing in hardware, the CNNs-based algorithm
could even be integrated on chip as a system embedded in the MRI machine.
This method can also be generalized to other diseases and other forms of
brain imaging technologies. Furthermore, the method has practical applica-
tion as it can be used both for diagnostic purposes and for training medical
professionals.

5 Experimental Results

The experiment described in this section compares the accuracy of the CNN-
based segmentation method, we have presented in the previous sections, with
manual delineations of MS lesions. The second approach is similar to the CNN
based approach but it consists of different non-automatic steps. Both meth-
ods utilize the same set of data, which captures the spatial distributions of
the TLL in brain white matter. For both methods, the training data of the
experiment consists of sequences of magnetic resonance images, as the exam-
ples in Figures 13. The data are generated through the approach suggested
by Warfield et al. [73], which aligns the training subjects to a pre-selected
training case and then measures the overlap between the corresponding seg-
mentations. Each method segments the same number of cases. Magnetic reso-
nance imaging scanning was performed on a 1.5 T Unit (Signa NV/i, General
Electric, Milwaukee, Wisconsin) using a standard quadrature head coil. 2D
fast fluid-attenuated inversion-recovery (FLAIR) axial images (TR 8000ms,
TE 120ms; 256×224 image matrix, FOV: 24cm; 24 slices, 4mm slices, 1−mm
gap) oriented along the AC-PC line were used to calculate the hyper-intense
lesion load. We have evaluated the accuracy of the approaches by measuring
the agreement of the automatic segmentations of the TLL to the manual ones.
Note that the other method greatly depends on the precise segmentation of
white matter as the MS disease is characterized of weakly visible boundary.
The performances of the process have been quantitatively evaluated by com-
paring the CNN output and the expert’s manual delineation of MS lesions,
using the Dice coefficient [74] as a metric. The Dice coefficient D is a statistic
measure used for comparing the extent of spatial overlap between two binary
images. It is commonly used in reporting performance of segmentation and

Evolving CNNs for the Automated Segmentation of MS Lesions 405

its values range between 0 (no overlap) and 1 (perfect agreement). In this
work, the Dice values, expressed as percentages, are computed as follows:

D =
2|LCNN ∩ LG|
|LCNN | + |LG| × 100 (16)

where LCNN is the automated segmentation result and LG the manual one.
The graph in Figure 22 shows the Dice measure for the three compared
templates in the 11 cases.

Fig. 22. Dice measures for Template1, Template2, Template3.

We have compared quantitatively the performance of the three templates
with the gold standard represented by the manual measures. The results can
be summarized as follows:

1. The template which appears to be the best is Template1, with an average
overlap ratio 0.58 compared to the gold standard handbook (1 perfect
overlap, 0 no overlap); Template1 is absolutely the best in 6/11 = 55%
of the subjects, respectively, followed by Template3 in 3/11 = 27% of the
subjects, and Template2 in 2/11 = 18%.

2. Template2 is more prone to under-segmentation.
3. Template3 is more prone to over-segmentation.

Proportionally, the average error of under-segmentation of Template2 (1.25)
is greater than that of over-segmentation of Template3 (0.89). From
Figure 22, it is possible to observe that, by applying Template1, the highest
Dice measure is achieved for Patient2 (∼ 0.82), while the algorithm produces
the lowest value (∼ 0.24) on Patient4. The method we have implemented
for automatically segmenting MS lesions gives satisfactory results, showing
that after the learning process the CNN is capable of detecting MS lesions

406 E. Bilotta et al.

with different shapes and intensities, even in MRI slices with different con-
trasts between white and grey matter, with respect to the images used during
the genetic training process. Thus, the proposed algorithm provides a good
robustness.

It is worth noting that training images, as well as the ones used for testing,
come from a dataset of real MS patients and the MRI are not pre-processed.
The algorithm is run directly on the slices as they are acquired by the mag-
netic resonance. The aim is to provide a tool that does not require any man-
ual operation for the physicians, and the training process is still underway
in order to further improve the robustness. The vast majority of the lesion
load, detected by the CNN for the described sample, ranges from D = 0.6
to D = 0.8. The technique we propose for segmenting white matter lesions
in MS is a fully automatic method and does not require manually segmented
data. Semiautomatic methods are highly dependent on the choice of an ap-
propriate threshold to effectively detect lesions. Thresholds usually may vary
between different slices even for the same patient, thus leading to a time con-
suming task. Our algorithm, however, allows for obtaining the desired output
by programming a fully automated strategy on the entire dataset, without
the need of external calibration.

Simulations have allowed verifying the validity of the algorithm described
above. The output generated by the CNN can also be viewed in the MRIcro
medical image viewer. Calculating the number of pixels corresponding to the
injury and knowing the size of the voxel used in the scanning, it is possible
to estimate the TLL for any patient. This method provides an important
parameter to monitor the progress of the pathological disease. It should be
emphasized that the results were obtained without changing the template
from one slice to another.

6 Conclusions

In this chapter, we have presented a new, completely automatic segmentation
technique for detecting MS lesions in white matter regions of the brain. The
performance of the method has been evaluated and compared to manual
segmentation. The results, obtained by applying the proposed algorithm, are
very convincing, since the CNN system can determine most of the lesions in
all the patients. The method we have implemented could be a useful MRI
support tool for the evaluation of lesions in MS, particularly to assess the
evolution of the lesions. From a comparison with other existing methods in
the literature on this topic, we can say that the results are valuable and
the threshold of recognition is currently at 70%. Furthermore, it should be
emphasized the real improvements of the proposed method, with respect to
our previous work, are the greater accuracy of the system, its adaptation
to different conditions of the stimula, and its ability to create 3D images of

Evolving CNNs for the Automated Segmentation of MS Lesions 407

the injured areas of the brain. It thus effectively supports medical diagnosis.
With this method, slighter changes in the total lesion load can be detected,
improving both our knowledge of the disease and our ability to monitor it.

7 Future Work

MS lesions have a complex evolution that begins with an initial disruption
of blood brain barrier, accompanied by demyelination, inflammation, and
axonal damages. Later on the disease appears to regress partially. So far,
clinical studies and the characteristics of the MRI technology have allowed
the identification of the evolution of this disease and three main groups of
lesions have been identified. This classification includes:

1. Acute lesions demonstrated by losses in the blood-brain barrier, detected
in contrast-MR Advanced imaging (enhancing lesions);

2. Chronic wounds severely damaged, hypointense so-called “black holes”,
visible on T1-weighted MR images (T1WI);

3. Hyperintense lesions, detectable in T2 (T2 lesions), visible on T2-weighted
MRI (T2WI).

This classification of MS lesions in these subtypes is widely accepted and has
demonstrated good clinical utility in the related studies [75, 76]. For future
work we plan to use the CNNs based method to automatically segment MS
lesions into the three subtypes mentioned above, with respect to different
brain tissue compartments. To do this, we shall use different sequences of
magnetic resonance images that identify different stages of evolution of the
disease. We also want to divide MRI by using a grid, like a chessboard, in
order to locate in which quadrant of the grid the lesions settled. This would
enable us to correlate the location of the lesions in the brain with a more ac-
curate identification of the specific disabilities of each patient. We also want
to see if it is possible to study the patterns of this disease through the ap-
plication of methods of chaos and nonlinear dynamical systems, intercepting
sensitivity to initial data, variables for each subject, the possibility of devel-
oping the disease within a parameter space, the evolution of the patterns of
MS injuries.

References

1. Lanzarini, L., De Giusti, A.: Pattern recognition in medical images using neural
networks,
http://journal.info.unlp.edu.ar/journal/journal4/papers/pap4.pdf

2. Wismuller, A., Vietze, F., Dersch, D.R.: Segmentation with Neural Networks.
In: Handbook of Medical Image Processing and Analysis. ch. 7, pp. 113–143.
Elsevier, Johns Hopkins University, USA, Baltimore (2008)

http://journal.info.unlp.edu.ar/journal/journal4/papers/pap4.pdf

408 E. Bilotta et al.

3. Suri, J.S., Wilson, D.L., Laxminarayan, S.: Segmentation Models, Part B. In:
Handbook of Biomedical Image Analysis. ch. 7, vol. 2, pp. 315–368. Kluwer
Academic, Plenum Publishers, New York (2005)

4. Wismuller, A., Meyer-Bease, A., Lange, O., Auer, D., Reiser, M.F., Sumners,
D.: Model-free functional MRI analysis based on unsupervised clustering. Jour-
nal of Biomedical Informatics 37, 10–18 (2004)

5. Leinsinger, G.L., Wismuller, A., Joechel, P., Lange, O., Heiss, D.T., Hahn,
K.: Evaluation of the motor cortex using fMRI and image processing with
self-organized cluster analysis by deterministic annealing. Radiology, 221–487
(2001)

6. Wismüller, A., Dersch, D.R., Lipinski, B., Hahn, K., Auer, D.: Hierarchical
Clustering of Functional MRI Time-Series by Deterministic Annealing. In:
Brause, R., Hanisch, E. (eds.) ISMDA 2000. LNCS, vol. 1933, pp. 49–54.
Springer, Heidelberg (2000)

7. Döhler, F., Mormann, F., Weber, B., Elger, C.E., Lehnertz, K.: A cellular
neural network based method for classification of magnetic resonance images:
Towards an automated detection of hippocampal sclerosis. Journal of Neuro-
science Methods 170(2), 324–331 (2008)

8. Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Transactions
on Circuits and Systems 35(10), 1257–1272 (1988)

9. Chua, L.O.: CNN: A paradigm for Complexity. World Scientific Series on Non-
linear Science (1996)

10. Chua, L.O., Roska, T.: Cellular Neural Networks and Visual Computing: Foun-
dations and Applications. Cambridge University Press, Cambridge (2004)

11. Niederhoefer, C., Gollas, F., Tetzlaff, R.: EEG analysis by multi layer Cellular
Nonlinear Networks (CNN). In: Biomedical Circuits and Systems Conference,
November 29–December 1. IEEE, Los Alamitos (2006)

12. Schwarz, T., Heimann, T., Tetzlaf, R., Rau, A.M., Wolf, I., Meinzer, H.P.: Inter-
active Surface Correction for 3D Shape Based Segmentation. Medical Imaging
(2008)

13. Bilotta, E., Cerasa, A., Pantano, P., Quattrone, A., Staino, A., Stramandinoli,
F.: A CNN Based Algorithm for the Automated Segmentation of Multiple
Sclerosis Lesions. In: EvoStar 2010 Conference (2010)

14. Chua, L.O.: A Nonlinear Dynamics Perspective of Wolfram’s New Kind of
Science. World Scientific Publishing Co., Singapore (2007)

15. Roska, T., Chua, L.O., Wolf, D., Kozek, T., Tetzlaff, R.: Simulating Nonlin-
ear Waves and Partial Differential Equations via CNN. IEEE Transactions on
Circuits and Systems 42(10) (October 1995); Part I: Basic Techniques

16. Kozek, T., Chua, L.O., Roska, T., Wolf, D., Tetzlaff, R., Pufferand, F., Lotz,
K.: Simulating Nonlinear Waves and Partial Differential Equations via CNN.
IEEE Transactions on Circuits and Systems, Part 11 42(10) (October 1995)

17. Arena, P., Basile, A., Bucolo, M., Fortuna, L.: Image processing for medical
diagnosis using CNN. Nuclear Instruments and Methods A 497(1), 174–178
(2003)

18. Szabo, T., Barsi, P., Szolgay, P.: Application of Analogic CNN algorithms in
Telemedical Neuroradiology. Journal of Neuroscience Methods 170(7), 2063–
2090 (2005)

19. Kek, L., Karacs, K., Roska, T.: Cellular Wave Computing Library (Templates,
Algorithms and Programs ver.2.1), Cellular Sensory Wave Computers Labora-
tory, Hungarian Academy of Science (2007)

Evolving CNNs for the Automated Segmentation of MS Lesions 409

20. Trapp, B.D., Ransohoff, R., Rudich, R.: Axonal pathology in multiple sclerosis:
relationship to neurologic disability. Current Opinion in Neurology 12(3), 295–
302 (1999)

21. Keegan, B.M., Noseworthy, J.H.: Multiple sclerosis. Annual Review of
Medicine 53, 285–302 (2002)

22. Lassmann, H.: Cellular damage and repair in multiple sclerosis. In: Lazzarini,
R.A. (ed.) Myelin Biology and Disorders, pp. 753–762. Elsevier, Amsterdam
(2004)

23. Ozturk, A., Smith, S., Gordon-Lipkin, E., Harrison, D., Shiee, N., Pham, D.,
Caffo, B., Calabresi, P., Reich, D.: Mri of the corpus callosum in multiple
sclerosis: association with disability. Multiple Sclerosis 16(2), 166–177 (2010)

24. Kurtzke, J.F.: Rating neurologic impairment in multiple sclerosis: an expanded
disability status scale (edss). Neurology 33(11), 1444–1452 (1983)

25. Gronwall, D.M.: Paced auditory serial-addition task: a measure of recovery
from concussion. Perceptual and Motor Skills 44, 367–373 (1977)

26. Young, K., Schuff, N.: Measuring Structural Complexity in Brain Images. Neu-
roImage 39(4), 1721–1730 (2008)

27. Giorgio, A., Palace, J., Johansen-Berg, H., Smith, S.M., Ropele, S., Fuchs, S.,
Wallner-Blazek, M., Enzinger, C., Fazekas, F.: Relationships of brain white
matter microstructure with clinical and MR measures in relapsing-remitting
multiple sclerosis. Journal of Magnetic Resonance Imaging 31(2), 309–316
(2008)

28. Wonderlick, J.S., Ziegler, D.A., Hosseini-Varnamkhasti, P., Locascio, J.J.,
Bakkour, A., Van Der Kouwe, A., Triantafyllou, C., Corkin, S., Dickerson, B.C.:
Reliability of mri-derived cortical and subcortical morphometric measures: ef-
fects of pulse sequence, voxel geometry, and parallel imaging. NeuroImage 44(4),
1324–1333 (2009)

29. Wu, Y., Warfield, S.K., Tan, I., Wells, W.M., Meier, D.S., Van Schijndel, R.,
Barkhof, F., Guttmann, C.R.: Automated segmentation of multiple sclerosis
lesion subtypes with multichannel mri. NeuroImage 32(3), 1205–1215 (2006)

30. Akselrod-Ballin, A., Galun, M., Gomori, J.M., Filippi, M., Valsasina, P., Basri,
R., Brandt, A.: Automatic segmentation and classification of multiple sclerosis
in multichannel mri. IEEE Transactions on Biomedical Engineering 56(10) (
October 2009)

31. Zharkova, V., Jain, L.: Introduction to pattern recognition and classification
in medical and astrophysical images. In: Artificial Intelligence in Recognition
and Classification of Astrophysical and Medical Images. SCI, vol. 46, pp. 1–18.
Springer, Heidelberg (2007)

32. Brzakovic, D., Luo, X.M., Brzakovic, P.: An Approach to Automated Detection
of Tumors in Mammograms. IEEE Transactions on Medical Imaging 9(3) (
September 1990)

33. Ertas, G., Gulcur, H.O., Osman, O., Ucan, O.N., Tunaci, M., Dursun, M.:
Breast MR segmentation and lesion detection with cellular neural networks
and 3D template matching. Computers in Biology and Medicine 38, 116–126
(2008)

34. Brem, M.H., Lang, P.K., Neumann, G., Schlechtweg, P.M., Schneider, E., Jack-
son, R., Yu, J., Eaton, C.B., Hennig, F.F., Yoshioka, H., Pappas, G., Duryea,
J.: Magnetic resonance image segmentation using semi-automated software for
quantification of knee articular cartilage-initial evaluation of a technique for
paired scans. Radiology 38, 505–511 (2009)

