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Preface

Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evo-
lutionary Computation (EC) field characterized by the use of explicit probability
distributions in optimization. Contrarily to other EC techniques such as the broadly
known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators
are substituted by the sampling of a distribution previously learnt from the selected
individuals.

Since they were first termed by Mühlenbein and Paaβ (1996) and the seminal
papers written three years later by Etxeberria and Larrañaga (1999), Mühlenbein and
Mahnig (1999) and Pelikan et al. (1999), EDAs have experienced a high development
that has transformed them into an established discipline within the EC field. Evidence
of its establishment is the great number of papers on EDAs published in the main EC
conferences and in EC-related journals, as well as the tutorials given in the PPSN,
CEC and GECCO conferences.

The work developed in the field since our first edited book (Larrañaga and
Lozano (2002)), has motivated us to compile a subset of the great advances on EDAs
in this new volume. We hope this will attract the interest of new researchers in the
EC field as well as in other optimization disciplines, and that it becomes a reference
for all of us working on this topic.

The twelve chapters of this book can be divided into those that endeavor to set a
sound theoretical basis for EDAs, those that broaden the methodology of EDAs and
finally those that have an applied objective.

In the theoretical field, Ochoa and Soto abound on the relation between the con-
cept of entropy of a distribution and EDAs. Particularly, the authors design bench-
mark functions for EDAs based on the principle of maximum entropy. The concept
of entropy is also applied by Ocenasek to base a stopping criterion for EDAs in dis-
crete domains. The author proposes to end the algorithm at the time point when the
generation of new solutions becomes ineffective.

Methodological contributions in the field of continuous optimization are carried
out by Ahn et al. The authors define the Real-coded Bayesian Optimization Algo-
rithm, an algorithm that endeavors to convey the good properties of BOA to the
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continuous domain. Hansen presents a comparison of the CMA (Covariance Matrix
Adaption) of evolution strategies with EDAs defined in continuous domains.

The extension of the EDAs framework to broader scopes is performed by Yanai
and Iba, Bosman and Thierens and Madera et al. Yanai and Iba introduce EDAs in
the context of Genetic Programming. In this context the probability distribution of
programs is estimated by using a Bayesian network. Bosman and Thierens extend
their IDEA algorithm to the problem of multi-objective optimization. They show
how the use of a mixture model of univariate components allows for wide–spread
exploration of a multi–objective front. The parallelization of EDAs is deal with by
Madera et al. The authors propose several island models for EDAs.

Other two works on the methodological arena are those of Robles et. al. and
Miquelez et al. In the view of the great practical success attained by hybrid algo-
rithms, Robles et al. propose several ideas to combine EDAs with GAs in order for
the hybrid to share the good points of both GAs and EDAs. Miquelez et al. de-
sign a sub-family of EDAs in which Bayesian classifiers are applied in optimization
problems. Using the classification labels, a Bayesian classifier is built instead of a
common Bayesian network.

Finally, the book contains some concrete examples on using and adapting the
EDA framework to the characteristics of complex practical applications. An example
of this is presented by Saeys et al. who apply the algorithm in a feature ranking
problem in the context of the biological problem of acceptor splice site prediction.
They obtain an ordering of the genes from the estimated distribution of an EDA.
Flores et al. use EDAs to induce linguistic fuzzy rule systems in prediction problems.
The authors integrate EDAs in the recently proposed COR methodology which tries
to take advantage of the cooperation among rules. Finally the quadratic assignment
problem is tackled by Zhang et al. The authors use an EDA couple with a 2-opt local
algorithm. A new operator “guided mutation” is used to generate the individuals.

We would finally like to thank all the contributors of this book for their effort
in making it a good and solid piece of work. We are also indebted to the Basque
country government for supporting by means of the SAIOTEK S-PE04UN25 and
ETORTEK-BIOLAN grants.

Spain Jose A. Lozano
August 2005 Pedro Larrañaga

Iñaki Inza
Endika Bengoetxea
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Teresa Miquélez, Endika Bengoetxea, Pedro Larrañaga . . . . . . . . . . . . . . . . . . . 221
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
2 The Evolutionary Bayesian Classifier-based Optimization Algorithm

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
2.2 Main Steps of the EBCOA Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 223
2.3 Bayesian Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2.4 Description of the Main Steps of EBCOAs . . . . . . . . . . . . . . . . . . . . . . 229

3 The Satisfiability Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
3.1 Definition of the Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 231
3.2 Related Research Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
3.3 Representation Types and Their Associated Fitness Function . . . . . . 233
3.4 Local Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
4.1 Comparison of the Different EBCOAs . . . . . . . . . . . . . . . . . . . . . . . . . 237
4.2 The Result of Applying Local Optimization . . . . . . . . . . . . . . . . . . . . . 238
4.3 Performance of EBCOAs Depending on the Complexity

of the SAT Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Feature Ranking Using an EDA-based Wrapper Approach
Yvan Saeys, Sven Degroeve, Yves Van de Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
2 EDA-based Feature Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

2.1 Feature Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
2.2 Deriving a Ranking from an EDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
2.3 Deriving a Feature Weighting Scheme from an EDA . . . . . . . . . . . . . 249

3 A Real-World Application: Acceptor Splice Site Prediction . . . . . . . . . . . . . 249
3.1 Feature Ranking for Acceptor Prediction . . . . . . . . . . . . . . . . . . . . . . . 250
3.2 Feature Weighting for Knowledge Discovery in Acceptor Prediction 252

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Learning Linguistic Fuzzy Rules by Using Estimation of Distribution
Algorithms as Search Engine in the COR Methodology
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José A. Gámez
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Zürich, ICoS Institute of Computational
Science, ETH Zürich
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Linking Entropy to Estimation
of Distribution Algorithms

Alberto Ochoa and Marta Soto

Institute of Cybernetics, Mathematics and Physics, Cuba
{ochoa,mrosa}@icmf.inf.cu

Summary. This chapter presents results on the application of the concept of entropy to esti-
mation of distribution algorithms (EDAs). Firstly, the Boltzmann mutual information curves
are introduced. They are shown to contain a lot of information about the difficulty of the
functions. Next, a design method of discrete benchmark functions is presented. The newly
developed approach allows the construction of both single and random classes of functions
that obey a given collection of probabilistic constraints. This application and the next – the
construction of low cost search distributions – are based on the principle of maximum en-
tropy. The last proposal is the linear entropic mutation (LEM), an approach that measures the
amount of mutation applied to a variable as the increase of its entropy. We argue that LEM is
a natural operator for EDAs because it mutates distributions instead of single individuals.

1 Introduction

Entropy is a measure of the uncertainty of a random variable, whereas mutual in-
formation measures the reduction of the entropy due to another variable. These are
fundamental quantities of information theory [3], the building blocks of a field that
overlaps with probability theory, statistical physics, algorithmic complexity theory
and communication theory, among others disciplines.

In this chapter, we explore several novel uses of the concept of entropy in
evolutionary optimization. In particular, we investigate intersections of information
theory and the field of estimation of distribution algorithms (EDAs) [26].

A major challenge of evolutionary optimization is the preservation of the right
balance between exploitation and exploration. From an entropic point of view, ex-
ploitation can be seen as a low-entropy search, whereas exploration is better under-
stood as a high-entropy search. This occurs both at the system and variable levels.
At the system level, we see how the joint entropy is reduced as the run approaches
the optimum. At the variable level, the mutual information comes into play, the re-
duction in uncertainty of a variable due to the remainder variables is an indicator of
what kind of entropic balance should be enforced at that point. These are just few
evidences about the fact that entropy is at the heart of the dynamics of artificial evo-
lution. This has been a major motivation of our work. We believe that EDAs will
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2 A. Ochoa and M. Soto

profit from greater efforts in this area of research. Keeping in mind these arguments,
in this chapter we approach the following issues:

• A method for analysing the difficulty of the functions (Sect. 3).
• A design method of benchmark functions (Sect. 4).
• A method for learning low cost maximum-entropy distributions (Sect. 5).
• An entropic approach to mutation (Sect. 6).

Nowadays, simulation is a fundamental tool of verification, validation and com-
parison of evolutionary algorithms. For EDAs, the design of benchmark functions
should emphasize, in the first place, the complexity of the probabilistic structure
of the search distributions. We have developed a method, which gives the designer
the possibility of specifying a collection of probabilistic constraints that have to be
fulfilled by the search distributions. The method is connected to the concept of en-
tropy because it constructs a maximum entropy distribution that satisfies the given
constraints.

A good design method should be accompanied by a good analysis method. We
introduce a new approach for function complexity analysis in the context of EDA
optimization. Our approach investigates the mutual information of Boltzmann distri-
butions as a function of the temperature parameter.

A critical problem of learning search distributions in an EDA, is the sample com-
plexity. Large sample sizes mean large number of function evaluations. The chal-
lenge is to reduce the number of evaluations, without damaging the effectiveness
and efficiency of the search. We use the concept of entropy to achieve this goal; the
true search distribution is substituted by a maximum entropy approximation, which
can be reliably computed with less population size.

EDAs have to approach mutation from a distribution perspective, in contrast with
the genotype perspective of GAs. While a GA mutates single individuals, an EDA
must mutate distributions. We have developed an approach that uses the concept
of entropy to fulfill this requirement. The relation between entropy and mutation is
quite intuitive: when a random variable is mutated, a certain degree of randomness
is added to it. Therefore, it seems reasonable to measure the amount of mutation
applied to a variable as the increase of its entropy.

The outline of this contribution is as follows. Section 2 presents the background
material. Then we discuss the above problems in Sects. 3-6. Finally, the conclusions
are given.

2 Background

This section introduces the general notation of the chapter. It also gives a short intro-
duction to the theories that underlie our main results.

2.1 General Notation

In this chapter, Xi represents a scalar random variable and p (xi) = p (Xi = xi)
its probability mass function with xi ∈ X = {0, 1, . . . ,K}. Note that p (xi) and
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p (xj) refer to two different random variables, and have in fact different proba-
bility mass functions, p (Xi = xi) and p (Xj = xj), respectively. Similarly, X =
(X1,X2, . . . , Xn) denotes a n-dimensional random variable, x = (x1, x2, . . . , xn)
is a configuration and p (x1, x2, . . . , xn) represents a joint probability mass. The
notation Xa and xa is used to denote sub-vectors of X and x with indexes from
a ⊂ {1, . . . , n}. p (xa) =

∑
xi,i/∈a p (x) and p (xa|xb) = p (xa,xb) /p (xb) define

marginal and conditional distributions, respectively. p (a) or pa are used to denote
p (xa).

2.2 Boltzmann Estimation of Distribution Algorithms

At the center of most of the ideas and results of this chapter, lies the Boltzmann
distribution. Some authors have considered it as the corner stone of the theory of
estimation of distribution algorithms [19, 24, 25]. We believe that this chapter is new
evidence that supports this way of thinking.

Definition 1 For β ≥ 0 define the Boltzmann distribution of a function f(x) as

pβ,f (x) :=
eβf(x)

∑
y eβf(y)

=
eβf(x)

Zf (β)

where Zf (β) is the partition function.

We also use Zβ,f , but to simplify the notation β and f can be omitted. If we
follow the usual definition of the Boltzmann distribution, then −f(x) is called the
free energy and 1/β the temperature of the distribution. The parameter β is usually
called the inverse temperature.

Closely related to the Boltzmann distribution is Boltzmann selection:

Definition 2 Given a distribution p (x) and a selection parameter γ, Boltzmann se-
lection calculates a new distribution according to

ps(x) =
p(x)eγf(x)

∑
y p(y)eγf(y)

Boltzmann selection is important because the following holds [25]:

Theorem 1 Let pβ,f (x) be a Boltzmann distribution. If Boltzmann selection is used
with parameter γ, then the distribution of the selected points is again a Boltzmann
distribution with

ps(x) =
e(β+γ)f(x)

∑
y e(β+γ)f(y)

The Boltzmann estimation of distribution algorithm (BEDA) was introduced in
[25] on the basis of the above. Here, it is shown as Algorithm 1. BEDA is an algo-
rithm with good theoretical properties, it has even a convergence proof. However, in
the form in which it is shown in algorithm 1, it is just a conceptional algorithm. The
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Algorithm 1 BEDA – Boltzmann Estimation of Distribution Algorithm

Step 1 t ← 0, β (t) ← 0 and p(xx, t) = 1
Zβ(t),f

Step 2 t ← t + 1, ∆β(t) ← β (t) − β (t − 1) and

p(x, t + 1) ← p(x, t)e∆β(t)f(x)

∑
y p(y, t)e∆β(t)f(y)

(1)

Step 3 If the stopping criterion is not reached, go to step 2.

reasons are twofold: the exponential complexity of the denominator of (1) and the
lack of a method for updating ∆β(t).

The next lemma solves the second problem. The reader is referred to [19] for
details.

Lemma 1 ∆β (t) = c/
√

V arf (β(t)) leads to an annealing schedule where the
average fitness, Wf (β(t)), increases approximately proportional to the standard de-
viation:

Wf (β(t + 1))−Wf (β(t)) ≈ c
√

V arf (β(t))

where c is a constant and V arf (β(t)) = σ2
f (β(t)) is the variance of the fitness func-

tion. This annealing schedule has been called standard deviation schedule (SDS).

The exponential complexity of computing the partition function can be avoided
if the Boltzmann distribution is approximated with a tractable distribution. There are
several ways of accomplishing this approximation [23]. However, for the purposes
of this chapter it is enough to restrict ourselves to the special case covered by the
factorization theorem [25].

The factorization theorem defines how and under what conditions the search dis-
tributions associated to discrete functions can be factorized. The factorization follows
the structure of the function and is only exact if the function obeys certain structural
constraints.

Definition 3 Let si ⊆ {1, . . . , n} (1 ≤ i ≤ m) be index-sets and let f (i) be func-
tions depending only on the variables Xj (j ∈ si). Then, f(x) =

∑m
i=1 f (i) (xsi

) is
an additive decomposition of the fitness function f (x) .

Definition 4 Given s1, . . . , sm, the sets di, bi and ci (i = 1, . . . ,m) are defined as
follows: d0 := ∅, di :=

⋃i
j=1 sj , bi := si \ di−1 and ci := si ∩ di−1.

Theorem 2 (Factorization theorem) For β ≥ 0, let pβ,f (x) be a Boltzmann distrib-
ution of a function f(x), and f(x) =

∑m
i=1 f (i) (xsi

) be an additive decomposition.
If dm = {1, . . . , n} and the following holds

∀i ∈ {1, . . . ,m} , bi 
= 0
∀i ≥ 2,∃j < i such that ci ⊆ sj

(2)
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then

pβ,f (x) =
m∏

i=1

p (xbi
|xci

) (3)

The proof can be found in [25]. Assumption 2 is called the running intersection
property [16].

In the simulations of this chapter we use mainly two algorithms: the factorized
distribution algorithm (FDA) and the Boltzmann FDA. Both algorithms use the fac-
torization (3) as a model of the search distributions. However, while the FDA uses
truncation selection, the BFDA uses Boltzmann selection with SDS.

The following lemma is relevant to this chapter [19].

Lemma 2 BFDA is invariant under linear transformation of the fitness function with
a positive factor.

2.3 Factorizations

As was said in the previous section, the factorization of probability distributions is
a major concern of EDA researchers. In this chapter, Bayesian factorizations are
specially relevant. They are connected with the concept of Bayesian network.

A Bayesian network (BN) [30, 31] is a directed acyclic graph containing nodes,
representing the variables, and arcs, representing probabilistic dependencies among
nodes. For any node (variable) Xi, and set of parents πXi

, the Bayesian network
specifies a conditional probability distribution p(xi | πxi

).
There are single-connected – no more than one undirected path connects two

nodes – and multiple-connected BNs. The single-connected BNs are also called
polytrees. In a polytree, a node may have several parents and many roots. Trees
are special class of polytrees, which have at most one parent and one root. Polytrees
describe higher-order interactions than trees, while retaining many of their compu-
tational advantages. In a polytree, structures like X → Z ← Y are often called
head-to-head patterns. This type of pattern makes X and Y conditionally dependent
given Z, which cannot be represented by a tree.

A junction tree [10, 14, 16] is an undirected tree, where each node contains a
set of variables. The junction tree satisfies the junction property: for any two nodes
a and b and any node h on the unique path between a and b, a ∩ b ⊆ h. The arcs
between the nodes are labelled with the intersection of the adjacent nodes; usually,
they are called separating sets or separators.

Junction trees are important for inference and sampling because they have
tractable algorithms for these tasks. Given a BN, it is possible to construct at least
one junction tree. The reader is referred to [10, 14, 16] for a complete discussion on
the issue.

2.4 Entropy and Mutual Information

The entropy H (X) of a discrete random vector X is defined in [3] by



6 A. Ochoa and M. Soto

H (X) = −
∑

x∈X

p (x) log p (x) (4)

Note that entropy is a functional of the distribution of X . It does not depend on
the actual values taken by the random variable, but only on the probabilities. This
means that H (X) is a shortcut for H (p (X)). The logarithm in (4) is to the base
two and entropy is expressed in bits. We use the convention that 0 log 0 = 0.

For a binary variable X , such that p (X = 1) = p, we have

H (X) = H (p (X)) = H (p) := −p log p− (1− p) log (1− p) (5)

The entropy of a binary variable is a nonnegative, symmetric and concave func-
tion of the distribution. It has the maximum at the point (0.5, 1) and it is zero for
p ∈ {0, 1}.

The following theorem will be useful later on.

Theorem 3 (Independence bound on entropy [3]). Let p (x) be any joint probability
mass of a set of discrete random variables X = (X1,X2, . . . , Xn), then

H (X) ≤
n∑

i=1

H (Xi)

with equality if and only if the variables are independent.

The concepts of marginal and conditional mutual information will be intensively
used in the chapter. The mutual information, I (X,Y ), is the reduction in the un-
certainty of X due to the knowledge of Y . The conditional mutual information,
I (X,Y |Z), represents the reduction in the uncertainty of X due to the knowledge
of Y given Z. The following theorem connects entropy and mutual information.

Theorem 4 Between mutual information and entropy the following holds [3]:

I (X,Y ) = H (X) + H (Y )−H (X,Y ) (6)

I (X,Y |Z) = H (X|Z)−H (X|Y,Z) (7)

The Maximum-Entropy Principle

The maximum-entropy principle (MEP) plays an important role in this chapter. It
is used to build probability mass functions that fulfill a collection of marginal con-
straints. The ideas behind this concept can be shortly explained as follows.

Frequently, partial prior information is available outside of which it is desired to
use a prior that is as non-informative as possible. For example, suppose some prior
marginal distributions are specified, and among prior distributions with these mar-
ginals the most non-informative distribution is sought [12, 13]. If we have the joint
distribution with the maximum-entropy of all the joints that fulfill a given collection
of marginals, choosing a joint with less entropy amounts to add some information
that is not justified by the constraints.
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The iterative proportional fitting (IPF) algorithm can be used to find the
maximum-entropy distribution [11, 12, 18, 32]. The proof that IPF converges against
the maximum-entropy solution can be found in [4]. Unfortunately, the naive imple-
mentation of the IPF takes exponential time and space. Therefore, it is not suitable
for computing distributions with many variables.

For large distributions, an efficient implementation of the maximum-entropy al-
gorithm was developed in [15, 21]. The general idea is to improve the performance
of IPF by combining it with the junction tree technique. It consists of performing
IPF locally on the nodes and passing messages to the neighboring nodes. It has been
proved that this converges to the unique maximum-entropy solution, so it is equiv-
alent to IPF. The reader is referred to [29] for details on the implementation of the
method for computing maximum-entropy distributions of polytrees.

3 Mutual Information and Functions Difficulty

This section presents preliminary ideas about a novel method for analysing the com-
plexity of functions for evolutionary algorithms. The corner stone of the approach is
the concept of mutual information, which is studied through its relation with selec-
tion.

3.1 Boltzmann Mutual Information Curves

The Goldberg’s Deceptive3 function belongs to the class of the so called decep-
tive problems [6, 7] that are those having local optima which are easier to find than
global optima. Deceptive problems contain deceptive attractors, which mislead the
algorithm to search for sub-optima because their basins of attraction are much larger
than the ones favoring global optima. Often, deceptiveness is considered a challenge
to search algorithms. However, deception is a relative category that emerges solely
in the context of the relationship problem-algorithm. In other words, a problem may
be deceptive for one algorithm, but not for another.

Deception has been intensively studied in the context of genetic algorithms. In [6,
7, 9], the authors described ways to construct deceptive functions and gave sufficient
conditions for deception. Figure 1 (left) shows the usual way of describing deceptive
problems as a function of unitation. Note, the deep valley separating the optimum
from the sub-optimum and the different sizes of their attractors.

In this section, we introduce a new method for analysing the function complexity
in the context of EDA optimization. Our approach investigates the mutual informa-
tion of Boltzmann distributions as a function of the parameter β. Given a function f ,
this method computes the Boltzmann distribution pf,β for β > 0. Then, it computes
the marginal and the conditional mutual information on any sub-set of variables. We
show that the Boltzmann mutual information curves, I (β), contain a lot of informa-
tion about the complexity of the function.

Table 1 shows the function Deceptive3 and its Boltzmann distribution for β =
10.49. On the other hand, Fig. 1 (right) presents the marginal mutual information
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Fig. 1. Explaining the complexity of Goldberg’s Deceptive3 function: (left) unitation approach
– the optimum is isolated and separated from the sub-optima by a deep valley (right) mutual
information approach – marginal (dashed line) and conditional (solid line)

Table 1. Goldberg’s Deceptive3 function and its Boltzmann distribution for β = 10.49. At
this value, I (X, Y ) = I (X, Y |Z)

x3x2x1 fdec3 (x) pβ=10.49 (x) x3x2x1 fdec3 (x) pβ=10.49 (x)

000 0.9 0.2038 100 0.8 0.0714
001 0.8 0.0714 101 0 0
010 0.8 0.0714 110 0 0
011 0 0 111 1 0.5820

and the conditional mutual information. Note that all edges have the same marginal
and conditional values of mutual information, i.e. the function is symmetric. This
property of the Deceptive3 simplifies its analysis.

To begin with, we recall a result that was presented in [35], which states that
the difference between conditional and marginal mutual information is invariant to
permuting the variables. Remarkably, the result holds for any three sets of variables
Xa, Xb and Xc.

Proposition 1 (Whittaker [35, Proposition 4.5.1]) Suppose that the partitioned ran-
dom vector (Xa,Xb,Xc) has a joint density function fabc. The difference between
the divergence against the conditional independence of Xa and Xb given Xc and the
marginal independence of Xa and Xb is invariant to permuting the symbols Xa, Xb

and Xc.
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Fig. 2. Conditional information I (X, Y |Z) (dashed line) and G (X, Y, Z) = I (X, Y |Z)−
I (X, Y ) (solid line)

The above difference is denoted by G (a, b, c). As a consequence of the proposi-
tion 1, the curve G (a, b, c) and the three conditional information curves also contain
all the marginal mutual information. Therefore, we also use pictures like Fig. 2 as
tools for analysing the complexity of functions. In our framework, we refer to these
curves as Boltzmann-mutual-information curves or simply Boltzmann-information
curves.

From an evolutionary point of view, the Boltzmann-information curves show
how selection influences the strength of the dependencies among the variables of the
problem. If the algorithm uses Boltzmann selection as is the case of BEDAs, then
β directly measures the selection pressure. Although for other selection schemes the
connection is not direct, the information gathered from curves is still useful.

The curves are continuous, monotonously increasing up to their maximum values
and decreasing to zero as β increases. This simple observation has an important
implication for learning: there is a strong correlation between mutual information
values at consecutive steps of the evolution.

Note in Fig. 1 (right), the horizontal lines at I ≈ 0.0069 and I ≈ 0.0107; they are
thresholds for marginal and conditional independence1. We recall that I (X,Y ) =
I (X,Y | ∅); it is assumed that the empty set has zero variables and thus |∅| = 1. The
above thresholds were computed with a confidence level of 95% and a sample size
of N = 280 (this is the sample size used in the numerical simulations).

We now discuss the critical points of the Boltzmann-information curves. There
are nine important critical points: the intersections of the threshold lines with

1 Under the null hypothesis that conditional independence of X and Y given Z holds, the
value 2NI (X, Y |Z) – which is called deviance against conditional independence – ap-
proximates a χ2 distribution with |Z| (|X| − 1) (|Y | − 1) degrees of freedom, where N
is the number of configurations in the sample and |S| represents the number of possible
values of the set of variables in S [35, Proposition 7.6.2]
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the marginal and conditional Boltzmann curves determine two pairs of β values
that define a marginal and a conditional dependence intervals, [βm

min, βm
max] and

[βc
min, βc

max], respectively; the maximal values of the curves, βm
M , βc

M and βG
M ; the

zero and minimum value of G (1, 2, 3), βG
z and βG

m respectively.

3.2 Dissection of the Goldberg’s Deceptive3 Function

In this section we investigate the separable function

Fdec3 =
l∑

i=1

fdec3 (x3i−2, x3i−1, x3i)

and some other functions derived from it. As a rule we use the BFDA, but a few
results are also presented for a FDA with truncation selection.

The notation used in the tables is as follows: N is the population size, n is the
number of variables, %S is the success rate in 100 independent runs and Gc is the
average generation where the optimum is found. For the average β values, we use
βmin after the initial selection and βmax at the end of successful runs.

Deception and the Complete Bayesian Model

We start our investigation of the Deceptive3 by running the BFDA with the complete
Bayesian model of the marginal distributions p (x3i−2, x3i−1, x3i). In other words,
it uses the factorizations

p (x3i−2, x3i−1, x3i) = p (x3i−2) p (x3i|x3i−2) p (x3i−1|x3i−2, x3i) (8)

Equation (8) is the natural model for this function; any other model performs
worse than it does. The following simulation confirms this behaviour. We run the
BFDA 100 times, in a problem with 30 variables and 280 configurations. The algo-
rithm always finds the optimum with Gc = 12.97. The average β at the end of the
runs is 18.43, whereas the critical point βG

z is reached as average at the generation 10.
This means that for approximately 3/4 of the evolution the conditional information
is stronger than the marginal information.

As can be seen from Fig. 1 (right) the variables are marginally and conditionally
dependent in the range of β observed in the simulation of [0, 18.43]. Note that this
interval is completely included in [βc

min, βc
max] ⊂ [βm

min, βm
max]. We recall that for

three variables the complete model is the only one that does not have any indepen-
dence relation, i.e. it is the best for the pair BFDA-Deceptive3.

We believe that deceptiveness is a direct consequence of having high values of
mutual information. As we pointed out before, deception is a relative category that
emerges solely in the context of the relationship problem-algorithm. In this relation-
ship the problem contributes with high values of mutual information, whereas the
algorithm’s contributions are the selection and the collection of dependencies that it
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can deal with. The collection must be a proper sub-set of the problem’s dependen-
cies. We believe that the size and strength of the basins of attraction for any problem
attractor depend on the amount of mutual information relevant to it. Without these
three ingredients there can not be any deception at all. The amount of mutual infor-
mation is a source of difficulty even when the right model or factorization is used.

BFDAs are perfect tools for studying the difficulty of the functions. They have
everything that is needed:

• Selection is given explicitly through the parameter β.
• The collection of dependencies the algorithm can deal with are fixed by the fac-

torization.
• The relation between mutual information and selection is given by the Boltzmann

information curves.

In BFDAs, deception arises in the context of the relationship problem-factorization,
i.e. a given problem may or may not be deceptive in relation to a particular factoriza-
tion.

Reducing the Mutual Information

Let pfdec3,βG
z

be the Boltzmann distribution of the Deceptive3 with βG
z and Zf,βG

z
,

i.e. the distribution when the mutual and conditional information are the same (see
Fig. 1).

In this section, we deal with the family of functions

fdec3 (α) =
log(pα)

βG
z

+
log
(
Zf,βG

z

)

βG
z

(9)

where α ∈ {0, 0.05, 0.20, 0.40, 0.50} and pα is a distribution that obeys the follow-
ing entropic relation

H (pα) = (1− α) H
(
pfdec3,βG

z

)
+ 3α

This type of entropic relation is discussed in Sect. 6.3. For the purposes of the
current section it is enough to say that the mutual information in pα decreases as α
grows.

