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Preface

Ability to locate assets and people will be driving not only emerging location-based
services, but also mobile advertising, and safety and security applications. Cellular
subscribers are increasingly using their handsets already as mapping and navigation
tools. Location-aware vehicle-to-vehicle communication networks are being researched
widely to increase traffic safety and efficiency. Asset management in warehouses, and
equipment and personnel localization/tracking in hospitals are among other location-
based applications that address vast markets. It is a fact that application space
for localization technologies is very diverse, and performance requirements of such
applications vary to a great extent.

The Global Positioning System (GPS) requires communication with at least four
GPS satellites, and offers location accuracy of several meters. It is used mainly for
outdoor location-based applications, because its accuracy can degrade significantly in
indoor scenarios. Wireless local area network (WLAN) technology has recently become
a candidate technology for indoor localization, but the location accuracy it offers is poor,
and also high power consumption of WLAN terminals is an issue for power-sensitive
mobile applications. Ultra-wideband technologies (UWB) promise to overcome power
consumption and accuracy limitations of both GPS and WLAN, and are more suitable
for indoor location-based applications.

The Federal Communications Commission (FCC) and European Commission (EC)
regulate certain frequency bands for UWB systems. These have prompted worldwide
research and development efforts on UWB. Another consequence was development of
international wireless communication standards that adopt UWB technology such as
IEEE 802.15.4a WPAN and IEEE 802.15.3c WPAN.

The writing of this book was prompted by the fact that UWB is the most promising
technology for indoor localization and tracking. As of today there is no book with par-
ticular focus on theoretical and practical evaluation of the capabilities of various UWB
localization systems. The book is written for graduate-level students and practicing engi-
neers. Prior knowledge in probability, linear algebra, digital signal processing, and signal
detection and estimation is assumed.

The scope of the book is not limited to time-based UWB ranging systems, because
in addition to signal design and time of arrival estimation, most location systems should
adopt a ranging protocol and perform certain position estimation and tracking techniques.
For completeness of the course, in depth coverage from signal design to position solving
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and tracking techniques is given. Each chapter includes examples and problems to accel-
erate readers’ understanding. Programming exercises allow readers to simulate various
techniques in UWB systems and help them see impacts of various design parameters.

Although the main focus of all chapters is on UWB systems, Chapters 1, 4, and 9
are not limited to UWB. Current trends for location-aware applications and taxonomy
of localization systems are given in the first chapter. Position estimation and tracking
techniques, which are applicable to any location system, are discussed in Chapter 4.
Recent developments and future research directions form the main topic of Chapter 9.

UWB-specific treatment starts with Chapter 2, in which various UWB signal wave-
forms are studied, international regulations for UWB signal emissions are presented,
and various UWB standards are discussed. UWB channel models arising from channel
measurements conducted for 2–10 GHz, below 1 GHz and 57–66 GHz frequency band
regions are overviewed in Chapter 3. Also, differences between narrowband and UWB
channels are highlighted in this chapter. Treatment of time based ranging via UWB
radios is given in Chapter 5. Its content includes discussion of potential error sources
and quantification of fundamental performance limits via Cramer–Rao and Ziv–Zakai
lower bounds. Chapter 6 is devoted to the discussion of various ranging protocols, and
their pros and cons. The ranging aspect of the recently published IEEE 802.15.4a UWB
WPAN standard is studied in detail, including preamble and start of frame delimiter
design, timing counter management, and clock frequency offset mitigation. Narrow-
band and multiuser interference mitigation techniques, ranging privacy mechanisms and
the state-of-the-art coded payload modulation technique are the special topics covered
in Chapter 7. Practical considerations for UWB system design are given in Chapter 8,
including signal design under practical constraints, link budget analysis, and specific
hardware issues.

Solutions for the problems at the end of each chapter and Matlab simulation
scripts can be found by visiting the website for this book, which is currently at
www.cambridge.org/9780521873093. The most up-to-date errata sheet and references
to additional material can also be found at the same site.

We would like to thank experts in the field, who have reviewed and commented on
the draft of the manuscript. Their inputs greatly helped us improve the presentation.
Special thanks to Andreas F. Molisch from Mitsubishi Electric Research Labs for his
suggestions about the channel modeling chapter, Davide Dardari from University of
Bologna for his thorough review of Chapter 5, Henk A. Wymeersch from Massachusetts
Institute of Technology and Qin Wang from Harvard University for their inputs in general
and for helping organize Chapter 6 in particular, Yihong Qi from AMD for her inputs
on Chapters 4 and 7, Rainer Hach from Nanotron Inc. for his review of Chapter 6, Chia
Chin Chong from NTT DoCoMo Labs and FikretAltinkilic from Syracuse University for
their suggestions on Chapter 3, Philip Orlik from Mitsubishi Electric Research Labs for
reviewing and providing suggestions and comments on Chapters 2 and 4, and furthermore
Fujio Watanabe from NTT DoCoMo Labs, Huseyin Arslan from University of South
Florida and Volkan Efe from Motorola for providing comments on various chapters.

We also thank many colleagues in Mitsubishi Electric Research Labs, namely Jinyun
Zhang, Kent Wittenburg, Fatih Porikli, Giovanni Vannucci, Richard Waters, Joseph Katz,
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Darren Leigh, Huifang Sun, Masashi Saito, and Chunjie Duan. We are indebted to many
amazing researchers with whom we closely interacted in the IEEE 802.15.4a standard
and through other collaboration activities. These researchers are Patrick W. Kinney, Vern
Brethour, Jay Bain, John Lampe, Ismail Lakkis, Michael McLaughlin, Francois Chin,
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1 Introduction

Wireless communications are becoming an integral part of our daily lives. Satellite
communications, cellular networks, wireless local area networks (WLANs), and wireless
sensor networks (WSNs) are only a few of the wireless technologies that we use every
day. They make our daily lives easier by keeping us connected anywhere, anytime.

Since more and more devices are going wireless every day, it is essential that
future wireless technologies can coexist with each other. Ultra-wideband (UWB) is
a promising solution to this problem which became popular after the Federal Com-
munications Commission (FCC) in the USA allowed the unlicensed use of UWB
devices in February 2002 subject to emission constraints. Due to its unlicensed oper-
ation and low-power transmission, UWB can coexist with other wireless devices, and
its low-cost, low-power transceiver circuitry makes it a good candidate for short- to
medium-range wireless systems such as WSNs and wireless personal area networks
(WPANs).

One of the most promising aspects of UWB radios are their potential for high-precision
localization. Due to their large bandwidths, UWB receivers can resolve individual mul-
tipath components (MPCs); therefore, they are capable of accurately estimating the
arrival time of the first signal path. This implies that the distance between a wire-
less transmitter and a receiver can be accurately determined, yielding high localization
accuracy.

Such unique aspects of UWB make it an attractive technology for diverse communi-
cations, ranging, and radar applications such as robotics, emergency support, intelligent
ambient sensing, health-care, asset tracking, and medical imaging (see Fig. 1.1). Potential
of UWB technology for future wireless communication networks was also recognized by
the IEEE, which adopted UWB in the IEEE 802.15.4a WPAN standard for the creation
of a physical layer for short-range and low data rate communications and for precise
localization.

Various aspects of UWB ranging and localization systems are discussed in the sub-
sequent chapters. In this chapter, first, general trends in location-aware applications
are reviewed. Then, a taxonomy of localization systems is presented. This is followed
by a discussion on UWB localization applications and available UWB localization
technologies.
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Fig. 1.1. Diverse business opportunities for UWB communications, ranging, and radar.

1.1 Trends in location-aware applications

1.1.1 Location-based applications and services

As wireless devices are becoming more and more integrated into our daily lives, they
are also getting more and more intelligent. In other words, today’s wireless devices
are becoming more context aware. In [1], context awareness (or context sensitivity)
is defined as the ability of the mobile device to be aware of the user’s surrounding
physical environment and state. Another related definition in [2] states that a system is
context aware if it uses contexts1 to provide relevant information and services to the
user, where relevancy depends on the user’s tasks. These services may be based on the
context information such as time, location, temperature, speed, orientation, biometrics,
audio/video recordings, etc.

Between these different variables that define a context, location and time are probably
the two most important inputs that define a specific situation [3], and location awareness
can be considered as a special and important form of context awareness. Localiza-
tion serves as an enabling technology that makes numerous context-aware services and
applications possible.

A location-aware wireless device may use the location information in different ways
for different technologies. For example in cellular networks, location information can
be used for Emergency-911 (E-911) services, location-sensitive billing, fraud detection,
resource management, and intelligent transportation systems [4]. Location of the doc-
tors/patients in hospitals, injured skiers on mountains, or fire-fighters and victims inside
a building are a few examples on how location information can be used to save lives
in emergency situations. While knowing your position will be handy to find the closest

1 Context is defined as any information that can be used to characterize the situation of an entity [2].
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printer in a wireless local area network, it may as well be used to locate your friend
in a university campus. In warehouses, laboratories, and hospitals, location of portable
and in-demand equipment may be needed [5]. A customer may receive location-based
advertisements in a shopping mall, or personal digital assistants with location support
can be used for guided tours in museums. Smart homes/offices/highways that exploit
the location information are a few other examples of how our daily lives can be made
easier [6].

The services provided to the user based on location information are commonly referred
as location-based services (LBS). Some definitions of the LBS available in the literature
are as follows [3].

• “Network-based services that integrate a derived estimate of a mobile device’s location
or position with other information so as to provide added value to the user.”

• “Recent concept that denotes applications integrating geographic location (i.e. spa-
tial coordinates) with the notion of service. Examples of such applications include
emergency services, car navigation systems, tourist tour planning, or yellow maps
(combining of yellow pages and maps) information delivery.”

• “Will allow mobile users to receive personalized and lifestyle-oriented services relative
to their geographic location.”

• “Most location-based services will include two major actions: (1) Obtaining the
location of a user, and (2) Utilizing this information to provide a service.”

The classification and characteristics of different LBS are presented in [3], and sum-
marized in Table 1.1, which also includes the business models (“C:’’ Customer, “B:’’
Business, “G’’: Government, “W’’: Workforce), location update specifications (Pull:
Information is provided after a request by the mobile, Push: Network delivers the infor-
mation to the mobile based on an event or trigger condition), and typical accuracy
requirements.

The LBS are traditionally considered for cellular networks. This may be correlated
with the fact that cellular technology has long been an integral part of our daily lives and
has a wide consumer acceptance. Hence, killer applications are relatively obvious.

On the other hand, technologies such as WLANs and WSNs have only recently become
widely deployed. As they become more integrated to daily practices, the killer applica-
tions for these technologies will become more obvious. As a matter of fact, we have
already started seeing new LBS using these technologies. For example, LOKI soft-
ware [7], developed by Skyhook Wireless Inc., uses the WiFi network to pinpoint a
mobile user’s location and provide services such as finding the closest restaurant to the
user’s location. Applications such as guided tours in museums, location-based advertise-
ments, people/inventory tracking, etc. are possible through similar technologies. While
such LBS are not widely deployed today, they are expected to become more common
with the advances in different relevant technologies, wide consumer acceptance, and
decreases in device costs.

The accuracy and precision requirements of location-based applications are highly
dependent on the application characteristics. Accuracies on the order of tens of meters
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Table 1.2. Accuracy requirements of potential localization applications (After [8]).

Applications Accuracy

Automated handling 0.5 cm
Route-guidance for blind 1 cm
In-building survey 1 cm
Tool positioning 1 cm
In-building robot guidance 8 cm
Formation flying 10 cm
Recreation and toys 10 cm
Urban canyon (off-road) 30 cm
Urban canyon (marine) 50 cm
Incidence tracking/guidance 80 cm
Urban canyon (other) 80 cm
Exhibit commentary 1 m
Goods and item tracking 1 m
Hazard warnings 1 m
Pedestrian route guidance 1 m
In-building tracking (other) 1 m
In-building worker tracking 1 m
Urban canyon (rail) 1 m
Precision landing 1 m
Access control 3 m
Location-based services 3 m
Public services tracking 3 m
Docking 5 m
Parolee tracking 10 m
Local information 30 m
Train / air / bus information 30 m
Advertising 100 m

might be satisfactory for applications such as location-based handover in cellular net-
works. On the other hand, a meter of positioning error may mean a life-or-death situation
for a fire-fighter depending on whether he is on the correct side of a building wall or not.
In [8], tentative accuracy requirements of various localization applications are depicted,
which are tabulated in Table 1.2. These show that the required accuracy of the location
estimate can range from less than a centimeter to over tens of meters. Note that accuracy
is only one aspect of the overall system; factors such as cost, range, and complexity are
other issues to be considered, and no single localization system fits to all applications.

There are numerous localization technologies currently available which have differ-
ent ranges, accuracy levels, costs, and complexities. While some of these technologies
date back to World War II, significant improvements in localization technologies have
been observed, particularly over the last few decades. Some of the important current
localization technologies are classified and their key characteristics are summarized in
Table 1.4 at the end of this chapter.
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Fig. 1.2. (a) Share of spendings on RTLS in 2016 in millions of US dollars. (b) Global market on RTLS in
millions of US dollars, from 1998 to 2005. (c) Trend in number of significant suppliers into parts
of the RTLS value chain in 2006, 2010 and 2016 (After [9]).

1.1.2 Trends in real-time location systems

Due to its importance, there is a significant interest in the industry on real-time location
systems (RTLS). In Fig. 1.2, estimated market share of spendings on RTLS in 2016 is
depicted [9], which shows that software and services will dominate the total share rather
than the hardware. Global market on RTLS and trend in number of significant suppliers
is also seen to be exponentially increasing, indicating the importance and significance
of the technology. While the number of significant suppliers into parts is 50 in 2006, it
is expected to be around 200 in 2010, and around 500 in 2016.

According to IDTechEx forecast for RTLS [9], the global RTLS market will increase
to 2710 million US dollars in 2016, while it is only 70 million US dollars in 2006.
According to the same report, the major applications of RTLS in 2016 will be in
military (44%, US$1.2 billion), health-care (30%, US$0.8 billion), logistics and other
(26%, US $0.7 billion, including manufacturing, prison/parole service, and postal/courier
sectors, etc.); however, there will be increasing interest from other sectors such as leisure,
retail, and agricultural.

1.2 Taxonomy of localization systems

Different classifications of localization technologies have been previously presented in
the literature [2, 10, 11]. In the following, some of the important classifications are briefly
overviewed.
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1.2.1 Signaling scheme

A fundamental classification is based on the signaling scheme that a localization technol-
ogy uses. Radio frequency (RF) is probably the most commonly used signaling scheme
for localization purposes. This is because RF signals can penetrate through obstacles and
can propagate to long distances.

Infrared signals are low power and inexpensive; however, they cannot penetrate
through obstructions (as opposed to RF), and they are susceptible against sunlight. There-
fore, one usually has to install infrared sensors all over the indoor environment to pick
up the signals from a transmitter.

Optical signals also require line-of-sight (LOS) conditions, are affected by sunlight,
and require low power. They provide high accuracies and are typically more appropriate
for short ranges (e.g. around 10 m).

Another inexpensive signaling alternative is ultrasound signals, which provide high
accuracies in the short range. An advantage of acoustic signals is that the sound travels
slowly. Hence, slow clocks are sufficient, and high accuracy can be achieved inexpen-
sively in LOS conditions. On the other hand, acoustic emitters are power hungry, and
they do not work well in non-line-of-sight (NLOS) scenarios.

1.2.2 RF signaling waveforms

Among different RF technologies, ultra-wideband (UWB), code division multiple-access
(CDMA), and orthogonal frequency division multiplexing (OFDM) are a few of the RF
technologies that may be considered for localization. Depending on their accuracy and
range requirements, different versions of these technologies are used in various wireless
systems such as cellular systems,WLANs, WPANs, radio frequency identification (RFID)
systems, and WSNs.

1.2.3 Position-related parameters

Localization systems can employ various parameters/information obtained from received
signal(s), such as the time-of-arrival (TOA), time difference of arrival (TDOA), angle of
arrival (AOA), and received signal strength (RSS). Hybrid approaches that use combi-
nations of the above are also possible. These different approaches are discussed in detail
in Chapter 4.

1.2.4 Data fusion and localization methods

Different metrics of a received signal can be processed in various ways for obtaining
a location estimate. The simplest way of estimating the target’s location is the cell
ID localization, where the target’s position is approximated to be the location of the
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serving reference node (RN)2, and the positioning accuracy is limited to the cell size.
Alternatively, with proximity detection, the distance to a particular RN can be estimated.

In triangulation-based systems, the intersection(s) of the at least two lines (obtained
e.g. from AOA information) from at least two RNs is/are used to estimate the terminal
location.

On the other hand, in trilateration systems, at least three RNs are required for
two-dimensional (2-D) localization, and at least four RNs are required for three-
dimensional (3-D) localization. The intersections of the circles (or hyperbolas) obtained
from TOA/RSS information (or TDOA information) are used to estimate the terminal
location.

Fingerprint-based or pattern-matching localization technologies compare real-time
measurements with a location database to infer the terminal’s location. The positioning
accuracy is limited to the granularity of the training locations, and an off-line calibration
stage is required, which may need to be repeated if the propagation characteristics of the
environment change.

1.2.5 Location estimation unit

Depending on where the localization is performed, localization technologies can be clas-
sified as handset-based (location aware), or network-based (location support) systems.
In handset-based localization, the target receives signals from the RNs, and calculates
its own location (also called self-positioning). It is more commonly used in military or
public safety applications, such as a fireman trying to find his way out of a building.
Global Positioning Systems (GPS) systems also fall under the same category.

In network-based localization, the RNs forward the received signal information, such
as TOA, AOA, and RSS, to a central processing unit, where the target’s location is
estimated (also called remote-positioning). Note that privacy issues may be a big concern
in this type of localization system, since the target may not always wish to be tracked by
the network. In such a case, the target may estimate its own location, and may choose
not to report its location to the central server.

1.2.6 Indoor versus outdoor localization

Due to significant differences in the propagation characteristics of the environments, it is
common to classify the localization systems as indoor and outdoor localization systems.

A typical example of an outdoor localization system is the GPS. It uses TDOA infor-
mation from four or more of 24 satellites around the world to estimate target’s position
with an accuracy between 1 and 5 m. It performs poorly indoors since buildings block
GPS signals. Another widely used outdoor localization system is the E911 service in
cellular networks.

2 A reference node may be a base station (BS) in cellular networks, an access point (AP) in WLANs, or an
anchor node (AN) in WSNs.
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Although GPS and E911 systems can provide location information outdoors, they
are not designed for the indoor environments, where unique technical challenges exist
and accuracy requirements are typically much higher. Indoor localization systems
may require a completely different infrastructure installed within buildings (e.g. active
badges [10]), or they may rely on the existing communications infrastructure such as
wireless LANs (e.g. RADAR by Microsoft Research [21]).

1.2.7 Active versus passive localization

In active localization systems, the network sends specific signals to estimate the loca-
tion of a target. Passive localization systems, on the other hand, use incumbent signals
received from the mobile. In other words, as opposed to an active system, a passive
system does not transmit any signal for location estimation purposes.

1.2.8 Centralized versus distributed localization

In centralized localization systems, position-related information (such as the TOA,AOA,
RSS, etc.) is forwarded to a data fusion center, where the target location is estimated.
The terminals that use a distributed localization system determine their location jointly
by communicating with each other.

1.2.9 Software-based versus hardware-based localization

Software-based localization systems can be implemented by using the existing infra-
structure, and there is no need for deploying extra hardware for localization purposes.
As an example, Ekahau positioning engine [22] uses the existing WiFi infrastructure;
it uses signal processing algorithms to estimate (and track) the target location from the
RSS metrics obtained from different access points. Hardware-based localization systems
need installation of extra hardware, such as in the case of SpotOn technology [23].

1.2.10 Relative coordinate versus absolute coordinate localization

Absolute location is the actual physical coordinate of a target with respect to a global
reference; e.g. expressed as 24◦ 35′ 53.2′′ North, 10◦ 45′ 11.5′′ East. On the other hand,
relative location is the position of a target with respect to a local reference within the
network.

Another related term is the semantic (or symbolic) location, which is much easier to
interpret by the targets. Absolute location, as discussed before, may be good enough for
a missile but it is not much use for a taxi driver [1]. Examples of semantic location are
“Topkapi Palace, Istanbul, Turkey’’, or “Stanford University Campus, Palo Alto, CA’’.
Semantic locations have the advantage that they can be easily used as search keys in
traditional databases [3].



10 Introduction

1.2.11 Range-based versus range-free localization

If a localization system depends on the distances (or angles) between the nodes (e.g. the
target and the base station), such a localization system is referred to as a range-based
system. The distances are typically estimated using TOA, TDOA, and RSS metrics (or
AOA for direction of arrival estimation).

On the other hand, there are localization systems which do not require estimation of
absolute distances. Such approaches typically fall under two categories [2]: (1) tech-
niques that rely on high density of anchors, such as the centroid algorithm, which
calculates the position estimate to be the average location of all the connected anchors,
and (2) hop counting techniques such as the DV-hop algorithm [24].

1.2.12 Accuracy versus precision

How well a certain localization technology performs is commonly measured with its
accuracy, which is defined as how far the estimated location of the target is away from
its actual location (e.g. 1 m accuracy). It is also desired that a certain localization accuracy
is achieved with high probability; precision defines the percentage that a certain accuracy
(or better) is achieved (e.g. 95% precision).3

1.3 Ranging and localization with UWB

1.3.1 Applications of UWB localization

As discussed earlier, there is not one localization technology that fits to all applications.
For example, whereas GPS is an excellent technology for many scenarios and typically
has fine precision outdoors, it fails to yield the desired accuracies in indoor environments
due to multipath effects and blocked LOS. In addition, GPS devices are usually too
expensive for many applications.

UWB is an excellent signaling choice for high accuracy localization in short to medium
distances due to its high time resolution and inexpensive circuitry. It is also considered
to be the unique signaling choice for short-range, low-data rate communications such as
in WSNs. Some of the key applications for low-rate UWB communication and ranging
systems are summarized in Fig. 1.3.

The low-rate UWB was standardized in 2007 under the IEEE 802.15.4a. The potential
of UWB for high precision ranging, its possible applications, and implementation issues
were extensively discussed and documented during the standardization process. Some
key UWB localization applications as well as their range/accuracy requirements are
tabulated in Table 1.3 based on [25]. The UWB technology is an excellent match that
makes these exciting applications possible with sub-meter accuracies at distances smaller
than 300 m.

3 Some other performance measures in localization systems were listed in [2] as calibration requirements,
responsiveness, self-organization, cost, power consumption, and scalability.
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Fig. 1.3. Applications and business opportunities for low-rate UWB.

Probably the most suitable technology where UWB may be used as a physical layer
signaling scheme is WSNs. Together with the advances in RF and MEMS IC technolo-
gies, wireless sensors are becoming cheaper, smaller, and more capable. We are probably
living the last years in which furniture, buildings, cars, streets, highways, etc. are not dom-
inated by WSNs. Localization of sensors in WSNs is important for a number of reasons,
including: (1) in order for sensor data (e.g. temperature, humidity, and light intensity,
etc.) to be meaningful, it is essential that the sensor’s location is known, (2) some geo-
graphic routing algorithms can be enhanced if the location information is available, (3)
location itself can be the data to be sensed, especially in logistics management [26].

Below, some of the recent applications of WSNs are briefly oveviewed.4 The moti-
vation is to make it clear that localization is a key component in many of the WSN
applications.

• In the Great Duck Island project, 150 sensing nodes are deployed throughout the
island, to collect and relay data such as temperature, pressure, and humidity, etc. to a
central device. Then, these data are made available through Internet using a satellite
link [28].

• In the ZebraNet project, WSNs are used to study the behavior of zebras, where special
GPS equipped collar devices are attached to the zebras [29].

• In order to monitor the volcano activity in Ecuador, WSNs are used in the areas where
human presence is discouraged [30].

• In agricultural monitoring applications (such as the wireless vineyard project), data are
collected using WSNs and processed to make decisions, such as detecting parasites to
automatically choose the right insecticide, or watering and fertilization only wherever
and whenever necessary [26, 31].

4 For some other applications and a detailed discussion on the design space of WSNs, the reader is referred
to [27].
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Table 1.3. Key localization applications, ranges, and accuracy requirements (After [25]).

Core RTLS applications Range Accuracy

High value inventory items (warehouses, ports, motor
pools, manufacturing plants)

100–300 m 30–300 cm

Sports tracking (NASCAR, horse races, soccer) 100–300 m 10–30 cm
Cargo tracking at large depots including port facilities 300 m 300 cm
Vehicles for large automobile dealerships and heavy

equipment rental establishments
100–300 m 300 cm

Key personnel in office/plant facility 100–300 m 15 cm
Children in large amusement parks 300 m 300 cm
Pet/cattle/wild-life tracking 300 m 15–150 cm

Niche commercial markets Range Accuracy

Robotic mowing and farming 300 m 30 cm
Supermarket carts (matching customers with advertised

products)
100–300 m 30 cm

Vehicle caravan/personal radios/family radio service 300 m 300 cm

Military applications Range Accuracy

Military training facilities 300 m 30 cm
Military search and rescue: lost pilot, man overboard, coast

guard rescue operations
300 m 300 cm

Army small tactical unit friendly forces situational
awareness – rural and urban

300 m 30 cm

Civil government/safety applications Range Accuracy

Tracking guards and prisoners 300 m 30 cm
Tracking firefighters and emergency responders 300 m 30 cm
Anti-collision system: aircraft/ground vehicles 300 m 30 cm
Tracking miners 300 m 30 cm
Aircraft landing systems 300 m 30 cm
Detecting avalanche victims 300 m 30 cm
Locating RF noise and interference sources 300 m 30 cm
Extension to LoJack vehicle theft recovery system 300 m 300 cm

• Avalanche victims can be rescued by the help of WSNs [32]. The people at risk
(skiers, hikers, etc.) carry wireless sensors with an oximeter (to measure oxygen
level in blood), oxygen sensor (to detect air pockets around victim) and accelerom-
eters (to detect orientation of victim), which are communicated to the PDAs of a
rescue team.

• A prototype network of meteorological and hydrological sensors has been deployed in
Yosemite National Park to monitor natural climate fluctuations, global warming, and
the growing needs of water consumers [33].

• WSNs were used to monitor 44 days in the life of a 70-m tall redwood tree,
at a density of every 5 min in time and every 2 m in space, where each sensor
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reported the air temperature, relative humidity, and photosynthetically active solar
radiation [34].

• A virtual fence application was presented in [35], where an acoustic stimulus is given
to animals which cross a virtual fence line. It can be dynamically shifted based on
the movement data of the animals, improving the utilization of feed-lots and reducing
overheads for installing and moving physical fences.

• Example military applications: counter-sniper systems (detect and locate shooters as
well as the trajectory of bullets) [36], self-healing land-mines (ensure that a certain
geographical area remains covered with land-mines; if an enemy tampers with a mine,
an intact mine hops into the breach using a rocket thruster) [27, 37], tracking of
military vehicles (e.g. tanks) using sensors dropped from an unmanned aerial vehicle
(UAV) [27], and UAV flock control [38].

• Example medical and commercial applications: damage detection in civil structures
(such as smart structures actively responding to earthquakes and making buildings
safer [26]), continuous medical monitoring [39], elder care [40], aware home [41],
smart kindergarten [42], condition-based maintenance of the equipment [26], and
active visitor guidance systems [43].

These examples prove that localization may be needed as a key enabling component
for numerous WSN applications, and UWB is an excellent fit for communications and
localization for WSNs.

1.3.2 Available UWB localization technologies

There are already a number of UWB ranging and positioning devices in the market.
Together with the completion of the IEEE 802.15.4a standard, standard-compliant UWB
localization technologies are also being announced. Some of the available UWB local-
ization technologies and their key characteristics are overviewed below and listed in
Table 1.4.

Sapphire DART
The Sapphire DART system from Multispectral Solutions, Inc. (MSSI) is an active RFID
and RTLS system (see Fig. 1.4) and has the following characteristics [44].

• Tag read ranges in excess of 200 m. (650 feet) line-of-sight, and better than 50 m
(160 feet) indoors through multiple obstructions.

• Real-time location (not just active RFID).

• Battery life of up to 10 years, even at one tag transmission per second.

• Real-time location accuracies better than 30 cm (10 cm with averaging).

• Immunity to ISM and WiFi interference, and multipath effects.

• Microminiature tag sizes (e.g. 0.5 × 1.0 × 0.25 inches and 10 g).

• Tags certified UL1604 for use in hazardous locations.
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Fig. 1.4. The Sapphire Dart localization system from MSSI (used with permission) [44].

(a) (b)

Fig. 1.5. (a) A Ubisense tag is a small tag worn by a person or attached to an asset allowing it to be
accurately located within an indoor environment. Tags have two programmable buttons, two
LEDs, and a programmable buzzer. (b) The Ubisense sensor receives UWB pulses from
Ubisense tags which are then used to determine exact location based on time difference of arrival
(TDOA) and angle of arrival (AOA). Sensors have an array of four UWB receivers enabling
angle to be calculated with a high degree of accuracy (used with permission) [45].

Ubisense
Ubisense delivers a precise, real-time location system utilizing UWB technology (see
Fig. 1.5) and has the following characteristics [45].

• Up to 12 inch / 30 cm 3-D accuracy even within a complex indoor environment.
• Maximum tag-sensor distance: greater than 150 feet (50 m)
• Can track each tag several times a second.
• Dynamically manages the update rates of individual tags so that fast-moving tags

will be located more frequently than stationary or slow-moving ones, simultaneously
increasing system performance and battery lifetime.

• Monitors real-time spatial interactions involving people and objects. For analysis,
Ubisense provides historic reporting and playback of a user-defined time period.

• Uses a cellular sensor and processing architecture to achieve exceptional scalability
using low-cost, off-the-shelf servers and Ethernet networks.
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• Can scale to sites up to 3 000 000 feet/300 000 m and to track tens of thousands of
Ubisense Tags in real time.

Time Domain PulseON350 active RFID tracking system
The PulseON350 active RFID tracking system by Time Domain Corporation is capable
of providing presence detection, 1-D, 2-D, and 3-D location with sub-foot accuracy in
best case environments, and less than 3 feet accuracy in a typical environment [46].

• TDOA-based positioning and tracking with full scale deployments, capable of tracking
thousands of tags.

• RF tag transmits RF packet at 1 Hz or other predetermined rate at typical LOS ranges
of 75 feet.

• RF tag dimensions are 1.1′′ W × 1.2′′ D × 0.4′′ T and weight is 11.8 g.

• The reader receives tag transmissions, determines TOA, and decodes data.

• Reader dimensions are 8.5′′ W × 6.5′′ D × 1.5′′ T and weight is 816 g.

PAL650 precision asset location system
The PAL 650 system from Multispectral Solutions, Inc. is the world’s first FCC-certified,
UWB-based, active RFID tracking system [47].

• Tag-to-receiver ranges exceed 300 feet indoors (over 600 feet line-of-sight).

• Provide localization resolutions of better than 1 foot.

• Permits tag operation (at a 1 update per second rate) of up to 4 years on a single 3.0 V
lithium cell.

• Operating frequency: 6.2 GHz.

• Uses time differences-of-arrival.

• Positioning data made available through an IP socket interface for use in client
applications.

Other UWB localization devices and technologies
In addition to the earlier products discussed above, there are also other UWB ranging and
localization technologies from other companies and research centers. Thales Research
and Technology reported better than 30 cm accuracy with both pulsed-UWB and fre-
quency hopped DS-UWB [48]. Aetherwire Inc. claims on the order of centimeter
accuracy at distances up to kilometer range [49].

In February 2007, IMEC announced its first ever published IEEE 802.15.4a standard
compliant transmitter which can transmit at all bands between 3 and 10 GHz [50].Another
recent announcement by Fujitsu in January 2007 states that they achieved 17 cm accuracy
with UWB localizers using one way ranging in LOS situations [51]. With the completion
of the IEEE 802.15.4a standard, numerous other products from different vendors are also
expected.
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1.4 Problems

(1) Explain the differences between the following terms.
(a) Context awareness vs. location awareness.
(b) Accuracy vs. precision.
(c) Active localization vs. passive localization.
(d) Relative coordinate vs. absolute coordinate.
(e) Trilateration vs. triangulation.

(2) List five applications where UWB technology can be used for sub-meter ranging
and localization.

(3) Discuss why UWB is more suitable for wireless sensor network type of technologies
rather than other technologies such as cellular networks.

(4) Explain why GPS is not a suitable technology for indoor localization. Name three
alternative technologies for indoor localization, and elaborate on why they are better
alternatives compared to the GPS.



2 Ultra-wideband signals

Commonly, an ultra-wideband (UWB) signal is defined to be a signal with a fractional
bandwidth of larger than 20% or an absolute bandwidth of at least 500 MHz. The main
feature of UWB signals is that they occupy a much wider frequency band than conven-
tional signals; hence, they need to share the existing spectrum with incumbent systems.
Therefore, certain regulations are imposed on systems transmitting UWB signals. In this
chapter, after a detailed description of UWB signals, various regulatory rules on UWB
systems in different parts of the world are investigated. Then, emerging UWB standards
for wireless personal area network (WPAN) applications are studied.

2.1 Definition of UWB

Although Guglielmo Marconi’s spark gap radio transmitters were sending UWB signals
across the Atlantic Ocean in 1901, the rigorous investigation of UWB systems was stim-
ulated by the studies on impulse response characterization of microwave networks in the
1960s [63, 64]. Instead of the conventional swept-frequency response characterization,
a linear-time-invariant (LTI) system was characterized by its response to an impulse in
the time domain. After employing impulses to characterize behavior of various systems,
it was also realized that such impulses could also be used in radar and communications
systems [65]. The first UWB communications patent was issued in 1973 to Gerald F.
Ross on transmission and reception of baseband pulse signals [66].

Early names for UWB technology include baseband, carrier-free, non-sinusoidal
and impulse. The term UWB was coined by the US Department of Defense in the late
1980s. A UWB signal is characterized by its very large bandwidth compared to the
conventional narrowband systems. Namely, a signal is called UWB if it has an absolute
bandwidth of at least 500 MHz, or a fractional (relative) bandwidth larger than 0.2.1

The absolute bandwidth is calculated as the difference between the upper frequency
fH of the −10 dB emission point and the lower frequency fL of the −10 dB emission
point; i.e.

B = fH − fL, (2.1)

1 This definition is in accordance with the definition of the US FCC [67].
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which is also called −10 dB bandwidth (Fig. 2.1). On the other hand, the fractional
bandwidth is defined as

Bfrac = B

fc
, (2.2)

where fc is the center frequency and is given by

fc = fH + fL

2
. (2.3)

From (2.1) and (2.3), the fractional bandwidth Bfrac in (2.2) can be expressed as

Bfrac = 2(fH − fL)

fH + fL
. (2.4)

According to the US FCC [67], a UWB system with fc larger than 2.5 GHz must have
an absolute bandwidth larger than 500 MHz, and a UWB system with fc smaller than
2.5 GHz must have a fractional bandwidth larger than 0.2 (Fig. 2.1).

Due to their large bandwidth, UWB systems are characterized by very short duration
waveforms, usually on the order of a nanosecond. Commonly, a UWB system transmits
ultra-short pulses with a low duty cycle. In other words, the ratio between the pulse
transmission instant and the average time between two consecutive transmissions is
usually kept small. However, for UWB communications systems, both low duty cycle
schemes and continuous transmissions can be considered.

A type of UWB communications system that transmits UWB pulses with a low duty
cycle is called impulse radio (IR) [68]. In an IR UWB system, a number of pulses are
transmitted per information symbol and information is usually conveyed by the positions
or the polarities of the pulses, as shown in Fig. 2.2. Each pulse resides in an interval
called a “frame’’, and the positions of the pulses in the frames are determined according
to a time-hopping (TH) code in order to reduce the probability of collisions with pulses
of other UWB systems in the environment. For example, in Fig. 2.2, three information
bits are being transmitted, and each bit consists of two pulses (or, two frames). The TH
code for the first bit is given by {2, 1}, which means that the pulse in the first frame is
shifted by 2Tc seconds and the one in the second frame is shifted by Tc seconds, where
Tc represents the chip interval.
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Fig. 2.1. A UWB signal is defined to have an absolute bandwidth B � 500 MHz, or a fractional
bandwidth Bfrac = B/fc > 0.2.
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Fig. 2.2. An IR UWB signal, in which two pulses are transmitted per information symbol, and
information is conveyed by the polarities of the pulses (BPSK). Hence, +1, −1 and +1 are being
transmitted in this example. Note that each pulse resides in an interval of Tf seconds, called a
“frame’’, and the positions of the pulses in different frames are determined by a TH code, which
is {2, 1, 2, 3, 1, 0} in this example.

Some common UWB pulse shapes include derivatives of the Gaussian pulse [69],
pulses based on modified Hermite polynomials [70] and wavelet pulses [71, 72]. For
example, the second derivative of the Gaussian pulse is expressed as

ω(t) = A

(
1 − 4πt2

ζ 2

)
e−2πt2/ζ 2

, (2.5)

where A > 0 and ζ are parameters that determine the energy and the width of the pulse,
respectively.2 In Fig. 2.3, a unit energy pulse with the width of around 1 ns is plotted
according to (2.5) (ζ = 0.4 ns). As another example, Fig. 2.4 illustrates UWB pulses
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Fig. 2.3. The UWB pulse in (2.5) with the pulse width of around 1 ns.

2 The pulse width is roughly equal to 2.5ζ .
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Fig. 2.4. UWB pulses based on modified Hermite polynomials (©2006 IEEE) [70].

based on third-, fourth-, and fifth-order modified Hermite polynomials (MHPs). For
UWB systems operating under regulatory constraints, it is important to employ optimal
pulse shapes in order to utilize available bandwidth and power. Therefore, optimal and
suboptimal waveform design techniques are studied extensively to generate UWB pulses
with optimal spectral properties [73–75]

In addition to UWB systems with low duty cycles, it is also possible to realize UWB
systems with continuous transmissions. For example, a DS-CDMA system with a very
short chip interval can be used as a UWB communications system [76]. Alternatively,
transmission and reception of very short duration OFDM symbols can be considered as
an OFDM UWB scheme [77].

For both low duty cycle and continuously-transmitting UWB systems, the common
property of very large bandwidth brings many advantages for positioning, com-
munications, and radar applications. The main advantages can be summarized as
follows:

• penetration through obstacles

• high ranging, hence positioning, accuracy

• high-speed data communications

• low cost and low power implementation.

The penetration capability of a UWB signal is a result of its large frequency spectrum
that includes low frequencies as well as high frequencies. This large spectrum also
results in high time resolution, which improves the ranging accuracy, as will be studied
in Chapter 4.
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Fig. 2.5. Capacity versus bandwidth curves for UWB systems over AWGN channels.

The suitability of UWB signals for high-speed data communications can be observed
from the Shannon capacity formula. For an AWGN channel with bandwidth of B Hz,
the maximum data rate that can be acquired is given by

C = B log2(1 + SNR) (bits/second), (2.6)

where SNR is the signal-to-noise ratio of the system. In other words, as the bandwidth
of the system increases, it becomes possible to transmit more information from the
transmitter to the receiver, as shown in Fig. 2.5. Also note that when the bandwidth is
very large, signal power can be kept low to increase the battery life of the system and to
minimize the interference to the other systems in the same frequency spectrum.

Moreover, a UWB system can be operated in baseband, meaning that UWB pulses
can be transmitted without a sine-wave carrier (“carrier-free’’). In that case, the system
does not require IF processing, which facilitates low cost implementations.

2.2 International regulations for UWB signals

As stated in the previous section, UWB signals have unique properties that prove to
be very useful for communications, ranging and radar applications. However, since
UWB signals occupy a very large portion in the spectrum, they need to coexist with
the incumbent systems without causing significant interference. For example, frequency
allocation of some wireless systems is shown in Fig. 2.6. If UWB signals were allowed to
transmit over the range of frequencies of these systems without any restrictions, all these
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Fig. 2.6. Spectrum allocation of various wireless systems. A. Global positioning system (GPS)
(1.56–1.61 GHz), B. Personal communication system (PCS) (1.85–1.99 GHz), C. Microwave
ovens, cordless phones, bluetooth, IEEE 802.11b (2.4–2.48 GHz), D. IEEE 802.11a
(5.725–5.825 GHz), E. UWB (3.1–10.6 GHz). Note that the bandwidths and power levels of
various systems are not drawn to scale. The FCC Part 15 limit is also shown in the figure [78].
UWB systems are required to operate below the Part 15 limit (−41.3 dBm/MHz), which is the
limit for unintentional radiators, such as televisions and computer monitors.

systems could be jammed by UWB emission. Therefore, a UWB transmitter must meet
certain requirements in order not to cause any adverse effects on the functionality of other
systems. Especially, GPS, which is used not only for commercial but also for military
and homeland security purposes, should not experience performance degradation due to
UWB emission.

In order to benefit from advantages of UWB without degrading the performance of
other systems, the Federal Communications Commission (FCC) in the USA started a
specification definition system for UWB in 1998. Then, in February 2002, it announced
its “First Report and Order’’, which allowed the limited use of UWB devices [67].
According to this regulation, UWB systems must transmit below certain power levels
in order not to cause significant interference to the other systems in the same frequency
spectrum. Specifically, the power spectral density must not exceed −41.3 dBm/MHz for
frequency ranges from 3.1 to 10.6 GHz, and it must be even lower outside this band,
depending on the specific application. In other words, the FCC spectral mask specifies
a useful spectrum of 7.5 GHz for most UWB systems.

After the FCC legalized the use of UWB signals in the USA, a considerable amount
of effort has been put into development and standardization of UWB systems. In what
follows, the FCC regulations in the USAare investigated in detail, and then the regulatory
efforts in other parts of the world are summarized.

2.2.1 FCC regulations

The FCC specifies a set of rules to control harmful interference from UWB devices.
Mainly, it imposes certain power emission limits for various types of UWB systems.
These emission limits are specified in terms of equivalent isotropically-radiated power
(EIRP), which is defined as the product of the power supplied to an antenna and its gain



26 Ultra-wideband signals

in a given direction relative to an isotropic antenna. According to the FCC regulations,
maximum EIRP in any direction should not exceed the Part 15 limit of −41.3 dBm,3

which is the limit for unintentional radiators, such as television and computer monitors
[78]. In addition, various systems must have even lower limits than that of Part 15 in

some frequency bands depending on the specific application area. In this respect, the
FCC limits can be studied for three different systems: communications, vehicular radar
and imaging.

Communications systems
For communications systems, slightly different FCC limits are specified for indoor and
outdoor systems, as shown in Figs. 2.7 and 2.8, respectively. Specifically, emissions
of outdoor systems in the frequency band from 1.61 to 3.1 GHz should have an extra
attenuation of 10 dB compared to those of indoor systems.

UWB devices for indoor systems are not allowed to be used outdoors, or to direct their
radiation outside. Only peer-to-peer communication is permitted; i.e. each transmitter
may only transmit to an associated receiver. Indoor UWB systems have many potential
applications such as high-speed wireless personal area networks (WPANs) and wireless
USB (wUSB).
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Fig. 2.7. FCC emission limits for indoor UWB systems.

3 According to the FCC regulations, emissions (EIRPs) are to be measured using a resolution bandwidth of
1 MHz (except for 1.16–1.24 GHz and 1.56–1.61 GHz for which a resolution bandwidth of at least 1 kHz is
required).
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Fig. 2.8. FCC emission limits for outdoor UWB systems.

For outdoor systems, the FCC requires that UWB devices operate without a fixed
infrastructure and only communicate with their associated receivers. Applications of
outdoor UWB communications include object positioning and tracking, which make
use of precise ranging capability of UWB signals.

Vehicular radar systems
Vehicular radar systems can operate at the Part 15 limit between 22 and 29 GHz, as shown
in Fig. 2.9. Furthermore, the center frequency of such systems is required to be higher
than 24.075 GHz, and an additional 25 dB attenuation is required for the 23.6–24 GHz
band if the elevation angle is greater than 30◦ above the horizon, which is required
to prevent any interference to passive sensing systems operating on low Earth-orbiting
satellites [67]. Finally, vehicular radar systems can operate only when the vehicle is
operating; that is, when the engine is running.

Imaging systems
Under the imaging systems category, ground-penetrating radars (GPRs), wall imaging,
medical imaging, through-wall imaging and surveillance systems can be considered.
Table 2.1 summarizes the FCC emission limits for those systems, and Fig. 2.10 plots
the limits for medical imaging systems (the same plot applies to GPR and wall imaging
systems).

The FCC requires that operation of various imaging systems (GPR, imaging, and
medical) must be coordinated, and dates and locations of operation must be reported.
Also, use of the imaging systems stated in Table 2.1 requires licensing, and use of each
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Fig. 2.9. FCC emission limits for vehicular radar systems.

Table 2.1. The FCC emission limits (EIRP in dBm) for UWB imaging systems.

Frequency range (GHz) 0.96–1.61 1.61–1.99 1.99–3.1 3.1–10.6 Above 10.6

GPR, wall imaging, medical
imaging

−65.3 −53.3 −51.3 −41.3 −51.3

Through-wall imaging
(low-frequency)

−65.3 −53.3 −51.3 −51.3 −51.3

Surveillance systems −53.3 −51.3 −41.3 −41.3 −51.3

system is limited to certain organizations. For example, surveillance systems can be
operated only by public safety, manufacturing, petroleum and power licensees [79].

Although the FCC’s emission limits differ for various types of UWB systems, there
are also a number of other FCC regulations that are common for all UWB systems
[67, 79].

• The frequency fM at which the highest power is emitted must be within the −10 dB
absolute signal bandwidth.

• Peak emissions within a 50 MHz bandwidth around fM may not exceed 0 dBm EIRP.
• Emissions below 0.96 GHz are limited by the FCC Part 15 limit of −41.3 dBm/MHz

for unintentional radiators.
• Operation on aircraft, ship or satellite is not permitted.
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Fig. 2.10. FCC emission limits for medical imaging systems.

2.2.2 Other regulatory efforts

After UWB was authorized by the FCC in the USA in 2002, regulatory efforts have
been underway in Europe and Asia to approve the use of UWB devices under certain
restrictions. For compatibility issues, it would be beneficial to have the same regulations
worldwide. However, the emission limits have some differences in different parts of the
world. Therefore, UWB devices should have sufficient flexibility to operate worldwide,
or be designed according to the worst-case scenario.

In the following, the regulatory efforts in Europe and Japan are summarized. Both
Japan and Europe have recently allowed the use of UWB systems although modifications
to initial regulations are expected in the near future.

Europe
In Europe, the Electronic Communications Committee (ECC) of the European Confer-
ence of Postal and Telecommunications Administrations (CEPT) undertook technical
studies for UWB regulations. The studies and recommendations of the ECC were con-
sidered by the Radio Spectrum Committee (RSC) of the European Commission (EC),
which made the final decision (at the beginning of 2007) for UWB regulations that are
valid in the member countries [80].

The spectrum mask imposed by the EC is as shown in Fig. 2.11 for UWB systems
that do not employ appropriate interference mitigation techniques. Mainly, such UWB
systems can transmit at −41.3 dBm/MHz over the 6–8.5 GHz band. This limit is valid
also for the 4.2–4.8 GHz band until the end of 2010. Starting from 2011, the EIRP will be
limited to −70 dBm/MHz for that band. Note that the FCC in the USA allows an EIRP
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Fig. 2.11. ECC emission limits without appropriate mitigation techniques. UWB systems can
transmit −41.3 dBm/MHz in the 4.2–4.8 GHz band until the end of 2010. After then, the
limit of −70 dBm/MHz will be imposed on that band.

of −41.3 dBm/MHz over a wider frequency band, 3.1–10.6 GHz (cf. Fig. 2.7). In other
words, the EC regulations are more strict than the FCC regulations.

For UWB systems employing appropriate interference mitigation techniques, the EC
limits are as shown in Fig. 2.12. Namely, such systems can transmit at −41.3 dBm/MHz
in the 3.4–4.8 GHz band provided that they have low duty cycle transmissions [80]. This
low duty cycle requirement is specified in terms of Ton and Toff , which are defined as
the duration of a burst (irrespective of the pulses contained in the burst) and the duration
between two consecutive bursts, respectively [81]. The EC requires that the maximum
duration of a burst should not exceed 5 ms; i.e. Ton ≤ 5 ms, and that the total off-time
per second should be larger than 950 ms whereas the total on-time should not exceed 5%
per second and 0.5% per hour.

Although the current regulations4 of the EC are quite strict, an amendment at the begin-
ning of 2008 is expected to relax the restrictions and take into account other interference
mitigation techniques such as detect-and-avoid.

Japan
In Japan, the Ministry of Internal Affairs and Communications (MIC) authorized the
regulations for indoor UWB devices in March 2006. However, these initial regulations

4 The regulations specified in Figs. 2.11 and 2.12 are for indoor UWB devices, and for outdoor UWB devices
that are not attached to a fixed installation, a fixed infrastructure, a fixed outdoor antenna, or an automotive
or railway vehicle. UWB applications for automotive short-range radars are regulated by [82] and [83].
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Fig. 2.12. ECC emission limits with appropriate mitigation techniques.
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Fig. 2.13. MIC emission limits in Japan for indoor UWB devices. For the frequency band between 3.4 and
4.8 GHz, interference mitigation techniques such as LDC or DAA are required (The shaded band
of 4.2–4.8 GHz is excepted from this requirement until the end of 2008.).
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are likely to be modified and extended in the future. Specifically, use of UWB devices
outdoors and inside automobiles is being investigated.

The current regulations in Japan specify two usable bands 3.4–4.8 GHz and 7.25–
10.25 GHz for UWB operation, in which −41.3 dBm EIRP can be emitted (measured
over 1 MHz) [84]. For the first band, interference mitigation techniques are required, or
else the average power must be reduced to −70 dBm.5 Also the peak power measured
over 50 MHz may not exceed 0 dBm EIRP for both bands. The details of the spectrum
mask are illustrated in Fig. 2.13.

2.3 Emerging UWB standards

After the FCC allowed the limited use of UWB systems, standardization efforts were ini-
tiated by the IEEE for a high-speed PHY enhancement amendment to the IEEE 802.15.3
WPAN standard, which originally provided data rates from 11 Mbps up to 55 Mbps.
The IEEE formed a new task group 3a for the high rate alternative PHY. The IEEE
802.15.3a standard targeted data rates up to 480 Mbps, which would enable imaging and
multimedia applications in WPANs.

The IEEE 802.15.3a task group evaluated a number of PHY proposals from various
companies, and ended up with two proposals. The first one was based on multiband
OFDM (MB-OFDM) UWB [77], supported by the WiMedia Alliance [85], and the other
was DS-UWB [76], supported by the UWB Forum [86]. However, a final decision on
which technology to use in the standard could not be reached and the task group was
dissolved at the beginning of 2006. Although the IEEE 802.15.3a standard could not be
finalized, the industry groups in favor of MB-OFDM UWB and DS-UWB systems have
been working on pushing their products into the marketplace.

After the IEEE 802.15.3a task group was dissolved, the WiMedia Alliance had Ecma
International6 approve their WPAN standard based on MB-OFDM UWB technology.
The details of this standard are investigated in Section 2.3.1.

In addition to high-rate WPAN applications, UWB signals have also been consid-
ered for low-rate WPANs that focus on low power and low complexity devices. The
IEEE formed the task group 4a (TG4a) in March 2004 for an amendment to the IEEE
802.15.4 standard for an alternative PHY. The IEEE 802.15.4a provides high-precision
ranging/location capability, high aggregate throughput and ultra-low-power consump-
tion. This standard is studied in Section 2.3.2.

5 For the 600 MHz band of 4.2–4.8 GHz, interference mitigation techniques are not required until the end of
2008.

6 Ecma International is an industry association founded in 1961 and works on the standardization of
information and communication technology and consumer electronics (http://www.ecma-international.org).
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2.3.1 Ecma standards on multiband OFDM UWB

At the end of 2005, Ecma International approved two standards for UWB technology
based on MB-OFDM approach, which are ECMA-368, high-rate UWB PHY and MAC
standard, and ECMA-369, MAC-PHY interface for ECMA-368 [87, 88]. Mainly, these
Ecma standards specify a basis for high-speed and short-range WPANs, utilizing all or
part of the spectrum between 3.1 and 10.6 GHz with data rates of up to 480 Mbps.

Operating band frequencies and time-frequency codes
According to the Ecma standards, the frequency band 3.1–10.6 GHz is divided into 14
bands, with a 528 MHz spacing between consecutive center frequencies. In other words,
the center frequency for the nth band, f

(n)
c , is given by

f (n)
c = 2.904 + 0.528n (GHz), (2.7)

for n = 1, . . . , 14. These 14 frequency bands are also classified into five band groups as
shown in Fig. 2.14.

The transmitted signal at any given time occupies one of the 14 bands in Fig. 2.14.
Depending on the time-frequency code (TFC) at the transmitter, data can be interleaved
over a number of bands, which is called time-frequency interleaving (TFI), or it can be
transmitted over a single band, which is called fixed-frequency interleaving (FFI). For
example, in Fig. 2.15, the first three bands are used to transmit information symbols. The
first symbol is transmitted over band-1, the second is transmitted over band-2, the third
is transmitted over band-3 and this structure is repeated thereafter, which corresponds
to a TFC of {1, 2, 3, 1, 2, 3}. Note that TFI, rather than FFI, is employed here since data
is transmitted over three different bands.

In the Ecma standard, a total of seven TFCs are defined for the first band group as
shown in Table 2.2. Similarly, seven TFCs are defined for band group 2, band group 3
and band group 4. For band group 5, two FFI codes, namely {13, 13, 13, 13, 13, 13} and
{14, 14, 14, 14, 14, 14}, are specified. Overall, 30 channels are specified in the standard.

Transmitter structure
A multiband OFDM UWB transmitter according to the Ecma standard is illustrated in
Fig. 2.16. Information bits to be transmitted are first scrambled, and then encoded using
a convolutional encoder, which implements a type of forward error correction (FEC)
scheme. A convolutional encoder encodes the input bits by passing them through a
linear finite state machine, where the number of states determines the constraint length
of the code, and the ratio between the number of output bits and the number of input
bits defines the rate of the code. For the Ecma standard, a convolutional encoder with
rate 1/3 and constraint length 7 is employed. By using this encoder, various code rates
can also be obtained by employing a technique called puncturing, which is a method for
omitting some of the encoded bits at the output of the encoder, hence for increasing the
coding rate. For example, by omitting 7 bits from each 15 encoded output bits of the rate
1/3 convolutional encoder, the rate can be increased to 5/8. According to the standard,
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OFDM
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Time3.168

3.696

4.224

4.752

Zero
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Frequency (GHz)

Fig. 2.15. Time-frequency allocation for a system using the first three bands with a TFC of {1, 2, 3, 1, 2, 3}.

Table 2.2. TFCs for band group 1.

TFC-1 1 2 3 1 2 3
TFC-2 1 3 2 1 3 2
TFC-3 1 1 2 2 3 3
TFC-4 1 1 3 3 2 2
TFC-5 1 1 1 1 1 1
TFC-6 2 2 2 2 2 2
TFC-7 3 3 3 3 3 3

Anti-aliasing
filter

Local
oscillator

DACZero
padding

OFDM
modulator

si [k ] si (t )

Input
data

Scrambler
Convolutional

encoder/
puncturer

Interleaving
Constellation

mapping

Fig. 2.16. Basic blocks of an multiband OFDM UWB transmitter according to the Ecma standard.

a coding rate of 1/3, 1/2, 5/8 or 3/4 can be used in the system corresponding to various
data rate options.

After the convolutional encoding, the coded bits are interleaved, which is a process
that spreads bits over a series of symbols so as to provide robustness against burst errors.
The Ecma standard defines both inter-symbol and intra-symbol interleaving. For the
inter-symbol interleaving, bits are permuted over six symbols, whereas for the intra-
symbol interleaving arrangement, bits inside symbols are changed according to certain
structures.