410 E. Bilotta et al.

35. Filippi, M., Yousry, T., Baratti, C., Horsfield, M.A., Mammi, S., Becker, C.,
Voltz, R., Spuler, S., Campi, A., Reiser, M.F., Comi, G.: Quantitative assess-
ment of MRI lesion load in multiple sclerosis. Brain 119, 1349–1355 (1996)

36. Souplet, J.C., Lebrun, C., Chanalet, S., Ayache, N., Malandain, G.: Approaches
to segment multiple-sclerosis lesions on conventional brain MRI. Revue Neu-
rologique 165(1), 7–14 (2009)

37. Shiee, N., Bazin, P.L., Ozturk, A., Reich, D.S., Calabresi, P.A., Pham, D.L.: A
topology-preserving approach to the segmentation of brain images with multiple
sclerosis lesions. NeuroImage 49(2), 1524–1535 (2010)

38. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring Strategies
for Training Deep Neural Networks. Journal of Machine Learning Research 10,
1–40 (2009)

39. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

40. Bilotta, E., Pantano, P.: Cellular Non-Linear Networks as a New Paradigm
for Evolutionary Robotics. In: Frontiers in Evolutionary Robotics, Hitoshi Iba,
Vienna, Austria, pp. 87–108 (2008)

41. Bilotta, E., Pantano, P., Stranges, F.: A Gallery of Chua Attractors. Interna-
tional Journal of Bifurcation and Chaos 1, 1–60 (2007)

42. Bilotta, E., Pantano, P., Stranges, F.: A Gallery of Chua Attractors. Interna-
tional Journal of Bifurcation and Chaos 2, 293–380 (2007)

43. Bilotta, E., Pantano, P., Stranges, F.: A Gallery of Chua Attractors. Interna-
tional Journal of Bifurcation and Chaos 17(3), 657–734 (2007)

44. Bilotta, E., Pantano, P., Stranges, F.: A Gallery of Chua Attractors. Interna-
tional Journal of Bifurcation and Chaos 17(4), 1017–1078 (2007)

45. Bilotta, E., Pantano, P., Stranges, F.: A Gallery of Chua Attractors. Interna-
tional Journal of Bifurcation and Chaos 17(5), 1383–1511 (2007)

46. Bilotta, E., Pantano, P., Stranges, F.: A Gallery of Chua Attractors. Interna-
tional Journal of Bifurcation and Chaos 17(6), 1801–1910 (2007)

47. MacDonald, A.E., Lee, J.L., Sun, S.: QNH: Design and test of a quasi-
nonhydrostatic model for mesoscale weather prediction. Monthly Weather Re-
view 128, 1016–1036 (2000)

48. Anand, A.J., Shattuck, D.W., Pantazis, D., Li, Q., Damasio, H., Leahy, R.M.:
Optimization of landmark selection for cortical surface registration. In: CVPR
2009, pp. 699–706 (2009)

49. Joshi, A., Leahy, R., Toga, A.W., Shattuck, D.: A Framework for Brain Reg-
istration via Simultaneous Surface and Volume Flow. In: Prince, J.L., Pham,
D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 576–588. Springer,
Heidelberg (2009)

50. Schneider, P., Andermann, M., Wengenroth, M., Goebel, R., Flor, H., Rupp,
A., Diesch, E.: Reduced volume of Heschl’s gyrus in tinnitus. NeuroImage 45(3),
927–939 (2009)

51. Ylipaavalniemi, J., Vigrio, R.: Analyzing consistency of independent compo-
nents: an fMRI illustration. NeuroImage 39(1), 169–180 (2008)

52. Wachs, J.P., Stern, H.I., Edan, Y., Gillan, M., Handler, J., Feied, C., Smith,
M.: A gesture-based tool for sterile browsing of radiology images. Journal of
the American Medical Informatics Association 15(3), 321–324 (2008)

53. Thompson, P.M., Vidal, C., Giedd, J.N., Gochman, P., Blumenthal, J., Nicol-
son, R., Toga, A.W., Rapoport, J.L.: Mapping adolescent brain change reveals
dynamic wave of accelerated gray matter loss in very early-onset schizophrenia.
The Journal of Neuroscience 21(22), 8819–8829 (2001)

Evolving CNNs for the Automated Segmentation of MS Lesions 411

54. Wang, Y., Zhang, J., Gutman, B., Chan, T.F., Becker, J.T., Aizenstein, H.J.,
Lopez, O.L., Tamburo, R.J., Toga, A.W., Thompson, P.M.: Multivariate tensor-
based morphometry on surfaces: application to mapping ventricular abnormal-
ities in HIV/AIDS. NeuroImage 49(3), 2141–2157 (2010)

55. Tosun, D., Prince, J.L.: A geometry-driven optical flow warping for spatial nor-
malization of cortical surfaces. IEEE Transactions of Medical Imaging 27(12),
1739–1753 (2008)

56. Vernon, A.C., Johansson, S.M., Modo, M.M.: Non-invasive evaluation of nigros-
triatal neuropathology in a proteasome inhibitor rodent model of Parkinson’s
disease. BMC Neurosci. 11(1) (2010)

57. Labate, A., Gambardella, A., Aguglia, U., Condino, F., Ventura, P., Lanza, P.:
Temporal lobe abnormalities on brain MRI in healthy volunteers: A prospective
case-control study. A. Neurology 74(7), 553–557 (2010)

58. Leemput, K.V., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Au-
tomated segmentation of multiple sclerosis lesions by model outlier detection.
IEEE Transactions on Medical Imaging 20(8), 677–688 (2001)

59. Freifeld, O., Greenspan, H., Goldberger, J. (eds.): Lesion detection in noisy
MR brain images using constrained GMM and active contours (ISBI 2007),
4th IEEE International Symposium on Biomedical Imaging (2007)

60. Aı̈t-Ali, L.S., Prima, S., Hellier, P., Carsin, B., Edan, G., Barillot, C.: STREM:
A Robust Multidimensional Parametric Method to Segment MS Lesions in
MRI. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp.
409–416. Springer, Heidelberg (2005)

61. Bricq, S., Collet, C., Armspach, J.P. (eds.): 5th IEEE International Sympo-
sium on Biomedical Imaging Lesion detection in 3D brain MRI using trimmed
likelihood estimator and probabilistic atlas (ISBI 2008), (2008)

62. Garcia-Lorenzo, D., Prima, S., Collins, D., Arnold, D., Morrissey, S., Baril-
lot, C. (eds.): Combining robust expectation maximization and mean shift al-
gorithms for multiple sclerosis brain segmentation (MIAMS 2008), MCCAI
Workshop on Medical Image Analysis on Multiple Sclerosis (2008)

63. Harmouche, R., Collins, L., Arnold, D., Francis, S., Arbel, T. (eds.): 18th Inter-
national Conference on Pattern Recognition Bayesian MS lesion classification
modeling regional and local spatial information (ICPR 2006) (2006)

64. Ramasamy, D.P., Benedict, R., Cox, J.L., Fritz, D., Abdelrahman, N., Hussein,
S., Minagar, A., Dwyer, M.G., Zivadinov, R.: Extent of cerebellum, subcortical
and cortical atrophy in patients with ms: a case-control study. Journal of the
Neurological Sciences 282(1-2), 47–54 (2001)

65. Beltrame, F., Koslow, S.H.: Neuroinformatics as a megascience issue. IEEE
Transactions on Information Technology in Biomedicine 3, 339–340 (1999)

66. Bota, M., Arbib, M.A.: The NeuroHomology Database. In: Arbib, M.A.,
Grethe, J. (eds.) Computing the brain: A guide to neuroinformatics, pp. 337–
351. Academic Press, New York (2001)

67. Burns, G.A.P.C., Stephan, K.E., Ludäscher, B., Gupta, A., Kötter, R.: Towards
a federated neuroscientific knowledge management system using brain atlases.
Neurocomputing 38(40), 1633–1641 (2001)

68. Shattuck, D.W., Leahy, R.M.: Graph Based Analysis and Correction of Cortical
Volume Topology. IEEE Transactions on Medical Imaging 20(11), 1167–1177
(2001)

69. Megalooikonomou, V., Ford, J., Shen, L., Makedon, F., Saykin, F.: Data mining
in brain imaging. Statistical Methods in Medical Research 9, 359–394 (2000)

412 E. Bilotta et al.

70. Mazziotta, J.C., Toga, A.W., Evans, A.C., Fox, P., Lancaster, J.: A proba-
bilistic atlas of the human brain: theory and rationale for its development.
NeuroImage 2(2), 89–101 (1995)

71. Caponetto, R., Fortuna, L., Frasca, M.: Advanced Topics on Cellular Self-
Organizing Nets and Chaotic Nonlinear Dynamics to Model and Control Com-
plex Systems. World Scientific Series on Nonlinear Science, vol. 63 (2008)

72. Holland, J.: Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor (1975)

73. Warfield, S.K., Rexilius, J., Huppi, P.S., Inder, T.E., Miller, E.G., Wells III,
W.M., Zientara, G.P., Jolesz, F.A., Kikinis, R.: A binary entropy measure to as-
sess nonrigid registration algorithms. In: Niessen, W.J., Viergever, M.A. (eds.)
MICCAI 2001. LNCS, vol. 2208, pp. 266–274. Springer, Heidelberg (2001)

74. Dice, L.R.: Measures of the amount of ecologic association between species.
Ecology 26(3), 297–302 (1945)

75. Barkhof, F., Van Waesberghe, J.H., Filippi, M.: T(1) hypointense lesions in
secondary progressive multiple sclerosis: effect of interferon beta-1b treatment.
Brain 124, 1396–1402 (2001)

76. Paty, D.W., Li, D.K.: Interferon beta-lb is effective in relapsing remitting mul-
tiple sclerosis: II. MRI analysis results of a multicenter, randomized, double-
blind, placebo-controlled trial. Neurology 57 (1993)

An Evolutionary Algorithm for Skyline
Query Optimization

Marlene Goncalves, Ivette Mart́ınez, Gabi Escuela,
Fabiola Di Bartolo, and Francelice Sardá

Abstract. Skyline queries have emerged as an answer to the need of solving
queries that involve user preferences. Although the evaluation of the Skyline
operator is costly, its efficient incorporation into an execution plan may de-
crease the execution time of SQL queries. This process is known as Skyline
Query Optimization. Several solutions for Skyline Query Optimization have
already been presented. These solutions are most often based on Dynamic
Programming (DP), which means that all alternative plans are exhaustively
enumerated. This approach loses effectiveness as the search space size in-
creases. On the other hand, stochastic search algorithms have shown to be
successful in solving optimization problems arising from standard queries.
Our previous studies have shown that Evolutionary Algorithms (EAs), im-
plemented in the form of eaSky, may outperform DP approaches for Skyline
Query Optimization. Such a comparison between EAs and DP is necessary,
because DP is used in most database management systems despite its afore-
mentioned scaling problem. In this chapter, we present experimental results
of eaSky and show that eaSky can achieve better performance than DP for
large queries. An extended version of eaSky has been developed, and experi-
mental results show further improvements in its performance as compared to
the original eaSky.

Marlene Goncalves · Ivette Mart́ınez · Gabi Escuela
Universidad Simón Boĺıvar, Departamento de Computación y T.I..
Caracas, Venezuela
e-mail: {mgoncalves,martinez,gescuela}@usb.ve

Fabiola Di Bartolo · Francelice Sardá
Universidad Simón Boĺıvar, Grupo de Inteligencia Artificial,
Caracas, Venezuela
e-mail: {fabiola.francelice}@gia.usb.ve

{mgoncalves,martinez,gescuela}@usb.ve
{fabiola. francelice}@gia.usb.ve

414 M. Goncalves et al.

1 Introduction

Structured Query Language (SQL) [1] is a standard language for defining
questions or queries about data in a relational database. An SQL query cor-
responds to an expression which consists of a set of Relational Algebra op-
erators such as Selection, Projection, Join, and Cross-product [2]. During an
SQL query execution, a Database Management System (DBMS) enumerates
several alternative execution plans to evaluate an expression. An execution
plan is a binary tree generated by a DBMS defining an order among the op-
erators, where each tree node represents an operator and its implementation.
The execution plans may differ in terms of the operators’ implementation
and evaluation order. Both differences may affect a query evaluation cost.
Consequently, a DBMS must estimate the costs of each enumerated plan and
choose the plan with the least estimated cost. This process is known as Query
Optimization. Finding an optimal evaluation plan is a combinatorial prob-
lem [3]. In practice, computing an optimal evaluation plan might take longer
than evaluating a suboptimal one, therefore DBMSs typically use heuristics
to find low-cost plans, or, at least, to avoid poor plans.

Recently, efforts have been made by different researchers to express user
preferences in queries. Skyline is an SQL extension for user-preference based
queries which is used in many applications, including multi-criteria decision
making. A Skyline query finds a set of interesting results while satisfying a
set of possibly conflicting conditions.

The complexity for Skyline query evaluation is high. It is in O(n2) in the
worst case, where n is the input dataset size [4]. Nevertheless, several so-
lutions have been proposed for improving the runtime problem in Skyline
evaluation [5, 6]. A Skyline query may be translated into an SQL query, for
instance. However, this evaluation strategy is expensive [5]. A better strat-
egy may be to use and implement Skyline as an integrated operator into a
DBMS [5, 6].

Due to its semantics, Skyline should be evaluated after other operators
because it is an operator that is placed at the end of an evaluation plan.
However, using some algebraic rules, such a so-called canonical plan may be
transformed by inserting Skylines within other operators [2, 7]. Such plans
could have a lesser cost than a canonical plan because they may considerably
reduce the cardinality of intermediate results, thus decreasing the Skyline
query execution time [8]. Also, considering such transformed plans for exe-
cution, i.e., a wider subset of the search space, allows a DBMS to select a
better evaluation plan.

Existing solutions for Skyline Query Optimization are based on Dynamic
Programming (DP) [7, 9, 10]. These solutions enumerate all alternative plans.
Hence, they become less effective as the search space size increases [3]. On
the other hand, stochastic search algorithms, particularly Evolutionary Algo-
rithms (EAs), have revealed to be successful in solving optimization problems
for standard queries [3, 11, 12].

An EA for Skyline Query Optimization 415

In this chapter, we integrate the EA for Skyline Query Optimization pro-
posed in [13] into a real DBMS known as PostgreSQL [14]. We call this
algorithm eaSky. Our experiments have shown that eaSky outperforms a DP
algorithm (dpSky) on large Skylines over real data. We refer to Skylines as
large if they involve a significant number of base relations. It was confirmed
that optimization methods which are able to change the position of Skyline
operators could find better plans than those which cannot move them.

We also propose an extension to eaSky, the extended eaSky, which incor-
porates a crossover operator and three new mutation operators. Our initial
experiments over synthetic data show that the extended eaSky can produce
better results than the original one.

The rest of this chapter is organized as follows. In Section 2, a motivating
example for the Skyline Query Optimization problem is presented, and the
Skyline operator and its algebraic rules, as well as cost formulas for Join and
Skyline operators’ estimations are defined. Section 3 describes the state-of-
the-art approaches for optimizing classical and Skyline queries. In Section 4,
the proposed Skyline optimization algorithm eaSky, based on EAs, is pre-
sented. In Section 5, the performance of the proposed technique is empiri-
cally evaluated against state-of-the-art solutions. Finally, Sections 6 presents
conclusions and future work in this area.

2 Skyline Query Optimization

SQL is a standard language to query relational databases. It is a declarative
language where a user expresses a query and the database management sys-
tem (DBMS) determines a procedure or plan to retrieve an answer for the
user’s query [1]. This plan may be selected based on estimated cost during a
query optimization process.

A plan may be represented using relational algebra expressions [2] which
comprise relational operators such as Selection (σ), Projection (π), Cartesian
Product (×), Union (∪), Intersection (∩), Difference (−) and Join (��) [2].
Any relational algebra expression may be represented by an operator tree
and each relational operator may have several implementations or physical
operators in a DBMS.