Table 2 shows the family of fdec3 (α) functions. Note that fdec3 (0) is the Decep-
tive3. Besides, it is worth noting, that the symmetry of the Boltzmann information
curves for the Deceptive3 is slightly broken in these functions. However, the dif-
ference is so small, that it is enough to show in Fig. 3 only the curves I (1, 2) and
I (1, 2| 3). The reader can easily check this by constructing the Boltzmann mutual
information curves of these functions.

Table 3 presents the numerical results. The difficulty of the function decreases
with increasing α, which means with increasing joint entropy and with decreasing
mutual information. Note the influence of α in the convergence time: as α grows, Gc

decreases. On the other hand, both βmin and βmax increase as α grows. We recall
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Table 2. The family of fdec3 (α) functions

x3x2x1

α 000 001 010 011 100 101 110 111

0.00 0.90 0.80 0.80 0.00 0.80 0.00 0.00 1.00
0.05 0.90 0.80 0.80 0.47 0.80 0.40 0.39 1.00
0.20 0.90 0.82 0.81 0.63 0.81 0.57 0.56 0.99
0.40 0.89 0.83 0.82 0.71 0.82 0.66 0.65 0.98
0.50 0.89 0.83 0.83 0.74 0.82 0.70 0.69 0.97
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Fig. 3. Boltzmann mutual information curves for the family fdec3 (α): (left) marginal,
(right) conditional. From top to bottom, fdec3, fdec3 (0.05), fdec3 (0.20), fdec3 (0.40) and
fdec3 (0.50)

Table 3. BFDA runs with the fdec3 (α) with the complete Bayesian model. The average β
values after the initial selection and at the end of successful runs are shown in columns βmin

and βmax, respectively. Setting: N = 280, n = 30

α %S Gc βmin βmax

0.00 100 12.97 0.75 18.43
0.05 100 10.31 1.41 18.25
0.20 100 9.32 2.14 21.11
0.40 100 8.39 2.96 23.14
0.50 100 8.14 3.53 25.86
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that βmin = β (1) = ∆β (1) = c/
√

V arf (β(1)), i.e. the standard deviation of the
fitness decreases in the first generation with increasing α. Besides, for all functions
we have that the interval [βmin, βmax] is included in their respective [βc

min, βc
max].

If the reader constructs the unitation representation (Fig. 1) of the functions
fdec3 (α), he or she will observe that only the depth of the valley at unitation equal
to two changes significantly. For example, fdec3 (0.05) is exactly equal to the De-
ceptive3, except in the case when the unitation is equal to two. This is remarkable
because the definition of these functions did not consider any unitation argument.

Models with a Missing Arc

We investigate the performance of the BFDA when the marginal distributions of
the form p (x3i−2, x3i−1, x3i) are approximated with all Bayesian models with one
missing arc. Consider the following factorizations:

p12−32 (x1, x2, x3) = p (x1) p (x3) p (x2|x1, x3) (10)

p13−32 (x1, x2, x3) = p (x1, x3) p (x2|x3) (11)

p12−13 (x1, x2, x3) = p (x1, x3) p (x2|x1) (12)

Due to the symmetry of the function with respect to the mutual information, it
is enough to study these cases. For example, in the factorization 12-32 the arc 1-3 is
missing and the arcs 1 → 2 and 3 → 2 are present. However, it behaves exactly as
the factorizations 21-31 and 13-23.

The results are presented in the first row (α = 0) of Table 4. The BFDA behaves
much better with the factorization 12-32 than with the factorizations 12-13 and 13-
32. The use of the last two factorizations leads to similar results. In what follows, we
try to explain this behaviour in the context of Boltzmann information curves.

It is worth noting, that βmax is about 30 for all models, which is close to βc
max.

Furthermore, we have observed that the critical value βG
z is reached as average in

the generation 10 with the model 12-32 and in the generation 12 with the models
12-13 and 13-32. This means that a successful run occurs in range of β where both
the marginal and the conditional information are above the independence thresholds,
i.e. the variables are not independent. Moreover, during the first half of the evolution
(before βG

z is reached) G (1, 2, 3) > 0.

Table 4. BFDA runs with the fdec3 (α). The marginal distributions p (x3i−2, x3i−1, x3i) are
approximated with all two-arcs models. Setting: N = 280, n = 30

12-32 12-13 13-32

α %S Gc βmax %S Gc βmax %S Gc βmax

0 94 18.57 30.5 22 21.82 30.48 34 22.20 29.64
0.05 99 14.75 29.58 92 16.15 29.31 84 16.11 28.67
0.20 100 12.97 32.03 99 13.25 29.69 95 13.14 28.82
0.50 100 11.24 37.26 100 10.46 32.95 100 10.37 31.89
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By comparing (10)–(12) with the chain rule, it is easy to see that each equation
makes exactly one wrong assumption:

• Equation (10) assumes marginal independence of X1 and X3.
• Equation (11) assumes conditional independence of X2 and X1 given X3.
• Equation (12) assumes conditional independence of X2 and X3 given X1.

The conditional mutual information is farther away from its independence thres-
hold than the marginal mutual information. The independence lines get closer as the
sample size increases; for N = 280, their difference is just 0.0038. Therefore, we can

assume that there is a unique threshold It. It is easy to see that
∫ βG

z

0
G (1, 2, 3) dβ can

be used as an estimate of the magnitude of the error of using the factorizations 12-13
or 13-32 instead of 12-32. In other words, the assumption of the model 12-32 is much
less traumatic than the other assumptions when β ∈ [βc

min, βc
max]. The situation is

reversed for β > βc
max, but this happens when the first half of the evolution is already

gone, thus having little impact in the outcome of the optimization.
We have also tested the above factorizations with the functions fdec3 (α). Table 4

presents the results. As was shown in Sect. 3.2, the reduction of the mutual informa-
tion also implies a reduction of the difficulty of the function. Here, we can observe
the effect on the convergence time as well as on the success rate. Note for example,
that from α = 0 to α = 0.05 the success rate goes from 22% to 92% in the case of the
factorization 12-13. Another interesting observation is about the difference between
the performance of different factorizations as α grows. For example, the difference
between the convergence time for the complete factorization (8), 12-13-32, and for
the factorization 12-13 decreases as α grows: 8.85, 5.84, 3.93, 2.66 and 2.32. We
believe that the last result is an evidence supporting the following statement: the
reduction of the mutual information increases our choices in model selection.

Some Results with Truncation Selection

For the sake of completeness, Table 5 presents the results of running a FDA with
truncation selection on the family of functions fdec3 (α). The reader can easily check
the similarities of these results with those obtained with Boltzmann selection. For
example, they also support the claim that the reduction of the mutual information
amounts to a reduction of the functions difficulty.

4 Designing Test Functions by Maximum-Entropy

In spite of recent research advances in EDAs we still do not have a complete, sound,
consistent and rigorous theory of evolutionary algorithms. In practice, this leads to
the use of simulation as a fundamental tool of verification, validation and comparison
of algorithms. One common simulation method is the use of test functions obtained
by concatenation of elementary functions of small order. Usually, the design of such
functions is focused on considerations about specific aspects of the complexity of
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Table 5. FDA runs with the fdec3 (α). Setting: N = 280, n = 30 and truncation selection of
0.3

12-13-32 12-32 12-13 13-32

α %S Gc %S Gc %S Gc %S Gc

0 100 5.99 91 8.49 35 9.74 34 9.68
0.05 100 5.74 95 8.18 65 8.61 75 8.52
0.20 100 5.32 99 7.18 85 7.61 89 7.65
0.50 100 4.91 100 6.74 100 6.30 99 6.42

the elementary functions: multimodality, isolation of the optimum value, proximity
of the function values of the good configurations, frustration of overlapped elemen-
tary functions, etc. In this scenario, it is important to know the properties of the
elementary functions and how these properties are combined to define the properties
of the whole function. Moreover, it would be useful to design functions that are not
given as a combination of smaller elementary functions.

The design of benchmark functions for testing EDAs have to emphasize, in the
first place, the complexity of the probabilistic structure of the search distributions.
The fitness function, the intensity and type of selection determine for each configu-
ration its probability of being in the selected set and consequently the probabilistic
structure of the search distributions.

A successful EDA builds a probabilistic model that captures the important cor-
relations of the search distribution, assigning high probability values to the selected
configurations. Therefore, it would be convenient to design functions that enforce a
given set of “important correlations”, but do not enforce any other correlation con-
straint. In this section, we present an approach to this problem, where the designer
gives a collection of probabilistic constraints that have to be fulfilled by the search
distributions of the function. Our method is connected to the concept of entropy
because it constructs a maximum-entropy distribution that satisfies the given con-
straints.

4.1 The General Framework

The corner stone of our approach to the design of benchmark functions for discrete
optimization is what we have called the family of Boltzmann functions

fβ (x) =
log(pf,β (x))

β
+

log (Zf (β))
β

(13)

Equation (13) comes from the definition of the Boltzmann probability mass
pf,β (x). From the point of view of this model, (13) are members of the parametric
class F (β, Z, pf,β (x)), which could be refined by including additional parameters
of the distribution pf,β (x). For example, when the distribution factorizes and no
factor contains more than K variables, we are dealing with the parametric sub-class
F (β, Z, pf,β (x) ,K).
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Avoiding the Exponential Effort

The computation of the partition function is always problematic; it needs an expo-
nential effort. Fortunately, in our approach this can be avoided. Note that in (13), the
second term is a constant that is added in all configurations. It is a shift along the
fitness dimension and has little to do with the complexity of the function. Therefore,
nothing prevents us from fixing the value of the partition function. Moreover, for
BFDA the following lemma holds.

Lemma 3 The difficulty of (13) for a BFDA is completely determined by the distrib-
ution pf,β (x).

Proof 1 The proof follows immediately from lemma 2.

If the distribution pf,β (x) is known and Z is set to an arbitrary value, then the
function fβ (x) is well defined for any β, i.e. for any configuration x, the value
fβ (x) can be computed. This means that the computation of the function for all
possible configurations is not necessary.

Usually, we use factorizations to deal with the exponential complexity of distrib-
utions. In the context of functions design, the factorizations also help to compute the
optima and the central moments of the functions. This kind of information is useful
to understand the functions’ properties. Moreover, sometimes it is useful to have a
fast procedure for computing the optima of benchmark functions when testing evo-
lutionary algorithms. For example, when the benchmark functions are drawn from
a distribution (Sect. 4.3) and the optima are needed to set the stopping criteria. The
reader is referred to [27, 28] for a complete description of two methods that compute
the above-mentioned values for junction tree factorizations.

Whenever we have a distribution we can build a Boltzmann function. For exam-
ple, there are famous Bayesian networks (like the ALARM network [2]) that can be
used for this purpose. However, in this chapter we are more interested in the case
when, instead of having a distribution, we have a collection of probabilistic con-
straints that must be satisfied by the distribution.

Dealing with Mutual Information Constraints

We have already met the family of functions (13) in Sect. 3.2. Also we have learned
that the mutual information of pf,β (x) contains a lot of information about the com-
plexity of the function fβ (x). Therefore, when dealing with complexity issues, it
makes sense to design functions that fulfill mutual information constraints like:

I (Xa,Xb|Xc) ≥ A
I (Xa,Xb|Xc) ≤ B
I (Xa,Xb|Xc) ≤ I (Xd,Xe|Xf )

(14)

In (14), the letters a, b, c, d, e and f denote sub-sets of indexes, and A, B are con-
stants. Moreover, Xc and Xf may be empty, meaning that the expressions represent
marginal information.
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We formulate the general design problem as follows:

Given a collection of mutual information constraints C = {c1, . . . , cL}, find
a function f (x), whose Boltzmann distribution satisfies C within a given
temperature interval.

Our approach to the above-mentioned problem considers structural and paramet-
ric constraints. The structural constraints are specified by Bayesian or Markov net-
works, which use the separation and d-separation concepts [30] to codify statements
of probabilistic independence. The parametric constraints are statements about the
configurations’ probabilities.

In our method, the inequality

Ak ≤
M−1∑

i=0

aikp
(
x(i)
)
≤ Bk (15)

denotes the k-th parametric constraint. The sum is for all configurations x(i) of X ,
i.e. M denotes the size of the space. Ak, Bk are real constants and aik ∈ {0, 1}.

It is worth noting, that some sub-sets of the inequalities (15) may define mar-
ginal distributions of p (x) when Ak = Bk for all inequalities in the sub-set. In this
chapter, we deal only with this type of constraint. Therefore, the mutual information
constraints (14) have to be mapped to marginal distributions. It is an interesting open
question how to translate other types of constraints to probabilistic statements.

Once the collection of marginal constraints has been derived from the mutual
information constraints it is necessary to compute the joint probability distribution.
The next section presents the issue.

Computing the Joint Probability Distribution

Algorithm 2 presents the general scheme of the design of Boltzmann functions. In the
step 2, the algorithm computes a junction tree from the given structural constraints.
The computation of a junction tree out from a Bayesian or a Markov network is a
well-studied problem [31]. In the step 3, is computed a maximum-entropy distribu-
tion that is compatible with the given structural and parametric constraints. There are
two possibilities as it is explained below.

The classic implementation of the IPF algorithm can be used to compute the
joint probability distribution when the number of variables is small. If the collection
of marginals is consistent, the outcome of running the IPF is a maximum-entropy
joint.

For larger number of variables, the IPF has to be combined with the junction tree
technique. It is run locally on the nodes and the results are sent as messages to the
neighboring nodes. It has been proved that this converges to the unique maximum-
entropy solution, so it is equivalent to IPF. The interested reader is referred to [23, 29]
for details on the implementation of the method for computing maximum-entropy
distributions on multi-connected Bayesian networks and polytrees.

Finally, in the step 4, the desired function is computed as the function that makes
of p (x) a Boltzmann distribution with parameters β, Z and f (x).
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Algorithm 2 A maximum-entropy method for designing Boltzmann functions

Step 1 Input β, Z, and the collection of structural and parametric constraints.
Step 2 Compute a junction tree compatible with the structural constraints.
Step 3 Compute the maximum-entropy junction tree distribution p (x) that fulfill the

parametric constraints.
Step 4 Output fβ (x) = log(p(x))

β
+ log(Z)

β

4.2 Designing the First-Polytree Functions

In this section, we take a closer look at our method through the design of three binary
functions whose structure of the search distribution is single-connected. For obvious
reasons, we say that they belong to the polytree class of functions. The functions have
been called FirstPolytree3 (f3

Poly), FirstPolytree5 (f5
Poly) and OneEdge (f3

OneEdge).
Figure 4 presents their graph definitions, i.e. their structural constraints.

1 3

2

1 2

34

5

1 2

3

Fig. 4. Structural constraints of the first-polytree functions. From left to right: f3
Poly , f5

Poly

and f3
OneEdge

The polytree functions can be specified with simple mutual information cons-
traints. The marginal mutual information of every pair of parents of a variable
should be below the marginal independence threshold It, for the given confidence
level. Similarly, the marginal mutual information of every child-parent pair should
be greater than It.

We first list the marginal mutual information constraints:

OneEdge: I (1, 3) > It I (1, 2) < It I (2, 3) < It

FirstPolytree3: I (1, 3) < It I (1, 2) > It I (2, 3) > It

FirstPolytree5:
I (1, 2) < It I (3, 4) < It I (1, 3) > It

I (2, 3) > It I (3, 5) > It I (4, 5) > It
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Algorithm 3 Designing bivariate marginals

Step 1 Input I (X, Y ).
Step 2 Set the univariate probabilities to some random values px y py .
Step 3 if I (X, Y ) < It, then set pxy = pxpy .
Step 4 if I (X, Y ) > It, then set pxy as far as possible from pxpy .

Another type of constraints is needed to specify the orientation of the edges. The
d-separation concept says that in the structure X → Z ← Y , the variables X and Y
are marginally independent and conditionally dependent given Z [5]. If Ic

t denotes
the conditional independence threshold, then the second list of mutual information
constraints is the following:

OneEdge: I (1, 3| 2) > Ic
t I (1, 2| 3) < Ic

t I (2, 3| 1) < Ic
t

FirstPolytree3: I (1, 3| 2) > Ic
t I (1, 2| 3) > Ic

t I (2, 3| 1) > Ic
t

FirstPolytree5:
I (1, 3| 2) > Ic

t I (1, 2| 3) > Ic
t I (2, 3| 1) > Ic

t

I (3, 4| 5) > Ic
t I (3, 5| 4) > Ic

t I (4, 5| 3) > Ic
t

Designing Bivariate Marginals with Given Mutual Information

Once the list of constraints has been given, we construct a set of bivariate marginals
that satisfy the constraints. The algorithm 3 does the job.

It is known, that the sufficient statistics for the specification of any binary bi-
variate marginal p (x, y), are the values px = p (X = 1), py = p (Y = 1) and
p = pxy (X = 1, Y = 1). Moreover, either pxy ∈ [max (px + py − 1, 0) , pxpy]
or pxy ∈ [pxpy, min (px, py)]. Taking the univariate probabilities px and py as in-
put values, we proceed as follows: if I (X,Y ) < It, then we just make pxy = pxpy .
Otherwise, we put pxy as far as possible from pxpy to maximize the mutual informa-
tion. Finally, the bivariate marginal is given by

pxy (00) = 1− px − py + pxy pxy (10) = py − pxy

pxy (01) = px − pxy pxy (11) = pxy
(16)

After all univariate and bivariate marginals have been computed, the next step of
the Algorithm 2 is the construction of the joint probability.

The classic implementation of the IPF algorithm can deal with our functions
because the number of variables is small. If the IPF is run with the above marginals,
a trivariate maximum-entropy joint is obtained. For larger number of variables we
must resort to the junction tree implementation of the maximum-entropy algorithm.

Each node of the junction tree associated to a polytree is formed by one vari-
able and the set of its parents. This means that the trivariate functions have only one
clique and therefore, the simple IPF will be enough. The junction tree for the func-
tion FirstPolytree5 contains two cliques and therefore, the advanced implementation
of the algorithm is needed. In this way, we have constructed high order marginals
using only univariate and bivariate marginals. We must check that the second list of
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constraints are also fulfilled. Moreover, to guarantee consistency the design of these
marginals must satisfy additionally the following constraint [17]:

Let d be the number of variables in a junction tree node. For all 2 ≤ k ≤ d and
all possible choices j1, . . . , jk of k elements out of {1, . . . , d} the condition

1 ≥
k∑

i=1

pji
−

k∑

i,l=1,i �=l

pjijl

must be fulfilled.
We use the values 12.94, 16.40 and 87.97 as input values for the partition func-

tions of f3
OneEdge, f3

Poly and f5
Poly , respectively. The univariate probabilities also

are set. For example, the values used in the function f3
Poly are 0.79, 0.46 and 0.24

for X1, X2 and X3, respectively. Finally, we set β = 2.
Tables 6, 7 and 8 present the resulting functions f3

OneEdge, f3
Poly and f5

Poly , re-
spectively. The Boltzmann distributions with parameter β = 2 are polytree distribu-
tions satisfying the structural and parametric constraints given above. The reader can
easily check this by computing their Boltzmann distributions and then computing the
mutual information values.

Table 6. OneEdge function

x3x2x1 f3
OneEdge (x) x3x2x1 f3

OneEdge (x)

000 1.042 100 −0.083
001 −0.736 101 0.092
010 0.357 110 −0.768
011 −1.421 111 −0.592

Table 7. FirstPolytree3 function

x3x2x1 f3
Poly (x) x3x2x1 f3

Poly (x)

000 −1.186 100 −4.391
001 1.074 101 −1.122
010 0.469 110 −0.083
011 0.096 111 0.553

Investigating the Polytree Functions

Figure 5 presents the Boltzmann conditional curves and the curve G (1, 2, 3) for
the FirstPolytree3 function. Note that the curves I (1, 3| 2) and G (1, 2, 3) coincide
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Table 8. FirstPolytree5 function (x = (x5, x4, x3, x2, x1))

x f5
Poly (x) x f5

Poly (x) x f5
Poly (x) x f5

Poly (x)

00000 –1.141 01000 –0.753 10000 –3.527 11000 –6.664
00001 1.334 01001 1.723 10001 –1.051 11001 4.189
00010 –5.353 01010 –4.964 10010 7.738 11010 –10.876
00011 –1.700 01011 –1.311 10011 –4.085 11011 –7.223
00100 0.063 01100 1.454 10100 1.002 11100 –1.133
00101 –0.815 01101 0.576 10101 0.124 11101 –2.011
00110 –0.952 01110 0.439 10110 –0.013 11110 –2.148
00111 –0.652 01111 0.739 10111 0.286 11111 –1.849
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Fig. 5. Boltzmann information curves for the FirstPolytree3 function: (plus) I (2, 3| 1),
(square) I (1, 2| 3), (solid line) and (circle) G (1, 2, 3). Note that the last two curves coin-
cide at the chosen scale

at the chosen scale. This means that the marginal curve I (1, 3) is close to zero.
The actual values are below 10−3, which amounts to independence for sample sizes
below 2000 configurations. The other two marginal dependencies are quite strong
for β = 2 (the value used in the design of the function). As far as G (1, 2, 3) is
always positive we conclude that for any selection pressure we have more evidence to
decide against conditional independence than against marginal independence. Note
that the conditional interval [βc

min, βc
max] for I (1, 3| 2) is completely included in

the other two conditional intervals for any sample size. Note that in contrast with the
Deceptive3, in this function the value βG

z is not inside the interval [βc
min, βc

max].
Figure 6 presents the conditional and marginal Boltzmann curves for the OneEdge

function. For all β, the values I (1, 3) and I (1, 3| 2) are very close; their difference,
G (1, 2, 3), is less than 10−8 and negative. The curves I (1, 2| 3) and I (2, 3| 1) are
below 10−9, which implies independence.
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Fig. 6. Boltzmann information curves for the OneEdge function. The second row, from left
to right, contains the conditional curves I (1, 2| 3), I (1, 3| 2) and I (2, 3| 1). The upper row
contains the corresponding marginal curves

In what follows, we use the BFDA to investigate two separable functions of
30 and 60 variables. The functions are formed by concatenating either the function
f3

OneEdge or the function f3
Poly .

By just looking at Tables 1, 6 and 7 it is difficult to draw any conclusion about
what is the best factorization and which is the more difficult function for the BFDA.
Following the theorem 2 the choice would be the complete model, which was shown
to be the best factorization for the Deceptive3. However, the simulations of this sec-
tion show that this is not the case for the other functions.

Table 9 presents the results of running the BFDA with the population size set
to 120 for the FirstPolytree3. This time the factorization 12-32 is the clear winner.
The convergence is almost twice as fast and its success rate is twice as high, in the
factorization 12-32, as in the complete model. Similarly, the number of function eval-
uations is much bigger if the complete factorization is used. Therefore, we conclude

Table 9. BFDA runs with the FirstPolytree3. Setting: N = 120

12-32 12-13-32

n %S Gc βmin βmax %S Gc βmin βmax

30 95 13.32 0.197 4.927 55 22.29 0.139 7.954
60 85 13.49 0.196 5.526 38 21.95 0.139 8.715
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that the assumption making the variables 1 and 3 marginally dependent is wrong.
This is what we expected from our design decisions.

Regarding the Boltzmann curves the important observation is that the runs occur
within the most inner interval [βc

min, βc
max]. Moreover, the better the conditions for

the optimization are, the smaller the value of βmax. For example, for a fixed model,
the smallest problem converges with the smallest βmax. Alternatively, if the size of
the problem is fixed, then the best model has a smaller βmax. The same is observed
in the simulations with the OneEdge. Table 10 presents the results.

Table 10. BFDA runs with the OneEdge. Setting: N = 120

12-32 12-13-32 13

n %S Gc βmax %S Gc βmax %S Gc βmax

30 94 11.64 4.724 98 9.36 3.917 100 9.25 3.867
60 39 20.82 7.026 75 17.067 6.151 98 17.03 6.045

For the OneEdge function three models are investigated. The model 13 – the
one that is used in the design of the function – is the best. For example, compare
the success rate of the complete model and the best model for 60 variables. Note
that the convergence time is the same. In the model 12-32 the variables 1 and 3 are
independent, which explains its poor performance.

We also have investigated the functions with the FDA. Besides the separable
problem, in the simulations an overlapped additive function have been included. The
overlapped case is constructed as follows: the last variable of a sub-set is also the
first variable of the next sub-set in the additive decomposition. We use the letter O to
denote this case. For example, contrast O-12-32 with 12-32.

Tables 11 and 12 present the numerical results. The factorizations 12-32 and O-
12-32 are the best for the functions f3

Poly . Similarly, the models 13 and O-13 perform
better for the function f3

OneEdge. Both the separable and the overlapped complete
models do not scale well. For example, compare the success rates for the overlapped
case of the OneEdge function.

Table 11. FDA runs with the FirstPolytree3

N %S Gc %S Gc %S Gc

n = 30 n = 60 n = 90

12-13-32 120 92 5.39 42 9.10 6 12.33
12-32 120 93 5.36 67 9.46 27 13.04

n = 31 n = 61 n = 91

O-12-13-32 200 83 6.81 25 11.04 4 14.00
O-12-32 200 94 6.59 63 11.28 20 14.90
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Table 12. FDA and the OneEdge function

N %S Gc %S Gc %S Gc

n = 30 n = 60 n = 90

12-13-32 60 54 5.12 6 8.33 0 −
13 60 95 4.53 65 8.18 28 10.71

n = 31 n = 61 n = 91

O-12-13-32 100 71 5.57 20 10.00 2 12.50
O-13 100 100 5.20 81 9.03 57 12.52

We summarize the results as follows. The behaviour of the polytree functions
investigated in this section, agrees with our design expectations. On the other hand, a
clear correspondence between what happened in the simulations and the Boltzmann
curves was observed. We take this as a sort of validation of both the usefulness of the
analysis and design method introduced in this chapter.

4.3 Designing Random Class of Functions

In the previous section, we followed the common practice of concatenating low order
functions to form larger additively decomposable functions. However, it would be
useful if we could design a complete additive function with a given structure without
resorting to the trick of concatenating small sub-functions. Moreover, it would be
even more useful to design random class of functions, instead of isolated functions.
To accomplish this task our method has to be extended.

In this section, we restrict ourselves to the design of the random class of binary
polytree functions. This will provide the reader with general ideas and guidelines
that might be helpful to undertake other design efforts.

Sampling the Structural Constraints

The first step is the generation of a random polytree graph. As was explained in Sect.
4.2, it is the structural constraint.

There exist simple methods for generating random graphs. Any of these algo-
rithms together with a rejection sampling technique to reject graphs with directed
cycles and undirected cycles, will do the job. At this stage the method outputs the
graph, its junction tree and two lists, L1 and L2. If a pair (i, j) belongs to the first
list, both i and j are parents of the same node and therefore, I (Xi,Xj) < It. On
the other hand, the second list contains a pair (i, j), if and only if, j is the parent of
i. In this case, I (Xi,Xj) > It. For each pair (i, j) in the lists, we sample a bivari-
ate marginal distribution p (xi, xj), that obeys the corresponding mutual information
constraint. This non-trivial task is discussed in what follows.
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Sampling Bivariate Marginals Under Independence

The problem is related to the evaluation of the exact sampling distributions of the
cell counts in applied multivariate analysis [35]. Therefore, we set ni = Np (xi),
nj = Np (xj) and nij = Np (xi, xj), where N is the sample size.

Let assume Poisson, multinomial or independent multinomial sampling. Under
the null hypothesis of independence, the conditional distribution of nij given the ob-
served marginal counts ni and nj is the central hyper-geometric distribution, which
is known exactly. The random scalar variable Nij is given by

Nij ∼

(
ni

nij

)(
N − ni

nj − nij

)

(
N
nj

) (17)

Let ni and nj be given. Then, for any pair (i, j) in the list L1 we generate the
bivariate marginal p (xi, xj) by sampling nij from (17), and then substituting pij =
nij/N , pi and pj in (16).

It is worth noting, that the method can be extended to deal with variables of
cardinality greater than two [35].

Sampling Correlated Bivariate Marginals

For the computation of the marginals associated to the list L2, the solution comes
from the exact non-null distribution theory [1].