After the interleaving, the bits are mapped onto a complex constellation. For data
rates of 53.3, 80, 106.7, 160 and 200 Mbps, the binary data is mapped to a QPSK
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constellation, whereas for data rates of 320, 400 and 480 Mbps, the binary data is mapped
to a multi-dimensional constellation using a dual-carrier modulation (DCM) technique.
For QPSK, each pair of binary bits, b2i and b2i+1, is mapped to a complex number as

1√
2

(2b2i − 1 + j(2b2i+1 − 1)) for i = 0, 1, . . . . For DCM, each 200 bits are converted

into 100 complex numbers by grouping 200 bits into 50 groups of 4 bits, and then
mapping each 4-bit group to two complex numbers according to a certain pattern, as
defined in [87].

The complex numbers obtained by constellation mapping are input to the OFDM
modulator as shown in Fig. 2.16, and zero padding is applied to the output of the OFDM
modulator. After that, the discrete signal is converted to a continuous-time waveform
by a digital-to-analog converter (DAC) and an anti-aliasing filter. Finally, depending on
the TFC, a local oscillator is used to set the center frequency of the signal, which is then
transmitted through the antenna as shown in Fig. 2.16.

The details of the signal structures between the OFDM modulator and the antenna are
explained in the following section.

Signal model
According to the Ecma standard, each transmitted packet is expressed as

stx(t) = Re

{
Ns∑
i=0

si(t − iTs) exp
(

j2πf
(q(i))
c t

)}
, (2.8)

where Ts is the symbol length, Ns is the number of symbols in the packet, si(t) is the
complex baseband signal representation for the ith symbol, f

(n)
c is the center frequency

for the nth frequency band as given in (2.3), and q(i) is a function that maps the ith
symbol to the appropriate frequency band according to the TFC at the transmitter. For
example, for the TFC in Fig. 2.15, q(i) = mod{i, 3} + 1 can be used, where mod{x, y}
denotes the remainder of the division of x by y.

Since each packet consists of a synchronization preamble, a header and a PHY service
data unit (PSDU),7 the symbol si(t) in (2.8) is defined according to the symbol index as
follows:

si(t) =

⎧⎪⎪⎨
⎪⎪⎩

ssync,i (t), 0 ≤ i < Nsync

shdr,i−Nsync(t), Nsync ≤ i < Nsync + Nhdr ,

sframe,i−Nsync−Nhdr (t), Nsync + Nhdr ≤ i < Ns

(2.9)

where Nsync and Nhdr are the number of symbols in the synchronization preamble and
header sections of the packet, respectively. In the following, the detailed descriptions of
the signal structures are described only for the header and the PSDU. Interested readers
are referred to [87] for the detailed description of the synchronization signals.

7 The PSDU is formed by concatenating the frame payload with the frame check sequence, tail bits and pad
bits, which are inserted in order to align the data stream on the boundary of the symbol interleaver [87].
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Consider the discrete signal si[k], which is obtained by taking the Inverse discrete
Fourier transform (IDFT) of the complex modulated data:

si[k] = 1√
NFFT

61∑
l=−61

bi,l exp (j2πlk/NFFT) , (2.10)

for k = 0, 1, . . . , NFFT − 1 and i = Nsync, . . . , Ns − 1, where bi,l is the complex infor-
mation at the lth subcarrier of the ith symbol, and NFFT is the size of the IDFT. Note that
si[k] in (2.10) is an OFDM symbol, which effectively divides the frequency spectrum
(528 MHz) into overlapping but orthogonal sub-bands by using NFFT subcarriers and
transmits information symbols (bi,l) at each subcarrier [89].

The Ecma standard specifies that the total number of subcarriers NFFT is 128, and
out of 128 subcarriers, 122 are used in the system, as can be noted by the limits of the
summation in (2.10) (the subcarrier corresponding to the DC component is also set to
zero; i.e. bi,0 = 0). The subcarriers are classified into data subcarriers, pilot subcarriers
and guard subcarriers. According to the standard, there are 100 data subcarriers, which
are used to carry information, whereas there exist 12 pilot subcarriers, which transmit
known data for the purposes of signal parameter estimation at the receiver. Furthermore,
there are 10 guard subcarriers, five on each side of the OFDM symbol, which carry the
same information as the outermost data subcarriers.

In order to mitigate the effects of multipaths and to provide a time window to allow
the transmitter and the receiver sufficient time to switch between the different bands,
zero-padding is applied to si[k] after the IDFT operation, and sframe,i[k] and shdr,i[k] are
obtained as

shdr,i[k] =
{

si[k], k = 0, 1, . . . , NFFT − 1,

0, k = NFFT, . . . , NFFT + NZPS − 1,
(2.11)

for i =Nsync, . . . , Nsync + Nhdr − 1, and

sframe,i[k] =
{

si[k], k = 0, 1, . . . , NFFT − 1,

0, k = NFFT, . . . , NFFT + NZPS − 1,
(2.12)

for i =Nsync + Nhdr, . . . , Ns − 1, where NZPS represents the number of samples in the
zero-padded suffix.

Then, from the discrete-time signals shdr,i[k] and sframe,i[k], the continuous-time
symbols si(t) are obtained by digital-to-analog conversion and filtering, as shown in
Fig. 2.16.

System parameters
In this section, some of the system parameters in the Ecma standard are summarized.
Table 2.3 lists the data modes supported by the standard, which ranges from 53.3 to
480 Mbps. Note that various data rates are obtained by adjusting the rate of convolutional
encoder, and/or by using spreading in the frequency and/or time domain. Time-domain
spreading (TDS) involves transmitting the same information across two consecutive
OFDM symbols, whereas frequency-domain spreading (FDS) involves transmitting the
same information on two separate subcarriers within an OFDM symbol.
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Table 2.3. Various data options and corresponding parameters for the Ecma International standard for
MB-OFDM UWB transmitters.

Data rate (Mbps) Modulation Coding rate FDS factor TDS factor

53.3 QPSK 1/3 2 2
80 QPSK 1/2 2 2
106.7 QPSK 1/3 1 2
160 QPSK 1/2 1 2
200 QPSK 5/8 1 2
320 DCM 1/2 1 1
400 DCM 5/8 1 1
480 DCM 3/4 1 1

Table 2.4. Systems parameters for the MB-OFDM UWB transmitter according to the Ecma International
standard.

Parameter Definition Value

NFFT Total number of subcarriers (FFT size) 128
NT Total number of subcarriers used 122
ND Number of data subcarriers 100
NP Number of pilot subcarriers 12
NG Number of guard subcarriers 10
NZPS Number of samples in zero-padded suffix 37
Ts Symbol interval 312.5 ns
TFFT IFFT and FFT period 242.42 ns
TZP Zero-padding duration 70.08 ns
Tswitch Time to switch between bands 9.47 ns

In Table 2.4, some of the important system parameters are listed. Since each symbol
is transmitted over 312.5 ns, and 100 data subcarriers are transmitted per symbol, a total
of 3.2×108 subcarriers are transmitted per second. As each subcarrier carries two bits
of information (for both QPSK and DCM), the raw data rate is obtained as 640 Mbps.
Then, according to the rate R of the convolutional encoder, and TDS and FDS factors,
the data rate can be calculated as

Data rate = Raw data rate × R

NTDS × NFDS
, (2.13)

where NTDS and NFDS are the TDS and FDS factors, respectively. Note that the various
data rate options in Table 2.3 can be verified by (2.13).

Ranging and location awareness
Ranging is an optional capability in the Ecma standard. If a device implements ranging,
it should have an accuracy of 60 cm or better.

Ranging in the Ecma standard is based on estimation of propagation delay between a
pair of devices. This propagation delay estimation should be performed with respect to a
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reference point in the preamble, called the ranging reference point. During the reception
(transmission) of a ranging packet, the value of a ranging counter corresponding to
the ranging reference point is used to obtain the packet reception (transmission) time.
Also, the system should provide processing delays corresponding to the transmission
or reception of a packet. By using the packet transmission and reception times, and
the corresponding processing delays, two devices can perform a two-way protocol for
ranging estimation. The principles of two-way ranging are studied in Chapter 6.

2.3.2 IEEE 802.15.4a standard

In 2004, the IEEE 802.15 low-rate alternative PHY task group (TG4a) was formed to
design an alternate PHY specification for the already existing IEEE 802.15.4 standard for
WPANs [90]. The main purpose of the TG4a was to provide communications and high-
precision ranging with low-power and low-cost devices. The TG4a’s efforts resulted in
the IEEE 802.15.4a standard in 2007. With additional features provided by the 15.4a
amendment, the IEEE 802.15.4 standard now facilitates new applications and market
opportunities.

The IEEE 802.15.4a specifies two optional signaling formats based on IR-UWB8

and chirp spread spectrum (CSS). The IR-UWB option can use 250–750 MHz, 3.244–
4.742 GHz, or 5.944–10.234 GHz bands; whereas the CSS uses the 2.4–2.4835 GHz
band. For the IR-UWB there is an optional ranging capability, whereas the CSS signals
can only be used for communications purposes. Since the focus of this book is on ranging
algorithms, only the IR-UWB option of the IEEE 802.15.4a standard is studied in this
section. The interested reader is referred to [91] for a detailed description of the CSS
signaling employed in the IEEE 802.15.4a.

Channel allocations
As specified above, a UWB device can transmit in one or more of the following bands
according to the IEEE 802.15.4 standard:

(i) Sub-GHz: 250–750 MHz
(ii) Low band: 3.244–4.742 GHz

(iii) High band: 5.944–10.234 GHz.

Over these three bands, 16 channels are supported for the UWB PHY: one in the sub-
GHz band, four in the low band and 11 in the high band. These channels and their
center frequencies and bandwidths are listed in Table 2.5, along with the specification of
mandatory channels in each band. Specifically, a UWB device that implements the low
band (high band) should support channel 3 (channel 9), whereas the remaining channels
in the band are optional.

8 The UWB option in the IEEE 802.15.4a standard does not employ a conventional IR-UWB signal. Instead
bursts of pulses are transmitted in different burst intervals and information is carried by the positions and the
polarities of the bursts, as will be investigated in the subsection entitled “Transmitter structure and signal
model.’’
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Table 2.5. UWB channels for the IEEE 802.15.4a standard.

Channel No. Center freq. (MHz) Bandwidth (MHz) UWB band Mandatory

0 499.2 499.2 Sub-GHz Yes
1 3494.4 499.2 Low band No
2 3993.6 499.2 Low band No
3 4492.8 499.2 Low band Yes
4 3993.6 1331.2 Low band No
5 6489.6 499.2 High band No
6 6988.8 499.2 High band No
7 6489.6 1081.6 High band No
8 7488.0 499.2 High band No
9 7987.2 499.2 High band Yes

10 8486.4 499.2 High band No
11 7987.2 1331.2 High band No
12 8985.6 499.2 High band No
13 9484.8 499.2 High band No
14 9984.0 499.2 High band No
15 9484.8 1354.97 High band No

Transmitter structure and signal model
The main components of an IR-UWB transmitter according to the standard are illustrated
in Fig. 2.17. The information bits are first encoded by a Reed–Solomon (RS) encoder,
which is a type of block error-correcting code that works by over-sampling a generator
polynomial constructed from the input data [92]. The RS encoder takes a block of 330
bits at a time, and adds 48 parity bits according to a generator polynomial specified in
the standard. So, the RS encoder has a rate of around 0.87. Then, the encoded bits from
the RS encoder are encoded by a convolutional encoder with a rate of 1/2.

Each pair of encoded bits is carried by one UWB symbol. A UWB symbol structure
is shown in Fig. 2.18, where the symbol duration Tsym is divided into two intervals,
denoted as TBPM. At each symbol interval, one burst of UWB pulses is transmitted, and
the location of the burst in either the first or the second interval indicates one bit of
information. In other words, if the burst resides in the first half of the symbol, a “0’’ is
transmitted; if the burst is in the second half of the symbol, a “1’’ is transmitted. This
is called burst position modulation (BPM). In addition, the polarity of the burst carries
another bit of information, corresponding to binary phase shift keying (BPSK). Overall,
BPM–BPSK modulation is used to carry two bits of information per symbol.

Also note from Fig. 2.18 that the burst can be transmitted in one of the possible
intervals, each with length Tburst, in the first or third quarter of the symbol. The position

Symbol
mapper

Convolutional
encoder

Reed–Solomon
encoder

Input
data

Preamble
insertion

Pulse
shaper RF

Fig. 2.17. Basic blocks of an IR-UWB transmitter according to the IEEE 802.15.4a standard (After [91]).
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TBPM

Tburst

Tc

TBPM

Tsym

Possible burst positions Possible burst positionsGuard interval Guard interval

Fig. 2.18. UWB symbol structure according to the IEEE 802.15.4a standard (After [91]).

of the burst can be determined by a burst-hopping sequence, which provides robustness
against multi-user interference.

After the symbol mapper in Fig. 2.17, a preamble is added prior to the header of
each packet, which is used for timing acquisition, coarse and fine frequency recovery,
packet and frame synchronization, channel estimation, and leading edge signal tracking
for ranging. After that, bits are transmitted by means of UWB pulses, using the pulse
shaper, the RF components and the antenna, as shown in Fig. 2.17.

The transmitted signal for the ith symbol can be expressed as

si(t) = (
1 − 2bi,1

)Ncpb−1∑
n=0

(
1 − 2sn+iNcpb

)
ω
(
t − bi,0TBPM − h̃iTburst − nTc − iTsym

)
,

(2.14)

where Ncpb is the number of chips per burst, i.e. Tburst = NcpbTc, with Tc denoting the

chip interval, ω(t) is the UWB pulse waveform, {sn+iNcpb}Ncpb−1
n=0 is the binary spread-

ing sequence, and h̃i ∈ {0, 1, . . . , Nburst/4 − 1} is the burst-hopping position for the
ith symbol, where Nburst = Tsym/Tburst. Note that the limitation of the burst-hopping
position to a quarter of the number of bursts per symbol provides a guard interval in the
symbol as shown in Fig. 2.18.

The information bits carried by the ith symbol are denoted by bi,0 and bi,1, where
bi,0 ∈ {0, 1} is the BPM information determining the position of the burst, and bi,1 ∈
{0, 1} is encoded into the burst polarity for BPSK modulation.

System parameters
The UWB PHY of the IEEE 802.15.4a standard supports various data rates through
the use of variable-length bursts. The bit rates supported by a given channel are
{0.11, 0.85, 1.7, 6.81, 27.24} Mbps. In addition, the channels can transmit pulses with
various mean pulse repetition frequency (PRF) options, which are 3.90, 15.6 and
62.4 MHz. As an example, in Table 2.6, the parameters are listed for a mean PRF of
62.4 MHz. Note that by changing the number of chips per burst, Ncpb, and keeping the
number of bursts per symbol, Nburst, fixed, various symbol lengths (in terms of number
of chips per symbol, Nc, in Table 2.6), hence various data rates are obtained.
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Table 2.6. System parameters for UWB PHY of the IEEE 802.15.4a standard for a mean PRF of 62.4 MHz,
where CC refers to convolutional coding.

RS rate CC rate Nburst Ncpb Nc Bit rate (Mbps)

0.87 0.5 8 512 4096 0.11
0.87 0.5 8 64 512 0.85
0.87 0.5 8 8 64 6.81
0.87 0.5 8 2 16 27.24

Ranging and location awareness
The IEEE 802.15.4a standard supports optional ranging capability for the UWB PHY
option. The ranging estimation is obtained from time-delay estimates. In order to obtain
time-delay estimates, packet preambles are used, and timing parameters are exchanged
between two devices according to certain two-way protocols. The details of the ranging
algorithms for the IEEE 802.15.4a standard will be studied in Chapter 6.

2.4 Problems

(1) What are the advantages of UWB signals in positioning applications?
(2) (a) Calculate the Fourier transform of the UWB pulse in (2.5). Hint: The Fourier

transform of e−at2
is

√
�/�.e−�2f 2/a

(b) Find the maximum value of the Fourier transform magnitude, and the frequency
at which the maximum value is attained. Comment on the relation between that
frequency and ζ .

(3) (a) Calculate the average power spectral density of the following signal

s(t) =
∞∑

i=−∞
aiω(t − iTf ), (2.15)

where ω(t) is a UWB pulse, Tf is the pulse repetition interval, which is larger
than the pulse width, and ai is a randomization sequence uniformly distributed
on {−1, +1}.

(b) For the UWB pulse in (2.5) with ζ = 0.2 ns, and for Tf = 100 ns, calculate the
maximum value of A in (2.5) such that the average power spectral density of
s(t) never exceeds –41.3 dBm/MHz.

(4) (programming exercise) The fifth derivative of the Gaussian pulse is expressed as
follows

ω(t) = A

(
− t5

σ 4
+ 10t3

σ 2
− 15t

)
e−t2/(2σ 2)

√
2π σ 7

, (2.16)

where A > 0 and σ > 0 are the parameters to adjust the energy and the width of the
pulse.
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(a) Plot the pulse in (2.16) for σ = 10−11, σ = 5.10−11 and σ = 10−10. For each
case, choose A such that the pulse is normalized to unit energy.

(b) Obtain the Fourier transform of the pulse, and plot the Fourier transform mag-
nitude for the scenarios considered in part (a). Observe the relations between
σ , the bandwidth, and the center frequency of the pulse spectrum. Hint: The
approach in problem 2 can be followed to obtain the Fourier transform of the
Fifth derivative of the Gaussian pulse.

(d) Assume a low duty cycle UWB signal with average power spectral density
k|�(f )|2, where k = 107s−1 and �(f ) is the Fourier transform of the UWB
pulse ω(t).

For such a signal, choose appropriate values for A and σ such that the signal
spectrum fits tightly to the FCC mask for indoor communication systems. In
other words, find the optimal A and σ to achieve the maximum signal power
under the FCC regulations. Plot both the average power spectrum of the signal
for the calculated values and the FCC mask.



3 Ultra-wideband channel models

Wireless channel models carry significant importance for gaining insight into designing
physical layer systems and selecting certain system parameters. For instance, in an IR-
UWB system, a design engineer might need to know how much apart to transmit two
sequential pulses in order to avoid inter-frame interference at the receiver, or how likely
the first arriving signal component contains the highest energy among all signal com-
ponents for accurate ranging. Answers to such questions can be obtained either directly
from channel measurements conducted in an environment of interest, or from statistical
models derived from channel measurement campaigns.

There are various channel modeling techniques (e.g. ray tracing and statistical
modeling) [93–96] and channel sounding methods (e.g. time-domain vs. frequency
domain) [97, 98], which have been studied extensively in the literature. The focus of
this chapter is not those well-known channel modeling techniques, but mainly the UWB
channel models recently proposed and their interpretations for positioning applications.

Many UWB channel modeling campaigns have been performed within the past few
years, mainly due to emerging UWB standards (e.g. multiband OFDM-UWB, IEEE
802.15.4a, and IEEE 802.15.3c) [96, 97, 99–101]. Although channel statistics and models
of various frequency bands are publicly available, many of those do not explicitly include
ranging-related statistics. Therefore, one of the aims of this chapter is to investigate UWB
channel models from a range estimation perspective.

Designing a wireless system typically involves the steps illustrated in Fig. 3.1. First,
application requirements need to be explored. Low attenuation at low frequencies makes
through-the-wall communications and tracking applications attractive, but it is difficult
to adopt sub-GHz UWB systems due to coexistence issues with existing narrowband
systems. Therefore, UWB systems above 3 GHz can find implementation opportunities
more easily. Inline with international regulations and restrictions, a frequency band plan
should be tailored. For instance, the FCC does not allow the use of UWB for toys
and games. Therefore, UWB would not be an option if the goal is to produce location
capability for toys. Once the band plan is in place, channel measurement campaigns
can be conducted to help set technical design criteria such as data rate, achievable link
distance, and maximum supportable mobility. Regulations also impact design criteria.
An emission level constraint within a particular frequency band can limit communication
range for a given data rate. The last two steps involve completion of system design, and
implementation and testing.
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Explore application
requirements

Determine frequency
band plan

Conduct channel
measurements

Set design criteria

Complete design

Test and production

International
regulations &
restrictions

Fig. 3.1. Steps in designing a wireless system.

This chapter focuses on UWB channel models. It first explains differences between
UWB and narrowband systems, and studies the effects of those differences in respective
channel models. Then, UWB channel characteristics are studied for various frequency
bands of operation, which are 0.1–1 GHz, 2–10 GHz, and 57–66 GHz. In addition, key
statistics that need particular consideration in development of a ranging system are
addressed.

3.1 UWB versus narrowband

Large bandwidths of UWB systems result in significant differences in channel char-
acterization compared to that for narrowband systems.1 For narrowband systems, the
properties of the objects in a given environment, such as their reflection and scattering
properties, can be considered as constant with respect to frequency due to the small
frequency band of interest. However, for UWB systems, the frequency dependence of
material properties as well as that of transmit and receive antennas become significant.
In this section, the frequency dependence of propagation is investigated, and the main
differences in channel characterization for UWB and narrowband systems are explained.

1 Both narrowband and wideband systems can be considered as “narrowband’’ as compared to UWB systems.
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Transmitter Receiver

d

Fig. 3.2. A transmitter and a receiver spaced at a distance of d. It is assumed that the transmitted signal
arrives at the receiver only through the direct path.

3.1.1 Free-space propagation

First, an oversimplified propagation model is considered as shown in Fig. 3.2, where
the transmitted signal reaches the receiver only through a direct path. For this free-
space propagation scenario, it is well known that the received power at frequency f and
distance d can be expressed as [102]

Prx(d, f ) = PtxGtx(f )ηtx−ant(f )Grx(f )ηrx−ant(f )

(
c

4πf d

)2

, (3.1)

where Ptx is the transmit power, Gtx and Grx are the antenna gains for the transmit
and receive antennas, respectively, c is the speed of light, and ηtx−ant and ηrx−ant are,
respectively, the efficiencies for the transmit and receive antennas. From (3.1), it is
observed that if the gains of the antennas vary considerably with frequency, the received
power level can change significantly, too. In other words, unlike narrowband systems,
for which the gains can be considered as frequency independent, the gains can vary over
the frequency range of a UWB system.

Another source of frequency dependency comes into play through the antenna effi-
ciency terms in (3.1). One factor that affects the antenna efficiency is the impedance
bandwidth of an antenna, which specifies a frequency band over which the signal loss is
not very significant. For UWB antennas, it is quite challenging to limit this signal loss to
low and fixed levels over a wide frequency band. Therefore, antenna efficiency is also
commonly a frequency-dependent term.2

3.1.2 Propagation in a realistic environment

In a realistic environment, there are other objects, in addition to the transmitter and the
receiver, that affect the propagation characteristics. For example, the transmitted signal
can arrive at the receiver by reflecting from an object in the environment in addition
to directly reaching the receiver. Therefore, the properties of the objects in a given
environment are also important in determining the response of a channel.

In Fig. 3.3, the signal path from the transmitter to the receiver via a reflection from
an object is illustrated. If the transmitted power is denoted as Ptx, the received power at
frequency f can be expressed as [103]

Prx(d1, d2, f ) = PtxGtx(f )ηtx−ant(f )Grx(f )ηrx−ant(f )
c2σrcs(f )

4π (4πf d1d2)
2
, (3.2)

2 UWB antennas will be investigated in detail in Chapter 8.
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Transmitter

Object

d1 d2

Receiver

Fig. 3.3. The signal from the transmitter reflects from the object and reaches the receiver.

where d1 (d2) is the distance between the transmitter (receiver) and the object, and σrcs

is the radar cross-section (RCS) of the object. The RCS can be considered as a fictional
surface area that intercepts the incident wave and scatters the energy isotropically in
space. Generally, it is a complex function of wave frequency, polarization, aspect angle
and the shape of the object. In the radar literature, the RCS is considered to be a random
variable; and the radar equation (3.2) is used only to estimate its mean power. The
interested reader is referred to [103] for a detailed table of common statistical models
for RCSs of various scatterers.

In order to illustrate frequency dependent effects in propagation, consider a simple
sphere of radius r as the object in Fig. 3.3. The RCS for such an object is given by
πr2 for r � λ̃, where λ̃ represents the wavelength, and it is directly proportional to
r6/λ̃4 for r 	 λ̃ [104]. In this case, the RCS is independent of the frequency for high
frequencies (i.e. for f � c/r), but increases with frequency for low frequencies (i.e. for
f 	 c/r). In fact, for geometric shapes other than spheres, the RCS generally increases
with frequency [103, 105]. In other words, RCS is a frequency-dependent parameter in
general, which can cause significant changes in the received signal power over a range
of frequencies.

In addition to reflection, transmission through objects in a given environment is
another factor that affects the channel characteristics. This is especially important when
there is an object between the transmitter and the receiver. The amount of transmission
through a dielectric layer of width dlayer is determined by the transmission coefficient,
which is given by [102, 106]

CT = CT,1CT,2e−jϕ(f )

1 + CR,1CR,2e−2jϕ(f )
, (3.3)

where CT and CR represent, respectively, the transmission and reflection coefficients
(index 1 for air, and index 2 for the layer material), and ϕ(f ) is the electrical length of
the dielectric as seen by waves that are at an angle ψ with respect to the layer, which is
given by

ϕ(f ) = 2πf

c

√
ε dlayer cos ψ, (3.4)
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with ε denoting the relative dielectric constant of the layer material. From (3.3) and (3.4),
frequency-dependent characteristics of the transmission mechanism can be observed.

In general, dielectric properties of objects impact both transmission and reflec-
tion coefficients (e.g. (3.3) and (3.4)). For most materials, the dielectric character-
istics vary with the frequency. As an example, the dielectric constant of a brick
wall is plotted in Fig. 3.4, which increases monotonically in the 1.31–7.01 GHz
band [107].

Since materials can respond to different frequency components in different ways,
UWB signals can have both good reflection and transmission properties for various
objects at the same time. This is because a UWB signal consists of many frequency
components, some of which can reflect well from some objects, while some others can
transmit well through them. Therefore, UWB signals can be used in various scenarios,
such as in through-the-wall applications [108, 109].

In addition to reflection and transmission, two other propagation characteristics that
show significant dependence on frequency are diffraction at the edge of a screen or wedge,
and scattering on rough surfaces [102]. All in all, the objects in a given environment have
frequency-dependent effects on the propagation, which should be considered in a UWB
system.

Having gained some insight into how UWB channels differ from narrowband ones,
in the next section, UWB channel models derived from various measurement campaigns
are presented and parameters that characterize UWB channels are discussed.
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Fig. 3.4. Dielectric constant of a brick wall (thickness: 8.71 cm, length: 19.8 cm, and height:
5.82 cm) [107].
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3.2 UWB channel characterization

There are two common methods for characterization of UWB channels. In the first
method, an environment with materials of known electromagnetic characteristics is con-
sidered, and it is assumed that complete geometric information of the environment is
available. Then, one can generate the propagation characteristics of the environment
by using an electromagnetic simulation tool with ray-tracing techniques [93, 94]. This
approach is called deterministic modeling. Although it has the advantage of offering a
good representation of the propagation environment, one major drawback of the deter-
ministic modeling is that it is site-specific. Furthermore, gathering accurate site-related
information might be quite cumbersome. If the site geometry changes, the corresponding
model might easily become obsolete. Results from various deterministic modeling-based
propagation characterizations are reported in detail in [110].

A more common way for channel modeling is to derive statistical models from actual
channel measurements. This so-called statistical-modeling approach is less complex
than deterministic modeling. The key channel parameters that need accurate modeling
are path loss, shadowing, power delay profile, and small-scale fading. In this section,
statistical characterization of UWB channels is studied by reviewing these key channel
parameters [100].

3.2.1 Path loss

Path loss (PL) is defined as the ratio of the received signal power Prx to the transmit-
ted signal power Ptx, and it is a frequency-dependent parameter for UWB systems as
discussed in the previous section.

For a narrowband system, the PL at distance d can be defined as

PL(d) = E{Prx(d, fc)}
Ptx

, (3.5)

where fc is the center frequency, and the expectation is taken over a sufficiently large
area to average out shadowing and small-scale fading [100].

On the other hand, for UWB systems, a frequency-dependent PL can be defined as

PL(d, f ) = E

{∫ f +0.5�f

f −0.5�f

|H(d, f̃ )|2df̃

}
, (3.6)

where H(d, f ) is the transfer function (including the effects of the antennas), and �f is a
sufficiently small interval over which material properties, such as dielectric constants, can
be considered constant [100]. For a given UWB system, the expression in (3.6) should
be integrated over the frequency range of the system in order to obtain the total PL.

For simplicity, distance and frequency dependencies can be treated independently,
and the PL formula can be expressed as [100]

PL(d, f ) = PL(d)PL(f ), (3.7)
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where PL(f ) ∝ f −2κ [111] and PL(d) ∝ d−n, with κ and n denoting the fre-
quency decaying factor and the PL exponent, respectively.3 The distance dependence
is commonly expressed in dB as

PL(d) = PL0 + 10n log10

(
d

d0

)
, (3.8)

where d0 is a reference distance (e.g. 1 m) and PL0 is the PL at the reference distance.
Both the PL exponent and frequency decaying factor depend on the environment. For

example, larger PL exponents are observed in NLOS situations compared to LOS ones.
The PL expressions considered in this section include the effects of the transmit and

receive antennas, as well. In Section 8.2, a more flexible model will be developed when
performing link budget calculations by taking into account both the spectral regulations
and the explicit effects of different antenna efficiencies.

3.2.2 Shadowing

Shadowing, also referred to as large-scale fading, is defined as the slow variation of the
local mean signal power around the PL. This variation is basically due to changes in the
surrounding environment. Shadowing is commonly modeled as a log-normal distribution
[100]. Thus, with inclusion of shadowing, the PL in dB can be expressed as

PL(d) = PL0 + 10n log10(d/d0) + S, d > d0 (3.9)

where S is a Gaussian-distributed random variable with zero-mean and standard
deviation σsh.

3.2.3 Power delay profile

Power delay profile gives received power level P(τ) with respect to a reference timeline
τ typically initialized to zero upon arrival of the first signal component as illustrated in
Fig. 3.5. In a UWB channel, multipath components (MPCs) arrive in multiple clusters
at various attenuation levels and delays. Therefore, the received signal becomes widely
dispersed with respect to the transmitted signal. The power delay profile is an indicator
of the degree of this dispersion. If the channel impulse response is h(t), the power delay
profile of the channel can be computed as the local spatial average of |h(t)|2.

The complex baseband impulse response of UWB channels is given by [100, 113]

h(t) =
K∑

k=0

Lk∑
l=0

αk,le
jφk,l δ(t − Tk − τk,l), (3.10)

where K is the number of clusters, Lk is the number of rays (MPCs) in the kth cluster,
αk,l is the channel coefficient of the lth ray in the kth cluster, Tk is the delay of the kth
cluster, and τk,l is the delay of the lth ray with respect to the arrival time of the kth
cluster. The phases φk,l are uniformly distributed within [0, 2π ].

3 The frequency dependency of the PL is claimed to be
√

PL(f ) = e−f κ in [112].
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Fig. 3.5. Illustration of power delay profile and characteristic parameters.

In this channel model, the number of clusters is an important parameter, which is
modeled as Poisson distributed in [114]; i.e.

pK(x) = μx
Ke−μK

x! , (3.11)

where μK represents the mean number of clusters.
Another important channel characterization is related to the statistics of the cluster and

ray arrival times. In [100], cluster arrival times are modeled by a Poisson process and
ray arrival times as a mixture of two Poisson processes. In other words, for the cluster
arrival times,

p(Tk|Tk−1) = �ke�k(Tk−Tk−1), k > 0, (3.12)

where �k is the cluster arrival rate; and for the ray arrival times,

p(τk,l |τk,l−1) = βmixλ1e−λ1(τk,l−τk,l−1)

+ (1 − βmix)λ2e−λ2(τk,l−τk,l−1), l > 0, (3.13)

where βmix is the mixture probability, and λ1 and λ2 are the ray arrival rates.
In addition to the statistics of cluster and ray arrivals, the distribution of the cluster and

ray powers should be determined in order to obtain the power delay profile. For UWB
channels, the power delay profile is exponential within each cluster, and also the mean
energy of the clusters follows an exponential decay. For example, for the 2–10 GHz
band [100],

E{|αk,l|2} = �ke−τk,l/γk

γk[(1 − βmix)λ1 + βmixλ2 + 1] , (3.14)

where �k is the mean energy of the kth cluster and γk is the intra-cluster decay time
constant, which linearly increases with Tk . The mean cluster energy �k is also modeled
as exponentially decaying, i.e.

�k = Mclus e−Tk/�, (3.15)
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where � is the cluster decay time constant, and Mclus is commonly modeled as a
log-normal random variable [100].4

3.2.4 Small-scale fading

Small-scale fading refers to the variations in the amplitude of the channel coefficient
|αk,l |, which is commonly modeled as Nakagami distributed for UWB channels [100].
Mathematically,

p|α|(x) = 2

�̃(m)

(
m

�̃

)m

x2m−1e−mx2/�̃, (3.16)

for x ≥ 0, m ≥ 0.5 and �̃ ≥ 0, where m is the Nakagami m-factor, �̃ is the mean power
of the channel coefficient, and �̃(m) is the gamma function given by

�̃(z) =
∫ ∞

0
tz−1e−tdt (3.17)

for a complex number z with a positive real part.

3.2.5 Temporal dispersion and auxiliary parameters

There are several auxiliary parameters related to the power delay profile, such as time
of first arrival τA, mean excess delay τE, root-mean-square (RMS) delay spread τrms,
maximum excess delay τM, and the peak-to-lead delay τpld. These parameters not only
provide intuitive measures for certain channel properties, but can also provide guidelines
for the design and evaluation of ranging algorithms.

Time of first arrival
Time of first arrival τA corresponds to the arrival time of the first signal component.
Accurate estimation of τA carries great importance for ranging. In cases that the first
arriving signal component is not the strongest arrival, the range estimation error may
increase drastically. The response should be to implement algorithms that search for
the first arriving signal component backwards from the strongest. The leading signal
detection is addressed in Chapter 5 in detail.

Mean excess delay and RMS delay spread
The first moment of the power delay profile P(τ) is referred to as the mean excess delay,
and the square root of the second central moment of the power delay profile as the RMS
delay spread [115]; i.e.

4 For some NLOS environments, the shape of the power delay profile can be different from the common
exponential model [100].
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τE =
∫

τP (τ)dτ∫
P(τ)dτ

, (3.18)

τrms =
[∫

(τ − τE)2P(τ)dτ∫
P(τ)dτ

]1/2

. (3.19)

RMS delay spread is a measure of multipath spread within a given channel, and
is an important parameter for characterizing time dispersion. For example, in IR-
UWB systems, pulses might need to be transmitted further apart in order to avoid
inter-frame interference (IFI). Especially, the presence of IFI in the preamble of a com-
munications packet can be detrimental to ranging performance. Mean excess delay and
RMS delay spread can provide some insight into necessary pulse separations to avoid
the IFI.

Maximum excess delay
The maximum excess delay τM is defined as the excess delay for which the power level
falls below a threshold. Assume that the threshold is 10 dB below the peak power. Then
the τM is referred to as the −10 dB maximum excess delay. Similar to the RMS delay
spread, the maximum excess delay provides information about the multipath spread of
the channel.

Peak-to-lead delay
The peak-to-lead delay τpld specifies the time interval between the first and the strongest
MPCs. For the cases in which the first signal path is the strongest, τpld = 0, which is
very desirable for time-of-arrival (TOA), hence range, estimation algorithms. In chan-
nels that are likely to have a weaker first arrival, selection of the delay corresponding
to the strongest MPC as the TOA estimate can result in large ranging errors. In such
cases, after determining the delay of the strongest MPC, a search-back algorithm can be
implemented to determine the delay of the first signal component [116]. The probability
density function of τpld might be used to develop accurate search-back schemes. For
instance, the length of the maximum search-back window can be determined from τpld.
The sampling rate at the receiver) [117] is also another critical parameter that affects the
statistics of the τpld and consequently the range estimation performance.

3.3 UWB channel measurement campaigns

In the IEEE 802.15.4a standard, channel measurement campaigns were conducted mainly
in two frequency bands: 0.1–1 GHz (sub-GHz) and 2–10 GHz [114]. There is also an
emerging standard called IEEE 802.15.3c for the 60 GHz region. In this section, statistical
channel parameters are given for each of these frequency bands. Antenna effects are
excluded in all measurements, except for the outdoor environments.
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Table 3.1. Residential environments.

LOS NLOS

PL0 (dB) 43.9 48.7
n 1.79 4.58
κ 1.12 ± 0.12 1.53 ± 0.32
σsh 2.22 3.51
μK 3 3.5
� (1/ns) 0.047 0.12
λ1 (1/ns) λ2 (1/ns), βmix 1.54, 0.15, 0.0095 1.77, 0.15, 0.0045
� (ns) 22.61 26.27

3.3.1 2–10 GHz band

Channel models in IEEE 802.15.4a are classified as follows:

• CM-1: Residential LOS
• CM-2: Residential NLOS
• CM-3: Office LOS
• CM-4: Office NLOS
• CM-5: Outdoor LOS
• CM-6: Outdoor NLOS
• CM-7: Industrial LOS
• CM-8: Industrial NLOS
• CM-9: Open outdoor environment NLOS (e.g. farm, snow-covered area).

In Table 3.1, some channel parameters for residential environments are listed based on
measurements for 7–20 m ranges and frequencies up to 10 GHz (please refer to Section
3.2 for the definitions of the parameters). The PL exponent n drastically increases from
1.79 to 4.58 after the introduction of LOS obstruction. The mean number of clusters
μK in LOS and NLOS cases is 3 and 3.5, respectively. Clusters decay faster in NLOS
environments compared to the LOS ones.

Table 3.2 shows the channel parameters for office environments. The model relies
on measurements for distances of 3–28 m and a frequency band of 2–8 GHz. The
PL exponents are smaller than those in residential environments for both LOS and
NLOS scenarios. The mean number of clusters is only 1 for the NLOS case. This
is due to the fact that channel measurements exhibiting a power delay profile shape
that do not follow a multicluster model were considered in modeling the NLOS cases
(see [100]).

For outdoor environments, the model is derived from measurements for 5–17 m ranges
and 3–6 GHz frequency band (see Table 3.3). The mean number of clusters is 13.6 and
10.6 for LOS and NLOS cases, respectively. The values of n and κ for the NLOS case
are only coarse estimates.

The industrial environment channel model is representative of distances from 2 to 8 m.
The NLOS is described by a single power delay profile shape, and there is no distinction
into clusters [114]. This is mainly caused by both dense reflections from metal surfaces
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Table 3.2. Office environments.

LOS NLOS

PL0 (dB) 35.4 57.9
n 1.63 3.07
κ 0.03 0.71
σsh 1.9 3.9
μK 5.4 1
� (1/ns) 0.016 NA
λ1 (1/ns), λ2 (1/ns), βmix 0.19, 2.97, 0.0184 NA
� (ns) 14.6 NA

Table 3.3. Outdoor environments.

LOS NLOS

PL0, dB 45.6 73.0
n 1.76 2.5
κ 0.12 0.13
σsh 0.83 2
μK 13.6 10.5
� (1/ns) 0.0048 0.0243
λ1 (1/ns) λ2 (1/ns), βmix 0.27, 2.41, 0.0078 0.15, 1.13, 0.0062
� (ns) 31.7 104.7

Table 3.4. Industrial environments.

LOS NLOS

PL0 (dB) 56.7 56.7
n 1.2 2.15
κ −1.103 −1.427
σsh (dB) 6 6
μK 4.75 1
� (1/ns) 0.0709 NA
λ1 (1/ns), λ2 (1/ns), βmix NA NA
� (ns) 13.47 NA

and scatterers. Remember that κ indicates the frequency dependency of the path loss.
Unlike other channel models, it takes negative values in the industrial environment case
(see Table 3.4).5

5 Please refer to [100] for detailed lists of channel parameters for all the environments including the open
outdoor NLOS environment.
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Analysis of ranging-related parameters
From the channel model described in Section 3.2, and the parameters considered in this
section, statistics of various channel parameters that can be useful for ranging algorithms
can be obtained. One important parameter for consideration in ranging system design is
τpld. As stated earlier, it measures the delay between the first arriving signal component
and the strongest one. Typically, receivers lock onto the strongest signal component
for synchronization and acquisition. However, ranging requires further effort that is the
detection of the leading signal component. A-priori knowledge of how much earlier than
the strongest path the leading signal path should be searched for helps implementer set
a proper search-back window size. If it is set too short, the leading path remains outside
the window region. Alternatively, if it chosen to be too long, it becomes more likely to
pick a noise peak as the signal, causing large ranging errors. The latter happens typically
at low SNR levels.

In Fig. 3.6, the probability density functions of τpld are plotted for channels CM-1
through CM-8. The probability density functions are obtained by polynomial fitting with
the actual histograms.The results are obtained from 2000 channel impulse response (CIR)
realizations per model. The minimum value of τpld is 0 ns for all channels corresponding
to the first component being the strongest one. Among all the channel models, CM-1 has
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Fig. 3.6. Probability density functions (PDFs) of τpld based on CIRs of various UWB
channels (After [118]).



3.3 UWB channel measurement campaigns 57

Table 3.5. The log-normal parameters for the mean excess delay and the RMS delay spread of the IEEE
802.15.4a channels. (©2007 IEEE) [119].

Mean excess delay(τE) RMS delay spread (τrms)

Channel μ[ns] σ [ns] K–S μ[ns] σ [ns] K–S

CM-1 2.6685 0.4837 95.7% 2.7676 0.3129 94.8%
CM-2 3.3003 0.3843 95.8% 2.9278 0.1772 95.2%
CM-3 2.0993 0.3931 96.2% 2.2491 0.3597 96.2%
CM-4 2.7756 0.1770 95.3% 2.5665 0.1099 95.4%
CM-5 3.0864 0.4433 94.6% 3.3063 0.2838 94.6%
CM-6 4.6695 0.4185 94.9% 4.2967 0.3742 95.7%
CM-7 1.3845 0.9830 98.9% 1.9409 0.7305 93.9%
CM-8 4.7356 0.0225 94.7% 4.4872 0.0164 95.9%

the highest peak probability for τpld. More specifically, it has the highest probability that
the first arriving path is the strongest path, which is very desirable in ranging applications.
On the other hand, for CM-8, the probability of the first arriving path being the strongest
one is nearly zero. In fact, the probability that τpld < 10 ns is quite low for CM-8, which
makes accurate range estimation quite challenging. A general observation from Fig. 3.6
is that for NLOS channels, τpld has a heavy-tailed distribution, which can potentially
cause larger ranging errors.

Although mean excess delay and RMS delay spread are not explicit parameters in a
range estimation process, they can still give some useful information about the structure
of the channel, hence can provide some guidelines for the design of ranging algorithms.
Analysis of the mean excess delay and the RMS delay spread statistics for the IEEE
802.15.4a channels shows that their histograms can be well modeled by a log-normal
distribution given by

p(x) = 1

x
√

2πσ
exp

[
− (ln(x) − μ)2

2σ 2

]
, (3.20)

where μ is the mean and σ is the standard deviation of ln(x). This observation is further
verified by using the Kolmogorov–Smirnov (K–S) hypothesis test with a 5% significance
level. The mean and standard deviation of ln(τE) and ln(τrms) as well as the K–S passing
rates are tabulated in Table 3.5 [119].

Figure 3.7 shows the probability density functions of τE and τrms for channels CM-5,
CM-6, CM-7 and CM-8. The probability density functions for LOS and NLOS scenar-
ios are quite distinct in both outdoor and industrial environments. This distinction can
prove to be a useful tool for adaptive ranging algorithms. For example, in a search-back
algorithm, the searchback window size can be varied depending on whether a channel
is LOS or NLOS.
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(©2007 IEEE) [119].

3.3.2 Below 1 GHz band

Only a few measurement campaigns are available for below 1 GHz (also called “sub-
GHz’’) UWB channels. In [120], measurements for indoor office environments were con-
ducted, using baseband UWB pulses. Based on those measurements and with a 2 ns delay
resolution, a sub-GHz channel model is suggested in [121]. The channel for indoor office
environment was modeled with an exponentially decaying single cluster. The decay time
constant γ̃ is shown to be log-normal distributed. In addition, small-scale fading statistics
fit the Nakagami distribution with a truncated Gaussian distributed m-parameter.

Later, the IEEE 802.15.4a standard developed a channel model for the frequency band
between 100 and 960 MHz [114]. The standard basically adopts the model in [121]. The
main difference is that in the IEEE 802.15.4a standard, the decay time constant is assumed
to be deterministic with distance dependency such that

γ̃ = 40
√

d/10 (ns), (3.21)
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where d is the distance in meters.6 However, in [122] a linear increase in the decay
constant with distance is reported. Values of some channel parameters for the sub-GHz
indoor office channel model are reported as n = 2.4, μK = 1 and m = 5 in [114].

For the LOS case the MPCs are claimed to be correlated in [123]. From the average
of 100 LOS channel measurements in a 3.7 m by 4.6 m room, the direct path energy is
observed to be 2.3 dB higher than the total energy contained in the other MPCs. The
RMS delay spread is approximated as

τrms = 0.2d/c, (3.22)

where c is the speed of light.
In the NLOS case, an additional parameter is used to split total energy between the

direct path and the others. A rule of thumb approximation for the RMS delay spread in
nanoseconds for the NLOS case is given by

τrms = 4.5
√

d (ns), (3.23)

where d is the distance in meters.
Unfortunately, due to insufficient measurement data to support these sub-GHz UWB

channel models, it is difficult to derive general conclusions.

3.3.3 57–66 GHz band

The IEEE 802.15.3 Task Group 3c (TG3c) has been working on a millimeter-wave-
based physical layer (PHY) for an amendment to the existing 802.15.3 WPAN standard.
The millimeter-wave PHY will be operating in the millimeter-wave region of the spec-
trum allowed by the FCC regulations, including the 57–64 GHz unlicenced band.7 The
millimeter-wave WPAN is expected to provide data rates over 2 Gbps, and facilitate
applications such as high speed internet access and streaming content download [125].
The typical communications ranges will be around 10 m.

The channel models related to this standard are derived from measurements conducted
in several environments over the 57–66 GHz band [126–130]. Although the channel
model adopted by the TG3c [101] resembles the channel characterization studied in
Section 3.2, there are also a number of differences in certain statistical models.

Although PL for UWB systems is a frequency-dependent parameter, the channel
model adopted by the TG3c considers a frequency-independent PL for simplicity [101].
Other than this simplification, the distance dependence of the PL and the shadowing
statistics are similar to the generic model studied in Section 3.2. The PL exponent n

ranges from 1.2 to 2 for LOS and from 1.97 to 10 for NLOS environments [131–133].
Shadowing is log-normal distributed, and its variance σsh is site specific. Especially,
human movements can cause obstructions as high as 18–36 dB [134]. A summary of

6 Also, the average power of the first bin does not obey the exponential decay of the average power delay
profile corresponding to the other components [100].

7 Please refer to FCC 47 CFR 15.255 for the related FCC regulations [124].
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Table 3.6. Large-scale fading characteristics for 60 GHz.

Channel Description n PL0 σsh −3 dB Beamwidth

CM-1 Residential LOS 1.53 75.1 1.5 Tx-72o, Rx-60o

CM-2 Residential NLOS 2.44 86.0 6.2 Tx-72o, Rx-60o

CM-3 Office LOS 1.16 84.6 5.4 Tx-Omni, Rx-30o

CM-4 Office NLOS 3.74 56.1 8.6 Tx-Omni, Rx-30o

large-scale fading characteristics is given in Table 3.6. These values are obtained from
directional measurements, and antenna effects are included [101].

Similar to the IEEE 802.15.4a channel models, clustering of MPCs is observed in the
millimeter wave channel. The mean number of clusters, μK , varies typically between 3
and 14. However, the number of clusters, which is modeled by a Poisson distribution in
Section 3.2, does not follow a specific distribution in the 57–66 GHz band.

The channel impulse response takes into account both the spatial and temporal
domains, and is given by

h(t, φ) =
K∑

k=0

Lk∑
l=0

αk,lδ(t − Tk − τk,l)δ(φ − �k − ϑk,l), (3.24)

where K is the number of clusters, Lk is the number of rays in the kth cluster, αk,l is the
channel coefficient, Tk and �k are, respectively, delay and mean AOA of the kth cluster,
and αl,k , τk,l and ϑk,l are the complex channel amplitude, delay, and azimuth of the lth
ray in the kth cluster. Note that this channel model is based on the assumption that the
spatial and the temporal domains are independent.

In the presence of directional antennas and LOS situations, a strong LOS component
is observed in the measurements [101]. Therefore, for such scenarios, the channel model
can be extended to include a strict LOS component in addition to the clustered MPCs in
(3.24); i.e.

h(t, φ) = αLOSδ(t, φ) +
K∑

k=0

Lk∑
l=0

αk,lδ(t − Tk − τk,l)δ(φ − �k − ϑk,l), (3.25)

where αLOSδ(t, φ) represents the strict LOS component.
Both the cluster and ray arrival times are modeled by Poisson distributions as

p(Tk|Tk−1) = �e−�(Tk−Tk−1), k > 0, (3.26)

p(τk,l |τk,l−1) = λ e−λ(τk,l−τk,l−1), l > 0, (3.27)

where � and λ are the cluster and ray arrival rates, respectively. Note that the ray arrivals
are described by a mixture of two Poisson processes in (3.13), which is a more general
model than that in (3.27).

Related to small-scale fading statistics, both cluster and ray amplitudes are modeled
by log-normal distribution, which is another difference of the channel model for the



3.4 Problems 61

57–66 GHz band from the channel model studied in Section 3.2, which models the
channel amplitudes by Nakagami distribution.

Even though the IEEE 802.15.3c standard targets communication ranges in excess
of 10 m, channel measurements in the literature for 60 GHz cover a range from 2 to
5 m [101]. Channel models derived from such short-range measurements would not
carry practical importance for location-aware applications, because range and location
information is valuable for most applications typically at distances longer than 10 m.
Therefore, a detailed analysis of the channel statistics for this band is omitted.

3.4 Problems

(1) In an indoor environment, how would the number of MPCs arriving at a receiver
change if a UWB signal is employed instead of a narrowband signal at the same
center frequency?

(2) Considering the frequency-dependent PL model in Section 3.2.1, calculate the ratio
of the PL at f = 4 GHz and d = 10 m to the PL at f = 5 GHz and d = 5 m for
both LOS and NLOS office environments.

(3) Consider a UWB channel profile with a single cluster and Poisson path arrivals. The
conditional probability density function for the delay of the lth MPC given that of
the (l − 1)th one is expressed as

p(τl |τl−1) = λ e−λ(τl−τl−1), (3.28)

for l = 1, . . . , L.
(a) If the widths of the pulses received via different paths are all equal to Tp, calculate

the probability that no pulses collide with the first pulse (i.e. the pulse via the
0th path).

(b) For the previous scenario, obtain the probability mass function of the number
of pulses that collide with the first pulse.

(4) In a UWB channel, the peak of the first cluster is weaker than the peak of the
second cluster, and the first path of the second cluster is the strongest MPC. Assume
that a TOA estimation algorithm has first estimated the delay corresponding to that
strongest MPC, and the aim is to estimate the delay of the first signal path in the first
cluster, i.e. the TOA.

First cluster

Search window

Delay

Second
cluster

Noise-only
region

Fig. 3.8. Channel profile described in problem 4.
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It is known that the first cluster is 15 ns long and that between the end of the
first cluster and the next there happens to be a noise-only region. Assume that the
length of the noise-only region is Gaussian distributed with zero mean and a standard
deviation of 4 ns. What should be the length of the search window shown in Fig. 3.8
such that it contains the first path with 90% confidence?

(5) Consider a channel with a direct path and a single major reflection, the energy of
which is 1.2 dB weaker than the direct path. Consider a range estimation algorithm
that selects the strongest path as the direct path, and a ranging error occurs if the
reflecting path is selected as the direct path.Assuming that the algorithm checks only
those two MPCs to determine the direct path, and that the measured energy of each
path is corrupted by independent Gaussian noise with zero mean and variance σ 2,
calculate the ratio between the energy of the direct path and σ such that a ranging
error occurs with 10% probability.

(6) (programming exercise) Consider a UWB channel with the delays for its first five
MPCs being given by τ0 = 0, τ1 = 1.2 ns, τ2 = 1.7 ns, τ3 = 3.2 ns, and τ4 = 5.1 ns.
Assume that these components belong to the same cluster, and that the average power
of each path is given by

E{|αl |2} = c1e
−τl/c2 , (3.29)

for l = 0, 1, 2, 3, 4. In addition, the amplitude of each MPC, |αl |, follows a
Nakagami distribution with the Nakagami m-factor of 1.5.
(a) For c1 = 1 and c2 = 5 ns, generate ten-thousand realizations for the amplitudes

of those 5 MPCs.
(b) From the channel realizations in part (a), calculate the probability that the first

MPC becomes the strongest one.
(c) Repeat part (b) for every other multipath component to be the strongest one, and

calculate the mean square TOA estimation error for an algorithm that always
selects the strongest component as the TOA estimate (assume no noise exists in
the system).
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After the investigation of UWB signals and channel models in the previous chapters,
this chapter focuses on position estimation techniques from a UWB perspective.

In order to estimate the position of a node (called the “target’’ node) in a wireless
network, signals are exchanged between the target node and a number of reference
nodes [135].1 The position estimation can be performed directly from the signals trav-
eling between the nodes, which is called direct positioning [137], or by a two-step
approach in which certain parameters are extracted from the signals first, and then the
position is estimated based on those signal parameters (Fig. 4.1) [136]. Although two-
step approaches are suboptimal in general, their complexity is lower than the direct
approach. Also, the performance of the two is usually very close for sufficiently high
SNRs and/or signal bandwidths [137, 138]. Therefore, most practical systems adopt
two-step approaches, which will be the main focus of this chapter.

In the first step of a two-step positioning technique, signal parameters, such as received
signal strength (RSS) or time-of-arrival (TOA), are estimated. Various types of signal
parameter measurements (estimation schemes) are studied in Section 4.1. Then, position

Received
signals

Received
signals

Position
estimation

Estimation of position-
related parameters

Position
estimate

Position
estimation

Position
estimate

(a)

(b)

Fig. 4.1. (a) Direct positioning, (b) two-step positioning (with kind permission from Springer Science and
Business Media) [135].

1 In this book, we focus on radiolocation, which is the process of position estimation through the use
of radio signals. Other techniques for position estimation/tracking include dead-reckoning and proximity
systems [136].
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estimation from signal parameters is considered in Section 4.2. In the case of constant
monitoring of a node position, position tracking algorithms, such as Kalman filtering,
can improve accuracy of position estimates. Tracking algorithms are investigated in
Section 4.3.

4.1 Measurement categories

The first step to estimate the position of a target node in a wireless network involves
measurement of a set of signal parameters, as shown in Fig. 4.1(b). Depending on accu-
racy requirements and constraints on transceiver design, various signal parameters can
be employed. Commonly, a single parameter is estimated for each received signal, such
as the arrival time of the signal. However, it is also possible to estimate multiple signal
parameters in order to improve positioning accuracy.

4.1.1 Received signal strength (RSS)

RSS measurements provide information about the distance (“range’’) between two nodes
based on certain channel characteristics. The main idea behind an RSS-based approach
is that if the relation between distance and power loss is known, the RSS measurement
at a node can be used to estimate the distance between that node and the transmitting
node, assuming that the transmit power is known.

The distance between two nodes provides a circle of uncertainty2 for the position
of the target node, as shown in Fig. 4.2. However, due to inaccuracies in both RSS
measurements and quantification of the distance versus path loss (PL) relation, distance
estimates are subject to errors. Therefore, in reality, each RSS measurement defines an
uncertainty area, such as the one in Fig. 4.3, instead of a circle.