The estimated cost of a plan is the sum of all estimated costs of its physical
operators. The Query Optimization goal is to find the plan with the best
estimated cost. Unfortunately, searching for the best plan may be highly
expensive. The DBMS must identify a good plan whose execution time is
acceptable for the user. A good plan produces less data in intermediate query
phases which may reduce the execution time.

Query optimization has been widely studied on SQL queries [2] and this
process may also be applied on Skyline queries. Similarly, a Skyline query

416 M. Goncalves et al.

may be expressed in relational algebra including Skyline as a new operator,
denoted as Sk.

2.1 Motivating Example

Let us consider a website to purchase a personal desktop computer. Any user
might be interested in a cheap computer characterized by high RAM memory
capacity, high hard disk capacity, and a good processor. Although these goals
are desirable for users, computers tend to be more expensive as they have
more memory, storage space, and faster processors. As a website engine may
not determine nor even decide which the best computer is, it must identify
all interesting ones. A computer is interesting if and only if there is no other
cheaper computer with better RAM memory, hard disk, and processor. The
set of interesting computers is known as Skyline. Thus, a Skyline query finds
a set of interesting results, satisfying a set of possibly conflicting conditions.
A query example in SQL may be expressed as follows:

select * from RAM r, Processor p, Disk d
[where ...]
skyline of price min, r.size max, p.speed max, d.size max

To illustrate Skyline Query Optimization, let us suppose that computer com-
ponents have a price and are stored in three different relational tables: RAM,
Processor, and Disk. A possible relational algebra expression that represents
a query to identify interesting computers may be SkP (RAM × (Processor ×
Disk)) where P corresponds to user criteria, i.e., the best price, RAM mem-
ory, hard disk and processor. Figure 1(a) shows a tree structure associated
with this expression where a Skyline SkP was placed at the end of the tree
in order to be executed on the whole dataset. In this case, the DBMS builds
all possible computer configurations (RAM × (Processor × Disk)) and then
takes the best ones in terms of price, RAM memory, hard disk, and processor
applying the SkP operator placed at the end.

In [2], the authors have defined rules that allow constructing equivalent
expressions. Thus, the expression represented in Figure 1(a) may be trans-
formed into the expression shown in the tree structure of Figure 1(b) using
algebraic rules in order to push down the Skyline [9]. For this expression,
the engine selects the best options for each brand memory, hard disk and
processor to build cheaper computer configurations following these specifi-
cations. Intuitively, in Figure 1(b), preferences have been separated (SkP1,
SkP2 and SkP3) and computed by desirable goals for users; and specifica-
tions are joined to retrieve a final answer. In this way, each Skyline operator
reduces the cardinality of the intermediate results which, in turn, decreases
the Skyline query execution time. Let us, for example, suppose that each
relational table has 10 components and five brands exist for each component.

An EA for Skyline Query Optimization 417

SkP

×

Disk×

ProcessorRAM

(a) Initial Plan

SkP

×

SkP3

Disk

×

SkP2

Processor

SkP1

RAM

(b) Transformed Plan

Fig. 1. Tree structures

This means that there are 1000 configurations (10 RAMs × 10 Processors ×
10 Disks) and two best components for each table. The first plan, SkP (RAM
× (Processor × Disk)), must calculate 1000 configurations on the Skyline. In
the second plan, the Skyline is to be evaluated on 10 components producing
only two best ones, and the final Skyline must compute 8 components (2
RAMs × 2 Processors × 2 Disks).

Finally, a complete search space exploration for building good plans
may be worse than executing the worst plan. Consequently, several tech-
niques [11, 15, 16, 17] are used to test subsets of the whole search space in
order to reduce query execution time. These techniques are based on DP, ge-
netic algorithms, EAs, tabu search, etc. Techniques based on DP have been
used in many relational DBMSs and were popularized by System-R [15].
Subsequently, techniques based on pseudo-random algorithms began to be
established because their search time does not increase as much as the run-
time of dynamic programming algorithms when the search space enlarges.
Taking into account these findings, we are proposing the development of EAs
for the Skyline Query Optimization problem.

2.2 Skyline Operator

SQL was extended in [5] to express desirable conditions, but not precisely,
over data. In Skyline queries, conditions may be conflictive. Therefore, several
optimal answers may be retrieved. Syntactically, a Skyline query may be
specified as follows:

418 M. Goncalves et al.

select *

from table_1, table_2, ... table_n

[where ...]

skyline of att1 [max|min|diff] [, att2 [max|min|diff], ...] ...

A SKYLINE OF clause is composed by a list of criteria or a multi-criteria
function definition. Each criterion contains an attribute or dimension used to
rank a dataset. Each dimension may be an integer, float, or a date and may
be annotated with directives: min, max, and diff. The directives min and max
indicate minimum or maximum values, whereas diff is used to retain the best
choice with respect to every distinct value for an attribute.

A Skyline query retrieves a set of interesting or non-dominated tuples. A
tuple dominates another one if it is better or equal than the other one in
every dimension and better in at least one. Given two tuples t and p from a
table R, and a multi-criteria function defined by m1 min, m2 min, . . . , mp

min, Mp+1 max, Mp+2 max, . . . , Mq max, dq+1 diff, dq+2 diff, . . . , dn

diff, t dominates p if:

• ti � pi with i = 1, 2, . . . , p
• ti � pi with i = p + 1, . . . , q
• ti = pi with i = q + 1, . . . , n

2.3 Estimating Cost

DBMSs use formulas that estimate the execution cost of physical operators.
Given two relations, R and S; the number of pages of R, M ; the number of
tuples per page of R, pR; the number of pages of S, N ; the number of tuples
per page of S, pS ; the number of index levels, XB; the size of input dataset,
n; and the number of Skyline criteria, d, Table 1 presents the formulas used
in this work to estimate the cost of Join and Skyline, where the Skyline
cardinality Ŝn,d is: Ŝn,d = 1

n Ŝn,d−1 + Ŝn−1,d.

Table 1. Cost formulas for Join and Skyline operators

Operator Cost formula

Nested Loops Join [2] M + pR ∗M ∗N

Block Nested Loops Join [2] M + N

Index Nested Loop Join [2] M + (pR ∗ (XB + 1))

Sort Merge Join [2] M + N+ cost of sorting R and S

Hash Join [2] 3(M + N)

Block Nested Loop (BNL) Skyline [9] ≈∑n
j=2

Ŝj−1,d

j−1
Ŝj−1,d+1

Sort Filter Skyline (SFS) [9] ≈∑n
j=2

Ŝj−1,d−1
j−1

Ŝj−1,d

An EA for Skyline Query Optimization 419

2.4 Algebraic Rules

Given two relations R and S; Pr and Ps be the preference subsets defined
on R and S, respectively; and c, the join condition R.x = S.x, Sk[p](R) is
denoted as the Skyline on R with a preference set p. Some of the algebraic
rules used in this work are shown in Table 2. Condition C0 is true if each R
tuple joins with at least an S tuple.

Table 2. Algebraic Rules between Skyline and Join operators

Sk[Pr] (R ��c S) ≡ Sk[Pr] (R) ��c S if C0

Sk[Pr](R ��c S) ≡ Sk[Pr](Sk[
Pr ∪ {R.x diff}](R) ��c S)

Sk[Pr ∪ Ps](R ��c S) ≡ Sk[Pr ∪ Ps](Sk[
Pr ∪ {R.x diff}](R) ��c S)

3 Related Work

Skyline computing corresponds to the classic problem of maximal vector com-
puting [4]. Skyline establishes a partial order between input dataset elements.
This ordering is induced by a multi-criteria function that maximizes and/or
minimizes dimensions simultaneously.

In the database area, Skyline emerges as an extension to the SQL stan-
dard language for allowing users to specify their preferences [5]. Lately, much
effort has been made to define physical Skyline operators in the area of re-
lational database. The BNL (Block Nested Loop) [5], the SFS (Sort Filter
Skyline) [4], and LESS [4] are three scan-based physical operators that al-
low to identify Skylines in relational database systems. The algorithm [6] by
Tan et al. and BBS (Branch-and-Bound Skyline) [18] are index-based opera-
tors that progressively return each Skyline tuple without necessarily scanning
all tuples.

In [4], the authors have been studying the complexity of several Skyline
physical operators. In the worst case, the Skyline operator evaluation is in
O(n2), where n is input dataset size. For that reason, the Skyline opera-
tor evaluation may be very costly as each input dataset element must be
compared against each other.

On the other hand, Skyline query optimization in a database management
system may significantly reduce the Skyline query execution cost. Since the
Skyline set may be smaller than the input dataset [9] and Skyline opera-
tor evaluation costs may be very high [4], there is a need for a process that
determines when a Skyline must be executed in order to reduce the query
execution time. This process is known as query optimization. Previous works

420 M. Goncalves et al.

have shown the advantages of Skyline Query Optimization. In [9], the Mi-
crosoft SQL server was extended for optimizing Skyline queries characterized
by a relation or a join. Chomicki [19] and Hafenrichter et al. [7] proposed a set
of algebraic rules for equivalence between winnow operator queries [19] (win-
now is a more general operator than Skyline). In [9], Chadhuri et al. defined
a set of formulas to estimate Skyline evaluation cost. BNL [5] and SFS [4]
have been integrated into a database management system [9, 10, 20]. The
Skyline operator cardinality has also been estimated in [9, 21, 22]. An EA
for Skyline-Join optimization was proposed by Di Bartolo et. al in [13]. This
article showed that an EA with three mutation operators that alter the po-
sitions of Skylines in queries may find better Skyline plans and within less
iterations than an EA that does not alter the positions of Skylines. It is also
shown that the results of the Skyline EA are of better-quality than the ones
achieved with the DP approach for Skyline Query Optimization.

4 Our Approach

In this section, a mathematical description of the Skyline optimization prob-
lem is presented. The basic elements of an EA for solving this problem are
described. The proposed algorithm is called Extended eaSky. The algorithm
modules that we will define here are the individual representation (or chro-
mosome encoding), the creation of initial population, the fitness function, the
selection and replacement operators, and the variation operators (mutation
and crossover). Three mutation operators from eaSky (JoinOrderMutation,
JoinImplementationMutation, and InsertSkylineMutation), three new oper-
ators for the Extended eaSky (DeleteSkylineMutation, CombineSkylineMu-
tation, and DivideSkylineMutation), and the added crossover operation are
described in detail.

4.1 Mathematical Problem Description

In this section, preliminary definitions needed to describe the Skyline Query
Optimization problem are provided.

Definition 1. A physical operator is an implementation of a logical (algebra
relational or Skyline) operator into a DBMS.

Definition 2. A plan p of a query Q is a sequence of m physical operators
o1, . . . , om. Each operator oj has a cost cj.

Thus, given a Skyline query Q; a set P = {p1, . . . , pn} of equivalent plans for
query Q where pi is a sequence of physical operators o1, . . . , om. Then, the

An EA for Skyline Query Optimization 421

Skyline Query Optimization problem SKQ is to select a plan pk in P with a
minimum

∑
j Coj

4.2 Evolutionary Algorithm Design

An EA called Extended eaSky is being introduced as an approach to deal
with the SKQ problem. eaSky supports all database Join and Skyline oper-
ators listed in Table 1. Algorithm 1 shows a general structure for the eaSky
approach. For its first version [13], the authors used three mutation opera-
tors: two affected Join operators and one which was implemented to insert a
Skyline operator. This first version of eaSky was then integrated into Post-
greSQL. In order to improve its performance, a crossover and three mutation
operators were added to the original eaSky and a set of experiments were
performed to determine the impact in terms of fitness and execution time for
these new operators in the Extended eaSky. A detailed description of eaSky
is presented in forthcoming sections.

Algorithm 1. The eaSky main cycle

1 popSize ←− determineSize();
2 population ←− initializePopulation();
3 repeat
4 parent1, parent2 ←− selection(population) ;
5 child1, child2 ←− crossover(parent1,parent2);
6 mutation(child1,child2);
7 calculateFitness(child1,child2);
8 addToPopulation(child1,child2);

9 until terminationCondition;
10 return theBest

4.2.1 Chromosome Encoding

As encoding, the chromosome extension proposed by Bennett et al. [3] is used,
where each individual is represented by a variable length gene array. Each
gene represents an operation that involves a Join or Skyline operator with
its corresponding tables and attributes. Each individual refers to a left-deep
strategy, represented as a left linear tree. A left linear tree is an expression
tree, where the right (inner) child of every Join node represents a single
table in the query. These trees are translated in an array using a pre-order
traversal. Figure 2 shows a tree that represents a plan and its corresponding
chromosome representation. JBNLJ

A,B is a Join operator implemented as BNLJ
between tables A and B. In order to simplify the notation, it is assumed that

422 M. Goncalves et al.

all Join conditions are over attribute x. SA.a max, B.b max is a Skyline which
maximizes attributes a and b from tables A and B respectively.

SA.a min, B.b max

��BNLJ

BSA.a min, A.x diff

A

−→
SA.a min, A.x diff JBNLJ

A,B SA.a min, B.b max

Fig. 2. Encoded individual

4.2.2 Population Initialization

The initial population is filled in with canonical individuals. In order to cre-
ate a canonical individual, g Joins are created for the initial query and put
into the first g genes of the chromosome. The defined Skyline used for the
initial query is then located at gene g+1. Therefore, canonical plans are those
whose Skylines are at the evaluation tree root. The population sizes are set
depending on the number of tables involved in the query. We choose to set
the population size to ten times the number of tables. Only valid plans (in-
dividuals) are considered, i.e., those which are semantically equivalent to the
original query. This means the search space consists of all valid combinations
of Joins and Skylines.

4.2.3 Selection and Replacement

Individuals are selected proportionally to their fitness. New, mutated indi-
viduals replace all individuals to produce the next generation. However, the
best individuals are also preserved and copied to the new generation.

4.2.4 Fitness Function

The fitness of an individual is the estimated cost of the plan represented by
it. This cost is calculated using the following equation:

An EA for Skyline Query Optimization 423

Fitness = Costplan =
n∑

i=1

Cost(genei) (1)

where n is the chromosome length and Cost(genei) is the operation cost
of genei. The estimated cost for an individual is calculated using the cost
models presented in Section 2.3. It is important to notice that the cost of an
operator depends on the results of the previously applied operators.

4.2.5 Mutation

Genetic optimization approaches, which only apply to standard queries based
on Join operators, do not require checking the individuals after mutation
and crossover [3]. However, the Skyline operator is neither commutative nor
associative, and the genetic operators must be carefully designed in order to
avoid invalid individuals.

During the mutation process, a set of individuals is randomly selected
from the population. For each individual, a mutation operator is chosen.
The first version of eaSky implemented three mutation operators: JoinOrder-
Mutation, JoinImplementationMutation, and InsertSkylineMutation. In this
version, only Nested Loops Join, Index Nested Loop Join, and Sort Merge
Join were considered. Each one of implemented operators modifies individu-
als in a different way, by changing the query operator order or by modifying
or adding new genes to a chromosome.

JoinOrderMutation: For a given individual (plan) P , this operator ran-
domly selects two Join genes. If there is not a Skyline between them and
the result of the left Join’s left child contains the first relation of the sec-
ond Join, then both Joins positions are swapped to produce a new plan
Pm. Figure 3 shows a JoinOrderMutation between Joins at positions 1 and
2. The restrictions over swapping are checked in order to generate valid
individuals.