Let assume multinomial sampling and let θ be the odds ratio [35]. Conditional
on ni and nj , the distribution of nij depend only on θ, and is given by

Nij ∼

(
ni

nij

)(
N − ni

nj − nij

)

θnij

M∑

u=m

(
ni

u

)(
N − ni

nj − u

)

θu

(18)

where m = max (0, ni + nj − n) and M = min (ni, nj).
As far as the constraints are specified using the mutual information, one could try

a reparameterization of (18). However, we use directly the odds ratio, which obeys
0 ≤ θ < ∞. Values of θ farther from 1.0 in a given directions represent higher
values of mutual information. Moreover, if θ1 = 1/θ2, then both θ1 and θ2 represent
the same level of dependence.

Let ni and nj be given. For any pair (i, j) in the list L2, we compute θ according
to the mutual information I (Xi,Xj). Then, nij is sampled from (18) and p (xi, xj)
is obtained from (16).

Once all the bivariate marginals have been computed we are ready to build the
maximum-entropy junction tree. Afterwards, we obtain an instance of the random
class by substituting in (13) the distribution and the given β.
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How to Test EDA Algorithms

The procedure introduced in the previous sections allows us to define a large class of
functions: the class of random Boltzmann polytree functions (RBPF). We denote the
class by RBPF (n, K, β), where K is the maximum number of parents in the poly-
tree. Note that Z is not included as a parameter because it is chosen automatically in
such a way to make the function non-negative for any configuration x.

Testing evolutionary algorithms have been recognized as a major problem in cur-
rent EDA research [23]. We believe that the approach presented in this chapter will
improve the ability of the research community to test and compare EDA algorithms.
Moreover, the design of random classes of Boltzmann functions should help to un-
derstand the complex mechanisms involved in EDA optimization, because now we
have an explicit control of the dependencies presented in the functions. We are con-
fident that others random classes can be designed using similar ideas to the ones
presented in this chapter.

Within our framework, any optimization algorithm should be tested in samples
of carefully designed random classes of functions. In other words, instead of using
a single function and running the algorithm 100 times, we prefer to use once 100
different functions sampled from the same random class.

5 Learning Low Cost Max-Entropy Distributions

A critical problem of learning search distributions in EDAs is the sample complexity,
which is related with the number of functions evaluations. One important challenge
of an evolutionary algorithm is the reduction of the number of evaluations, while
the effectiveness and efficiency of the search is preserved. In this section we will
use the concept of entropy to achieve this goal. Our idea is simple: the true search
distribution is substituted by an approximation, which can be reliably computed with
less population size.

The following definitions will help to clarify our ideas.

Algorithm 4 Maximum-entropy EDA

Step 1 Set t ← 1. Generate N � 0 points randomly.
Step 2 Select M points according to a selection method.
Step 3 Find a suitable R and learn a Rps(x),R from the selected set.
Step 4 Compute the maximum entropy distribution ps

R (X).
Step 5 Sample N new points according to the distribution

p (x, t + 1) = ps
R(x1, . . . , xn)

Step 6 Set t ← t + 1. If termination criteria are not met, go to step 2.
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Definition 5 Let p (X1, . . . , Xn) be the factorization of the selected set. We say that
p (X1, . . . , Xn) is a true search distribution if it was computed from a data set, whose
size allows reliable estimates of the factors’ probabilities.

Definition 6 Let X be a random vector of dimension n and R = {r1, . . . , rm} be
a set of index-sets. A restriction of a joint distribution p (x) is a set of marginal
distributions

Rp(X),R = {p (Xr1) , . . . , p (Xrm
)}

of p (x), such that the following holds:

1. ∀i, 1 ≤ i ≤ m, ri ⊂ {1, . . . , n} and ri 
= ∅
2. ∀i, j, 1 ≤ i, j ≤ m, ri � rj

Definition 7 Let Rp(X),R be a restriction of p (x), then pR (x) is defined as the
maximum-entropy distribution that fulfills the constraints Rp(X),R.

Using the above definitions, we introduce an EDA that uses the MEP (see algo-
rithm 4). We have called it maximum-entropy EDA (meEDA).

Step 2 is a critical point of the meEDA algorithm because the algorithm has to
choose a suitable restriction set. It is an open problem how to identify good restric-
tions of the search distributions. For example, besides the primary goal of getting a
sampling distribution with less cost than the true distribution, there could be other
reasons that determine a good choice of the restriction set. On the other hand, an
efficient procedure for the computation of the maximum-entropy distribution exists
only if the structure of the restriction set satisfies certain constraints. The next sec-
tion presents an algorithm EDA where the maximum-entropy distribution can be
computed efficiently.

5.1 Extending PADA2 with Maximum-Entropy

The polytree functions designed in Sect. 4 have a common property: their search
distributions are single-connected. In this section we modify PADA2 – an algorithm
specially designed to deal with single connected Bayesian networks – to transform it
into a meEDA.

The polytree approximation distribution algorithm (PADA) [33, 34] was de-
signed to deal with the whole class of single-connected Bayesian networks; also
called the polytree class. It uses first, second and third order marginals to recover
polytrees from data. In this work we will use PADA2 [33] – variant of PADA, which
learns only first and second order marginals distributions. PADA2 is inspired by an
algorithm proposed by Rebane and Pearl [30]. We shortly outline the basic ideas
behind the algorithm.

A polytree with n variables has a maximum of n − 1 arcs, otherwise it would
not be single connected. PADA2 chooses the edges that have the largest values of
the magnitude H (X) + H (Y ) − H (X,Y ), which is also called mutual informa-
tion [3]. The selection of the edges is done by a greedy maximum weight spanning
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tree algorithm. These edges form the so-called skeleton (the underlying undirected
graph).

After the construction of the skeleton is done, a procedure tries to orient the
edges by using the following scheme: if X − Z − Y ∈ skeleton, then whenever
H (X) + H (Y ) = H (X,Y ) holds statistically it orients the edges to Z. In this
case it is said that Z is a head to head connection. The edges that were not oriented
after the above test are directed at random without introducing new head to head
connections.

Both during learning and sampling, EDAs that learn general Bayesian networks
need a population size, which is exponential in the number of parents. This is im-
portant to get reliable estimates of the conditional probabilities. However, although
PADA2 only learns first and second order marginals, it has to deal with the same
exponential problem in the sampling step, i.e. what is gained in learning is lost in the
sampling.

To transform PADA2 into mePADA2 we must define the polytree’s restriction
set, i.e. all bivariate marginals that belong to the skeleton and the bivariate marginals
defined for each pair parent-child. Note that this restriction set was used as a para-
metric constraint in Sect. 4.2. The next step consists in computing the higher order
marginals as the maximum-entropy distributions that obey the given second order
marginals. Consistency is guaranteed by propagating across the junction tree associ-
ated to the polytree as was explained in Sect. 2.4.

Now we present some numerical results to support the theoretical claims. We use
two separable ADF functions, which are based on the Deceptive3 and FirstPolytree5.
Although the structure of the Deceptive3 function is not single-connected, PADA2
tries to build the better single-connected approximation it can. It is remarkable that
the method still produces very good results. We recall that the basic claim of our
research is that the maximum-entropy distribution, which can be computed with a
smaller population size than the true search distribution, is suitable for sampling.
Moreover, sometimes it gives better results than the true distribution.

The algorithms are run until a maximum of 20 generations with a truncation
selection of 0.3 and without elitism. Each experiment is repeated 100 times. The
problem sizes were set to 21 variables for the Deceptive3 and 20 variables for the
FirstPolytree5.

As can be seen from Table 13 the improvement of mePADA2 is enormous as
compared to PADA2. For the f5

Poly , the superiority of mePADA is more evident; not
only it scales much better than PADA2, but the convergence time is drastically re-
duced. It is also remarkable that the number of generations until success always stays
the same or even improves. It has also stabilized as can be seen from the decrease in
the standard deviation.

The idea of improving the performance of EDAs by constructing maximum-
entropy approximations of the search distributions was first introduced in [29]. Later
it was further developed in [23] for multi-connected networks.
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Table 13. PADA2 vs. mePADA2 with fdec3 and f5
Poly

fdec3 f5
Poly

PADA2 mePADA2 PADA2 mePADA2

N %S Gc %S Gc %S Gc %S Gc

200 0 − 2 8.5 ± 0.7 25 10.1 ± 2.1 59 5.1 ± 1.1
600 8 9.7 ± 1.5 69 7.4 ± 1.1 50 10.4 ± 2.6 100 3.9 ± 0.7
800 10 8.7 ± 3.2 90 7.0 ± 1.2 54 10.6 ± 2.3 100 3.7 ± 0.6
5000 92 7.2 ± 1.2 100 5.8 ± 0.9 55 10.8 ± 1.5 100 2.9 ± 0.4

6 Entropy and Mutation

The last section of this chapter relates the concept of entropy toa powerful operator
of evolutionary algorithms: mutation.

The mutation operator did not receive much attention during the early years of re-
search in EDAs. It was believed to play no important role due the dramatic improve-
ment in search efficiency achieved by EDAs, with regard to GAs. People profoundly
believed that the success of EDAs is determined by the amount of knowledge it has
about the search distributions, i.e. the best informed models were considered – and
still are considered – the best models. Within this way of thinking there was little
space for mutations. However, after some years of hard work, researchers have come
to the conclusion that mutation is also a powerful operator within EDAs. Therefore,
new and original developments are needed in the field to deal with this issue.

To begin with, we must draw the reader attention to the fundamental shift in the
interpretation of mutation: EDAs have to approach mutation from a distribution per-
spective, in contrast with the genotype perspective of GAs. While a GA mutates sin-
gle individuals, an EDA must mutate distributions. We have developed an approach
to fulfill this requirement.

6.1 How do we Measure the Effect of the Mutation?

A major problem with the mutation operator in evolutionary algorithms, is the lack
of a comprehensible, uniform and standard mechanism for measuring its impact in
the evolution. There are almost as many mutation operators as problems, and only
few of them are problem-independent. The common way of assessing the amount
of mutation considers the probability or frequency of application of the operator,
i.e. there are no measurements units for mutation. The obvious drawback of this
approach is that it is difficult to compare the impact of different operators or the
effect of the same operator in different situations.

Our approach to mutation solves the above-mentioned problems. It has a distri-
bution perspective, is problem-independent, has measurements units, and its impact
in different scenarios can be easily compared. It is based on the concept of entropy.

The relation between entropy and mutation is quite intuitive: when a random
variable is mutated a certain degree of randomness is added to it. In others words,
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mutation increases the level of uncertainty we have about the exact value of a random
variable. Therefore, it seems reasonable to measure the amount of mutation applied
to a variable as the increase of its entropy. This connection was first made in [33].

Linking the concepts of mutation and entropy has some important advantages:

• Entropy is a well understood information-theoretic concept, which encapsulates
the notion of randomness and uncertainty.

• It connects the mutation to other fundamental concepts like mutual information
and relative entropy.

• Mutation also gets from entropy measurements units: bits or nats, instead of using
the popular, but less clear notion of probability of application of the mutation
operator.

6.2 From Bit-flip to Entropic Mutation

In this section, we shortly discuss two important mutation schemes that precede
our proposal. One was introduced in GAs, and the other was recently introduced
in EDAs. The observation of the entropic variations produced by these schemes was
a major motivation for our work.

Bit-flip Mutation

The classical GA mutation operator for binary problems is a bit-flip (BF ) operation
that is applied to each gene with a certain given probability µ [8]. The next lemma
relates BF-mutation with the univariate probabilities.

Lemma 4 For binary variables, BF mutation changes the probability according to

pf − pi = µ (1− 2pi)

where pf is the probability after mutation and pi is the probability before mutation.

Proof 2 Let the probability of a bit flip be µ, and pi be the probability of a gene being
1 before mutation. As these events are independent, we can write for the probability
pf of the gene being 1 after mutation

pf = pi (1− µ) + (1− pi) µ = pi (1− 2µ) + µ (19)

and from this we get
pf − pi = µ (1− 2pi) � (20)

If we compute the entropy of a variable before and after the BF-mutation, H (pi)
and H (pf ) respectively, then we can measure the increase of entropy produced by
this operation

δH = H (pf )−H (pi)

Figure 7 shows δH curves for six different values of the probability of mutation
µ. Note that δH is nonlinear for small values of the initial entropy, H (pi), and
small µ. However, for large values of H (pi) the curves approach a linear function.
Moreover, for large µ the curves approach lines. The limit case, µ = 0.5, defines a
random walk: for any pi the probability after mutation is 0.5.
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Fig. 7. Entropic curves δH vs H for bit-flip mutation

Prior Mutation

Prior mutation was introduced in [20]. It uses the concept of Bayesian prior, which
assumes that the probability of an event has an a priori known distribution. Usually,
for binomial variables, the family of Dirichlet distributions plays the role of prior
distributions.

In an EDA with prior mutation, the univariate probabilities are not approximated
by the maximum likelihood estimates m/N (m is the number of 1 in N cases). In-
stead the approximation (m + r) / (N + 2r) is used, where r is the hyper-parameter
of the Dirichlet distribution. Prior mutation is linked to bit-flip mutation. The follow-
ing theorem was proved in [20].

Theorem 5 For binary variables, a Bayesian prior with parameter r corresponds to
mutation rate µ = r/ (N + 2r)

Therefore, for the univariate case bit-flip mutation amounts to prior mutation,
and as a consequence, they have the same entropic curves.

6.3 Entropic Mutation

The linear properties of both the bit-flip and prior entropic curves, have suggested
that we consider a mutation scheme where δH changes linearly. As a result we have
come out with a novel mutation scheme that we have called linear entropic mutation
(LEM). In this chapter, we just outline the general ideas.
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The Univariate Case

In this section, we discuss the entropic mutation of a binary scalar random variable.

Definition 8 Let X be a random scalar variable with entropy H (X). We say that to
the variable X has been applied the univariate entropic mutation δH (X) , if after
mutation the entropy of the variable is given by

Hm (X) = H (X) + δH (X)

This is a general definition, which can be applied as well to discrete and contin-
uous random vector variables. Besides the univariate mutation, we have defined the
conditional and the joint entropic mutations. However, these cases are beyond the
scope of this work.

Definition 9 (Full mutation) Let X be a binary random scalar variable with entropy
H (X). We say that δH (X) is a full (or complete) mutation of the variable X if

δH (X) = 1−H (X)

Full mutation amounts to bit-flip mutation with µ = 0.5. In this case, a variable
gets an increase of entropy equal to what it needs to reach its maximum entropy.
This kind of mutation has little use in an optimization context. At this point it is
natural to ask ourselves when and how much the entropy of a given variable should
be changed. A simple answer based on common sense says that one would like to
change a variable if it has low entropy. Indeed, it does not make any sense to mutate
a variable with probability p = 0.5 (H(p) = 1).

Figure 8 shows the line of full mutation as a function of the initial entropy, to-
gether with two others linear functions of H . The slopes of the lines are the mutation
intensities, α. The following definition formalizes this idea.

Definition 10 Let X be a random scalar variable with entropy H (X). We say that to
the variable X has been applied the linear entropic mutation δH (X) with parameter
α if after mutation it has entropy Hα (X) and the following holds

δH (X) = (1−H (X)) α ⇔ Hα (X) = (1− α) H (X) + α (21)

Note in Fig. 8, that α is the ordinate for H(X) = 0. So, it is bounded by α = 1
(full mutation) and α = 0 (no mutation).

The mutation intensity α controls the strength of the mutation, i.e. how much the
entropy of a variable is changed. In an optimization scenario α might change across
time; thus, the general form of the mutation intensity is α (t).

The computation of a LEM-mutation of p (X) is accomplished in two steps.
Firstly, Hα (X) is computed according to (21), and then the new probability distrib-
ution pα (X) is obtained from Hα (X). However, as the entropy of binary variables
is symmetric – each entropy value is mapped to exactly two probability values – we
introduce the following definition to resolve the ambiguity.
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Definition 11 (Inverse function of H (X)). Let H(−1) : [0, 1] × [0, 1] → [0, 1] be a
function such that for any real numbers p and q, with 0 ≤ p, q ≤ 1,

p = H(−1) (H (p) , q) ⇒ (2p− 1) (2q − 1) ≥ 0

Definition 11 says that for a given pair 〈h, q〉 (with h = H (p)), the function
H(−1) (h, q) returns a probability p, such that both p and q lie together in the interval
[0, 0.5) or in [0.5, 1]. This definition is useful because for any p, pα lie in the same
half of [0, 1] as p. Finally we can write the expression for pα as follows:

pα = H(−1) ((1− α) H (X) + α, p) (22)

A Note on the Multivariate Case

The multivariate LEM is more difficult than the univariate case, even for binary vari-
ables. Here we just give a necessary condition. Other results for multidimensional
distributions will be published elsewhere soon.

Definition 12 Let p (x1, x2, . . . , xn) and pα (x1, x2, . . . , xn) denote a binary joint
probability mass and its LEM-mutation with mutation intensity α. If H (X) and
Hα (X) are their respective entropy values, then the following holds:

δH (X) = (n−H (X)) α and Hα (X) = (1− α) H (X) + nα (23)

Table 14 shows the set of joint probability distributions pα (x1, x2, . . . , xn) that
were used to compute the family of functions fdec3 (α) in Sect. 3.2. Note in the
second column that the entropy values obey the relation (23), where H (X) is the
entropy of the first row and n = 3. However, computing pα (x1, x2, . . . , xn) from
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Table 14. LEM mutation and the family fdec3 (α).

x3x2x1

α Hα 000 001 010 011 100 101 110 111

0.00 1.74 0.204 0.071 0.071 0.000 0.071 0.000 0.000 0.582
0.05 1.80 0.202 0.075 0.074 0.002 0.073 0.001 0.001 0.572
0.20 1.99 0.197 0.084 0.082 0.012 0.078 0.006 0.006 0.536
0.40 2.24 0.189 0.095 0.091 0.028 0.086 0.017 0.015 0.479
0.50 2.37 0.184 0.100 0.096 0.038 0.090 0.024 0.022 0.446

p (x1, x2, . . . , xn) and α is not a trivial task and is beyond the scope of this chapter.
Here we just present a special case where we easily can show a distribution that fulfill
(23). The following theorem gives the details.

Theorem 6 Let p (x) be the joint probability mass of a set of independent random
variables X = (X1,X2, . . . , Xn). If

pα (x1, x2, . . . , xn) =
n∏

i=1

H(−1) ((1− α) H (Xi) + α, pi) (24)

then
H(pα (X)) = (1− α) H (X) + nα (25)

Proof 3 The lemma follows from theorem 3 and the linearity of the LEM-mutation.
We rewrite the right term of (25)

(1− α) H (X) + nα = (1− α)
n∑

i=1

H (Xi) + nα

=
n∑

i=1

((1− α) H (Xi) + α)

=
n∑

i=1

Hα (Xi)

From (22) and (24) follows that pα (x1, x2, . . . , xn) is the distribution of inde-
pendence with univariate probabilities pα (xi). Therefore, the left term of (25) is
given by

Hα (X) =
n∑

i=1

Hα (Xi)

This completes the proof. ��
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Closely related to the above theorem is the following general result.

Theorem 7 Let p (x) be any joint probability mass of a set of random variables
X = (X1,X2, . . . , Xn), then

Hα (X) ≤
n∑

i=1

H (Xi)α

with equality if and only if the variables are independent.

Proof 4 The proof follows immediately from theorem 3 and the linearity of LEM.

6.4 Testing the UMDA with LEM

On the basis of theorem 6 we can add LEM-mutation to the UMDA [22], which is a
FDA with full factorization. The mutation operation is inserted before the sampling
step, i.e. the distribution of the selected set is mutated.

Mutation is a powerful mechanism that does not only makes the optimization
algorithm more robust and effective, but also might reduce its population size re-
quirements. The search using mutation takes more time and less population size than
without it. With regard to the number of function evaluations these are conflicting
factors. We just illustrate this issue with an example.

We run the UMDA with the OneMax function, which outputs the number of vari-
ables set to one in its input. The UMDA solves this function (with high probability)
if the population size is close to the problem size [22]. For the experiment we have
chosen a population size that is half the problem size (N = 30, n = 60), which
implies a dramatic reduction of the success rate. Figure 9 shows the success rate and
the number of function evaluations as a function of α. Note that for α = 0 (no mu-
tation), the success rate is ≈ 18% (out from 100 runs). However, for α ∈ [0.06, 0.2]
the success rate is above 90%.

Note that for α ∈ [0.08, 0.12], the number of functions evaluations reaches the
minimum. This value is less than the minimum population size (N ≈ 55) that is
needed to have a success rate above 90% without mutation. This value is shown as a
threshold dot line in the figure. We conclude that the gain due to the population size
is not eliminated by the increment in the convergence time.

In summary, with small populations and low or high mutation rates the algorithm
performs badly. However, there exists a window [αmin, αmax] where the success
rate is high, that might contain another window where the algorithm reaches the
minimum possible number of functions evaluations.

7 Conclusions

This chapter has highlighted several important issues regarding the relation between
the concept of entropy and EDAs.
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Fig. 9. UMDA and the Onemax function. Success rate and number of function evaluations vs.
the mutation intensity α. Setting N = 30, n = 60

We have introduced a tool to investigate the levels of interactions of the variables
under Boltzmann selection: the Boltzmann mutual information curves. It constitutes
the corner stone of a method for analysing the complexity of functions for EDAs.

Closely related to the analysis method, is our approach to the design of single
and random classes of benchmark functions. We are confident that the use of random
classes of Boltzmann functions improves our ability to test EDA algorithms in a
more scientific way giving to the benchmark approach a sound theoretical basis. The
point is that our method offers an explicit control of the dependencies presented in
the functions.

We have used the maximum entropy principle as a key element of the design
method and also to build low cost approximations of search distributions that obey a
given collection of constraints. We believe that the building of low cost distributions
may have tremendous impact on real-world applications of EDAs, so it deserves the
special attention of the research community.

Finally, a short introduction to a new scheme of mutation, which is based on the
concept of entropy was presented. The linear entropic mutation is a natural opera-
tor for EDAs because it mutates distributions instead of single individuals. From a
theoretical point of view it opens new exciting directions of research toward a better
understanding of the complex dynamics describing the golden equilibrium between
exploration and exploitation.
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Summary. This chapter presents an entropy-based convergence measurement applicable to
Estimation of Distribution Algorithms. Based on the measured entropy, the time point when
the generation of new solutions becomes ineffective, can be detected. The proposed termi-
nation criterion is inherent to the complexity of used probabilistic models and automatically
postpones the termination if inappropriate models are used.

1 Introduction

In most Estimation of Distribution Algorithms (EDAs) [8, 11, 6] the probabilistic
model learned from the population of candidate solutions is used mainly for generat-
ing new solutions. In this chapter we propose an additional usage of the probabilistic
model in an information-theoretical way. The entropy of the probabilistic model pro-
vides a measure of the amount of information contained in the population. This can
be used for controlling the EDA, for example for detecting the proper termination
point.

The proposed termination criterion has been integrated with the Mixed Bayesian
Optimization Algorithm (MBOA) [9]. The following sections focus mainly on its
mathematical formulation, implementation aspects, and demonstration of its behav-
ior on the 2D Ising spin glass optimization problem.

2 Main Principles of EDAs

EDAs explore the search space by sampling a probability distribution that is devel-
oped during the optimization. They work with a population of candidate solutions.
Each generation, the fittest solutions are used for the model building or model up-
dating and new solutions are generated from the model. These new solutions are
evaluated and incorporated into the original population, replacing some or all of the
old ones. This process is repeated until the termination criterion is met.
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We will focus on discrete domains. A Bayesian network (BN) is one of the gen-
eral models to express discrete probability distributions. The underlying probability
distribution p(X) is estimated as the product of conditional probability distributions
of each parameter Xi given Πi – the parameters that influence Xi.

p(X0, ...,Xn−1) =
n−1∏

i=0

p(Xi|Πi) (1)

We use upper case symbol Xi to denote the ith design parameter (or the ith gene
in Evolutionary Algorithms terminology or the ith random variable in mathematical
terminology) whereas lower-case symbols xi denote a realization of this parame-
ter. Boldface symbols distinguish vectors from scalars. The symbol N denotes the
population size whereas n denotes the problem size.

The construction of an optimal Bayesian network from the population of can-
didate solutions is itself an NP-hard problem [1], and EDAs usually use either an
incremental or a greedy version of the learning algorithm to accelerate the BN con-
struction. An example of an algorithm to learn a Bayesian network with implemen-
tation details can be found in [5].

Well known EDAs using Bayesian networks are for example the Bayesian Op-
timization Algorithm (BOA) [10], the Estimation of Bayesian Network Algorithm
(EBNA) [3] and the Learning Factorized Distribution Algorithm (LFDA) [7]. The
Bayesian network can be also considered as a generalization of models with re-
stricted cardinality of interactions used in early EDAs.

3 Entropy Computation

3.1 Bayesian Networks with Tabulated Conditional Probabilities

The entropy H(X) can be computed as the sum of local conditional entropies ac-
cording to the factorization of the probability distribution p(X) in (1):

H(X0, ...,Xn−1) =
n−1∑

i=0

H(Xi|Πi) = −
n−1∑

i=0

∑

πi∈Pi

∑

xi∈Xi

p(xi, πi) log2 p(xi|πi)

(2)
where the outer sum loops over all design parameters Xi, the middle sum loops over
Pi – the set of possible vectors that can be assigned to Πi – and the inner sum loops
overXi – the set of possible values of Xi. For example the two inner sums go over all
rows of the local conditional probability table if p(Xi|Πi) is given in tabular form.

The probabilities p(xi, πi) and p(xi|πi) can be estimated from the population D
as p(xi, πi) = m(xi, πi)/N and p(xi|πi) = m(xi, πi)/m(πi), where m(xi, πi) is
the number of solutions in D having parameter Xi set to xi and parameters Πi set to
πi; m(πi) counts solutions in D with Πi set to πi.
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3.2 Bayesian Networks with Local Structures

In the previous section we focused on the Bayesian network with tabular form of the
conditional probability distributions. Unfortunately, the size of the necessary tables
grows exponentially with respect to the order of captured dependencies. For example
in the binary case one needs a table with 2k rows to describe the probability of
Xi = 1 given all combinations of its k parents. This exponential complexity emerged
as a major problem in learning Bayesian network models with tabular representation.

More compact representations can be achieved by using local structures in the
form of decision trees or decision graphs1. For each variable one decision tree is con-
structed. The variables that determine Xi are used as decision nodes in that tree (no
dependency graph has to be explicitly maintained) and concrete values of p(xi|πi)
are stated in the leaves. Usually the number of leaves of the decision tree is smaller
than the number of rows of the corresponding table, thus the frequency estimation is
more precise.

The entropy of a Bayesian network with local structures represented in the form
of decision trees can be computed as

H(X0, ...,Xn−1) = −
n−1∑

i=0

∑

j∈Li

∑

xi∈Xi

p(xi, j) log2 p(xi|j) (3)

where Li denotes the set of leaf nodes in the ith decision tree corresponding to vari-
able Xi; Xi denotes the set of possible values of Xi; p(xi, j) denotes the probability
that the solution traverses to the jth leaf of the ith tree and has the parameter Xi set
to xi; p(xi|j) denotes the probability of Xi = xi only within the jth leaf of the ith
tree. These probabilities are estimated using the frequencies computed from popula-
tion D as p(xi, j) = m(xi, j)/N and p(xi|j) = m(xi, j)/m(j), where m(xi, j) is
the number of solutions in D having parameter Xi set to xi and traversing to the jth
leaf of the ith tree; m(j) counts for solutions in D traversing to the jth leaf of the
ith tree.

The first EDA with decision graphs was the hierarchical Bayesian Optimization
Algorithm (hBOA) [12]. Another example is the Mixed Bayesian Optimization Al-
gorithm (MBOA)2 [9] which uses various types of graph nodes to optimize problems
with both continuous and discrete parameters.

4 Entropy-based Convergence Measurement

Every unique discrete solution which can be sampled from the model can be en-
coded by a unique string. Let us assume that such encoding is chosen optimally –

1 In accordance with [2], we use the term decision trees to denote the tree representation of
probability distributions. Some references distinguish between deterministic decision trees
and stochastic probability trees.