As studied in Chapter 3, a UWB signal experiences multipath (small-scale) fading,
shadowing and PL while traveling from one node to another. Ideally, average RSS

d

Fig. 4.2. The black node measures the RSS and determines the distance d between itself and the target
node (gray node). In the absence of errors, the distance information defines a circle around the
black node with a radius of d.

2 Two-dimensional positioning is considered in this chapter for simplicity. Extensions to three-dimensional
positioning easily follow.
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d

Fig. 4.3. The black node measures the RSS and determines the distance d with some uncertainty, which
defines a ring around the black node with a center radius of d. Note that the uncertainty region
can define more complicated areas than a ring depending on error statistics.

(equivalently, power) over a sufficiently long time interval would exclude the effects
of multipath fading and shadowing, and would result in the following model3

P̄ (d) = P0 − 10n log10(d/d0), (4.1)

where n is the PL exponent, P̄ (d) is the average received power (dB) at a distance d and
P0 is the received power (dB) at a reference distance d0.

For UWB systems, the multipath effects can be mitigated significantly by measuring
the sum of the powers of multipath components (MPCs) [26]. In other words, if the
integration interval T in the calculation of the average power,

P(d) = 1

T

∫ T

0
|r(t)|2dt, (4.2)

is long enough to include all the MPCs in the received signal r(t), the small-scale fading
effects can be mitigated.

However, the shadowing effects are usually present in the received power P(d), which
are modeled as log-normal random variables. In other words, the received power in dB
can be modeled as a Gaussian random variable with mean P̄ (d) given by (4.1) and
variance σ 2

sh; i.e.

10 log10 P(d) ∼ N
(
P̄ (d) , σ 2

sh

)
. (4.3)

Note that this model can be used in both LOS and NLOS scenarios with an appropriate
choice of channel-related parameters.

From the received power model in (4.3), the Cramer–Rao lower bound (CRLB)4 for
estimating the distance can be expressed as [139]√

Var{d̂} ≥ ln 10

10

σsh

n
d , (4.4)

where d̂ represents an unbiased estimate of d. It is observed from (4.4) that the lower
bound increases as the standard deviation of the shadowing increases, since RSS mea-
surements vary more around the true average power in that case. Furthermore, a larger

3 Note that there is also thermal noise in real systems, which is usually location independent. It is assumed
that its effects can be mitigated sufficiently [139].

4 Interested readers are referred to [140] for a detailed explanation of CRLBs.
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Fig. 4.4. Theoretical limits for distance estimation based on RSS measurements at different distances for
various channel models.

Table 4.1. Channel parameters for the environments
investigated in Fig. 4.4.

n σsh

Residential LOS 1.79 2.22
Residential NLOS 4.58 3.51
Indoor office LOS 1.63 1.90
Indoor office NLOS 3.07 3.90

PL exponent results in a better estimation accuracy, as the average power becomes more
sensitive to distance for larger n. Finally, the distance dependence structure of (4.4)
implies that the accuracy of RSS measurements deteriorates as the distance between the
nodes increases.

In Fig. 4.4, the minimum standard deviations are plotted versus distance for various
environments according to the IEEE 802.15.4a channel models studied in Section 3.3.1,
for which the PL exponents and the standard deviations of the shadowing are given in
Table 4.1. As observed from (4.4), the lower bound increases linearly with the distance;
also, note that the NLOS residential environment has the lowest bound, since it has a
significantly larger PLexponent than the other environments. In all the cases, the standard
deviation of the error cannot be made smaller than 1 m for distances larger than 6 m. In
other words, RSS measurements cannot provide very accurate range estimates for UWB
systems.
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4.1.2 Angle of arrival (AOA)

Unlike an RSS measurement that provides range information between two nodes, anAOA
measurement provides information about the direction of an incoming signal, hence the
angle between the two nodes, as shown in Fig. 4.5.

Commonly, antenna arrays are employed in order to measure theAOAof a signal.5 The
angle information is obtained at an antenna array by measuring the differences in arrival
times of an incoming signal at different antenna elements. An example is illustrated in
Fig. 4.6 for AOA estimation at a uniform linear array (ULA). When the distance between
the transmitting and receiving nodes are sufficiently large, the incoming signal can be
modeled as a planar wave-front. This results in l sin ψ/c seconds difference between the
arrival times at consecutive array elements, where l is the inter-element spacing, ψ is the
AOA and c represents the speed of light. Therefore, estimation of the time differences
of arrivals provides angle information. More advanced array structures, such as uniform

Fig. 4.5. The reference node (black node) measures the AOA and determines the angle ψ between itself
and the target node (gray node) (with kind permission from Springer Science and Business
Media) [135].

Fig. 4.6. Signal arrival at a ULA, and relation between arrival time differences and AOA.

5 Another technique is to use the ratio of RSS measurements between at least two directional antennas located
on a node [26].
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circular arrays (UCAs) and rectangular lattices, operate on the same basic principle as
the ULA; namely, estimation of time differences between array elements, the geometry
of which is known by the receiver.

For a narrowband signal, time difference can be represented as a phase shift. Therefore,
the combinations of the phase-shifted versions of received signals at array elements
can be tested for various angles in order to estimate the direction of signal arrival
[136]. However, for UWB systems, time-delayed versions of received signals should be
considered since a time delay cannot be represented by a unique phase value for a UWB
signal.

In order to obtain theoretical lower bounds on the achievable accuracy of AOA mea-
surements, consider a ULA, as shown in Fig. 4.6, with Na antenna elements. Let ri(t)

denote the received signal at the ith element, which is expressed as6

ri(t) = αs(t − τi) + ni(t), (4.5)

for i = 1, . . . , Na, where s(t) is the transmitted signal, α is the channel coefficient, τi is
the delay for the signal arriving at the ith antenna element, and ni(t) is white Gaussian
noise with zero mean and a spectral density of N0/2.

The delay τi can be expressed as

τi ≈ d

c
+ li sin ψ

c
, (4.6)

with

li = l

(
Na + 1

2
− i

)
, (4.7)

for i = 1, . . . , Na, where d is the distance between the transmitter and the center of the
antenna array at the receiver, and l is the inter-element spacing.

For independent noise at different antenna elements, the CRLB for estimating ψ is
given by [141]

Var{ψ̂} ≥ 6c2N0

α2ẼNa(N2
a − 1)l2 cos2 ψ

, (4.8)

where Ẽ represents the energy of the first derivative of s(t) in (4.5); i.e.

Ẽ =
∫ ∞

−∞
[
s′(t)

]2 dt. (4.9)

6 CRLBs for AOA estimation in multipath channels are studied in [141].
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Applying the Parseval’s relation7 to (4.9), the bound in (4.8) can alternatively be
expressed as √

Var{ψ̂} ≥
√

3 c√
2 π

√
SNR β

√
Na(N2

a − 1) l cos ψ
, (4.10)

where SNR = α2E/N0, with E denoting the energy of the signal s(t), is the signal-
to-noise (SNR) ratio for each element, and β is the effective bandwidth defined by

β =
(

1

E

∫ ∞

−∞
f 2|S(f )|2df

)1/2

, (4.11)

with S(f ) representing the Fourier transform of s(t).
It is noted from (4.10) that an increase in the SNR, effective bandwidth, inter-element

spacing or the number of antenna elements enhances the accuracy of AOA estimation.
Therefore, the large bandwidth of UWB signals can facilitate accurate AOA measure-
ments. It is also observed that a ULA cannot detect obtuse angles8 as accurately as it can
detect acute angles.9

In Fig. 4.7, the theoretical limits are plotted for a ULA with four elements and an
inter-element spacing of 5 cm. The signal s(t) in (4.5) is chosen to be the UWB pulse in
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Fig. 4.7. CRLB versus SNR for various pulse widths (equivalently, effective bandwidths).

7 For a signal s(t) and its Fourier transform S(f ), the Parseval’s relation can be stated as
∫∞
−∞ |s(t)|2dt =∫∞

−∞ |S(f )|2df .
8 Angles greater than π/2 and less than π radians.
9 Angles less than π/2 radians.
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Fig. 4.8. CRLB versus ψ for various pulse widths at SNR = 5 dB.

(2.5) with various pulse widths. The signal arrives at the receiver at ψ = π/4 radians
with α = 1. As the SNR increases or the pulse width decreases (which corresponds to an
increase in the bandwidth), the lower bound of the system decreases.

In Fig. 4.8, all the system parameters are the same as in the previous case, and the
lower bound is plotted versus ψ for SNR = 5 dB. For smaller AOAs, better accuracy can
be obtained.

4.1.3 Time of arrival (TOA)

TOA measurements provide information about the distance between two nodes by esti-
mating the time of flight of a signal that travels from one node to the other. Therefore, a
TOA measurement at a node provides an uncertainty region in the shape of a circle as
shown in Fig. 4.2 for an RSS measurement (or a region around the circle, as in Fig. 4.3).
To prevent ambiguity in TOA estimates, the two nodes must have a common clock, or
they must exchange timing information via certain protocols, such as a two-way ranging
protocol, which are studied in Chapter 6.

The conventional TOA estimation technique is performed by means of matched fil-
tering or correlation operations [142]. Let the received signal at a node be expressed as

r(t) = αs(t − τ) + n(t), (4.12)
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where τ represents the TOA, α is the channel coefficient, and n(t) is white Gaussian
noise with zero mean and a spectral density of N0/2. Then, a conventional correlator-
based scheme searches for the peak10 of the correlation of r(t) with a shifted version of
the template signal, s(t − τ̂ ), for various delays τ̂ . Similarly, a matched filter scheme, in
which the filter is matched to the signal, estimates the instant at which the filter output
attains its largest value. These schemes are optimal for single-path AWGN channels.

Note that UWB channels are commonly more complicated than the model assumed in
(4.12), as studied in Chapter 3. The TOA estimation schemes for more realistic scenarios
are studied in detail in Chapter 5. Our aim here is to observe the main relations between
the bandwidth and the theoretical limits for TOA estimation.

For the signal model in (4.12), the CRLB can be expressed as [140, 143]:

√
Var(τ̂ ) ≥ 1

2
√

2π
√

SNR β
, (4.13)

where τ̂ represents an unbiased TOA estimate, SNR = α2E/N0 is the signal-to-noise
ratio, with E denoting the signal energy, and β is the effective signal bandwidth defined
by (4.11).

Note from (4.13) that unlike RSS measurements, the accuracy of a TOA measure-
ment can be improved by increasing the SNR and/or the effective signal bandwidth.
Since a UWB signal has a very large bandwidth, this property allows highly accurate
distance estimation using TOA measurements via UWB radios. For example, Fig. 4.9
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Fig. 4.9. The minimum standard deviation versus SNR for various pulse widths.

10 Peak of the absolute value of the correlation in general.
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illustrates the minimum standard deviations of distance estimates (which are obtained
by multiplying the TOA estimate by the speed of light) according to the CRLB bound in
(4.13) for various pulse widths, where the transmitted signals are as given by (2.5). It is
observed that the theoretical limits are of the order of a few centimeters for reasonable
SNR values, which indicates the high precision potential of UWB positioning based
on TOA measurements. Furthermore, higher bandwidth, equivalently a shorter duration
pulse, results in better distance estimation, as expected.

4.1.4 Time difference of arrival (TDOA)

Conventionally, TOA-based range measurements require synchronization among the
target and the reference nodes.11 However, TDOA measurements can be obtained even
in the absence of synchronization between the target node and the reference nodes, if
there is synchronization among the reference nodes [136]. In this case, the difference
between the arrival times of two signals traveling between the target node and the two
reference nodes is estimated. This locates the target node on a hyperbola, with foci at
the two reference nodes, as shown in Fig. 4.10.

One way to obtain a TDOA measurement is to estimate TOA at each reference node
and then to obtain the difference between the two estimates. Specifically, if the received
signals are given by r1(t) and r2(t) as in (4.5), τ1is estimated from r1(t) and τ2 is estimated
from r2(t). Since the target node and the reference nodes are not synchronized, the TOA
estimates at the reference nodes include a timing offset in addition to the time of flight.
As the reference nodes are synchronized, the timing offset is the same for each TOA
estimation. Therefore, the TDOA measurement can be obtained as

τ̂TDOA = τ̂1 − τ̂2, (4.14)

where τ̂1 and τ̂2 denote the TOA estimates at the first and second nodes, respectively.
Since it is shown in Section 4.1.3 that the accuracy of TOA measurements increases

with bandwidth and SNR, the same conclusions hold true for TDOA measurements,
when they are estimated from TOA measurements as in (4.14).

d2
d1

Fig. 4.10. A TDOA measurement defines a hyperbola passing through the target node (gray node) with foci
at the reference nodes (black nodes) (with kind permission from Springer Science and Business
Media) [135].

11 It is also possible to obtain TOA-based range measurements by means of timing information exchanges
via certain protocols, such as a two-way ranging protocol, as will be studied in Chapter 6.
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Another way to obtain a TDOA measurement is to perform cross-correlations of the
received signals r1(t) and r2(t), and to calculate the delay corresponding to the largest
cross-correlation value. The cross-correlation function can be expressed as [12]

φ1,2(τ ) = 1

T

∫ T

0
r1(t)r2(t + τ)dt, (4.15)

where T is the observation interval, and the TDOA estimate is given by

τ̂TDOA = arg max
τ

|φ1,2(τ )|. (4.16)

Although the cross-correlation-based TDOA estimation in (4.16) works well for
single-path channels and white noise models as in (4.5), its performance can degrade
significantly over multipath channels and/or colored noise. In order to improve the
performance of the cross-correlation scheme, generalized cross-correlation (GCC) tech-
niques are proposed [144–146]. In GCC-based TDOA estimation, filtered versions of
the received signals are cross-correlated, which corresponds to shaping the cross-power
spectral density (cross-PSD) of the transmitted signals. Various shaping functions can
be considered for improved robustness against colored noise [147].

4.1.5 Other measurement types

Instead of performing a single measurement such as RSS or TOA, a node can estimate
a combination of position-related parameters. Such hybrid schemes can provide more
accurate information about the position of the target node than the schemes that estimate
a single position parameter. Various combinations of measurements, such as TOA/AOA,
TOA/RSS and TDOA/AOA, are possible depending on accuracy requirements and com-
plexity constraints. For example, a hybrid TOA/AOAscheme estimates both distance and
AOA, which can provide a unique position estimate for the target node (the intersection
of a line and a circle), as shown in Fig. 4.11.

Another type of measurement involves obtaining multipath power delay profile (PDP)
or channel impulse response (CIR) related to a received signal [148–153]. Compared to
the distance and angle-related parameters studied in the previous sections, a PDPor a CIR
measurement can contain significantly more information about the position of the target
node. However, in order to extract relevant information about the position from such

d

(x1, y1)

(x, y )

ψ

Fig. 4.11. Hybrid TOA/AOA measurements (with kind permission from Springer Science and Business
Media) [135].
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measurements, a regression/mapping function should be available, which is commonly
obtained from a database consisting of previous PDP (or CIR) measurements. There-
fore, algorithms utilizing PDP or CIR measurements usually implement training phases
to obtain a mapping function from the database, before the actual position estimation
process begins.

Similar to the PDP approach, multipath angular power profile measurements can
be employed at nodes with antenna arrays. Note that both the PDP (CIR) and the
angular power profile measurements increase the complexity of the position related
parameter estimation phase significantly compared to the conventional RSS, AOA and
T(D)OA schemes, since a large number of parameters need to be estimated. How-
ever, such measurements can also facilitate accurate position estimation in challenging
environments [153].

4.2 Position estimation

After estimating a set of parameters from the received signals by one of the techniques
described in the previous section, the second step is to estimate the position from the
obtained parameters (the second block in Fig. 4.1(b)).

Position estimation techniques can be divided into two groups depending on the pres-
ence of a database that contains signal measurements at known positions. A technique
that makes use of such a database, which is usually obtained by a training phase (off-line
phase) before the real-time positioning starts, is called a mapping ( f ingerprinting) tech-
nique. Other techniques that do not utilize such a database commonly employ geometric
or statistical techniques to estimate the position using only the parameter estimates from
the first step in Fig. 4.1(b).

4.2.1 Mapping techniques

Mapping techniques use the available database in the system as training data and estimate
the position of a target node by pattern-matching algorithms, such as k-nearest-neighbor
(k-NN), support vector regression (SVR) and neural networks12 [153–159].

A mapping technique can be considered as a regression scheme that maps an input
vector to an output vector by using a training set. Let the training set be represented by

T = {
(m1, p1), (m2, p2), . . . , (mNt , pNt )

}
, (4.17)

where mi represents the measurement vector for the ith position pi (pi = [xi yi]T for
two-dimensional positioning), and Nt is the total number of elements in the training set
(the “size’’of the database). For example, the measurement vector mi can consist of RSS
measurements at a number of reference nodes when the target is at pi . The problem is

12 It is also possible to form a database in real-time by using measurements among reference nodes and those
between target and reference nodes, and then to employ mapping techniques for position estimation [154].
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to estimate the position p of a target node, by utilizing the training set in (4.17), when
the measurements m are collected related to that target node.

One of the simplest regression techniques is to estimate the position of the target node
as the position vector in the training set T corresponding to the measurement vector that
has the shortest distance to the measurement vector m. In other words, the position is
estimated as pj , with

j = arg min
i∈{1,...,Nt}

‖m − mi‖, (4.18)

where ‖m − mi‖ represents the Euclidean distance between m and mi .
k-NN estimation is a generalization of the approach in (4.18), which estimates the

position of the target node according to the k closest measurements in set T to the mea-
surement vector m. The position estimate p̂ is obtained by a weighted sum of positions
corresponding to the k closest measurements as

p̂ =
k∑

i=1

wi(m) p(i), (4.19)

where p(1), . . . , p(k) are the locations corresponding to the k nearest measurement vec-
tors, m(1), . . . , m(k), to m, and w1(m), . . . , wk(m) are the weighting factors for each
position. In general, the weights are determined as a function of the measurement vec-
tor m and the training measurements m(1), . . . , m(k). Various weighting functions are
studied in [155]. For the uniform weighting scheme, each position is weighted equally,
in which case p̂ becomes the sample mean of p(1), . . . , p(k), that is,

p̂ = 1

k

k∑
i=1

p(i). (4.20)

The SVR [156] and neural network [153] approaches for position estimation can
also be considered as different versions of the k-NN estimation in (4.19). The main
idea is to perform accurate regression for a given set of training data. For example, the
SVR approach first maps the measurements into a higher dimensional feature space and
performs linear regression in that space. This corresponds to non-linear regression in
the original space [159]. The weights for the linear regression in the feature space are
determined by minimizing a combination of empirical error and regressor complexity.13

The main advantage of mapping techniques is that they can provide accurate position
estimation in challenging environments with significant multipath and NLOS propaga-
tion. However, the database should be large enough and representative of the current
environment. In other words, the database should be updated before the channel char-
acteristics change significantly, which can be very costly in dynamic environments.
Therefore, mapping techniques are not commonly employed for outdoor positioning
applications.

13 Very complex regressors fit the training data very closely and therefore may not fit to new measurements
well enough if the size of the training set is not sufficiently large. This is called a “generalization’’ problem.
An SVR can provide better generalization, since it imposes a constraint on the complexity of the regressor.
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4.2.2 Geometric and statistical techniques

In the absence of a database consisting of previously taken measurements at known
positions, the position of the target node should be estimated directly from the available
measurements obtained by the first step in Fig. 4.1(b). Such positioning techniques can
be considered in two groups, geometric and statistical techniques.

Geometric techniques
A geometric positioning technique solves for the position of the target node as the inter-
section of position lines obtained from a set of measurements at a number of reference
nodes. For example, as studied in Section 4.1, a range measurement (obtained from a
TOA or an RSS measurement) determines a position line for the target’s location as a
circle around the reference node (Fig. 4.2). Then, the intersection of three position lines,
obtained from three TOA or RSS measurements, can be used to solve for the position of
the target as shown in Fig. 4.12. Determination of the target position from a set of range
measurements is called trilateration.

Let d1, d2 and d3 represent the range measurements obtained from three TOA or RSS
measurements. Then, the following three equations must be solved jointly in order to
estimate the position of the target via trilateration:

di =
√

(xi − x)2 + (yi − y)2, i = 1, 2, 3, (4.21)

where (xi, yi) is the known position of the ith reference node, and (x, y) is the position
of the target node. The position (x, y) can be solved from (4.21) as

x = (y2 − y1)γ1 + (y2 − y3)γ2

2 [(x2 − x3)(y2 − y1) + (x1 − x2)(y2 − y3)]
, (4.22)

y = (x2 − x1)γ1 + (x2 − x3)γ2

2 [(x2 − x1)(y2 − y3) + (x2 − x3)(y1 − y2)]
, (4.23)

d2

d1

d3

Fig. 4.12. The reference (black) nodes measure their distances (via RSS or TOA estimation) from the target
node (gray node), which results in three circles passing through the target node. The intersection
of the three circles can be calculated to obtain the position of the target node, which is called
trilateration (with kind permission from Springer Science and Business Media) [135].
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(x1, y1)

(x2, y2)

(x, y )

ψ1

ψ2

Fig. 4.13. The angles measured by the reference (black) nodes determine two lines, the intersection of
which yields the target position. This technique is called triangulation.

where

γ1 = x2
2 − x2

3 + y2
2 − y2

3 + d2
3 − d2

2 , (4.24)

γ2 = x2
1 − x2

2 + y2
1 − y2

2 + d2
2 − d2

1 . (4.25)

For AOA measurements, two reference nodes are sufficient to determine the position
of the target node by intersecting two lines, which is called triangulation (Fig. 4.13). Let
ψ1 and ψ2 denote the angles measured by reference node 1 and 2, respectively. Then,
the following two equations are solved for the position of the target:

tan ψ1 = y − y1

x − x1
and tan ψ2 = y − y2

x − x2
, (4.26)

which yields

x = x2 tan ψ2 − x1 tan ψ1 + y1 − y2

tan ψ2 − tan ψ1
, (4.27)

y = (x2 − x1) tan ψ1 tan ψ2 + y1 tan ψ2 − y2 tan ψ1

tan ψ2 − tan ψ1
. (4.28)

In the case of TDOA-based positioning, each TDOA measurement determines a
hyperbola for the position of the target node. For three reference nodes, two range
differences (obtained from TDOA measurements) can be expressed as follows:

di1
�= di − d1 =

√
(x − xi)2 + (y − yi)2 −

√
(x − x1)2 + (y − y1)2, (4.29)

for i = 2, 3, which define two hyperbolas as shown in Fig. 4.14.

d1

d2

d3

Fig. 4.14. Positioning via TDOA measurements (with kind permission from Springer Science and Business
Media) [135].
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The position of the target node can be obtained from the two equations in (4.29) and
from the relation d1 = √

(x − x1)2 + (y − y1)2. Note that there are three unknowns in
this case, x, y, and d1. The equations in (4.29) can be expressed as two linear relations
in terms of these three unknowns [160]:[

x1 − x2 y1 − y2

x1 − x3 y1 − y3

] [
x − x1

y − y1

]
= d1

[
d21

d31

]
+ 1

2

[
d2

21 − d̃ 2
21

d2
31 − d̃ 2

31

]
, (4.30)

where d̃ 2
i1 = (xi − x1)

2 + (yi − y1)
2 for i = 2, 3.

Combination of (4.30) and d1 = √
(x − x1)2 + (y − y1)2 yields a quadratic equation

for d1. Under geometric regularity conditions, a unique value of d1 can be determined
and the position of the target node, (x, y), can be obtained [160].

The geometric techniques can also be applied to hybrid systems, in which multiple
types of measurements, such as TDOA/AOA [161] or TOA/TDOA [162], are employed
in position determination. As a simple example, consider the hybrid AOA/TOA system
in Fig. 4.11, where the reference node can measure both AOA and TOA of the signal
from the target node. In this case, the position of the target node can be calculated as

x = x1 + d cos ψ, (4.31)

y = y1 + d sin ψ, (4.32)

where ψ is the AOA, and d is the range obtained via TOA estimation.
As another example of a hybrid positioning system, consider a system with three

reference nodes, as in Fig. 4.12, in which two reference nodes are performing TOA
estimation and the remaining one is performing RSS estimation. In such a case, the
geometric solution is no different from the trilateration approach based on ranges from
all TOA or all RSS measurements. However, in practice, the accuracy of TOA and RSS
measurements can differ (since the measurements include noise in reality); hence, a
different positioning strategy from the conventional trilateration can perform better in
practice, as will be studied in the next section.

The previous case is in fact an example of the limitations of the geometric approach.
Note that for the geometric solutions in this section, it is assumed that all the measure-
ments are error free. Therefore, there always exists a single point at which all the position
lines, obtained from a number of measurements, intersect. However, the measurements
include noise (random errors) in practice, and the position lines may intersect at multiple
points without intersecting altogether at a single point.14 In such a case, the geometric
approach does not provide any insight as to which point to choose as the position of the
target node. In addition, if there are more measurements than needed (for unambiguous
position estimation in the error-free case), the number of intersections increases even
further. For example, Fig. 4.15 illustrates three erroneousAOAmeasurements from three
reference nodes, which results in multiple intersections of the position lines, without all
three lines intersecting at a single point.

14 One exception is the intersection of two lines obtained from AOA measurements from two reference nodes,
which always intersect at a single point.
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ψ1

ψ3

ψ2

Fig. 4.15. Erroneous AOA measurements and position ambiguity (with kind permission from Springer
Science and Business Media) [135].

Finally, note that since no error is assumed in the measurements, three reference
nodes for TOA, RSS and TDOA-based positioning (two for AOA-based positioning) are
used in the geometric solutions as more measurements would not change the estimated
position. However, in a practical case of noisy measurements, more accurate position
estimation can be performed by using a larger number of reference nodes. The geometric
techniques do not provide a theoretical basis for such data fusion approaches. Therefore,
statistical approaches should be considered, which provide a theoretical framework for
position estimation using any number of measurements.

Statistical techniques
Due to the limitations of the geometric approaches, statistical positioning techniques
are employed in most practical cases. In order to formulate a generic framework for
statistical approaches, consider the following measurement model

zi = fi(x, y) + ηi, i = 1, . . . , Nm, (4.33)

where Nm is the number of measurements, ηi is the noise at the ith measurement, and
fi(x, y) is the true value of the ith signal parameter, which is a function of the position
of the target, (x, y). Note that Nm is equal to the number of reference nodes for RSS,
AOA and TOA-based positioning, and it is one less than the number of reference nodes
for TDOA-based positioning, since each TDOA measurement is obtained with respect
to a reference node.

For various positioning systems, fi(x, y) in (4.33) can be expressed as15

fi(x, y)=

⎧⎪⎪⎨
⎪⎪⎩
√

(x − xi)2 + (y − yi)2, TOA/RSS

tan−1 ((y − yi)/(x − xi)) , AOA√
(x − xi)2 + (y − yi)2 −√

(x − x0)2 + (y − y0)2, TDOA

,

(4.34)

where (xi, yi) is the position of the ith reference node and (x0, y0) is the position of the
reference node relative to which the TDOA measurements are obtained.

15 Time measurements are converted to distance measurements by scaling by the speed of light.
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In vector notations, the measurement model in (4.33) can be expressed as

z = f(x, y) + η, (4.35)

where z = [z1 · · · zNm ]T, f(x, y) = [f1(x, y) · · · fNm (x, y)]T and η = [η1 · · · ηNm ]T.
Assume that the probability density function of the noise η is known except for a set

of parameters, denoted by λ. In such a case, parametric approaches, such as Bayesian
and maximum likelihood (ML) estimation, can be employed.16

Let the vector of unknown parameters be denoted by θ, which consists of the position
of the target node, as well as the unknown parameters of the noise distribution;17 i.e.

θ = [
x y λT

]T
. Depending on the availability of prior information about θ, Bayesian or

ML estimation techniques can be applied [165].
In the presence of prior information about θ, which is represented by a prior probabil-

ity distribution π(θ), the Bayesian approach can be taken to obtain an estimate of θ that
minimizes a certain cost function [140]. Two common Bayesian estimators are the min-
imum mean-square error (MMSE) and the maximum a posteriori (MAP) estimators,18

which estimate θ as follows:

θ̂MMSE = E {θ| z} , (4.36)

θ̂MAP = arg max
θ

p(z|θ)π(θ), (4.37)

where E {θ| z} is the conditional expectation of θ given z, and p(z|θ) represents the
probability density function of z conditioned on θ.

In some cases, there is no prior information about θ. In such cases, the ML estimation
is commonly used, which finds the value of θ that maximizes the likelihood function; i.e.

θ̂ML = arg max
θ

p(z|θ). (4.38)

Note from (4.38) and (4.37) that the ML estimator assumes a uniform distribution for
the unknown parameter θ (sort of a worst-case prior) since there is no specific information
about which parameter values are more likely than the others.

Since f(x, y) is a deterministic function, the likelihood function can be expressed as

p(z|θ) = pη(z − f(x, y) | θ), (4.39)

16 In the absence of information about the form of the probability density function of η, nonparametric
techniques need to be employed. The k-NN, SVR and neural networks approaches studied in Section
4.2.1 are examples of non-parametric estimators. Although the form of the density function is unknown
in the nonparametric case, there can still be generic information about certain parameters of the unknown
distribution [163], such as its variance and symmetry properties, which can be used to design non-parametric
estimation rules, such as the least median of squares technique in [164], the residual weighting algorithm
in [16] and the variance weighted least squares technique in [4].

17 In general, the noise components can also depend on the position of the mobile, in which case θ includes
the union of the elements x, y, and λ.

18 In fact, the MAP estimation is not properly a Bayesian approach; but it still fits within the Bayesian
framework [140].



4.2 Position estimation 81

where pη(· | θ) represents the conditional probability density function of the noise vector
for the given parameters in θ. In the following, the ML estimators are investigated for
various scenarios.

Case 1: Independent noise components: If the noise components are independent, the
likelihood function in (4.39) can be expressed as

p(z|θ) =
Nm∏
i=1

pηi
(zi − fi(x, y) | θ), (4.40)

where pηi
(· | θ) represents the conditional probability density function for the ith noise

component given the parameter vector θ.
The independent noise assumption is usually valid for TOA, RSS and AOA measure-

ments. However, for TDOA measurements the noise components are correlated since
each TDOA is computed with respect to the same reference node. Therefore, a TDOA-
based system can be studied through the generic expression in (4.39), or by using a
correlated Gaussian model (Case-2, below) under certain conditions.

For TOA, RSS andAOA-based systems in LOS conditions, the parameters of the noise
can be assumed to be known, since the measurement noise is mainly due to thermal noise
in an LOS case. In that case, the unknown parameter vector reduces to θ = [x y]T. Also,
it is possible to (approximately) model each noise component by a zero mean Gaussian
random variable in LOS scenarios [139]; i.e.

pηi
(n) = 1√

2π σi

exp

(
− n2

2σ 2
i

)
. (4.41)

Then, the likelihood function in (4.40) can be expressed as

p(z|θ) = 1

(2π)Nm/2
∏Nm

i=1 σi

exp

(
−

Nm∑
i=1

(zi − fi(x, y))2

2σ 2
i

)
. (4.42)

From (4.42), the ML estimator in (4.38) can be obtained as

θ̂ML = arg min
[x y]T

Nm∑
i=1

(zi − fi(x, y))2

σ 2
i

, (4.43)

which is the non-linear19 least-squares (NLS) estimator commonly used for position
estimation in the literature [136]. Note that the weights are inversely proportional to
the variance of the measurements since a larger variance means a less reliable measure-
ment. Common techniques for solving (4.43) include gradient descent algorithms and
linearization techniques using Taylor series expansion [18, 136].

In the absence of LOS propagation between the target node and some reference nodes,
the noise model can be significantly different for the measurements related to those

19 Since fi(x, y) is a non-linear function of (x, y).
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LOS

NLOS

Fig. 4.16. LOS and NLOS scenarios. The direct signal path is blocked in the NLOS case.

reference nodes compared to the measurements at the LOS nodes. If the positions of the
reference nodes are sufficiently separated, the conditional independence assumption in
(4.40) can still be employed. Therefore, the ML position estimation can be obtained from
(4.38) and (4.40) by using appropriate noise distributions for LOS and NLOS reference
nodes.20

In the NLOS case, the noise distribution can be considerably different from the Gaus-
sian model in (4.41) in many cases.21 As an example, for TOA estimation, the range
measurements in the absence of LOS propagation contain an NLOS error, in addition to
the errors observed in LOS measurements which are mainly due to background noise.
The NLOS error is always positive since the first arriving signal component travels an
extra distance as shown in Fig. 4.16. Therefore, the measurement noise can be modeled as
the sum of two noise terms, one related to the background noise, and the other related to
the NLOS error. Common models for the NLOS error include Gamma distribution [139]
and distributions based on certain scattering models [169]. In many cases, measurement
errors due to NLOS propagation dominate measurement errors due to background noise.
Therefore, the measurement error due to background noise can be omitted for NLOS
measurements.

Example 4.1 Consider a TOA-based positioning scenario with Nm reference nodes, NL

of which are in LOS to the target node while the remaining ones are in NLOS. Let zi , for
i = 1, . . . , NL, denote the range measurement related to the ith LOS reference node,
which includes a zero mean Gaussian measurement noise with variance σ 2

i . Similarly,
zi , for i = NL + 1, . . . , Nm, denote the range measurement related to the (i − NL)th
NLOS reference node, which includes an exponentially distributed measurement noise22

with a rate parameter λi−NL .

20 It is assumed that information about which nodes are LOS and which are NLOS is available. Such
information can be obtained via NLOS detection algorithms [119], [166–68].

21 The errors due to NLOS propagation can also be considered as fixed unknown bias terms. However, it is
shown in [139] that in the absence of statistical information about NLOS errors, the measurements from
NLOS nodes do not contribute to the positioning accuracy; hence they can be discarded.

22 Exponential distribution is a special case of Gamma distribution.
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Assuming independent noise at different measurements, the ML position estimate can
be obtained as

θ̂ML = arg max
θ

p(z|θ) (4.44)

= arg max
θ

{ NL∏
i=1

1√
2πσi

exp

{
− 1

2σ 2
i

(zi − fi(x, y))2

}

×
Nm∏

i=NL+1

λi−NL exp
{−λi−NL (zi − fi(x, y))

} }
, (4.45)

where fi(x, y) = √
(x − xi)2 + (y − yi)2.

For known noise parameters, the ML estimate can be expressed as

θ̂ML = arg min
[x y]T

{ NL∑
i=1

1

2σ 2
i

(zi − fi(x, y))2 +
Nm∑

i=NL+1

λi−NL (zi − fi(x, y))

}
. (4.46)

Case 2: Correlated Gaussian noise components: if the noise vector is modeled as a mul-
tivariate Gaussian random variable with mean μ and covariance matrix �, the likelihood
function is expressed as

p(z|θ) = 1

(2π)Nm/2|�|1/2
exp

{
−1

2
(z − f(x, y) − μ)T �−1 (z − f(x, y) − μ)

}
.

(4.47)
Then, the ML position estimate can be calculated as

θ̂ML = arg min
θ

{
(z − f(x, y) − μ)T �−1 (z − f(x, y) − μ) + log |�|

}
, (4.48)

where θ includes the position of the target node and the unknown parameters related to
μ and �.

For a noise distribution with zero mean and a known covariance matrix, (4.48) can
be simplified to

θ̂ML = arg min
[x y]T

(z − f(x, y))T �−1 (z − f(x, y)) , (4.49)

which is called the weighted LS (WLS) solution [136].
Although the independent noise model in Case 1 is not well-suited for TDOA-based

systems, the correlated Gaussian noise model in (4.47) can represent such systems quite
accurately for sufficiently large SNRs.
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Example 4.2 Consider a set of range difference (equivalently, TDOA) measurements
modeled as

zi = di − d0 + ni − n0, i = 1, . . . , Nm, (4.50)

where dj =
√

(x − xj )2 + (y − yj )2 for j = 0, 1, . . . , Nm, and n0, n1, . . . , nNm are

zero mean independent Gaussian random variables with variances σ 2
0 , σ 2

1 , . . . , σ 2
Nm

,
respectively. Then, the measurement model can be expressed in vector notation as

z = f(x, y) + η, (4.51)

where fi(x, y) = di − d0 for i = 1, . . . , Nm, and η ∼ N (0 , �) with

� =

⎡
⎢⎢⎢⎢⎣

σ 2
1 + σ 2

0 σ 2
0 · · · σ 2

0

σ 2
0 σ 2

2 + σ 2
0

. . .
...

...
. . .

. . . σ 2
0

σ 2
0 · · · σ 2

0 σ 2
Nm

+ σ 2
0

⎤
⎥⎥⎥⎥⎦ . (4.52)

Note that the measurement model in (4.50) expresses each TDOA as the difference
of two TOA measurements. Therefore, there is a correlation between different TDOA
measurements, and the covariance matrix in (4.52) is not diagonal.

In the case of NLOS propagation between the target node and a number of reference
nodes, the Gaussian model in (4.47) may be inaccurate. Therefore, the generic ML
estimation should be performed by means of (4.38) and (4.39) for TDOA measurements
in NLOS scenarios.

Recall from Section 4.1.4 that the TOA-based approach to TDOA estimation involves
measurement of individual TOAs at two reference nodes and then the estimation of
TDOA as the difference between the two TOA measurements, as modeled by (4.50) in
Example 4.2. Note that this is different from the cross-correlation-based TDOA estima-
tion, which determines the TDOA directly by locating the peak of the cross-correlation
between the received signals at two reference nodes. For the former case, an indepen-
dent measurement model and a related ML solution can be formulated as shown in the
following example.

Example 4.3 For the TOA-based TDOA scheme, the range measurements at each
reference node can be expressed as

zi =
√

(x − xi)2 + (y − yi)2 + doffset + ηi, (4.53)

for i = 1, . . . , Nm, where doffset = c τoffset is the range bias due to the timing offset
between the target node and the reference nodes (which are synchronized among them-
selves), and ηi is the noise for the ith measurement. Note that the noise components
can be considered independent, since each zi is obtained as in the TOA case. If position
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estimation is directly obtained from the Nm measurements in (4.53) instead of calculat-
ing time differences with respect to one of the measurements, the ML solution can be
obtained as

θ̂ML = arg max
[x y doffset]T

Nm∏
i=1

pηi

(
zi −

√
(x − xi)2 + (y − yi)2 − doffset

)
, (4.54)

where doffset can be considered as an unknown parameter of the measurement noise.
For the Gaussian noise model with zero mean and variance σ 2

i for the ith measurement,
the ML solution can be expressed as

θ̂ML = arg min
[x y doffset]T

Nm∑
i=1

1

σ 2
i

(
zi −

√
(x − xi)2 + (y − yi)2 − doffset

)2

. (4.55)

Note that given a set of Nm TOA measurements with a common timing offset, as
shown in (4.53), the optimal ML solution is given by (4.54), which jointly estimates
the timing offset and the position of the target node. On the other hand, the TDOA-
based positioning first obtains Nm − 1 time difference measurements with respect to
one of the measurements, and then estimates the position based on those TDOAs via
the ML solution in (4.48). In other words, the TDOA-based scheme has the benefit of
not estimating the timing offset. It is shown in [139] that the TDOA-based scheme can
achieve the same accuracy as the TOA-based solution in (4.54); hence, there is no need
to perform joint estimation of timing offset and the position of the target node.

4.2.3 Evaluation of positioning accuracy

In order to evaluate the performance of the positioning algorithms studied in the previous
sections, and to obtain theoretical lower bounds on positioning accuracy for a given
system, certain measures for accuracy are defined.

CRLB
The CRLB sets a limit on the covariance matrix of any unbiased estimator [140]. It is
calculated as the inverse of the Fisher information matrix (FIM) related to the conditional
probability density function of the measurements given the unknown parameters,p(z | θ).
In other words,23

E
{
(θ̂ − θ)(θ̂ − θ)T

}
≥ I−1

θ , (4.56)

where θ̂ is an unbiased estimate of θ, and Iθ is the FIM given by

Iθ = E

{
� log p(z | θ)

�θ

(
� log p(z | θ)

�θ

)T
}

. (4.57)

23 For symmetric matrices I1 and I2 of the same size, I1 ≥ I2 means that I1 − I2 is positive semi-definite.
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Commonly, mean-square error (MSE) is used as a metric to compare performance
of various positioning algorithms, which is lower bounded by the CRLB in (4.56) as
follows:

MSE
�= E{||θ̂ − θ)||2} = trace

[
E
{
(θ̂ − θ)(θ̂ − θ)T

}]
(4.58)

≥ trace
[
I−1
θ

] �= MMSE. (4.59)

Consider a system with Nm reference nodes, NL of which are in LOS with the tar-
get node, and the remaining ones are in NLOS. Without loss of generality, the LOS
and the NLOS nodes are indexed by i=1, . . . , NL and i=NL + 1, . . . , Nm, respec-
tively. It is assumed that signals propagate through a single LOS or NLOS path,24

and there is no prior statistical information related to NLOS induced errors. Let
ψi = tan−1 ((y − yi)/(x − xi)), for i = 1, . . . , Nm, denote the angle between the
ith reference node and the target node, where (x, y) is the position of the target node
and (xi, yi) is the position of the ith reference node.

It is shown in [138] that the MMSE for TOA-based positioning can be expressed as

MMSETOA = c2 ∑NL
i=1 σ−2

i∑NL
i=1

∑i−1
j=1 σ−2

i σ−2
j sin2(ψi − ψj )

, (4.60)

where c is the speed of light and σ 2
i , for i = 1, . . . , NL, is the variance of the zero mean

Gaussian measurement noise in the LOS case.
The theoretical lower bound in (4.60) is independent of the NLOS measurements

in the absence of statistical information about NLOS errors. In addition, the geometric
configuration of the LOS nodes affects the theoretical limit through the sine functions
of the angle differences related to the LOS nodes.

For sufficiently large SNR and/or effective bandwidth β, σ−2
i can be approximated

by 8π2β2SNRi , where SNRi is the SNR at the ith node [139]. In that case, (4.60) can
be expressed as

MMSETOA = c2

8π2β2

∑NL
i=1 SNRi∑NL

i=1

∑i−1
j=1 SNRiSNRj sin2(ψi − ψj )

, (4.61)

which explicitly indicates the impacts of the effective bandwidth on the MMSE.
It can be shown that an ML estimator based on LOS delay measurements obtained

from matched filter (or correlation) receivers can attain the MMSE for sufficiently large
SNR and/or effective bandwidth [138]. This asymptotically optimum structure is shown
in Fig. 4.17.

24 Refer to [170] for theoretical limits of positioning in multipath channels.
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Fig. 4.17. Asymptotically optimal position estimation for the TOA-based scheme in the absence of
statistical NLOS information (with kind permission from Springer Science and Business
Media) [135].

Example 4.4 Consider the positioning scenario in Fig. 4.18, where the target node is
surrounded by six reference nodes that are uniformly located on a circle. Nodes use
UWB pulses in (2.5) with 2 ns pulse width. It is assumed that the SNR is the same for all
reference nodes. Hence, (4.61) can be simplified as

MMSETOA = c2NL

8π2β2SNR
∑NL

i=1

∑i−1
j=1 sin2(ψi − ψj)

, (4.62)

where SNR represents the common SNR for all reference nodes. After calculating the
effective bandwidth of the UWB pulse from (4.11) (cf. Exercise 2), MMSETOA can be
evaluated for various scenarios. In Fig. 4.19, the square root of the MMSE expression
in (4.62) is plotted for various numbers of NLOS nodes. Namely, for NL = 3, nodes 4,
5 and 6; for NL = 4, nodes 5 and 6; and for NL = 5, node 6 are the NLOS nodes.

It is observed from the figure that as the number of LOS nodes or the SNR increases,
the accuracy of the positioning system increases.

3 2

14

5 6

y

x

Fig. 4.18. A positioning scenario, in which six reference nodes are estimating the position of the target
node in the middle via TOA measurements (with kind permission from Springer Science and
Business Media) [135].
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Fig. 4.19. Square root of the MMSE expression in (4.61), called RMSE, versus SNR for various numbers
of NLOS nodes. For NL = 3, nodes 4, 5 and 6; for NL = 4, nodes 5 and 6; and for NL = 5,
node 6 are the NLOS nodes.

The MMSE for TDOA-based positioning can be expressed as [138]

MMSETDOA = c2
NL∑
i=1

σ−2
i

×
(∑NL

i=1 σ−2
i

)2 −∑NL
i=1 σ−4

i −∑NL
i=1

∑i−1
j=1 σ−2

i σ−2
j cos(ψi − ψj )∑NL

i=1

∑i−1
j=1 σ−2

i σ−2
j Ki,j

, (4.63)

where Ki,j is given by

Ki,j = sin(ψi −ψj )

NL∑
k=1

σ−2
k +

NL∑
k=1

σ−2
k sin(ψi −ψk)+

NL∑
k=1

σ−2
k sin(ψj −ψk). (4.64)

Note that the MMSE is independent of the measurements related to NLOS nodes, as for
the TOA-based positioning. Also, it is shown in [171] that the MMSE for TDOA-based
positioning is always larger than or equal to that for TOA-based positioning. This is
expected since there is an additional unknown parameter, timing offset, in TDOA-based
positioning.

For RSS-based positioning systems, the MMSE is expressed as [138]

MMSERSS =
(

ln 10

10n

)2
∑Nm

i=1 σ−2
sh,i

d−2
i∑Nm

i=1

∑i−1
j=1 σ−2

sh,i
σ−2

sh,j
d−2
i d−2

j sin2(ψi − ψj )
, (4.65)
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where n is the PL exponent, σ 2
sh,i

is the variance of the log-normal shadowing for the ith

measurement, and di = √
(x − xi)2 + (y − yi)2 is the distance between the target node

and the ith reference node. Note that the accuracy of RSS-based positioning depends
heavily on the channel parameters, namely the PLexponent and the shadowing variances.
Also, the accuracy depends on estimates at all nodes, LOS and NLOS, since the effects
of NLOS propagation are implicitly included in the RSS signal model, as studied in
Section 4.1.1.

Finally, forAOA-based positioning using a ULA, the MMSE can be expressed as [138]

MMSEAOA = 3

4π2l2Na(Na + 1)(2Na + 1)

×
∑NL

i=1
SNRi

d2
i

sin2 ψi∑NL
i=1

∑i−1
j=1

SNRiSNRj

d2
i d2

j

sin2(ψi − ψj ) sin2 ψi sin2 ψj

, (4.66)

where Na is the number of antenna elements and l is the inter-element spacing. Similar
to the time-based systems, the AOA-based positioning utilizes the estimates from LOS
nodes only.

Similar expressions can be derived for hybrid positioning systems, which can be
considered in two categories depending on whether estimation errors for various mea-
surement types are correlated or not. Some lower bound expressions for hybrid systems
can be found in [138] and [172].

For the positioning accuracy analysis above, it is assumed that there is no prior sta-
tistical information related to NLOS errors. In the presence of such prior information,
the accuracy is evaluated by means of the generalized CRLB (G-CRLB) as investigated
in [138]. In this case, an asymptotically optimal positioning receiver as shown in Fig. 4.20
can be implemented. Note that measurements from both LOS and NLOS reference nodes
are utilized in the presence of NLOS error statistics.

Matched filter
TOA estimation

Prior NLOS
information

MAP
position

estimation

Matched filter
TOA estimation

r1(t)

rNm
(t)

zNm

z1

θ

Fig. 4.20. Asymptotically optimal position estimation for the TOA-based scheme in the presence of
statistical NLOS information (with kind permission from Springer Science and Business
Media) [135].
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Geometric dilution of precision
Another performance measure for positioning systems is geometric dilution of precision
(GDOP), which is a unitless metric related to the geometric configuration of the reference
nodes [173, 174]. Namely, the GDOP is defined as the ratio of the root-mean-square
error (RMSE) of the position estimate to the RMSE of the ranging error; i.e.

GDOP = RMSEpos

RMSErange
=

√
E
{
(θ̂ − μ̂)T(θ̂ − μ̂)

}
σrange

, (4.67)

where θ̂ is the position estimator and μ̂ is the mean of the estimator. σrange represents
the fundamental ranging error for RSS, TOA and TDOA-based positioning systems,
whereas it is the square root of the average variance of the ranges between the reference
nodes and a reference point close to the true position of the target node for AOA-based
positioning [136].

For an unbiased estimator, μ̂ is equal to the true parameter θ. Then, (4.67) can be
expressed as

GDOP =

√
trace

[
Cov{θ̂}

]
σrange

, (4.68)

which reduces to

GDOP =
√

σ 2
x + σ 2

y

σrange
(4.69)

for θ = [x y]T, where σ 2
x and σ 2

y are the mean square errors for the x-axis and y-axis
estimates, respectively.

From the definition of the GDOP in (4.67), it is observed that ranging errors do not
cause a large positioning error if the GDOPis sufficiently low. However, for large GDOPs,
even small ranging errors can cause a large positioning error. Therefore, the GDOP can
be useful in network planning by helping determine the positions of the reference nodes
so that the GDOP can be kept sufficiently low in most cases.

In [175], it is shown that the lowest GDOP in two-dimensions is given by 2/
√

Nm,
where Nm is the number of reference nodes, for positioning systems based on range
measurements (assuming zero mean independent and identically distributed (i.i.d.) mea-
surement errors). That lowest GDOP is achieved when the reference nodes are located
at the vertices of a regular Nm-sided polygon, with the target node being at the center
of that polygon. As an example, consider the node configuration in Fig. 4.21, where the
target node is located at the origin and there are three reference nodes each at a distance
r from the target node. The positions of reference nodes 1 and 2 change depending on
the value of ψ as shown in the figure, and the GDOP values are obtained for various
node configurations (i.e. for various ψs) as in Fig. 4.22. The minimum GDOP, 2/

√
3, is

obtained for ψ = π/6, when the reference nodes form an equilateral triangle, with the
target node being at the center. As the reference nodes come closer, the GDOP increases
dramatically.
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Fig. 4.21. Node configuration for a positioning scenario with the target node located at the origin, and three
reference nodes at distance r from the target node.
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Fig. 4.22. The GDOP for the scenario in Fig. 4.21 for various ψs.

Circular error probability
The accuracy of a position estimator can also be quantified by the radius of a circle cen-
tered at the mean of the estimator, inside which half of the position estimates reside [174,
176]. In other words, if a position estimator has a CEP of r meters, each position estimate
is inside a circle of radius r meters, with its center at the mean of the estimator, with a
probability of 0.5.

Note that for an unbiased position estimator, the CEP is defined with respect to a circle
around the true position of the target node, as shown in Fig. 4.23.
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CEP

Fig. 4.23. CEP for an unbiased position estimator. With 50% probability, each position estimate is inside a
circle of radius CEP around the position of the target node.

Due to the complexity of the exact expressions for CEP, the following approximation
is commonly employed [136, 174]:

CEP ≈ 0.75

√
E
{
(θ̂ − μ̂)T (θ̂ − μ̂)

}
, (4.70)

where θ̂ is the position estimator and μ̂ is its mean. Note from (4.67) and (4.70) that CEP
is approximately related to GDOP by CEP ≈ 0.75σrangeGDOP.

4.3 Position tracking

In the previous section, the position of a target node is estimated based on a single obser-
vation of signals at a given time. In the presence of multiple observations over a period
of time, more accurate position estimation can be performed by making use of a motion
model for the target node. The problem of estimating an object’s position at consecutive
time instants, the tracking problem, can be formulated using a state-space approach [177]:

xk = gk(xk−1, νk−1), (4.71)

zk = fk(xk) + ηk, (4.72)

where xk is the state vector at time k, {νk−1}∞k=0 is an i.i.d. process noise sequence, zk is
the measurement vector at time k, and {ηk}∞k=0 is an i.i.d. measurement noise sequence.

In the state equation in (4.71), the state vector xk can, for example, be a 4×1 vector con-
sisting of the position and the velocity of the target node at time k for a two-dimensional
problem. The measurement equation in (4.72) is similar to the model in (4.35) with the
generalization that the state vector can include more elements in addition to the position
coordinates.

Note from (4.71) that the state equation describes a Markov process of order one,
which facilitates tractable computations [178].

In the Bayesian framework, the tracking problem can be considered as calculating
the conditional probability of state xk given all the measurements up to time k; i.e.
p(xk| z1, . . . , zk). It is assumed that the prior probability, p(x0), is known.25 Then, the
state estimation can be performed recursively for each time instant k in two stages [177]:

25 At time k = 0, no measurements are taken yet; hence, p(x0| z0) = p(x0).
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p(xk| z1, . . . , zk−1) =
∫

p(xk| xk−1)p(xk−1| z1, . . . , zk−1)dxk−1, (4.73)

p(xk| z1, . . . , zk) = p(zk| xk)p(xk| z1, . . . , zk−1)∫
p(zk| xk)p(xk| z1, . . . , zk−1)dxk

, (4.74)

where the first equation describes the prediction stage and the second equation describes
the update (correction) stage. In (4.73), p(xk| xk−1) is specified by the state equation
(4.71) and the known statistics of νk−1. Similarly, p(zk| xk) in (4.74) is specified by the
measurement equation (4.72) and the known statistics of ηk .

In what follows, various optimal and suboptimal approaches to the recursive tracking
algorithm, described by (4.73) and (4.74), are considered.

4.3.1 Kalman filters

The Kalman filter [179] assumes that the posterior probability p(xk| z1, . . . , zk) can be
expressed as a Gaussian random variable at each time instant k. This Gaussian approach
yields the optimal solution to the tracking problem for linear state and measurement
equations, and Gaussian noise vectors νk−1 and ηk [177, 180]. Under these assumptions,
the state-space equations in (4.71) and (4.72) can be expressed as

xk = Fkxk−1 + νk−1, (4.75)

zk = Gkxk + ηk, (4.76)

where Fk and Gk are the known matrices that specify the linear relations.
For zero mean and statistically independent noise vectors νk−1 and ηk with respective

covariances of Qk−1 and Rk , the Kalman filter equations can be expressed as [177]:

xk−1| z1, . . . , zk−1 ∼ N
(
μk−1|k−1 , �k−1|k−1

)
,

xk| z1, . . . , zk−1 ∼ N
(
μk|k−1 , �k|k−1

)
,

xk| z1, . . . , zk ∼ N
(
μk|k , �k|k

)
, (4.77)

where

μk|k−1 = Fkμk−1|k−1, (4.78)

�k|k−1 = Qk−1 + Fk�k−1|k−1FT
k , (4.79)

μk|k = μk|k−1 + Kk(zk − Gkμk|k−1), (4.80)

�k|k = �k|k−1 − KkGk�k|k−1, (4.81)

with

Kk = �k|k−1GT
k

(
Gk�k|k−1GT

k + Rk

)−1
(4.82)

denoting the Kalman gain matrix.
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Note from (4.77) that the Kalman filter estimates a Gaussian distribution, specified by
its mean and covariance, at each time instant, which can be used for optimal estimation
of the state. For example, the conditional mean in (4.80) is the optimal estimate for
the state according to the MMSE, MAP and minimum mean absolute error (MMAE)
criteria [140].

One of the main advantages of the Kalman filter is its computational efficiency in
obtaining the optimal solution. However, the assumptions under which the Kalman filter
provides the optimal solution are not commonly satisfied in practical situations. For
example, the measurement equation in (4.72) is not linear as in (4.76) because of the
non-linear relations between the position of the target node and the measurements, as
studied in Section 4.2.2.

In order to apply Kalman filtering to non-linear tracking problems, local lin-
earization approaches can be applied [177]. The extended Kalman filter (EKF) and
its variants based on the unscented transform (the unscented Kalman filters) [181,
182] employ various linearization techniques for solving non-linear state-space equa-
tions.