P :
JBNLJ

A,B JSMJ
B,C JBNLJ

B,D SA.a max, C.c max

0 1 2 3

Pm:
JBNLJ

A,B JBNLJ
B,D JSMJ

B,C SA.a max, C.c max

0 1 2 3

Fig. 3. JoinOrderMutation example

JoinImplementationMutation: This operator randomly selects a Join gene
and changes its implementation for a different one. The Join implementa-
tion could be: Nested Loops Join (NLJ), Block Nested Loop Join (BNLJ),
Index Nested Loop Join (INLJ), Sort Merge Join (SMJ), and Hash Join
(HJ). Figure 4 shows an example of the JoinImplementationMutation

424 M. Goncalves et al.

operator. From plan P , the Join in position 0 is selected to be mutated,
then its implementation BNLJ is replaced by SMJ to produce Pm.

P :
JBNLJ

A,B JSMJ
B,C JBNLJ

B,D SA.a max, C.c max

0 1 2 3

Pm :
JSMJ

A,B JSMJ
B,C JBNLJ

B,D SA.a max, C.c max

0 1 2 3

Fig. 4. JoinImplementationMutation example

InsertSkylineMutation: This operator randomly selects a Skyline gene that
can be mutated. The selected gene is modified using one of the algebraic
rules for Skylines and Joins presented in Section 2.4. This operator may
transform a Skyline operator by creating a new Skyline gene with a con-
dition that is a sub-condition of the original Skyline. Then, the new gene
is pushed into a chromosome. Pushing is done by adding the new Skyline
gene into the position where all involved tables have appeared. Figure 5
shows an example of the InsertSkylineMutation operator. In this case, the
Skyline in position 3 is selected from P , then from a random selection of
algebraic rules, the third rule of table 2 was applied. To form Pm, a new
Skyline is inserted at the first chromosome position.

P :
JBNLJ

A,B JSMJ
B,C JBNLJ

B,D SA.a max, C.c max

0 1 2 3

Pm :
JBNLJ

A,B SA.a max, A.x diff JSMJ
B,C JBNLJ

B,D SA.a max, C.c max

0 1 2 3 4

Fig. 5. InsertSkylineMutation example

For the extended version of the eaSky algorithm, three mutation operators
were added to Skyline operators, they are as follows:

DeleteSkylineMutation: This operator randomly selects a Skyline gene that
can be deleted. The selected gene is deleted if none of the algebraic rules
for the Skylines and Joins presented in Section 2.4 are violated. Notice
that the Skyline located at the tree root may not be deleted according to
these rules. Figure 6 shows an example of this operator, where the Skyline
in position 1 is deleted from chromosome.

CombineSkylineMutation: This operator randomly selects a Join gene char-
acterized by two child Skyline operators, and then combines them into a
Skyline. The new Skyline operator is placed over the selected Join operator

An EA for Skyline Query Optimization 425

P :
JBNLJ

A,B SA.a max, A.x diff JSMJ
B,C JBNLJ

B,D SA.a max, C.c max

0 1 2 3 4

Pm :
JBNLJ

A,B JSMJ
B,C JBNLJ

B,D SA.a max, C.c max

0 1 2 3

Fig. 6. DeleteSkylineMutation example

with a condition that corresponds to the union of two child Skyline condi-
tions. Figure 7 shows how this operator changes chromosome inserting the
Skyline operator in position 3 which combines the Skylines at positions
0 and 2.

P :
SA.a max, A.id diff JSMJ

A,C SC.c max, C.id diff JBNLJ
C,D SA.a max, C.c max

0 1 2 3 4

Pm :
SA.a max, A.id diff JSMJ

A,C SC.c max, C.id diff SA.a max, C.c max, C.id diff JBNLJ
C,D SA.a max, C.c max

0 1 2 3 4 5

Fig. 7. CombineSkylineMutation example

DivideSkylineMutation: This operator divides a Skyline operator that af-
fects a Join operator into two Skyline operators. It is the only mutation
that can be applied to a Skyline operator located at the tree root. In or-
der to perform this mutation, a Skyline operator over a Join is randomly
selected and the tables for the Skyline operator are obtained. Then, two
new child Skyline operators are inserted into a chromosome at the corre-
sponding table positions. The Skyline operator at the tree root keeps its
position. Figure 8 shows an example of the application of this operator to
P , where the Skyline operator in position 1, affecting a Join operator over
tables C and A, is divided into two Skylines, resulting in Pm.

P :
JSMJ

C,A SA.a max, C.c min A.x diff JSMJ
A,D JBNLJ

B,D SA.a max, C.c min

0 1 2 3 4

Pm :
SC.c min C.x diff SA.a max, A.x diff JSMJ

C,A JSMJ
A,D JBNLJ

B,D SA.a max, C.c min

0 1 2 3 4 5

Fig. 8. DivideSkylineMutation example

4.2.6 Crossover

As individuals have shown to be variable in length, operators based on ho-
mologous crossover [23] have been implemented, that is, operators that tend
to preserve the positions of the genetic material. In order to do so, the oper-
ator gets hold of a common region from two selected parents, defined as the

426 M. Goncalves et al.

region where two plans have the same table order. If two parents have more
than one common region, one is randomly selected. In the common region,
a single cut off point is randomly chosen and genetic material is exchanged,
creating two children. In a post-processing phase, each child is repaired in
order to avoid inconsistencies. This repairing process always builds feasible
individuals. Figure 9 shows an example for the crossover operator. In this
case, the common region between Parent1 and Parent2 are tables B, A, D.
If the cutoff point is A, then operators affecting B and A are interchanged
to obtain Child1 and Child2.

P arent1 :
JHJ

B,A SA.a max, A.x diff JINLJ
A,D JBNLJ

D,C SA.a max, C.c max

0 1 2 3 4

Parent2 :
SC.c max, C.x diff JSMJ

C,B JNLJ
B,A JINLJ

A,D SA.a max, C.c max

0 1 2 3 4

Child1 :
JNLJ

B,A SA.a max, A.x diff JINLJ
A,D JBNLJ

D,C SA.a max, C.c max

0 1 2 3 4

Child2 :
SC.c max, C.x diff JSMJ

C,B JHJ
B,A SA.a max, A.x diff JINLJ

A,D SA.a max, C.c max

0 1 2 3 4 5

Fig. 9. Crossover example

5 Experimental Results

We conducted an experimental study with the purpose of analyzing the ef-
fectiveness of the proposed technique. First, the scalability of DP, EAs in
the Skyline Query Optimization problem, and the pushing Skyline opera-
tor’s impact are reported. Second, the impact of new mutation and crossover
operators for improving the performance of EA is shown.

5.1 Scalability and Impact of Pushing Skyline

The first technique we studied optimizes Skyline queries by means of DP and
is called dpSky; the second uses an EA and it is named eaSky. The execution
time rate as well as the optimization and execution times resulting from these
two techniques were computed.

5.1.1 Experimental Design

Dataset and Query Benchmark: The study was conducted on randomly
generated datasets following a uniform distribution. Sixty tables were cre-
ated and loaded. The table cardinality varied from 1000 to 20000 tuples.

An EA for Skyline Query Optimization 427

The Join selectivity was 0.0006. Sixty chained queries were generated and
executed in order to compare the two techniques. Chained queries were
randomly generated and characterized by the following properties: a) 4,
6, and 8 tables in the FROM clause; b) 3, 5, and 8 joins; c) 4, 6, and
7 criteria. With the evolutionary techniques, 20 runs were executed over
each query.

Evaluation Metrics: The Optimization time, total execution time (TET),
and execution time rate (ETR = TETt1

TETt2
) between two techniques t1 and

t2 are reported. Experiments were evaluated on an Intel(R) Pentium(R)
D CPU 3.20GHz, 1024Kb cache, and 1Gb memory.

Implementation: The experimentation environment is PostgreSQL 8.1.4.
The parser of this DBMS was modified to be able to analyze Skyline
queries. The physical operators BNL and SFS were incorporated into the
system. Our techniques were developed in the C programming language
and plugged into the optimizer. All data were stored in relational tables
in PostgreSQL 8.1.4 databases. The PostgreSQL 8.1.4 Analyze Tool was
executed in order to gather statistics on the tables.

5.1.2 dpSky and eaSky Scalability

The optimization and evaluation times for these two techniques are illustrated
in Figure 10. For each number of tables involved in the FROM clause (4, 6 and
8 tables), the time average over 20 queries was measured. Since the difference
between time magnitudes for each number of tables was too large, the y-axis
(time) is logarithmically scaled.

Fig. 10. dpSky vs eaSky performance

428 M. Goncalves et al.

We observed that for four-table queries, the execution time of dpSky was
lower than eaSky’s runtime. The optimization time of eaSky was also almost
one magnitude order higher than the optimization time required by dpSky.
We noted that the evaluation time of eaSky was lesser than dpSky’s evaluation
time. For six-table queries, the times needed for optimization and evaluation
were similar for both techniques. For eight-table queries, the optimization
time of dpSky was almost two orders of magnitude higher than eaSky’s op-
timization time. Even when dpSky’s evaluation time was lower than eaSky’s
evaluation time, the execution time of eaSky was lower than the execution
time of dpSky.

Hence, we confirmed that dpSky did not scale up well to queries that involve
many tables while eaSky can better deal with a higher number of tables in a
query. dpSky failed when the number of tables in a query increased because
the search space was greater and much time was spent to find out a good plan
during the query optimization. Thus, dpSky did not scale and its performance
declined as the number of tables increased in a query. Additionally, eaSky
reduced the total execution time when more tables were added to queries
because stochastic algorithms are less sensitive to search space size. Therefore,
the optimization time of eaSky did not significantly rise and thus, it scales
up better than dpSky.

5.1.3 Skyline Pushing Performance Impact

Figure 11 shows Skyline pushing impact over eaSky performance.

Fig. 11. eaSky Performance, with and without pushing

An EA for Skyline Query Optimization 429

In this experiment, Skyline pushing improved the Skyline query evaluation
time even though the time needed for optimization increased. The evaluation
time of Skyline pushing was smaller than the ones obtained without pushing
because better plans were found. As shown in our motivating example, this
experiment has confirmed that Skyline-pushing based solutions achieve better
performances than those without it.

In Table 3, the total time rate depending on the number of tables in the
queries is presented. It was observed that all rates were higher than 1. eaSky
has improved 30% (for 6 tables) and 106% (for 4 tables) to dpSky which
indicates that eaSky has better performance than dpSky.

Table 3. Rate TET = TeaSky without pushing /TeaSky with pushing

Number of Tables Rate

4 2.060584608
6 1.309546621

5.2 New Operators Performance Impact

An algorithm without being integrated into PostgreSQL was executed in
order to determine performance impact of the eaSky crossover and three new
mutation operators. The objective was to verify if eaSky’s new conditions
allowed the algorithm to find better solutions while keeping good execution
times.

Query Benchmark: The study was conducted on 40 generated queries with
different characteristics. The number of tables involved in the query we 4
or 6, the number of table attributes was 10, the table cardinality ranged
from 10 to 70, the tuple size was 10, the number of different table attributes
spanned from 30 to 225, and a table could either have an index or not.
Like in the previous experiments, 20 runs were executed over each query.

Evaluation Metrics: The averaged best fitness and execution time between
different eaSky configurations were reported. The experiments were carried
out on an Intel(R) Pentium(R) 2 Duo CPU 2.20GHz, 2Gb memory.

EA parameters: Table 4 shows settings used for these experiments.

In order to select the main genetic parameters for the extended eaSky, we
varied the crossover and mutation rates. The results of the experiment are
presented in Figure 12. Figure 12 shows the average fitness and time (20 runs
for each query). Two mutation rate values (0.2 and 0.5) and three crossover
rate values (0.0, 0.5 and 0.8) were considered on the four-tables queries. As
shown, a high mutation rate (0.5) benefited the algorithm to quickly reach a

430 M. Goncalves et al.

Table 4. Parameter values settings

Parameter eaSky Extended eaSky

EA Parameters:

Number of Individuals 10× query relations
Replacement Model Generational and Elitism
Selection approach Fitness Proportional
Mutation 0.2 0.5
JoinOrderMutation 0.5 0.3
JoinImplementationMutation 0.1 0.1
InsertSkylineMutation 0.4 0.3
DeleteSkylineMutation 0.0 0.1
CombineSkylineMutation 0.0 0.1
DivideSkylineMutation 0.0 0.1
Crossover 0.0 0.5

Simulation Parameters:

Termination condition 1000 generations or no change in 60 generations
no change in 60 generations

Run numbers 20 per experiment

good solution. A crossover operator seemed to be useful at a medium value
(0.5) in combination with a high mutation rate (with respect to frequently
used values in other EAs). This is especially true when the query instances
processed were particularly difficult, as in queries 16, 17, and 18.

Figures 13 and 14 show the performance of the extended eaSky compared
to the original eaSky behavior. Considering the obtained results in previous
experiments, crossover and mutation rates of 0.5 were used in the extended
eaSky. In the figures, we can observe that for all queries (no matter the
number of tables involved), the extended eaSky has the lowest estimated
plan cost (fitness) and optimization time.

Table 6 shows statistics for the eaSky compared to the extended eaSky
over six-tables queries. Even when both averages (fitness and time) were
better for the extended eaSky, their differences did not seem to be statistically
significant. These numbers show a 6% improvement on fitness and 15% on
time for the extended eaSky over the original one.

Table 5 shows statistics for the eaSky compared to the extended eaSky
over the four-tables queries. We display the average, standard deviation, and
Wilcoxon test results1. These numbers showed a 9% improvement on fitness
and 15% on time for the extended eaSky over the original one. As this anal-
ysis has shown, even when the extended eaSky fitness average was better
than the eaSky, this difference was not statistically significant. However, the
1 A non-parametric statistical hypothesis test, similar to the t-test without the

normal data assumption.

An EA for Skyline Query Optimization 431

(a) fitness comparison

(b) time comparison

Fig. 12. eaSky performance using different crossover and mutation rates

extended eaSky’s estimated evaluation time was better than eaSky’s time and
this difference was highly significant (at least 99.99% level).

Over all queries (four and six involved tables) the varied mutation operator
types seemed to help the algorithm in the searching process jointly with the

432 M. Goncalves et al.

(a) fitness comparison

(b) time comparison

Fig. 13. Extended eaSky vs eaSky for query instances with 4 tables

crossover operator, under the described conditions. In spite of the extended
eaSky version seemed to outperform eaSky by obtaining better solutions in
less time, their differences in our experiments were not always statistically
significant. Therefore, we need to perform more experiments on the subject.

An EA for Skyline Query Optimization 433

(a) fitness comparison

(b) time comparison

Fig. 14. Extended eaSky vs eaSky for query instances with 6 tables

434 M. Goncalves et al.

Table 5. Statistics for comparison of eaSky vs. extended eaSky over 4 tables

Fitness Time
eaSky extended eaSky extended

Average 38.08183 34.91329 1.31302 1.13429

Stdev 5802.64834 5115.67430 0.51455 0.14937

Wilcoxon-test p-value=0.4094 p-value=0.00011

Table 6. Statistics for comparison of eaSky vs. extended eaSky over 6 tables

Fitness Time
eaSky extended eaSky extended

Average 262.67975 247.78816 16.74726 14.55973

Stdev 1136372.27 1026309.47 935.99806 901.75517

Wilcoxon-test p-value=0.3507 p-value=0.2503

6 Conclusions and Future Work

An EA, eaSky, for the Skyline Query Optimization problem has been pre-
sented and tested. The first version of eaSky included three mutation op-
erators and was integrated into a real DBMS (PostgreSQL). The DBMS
PostgreSQL with a Skyline Query Optimization algorithm based on DP,
called dpSky, was also extended. Thus, the Skyline operator was integrated
into an optimizer of a real DBMS, giving significant evidences of performance
improvement in Skyline query execution. Results comparing eaSky against dp-
Sky have shown that eaSky has better performance as the number of tables
in a query increases. In addition, Skyline pushing introduced a performance
improvement in terms of evaluation time. eaSky has also been extended by
adding new genetic operators such as a single-point crossover and three ad-
ditional mutation operators for Skyline operators. Using this version and
increasing the mutation rate, better solutions can be obtained in less time.
Setting a high mutation rate was found to be a key factor for obtaining good
solutions. Furthermore, the contribution of the crossover operator seemed to
be especially important for large queries.