2 MBOA can be downloaded from http://jiri.ocenasek.com/.
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less frequently sampled solutions receive longer representations and more frequently
sampled solutions receive shorter representations – such that the average encoding
per sample is minimal. This average length for optimal encoding is given by the en-
tropy. Since we used logarithms with base 2 in (2) and (3), the entropy is given in bits,
regardless of the cardinality of the original alphabet. In other words, the model en-
tropy denotes the average number of binary decisions per individual that the random
generator has to take to generate the new population. Intuitively, the models built
during the initial few generations are of high entropy, since the sampling process in
the initial stages is close to uniform sampling. As the evolutionary process starts con-
verging, the sampling preferably generates solutions that are mutually similar and the
entropy drops. Therefore, we propose that the entropy can be utilized as convergence
measurement in those Evolutionary Algorithms that operate via probabilistic model
building and sampling.

Figure 1 shows an example of entropy changes during the optimization. The run
shows how MBOA solves a random 2D Ising spin glass benchmark of size 10× 10.
The population size was N = 2000 and the problem size was n = 100. The exact
definition of Ising spin glass model is presented in Sect. 8.1. In each generation the
entropy was computed from the decision trees using (3). We see that the entropy
decreases during the run, which means that the population gets less stochastic as
longer partial solutions occur and multiply. As the evolution continues, the informa-
tion about the dependencies between parameters becomes evident and sizeable by the
model, thus decreasing the entropy of the search distribution. In another words, the
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Fig. 1. The change of entropy during an optimization of a 10× 10 random 2D Ising spin glass
instance (see Sect. 8.1) with MBOA (solid line, left value axis) and the corresponding change
of fitness value (dashed line, right value axis). Population size is N = 2000 and the problem
size is n = 100; tournament selection and Restricted Tournament Replacement are used. The
employed model is a Bayesian network with local probabilities in form of decision trees. Each
line represents the median values of 10 runs. On average, the globally optimal fitness value
138 is reached in generation 17
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original n-dimensional spin glass problem is being transformed into lower dimen-
sional problem as the dependencies are captured. However, note that MBOA uses
a Restricted Tournament Replacement (RTR) [4] as a niching technique to protect
diversity in the genotype space. This phenomenon is also evident in Fig. 1 – from the
generation number 45 the entropy decrease is decelerated.

5 Entropy-based Termination Criterion

Our goal is to identify the optimal time point for terminating an EDA. In the ideal
case the termination should be allowed only if the entropy drops to zero, because
then there is a guarantee that no improved solution can be discovered by sampling
the model. However, in our approach we are interested in the efficiency. We would
like to detect the moment when the sampling process becomes ineffective. Precisely
speaking, we would like to stop when the probability that the newly generated so-
lution was already observed in the past, reaches some confidence level α close to
1.

To make this development tractable, we use the assumption that sampling the
original n-dimensional distribution over the search space X is equivalent to sampling
the uniform distribution with H(X) independent binary parameters. The problem of
effective stopping can then be formulated as “How many observations of uniformly
generated vectors of H(X) binary variables are sufficient to be sure (with confidence
level α) that we observed each of 2H(X) vectors at least once?” The probability that a
concrete sample of probability 1/2H(X) appears at least once during k trials is given
by

1−
(

1− 1
2H(X)

)k

(4)

The probability that all 2H(X) different samples appear should be greater than α:

(

1−
(

1− 1
2H(X)

)k
)2H(X)

≥ α (5)

The k for which this inequality holds can be approximated using power expan-
sion for α close to 1 as:

k ≥ 2H(X)H(X) ln(2)− 2H(X) ln ln
1
α

(6)

This gives us the number of solutions that have to be generated from the given
model before we can be sure with probability α that the solution sampled afterwards
is just a duplicate of some formerly observed solution, thus reaching inefficiency.

Note that the simplification used to formulate the stopping problem ignores the
true distribution of solutions in the population and assumes that all solutions are
equally likely to be sampled, thus focusing on the average-case samples. This is
an optimistic assumption – in real situations usually the good solutions are harder
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to get and reside in the tail of the distribution. Therefore, the proposed termination
criterion should be considered as a necessary condition, but not a sufficient condition
for termination.

6 Implementation Details

Let us denote by H(t)(X) the entropy of the model built in generation t and the
corresponding number of samples suggested according to (6) by k(t). The number of
solutions sampled each generation from the model will be denoted by N ′. If k(t) is
less or equal to N ′, then the algorithm stops in the current generation after evaluating
the new solutions. If k(t) is greater than the size of the newly generated population
N ′, the algorithm continues until generation number t + k(t)/N ′, assuming that the
models in generations t+1 to t+k(t)/N ′ are not divergent with respect to the model
in generation t and that the generality of constructed models does not change (see
discussion in Sect. 7).

The whole pseudocode of an EDA driven by the proposed termination criterion
can be written as in Fig. 2.

t = 0
Uniformly_generate(Population(0)); Evaluate(Population(0));
termination = infinity; while (termination > t) do

Parents(t) = Select(Population(t));
M(t) = Build_Bayesian_network(Parents(t));
Offspring(t) = Sample(M(t));
H(t) = Compute_entropy(M(t));
k(t) = Compute_required_samples(H(t));
if (termination > (t + k(t)/Size_of(Offspring(t))))

termination = t + k(t)/Size_of(Offspring(t));
end if
Evaluate(Offspring(t));
Population(t+1) = Replace(Population(t),Offspring(t));
t = t + 1;

end while

Fig. 2. Pseudocode of an EDA driven by the proposed termination criterion

7 Model Generality Issues

7.1 Inappropriate Model Class

In the previous sections we assumed that the allowed model complexity is appro-
priate to capture the nonlinear interaction between the variables of the optimized
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problem. Now we will discuss what happens if the used probabilistic model is inap-
propriate to the optimized problem.

As an example, let us consider a Bayesian network without dependencies. The
probabilities are just captured in the form of a vector of marginal probabilities. The
evolution of the entropy of this model used for optimizing the 2D spin glass problem
of size 10 × 10 is shown in Fig. 3. One can see that the computed entropy is higher
than that in Fig. 1.
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Fig. 3. The change of entropy during an optimization of a 10× 10 random 2D Ising spin glass
instance with MBOA (solid line, left value axis) and the corresponding change of fitness value
(dashed line, right value axis). Population size is N = 2000 and the problem size is n = 100;
tournament selection and Restricted Tournament Replacement are used. In contrast to Fig. 1,
the employed model is a univariate vector of marginal probabilities. Each line represents the
median values of 10 runs. On average, the globally optimal fitness value 138 is reached in
generation 297

From the Gibbs’ theorem it follows that the entropy computed using the approx-
imative probability distribution q cannot be lower than the entropy computed using
the true probability distribution p:

−
∑

x

p(x) log p(x) ≤ −
∑

x

p(x) log q(x) (7)

where x goes for all possible instances of X and the equality holds only if both
distributions are equal.

In other words, the model is unable to capture the underlying probability distri-
bution, which makes the population appear to be more stochastic. Compared to the
case with an appropriate model, the termination will be postponed. This behavior is
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desirable, since it reflects the inability of the evolutionary algorithm to effectively
converge using an insufficient model.

7.2 Overtrained Model

The goal of building a Bayesian network is to capture the general dependencies be-
tween parameters of the problem being optimized, but to avoid the spurious depen-
dencies that are specific to the concrete population instance. Most algorithms for
learning Bayesian networks penalize higher order dependencies in order to avoid
overtraining.

Let us investigate the usefulness of entropy-based termination criterion in the
case of overtrained models. The extremal case of overtraining is the fully determin-
istic model where all leaf nodes p(xi, πi) are either p(xi, πi) = 0 or p(xi, πi) = 1.
Intuitively, there is no search space exploration involved, the model sampling just du-
plicates the solutions that were already discovered. In this case the computed model
entropy is zero and the termination criterion suggests immediate stopping as a conse-
quence of the deficient model building. This behavior is reasonable, since the model
sampling is deterministic and reproduces known solutions.

The approach assumes that the new solutions are generated exclusively by sam-
pling the probabilistic model and no additional search space exploration mechanism
is used. For example, the hill climbing algorithm for local improvement3 of the so-
lutions would require the postponing of the stopping time because it increases the
chance for discovering unobserved solutions.

8 Experiments

The simplification used to derive the termination criterion in Sect. 5 ignores the true
distribution of solutions in the population and assumes that all solutions are equally
likely to be sampled, thus focusing on the average-case sampling complexity. To
investigate the behavior of the proposed termination criterion on real problems, we
experimented with the Ising spin glass benchmark.

8.1 Ising Spin Glass Benchmark

Finding the lowest energy configuration of spin glass system is an important task in
modern quantum physics. We choose the spin glass optimization problem as a typical
example of problem which does not fulfill the said average-case assumption. In [13]
it was shown that the computational complexity of studied spin glass systems was
dominated by rare events of extremely hard spin glass samples.

Each configuration of spin glass system is defined by the set of spins

S = {si|∀i ∈ {1, . . . , sd} : si ∈ {+1,−1}}, (8)

3 Also known in the literature as local optimization.
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where d is the dimension of spin glass grid and s is the size of spin glass grid. For
the optimization by MBOA the size of spin glass problem sd is equal to the length
of chromosome n, thus

n = sd (9)

Each spin glass benchmark instance is defined by the set of interactions {Ji,j} be-
tween neighboring spins si and sj in the grid. The energy of given spin glass config-
uration S can be computed as

E(S) =
∑

i,j∈{1,...,n}
Ji,jsisj (10)

where the sum runs over all neighboring positions i and j in the grid. For general
spin glass systems the interaction is a continuous value Ji,j ∈ [−1, 1], but we focus
only on Ising model with either ferromagnetic bond Ji,j = −1 or antiferromagnetic
bond Ji,j = +1, thus Ji,j ∈ {−1,+1}. Obviously, in the case of ferromagnetic
bond the lower (negative) contribution to the total energy is achieved if both spin
are oriented in the same direction, whereas in the case of antiferromagnetic bond the
lower (negative) contribution to the total energy is achieved if both spins are oriented
in opposite directions.

8.2 Empirical Results

Figures 4 and 5 indicate how realistic the proposed termination criterion for the real
spin glass problem is. We measure how the efficiency of MBOA changes during the
optimization. Each spin glass configuration sampled from the model is archived. In
each generation the archive is searched to compute how many of the newly generated
configurations were already seen at least once in the previous generations. In Fig. 4
we see that in the final stages of optimization MBOA becomes ineffective because
most configurations are seen more than once. The termination criterion proposed
in Sect. 5 suggested stopping in 350th generation. On the one hand, we see that
the suggested stopping point (350) is more than 20 times larger than the average
number of generations needed to discover the global optimum (17). This indicates
that from the empirical point of view the proposed termination criterion is reliable for
terminating the optimization of 2D Ising spin glasses. On the other hand, we see that
the observed portion of resampled solutions in 350th generation is approximately
78%, which is lower than the chosen confidence level α = 0.95. This indicates that
for real problems the confidence level α appears to be too optimistic. To make the
criterion more realistic, the existence of extremal solutions would have to be taken
into account.
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Fig. 4. The empirical efficiency of MBOA during an optimization of a 10 × 10 random
2D Ising spin glass instance. In each generation the portion of generated solutions that were
already visited at least once in the previous generations is shown. Population size is N =
2000 and the problem size is n = 100; tournament selection and Restricted Tournament
Replacement are used. The line represents the average values of 10 runs. On average, the
globally optimal fitness value 138 is reached in generation 17

Fig. 5. The relation between the model entropy and the empirically measured efficiency of
MBOA. This experiment is identical to the experiment from Fig. 4, but the horizontal axis
displays H(X) for each generation. The entropy in the first generation was H(X) = 61.75.
The dashed line indicates the proposed termination point in 350th generation (with H(X) =
13.52), whereas the dotted line indicates the 1650th generation where the measured resam-
pling probability reached the desired 95% level (with H(X) = 11.67)
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9 Conclusions

This chapter presents an entropy-based convergence measurement for EDAs.
Based on the measured entropy, we propose a method for detecting the time point

when the sampling process becomes ineffective. The proposed termination criterion
is inherent to the complexity of used probabilistic models and automatically post-
pones the termination if an inappropriate class of models is used.

We focus mainly on the mathematical and implementation aspects of the pro-
posed termination criterion. On several instances of spin glass problems we also
demonstrate the practical usefulness of this approach.

Future work will be oriented on the usage of the proposed approach in EDAs
working in continuous domains and on the investigation of the limits of this approach
in different scenarios, for example in the case of problems with a great number of
local optima.
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Summary. This chapter describes a real-coded (i.e., continuous) Estimation of Distribution
Algorithm (EDA) that solves real-valued (i.e., numerical) optimization problems of bounded
difficulty quickly, accurately, and reliably. This is the real-coded Bayesian Optimization Al-
gorithm (rBOA). The objective is to bring the power of (discrete) BOA to bear upon the area
of real-valued optimization. That is, the rBOA must properly decompose a problem and ef-
fectively perform Probabilistic Building-Block Crossover (PBBC) for real-valued multivariate
data. In other words, a unique feature of rBOA is to learn complex dependencies of variables
and make use of mixture models at the level of substructures. To begin with, a Bayesian factor-
ization is performed. The resulting factorization that contains linkage information is then uti-
lized for finding implicit subproblems (i.e., substructures). Mixture models are employed for
independently fitting each of these substructures. Subsequently, an independent substructure-
wise sampling draws the offspring. Experimental studies show that the rBOA finds, with a
sub-quadratic scale-up behavior for (additively) decomposable problems, a solution that is su-
perior in quality to that found by advanced real-coded EDAs regardless of inherent problem
characteristics. Moreover, comparable or better performance is achieved for nondecomposable
problems.

1 Introduction

Estimation of Distribution Algorithms (EDAs), also known as Probabilistic Model
Building Genetic Algorithms (PMBGAs), signal a paradigm shift in genetic and evo-
lutionary computation research [13, 23]. Incorporating (automated) linkage learning
techniques into a graphical probabilistic model, EDAs exploit a feasible probabilistic
model built around superior solutions found thus far while efficiently traversing the
search space [23]. EDAs iterate the three steps listed below, until some termination
criterion is satisfied:

1. Select good candidates (i.e., solutions) from a (initially randomly generated)
population of solutions.

C.W. Ahn et al.: Real-coded Bayesian Optimization Algorithm, StudFuzz 192, 51–73 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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2. Estimate the probability distribution from the selected individuals.
3. Generate new candidates (i.e., offspring) from the estimated distribution.

It must be noted that the third step uniquely characterizes EDAs as it replaces
traditional recombination and mutation operators employed by simple Genetic and
Evolutionary Algorithms (sGEAs). Although the sGEAs (with well-designed mixing
operator) and EDAs deal with solutions (i.e., individuals) in quite different ways, it
has been theoretically shown (and empirically observed) that their performances are
quite close (to each other) [13, 23]. Moreover, EDAs ensure an effective mixing and
reproduction of Building Blocks (BBs) due to their ability to accurately capture the
(BB) structure of a given problem, thereby solving GA-hard problems with a linear
or sub-quadratic performance in terms of (fitness) function evaluations [23, 21, 1, 3,
19]. However, there is a trade-off between the accuracy of the estimated distribution
and the efficiency of computation. For instance, a close and complicated model is
recommended if the fitness function to be evaluated is computationally expensive.

A large number of EDAs have been proposed for discrete and real-valued (i.e.,
continuous) variables in this regard. Depending on how intricate and involved the
probabilistic models are, they are divided into three categories: no dependencies,
pairwise dependencies, and multivariate dependencies [23]. Among them, the cat-
egory of multivariate dependencies endeavors to use general probabilistic models,
thereby solving many difficult problems quickly, accurately, and reliably [13, 23].
The more complex the probabilistic model the harder as well is the task of find-
ing the best structure. At the expense of some computational efficiency (with regard
to learning the probabilistic model), they can significantly improve the overall time
complexity for large (additively) decomposable problems due to their innate abil-
ity to reduce the number of (computationally expensive) fitness function evaluations.
Extended compact Genetic Algorithm (EcGA) [7], Factorized Distribution Algorithm
(FDA) [18], Estimation of Bayesian Networks Algorithm (EBNA) [11], and (hierar-
chical) Bayesian Optimization Algorithm ((h)BOA) [21, 22] are some leading exam-
ples for discrete variables.

Note that the BOA is perceived to be an important effort that employs general
probabilistic models for discrete variables [23, 1]. It utilizes techniques for modeling
multivariate data by Bayesian networks so as to estimate the (joint) probability dis-
tribution of promising solutions. The BOA is very effective even on large decompos-
able (discrete) problems with loose and tight linkage of BBs. It is important to note
that the power of BOA arises from realizing Probabilistic Building-Block Crossover
(PBBC) that approximates population-wise building-block crossover by a probability
distribution estimated on the basis of proper (problem) decomposition [21, 22]. The
underlying decomposition can be performed regardless of types of dependency be-
tween variables because it is capable of accurately modeling any type of dependency
due to the inherent characteristic (i.e., finite cardinality) of the discrete world. The
PBBC may shuffle as many superior partial solutions (i.e., BBs) as possible in order
to bring about an efficient and reliable search for the optimum. Therefore, it is only
natural that the principles of BOA be tried on real-valued variables. In this regard,
real-coded EDAs, also known as continuous EDAs, have been developed. Estimation
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of Gaussian Networks Algorithm (EGNA) [12, 14], Iterative Density-estimation Evo-
lutionary Algorithms (IDEAs) [3, 4], and Mixed Bayesian Optimization Algorithm
(MBOA) [19, 20] are representative schemes. A brief review of them is presented in
the sequel.

In the EGNA, the Gaussian network is induced in each generation by means of
a chosen (scoring) metric and the offspring is created by simulating the learned net-
work. However, the EGNA is not suitable for solving complicated problems because
it only constructs a single-peak (Gaussian) model.

The IDEAs exploit Bayesian factorizations and mixture distributions for learning
probabilistic models. There is a general, but simple factorization mixture selection
to be named ‘mixed IDEA’ (mIDEA) in this chapter. It clusters the selected individ-
uals and subsequently estimates a factorized probability distribution in each cluster
separately. It is evident that the mIDEA can learn various types of dependency. How-
ever, it cannot realize the PBBC because different clusters (that may create important
BBs) do not share all the common features.

The MBOA learns a Bayesian network with local structures in the form of de-
cision trees coming with univariate normal-kernel leaves. One decision tree is built
for each target variable, and the split nodes of the decision tree are used to linearly
split the domain of parent variables into parts. This results in a decomposition of
the conditional distribution’s domain into axis-parallel partitions, thereby efficiently
approximating the variables by univariate (kernel) distributions [19, 20]. Although
the MBOA can be very effective for problems involving variables with simple in-
teractions (i.e., linearity), it is inefficient for nonlinear, symmetric problems because
finding the (linear) split boundaries for detecting the inherent characteristics is very
difficult and quite often even impossible.

In this chapter, we propose a real-coded BOA (rBOA) along the lines of (discrete)
BOA. The rBOA can solve various types of decomposable problem in an efficient
and scalable manner, and also find a high quality solution to traditional real-valued
benchmarks that represent a variety of difficulties beyond decomposability.

The rest of the chapter is organized as follows. Section 2 outlines rBOA. Sec-
tion 3 suggests a learning strategy for probabilistic models. Section 4 presents a
popular technique for model sampling. Real-valued test problems are cited in Sect. 5.
Experimental results are presented in Sect. 6. We conclude with a summary in Sect. 7.

2 Description of Real-coded BOA

This section describes the rBOA as an efficient tool for solving real-valued prob-
lems of bounded difficulty with a sub-quadratic scale-up behavior. The purpose is to
transplant the strong points of BOA into the continuous world.

Generously drawing on generic procedures of EDAs (Sect. 1), the following
pseudo-code summarizes the rBOA:
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STEP 1. INITIALIZATION

Randomly generate initial population P
STEP 2. SELECTION

Select a set of promising candidates S from P
STEP 3. LEARNING

Learn a probabilistic modelM from S using a metric (and constraints)
STEP 4. SAMPLING

Generate a set of offspring O from the estimated probability distribution
STEP 5. REPLACEMENT

Create a new population P by replacing some individuals of P with O
STEP 6. TERMINATION

If the termination criteria are not satisfied, go to STEP 2

In spite of similar behavior patterns, EDAs can be characterized by the method
of learning a probabilistic model (in the STEP 3). That is, the performance of EDAs
depends rather directly on the efficiency of probabilistic model learning. In general,
the learning of probabilistic models consists of two tasks: learning the structure and
learning the parameters [21], also known as model selection and model fitting, respec-
tively [3]. The former determines the structure of a probabilistic model. The structure
defines conditional dependencies (and independencies). Model fitting estimates the
(conditional) probability distributions with regard to the found structure.

It is noted that model selection is closely related to model fitting. In the model
selection phase, the best structure is searched by investigating the values of a chosen
metric for all possible structures. However, the results of model fitting are directly
or indirectly needed for computing the metric. Due to the large number of possible
structures, the outcome may be unacceptably high computational complexity unless
model fitting is performed in some simple way. (A detailed investigation is described
in Sect. 3.1)

On the other hand, there is a significant difference between discrete and real-
coded EDAs from the viewpoint of probabilistic model learning. Discrete EDAs can
easily estimate a probability distribution for a given/observed data by simply count-
ing the number of instances for possible combinations. Moreover, the estimated dis-
tribution converges to its true distribution as the data size increases. Thus, discrete
EDAs can quickly and accurately carry out model selection and model fitting at the
same time.

A typical attempt to bring the merit of discrete EDAs to bear on real-valued
variables is to use histogram methods. This follows from the observation that con-
structing the histogram for a discrete distribution (from population statistics) and ap-
proximating it for a continuous distribution are analogous tasks [27]. Of course, the
problem is tricky in higher dimensions, but nonetheless, it is theoretically possible.
Indeed, it converges as the population size tends to infinity.

On the other hand, real-coded EDAs cannot use this simple (counting) method to
estimate a probability distribution for real-valued data due to (uncountably) infinite
cardinality. There is an efficient method of reliably approximating the true proba-
bility distribution. The method relies on (finite) mixture models [16]. Some recent
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methods for unsupervised learning of mixture models are capable of automatically
selecting the exact number of mixture components and overcoming some drawbacks
of the Expectation-Maximization (EM) algorithm [16, 6]. Due to its iterative nature,
however, reconciling the unsupervised mixture learning techniques with the EDA
framework is obviously hopeless (regardless of the frequency of its use). In this re-
gard, faster mixture models are believed to be useful for efficiently estimating the
probability distribution, in spite of sacrificing the accuracy. Although the fast alter-
natives can significantly reduce the computational cost, they are still not suitable
candidates as model fitting is required for every considered structure.

It is, therefore, impossible to directly employ the learning procedure of discrete
EDAs (such as BOA) in order to learn a probabilistic model for real-valued variables.
An alternative technique for learning probabilistic models in real space is needed.
Such a technique can draw on the power of EDAs in the discrete domain. By incor-
porating the solution with offspring generation procedure (i.e., model sampling), the
proper decomposition and the PBBC that are important characteristics of BOA can
be realized. The solution is explained in Sect. 3.

3 Learning of Probabilistic Models

This section presents an efficient technique for learning probabilistic models. Two
tasks stand out in this regard: model selection and model fitting.

3.1 Model Selection

Factorizations (or factorized probability distributions) discover dependencies (and
independencies) among random variables. A factorization is a probability distribu-
tion that can be described as a product of Generalized Probability Density Functions
(GPDFs) which are themselves Probability Density Functions (PDFs) involving real-
valued random variables [3, 5]. Bayesian factorizations, also known as Bayesian fac-
torized probability distributions come under a general class of factorizations [3, 15].
A Bayesian factorization estimates a (joint) GPDF for multivariate (dependent) vari-
ables by a product of univariate conditional GPDF of each random variable. The
Bayesian factorization is represented by a directed acyclic graph, called a Bayesian
factorization graph, in which nodes (or vertices) and arcs identify the correspond-
ing variables (in the data set) and the conditional dependencies between variables,
respectively [3, 15].

An n-dimensional real-valued optimization problem is considered for discussion.
We denote the random variables in the problem by Y = (Y1, . . . , Yn) and their
instantiations by y = (y1, . . . , yn). The PDF of Y is represented by f(Y)(y). The
second parenthesis of probability distribution can be omitted for convenience. (This
causes no ambiguity.)

In general, a PDF is represented by a probabilistic model M that consists of a
structure ζ and an associated vector of parameters θ (i.e., M = (ζ,θ)) [3, 4]. As



56 C.W. Ahn et al.

the rBOA employs the Bayesian factorization, the PDF f(Y) for the problem can be
encoded as

f(Y) = f(ζ,θ)(Y) =
n∏

i=1

f
θ̇

Yi (Yi|ΠYi
) (1)

where Y = (Y1, . . . , Yn) presents a vector of real-valued random variables, ΠYi
is

the set of parents of Yi (i.e., the set of nodes from which there exists an arc to Yi),
and f

θ̇
Yi (Yi|ΠYi

) is the univariate conditional PDF of Yi conditioned on ΠYi
with

its parameters θ̇
Yi

.
Although there are various methods for learning the structure of a probabilistic

model (i.e., model selection), a widely used approach has two basic factors: a scoring
metric and a search procedure [21, 3]. The scoring metric measures the quality of the
structures of probabilistic models (i.e., Bayesian factorization graphs) and the search
procedure efficiently traverses the space of feasible structures for finding the best one
with regard to a given scoring metric.

Scoring Metric

A penalized maximum likelihood criterion known as the Bayesian Information Cri-
terion (BIC) is employed as the scoring metric. Although any metric can be used, the
reason for choosing the BIC is its empirically observed effectiveness in greedy esti-
mation of factorized probability distributions [13, 18, 4]. Let S be the set of selected
individuals, viz. S =

(
y1, . . . ,y|S|), where |S| is the number of the individuals.

The BIC that assigns the structure ζ a score is formulated as follows [3, 4]:

BIC (ζ) = ln




|S|∏

j=1

f(ζ,θ)(Y)(yj)



− λ ln (|S|) |θ|

=
|S|∑

j=1

ln f(ζ,θ)(Y)(yj)− λ ln (|S|) |θ| . (2)

Here, λ regularizes the extent of penalty and |θ| is the number of parameters of
f(ζ,θ)(Y). Physically, the first and second terms represent the model accuracy and
the model complexity, respectively.

Computing the BIC score for the structure ζ requires its parameters θ which fit
the structure. However, the relations of cause and effect among them lead to un-
acceptably high computational complexity. This is because the number of possible
structures to be tested/traversed increases exponentially with the problem size and
the parameter fitting for the data set in real space is by no means a simple undertak-
ing.

In short, the impracticality arises from the close relationship between model se-
lection and model fitting. One way to cross the hurdle is to break the connection with-
out obscuring their intrinsic objectives. An important feature of model selection is to
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acquire out a priori knowledge of the variables which are (conditionally) dependent
regardless of linearity, nonlinearity, or symmetry. The reason is that the dependent
type itself is learned (with probability distributions) by model fitting (in Sect. 3.2).
Decoupling the connection can be achieved by computing the needed probability
distributions for possible structures from a reference distribution. This is so because
computing a marginal distribution (with regard to an interesting structure) from a
(reference) probability distribution fitted on the whole (problem) space is much sim-
pler than directly estimating the exact probability distribution corresponding to the
real-valued data set. EGNA and IDEAs are widely known in this respect. However,
this can be hazardous in that it may fail to discover specific dependencies such as
nonlinearity or symmetry.

In order to overcome the difficulty, multiple (probability) distributions are em-
ployed instead of one, with a view to capture the specific dependencies by a combi-
nation of piecewise linear interactions. In other words, the probability distributions
used should lead to correct structures by capturing the dependency itself. We define
the correct structure as the Bayesian factorization graph that encodes only the true or
false interactions of the variables, regardless of the types of dependencies. Moreover,
we learn one structure because it has been shown empirically that using one suitably
constructed structure is sufficient to solve difficult problems [1, 22, 20].

We employ mixture models for efficiently modeling the selected individuals by
a mixture of probability distributions. With this in view, the BIC in (2) must be
modified further.