Although non-linearities can be linearly approximated in certain cases, the Gaus-
sianity assumption is still needed for accurate estimates. The multihypothesis track-
ing (MHT) approach generalizes the Kalman filtering technique to the cases in
which the posterior probability can be represented by a mixture of Gaussian ran-
dom variables at each time instant [183]. Therefore, the MHT technique is more
widely applicable than the Kalman filter. However, it has higher computational
complexity.

Example 4.5 Consider a tracking scenario in which three reference nodes are tracking
a target node moving on the black solid line (from left to right) in Fig. 4.24 at a constant
velocity of 1 m/s. Each reference node is taking four range measurements per second
(�t = 0.25 s), and each measurement is modeled by a Gaussian random variable around
the true range with a variance of 0.5 m2.

At each 0.25 s interval, a position estimate is obtained by the LS algorithm as in (4.43).
These estimates are shown in Fig. 4.24 as cross signs. Note that these estimates are quite
scattered around the true target path. Let the position estimate from the LS estimator at
the kth instant be denoted as

zk =
[
z
(1)
k z

(2)
k

]T
. (4.83)

These position estimates are used by a Kalman filter as in (4.75) and (4.76), where
zk forms the measurement vector, and the state vector consists of the position and the
velocity of the target in two dimensions; i.e.

xk =
[
x

(1)
k x

(2)
k x

(3)
k x

(4)
k

]T
, (4.84)
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Fig. 4.24. A target tracking scenario, in which three reference nodes are tracking the target node. The cross
signs represent the position estimates from the LS algorithm and the heavy solid line is the
smoothed position estimate using the Kalman filter.

with
(
x

(1)
k , x

(2)
k

)
representing the position and

(
x

(3)
k , x

(4)
k

)
representing the velocity. The

matrices in (4.75) and (4.76) are specified as follows:

Fk =

⎡
⎢⎢⎣

1 0 �t 0
0 1 0 �t

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (4.85)

Gk =
[

1 0 0 0
0 1 0 0

]
, (4.86)

and the covarianceAmatrix ofηk in (4.76) is given by diag{5, 5}. Similarly, the covariance
of νk−1 in (4.75) is expressed as diag{0, 0, (�t)2, (�t)2}, which models an additive
random acceleration component for the velocity state variables [156].

The conditional mean in (4.80) is used as the position estimate of the Kalman filter. The
initial value for the mean estimate is obtained from the first position estimate [x̂(1)

k x̂
(2)
k ]

of the LS algorithm as μ0|0 = [x̂(1)
k x̂

(2)
k 0 0]T, where the initial velocity is assumed

to be zero. Similarly, the initial covariance estimate, �0|0 in (4.79), is assumed to be
diag{1, 1, 1, 1}.

In Fig. 4.24, the position estimates obtained from the Kalman filter are plotted by
the heavy solid line,26 which indicates smoother position estimates compared to the

26 The discrete estimates are connected by straight lines to show a path estimate.
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LS algorithm. Averaged over 100 independent simulations, the average RMSE of the LS
algorithm reduces from 0.86 to 0.55 m after applying Kalman filtering on the LS position
estimates.

4.3.2 Grid-based approaches

For discrete state spaces that consist of a finite number of states, the grid-based methods
provide the optimal solution to the tracking problem. Let xi

k−1, i = 1, . . . , Ng, represent
the number of states at time k − 1. Then, the posterior probability at that time instant
can be expressed as

p(xk| z1, . . . , zk−1) =
Ng∑
i=1

wi
k−1|k−1δ(xk−1 − xi

k−1), (4.87)

where wi
k−1|k−1 = Pr(xk−1 = xi

k−1| z1, . . . , zk−1).
From (4.87), the prediction and update stages in (4.73) and (4.74) can be expressed

as [177]

p(xk| z1, . . . , zk−1) =
Ng∑
i=1

wi
k|k−1δ(xk − xi

k), (4.88)

p(xk| z1, . . . , zk) =
Ng∑
i=1

wi
k|kδ(xk − xi

k), (4.89)

where

wi
k|k−1 =

Ng∑
j=1

w
j

k−1|k−1p(xi
k| xj

k−1), (4.90)

wi
k|k = wi

k|k−1p(zk| xi
k)∑Ng

j=1 w
j

k|k−1p(zk| xj
k )

. (4.91)

The optimality condition for the grid-based approach is not usually satisfied for posi-
tion tracking problems, since the position of the target node can take on a continuum of
values. In such a case, approximate grid-based techniques can be employed [177], which
decompose the continuous state space into a number of sub-regions (called “cells’’) and
apply the grid-based approach above to approximate the posterior probabilities. Hidden
Markov model (HMM) filters are also based on this approximate grid-based principle
[184–186].

4.3.3 Particle filters

Particle filters, also known as sequential Monte Carlo (SMC) methods, represent the
posterior probability of the state at a given time by a set of samples, called particles, and
related weights, called importance factors [187].
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A particle filter approximates the posterior density at each time instant by a discrete
random variable which takes on the value of the ith sample with a probability that is
equal to the ith weight for i = 1, . . . , Ng, where Ng is the number of samples. Since the
weights define a probability mass function, they add up to one at each time instant. The
weights are determined according to the importance sampling principle [187].

Particle filters have been applied successfully in many tracking problems [177, 188–
193]. The main advantage of the particle filtering is its ability to represent any probability
distribution. In other words, particle filters can converge to the optimal Bayesian solution
in non-Gaussian and non-linear environments.Also, they are more efficient than the grid-
based approaches since more samples can be collected from the regions in state space with
high probability [178]. However, the main disadvantage of particle filtering is related
to its computational complexity, which is exponential in the number of elements in the
state vector.

Particle filters have been employed in UWB tracking scenarios in order to mitigate
the effects of NLOS propagation [194, 195]. Specifically, they can be used to estimate
the state of the target node and the measurement biases due to NLOS so that accurate
position tracking can be performed.

4.4 Problems

(1) For a reference node performing RSS measurements, calculate the expected value
of the lower bound in (4.4) in terms of the PL exponent and the standard deviation
of the log-normal shadowing,
(a) if the position of the target node is uniformly distributed inside a circle of radius

d around the reference node;
(b) if the position of the target node is distributed according to the following

probability density function

p(x, y) = 1

2πσ 2
exp

{
− 1

2σ 2

[
(x − x0)

2 + (y − y0)
2
]}

, (4.92)

where (x0, y0) is the position of the reference node.

(2) A reference node receives the signal r(t) = s(t − τ) + n(t), where s(t) is the signal
transmitted from the target node and n(t) denotes white Gaussian noise with zero
mean. Assume that s(t) is given by

s(t) = A

(
1 − 4πt2

ζ 2

)
e−2πt2/ζ 2

, (4.93)

with ζ = 0.1 ns and A being a positive constant.
(a) Calculate the effective bandwidth of s(t).
(b) Calculate the CRLBs on the standard deviations of unbiased TOA estimators

for SNR= 0, 5, 10 dB.
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(3) Consider an AOA estimation scenario in which the reference node employs a ULA
as in Fig. 4.6 to determine the angle of the signal transmitted from the single antenna
of the target node. Assume that the spectral densities of noise and the channel
coefficients are the same for all antenna elements, and the AOA is confined to
the interval (−π/4, π/4). For the UWB pulse in Problem 2, find the minimum
number of antenna elements at the reference node such that the CRLB for AOA
estimation is never more than 0.05 radians for an inter-element spacing of 6 cm and
SNR =10 dB.

(4) Consider a positioning scenario in which three reference nodes are trying to locate a
target node. Reference nodes 1 and 2 are performing TOA measurements, whereas
the third reference node is measuring AOA. It is assumed that there is no noise in
the measurements; i.e. TOA and AOA measurements yield the true TOA and AOA
values. For such a scenario:
(a) Express the position of the target node, (x, y), in terms of the positions of the

reference nodes, (x1, y1), (x2, y2) and (x3, y3), and the TOA (τ1 and τ2) and
AOA (ψ) measurements.

(b) Is it always possible to obtain a unique solution for the position of the target? If
not, what are the conditions to guarantee a unique solution?

(5) Consider a positioning scenario in which four reference nodes are located as
shown in Fig. 4.25. Each node is estimating its distance (range) to a target node
in the environment (not shown in the figure), and those range measurements are
modeled as

zi = di + ηi, (4.94)

for i = 1, 2, 3, 4, where di is the distance between the target node and the ith
reference node, and ηi is the measurement noise, which is modeled as N (0 , σ 2

i ).
It is assumed that the measurement noise is independent for different reference nodes

y

x

Ref-2

Ref-3 Ref-1

Ref-4

(0, a)

(a, 0)

(0, –a)

(–a, 0)

Fig. 4.25. Reference node configuration for Problem 5.
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and the variances σ 2
1 , σ 2

2 , σ 2
3 and σ 2

4 are known. Also, the position of the target node,
(x, y), is distributed according to a multivariate Gaussian distribution around the
origin as

p(x, y) = 1

2πσxσy

exp

{
− x2

2σ 2
x

− y2

2σ 2
y

}
, (4.95)

with known σx and σy values.
(a) Express the MAP estimator for the position of the target, as a minimization

problem, in terms of {zi}4
i=1, a, {σi}4

i=1, σx and σy .
(b) How does the result simplify for σi = σ ∀i and σx, σy → ∞?

(6) Obtain the MAP estimator for the position of the target node in Problem 5, if the
prior distribution of the target position is expressed as follows:

p(x, y) =
{

1/a2, −a ≤ x ≤ a, −a ≤ y ≤ a

0, otherwise
. (4.96)

(7) Consider a TOA-based positioning scenario with Nm reference nodes, NL of which
are in LOS to the target node while the remaining ones are in NLOS. Let zi , for
i=1, . . . , NL, denote the range measurement related to the ith LOS reference node,
and zi , for i = NL + 1, . . . , Nm, denote the range measurement related to the ith
NLOS reference node. The measurements are modeled as

zi =
{

di + ηi, i = 1, . . . , NL,

di + ηi + εi−NL , i = NL + 1, . . . , Nm,
(4.97)

where di is the distance between reference node i and the target node, ηi ∼ N (0, σ 2
i )

and εi−NL represents an exponential distribution with parameter λi−NL that is
independent of ηi .

Ref-2

Ref-3 Ref-4

Ref-110

–10

–10 10 x (m.)

y (m.)

1–1

–1

1

Fig. 4.26. Reference node configuration for Problem 8. Target nodes are located inside the shaded square.
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Assuming independent noise at different measurements and known noise param-
eters, show that the ML estimator for the target position (x, y) is given by the
following:

(xML, yML) = arg min
(x,y)

{ NL∑
i=1

(zi − di)
2

2σ 2
i

+
Nm∑

i=NL+1

λi−NL(zi − di)

−
Nm∑

i=NL+1

log

(
Q

(
λi−NL − zi − di

σi

))}
, (4.98)

where di = √
(x − xi)2 + (y − yi)2 and Q(r) = 1√

2π

∫∞
r

e−t2/2dt is the

Q-function.

Note that (4.98) reduces to (4.46) when σi = 0 for i = NL + 1, . . . , Nm.

(8) (programming exercise) Consider the TOA-based positioning scenario in Fig. 4.26,
where four reference nodes are trying to locate target nodes in the shaded square
around the origin. It is assumed that SNRs are the same for all target positions inside
the shaded square, and the targets are always in LOS of all the reference nodes.
(a) Generate 500 target positions inside the shaded square according to a uniform

distribution that assigns equal probabilities to all the points inside the square.
(b) Evaluate the MMSE in (4.62) for each of the 500 target positions generated

in part (a) for an SNR of 5 dB and an effective bandwidth of 5 GHz. Find
the positions corresponding to maximum and minimum MMSE values, and
calculate the average MMSE.

(c) Find, theoretically, the target positions that yield the minimum and maximum
MMSEs. Are the theoretical results close to the ones obtained in the previous
part?

(d) Plot average MMSE versus SNR for SNR values ranging from 0 dB up to 15 dB
in steps of 0.5 dB or less. For each SNR value, average MMSE should be
obtained from averaging over 500 random target node positions as in part (b).

(e) Plot the average MMSE versus the effective bandwidth β, for β ranging from
3.5 to 7 GHz in steps of 250 MHz or less.



5 Time-based ranging via UWB radios

As discussed in the previous chapter, the position of a mobile node in a wireless network
can be estimated based on AOA, RSS, TOA, and/or TDOA of received signals. Due to
their large bandwidths, UWB signals have very high time resolution, hence individual
multipath components (MPCs) can be resolved at the receiver. While AOA, TOA, and
TDOA approaches all benefit from this high resolution, AOA-based implementations
have high complexity. Therefore, positioning based on TOA1 (or TDOA) estimation is
the method of choice in UWB-based positioning systems [196] as opposed to AOA or
RSS (which has low ranging accuracy)-based approaches. Therefore, the emphasis of
this chapter is on time-based UWB ranging techniques.

The chapter is organized as follows. In Section 5.1, the time-based positioning problem
is briefly re-visited and importance of accurate ranging for precise positioning is empha-
sized. The error sources in time-based ranging are discussed in Section 5.2. In Section 5.3,
the time-based ranging problem is formulated and models for various transceiver types
are studied. Section 5.4 reviews fundamental limits on the accuracy of time-based
ranging, Section 5.5 investigates maximum likelihood (ML)-based techniques, and
Section 5.6 presents alternative low-complexity ranging algorithms for UWB systems.

5.1 Time-based positioning

Consider a wireless network in which there are Nm reference nodes (RNs). The ith RN
is located at (xi, yi), and a target node (TN) at position (x, y). The measured distance
d̂i between the TN and the ith RN is commonly modeled as [18, 138, 197]

d̂i = di + ei + ni = c ti , i = 1, 2, . . . , Nm, (5.1)

where ti is the time of flight estimate (measurement) of the signal at the ith RN, c is the
speed of light, di is the true distance between the TN and the ith RN, ni ∼ N

(
0, σ 2

i

)
is

the zero mean Gaussian measurement noise with variance σ 2
i , and ei is a non-negative

distance bias introduced due to the obstructed line-of-sight (LOS),2 given by

1 In the sequel, terms “ranging’’ and “TOA estimation’’ will be used interchangeably since they imply each
other.

2 Note that in essence, a non-negative distance bias can be present even when the first path is not completely
obstructed, but experiences a different propagation speed due to obstacles [198].
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ei =
{

0 , if ith RN is LOS ,

|ẽi | , if ith RN is NLOS .
(5.2)

As studied in Chapter 4, in the absence of noise and NLOS bias ei , the actual distance
di between the TN and the ith RN defines a circle centered at (xi, yi), and this circle
corresponds to all possible locations of the TN. The joint solution of the Nm circles
(from Nm RNs) yields the position of the TN. However, due to noisy measurements and
NLOS biases, the circles may not intersect at a single point (see Fig. 5.1), resulting in
the following equations

(x − xi)
2 + (y − yi)

2 = d̂2
i , i = 1, 2, . . . , Nm . (5.3)

There are numerous ways to estimate the position of the TN. For example, a sim-
ple solution is obtained using the non-linear least squares (NLS) technique, studied in
Section 33, as follows

(x̂, ŷ) = arg min
(x, y)

{ Nm∑
i=1

ςi

(
d̂i −

√
(x − xi)2 + (y − yi)2

)2
}

= arg min
(x, y)

{
εres(x, y)

}
, (5.4)

where εres(x, y) is the residual error corresponding to the TN location (x, y), and ςi

characterizes the reliability of the measurement [4, 119].
It is apparent from (5.1), (5.3), and Fig. 5.1 that having accurate range estimates at

each RN is crucial for precise positioning. Fine time resolution of UWB signals makes
accurate identification of the first MPC possible. However, this may not be easy in
many scenarios due to NLOS propagation and a vast number of MPCs. In the next
section, a discussion on different error sources for UWB ranging is presented, followed
by formulation of the time-based UWB ranging problem.
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Fig. 5.1. Relation between ranging and positioning for Nm = 3.
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5.2 Error sources in time-based ranging

There are a number of error sources that may seriously degrade the accuracy of the range
estimation. Before getting into different ranging algorithms and fundamental bounds,
some of those error sources will be briefly overviewed in this section.

5.2.1 Multipath propagation

Multipath propagation introduces challenges for UWB ranging due to a large number
of MPCs and relatively long excess delays compared to the transmitted pulse duration.
In the absence of multipath propagation, estimation of the arrival time of a signal is
relatively easy: the cross-correlation of the received signal with a local template3 is
obtained, and the TOA is given by the correlation peak (see Section 5.5.1 for details).

In practice, reflections from scatterers in an environment arrive at a receiver as replicas
of the transmitted signal with various attenuation levels and delays. As discussed in
Chapter 3, the maximum excess delay of the received multipath signal can be on the
order of a hundred nanoseconds, and the strongest MPC may arrive much later than the
first path. For such a signal, the TOA is no longer given by the correlation peak, and
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Fig. 5.2. Illustration of the TOA estimation problem in a multipath channel. The receiver might already be
synchronized to the strongest MPC and tries to identify the first arriving MPC using different
signal processing techniques (receiver noise is not shown).

3 Ideally, the received pulse shape is used as the correlation template since it may be different from the
transmitted pulse shape in practice. Since it may be difficult to estimate the received pulse shape in practical
scenarios, the transmitted pulse shape is commonly used as a suboptimal template.
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first path detection algorithms are required. In typical UWB channels, the first path may
be considerably weaker than the strongest component (see Fig. 5.2), and it may arrive
several tens of nanoseconds earlier than the strongest [100]. As illustrated in various
simple scenarios in Fig. 5.3, the first path may be weaker than the later paths due to
NLOS signal propagation or antenna effects.

An important problem in multipath channels is that, if the MPCs are not resolvable
(i.e. in the absence of a sufficient time delay between any two consecutive MPCs), there
may be interference from one received pulse to another. Hence, the first arriving path
and other paths may overlap, which may shift a TOA estimate from the true TOA.4

Another error source related to multipath propagation is associated with the correla-
tion characteristics of the spreading sequences employed in ranging. In a typical UWB
receiver that uses a correlator (or a matched filter), the receiver first uses the spreading

(a)

TX RX

Reflector

t

h(t)

τ1

True TOA

τ2

(b)

TX

RX

Reflector

t

h(t)

τ1

τ2

(c)

TX RX

Reflector

O
b

st
ru

ct
io

n

t

h(t)

τ1

τ2

(d)

TX RX

Reflector

O
b

st
ru

ct
io

n

t

h(t)

τ1

τ2

Fig. 5.3. Four different simple scenarios for channel realizations in LOS and NLOS situations. (a) The direct
path is unobstructed (LOS). (b) The direct path is unobstructed, but attenuated due to antenna pat-
tern (LOS). (c) The direct path is obstructed. The attenuation due to the obstruction makes the direct
path weaker than the strongest path. The delay due to the obstruction is neglected since it is insignifi-
cant (NLOS). (d) The direct path is obstructed. The obstruction both attenuates and delays the direct
path. Note that in certain cases the direct path may completely disappear (NLOS) (After [198]).

4 Note that this problem is much more significant in narrowband systems due to longer pulse durations.
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Fig. 5.4. Illustration of the side-lobe interference (SLI) due to imperfect autocorrelation characteristics of
ranging preamble and the large delay spread of the multipath channel.

sequence of the desired user5 in order to de-spread the received waveform. It then locks
onto the correlation peak, and tries to identify the first arriving MPC preceding the cor-
relation peak. If the transmitted waveform has imperfect autocorrelation characteristics,
correlation side-lobes appear between the correlation peaks. In Fig. 5.4, such an imper-
fect periodic autocorrelation of a spreading sequence is illustrated. The autocorrelation
peaks are repeated periodically with the symbol length and one can observe the auto-
correlation side-lobes in between. In the presence of multipath, the channel profile is
replicated at each of the autocorrelation peaks as well as the autocorrelation side-lobes.
If the zero correlation zone prior to the correlation peak is not large enough, extension
of the channel profile from the autocorrelation side-lobes may interfere with the leading
MPCs corresponding to the autocorrelation peak. In here, such an effect is referred to as
the side-lobe interference (SLI) and it may be a limiting factor on the ranging accuracy.

In order to prevent the SLI, the periodic autocorrelation characteristics of the trans-
mitted waveforms should have a sufficiently large zero correlation zone (ZCZ) compared
to the maximum excess delay of the channel. In [200], four different ranging waveforms
and their correlation characteristics (as well as other design trade-offs) are discussed.6

Example 5.1 Periodic correlation characteristics of two common ranging waveforms
are compared in Fig. 5.5. Fig. 5.5a shows the periodic correlation output of an M-ary
ternary orthogonal keying (MTOK) sequence of length 31, where the sequence is given
by {1,–1,–1,0,0,0,1,–1,0,1,1,1,0,1,0,–1,0,0,0,0,1,0,0,–1,0,–1,1,0,0,–1,–1}. The sequence
is processed with a bipolar template (BPT) at the receiver rather than the transmitted
MTOK sequence itself [199]. The figure shows that MTOK sequences have optimal
correlation characteristics when processed with a BPT. In other words, there are no
correlation side lobes between any two correlation peaks. This characteristic makes
MTOK sequences very suitable for ranging applications.

5 Or, a specially designed template such as the bi-polar templates for de-spreading M-ary ternary orthogonal
keying (MTOK) sequences [199].

6 Namely, M-ary ternary orthogonal keying (MTOK), time hopping (TH), direct-sequence (DS), and
transmitted reference (TR).
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Fig. 5.5. Periodic code correlations for MTOK-IR and TH-IR (2 periods): (a) periodic MTOK correlation
using a bi-polar template (BPT), (b) periodic TH-IR autocorrelation (© 2005 IEEE) [200].

As opposed to MTOK sequences, TH sequences have a much smaller ZCZ. It is possi-
ble to find TH sequences with good correlation characteristics (e.g. using a brute-force
search). For example, Fig. 5.5b shows the periodic autocorrelation output of a TH
sequence {0, 3, 3, 2} with Nh = 32 (i.e., the number of chip positions is similar to
that of an MTOK sequence of length 31).7 While there are correlation side lobes between
two correlation peaks, there is a periodic ZCZ of length 29. Such a ZCZ duration may or
may not be satisfactory for ranging systems depending on factors such as the maximum
excess delay of the channel and how far the strongest path arrives relative to the first
path.

Note that for coherent receivers, polarity coding may also be used along with TH
to improve the autocorrelation characteristics of ranging waveforms. Some design
trade-offs regarding the ranging transmit-waveform will be discussed in more detail
in Chapter 8.

7 As will be discussed in Section 5.3, Nh denotes the number of chip positions per frame. A pulse may be
transmitted at one of the chip positions determined by a TH sequence.
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5.2.2 Multiple-access interference

Performing ranging under multiple-access interference (MAI) is another challenging
issue. The accuracy of the TOA-based ranging may be significantly degraded in the
presence of MAI.

Effects of MAI can be mitigated by assigning orthogonal channels to different users,
either in time, frequency, code, or space domains in a network. However, even with
orthogonal channel assignments, there may still be interference from other users in
simultaneously operating networks (SONs). In such cases, MAI mitigation algorithms
can be employed. For example in [201], a non-linear filtering technique is proposed
to improve the ranging accuracy for non-coherent receivers in the presence of SONs.
Mitigation of the MAI will be discussed in more detail in Chapter 7.

As discussed in Section 5.2.1, the autocorrelation characteristics of the transmitted
waveforms are important in order to mitigate the effects of multipath propagation, and
they should have a large ZCZ. On the other hand, the cross-correlation characteristics
of the transmitted waveforms are also important to minimize the degradation due to
MAI. In particular, the ranging waveforms employed by different users should have low
cross-correlation values for lower MAI.

5.2.3 Obstructed line of sight propagation

When the direct path between a transmitter and a receiver is obstructed, the first arriving
MPC can be attenuated more than some other MPCs. This makes its detection quite
challenging. Since the strongest MPC is not necessarily the first MPC, intelligent first-
path detection techniques are required to mitigate the effects of NLOS propagation.

In some cases, the direct signal is attenuated so much that it cannot be observed at
the receiver at all. Then, the TOA estimate at the receiver includes a positive bias. This
NLOS error is modeled in the literature as an exponentially [16, 202], uniformly [197,
203], or Gaussian distributed random variable [204], constant along a time interval [205],
or a random variable of which the distribution is derived from empirical data [206, 207].
Typically, the model depends on the wireless propagation channel and the receiver type.

NLOS identification and mitigation techniques have been discussed extensively in the
literature, especially within a cellular network framework [166, 168, 208]. For example
in [208], the standard deviation of range measurements are compared against a threshold
for NLOS identification, where the measurement noise variance is assumed to be known.
In [166], a decision-theoretic NLOS identification framework is presented, where vari-
ous hypothesis tests are developed for known and unknown probability density functions
(PDFs) of the TOA measurements. A non-parametric NLOS identification approach is
discussed in [168], where a suitable distance metric is used between the known mea-
surement error distribution and the non-parametrically estimated distance measurement
distribution in order to determine if a given base station (BS) is LOS or NLOS.

It is also possible to use the information embedded within the MPCs of the received
signal for NLOS mitigation purposes [119, 209, 210]. The large number of received
MPCs in a UWB signal enables NLOS identification techniques to exploit different
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statistics of the MPCs, such as the mean excess delay and root mean square (RMS)
delay spread [119]. As shown in Fig. 3.7 in Chapter 3, compared to residential and
indoor-office environments, the PDFs of the mean excess delay and RMS delay spread
in outdoor and industrial environments are quite distinct, which implies reliability of
the LOS/NLOS identification. Using prior information such as the data in Table 3.5, a
likelihood ratio test can be developed easily to determine whether a channel realization
is LOS or NLOS [119].

5.2.4 Other error sources

Timing imperfections among reference devices in infrastructure-based ranging and clock
drifting between transmitter and receiver devices in the round-trip TOA measurements
induce additional errors on range estimates. Due to their large signal bandwidth, UWB
receivers are more sensitive to timing jitter and clock drifting effects [211].

It is desirable that accurate ranging is achieved with low sampling rates to facilitate
low-cost and low-power designs. This is especially important for UWB signals since
sampling them at or above the Nyquist rate proves to be quite expensive. However,
sampling UWB signals at sub-Nyquist rates commonly factors in as an additional error
source and degrades the accuracy of UWB ranging systems.

5.3 Time-based ranging

Detecting the first signal path requires intelligent signal processing techniques and
the related literature dates back a few decades. One of the earlier works by Cop-
pens develops a technique for picking of first arrivals, which operates well at high
signal-to-noise ratios (SNRs) [212]. Vidal et al. develop first arriving path detection
techniques using generalized likelihood ratio tests (GLRTs) and minimum variance
(MV) estimators in [213–215] for cellular systems. Techniques based on minimum
mean square error (MMSE) estimation [216], least squares (LS) estimation [217],
and maximum-likelihood (ML) estimation [218] of the signal arrival time are also
available in the literature. These techniques are mostly developed for relatively nar-
rowband systems. However, large bandwidths of UWB signals introduce additional
challenges.

Coarse timing of a received signal can be obtained by acquisition and by locking
onto the strongest MPC [219]. The acquisition performance of IR-UWB systems for
coherent receivers [219, 220], differential/dirty-template receivers [221–224], and non-
coherent receivers [219, 225, 226] have been studied in the literature. After acquisition
and coarse synchronization, refinement of the arrival time requires some processing gain
to improve the SNR first, and then signal processing to detect the leading (i.e. first) path
(see Fig. 5.2). As discussed in Section 5.2.1, this first path may not be the strongest
component.
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In order to define a ranging problem and develop a framework for a ranging system,
let the received IR-UWB signal in a multipath environment be represented as follows:

r(t) =
L∑

l=1

αls(t − τl) + n(t) , (5.5)

where s(t) represents a ranging signal to be defined below, L is the number of MPCs,
αl and τl are the channel coefficient and the delay of the lth MPC, respectively, and n(t)

is zero-mean additive white Gaussian noise (AWGN) with double-sided power spectral
density N0/2.

The signal s(t) in (5.5) is given by

s(t) =
√

Es

Nf

∞∑
j=−∞

aj ω(t − jTf − cjTc) , (5.6)

where Es represents the energy of a ranging symbol, aj ∈ {±1} is the polarity code,
cj ∈ {0, 1, . . . , Nh −1} is the time-hopping (TH) code , ω(t) denotes the received UWB
pulse with unit energy, Tf is the frame duration, Nf is the number of pulses (frames) per
ranging symbol, Tc is the chip duration, and Nh is the number of chips per frame. The
width of the received pulse ω(t) is represented by Tp, and it is assumed that Tp ≤ Tc.

Note that the ranging signal in (5.6) is assumed to consist of ranging symbols, each
of which is composed of Nf UWB pulses. The duration of a ranging symbol is given by
Ts = Nf Tf , and the energy of a UWB pulse is represented as

Ep =
∫ ∞

−∞
|ω(t)|2dt =1 , (5.7)

where a unit-energy pulse is assumed without loss of generality. In Fig. 5.6, an example
ranging symbol is illustrated for Nf = 6, Nh = 5, aj = 1 ∀ j , and cj = {0, 2, 1, 0, 4, 2}.

It should be noted that if a single pulse is transmitted per symbol (i.e. Nf = 1), and
if no TH or polarity codes are employed, (5.6) becomes

s(t) = √
Es

∞∑
j=−∞

ω(t − jTs) . (5.8)

Then, the received signal in (5.5) can be expressed as

r(t) = rdes(t) + n(t) , (5.9)

with

rdes(t) =
∞∑

j=−∞

L∑
l=1

αlω(t − τl − jTs) , (5.10)

where the
√

Es term is omitted without loss of generality, as it can be considered to be
included in the channel coefficient terms.

In the rest of the chapter, unless otherwise stated, the signal model in (5.9) and
(5.10) is considered for simplicity. The main difference of this signal model from the
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Fig. 5.6. An example transmitted signal for a time-hopping impulse radio UWB system. The frame
duration is denoted by Tf , chip duration is denoted by Tc, and a time-hopping sequence
cj = {0, 2, 1, 0, 4, 2} is used.

one obtained from (5.6) is that the TH codes in the latter can affect the ranging per-
formance by changing the correlation properties of the ranging signal as discussed in
Section 5.2.

Stacking the unknown path gains αl and delays τl in (5.5) into a 2L × 1 unknown
parameter vector yields

θ = [α τ]T , (5.11)

where

α = [α1 · · · αL] , (5.12)

τ = [τ1 · · · τL] . (5.13)

Furthermore, upon defining τl,1 = τl − τ1, a (2L − 1) × 1 nuisance parameter vector
can be defined as

θ̃ = [α1 · · · αL τ2,1 · · · τL,1]T. (5.14)

Note that while θ captures the absolute delays of all the MPCs, θ̃ captures the delays
relative to the first MPC of the received signal.

The problem of TOA estimation is to estimate the delay of the first path, τ1, which is
equivalent to the TOAestimate t̂i in (5.1) for the ith node. In practice, this is a challenging
problem due to a number of error sources.Typically, given some geographical constraints,
the range of τ1 can be assumed to be bounded. For the rest of the chapter, it is assumed
that the TOA is uniformly distributed in [0, Ta], and that the received signal observed
within an interval [0, Tobs] where Tobs ≥ Ta. Also, the observation interval consists of
Nr ranging symbols; that is, Tobs = NrTs.
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In the rest of this section, different ways to obtain the decision variables for TOA esti-
mation, starting from the continuous-time signal in (5.9), will be discussed. The ranging
algorithms to be introduced later in the chapter will employ one of these techniques or
a modified version of them.

5.3.1 Direct sampling receiver

In order to estimate the TOAof the received signal, the samples directly obtained from the
received signal in (5.9) may be employed. Assume that the observation interval consists
of a single ranging symbol8; i.e. Nr = 1.

Let the received pulse ω(t) and received signal r(t) in (5.9) be sampled at a rate of
1/Tsmp. This yields Nω =Tp/Tsmp samples of ω(t) and N =Tobs/Tsmp samples of r(t),
assuming Tp and Tobs are integer multiples of Tsmp. Then, the samples of r(t) can be
collected in an N × 1 vector r as follows [227]

r = 	(τ)αT + n , (5.15)

where α = [α1 · · · αL], n is an N × 1 noise vector consisting of the samples of n(t), the
ith sample in r is given by

r[i] = r(iTsmp) =
L∑

l=1

αlω(iTsmp − τl) + n(iTsmp), (5.16)

for i = 1, . . . , N , and

	(τ) = [ω(D1) ω(D2) · · · ω(DL)] , (5.17)

with

ω(Dl) = [0Dl
ω 0N−Nω−Dl

]T, (5.18)

for l = 1, . . . , L. Note that 0Dl
is a 1×Dl vector of zeros, Dl = �τl/Tsmp�, and the

elements of ω are given by ω[i] = ω(iTsmp) for i = 1, . . . , Nω.
Note again that, as discussed in Section 5.2, in order to accurately reconstruct the

received signal from its samples, the received signal should be sampled at or above the
Nyquist rate. For UWB systems, this implies sampling rates on the order of several GHz,
which may considerably increase the cost and complexity of the receiver.

While ranging can be achieved directly from the samples of the received signal in (5.5),
different analog front-end processing techniques can also be employed before sampling
the signal. Three of the common receiver architectures are matched filter, energy detec-
tion, and delay-and-correlate receivers, which are illustrated in Fig. 5.7. For all receiver
types, it is assumed that the signal is first passed through a band-pass filter of bandwidth
B to remove out-of-band noise, and through a low-noise amplifier (LNA) to improve the
signal quality. The samples may further be averaged over a number of ranging symbols
to improve the ranging accuracy.

8 In the case of multiple symbols in the observation interval, independent observations of the ranging symbol
are obtained, which provides increased processing gain as will be considered in the next section.
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Fig. 5.7. Block diagrams of (a) matched filter (MF) receiver, (b) energy detection (ED) receiver, and (c)
delay-and-correlate (DnC) receiver. Functionalities of the bandpass filter (BPF) and the low
noise amplifier (LNA) are discussed in more detail in Chapter 8 (After [229]).

5.3.2 Matched filter receiver

If the received pulse shape is known at the receiver, a matched filter (MF) can be used
to obtain decision variables for TOA estimation. Passing the received signal in (5.9)
through an MF yields [219, 228, 229]

z(MF)(t) =
Nr−1∑
j=0

L∑
l=1

αlRω(t − τl − jTs) + nω(t) , (5.19)

where Nr is the number of ranging symbols in the observation interval. The impulse
response of the filter is given by ω(−t), Rω(τ) is the autocorrelation function of ω(t),

Rω(τ) =
∫ ∞

−∞
ω(τ + t)ω(t)dt , (5.20)

and nω(t) is colored Gaussian noise with its autocorrelation function given by
N0Rω(τ)/2. Note that since Rω(τ) = 0 for |τ | ≥ Tc, noise samples taken at intervals
larger than 2Tc will be independent [228].

If (5.19) is sampled at every Tsmp seconds, the MF outputs can be obtained as

z̃(MF)[n] = 1

Nr

Nr∑
j=1

z(MF)(t)

∣∣∣
t=nTsmp+(j−1)Ts

, n = 1, 2, . . . , N , (5.21)
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where N = Tobs/Tsmp (assume that Tobs is an integer multiple of Tsmp). Note that aver-
aging the MF outputs over Nr symbols provides processing gain and improves the
SNR.

In many TOA estimation algorithms, the absolute values of the MF outputs are
compared to a threshold. Let the absolute value of (5.21) be represented by

z(MF)[n] =
∣∣∣z̃(MF)[n]

∣∣∣ . (5.22)

Commonly, it is convenient to define the complementary cumulative distribution function
(CDF) of (5.22) for error analysis of threshold-based ranging algorithms. For noise-only
samples, the complementary CDF of z(MF)[n] can be obtained as

P
(
z(MF)[n] > ξ

)
= 2Q

(
ξ

σ

)
, (5.23)

where ξ denotes the threshold, σ 2 = N0/(2Nr), and Q(x) denotes the Q-function given
by

Q(x) = 1√
2π

∫ ∞

x

e−t2/2dt . (5.24)

5.3.3 Energy detection receiver

The MF receiver requires the knowledge of the received pulse shape which may not
be available in practice. Another key disadvantage of the MF solution is that, for accu-
rate ranging, it may require Nyquist rate sampling, hence complex analog-to-digital
converters (ADCs). A low complexity alternative to an MF receiver is the energy
detection (ED) receiver, which does not assume the knowledge of the received pulse
shape.

The integrator output samples for an ED receiver can be expressed as follows
[219, 228–231]

z(ED)[n] = 1

Nr

Nr∑
j=1

∫ (j−1)Ts+nTsmp

(j−1)Ts+(n−1)Tsmp

|r(t)|2dt , n = 1, 2, . . . , N , (5.25)

where n denotes the sample index, and the samples are averaged over Nr ranging symbols
to increase the SNR as in (5.21) for an MF receiver.

The output z(ED)[n] in (5.25) has a centralized chi-squared distribution for noise-only
samples, and its complementary CDF is given by [231–233]

P(z(ED)[n] > ξ) = exp

(
− ξNr

N0

)M/2−1∑
x=0

1

x!
(

ξNr

N0

)x

, (5.26)

where the degrees of freedom (DOF) is approximately given by [234]

M = Nr(2BTsmp + 1) , (5.27)

with B denoting the bandwidth of the BPF in Fig. 5.7, and the DOF M is assumed to be an
even number. On the other hand, z(ED)[n] has a non-centralized chi-squared distribution
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when signal and noise are both present, in which case the complementary CDF becomes
[231–233]9

P(z(ED)[n] > ξ) = QM/2

(
En

σ
,

√
ξ

σ

)
, (5.28)

where σ 2 = N0/(2Nr), En represents the (noise-free) ranging symbol energy that falls
within the nth sample (which may be zero if no signal is present within the sample
interval), and QM(y1, y2) denotes the Marcum-Q function with parameter M , given by

QM(y1, y2) = 1

yM−1
1

∫ ∞

y2

xM exp

(
− x2 + y2

1

2

)
IM−1(y1x)dx , (5.29)

with IM(x) representing the modified Bessel function of the first kind [233].
As shown in (5.25), the samples can be averaged over Nr symbols10 in order to increase

the SNR. For sufficiently large Nr , from the central limit theorem (CLT), the distribution
of z(ED)[n] can be approximated as

z(ED)[n] ∼ N (μn, σ
2
n ) , (5.30)

with

μn = M̃N0/2 + En , (5.31)

σ 2
n = M̃N 2

0 /2 + 2EnN0

Nr
, (5.32)

where

M̃ = 2BTsmp + 1 (5.33)

is the DOF for each term in the summation in (5.25). Note that the approximation in
(5.30)–(5.32) is valid for both the noise-only (En = 0) and the signal-plus-noise cases.

Amajor drawback of an ED receiver is due to the noise-squared and signal-cross-noise
terms that appear at the output of the square-law device. These terms make the decision
variable more noisy than that of an MF receiver. Therefore, an ED receiver typically
requires a large Nr value for accurate ranging compared to an MF receiver. On the other
hand, at low sampling rates, ED receivers can have better energy capture compared to
the MF receiver [229] (see Example 5.2).

5.3.4 Delay-and-correlate receiver

Another receiver that does not require the knowledge of the received pulse shape to
construct a local template is the delay-and-correlate (DaC) receiver. In one possible
implementation of the DaC receiver, pairs of pulses with a known time delay between
each pair are transmitted. The first arriving pulse is delayed and then used as a reference

9 Note that this is valid only when M is an even number. If M is not an even number, the complementary CDF
is given by an integral that does not have a closed form solution [233].

10 It is assumed that only one pulse is used per symbol for simplicity.
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template to correlate the later arriving pulse to obtain the decision variable, which is
commonly referred as the transmitted-reference (TR) receiver in the literature [229].
Alternatively, symbol-long portions of the signal can be used as a template as in the
dirty-template scheme [224], which will be discussed in more detail in Section 5.6.3.

The samples after correlating the received signal with the delayed version of itself
can be written as

z̃(DaC)[n] = 1

Nr

Nr∑
j=1

∫ (j−1)Ts+nTsmp

(j−1)Ts+(n−1)Tsmp

r(t)r(t − D)dt , n = 1, 2, . . . , N, (5.34)

where D represents the delay between the pulse pairs. Note that for a dirty-template
receiver, D = Ts, and r(t) and rdes(t) are as given in (5.9) and (5.10), respectively.
On the other hand, for a TR receiver, a pair of pulses are transmitted together, with
a pre-determined delay D in between them. In other words, rdes(t) in a TR receiver
becomes

rdes(t) =
∞∑

j=−∞

L∑
l=1

αl√
2

[
ω(t − τl − jTs) + ω(t − τl − jTs − D)

]
, (5.35)

which can be plugged into (5.9) to obtain the received signal r(t).
As in the ED receiver, for sufficiently large Nr , the decision statistics in a DaC receiver

can be approximately modeled by a Gaussian random variable,

z̃(DaC)[n] ∼ N
(

En,
M̃N0/4 + EnN0

Nr

)
, (5.36)

where En denotes the cross-correlation value (in the absence of noise) for the nth sample
and M̃ is given in (5.33). Similar to the MF receiver, the absolute values of the samples
can be used for ranging purposes in order to detect the first arriving path,

z(DaC)[n] = ∣∣z̃(DaC)[n]∣∣ . (5.37)

For noise-only samples, the complementary CDF of z(DaC)[n] can be expressed as

P
(
z(DaC)[n] > ξ

)
= 2Q

(
4Nrξ

M̃N0

)
. (5.38)

As in the ED receiver, a major disadvantage of the DaC receiver is the enhanced noise
terms. In particular, noise-cross-noise terms and signal-cross-noise terms can make the
decision variable quite noisy. Similar to the ED receiver, the DaC receiver can have
better energy capture than the MF receiver at low sampling rates [229].
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Example 5.2 Consider a root-raised cosine (RRC) pulse shape with Tp = 1 ns, which is
generated using a roll-off factor of ν = 0.5. The RRC pulse is given by

ωRRC(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
Tp

sin
(
(1−ν)πt/Tp

)
+4ν(t/Tp) cos

(
(1+ν)πt/Tp

)
(πt/Tp)

(
1−(4νt/Tp)2

) , t �= 0, t �= ± Tp
4ν

,

1√
Tp

[
1 − ν + 4ν

π

]
, t = 0 ,

ν√
2Tp

[(
1 + 2

π

)
sin

(
π
4ν

)+ (
1 − 2

π

)
cos( π

4ν
)
]
, t = ± Tp

4ν
.

(5.39)

The pulse is illustrated in Fig. 5.8 when sampled at 0.125 ns intervals.
In practice, a receiver might not have a capability to sample the signal at such high

sampling rates. Instead, it may be sampled at lower sampling rates after analog front
end processing. Figure 5.8 also illustrates sample outputs after processing the received
signal with an MF receiver, an ED receiver, and a TR receiver. Both the ED and the TR
receivers collect the energy within 1 ns windows, while the MF receiver uses the RRC
pulse in (5.39) as a template. For the TR receiver, it is assumed that half of the energy is

1.2
Pulse shape

MF

ED
DaC

1

0.8

0.6

0.4

0.2

0

–0.2
–1.00 –0.75 –0.50 –0.25 0.25 0.50 0.75 1.000

Time (ns)

Fig. 5.8. Received normalized pulse shape, and sampled outputs corresponding to MF, ED, and DaC
receivers for different timing offsets (1 ns pulse is sampled at 8 GHz, and energy is collected
within 1 ns windows and different time offsets) (After [229]).
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spared for the reference pulse. The sample outputs at time shift increments of 0.125 ns
are plotted in Fig. 5.8 in the absence of noise. It is observed from the figure that the MF
receiver requires sampling rates on the order of the Nyquist rate in order to accurately
capture the peak energy. On the other hand, the ED and the TR receivers can still capture
a sufficient amount of energy at lower sampling rates.

For example, for a sampling period of 0.5 ns and assuming that the receiver starts
collecting the samples at time instant −0.75 ns, the MF receiver samples are approxi-
mately given by (0.01, 0.25, 0.25, 0.01) at time instants (−0.75, −0.25, 0.25, 0.75) ns,
respectively. On the other hand, the samples after processing with the ED receiver are
approximately given by (0.01, 0.99, 0.99, 0.01), while the samples after processing with
the TR receiver are approximately given by (0.005, 0.485, 0.485, 0.005), at the same
time instants. Hence, at lower than Nyquist sampling rates, the ED and the TR receivers
can capture a larger amount of energy at timings closer to the true TOA of the signal.

Note again that in the ED and the TR receivers, the enhanced noise terms at the
low/medium SNR regions become problematic. Hence, despite better energy capture at
low sampling rates, the MF receiver may still outperform these receivers below certain
SNR values. In other words, which receiver performs better than the other depends on
both the SNR and the sampling period.

5.4 Fundamental limits for time-based ranging

Fundamental lower bounds such as the Cramer–Rao Lower Bound (CRLB) are com-
monly used for setting a lower bound on an estimator’s MSE. Use of the CRLB is
justified by the asymptotic optimality properties of the ML estimator. In other words,
the ML estimator11 asymptotically achieves the CRLB (and is asymptotically unbiased)
under certain regularity conditions [140, 236]. For the problem of time-delay estima-
tion, the CRLB yields a tight bound commonly at large SNRs and/or for sufficiently long
observation intervals [235].

For moderate and low SNRs, or when the observation interval is not sufficiently
long, CRLBs may not be very tight. This is because the cross-correlation outputs for a
received signal are quasi-periodic with respect to fc, where fc is the center frequency of
the received signal. In other words, while there is a unique correlation peak at the true
TOA, there are also weaker correlation peaks (which may be comparable to the global
peak for narrowband signals) that oscillate with a period of 1/fc. Therefore, the receiver
may erroneously lock onto one of those weaker peaks at low/medium SNRs. In order to
get close to the CRLB, the receiver must unambiguously distinguish between adjacent

11 The ML estimator for the problem of time-delay estimation simply forms the cross-correlation of the
received signal with a correlation template [235]. Ideally, the cross-correlation output is maximized at the
true TOA of the received signal.
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peaks of the correlation function. Otherwise, the achievable MSE may be drastically
inferior to that predicted by the CRLB [236].

Example 5.3 In order to better visualize the ambiguity problem, consider a signal whose
autocorrelation function is modeled as follows [237]

R(τ) = fH sinc(fHτ)/π − fL sinc(fLτ)/π (5.40)

= B cos(fcτ)sinc(Bτ/2)/π , (5.41)

where fL = fc −B/2 and fH = fc +B/2 are, respectively, the lower and upper cut-off
frequencies, fc is the center frequency, and B is the signal bandwidth. Note that (5.41) has
a flat power spectral density, and B can be changed in order to have sample realizations
of narrowband, wideband, and UWB signals.

The autocorrelation function in (5.41) is plotted for a narrowband, wideband, and
UWB signal in Fig. 5.9. For a narrowband signal, two types of ambiguities are observed:
(1) local ambiguity around the global correlation peak, and (2) ambiguities due to
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Fig. 5.9. The autocorrelation functions for narrowband, wideband, and UWB signals. The system
parameters are fc = 0.4 GHz and B = 60 MHz for the narrowband signal, fc = 0.9 GHz and
B = 400 MHz for the wideband signal, and fc = 7 GHz and B = 6 GHz for the UWB signal.
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multiple correlation peaks at the envelope of the autocorrelation function. For wide-
band and UWB signals, the ambiguity problem is lessened compared to a narrowband
system.

Bounds other than the CRLB have also been investigated extensively in the literature
for the time-delay estimation problem [235, 238–242]. In [236], the lower bounds for
time-delay estimation are presented for baseband and bandpass signals. These bounds
are summarized in Fig. 5.10. There are typically three distinct regimes of operation [241].

(i) At high SNRs, the noise variance at the output of the cross-correlator is smaller than
the difference between the adjacent correlation peaks. Hence, the estimation error
is due to small shifts from the correlation peak, which is bounded by the CRLB.

(ii) At intermediate SNRs, the noise variance may be higher than the difference between
the adjacent correlation peaks; hence, the receiver may not distinguish the difference
between the local and global maxima, and the achievable lower bound becomes much
larger than that predicted by the CRLB.

(iii) At very low SNRs, the noise variance is much larger than the signal energy, and the
estimator is useless.

Figure 5.10 shows that at very low SNRs, the MSE is the variance of a random variable
uniformly distributed in (0, Ta] and is given by T 2

a /12. For baseband systems, the lower
bound has a threshold region at intermediate SNR values (due to the ambiguity problem),
and converges to the CRLB at high SNRs. For bandpass systems, there is an intermediate
region which is modeled by the Baranakin bound [236], and the MSE depends on the
center frequency fc and the signal bandwidth B. Within this region, the MSE bound is
12(fc/B)2 dB larger than that predicted by the CRLB. For a more detailed discussion
and exact evaluation of these bounds, the reader is referred to [235, 236, 240, 241].

When multiple replicas of the transmitted signal arrive at the receiver, the simple
cross-correlator is no longer the optimal receiver. However, the three distinct regions
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Fig. 5.10. Composite bounds for time delay estimation in baseband and bandpass systems (γ1 to γ6 denote
the SNR thresholds for different regions, B is signal bandwidth, fc is the center frequency of the
signal, and TOA is uniformly distributed in (0, Ta]). It is assumed that the received signal is
averaged over an interval Tavg before obtaining the desired delay from the peak of the
cross-correlation function (© 1984 IEEE) [236].
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of operation are still expected [241]. As for the UWB signals, the receiver can observe
on the order of one hundred MPCs; hence, new interpretations of the prior results on
improved lower bounds remains an active research area.

In the remainder of this section, the CRLBs for time delay estimation in UWB systems
are studied for both single-path and multipath channels, which is followed by a discussion
on the improved lower bounds for UWB ranging.

5.4.1 Cramer–Rao lower bounds for single-path channels

As discussed in Chapter 2, the CRLB for a single-path AWGN channels is given by [243]

√
Var(d̂) ≥ c

2
√

2π
√

SNR β
, (5.42)

where SNR is the signal-to-noise ratio, c is the speed of light, and β is the effective
signal bandwidth defined as

β =
[∫∞

−∞ f 2|S(f )|2df∫∞
−∞ |S(f )|2df

] 1
2

, (5.43)

with S(f ) denoting the Fourier transform of the transmitted signal. The CRLB for time-
based ranging decreases with the square-root of the SNR and effective signal bandwidth.
For example, with a received pulse bandwidth of 1.5 GHz and an SNR of 0 dB, less than
an inch of accuracy can be obtained using UWB signals [243].

As implied by (5.43), the CRLB depends on the Fourier transform of the transmitted
signal.AUWB pulse can be conveniently generated from the nth derivative of a Gaussian
pulse,

ω0(t) = exp

(
−2π

t2

κ2
p

)
, (5.44)

as [244]

ωn(t) = ω
(n)
0 (t)

√
(n − 1)!

(2n − 1)!πnκ
(1−2n)
p

, (5.45)

whereω
(n)
0 (t) is thenth-order derivative of the Gaussian pulseω0(t), andκp is a parameter

that adjusts the pulse duration. For the nth-order pulse, (5.43) simplifies to [244]

β2
(n) = 2π(2n + 1)

κ2
p

. (5.46)

Then, for the same pulse order n and with different parameters κp,1 and κp,2,

CRLBκp,1

CRLBκp,2

= κ2
p,1

κ2
p,2

, (5.47)
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which implies that the CRLB is proportional to the square of the pulse width. On the
other hand, for the same κp (i.e. the same pulse width), the CRLB for different pulse
orders is given by [244]

CRLBn+1

CRLBn

= 2n + 1

2n + 3
, (5.48)

which implies that the CRLB is lower for higher order Gaussian pulses. Note that (5.48)
converges to 1 for large n.

5.4.2 Cramer–Rao lower bounds for multipath channels

When the received signal in (5.5) is observed over an interval t ∈ [0, Tobs], with Tobs =
NrTs, the log-likelihood function of θ in (5.11) is given by [245]

�(θ) = k̃ − 1

N0

∫ NrTs

0

∣∣∣∣r(t) −
L∑

l=1

αls(t − τl)

∣∣∣∣
2

dt , (5.49)

where k̃ represents a term that is independent of θ. Hence, the ML estimation of the
unknown parameter vector θ is achieved by maximizing (5.49). The Fisher information
matrix (FIM) is obtained from the second-order derivatives of (5.49), which results in
(with the assumption of no inter-pulse interference) [243]

Iθ =
[

Iαα Iατ

IT
ατ Iττ

]
, (5.50)

Iαα = 2NrEsEp

N0
diag{1, . . . , 1} , (5.51)

Iατ = −2NrEsE
′
p

N0
diag{α1, . . . , αL} , (5.52)

Iττ = 2NrEsE
′′
p

N0
diag{α2

1, . . . , α2
L} , (5.53)

where

E′
p =

∫ Tp

0
ω(t)ω′(t)dt , (5.54)

E′′
p =

∫ Tp

0
|ω′(t)|2dt , (5.55)

with Ep being given by (5.7), and ω′(t) denoting the first derivative of the pulse shape
ω(t). From (5.50), the CRLB for each of the delay values τl for l = 1, 2, . . . , L is obtained
as [243]

CRLB(τl) =
[(

Iττ − IT
ατ I−1

αα Iατ

)−1
]
l,l

= N0

2NrEs(E′′
p − E′2

p /Ep)α
2
l

. (5.56)
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As implied by (5.56), the CRLB in multipath channels depends on the pulse shape, the
path gains, and the SNR.

For the special case of a single-path channel,12 L = 1 and E′
p = 0, and the CRLB

becomes [246]

CRLB(τ1) = N0

2NrEsE′′
pα2

1

. (5.57)

Since

E′′
p =

∫∞
−∞(2πf )2|�(f )|2df∫∞

−∞ |�(f )|2df
= 4π2β2 , (5.58)

where �(f ) denotes the Fourier transform of ω(t), (5.57) is equivalent to the CRLB
expression in (5.42).

Alternative derivations of the CRLB for UWB systems in multipath environments are
presented in [247–249]. In [247], it is shown that for a received signal with a certain
number of MPCs, the CRLB will be inferior to that for a signal with a smaller number
of MPCs. Another parameter affecting the CRLB is the autocorrelation characteris-
tics of the spreading sequences (e.g. TH sequences); if they have ideal autocorrelation
characteristics, the CRLB for a multipath channel converges to the CRLB for single-
path channels. In [248], the CRLB for time delay estimation has been presented for
log-normal distributed path gains and Poisson distributed path delays. In addition to
the ordinary CRLB in (5.56) that is obtained from the ML criterion, three different
a-posteriori CRLBs that depend on three different a-priori knowledge scenarios are
presented. In [249], frequency-dependent features and phase of the MPCs are included
in the CRLB derivation, which is solved through the Whittle’s formula.

Even though the CRLB is useful for serving as a benchmark for other practical esti-
mators, it may not always be achievable. In particular, for UWB signals, sampling rates
above the Nyquist rate are required in order to achieve the CRLB. This implies sampling
rates on the order of tens of GHz, which may not be possible in practical receivers.