In future work, we aim to incorporate further Skylines operators. We also
will integrate an extended eaSky version into PostgreSQL. Additionally, we
would like to address the Skyline Query Optimization problem using classical
metaheuristics such as simulated annealing or tabu search.

An EA for Skyline Query Optimization 435

References

1. Date, C.: A Guide to the SQL Standard. Addison-Wesley Longman Publishing
Co., Inc., USA (1989)

2. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill
Higher Education, New York (2000)

3. Bennett, K., Ferris, M., Ioannidis, Y.: A genetic algorithm for database query
optimization. In: Proceedings of the Fourth International Conference on Ge-
netic Algorithms, California, USA, pp. 400–407 (1991)

4. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data
sets. In: Proceedings of the VLDB, Trondheim, Norway, pp. 229–240 (2005)

5. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: IEEE Conf.
on Data Engineering, Heidelberg, Germany, pp. 421–430 (2001)

6. Tan, K., Eng, P., Ooi, B.: Efficient progressive skyline computation. In: VLDB
2001: Proceedings of the 27th International Conference on Very Large Data
Bases, pp. 301–310. Morgan Kaufmann Publishers Inc., San Francisco (2001)

7. Hafenrichter, B., Kießling, W.: Optimization of relational preference queries.
In: Proceedings of the 16th Australasian Database Conference, Newcastle, Aus-
tralia, pp. 175–184 (2005)

8. Chomicki, J.: Semantic optimization techniques for preference queries. Inf.
Syst. 32(5), 670–684 (2007)

9. Chaudhuri, S., Dalvi, N., Kaushik, R.: Robust cardinality and cost estimation
for skyline operator. In: Proceedings of the ICDE, Atlanta, USA, pp. 64–74
(2006)

10. Eder, H.: On extending postgresql with the skyline operator. Master’s thesis.
Vienna University of Technology (2009)

11. Hong, J., Kao, C., Liu, B.: A genetic algorithm for database query optimiza-
tion. In: Proceedings of the First IEEE World Congress on Computational
Intelligence, Orlando, USA, pp. 350–355 (1994)

12. Ioannidis, Y.: Query optimization. ACM Computing Surveys 28(1), 121–123
(1996)

13. Di Bartolo, F., Goncalves, M., Mart́ınez, I., Sardá, F.: An evolutionary algo-
rithm for skyline-join query optimization. In: Proceedings of Portuguese Con-
ference on Artificial Inteligence, Guimaraes, Portugal, pp. 276–287 (2007)

14. Stonebraker, M., Rowe, L.: The design of postgres. In: SIGMOD 1986: Pro-
ceedings of the 1986 ACM SIGMOD International Conference on Management
of Data, pp. 340–355. ACM Press, New York (1996)

15. Astrahan, M., Blasgen, M., Chamberlin, D., Eswaran, K., Gray, J., Griffiths,
P., King, W., Lorie, R., McJones, P., Mehl, J., Putzolu, G., Traiger, I., Wade,
B., Watson, V.: System r: Relational approach to database management. ACM
Trans. Database Syst. 1(2), 97–137 (1976)

16. Bayir, M., Toroslu, I., Cosar, A.: Genetic algorithm for the multiple-query
optimization problem. IEEE Transactions on Systems, Man and Cybernetics,
Part C 37, 147–153 (2007)

17. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag GmbH, Germany (1996)

18. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: SIGMOD 2003: Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pp. 467–478. ACM Press,
New York (2003)

436 M. Goncalves et al.

19. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database
Syst. 28(4), 427–466 (2003)

20. Brando, C., Goncalves, M., González, V.: Peaqock: A postgresql extension with
evaluation algorithms for skyline and top-k skyline queries. In: Proceedings of
the CLEI, San José, Costa Rica, pp. 1–11 (2007)

21. Bentley, J., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average num-
ber of maxima in a set of vectors and applications. Journal of the ACM 25(4),
536–543 (1978)

22. Godfrey, P.: Cardinality estimation of skyline queries. Technical Report CS-
2002-03, York University (2002)

23. Poli, R., Langdon, W., McPhee, N.: A Field Guide to Genetic Programming.
Lulu Press (2008)

A Bio-inspired Approach to
Self-organization of Mobile Nodes in
Real-Time Mobile Ad Hoc Network
Applications

Cem Şafak Şahin, Elkin Urrea, M. Ümit Uyar, and Stephen Gundry

Abstract. In this chapter, we study the applicability and effectiveness of
an evolutionary computation approach to a topology control problem in the
domain of mobile ad hoc networks (manets). We present formal and prac-
tical aspects of convergence properties of our force-based genetic algorithm,
called fga, which is run by each mobile node to achieve a uniform spread.
Our fga is suitable for manet environments since mobile nodes, while run-
ning the fga, only use local neighborhood information. An inhomogeneous
Markov chain is used to analyze the convergence speed of our bio-inspired
algorithm. To demonstrate our topology control algorithm’s applicability to
real-life problems and to evaluate its effectiveness, we have implemented a
simulation software system and two testbed platforms. The simulation and
testbed experiment results indicate that, for important performance metrics
such as the normalized area coverage and convergence rate, the fga can be an
effective mechanism to deploy mobile nodes with restrained communication
capabilities in manets operating in unknown areas. Since the fga adapts
to the local environment rapidly and does not require global network knowl-
edge, it can be used as a real-time topology controller for realistic military
and civilian applications.

Cem Şafak Şahin · Elkin Urrea
Department of Electrical Engineering,
The Graduate Center of The City University of New York, NY USA
e-mail: {csahin,eurrea}@gc.cuny.edu

M. Ümit Uyar · Stephen Gundry
Department of Electrical Engineering,
The City College of The City University of New York, NY, USA
e-mail: {uyar,sgundry00}@ccny.cuny.edu

{csahin,eurrea}@gc.cuny.edu
{uyar,sgundry00}@ccny.cuny.edu

438 C.Ş. Şahin et al.

1 Introduction

Evolutionary algorithms (eas) [1] are a family of optimization techniques in-
spired by the natural selection concept called survival of the fittest in biologi-
cal systems. They promise outstanding adaptation, reliability, and robustness
in dynamic environments such as mobile ad-hoc networks (manets). eas dif-
fer from the traditional optimization algorithms (e.g., hill-climbing [2], tabu
search [3]) in that they typically use a population of potential solutions instead
of a single solution. eas, intuitively, are proper choices for multi-optimum
search problems due to their intrinsic parallel search mechanisms.

For problems with no known deterministic solution, there has been an
increasing interest in applying evolutionary and hereditary principles based
on special selection methodologies to generate solutions. Genetic algorithms
(gas) [1, 4] are a set of eas that use techniques motivated by evolutionary
biology such as selection, crossover, and mutation operators. gas are suitable
for solving a wide range of complex problems requiring automated, adaptive,
and self-learning computational techniques across military, commercial, and
scientific applications. For example, decentralized intelligence is used where
a large number of simple robots in multi-robot systems coordinate to obtain
a collaborative behavior for completing a difficult task [5, 6, 7]. gas are one
of the most suitable approaches in finding solutions to these types of collab-
orative and complex task-oriented problems, including the np-hard ones.

A manet is a wireless network paradigm which encompasses autonomous
systems of mobile nodes connected using wireless links with limited ranges.
These mobile entities dynamically establish a network without any need of
pre-existing structure or an administrator. Each mobile node, in most circum-
stances, moves and operates in a distributed peer-to-peer mode, generating
independent data and acting as a router to provide multi-hop communications
(i.e., communication between far away mobile nodes can be established via
multi-hop routing). The mobility of manet nodes can lead to frequent and
unpredictable topology changes due to mobile nodes leaving and/or joining
the network without notice. manet applications span a wide spectrum rang-
ing from commercial to military applications such as clearing mine-fields,
spreading military assets in unknown areas (e.g., robots, mini-submarines,
etc.), controlling unmanned vehicles and transportation systems, emergency
and rescue operations (e.g., hurricane, earthquake, tsunami, etc.), and en-
vironmental cleaning operations. These applications typically require a uni-
form distribution of autonomous mobile nodes controlled by active running
software agents over an unknown geographical area [8, 9, 10]. Dynamically
changing topology, lack of centralized authority, nodes’ selfishness, and un-
known deployment terrain present difficulties in self-deployment algorithms
for mobile entities in manets [11, 12, 13].

In this chapter, the main objective for our ea is to uniformly distribute
mobile nodes over a two dimensional area while maintaining their communi-
cation connectivity. One of the best ways to maintain and improve network

Bio-inspired Self-organization in MANETs 439

connectivity is to provide mobile nodes with the ability to adjust their speed
and movement direction without a centralized control unit. However, these
skills represent a challenging problem since: (i) the conditions of geograph-
ical terrain may change dramatically in a short time span (although there
are many factors that affect the performance and success of mobile nodes
distribution in an unknown terrain, the environmental configuration has one
of the largest impacts on the speed and success of mobile nodes separation),
(ii) the number of mobile nodes may change dynamically due to malfunc-
tions and/or loss of communications, (iii) mobile nodes may not have access
to navigation maps or gps devices, but have only limited information col-
lected from local neighbors, (iv) mobile nodes may be deployed into a terrain
from a single entry point (more realistic but more difficult than random or
other types of initial distributions often seen in the existing research), and
(v) the real-world manet applications may not have persistent and reliable
network connections.

We have introduced different ga-based approaches for topology control
problems in manets [14, 15, 16]. In this framework, a force-based ga
(fga) [17] is constructed as a decentralized topology control mechanism
among active running software agents to achieve a uniform deployment of au-
tonomous nodes over an unknown geographical area. Using only local neigh-
borhood information, a ga guides each mobile node to select a fitter speed
and movement direction among an exponentially large number of choices, con-
verging towards a uniform node distribution. We have developed a simulation
software system and implemented several testbed platforms to evaluate the
effectiveness of our ga-based approach using network performance metrics of
node density and convergence speed towards uniform distribution.

The rest of this chapter is organized as follows. In Section 2, we review
prior research on the use of gas on mobile autonomous node deployment,
target localization in manets, swarm robotics, and mathematical methods
for eas used in deployment. In Section 3, we briefly explain the mobile model
and outline our fga approach. Section 4 introduces a formal model for con-
vergence properties of the fga. Simulation and testbed experiment results
are presented in Section 5.

2 Literature Review

Our fga is inspired by the force-based distribution in physics where each
molecule attempts to remain in balanced position and to spend minimum
energy to protect its own position. The fga is run by each mobile node
as a standalone topology control application to uniformly distribute mo-
bile nodes in an unknown terrain [14, 16, 17]. Compared to other tech-
niques, our ga-based approach presents encouraging results by converging
towards a uniform node distribution as shown in [15]. In our research, we used

440 C.Ş. Şahin et al.

discrete-time walk model adapted from [18]. In [19, 20], we analyzed the con-
vergence rate of our ga-based approach by using homogeneous Markov chains
(called hmcfga). In this book chapter, we study the convergence rate of our
fga with inhomogeneous Markov chain (called imcfga). The transition ma-
trix of imcfga is different at each time unit. Therefore, the convergence rate
can be exercised more accurately than with hmcfga. Furthermore, imcfga

also provides the time-based behavior of our topology control approach with
respect to different environmental conditions (e.g., the number of neighbors
and the positions of obstacles) rather than the average behavior presented
in [19, 20, 21]. These are valuable observations since we can improve our
algorithm based on different scenarios.

ga-based approaches are popular for topology control and deployment of
manet nodes. For example, [22] proposes a ga for path planning of a mobile
robot, which incorporates the domain knowledge into its specialized opera-
tors and is capable of finding an optimal or near-optimal robot path in both
complex static and dynamic environments. Compared to single node in [22],
the system of multiple nodes in [23] has various advantages for environment
exploration. [23] describes how a parallel computing ga can be applied for al-
locating target points to multiple mobile nodes, such as robots, appropriately
so that the overall area exploration time is minimized. [24] discusses gas to
explore the space of path finding algorithms in training and three dimen-
sional naval real-time strategy games rather than two dimensional area given
in [22, 23]. Various topology control approaches have been studied [25, 26].
For example, autonomous dispersion of mobile nodes using a random dif-
fusion method are considered in [25]. A potential-field approach is used to
deploy mobile sensors in [26]. The fields are constructed such that each sen-
sor is repelled by both obstacles and by other sensors, thereby forcing the
network to spread itself throughout the environment.

Several promising results in swarm robotics are recently reported. Multi-
agent collaboration for swarm robots for distributed missions to fetch and
retrieve objects is presented in [27]. In [28], cooperative exploration strat-
egy for mobile robots are presented based on the sensor-based random trees.
[29] provides a basis for a distributed robotic system capable of constructing
any given planar structure. [30] discuss various applications and a proto-
type for different scenarios including self-powered and self-governing swarm
robotic platforms. Abstract models for rescue operations using swarm robots
are studied in [31]. In [32], swarm optimization is used for route planning
for unmanned aerial vehicles using a fitness function based on both flight
time and safety. Similarly, a particle swarm optimization algorithm for path
optimization of soccer playing robots is proposed in [33].

Markov chains are widely used to provide a formal structure for analyzing
stochastic algorithms including gas. For example, fundamental properties of
a finite Markov chain, including graph theoretic considerations for transient
and non-transient, recurrent and non-recurrent cases are discussed in [34]. [35,
36, 37] provide a formal structure for analyzing the convergence of a simple

Bio-inspired Self-organization in MANETs 441

ga using Markov chains. ga convergence models using Markov chains show
that gas applied to large-scale problems should avoid convergence towards
an unwanted solution or a local optimum in [35]. In another study [36], finite
discrete-time Markov chains are used to model and understand the complex
dynamics of a simple ga. In [37], a modified elitist strategy is used to generate
a current population from the reserved individual with the highest fitness
value and the rest from the previous generation. [38] proposes an algorithm
for the control of autonomous swarms using the Gibbs sampler simulated
annealing processing.

There are fundamental differences between our approach and the existing
research cited above. In our bio-inspired algorithm, there is no difference in
mobile node’s privileges (i.e., no leader or follower). The fga only utilizes in-
formation from neighboring nodes and local terrain to make movement and
speed decisions to converge towards a uniform distribution of mobile nodes;
there is no central controller unit or global knowledge of the entire network.
In fact, as will be shown in Section 5, the fga adapts to its immediate envi-
ronment rapidly and does not require global network knowledge, and hence it
can be used as a real-time topology controller for realistic military and civilian
applications. Furthermore, the decentralized characteristic of fga makes it
resilient to mobile node losses. Another significant difference is that no prior
knowledge of the geographical area is needed for the fga. It is also important
to note that the self-deployment is more challenging in manets compared to
sensor networks since, unlike sensor networks, there are no stationary nodes
are present in manets.

3 GA-Based Approaches for Topology Control

gas are a subset of eas and mimic nature such that the hereditary transfer of
biological trait information is used as a role model for stepwise improvement
and development of a population of candidate solutions. The desired individ-
uals are selected according to a specified fitness function among all candidate
solutions. gas are typically applied to problems where deterministic meth-
ods are not present or cannot provide satisfactory results. Furthermore, there
are ga-based applications to deterministic problems when the runtime of an
exact, deterministic method is too high to be feasible. Candidate solutions
(represented by chromosomes) with better fitness values have higher prob-
ability to be selected for the breeding process of gas. A set of individual
chromosomes form a population in a ga. To create a new, and eventually
better, population from an old one, gas use biologically inspired operators,
such as crossover (a new generation of individuals are created from different
parents), and mutation (random changes to children to provide diversity in
a population) [1, 4].