As the PDF f(ζ,θ)(Y) can be described by a linear combination of a number of
mixture components, (2) can be extended to

BIC (ζ) =
|S|∑

j=1

ln

(
K∑

i=1

αif(ζ,θi)(Y)(yj)

)

− λ ln (|S|)
K∑

i=1

∣
∣θi
∣
∣ (3)

where K is the number of mixture components, α1, . . . , αK are the mixing probabil-
ities satisfying αi ≥ 0, ∀i, and

∑K
i=1 αi = 1, and θi is the set of parameters defined

on the ith mixture component.
The observed-data vector (i.e., the selected individuals S) can be viewed as be-

ing incomplete due to the unavailability of the associated component-label vectors,
w1, . . . ,w|S| [16, 6]. Each label wi is a K-dimensional binary vector and each ele-
ment wi

j is defined to be 0 or 1, depending on whether yj did or did not arise from
the ith mixture component. The component-label vectors are taken to be the real-
ized values of the random vectors, W1, . . . ,W|S|, in which it is assumed that they
agree with an unconditional multinomial distribution [16]. That is, the probability
distribution of the complete-data vector carries an appropriate distribution for the
incomplete-data vector. Hence, (3) can be rewritten as



58 C.W. Ahn et al.

BIC (ζ) =
K∑

i=1

|S|∑

j=1

wi
j

{
ln αi + ln f(ζ,θi)(Y)(yj)

}
− λ ln (|S|)

K∑

i=1

∣
∣θi
∣
∣

=
K∑

i=1

ln αi

|S|∑

j=1

wi
j +

K∑

i=1

|S|∑

j=1

wi
j ln f(ζ,θi)(Y)(yj)− λ ln (|S|)

K∑

i=1

∣
∣θi
∣
∣ .

(4)

As the vectors w1, . . . ,w|S| can be simulated by the resulting mixture distri-
bution, it is natural that

∑|S|
j=1 wi

j coincides with the expected number of selected
individuals drawn from the probability distribution f(ζ,θi) (Y), denoted by |Si|, and
the maximal log-likelihood is equivalent to the maximal negative entropy, i.e.:

|S|∑

j=1

wi
j ln f(ζ,θi)(Y)(yj) = − |Si|h

(
f(ζ,θi) (Y)

)

where h
(
f(ζ,θi) (Y)

)
represents the differential entropy of f(ζ,θi) (Y). Moreover,

the number of parameters for each distribution is the same (i.e., |θ′| =
∣
∣θ1
∣
∣ = . . . =∣

∣θK
∣
∣) because the structure ζ is fixed for every distribution to be mixed. Thus, (4) is

rewritten as

BIC (ζ) =
K∑

i=1

|Si|
{
ln αi − h

(
f(ζ,θi)(Y)

)}
−Kλ ln (|S|)

∣
∣θ′∣∣ . (5)

Since the terms |Si| and ln αi are not affected by the structure ζ, (5) can be further
reduced to

BIC (ζ) = −
K∑

i=1

|Si|h
(
f(ζ,θi) (Y)

)
−Kλ ln (|S|) |θ′| . (6)

Thus, the BIC in (6) leads to a correct factorization even if there is some kind of
nonlinearity and/or symmetry between variables.

Search Procedure

Learning the structure of a probabilistic model given a scoring metric is NP-complete
[21, 3, 9]. However, most EDAs have successfully employed a greedy approach for
searching a promising structure with a chosen metric. We employ the incremental
greedy algorithm, a kind of greedy search algorithm. Being one among many vari-
ants, this greedy algorithm starts with an empty graph with no arcs, and proceeds
by (incrementally) adding an arc (such that no cycles are introduced) that maximally
improves the metric until no more improvement is possible [9]. The greedy algorithm
is not guaranteed to discover an optimal structure in general because searching for
the structure is an NP-complete problem. However, the resulting structure is good
enough for encoding most important interactions between variables of the problem
[21, 22].
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3.2 Model Fitting

Note that the BOA models any type of dependency because it maintains all the con-
ditional probabilities according to the learned structure, without losing any informa-
tion due to the finite cardinality (of discrete variables). Moreover, the BOA naturally
performs the PBBC with regard to the proper decomposition as it treats all the sub-
problems independently through the model selection, model fitting, and model sam-
pling (i.e., offspring generation) phases. Hence, the BOA can solve difficult problems
quickly, accurately, and reliably [21, 22].

With this in view, the model fitting (of the rBOA) must realise the probabil-
ity distribution of a problem as a product of conditionally independent distributions
accurately estimated on the basis of subproblems. In other words, the PBBC can
be prepared by subspace-based model fitting. Unlike discrete EDAs, however, a pre-
processing step for explicitly discovering subproblems (i.e., problem decomposition)
is essential in real-coded EDAs, before performing the subspace-based model fitting.
This is because discrete EDAs can implicitly carry out the problem decomposition
in the course of (probabilistic) model learning while real-coded EDAs cannot do so
(see Sect. 2).

Problem Decomposition

Problem decomposition can be easily accomplished because a set consisting of a
node and its parents in the Bayesian factorization graph represents a component
subproblem of decomposable problems. Here, the sets of variables of component
subproblems may or may not be disjoint, but they cannot properly contain each
other. In Fig. 1, the Bayesian factorization graph consists of five component sub-
problems, viz., {Y2, Y3}, {Y3, Y1}, {Y2, Y3, Y6}, {Y2, Y6, Y5}, {Y4, Y7}. However, it
is not proper to directly use the component subproblems for model fitting. The reason
is explained below.

Y
2

Y
3

Y
1

Y
6

Y
5

Y
7

Y
4

Fig. 1. Bayesian factorization graph involving component subproblems
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The probability distribution of a problem can be constructed as a product of uni-
variate conditional distributions which are computed from the probability distribu-
tions of component subproblems. Hence, the fitting process must be applied to every
component subproblem. Since the fitting process itself is relatively complex (even
with a simple technique), it follows that fitting the model on the basis of component
subproblems is not adequate, especially as the problem size increases.

Thus, an alternative decomposition is required for quickly and accurately per-
forming the model fitting on the basis of subproblems. In this regard, there is an
observation that the set of a parent and its child nodes can be grouped as a kind of
subproblem because the child nodes share a common feature even though they do not
directly interact with each other. The set is called the dual component subproblem. It
follows that the conditional distributions can be accurately computed from the prob-
ability distributions over the dual component subproblems. At this juncture, mini-
mal compound subproblems are defined as the largest component or dual component
subproblems that are not proper subsets of each other. In this way, a large number of
fitting processes can be avoided (in proportion to the problem size) without losing
fitting accuracy. For the problem in Fig. 1, the five component subproblems reduce
to three minimal compound subproblems, viz., {Y2, Y3, Y6, Y5}, {Y3, Y1}, {Y4, Y7}
shown in Fig. 2(a).

There is another decomposition that is simple and also quite efficient for large
problems. Consider the maximal connected subgraphs of a Bayesian factorization
graph. Nodes in a maximally connected subgraph are looked on as a family; they
have a common feature of being bound with common ancestors or descendants. Thus,
the nodes can be thought of as interacting with each other in some sense. The condi-
tional distributions can then be obtained from the probability distributions fitted over
the maximally connected subgraphs without unduly compromising on the fitting ac-
curacy. Here, the maximal connected subgraph is called the maximal compound sub-
problem. In Fig. 2(b), three minimal compound subproblems of Fig. 2(a) can be re-
duced to two maximal compound subproblems, viz., {Y2, Y3, Y6, Y5, Y1}, {Y4, Y7}.
Since this decomposition is a special case of decomposing the problem by minimal
compound subproblems, minimal compound subproblems are employed for explain-
ing the subspace-based model fitting.

Note that most real-coded EDAs (in the category of multivariate dependencies)
such as EGNA and IDEAs choose an alternative that is far from being perfect. That
is, conditional distributions are computed from the referencing distributions fitted
over the problem space itself (instead of subspaces). This cannot provide the PBBC,
thereby resulting in an exponential scale-up performance. The reason is explained
below.

BBs can be defined by groups of real-valued variables, each having values in
some neighborhood (i.e., small interval), that break up the problem into smaller
chunks which can be intermixed to reach the optimum. Assume that the mixture
models have been employed for model fitting. Univariate conditional distributions
are computed from the mixture distributions fitted over the problem space itself. In
the model sampling phase, an entire individual is drawn from a proportionately cho-
sen mixture component. Regardless of the result of Bayesian factorization, it does not
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(a) Minimal compound subproblems.
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(b) Maximal compound subproblems.

Fig. 2. Examples of the problem decomposition

perform the PBBC as any mutual information of different regions cannot be shared.
Instead, at least one mixture component must contain almost all the (superior) BBs
of the problems for the sake of finding an optimal solution. In order to construct the
mixture distribution that contain such mixture components, however, a huge popu-
lation and a very large number of mixture components are required. It may result
in an exponential scale-up behavior, even if the problem can be decomposable into
subproblems of bounded order.
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Subspace-based Model Fitting

Following proper decomposition, each substructure (corresponding to each subprob-
lem) must be independently fitted. We employ the mixture models as an efficient tool
for the purpose. The aim of mixture models is twofold: comprehending the type of
dependency between variables and traversing the search space effectively. Since each
mixture component can model a certain linearity, the mixture models can approxi-
mate any type of dependency (e.g., nonlinearity or symmetry) by a combination of
piecewise linear interaction models. In addition, it has the effect of partitioning each
(sub)space for effective search.

Let Zi =
{

Zi
1, . . . , Z

i
|Zi|

}
be a vector of random variables of the ith subprob-

lem in which the variables have already been topologically sorted for drawing new
partial-individuals corresponding to the substructure. Moreover, Zi

�
⋃i−1

k=1 Zk and
⋃

i Z
i = Y. Let Xi = Zi

/
Ai (or Xi = Zi −Ai) where Ai = Zi

⋂(⋃i−1
k=1 Zk

)
.

An example is given in Fig. 2(a).

Let ζZi

and θZi

indicate a structure for the variables Zi (i.e., substructure) and its

associated parameters, respectively (viz., MZi

=
(
ζZi

,θZi
)

). Let f(ζZi ,θZi)
(
Zi
)

represent a PDF of Zi and f(ζAi ,θAi)
(
Ai
)

=
∫
Xi

f(ζZi ,θZi)
(
Zi
)
dXi. As the mix-

ture models are being employed, the PDF f(ζZi ,θZi)
(
Zi
)

can generally be repre-

sented by linearly combining f(ζZi ,θZi
j )
(
Zi
)

(for all j) that presents the PDF of jth

mixture component over Zi. Therefore, the PDF of Y can be written as a product of
linear combinations of subspace-based (i.e., subproblem) PDFs as given by

f(ζ,θ)(Y) =
m∏

i=1

ci∑

j=1

βij

f(ζZi ,θZi
j )
(
Zi
)

f(ζAi ,θAi
j ) (Ai)

(7)

where m is the number of subproblems, ci is the number of mixture components for
Zi, βij is the mixture coefficients, βij ≥ 0, and

∑ci

j=1 βij = 1 for each i. In general,
the mixture coefficient βij is proportional to the (expected) number of individuals of
the jth mixture component of the subproblem Zi.

Any PDF can be rewritten as the product of univariate conditional PDFs accord-
ing to its probabilistic model structure. Therefore, (7) can be rewritten as

f(ζ,θ)(Y) =
m∏

i=1

ci∑

j=1

βij

∏|Zi|
k=1 f

θ̇
Zi

k
j

(
Zi

k

∣
∣ΠZi

k

)

∏|Ai|
l=1 f

θ̇
Ai

l
j

(
Ai

l

∣
∣ΠAi

l

) . (8)

With a view to generating the offspring (i.e., model sampling), (8) can be simpli-
fied to

f(ζ,θ)(Y) =
m∏

i=1

ci∑

j=1

βij

|Xi|∏

k=1

f
θ̈

Xi
k

j

(
Xi

k

∣
∣ΠXi

k

)
. (9)
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Therefore, the structure learned is efficiently fitted by the subspace-based mixture
distributions even in the presence of nonlinearly and/or symmetrically dependent
variables.

4 Sampling of Probabilistic Models

After model fitting, new individuals (i.e., offspring) are generated from sampling
the resulting factorization of (9). Due to its simplicity and efficiency, Probabilistic
Logic Sampling (PLS) is employed [10]. Model sampling is performed in a straight-
forward manner. At first, the PDF of the jth mixture component for the ith sub-
problem is selected with a probability βij . Subsequently, a multivariate string (i.e.,
partial-individual) corresponding to Zi can be drawn by simulating the univariate
conditional PDFs of the chosen PDF which models one of the promising partitions
(i.e., a superior BB) of a subspace (i.e., subproblem). By repeating this for all the
subproblems, superior BBs can be mixed and bred for subsequent search.

To sum up, model selection amounts to a proper decomposition. The PBBC is
realized successfully by model fitting and sampling on the basis of the proper de-
composition.

5 Real-valued Test Problems

This section presents real-valued test problems: (additively) decomposable problems
and traditional real-valued optimization problems.

Decomposable problems are created by concatenating basis functions of a certain
order. The overall fitness is equal to the sum of all the basis functions. Two types of
real-valued decomposable problem are presented.

The first problem is a (Real-valued) Deceptive Problem (RDP) composed of trap
functions. The RDP to be maximized is defined by

fRDP (y) =
m∑

i=1

ftrap (y2i−1, y2i) (10)

where yj ∈ [0, 1], ∀j, m are the number of subproblems, and ftrap(•, •) is defined
as follows:

ftrap(yj , yj+1) =






α, if yj , yj+1 ≥ δ ,

β
δ

(

δ −
√

y2
j +y2

j+1
2

)

, otherwise .
(11)

Here, α and β are the global and the local (i.e, deceptive) optimum, respectively, so
that α/β indicates the signal to noise ratio (SNR), and δ is the border of attractors.

Note that the trap function is not only flexible but also quite simple because δ
controls the degree of BB supply and the SNR is adjusted by α/β. As an interesting
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characteristic, it retains 2m optimal plateaus, out of which there is only one global
optimum. The optimum is isolated and there is no attractor around the region, thereby
not being amenable to hill climbing strategies (such as mutation) only. It is clear
that recombination is essential to efficiently solve the RDP. In other words, linkage
friendly recombination operation should be included for preventing disruption of
(superior) partial solutions (i.e., BBs).

The second problem is a (Real-valued) Nonlinear, Symmetric Problem (RNSP)
that is constructed by concatenating nonlinear, symmetric functions. The RNSP to
be maximized is

fRNSP (y) =
m∑

i=1

fnon-sym(y2i−1, y2i) (12)

where yj ∈ [−5.12, 5.12], ∀j, and fnon-sym(• , •) is defined by

fnon-sym(yj , yj+1) =

{
0.0, if 1− δ ≤ yj , yj+1 ≤ 1 + δ ,

−100(yj+1 − y2
j )2 − (1− yj)2, otherwise .

(13)

Here, δ adjusts the degree of BB supply, and the nonlinear, symmetric function re-
tains the traits of Rosenbrock function presented in Table 1.

It is important to note that linkage friendly recombination which is also capa-
ble of capturing nonlinear, symmetric interactions is required for effectively solving
the RNSP. It is seen that the RNSP provides a real challenge for real-coded opti-
mization algorithms. Moreover, incorporating the mutation operation further helps
find the global optimum as the nonlinear, symmetric function (i.e., basis function) is
unimodal so that the hill-climbing strategy at any point eventually leads toward its
optimum.

On the other hand, four well-known real-valued optimization problems shown in
Table 1 are investigated. The task is to minimized the problems. They have some in-
triguing characteristics beyond decomposability which most optimization algorithms
find hard to negotiate.

Griewangk function [26] consists of many local optima that prevent optimization
algorithms from converging to the global optimum if (fine-grained) gradient infor-
mation is incorporated.

Table 1. Traditional problems for numerical optimization.

Problem Definition Range

Griewangk 1
4000

∑n
j=1 (yj − 100)2 −

∏n
j=1 cos

(
yj−100√

j

)
+ 1 yj ∈ [−600, 600]

Michalewicz −
∑n

j=1 sin(yj)sin
20

(
j·y2

j

π

)

yj ∈ [0, π]

Cancellation
(
10−5 +

∑n
j=1 |yj +

∑j−1
i=1 yi|

)/
100 yj ∈ [−3, 3]

Rosenbrock
∑n

j=2

{
100 · (yj − y2

j−1)
2 + (1 − yj−1)

2
}

yj ∈ [−5.12, 5.12]
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Michalewicz function [17] also has many suboptimal solutions (albeit to a lesser
degree than the Griewangk) and some long valleys along which the minimum value
is the same. Thus, gradient information does not lead to better local optima found at
the intersections of the channels.

Summation cancellation function [2] has (multivariate) linear interactions be-
tween variables. Moreover, the optimum is located on a very narrow peak. Thus, it is
hard to find the optimal solution without some information on dependencies (of the
variables) and dense-searching in the vicinity of the optimum.

Rosenbrock function [24, 25] is highly nonlinear and symmetric around quite a
flat curved valley. Due to the very small gradient and the strong signal (to solution
quality) along the bottom of the valley, it is very hard to find the (global) optimum.
Oscillations from one side of the valley to the other is likely unless a starting point
is selected in the vicinity of the optimum. No algorithm finds it easy to discover the
global optimum of Rosenbrock function.

6 Experimental Results

This section investigates the ability of rBOA to benefit from the strengths of BOA
(i.e., the proper decomposition and the PBBC) in real space.

6.1 Experiment Setup

The performance of rBOA is measured by the average number of (function) evalua-
tions until convergence to the optimum. A comparative study is performed by com-
paring the solution quality (returned by the fixed number of evaluations) of rBOA
with that of EGNA [14], mIDEA [4], and MBOA [20] (these are advanced real-
coded EDAs). The references are appropriately tuned in the interest of fair compari-
son. For instance, the references employ selection and replacement strategies which
are identical to those of rBOA.

Among various (un)supervised learning algorithms for accomplishing mixture
models, clustering is perceived to be a suitable candidate in terms of computational
efficiency [1, 3]. In this respect, k-means algorithm [8] is employed for model se-
lection and BEND (random) leader algorithm [3, 8] (with a threshold value of 0.3)
is used for model fitting. A promising number of clusters (i.e., mixture components
K) empirically obtained for each problem is used for model selection. Model fitting
and model sampling are carried out on the basis of maximal compound subprob-
lems in view of their efficiency for large decomposable problems. Moreover, normal
probability distribution has been employed due to its inherent advantages – close ap-
proximation and simple analytic properties. Truncation selection that picks the top
half of the population and the BIC of (6) whose regularization parameter λ is 0.5
have been invoked for learning a probabilistic model. The renewal policy replaces
the worst half of the population with the newly generated offspring (i.e., elitism-
preserving replacement). Since no prior information about the problem structure is
available in practice, we set |Y| − 1 for the number of allowable parents (i.e., no
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constraint in the model selection). Each experiment is terminated when the optimum
is found or the number of generations reaches 200. All the results were averaged over
100 runs.

6.2 Results and Discussion

Figure 3 shows the average number of evaluations that rBOA performs to find the
optimum of RDP with α = 1.0, β = 0.8, δ = 0.8, and n ranging from 10 to
100. The figure also shows results for RNSP with δ = 0.2 and n = 10 to 60. The
population size supplied is empirically determined by a bisection method so that the
optimum is found. In Fig. 3, it is seen that the results for the RDP and the RNSP are
closely approximated (fitted) by Θ(n1.9) and Θ(n1.8), respectively. Thus, rBOA can
solve (additively) decomposable problem of bounded difficulty with a sub-quadratic
complexity (in terms of fitness function evaluations).

Figure 4 provides a comparative study of the performance of rBOA and refer-
ences (i.e., EGNA, mIDEA, and MBOA) as applied to the decomposable problems
(i.e., RDP and RNSP). Since a decomposable problem consists of m subproblems,
the effective problem difficulty tends to be proportional to m. Hence, the population
is supplied by a linear model, viz., N = r ·m, for simplicity.

Figure 4(a) compares the proportion of correct BBs as applied to the RDP with
α = 1.0, β = 0.8, δ = 0.8, and varying m. The rBOA employs one mixture com-
ponent, viz., K = 1, for model selection. The population is supplied by N = 100m.
The results show that the solutions found by rBOA and MBOA are much better than
those computed by mIDEA and EGNA. Although the MBOA seems to be somewhat
superior to the rBOA, it has no statistical significance. Table 2 supports this asser-
tion. It is also seen that the rBOA and the MBOA achieve stable quality of solutions
while the performance of mIDEA and EGNA rapidly deteriorates as the problem size
increases. From Figs. 3(a) and 4(a), it is clear that the scale-up behavior of rBOA and
MBOA is sub-quadratic; while the mIDEA and the EGNA have an exponential scal-
ability.

Figure 4(b) depicts the BB-wise objective function values returned by the algo-
rithms when applied to the RNSP with δ = 0.2 and varying m. Mixture models
for model selection use three mixture components (K = 3). A linear model, viz.,
N = 200m, is used for supplying the population. As in the RDP, it is seen that the
performance of rBOA and MBOA remains uniform irrespective of the problem size.
It can mean that they have a sub-quadratic scalability for the RNSP. However, the
results show that the rBOA outperforms the MBOA quite substantially with regard
to the quality of solution. This consequence is clearly seen in the statistical test in
Table 2. It is also observed that the mIDEA and the EGNA find solutions of unaccept-
able quality as the problem size increases and their scalabilities obviously become
exponential.

From the results, we may conclude that the rBOA finds a better solution with a
sub-quadratic scale-up behavior for decomposable problems than does the MBOA,
the mIDEA, and the EGNA, especially as the size and difficulty of problems increase.
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(a) Performance of rBOA on fRDP with α = 1.0, β = 0.8, and δ = 0.8.
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Fig. 3. Performance of rBOA on decomposable problems



68 C.W. Ahn et al.

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
co

rr
ec

t 
B

B
s

Number of BBs (subproblems), m

 EGNA

 mIDEA

 MBOA

 rBOA

(a) Performance of algorithms on fRDP with α = 1.0, β = 0.8, δ = 0.8, and
varying m.

2 4 6 8 10

-0.4

-0.3

-0.2

-0.1

0.0

B
B

-w
is

e 
o
b
je

ct
iv

e 
fu

n
ct

io
n
 v

al
u
e

Number of BBs (subproblems),  m

  EGNA

  mIDEA

  MBOA

  rBOA

(b) Performance of algorithms on fRNSP with δ = 0.2 and different m.

Fig. 4. Comparison results of algorithms on decomposable problems
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Table 2. Performance comparison of algorithms on fRDP and fRNSP

Problem Measure EGNA mIDEA MBOA rBOA

RDP µQoS 0.196000 0.418000 1.0 0.988000
(m = 5) σQoS 0.197949 0.169900 0.0 0.047497

RDP µQoS 0.002000 0.175000 1.0 0.992000
(m = 10) σQoS 0.019900 0.187283 0.0 0.030590

RNSP µQoS −0.229916 −0.200973 −0.063843 −0.001384
(m = 5) σQoS 0.030276 0.136850 0.056469 0.005965

RNSP µQoS −0.238623 −0.299768 −0.056143 −0.001456
(m = 10) σQoS 0.017609 0.111364 0.030395 0.002651

Statistical t-test

Test case
RDP RNSP

m = 5 m = 10 m = 5 m = 10

rBOA − EGNA 38.30† 273.20† 71.72† 110.78†

rBOA − mIDEA 32.80† 41.92† 14.45† 13.59†

rBOA − MBOA −2.51 −1.99 11.10† 13.34†

MBOA − EGNA 40.41† 499.00† 27.18† 33.51†

MBOA − mIDEA 34.08† 43.83† 14.71† 10.43†

mIDEA − EGNA 8.10† 9.05† 2.19 −1.97

† The value of t is significant at α = 0.01 by a paired, two-tailed test.

Table 3 compares the solutions found by the algorithms as applied to the well-
known real-valued optimization problems depicted in Table 1. Three mixture com-
ponents are employed for all the benchmarks. However, any number of components
is acceptable for Griewangk and Michalewicz functions as there is no interaction
between variables. The results show that the MBOA is superior to the rBOA, the
mIDEA, and the EGNA (they find acceptable solutions, however) for the Griewangk
function because it can capture some knowledge about independence as well as
overcome numerous traps (i.e., local optima) due to the kernel distributions. In the
Michalewicz function, the performances of MBOA and rBOA are comparable, and
both algorithms outperform the EGNA and the mIDEA. It means that the EGNA
and the mIDEA fail to discover independent interactions between variables. It is also
seen that the EGNA and the rBOA are quite superior to the mIDEA and the MBOA
in the Cancellation function. Although all the algorithms can successfully capture
the information about linear interactions, the EGNA achieves the best performance
due to its inherent efficiency when it comes to single-peak functions. Even though
the rBOA traverses multiple regions of the unimodal function, its performance is
acceptably high. It is important to note that the rBOA outperforms the MBOA, the
mIDEA, and the EGNA in the case of the Rosenbrock function whose optimum is
hard to find. Further, the performance of MBOA and EGNA is very poor. This is
explained below.
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Table 3. Performance of algorithms on real-valued benchmarks (n = 5)

Problem Measure EGNA mIDEA MBOA rBOA

Griewangk µQoS 0.061968 0.067873 0.003258 0.065993
(N = 2000) σQoS 0.016287 0.018634 0.005205 0.017604
Michalewicz µQoS −4.637647 −4.613430 −4.687653 −4.687640
(N = 500) σQoS 0.013388 0.076301 0.005857 0.000044
Cancellation µQoS 0.000034 0.014854 0.001654 0.000557
(N = 100) σQoS 0.000122 0.006420 0.001663 0.000740
Rosenbrock µQoS 2.141721 0.003518 0.664121 0.000177
(N = 3000) σQoS 0.182596 0.017894 0.521631 0.001283

Statistical t-test
Test case Griewangk Michalewicz Cancellation Rosenbrock

EGNA − rBOA −1.70 37.17† −6.69† 116.64†

mIDEA − rBOA 0.74 9.68† 21.97† 1.83
MBOA − rBOA −33.77† 0.00 5.72† 12.67†

EGNA − MBOA 32.76† 37.16† −9.58† 25.49†

mIDEA − MBOA 33.07† 9.68† 19.83† −12.65†

EGNA − mIDEA −2.35 −3.30† −22.91† 115.46†

† The value of t is significant at α = 0.01 by a paired, two-tailed test.

The variables of the Rosenbrock function strongly interact around a curved val-
ley. Also, the function is symmetric. It is clear that incorrect factorizations (i.e., no
dependencies between variables) are encountered at an early stage of the algorithms.
Due to the incorrect structure, they try to solve the problems by treating the vari-
ables in isolation. Of course, finding an optimum in this way is difficult because any
given algorithm does not cross the intrinsic barrier. After a few generations, however,
individuals start to collect around the curved valley. At this time, the rBOA can eas-
ily capture such a nonlinear, symmetric dependency due to mixture models. On the
other hand, the mIDEA can cope with the cancellation effect (arising from symme-
try) to some extent by clustering in the overall problem space. However, the MBOA
does not deal successfully with the situation because finding a promising set of split
boundaries so as to cross the barrier is very difficult. In addition, the EGNA finds it
impossible to overcome the hurdles by a (simple) single-peak model.

From Table 3, it can be concluded that the rBOA finds good solutions to com-
plicated problems in terms of dependencies (of decision variables) while achieving
comparable or acceptable solutions to others.

As a result, the rBOA achieves the optimal solution with a sub-quadratic scale-
up behavior for decomposable problems. Note that the sub-quadratic scalability is
solely due to proper decomposition brought about by correct factorization and the
PBBC realized by the subspace-based model fitting and model sampling.
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Moreover, the rBOA finds better solutions for decomposable problems and ac-
ceptable (or even better) solutions to traditional real-valued optimization bench-
marks, than those found by the state-of-the-art real-coded EDAs.

7 Conclusion

In this chapter, we have presented a real-coded BOA in the form of (advanced)
real-coded EDAs. Decomposable problems were the prime targets and sub-quadratic
scale-up behavior (of rBOA) was a major objective. This was achieved by proper
decomposition (i.e., linkage learning) and probabilistic building-block crossover on
real-valued variables. As a step in this direction, Bayesian factorization was per-
formed by means of mixture models, the substructures were extracted from the re-
sulting Bayesian factorization graph (i.e., problem decomposition), and each sub-
structure was fitted by mixture distributions whose parameters were extracted (by
estimation) from the subspaces (i.e., subproblems). In the model sampling phase, the
offspring was generated by an independent subproblem-wise sampling procedure.