5.4.3 Ziv–Zakai lower bounds for single-path channels

A disadvantage of the CRLB is that it is usually tight only at high SNRs. Contrary to the
CRLB, the Ziv–Zakai lower bound (ZZLB) is tight for a wide range of SNRs [236, 238].
The ZZLB can be derived from the following identity for the MSE of an estimator [244]

E{ε2} = 1

2

∫ ∞

0
ζP
(
|ε| ≥ ζ/2

)
dζ , (5.59)

where ε represents the error term. The key issue in the evaluation of (5.59) is that a lower
bound on P(|ε| ≥ ζ/2) has to be found [238]. The P(|ε| ≥ ζ/2) expression is identical to

12 Note that ideally, (5.57) is also valid in multipath channels as long as the MPCs are resolvable. However,
in practical algorithms, estimation of the first arriving path may be dependent on estimation of the other
paths (such as the strongest path) even in resolvable channels.
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the error probability of a binary hypothesis testing (BHT) problem with a sub-optimum
decision rule, given by [238]

H0 : r(t) ∼ P
(
r(t)|τ)

H1 : r(t) ∼ P
(
r(t)|τ + ζ

)
, (5.60)

where H0 and H1 are known to be equally probable, and P(r(t)|τ) is the PDF of r(t)

conditioned on τ . Then,

P
(
|ε| ≥ ζ/2

)
≥
∫ ∞

−∞
[pτ (τ̃ ) + pτ (τ̃ + ζ )] Popt(τ̃ , τ̃ + ζ )dτ̃ , (5.61)

where pτ (τ̃ ) is the PDF of τ , which is considered to be uniformly distributed in (0, Ta],
and Popt(τ̃ , τ̃ + ζ ) is the error probability obtained from the optimum decision rule (i.e.
a likelihood ratio test for the two hypotheses) [244].13 For example, in a single-path
AWGN channel, it is well known that the probability of error for a binary modulation
with an optimum receiver is given by14

Popt(ζ ) = Q

(√
Ep

N0
(1 − Rω(ζ ))

)
, (5.62)

where the filter matched to the received signal is given by ωτ (t − τ) − ωτ (t − τ − ζ ),
and Rω(ζ ) denotes the auto-correlation function of the received pulse ω(t) as given in
(5.20).

From (5.59) and (5.61), the ZZLB can be derived as [244]

ZZLB = 1

Ta

∫ Ta

0
ζ(Ta − ζ )Popt(ζ )dζ , (5.63)

where Popt(ζ ) is as given in (5.62).

Example 5.4 In Fig. (5.11), the CRLB and the ZZLB of the ranging error are analyzed
when the UWB pulse in (2.5) is employed with various pulse durations. A single-path
AWGN channel is considered and Ta is set to 100 ns.

While the ZZLBs and the CRLBs overlap in the high SNR region, the ZZLB is much
tighter than the CRLB at low SNRs. This is because at low SNRs, the received signal is
unreliable; hence the estimator may not always lock on the correct signal peak but may
rather lock onto the side-lobes. Note that the overall accuracy improves as shorter pulse
durations are used.

13 Since Popt(τ̃ , τ̃ + ζ ) does not usually depend on τ̃ , Popt(ζ ) will be used in the sequel.
14 Note that (5.62) assumes single pulse transmission per symbol. For multiple pulses per symbol, it is

sufficient to replace Ep with Es.
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Fig. 5.11. ZZLBs and CRLBs in AWGN channels for different pulse widths.

5.4.4 Ziv–Zakai lower bounds for multipath channels

In multipath channels, the ZZLB depends on the receiver’s a-priori knowledge of the
nuisance parameter vector θ̃ in (5.14). First, assume that the receiver has perfect knowl-
edge of θ̃. While this is not practical in realistic scenarios, it yields a perfect measurement
bound (PMB) as discussed in [250] and sets a lower-bound on any TOA estimator. The
error probability for PMB is given by [244]

P(PMB)
opt (ζ |θ̃) = Q

(√
Ep

N0

(
R̃(0|θ̃) − R̃(ζ |θ̃)

))
, (5.64)

where the auto-correlation function for the multipath signal is given by

R̃(ζ |θ̃) =
L∑

l=1

L∑
k=1

αlαkRω(τl − τk − ζ ) . (5.65)

Then, (5.64) can be plugged into (5.63) in order to obtain the ZZLB for a given channel
realization. To obtain the average ZZLB (AZZLB) for a particular environment, the
ZZLBs can be averaged over a large number of channel realizations representative of
that environment.
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On the other hand, if θ̃ is a set of random variables with known distributions, the
conditional PDF P

(
r(t)|τ, θ̃) shall be averaged over θ̃ as follows [244]

P
(
r(t)|τ) =

∫
R2L−1

p
θ̃
(θ̌)P

(
r(t)|τ, θ̌)dθ̌ , (5.66)

where p
θ̃
(θ̌) is the joint PDF of θ̃. Then, (5.66) can be used to obtain hypothesis H0 and

H1 in order to evaluate the ZZLB. Since (5.66) may not be analytically tractable, the
ZZLB can be evaluated using empirical CIRs or Monte Carlo simulations.

Alternative analysis of the ZZLBs for UWB ranging systems can be found in [237,
251]. A simplified bound that has a closed-form expression is derived in [237], which is
exact at high SNRs, and close to the actual ZZLB at medium and low SNRs. In [251],
second-order statistics of received signals are used to evaluate the ZZLB for UWB
ranging systems.

5.5 Maximum likelihood-based ranging techniques

Fundamental bounds such as the CRLB and the ZZLB can be used to find a lower
bound on the ranging accuracy of UWB signals. However, these bounds may be very
difficult to achieve with practical estimators. Both the CRLB and the ZZLB discussed in
the previous section assume perfect knowledge of θ̃ or its probability distribution; such
information may not be available in practice.

Maximum likelihood (ML)-based estimators may achieve accuracies that are close
to fundamental lower bounds provided that certain a-priori information is available. In
this section, different ML-based ranging techniques are described with varying a-priori
information requirements.

5.5.1 ML estimation with full a-priori information

The TOA can be estimated optimally by using an MF that is perfectly matched to the
received multipath signal, and choosing the time delay of the template that maximizes
the correlation output (see Fig. 5.12) [142, 243]. The optimal template can be defined as

stmp(t) =
L∑

l=1

αls(t − τl) . (5.67)

However, this optimal receiver is not possible to implement in practice since the received
waveform has unknown parameters to be estimated. In particular, the nuisance parameter
vector θ̃ and the pulse shape at each MPC (which may be different from the transmitted
pulse shape in practice) have to be available. Therefore, the optimal correlation template
cannot be obtained in practice.

Alternatively, the transmitted waveform itself can be used as a correlation template
at the receiver. However, since the multipath received waveform is different from the
correlation template, such a receiver is obviously suboptimal. In fact, even in the absence
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Fig. 5.12. Block diagram for a correlation-based TOA estimator. The correlator template is denoted
by stmp(t) and its delay is denoted by ttmp.

of noise, the correlation peak does not necessarily correspond to the TOA of the received
signal,15 because the first arriving MPC is not always the strongest one [100]. In order
to identify the first arriving path, first path detection algorithms need to be employed,
which will be discussed later in this chapter.

5.5.2 ML estimation with no prior information

While ranging requires estimation of the TOA corresponding to the first arriving signal
path, τ1, the received signal itself depends on the unknown parameter vector θ in (5.11).
Hence, the TOA estimation problem is closely related to the channel estimation problem
where all parameters captured by θ are estimated [227, 252].

In order to formulate the ML solution, consider that the samples of the received signal
are as given in (5.15). In the presence of Gaussian noise, the ML solution is equivalent
to a minimum mean-squared error (MMSE) solution, which is given by [227]

θ̂ = arg min
θ

{
1

N

N∑
i=1

∣∣r[i] − r̂[i]∣∣2} , (5.68)

where r̂[i] are the samples of the reconstructed received signal, given by

r̂[i] =
L∑

l=1

α̂lω(iTsmp − τ̂l) . (5.69)

Then, the ML estimates for the elements of the unknown parameter vector θ = [τ α]
are given by [252]

τ̂ = arg max
τ

{[
	T(τ)r

]T
R−1

� (τ)
[
	T(τ)r

]}
, (5.70)

α̂ = R−1
� (τ̂)	T(τ)r , (5.71)

15 Note that rather than the transmitted signal, if (5.67) is adopted as the reference signal, the maximum peak
(in the absence of noise) always gives the correct TOA even when the first MPC is not the strongest one.



5.5 Maximum likelihood-based ranging techniques 127

where

R�(τ) = 	T(τ)	(τ) (5.72)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

[ω(D1)]Tω(D1) [ω(D1)]Tω(D2) · · · [ω(D1)]Tω(DL)

[ω(D2)]Tω(D1) [ω(D2)]Tω(D2) · · · [ω(D2)]Tω(DL)

...
...

. . .
...

[ω(DL)]Tω(D1) [ω(DL)]Tω(D2) · · · [ω(DL)]Tω(DL)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5.73)

and 	T(τ) and ω(Dl) are as in (5.17) and (5.18), respectively. Note that the ML estimation
of the delays and the channel coefficients requires high computational complexity since
it requires a search over different values of τ.

Dependence of the estimation of τ1 on the other channel parameters is subject to
the resolvability of the channel. If |τi − τj | ≥ Tp ∀ i �= j , then the channel is called
resolvable. For a resolvable channel, the unknown parameter vector can be estimated
as [227]

τ̂ = arg max
τ

{ L∑
l=1

([ω(Dl)]Tr
)2

R�(0)

}
, (5.74)

α̂ = 	T(τ̂)r
R�(0)

, (5.75)

where R�(0) = Ep = 1. Note that for a resolvable channel, τ̂ in (5.74) can be estimated
by maximizing each term in the summation independently. In other words, estimation of
the TOA τ1 might be decoupled from the estimation of θ̃. This result is similar to what
happens when determining the CRLB in (5.57) in multipath channels (i.e. the CRLB for
τ1 can be ideally decoupled from the CRLB of other parameters in resolvable channels).
In fact, the ML estimator in (5.74) and (5.75) is an efficient estimator; i.e. it achieves the
CRLB asymptotically.

On the other hand, if for some i �= j there are some τi and τj such that |τi −τj | < Tp,
then the channel is non-resolvable, and estimation of τ1 may depend on estimation of
other parameters.

5.5.3 Ranging with generalized maximum likelihood ratio test

The ML estimation is primarily designed for channel parameter estimation purposes and
inherently yields an estimate of τ1. However, it may be impractical for UWB channels
with a vast number of MPCs because the estimation of all the channel parameters may be
computation intensive. With some prior assumptions such as perfect synchronization of
the receiver to the strongest MPC, it is possible to design alternative ML techniques that
may decrease the parameter search space. For example, a receiver that uses a generalized
maximum likelihood (GML) technique is presented in [253]. It searches only the paths
prior to the strongest MPC.
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The signal model for the GML receiver can be obtained as follows. The received
signal in (5.5) can be re-written as a sum of the first path, the remaining paths, and the
noise as [253]

r(t) = α1ω(t − τ1) +
L∑

l=2

αlω(t − τl) + n(t) , (5.76)

where τ1 < τ2 < · · · < τL. Also assume that the delay τpeak and the channel coefficient
αpeak of the strongest MPC are already estimated. Then, the normalized signal prior to
and including the strongest MPC can be defined as

r̃(t) = r(t + τpeak)

|αpeak|

= α̃1ω(t + τ̃1) +
Lmax∑
l=2

α̃lω(t + τ̃l) + ñ(t) , (5.77)

where τ̃l = τpeak−τl , α̃l = αl/|αpeak|, Lmax is the number of MPCs prior to and including
the strongest MPC, and ñ(t) is the white Gaussian noise. After wideband filtering and
sampling the signal in (5.77) at above the Nyquist rate, r̃(t) can be written in vector
form as

r̃ = α̃1ωτ̃1 +
Lmax∑
l=2

α̃lωτ̃l
+ ñ , (5.78)

with ωτ̃l
denoting the samples of ω(t + τ̃l). Then, given that ñ is a white Gaussian noise

vector, the GML estimate of τ̃1 is given by [253]

ˆ̃τ1 = arg max
τ̃1

[
min

α̃1,Lmax,α̃,τ̃

∣∣∣∣
∣∣∣∣r̃ − α̃1ωτ̃1 −

Lmax∑
l=2

α̃lωτ̃l

∣∣∣∣
∣∣∣∣
2]

, (5.79)

where α̃ = [α̃2, . . . , α̃Lmax ] and τ̃ = [τ̃2, . . . , τ̃Lmax ]. Note that (5.79) has very high com-
putational complexity since a search over the unknown parameter set {τ̃1, α̃1, Lmax, α̃, τ̃}
is required.

In order to have a lower complexity implementation, the GML algorithm is modified
in [253] as outlined in Table 5.1. The �τ̃ and �α̃ are two critical thresholds that are
obtained from channel statistics, and are used to define the search space and the stopping
rule, respectively. In summary, the algorithm searches τ̃1 in the region where t ≥ −�τ̃ ,
and stops when |α̃1| < �α̃ . The GML algorithm is a recursive algorithm and yields very
high ranging accuracies as reported in [253]. However, it requires very high sampling
rates which may be a major drawback in practical applications.

5.5.4 Sub-Nyquist sampling ML estimation with different levels of a-priori information

Computational complexity, sampling rate requirements, and a-priori knowledge require-
ments of the ML techniques discussed in Sections 5.5.2 and 5.5.3 may be prohibitive
for their practical implementation. In this section, ML estimators that can operate at low
sampling rates and with different levels of a-priori information are described. While
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Table 5.1. Steps of the simplified GML algorithm in [253].

(i) Set n = 1, δ1 = 0, and μ11 = 1.
(ii) Increment n by 1.

(iii) Find δn that satisfies

δn = arg max
δn−1<δ<�τ̃

[
r̃ −

n−1∑
i=1

μ(n−1)i ωδi

]T

ωδ . (5.80)

(iv) Find [μn1, . . . , μnn] that satisfies

[μn1, . . . , μnn] = arg min
μ′

1,...,μ
′
n

∣∣∣∣
∣∣∣∣r̃ −

n∑
i=1

μ′
iωδi

∣∣∣∣
∣∣∣∣
2

. (5.81)

(v) If μnn ≥ �α̃ , go to step 2. Else, proceed to step 6.
(vi) The estimate of τ̃1 is given by ˆ̃τ1 = δn−1.

any of the receiver architectures illustrated in Fig. 5.7 can be used to obtain the decision
variables, in the system below, an ED receiver is considered. First, the TOA estimation
problem is interpreted as a multiple hypothesis testing problem and a decision theoretical
framework is provided. Then, different ML-based TOA estimators with various levels
of complexity are presented.

Multiple hypothesis testing system model
Let an ED receiver collect Nb samples from the received signal at a sampling rate of
1/Tsmp and z represent a 1 × Nb vector that consists of those samples. Furthermore,
let nle = �τ1/Tsmp� ∼ U{1, 2, . . . , Ta/Tsmp} denote the TOA of the signal in samples,
Ne = �Tmed/Tsmp� represent the maximum excess delay of the channel in samples, Tmed

is the maximum excess delay of the channel in seconds, and Hk denotes the hypothesis
that the signal arrives at the kth sample. Then, for k = 1, 2, . . . , Ta/Tsmp (assume that
Ta is an integer multiple of Tsmp), different hypotheses can be written as follows

Hk : z[n] = ∫ nTsmp
(n−1)Tsmp

η2(t)dt, n = 1, . . , k − 1

z[n] = ∫ nTsmp
(n−1)Tsmp

[
rdes(t) + η(t)

]2dt, n = k, . . , k + Ne − 1,

z[n] = ∫ nTsmp
(n−1)Tsmp

η2(t)dt, n = k + Ne, . . . , Nb

(5.82)

where rdes(t) is the desired signal in (5.10), z[n] is the nth element of z, η(t) is the noise
after the BPF,16 and Hnle is the true hypothesis.

For notational convenience in the rest of the section, define En−nle+1 = En for n ∈
{nle, . . . , nle+Ne−1} (where En represents the desired signal energy at the nth sample as
discussed in Section 5.3.3, which is zero for noise-only samples), which removes the TOA

16 Signal part is assumed to be undistorted by the BPF.
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offset from the desired signal’s sample index. In addition, define ENe = [E1, E2, . . . , ENe ]
to be a channel energy vector that captures the desired signal samples. Furthermore, let
z(no)
k and z(sn)

k denote the hypothesized noise-only energy vector and signal-plus-noise
energy vector of sizes 1 × (Nb − Ne) and 1 × Ne, respectively, for the kth hypothesis.
The vectors on the two sides of signal-plus-noise vector z(sn)

k are concatenated to yield

z(no)
k . Note that as discussed in Section 5.3.3, under certain conditions, it may be possible

to model z[n] with a Gaussian random variable as in (5.30).

Maximum energy selection
Typically, Ne in (5.82) is much larger than 1 for Tsmp values of the order of a pulse
duration, and the signal energy is spread over many samples. The simplest way to obtain
a TOA estimate from these samples is the maximum energy selection (MES) from the
sample vector z by neglecting the information in the neighboring samples, which yields

n̂
(mes)
toa = arg max

k∈{1,...,Nb}
{
z[k]} . (5.83)

However, the MES is susceptible to noise since the energy in only a single sample is
used; hence, it may not provide high timing resolution as there may be a large delay
between the first path and the strongest path.

Maximum energy sum selection
In order to exploit the energy in the neighboring MPCs, energy samples within a window
can be aggregated. With a window duration of Nw ≤ Ne samples, the leading edge
estimate using maximum energy sum selection (MESS) is given by

n̂
(mess)
toa = arg max

k∈{1,...,Nb}

{
z(sn,Nw)
k 1Nw

}
, (5.84)

where 1Nw is an Nw × 1 column vector of ones, and MESS reduces to MES for Nw = 1.
The vector z(sn,Nw)

k is composed of the first Nw elements of z(sn)
k . Since a very large

window length captures a large amount of noise and small window length may not
capture sufficient energy, there exists an optimum window length that depends on the
channel realization and the Es/N0.

In essence, the MESS is nothing but a sliding window of length NwTsmp, where the
window is shifted with increments of Tsmp. The shift that captures the largest energy is
used to determine the TOA of the received signal. In [210], it is shown that such a sliding
window based solution that uses an energy detector is actually similar to a GML-based
estimator.

Example 5.5 Consider a UWB system that transmits a root-raised cosine transmitted
pulse of duration Tp = 4 ns. Let the wireless channel that signal traverses before it arrives
at the receiver be modeled by the first channel model (CM-1) of the IEEE 802.15.4a [100].
The signal arriving at the receiver is first filtered with a BPF of bandwidth B = 0.5 GHz,
and passed through an ED receiver with Tsmp = 4 ns (hence, DOF is 2×4 ns×0.5 GHz+
1 = 5). The samples are further averaged over Nr = 100 ranging symbols in order to
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Fig. 5.13. Simulated MAEs corresponding to different lengths of sliding windows and at different SNRs
(Es/N0 ∈ {7, 10, 13, 16, 19, 22} dB). The CM-1 channel model of IEEE 802.15.4a is used.

increase the SNR.17 Also let τ1 ∼ U(0, 512) ns, and the receiver searches the interval
between (0, 1024) ns with a sliding window and using MESS. The results are averaged
over 100 different noise realizations and 1000 different realizations of CM-1 channels.

In Fig. 5.13, the simulated ranging accuracy of the MESS algorithm is investigated
for various window sizes Nw using the mean absolute error (MAE) of range estimates as
an error metric.18 The optimum sliding window size increases as the SNR increases. At
very high SNRs, it is of the order of maximum excess delay of the channel. For example,
for Es/N0 = 22 dB, the optimum window size is approximately 16Tsmp = 64 ns.

Weighted maximum energy sum selection
If a-priori knowledge of the channel power delay profile is available, it may be used to
weigh the hypothesized energy vector, which yields

n̂
(wmess)
toa = arg max

k∈{1,...,Nb}

{
z(sn,Ne)
k ρNe

}
, (5.85)

17 Hence, Gaussian approximation can be used to model the statistics of the energy detector.
18 Note that different metrics can be used to characterize the ranging accuracy. Typically root mean square

error (RMSE) and MAE are preferable metrics since they are in the same units as the original data. The MAE
is usually easier to understand and interpret compared to RMSE for the mathematically challenged [254].
On the other hand, the RMSE gives a relatively larger weight to large errors, and hence is most useful when
large errors are particularly undesirable. The MAE will always be smaller than or equal to the RMSE.
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where ρNe
is a column vector of 1 × Ne mean energy values for a particular channel

model and block duration. Note that the weighted-MESS (W-MESS) in (5.85) is actually
equivalent to correlating the received energy vector with the power delay profile before
peak selection.

Alternatively, if a perfect knowledge of the channel energies is available, the TOA
estimate can be obtained as

n̂
(wmess′)
toa = arg max

k∈{1,...,Nb}

{
z(sn,Ne)
k ENe

}
. (5.86)

While it may be impractical to obtain the perfect knowledge of the channel vector ENe ,
it is possible to utilize its noisy estimate.

Double-weighted maximum energy sum selection
Careful study of (5.82) supports that for correct Hk , the mean μ̂

(no)
k and variance σ̂

(no)
k

of z(no)
k are minimized. Therefore, weighing the energy sum in (5.85) with the inverse of

μ̂
(no)
k σ̂

(no)
k will increase the likelihood of the correct hypothesis. This estimator is referred

to as double-weighted MESS (DW-MESS) and it yields the following TOA estimate

n̂
(dw−mess)
toa = arg max

k∈{1,...,Nb}

{
z(sn,Ne)
k ρNe

μ̂
(no)
k σ̂

(no)
k

}
. (5.87)

Bayesian estimation
If the distribution of Em is known a-priori for each energy block m, and the noise variance
σ 2 is known accurately, the TOA estimate can be obtained using a Bayesian approach.19

Then, the leading energy block can be estimated as follows

n̂
(Bys)
toa = arg max

k∈{1,...,Nb}

{∫
E1

∫
E2

. . .

∫
ENe

p(z |k, σ 2, ENe)p(E1) . . . p(ENe)dENe . . . dE1

}
,

(5.88)

where the probability distribution function is expressed as

p(z |k, σ 2, ENe) =
k−1∏
n=1

1√
2πσ̃ 2

exp

(
− (z[n] − μ̃)2

2σ̃ 2

)

×
k+Ne−1∏

n=k

1√
2πσ̃ 2

m

exp

(
− (z[n] − μ̃m)2

2σ̃ 2
m

)

×
Ntoa∏

n=k+Ne

1√
2πσ̃ 2

exp

(
− (z[n] − μ̃)2

2σ̃ 2

)
, (5.89)

with m = n − k + 1. The noise-only parameters are denoted by (μ̃, σ̃ ), and signal-
plus-noise parameters at the mth energy sample are denoted by (μ̃m, σ̃m), which are
calculated usingENe andσ . For example, the histograms of elements ofENe are presented

19 The reader is referred to [255] for a detailed discussion on Bayesian estimators.
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in [256] for CM-1 channel model of the IEEE 802.15.4a channels. Similar semi-analytic
techniques can be used to evaluate (5.89) for a given channel model.

Note that in order to keep the problem analytically tractable, (5.88) assumes that
the energies Em are uncorrelated. The ideal Bayesian estimator should consider the
joint PDFs of the energies. Since it is usually very hard to know the prior PDFs of the
parameters, and it requires multidimensional integration over the PDF of each parameter
yielding a very complex implementation, Bayesian analysis is usually of theoretical
interest and serves as a benchmark for other sub-optimal estimators rather than for
practical consideration.

5.6 Low-complexity UWB ranging techniques

While the ML techniques discussed in the previous section can yield good ranging
accuracies, they may not be very practical due to the a-priori knowledge requirements
and/or implementation complexities. In this section, various low-complexity ranging
algorithms specifically introduced for UWB systems are reviewed.

5.6.1 Ranging with largest-Ñ peak-detection techniques

The reason that the peak selection discussed above may not yield an accurate range
estimate is the possible existence of other MPCs prior to the strongest one. One way to
improve the performance of the peak detector is to consider the largest Ñ correlation
peaks prior to making a decision for a range estimate. Three algorithms based on this
principle are (1) single search, (2) search and subtract, and (3) search, subtract, and
readjust [227].

Single search
The single search algorithm first calculates the absolute values of the MF outputs as
given in (5.22). Then, Ñ strongest correlation peaks are calculated, which correspond
to Ñ strongest MPCs. Let the time indices corresponding to these MPCs be represented
by k̃1, k̃2, . . . , k̃Ñ

, where k̃i represents the time index for the ith strongest component.
Then, the TOA of the received signal is estimated as [227]

τ̂1 = Tsmp min{k̃1, k̃2, . . . , k̃Ñ
} (5.90)

where Tsmp denotes the sampling period of the receiver.

Search and subtract
For resolvable channels, the single search algorithm discussed above may successfully
lock onto the correct correlation peaks. However, for non-resolvable channels, estimation
of individual MPCs and their TOA may be cumbersome.
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In order to improve the TOA estimation performance in non-resolvable channels, the
single search algorithm can be modified as follows. After estimating the TOA corre-
sponding to the strongest MPC (i.e. k̃1Tsmp), this MPC is regenerated using the received
pulse shape ω(t), and subtracted from the received signal. The channel coefficient to be
used for regenerating the strongest path before subtracting it from the received signal is
calculated as [227]

α̂
k̃1

=
(
[ω(k1)]Tω(k1)

)−1[ω(k1)]Tr , (5.91)

where ω(ki ) and r are as defined in Section 5.3.1.
In the next step, the TOA of the second strongest MPC (i.e. k̃2Tsmp) is estimated using

this updated received signal (i.e. after the strongest MPC is subtracted from the received
signal). Again, this MPC is reconstructed, and subtracted from the signal. After the same
procedure iterates Ñ times, the TOA of the received signal is given by the minimum
of the TOA values as in (5.90). Note that this is similar to the successive interference
cancelation technique in code division multiple-access (CDMA) systems, where at each
step, the strongest interferer is detected, reconstructed, and subtracted from the received
signal [257].

Search, subtract, and readjust
The search and subtract algorithm determines the channel coefficient of the MPCs inde-
pendently from each other. However, it is possible to improve the performance of the
search and subtract algorithm by joint estimation of the channel coefficients at each
iteration of the algorithm. For example, when calculating the channel coefficient for the
first MPC, there is no information about the channel coefficients of the other MPCs; and
hence, (5.91) is used. On the other hand, at the second step, the channel coefficient for
the second strongest MPC is calculated as follows [227][

α̂k1

α̂k2

]
=
([

ω(k1) ω(k2)
]T [

ω(k1) ω(k2)
])−1[

ω(k1) ω(k2)
]Tr , (5.92)

where the channel coefficients of the strongest two MPCs are jointly estimated. In a
similar way, the algorithm calculates the channel coefficients of all the Ñ strongest
MPCs, and the TOAis calculated from (5.90). Observe that when Ñ = L, (5.92) becomes
the ML estimator in Section 5.5.2.

A critical parameter that affects the accuracy of the above algorithms is the selection
of Ñ . While very small values of Ñ may not yield accurate range estimates, choosing
a large Ñ will increase the computational complexity. Hence, its value should be opti-
mized according to trade-off between accuracy and complexity. Furthermore, accurate
knowledge of the received pulse shape is needed, which may vary at different MPCs in
practice.

In terms of computational complexity, the single search algorithm has the lowest
complexity, but yields the worst accuracy compared to the other two techniques. While
the latter two algorithms can perform better in non-resolvable channels, they require
matrix inversion operations, and their implementation may be computationally intensive,
especially for large values of Ñ .
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5.6.2 Ranging with two-step TOA estimators

One of the most challenging issues in UWB ranging systems is to perform accurate
range estimation without employing high sampling rates. In order to have a low-power
and low-complexity implementation, typically, symbol-rate or frame-rate samples can
be considered [243], which can however increase the time it takes to perform TOA
estimation significantly.

Two-step TOA estimators can be used in an intelligent way to relax the sampling rate
requirements without having to compromise from the ranging accuracy. As illustrated in
Fig. 5.14, at the first step, a rough timing estimate is obtained using low sampling rates.
Then, a second step refines the TOA estimate using higher sampling rates.

First step
In the first step, a low-complexity receiver with a low sampling rate is employed in
order to obtain a rough estimate of the TOA. For example, as discussed in the subsection
within Section 5.5.4 entitled “Maximum energy selection,’’ an ED receiver that employs
the RSS measurements in (5.25) can be used to provide a rough TOA estimate and to
reduce the uncertainty region for the TOA:

n̂b = arg max
1≤n≤Nb

z(ED)[n] , (5.93)

where n̂b represents the index of the block that has the largest energy sample and z(ED)[n]
is as given in (5.25).

A critical parameter is the selection of the sampling interval Tsmp for the energy
detector. If Tsmp is selected very large, then it can accurately lock to the desired sig-
nal; however, the ambiguity region remains very large. If Tsmp is selected very small,
the ambiguity region is narrowed, but it becomes more likely that the first MPC may
be missed. As an alternative to an energy detector, other low-rate techniques such as the
dirty-template scheme, which employs symbol-rate samples (see Section 5.6.3), can be
considered to obtain a coarse TOA estimate.

Second step
After obtaining a rough estimate of the signal’s TOA from its low-rate samples, the
second step uses higher sampling rates and more accurate techniques in order to precisely
determine the TOA. For example, in [258], a method-of-moments estimator with chip-
rate samples is employed to find the TOA accurately. Alternatively, correlation-based
techniques and searchback algorithms with higher sampling rates can also be considered.

r (t)
First step estimator
(energy detector,

dirty template, etc.)

Second step estimator
(method of moments,

searchback
techniques, etc.)

Final TOA
estimateTOA ambiguity region

Fig. 5.14. Block diagram for a two-step TOA estimator.
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Note that since the RSS in block n̂b is the strongest, ideally, the TOA should be within
the block n̂b. However, due to multipath effects, the first arriving MPC may be within
one of the blocks preceding block n̂b. For example, the signal may arrive closer to the
end of a block, which implies that the RSS of the TOA block can be weaker than the
next blocks. Hence, for an improved ranging accuracy, the second step of the two-step
algorithm searches a number of blocks including and prior to the n̂bth block.

The major advantage of a two-step technique is that it narrows down the TOA search
space in its low-complexity first step, and the second step searches for the TOA only
within a considerably smaller time interval.

5.6.3 Ranging with dirty templates

Another low complexity TOAestimator is the dirty-template receiver introduced in [224,
259, 260] which operates on symbol-rate samples. The basic idea behind this receiver is
as follows. The optimal template signal in (5.67) is not available during TOA estimation.
However, the received signal itself can be used as a correlator template, which is noisy
(“dirty’’). Then, cross-correlations of the symbol-length portions of the received signal
are obtained in order to estimate the TOA.20

In order to analyze the dirty template receiver, first consider the following modifica-
tions to the received signal model in (5.5)

r(t) = √
Es

∞∑
k=−∞

bkωR(t − kTs − τ1) + n(t) , (5.94)

ωR(t) =
L∑

l=1

αl

Nf −1∑
j=0

ω(y − jTf − cjTc − τl,1) , (5.95)

where Ts = Nf Tf denotes the symbol duration, bk denotes the training data, τl,1 = τl −
τ1, and it is assumed that the TOA τ1 is within one symbol duration, [0, Ts), without
loss of generality. Then, with the assumption that there is no ISI between consecutive
symbols, the cross-correlation between symbol-length portions of the received signal
can be obtained as follows [260]

xk(τ ) =
∫ Ts

0
r
(
t + 2kTs + τ

)
r
(
t + (2k − 1)Ts + τ

)
dt , (5.96)

where τ ∈ [0, Ts). After some calculations, (5.96) can be expressed as [260]

xk(τ ) = b2k−1

[
b2k−2EA(τ̃1) + b2kEB(τ̃1)

]
+ ηk(τ ) , (5.97)

20 As discussed in Section 5.3.4, the dirty-template receiver is a special form of a DaC receiver with D = Ts,
which is illustrated in Fig. 5.7c.
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where

τ̃1 = (τ1 − τ) mod Ts , (5.98)

EA(τ) = Es

∫ Ts

Ts−τ

ω2
R(t)dt , (5.99)

EB(τ) = Es

∫ Ts−τ

0
ω2

R(t)dt , (5.100)

and η(τ) is the noise term, which is a zero-mean Gaussian variable with variance σ 2
η .

At this point, both non-data aided (blind) and data-aided approaches can be considered
for the dirty-template scheme. For the non-data aided case, the mean square of (5.97) is
calculated as [260]

E
{
X2

k(τ )
} = 1

2
[EA(τ̃1) + EB(τ̃1)]2 + 1

2
[EA(τ̃1) − EB(τ̃1)]2 + σ 2

η , (5.101)

where the symbols are assumed to be equiprobable. Observing that EA(τ̃1)+EB(τ̃1) =
Es
∫ Ts

0 ω2
R(t)dt is a constant and EB(τ̃1) − EA(τ̃1) is maximized at τ = τ1, the TOA

can be estimated as follows [260]

τ̂1 = arg max
τ∈[0,Ts)

{
1

Nr

Nr∑
k=1

x2
k (τ )

}
, (5.102)

where the expected value in (5.101) is obtained from sample mean estimate of Nr symbol-
long pairs of received segments.

Using special training sequences improves the convergence time for a data-aided
version of the dirty-template scheme . For example, letting bk = (−1)�k/2�, (5.97) can
be expressed as

xk(τ ) = [EA(τ̃1) − EB(τ̃1)] + ηk(τ ) , (5.103)

which has a mean square value of E
{
X2

k(τ )
} = [EA(τ̃1) − EB(τ̃1)]2 + σ 2

η . Since the
mean square value becomes maximum at τ = τ1, (5.102) can be used for finding the
TOA.

The dirty template approach is favorable due to its unique multipath energy collection
capability; the correlation template is basically a delayed version of the received signal
itself, and no multipath parameter estimation (i.e., estimation of vector θ̃) is required.
However, since the signal itself is noisy, additional signal-cross-noise and noise-cross-
noise terms are introduced, which yields some performance degradation. A drawback
of the dirty-template scheme is that the resulting TOA estimate will have an ambiguity
that depends on the noise-only region between consecutive symbols. This is because the
symbol-length cross-correlation outputs due to the noise-only region will be similar. In
such a case, a more precise timing offset estimation can be implemented to resolve the
ambiguity, and the dirty-template algorithm may be used as a first step of a two-step
algorithm as in Section 5.6.2.
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Fig. 5.15. Illustration of threshold-based first path detection based on direct samples of the received signal
where ε denotes a threshold and N sb

w denotes the length of a search-back window.

5.6.4 Threshold-based ranging

Threshold-based search algorithms compare individual signal samples with a certain
threshold in order to identify the first arriving MPC and obtain the range information
[200, 228, 232, 261]. One of the main advantages of threshold-based TOA estimators

is that they can potentially be implemented in the analog domain (i.e. without using any
ADC or sampling).

In [261], a simple threshold-based algorithm is introduced which compares absolute
values of the direct samples of the received signal (or, direct samples of the MF output)
with a threshold as illustrated in Fig. 5.15. The algorithm starts a search from the earliest
locked MPC (which is obtained via an acquisition algorithm),21 and the TOAof the signal
is determined by the first threshold-exceeding sample. Since the signal energy and the
channel impulse response are unknown, the threshold is determined based only on the
noise floor.

In general, using the total probability theorem, the mean and variance of the
TOA estimation error using such a threshold-based estimator can be obtained as
follows [228, 231]

μτ1 = E{τ̂1 − τ1} =
nmax∑
n=nsb

PD(n)E
{
(τ̂1 − τ1)

∣∣n}+ PmissE
{
(τ̂1 − τ1)

∣∣miss
}

, (5.104)

σ 2
τ1

= E
{
(τ̂1 − τ1)

2
}

=
nmax∑
n=nsb

PD(n)E
{
(τ̂1 − τ1)

2
∣∣n}+ PmissE

{
(τ̂1 − τ1)

2
∣∣miss

}
,

(5.105)

where PD(n) is the detection probability of the nth sample, Pmiss is the probability that
no sample is larger than the threshold ξ , nmax denotes the sample index for the strongest
path, and nsb denotes the first sample that the search algorithm compares with a threshold.

21 An acquisition algorithm may operate in different ways and it does not necessarily lock onto the strongest
MPC. With a threshold-based acquisition scheme, the receiver may initially lock onto a path which arrives
earlier than the strongest path.
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One way to set the τ̂1 for evaluating Pmiss is to set it to the middle of the observation
interval, i.e. τ̂1 = Ta/2. Alternatively, estimation process can be repeated by decreasing
the threshold until a level crossing occurs [228].

Note that the GML technique discussed in Section 5.5.3 also uses a threshold �α̃ to
determine a stopping rule. However, this requires the knowledge of the statistics of the
relative path strength (i.e. αpeak/α1). Furthermore, the GML algorithm requires sampling
rates at or above the Nyquist rate, while the threshold-based algorithm may operate at
lower sampling rates.

In the following subsections, two different approaches for a threshold-based ranging
algorithm are presented, both of which can operate below the Nyquist rate.

Threshold-based ranging with jump back and search forward algorithm
Rather than using direct samples of the received signal, it may be possible to improve
the energy capture at low sampling rates by using some analog front end processing as
illustrated in Fig. 5.7. While any of the three receiver techniques may be considered, in
the following text an ED receiver is considered.

The threshold-based ranging algorithm considered here assumes that the receiver
is synchronized to the strongest path. First, the algorithm jumps to a sample prior to
the strongest path and then searches for the leading edge in the forward direction by
comparing the samples against a threshold. The leading edge sample using the jump
back and search forward (JBSF) algorithm is estimated as follows

n̂JBSF = min {n | z[n] > ξ} , (5.106)

where n ∈ {nsb, nsb + 1, . . . , nmax}, nsb = nmax −N
(sb)
w with N

(sb)
w denoting the search-

back window length in samples, nmax is the index for the strongest sample, and ξ is a
predetermined threshold. The operation of the algorithm is illustrated in Fig. 5.16.

Dle

nsb nle nmax

Dmax

Jump back and search forward

Noise-only block

Signal plus noise block

Serial backward searchFirst arriving path

N w
(sb)

Threshold

Sample index

Fig. 5.16. Illustration of the JBSF algorithm in the present subsection and the SBS algorithm in the next

subsection using an ED receiver. N
(sb)
w denotes the searchback window length in samples, nmax

is the index of the strongest sample, nle is the index of the first arriving path’s sample, nsb is the
index of the first sample within the searchback window, Dmax is the delay between the first
arriving path’s sample and the strongest sample, and Dle is the delay between the index of the
first sample within the search window and the first arriving path’s sample (After [232]).
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The MAE of the TOA estimate can then be calculated, after weighting the average
timing error corresponding to each block with the probability of detecting that block, as

MAE(nle, ξ) =
nmax∑
i=nsb

PD(i|ξ)ēi , (5.107)

where nle is the index for the true leading edge sample, the average timing error for
choosing block i is approximately given by

ēi ≈
{

|nle − i|Tsmp if i �= nle,

Tsmp/4 if i = nle,
(5.108)

and the set of samples between nsb and nmax can all be estimated using the searchback
algorithm as the leading edge.

The justification for (5.108) is as follows. Let εle = τ1 − Tsmpnle denote the delay of
the first arriving path within the leading signal block. Then, for uniformly distributed εle

and correct block detection, choosing the center of the block as the TOA estimate yields
an average timing error given by

E

{∣∣∣εle − Tsmp

2

∣∣∣} = Tsmp

4
, (5.109)

while the mean and variance of the time estimate for correct block detection are
respectively given by

E

{
εle − Tsmp

2

}
= 0 , (5.110)

E

{(
εle − Tsmp

2

)2
}

= T 2
smp

12
. (5.111)

Note that (5.108) is only an approximation since εle and the event of detecting z[nle]
as the leading edge are correlated. For example, as εle → Tsmp, it becomes more likely
to detect the sample nle + 1, which slightly increases the MAE. In addition, a simple
analysis shows that every block error corresponds to an additional average error of Tsmp.

The detection probability for the ith sample in (5.107) is algorithm dependent. For
JBSF, it is given by

PD(i|ξ) =
[ i−1∏

j=1

(
1 − Q

(ξ − μj

σj

))]
Q
(ξ − μi

σi

)
, (5.112)

where μj and σj are as in (5.30).
If perfect channel information is assumed to be available, the optimal threshold that

minimizes the ranging error in (5.107) can be found using a brute-force search as follows22

ξopt = arg min
ξ

{
MAE(nle, ξ)

}
. (5.113)

22 Note that while perfect channel knowledge is not possible in practice, the resulting ranging error can be
used as a lower bound on the JBSF algorithm that uses any other method for ranging threshold selection.



5.6 Low-complexity UWB ranging techniques 141

Since it is typically difficult to have a-priori knowledge of the channel parameters, a
simple (but sub-optimal) way to practically set the threshold is to use only the standard
deviation of the, noise which can be obtained from the noise-only region of the received
signal. Then, for a certain PFA, the threshold that is based solely on the noise level can
be defined as

ξ = σ̃Q−1(PFA) + μ̃ , PFA = Q

(
ξ − μ̃

σ̃

)
, (5.114)

where the mean and the variance of noise-only samples are given by μ̃ = Mσ 2,
and σ̃ 2 = 2Mσ 4/Nr , respectively, as discussed in Section 5.3.3, and PFA denotes the
probability of a single noise sample being larger than a threshold ξ .

It is worth emphasizing that for some channel realizations it may be preferable to
detect a sample that is after the leading edge sample, since the leading edge sample(s)
may be very weak. Beside NLOS effects, this might also be due to the fact that only
a small portion of the first arriving path may fall within the first sampling duration. In
such cases, the optimal threshold that minimizes the MAE may be larger than the leading
edge energy value(s). In other words, since setting the threshold to a very small value
may yield early false alerts, the MAE may be minimized by the detection of a stronger
sample later than the first sample using a larger threshold (see Example 5.7).

Threshold-based ranging with serial backward search algorithm
As an alternative to the JBSF algorithm for finding the leading edge of the signal, the
paths/samples can be searched one-by-one in the backward direction starting from the
strongest sample nmax, which is referred to as the SBS algorithm (see Fig. 5.16 for an
illustration). Note that there may be noise-only samples between the strongest path and
the first arriving path. These noise-only regions may occur due to multi-cluster structure
of UWB channels where there may be time delays between two clusters. Moreover, it
may also be the case that within the same cluster, there are gaps between the MPCs,
which are relatively large (i.e. with respect to the sampling duration). Hence, the SBS
algorithm should handle the existence of such noise-only regions for accurate leading
edge detection.

Example 5.6 The multi-cluster structure of UWB channels is simulated and depicted
in Fig. 5.17 for the CM-1 channel model of the IEEE 802.15.4a. First, 1000 channel
realizations are generated and sampled with an energy detector for a sampling period of
4 ns. The histogram of the strongest path delay is depicted in Fig. 5.17(a), which shows
that the strongest path may arrive as late as 60 ns with respect to the first arriving path.
On the other hand, for more than half of the realizations, the delay is smaller than 10 ns.

In Fig. 5.17(b), a histogram of the delay between any two clusters is presented. While
the delay is typically smaller than 10 ns, it may be on the order of 30 ns in some rare
cases.

In the following, two different cases are considered for the SBS algorithm. For Case 1,
a single-cluster channel is considered, where there is no noise-only region between the
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Fig. 5.17. Different statistics of IEEE 802.15.4a CM-1 channel models. (a) PDF of the delay of the
strongest path, (b) PDF of delays between cluster pairs if there is at least one cluster prior to the
peak (Tc = Tsmp = 4 ns) (After [200]).

strongest sample and the leading edge sample. Note that this may typically occur in very
dense channel environments such as the CM-8 channel of the IEEE 802.15.4a [100]. For
Case 2, a multiple-cluster channel structure is considered where there may be noise-only
regions between the strongest path and the first path. Differences for the two cases are
illustrated in Fig. 5.18.

Signal plus noise block

Searchback

Searchback
Sample indexn le n max

Sample indexn le n max

(a)

(b)

Noise-only block

Fig. 5.18. Illustration of the searchback scheme: (a) single cluster, (b) multiple clusters (After [200]).
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Case 1: dense single cluster analysis. In a single-cluster (SC) scenario, in which there are
no noise-only samples between the leading edge and the strongest sample, as illustrated
in Fig. 5.18(a), the leading block estimate for SBS-SC is given by

n̂SBS−SC = max

{
n ∈ {nmax, . . . , nmax − N(sb)

w }
∣∣∣ z[n] > ξ and z[n − 1] < ξ

}
.

(5.115)

Case 2: multiple clusters (with noise-only region) analysis. The received MPCs in typical
UWB channels usually arrive at the receiver in multiple clusters (MCs), i.e. groups of
MPCs that are separated by noise-only samples. The PDF of the delays between any
two clusters if there is at least one cluster prior to the peak energy sample is presented
in Fig. 5.17(b).23 Since there may be delays as large as 32 ns between two sequential
clusters, the algorithm discussed in the previous section may lock to a sample that arrives
later than the leading edge (but is at the beginning of its own cluster).

It is therefore proposed to allow a number of consecutive occurrences of noise samples
while continuing the backward search to handle the clustering problem. The false alarm
probability when K multiple consecutive noise samples exist is expressed as

PFA = 1 −
[

1 − Q

(
ξ − μ̃

σ̃

)]K

, (5.116)

which leads to a threshold given by

ξ = σ̃Q−1
(

1 − (1 − PFA)
1
K

)
+ μ̃ , (5.117)

where the optimum threshold is now a function of K . The leading edge estimation for
SBS-MC is then modified as follows

n̂SBS−MC = max

{
n ∈ {nmax, . . . , nmax − N(sb)

w }
∣∣∣∣z[n] > ξ and

max
{
z[n − 1], z[n − 2], . . . , z[max(n − K, nsb)

]}
< ξ

}
. (5.118)

Similar to Dle, the statistics of K may be obtained from measurement campaigns in a
certain environment or from certain channel models that attempt to model a particular
environment (e.g. see Fig. 5.17(b) for relevant statistics of CM-1 channel model). Note
that choosing K too large may increase the probability of false alarms due to the noise-
only region prior to the first arriving path.

Example 5.7 In Fig. 5.19, the MAEs of the JBSF algorithm when simulated for
PFA ∈ {0.001, 0.005, 0.01} and the optimal thresholds in (5.113) are given. The sim-
ulation parameters in Example 5.5 are used with Nr = 1000 and a searchback window

23 These statistics can be used to determine a parameter K for setting the ranging threshold as will be discussed
below.
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Fig. 5.19. The MAE performances of different algorithms for the optimal thresholds that minimize the
MAE (simulation) (After [116]).

length of 60 ns. Simulation results for SBS-MC are also presented for two differ-
ent values of K , and for PFA = 0.001. When the noise-only-based threshold is used
with PFA = 0.001, the MAE is of the order of a fraction of a nano-second close
to the optimal MAE for sufficiently high Es/N0. On the other hand, as Es/N0 (or
Nr) decreases, choosing a larger PFA becomes more desirable. The accuracy of the
SBS-MC algorithm is observed to be inferior to that of the JBSF algorithm for
K ∈ {3, 4}.

The MAEs obtained from (5.107) for JBSF are plotted in Fig. 5.20 for different threshold
settings which are averaged over 1000 channel realizations. The results are slightly worse
than the simulated performances, which is due to the approximation in (5.108). They are
closer to the simulation results for larger PFA values.

Also included in Fig. 5.20 is the ranging error when using a threshold that maximizes
the probability of leading edge detection. It shows that the error is considerably worse
than the noise-based thresholds and MAE-minimizing threshold. The reason for this is
that, in certain cases, it may be easier to detect a sample that arrives later than the
leading edge. If a threshold is set too low to maximize PD(nle), the probability of false
alarm in the noise-only region of the signal may be larger compared to, for example,
when using a threshold that maximizes PD(nle + 1).



5.7 Problems 145

Optimum threshold

P d maximizing threshold

0 2 4 6 8 10 12 14
1

2

3

4

5

6

7

8

9

Es/N0 (dB)

T
h

eo
re

ti
ca

l M
A

E
 (

n
s)

P fa = 0.01

P fa = 0.001

P fa = 0.005
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5.7 Problems

(1) Consider a UWB ranging system that uses the second derivative of the Gaussian
pulse shape given in (2.5) with a pulse duration of 2 ns. Let the TOA be uniformly
distributed within [0, 200] ns.

(a) Calculate the CRLB and ZZLB on the MSE of the TOA estimate at SNRs of
2 dB, 12 dB, and 22 dB.

(b) Repeat part (a) for a pulse duration of 0.2 ns.

Solve questions 2 − 5 based on Fig. 5.21.

(2) Consider a threshold-based detector which first stores all the samples starting from
the first sample at t = 0 ns in a vector. It then compares the absolute value of
each sample with a threshold starting from the first sample, and chooses the first
threshold-exceeding sample as the leading edge of the signal.

(a) Plot a realization of the received signal samples in MATLAB or another pro-
gramming language, using anAWGN channel with zero mean and variance 0.01.

(b) Calculate the probability of detection of the leading edge of the received signal
for ranging thresholds of ξ ∈ {0.2, 0.3, 0.4}.
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Fig. 5.21. Consider a UWB receiver which samples a received signal at a sampling period of 1 ns (e.g.
using an MF, an ED, or a TR receiver). The receiver assumes that the TOA of the received signal
is uniformly distributed in [0, 200] ns, and the true TOA of the signal is 50 ns. The channel
coefficients are given by α = [0.5, 2, − 1.5, 3, − 2, 1.5, 1, − 0.5, 0.5, 0.25, 0.25] as
illustrated above. For simplicity, let each of the samples be subject to AWGN with mean 0 and
variance 0.01.

(3) A threshold-based detector stores the absolute values of the samples in a vector;
however, it initiates a search from the strongest MPC (which is assumed known),
and searches for the leading edge in the backward direction. The channel vector
α in Fig. 5.21 is subject to AWGN with mean 0 and variance 0.01. Then, cal-
culate the detection probability for the leading edge of the received signal for a
threshold of
(a) ξ = 0.3,
(b) ξ = 0.4.

(4) Assume that the receiver has perfect knowledge of the channel vector α. Then, write
down the expression for the maximum likelihood estimator which gives the TOA of
the received signal.

(5) The channel impulse response is α = [3]. Given the receiver settings in Fig. 5.21, if
the receiver adopts peak selection for synchronizing to the received signal, calculate
the probability of incorrect TOA estimation.

(6) Study the TH and MTOK sequences presented in Fig. 5.5.
(a) Design another TH sequence with Nh = 32, Nf = 4, and a ZCZ of 29.
(b) Design another MTOK sequence of length 31 with similar ZCZ characteristics.

(7) (programming exercise) Consider the CM-1 model of IEEE 802.15.4a channels.
(a) Generate 1000 different realizations of CM-1 channels and calculate the mean

excess delay and RMS delay spread of each channel.
(b) Using the parameters of the log-normal functions for the mean excess delay of

the channels in Table 3.5 for CM-1(LOS) and CM-2 (NLOS) channels, simulate
and report the probability of correct identification of the LOS hypothesis for
these 1000 channel realizations.
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(8) (programming exercise) Consider the fundamental lower bounds presented in
Fig. 5.11 for AWGN channels. Compute and plot the same bounds for the first
derivative of a Gaussian pulse shape: plot the ZZLBs and CRLBs for pulse
durations of
(a) Tp = 1 ns,
(b) Tp = 0.5 ns,
(c) Tp = 0.1 ns.

How do they compare with the results in Fig. 5.11? Why?



6 Ranging protocols

The previous chapter deals with detecting time of arrival of first signal path. Even though
it is an essential and the very first step in TOA-based ranging and positioning systems,
more need to be done to obtain range and position estimates. The TOA information
makes sense only if the signal’s time of transmission is known. Then, time of flight
(TOF) of the signal can be easily computed. The TOF is directly proportional to the
distance between a device that transmits the signal and the device that receives it. There
are various protocols to transform any TOA information to a TOF and range estimate.
Ranging protocols require actions to be taken at devices that are involved in ranging and
positioning. The focus of this chapter is to study these protocols in detail.

The chapter consists of three parts. The first part provides an overview of communica-
tion protocol layers and explains functionalities of the service and management interfaces
between adjacent layers. It is important to know what intra- and inter-device events take
place for obtaining ranging information and how ranging-related information is passed
from the physical layer to the upper layers for application’s use. Interfaces play a key
role in achieving this.Agood example of an intra-device event is management of ranging
signal parameters at the MAC sub-layer and then generation of the signal accordingly at
the PHY. What constitutes an inter-device event is transmission and reception of ranging
signals and ranging-related messages (e.g., time-stamps).

The second part takes a detailed look into well-known time-based ranging protocols
and analyzes their advantages and drawbacks. There are numerous ranging protocols.
Their only common goal at the simplest is to find separation of two devices. Some pro-
tocols also aim to mitigate clock-frequency offset-induced range errors and minimize
the number of ranging messages transmitted. Some protocols require fine time synchro-
nization among ranging devices (e.g., TDOA protocol), but others do not rely on this
requirement (e.g., two-way TOA protocol, symmetric double-sided ranging protocol,
differential TOA protocol). Generally, it is the application that determines the protocol.
The TDOA protocol is a favorable choice for indoor tracking of assets and people if
deploying an infrastructure is not considered an issue and scalability is important. On
the other hand, for ad-hoc network applications, the TW-TOA protocol would be a bet-
ter decision. A part of this chapter discusses pros and cons of these ranging protocols.
Conventional and bi-static radars are outside the scope of this section.

The third part expounds the ranging features of the new IEEE 802.15.4a standard and
studies packet structure, symbol waveform design and management of timing counters.
The standard defines a PHY layer with precision-ranging capability. It adopts IR-UWB
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and chirp spread spectrum (CSS) as underlying signal waveforms. Only ranging via IR-
UWB PHY is allowed in the standard for non-technical reasons, even though the CSS
design is also capable of ranging.

6.1 Layered protocols

In any network, communication and ranging are accomplished by exchanging messages
between involved parties. A ranging protocol is an agreement between two or more
ranging devices on a ranging procedure. Let a device that initiates ranging be referred
to as the local device and a responding device as the peer. Prior to transmitting and after
receiving a ranging message, certain events are triggered and actions are taken by both
local and peer devices to manage ranging-related data.

To reduce design complexity and provide flexibility, traditionally most network
devices are considered and implemented as multiple layers, each layer offering its
services to the higher layers [262]. This approach isolates the upper layers from the
implementation details of the services it receives.

In n-layer implementation of a network, ith layers of local and peer devices commu-
nicate using layer i protocol (see Fig. 6.1); and the entities at the same layers of two
devices are called peer entities. Between any two adjacent layers, communication is
managed via function calls referred to as primitives (services). A primitive may specify
an action to be taken or it may report the result of a previous action.

The PHY, as the first layer according to the widely practiced open systems inter-
connection (OSI) model, provides two services. The first one is the PHY data service.
It operates through an interface called PHY data service access point (PD-SAP). The
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MAC
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MLME-SAPMCPS-SAP

PD-SAP PLME-SAP

MCPS-SAP
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PLME-SAP layer-1 protocol

layer-2 protocol
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Fig. 6.1. Architecture of a typical ranging device, including layers, protocols and interfaces.
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second one is the PHY management service. It deals with transmission and reception
of PHY protocol data units (PPDU) through an interface called PHY layer management
entity service access point (PLME-SAP).

Similarly, layer 2, which is the MAC sublayer, provides MAC data and MAC man-
agement services through interfaces that are referred to, in most IEEE standard specifica-
tions, as MAC common part sublayer service access point (MCPS-SAP) and MAC
sublayer management entity service access point (MLME-SAP), respectively. Within
the scope of this chapter are the interactions for ranging between the PHY layer, MAC
sublayer and the next higher layer (NHL).

Ranging-related data are passed between the protocol layers via primitives. For
instance, the NHL can tell its local MAC sublayer to initiate ranging with a peer device
only using a specific signal waveform. In this case, parameters that define the desired sig-
nal waveform should be passed to the local MAC sublayer entity via a primitive. In [262]
and [263], primitives are divided into four groups as request, confirm, indication and
response.

The request primitive is generated at the MAC sublayer of a device to inform its
PHY layer of a request. It can be a request to transmit a packet. The confirm primitive is
generated at the PHY layer of a device to inform its MAC sublayer that a corresponding
request is handled. A good example is a confirmation issued by the PHY after completing
the transmission of a packet. The indication primitive is generated at the PHY layer of a
device to inform its MAC sublayer that an event occurred. For instance, reception of a
request from a peer entity can be an event. The response primitive is generated in reply
to an indication primitive, in case a response is required.