442 C.Ş. Şahin et al.

gas have been used to solve a broad variety of problems in a diverse array
of fields including aircraft design, circuit design, price prediction in finan-
cial markets, antenna design, protein sequence prediction, computer games,
and others. gas are chosen to solve complex problems since: (i) gas are in-
trinsically parallel, (ii) large problem spaces can easily be scanned due to
parallelism, (iii) gas do not get trapped at local optimum points, and (iv)
gas can easily handle multi-objective optimization problems with proper fit-
ness functions. However, the probability of success of a ga application largely
depends on defining its fitness function and its parameters (i.e., the chromo-
some structure) properly.

3.1 Mobility Model

In manets, mobile nodes can move in many different ways. A mobility model
attempts to mimic the movements of real mobile nodes. There are different
mobility models for ad hoc networks such as the random walk mobility model,
the gauss-markov mobility model, the column mobility model, and others [39].
In our approach, the mobility model is adapted from [18]. In self-organizing
autonomous mobile nodes without global knowledge, the mobility model has
an important effect on the performance analysis since each mobile node de-
cides its own movement direction and speed. Therefore, when we design our
mobility model, it not only aims at describing an individual node’s motion
behavior, but also considers the collective motion of all the mobile nodes over
time. Our mobility model reflects the behavior of an individual mobile node
with respect to its neighboring nodes and surroundings (e.g., obstacles, area
borders, etc.). To reflect the autonomous nature of individual nodes, in our
model, there is no notion of collective movement by all of the mobile nodes
with reference to any particular point.

Fig. 1 shows an example with six mobile nodes. The area is partitioned
into logical hexagonal cells. Each mobile node can move into six different
directions (i.e., d0 through d5), if the mobile node is not on the boundary,
from a neighboring cell within one time unit.

A wireless link between two mobile nodes is represented by a vector whose
dimensions are in terms of layers. One layer is equal to the center-to-center
distance between two neighboring cells. In general, for a mobile node in lo-
cation < 0, 0 > and another mobile node in location < x, y >, the link state
between these mobile nodes is < x − 0, y − 0 >=< x, y >. For example, in
Fig. 1, for a mobile node N1 in location < 0, 0 > and another node N6 in
location < 1, 2 >, the vector representing wireless link between these nodes
is < 1 − 0, 2 − 0 >=< 1, 2 >.

Let d be the center-to-center distance between two neighboring cells, while
xa and ya are non-negative integers that are equivalent to the state of < x, y >
given in previous paragraph. Two nodes are communicating with each other

Bio-inspired Self-organization in MANETs 443

if and only if d ≤ Rcom, where d = xa + ya and Rcom is a positive integer
representing the communication range of a mobile node. For simplicity, we
accept all mobile nodes have the same communication range in this chapter
(however, it is easy to generalize all solutions to varying communication ranges).
For example, in Fig. 1, N1 communicates with N2, N3, N5, and N6 if Rcom is set
to 3. The number of available wireless links for a node is called the node’s de-
gree. The degree of N1 is 4. N1 cannot communicate with N4 since the distance
between them is greater than the communication range. The hexagonal cells
< 3,−4 > and < 4,−4 > are not located at any mobile node’s communication
range.

(0,-4)

(0,4)

(-3,1)

(-2,1)

(-3,2)

(-4,1)

(-4,2)

(-3,0)

(-2,0)

(-1,2)

(0,2)

(-1,3)

(-2,2)

(-2,3)

(-1,1)

(0,1)

(0,-1)

(1,-1)

(0,0)

(-1,-1)

(-1,0)

(0,-2)

(1,-2)

(2,0)

(3,0)
(2,1)

(1,0)

(1,1)

(2,-1)

(3,-1)

(3,-3)

(4,-3)

(3,-2)

(2,-3)

(2,-2)

(3,-4)

(4,-4)

(4,0)

(3,1)

(0,3)

(0,-3)

(-1,-2)
(-2,-1)

(-2,-2)

(-3,-1)

(-4,0)

(-4,3)
(-3,3)

(-4,4)

(-3,4)

(-2,4)

(1,2)

(2,2)

(4,-1)

(4,-2)

(2,-4)

(1,-3)

(-1,-3)

(1,3)(-1,4)

(1,-4)

x

y

<1,2>

N3

N4

N2

N6

N1

N5

D1

D2

D3

D6

D5
D4

Fig. 1. Six nodes distributed within a 8×8 hexagonal area partitioned into logical
cells. Rcom = 3

As mentioned earlier, the direction and speed of movement for all the nodes
are determined by the fga running on each node. In our mobility model,
without loss of generality, a mobile node is not allowed to move beyond the
area boundaries. For example in Fig. 1, N4 can only move in the directions
of d3, d4, or d5.

444 C.Ş. Şahin et al.

3.2 The Force-Based Genetic Algorithm (FGA)

In our earlier work, we introduced an FGA [14, 16, 17] inspired by repulsive
forces in physics [12]. In our fga, each mobile node is applied a force by
its near neighbors (i.e, the nodes located within its communication range,
Rcom), which should sum up to zero at the equilibrium. If this force is not
zero, the fga uses this non-zero force value in its fitness calculation to find
the mobile node’s next speed and movement direction.

In the fga framework, each node maintains a neighborhood table to keep
records for its neighboring mobile nodes. Every ΔT time units, a mobile node
Ni runs its ga-based software agent to find a better location to move (if such
a location exists) based on the information from its neighborhood table; if it
cannot find a location to improve its fitness, the node stops moving momen-
tarily (the details of fga fitness function are presented in Section 3.2.1).

Algorithm 1. Pseudo-code of our fga

begin1

while !(stopCrit) do2

for (all neighbors) do3

if Neighbor is in the neighborhood table then4

Update the neighbor’s information5

else6

Add the neighbor’s information into table7

g ← 0 // generation counter8

Initialize population P(0)9

Evaluate population P(0)10

while !(evolveDone) do11

g ← g + 112

Select P(g) from P(g-1)13

Crossover P(g)14

Mutate P(g)15

Evaluate P(g)16

if localPositionFound then17

evolveDone :=true18

if betterLocationFound then19

Move to new location20

else21

Wait (ΔT)22

Update neighborhood table23

Update stopCrit24

end25

Algorithm 1 presents the pseudo code of our fga. First the neighbor-
hood table is updated by the information received from the nodes in its

Bio-inspired Self-organization in MANETs 445

communication range. Then a population of N individuals, called the initial
population, is randomly generated where each individual represents a speed
and movement direction for the node. Each individual (i.e., chromosome) is
then evaluated using a fitness score and sorted based on its fitness value.
Since our fga is posed as a minimization problem, individuals are sorted
in a decreasing order of fitness scores, representing virtual forces applied to
them. By the selection and crossover operators in Algorithm 1, individuals
are paired for breeding purposes. The mating probability is proportional to
their fitness scores. At generation g, the offspring are added to a pool as
candidate solutions for a new population P (g) based on the old one P (g−1).
After the offspring in the pool are evaluated, only the better performing in-
dividuals are accepted into the newly created population of P (g). Mutation
occurs on randomly selected individuals of a new population to protect the
populations against local optimum points. The population evolves using this
process for many generations until a termination criterion (i.e., the variable
betterLocationFound in Algorithm 1) is satisfied (e.g., convergence tolerance
of the best individuals reaches a certain limit, the fitness value drops below
a predefined value, or the generations limit is exceeded). If the fga evolves a
better speed and movement direction to minimize the total virtual force on
the corresponding node, the mobile node adapts this new speed and direction.
Otherwise, it stops. A node repeats running the fga in this manner until the
condition called stopCrit is satisfied when the node obtains an acceptable
level of uniformity in its vicinity.

3.2.1 Genetic Operators and Fitness Function in the FGA

Our ga-based approach uses one-point crossover with the probability of μc =
0.9, roulette wheel selection, and single-bit mutation with the probability of
μm = 0.01 as genetic operators. A mobile node gathers information about its
neighboring environment (e.g., mobile nodes and obstacles located within its
Rcom) direction, and location, and then, using the fitness function (given in
Eq. 2), proceeds to run our fga to generate new chromosomes representing
candidate solutions for the next generation. These candidates are ordered ac-
cording to their fitness values from the lowest to the highest. The lowest fitness
corresponds to the solution representing the least amount of force applied to a
mobile node, and hence, the best one among the candidate solutions for that
generation. The fga chooses the new speed and movement direction such that
the total force on the corresponding mobile node will be lowered.

In the fga framework, each mobile node maintains a neighborhood table to
keep records for its neighboring mobile nodes. Every ΔT time units, a mobile
node Ni runs its ga-based software agent to find a better location to move (if
such a location exists) based on the information from its neighborhood table;
if it cannot find a location to improve its fitness, the node stops moving
momentarily.

446 C.Ş. Şahin et al.

A fitness function is used to measure the quality of a chromosome within
a solution space. The fga’s fitness function is based on the virtual forces
applied to a node by its neighboring nodes [12]. The force between two nodes
depends on the distance between them and the number of other nodes within
their vicinities (i.e., communication range). In general, the force from a closer
node is greater than the force from a farther one. The force exerted on node
Ni by its neighboring node Nj is calculated as:

Fij =

⎧
⎨

⎩

Fmax for dij = 0
σi (dth − dij) for 0 < dij < dth

0 for dth ≤ dij ≤ Rcom

(1)

where, dij is the Euclidean distance between nodes Ni and Nj, dth is the thresh-
old to define the local neighborhood, and σi is the mean node degree for node
Ni. The mean node degree is the expected number of node degree to maximize
the coverage. σi, which depends on the geographical area size, the number of
nodes, and the communication range, is analytically derived in [15].

The fitness function fi is given as the sum of all the partial forces that
node Ni exerts on its k neighboring nodes:

fi =
k∑

j=1

Fij =
k∑

j=1

σi (dth − dij) for 0 < dij ≤ dth (2)

Eq. 2 is used by our ga-based algorithm on each mobile node as the fitness
function to maximize the area coverage (see Section 3.3), to keep network con-
nectivity, and to provide a near optimum number of neighbors on a manet.

Notice that the goal of fga is to find a set of parameter values (i.e., chro-
mosomes) such as a speed and direction that minimizes the fitness function
fi in Eq. 2. The best fitness value (i.e., the lowest value of force) between
node i and j is obtained when the two nodes are dth units apart from each
other. Similarly, the worst fitness value corresponds to two nodes that are
next to each other (i.e., dij ≈ 0).

3.2.2 Chromosome in the FGA

In a ga, the chromosome refers to a candidate solution. In the fga, it is en-
coded as a set of binary strings representing the parameters of a mobile node
(i.e., a mobile node’s speed and direction). Let Ω denote the search space,
and n the cardinality of Ω. Then, a fixed-length binary string is represented
as Ω = {0, 1}�, where � is the string length. We identify the elements of Ω
with the integers in the range of 0, · · · , n − 1.

In our mobility model, a mobile node can move in one of six different di-
rections with (assumedly) four different speeds. For example in the case of
� = 5, three and two bits can be used to represent, respectively, the direction

Bio-inspired Self-organization in MANETs 447

and speed. A node’s movement directions are encoded as 0 = (000) repre-
senting North, 1 = (001) for Northeast, 2 = (010) for Southeast, 3 = (011)
for South, 4 = (100) for Southwest, and 5 = (101) for Northwest. Binary
strings 6 = (110) and 7 = (111) are considered invalid and are not used as
part of candidate solutions. Also, suppose a node’s possible speeds are en-
coded as 0 = (00) (or immobile), 1 = (01), 2 = (10), and 3 = (11). The
speed implies the number of hexagonal cells that a node will move at one
time unit in a given direction. For example, the chromosome 10 = (10100)
means that the mobile node should move two positions (or hexagonal cells)
heading Southwest.

3.3 Normalized Area Coverage (NAC)

Uniform distribution of mobile nodes in a geographical terrain relates to the
issue of how well each point in a node’s communication range is covered. One
of the main objectives is to deploy mobile nodes in strategic ways (e.g., uni-
formly) such that a maximum area coverage is achieved according to the needs
of the underlying applications. Therefore, normalized area coverage (nac) is
an important performance metric for the fga as it measures the success of
node distribution over a geographical terrain at specific time instants and
during time intervals. nac is defined as the ratio between the union of areas
covered by each node and the total terrain. The areas with duplicated cover-
age by multiple nodes are not included in the nac calculation. Each mobile
node covers the area within its communication range of Rcom. The total area
covered by all mobile nodes is given as:

nac =
⋃n

i=1 Ai

A
(3)

where Ai is the area covered by node Ni, and A is the total geographical
area. nac is a positive real number with an upper bound of one (one means
that the area is fully covered by the mobile nodes).

If a node is located well inside the terrain, the full area of a circle around
the node with a radius of Rcom is counted as the covered region (i.e., πR2

com)
(assuming that there are no other nodes overlapping with this node’s cover-
age). If, however, a node is located near the boundaries of the geographical
area, then only the partial area of the terrain covered by that node is included
in the nac computation.

For example, Figs. 2 (a) and (b) show two nodes with a separation distance
of d1 = Rcom/2 and d2 = Rcom, respectively. Let AT (2) denote the total area
covered by the two nodes shown in Fig. 2 where the shaded region is counted
only once. AT (2) gets larger and the overlapping region becomes smaller as
the separation distance d between nodes N1 and N2 increases. The largest

448 C.Ş. Şahin et al.

value for AT (2) is reached when d = 2Rcom. However, this separation distance
is infeasible because the two nodes are too far apart and cannot communicate
with each other. Therefore, the allowable separation distances among mobile
nodes are bounded as d ≤ Rcom.

(a) (b)

Fig. 2. Intersections of two nodes (a) d1 = Rcom/2, (b) d = Rcom.

Let A1 and A2 be the covered area of two nodes as shown in Fig. 2, then
AT is given as:

AT (2) =
n⋃

i=1

Ai = A1 + A2 − (A1 ∩ A2). (4)

For the general case, the area covered by n nodes is

AT (n) =
n⋃

i=1

Ai =
n∑

r=1

(−1)r−1Sr

= S1 − S2 + · · · + (−1)n−1Sn (5)

where

S1 = A1 + · · · + An

S2 =
n−1∑

i=1

n∑

j=i+1

Ai ∩ Aj , and

· · ·
Sn = A1 ∩ · · · ∩ An

As explained in the previous section, we designed the fitness function for our
fga such that if the distance between two nodes gets closer to Rcom, nac
improves.

Bio-inspired Self-organization in MANETs 449

4 Convergence of the Inhomogeneous Markov Chain
Representation of FGA

A Markov chain is a suitable probability model for certain systems where
the observation at a given time maps to the category into which an individ-
ual falls. This mapping is done by using a stochastic matrix (i.e., transition
matrix) which contains the transition probabilities of a Markov chain over a
finite state space X . If xij shows the probability value of moving from state i
to state j (where i, j ∈ X) in one time unit, the transition matrix P is given
by using xij as an element at ith row and jth column. P must satisfy the
property of

∑
j xij = 1. For example:

P =

⎛

⎜
⎜
⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn

⎞

⎟
⎟
⎠

The fga, like all ga-based approaches, uses different sets of chromosomes in
every population (see Section 3.2) and, therefore, can be modeled by Markov
chains since the state of population at time t + 1 depends only the state of
population at time t. Since the fga is run by each mobile node in a manet as
a decision mechanism for next speed and movement direction, the movement
result assigned by our fga at each time unit represents a state in imcfga

given in Fig. 3.
We designed the mobility model of our fga as a collection independent

finite-state Markov chains capturing the operational behavior of each mobile
node. In our approach, the values of imcfga are determined through estima-
tion instead of exact representation as theoretically represented in [40]. Using
the direct approach for imcfga quickly becomes unwieldy and computation-
ally unfeasible. Even if we assume that the fitness function of fga generates
a fitness with a resolution of 104 levels, the number of states in a Markov
chain would be 106 using 10 different speeds and six directions. Therefore,
in this chapter, we present a simplified inhomogeneous Markov chain to il-
lustrate the convergence properties of fga. In this simplified model a mobile
node has six directions on the hexagonal lattice (up, up-right, down-right,
down, down-left, or up-left), two values for fitness (good or bad), and two
different speeds (mobile or immobile) as seen in Fig. 3. For simplicity, we as-
sumed that mobile nodes are capable of changing their directions arbitrarily
without stopping. Different values of the node fitness are merged into two
distinct values as either good or bad (shown as 1 or 0 in Fig. 3, respectively).
Let d(i) be the number of neighbors for a mobile node i and n the ideal
number of neighbors [15] to maximize the area coverage. The state where
(n− 1) < d(i) < (n + 1) is marked as ideal in imcfga; otherwise, it is marked
as non-ideal (shown as Non in Fig. 3).