Experimental studies demonstrated that that the rBOA finds the optimal solution
with a sub-quadratic scale-up behavior. The comparative studies exhibited that the
rBOA outperforms the up-to-date real-coded EDAs (EGNA, mIDEA, and MBOA)
when faced with decomposable problems regardless of inherent problem character-
istics such as deception, nonlinearity, and symmetry. Moreover, the solutions com-
puted by rBOA are acceptable in the case of traditional real-valued optimization
problems while they are generally better than those found by EGNA, mIDEA, and
MBOA. Further, the quality of solutions improves with the degree of problem diffi-
culty.

It is noted that the rBOA learns complex dependencies of variables by means
of mixture distributions and estimate the distribution of population by exploiting
mixture models at the level of substructures. This allows us to keep options open
at the right level of attention throughout the run. In the past, most (advanced) real-
coded EDAs used single normal models or mixtures at the level of the problem, but
these are unable to capture the critical detail.

More work on the proper number of mixture components and fast mixture models
needs to be done. However, rBOA’s strategy of decomposing problems, modeling
the resulting building blocks, and then searching for better solutions appears to have
certain advantages over existing advanced probabilistic model building methods that
have been suggested and used elsewhere. Certainly, there can be many alternatives
with regard to exploring the method of decomposition, the types of probabilistic
models utilized, as well as their computational efficiency, but this avenue appears
to lead to a class of practical procedures that should find widespread use in many
engineering and scientific applications.
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Summary. Derived from the concept of self-adaptation in evolution strategies, the CMA (Co-
variance Matrix Adaptation) adapts the covariance matrix of a multi-variate normal search
distribution. The CMA was originally designed to perform well with small populations. In
this review, the argument starts out with large population sizes, reflecting recent extensions of
the CMA algorithm. Commonalities and differences to continuous Estimation of Distribution
Algorithms are analyzed. The aspects of reliability of the estimation, overall step size control,
and independence from the coordinate system (invariance) become particularly important in
small populations sizes. Consequently, performing the adaptation task with small populations
is more intricate.

Nomenclature

Abbreviations

CMA Covariance Matrix Adaptation

EDA Estimation of Distribution Algorithm

EMNA Estimation of Multivariate Normal Algorithm

ES Evolution Strategy

(µ/µ{I,W}, λ)-ES, evolution strategy with µ parents, with recombination of all µ
parents, either Intermediate or Weighted, and λ offspring.

OP : IRn → IRn×n,x �→ xxT, denotes the outer product of a vector with itself,
which is a matrix of rank one with eigenvector x and eigenvalue ‖x‖2.

RHS Right Hand Side.

Greek symbols

λ ≥ 2, population size, sample size, number of offspring.

µ ≤ λ parent number, number of selected search points in the population.
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µcov, parameter for weighting between rank-one and rank-µ update, see (22).

µeff =
(∑µ

i=1 w2
i

)−1
, the variance effective selection mass, see (5).

σ(g) ∈ IR+, step size.

Latin symbols

B ∈ IRn, an orthogonal matrix. Columns of B are eigenvectors of C with unit
length and correspond to the diagonal elements of D.

C(g) ∈ IRn×n, covariance matrix at generation g.

cii, diagonal elements of C.

cc ≤ 1, learning rate for cumulation for the rank-one update of the covariance
matrix, see (17) and (33).

ccov ≤ 1, learning rate for the covariance matrix update, see (11), (21), (22), and
(34).

cσ < 1, learning rate for the cumulation for the step size control, see (23) and (31).

D ∈ IRn, a diagonal matrix. The diagonal elements of D are square roots of eigen-
values of C and correspond to the respective columns of B.

dii, diagonal elements of D.

dσ ≈ 1, damping parameter for step size update, see (24), (28), and (32).

E Expectation value

f : IRn → IR,x �→ f(x), objective function (fitness function) to be minimized.

fsphere : IRn → IR,x �→ fsphere(x) = ‖x‖2 =
∑n

i=1 x2
i .

g ∈ N, generation counter, iteration number.

I ∈ IRn×n, Identity matrix, unity matrix.

m(g) ∈ IRn, mean value of the search distribution at generation g.

n ∈ N>0, search space dimension, see f .

N (0, I), multi-variate normal distribution with zero mean and unity covariance ma-
trix. A vector distributed according toN (0, I) has independent, (0, 1)-normally
distributed components.

N (m,C) ∼m +N (0,C), multi-variate normal distribution with mean m ∈ IRn

and covariance matrix C ∈ IRn×n. The matrix C is symmetric and positive
definite.

p ∈ IRn, evolution path, a sequence of successive (normalized) steps, the strategy
takes over a number of generations.

wi, where i = 1, . . . , µ, recombination weights, see also (3).
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x(g+1)
k ∈ IRn, k-th offspring from generation g + 1. We refer to x(g+1), as search

point, or object parameters/variables, commonly used synonyms are candidate
solution, or design variables.

x(g+1)
i:λ , i-th best individual out of x(g+1)

1 , . . . ,x(g+1)
λ .

1 Introduction

We assume a search scenario, where we want to minimize an objective function
f : IRn → IR,x �→ f(x).1 The only accessible information on f are function
values of evaluated search points. Our performance measure is the number of func-
tion evaluations needed to reach a certain function value. Many continuous domain
evolutionary algorithms use a normal distribution to sample new search points. In
this chapter, we focus on algorithms with a multi-variate normal search distribution,
where the covariance matrix of the distribution is not restricted to a priori, e.g., not
a diagonal matrix. Estimation of Distribution Algorithms (EDAs) falling into this
class, include the Estimation of Multi-variate Normal Algorithm (EMNA), the Esti-
mation of Gaussian Network Algorithm (EGNA) [15, 16], and the Iterated Density
Estimation Evolutionary Algorithm (IDEA) [4]. Evolution Strategies (ESs) falling
into this class include a (µ/µI, λ)-ES2 with self-adaptation of correlated mutations
[19], and the ES with Covariance Matrix Adaptation (CMA) [10]. Originally, the
CMA was interpreted as derandomized self-adaptation [12]: in contrast to the orig-
inal self-adaptation, where changes of the distribution parameters obey their own
stochastics, in the CMA, changes of the distribution parameters are deterministically
linked to the object parameter variations. In this chapter, we will review the CMA
from a different perspective revealing the close relationship to EDAs like the EMNA.

The Multi-variate Normal Distribution

Any normal distribution, N (m,C), is uniquely determined by its mean m ∈ IRn

and its symmetric and positive definite covariance matrix C ∈ IRn×n. Covariance
matrices have an appealing geometrical interpretation: they can be uniquely identi-
fied with the (hyper-)ellipsoid {x ∈ IRn |xTC−1x = 1}, as shown in Fig. 1. The
ellipsoid is a surface of equal density of the distribution. The principal axes of the
ellipsoid correspond to the eigenvectors of C, the squared axes lengths correspond
to the eigenvalues. The eigendecomposition is denoted by C = B (D)2 BT, where
columns of B are eigenvectors of C with unit length (B is orthogonal), and the
squared diagonal elements of the diagonal matrix D are the corresponding eigenval-
ues.

The normal distribution N (m,C) can be written in different forms.

N (m,C) ∼ m +N (0,C) ∼ m + BDBTN (0, I) ∼ m + BDN (0, I) (1)

1 In fact, the image needs not to be IR. Any totally ordered set is sufficient.
2 (µ/µI, λ) refers to the non-elitist selection scheme with µ parents, Intermediate recombi-

nation of all µ parents, and λ offspring.
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N
(
0, σ2I

)
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(
0,D2

)
N (0,C)

Fig. 1. Six ellipsoids, depicting one-σ lines of equal density of six different normal distrib-
utions, where σ ∈ IR+, D is a diagonal matrix, and C is a positive definite full covariance
matrix. Thin lines depict exemplary objective function contour lines

where “∼” denotes equality in distribution and I denotes the identity matrix. If D =
σI, where σ ∈ IR+, C = σ2I and the ellipsoid is isotropic (Fig. 1, left). If B = I,
the ellipsoid is axis parallel oriented (middle). In the coordinate system given by B,
the distribution N (0,C) is uncorrelated.

Objective

The objective of covariance matrix adaptation is, loosely speaking, to fit the search
distribution to the contour lines of the objective function f to be minimized. In Fig. 1
the solid-line distribution in the right figure follows the objective function contour
most suitably, and it is easy to foresee that it will help to approach the optimum the
most. On convex-quadratic objective functions, setting the covariance matrix of the
search distribution to the inverse Hessian matrix is equivalent to rescaling the ellip-
soid function into a spherical one. We assume that the optimal covariance matrix
equals the inverse Hessian matrix, up to a constant factor.3 Consequently, the adapta-
tion mechanism should aim to approximate the inverse Hessian matrix. Choosing a
covariance matrix or choosing a respective affine linear transformation of the search
space is equivalent [7].

Basic Equation

In the CMA evolution strategy, a population of new search points is generated by
sampling a multi-variate normal distribution. The basic equation for sampling the
search points, for generation number g = 0, 1, 2, . . . , reads4

x(g+1)
k ∼ N

(

m(g),
(
σ(g)

)2

C(g)

)

for k = 1, . . . , λ (2)

3 Even though there is good intuition and strong empirical evidence for this statement, a
rigorous proof is missing.

4 Framed equations belong to the final algorithm of a CMA evolution strategy.
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where

∼ denotes the same distribution on the left and right side.

N(m(g), (σ(g))2C(g)) ∼m(g) + σ(g)N(0,C(g)) ∼m(g) +σ(g)B(g)D(g)N (0, I)
is the multi-variate normal search distribution.

x(g+1)
k ∈ IRn, k-th offspring (search point) from generation g + 1.

m(g) ∈ IRn, mean value of the search distribution at generation g.

σ(g) ∈ IR+, “overall” standard deviation, step size, at generation g.

C(g) ∈ IRn×n, covariance matrix at generation g.

λ ≥ 2, population size, sample size, number of offspring.

To define the complete iteration step, the remaining question is, how to calculate
m(g+1), C(g+1), and σ(g+1) for the next generation g + 1. The next three sections
will answer these questions, respectively.

2 Selection and Recombination: Choosing the Mean

The new mean m(g+1) of the search distribution is a weighted average of µ selected
points from the sample x(g+1)

1 , . . . ,x(g+1)
λ :

m(g+1) =
µ∑

i=1

wi x
(g+1)
i:λ (3)

µ∑

i=1

wi = 1, wi > 0 for i = 1, . . . , µ (4)

where

µ ≤ λ is the parent population size, i.e. the number of selected points.

wi=1...µ ∈ IR+, positive weight coefficients for recombination, where w1 ≥ w2 ≥
· · · ≥ wµ > 0. Setting wi = 1/µ, (3) calculates the mean value of µ selected
points.

x(g+1)
i:λ , i-th best individual out of x(g+1)

1 , . . . ,x(g+1)
λ from (2). The index i : λ de-

notes the index of the i-th ranked individual and f(x(g+1)
1:λ ) ≤ f(x(g+1)

2:λ ) ≤
· · · ≤ f(x(g+1)

λ:λ ), where f is the objective function to be minimized.
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Equation (3) implements recombination by taking a weighted sum of µ individ-
uals, and selection by choosing µ < λ and/or assigning different weights wi.

The measure

µeff =

(
µ∑

i=1

w2
i

)−1

(5)

can be paraphrased as variance effective selection mass. From the definition of wi we
derive 1 ≤ µeff ≤ µ, and µeff = µ for equal recombination weights, i.e. wi = 1/µ
for all i = 1 . . . µ. Usually, µeff ≈ λ/4 indicates a reasonable setting of wi. A typical
setting would be wi ∝ µ− i + 1, and µ ≈ λ/2.

3 Adapting the Covariance Matrix

In this section, the update of the covariance matrix, C, is derived. We will start out es-
timating the covariance matrix from a single population of one generation (Sect. 3.1).
For small populations this estimation is unreliable and an adaptation procedure has
to be invented (Sect. 3.2). The adaptation procedure takes into account more than one
generation and can be further enhanced by exploiting dependencies between succes-
sive steps (Sect. 3.3).

3.1 Estimating the Covariance Matrix

For the moment we assume that the population contains enough information to reli-
ably estimate a covariance matrix from the population.5 For the sake of convenience
we assume σ(g) = 1 in this section. For σ(g) 
= 1 the discussion holds except for a
constant factor.

Referring to (2), we can (re-)estimate the original covariance matrix C(g) from
the sample population, x(g+1)

1 . . .x(g+1)
λ , by

C(g+1)
emp =

1
λ− 1

λ∑

i=1



x(g+1)
i − 1

λ

λ∑

j=1

x(g+1)
j







x(g+1)
i − 1

λ

λ∑

j=1

x(g+1)
j





T

.

(6)
The empirical covariance matrix C(g+1)

emp is an unbiased estimator of C(g): assuming

the x(g+1)
i , i = 1 . . . λ, to be random variables (rather than a realized sample), we

have that E
[
C(g+1)

emp

∣
∣C(g)

]
= C(g). Consider now a slightly different approach to

get an estimator for C(g).

5 To re-estimate the covariance matrix, C, from a N (0, I) distributed sample such that
cond(C) < 10 a sample size λ ≥ 4n is needed. The condition number of the ma-

trix C is defined via the Euclidean norm: cond(C)
def
= ‖C‖ × ‖C−1‖, where ‖C‖ =

sup‖x‖=1 ‖Cx‖. For the covariance matrix C holds cond(C) = λmax
λmin

≥ 1, where λmax

and λmin are the largest and smallest eigenvalue of C.
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C(g+1)
λ =

1
λ

λ∑

i=1

(
x(g+1)

i −m(g)
)(

x(g+1)
i −m(g)

)T

(7)

The matrix C(g+1)
λ is an unbiased maximum likelihood estimator of C(g). The re-

markable difference between (6) and (7) is the reference mean value. For C(g+1)
emp it

is the mean of the actually realized sample. For C(g+1)
λ it is the true mean value of

the distribution, m(g) (see (2)). Therefore, the estimators C(g+1)
emp and C(g+1)

λ can be

interpreted differently: while C(g+1)
emp estimates the distribution variance within the

sampled points, C(g+1)
λ estimates variances of sampled steps, x(g+1)

i −m(g). For
the CMA the second approach is chosen.

Equation (7) re-estimates the original covariance matrix. To “estimate” a “better”
covariance matrix (7) is modified and the same, weighted selection mechanism as in
(3) is used [8].

C(g+1)
µ =

µ∑

i=1

wi

(
x(g+1)

i:λ −m(g)
)(

x(g+1)
i:λ −m(g)

)T

(8)

The matrix C(g+1)
µ is an estimator for the distribution of selected steps, just as C(g+1)

λ

is an estimator of the original distribution of steps before selection. Sampling from
C(g+1)

µ tends to reproduce selected, ı.e. successful steps, giving a justification for
what a “better” covariance matrix means.

We compare (8) with the EMNAglobal approach [15, 16], where

C(g+1)
EMNAglobal

=
1
µ

µ∑

i=1

(
x(g+1)

i:λ −m(g+1)
)(

x(g+1)
i:λ −m(g+1)

)T

, (9)

and m(g+1) = 1
µ

∑µ
i=1 x(g+1)

i:λ . The subtle difference is, again, the choice of the

reference mean value.6 Equation (8) estimates selected steps while in (9) the vari-
ance within the selected population is estimated. Equation (8) always reveals larger
variances than (9), because the reference mean value in (9) is the minimizer for the
variances. Moreover, in most conceivable selection situations (9) decreases the vari-
ances.

Figure 2 demonstrates the estimation results on a linear objective function for
λ = 150, µ = 50, and wi = 1/µ. While (8) increases the expected variance in
direction of the gradient (where the selection takes place, here the diagonal), given
ordinary settings for parent number µ and recombination weights w1, . . . , wn, (9)
decreases this variance! Therefore, (9) is highly susceptible to premature conver-
gence, in particular with small parent populations, where the population cannot be
expected to bracket the optimum at any time. However, for large values of µ in large
populations with large initial variances, the impact of the different reference mean
value can be marginal.

6 Taking a weighted sum,
∑µ

i=1 wi . . . , instead of the mean, 1
µ

∑µ
i=1 . . . , is an appealing,

but less important, difference.
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(a)

(b)
sampling estimation new distribution

Fig. 2. Estimation of the covariance matrix on flinear(x) = −
∑2

i=1 xi to be minimized.
Contour lines (dotted) indicate that the strategy should move toward the upper right corner.
(a) Estimation of C

(g+1)
µ according to (8), where wi = 1/µ; (b) estimation of C

(g+1)
EMNAglobal

according to (9). Left: sample of λ = 150 N (0, I) distributed points. Middle: the µ = 50
selected points (dots) determining the entries for the estimation equation (solid straight lines),
and the estimated covariance matrix (ellipsoid). Right: search distribution of the next gen-
eration. Given wi = 1/µ, (a) increases the expected variance in gradient direction for all
µ < λ/2, while (b) decreases this variance for any µ < λ

To ensure C(g+1)
µ is a reliable estimator implementing (2), (3), and (8), the vari-

ance effective selection mass µeff (cf. (5)) must be large enough: to get condition
numbers smaller than ten for C(g)

µ on fsphere(x) =
∑n

i=1 x2
i , to our experience,

µeff ≈ 10n is needed. The next step is to circumvent this restriction on µeff .

3.2 Rank-µ-Update

To achieve fast search (opposite to more robust or more global search), e.g. competi-
tive performance on fsphere, the population size λ must be small. Because µeff ≈ λ/4
also µeff must be small and we may assume, e.g., µeff ≤ 1 + lnn. Then, it is not
possible to get a reliable estimator for a good covariance matrix from (8) alone. As a
remedy, information from previous generations is added. For example, after a suffi-
cient number of generations, the mean of the estimated covariance matrices from all
generations,

C(g+1) =
1

g + 1

g∑

i=0

1

σ(i)2
C(i+1)

µ (10)
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becomes a reliable estimator for the selected steps. To make C(g)
µ from different

generations comparable, the different σ(i) are incorporated. (Assuming σ(i) = 1,
(10) resembles the covariance matrix from EMNAi [16].)

In (10), all generation steps have the same weight. To assign recent generations
a higher weight, exponential smoothing is introduced. Choosing C(0) = I to be the
unity matrix and a learning rate 0 < ccov ≤ 1, then C(g+1) reads

C(g+1) = (1− ccov)C(g) + ccov
1

σ(g)2
C(g+1)

µ

= (1− ccov)C(g) + ccov

µ∑

i=1

wi OP

(
x(g+1)

i:λ −m(g)

σ(g)

)

(11)

where

ccov ≤ 1 learning rate for updating the covariance matrix. For ccov = 1, no prior
information is retained and C(g+1) = 1

σ(g)2 C
(g+1)
µ . For ccov = 0, no learning

takes place and C(g+1) = C(0).

OP : IRn → IRn×n,x �→ xxT, denotes the outer product of a vector with itself.

This covariance matrix update is called rank-µ-update [9], because the sum of outer
products in (11) is of rank min(µ, n) (with probability one). Note that this sum can
even consist of a single term, if µ = 1.

The factor 1/ccov can be interpreted as the backward time horizon. Because (11)
expands to the weighted sum

C(g+1) = (1− ccov)g+1C(0) + ccov

g∑

i=0

(1− ccov)g−i 1

σ(i)2
C(i+1)

µ , (12)

the backward time horizon, ∆g, where about 63% of the overall weight is summed
up, is defined by

ccov

g∑

i=g+1−∆g

(1− ccov)g−i ≈ 0.63 ≈ 1− 1
e

. (13)

Resolving the sum yields

(1− ccov)∆g ≈ 1
e

, (14)

and resolving for ∆g, using the Taylor approximation for ln, yields

∆g ≈ 1
ccov

. (15)

That is, approximately 37% of the information in C(g+1) is older than 1/ccov gener-
ations, and, according to (14), the original weight is reduced by a factor of 0.37 after
approximately 1/ccov generations.
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The choice of ccov is crucial. Small values lead to slow learning, too large values
lead to a failure, because the covariance matrix degenerates. Fortunately, a good
setting seems to be largely independent of the function to be optimized.7 A first order
approximation for a good choice is ccov ≈ µeff/n2. Therefore, the characteristic time
horizon for (11) is roughly n2/µeff .

Even for the learning rate ccov = 1, adapting the covariance matrix cannot be
accomplished within one generation. The effect of the original sample distribution
does not vanish until a sufficient number of generations. Assuming fixed search costs
(number of function evaluations), a small population size λ allows a larger number
of generations and therefore usually leads to a faster adaptation of the covariance
matrix.

3.3 Cumulation: Utilizing the Evolution Path

We have used the selected steps, (x(g+1)
i:λ −m(g))/σ(g), to update the covariance

matrix in (11). Because OP(x) = xxT = OP(−x), the sign of the steps in (11)
is irrelevant – that is, the sign information is not used for calculating C(g+1). To
exploit this information, the so-called evolution path is introduced [10, 12].

We call a sequence of successive steps, the strategy takes over a number of gener-
ations, an evolution path. An evolution path can be expressed by a sum of consecutive
steps. This summation is referred to as cumulation. To construct an evolution path,
the step size σ is disregarded. For example, an evolution path of three steps can be
constructed by the sum

m(g+1) −m(g)

σ(g)
+

m(g) −m(g−1)

σ(g−1)
+

m(g−1) −m(g−2)

σ(g−2)
. (16)

Again, we use exponential smoothing as in (11), to construct the evolution path,
pc ∈ IRn, starting with p(0)

c = 0.

p(g+1)
c = (1− cc)p(g)

c +
√

cc(2− cc)µeff
m(g+1) −m(g)

σ(g)
(17)

where

p(g)
c ∈ IRn, evolution path at generation g.

cc ≤ 1. Again, 1/cc is the backward time horizon of the evolution path pc (compare
(15)). A time horizon between

√
n and n is reasonable.

The factor
√

cc(2− cc)µeff is a normalization constant for p(g)
c . For cc = 1 and

µeff = 1, the factor reduces to one, and p(g+1)
c = (x(g+1)

1:λ −m(g))/σ(g). The factor
is chosen, such that

7 We use the sphere model fsphere(x) =
∑

i x2
i to empirically find a good setting for the

parameter ccov, dependent on n and µeff . The setting found was applicable to any non-noisy
objective function we had tried so far.
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p(g+1)
c ∼ N (0,C) (18)

if

p(g)
c ∼ x(g+1)

i:λ −m(g)

σ(g)
∼ N (0,C) for all i = 1, . . . , µ . (19)

To derive (18) from (19) and (17) remark that

(1− cc)2 +
√

cc(2− cc)
2

= 1 and
µ∑

i=1

wiNi(0,C) ∼ 1
√

µeff
N(0,C) . (20)

The (rank-one) update of the covariance matrix C(g) via the evolution path
p(g+1)

c reads [10]

C(g+1) = (1− ccov)C(g) + ccovp(g+1)
c p(g+1)

c

T
. (21)

An empirically validated choice for the learning rate in (21) is ccov ≈ 2/n2. For
cc = 1 and µ = 1, (21) and (11) are identical.

Using the evolution path for the update of C is a significant improvement of
(11) for small µeff , because correlations between consecutive steps are exploited.
The leading signs of steps, and the dependencies between consecutive steps, play a
significant role in the resulting evolution path p(g+1)

c . For cc ≈ 3/n the number of
function evaluations needed to adapt a nearly optimal covariance matrix on cigar-like
objective functions becomes O(n).

As a last step, we combine (11) and (21).

3.4 Combining Rank-µ-Update and Cumulation

The final CMA update of the covariance matrix combines (11) and (21), where µcov

determines their relative weighting.

C(g+1) = (1− ccov)C(g) +
ccov

µcov
p(g+1)

c p(g+1)
c

T

︸ ︷︷ ︸
rank-one update

+ ccov

(

1− 1
µcov

)

×
µ∑

i=1

wi

(
x(g+1)

i:λ −m(g)

σ(g)

)(
x(g+1)

i:λ −m(g)

σ(g)

)T

︸ ︷︷ ︸
rank-µ update

(22)

where

µcov ≥ 1. Choosing µcov = µeff is most appropriate.

ccov ≈ min(µcov, µeff , n2)/n2.
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Equation (22) reduces to (11) for µcov → ∞ and to (21) for µcov = 1. The
equation combines the advantages of (11) and (21). On the one hand, the information
within the population of one generation is used efficiently by the rank-µ update.
On the other hand, information of correlations between generations is exploited by
using the evolution path for the rank-one update. The former is important in large
populations, the latter is particularly important in small populations.

4 Step Size Control

We know two reasons to introduce a step size control in addition to the adaptation
rule of (22) for C(g).

1. The optimal overall step length cannot be well approximated by (22), in particu-
lar if µeff is chosen larger than one. For example, on fsphere(x) =

∑n
i=1 x2

i , the
optimal step size σ equals approximately µ

√
fsphere(x)/n, given C(g) ≈ I and

µeff = µ � n [2, 17]. This dependency on µ cannot be realized by (11), and is
also not well approximated by (22).

2. The largest reliable learning rate for the covariance matrix update in (22) is too
slow to achieve competitive change rates for the overall step length. To achieve
optimal performance on fsphere with an evolution strategy, the overall step length
must decrease by a factor of approximately exp(0.202) ≈ 1.22 within n function
evaluations, as can be derived from progress formulas [2, p. 229]. That is, the
time horizon for the step length change must be proportional to n or shorter.
From the learning rate ccov in (22) it follows that the adaptation is too slow to
perform competitively on fsphere whenever µeff � n. This can be validated
by simulations even for moderate dimensions, say, n ≥ 10 and small µeff , say,
µeff ≤ 1 + lnn.

To control the step size σ(g) we utilize an evolution path, i.e. a sum of successive
steps (see page 84). The method is denoted cumulative path length control, cumula-
tive step size control, or cumulative step size adaptation. The length of an evolution
path is exploited, based on the following reasoning.

• If the evolution path is long, the single steps are pointing to similar directions.
Loosely speaking, they are correlated. Because the steps are similar, the same
distance can be covered by fewer but longer steps in the same directions – con-
sequently the step size should be increased.

• If the evolution path is short, single steps cancel each other out. Loosely speak-
ing, they are anti-correlated. If steps annihilate each other, the step size should
be decreased.

• In the desired situation, the steps are approximately perpendicular in expectation
and therefore uncorrelated.
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To define “long” and “short”, we compare the length of the evolution path with its
expected length under random selection.8 Under random selection consecutive steps
are independent and therefore uncorrelated. If selection biases the evolution path to
be longer then expected, σ will be increased, and, vice versa. If selection biases the
evolution path to be shorter than expected, σ will be decreased. In the ideal situation,
selection does not bias the length of the evolution path at all.

Because, in general, the expected length of the evolution path p(g+1)
c from (17)

depends on its direction (compare (18)), a conjugate evolution path is constructed:

p(g+1)
σ = (1− cσ)p(g)

σ +
√

cσ(2− cσ)µeff C(g)−
1
2 m(g+1) −m(g)

σ(g)
(23)

where

p(g)
σ ∈ IRn is the conjugate evolution path at generation g.

cσ < 1. Again, 1/cσ is the backward time horizon of the evolution path (compare
(15)). For small µeff , a time horizon between

√
n and n is reasonable.

√
cσ(2− cσ)µeff is a normalization constant, see (17).

C(g)−
1
2 def= B(g)D(g)−1

B(g)T, where C(g) = B(g)
(
D(g)

)2
B(g)T is an eigende-

composition of C(g), where B(g) is an orthonormal basis of eigenvectors, and
the diagonal elements of the diagonal matrix D(g) are square roots of the corre-
sponding positive eigenvalues.

For C(g) = I, (23) replicates (17), because C(g)−
1
2 = I then. The transformation

C(g)−
1
2 re-scales the step m(g+1) − m(g) within the coordinate system given by

B(g). The single factors of the transformation C(g)−
1
2 = B(g)D(g)−1

B(g)T can be
read as follows (from right to left):

B(g)T rotates the space such that the columns of B(g), i.e. the principle axes of the
distributionN(0,C(g)), rotate into the coordinate axes. Elements of the resulting
vector relate to projections onto the corresponding eigenvectors.