The time of flight of a signal between two devices is proportional to the distance
between themselves. Precise measurement of this flight time is challenging. In addition,
timing imperfections even in the order of nanoseconds can easily induce an undesirably
large positive bias in range estimates (30 cm per nanosecond error). Therefore, handling
primitives as quickly as possible and compensating for errors due to protocol-related
delays become an important task for ranging protocol designers.

In the following sections, time-based ranging protocols are analyzed. Communications
between local entities are also illustrated for subject protocols to visualize impacts of
various delays in their ranging performance.

6.2 Time-based ranging protocols

Synchronization requirement, channel occupancy, power efficiency, tolerance to crystal
imperfections (e.g. frequency offset, drifting) and achievable maximum update rate can
be considered as some of the key design criteria for ranging protocols. Design criteria are
driven by application requirements. For instance, infrastructure-based tracking applica-
tions typically depend on time-synchronized reference devices, unlike ad-hoc network
applications. Typically, channel occupancy of a ranging protocol is desired to be low
to provide high energy efficiency and fast location updates. This can be achieved by
both minimizing the number of messages required to obtain a single range measurement
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and using shorter frames. However, note that shorter frames may not provide sufficient
processing gain to improve SNR at long distances. Low channel occupancy gives more
devices an opportunity to perform ranging within a given time period and allows more
frequent ranging updates. There are also ranging protocols and techniques to mitigate
range errors induced by crystal imperfections. All in all there is always a trade-off
between performance and complexity. In the following subsections, time-based ranging
protocols are evaluated in various aspects.

6.2.1 Two-way time-of-arrival-based ranging

Let RDEV represent a ranging capable device and RFRAME a frame that is tailored and
used for ranging. In a so-called two-way time-of-arrival (TW-TOA) ranging protocol,
the range between two RDEVs is determined via exchanging RFRAMEs and tracking
their arrival times. The major advantage of this protocol is that it does not require time
synchronization between ranging devices. Assume that RDEV A wants to perform
ranging with RDEV B. Then, the sequence of events for the TW-TOA protocol would
be as follows.

(i) RDEV A sends a range request frame, RFRAMEreq, to RDEV B, and records
the time the frame departs from its antenna, t = T1, according to its local clock.

(ii) B receives the RFRAMEreq and sends back to A a range reply frame,
RFRAMErep.

(iii) A records the time that it receives the RFRAMErep at its antenna input according
to its local clock. This time instant is denoted as t = T2.

(iv) Finally, A calculates the difference between the two recorded times, Tr = T2 − T1,
and computes the range using the formula d = c Tr/2, where c is the speed of radio
wave in the transmission medium.

(v) By performing TW-TOA via at least three devices, A can compute its relative
position with respect to them.

In reality, there is a non-zero processing delay at B. Therefore, in the above algorithm
d would contain a positive bias. After incorporation of this processing delay, Tr can be
approximated as Tr = 2Tt + T B

ta , where Tt is the one-way time of flight of the RFRAME

and T B
ta denotes the time elapsed at RDEV B between its reception of the RFRAMEreq

and its transmission of the RFRAMErep, which is commonly referred to as the turn-
around time. The ranging performance depends on two important factors. The first one is
accurate estimation of Tt . Note that, as studied in Chapter 5 (c.f. (5.42)), the Cramer–Rao
lower bound for the estimate of Tt is inversely proportional to the effective bandwidth of
the signal and the square root of the SNR. Apparently, using wide bandwidth signals and
higher SNR helps reduce range errors. The second factor is minimizing T B

ta or having
an accurate estimate of it. In what follows, we study how ranging protocols help cancel
out the range error caused by T B

ta .
An effective way to minimize T B

ta is to avoid interactions between the PHY and MAC
layers at RDEV B, and make the peer PHY prepare and transmit an RFRAMErep

immediately after it receives an RFRAMEreq, as illustrated in Fig. 6.2.
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Fig. 6.2. Illustration of the TW-TOA ranging protocol without MAC layer involvement for minimum
processing delay.

There are two drawbacks with this approach. First, in conventional communication
systems, a MAC layer acknowledgment (ACK) needs to be sent (if required) for a
successfully received packet. In Fig. 6.2, the RFRAMErep serves as an ACK, but the
MAC layer has no control over the formation of the ACK and its content. Second,
RDEV B becomes vulnerable to malicious attacks. This is because the identification of
the sender is typically carried in the MAC header of a frame. According to the protocol in
Fig. 6.2, the RFRAMErep gets transmitted before the MAC header of the RFRAMEreq

is processed. Thus, an RFRAMEreq sent by any device can trigger transmission of an
RFRAMErep, and the sender can easily figure out its range with B.

A better approach than excluding the MAC sublayer from ranging process just for the
sake of minimizing Tta is to encourage PHY and MAC layer interactions at B. As shown
in Fig. 6.3, this would certainly prolong Tta. However, note that in this scenario, B can
easily compute Tta, and send the result to A as a time-stamp report. The transmission
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Fig. 6.3. Illustration of the TW-TOA ranging protocol with MAC layer involvement.
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of the time-stamp report is subsequent to the RFRAMErep. Only after receiving the
time-stamp report, can A remove the range bias due to Tta.

Note also that although the local device must record the timer value at which an
RFRAME leaves its antenna, the local PHY can take a snapshot of its counter only
after the frame leaves its modulator. Therefore, if not subtracted, this internal propaga-
tion delay between the timer circuitry and the output of the antenna induces a positive
bias. Similarly, the receiving PHY can only take a snapshot of its timer when a frame
enters its demodulator; and passing of the frame from its antenna to the demodulator
also induces some delay. If internal propagation delays are in the order of nanosec-
onds, the resulting bias in the range estimate can reach tens of centimeters easily. It is
possible to quantify these delays via test measurements or RF loop-back tests. When
available, the MAC sublayer should use these biases to further correct its time-stamp
values.

In the TW-TOA protocol, the RFRAMErep serves as an ACK for the RFRAMEreq.
Of course, MAC layer involvement increases the number of transmissions in the air
from two to four. The additional two transmissions are the time-stamp report and its
ACK. Indeed, the ACK is transmitted only if it is required. A single bit is dedicated
typically in the MAC header of a frame to indicate whether the frame requires an ACK.
In a dense network in which many devices frequently perform ranging, reducing the
number of transmissions helps preserve computational and energy resources. Therefore,
it is preferable not to mandate ACKs.

6.2.2 Differential two-way ranging protocols

Differential two-way ranging protocols (DTW-TOA) eliminate the need for a time-
stamp report. Here the DTW-TOA protocols are classified as type I and type II. In [253]
and [264], type I scheme is covered in detail, in which the source (RDEV A) switches to
the receive mode after a predetermined time interval T elapses following the transmission
of an RFRAMEreq. By this way, the peer device does not have to report T B

ta .
Assume that A and B have no clock frequency offsets.As shown in Fig. 6.4, RDEV A

transmits an RFRAMEreq at local time tA = 0. RDEV B acquires the frame by locking
onto the strongest multipath and then immediately resets its clock, tB = 0. In some
multipath channels, the first arriving signal component might not have the strongest
energy. Therefore, in those channels the time difference between the first and strongest
paths appears as a positive bias in the range estimate. This time offset is denoted in
Fig. 6.4 as tBoff . After acquisition is complete, B waits for T seconds and then transmits
an RFRAMErep. Similarly, assume that while receiving RFRAMErep at A, the time
interval between the first and strongest signal paths is tAoff . When the RFRAMErep is
acquired, the local clock of A shows

tA = 2Tt + T + tBoff + tAoff . (6.1)

By running an off-line TOA refinement algorithm, A can have a reliable estimate of
tAoff . Let t̂Aoff denote this estimate. If the channel is assumed to be symmetric, and A and
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Fig. 6.4. Illustration of type I differential two-way ranging protocol, in which, following acquisition of an
RFRAMEreq, the peer device waits for time T to elapse before transmitting an RFRAMErep.

B are identical devices, then tAoff ≈ tBoff . After factoring this approximation into (6.1),

the range estimate d̂ can be obtained as

d̂ = c

2

(
tA − 2t̂Aoff − T

)
. (6.2)

Type II differential two-way ranging protocol is a slightly different version of type I.
It puts additional burden on B for computing the estimate of tBoff prior to transmission
of RFRAMErep and then adjusting its transmission time to be ahead of T by t̂Boff
(Fig. 6.5); i.e.

tB = T − t̂Boff . (6.3)

Finally, A captures acquisition time of the RFRAMErep according to its local clock.
Then, its clock shows

tA = 2Tt + T + tBoff − t̂Boff + tAoff . (6.4)

Note that A is still supposed to estimate tAoff and factor it out. Finally, the range estimate
becomes

d̂AB = c

(
Tt + tAoff − t̂Aoff

2
+ tBoff − t̂Boff

2

)
. (6.5)

Both type I and type II protocols save two transmissions per ranging in com-
parison to the TW-TOA protocol, because the RFRAMErep serves as an ACK and
there is no need to transmit time-stamp information. However, both protocols have a
major drawback. In practical implementations, it is difficult to manage a PHY layer
to transmit precisely at a preset time instant, especially if the required timing reso-
lution is on the order of nanoseconds or sub-nanoseconds. Furthermore, any change
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Fig. 6.5. Illustration of type II differential two-way ranging protocol, in which the peer device waits for
time T − t̂Boff to elapse after acquisition of a RFRAMEreq and then transmits a RFRAMErep.

in channel access status might require deferring a transmission. In other words, chan-
nel may not be accessible when it is time to transmit an RFRAMErep. Therefore,
relying on a preset waiting interval T for ranging may carry the risk of a large
error.

6.2.3 Symmetric double-sided ranging protocol

The symmetric double-sided (SDS) ranging protocol [265], which is illustrated in
Fig. 6.6, aims to minimize range errors due to crystal imperfections. The SDS protocol
consists of the following steps in order of execution.

(i) A transmits an RFRAMEreq.
(ii) B replies with an RFRAMErep.

(iii) A transmits a second RFRAMEreq.
(iv) B replies with a time-stamp report that contains the measured T B

ta and T B
round values.

In order to quantify how the SDS protocol compensates for crystal frequency offsets
and what its performance is in comparison with the TW-TOA protocol, assume that eA

and eB denote clock frequency offsets of A and B, respectively. For a particular clock, its
frequency offset can be considered to be constant during execution of a ranging protocol.

In the TW-TOA protocol, T A
round is given by

T A
round = 2Tt + T B

ta , (6.6)

which implies

Tt = (T A
round − T B

ta )

2
. (6.7)
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After incorporating frequency offsets into (6.7), the estimate of Tt becomes

T̂t = T A
round(1 + eA) − T B

ta (1 + eB)

2
. (6.8)

Now define εtw = T̂t − Tt as the residual error for the time-of-flight estimate with the
TW-TOA protocol. Then, the residual error is expressed as

εtw = TteA + (eA − eB)

2
T B

ta . (6.9)

It is observed in (6.9) that εtw increases at longer ranges due to its dependency on TteA. On
the other hand, considering the fact that WPAN devices typically operate in short ranges
(e.g. only tens of meters per link), and that T B

ta varies from hundreds of microseconds
to even milliseconds depending on hardware capabilities, the impact of TteA on εtw can
be neglected. This leads to

εtw ≈ T B
ta

2
(eA − eB). (6.10)

Minimizing T B
ta and selecting a crystal with a low parts per million (ppm) help lower

the residual error.
As for the SDS protocol,

T A
round = 2Tt + T B

ta ,

T B
round = 2Tt + T A

ta . (6.11)
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After extracting the time of flight Tt , we have

Tt = (T A
round − T A

ta ) + (T B
round − T B

ta )

4
. (6.12)

The estimate of Tt , with the inclusion of the crystal tolerances, becomes

T̂t = (T A
round − T A

ta )(1 + eA) + (T B
round − T B

ta )(1 + eB)

4
. (6.13)

Then, the residual error εsds = T̂t − Tt is obtained as

εsds = Tt

2
(eA + eB) + (T B

ta − T A
ta )

4
(eA − eB). (6.14)

It is plausible to assume that T B
ta ≈ T A

ta , if A and B are peer devices. Then, (6.14)
approximates to

εsds ≈ Tt

2
(eA + eB). (6.15)

Finally, the comparison of (6.15) and (6.10) proves that the SDS protocol assures a
smaller residual error.

Due to the fact that MAC layer ACK transmission is required in many instances, each
of the SDS and TW-TOA protocols requires four message transmissions. Note that this
is only under the assumption that the final ACK in the SDS protocol can be used to
carry time-stamp data. However, traditionally an ACK is very short and cannot contain
a long data such as a timestamp. For instance, the ACK in the IEEE 802.15.4b-2006
standard allocates only five octets for the PHY payload; and they are already in use for
Frame Control, Sequence Number and FCS. In order to support the SDS protocol in an
IEEE 802.15.4b-based network, the time-stamp report needs to be transmitted separately
from the ACK. Thus, the SDS protocol is coerced to have the overhead of one extra
transmission with respect to the TW-TOA. An alternative is to modify the IEEE 802.15.4
ACK frame structure and increase its payload size to avoid this extra transmission, but
the devices that implement a modified ACK would not be inter-operable with the IEEE
802.15.4 devices.

6.2.4 Time-difference of arrival (TDOA)

Typically, a TDOA protocol requires deployment of an infrastructure with reference
devices. What distinguishes the TDOA protocol from the TW-TOA protocol is that
it relies on time synchronization between reference devices. Synchronization can be
handled either via transmitting periodic beacons from a designated device so-called
a coordinator, or wiring all the reference devices and driving them with a common
clock [264, 266, 267].
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Fig. 6.7. Illustration of the centralized TDOA protocol with four reference devices and a coordinator as
the central computing resource.

The message sequencing chart for the TDOA protocol is shown in Fig. 6.7. The
operation of the protocol is as follows.

(i) The target transmits a broadcast RFRAME with its identification number (ID).
(ii) Each reference device that receives the broadcast computes its time of arrival.

(iii) Assume that the arrival times of the RFRAME at four reference devices A, B, C and
D are tA, tB , tC , tD , respectively, according to the central clock they are synchronized
to. Then, the reference devices report these time-stamps to their coordinator. These
transmissions should be scheduled carefully to avoid collisions. Moreover, the target
ID should also be encapsulated in the time-stamp report to distinguish multiple
targets.

(iv) Given the reference device locations and the time-stamp data, the coordinator solves
a non-linear optimization algorithm to estimate target coordinates.

6.3 Ranging in IEEE 802.15.4a standard

The IEEE 802.15.4a standard specifies PHY and MAC layers for IR-UWB and CSS
communication systems. In this standard, ranging is optional and it is only enabled
for the UWB PHY option. The preamble waveform is optimized for acquisition and
synchronization, and the start of frame delimiter (SFD) is designed to support operations
at low and high data rates. Supported data rates vary from 100 Kbps to 27 Mbps. In
this section, packet structures and signal waveforms that are designed for ranging are
discussed. Management of timing counters and preparation of time-stamp reports are
also explained.
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The IEEE 802.15.4a uses the ALOHA protocol for channel access. In ALOHA, a
device transmits a frame without sensing whether the channel is busy. If a transmission
collides with another one, the frame is retransmitted after a random back-off. Achievable
throughput, η̃, for the ALOHA with the assumption of a Poisson frame arrival rate λ is

η̃ = λ e−2λ. (6.16)

For a detailed treatment of the ALOHA mechanism, the reader is referred to [268].
Note that RFRAMEs are very long in IEEE 802.15.4a. Especially, in the low rate option,
the preamble and the SFD consist of 4096 and 64 symbols, respectively. Therefore, even
a single frame may occupy the channel in the order of milliseconds, and retransmissions
become very costly.Asparse network in which RDEVs perform ranging very often might
experience as low throughput as a very dense network.

The main ranging protocol the standard adopts is the TW-TOA. However, it also
enables the use of TDOA and SDS ranging protocols. To make decoding of ranging
waveforms difficult for malicious devices and protect range information, the standard
also describes a so-called private ranging protocol, which is optional. It enhances the
integrity of ranging traffic in the case of a hostile attack. The reader is referred to Chapter
7 for a detailed study of the private ranging protocol.

Every IEEE 802.15.4a device communicates using the packet format illustrated
in Fig. 6.8. The IEEE 802.15.4a packet consists of a synchronization header (SHR)
preamble, a physical layer header (PHR) and a data field.

The SHR preamble is composed of a ranging preamble and an SFD. As summarized
in Table 6.1, the ranging preamble is used for acquisition, channel sounding and leading
edge detection. The SFD helps a receiver to synchronize to the beginning of the data
portion of a frame. Only after establishing acquisition during the preamble, the receiver
knows that it is receiving the preamble of a packet. However, it does not know when to
expect the end of the preamble yet. It is the SFD1 that flags the end of the preamble and
the beginning of the PHY service data unit (PSDU). The PHR comes after the SHR and
contains data rate and frame length information. Finally, the data field is the part that
carries the communication data. In the following sections, the preamble and the SFD
structures are described, and ranging related MAC and PHY tasks and capabilities are
discussed, including counter management, crystal frequency offset management, and
quantification of range measurements and their confidence level.

Preamble
{16, 64, 1024, 4096} symbols

SHR preamble PHY header
(PHR)

Data

SFD
{8, 64} symbols

Fig. 6.8. Illustration of the IEEE 802.15.4a packet structure. The data part is BPM-BPSK modulated.
(BPM-BPSK: Burst Position Modulation-Binary Phase Shift Keying) (After [91].

1 Please refer to Section 6.3.6 for benefits of the SFD in ranging counter management.
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Table 6.1. Functionalities of ranging preamble and SFD.

Preamble Acquisition
Channel sounding
Leading edge detection

SFD Frame synchronization
Ranging counter management

Table 6.2. The basis preamble symbol set.

Index Symbol

S1 –1000010–1011101–10001–111100–110–100
S2 0101–10101000–1110–11–1–1–10010011000
S3 –11011000–11–11100110100–10000–1010–1
S4 00001–100–100–1111101–1100010–10110–1
S5 –101–100111–11000–1101110–1010000–00
S6 1100100–1–1–11–1011–10001010–11010000
S7 100001–101010010001011–1–1–10–1100–11
S8 0100–10–10110000–1–1100–11011–1110100

6.3.1 Preamble structure

According to the standard, the ranging preamble may consist of one of
{16, 64, 1024, 4096} symbols. The preamble length is specified by the application, and
its selection criteria are based on channel multipath profiles, SNR, and receiving PHY
capabilities (e.g., coherent/non-coherent reception, quality of search engine, and track-
ing capability). For instance, even the longest preamble does not help a receiving PHY
with a poorly designed search engine. Longer lengths such as {1024, 4096} are preferred
for low rate non-coherent receivers to improve SNR via more processing gain. Hence,
they can have a better TOA estimate.

According to the standard, the PHY notifies its application how good each range mea-
surement is via a parameter called the figure of merit (FoM). By using this feedback,
RDEVs can dynamically adapt the preamble length to channel conditions. Shortening
preamble length lowers channel occupancy, and it provides more transmission opportu-
nities for neighbor devices. However, it should be noted that acquisition is difficult with
short preambles at low SNR links.

The underlying symbol in the ranging preamble is one of the length-31 ternary
sequences, Si , in Table 6.2. Each Si of length Lts = 31 contains 15 zeros and 16 non-zero
codes, and has the much desired property of perfect periodic autocorrelation. In other
words, periodic correlation side lobes are zero, and what is observed at the receiver
between two consecutive correlation peaks is only the power delay profile of the chan-
nel (see Fig. 6.9). Thus, paths between autocorrelation peaks are ensured to be due to
multipath channel, but not because of correlation side-lobes.
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Fig. 6.9. (a) Preamble waveform Pi(t); (b) the magnitude of the received preamble in a multipath channel,
h(t); (c) correlation of the received preamble with Pi(t). Note that Tpri = 125 ns and Nsym = 3.

Similar to the signal parameter definitions in Chapter 5, ω(t) denotes the transmitted
UWB pulse with unit energy, Ts is the symbol duration, Es is the symbol energy, and Nf

is the total number of pulses per symbol.
Let Nsym denote the number of symbol repetitions within the preamble and Tpri repre-

sent the pulse repetition interval. Then, for the ith basis symbol Si , the preamble symbol
waveform wi(t) and the resulting preamble waveform Pi(t) can be written as

wi(t) =
√

Es

Nf

Lts−1∑
j=0

Si[j ]ω(t − jTpri
)
, (6.17)

Pi(t) =
Nsym−1∑

n=0

N[n]wi(t − nTs
)
, (6.18)
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where N = 11×Nsym . Note that the pulse waveform polarity vector for the entire preamble
is then,

Pi = N ⊗ Si , (6.19)

where the operation ⊗ stands for the Kronecker product.

6.3.2 Start of frame delimiter design

The SFD is used to establish frame timing. Upon detection of the SFD, the receiving
device knows that the PHY header is to arrive next. The SFD can consist of 8 or 64
symbols. The IEEE 802.15.4a PHY supports a mandatory short SFD (8 symbols) for
default mode (1 Mbps) and medium data rate, and an optional long SFD (64 symbols)
for the nominal low data rate of 106 Kbps. The longer SFD provides more processing
gain. Therefore, if one wants to design a communication system that has a long range,
the longer SFD should be preferred, because SNR gets lower at longer ranges and more
processing gain would be beneficial.

Let M denote a vector of ternary codes {−1, 0, +1} and assume that its length is
equal to the number of symbols in the SFD, Nsfd. Then, the SFD waveform Zi(t) can
be generated by spreading the outer sequence M with the basis symbol Si :

Zi(t) =
Nsfd−1∑
m=0

M[m]wi(t − mTs
)
. (6.20)

Then, the entire SHR preamble waveform Yi(t) can be expressed as

Yi(t) = Pi(t) + Zi(t − NsymTs). (6.21)

Note that the resulting SFD waveform coefficient vector becomes

Yi = M ⊗ Si . (6.22)

For generation of Pi and Yi , each 1 in the outer code M or N is spread as S1, −1 as
−S1 and 0 as 0 × S1.

In what follows, let Ml and Ms indicate outer sequences for long and short SFDs
respectively. They should have the following key properties.

Property I: Ml[k] = Ms[k], ∀ k, 0 ≤ k ≤ 7. The correlation template for SFD detec-
tion in high data rate receivers should be equal to the short SFD itself. By making
the first eight codes of Ml and Ms the same, the high data rate receivers are spared
from running a second correlator to detect whether the SFD being received is the
short one or the longer.

Property II: Ml[k] = Ml[k + 8], ∀ k, 0 ≤ k ≤ 7. By exploiting this feature, the high
data rate receiver can identify the long SFD, because its correlation output fires
twice while receiving the short SFD. This is due to repetition of the first eight
codes of Ml[k]. Hence, after the second firing, it can stop the correlator to save
energy.
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Property III:
∑7

k=0 Ml[k] = 0 and
∑7

k=0 Ms[k] = 0. The first eight codes in Ml

and Ms should be balanced. Therefore, when the correlation window is running
through the preamble, its output returns zero (see Fig. 6.10). In other words, due
to reduced number of correlation side lobes, detection performance for the SFD
improves.

Property IV :
∑Nsfd−1

k=0

(
2 × |Ml[k]| − 1

) = 0 and
∑7

k=0

(
2 × |Ms[k]| − 1

) = 0.
This requirement helps non-coherent receivers achieve a clear transition from the
preamble into the SFD during correlation.

A coherent receiver correlates the received waveform Yi(t) + n(t) with a template
matched to the SFD waveform. Then, assuming a single-path AWGN channel, the

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−20

0

20

40

60

80

Sample index

(a)

(b)

SFD correlator output (balanced SFD code)
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Fig. 6.10. (a) Illustration of the SFD correlator output in the case of a balanced SFD, which is
Ms = [0, 1, 0, −1, 1, 0, 0, −1]. Note that when the correlation window is in the preamble only
region, the output is zero. When it starts moving into the SFD region, the correlator output
returns side lobes until the SFD correlation peak. (b) The SFD correlator output when the SFD is
unbalanced, Ms = [0, 1, 0, 1, 1, 0, 0, −1]. Note that even during the preamble only part, the
correlator output does not remain at zero, but returns side lobes. This deteriorates SFD detection
performance at low SNRs.
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correlation output Ci (k) can be expressed as

Ci[k] =
∞∑

k=0

∫ (k+1)Ts+NsfdTs

kTs

(Yi(t) + n(t))Zi(t − kTs)dt. (6.23)

In Fig. 6.10(a), the correlator output for the short SFD case without noise is illustrated.
When the entire correlation window overlaps with the preamble part of the received
signal, no correlation side lobe is seen (for balanced SFDs only). This improves the SFD
detection probability. When the correlation window partially overlaps with the preamble
and the rest of it overlaps with the SFD field, side lobes occur. If any side lobe exceeds
a detection threshold or the SFD peak happens to be smaller than the threshold, when
noise is present, the SFD peak detection fails. This is called frame synchronization error,
and it results in a packet loss, because the receiver will not be able to decode the packet
header properly.

UWB receivers typically have to operate at very low sampling rates. This makes it
very difficult to effectively capture the energy at each individual multipath component
using Rake receivers, as it is extremely difficult to synchronize to each tap.Achip-spaced
sampling of the channel can be used to detect the chip-spaced observation of the channel
impulse response (CIR), which typically carries a fraction of the available energy of
the actual CIR (such as 30% [269]). Note that sampling at high rates (such as chip rate
or frame rate) can be achieved by using symbol-spaced sampling and multiple training
symbols, and shifting the signal by the desired sampling period at each symbol. Another
practical concern is the requirement to have a-priori knowledge of the received pulse
shape for matched filter (MF) implementation, which may change from one environment
to another and even between two multipath components [270]. Therefore, it is difficult
to exactly match to the received pulse shape, especially in analog implementation of a
template waveform.

Due to these practical concerns and limitations, energy detection-based implementa-
tion of UWB ranging becomes more feasible. Even though it suffers more from noise due
to the square-law device, it does not require an accurate timing or pulse shape matching.
The IEEE 802.15.4a uses BPSK-PPM modulation to support non-coherent reception.
Then, it becomes a consideration in design that the SFD should be detectable also via
non-coherent receivers.

In [271], it is given that for non-coherent detection of a ternary sequence Si , the
optimum template is its bipolar form, that is 2|Si | − 1. Accordingly, the non-coherent
receiver output can be expressed as

NCi[k] =
∞∑

k=0

∫ (k+1)Ts+NsfdTs

kTs

(
Yi(t) + n(t)

)2
Z̄i(t − kTs)dt , (6.24)

where

Z̄i(t) =
Nsfd−1∑
m=0

L−1∑
j=0

(2 |M[m]Si[j ]| − 1) ω(t − jTpri − mTs) . (6.25)
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Table 6.3. Autocorrelation peak-to-maximum side lobe (PMSL) and
peak-to-average side lobe (PASL) levels (in dB) of the SFD codes in
the IEEE 802.15.4a standard.

Coherent Non-coherent

PMSL PASL PMSL PASL

Ml 7.27 17.6 8.06 20.9

Ms 6.02 13.2 6.02 18.0

In Table 6.3, peak-to-maximum side lobe (PMSL) and peak-to-average side lobe
(PASL) values for both short and long SFDs in the IEEE 802.15.4a standard are given.
According to those values, one might think that non-coherent detection of the SFD should
have a better performance because of its higher PMSL and PASL. Even though it is true at
very high SNRs, the squaring operation enhances noise at low SNRs, and SFD detection
performance of the non-coherent detector suffers more than that of the coherent one.

6.3.3 PHR

The length of the PHR is 19 octets. The PHR consists of fields that indicate data rate,
frame length, ranging flag, preamble length, and error correction and detection bits. Each
of the data rate and preamble length is represented with two bits as shown in Fig. 6.11.
A value 1 for the ranging flag indicates to the recipient PHY that it is an RFRAME.

The PHR is transmitted at the mandatory data rate. The data rate for the data field of
the frame (see Fig. 6.8) is indicated within the data rate sub-field of the PHR. It is an
exception that for the low data rate option (100 kbps) the PHR is transmitted at the low
data rate. The extended SFD, which is 64 symbols long, is used as an indicator for the
low rate.

6.3.4 Ranging-related PHY PIB attributes

Between the RF firmware and the MAC, the PHY functions as an interface, and it
includes a management entity called the PHY layer management entity (PLME). The

PHR

Frame
length

Single error correct, double
error detect check bits

Ranging
flag

Number of preamble
symbol repetitions

Data
rate

00: Nsym = 16
01: Nsym = 64
10: Nsym = 1024
11: Nsym = 4096

00: 110 kbps
01: 850 kbps
10: 6.81 Mbps
11: 27.24 Mbps

Fig. 6.11. Structure of the PHR.
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interface provided by the PLME is used to invoke PHY layer management functions.
The database of parameters or attributes that are essential for setting up the PHY and
used for managing its operation is called the PHY PIB. For instance, maximum transmit
power level of a radio can be specified as a PHY PIB attribute. In the IEEE 802.15.4a
standard, there are only five ranging-related PHY PIB attributes. These are:

(i) phyPreambleSymbolLength
(ii) phyRangingCapabilities

(iii) phyRFRAMEProcessingTime
(iv) phyTxRMARKEROffset
(v) phyRxRMARKEROffset.

The phyPreambleSymbolLength is used for the UWB PHY only to specify the length
of the basis preamble symbol. 0 indicates that length 31 ternary sequence is used to
generate the preamble symbol, and 1 corresponds to length 127, which is only used in
the private ranging mode.

The phyRangingCapabilities provides ranging capabilities of the UWB PHY. If the
RDEV supports ranging, this attribute is set to 0x01. If crystal offset characterization is
supported, it is set to 0x02. If the RDEV is capable of conducting private ranging, then
its value should be 0x04.

The phyRFRAMEProcessingTime refers to the processing time it takes for the PHY
to handle an arriving RFRAME. The counting resolution is 2 ns. If two sequential
RFRAMEs arrive with separation longer than the time interval indicated by this attribute,
the PHY can keep up with the processing load.

The phyTxRMARKEROffset is used to specify the internal propagation time between
the ranging counter and the transmit antenna. Four octets are allocated for this attribute.
The resolution is 1/128th of a chip time at the mandatory chipping rate of 499.2 MHz.

The phyRxRMARKEROffset is used to specify the internal propagation time between
the receive antenna and the ranging counter. Four octets are allocated for this attribute.
The resolution is 1/128th of a chip time at the mandatory chipping rate of 499.2 MHz.

For accurate ranging, only the time-of-flight of a signal over the air should be
considered. Therefore, an internal propagation delay between an antenna and its
impedance-matching feed circuitry should be subtracted from the round trip propagation
time of the signal.

Knowing the values of internal propagation times is a non-trivial task. One method is
called a “loop-back’’ test. An on-chip self-test capability (not an RF transmission) for a
PHY can provide a means to identify such delays. A typical loop-back test architecture
is illustrated in Fig. 6.12, in which a test signal is generated and sent to the transmitter.
Then, the transmitter feeds it back to the receiver branch. The internal propagation delay
can be simply considered to be half the round trip travel time of the test signal. It is
important to attenuate the signal power level before it enters the receiver branch. Note
that a loop-back test induces added complexity to the PHY at the benefit of a calibrated
range estimate.
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Fig. 6.12. A loop-back test architecture for RF transceivers [272].

In [273], an on-chip or on-wafer loop-back test technique for 5 GHz IC transceivers
is explored. In [272], [274] and [275], techniques to improve loop-back tests are also
studied.

In the IEEE 802.15.4a standard, a calibration mechanism that is controlled by the appli-
cation is provided. The mechanism, when triggered by the application, causes its PHY
to invoke implemented calibration capabilities to characterize the internal propagation
time. Further details are given in Section 6.3.11.

6.3.5 MAC PIB attributes

Typically a list of MAC layer PIB attributes and variables that are accessible for the
application is referred to as MAC PIBs. In 802.15.4a, there are three ranging-related
MAC PIBs:

(i) macAckWaitDuration
(ii) macRangingSupported

(iii) macMaxFrameTotalWaitTime.

The attribute macAckWaitDuration describes, in number of data symbols, how
long to wait for an acknowledgement of a transmitted data frame (e.g. RFRAMEreq)
(Fig. 6.13). Before it expires, the RFRAMErep shall be received by the local device.
Let Nackw denote macAckWaitDuration. Its value depends on the PHY settings, and it is
calculated as

Nackw =
⌈

T B
ta

Tsym
+ (Nsfd + Nsym)Ts

Tsym
+ T ackw

phr + T ackw
psdu

Tsym

⌉
, (6.26)

where T ackw
phr is the duration of the PHR of an ACK frame, which is only two octets long,

T ackw
psdu is the five-octet-long ACK payload, and Tsym is the duration of the data symbol.

Note that the superscript of the turn-around time T B
ta is omitted in (6.26) without losing

generality.
The macRangingSupported attribute indicates whether ranging features are supported

at the MAC sublayer. It takes boolean values; and FALSE means that ranging features
are not supported.

The macMaxFrameTotalWaitTime, or Nmax
ftw , describes, in number of preamble sym-

bols, how long to wait for a frame intended as a response to a data request frame. For
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Fig. 6.13. Illustration of the macAckWaitDuration. Note that flight time Tt is negligible compared to the
turn around time, T B

ta . Delays between MAC and PHY interactions are omitted in the illustration.

instance, the response frame can be interpreted as the time-stamp report that follows
RFRAMErep, within the context of ranging. Then, the attribute value is given by

Nmax
ftw = T max

fr + LIFS

Ts
+ Nackw, (6.27)

T max
fr = (Nsym + Nsfd)Ts + Tphr + T max

psdu , (6.28)

where T max
fr is the maximum frame duration, Tphr is the duration of the PHR of a frame,

T max
psdu is the maximum PSDU length, and LIFS the frame spacing after a long frame.

The LIFS is set to 40Ts in the standard.
Let Nproc denote the time available for RDEV B in number of preamble symbols

to run leading edge detection algorithms and to prepare a precise time-stamp report.
Assume that B can start its processing for finding the leading edge at the NHL, while its
PHY starts transmitting the RFRAMErep. Then,

Nproc < Nmax
ftw − Tt + T B

ta

Ts
. (6.29)

6.3.6 Counter management for ranging

Ranging counters are used to track elapsed time between two events. Their management
is essential for high-ranging performance. From a local device perspective, the counter
starts with the departure of the SFD of an RFRAMEreq from its antenna, and the counter
stops when the SFD of an RFRAMErep arrives at its antenna as shown in Fig. 6.14.
These instants are referred to as RMARKER. Similarly, the counter of a peer device
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Fig. 6.14. Illustration of ranging counter start and stop events during packet transmission and reception.

starts when the SFD of an RFRAMEreq arrives at its antenna, and the counter stops
when the SFD of an RFRAMErep leaves its antenna.

It is possible that the ranging counter happens to be already running when one of the
above events occurs. This indicates that another ranging process is taking place. In this
case, what to record as a start or stop time will be the instantaneous value of the counter.

While receiving a frame, the ranging flag can only be read by B only after it starts its
ranging counter or captures a snapshot. Value 0 for the ranging flag in the PHR indicates
that the arriving frame is not an RFRAME. Therefore, the captured counter value should
be simply discarded.

The ranging counter is used as an abstraction in the standard; and its implementation
is not described. Note that the time resolution at which counters are incremented directly
impacts the achievable range resolution. Furthermore, in multipath channels counter
instantiation may not correspond to the first arriving pulse of the PHR. Therefore, leading
edge detection algorithms2 should be run in order to estimate this offset. Then, it should
be subtracted from the ranging counter value, before finalizing the range estimate.

6.3.7 Ranging figure of merit (FoM)

The figure of merit (FoM) indicates how accurate and reliable a range counter value is.
Therefore, for every range counter value, an FoM is produced by an IEEE 802.15.4a
device. The FoM consists of three subfields and an extension bit as shown in Fig. 6.15.

The confidence level is the probability that the detected arrival time of the leading
edge of a signal will deviate from the true arrival time by at most the confidence interval.

2 See Chapter 5 for detailed coverage of the leading edge detection techniques.
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Fig. 6.15. Ranging figure of merit and its subfields.

0 CI–CI
Signal
leading
edge

0

0.7

0.6

0.5

0.4

0.3|r(
t)

|

0.2

0.1

0
50 100 150

Time (ns)
200 250 300

Fig. 6.16. Confidence interval with respect to the true arrival of the signal leading edge.

As exemplified in Fig. 6.16, assume that the leading edge of a signal arrives at t = 100
ns and also that the reported confidence interval (CI) and confidence level (CL) are
25 ns and 90% respectively. This means that with 90% probability the arrival time falls
within [75, 125] ns. The confidence interval scaling factor (CISF) is used to extend the
range of the CI to below 100 ps and above 3 ns. Then, the effective confidence interval
CIeff becomes CIeff = CISF × CI ; clearly, it can be as low as 50 ps and as high as
12 ns. The standard does not mandate how to produce the CL, but considers it as an
implementation issue.

Assume that an RDEV is receiving an IEEE 802.15.4a preamble with Nsym = 128. If
it acquires the preamble signal at the second symbol, it can get processing gain via equal
gain combining (EGC) from the remaining 126 symbols. Thus, it has an opportunity to
improve the SNR by 21 dB, prior to making a judgment on the arrival time of the leading
signal edge. If it achieves acquisition at the 100th preamble symbol, then the available
processing gain becomes only 14 dB (10 log10 26). The correlator outputs after the EGC
in these two cases are shown in Fig. 6.17.

As the SNR increases, finding the leading edge becomes easier and the ranging error
gets smaller. With this in mind, one can simply relate the CL with the separation of two
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Fig. 6.17. Correlator output with EGC during reception of the IEEE 802.15.4a preamble with Nsym = 128,
once acquisition is achieved. (a) Acquisition at the second preamble symbol allows processing
gain of 21 dB, (b) acquisition at the 100th preamble symbol results in 14 dB processing gain for
leading edge detection. Note that the CL would be higher in (a).

events: the acquisition instant and the ending of the preamble. In other words, the earlier
the acquisition is within the preamble, the higher the CL is.

Finally, the FoM value of 0x80 is used to inform the upper layer that the ranging
counter values are not correct. Moreover, the FoM value of 0x00 is used when there is
no information about the quality of the corresponding range measurement. Untrustworthy
measurements are reported as 0x79.

6.3.8 Mitigation of clock frequency offsets

A local oscillator is used to generate time-reference for a device. A shift from the ideal
frequency of an oscillator causes frequency offsets, and consequently it alters the clock
cycle. Fig. 6.18 illustrates an ideal 500 MHz clock and two other clocks with ∓ 5%
frequency offsets with respect to the ideal clock. Any frequency offset would impact
performance of processes and applications that heavily depend on an accurate time base,
because devices observe time in number of their clock cycles. Ranging is one example.
As given in (6.15) and (6.10), frequency offsets cause ranging errors. Especially for
TW-TOA protocol where the turn-around time T B

ta can reach milliseconds, frequency
offsets can be very detrimental.



172 Ranging protocols

0 2 4 6 8 10 12

Time (ns)

500 MHz

525 MHz

475 MHz

Fig. 6.18. Illustration of two clocks with ∓ 5% frequency offsets with respect to an ideal clock of 500 MHz.
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Fig. 6.19. Illustration of counter management to mitigate clock frequency offsets for TW-TOA protocol.

As discussed in Section 6.2.3, the SDS protocol mitigates ranging error that is induced
by clock frequency offsets. It is also possible to improve ranging performance of the
TW-TOAprotocol by espousing the counter management scheme illustrated in Fig. 6.19.

Assume counters A1 and A2 are managed by A, and counters B1 and B2 by B. Let �i

denote the difference between the stop and start times of counter i. It is easy to see that
�A1 and �B1 measure T A

round(1 + eA) and T B
ta (1 + eB), respectively. In addition, �A2

measures the length of the PHR and PPDU of the RFRAMErep transmitted by B and
�B2 the length of the PHR and PPDU of the RFRAMEreq. Assume that Tframe denotes
the length of the PHR and PPDU, and that Tframe has the same value for RFRAMEreq

and RFRAMErep, when an ideal clock rate fi is considered. Then, �A2 and �B2 are
given by
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�B2 = fi

Tframe

(1 + eA)
(1 + eB) , (6.30)

�A2 = fi

Tframe

(1 + eB)
(1 + eA) . (6.31)

Note that B reports to A the values �B2 and �B1 . Define a correction factor υ, which
is computed by A and given by

υ
�=
√

�B2

�A2

. (6.32)

Rewrite (6.8) as

T̂t = T A
round(1 + eA)

2
− �B1

2
. (6.33)

After �B1 in (6.33) is substituted by �B1/υ, it can be easily shown that

εtw = TteA . (6.34)

Note that εtw does not depend on T B
ta anymore and that it is distance dependent.

Example 6.1 Devices A and B are 10 m apart from each other, and they are to perform
TW-TOA based ranging by exchanging IEEE 802.15.4a packets. Assume that instanta-
neous clock rates of A and B are 495 MHz and 510 MHz, respectively. In other words,
eA = −0.01 and eB = 0.02.

(i) If Tframe = 100 μs and T B
ta = 1 ms when measured with a 500 MHz clock, calculate

the turn around time and �B2 measured by B in number of clock cycles.
B runs its clock at 2% faster rate with respect to the 500 MHz clock. Therefore,

for the true turn around time of 1 ms, B counts 510 000 clock cycles.

�B1 = T B
ta (1 + eB)fi

= 1 × 10−3(1 + 0.02)500 × 106

= 510 000. (6.35)

With the 500 MHz clock, 100 μs long Tframe corresponds to 50 000 clock cycles. Note
that A transmits the frame according to its own clock cycle, which is 1% longer than
the ideal. Therefore, Tframe put into air by A is indeed 101.01 μs. B counts 51 515
clock cycles during this Tframe of 101.01 μs.

�B2 = fi

Tframe

(1 + eA)
(1 + eB)

= 51 515.15. (6.36)
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(ii) Compute �A1 and �A2 in number of clock cycles.

�A1 = (2Tt + T B
ta )(1 + eA)fi

= (2 × 33.3 × 10−9 + 1 × 10−3)(1 − 0.01)500 × 106

= 495 033 (6.37)

and

�A2 = fi

Tframe

(1 + eB)
(1 + eA)

= 500 × 106 100 × 10−6

(1 + 0.02)
(1 − 0.01)

= 48 529.4. (6.38)

(iii) What is the correction factor?

υ =
√

�B2

�A2

=
√

51 515.15

48 529.4
= 1.0303031. (6.39)

(iv) Compute the estimated time of flight in seconds, T̂t .

T̂t = 1

fi

(
�A1

2
− �B1

2υ

)

= 1

500 × 106

(
495 033

2
− 510 000

2 × 1.0303031

)
≈ 33.03 ns. (6.40)

(v) Compute the residual time of flight error.

εtw = T − T̂t

= 33.3 × 10−9 − 33.03 × 10−9

= 0.27 ns. (6.41)

The residual time of flight error in (6.41) is caused by the round-off errors in the
computations.

6.3.9 Time-stamp reports

Each time-stamp report contains the ranging counter start and stop values and the FoM.
Management of counter values is explained in Section 6.3.6, and the FoM is discussed
in Section 6.3.7.
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6.3.10 Ranging-related service primitives

This section is intended more for practicing engineers and implementers rather than
students. As stated in Section 6.1, primitives are used to pass attributes between layers
and to trigger events. In this section, ranging-related primitives and attributes defined in
the IEEE 802.15.4a standard and their use cases are discussed.

MCPS-Data.request
This primitive is generated at the NHL and issued to the local MAC sublayer, when
ranging needs to be done with a peer entity. It consists of four ranging parameters:

(i) msdu
(ii) msduLength

(iii) UWBRanging
(iv) UWBPreambleSymbolRepetitions.

The msdu contains the MSDU to be transmitted by the MAC sublayer entity, and
the msduLength shows its length. The UWBRanging is an indicator for ranging support,
and it can take one of three values: OFF, ALL and HEADER. The OFF indicates that
either ranging is not supported or not to be used for this particular transmission. ALL
means ranging operation is supported and ranging counters should be enabled at the
local PHY entity. HEADER denotes ranging support only by using the ranging flag
without enabling the ranging counters. The UWBPreambleSymbolRepetitions shows the
number of symbol repetitions the local PHY entity should use in the preamble of the
corresponding frame.

PD-Data.request
This primitive is generated by a local MAC sublayer entity upon reception of an MCPS-
Data.request primitive, and issued to the local PHY entity to initiate ranging transaction
with a peer device. It consists of the following parameters:

(i) psdu
(ii) psduLength

(iii) UWBRanging
(iv) UWBPreambleSymbolRepetitions.

The psdu is the PSDU to transmit, and psduLength is its length. If the UWBRanging
is set to ALL, a ranging capable PHY would start its ranging counters as soon as the
RMARKER leaves its antenna (see Fig. 6.14). The support for ranging operation is later
announced by setting the ranging flag in the PHY header of the frame.

Upon reception of this primitive, the local PHY entity forms a PPDU and attempts to
transmit it to a peer entity. When the local PHY entity completes the transmission of the
PPDU, it issues the PD-Data.confirm primitive.

PD-Data.confirm
This primitive is generated by the local PHY entity and issued to the local MAC sublayer
entity in response to a PD-Data.request. It passes three attributes:
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(i) status
(ii) UWBRangingCounterStart

(iii) UWBRangingCounterStop.

The status is set to SUCCESS if the PPDU is successfully transmitted. Otherwise, it
takes a value that refers to an error code. Handling of the ranging counters is somewhat
tricky. Only if the frame to be transmitted in response to the PD-Data.request primitive
is an RFRAMEreq, then the value of the UWBRangingCounterStart corresponds to the
local time at which the RMARKER of the RFRAMEreq leaves the transmit antenna. If
the frame to be transmitted is an RFRAMErep, then the time at which the RMARKER
of the RFRAMErep leaves the transmit antenna is stored in UWBRangingCounterStop.

MCPS-Data.confirm
This primitive is generated by the local MAC sublayer in response to an MCPS-
Data.request primitive, upon reception of a PD-Data.confirm primitive. It takes the
following parameters from the PD-Data.confirm primitive and passes them to the NHL:

(i) status
(ii) UWBRangingCounterStart

(iii) UWBRangingCounterStop.

Hence, the NHL is notified of the result of its request to transmit.

PD-Data.indication
This service primitive is generated at the PHY entity and issued to the local MAC entity.
Its function is to notify the MAC sublayer that a PSDU is received from a peer PHY.
The primitive includes the following parameters:

(i) UWBPreambleSymbolRepetitions
(ii) UWBRangingReceived

(iii) UWBRangingCounterStart
(iv) UWBRangingCounterStop
(v) UWBRangingFOM.

The UWBPreambleSymbolRepetitions refers to the preamble symbol repetitions,
Nsym, of the received PPDU. The value ‘ON’for UWBRangingReceived indicates that the
received frame is an RFRAME. If particularly it is an RFRAMEreq, the local time that
the RMARKER of the frame arrives at the receive antenna should be recorded and passed
by parameter UWBRangingCounterStart. Thus, UWBRangingCounterStart points to the
beginning of the turn around time T B

ta . If the received frame is an RFRAMErep, then
local time for the RMARKER arrival should be passed by UWBRangingCounterStop.
The UWBRangingFOM shows the one-octet-long FoM report for the received RFRAME.

MCPS-Data.indication
This primitive is generated by the MAC sublayer on receipt of a data frame, and is
issued to the NHL. This primitive takes the parameters listed for the PD-Data.indication
primitive and passes them to the NHL.
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6.3.11 Ranging-related management primitives

These primitives are typically used for management of local tasks by local entities. They
do not trigger over-the-air message exchange with peer entities.

MLME-Sounding.request
This primitive is used to request channel sounding information from the PHY entity. It
is generated by the NHL and issued to the MAC layer management entity (MLME). It
does not pass any parameters.

PLME-Sounding.request
It is generated by the MLME and issued to the PHY layer management entity (PLME).
The request is for the PHY to pass sounding information to the NHL. Thus, leading edge
search can be performed by the application instead of PHY itself.

PLME-Sounding.confirm
This primitive is generated by the PLME and issued to the MLME. It reports the result
of a channel-sounding request from the PHY. The report consists of three parameters:

(i) status
(ii) SoundingSize

(iii) SoundingList.

The status indicates the status of the channel-sounding attempt. The SoundingSize
indicates the number of sounding points being reported. The SoundingList consists of the
amplitudes and times of all the sounding points. The amplitudes are reported relatively,
and therefore they do not have a unit.

MLME-Sounding.confirm
It is generated by the MLME and issued to the NHL in response to a
MLME-Sounding.confirm primitive. It relays the parameters passed by the PLME-
Sounding.confirm primitive.

MLME-Calibrate.request
A set of primitives is used to calibrate for internal propagation delays (e.g. propagation
delay between a modulator and an antenna, etc.). The MLME-Calibrate.request primitive
is generated by the NHL and issued to the MLME. It does not pass any parameter, but
requests RMARKER offset information from the MLME.

PLME-Calibrate.request
It is generated by the MLME upon receipt of the MLME-Calibrate.request primitive, and
issued to the PLME. It causes the local PHY to return RMARKER offset information,
if it has calibration capability.
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PLME-Calibrate.confirm
This primitive is generated by the PLME and issued to the MLME. It reports the result
of the calibration request from the PHY. The report consists of three parameters:

(i) status
(ii) CalTxRMARKEROffset

(iii) CalRxRMARKEROffset.

The status indicates the status of the calibration attempt. If calibration information is
available, it is set to SUCCESS. The CalTxRMARKEROffset is the propagation time from
the modulator, which triggers the ranging counter, to the transmitter antenna. Similarly,
the CalRxRMARKEROffset is the propagation time from the receiver antenna to the
demodulator.

MLME-Calibrate.confirm
This primitive is generated by the MLME and issued to the NHL. It simply relays the
PHY response given by the PLME-Calibrate.confirm primitive to the NHL.

6.3.12 Exemplified use of the primitives via the TW-TOA protocol

This section provides an example use of primitives, and illustrates how primitive param-
eters at the NHL, MAC and PHY protocol layers are managed during the TW-TOA
protocol-based ranging.

Let local device and peer device denote devices that initiate ranging and respond to
the ranging request, respectively. Furthermore, assume that the local and peer device
PHY entities are ranging capable.

In the IEEE 802.15.4a standard, as explained in Section 6.3.10, the MCPS-
Data.request primitive is generated at the local NHL and issued to the local MAC to
initiate a ranging process. In the example illustrated in Fig. 6.20, UWBRanging is set to
ALL to let the PHY use all of its ranging capabilities and UWBPreambleSymbolRepeti-
tions to 16 to perform ranging with the shortest preamble. The local MAC sublayer entity
passes these parameters via the PD-Data.request primitive to the local PHY entity.

The counter snapshot shows 100 when the RFRAMEreq leaves the antenna of the
local device. The transmission status and the counter start value are reported back to the
NHL via PD-Data.confirm and MCPS-Data.confirm primitives. Upon reception of the
RFRAMErep, the counter snapshot is 1567. The FoM field indicates that the confidence
interval and confidence level of the leading edge detection are 1 ns and 99%, respectively.

In Fig. 6.21, transactions between protocol layers of the peer device are illustrated.
Counter start and stop values are given as 617 and 1917, respectively. The difference,
which is 1300, is the turn around time in number of clock cycles (or chip intervals).
Assume that it is reported to the local device within the time-stamp message.

Ultimately, the local device knows that the total round-trip time equals 1467 clock
cycles and also that 1300 clock cycles are due to processing delay at the peer device.
Then, the resulting one-way flight time corresponds to 83 chip intervals. With a 500 MHz
clock, the chip interval is 2 ns. Thus, the distance estimate becomes 49.8 m.
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UWBRangingCounterStart : N/A
UWBRangingCounterStop: 1567
UWBRangingTrackingInterval: 0
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UWBRangingFOM: 0×37
}
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Fig. 6.20. Exemplified use of the TW-TOA protocol with primitive transactions and parameter settings
between entities of the local device.
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{UWBPreambleSymbolRepetitions: 16
UWBRangingReceived: ON
UWBRangingCounterStart : 617
UWBRangingCounterStop: N/A
UWBRangingTrackingInterval: 0
UWBRangingOffset: 1
UWBRangingFOM: 0×3E
}

MCPS-Data.request

{UWBRanging : ALL
UWBPreambleSymbolRepetitions: 16

}

MCPS-Data.confirm

{status : SUCCESS
UWBRangingCounterStart : N/A
UWBRangingCounterStop: 1917
}

PD-Data.request

{UWBRanging : ALL
UWBPreambleSymbolRepetitions: 16

}

PD-Data.confirm

{status : SUCCESS
UWBRangingCounterStart : N/A
UWBRangingCounterStop: 1917
}

Counter stop : 1917

Fig. 6.21. Exemplified use of the TW-TOA protocol with primitive transactions and parameter settings
between entities of the peer device.



180 Ranging protocols

6.4 Problems

(1) For the problem in Example 6.1, assume that Tframe parameter for the RFRAMEreq

is three times longer than Tframe parameter for the RFRAMErep. How does this
change the correction factor? Does εtw change? Justify your answers.

(2) How will εtw in Example 6.1 change, if fixed point arithmetic is used in
computations? Compute all the counter values and the correction factor.

(3) Devices A and B are 15 m apart from each other, and they are to carry on the type
I differential two-way ranging protocol with IEEE 802.15.4a packets. Assume that
eA = 0.02 and eB = 0.01 with respect to an ideal 500 MHz clock. The preset waiting
time is T = 100 ms, and it is known a priori to both devices. Also assume that
tBoff = 1 ms and tAoff = 0.
(a) How would clock frequency offsets degrade the range estimation performance?

Derive an expression for the range estimate.
(b) Solve the same problem for the type-II ranging protocol.



7 Special topics in ranging

This chapter discusses three special topics related to ranging. First, techniques to mitigate
various types of interference are presented. Second, carrier sensing methods that can be
used to improve ranging performance for IEEE 802.15.4a networks are briefly reviewed.
Finally, an overview of mechanisms that provide privacy and security for ranging signals
and range information is given.

In this chapter, it is assumed that ranging is performed via frames that consist of
preamble, start of frame delimiter (SFD), physical layer header (PHR) and payload, and
also that the preamble is used for ranging (similar to the IEEE 802.15.4a systems studied
in the previous chapter). Frames with longer preambles provide a higher processing gain
for ranging due to improved SNR and lead to better ranging accuracy. This is because
at high SNRs, detection of the direct path signal is easier. On the other hand, employing
a longer preamble induces a drawback that the preamble becomes more vulnerable to
interference and jamming attacks. In case that acquisition of a frame fails, the frame
needs to be retransmitted.

Interference can be detrimental to ranging accuracy, even if it does not cause acqui-
sition failure. At times the leading signal path gets buried under interference, so that
it may be quite difficult to determine its arrival time. Remember from Chapter 6 that
performance of ranging protocols is very sensitive to timing. This mandates rapid han-
dling of all ranging related transmissions. If retransmissions of ranging frames were
scheduled with high priority, regular data traffic would be penalized, and throughput and
latency for the data traffic would degrade. Furthermore, each retransmission may poten-
tially interfere with transmission of peer devices in the same network. It is not energy
and throughput efficient to retransmit very long frames. All these factors suggest that a
ranging receiver should deploy interference mitigation techniques to sustain its ranging
performance.

Regulating multiple-access via carrier sensing in UWB networks may improve
throughput and ranging accuracy, because carrier sensing prevents collisions and low-
ers the number of retransmissions. In [276] some novel approaches are introduced to
improve carrier-sensing capability in IEEE 802.15.4a networks. A part of this chapter
provides an overview of these standardized techniques.