450 C.Ş. Şahin et al.

In this book chapter, the estimation of a mobile node’s state is found
by using the empirical probability of traversing from one state to another
obtained experimentally (i.e., the relative frequency of moving from one state
to the other is recorded while running the fga at each time instant). As the
fga determines the mobile node’s speed and movement direction using local
neighborhood information including neighbors and obstacles, we assume that
a mobile node traverses from one state to another in our Markov chain model
shown in Fig. 3. By conducting a large number of experiments, statistical
anomalies can be smoothed out resulting in a model that closely approximates
the behavior of a mobile node in a manet.

As can be seen in Fig. 3, imcfga has 15 states. If a mobile node is moving
in one of the six directions, its state must be one of the 12 states based on
its number of neighbors: six directions with the ideal number of neighbors,
and six directions with non-ideal number of neighbors. Speed and fitness
are inherently covered by including direction into the state information. The
remaining three states are: (stop, non, 0) state where the node is immobile
due to the non-ideal number of neighbors and zero fitness, (stop, ideal, 0)
state where the mobile node is immobile, the fitness is 0 in spite of the ideal
number of neighbors, and the (stop, ideal, 1) state where the mobile node does
not move because of having an ideal number of neighbors with a fitness of
1 (the desired final state in our problem). If a mobile node reaches the final
state, the mobile node has the desired number of neighbors at the correct
locations using Eq. 2 and stops moving (perhaps until another node comes
and disrupts its equilibrium).

Extending our earlier hmcfga [19, 20], we present here an inhomogeneous
Markov chain with a Markov kernel. In this model, the Markov kernel (i.e.,
transition matrix) is different for every time step (i.e., Pt = P1, P2, · · · , where
t = 1, 2, · · ·) for a given finite state space X , with any initial distribution of ν.
The distribution of states x ∈ X at times t ≥ 0 is given by P (t)(x0, · · · , xt) =
ν(x0)P1(x0, x1) · · ·Pt(xt−1, xt). This model has the benefit over the hmcfga

by preserving the time-based precision of experimental data shown below
and Section 5. To prove the convergence of imcfga, the Dobrushin contraction
coefficient method [41] is used to derive limit theorems for the Markov chains.

Dobrushin states that an inhomogeneous Markov chain on a finite set X
will have a limiting distribution as long as the sum of the total variation
between its one-step output distributions is finite and that the contraction
coefficients for the transition matrices go to zero for any starting point i
(i = 1, 2, · · ·) [41]. Based on this explanation we assert that our imcfga will
converge to a stationary behavior:

Theorem 1. The set of inhomogeneous transition matrices for imcfga ful-
fills both conditions: (i)

∑
t ||μt+1 − μt|| < ∞ and (ii) limt→∞ c(Pi · · ·Pt) =

0 ∀ i ≥ 1, therefore, it will converge to a stationary distribution.

Proof. (sketch) It is shown in [21] that the set of inhomogeneous Markov
kernels for our fga has a finite sum in the one step total variation of output

Bio-inspired Self-organization in MANETs 451

Fig. 3. Markov chain model for our fga(each state is connected to each of the
states in dotted lines, which are not shown for simplicity)

distributions and that the contraction coefficient of the transition matrix
will converge to zero from any starting point. Therefore, using Theorem 4.6.2
in [41], it will converge to a stationary distribution. �

5 Simulation Software and Testbed Implementations
for Bio-inspired Self Organizing Algorithms

In this section we present experiment results from our simulation software
and two different testbeds to analyze the effectiveness and convergence of
our fga. In Section 5.1, we use simulation software to study convergence
speed of our fga by using imcfga (see Section 4). Two different testbed im-
plementations are presented in Section 5.2 to provide the convergence and
effectiveness of our ga-based approach for a uniform distribution of mobile

452 C.Ş. Şahin et al.

nodes in an unknown terrain (see Section 3.3). Section 5.2 also validates our
simulation software with real-life scenarios. For simplicity, we assume that all
mobile nodes have the same capability including communication range (Rcom)
and movement capabilities (i.e., speed and directions) in the simulation
experiments.

5.1 Simulation Software for Genetic Algorithms

5.1.1 Implementation

In order to study the convergence and effectiveness of our ga-based frame-
work for a uniform distribution of knowledge sharing mobile nodes, we im-
plemented simulation software in Java, using Eclipse sdk version 3.2.0 as
development environment, and Mason, a fast discrete-event multi-agent sim-
ulation library core developed by the George Mason University ECJLab, as
the visualization tool (i.e., gui) and multi-agent library. Although this is
small according to industry standards, our simulation software currently has
more than 4,500 lines of algorithmic Java code for the evolutionary algorithms
and the mobility model. This system is designed such that a programmer can
easily add new features (e.g., different types of crossover operators, or dif-
ferent rules for mutation operators, etc.) and new evolutionary approaches.
Our simulation software runs as a multi-agent application which imitates a
real-time topology control mechanism. Therefore, the results from our simu-
lation software match closely to those from our real testbed experiments [42].
User-defined input parameters for our software include:

• Total number of mobile nodes (N),
• Communication range of a mobile node (Rcom),
• Type of evolutionary algorithm,
• Maximum number of iterations (Tmax),
• Initial deployment type: currently there are three different initial deploy-

ment strategies for the mobile nodes: (i) start from the northwest corner,
(ii) place the nodes randomly in a given area, and (iii) start from a given
coordinate (e.g., the center of the area) in the terrain,

• Size of the geographical terrain (dmax),
• Obstacle inclusion (on user defined locations),
• Random node failures,
• Silent mode (i.e., no communication among mobile nodes for given time

periods).

The initial deployment of autonomous mobile nodes in this chapter starts
from the northwest sector of a given terrain. Note that a corner initial de-
ployment option represents a more realistic approach of the topology con-
trol problem for the knowledge sharing mobile nodes than other deployment

Bio-inspired Self-organization in MANETs 453

options over an unknown terrain. For example, in an earthquake rescue, a
mine clearing mission, a military mission in a hostile area, or a surveillance
operation, all mobile nodes may be forced to enter the operation area from
the same vicinity rather than random or central node deployment.

Our simulation software also has the ability to run experiments using a
previously used initial mobile node distribution and initial conditions from
previous runs (i.e., the initial data for each mobile node includes a starting
coordinate, speed, and direction). This ability is important since each exper-
iment is repeated many times to eliminate the noise in the collected data and
provide an accurate stochastic behavior of ga-based algorithms.

5.1.2 Convergence Experiments for Our FGA

For each experiment, the area of deployment is set to be 100 × 100 square
units with all nodes initially placed in the northwest of the terrain each
with random speed and direction. We ran experiments for networks with
N = 125 and Rcom = 10. To reduce the noise in the outcomes, each simulation
experiment is repeated 50 times with the same initial values for node speed,
Rcom, direction, and with the same initial node deployment.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

C
on

tr
ac

tio
n

C
oe

ff
ic

ie
nt

Fig. 4. Contraction coefficients when t→∞

Figs. 4 and 5 present convergence characteristics of the Markov kernel’s
states for the experiments where mobile nodes perform our fga. Fig. 4 shows
Dobrushin’s contraction coefficients (see Section 4), which provide a rough
measure of the orthogonality between distributions in the Markov kernel, for
Rcom = 10 when time goes to infinity. The Markov kernel for our fga reaches

454 C.Ş. Şahin et al.

its final state for Rcom = 10 after approximately 80 time units. Another im-
portant observation from Fig. 4 is that the system evolves to a stationary
distribution as time goes to infinity. It must be noted that any initial distri-
bution will converge to the same stationary distribution based on Theorem 1.
The only difference using varying initial distribution will be the number of
steps that the system takes to reach the stationary distribution. In fact, this
makes practical sense when considering the manner that the mobile agents
are initially deployed. If the initial node distribution is dispersed such that
the nodes are close-to-uniformly spatially distributed over the geographical
area, then they will take very few steps to achieve a uniform distribution.
In our experiments, mobile agents are placed using a worst case scenario in
terms of mobile node deployment where all of the mobile nodes are clus-
tered in a single corner. In this case, many mobile entities will initially be
trapped between other mobile nodes and the boundaries of the geographical
area. This will increase the time required to reach spatial uniformity. The
importance of the relationship between initial distributions of the Markov
chain and the initial dispersion of mobile nodes is that imcfga accurately
represents experimental behavior.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

O
ut

pu
t D

is
tr

ib
ut

io
n

Moving (MAS)

Stop − Low Fitness (SSLF)

Stop − High Fitness (SSHF)

Fig. 5. Output distribution of Markov chain when t→∞

Fig. 5 represents the outcome distribution of each state in our Markov
model: the stop state with high fitness (sshf), the stop state with low fitness
(sslf), and the aggregation of all moving states (mas). As seen by the sshf
plot in Fig. 5, the probability of stop with high fitness increases when time
goes to infinity. More mobile nodes find the desired number of neighbors in the
correct position in which the aggregate force on a corresponding mobile node

Bio-inspired Self-organization in MANETs 455

is approximately zero and stay immobile. When time reaches 300, nearly half
of the mobile nodes have good fitness and are immobile. On the other hand,
the probability of mobile nodes reaching and/or staying at the moving states
(with any direction and any speed) drops when time passes. A little more than
one third of the mobile nodes are in any moving state when t = 300. The
stopped state with low fitness increases until t = 100 and decreases afterward
as seen by the sslf plot in Fig. 5. Initially, the mobile nodes are located at
the northwest corner of the geographical terrain and most of them cannot
move because of the overcrowded vicinity. After some time passes, there are
enough available hexagonal cells to move as assigned by the fga. The final
stationary distribution at t = 300 verifies the experimental behavior of our
fga where mobile agents achieve a distribution that is close to the uniform
distribution. Some nodes continue to move slightly; these nodes exert small
external forces on neighbors who in turn readjust themselves to return to
ideal fitness.

5.2 Testbed Implementations for the FGA

Most of the research in wireless ad-hoc networks is based on software tools
simulating network environments under strictly controlled conditions rather
than implementing realistic testbeds due to their extreme cost of design,
operation and difficulty of adapting real-time topology changes. To study
the effectiveness of our ga-based algorithms and to prove the results of our
simulation software, we implemented two different testbeds using virtual ma-
chines, laptops and pdas.

5.2.1 Testbed Implementation with Virtual Machines

Using VMware virtualization, we implemented a testbed to create con-
figurable multiplicity emulation that overcomes the scarce availability of
computing resources/platforms and to scale down the deployment cost for
large scale experimentation. We use VMware technology for virtualization.
VMware is a product of the VMware Corporation and leverages virtualization
technology to emulate a wide variety of x86-based operating systems on x86-
based physical hardware. The operation of the system on physical hardware
is accurately replicated by VMware. This testbed is programmed in c++
and runs in both Windows and Linux operating systems. For simplicity, all
mobile nodes in this testbed are configured with identical capabilities. This
testbed emulates realistic node mobility and wireless features of manets in-
cluding, but not limited to, autonomous mobility, wireless communication
characteristics, and periodic heartbeat messages (periodically broadcasted to

456 C.Ş. Şahin et al.

the maximum allowed communication distance by a mobile node in order to
inform neighboring nodes about its genetic material).

(a)

100

(b)

Fig. 6. (a) A screen shot of the initial mobile node distribution (N=50 and Rcom =
20) in 100x100 area, (b) a screen shot from a final mobile node distribution (N=50
and Rcom = 20) in 100x100 area after 300 time units

In this testbed architecture, from the users’ point of view, each mobile
node uses its own neighborhood table to initiate the ga-based operators.
Genetic materials are exchanged upon successful acknowledgments between
the neighboring nodes. Time duration of the each experiment, time to start
ga-based application, maximum communication range (Rcom), and speed
are the configurable parameters in our testbed. There is natural latency in
wireless network communication in real-time applications. Our installation of
VMware takes into consideration different types of latencies including late-
arriving acknowledgments and delayed responses. If a corresponding node
does not receive a heartbeat message from a neighboring node within a pre-
defined time, then the neighbor is purged from the neighborhood table. Node
mobility is emulated as follows: When a node receives a heartbeat message
from another one (containing node location), it compares the distance be-
tween itself and the sender node. If this distance is greater than Rcom, the
message is dropped by the receiver. Our testbed also contains random heart-
beat message losses to characterize a wireless communication medium.

Bio-inspired Self-organization in MANETs 457

Our emulation experimentation resides on a single computer with a con-
figurable number of virtual machines interconnected by a virtual switch, sim-
plifying and allowing our mobile nodes running fga experimentations on
the single computer as though they run on a real network. For experiments
requiring more mobile nodes than we can handle by a single computer (ap-
proximately seven nodes for fga applications), our testbed can be also run on
multiple computers. VMware is used in the scope of our study solely to help
provide deployment configurations by multiplexing a single physical host into
multiple independent virtual machines, hence presenting a different usage for
virtualization in the context of distributed computing.

Our testbed implementation is not aware of platform differences or whether
it is actually running on a physical or a virtual machine. This helps to fa-
cilitate a flexible deployment paradigm. All virtual machines are connected
to the network through a virtual switch. Typically, all nodes on this network
use the tcp/ip protocol suite, although other communication protocols can
be used. A host virtual adapter connects the host computer to the private
network used for network address translation (nat). Each virtual machine
and the host have assigned addresses on the private network. This is done
through the dhcp server included with the VMware Workstation. nat pro-
vides a way for virtual machines to use most client applications over almost
any type of network connection available to the host. The only requirement is
that the network connection must support tcp/ip. nat is useful when there
is a limited supply of ip addresses or connected to the network through a
non-Ethernet network adapter. When a virtual machine sends a request to
access a network resource, it appears to the network resource as if the re-
quest is coming from the host machine. The host computer has a host virtual
adapter on the nat network (identical to the host virtual adapter on the
host-only network). This adapter allows the host and the virtual machines
to communicate with each other for such purposes as file sharing. The nat
device never forwards traffic from the host virtual adapter.

Experiment results using our testbed for the fga are shown in Figs. 6 (a)-
(b) and 7 (a)-(b). In these experiments, we consider the following scenario.
A team of mobile nodes equipped with cameras enter an unknown terrain to
collect information on a disaster area for rescue recovery and survey purposes.
As Fig. 6 (a) shows, at time t = 0, all mobile nodes are located at the
southwest of the terrain.

Fig. 6 (b) illustrates the mobile nodes deployment after 300 time units.
We can observe that, in spite of the lack of global knowledge and a global
controller, the mobile nodes using our fga obtain an almost uniform coverage
of the area in a relatively short time period.

Figs. 7 (a)-(b) display the convergence of our fga with respect to the nac
value through time for different network densities. As seen from Fig. 7 (a),
a total of 40 mobile nodes successfully deploy themselves in an unknown
geographical area and achieve 38%, 82%, and 99% area coverage when
T ≈ 250, 200, and 150 time units for Rcom = 10, 15, and 20, respectively.