D(g)−1
applies a (re-)scaling such that all axes become equally sized.

B(g) rotates the result back into the original coordinate system. This last transfor-
mation ensures that directions of consecutive steps are comparable.

Consequently, the transformation C(g)−
1
2 makes the expected length of p(g+1)

σ

independent of its direction, and for any sequence of realized covariance matri-
ces C(g)

g=0,1,2,... we have under random selection p(g+1)
σ ∼ N (0, I), given p(0)

σ ∼
N (0, I) [6].

To update σ(g), we “compare” ‖p(g+1)
σ ‖ with its expected length E‖N (0, I) ‖,

that is
8 Random selection means that the index i : λ (compare (3)) is independent of the value of
x

(g+1)
i:λ for all i = 1, . . . , λ, e.g. i : λ = i.
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ln σ(g+1) = lnσ(g) +
cσ

dσ

(
‖p(g+1)

σ ‖
E‖N (0, I) ‖ − 1

)

, (24)

where

dσ ≈ 1, damping parameter, scales the change magnitude of ln σ(g). The factor
cσ/dσ is based on in-depth investigations of the algorithm [6].

E‖N (0, I) ‖ =
√

2 Γ(n+1
2 )/Γ(n

2 ) ≈ √n + O(1/n), expectation of the Euclidean
norm of a N (0, I) distributed random vector.

For ‖p(g+1)
σ ‖ = E‖N (0, I) ‖ the second summand in (24) is zero, and σ(g) is un-

changed, while σ(g) is increased for ‖p(g+1)
σ ‖ > E‖N (0, I) ‖, and σ(g) is decreased

for ‖p(g+1)
σ ‖ < E‖N (0, I) ‖. The step size change is unbiased on the log scale, be-

cause E
[
ln σ(g+1)

∣
∣σ(g)

]
= lnσ(g) for p(g+1)

σ ∼ N (0, I). The role of unbiasedness
is discussed in Sect. 6.

We show that successive steps taken by m(g) are approximately C(g)−1
-

conjugate. Equations (23) and (24) adapt σ such that the length of p(g+1)
σ

equals approximately E‖N (0, I) ‖. Starting from (E‖N (0, I) ‖)2 ≈ ‖p(g+1)
σ ‖

2
=

p(g+1)
σ

T
p(g+1)

σ = RHSTRHS of (23) and assuming that the expected squared length

of C(g)−
1
2 (m(g+1) −m(g)) is unchanged by selection we get

p(g)
σ

T
C(g)−

1
2 (m(g+1) −m(g)) ≈ 0 , (25)

and (

C(g)
1
2 p(g)

σ

)T

C(g)−1
(
m(g+1) −m(g)

)
≈ 0 . (26)

Given 1/ccov � 1 and (25) we assume that p(g−1)
σ

T
C(g)−

1
2 (m(g+1) −m(g)) ≈ 0

and derive
(
m(g) −m(g−1)

)T

C(g)−1
(
m(g+1) −m(g)

)
≈ 0 . (27)

That is, consecutive steps taken by the distribution mean become approximately

C(g)−1
-conjugate.

Because σ(g) > 0, (24) is equivalent to

σ(g+1) = σ(g) exp

(
cσ

dσ

(
‖p(g+1)

σ ‖
E‖N (0, I) ‖ − 1

))

(28)

The length of the evolution path is an intuitive and empirically well validated good-
ness measure for the overall step length. For µeff > 1 it is the best measure to our
knowledge. Nevertheless, it fails to adapt nearly optimal step sizes on very noisy
objective functions [3].



The CMA Evolution Strategy: A Comparing Review 89

5 Simulations

The complete algorithm of the CMA evolution strategy is summarized in Appen-
dix A, where all (default) parameter settings are given. We show single simulation
runs of the CMA-ES on the test functions from Table 1, where n = 8.9 All func-

Table 1. Convex-quadratic test functions. y = Ox, where O is an orthogonal matrix

Function cond(H) fstop Initial interval

fsphere(x) = 1
2

∑n
i=1 x2

i 1 10−9 [0.1, 0.3]n

felli(x) = 1
2

∑n
i=1 106 i−1

n−1 y2
i 106 10−9 [0.1, 0.3]n

fcigtab(x) = 1
2

(
y2
1 + 104∑n−1

i=2 y2
i + 108y2

n

)
108 10−9 [5, 25]n

ftwoax(x) = 1
2

(∑�n/2�
i=1 y2

i + 106∑n
i=�n/2�+1 y2

i

)
106 10−9 [5, 25]n

tions are convex-quadratic and can be written in the form f(x) = 1
2 xTHx, where

H is the positive definite Hessian matrix. For each function we run an axis parallel
version and a randomly oriented version. In the axis parallel version the Hessian is
diagonal, because we choose O = I (see Table 1). For the randomly oriented version
each column of O is uniformly distributed on the unit hypersphere [12], fixed for
each run. The matrix O defines the coordinate system where the Hessian is diago-
nal. On fsphere, instead of O, we set B(0) to an arbitrary orthogonal matrix in the
“randomly oriented” version. Furthermore, the diagonal elements of D(0) are set to

dii = 10−3+3 i−1
n−1 and C(0) = B(0)D(0)D(0)B(0)T. That is, the condition number

of C(0) equals to 106 and C has to become spherical (condition number one) during
the adaptation (see Fig. 3). Further settings and initial values for the CMA-ES are
according to Fig. 7 and Table 2 in Appendix A.

By tracking eigenvalues and variances of the covariance matrix we can pursue,
whether the objective of the covariance matrix adaptation is achieved, to approxi-
mate the inverse Hessian matrix of the objective function up to a constant factor.
Eigenvalues of the Hessian correspond to the coefficients in Table 1 ({1, . . . , 1} for

fsphere, {106 i−1
n−1 | i = 1, . . . , n} for felli, {1, 104, 108} for fcigtab, and {1, 106} for

ftwoax).
The runs are shown in Fig. 3–6. The bottom figures show the square root of the

eigenvalues of the covariance matrix, that is the lengths of the principal axes of the
distribution ellipsoid, corresponding to diagonal elements, dii, of D. After about
3500, 3500, 4000, and 5000 function evaluations, respectively, the adaptation has
taken place and the axes lengths dii reflect the square root of the inverse eigenvalues
of the Hessian, properly. Notice the striking connection between the matching of the
lengths of the axes and the slope of the function value graph. Apart from effects of

9 For exhaustive investigations of the CMA-ES on larger test function sets see [6, 8, 9, 11, 12]
and for scale-up investigation up to n = 320 see [12].
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(a) fsphere, B(0) = I
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(b) fsphere, B(0) randomly oriented

Fig. 3. Two runs on fsphere, where the initial covariance matrix, C(0), is not spher-
ical Above: function value (thick line), σ (lower graph),

√
cond(C) (upper graph).

Middle:
√
diag(C), index annotated. Below: square root of the eigenvalues of C, i.e.

diag(D) = [d11, . . . , dnn], versus number of function evaluations

different x(0) and different random seeds, the upper and lower figures are equivalent
for the axis parallel (a) and the randomly oriented version (b).

On axis parallel functions, the principal axes of the search distribution should
become axis parallel after the adaptation has taken place. The middle figures show
the square root of the diagonal elements of the covariance matrix,

√
cii. The elements√

cii align to the principal axes lengths dii in the left figures. That means, the search
ellipsoid becomes axis parallel oriented (apart from subspaces of equal eigenvalues,
where the final orientation is irrelevant). The final ordering of the

√
cii reflects the

ordering of the coefficients in the objective function. In contrast, the ordering of the
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(a) axis parallel felli
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(b) randomly oriented felli

Fig. 4. Two runs on felli Above: function value (thick line), σ (lower graph),
√
cond(C)

(upper graph). Middle:
√
diag(C), index annotated. Below: square root of the eigenval-

ues of C, i.e. diag(D) = [d11, . . . , dnn], versus number of function evaluations

√
cii on the randomly oriented functions is arbitrary. The course of

√
cii depends on

the given coordinate system and therefore is remarkably different between (a) and
(b). After the adaptation has taken place, in all cases the optimum is approached as
fast as with an isotropic search distribution on fsphere.

All the data give clear evidence that the inverse Hessian is well approximated.
A measure for “well” can be derived from the runs on fsphere (Fig. 3): the final
condition number of C is smaller than five.
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(a) axis parallel fcigtab

0 1000 2000 3000 4000 5000
10

−10

10
0

10
10

 f=7.93125054299749e−10

function value, sigma, axis ratio

0 1000 2000 3000 4000 5000
10

−4

10
−2

10
0

10
2

 5

 7

 8

 3

 2

 6

 1

 4
sqrt(diagonal of C)

0 1000 2000 3000 4000 5000
10

−4

10
−2

10
0

10
2

sqrt(eigenvalues of C)

function evaluations

(b) randomly oriented fcigtab

Fig. 5. Two runs on fcigtab Above: function value (thick line), σ (lower graph),√
cond(C) (upper graph). Middle:

√
diag(C), index annotated. Below: square root

of the eigenvalues of C, i.e. diag(D) = [d11, . . . , dnn], versus number of function
evaluations

6 Discussion

In effect, the CMA-ES transforms any ellipsoid function into a spherical function. It
is highly competitive on a considerable number of test functions [6, 8, 9, 11, 12] and
was successfully applied to real world problems.10 We discuss a few basic design
principles.

10 To our knowledge a few dozen successful applications have been published up to now, see
http://www.icos.ethz.ch/software/evolutionary computation/cmaapplications.pdf
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(a) axis parallel ftwoax
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(b) randomly oriented ftwoax

Fig. 6. Two runs on ftwoax Above: function value (thick line), σ (lower graph),√
cond(C) (upper graph). Middle:

√
diag(C), index annotated. Below: square root

of the eigenvalues of C, i.e. diag(D) = [d11, . . . , dnn], versus number of function
evaluations

Change Rates

A great deal of differences between continuous domain EDAs with multiple depen-
dencies and the CMA-ES can be found in the change rates of distribution parameters.
We refer to a change rate as the expected parameter change per sampled search point,
given a certain selection situation. The CMA-ES separately controls change rates for
the mean value of the distribution, m, the covariance matrix, C, and the step size, σ.

• The change rate for the mean value m, given a fixed sample distribution, is deter-
mined by the parent number and the recombination weights. The larger µeff , the
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smaller the possible change rate of m is. This is consistent with most EDAs. In-
terestingly, an explicit control parameter for the change rate for m is proposed in
the Stochastic Hill Climbing with Learning by Vectors of Normal Distributions
[18] and in the Population Based Incremental Learning for continuous domain
(PBILc) [20], and even an adaptive control parameter is proposed in [21].

• The change rate of the covariance matrix C is explicitly controlled by the learn-
ing rate ccov and detached from parent number and population size. The learning
rate reflects the model complexity. An incremental update of distribution para-
meters from the selected population, similar to CMA, was already proposed in
Population Based Incremental Learning (PBIL) [1] and expanded to continuous
domain [5, 18, 20]. In contrast to CMA, these algorithms do not consider covari-
ances. In EMNAa [15], both, mean and covariances are incrementally updated,
but the change rates are equal for m and C.

• The change rate of the step size σ is independent from the change rate of C. The
chosen time constant ensures a fast change of the overall step length in particular
with small population sizes.

Invariance

Invariance properties of a search algorithm denote identical behavior on a set of ob-
jective functions. Invariances are highly desirable: they imply uniform performance
on classes of functions and therefore allow for generalization of empirical results.
Translation invariance should be taken for granted in continuous domain optimiza-
tion. Further invariances to linear transformations of the search space are desirable.
The CMA-ES and the EMNA approaches exhibit the following invariances.

• Invariance against order preserving (i.e. strictly monotonic) transformations of
the objective function value. The algorithms only depend on the ranking of func-
tion values.

• Invariance against angle preserving transformations of the search space (rotation,
reflection, and translation) if the initial search point(s) are transformed accord-
ingly.

• Scale invariance if the initial scaling, e.g. σ(0), and the initial search point(s) are
chosen accordingly.

• Invariance against any invertible linear transformation of the search space, A, if

the initial covariance matrix C(0) = A−1
(
A−1

)T
, and the initial search point(s)

are transformed accordingly.

In our opinion, invariance should be a fundamental design criterion for any search
algorithm.

Stationarity

An important design criterion for a stochastic search procedure is unbiasedness of
variations of object and strategy parameters [13, 12]. Consider random selection,
e.g. the objective function f(x) = rand to be independent of x. The population
mean is unbiased if its expected value remains unchanged in the next generation, that
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is E
[
m(g+1)

∣
∣m(g)

]
= m(g). For the population mean stationarity under random

selection is a rather intuitive concept. In the CMA-ES, stationarity is respected for
all parameters in (2). The distribution mean m, the covariance matrix C, and ln σ are
unbiased. Unbiasedness of ln σ does not imply that σ is unbiased. Actually, under
random selection, E

[
σ(g+1)

∣
∣σ(g)

]
> σ(g), compare (24).11

For variances (or step sizes) a bias toward increase or decrease will entail the
danger of divergence or premature convergence, respectively, whenever the selection
pressure is low. Nevertheless, on noisy problems a properly controlled bias toward
increase, even on the log scale, can be beneficial.

7 Summary and Conclusion

We have compared the CMA evolution strategy with EDAs that estimate the com-
plete covariance matrix of a multi-variate normal search distribution. We summarize
identified key points.

• Estimation principle: Most EDAs estimate the distribution parameters from a set
of selected points. The CMA estimates them from a set of selected steps. Us-
ing steps is much less prone to premature convergence and supports explorative
search behavior.

• Step size control: Methods to estimate or adapt the covariance matrix do not
achieve good overall step lengths. In EDAs, step size control is usually absent,
making a potential increase of the overall step length almost impossible. In the
CMA-ES, the adaptation of the covariance matrix is complemented with step
size control. The adjustment of the step size is based on a different adaptation
principle. Cumulative path length control often adapts nearly optimal step sizes
usually leading to considerably larger step lengths. This improves convergence
speed and global search capabilities at the same time.

• Population size, adaptation, and change rates: Choosing the population size λ is
always a compromise. Small λ lead to faster convergence, and large λ help to
avoid local optima. To achieve a fast learning scheme for a covariance matrix
1. the population size λ must be comparatively small (see end of Sect. 3.2) and
2. an adaptation procedure must be established, where parameters are updated

rather than estimated from scratch in every generation.
Appropriate time constants for change rates of the population mean, of the co-
variance matrix, and of the overall step length are essential for competitive per-
formance. In the CMA-ES, learning rates can be adjusted independently and only
the change rate of the population mean is (indirectly) associated with the popula-
tion size λ (via µeff ). Determining different change rates for different parameters
by adjusting learning rates is an open issue in EDAs.

11 Alternatively, if (28) would have been designed to be unbiased for σ(g+1), this would pre-

sumably imply E
[
ln σ(g+1)

∣
∣
∣ σ(g)

]
< ln σ(g), to our opinion a less desirable possibility.
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• Invariances: To generalize empirical performance results, invariance properties
are invaluable. Many EDAs use the given coordinate system to estimate the dis-
tribution, and are consequently not invariant to rotations of the search space.
The CMA-ES is invariant under search space rotation and exhibits further invari-
ances. Admittedly, a rotation invariant method cannot exploit separability of the
objective function efficiently.12

Based on these key points the CMA can improve the performance on ill-conditioned
and/or non-separable problems by orders of magnitude, leaving the performance on
simple problems unchanged. In conclusion, the CMA evolution strategy is a state-
of-the-art continuous domain evolutionary algorithm which is widely applicable and
quasi parameter free.
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14. S. Kern, S.D. Müller, N. Hansen, D. Büche, J. Ocenasek, and P. Koumoutsakos. Learning
probability distributions in continuous evolutionary algorithms – a comparative review.
Natural Computing, 3:77–112, 2004. 100
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A Algorithm Summary: The (µW, λ)-CMA-ES

Figure 7 outlines the complete algorithm, summarizing (2), (3), (17), (22), (23), and
(28). Symbols used are:

x(g+1)
k ∈ IRn, for k = 1, . . . , λ. Sample of λ search points of generation g + 1.

N (m,C), multi-variate normal distribution with mean m and covariance matrix
C.

x(g+1)
i:λ , i-th best point out of x(g+1)

1 , . . . ,x(g+1)
λ from (29). The index i : λ de-

notes the index of the i-th ranked point and f(x(g+1)
1:λ ) ≤ f(x(g+1)

2:λ ) ≤ · · · ≤
f(x(g+1)

λ:λ ).
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Set parameters

Set parameters λ, µ, wi=1...µ, cσ , dσ , cc, µcov, and ccov to their default values accord-
ing to Table 2.

Initialization

Set evolution paths p
(0)
σ = 0, p(0)

c = 0, and covariance matrix C(0) = I.
Choose step size σ(0) ∈ IR+ and distribution mean m(0) ∈ IRn problem dependent.1

For generation g = 0, 1, 2, . . . , until stopping criterion met:

Sample new population of search points

x
(g+1)
k ∼ N

(

m(g),
(
σ(g)

)2

C(g)

)

for k = 1, . . . , λ (29)

Selection and recombination

m(g+1) =

µ∑

i=1

wi x
(g+1)
i:λ ,

µ∑

i=1

wi = 1, wi > 0 (30)

Step size control

p(g+1)
σ = (1 − cσ)p(g)

σ +
√

cσ(2 − cσ)µeff C(g)−
1
2 m(g+1) − m(g)

σ(g)
(31)

σ(g+1) = σ(g) exp

(
cσ

dσ

(
‖p(g+1)

σ ‖
E‖N (0, I) ‖ − 1

))

(32)

Covariance matrix adaptation

p(g+1)
c = (1 − cc)p

(g)
c + h(g+1)

σ

√
cc(2 − cc)µeff

m(g+1) − m(g)

σ(g)
(33)

C(g+1) = (1 − ccov)C
(g) +

ccov

µcov

(
p(g+1)

c p(g+1)
c

T
+ δ(h(g+1)

σ )C(g)
)

+ ccov

(

1 − 1

µcov

) µ∑

i=1

wi OP

(
x

(g+1)
i:λ − m(g)

σ(g)

)

(34)

1The optimum should presumably be within the cube m(0) ± 2σ(0)(1, . . . , 1)T. If
the optimum is expected to be in [0, 1]n (initial interval) we may choose the initial search
point, m(0), uniformly randomly in [0, 1]n, and σ(0) = 0.5. Different search intervals
∆si for different variables can be reflected by a different initialization of C, in that the
diagonal elements of C(0) obey c

(0)
ii = (∆si)

2.

Fig. 7. The (µW, λ)-CMA evolution strategy. Symbols: see text



The CMA Evolution Strategy: A Comparing Review 99

µeff =
(∑µ

i=1 w2
i

)−1
is the variance effective selection mass. It holds 1 ≤ µeff ≤

µ.

C(g)−
1
2 def= B(g)D(g)−1

B(g)T, where C(g) = B(g)D(g)D(g)B(g)T is an eigende-
composition of the symmetric, positive definite covariance matrix C(g). Columns

of B(g) are an orthonormal basis of eigenvectors, B(g)TB(g) = B(g)B(g)T = I.
Diagonal elements of the diagonal matrix D(g) are square roots of the corre-
sponding positive eigenvalues. The matrix D(g) can be inverted by inverting its
diagonal elements.

E‖N (0, I) ‖ =
√

2 Γ(n+1
2 )/Γ(n

2 ) ≈ √n
(
1− 1

4n + 1
21n2

)
.

h
(g+1)
σ =

{
1 if ‖p(g+1)

σ ‖√
1−(1−cσ)2(g+1)

< (1.5 + 1
n−0.5 )E‖N (0, I) ‖

0 otherwise

the Heaviside function h
(g+1)
σ stalls the update of p(g)

c in (17) if ‖p(g+1)
σ ‖ is

large. This prevents a too fast increase of axes of C in a linear surrounding, i.e.
when the step size is far too small. This is useful when the initial step size chosen
is far too small or when the objective function changes in time.

δ(h(g+1)
σ ) = (1− h

(g+1)
σ )cc(2− cc) ≤ 1 is of minor relevance and can be set to 0.

In the (unusual) case of h
(g+1)
σ = 0, it substitutes for the second term from (33)

in (34).

OP : IRn → IRn×n,x �→ xxT, denotes the outer product of a vector with itself.

Default Parameters

The (external) strategy parameters are λ, µ, wi=1...µ, cσ , dσ , cc, µcov, and ccov. De-
fault strategy parameters values are given in Table 2. An in-depth discussion of most
parameters is given in [12]. The default parameters of (37)–(39) are in particular cho-
sen to be a robust setting and therefore, to our experience, applicable to a wide range
of functions to be optimized. We do not recommend changing this setting. In con-
trast, the population size λ in (35) can be increased by the user.13 If the λ-dependent
default values for µ and wi are used, the population size λ has a significant influ-
ence on the global search performance [8]. Increasing λ usually improves the global
search capabilities and the robustness of the CMA-ES, at the price of a reduced con-
vergence speed. The convergence speed decreases at most linearly with λ.

Implementation

We discuss a few implementational issues.

13 Decreasing λ is not recommended. Too small values regularly have strong adverse effects
on the performance.
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Table 2. Default Strategy Parameters, where µeff = 1∑µ
i=1 w2

i
≥ 1 and

∑µ
i=1 wi = 1

Selection and Recombination:

λ = 4 + �3 ln n�, µ = �λ/2� , (35)

wi =
ln(µ + 1) − ln i

∑µ
j=1(ln(µ + 1) − ln j)

for i = 1, . . . , µ , (36)

Step size control:

cσ =
µeff + 2

n + µeff + 3
, dσ = 1 + 2 max

(

0,

√
µeff − 1

n + 1
− 1

)

+ cσ (37)

Covariance matrix adaptation:

cc =
4

n + 4
, µcov = µeff (38)

ccov =
1

µcov

2

(n +
√

2)2
+

(

1 − 1

µcov

)

min

(

1,
2µeff − 1

(n + 2)2 + µeff

)

(39)

Multi-variate normal distribution: The distribution N(m(g), σ(g)2C(g)) in (29) is

distributed as m(g) + σ(g)B(g)D(g)N (0, I) (see C(g)−
1
2 above for the defini-

tions). This can be used to generate the random vector on the computer, because
N (0, I) is a vector with independent, (0, 1)-normally distributed components
that can be easily sampled on a computer.

Strategy internal numerical effort: In practice, the re-calculation of B(g), D(g), and

C(g)−
1
2 does not need to be done until max(1, �1/(10nccov)�) generations. For

reasonable ccov values, this reduces the numerical effort due to the eigende-
composition from O(n3) to O(n2) per generated search point. On a Pentium
4, 2.5 GHz processor the overall strategy internal time consumption is roughly
4(n + 2)2 × 10−8 seconds per function evaluation [14].

Flat fitness: In the case of equal function values for several individuals in the popu-
lation, it is feasible to increase the step size (see lines 92–96 in the source code
below).

Constraints: A simple, and occasionally sufficient, way to handle any type of bound-
aries and constraints is re-sampling unfeasible x(g+1)

k until they become feasible.

B MATLAB Code

001 function xmin=purecmaes

002 % CMA-ES: Evolution Strategy with Covariance Matrix Adaptation for

003 % nonlinear function minimization.

004 %

005 % This code is an excerpt from cmaes.m and implements the key parts
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006 % of the algorithm. It is intendend to be used for READING and

007 % UNDERSTANDING the basic flow and all details of the CMA *algorithm*.

008 % Computational efficiency is sometimes disregarded.

009

010 % -------------------- Initialization --------------------------------

011

012 % User defined input parameters (need to be edited)

013 strfitnessfct = ’felli’; % name of objective/fitness function

014 N = 10; % number of objective variables/problem dimension

015 xmean = rand(N,1); % objective variables initial point

016 sigma = 0.5; % coordinate wise standard deviation (step size)

017 stopfitness = 1e-10; % stop if fitness < stopfitness (minimization)

018 stopeval = 1e3*Nˆ2; % stop after stopeval number of function evaluations

019

020 % Strategy parameter setting: Selection

021 lambda = 4+floor(3*log(N)); % population size, offspring number

022 mu = floor(lambda/2); % number of parents/points for recombination

023 weights = log(mu+1)-log(1:mu)’; % muXone array for weighted recombination

024 % lambda=12; mu=3; weights = ones(mu,1); % uncomment for (3_I,12)-ES

025 weights = weights/sum(weights); % normalize recombination weights array

026 mueff=sum(weights)ˆ2/sum(weights.ˆ2); % variance-effective size of mu

027

028 % Strategy parameter setting: Adaptation

029 cc = 4/(N+4); % time constant for cumulation for covariance matrix

030 cs = (mueff+2)/(N+mueff+3); % t-const for cumulation for sigma control

031 mucov = mueff; % size of mu used for calculating learning rate ccov

032 ccov = (1/mucov) * 2/(N+1.4)ˆ2 + (1-1/mucov) * ... % learning rate for

033 ((2*mueff-1)/((N+2)ˆ2+2*mueff)); % covariance matrix

034 damps = 1 + 2*max(0, sqrt((mueff-1)/(N+1))-1) + cs; % damping for sigma

035

036 % Initialize dynamic (internal) strategy parameters and constants

037 pc = zeros(N,1); ps = zeros(N,1); % evolution paths for C and sigma

038 B = eye(N); % B defines the coordinate system

039 D = eye(N); % diagonal matrix D defines the scaling

040 C = B*D*(B*D)’; % covariance matrix

041 eigeneval = 0; % B and D updated at counteval == 0

042 chiN=Nˆ0.5*(1-1/(4*N)+1/(21*Nˆ2)); % expectation of

043 % ||N(0,I)|| == norm(randn(N,1))

044

045 % -------------------- Generation Loop --------------------------------

046

047 counteval = 0; % the next 40 lines contain the 20 lines of interesting code

048 while counteval < stopeval

049

050 % Generate and evaluate lambda offspring

051 for k=1:lambda,

052 arz(:,k) = randn(N,1); % standard normally distributed vector

053 arx(:,k) = xmean + sigma * (B*D * arz(:,k)); % add mutation % Eq. 29
054 arfitness(k) = feval(strfitnessfct, arx(:,k)); % objective function call

055 counteval = counteval+1;

056 end

057

058 % Sort by fitness and compute weighted mean into xmean

059 [arfitness, arindex] = sort(arfitness); % minimization

060 xmean = arx(:,arindex(1:mu))*weights; % recombination % Eq. 30
061 zmean = arz(:,arindex(1:mu))*weights; % == sigmaˆ-1*Dˆ-1*B’*(xmean-xold)

062

063 % Cumulation: Update evolution paths

064 ps = (1-cs)*ps + (sqrt(cs*(2-cs)*mueff)) * (B * zmean); % Eq. 31
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065 hsig = norm(ps)/sqrt(1-(1-cs)ˆ(2*counteval/lambda))/chiN < 1.5+1/(N-0.5);

066 pc = (1-cc)*pc + hsig * sqrt(cc*(2-cc)*mueff) * (B*D*zmean); % Eq. 33
067

068 % Adapt covariance matrix C

069 C = (1-ccov) * C ... % regard old matrix % Eq. 34
070 + ccov * (1/mucov) * (pc*pc’ ... % plus rank one update

071 + (1-hsig) * cc*(2-cc) * C) ...

072 + ccov * (1-1/mucov) ... % plus rank mu update

073 * (B*D*arz(:,arindex(1:mu))) ...