In communication networks, packet preambles are very structured and unprotected.
Therefore, during ranging signal exchanges, snooper and imposter devices can exploit
the publicly known signal structures to figure out their relative distances with legitimate
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ranging devices. Furthermore, they can be deceptive to ranging receivers by replay-
ing preamble waveforms. Therefore, it is essential to develop privacy and security
mechanisms against malicious devices.

In summary, the first part of this chapter is allocated to discussion of various inter-
ference types and interference mitigation techniques. It is followed by a section that
provides an overview of so-called coded payload modulation (CPM) techniques for car-
rier sensing. The CPM provides clear channel assessment to improve throughput and
range accuracy without impacting frame lengths. Finally, privacy issues for ranging are
addressed and practical defense mechanisms are discussed.

7.1 Interference mitigation

Interference may corrupt different parts of a received frame. Figure 7.1 illustrates four
different interference scenarios. Each interference scenario is denoted with a letter. As
shown in case A, if an interference signal overlaps with the preamble of a frame, some
preamble symbols may get corrupted and those symbols cannot be used for SNR improve-
ment. This type of interference does not necessarily cause acquisition failure, but it
impacts range accuracy because the achievable processing gain decreases.

If interference affects the SFD part of a frame (case B), SFD detection may fail
and frame synchronization is lost. Consequently, the PHR and payload data cannot be
decoded. Furthermore, the ranging counter values that entirely rely on timing of the SFD
detection become meaningless. Hence, retransmission is required.

The PHR contains data rate and frame length information according to the IEEE
802.15.4a standard. If the data rate field of the PHR gets corrupted (case C) irrecoverably,
it becomes impossible to make use of the payload data. Even if the receiver successfully
acquires and performs leading edge detection by processing the preamble and the SFD
parts of the frame, the source of the frame cannot be identified and TOA information
will be of no importance. Then, retransmission becomes necessary.

The payload consists of MAC header and payload. If interference damages the MAC
header (case D), the sender of a frame cannot be identified. In this case, even after
successful acquisition and synchronization, the MAC payload becomes useless.

SFD

A

B

C

D

Preamble PHR Payload

Fig. 7.1. Illustration of cases in which interference overlaps with various parts of a received frame.
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Two types of interference for UWB signals are multiuser interference (MUI) and
narrowband interference (NBI). Both MUI and NBI have been well studied in the litera-
ture for UWB data communication. On the other hand, interference mitigation for UWB
acquisition and ranging still remains an active research area.

A UWB receiver can process the preamble by one of template matching (coherent),
energy detection (ED) or transmitted-reference (TR) schemes. Although coherent rang-
ing is superior in general, ED receivers offer advantages such as simplicity, operability
at sub-Nyquist sampling rates (which determines the range resolution), and low cost, as
pointed out in Chapter 5. They are also more resilient to pulse shape distortion, but they
are less favored in practice because of their poor performance in the presence of MUI
and NBI. This is because interference suppression techniques such as those for CDMA
systems are not readily applicable to simple non-coherent receivers.

Typically, UWB ranging receivers obtain processing gain by combining a number of
signal samples according to a transmitted waveform pattern [258]. However, in the pres-
ence of interference, the interfering signal may be regarded as a leading edge. Therefore,
prior to any combining operations, it is crucial to remove NBI and MUI to the utmost
extent for accurate ranging.

7.1.1 Narrowband interference mitigation

There exist legacy or other devices that operate in the UWB spectrum. For instance, IEEE
802.11a WLAN systems operate at 5.2 GHz and may interfere with IEEE 802.15.4a
devices. Therefore, it is of great importance to limit interference between UWB and
narrowband systems.

Assume that a sinusoidal signal i(t) with frequency fi interferes with UWB signal
s(t). Let fL and fH denote the lower and higher cutoff frequencies of the UWB signal,
respectively, such that fL<fi<fH, and

i(t) = A sin(2πfit + φ) . (7.1)

In coherent processing according to Fig. 7.2, the received signal r(t) is first fed into a
bandpass filter (BPF) with frequency response H(f ). If we consider an ideal BPF at the

i (t)

r (t) y (t) z (t) z [n]
s (t)

n (t)

Template
generator

s (t)

Correlator
y (t) * s (t) 

Integrator

∫
Quantization

(ADC)
BPF
h(t) LNA

Fig. 7.2. Coherent processing of received UWB signal.
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receiver RF front-end, H(f ) can be expressed as

H(f ) = U
(
f − fL

)− U
(
f − fH

)
, (7.2)

where U(f ) is the unit step function defined as

U(f ) =
{

1 , if f > 0

0 , otherwise
. (7.3)

Next, the filter output is amplified, and then correlated with a template s(t). The
correlation output is integrated and quantized. Typically, NBI is much stronger than a
received UWB signal. Therefore, if the maximum power of i(t) is outside the dynamic
range of the LNA, the NBI can easily saturate it. One practical solution is, if the center
frequency fi of the interference is known, to add a notch filter with a null at fi before
the LNA.

The frequency spectrum Hno(f ) of the ideal notch filter hno(t) is given in [277] as

Hno(f ) = 1 −
[
U

(
f − fi + Bno

2

)
− U

(
f − fi − Bno

2

)]
, (7.4)

where Bno denotes the width of the spectral notch.
Atypical approach to suppress NBI with multiple tones is to divide the UWB spectrum

into subbands and then deactivate the subband that corresponds to the frequency band
of a narrowband device [74, 278]. This can be achieved using a receiver that employs
a filter-bank as shown in Fig. 7.3.

There are also other methods to generate spectral nulls at all interfering frequencies.
In [279], the template waveform q(t) is constructed as a linear combination of Nort

orthogonal waveforms to be able to detect several types of UWB pulses by simply
adjusting scaling coefficients of each waveform, i.e.

q(t) =
Nort∑
j=1

�jsj (t), (7.5)

where
∫

sk(t)sl(t)dt = 0 for k �= l and �j is the scaling coefficient for the j th waveform.
In [280], a multicarrier template waveform that consists of several subband pulses is

BPF
h(t)

Template
generator

s (t)

Correlator
y (t) ∗ s (t)

Integrator

∫
Quantization

(ADC)LNA∑
r (t)

h1(t)

h2(t)

hN(t)

y (t) z (t) z [n]

Fig. 7.3. A receiver architecture to suppress known multitone NBI.
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Fig. 7.4. A receiver architecture that uses a multicarrier template generator to mitigate NBI (After [280]).
Note that Ninit = 1 and fs = �f .

used to mitigate NBI. The template is correlated with the received signal (see Fig. 7.4).
Assume that the template is formed from NT subcarriers with a frequency spacing of
�f , starting at frequency Ninit�f . Then, the approximate template can be expressed as

q̃(t) = 1

NT

Ninit+NT−1∑
n=Ninit

Gb(n�f )gα(t)ej2πn�f tdf , (7.6)

where gα(t) = e
− αt2

τ̂2 , with τ̂ representing half the subcarrier pulse width, and Gb(n�f )

is the Gabor transform of q(t), given by

Gb(n�f ) =
∫

q(t)gα(t − b)e−j2πn�f tdt . (7.7)

Another approach to mitigate NBI is to design a transmit pulse shape that generates
notches at target interference frequencies. A pulse design-based scheme that creates a
null at a particular frequency is presented in [281]. This approach is not very feasible due
to transmit/receive antenna effects that may distort pulse shape and frequency-dependent
fading in UWB channels.

7.1.2 Multiuser interference models

Users of a UWB network share a common spectrum. Therefore, management of multiple-
access within the same spectrum is important. One multiple-access approach is to assign
a unique time-hopping (TH) or direct sequence (DS) code to each user. If orthogonality
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of the codes is achieved, users can transmit simultaneously without degrading detection
performance of one another.1 Otherwise, cross-correlation properties of the codes deter-
mine the performance loss when simultaneous transmissions occur. In mesh networks
this approach increases receiver complexity, because now each receiver should be capa-
ble of acquiring multiple unique codes. This burden on the receiver can be lowered if
codes are assigned not on a per user basis, but per network. The IEEE 802.15.4a standard
takes the latter approach and assigns only two unique ternary codes for each frequency
band. In other words, in an IEEE 802.15.4a network, the preamble of a transmission can
have one of at most two different waveforms.

MUI during preamble reception impacts acquisition and ranging. If the interferer
transmits the same code as the desired user, the receiver may lock onto the interference
signal. This leads to acquisition failure. If the interference buries the direct path signal,
range accuracy also suffers as explained earlier. The statistics of the MUI determine how
much ranging accuracy is affected by the MUI.

As discussed in Chapter 2, in a TH IR-UWB system, each user divides each of its
symbol durations into Nf time intervals called frames and transmits one UWB pulse in
each frame. In addition, in order to provide robustness against MUI, the positions of the
pulses in different frames are determined according to TH codes that are specific to each
user. In such a system, the received signal from K users can be expressed as

r(t) =
K∑

k=1

L(k)∑
l=1

α
(k)
l s(k)

(
t − τ

(k)
l

)
+ n(t) , (7.8)

where n(t) is AWGN with two-sided power spectral density N0/2, α
(k)
l and τ

(k)
l are

the channel coefficient and delay of the lth path for the signal received from user k,
respectively, and L(k) is the number of multipath components for user k. In addition, the
signal s(k)(t) related to user k is given by

s(k)(t) =
√

Es

Nf

∞∑
j=−∞

a
(k)
j ω

(
t − jTf − c

(k)
j Tc

)
, (7.9)

where the notations are adopted from (5.6); i.e. Es represents the energy of a ranging
symbol, a

(k)
j ∈ {−1, +1} is the polarity code (or a ternary code, a

(k)
j ∈ {−1, 0, +1}, in

general) for user k, Tf is the frame duration, c
(k)
j ∈ {0, 1, . . . , Nh − 1} is the TH code

for user k, with Nh denoting the number of chips per frame, ω(t) represents the received
UWB pulse with unit energy, and Tc is the chip duration.2

Note that the use of ternary codes for a
(k)
j makes it easier to generate signals with

perfect autocorrelation property,3 which is useful for accurate range estimation, as studied
in Chapter 6.

1 In practice, due to asynchronism and multipath propagation, the orthogonality of signals from different
users cannot commonly be maintained at the receiver.

2 Note that Nf , Tf , and Tc can also depend on the user index k in general.
3 For perfect autocorrelation property, the TH codes are selected as c

(k)
i = c

(k)
j ∀i, j for the preamble.
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In order to investigate the effects of MUI in UWB systems, assume that c
(k)
j = 0

∀ k, j and consider a correlation receiver that obtains the decision variables for ranging
as4 [282]

Zτ =
Nf −1∑
j=0

a
(1)
j

∫ τ+(j+1)Tf

τ+jTf

r(t) ω(t − jTf − τ)dt (7.10)

= Eτ + Iτ + Nτ , (7.11)

where Eτ is the captured signal energy, Nτ is the output noise distributed as
N (0, N0Nf /2), and Iτ is the MUI, given by

Iτ =
√

Es

Nf

K∑
k=2

Nf −1∑
m=0

∞∑
j=−∞

L(k)∑
l=1

a
(k)
j α

(k)
l Rω

(
(j − m)Tf + τ

(k)
l − τ

)
, (7.12)

with Rω(·) representing the autocorrelation function of ω(t). Quantification of the impact
of MUI on ranging performance depends on characteristics of Iτ . While the distribution
of Iτ is assumed to be Gaussian in many studies [283, 284], the observation in [285]
shows that the Gaussian approximation is not always accurate for TH IR-UWB systems.
This suggests that the Gaussian distribution may not be a good model of Iτ for certain
scenarios. In [286], distribution of MUI in TH-PPM UWB systems is studied assuming
that interference within different frames is statistically independent. Thus, the probability
density function of overall MUI, pI (x), for K − 1 interfering users is modeled as a
weighted sum of Gaussian PDFs with different mean and variance, and is given by

pI (x) =
n∑

i=0

c̃i√
2π σi

e
− (x−μi )

2

2σ2
i , (7.13)

where n = Nf (K − 1), c̃i is the weight coefficient, and μi and σ 2
i are the mean and

variance of the ith PDF, respectively. This is also referred to as the Middleton Class A
noise [287].

In [282], MUI is modeled by the Laplacian distribution, which provides better
characterization of MUI for MF receiver structures than the Gaussian distribution does.

7.1.3 Multiuser interference in IEEE 802.15.4a networks

The MUI distribution models in the previous section are not directly applicable to IEEE
802.15.4a networks. Some of the reasons for this include a limited support for simul-
taneously operating piconets (SOPs), assignment of different waveform structures for
preamble and payload, and a wide dynamic range for the preamble length to payload
length ratio.

The frequency band plan of the IEEE 802.15.4a standard specifies 16 frequency
channels, and use of only two different preamble sequences is allowed within each band,

4 For modeling MUI in the text, an MF-based decision variable is considered.
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Fig. 7.5. Illustration of the impacts of MUI on ranging. The single user preamble interference case in
a single-path channel without noise is considered. (a) Preamble correlator output when the input
is only from the desired user’s preamble. (b) Preamble correlator output when weaker interfering
preamble arrives earlier than the desired user’s preamble. (c) Preamble correlator output when
weaker interfering preamble arrives later than the desired user’s preamble. (d) Preamble correlator
output when stronger interfering preamble arrives later than the desired user’s preamble.

one for each SOP. For example, for channel 0, only sequences S1 and S2 are assigned
(please see Table 6.2). Thus, multiuser preambles are constructed only from either S1

or S2.
Assume that the MUI comes from the same code user. In other words, both the desired

user and multi-user preambles are constructed from symbol S1 with duration Ts. Remem-
ber from Chapter 6 that a key property of the ranging symbols is their perfect periodic
autocorrelation. When no MUI is present, the receiver correlator output would return
peaks with period Ts as shown in Fig. 7.5(a). The MUI, when present, also generates
periodically repeated peaks at the correlator output as illustrated in Fig. 7.5(b)–(d).
Assume that the energies of the desired user and MUI correlator peaks are Ed and Em,
respectively and also that the first desired user peak arrives at time td and the first MUI
peak at tm. When tm < td and Em < Ed (see Fig. 7.5(b)), the receiver may lock onto the
desired signal peaks for acquisition, but the MUI peak is subject to be detected as the
leading path. When tm > td and Em < Ed, the receiver is more likely to lock onto the
desired signal and the MUI would look like another multipath component following the
strongest path (see Fig. 7.5(c)). Of course, if the channel delay spread of the MUI in
multipath channels is quite long such that it causes interference to the next correlator
peak of the desired user, finding the leading path will be quite challenging. When tm > td

and Em > Ed, the receiver may simply lock onto the MUI peaks for acquisition, and
consequently ranging with the desired user may fail. In practice, receiver behavior for
acquisition depends on threshold settings and peak selection algorithms.
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When the MUI and desired user symbols are not from the same code, the cross-
correlation properties of the codes impact ranging and acquisition. Codes assigned to an
IEEE 802.15.4a channel are not orthogonal.Therefore, in addition to the cross-correlation
peaks, now the receiver has to deal with multiple side lobes. It would be almost impossi-
ble to distinguish multipaths of the desired user channel from the cross-correlation side
lobes. If MUI corrupts only a portion of the desired user preamble, it may be possible
to mitigate the impact of interference, although it requires computationally complex
algorithms.

While perfectly balanced ternary sequences (PBTS) are used for the preamble, the
data modulation adopts the BPM-BPSK scheme. Remember from Chapter 2 that the data
symbol interval Tsym is divided into two halves in the IEEE 802.15.4a standard. Each half
further consists of an active interval and a guard interval as shown in Fig. 7.6(a). Polarity
of the burst and whether it is transmitted in the active interval of the first half or that of
the second determine the values of the two bits for the BPM-BPSK modulation. Note
that a burst is not allowed to be transmitted within guard intervals. For accurate modeling
of the interference between the payload of the interfering user and the preamble of the
desired user, one must analyze the cross-correlation properties of the PBTS waveforms
with burst-hopping waveforms. By properly designing burst-hopping sequences, impacts
of payload interference on the IEEE 802.15.4a preamble can be minimized. Fig. 7.6
illustrates an IEEE 802.15.4a data symbol structure in (a) and relative positioning of
a preamble pulse with respect to the data burst in (b), (c) and (d) for Tsym = Tf . In
Fig. 7.6(b), the preamble pulse falls onto the guard interval of the data symbol. Since the
pulse repetition interval (PRI) is equal to Tsym, in this particular instance no preamble
pulse collides with a data burst for a single-path channel. Figure 7.6(c) illustrates a case

Possible burst positions
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Tf

Possible burst positionsGuard interval

1

1

1

1

32

32

32

2 8 32

Guard interval
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(b)
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Fig. 7.6. Illustration of the structure of the IEEE 802.15.4a data symbol. (a) One data symbol.
(b) Preamble frame interval Tf is equal to Tsym and the interfering preamble pulse arrives in the
guard interval of the data symbol. (c) A preamble pulse overlaps with the burst. (d) A preamble
pulse arrives within the fourth bin of the second half of the data symbol, while the burst is
received in the fourth bin of the first half of the symbol.
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Table 7.1. IEEE 802.15.4a implementation options.

Code length Tsym(ns) Tf (ns) Rpp for Nsym = {16, 64, 1024, 4096}
31 8205.13 32.05 {0.0019, 0.0075, 0.1205, 0.4820}
31 1025.64 32.05 {0.0151, 0.0603, 0.9640, 3.8560}
31 128.21 32.05 {0.1205, 0.4820, 7.7117, 30.8470}
31 64.10 32.05 {0.2410, 0.9640, 15.4247, 61.6987}

31 8205.13 128.21 {0.0075, 0.0301, 0.4820, 1.9282}
31 1025.64 128.21 {0.0603, 0.2410, 3.8563, 15.4253}
31 512.82 128.21 {0.1205, 0.4820, 7.7126, 30.8506}
31 64.10 128.21 {0.9641, 3.8565, 61.7035, 246.8142}

127 8205.13 8.0128 {0.0019, 0.0077, 0.1234, 0.4937}
127 1025.64 8.0128 {0.0154, 0.0617, 0.9874, 3.9495}
127 128.21 8.0128 {0.1234, 0.4937, 7.8986, 31.5944}
127 32.05 8.0128 {0.4937, 1.9748, 31.5969, 126.3876}

in which catastrophic collisions are inevitable between preamble pulses and data bursts,
if no burst hopping is used. In Fig. 7.6(d), the preamble pulse and the data burst arrive
at different halves of the Tsym, and they do not collide.

It is important to know that the IEEE 802.15.4a standard offers settings in which
preamble and payload lengths vary a lot. Most implementation options of the IEEE
802.15.4a standard are shown in Table 7.1. The code length indicates the length of the
underlying PBTS used for the preamble. Rpp denotes the ratio of the preamble length
to the payload length for preamble symbol repetitions Nsym of 16, 64, 1024 and 4096.
Payload length is taken as 1029 symbols, which is the longest allowed. Even with the
longest payload size, Rpp can be as high as 246.81. This means that in many cases the
preamble of a multi-user transmission would interfere with the preamble of the desired
user. A-priori probabilities of the preamble-to-preamble and payload-to-preamble inter-
ference cases should be considered in conjunction with their corresponding interference
models in MUI analysis for IEEE 802.15.4a networks. The preamble-to-preamble inter-
ference can be seen in two forms, as explained earlier, due to code diversity. Key steps
for a complete MUI analysis consist of the following items.

• Modeling MUI of the preambles at the acquisition correlator output, when the other
users transmit the same preamble as the desired user.

• Modeling MUI of the preambles at the acquisition correlator output, when the other
users transmit a different preamble from the desired user.

• Modeling MUI of the multi-user payload at the acquisition correlator output.
• Calculating Rpp.
• Determining a-priori probabilities for preamble-to-preamble interference and

payload-to-preamble interference from Rpp.
• Modeling the total MUI by factoring a-priori probabilities of the three events.
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Typically, a receiver combines correlator outputs separated by Nsep = Ts/Tsmp sam-
ples to improve SNR prior to leading path detection, where Tsmp is the sampling interval.
Even though such a combining operation improves the SNR, without any pre-filtering it
can carry the interference into the correlator output. This is unfavorable, because clearly
the interference may bury the leading path or be detected as the leading path itself. In
either case, ranging performance gets degraded. One practical approach to mitigate tran-
sient interference is to apply a non-linear filter to the correlator output samples z[n]. One
example for a non-linear filter is a median filter. The median filter is a special case of
stack filters that have been widely used in digital image and signal processing [288, 289]
to remove singularities caused by noise. The median filter replaces the center sample
with the median of the samples within the filter window. A major drawback with non-
linear filters is that they may degrade the desired signal at low SNR levels. Therefore,
they must be used carefully.

Example 7.1 Consider a preamble constructed from symbol sequence S1 with Tf = 32
ns and Nsym = 8, where each UWB pulse (Gaussian monocycle with a bandwidth of 500
MHz) in the preamble has unit energy. This preamble is passed through a realization of
CM-1 according to the IEEE 802.15.4a channel models [100], and corrupted by AWGN
(SNR = 10 dB). Then, the received signal is fed into a square-law device and the output
is sampled at Tsmp = 2 ns intervals. After that, a template is generated from sequence
2|S1| − 1 using the same UWB pulse shape, and is integrated and sampled over 2 ns
intervals. When the square-law output signal is correlated with the non-coherent tem-
plate designed for S1 at 2 ns sampling resolution, the correlator output consists of the
channel profile repeated Nsym = 8 times with time resolution of Tsmp as shown in Fig.
7.7(a). This is due to the perfect periodic autocorrelation property of the sequence S1.

In order to simulate the impact of transient interference at the correlator output,
first a single preamble symbol is generated by using sequence S2 from Table 6.2. Then,
the amplitudes of the pulses in the interference signal are scaled such that they are
three times stronger than the pulses in the desired symbol. After that, the generated
symbol is passed through another realization of CM-1, and the resulting waveform is
added, with a random delay, to the received signal obtained in the first step before
the square-law device. After integrating and sampling the square-law device output at
2 ns intervals, the samples are correlated with the same template. In the presence of
interference, the correlator would carry interference energy onto its output as shown in
Fig. 7.7(b).

In order to mitigate the effects of this interference, consider the non-linear filtering
operation on the correlation outputs z[n], as shown in Fig. 7.8, where Nsep = Ts/Tsmp.
This filter takes a set of three correlator samples with a separation of Nsep samples
and then outputs the median sample of the set. In Fig. 7.7c, the correlator output is
illustrated after this filtering operation. The non-linear filter effectively removes the
transient interference.
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Fig. 7.7. Correlator output in a multipath channel when interference corrupts an IEEE 802.15.4a preamble
symbol: (a) interference-free correlator output; (b) correlator output with transient interference;
(c) after median filtering the correlator output that is corrupted by interference.
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Fig. 7.8. A non-linear filter architecture that incorporates a length-3 median filtering.

7.1.4 Multiuser interference mitigation in TH-IR UWB

A TH-IR UWB receiver commonly combines energies over multiple symbols from
multiple pulse positions using the TH sequences of the desired user to improve the
signal-to-noise ratio (SNR) [258]. In the presence of MUI, such an energy-combining
operation has a major drawback, as noted in the previous section. One solution simply
lies in considering the collected energy samples from a different view, a two-dimensional
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Fig. 7.9. Ranging with MUI cancelation using a non-linear filter (After [201]).

energy matrix as suggested in [201, 290]. A block diagram that represents the basic oper-
ations of the energy matrix with non-linear filtering approach is illustrated in Fig. 7.9.
This work was later extended in [291] to mitigate narrowband interference.

In the energy matrix approach, first an empty matrix Z of size Nf × Ns is generated
where Nf is the number of frames to be processed and Ns the number of energy samples
to be collected from each frame. Assume that the signal r(t) in (7.8) is received and also
that the energy matrix is to be formed over a symbol duration at sampling rate 1/Tsmp.
The collected energy samples at the ED receiver would be

z[n] =
∫ nTsmp

(n−1)Tsmp

∣∣r(t)∣∣2dt . (7.14)

Energy samples given in (7.14) are grouped together according to the transmitted TH
code, and samples of the same group are used to populate a column of the energy matrix
Z; that is,

Z [j, i] = z
[
i + (j − 1)Ns + c

(1)
j

]
, (7.15)

where j ∈ {1, 2, . . . , Nf }, i ∈ {1, 2, . . . , Ns} and the chip interval Tc is assumed to be
equal to Tsmp. A typical energy matrix of a TH-IR signal plus interference after passing
through separate IEEE 802.15.4a CM-1 channels is given in Fig. 7.10. Note that MUI and
self-interference causes short discrete lines. The actual TOA corresponds to the left-most
continuous vertical line in Z.

A cause of self-interference is the imperfect auto-correlation of the TH codes. Note
that the energy samples of a column are grouped according to the desired user’s TH code.
It is possible that only some of the grouped samples contain energy from the received
signal due to a partial overlap with the signal’s TH pattern. Especially if the uncertainty
region for the TOA is larger than Tf , the energy collection process would cause more
self-interference.
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Fig. 7.10. Energy matrix for a TH IR-UWB system, where Ed/N0 =16 dB (Ed is the desired signal
energy), Em/N0 =10 dB (Em is the interfering signal energy), Tc =4 ns, Ns = 4,
Tsym =512 ns, Tf =128 ns, and Tsym/Tsmp =128 [201].

To remove outliers in Z, a moving length Nw median filter can be applied column-wise.
Then, the elements of the new energy matrix Z(med) become

Z(med) [j, i] = med {Z [j, i] , Z [j + 1, i] . . . Z [j + Nw − 1, i]} . (7.16)

Once interference is removed, Z(med) is converted to a vector by the column-sum
operation as follows.

Z̃(med) = 1Nf −Nw+1Z(med) . (7.17)

Then, detection techniques can be applied onto Z̃(med) to locate the leading path.

Example 7.2 Consider a TH-IR UWB system in which the ranging symbol consists of
four frame intervals, and each frame interval is further divided into four chip intervals.
The TH codes of the desired signal and the interference are {1, 1, 1, 0} and {0, 0, 1, 1},
respectively (see Fig. 7.11(a)–(b)). Assume that the received signal is integrated and
sampled at a period such that four samples are collected per frame interval, and also
that no noise is present.

(i) Write an analytical expression for the correlator output after energy combining.
Energy combining requires energy samples z[n] of the received signal to be com-

bined in accordance with the corresponding TH code. The combined energy values
Ec[n] can be formulated as

Ec[n] = z[n + 0] + z[n + 4] + z[n + 4 + 4] + z[n + 4 + 4 + 3] , (7.18)
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Fig. 7.11. Illustration of energy combining in TH-IR UWB systems, where Nf = 4 and Tf /Tc = 4.
(a) Transmission pattern of the desired user’s signal. (b) Transmission pattern of a TH-IR
interference. (c) Energy vector after applying energy combining to the desired user’s signal
without interference. (d) Energy matrix of the desired user’s signal without interference.
(e) Energy vector after applying energy combining to desired user’s signal with interference.
(f) Energy matrix of the interference alone. Note that for simplicity of illustrations, both desired
user signal and interference energy levels are assumed to be A in each frame (After [201]).

for 0 ≤ n ≤ 3, assuming that TOA ambiguity is less than the frame interval Tf .

(ii) If there was no interference, what would be the TOA index? Assume that the smallest
index with non-zero energy is selected as the TOA.
It can be calculated that Ec[1] = 4A and Ec[n] = 0 for n �= 1 therefore, the TOA
index is 1 (see Fig. 7.11(c)–(d))

(iii) In presence of the specified interference, what is the TOA index?
The TOA index is 0, because Ec[0] = 2A due to interference (see Fig. 7.11(e)).

(iv) The size of Z would be 4×4. How would it be populated with the samples of the
received signal?

Z would be populated as follows

Z =

⎡
⎢⎢⎣

z[0 + 11] z[1 + 11] z[2 + 11] z[3 + 11]
z[0 + 8] z[1 + 8] z[2 + 8] z[3 + 8]
z[0 + 4] z[1 + 4] z[2 + 4] z[3 + 4]
z[0 + 0] z[1 + 0] z[2 + 0] z[3 + 0]

⎤
⎥⎥⎦ . (7.19)
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After filling out each column of Z from samples separated according to the received
signal’s TH pattern, straight lines would be formed in the matrix whenever the samples
contain signal energy (Fig. 7.11e). The detection of the left-most vertical line corresponds
to the time index of the first arriving signal energy. If the MUI follows a different TH
pattern, intuitively the energy matrix of the interference would not form a straight line
(Fig. 7.11f).

Conventional energy combining does not account for the MUI, because it directly
aggregates the energy samples. This is equivalent to summing the rows of Z along each
column, yielding an energy vector. Note that the column-sum of the matrix in Fig. 7.11e
generates the energy vector in Fig. 7.11c, and column-sum of (e) and (f ) results in
Fig. 7.11d.

7.2 Coded payload modulation

Clear channel assessment (CCA) determines the current state of a wireless medium
for collision avoidance. It is an important PHY layer function, because scheduling of
transmissions for collision avoidance and other MAC layer protocol behaviors rely on the
CCA. In narrowband systems, detecting the presence of energy at the carrier frequency
can be used as a CCA mechanism [292]. In UWB systems, preambles that consist of
periodically repeated sequences with minimum or near zero autocorrelation side lobes
are used for time synchronization. Preamble structure in the IEEE 802.15.4a is a good
example for wideband systems. The correlation peaks are used to detect the preamble;
and these peaks are indicative of signal presence for CCA.

In [276], the authors develop a TDMA-type multiplexed preamble scheme that enables
preamble-detection-based CCA for UWB systems. In this scheme, preamble symbols
are multiplexed with the entire PPDU, by periodically inserting them into the header
and payload parts of the IEEE 802.15.4a packet after every k-symbol-long interval
as illustrated in Fig. 7.12. The inserted preamble symbols do not interfere with the
PPDU data. This multiplexing should not impact the PPDU length. Therefore, increasing
the number of inserted preamble symbols reduces the data-carrying capability of the
frame.

Si Si Si Si Si Si

Preamble

kTsym Tsym

Header and payload

Si Si Si Si Si Si Si

Fig. 7.12. TDMA style multiplexing of preamble and PPDU to support CCA for heavily loaded networks
(After [276]).
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Preamble Header and payload

Fig. 7.13. CDMA style multiplexing of preamble and PPDU to support CCA (After [276]).

In the CDMA type multiplexed preamble scheme, periodically repeated preamble
symbols are superimposed onto the entire PPDU (see Fig. 7.13). Power level of the
overlayed preamble symbols are set to be much lower than the data symbols, because
preamble symbols can cause interference to data demodulation. Another drawback is
implementation complexity due to the need for generating pulses with two different
power levels in the transmitter. The CDMA type multiplexing does not reduce data
carrying capability of the frame, unlike the TDMA type.

As shown in Fig. 7.14, using CCA during the entire packet greatly improves through-
put, compared to using CCA only for the preamble and the Aloha scheme. Aloha is
the simplest channel-access technique, in which a node transmits without sensing the
channel. If its transmission fails, the node backs-off by a random time interval, and then
retries. When a CCA mechanism is deployed only for the preamble of the packets, a
better payload throughput efficiency than Aloha is obtained. Using CCA during an entire
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Fig. 7.14. Normalized payload throughput performance of CCA and pure Aloha (CS: Carrier sense).
Preamble length is 1 ms, k = 4, data rate is 1 Mbps and the data size is 32 bytes (After [276]).
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packet further improves throughput, as shown in Fig. 7.14. Furthermore, in [293], up to
four times maximal payload throughput is reported for the whole packet CCA compared
to that of the pure Aloha.

7.3 Private ranging

Most previous studies in the field have assumed that the transmitter–receiver pair
involved in ranging know and trust one another, and devices use an agreed upon ranging
waveform [243, 253]. Network (NWK) layer techniques for secure localization have
been studied recently [294, 295]. In fact, existing communication standards such as
WiFi, IEEE 802.15.4 and 802.11 enable security features such as authentication and
encryption within the data link or NWK layers, but the PHY layer has very little, if
any, responsibility to implement features that enhance network security. In what fol-
lows, security techniques applicable at the PHY layer will be highlighted for ranging
systems.

There are typically two motivations behind location-related attacks. First, an intruder
intends to figure out the location of sensor devices in protected areas and tries to tamper
with and disable them. In the latter, it tries to prevent ranging devices from obtaining
correct range information. Relative positioning information in a network can be used
to optimize high-layer network operations such as route discovery and maintenance,
multicasting and broadcasting. If falsified position information is passed around the
network, location-based network functionalities can be easily subverted.

A malicious device can behave as a snooper, impostor or jammer. A snooper observes
or listens to transmitted signals in secret to obtain information on whereabouts of other
devices. By measuring signal strengths of transmissions and delays between range
request frame RFRAMEreq and range reply frame RFRAMErep, the snooper can have
a coarse knowledge about its range to other devices. An impostor device, on the other
hand, engages in deception under an assumed name or identity to cause distance reduc-
tion and enlargement in victims’ range calculations. By simply replaying an originator’s
RFRAMEreq, the impostor can trigger transmission of RFRAMErep by the target node.
Hence, it can figure out its range to the target. An impostor can also impersonate a tar-
get by transmitting an RFRAMErep in response to an RFRAMEreq. A jammer device
simply emits interference to stall communication in a network. The most effective way
to deal with a jammer is to back off until jamming stops. Also, some signal processing
techniques can be effective to mitigate jamming interference.

Various protection mechanisms are suggested in the literature against the attack types
explained above. In what follows these mechanisms are briefly discussed.

7.3.1 Challenge–response

In all ranging protocols, it is essential to prevent impersonation attacks so that the
RFRAMEreq and RFRAMErep are ensured to be from legitimate devices. This can be
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A B

RFRAMEreq {challenge}

RFRAMErep {response}

Time-stamp report

•  Identify the source
•  Solve the challenge
•  Reply with a response

•  Identify the responder 
•  Check accuracy of the response

Fig. 7.15. Modification of the TW-TOA to deal with distance enlargement and reduction attacks.

achieved by incorporating a challenge–response phase into the TW-TOA as illustrated in
Fig. 7.15. In [296], the authors suggest that RFRAMEreq can carry a secret challenge
and RFRAMErep a response to the challenge. If the response is accurate, A can ensure
B is not malicious.

An attacker may attempt to replay RFRAMEreq to get a response, but it is generally
simple to deal with replay attacks at the protocol layers. Disallowing retransmissions
with the same sequence number is the simplest way to defend against such attacks.

7.3.2 Nm-distance

The Nm-distance algorithm given in [296] requires Nm distance measurements between
any two ranging devices. It then applies a median filter onto the measurement set to weed
out large errors. It would be difficult for the attacker to cause enlargement in multiple
measurements. Therefore, median filtering can prove to be effective unless more than
half of the measurements are enlarged.

7.3.3 Randomizing turn-around time

It has already been discussed in Chapter 6 that turn-around time T B
ta induces a large

bias in the range estimate. In the TW-TOA protocol, T B
ta is reported in a time-stamp

report in an encrypted form to factor the bias out. Therefore, it becomes difficult for
an observing malicious device to figure out the value of T B

ta . In the type I and type II
differential TOA protocols given in Chapter 6, a preset waiting interval T dominates the
turn-around time. It may be possible for an eavesdropper to determine the value of T

from statistical inference by listening to multiple ranging exchanges between A and B.
As a precaution against such an attack, A and B can select a different T for each time they
perform ranging. One suggestion is to vary T per ranging according to a pseudo-random
sequence known to both A and B. Its value can be conveyed within the challenge frame
described in Section 7.3.1.
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7.3.4 Cyclic shift of perfectly balanced ternary sequences

Having a large family of preamble symbol waveforms minimizes the probability that an
impostor would identify the ranging waveform used by ranging devices and improve its
acquisition hideously. One drawback of the networks that employ the IEEE 802.15.4a
signal structure is that the standard publicly specifies only eight length-31 PBTSs
for the preamble to exploit their perfect periodic autocorrelation property for rang-
ing. Therefore, it would not be difficult for an impostor to acquire a transmitted IEEE
802.15.4a sequence out of a set of eight, especially if it is running eight correlators in
parallel.

The PBTS sequences have another interesting property that can be beneficial to
deceive impostors and make them work harder to determine the turn-around time
accurately. Assume that a ternary symbol waveform s̃

(l)
i (t) is expressed as

s̃
(l)
i (t) =

√
2Es

(Nf + 1)

Nf∑
j=1

ã
(l)
i,j ω (t − (j − 1)Tf ) , (7.20)

where l indicates that the underlying sequence S(l)
i is obtained by cyclic shifting of

sequence Si (or S(0)
i ) by l times and ã

(l)
i,j ∈ {−1, 0, 1} is the ternary coefficient for the

j th element in sequence S(l)
i , as illustrated in Fig. 7.16. Then, the transmitted ranging

waveform can be expressed as

r̃
(l)
i (t) =

Nsym∑
i=1

s̃
(l)
i (t − iTs) . (7.21)

Let φ̃
(m,n)
i (t) denote the correlation of r̃

(m)
i (t) and s̃

(n)
i (t). The peak instants of

φ̃
(m,n)
i (t) and φ̃

(m+k,n)
i (t) would differ by kTs with respect to each other, as illus-

trated in Fig. 7.17. In other words, cyclic shift operation preserves the perfect periodic
autocorrelation property, but it circularly shifts the correlation peaks.

This motivates the use of the cyclic-shift property of ternary sequences as a security
tool. Simply, impostors or snoopers that are unaware of the cyclic shift index k can still
observe the ranging waveform, but their range would be in error by c kTs meters, where
c = 3×108 m/s. Note also that by incorporating a random cyclic shift in the transmitted
waveform, an impostor is forced to search for the right sequence out of a set of 240
sequences.

7.3.5 Dynamic preamble selection

In the IEEE 802.15.4a standard, dynamic preamble selection (DPS) is used as a privacy
mechanism for ranging. The preamble symbol to be used for ranging is communicated
between ranging parties via an authentication message. In this message, the originator
device informs the target of the indices of the ranging symbols to be used in RFRAMEreq

and RFRAMErep frames. Afterwards, the TW-TOA ranging protocol is run.
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7.4 Problems

(1) How does interference affect the preamble, SFD, PHR, and payload parts of a
received ranging frame in IEEE 802.15.4a systems? Explain the differences.

(2) Name three techniques that can be used to mitigate NBI in IEEE 802.15.4a systems.
(3) Name three methods that are used to model the MUI in TH-IR UWB systems.
(4) Explain why and how MUI degrades the ranging accuracy in an IEEE 802.15.4a

system. How does the impact of interference change with respect to Rpp (ratio of
the preamble length to the payload length)?

(5) Why and how do non-linear filters help in removing the MUI? Explain with an
example.

(6) Discuss the advantages and disadvantages of coded payload modulation for
transmission of IEEE 802.15.4a packets.

(7) Name and briefly summarize three protection mechanisms for improving the security
of IEEE 802.15.4a ranging systems.



8 Practical considerations for UWB
system design

In this chapter, practical issues for UWB system design are investigated. First, design
of UWB signals for ranging applications is considered, and selection of various signal
parameters, such as pulse repetition interval and bandwidth, is studied. Then, link budget
calculations are performed in order to determine signal quality as a function of distance.
Compared to narrowband systems, the large bandwidth of UWB systems introduces
additional challenges for the design of certain system components. Therefore, hardware
issues for UWB transmitters and receivers are investigated, and the design of power
amplifiers, antennas, low-noise amplifiers and analog-to-digital converters is studied for
UWB systems.

8.1 Signal design for ranging

Design of a ranging system requires careful selection of system parameters in order to
optimize system performance under practical and regulatory constraints. In a ranging
system, the main performance criteria are the ranging accuracy and the amount of time
to perform ranging; i.e. ranging time.

8.1.1 Performance metrics

The ranging accuracy can be quantified by means of mean absolute error (MAE), which
is defined as the expected value of the absolute value of the error; i.e.

MAE = E
{∣∣∣d̂ − d

∣∣∣} , (8.1)

where d̂ is the range estimate and d is the true range. In a practical scenario, the expected
value in (8.1) is approximated by the sample mean of the absolute error:

MAE = 1

N

N∑
i = 1

∣∣∣d̂i − di

∣∣∣ , (8.2)

where di and d̂i are, respectively, the true range and the range estimate for the ith
measurement, for i = 1, . . . , N , with N denoting the number of measurements.
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Another common metric for the ranging accuracy is root mean square error (RMSE),
which is defined as the square root of the average value of the squared error; i.e.

RMSE =
√

E
{
(d̂ − d)2

}
. (8.3)

Similar to (8.2), the expected value in (8.3) is approximated by the sample mean of the
squared error in practice; i.e.

RMSE =
√√√√ 1

N

N∑
i = 1

(
d̂i − di

)2
, (8.4)

where di and d̂i are, respectively, the true range and the range estimate for the ith
measurement, for i = 1, . . . , N .

The main difference between the MAE and RMSE metrics is that the RMSE gives
higher weights to large errors than the MAE does, as the errors are squared before the
averaging operation in the calculation of RMSE. In other words, the RMSE is more
sensitive to outliers.

For various node configurations, large deviations of ranging errors can be observed
among different measurements, and the MAE or RMSE may not give sufficient
information about the performance of the ranging system. For example, the ranging
error can be very small for most measurements, but a few measurements with very large
errors may dominate the MAE/RMSE. In such cases, a more meaningful performance
metric is the cumulative distribution function (CDF) of the ranging error. In other words,
the probability that the ranging error is smaller than a certain threshold can be specified
for all threshold values; that is,

F(x) = P
{
|d̂ − d| ≤ x

}
. (8.5)

Note that the CDF metric in (8.5) implicitly contains information about the confidence
level metric studied in Section 6.3.7 of Chapter 6.

In addition to ranging accuracy, ranging time is another performance criterion for
a ranging system. The ranging time is calculated as the amount of time that passes
from the initial observation of the ranging signal until a ranging estimate is obtained.
Commonly, it is the duration of the ranging signal that dominates the ranging time (i.e. the
duration of the ranging signal is considerably larger than the amount of time for ranging
calculations). A small ranging time is desirable since it means fast range estimation.
This is important especially in communications systems that also perform ranging by
utilizing a certain amount of each communications packet (for example, the preamble
of each packet is used for ranging purposes in the IEEE 802.15.4a systems, as studied
in Chapter 6). For large ranging times, a significant amount of each packet should be
used for ranging purposes, which decreases the percentage of the packet that carries
communications data; i.e. data rate decreases. Decreasing the duration of the ranging
signal decreases the ranging time, but it also increases ranging errors in general. In other
words, there is a trade-off between ranging time and ranging accuracy, and the aim is to
obtain the best ranging accuracy in the shortest time interval.
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8.1.2 Selection of signal parameters

In order to observe the relation between ranging accuracy and ranging time, consider
the following UWB signal

s(t) =
∞∑

j = −∞
ajω(t − jTf ), (8.6)

where ω(t) is a UWB pulse with a bandwidth of B MHz, Tf is the pulse repetition
interval (PRI) in seconds, which is larger than the pulse width, and aj is a randomization
sequence uniformly distributed on {−1, +1}. As studied in Exercise 3 of Chapter 2, the
average power spectral density (PSD) of s(t) can be obtained as

�ss(f ) = |�(f )|2
Tf

, (8.7)

where �(f ) is the Fourier transform of ω(t).
Assume that there is a regulatory constraint on the average PSD of UWB signals, such

as the FCC’s −41.3 dBm/MHz limit (see Chapter 2), and that the average PSD of the
UWB signal in (8.6) is very close to that limit for all frequencies over its B MHz band.
In other words, the UWB signal is assumed to transmit at the maximum power level
allowed by the regulatory limit. For such a scenario, the maximum pulse energy can be
obtained, for example from the FCC limit (−41.3 dBm/MHz), as

E ≈ B Tf 10−7.13 (J). (8.8)

For a ranging system that employs Nf pulses for range estimation, the ranging time is
equal to Nf Tf seconds.1 As studied in Chapter 4, the ranging accuracy is inversely propor-
tional to SNR. For a single-path AWGN channel, the CRLB expression in Section 4.1.3
can be expressed as

RMSE ≥ c

2
√

2π
√

SNR β
, (8.9)

where RMSE is as in (8.3) (with d̂ representing an unbiased range estimate), c is the
speed of light, β is the effective bandwidth and SNR = ENf /N0 with N0 representing the
spectral density of zero mean white Gaussian noise. Since the pulse energy is proportional
to Tf as shown in (8.8), SNR increases as Nf Tf increases. In other words, SNR is
proportional to the ranging time. Therefore, the ranging accuracy increases with the
ranging time; i.e. longer ranging times result in better ranging accuracy.2

In addition to the regulatory constraints on the maximum average power, there are also
practical constraints on the peak power that can be used in an integrated circuit [297]. For
a pulse-based UWB system, the average power constraint determines the total energy
of UWB pulses that can be transmitted over a given time interval, whereas the peak

1 Amount of time for ranging calculations is not taken into account.
2 Although the analysis is performed for the signal model in (8.6), the inverse relation between ranging

accuracy and ranging time holds true in general.
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Tf

T

Fig. 8.1. A binary-coded ranging signal with a pulse repetition interval (PRI) of Tf seconds.

power constraint limits the energy of each UWB pulse. These constraints are important
for signal design in UWB ranging systems.3

Example 8.1 Consider a ranging signal of T seconds that consists of Nf UWB pulses, as
shown in Fig. 8.1. The time interval between consecutive pulses (i.e., PRI) is Tf seconds,
and the bandwidth is B Hz. Note that the pulse sequence is also polarity (binary) coded
in order to enhance its correlation properties.

For such a signal, the peak power can be calculated as

Ppeak = E

Tc
= PavgTf

Tc
, (8.10)

where E is the pulse energy, Tc is the pulse width and Pavg is the average power. Assuming
Tc ≈ 1/B, (8.10) can be expressed as

Ppeak = PavgB

PRF
, (8.11)

where PRF = 1/Tf is the pulse repetition frequency.
From (8.11), it is observed that a constraint on the peak power imposes a lower bound

on PRF; i.e.

PRF ≥ PavgB

P̄peak
, (8.12)

where P̄peak is the maximum peak power allowed in the system.
For a CMOS implementation of 90 nm process, the peak power limits are given by

15.6 mW and 2.5 mW for 2.5V and 1V peak-to-peak voltages, respectively [297]. For
those peak powers, the lower bounds on the PRF can be obtained as in Fig. 8.2 for
various bandwidths.

As can be observed from (8.8) and (8.12), the lower bound on the PRF ( = 1/Tf ) is
proportional to the square of the bandwidth for a given value of Ppeak. This is because
as the bandwidth increases, the pulse energy (the average power) increases (cf. (8.8))
and the pulse duration Tc decreases. Therefore, in order to maintain the same peak
power, the distance between the pulses, Tf , should be decreased in proportion to the
square of the bandwidth (cf. (8.10)).

3 In addition to practical limitations of integrated circuits, there might also exist regulatory constraints on the
peak power of UWB signals [67].
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Fig. 8.3. A ternary-coded ranging signal with a pulse repetition interval (PRI) of Tf seconds.

In the previous example, binary coding is employed in order to enhance correlation
properties of the pulse sequence for TOA estimation purposes. Another approach is to
use ternary-coded pulses [298–300], which means transmitting a positive polarity pulse
for +1, a negative polarity pulse for −1 and no pulse for 0.

Example 8.2 In this example, the same scenario as in Example 8.1 is considered except
that ternary coding is employed for the pulse sequence (Fig. 8.3). It is assumed that the
number of zeros in the ternary code is equal to the number of non-zero values.

In this case, each pulse can get twice the energy of a pulse in the previous example,
since there are Nf /2 pulses with non-zero codes. Therefore, the peak power is twice the
peak power in (8.11); i.e.

Ppeak = 2PavgB

PRF
, (8.13)
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Fig. 8.4. Minimum PRF versus bandwidth for a ternary-coded UWB pulse sequence.

Then, the PRF is bounded as follows:

PRF ≥ 2PavgB

P̄peak
, (8.14)

where P̄peak is the maximum peak power allowed in the system.
By using the same peak power values as in Example 8.1, the lower bounds on the PRF

can be obtained as in Fig. 8.4 for various bandwidths.

Note that the PRF in Example 8.2 is defined as 1/Tf similar to the binary coded
case. In fact, for ternary-coded pulse sequences, there are no pulses at the positions
corresponding to zeros in the ternary code. Therefore, PRF = 1/Tf is also called peak
PRF4 [91]. In addition, mean PRF is defined as the total number of pulses transmitted
during a signal interval divided by the length of the signal duration. For example, the
mean PRF is equal to 1/(2Tf ) for the signal in Example 8.2.

In the design of a ranging signal, the minimum PRF is calculated as in the previous
examples.5 In order to determine a specific PRF value, the trade-offs between high and
low PRFs need to be considered. Low PRFs are well suited for operation in environments
with high delay spreads, particularly for non-coherent receivers. Non-coherent reception
favors low PRFs since energy per pulse, or the peak power, is high for such systems.

4 In this book, the term PRF is used to refer to peak PRF.
5 In the case of regulatory constraints on the peak power of UWB signals, the minimum PRF calculations

should take into account both the integrated circuit limitations, as considered in Examples 8.1 and 8.2, and
those regulatory constraints.
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However, for environments with short delay spreads and for coherent receivers, operation
at high PRFs is preferable to have high data rates and shorter packet duration [91].
In addition, low PRF systems can facilitate low cost/power implementations since some
units in the receiver, such as ADC, can be run only when pulses arrive [301].

In order to benefit from the advantages of low and high PRFs and facilitate the use
of various receiver types in different environments with widely varying delay spreads,
multiple PRFs can be specified in a system. For example, the IEEE 802.15.4a standard
specifies PRFs of 7.8, 31.2 and 124.8 MHz. Note that the PRF values are selected as the
multiples of each other so that a single pulse generator can be used at the transmitter (by
exciting it less frequently for low PRFs) and sub-sampling of the signal with a high PRF
can be used for low PRF cases [91].

After determining the length of the ranging signal and PRF, another important issue is
pulse coding. Coded pulses in a ranging signal can provide robustness against multipath
and multiple-access interference.As studied in Section 5.2, the autocorrelation properties
of a code determine its robustness against multipath interference, whereas its cross-
correlation properties are effective in mitigating multiple-access interference. Another
important criterion is the length of the code; better correlation properties can be obtained
with longer codes, but shorter codes ease the acquisition process.

As studied in Chapter 6, in the IEEE 802.15.4a standard, length-31 and length-127
(optional) ternary codes are employed in the synchronization preamble. As shown in
Fig. 8.5, the preamble consists of Nsym repetitions of a preamble symbol,

Pi(t) =
Nsym−1∑
n = 0

wi(t − nTs), (8.15)

where Ts is the symbol interval and wi(t) is the preamble symbol given by

wi(t) =
√

Es

Nf

Lts−1∑
j = 0

Si[j ]ω(t − jTf ), (8.16)

with Es and Nf denoting, respectively, the symbol energy and the number of pulses per
symbol, Tf (also called Tpri in Chapter 6) being the time interval between consecutive

1 2

Si Si Si

Nsym

TS

Lts – 1 Lts

Tf

21 3

Fig. 8.5. Preamble structure in the IEEE 802.15.4a standard, where Nsym ∈ {16, 64, 1024, 4096} and
Lts ∈ {31, 127}.
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pulses (including the ones with zero codes), and Si representing a ternary code of
length Lts.

The length-31 ternary codes (Lts = 31) used in the standard are as shown in Table 6.2
of Chapter 6. These codes have the perfect periodic autocorrelation property; i.e. their
periodic correlation side lobes are zero, which makes sure that the received signal paths
between autocorrelation peaks are due only to the multipath channel.

In order to obtain processing gain, the coded ranging (preamble) symbol is repeated
a number of times as shown in (8.15). In the IEEE 802.15.4a standard, the preamble
consists of 16, 64, 1024 or 4096 symbols. As discussed before, longer ranging signals
increase the ranging accuracy but also decrease the data rate in communications systems
that perform ranging by using a specific section of each packet. Therefore, the preamble
length is selected according to communications and ranging requirements of a given
application. This selection is based on various system parameters such as propagation
environment and receiver type (coherent/non-coherent). For example, longer preambles
are preferable for low-rate, non-coherent receivers, in order to provide more processing
gain for such systems to achieve reasonable SNR values.

8.2 Link budget calculations

As shown in (8.9), the received SNR is an important factor in determining the accuracy of
a ranging system. As the SNR gets higher, ranging errors decrease since noise becomes
less effective. In order to calculate the received SNR in a given system, the effects of
transmit and receive antennas and the propagation channel should be taken into account.

Let Ptx−amp(f ) represent the output power spectrum of the transmit amplifier (at the
antenna connector) and ηtx−ant(f ) denote the efficiency of the transmit antenna. Then,
the transmit power spectrum can be expressed as

Pt(f ) = Ptx−amp(f )ηtx−ant(f ). (8.17)

As the signal propagates in the air, the power density decreases with the distance as
studied in Chapter 3. In addition, for UWB signals, this path loss is frequency dependent.
Power density at distance d and frequency f can be expressed as follows [91]

P(f, d)= K0
Pt(f )

4πd2
0

(
d

d0

)−n (
f

fc

)−2κ

, (8.18)

where K0 is a constant, d0 is the reference distance, fc is the center frequency, n is the
path loss exponent and κ is the exponent that determines the frequency dependency of
the path loss.

In order to determine the power spectrum at the output of a receive antenna, the
spectrum in (8.18) is multiplied by the antenna efficiency ηrx−ant(f ) and the antenna
area (effective aperture of the antenna) Arx(f ). Since the antenna area is given by
λ2(Grx(f ))/4π , with Grx(f ) denoting the receive antenna gain [302] and λ representing
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the wavelength, the received power spectrum can be obtained from (8.18) as

Pr(d, f )= K0
Pt(f )

4πd2
0

(
d

d0

)−n (
f

fc

)−2κ
λ2

4π
Grx(f )ηrx−ant(f ). (8.19)

For Grx(f ) = 1, (8.19) can be expressed, using (8.17) and λ = c/f , as

Pr(d, f )= PL0 Ptx−amp(f )ηtx−ant(f )ηrx−ant(f )
(f/fc)

−2(κ+1)

(d/d0)n
, (8.20)

where

PL0 = K0c
2

(4πd0fc)
2

(8.21)

is the path-loss at the reference distance d0 and reference frequency fc for an ideally
efficient isotropic antenna [91].

For a specific UWB pulse shape (at the output of the transmit amplifier) and transmit
and receive antenna efficiencies, the received power at a given distance can be calcu-
lated from (8.20) by using empirically obtained values for PL0, n and κ . Note that
the total average received power should be calculated by integrating Pr(d, f ) over the
frequency range of the system. After calculating the received power, SNR ( = Es/N0)
can be obtained for a given ranging symbol interval Ts and noise spectral density N0

as follows6

SNR(d) = 10 log
Ts
∫ fH
fL

Pr(d, f )df

N0
− Limp − NF, (8.22)

where Limp accounts for the implementation loss (in dB), NF is the receiver noise figure
(in dB),7 fL = fc−B/2 and fH = fc+B/2, with B denoting the system bandwidth.

Example 8.3 Consider a UWB ranging system that utilizes 1 GHz bandwidth with a
center frequency of fc = 5 GHz. Assume that the transmit and receive antennas are
ideally efficient and isotropic. For a noise spectral density of −174 dBm/Hz, the aim is to
plot SNR versus distance d between the transmitter and the receiver for various lengths
of the ranging interval and for various propagation environments. It is assumed that the
implementation loss is 3 dB and the receiver noise figure is 7 dB.

For the system model as described above, ηtx−ant(f ) = ηrx−ant(f ) = 1 and Grx(f ) = 1.
Then, (8.20) simplifies to

Pr(d, f )= PL0 Ptx−amp(f )
(f/fc)

−2(κ+1)

(d/d0)n
· (8.23)

6 In the presence of a person close to the antennas, there occurs additional attenuation of the received power [91,
303]. This effect is not considered in this analysis.