458 C.Ş. Şahin et al.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 a
re

a
co

ve
ra

ge
 (

N
A

C
)

R
com

= 20

R
com

= 15

R
com

= 10

(a)

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time

N
or

m
al

iz
ed

 a
re

a
co

ve
ra

ge
 (

N
A

C
)

R
com

= 20

R
com

= 15

R
com

= 10

(b)

Fig. 7. (a) Normalized area coverage of N=40 with Rcom = 10, 15, and 20 in
100x100 area, and (b) Normalized area coverage from a final mobile node distribu-
tion of N=50 with Rcom = 10, 15, and 20 in 100x100 area

Fig. 7 displays the nac values of 50 mobile nodes for the same communica-
tion ranges. The mobile nodes approximately cover 45%, 95%, and 99% for
Rcom = 10, 15, and 20, respectively. To achieve and stay at maximum area
coverage, it takes 125 time units for the communication range of 20, and
more than 200 time units for the communication ranges 10 and 15. Clearly,
mobile nodes perform better separation in an unknown terrain when their
communication range is larger since a wider communication range represents
a denser network. Another reason for obtaining a better area coverage with
larger communication range is that a mobile node with a wider communica-
tion range can collect more neighborhood information compared to a node
with smaller range.

5.2.2 Testbed Implementation with Laptops and PDAs

In this testbed implementation, each laptop and personal digital assistant
(pda) runs an identical copy of our ga-based topology control application to
obtain a uniform node separation in an unknown terrain. We implemented a
translator for converting the fga outputs for movement directions and speed
to vocal and visual commands for the users. This way, each user moves in
a given number of steps (emulating different speeds) in a given direction.
Fig. 8 (a) shows the initial deployment for this experiment where all students
are placed together at the bottom-right part of the area. The convergence
towards a uniform distribution is displayed in Figs. 8 (b)-(d) over 30 time
units.

Bio-inspired Self-organization in MANETs 459

(a) (b)

(c) (d)

Fig. 8. Node spreading experiments using laptops and PDAs (a total of 30 time
units elapsed)

6 Conclusions

In this chapter, we have outlined a ga-based topology control approach for
efficient, reliable, and effective self-deployment of mobile nodes in manets.
Our fga controls the mobile node’s speed and direction using local neighbor-
hood information without a global controller. We presented inhomogeneous
Markov chains to formally analyze the convergence of our ga-based approach.
Experimental results from our simulation software and two different testbed
implementations showed that the fga delivers promising results for uniform
node distribution of knowledge sharing mobile nodes over unknown geograph-
ical areas in manets. Future work will include the application of fga to
transportation systems and mini-submarines.

Acknowledgements. This work has been supported by U.S. Army

Communications-Electronics rd&e Center. The contents of this document

represent the views of the authors and are not necessarily the official views of, or

are endorsed by, the U.S. Government, Department of Defense, Department of the

Army, or the U.S. Army Communications-Electronics rd&e Center. This work

has been supported by the National Science Foundation grants ecs-0421159 and

cns-0619577.

460 C.Ş. Şahin et al.

References

1. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Boston (1998)
2. Yuret, D., de la Maza, M.: Dynamic hill climbing: Overcoming the limitations

of optimization techniques. In: The Second Turkish Symposium on Artificial
Intelligence and Neural Networks, pp. 208–212 (1993)

3. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht
(1997)

4. Holland, J.H.: Evolutionary swarm robotics: Evolving Self-organizing Behaviors
in groups of Autonomous Groups. University of Michigan Press, Ann Arbor
(1975)

5. Bekey, G., Agah, A.: A genetic algorithm-based controller for decentralized
multi-agent robotic systems. In: Proc. of the IEEE International Conference of
Evolutionary Computing, pp. 431–436 (1996)

6. Miryazdi, H.R., Khaloozadeh, H.: Application of genetic algorithm to decen-
tralized control of robot manipulators. In: ICAIS 2002: Proceedings of the 2002
IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002),
p. 334. IEEE Computer Society, Washington, DC, USA (2002)

7. Ping-An, G., Zi-Xing, C., Ling-Li, Y.: Evolutionary computation approach to
decentralized multi-robot task allocation. In: International Conference on Nat-
ural Computation, vol. 5, pp. 415–419 (2009)

8. Song, P., Li, J., Li, K., Sui, L.: Researching on optimal distribution of mobile
nodes in wireless sensor networks being deployed randomly. In: International
Conference on Computer Science and Information Technology, pp. 322–326
(2008)

9. Heo, N.: An intelligent deployment and clustering algorithm for a distributed
mobile sensor network. In: Proceedings of the IEEE International Conference
on Systems Man And Cybernetics, pp. 4576–4581 (2003)

10. Chen, Y.M., Chang, S.-H.: Purposeful deployment via self-organizing flocking
coalition in sensor networks. International Journal of Computer Science & Ap-
plications 4(2), 84–94 (2007)

11. Cayirci, E., Coplu, T.: Sendrom: Sensor networks for disaster relief operations
management. Journal Wireless Networks 13, 409–423 (2007)

12. Heo, N., Varshney, P.K.: A distributed self spreading algorithm for mobile
wireless sensor networks. IEEE Wireless Communications and Networking
(WCNC) 3(1), 1597–1602 (2003)

13. Wang, H., Crilly, B., Zhao, W., Autry, C., Swank, S.: Implementing mobile ad
hoc networking (manet) over legacy tactical radio links. In: Military Commu-
nications Conference, MILCOM 2007, pp. 1–7. IEEE, Los Alamitos (2007)

14. Sahin, C.S., Urrea, E., Umit Uyar, M., Conner, M., Ibrahim, G.B., Pizzo, C.:
Genetic algorithms for self-spreading nodes in manets. In: GECCO 2008: Pro-
ceedings of the 10th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 1141–1142. ACM, New York (2008)

15. Urrea, E., Sahin, C.S., Umit Uyar, M., Conner, M., Hokelek, I., Bertoli, G.,
Pizzo, C.: Bioinspired topology control for knowledge sharing mobile agents.
Ad Hoc Netw. 7(4), 677–689 (2009)

16. Sahin, C.S., Urrea, E., Umit Uyar, M., Conner, M., Bertoli, G., Pizzo, C.:
Design of genetic algorithms for topology control of unmanned vehicles. Inter-
national Journal of Applied Decision Sciences 3(3), 221–238 (2010)

Bio-inspired Self-organization in MANETs 461

17. Sahin, C.S., Urrea, E., Umit Uyar, M., Conner, M., Hokelek, I., Bertoli, G.,
Pizzo, C.: Uniform distribution of mobile agents using genetic algorithms for
military applications in manets. In: IEEE International Conference on Military
Communications Conference (IEEE/MILCOM), pp. 1–7 (2008)

18. Hokelek, I., Umit Uyar, M., Fecko, M.A.: A novel analytic model for virtual
backbone stability in mobile ad hoc networks. Wireless Networks 14, 87–102
(2008)

19. Sahin, C.S., Gundry, S., Urrea, E., Umit Uyar, M., Conner, M., Bertoli, G.,
Pizzo, C.: Markov chain models for genetic algorithm based topology control
in mANETs. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq,
M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino,
E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 41–50.
Springer, Heidelberg (2010)

20. Sahin, C.S., Gundry, S., Urrea, E., Umit Uyar, M., Conner, M., Bertoli, G.,
Pizzo, C.: Convergence analysis of genetic algorithms for topology control in
manets. In: 2010 IEEE Sarnoff Symposium, pp. 1–5, 12–14 (2010)

21. Sahin, C.S.: Design and Performance Analysis of Genetic Algorithms for Topol-
ogy Control Problems. PhD thesis, The Graduate Center of the City Univeristy
of New York (2010)

22. Hu, Y., Yang, S.X.: A knowledge based genetic algorithm for path planning
of a mobile robot. In: Proc. of the 2004 IEEE Int. Conference on Robotics &
Automation (2004)

23. Ma, X., Zhang, Q., Lip, Y.: Genetic algorithm-based multi-robot cooperative
exploration. In: Proceedings of the IEEE International Conference on Control
and Automation, pp. 1018–1023. IEEE Computer Society Press, Guangzhou
(2007)

24. Leigh, R., Louis, S.J., Miles, C.: Using a genetic algorithm to explore a*-like
path finding algorithms. In: IEEE Symposium on Computational Intelligence
and Games, pp. 72–79. IEEE, Honolulu (2007)

25. Winfield, A.F.: Distributed sensing and data collection via broken ad hoc wire-
less connected networks of mobile robots. Distributed Autonomous Robotic
Systems 4, 273–282 (2000)

26. Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor network deploy-
ment using potential fields: A distributed, scalable solution to the area cover-
age problem. In: Proceedings of the International Conference on Distributed
Autonomous Robotic Systems, pp. 299–308 (2002)

27. Tang, F., Parker, L.: Asymtre: Automated synthesis of multi-robot task solu-
tions through software reconfiguration. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 1501–1508 (2005)

28. Franchi, A., Freda, L., Oriolo, G., Vendittelli, M.: A randomized strategy for
cooperative robot exploration. In: Proceedings of the IEEE International Con-
ference on Robotics and Automation, Roma, Italy, pp. 768–774 (2007)

29. Stewart, R.L., Russell, A.: A distributed feedback mechanism to regulate wall
construction by a robotic swarm. Adaptive Behavior 14, 21–51 (2006)

30. Joordens, M.A., Shaneyfelt, T., Nagothu, K., Eega, S., Jaimes, A., Jamshidi,
M.: Applications and prototype for system of systems swarm robotics. In: Pro-
ceedings of the IEEE International Conference on Systems, Man and Cyber-
netics, Singapore, pp. 2049–2055 (2008)

462 C.Ş. Şahin et al.

31. Xue, S., Zeng, J.: Sense limitedly, interact locally: the control strategy for
swarm robots search. In: Proceedings of the IEEE International Conference on
Networking, Sensing and Control, pp. 402–407 (2008)

32. Werfel, J.: Robot search in 3d swarm construction. In: Proceedings of the First
International Conference on Self-Adaptive and Self-Organizing Systems, pp.
363–366. IEEE Computer Society, Washington, DC, USA (2007)

33. Saska, M., Macas, M., Preucil, L., Lhotska, L.: Robot path planning using
particle swarm optimization of ferguson splines. In: Proceedings of the IEEE
Conference on Emerging Technologies and Factory Automation, Prague, pp.
833–839 (2006)

34. Jarvis, J.P., Shier, D.R.: Graph-theoretic analysis of finite Markov chains. CRC
Press, Cambridge (2000)

35. De Jong, K.A., Spears, W.M., Gordon, D.F.: Using markov chains to analyze
gafos. In: Foundations of Genetic Algorithms, vol. 3, pp. 115–137. Morgan
Kaufmann, San Francisco (1995)

36. Horn, J.: Finite markov chain analysis of genetic algorithms with niching. In:
Proceedings of the 5th International Conference on Genetic Algorithms, pp.
110–117. Morgan Kaufmann Publishers Inc., San Francisco (1993)

37. Suzuki, J.: A markov chain analysis on a genetic algorithm. In: Proceedings of
the 5th International Conference on Genetic Algorithms, pp. 146–154. Morgan
Kaufmann Publishers Inc., San Francisco (1993)

38. Baras, J.S., Tan, X.: Control of autonomous swarms using gibbs sampling. In:
CDC – 43rd IEEE Conference on Decision and Control, vol. 5, pp. 4752–4757.
IEEE, Los Alamitos (2004)

39. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc net-
work research. Wireless Communications and Mobile Computing (WCMC):
Special issue on Mobile Ad Hoc Networking: Research, Trends and Applica-
tions, 483–502 (2002)

40. Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE
Transactions on Neural Networks 5 (1994)

41. Winkler, G.: Image Analysis, Random Fields and Markov Chains Monte Carlo
Methods. Springer, Heidelberg (2006)

42. Dogan, C., Sahin, C.S., Umit Uyar, M., Urrea, E.: Testbed for node communi-
cation in manets to uniformly cover unknown geographical terrain using genetic
algorithms. In: Proc. of the NASA/ESA Conference on Adaptive Hardware and
Systems (AHS 2009), pp. 273–280 (2009)

Author Index

Alavi, Amir Hossein 343
Arantes, Marcio S. 59

Banceanu, Alex 167
Becerra, David 167
Bilotta, Eleonora 377
Blum, Christian 1

Cerasa, Antonio 377
Chiong, Raymond 1
Clerc, Maurice 1
Coello Coello, Carlos A. 245
Cui, Hao 281

Dasgupta, Dipankar 167
Davarynejad, Mohsen 245
De Jong, Kenneth 1
Di Bartolo, Fabiola 413

Escuela, Gabi 413

França, Paulo M. 59

Gandomi, Amir Hossein 343
Garrett, Deon 167
Goncalves, Marlene 413
Gundry, Stephen 437

Hochmuth, Christian A. 95

Ibrahimov, Maksud 31, 143

Lässig, Jörg 95

Ma, Guohua 205
Mart́ınez, Ivette 413

Michalewicz, Zbigniew 1, 31, 143
Mohais, Arvind 31, 143
Mollahasani, Ali 343
Morabito, Reinaldo 59

Neri, Ferrante 1
Nino, Fernando 167

Pantano, Pietro 377
Pasemann, Frank 305

Quattrone, Aldo 377

Rempis, Christian 305

Şahin, Cem Şafak 437
Sardá, Francelice 413
Schellenberg, Sven 31, 143
Staino, Andrea 377
Stramandinoli, Francesca 377

Thiem, Stefanie 95
Toledo, Claudio F.M. 59
Turan, Osman 281

Urrea, Elkin 437
Uyar, M. Ümit 437

van den Berg, Jan 245
Vrancken, Jos 245

Wagner, Neal 31, 143
Weise, Thomas 1

Zhang, Fu 205

	Evolutionary Optimization
	Introduction
	Metaheuristics
	What Are “Evolutionary Algorithms??
	Principles Inspired by Nature
	The Basic Cycle of EAs
	Do All EAs Fit to the Basic Cycle?
	Conventional EAs

	Memetic Computing
	MAs as an Extension of EAs
	Can All MAs Be Considered EAs?

	Swarm Intelligence
	Particle Swarm Optimization
	Is PSO an EA?
	Ant Colony Optimization
	Is ACO an EA?

	Concluding Remarks
	References

	An Evolutionary Approach to Practical Constraints in Scheduling: A Case-Study of the Wine Bottling Problem

	References

	A Memetic Framework for Solving the Lot Sizing and Scheduling Problem in Soft Drink Plants

	References

	Simulation-Based Evolutionary Optimization of Complex Multi-Location Inventory Models

	References

	A Fuzzy-Evolutionary Approach to the Problem of Optimisation and Decision-Support in Supply Chain Networks

	Introduction
	References

	A Genetic-Based Solution to the Task-Based Sailor Assignment Problem

	References

	Genetic Algorithms for Manufacturing Process Planning

	References

	A Fitness Granulation Approach for Large-Scale Structural Design Optimization

	References

	A Reinforcement Learning Based Hybrid Evolutionary Algorithm for Ship Stability Design

	References

	An Interactively Constrained Neuro-Evolution Approach for Behavior Control of Complex Robots

	References

	A Genetic Programming-Based Approach for the Performance Characteristics Assessment of Stabilized Soil

	References

	Evolving Cellular Neural Networks for the Automated Segmentation of Multiple Sclerosis Lesions

	References

	An Evolutionary Algorithm for Skyline Query Optimization

	Conclusions and Future Work
	References

	A Bio-inspired Approach to Self-organization of Mobile Nodes in Real-Time Mobile Ad Hoc Network Applications

	References