7 The receiver noise figure is defined as the contribution of the receiver itself to the thermal noise at its
output.
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Table 8.1. PL0, κ and n for various IEEE 802.15.4a channels.

PL0 (dB) κ n

Residential LOS (CM-1) −43.9 1.12 ± 0.12 1.79
Residential NLOS (CM-2) −48.7 1.53 ± 0.32 4.58
Office LOS (CM-3) −35.4 0.03 1.63
Office NLOS (CM-4) −59.9 0.71 3.07

In many cases, Ptx−amp(f ) approximates the FCC mask quite well. Therefore, it can be
approximately modeled as a constant level of −41.3 dBm/MHz over the bandwidth of
interest.

For a reference distance of d0 = 1 m and fc = 5 MHz, the values of PL0 can be obtained
from the IEEE 802.15.4a channel model. The values of PL0, κ and the path loss exponent
n are shown in Table 8.1 for various IEEE 802.15.4a channel models.8

From (8.23) and the assumption of constant Ptx−amp(f ) over the bandwidth of interest,
(8.22) can be expressed as

SNR(d) = 10 log
PL0Ptx−ampTs(f

−2κ−1
L − f −2κ−1

H )

(2κ + 1)N0f
−2(κ+1)
c (d/d0)n

− Limp − NF. (8.24)

In Fig. 8.6, the ranging interval Ts is set to 1 μs, and received SNR is plotted versus
distance for LOS and NLOS residential and office environments according to the IEEE
802.15.4a channel models.9 It is noted that the NLOS channels have significantly lower
SNR values than the LOS channels.

In Fig. 8.7, SNR is plotted versus distance for various durations of ranging symbols
over residential LOS channels (CM-1). The symbol durations of Ts = 1 μs and Ts = 4 μs
approximately correspond to the symbol duration options in the IEEE 802.15.4a stan-
dard [91]. It is observed that as the ranging symbol gets longer, higher SNR values are
observed at the receiver. Similarly, combining signal energy from a number of ranging
symbols increases the SNR. Similar observations are made from Fig. 8.8, which repeats
the previous experiment for residential NLOS channels (CM-2).

Calculation of SNR as a function of distance provides important guidelines for the
system design. However, the performance of a ranging system also depends heavily on
the channel multipath profile. In other words, distribution of the total signal power among
multipath components and arrival instants of those components affect the performance
of the system significantly. For example, strength of first incoming signal component
is an important parameter that determines error probabilities of the first path detection

8 The path loss values in dB are usually represented as positive numbers, since they are already considered
as “loss’’. However, the negative signs are explicitly shown in Table 8.1 in order to clarify the real values to
be used in the equations (cf. (8.24)).

9 κ = 1.12 and κ = 1.53 are used for CM-1 and CM-2, respectively.
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Fig. 8.6. SNR versus d for various IEEE 802.15.4a channel models.
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Fig. 8.8. SNR versus d for various durations of the ranging symbol (CM-2).

algorithms in Chapter 5. Therefore, in the design of a ranging system, various charac-
teristics of the channel need to be considered in addition to the SNR characterization. In
other words, small-scale fading and shadowing effects, which are studied in Chapter 3,
should also be taken into account.

8.3 Hardware issues

After determining its parameters, implementation of a UWB system requires
consideration of analog and digital hardware components for transmission and reception
of UWB signals. Although conventional design techniques can be applied to certain
sections of a UWB transmitter/receiver, the extremely large bandwidth of UWB signals
introduces practical design challenges, especially for analog components. In this sec-
tion, typical UWB transmitters and receivers are considered and various practical issues
specific to UWB systems are investigated.

8.3.1 Transmitter

A typical UWB transmitter that performs both communications and ranging is shown
in Fig. 8.9. For communications, input data is first coded (channel coding) and then
modulated (symbol mapper). For example, a string of binary data can be coded by a
convolutional encoder and then the coded bits can be mapped to BPSK symbols. In
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Fig. 8.9. Block diagram of a UWB transmitter.

addition to communications, a certain part of the transmission is allocated for rang-
ing, which employs, for example, binary or ternary code sequences for TOA estimation
(e.g. perfectly balanced ternary sequences (PBTSs) studied in Section 6.3 of Chapter 6).
Commonly, transmission is performed in terms of packets, which contain both commu-
nications and ranging signals. Since ranging signals constitute the initial section of each
packet, they are also called preambles.10 In Fig. 8.9, communications signals are obtained
first and then ranging signals are inserted at the beginning of the communications signals.

Digital communications and ranging signals at the output of the preamble insertion
block are fed into the UWB pulse generation block, which converts the digital signal
sequence into an analog UWB pulse sequence. Depending on the pulse generation tech-
nique, a local oscillator may be used in the UWB pulse generator to shift the frequency
content of the signal into a specific UWB band. After that, a power amplifier (PA) can
be used to increase the power of the signal to a certain level. Finally, an antenna or an
antenna array transmits the UWB signal into the space.

UWB pulse generation
One of the most important components in a UWB transmitter is the pulse generator
unit. Pulse generators can be classified in various ways depending on the use of an
up-conversion unit in them, or on the amount of filtering needed for pulse generation.

One category of pulse generators does not require an up-conversion unit; i.e. there is
no need for a mixer and a local oscillator for pulse generation. The reason for this is that
the generated pulses occupy the UWB spectrum without any frequency translation. In
addition, some of such pulse generators do not need any pulse shaping (filtering) either,
since the generated pulses are already utilizing the UWB spectrum efficiently. For exam-
ple, in [304] and [305], the fifth derivative of a Gaussian pulse (Fig. 8.10) is generated,
which utilizes the spectrum effectively under the FCC regulations [305]. Therefore,
no filtering or frequency translation is required. The technique in [304] and [305] for
generating the fifth derivative of the Gaussian pulse is to first generate digital triangular
pulses, which are similar to Gaussian shapes in practice, and then to combine a number
of those triangular pulses with different delays and polarities, as shown in Fig. 8.11. The
basic idea is to generate short duration triangular (“Gaussian-like’’) pulses by means of
simple logic gates as shown in Fig. 8.12. For a stable input of 0 or 1, the output of the
NAND gate is always equal to 1, since its inputs are complements of each other. When
there is a transition from 0 to 1 at the input, the lower input of the NAND gate becomes

10 In a system that performs both communications and ranging, preamble signals are used for timing acqui-
sition, frequency recovery, packet and frame synchronization and channel estimation, in addition to range
estimation.
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Fig. 8.11. Block diagram of a pulse generator that directly generates the fifth derivative of a Gaussian pulse.

Fig. 8.12. Generation of a pulse with negative polarity.

1 before the upper input becomes 0 since the inverter induces a certain amount of delay.
Therefore, for a short time interval, both of the inputs to the NAND gate become 1,
resulting in an output of 0. When the upper input of the NAND gate becomes 0, the
output becomes 1 again. By this way, a short duration pulse with negative polarity is
generated at the output of the NAND gate as shown in the figure. Similarly, positive
polarity pulses at different delays can be generated by using inverters, NOR and NAND
gates, and then a combination of those short pulses can be obtained to generate a UWB
pulse with the desired shape [304, 305].

Another approach for pulse generation without any frequency translation or filtering
is to use antennas for shaping UWB pulses [306, 307]. In [306], very low power
applications are considered, and UWB pulses are generated by means of a rectangular
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Fig. 8.13. Generation of a UWB pulse with filtering.

pulse generator that is connected to an antenna through an impedance-matching circuit.
The differentiation effect of the transmitting antenna shapes the rectangular signal in a
form that is similar to a Gaussian monocycle. In [307], a technique called direct antenna
modulation (DAM) [308, 309] is considered for UWB pulse generation. In DAM, RF
switches are integrated into a resonant antenna, such as a patch antenna, and are used to
turn on and off the radiation slots of the antenna directly. In other words, the antenna is
used as a switch-type pulse modulator.

In addition to pulse generators that directly generate the desired pulse shape, some
pulse generators employ filtering for pulse shaping [310–315]. The structure of such
pulse generators can be represented as in Fig. 8.13, where the first block is generating
signals and the second block is shaping them for efficient use of the spectrum under
regulatory constraints. Although various implementation approaches are possible, the
common technique employed in the pulse generator block is to use combinatorial logic
to generate pulses with specific pulse widths, which are determined by tunable or fixed
delay elements (cf. Fig. 8.12). For the pulse-shaping block, a bandpass filter (BPF)
is implemented to shape the pulses obtained by the pulse generator block. For UWB
systems, especially the ones that utilize the full band (3.1–10.6 GHz), design of BPFs
presents a number of practical challenges. UWB filters should have low insertion loss,11

low and flat group delay and provide sufficient out-of-band suppression (for regulatory
constraints) [312, 313].

Instead of generating the pulse directly in a specific band, some transmitters first
generate a pulse at baseband and then up-convert it to a center frequency [316–318]. Up-
conversion can be performed conventionally by a mixer and a local oscillator. However,
it is also possible to design mixers that not only perform the up-conversion operation,
but also implement pulse shaping. In [318], such a mixer is designed; it exploits the
exponential behavior of BJTs in order to approximate Gaussian pulses by hyperbolic
tangent (tanh) functions. Triangular pulses are input to this mixer as shown in Fig. 8.14,

Triangle
generator

Tanh mixer

Local
oscillator

Fig. 8.14. A UWB pulse generator with tanh mixer, which performs pulse shaping as well as up-conversion.

11 Insertion loss is defined as the power loss of a filter in the passband.
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and the output of the mixer is approximately a Gaussian-shaped pulse that is up-converted
to a desired center frequency.

Comparison of pulse generation techniques with and without up-conversion reveals
that the transmitters with up-conversion circuitry consume more energy, since the local
oscillator operates at the center frequency, which is quite high for UWB systems (e.g.
above 3 GHz for operations in the 3.1–10.6 GHz band). On the other hand, the up-
conversion operation provides better spectral control and is commonly preferred for high
data rate systems. For ranging systems, architectures without up-conversion are prefer-
able, since high data rate communication is not required and low-power architectures
are quite desirable in most ranging applications.

Power amplifiers
After UWB pulse generation, a power amplifier (PA) can be employed to increase the
power of the signal delivered to the antenna. For UWB systems operating under extremely
low power regulations, transmitter design without a PA is also possible. For example,
for unlicensed use of UWB systems according to the Japanese regulations, the electric
field intensity permitted at 3 m is 35 V/m for the 0.322–10 GHz band, which facilitates
designs without PAs [319].

Commonly, PAs consume a significant portion of transmit power. Therefore it is
desirable to have efficient PAs in order to minimize the power consumed at a transmitter.
Efficiency of a PA is defined as the ratio of the signal power delivered to the load to the
total power consumed by the amplifier. Ideally, the PA should have an efficiency of 1,
which means that all the power consumed by the PA is delivered to the load [320].

The main issues for UWB PA design are efficiency, bandwidth, and linearity. Specif-
ically, a UWB PA should have high efficiency and provide good linearity and wideband
matching [321]. Distributed amplifiers [322–325] are commonly employed for wideband
applications since they provide linearity and wideband matching, but their efficiency is
usually low. Similarly, shunt feedback amplifiers [326, 327] provide good wideband
matching and flat gain, but their efficiency is not very high, either. In order to have high
efficiency, BPF-based input matching amplifiers can be used, which employ BPFs and
common-source amplifier topologies [321, 328–330]. In comparison with distributed
and feedback amplifier topologies, such amplifiers consume very small amounts of
power.

UWB antennas
The last component in the UWB transmitter in Fig. 8.9 is the antenna, which provides
radiation of electromagnetic energy into the space. Although antenna design has been
studied extensively for narrowband and wideband systems, UWB antenna design for
communications and ranging applications under regulatory constraints presents addi-
tional challenges. In terms of antenna parameters, requirements for UWB antenna design
can be summarized in the following manner.

• Impedance bandwidth. Ideally, the incoming signal towards the antenna should be
completely radiated into the space, which requires perfect impedance matching at all
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frequencies. However, in practice, some of the incident signal is lost due to reflections.
Impedance bandwidth of an antenna specifies a frequency band over which this signal
loss is not very significant. Specifically, it is defined as the bandwidth over which at
most 10% of the incident signal power is lost.

For UWB antenna design, the main challenge is to obtain very wide impedance
bandwidths. In other words, impedance matching should be quite good for a very
wide range of frequencies. For that reason, various bandwidth-broadening techniques
are employed in UWB antenna design [331]. Common methods include using specific
antenna geometries such as biconical, helix, or bow-tie structures [332], beveling or
smoothing [333–336], resistive loading [337], slotting (or adding a strip) [338, 339],
notching, and optimizing location or structure of the antenna feed [340–342].

• Group delay. Another desired feature of a UWB antenna is to have a near con-
stant group delay (i.e., linear phase), which prevents pulse distortions during the
transmission. For narrowband systems, this requirement is always satisfied since the
input signal occupies a very small frequency band. However, for UWB systems, group
delay should also be taken into account so that the transmitted pulse is not distorted
significantly.12

• Radiation efficiency. Radiation efficiency quantifies the conductor and dielectric
losses at the antenna, and is defined as the ratio of the radiated power to the input
power at the terminals of the antenna [332]. Since UWB signals operating under
regulatory constraints can transmit low-power signals only, radiation efficiency of
UWB antennas should be quite high in order to facilitate ranging/communications at
reasonable distances. For example, resistive loading, which is used for broadening the
impedance bandwidth of an antenna [337], is not very desirable for UWB systems,
since it reduces the radiation efficiency.

• Radiation pattern. Depending on their radiation patterns, antennas can be classified as
directional and omnidirectional antennas. Whereas directional antennas radiate power
in certain directions, omnidirectional antennas radiate power uniformly in a given
plane. In the absence of any position information related to UWB nodes (terminals),
omnidirectional antennas are preferred as signals can arrive in various directions.
Directional antennas can be useful for base stations or access points when the signal
is to be transmitted in a specific direction.

• Size and geometry. For most applications, small and planar UWB antennas are desir-
able. For example, when attaching UWB positioning devices to humans, antennas
should be very small in order not to cause any disturbance. For that reason, antennas
printed onto printed circuit boards (PCBs) are highly desirable [331].

Considering the impedance bandwidth requirement, there are various antennas that
have very wide well-matched bandwidths, such as transverse electric magnetic (TEM)
horns [343–347], biconical antennas [348, 349], cylindrical antennas (with resistive load-
ing) [350, 351] and helical antennas [352]. However, these antennas are not commonly

12 More generally, a UWB antenna should radiate a pulse that is very similar to the exciting pulse or its
derivative [337].
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preferred for UWB applications as they are non-planar and/or quite large. On the other
hand, certain self-complementary, log-periodic antennas, such as planar log-periodic
slot antennas, log-periodic dipole arrays and conical log-spiral antennas, also have wide
impedance bandwidths,13 but they have frequency-dependent group delays which cause
distortion of radiated signals [331].

Planar antennas are well-suited for UWB systems as they are compact and can be
printed on PCBs ( [331] and [353], and references therein). In addition, they can have
wide impedance bandwidths and near constant group delays if their geometries and feed-
ing structures are designed appropriately [331]. As examples of planar dipole antennas,
a bow-tie antenna, a diamond dipole antenna and a square dipole antenna are shown in
Fig. 8.15. Planar monopole antennas can be mainly classified into polygonal and ellip-
tical monopoles depending on their geometric structures [331] (Figs. 8.16 and 8.17).
Polygonal monopoles can be used as UWB antennas after certain impedance-matching
techniques, such as feeding adjustment, beveling, smoothing or slotting, as shown in
Fig. 8.16. For an elliptical antenna, optimization of the axes of the ellipse and the smooth

(a)

(b) (c)

Fig. 8.15. Planar dipole antennas: (a) bow-tie antenna; (b) diamond dipole antenna; (c) square dipole
(After [331]).

(a)

(c)

(b)

(d)

Fig. 8.16. Polygonal monopole antennas (a)–(d). Beveling/smoothing (b); slotting/strip adding (c); and
feeding adjustment (d) techniques can be used for wideband impedance matching purposes
(© 2006 IEEE) [331].

13 Theoretically, they are frequency-independent.



8.3 Hardware issues 221

(a) (b) (c) (d)

Fig. 8.17. An elliptical monopole (a), and its modifications for small size and wide impedance bandwidth
(b)–(d) (After [331]).

Fig. 8.18. A Vivaldi UWB antenna.

transition between the radiator and the feeding strip provide a wide impedance band-
width [331]. In addition, various geometric modifications, such as beveling, can be made
for further improvement of the impedance bandwidth, as shown in Fig. 8.17. Another
planar UWB antenna is the Vivaldi antenna in Fig. 8.18, which can theoretically have
an infinite bandwidth, and provides a very wide impedance bandwidth in practice [354].

Although planar antennas can achieve wide impedance bandwidths and facilitate
compact designs, they may not provide omnidirectional radiation at all frequencies.
For UWB applications requiring small omnidirectional antennas, roll monopoles can be
employed, which are obtained by twisting a planar radiator to a roll shape [331]. These
antennas not only provide wide impedance bandwidths like planar monopoles, but also
have omnidirectional radiation patterns like cylindrical antennas [355, 356].

8.3.2 Receiver

Signals transmitted from UWB antennas are collected by UWB receivers in order to
obtain ranging and/or communications information contained in those signals. UWB
receivers can be broadly classified into two different classes depending on the amount of
processing performed in the analog domain. Fig. 8.19 illustrates an “all-digital’’ UWB

BPF LNA AGC ADC
Digital
signal

processing

Fig. 8.19. “All-digital’’ UWB receiver. The signal is converted to digital as early as possible, and
processing is performed in the digital domain.
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receiver14 structure, which converts the analog UWB signal at the antenna output into
a digital signal as quickly as possible, and performs main signal processing operations
in the digital domain [357–359]. This receiver structure is also referred to as a direct
sampling receiver, as studied in Chapter 5. In an all-digital UWB receiver, the analog
UWB signal collected by the antenna15 is first passed through a BPF for out-of-band
noise/interference mitigation, and then amplified by a low-noise amplifier (LNA). Then,
the signal is scaled by an automatic gain control (AGC) unit, which adjusts the level of the
UWB signal according to the analog-to-digital converter (ADC) specifications. TheADC
converts the analog signal into a digital one, and is a key block in UWB receivers due to
the large bandwidths of the UWB signals. As studied in [360], ADC performance can be
improved by appropriate selection of AGC parameters, which can prevent suboptimal
regimes of an ADC being dominated by quantization or saturation noise. After the ADC,
signal processing operations can be performed in the digital domain, which provides
flexibility to perform various estimation and/or decoding algorithms.

The second class of UWB receivers perform certain correlation operations in the
analog domain, and then convert the signal into digital, as shown in Fig. 8.20 [361–363].16

Depending on the receiver type, the analog correlator in the figure can be replaced by an
energy detector or a delay-and-correlate operation, as studied in Chapter 5. Although a
single analog correlator is shown in Fig. 8.20, a bank of correlators can also be employed
to implement a Rake receiver in the analog domain [362], which facilitates collection of
signal energy from multiple signal paths.

The main advantage of UWB receivers that perform certain operations in the analog
domain is to relax ADC requirements. For such receivers, the analog signal at the ADC
input can be sampled at considerably slower rates, such as frame or symbol rate, than
the analog signal at the ADC input of an all-digital UWB receiver, which commonly
requires Nyquist rate sampling. However, analog correlation causes certain performance
loss compared to all-digital structures due to circuit mismatches and reduced receiver
flexibility.

BPF LNA ADC

Analog correlator

Template
generator

Digital
signal

processing
Integrator

Fig. 8.20. UWB receiver with an analog correlator. Some signal processing is performed in the analog
domain in order to relax ADC requirements.

14 Of course, the receiver is not completely digital, but it has minimal amount of analog circuitry.
15 UWB antennas studied in the subsection of Section 8.3.1 entitled “UWB antennas’’ can also be employed

to receive UWB signals by utilizing the reciprocity relation for antennas [337].
16 For both classes of UWB receivers, BPF outputs can be mixed with an oscillator output if the receiver

performs a down-conversion operation [361].
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In the remainder of this section, two crucial components of a UWB receiver, LNA
and ADC, are investigated in detail.

Low-noise amplifiers
LNAs are used to amplify weak signals captured by antennas. Although advanced LNA
design techniques exist for narrowband systems, the very wide bandwidth of UWB
signals makes many of those techniques unsuitable for UWB receivers [364]. The main
challenges in UWB LNA design are related to providing low noise figure (NF), good
impedance matching and sufficiently high and flat power gain over a wide frequency
range.

The NF of an LNA is defined as the difference between the input SNR and the output
SNR,17 where all quantities are in dB; i.e.

NF = SNRin − SNRout. (8.25)

For UWB systems, defining SNR as a meaningful metric of performance requires careful
consideration. Since the input signal occupies a wide range of frequencies and the noise
can be colored, a higher ratio between signal power and total noise power may not always
mean a better receiver performance [364]. For this reason, the NF of a UWB system can
be defined by means of a linearly weighted average of single-tone NFs [365], or by using
matched filter bounds instead of SNRs in NF calculations [364].

The flat gain requirement over an ultra-wide bandwidth of interest is another chal-
lenging issue for UWB LNA design [366–369]. Since imposing strict gain-flatness
requirements limits design flexibility, it is also possible to introduce LNAs with slightly
unflat gains in order to achieve low power and good noise performance [370].

Table 8.2 compares performance of various UWB LNAs proposed [328,
371–374]. It is observed that the current LNA structures based on CMOS technology
can provide about 10–15 dB power gain with power consumptions of around 10 mW
over the specified ultra-wide bandwidths. Note that the NF varies significantly in cer-
tain designs within the bandwidth, whereas it is more stable in others. In addition to
the LNAs based on the CMOS technology, a UWB LNA is proposed in [375] based on
the silicon–germanium heterojunction bipolar transistor (SiGe HBT) technology, which
provides a higher power gain (16.4–18 dB) than the UWB LNAs in Table 8.2, but also
consumes significantly more power (42.5 mW).

Analog-to-digital conversion
Conversion of an analog signal into a digital signal consists of sample-and-hold (S/H)
and quantization operations. Depending on how fast the analog signal is sampled, how
many bits are used to represent the digital signal, and the amount of power dissipated by
the S/H and the quantization circuitry, performance of various ADCs can be analyzed.
These three quantities, sampling rate, resolution, and power dissipation, are the main
parameters in comparing various ADC structures.

17 The noise factor F is defined as the ratio of the input SNR to the output SNR; i.e. F = 100.1NF, where NF
represents the noise figure.
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Table 8.2. Performance comparison of various UWB LNAs [371]. Input return loss is defined as the ratio
of the reflected signal to the incident signal, which quantifies the matching characteristics. For perfect
matching, the input return loss becomes zero.

[371] [328] [372] [373] [374]

Technology (CMOS) 0.18 μm 0.18 μm 0.18 μm 0.18 μm 0.13 μm
Bandwidth (GHz) 3.4−11.4 2.3−9.2 1.3−10.7 1−11.6 3.1−10.6
Power gain (dB) 13.5−16 9.2 8.5 10.8−12 13.7−16.5
Noise figure (dB) 3.1−6 4−9 4.3−5.3 4.7−5.6 2.1−2.8
Power consumption (mW) 11.9 9.2 4.5 10.6 9
Input return loss (dB) < −8 < −9 < −10 < −11 < −10
Supply voltage (V) 1.8 1.8 1.8 1.5 1.2
Chip area (mm2) 1.2 1.1 1.0 0.66 0.87

Analog-to-digital conversion at a UWB receiver can be performed after LNA and
AGC blocks as shown in Fig. 8.19, or after correlation operations in the analog domain
as shown in Fig. 8.20. The main advantage of performing correlations in the analog
domain is thatADCs can operate at much lower rates since sampling per frame or symbol
becomes sufficient. In this way, low-power UWB receivers can be designed [319, 361].

Although analog correlations facilitate low-rate sampling, they reduce receiver flex-
ibility and suffer from circuit mismatches. For example, the number of correlators is
usually limited, and sophisticated narrowband interference (NBI) mitigation techniques
cannot be employed for UWB receivers that perform analog correlation [357]. There-
fore, it is desirable to move the ADC block as close to the antenna as possible, which
yields an “all-digital’’ UWB receiver with improved flexibility [357–359].

For all-digital UWB receivers, very high speed ADCs are necessary since sampling
UWB signals at the Nyquist rate requires obtaining a few billion samples per sec-
ond (Gsps). Fortunately, resolution requirement is not as strict as the sampling rate
requirement. As the received UWB signals are commonly immersed in strong AWGN
and interference due to their low spectral density, an ADC with a few bits of resolution is
sufficient [358, 360, 376–378]. Specifically, ADCs with more than four bits of resolution
provide only marginal improvement over a four-bit ADC for UWB systems [358, 376].
Also, use of one-bit ADCs is possible in the absence of NBI [359, 379–381]. However, in
the presence of NBI, around four bits are necessary to mitigate the effects of NBI [359,
376].

In order to meet the fast sampling rate requirement with the current ADC technology,
various channelization techniques have been proposed [357, 381–385]. In time-domain
channelization, NA ADCs are time-interleaved in order to obtain an effective sampling
rate of NAfs, where fs is the sampling rate of each ADC [381–383]. Channelization can
also be performed in the frequency domain by means of a filter bank implementation
as shown in Fig. 8.21. The advantage of the frequency domain channelization over the
time domain one is that the former has significantly reduced dynamic range requirements
[357]. Both time-domain and frequency-domain channelization can be considered in the
general framework of analog-to-digital conversion based on projection of input signal
over a set of basis functions [384].



8.4 Problems 225

g(t)
g[n]

+

ADC M

M

M

ADC

ADC

H1(Ω) F1(z)

F2(z)H2(Ω)

HNA(Ω) FNA(z)
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In addition to channelization approaches, subsampling techniques can also be
employed to relax the ADC sampling rate requirements [386, 387]. In a subsampling
UWB receiver, no down-conversion is performed and the passband UWB signal is
directly sampled at twice the signal bandwidth instead of the maximum signal fre-
quency. For example, for a UWB signal that occupies the bandwidth from 4 to 5 GHz, a
sampling rate of 2 Gsps is used. Subsampling can relax the sampling rate requirements
significantly for UWB signals with relatively small bandwidths. However, it is not very
effective for full-band UWB signals that occupy the 3.1–10.6 GHz band.

In addition to the techniques, such as channelization and subsampling, for relax-
ing the sampling rate requirements, the architecture of the ADC also carries significant
importance for the performance of a UWB receiver. Among various types of ADC struc-
tures, such as flash, pipelined, successive approximation register (SAR), sigma-delta and
folding [388], flash ADCs have the highest sampling rates due to their parallel struc-
ture for comparing input signals with successive reference signal levels [389]. However,
their complexity increases exponentially with resolution; therefore, high-resolution flash
ADCs dissipate a significant amount of power [359, 390]. On the other hand, SAR
ADCs consume low power, but they are quite slow in comparison with flash ADCs.
However, time-interleaving can be incorporated into the SAR ADC architecture for
reasonably fast analog-to-digital conversion (such as 500 Msps) with low power
consumption [391, 392].

8.4 Problems

(1) Consider a range estimate that is modeled as

d̂ = d + n, (8.26)

where d is the true range and n ∼ N (0 , σ 2) is the measurement noise.
(a) Calculate the RMSE of the range estimate.
(b) Calculate the CDF of the ranging error.
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(2) Consider a UWB ranging signal given by

s(t) =
Nf −1∑
j = 0

ajω(t − jTf ), (8.27)

where ω(t) is the UWB pulse with a pulse width of Tc, Nf is the number of UWB
pulses in the ranging signal, Tf is the PRI, and a = [a0 a1 · · · aNf −1] is a ternary
sequence.

Calculate the (peak) PRF, the mean PRF and the peak power of the ranging
signal for a pulse energy of 7.4 × 10−12 J, Tc = 1 ns, Nf = 10, Tf = 0.1 μs, and
a = [1 0 −1 1 0 1 0 −1 1 0].

(3) (programming exercise) Repeat Example 8.3 for a UWB ranging system that utilizes
2 GHz bandwidth with a center frequency of fc = 5 GHz.

(4) What are the advantages and disadvantages of an “all-digital’’ (direct sam-
pling) UWB receiver in comparison with a UWB receiver that performs analog
correlations?



9 Recent developments and future
research directions

In this chapter, some of the recent interesting research work related to UWB ranging
and positioning are briefly reviewed. The purpose of the chapter is not to describe these
studies in detail, but rather to point out specific recent references that may yield further
research.

9.1 Development of accurate ranging/positioning algorithms

As discussed in the previous chapters, ranging and localization via UWB radios have
been investigated extensively in the literature. While CRLB and ZZLB provide lower
bounds on the ranging/localization accuracy, low-complexity and efficient estimators
that approach these bounds in practical scenarios are still needed.

There are numerous recent research studies that aim at improving UWB ranging/
localization accuracy. One research direction is joint estimation of range and location.
In [170], it is shown that a two-step approach that uses independent decisions in rang-
ing and localization steps is asymptotically optimal at high SNRs. However, it requires
perfect estimates of delays, attenuations, and pulse shapes related to the received multi-
path components (MPCs) in order to construct an optimum correlation template at the
receiver, which is very difficult to achieve in practice. Without perfect a-priori informa-
tion of the channel parameters, such a two-step method returns unreliable TOA estimates
during the ranging step. Since the measurements are separately performed at each ref-
erence node, without a constraint that all the measurements correspond to the location
of the same mobile terminal, such approaches are suboptimal [137]. A better approach
would be to make least commitment, where intermediate information is preserved and
propagated till the end [393]. In other words, the received channel responses should
not be discarded until a final decision regarding the target node location is made. For
example, in [394], the ranging thresholds are set so that the residual error is minimized.
In another work [395], the ranging algorithm outputs several range estimates with asso-
ciated likelihood values; these ‘soft’ range estimates are then utilized in the positioning
algorithm which employs the projections onto convex sets (POCS) technique.

As discussed in the previous chapters, one way to address the transceiver complexity
problem in MF receivers is to adopt the TR-UWB approach. Since a TR-UWB receiver
does not require timings and amplitudes of received multipath components, it results in
a simple structure. However, the required analog delay line is hard to realize in practice.
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To address this problem, recently a frequency-shifted reference (FSR) UWB technique
has been proposed [396, 397]. In FSR-UWB, two signals that are relatively shifted in
the frequency domain are used as reference and data signals. When the frequency shift
is smaller than the channel coherence bandwidth, the two signals propagate through
the same channel, and experience about the same fading. At the receiver, the received
waveform is multiplied by a frequency-shifted version of itself. The resulting signal
yields the decision variable. Unlike TR-UWB, FSR-UWB does not need an analog
delay line. However, like the TR-UWB, FSR-UWB suffers from the energy loss due to
allocating half of the energy to the reference. In [398, 399], a digital multi-carrier differ-
ential (MCD) UWB is proposed, which employs a differential modulation/demodulation
approach in the frequency domain for digital UWB receivers. In MCD-UWB, only the
first carrier is used as the reference carrier, and a differential relationship is established
between adjacent carriers. With FFT/DCT operations, MCD-UWB can flexibly realize
variable data rates by transmitting more than one symbol in each block interval. Com-
pared to the FSR-UWB, MCD-UWB sufficiently reduces the energy loss due to the
reference carrier. It is proved that for a low-rate scheme when only one symbol is differ-
entially modulated over all carriers, the similar simple receiver structure can be obtained
as that of the FSR-UWB. Similar to the FSR-UWB, MCD-UWB also avoids the analog
delay line.

Another research direction aims to improve the positioning accuracy by cooperative
localization techniques. As discussed in [26], the cooperative localization problem can
be represented by spools of thread interconnected with springs. This analogy is depicted
in Fig. 9.1. Some of the spools (reference nodes) are nailed to their known positions
whereas some of the others with unknown coordinates can move around. The lengths
of the springs are determined by the measured distances and they can be compressed
or stretched. Once the system is released, it converges to a minimum energy location
estimate at the equilibrium point. In [206], Denis et al. further investigated the problem
of distributed localization for UWB systems in NLOS scenarios and for realistic ranging
error models. It is shown that cooperative/distributed maximization of log-likelihood
of range estimates yields more accurate results compared to distributed weighted least
squares (WLS) techniques.

The localization accuracy can be improved using hybrid techniques, such as hybrid
TDOA/AOA [161], or hybrid TOA/fingerprint-based techniques [158]. However, this
may come at the expense of increased complexity. Enhanced location trackers can
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Fig. 9.1. Illustration of cooperative localization. It is analogous to finding resting point of spools of thread
which are connected by a network of springs (represented by arrows) (After [26]). The actual
locations of the target nodes are indicated by ⊕ and the figure illustrates the equilibrium point.
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increase the positioning accuracy while tracking a target node in motion, such as by
using Kalman filters and particle filters [400]. It is possible to improve the leading edge
detection and ranging performance by using forward error correction coding [401].

As discussed in [402], real world localization accuracy may often be much worse
than that predicted by simulations. A major factor in the prediction gap is assumed to be
due to the differences between theoretical noise models (which is commonly assumed
to be Gaussian distributed) and empirical noise characteristics. While [402] focuses
on multi-hop localization, the prediction gap applies to localization systems in general
if improper noise models are used. The ranging noise in a UWB system may have a
significantly different probability distribution than a Gaussian noise depending on the
employed ranging algorithm [206, 403]. If not properly accounted for, this may yield an
inferior localization accuracy in practice. Further research may be needed to close the
gap between theorical and practical results.

It is a non-trivial issue to design low cost and low complexity UWB chipsets that can
be fitted into consumer devices (e.g., mobile handsets [404]). Enabling this is not only the
job of the chip manufacturers, but also of the system designers. They should design low-
complexity, yet efficient, ranging/localization techniques so that they can be implemented
in a cost-effective way. The trade-off is that, with low-complexity implementations (e.g.
using an energy detector that operates at sub-Nyquist sampling rates), ranging typically
requires a longer air time. This is because the noise has to be averaged to improve
the SNR.

9.2 Training-based systems and exploiting the side information

The positioning accuracy can be improved by making use of some a-priori information
about the measured radio signals at different geographical locations. Such information
are commonly referred to as fingerprint information. They should be location-sensitive
and can be collected during a training (off-line) phase in a database. During the real-time
(on-line) phase, the fingerprint information can be used to locate the mobile node. A
block diagram of a fingerprint-based localization system is depicted in Fig. 9.2.

A fingerprint database can be simply composed of received signal strengths from/at
different reference nodes and at different mobile (target node) locations [21, 405]. How-
ever, it may as well capture more detailed fingerprint information. For example, in [153],
seven parameters of the magnitude of the received channel impulse response (CIR) are
used as fingerprint information: mean excess delay, RMS delay spread, maximum excess
delay, total received power, number of MPCs, power of the first path, and arrival time
of the first path. During the off-line phase, this information is collected at different mea-
surement locations and they are used for training an artificial neural network (ANN). In
the on-line phase, this ANN is used for mapping the measured parameters to an estimate
of the mobile’s location.

Rather than using only certain parameters of the CIR, the estimated CIR itself can be
used to estimate the mobile’s location as in [151]. First, the CIRs at different locations are
recorded in a database during the off-line phase. During the on-line phase, a cost function



230 Recent developments and future research directions

Receiver ……

Information N(xN, yN)

(x2, y2)

(x1, y1)

Information 2

Information 1

Fingerprint
information

User’s position
(known)

Fingerprint database

Set of
received
signals

Mobile’s
position
(known)

Receiver

Set of
received
signals

Set of
fingerprints

Set of
fingerprints

Pattern matching
algorithm

Estimate
of mobile’s
position

Offline
phase

Online
phase

Fig. 9.2. Illustration of localization with a training-based system (After [153].

(e.g., the Euclidean distance) is computed between the estimated CIR and each of the
CIRs in the database. Then, the location corresponding to the smallest cost function is
chosen as the mobile’s location.

A similar concept is applied to UWB systems in [150, 406] using a single reference
node. First, a-priori knowledge of the average power delay profile is obtained at different
geographical locations. Then, a likelihood-based algorithm is used to determine if the
CIR of a received signal belongs to a certain location or not. A drawback of the proposed
algorithm is that with a single reference node, it only distinguishes between two positions.
Hence, it may be more suitable for obtaining a rough estimate of the mobile’s location,
and more accurate techniques may be developed using multiple reference nodes.

One of the important drawbacks of fingerprinting techniques is that they may require
a large number of training points for accurate localization. This is because the solution
space is typically limited by the number of training locations. Moreover, the effectiveness
of the fingerprint database may show variations in time due to changes in the propagation
environment (e.g., due to movements of people, furnitures, opening/closing of doors,
changes in humidity). In [154], a zero-configuration system that does not require an
on-site survey is proposed to solve this problem. The key idea is that on-line signal
strength measurements among different reference nodes (with known locations) are used
to capture the variations in the RF channel. Then, this information is used while mapping
the signal strength values to actual geographical distances,1 which can then be used to
estimate the location of the target node. Hence, adverse effects of changes in the RF
channel are captured and mitigated simultaneously by making use of the infrastructure.

The map of the geographical region can be quite useful for tracking and NLOS mit-
igation applications. For example, while tracking a mobile, if the map of a building is
available a priori, the location estimator may be tuned so that the estimate cannot jump

1 In particular, singular value decomposition (SVD) techniques are used for mapping.
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from one side of a wall to the other side of the wall. In [407], a ray-tracing algorithm
is proposed which uses the available map information for mitigating NLOS effects. The
results show significant improvements in localization accuracy.

The a-priori information may also be simply composed of the statistics of an
unknown (location-specific) parameter (e.g. NLOS bias, RMS delay spread, and mean
excess delay) within a certain geographical region. During the on-line phase, such a-
priori knowledge of these statistics may be used to improve the positioning accuracy
[119, 408]

9.3 NLOS mitigation

Many practical scenarios for UWB ranging and localization involve NLOS paths between
the target node and a reference node, which degrade the positioning accuracy. A simple
way to mitigate the NLOS effects is to identify the NLOS reference nodes and discard
them during localization [17]. However, there is always the probability of wrong iden-
tification (i.e. detecting a LOS reference node as NLOS, or vice versa). Moreover, if
an NLOS reference node is not used for localization, the remaining number of avail-
able reference nodes (and their geometry) may not be suitable for obtaining an accurate
estimate of the target node’s location.2

An NLOS reference node carries useful information about the location of the target
node, which can be utilized to improve the localization accuracy. Since the NLOS bias
in a TOA estimate is always positive (and is usually relatively larger than the error due
to background noise), the location of the target node is bounded by a circle centered
at the NLOS reference node. This circle has a radius equal to the range estimate of the
NLOS reference node, and can be used as a constraint while calculating the location of
the target node. In [19, 197], quadratic and linear programming techniques for NLOS
localization are introduced where the constraints in the algorithms are obtained from the
NLOS reference nodes.

Another way to mitigate the effects of the NLOS bias is to use a weighted least squares
algorithm [4, 119]. The contribution of the NLOS measurements may be weighted appro-
priately and suppressed in the localization algorithm. The weights may be obtained from
the variances of the range estimates [4], or from different statistics of the multipath
components of the received signal [119].

In [409], a database technique based on universal kriging algorithm is introduced for
mitigating the effects of NLOS bias.3 First, during the off-line stage, the NLOS bias errors
are recorded at a number of target node locations. Then, the universal kriging technique
is used to interpolate the NLOS errors at untrained locations. The basic assumption is
that the NLOS error is spatially correlated. During the online stage, the NLOS error

2 For example, a minimum of three LOS reference nodes are required for TOA-based 2-D localization, and
a minimum of two LOS reference nodes are required for AOA-based 2-D localization.

3 For a more detailed discussion and definition of universal kriging, the reader is referred to [410].
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Fig. 9.3. Illustration of the kriging technique for NLOS mitigation (After [409]).

correction matrix obtained by kriging is used for improving the accuracy of the location
estimate. Basic operation of the algorithm is depicted in Fig. 9.3.

In addition to different techniques that are explicitly designed to mitigate NLOS
effects, cooperative localization techniques [206] and tracking algorithms [400, 411], if
intelligently designed, may also improve the localization accuracy in NLOS environ-
ments. Despite the numerous NLOS identification and mitigation algorithms in the litera-
ture, there is still a large research space for designing efficient UWB ranging/localization
techniques in practical NLOS scenarios.

9.4 Multiple accessing and interference mitigation

In order to accommodate multiple users in the same channel, it is essential to use efficient
multiple access mechanisms for localization. As discussed in Chapter 5, orthogonal
channels can be assigned in time, frequency, code, or space domains. A commonly
used multiple access technique in ad-hoc and sensor network systems is the carrier
sense multiple access (CSMA). In CSMA, only a single user is allowed to access the
channel within a certain time period. However, due to the high bandwidth to data-rate
ratio of UWB systems, such a single-channel approach for UWB multiple access may be
wasteful [412]. Instead, in [412], a TH-CDMA-MAC protocol is introduced for improved
scalability and faster convergence time of the location estimates.

Even with proper multiple access designs, there may still be interference from other
users (e.g. from a simultaneously operating piconet (SOP)), and this may degrade the
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ranging accuracy. Hence, efficient interference mitigation algorithms may be required
to achieve accurate localization. In [413], a generalized successive interference cancel-
lation/matching pursuits (GSIC/MP) algorithm is proposed for mitigating the effects of
multiple access interference in DS-CDMA systems. It provides reliable channel esti-
mates for sparse multipath channels with weak direct paths. Since it can combat near/far
effects, it can be used in scenarios where no power control is available.

A method for mitigation of the multi-user interference in time-hopping and direct-
sequence non-coherent IR-UWB systems is introduced in [201, 290], which was
discussed in detail in Section 7.1.4. A block diagram summarizing the basic principle
of the algorithm is illustrated in Fig. 7.9. To summarize the concept, first, a 2-D image
of the signal is obtained by de-spreading it with the desired user’s spreading code and
observing the samples over multiple ranging symbols. When the rows of the 2-D image
are observed, the desired signal repeats itself at each row, while the interference has a
random pattern (since it has a different spreading waveform). Hence, interference can
be suppressed by applying a non-linear filter (e.g. a minimum filter or a median filter)
on the columns of the 2-D image. Then, 2-D to 1-D conversion is performed followed
by an appropriate TOA estimation algorithm.

While interference to the ranging system may be from other UWB transmitters, accu-
racy of UWB localization systems is also affected from narrowband interference. In a
recent work, impact of narrowband and wideband interference on the accuracy of practi-
cal UWB ranging systems is evaluated in realistic multipath environments [291]. Further
analysis of the issue and development of efficient narrowband interference cancelation
algorithms may be an interesting research direction.

Another way of limiting the interference to other users in a network is to implement
power control. In [414], it is shown that localization accuracy fluctuates or “fades’’ as
a target node moves through the network of reference nodes. If power control is used,
fluctuations in the localization error can be reduced and localization accuracy can be
improved. Intelligent power control techniques may also be used to minimize the interfer-
ence to other users while simultaneously maintaining a satisfactory localization accuracy.

9.5 Cognitive ranging and localization

Cognitive radio has recently been popular due to its promising characteristics and its
capability to adapt to the changes in the environment [415]. In a recent work by Haykin,
the concept of cognitive radar [416, 417] is introduced, where cognition is applied
to radar systems. In a later work, Celebi et al. introduced the concept of cognitive
positioning systems (CPSs) in which the positioning accuracy can be varied by adap-
tively changing the system parameters [418, 419]. The CPS is composed of two modes:
(1) bandwidth determination, and (2) hybrid overlay and underlay enhanced dynamic
spectrum management (H-EDSM) system.As illustrated in Fig. 9.4, the bandwidth deter-
mination step chooses the appropriate bandwidth required for the desired positioning
accuracy. Then, it is consulted to the H-EDSM for the availability of the required effec-
tive bandwidth. If there is available bandwidth, the reference cognitive radio transmits
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the signal at the available spectrum. The target cognitive radio, upon receiving the signal,
estimates the mobile location using adaptive TOA (A-TOA) estimation, where A-TOA
is capable of performing ranging at different bandwidths.

In [249], ranging in dynamic spectrum access networks (DSANs) using cognitive
radios is studied. More specifically, due to the dynamic nature of the DSANs, the
effects of absolute bandwidth, operating center frequency, and frequency-dependent
feature of multipath components (or the change in environment) on the ranging accu-
racy are investigated. Issues related to ranging in DSANs can be investigated further and
ranging algorithms can be developed for such wireless networks. Location awareness
engine architecture for cognitive radios and cognitive wireless networks is introduced
in [420]. The proposed location awareness engine is responsible for handling all location
information-related tasks such as location estimation and sensing, seamless positioning
and interoperability, statistical learning and tracking, security and privacy, and mobility
management.

The impact of bandwidth on the accuracy of UWB ranging systems is further ana-
lyzed in [421, 422]. The ranging error is analyzed for two different scenarios in [421]: (1)
detected direct path (DDP) scenarios, and (2) undetected direct path (UDP) scenarios.
For DDP scenarios, the ranging error consistently decreases with increasing bandwidth.
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Fig. 9.4. Illustration of CPS block diagram (©2007 IEEE) [418].
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However, as the bandwidth increases, it becomes more likely that the amplitudes of the
first arriving MPCs may be smaller than the ranging threshold in UDP scenarios.4 Since
the total ranging error is the summation of the errors for DDP and UDP scenarios, the
authors show that there actually exists an optimum bandwidth where the ranging error is
minimized.5 In [422], the authors analyze the relation between the bandwidth of UWB
systems and the ranging accuracy using experimental data collected in three-bedroom
and four-bedroom apartments. The bandwidths between 500 MHz and 7 GHz are consid-
ered with 500 MHz increments. While the ranging accuracy increases significantly with
bandwidth until 2.5 GHz, improvements in the ranging accuracy after 5 GHz become
insignificant.

Apart from the system bandwidth, sampling rate of the receiver6 (beside other
algorithm-specific parameters such as the integration window length, ranging threshold,
and search window length) is another parameter that may affect the ranging accu-
racy. Therefore, even if the system bandwidth increases, improvement in the ranging
accuracy may not be significant if the receiver capabilities/parameters are not also
improved/modified.

9.6 Anchor placement

Placement of the reference nodes carries critical importance for the positioning accu-
racy. The Cramer–Rao lower bound (CRLB) and geometric dilution of precision
(GDOP) are commonly used as tools for assessing the optimality of a certain sensor
placement [423].

In [203], an iterative algorithm called RELOCATE is proposed for optimally plac-
ing the reference nodes. For a fixed position of the target node, it optimally places
the reference nodes so as to minimize the CRLB. Extension of the algorithm for mul-
tiple locations of the target node (such as a walking path within a building) is also
presented.

Practical aspects of 3-D placement of the reference nodes is evaluated in [424] using
well known optimal solutions. Horizontal dilution of precision (HDOP) and vertical
dilution of precision (VDOP) are used to describe errors in horizontal and vertical
dimensions. An example scenario for placing four reference nodes within a cubic room
is considered. Placing all the target nodes on a planar surface (e.g., four different corners
of the room’s ceiling) yields relatively low HDOPs but large VDOPs. On the other hand,
if the target nodes are placed in an “as good as possible’’ tetrahedron configuration, the

4 At small bandwidths, each observable MPC is composed of a number of paths that arrive close to each
other. Hence, the amplitude of each observable MPC is proportional to the sum of the individual MPCs. As
the system bandwidth increases, each of these individual MPCs become resolvable, and their amplitudes
decrease.

5 It should be noted that this finding is based on a specific approach for selecting the ranging threshold.
6 As discussed in Chapter 5, the receiver may sample the received signal at smaller than Nyquist rate for a

low-complexity implementation.
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(a) Planar configuration (b) Tetrahedron configuration
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Fig. 9.5. A rectangular room with (a) planar, (b) tetrahedron placement of reference nodes. Placing the
reference nodes on an “as good as possible’’ tetrahedron yields significantly better vertical
accuracy.

HDOP is relatively smaller while the VDOP is significantly smaller compared to the
planar configuration (see Fig. 9.5).

Optimum geometries of the reference nodes for different number Nm of reference
nodes are derived in [425]. In general, the reference nodes are placed on a geometry
whose corners are “equally’’ distributed on a unit spherical surface. The five solu-
tions to this problem for Nm = 4, 6, 8, 12, 20 correspond to a tetrahedron, octahedron,
cube, icosahedron, and dodecahedron, respectively, which are also referred to as pla-
tonic solids. Also, any superposition of centered platonic solids yields another optimum
geometry [425].

9.7 UWB radar in health-care

Due to its high time resolution, UWB signaling is very suitable for short range radar type
of applications, in which it is desirable to estimate the range, direction, and speed of a
target object. In particular, UWB radars have a large number of potential applications in
health-care and medicine. A nice tutorial on the applications of UWB radar in medicine
can be found in [426].

A recently studied application of UWB radars is the estimation of vital signal param-
eters. Its use in the detection of chest cavity motion and in the estimation of respiration
and heart-beat rates are described and analyzed in [427]. Considering a static environ-
ment (other than the subject under consideration), the channel impulse response can be
modeled as

h(t, τ ) = αbδ(τ − τb(t)) +
∑

i

αiδ(τ − τi) , (9.1)

where the first term captures the respiratory variations and the other terms correspond to
the static channel (see Fig. 9.6). In order to get rid of the static components, a motion filter
can be used. First, the received signal is averaged over a large number of observations
to capture only the static channel. Then, this is subtracted from the instantaneous signal.
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The remaining signal basically captures the respiratory variations in the related signal
component.

In another work [428], the variations of the radar return spectrum around the interfer-
ometric minima are used to detect chest cavity motion. For a breathing person, the varia-
tions are very large compared to a non-breathing person. Furthermore, fundamental lower
bounds on the estimation of the vital signal parameters using UWB are derived in [429].

9.8 UWB for simultaneous localization and mapping

Simultaneous localization and mapping (SLAM) is the task of jointly and incrementally
building a map of the environment while simultaneously estimating the target’s own
location. In [430], it is proven that the SLAM problem can be solved where the map
uncertainty and position uncertainty can be improved up to a fundamental limit deter-
mined by the initial position uncertainty. In [431], it is shown that by using the a-optimal
information measure, a more accurate map than existing approaches can be developed
by using a greedy, closed-loop strategy.7

The use of UWB-IR receivers for indoor mapping and positioning is investigated
in [432–434]. The proposed technique is capable of positioning and mapping without
using any fixed references, and simultaneously constructs a map of the room for simple
two-wall and four-wall scenarios. Figure 9.7 illustrates a simple scenario where two
mobiles (target nodes), M1 and M2, may receive LOS or reflected signals from each
other (or reflections of their own signals). By processing different echoes, the mobiles
can obtain the distances to each other as well as to the walls. As the number of walls
increases, the complexity of the algorithm gets larger.

SLAM can be used in many interesting practical scenarios. For example, the European
Union-funded project EUROPCOM [435] envisions a scenario in which UWB radio is

7 D-optimality and a-optimality are two different optimality criteria in experimental design theory. While the
d-optimal information measure uses the product of eigenvalues, the a-optimal information measure uses
the sum of eigenvalues [431]. For a more detailed discussion on these information measures, the reader is
referred to [431].
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Fig. 9.7. Two-dimensional indoor mapping without any infrastructure (After [432]).

used in emergency situations (particularly within large buildings) where locations of the
personnel are displayed in a control vehicle. Since the building map may not be available
a priori, or it may change due to damaged walls etc., SLAM can be used to obtain an
up-to-date map of the building. In [436], audio signals are used to emulate the behavior
of the UWB transmitter/receiver and the CLEAN algorithm is used to obtain a 3-D map
of the environment.

9.9 Secure ranging and localization

Until recently, ranging and localization have been mainly studied in secure environments.
However, many of the traditional localization techniques are susceptible to different
attacks (e.g., Sybil attack [437], wormhole attack [20, 437], jamming attack [20], distance
enlargement/reduction [438]8) in hostile environments. Recognizing this vulnerabil-
ity, few recent research works address the issue of secure localization in adversarial
settings [437–441].

Secure localization can be achieved to some extent by using longer ranging codes
during TOAestimation as discussed in Chapter 7. For example, using an MTOK sequence
of length 127, an imposter has to search a larger number of possible ranging sequences
to detect the correct sequence compared to that when an MTOK sequence of length
31 is used. This decreases the chances that the attack becomes successful before the
ranging process is completed. Moreover, compared to shorter length preambles (e.g. 16
or 64 repetitions), longer length preambles (e.g. 1024 or 4096 repetitions), even though
potentially yielding higher accuracy levels, may be more susceptible to attacks due to a
larger number of repetitions of the ranging preamble.

On the other hand, as discussed in [20], many of the localization-specific attacks
may be non-cryptographic where conventional security mechanisms are unlikely to
remove the threats, and higher-level security mechanisms are required. For example, a
malicious user may alter the signal strength or TOA from a particular reference node

8 For a detailed review of different attacks specific to localization systems, the reader is referred to [20, 438].
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Fig. 9.8. Verifiable multilateration (VM) with three verifiers. If the claimant node enlarges the measured
distance to one of the verifiers, it has to prove that the measured distance to at least one of the
other verifiers is decreased (which cannot happen due to the distance bounding property)
(After [438]).

by placing attenuators between the target node and the reference node.9 This produces
outliers in the measurement data from different reference nodes, and hence degrades the
localization accuracy. In [20], robust estimators (in particular, least median of squares
estimators) are used for making the location estimate attack-tolerant for such distance
enlargement/reduction attacks. In that case, the position estimate is obtained as

(x̂, ŷ) = arg min
(x,y)

medi

[√
(xi − x)2 + (yi − y)2 − d̂ 2

i

]2

, (9.2)

where (xi, yi) is the coordinate of the ith reference node, (x̂, ŷ) is the estimate of the
target node position, and d̂i is the distance measurement related to the ith reference node.
This position estimation scheme can tolerate up to 50% outliers among all measurements,
in the absence of noise.

In [438], the verifiable multilateration (VM) algorithm is introduced, which enables
secure positioning in the presence of attackers who may maliciously modify the measured
distances. The VM algorithm is based on the distance bounding property, which states
that a claimant (e.g., a mobile that wishes to spoof its position to the network) may only
claim that it is more distant from a verifier (e.g., a reference node) than it actually is.
If a claimant increases its measured distance to one of the verifiers in order to spoof its
position, it also has to prove that at least one of the measured distances to one of the other
verifiers should decrease for consistency (see Fig. 9.8). However, this is not possible due
to the distance bounding property.

In [437], the authors consider and examine specific adversarial models (e.g., worm-
hole attack, Sybil attack, and compromise of network entities) and develop a secure
localization method called high-resolution range-independent localization (HiRLoc),
which combines communication range constraints with cryptographic primitives. The

9 Or, the malicious user may also serve as a reference node and purposefully transmit a manipulated signal
with a different signal strength and/or delay for misleading the target node.
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basic idea in HiRLoc is the variation of the transmission parameters at the reference
points, such as the antenna orientation and the communication range (via power control),
or both.

Another secure localization technique that is based on transmission range variation is
presented in [441]. For each transmission power level, a unique nonce (random number)
is transmitted by the anchors, and only the intended sensor is able to decipher the nonces
due to the employed encryption key.

9.10 Concluding remarks

Ranging and localization via UWB radios will enable numerous exciting applications for
next generation wireless systems. Despite the recent research and development on UWB
ranging and localization, there are still many research areas and directions to explore.
This chapter has summarized only a few of the possible research directions. Together
with the release of the IEEE 802.15.4a standard, we will observe an increasing number
of UWB ranging/localization chip sets and devices, which will trigger new research and
development. Maybe we will soon see UWB localizers as an essential component of our
cellular handsets. Maybe, in few years from now, we will never have to search for our
lost keys again due to centimeter-accuracy UWB localizers. Regardless, it is for sure
that UWB localizers will be there to make our daily lives easier.
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