074 * diag(weights) * (B*D*arz(:,arindex(1:mu)))’;

075

076 % Adapt step size sigma

077 sigma = sigma * exp((cs/damps)*(norm(ps)/chiN - 1)); % Eq. 32
078

079 % Update B and D from C

080 if counteval - eigeneval > lambda/ccov/N/10 % to achieve O(Nˆ2)

081 eigeneval = counteval;

082 C=triu(C)+triu(C,1)’; % enforce symmetry

083 [B,D] = eig(C); % eigen decomposition, B==normalized eigenvectors

084 D = diag(sqrt(diag(D))); % D contains standard deviations now

085 end

086

087 % Break, if fitness is good enough

088 if arfitness(1) <= stopfitness

089 break;

090 end

091

092 % Escape flat fitness

093 if arfitness(1) == arfitness(min(1+floor(lambda/2), 2+ceil(lambda/4)))

094 sigma = sigma * exp(0.2+cs/damps);

095 disp(’escape flat fitness’);

096 end

097

098 disp([num2str(counteval) ’: ’ num2str(arfitness(1))]);

099

100 end % while, end generation loop

101

102 % -------------------- Ending Message ---------------------------------

103

104 disp([num2str(counteval) ’: ’ num2str(arfitness(1))]);

105 xmin = arx(:, arindex(1)); % Return best point of last generation.

106 % Notice that xmean is expected to be even

107 % better.

108

109 % ---------------------------------------------------------------

110 function f=felli(x)

111 N = size(x,1); if N < 2 error(’dimension must be greater one’); end

112 f=1e6.ˆ((0:N-1)/(N-1)) * x.ˆ2; % condition number 1e6
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Summary. We describe a framework for program evolution with an EDA-based approach.
In this framework, the probability distribution of programs is estimated using a Bayesian net-
work, and individuals are generated based on the estimated distribution. Considering that a
dependency relationship of nodes in a program tree is explicit, i.e. the dependency relation-
ship is strong between a parent node and its child node in a program expressed as a tree
structure, we have chosen a Bayesian network as the distribution model of programs.

In order to demonstrate the effectiveness of our approach, this chapter shows results of
comparative experiments with Genetic Programming. Thereafter, we discuss how Estimation
of Distribution Programming works and the transitions of the evolved programs that are the
forte of our methods. We also analyze the performance of a hybrid system which combines
Estimation of Distribution Programming and Genetic Programming.

1 Introduction

In this chapter, we describe a program evolution method based on a probabilistic
model and investigate the behavior of the proposed system.

A well-known technique for a program search is Genetic Programming (GP)[9].
Although various types of crossover and mutation operators were proposed for GP1

there have been very few basic algorithms comparable to GP. We use a program
evolution method which has different mechanisms from GP, and show that some of
the GP difficulties can be solved effectively2.

This chapter proposes Estimation of Distribution Programming (EDP) based on
a probability distribution expression using a Bayesian network. EDP is a search

1 For example, uniform crossover and one-point crossover [16], homologous crossover
and size fair crossover [10], depth-dependent crossover [8] [7], macromutation [2], self-
adaptive crossover [1], recombinative guidance crossover [6], and so on.

2 It is well known that GP search space is significantly constrained [5], and that the bloat
control is difficult [11]. Other GP difficulties have been reported in solving a royal tree
problem [18] and a max problem [17].

K. Yanai and H. Iba: Estimation of Distribution Programming: EDA-based Approach to Program Generation, StudFuzz
192, 103–122 (2006)
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method that uses an EDA-like approach to solve GP-applicable problems. In EDA,
it is important to assume a gene locus dependency relationship. In a program tree
this relationship is strong between the parent node and its child node, so that it is
expected that the EDA approach will be effective for solving tree structure search
problems [21]. We compare the performance of EDP and GP on several benchmark
tests, and discuss the trends of problems that are the forte of EDP.

We also discuss the performance of a hybrid system which consists of EDP and
GP. Applying the hybrid system of EDP and GP to a function regression problem,
we discover some important tendencies in the behavior of this hybrid system. The
hybrid system is not only superior to pure GP in a search performance but also have
interesting features in program evolution. More tests reveal how and when EDP and
GP compensate for each other.

2 Estimation of Distribution Programming

2.1 Algorithm of EDP

We give an outline of the proposed algorithm. EDP starts with a randomly gener-
ated population. Secondly, each individual in the current population is evaluated by
a fitness function and assigned its fitness value. Next, superior individuals with high
fitness values are selected, and a new distribution is estimated based on those se-
lected individuals (see Sect. 2.3). We use the elitist strategy and then individuals are
generated by using a newly acquired distribution (see Sect. 2.4). The estimation of
distribution and the program generation are repeated until a termination criterion is
met. Figure 1 indicates a pseudo code of EDP.

Initial Population

According to function node generation probability PF and terminal node generation
probability PT (1− PF ), initial M individuals are generated randomly, where M is

Let P be a population, S a set of selected individuals, D a distribution, ES an
elite size, and M a population size.

1. P := Generate Programs Randomly
2. While (True)
3. Evaluate Individuals(P )
4. If (termination criterion) Return(P )
5. S := Selection(P )
6. D := Estimate Distribution(S)
7. P := Elite Selection(P , ES)
8. P := P + Generate Individuals(D, M − ES)

Fig. 1. Pseudo code of EDP
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the population size. However, if tree size limitation is reached, terminal nodes are
generated. Let F be the function node set and let T be the terminal node set. For
example, the probabilities of function node “+” and terminal node “x” are given:

If tree size limitation is not reached,
{

P (X = “ + ”) = PF × 1
|F |

P (X = “x”) = PT × 1
|T |

(1)

If tree size limitation is reached,
{

P (X = “ + ”) = 0
P (X = “x”) = 1

|T |
(2)

EDP Operator

Superior individuals with high fitness values are selected within sampling size SS ,
and a new distribution is estimated based on those selected individuals. We use the
elitist strategy, i.e. elite ES individuals are selected from the population in the order
of fitness superiority and copied to the new population, where ES is the elite size.

Then the remaining population, that is M−ES individuals, is generated by using
a newly acquired distribution. This new distribution is considered better than the
previous one because it samples superior individuals in the population.

2.2 Distribution Model

We use a Bayesian network as the distribution model of programs. Values of prob-
abilistic variables are symbols for each node in the program tree. Assign the index
numbers to each node of evolving programs as in Fig. 2, the range of probabilistic
variable Xi is the symbols of node i, that is, Xi ∈ T ∪ F .

For instance, assume F = {+,−, ∗, /} and T = {x1, x2} ,

P (X5 = “ + ”|X2 = “/”) =
2
7

(3)

1

4 6

32

75

Fig. 2. Program tree
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Fig. 3. Efficient network topology
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means that the conditional probability that node 5 becomes “ + ” is 2
7 if node 2 is

“/”. Ci is the set of probabilistic variables which Xi is dependent on. In the former
example, C5 = {X2}.

The topology of a Bayesian network is fixed during evolution, and only condi-
tional probability tables are learned by sampling superior individuals in a population.
Let dmax be the depth of a Bayesian network. We assume that the max arity of node
symbols is 2 in this chapter. Although EDP cannot generate a larger program than a
complete binary tree with a depth dmax, it can generate a smaller one.

There are several efficient topologies of a Bayesian network as indicated in Fig. 3.
The simplest one, that is, #1 in Fig. 3, is used for our experiments. The topology of a
Bayesian network is tree-like and it is the same as program’s topology. In this model,
the probability of each node in a program tree is dependent on only its parent node
symbol. This is based on the assumption that a dependency relationship is strong
between the parent node and its child nodes.

2.3 Estimation of Distribution

The probability distribution is updated incrementally [3] as follows:

Pt+1(Xi = x|Ci = c) = (1− η)P̂ (Xi = x|Ci = c) + ηPt(Xi = x|Ci = c) (4)

where Pt(Xi = x|Ci = c) is the distribution of the tth generation and P̂ (Xi =
x|Ci = c) is the distribution estimated based on superior individuals in the (t+1)th
population, η is the learning rate which means dependence degree on the previous
generation. The closer η is to 1, the less a change of distribution is. Especially in case
of η = 0, the distribution is updated based on the population at only the (t + 1)th
generation without referring to the past distribution.

P̂ (Xi = x|Ci = c) is estimated as follows. At first, SS individuals are sam-
pled by tournament selection with tournament size Tedp, and maximum likelihood
estimation is performed based on these selected individuals. Therefore,

P̂ (Xi = x|Ci = c) =
#(Xi = x,Ci = c)

#(Ci = c)
(5)

where #(Xi = x,Ci = c) is the number of selected individuals that node i is x
when its parent node is c, and #(Ci = c) is the number of selected individuals that
the parent node of node i is c.

In most cases, a program tree of a selected individual is smaller than the Bayesian
network. Therefore, probabilistic variables in deeper position have fewer samples.

2.4 Program Generation

At first, the acquired distribution Pt(Xi = x|Ci = c) is modified applying Laplace
correction [4] by

P ′
t (Xi = x|Ci = c) = (1− α)Pt(Xi = x|Ci = c) + αPbias(Xi = x|Ci = c) (6)
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where α is a constant that expresses the Laplace correction rate, Pbias(Xi = x|Ci =
c) is the probability to bias distribution. For instance, if it is already known that
X2 = “ + ” is desirable, adjusting Pbias(Xi = x|Ci = c) as the probability of
X2 = “+” is high would lead to more effective evolution. In this way, the system can
incorporate preknowledge by Laplace correction. For our experiments, the Laplace
correction rate α is decided as

α = 0.01(|F |+ |T |) (7)

This modification also makes all occurrence probabilities of node symbols posi-
tive. Next, according to P ′

t (Xi = x|Ci = c), node symbols are decided in sequence
from root to terminals. If the size of generated tree reaches dmax, only terminal node
symbols are selected. Therefore, a larger program tree than the Bayesian network is
not generated.

3 Performance of EDP

3.1 Comparative Experiments with GP

The performance was compared for EDP and GP in standard benchmark problems,
i.e. a max problem [17], a boolean 6-multiplexer problem [9], and a function regres-
sion problem [9]. Let progi be a program tree of the ith individual in a population. If
the program tree has some variables, progi(X) represents the value obtained by sub-
stituting X . If the program tree has no variable, progi represents the value returned
by the program tree. Let fiti be the fitness value of the ith individual.

Max Problem

In a max problem, the purpose is to create the maximum value, based on the assump-
tion that T = {0.5} and F = {+, ∗}, and the maximum tree depth is 7. For a tree
produces the largest value, the + nodes must be used with 0.5 to assemble subtrees
A with the value 2.0. These can then be connected via ∗, as shown in Fig. 4. Hence,
65536 is the optimum solution 3. The fitness value for ith individual is the value of
tree, that is,

fiti = progi (8)

The parameters of EDP and GP are indicated in Table 1.
Figure 5 and Table 2 show the results of a comparative test using EDP, GP and a

random search. The vertical axis represents the max fitness value in a population at
each generation: fitmax, i.e.

fitmax = max
i∈M

fiti (9)

3 The maximum node size for the depth of 7 is 127 in a complete binary tree. Within the
node size of 127, it is proved that the maximum value is not 65536, but 123596.1914.
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Fig. 4. The maximum value by a tree of limited depth

Table 1. Parameters for a max problem

Common parameters for EDP and GP

M : population size 200
ES : elite size 5
F : function node sets {+, ∗}
T : terminal node sets {0.5}
PF : generation probability of function node 2

3

PT : generation probability of terminal node 1
3

Tree size limitation in initializing population max depth = 7

EDP parameters

α: Laplace correction rate 0.03
Pbias: the probability to bias distribution 1

|F |+|T | = 1
3

η: learning rate 0.2
SS : sampling size 200
Tedp: tournament size for sampling 20
Tree size limitation max depth = 7

GP parameters

PM : mutation probability 0.1
PC : crossover probability 0.9
Tgp: tournament size for GP operator 5
Tree size limitation max depth = 7

The mean and the standard deviation for 100 runs are indicated in Fig. 5. Note that
they are not a mean fitness value and a standard deviation of a population. The solu-
tion in an evolutionary computing is given by an individual who has the maximum
fitness value in a population. Therefore, system performances should be compared
in maximum fitness values. It can be seen that EDP method produces a higher mean
fitness value at each generation and also higher performance on the average. In ad-
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Fig. 5. Comparative results with a max problem

dition, the standard deviation of EDP, i.e. the deviation due to the search runs, is so
small that the likelihood of the search being successful is higher.

As presented in Table 2, EDP was able to find the optimal solution in all runs,
whereas only 34 runs (out of 100 runs) resulted in evolving the optimal solution with
GP. These results suggest intrinsic difference between EDP and GP.

Next, the experiment was carried out with the addition of “0” to the terminal node
set. In this problem “0” is completely useless and harmful as a node, and produces
non-functional code segments, i.e. introns. As shown in Fig. 6, although the perfor-
mance of GP was low, with EDP algorithm the most suitable solution was found
successfully.

Boolean 6-Multiplexer Problem

Consider the problem of learning the Boolean 6-multiplexer function F6mp :
{0, 1}6 → {0, 1}. The input to the Boolean 6-multiplexer function consists of 2
address bits and 22 data bits, where 6 = 2 + 22. The value of the Boolean multi-

Table 2. Percentage of runs finding the optimal solution

Method Max problem Multiplexer problem Max problem adding
“0” terminal node

EDP 100 23 86
GP 34 82 0

Random 0 0 0
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Fig. 6. Comparative results when “0” terminal node was added with a max problem
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plexer function is the Boolean value (0 or 1) of the particular data bit that is singled
out by the 2 address bits of the multiplexer. Formally,

F6mp(a0, a1, d0, d1, d2, d3) = d21a1+a0 (10)

The node set is T = {x0, x1, x2, x3, x4, x5}, F = {and, or, not}. The parame-
ters of EDP and GP are indicated in Table 3. There are 26 = 64 possible combina-
tions of the 6 arguments, and we use the entire set of 64 combinations of arguments
as the fitness cases for evaluating fitness. That is, we do not use sampling. The fitness
values are simply the number of fitness cases for which the individual tree returns
a correct Boolean value. Let Xi be an input data set, i.e. Xj = {xj1, . . . , xj6},
where xjk is the kth digit of the number j. Then, the fitness value is given with the
following formula:

fiti =
63∑

j=0

match(progi(Xj), F6mp(Xj)) (11)

where

Table 3. Parameter for a boolean 6-multiplexer problem

Common parameters for EDP and GP

M : population size 500
ES : elite size 5
F : function node sets {and, or, not}
T : terminal node sets {x0, x1, x2, x3, x4, x5}
PF : generation probability of function node 3

9

PT : generation probability of terminal node 6
9

Tree size limitation in initializing population max depth = 6

EDP parameters

α: Laplace correction rate 0.09
Pbias: the probability to bias distribution 1

|F |+|T | = 1
9

η: learning rate 0.2
SS : sampling size 200
Tedp: tournament size for sampling 20
Tree size limitation max depth = 6

GP parameters

PM : mutation probability 0.1
PC : crossover probability 0.9
Tgp: tournament size for GP operator 5
Tree size limitation max depth = 6
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match(a, b) =

{
1 if a = b

0 else
(12)

Figure 7 shows the results of a comparative test using EDP, GP and a ran-
dom search. We cannot confirm the superiority of EDP with this experiment. In
6-multiplexer problem, EDP could not search more efficiently than GP. However,
EDP was superior to a random search.
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Fig. 7. Comparative results with a boolean 6-multiplexer problem

Function Regression Problem

Consider a function regression problem. fobj is the function to be approximated. The
fitness value is given with the following formula:

fitness = 1000− 50
30∑

j=1

|prog(Xj)− fobj(Xj)| (13)

where

Xj = 0.2(j − 1) (14)

i.e. training examples are the real values at intervals of 0.2 from 0 to 5.8. Objective
functions are

A : fobj(x) = (2− 0.3x) sin(2x) cos(3x) + 0.01x2 (15)

B : fobj(x) = x cos(x) sin(x)(sin2(x) cos(x)− 1) (16)

C : fobj(x) = x3 cos(x) sin(x)e−x(sin2(x) cos(x)− 1) (17)

which are plotted in Fig. 8. Objective function C is cited from [19]. Although B is
obtained from simplification of C, B is more difficult to search. A is our original
function and the most difficult of the three objective functions.

As indicated in Figs. 9, 10 and 11, EDP’s performance was worse than GP’s in
a function regression problem. This result seems to suggest that EDP is not always
superior. However, as we can see later, the EDP operator plays an inevitable role
in combination with GP. The effectiveness of the hybrid system of EDP and GP is
described in Sect. 4.
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Fig. 9. Comparative results with objective function A
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Fig. 10. Comparative results with objective function B
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Fig. 11. Comparative results with objective function C

3.2 Summaries of EDP Performance

EDP was able to search for a solution effectively in a GP-hard problem, i.e. a max
problem. On the other hand, in both a boolean 6-multiplexer problem and a function
regression problem, it has been shown that EDP’s performance was worse than GP’s.
In order to conclude that the differences of these values are statistically significant
and reliable, not only mean but also standard deviation and sample size (100) should
be taken into consideration. We used Welch’s test for the obtained experimental re-
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Table 4. Parameter for a function regression problem

Common parameters for EDP and GP

M : population size 1000
ES : elite size 5
F : function node sets {+,−, ∗, /, cos, sin}
T : terminal node sets {x, 0.05, 0.10, 0.15, . . . , 1.00}
PF : generation probability of function node 0.8
PT : generation probability of terminal node 0.2
Tree size limitation in initializing population max depth = 6

EDP parameters

α: Laplace correction rate 0.27
Pbias: the probability to bias distribution 1

|F |+|T | = 1
27

η: learning rate 0.2
SS : sampling size 200
Tedp: tournament size for sampling 20
Tree size limitation max depth = 6

GP parameters

PM : mutation probability 0.1
PC : crossover probability 0.9
Tgp: tournament size for GP operator 5
Tree size limitation max depth = 6

Table 5. P-values on Welch’s test

Problem EDP and GP EDP and Random

Max problem 3.49 × 10−25 1.10 × 10−340

Multiplexer problem 4.53 × 10−21 2.52 × 10−59

Regression A 2.53 × 10−11 1.80 × 10−7

Regression B 8.52 × 10−30 5.44 × 10−19

Regression C 6.96 × 10−75 7.03 × 10−10

sults. By means of Welch’s test, it can be judged whether 2 data sets are samples
from the same statistical population or not. As a result of Welch’s test with 5% sig-
nificance level, the differences between EDP and GP at the 100th generation were
significant in all cases. Statistically speaking, the null hypothesis that data in EDP
and in GP were sampled from the same statistical population was rejected (the prob-
ability that the null hypothesis is correct is less than 5%). Welch’s test concluded that
the differences were significant. Table 5 indicates the p-values obtained in the test.
This seems to indicate that EDP works intrinsically differently from the traditional
GP.
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In a max problem, in order to produce better solutions, it is necessary for EDP to
increase the generation probability of “∗” from the depth 1 to 4, and the probability
of “+” at the depth 6. In the early stage of the evolution, the generation probability
of “+” is expected to become high in a shallow part. Then, more frequently subtrees
identical to (+ (+ 0.5 0.5) (+ 0.5 0.5)) (subtree A shown in Fig. 4) are produced in
a deep part, the higher the generation probability of “∗” becomes.

In a boolean 6-multiplexer problem, a positional restriction of EDP operator
seems to have caused the worse performance. Using the 3-multiplexer function
F3mp, it is easy to compose the 6-multiplexer function in the following way:

F6mp(a0, a1,d0, d1, d2, d3) =
(or (and F3mp(a1, d0, d1) (not a0))

(and F3mp(a1, d2, d3) a0)) (18)

Furthermore, it has been reported that the 11-multiplexer function and the 6-multipl-
exer function were easily acquired by GP with the 6-multiplexer and the 3-multiplexer
structures respectively [9]. An individual equivalent to the 3-multiplexer function
would be assigned a high fitness value, i.e. 32 + 16 = 48. Therefore, the composi-
tion of the 3-multiplexer functions is so important for the effective evolution of the
6-multiplexer function that they are expected to prosper in a population. Note that
useful subtrees, i.e. so-called building blocks, cannot shift their position with EDP
because the probability distribution is dependent on the position within a tree, while
GP crossover can move them to an arbitrary position. In other words, EDP imposes a
positional restriction. Consequently, EDP could not always use the generated struc-
ture of the 3-multiplexer function efficiently in order to compose the 6-multiplexer
function. This is the reason why EDP operator failed to generate better individuals
in some cases.

4 Hybrid System of EDP and GP

4.1 Algorithm of Hybrid System

We research the hybrid system which consists of EDP and GP. Figure 12 indicates a
pseudo code of our hybrid system.

The most important parameter in this algorithm is “r”, it decides the system be-
havior and the ratio of GP to EDP in an individual generation, called the hybrid ratio.
Through the combination of EDP and GP, the difficulty indicated in Sect. 3.2 might
be overcome. However, it is not obvious whether GP gains anything from hybridiza-
tion. In this section, we test the system performance in a function regression problem
changing the hybrid ratio r from 0 to 1.

4.2 Performance Difference Due to the Hybrid Ratio

Figures 13, 14, and 15 show the mean of max fitness values for 100 runs. Note that it
is not a mean fitness value of a population, but a mean value of the maximum fitness
value.
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Let P be a population, S a set of selected individuals, D a distribution, r a
hybrid ratio, ES an elite size, and M a population size.

1. P := Generate Programs Randomly
2. While (True)
3. Evaluate Individuals(P )
4. If (termination criterion) Return(P )
5. S := Selection(P )
6. D := Estimate Distribution(S)
7. P := Elite Selection(P , ES)
8. P := P + Crossover&Mutation(P , rM − ES)
9. P := P + Generate Individuals(D, (1 − r)M )

Fig. 12. Pseudo code of the hybrid system
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Fig. 13. Results for objective function A
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Fig. 14. Results for objective function B

Figure 16 shows the frequency of runs in which the maximum fitness value at the
500th generation is over x, that is,

F (x) =
100∑

k=1

δ(x ≤ f
maxk,500) (19)

where fmaxk,500 is the maximum fitness value in a population of the 500th genera-
tion at the kth run, and

δ(x ≤ a) =

{
1 : x ≤ a

0 : x > a
(20)
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Fig. 15. Results for objective function C
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Fig. 16. F (x): frequency of max fitness at the 500th generation greater than x, with objective
functions A and B

Figures 13, 14, 15, and 16 indicate the similar tendency in each case. Although
the r = 1.0 system which is pure GP, demonstrated the best performance in younger
generations, gradually hybrid systems overtook pure GP one after another. The
“overtaking” was conspicuous when r = 0.3 or r = 0.4. At the 500th genera-
tion, the performance of the r = 0.5 system was the best in all cases. The system
performances at the 500th generation reached a peak at r = 0.5, and got worse as
the hybrid ratio was biased.

As a result of Welch’s test with 5% significance level, the differences between the
r = 0.5 system and pure GP at the 500th generation were significant in all cases. The
p-values obtained in the test for objective function A, B, and C were 2.57 × 10−7,
1.23 × 10−4, and 1.52 × 10−27 respectively. In the case of objective function C,
although the difference in values was slight, standard deviation was negligible (see
Fig. 16); Welch’s test concluded that the differences were significant.

Mean cannot give adequate information for system performances, hence we
showed Fig. 16. Figure 16 demonstrates that the hybrid system is also superior to
pure GP in the success rate of a search. For instance, in the case of A, the probabili-
ties that the maximum fitness value at the 500th generation is over 700 are 63

100 with
r = 0.5 and 30

100 with pure GP respectively.

4.3 Analysis of the Behavior of EDP

This section investigates the hybrid system’s performance, changing the hybrid ratio
r at each generation. In Fig. 13, until the 50th generation, the higher the GP ratio of
the system is, the better its performance. Therefore, the system that has a high GP
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Table 6. Systems with changing r, where i is the generation number

System r

A: classical hybrid r = 0.3
B: classical hybrid r = 0.5
C: pure GP r = 1.0

D: linear increasing r =
i

500

E: linear decreasing r = 1 − i

500
F: random r is a random value at each generation

G: switching r =

{
1.0 : i < 205

0.3 : i ≥ 205

H: switching r =

{
1.0 : i < 40

0.5 : i ≥ 40

ratio in younger generations and decreases the ratio later is expected to have higher
performance.

Comparative experiments were carried out with 8 variations of systems, as shown
in Table 6. The objective function is the first one used in Sect. 3.1, i.e. (15). In the
system D, the GP ratio is linearly increased from 0, at the initial generation, to 1.0, at
the 500th generation, whereas it is linearly decreased in the system E. In the system
G, the ratio is changed from 1.0 to 0.3 at the 205th generation. Note that the r = 0.3
system overtook the pure GP at the 205th generation (see Fig. 13). In the system H,
the ratio is tuned in the same manner as G. Therefore, H and G are supposed to be
the top favorites among these systems.

Figures 17 and 18 show the results of comparative experiments. Surprisingly,
system A overtook G. As a result of Welch’s test with 5% significance level, the
differences were significant. The p-value obtained in the test was 0.026. This result
means that population states of A and G are far different in spite of close performance
at the 205th generation. In other words, EDP’s behavior before the 205th generation
likely has a good influence later. Although B also overtook H, the result was not
significant statistically. The p-value obtained in the test for system B and H was
0.364.

Another interesting result is that system D was superior to all other systems,
especially E. As a result of Welch’s test with 5% significance level, the differences
were significant. The p-value was 0.0473. Although it was expected that D would be
worse than E, judging from Fig. 13, the result was quite the opposite. This point is
evidence that EDP functions well in early generations.

In order to test the hypothesis that the probability distribution memorizes the past
EDP’s work, the system of η = 0 was simulated. This system estimates distribution
without referring to the past distribution (see Sect. 2.3). Objective function A was
used.
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Fig. 19. System of η = 0

As indicated in Fig. 19, the characteristic of the hybrid system was kept. The
“overtaking” still took place and the r = 0.5 system was the best. Therefore, the
past information accumulated in the probability distribution does not cause the high
performance of the hybrid system.

5 Discussion

The previous experimental results revealed the following aspects of EDP:

• EDP’s search was intrinsically different from GP’s.
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• EDP’s search was successful in a max problem with the addition of “0” to the
terminal node set.

• Subtrees were not easily shifted in EDP.
• The hybrid system outperformed the pure GP in later generations.
• The hybrid system with linearly increasing hybrid ratio gave the best perfor-

mance.

EDP does not refer to the previous generation directly, but abandon all individu-
als in previous generation and generate new individuals based on the distribution at
an every generation. Thus, a random search is regarded as EDP with an uniform dis-
tribution. In 6-multiplexer problem and a regression problem, although EDP could
not search more efficiently than GP, EDP was superior to a random search. There-
fore, the probability distribution could be estimated effectively. The estimation of a
distribution was done to some extent for the program search.

In the r = 0.5 hybrid system, the updating times of the maximum fitness values
at each generation of the EDP operator and the GP operator are counted respec-
tively. Surprisingly, the EDP operator hardly contributes to construction of the best
individual directly, and only the GP operator does. In addition, as shown in Fig. 17,
system D, which has linearly increasing hybrid ratio, gave the best performance of
all. System D cannot benefit from EDP in later generations. These results suggest
individuals constructed by EDP have more multifarious sub-structures in an early
stage, and these various structures are put together in later generations. It is GP that
can build better individuals, but not EDP.

The hybrid algorithm was tested in a function regression problem where the be-
havior of the EDP algorithm was bad. We also research how the hybrid system de-
grades in a max problem where previously EDP behaved properly. Figure 20 shows
the performance of the hybrid system in a max problem. Although the performance
of the hybrid system was a little worse than pure EDP’s, the search by the hybrid
system was successful.

20 40 60 80 100
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20000

40000

60000

Mean of max fitness

values at each generation

EDP

Hybrid System: r=0.5

Fig. 20. Performance of the hybrid system in a max problem
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6 Conclusion

This paper presented a new EDA-based approach, i.e. EDP, to program evolution and
have shown the experimental results with EDP and GP.

When “0” was added to a set of terminal nodes, EDP performed much better
than GP. We cannot always know what are effective nodes for problems before. This
result suggests that EDP can perform evolution skillfully even if harmful nodes are
included in a node set. Thus, it is expected that the occurrence probability of this
harmful node is kept lower by the EDP method due to the obtained distribution.
This indicates that EDP can control introns effectively, while GP may suffer from
increasing introns and allow them to cause a bloat [10].

The experimental results clearly indicated that EDP worked effectively in early
generations and contributed to later high performance. It turned out that pure GP
could not generate enough kinds of subtrees in early generations to build better so-
lutions. On the other hand, useful subtrees are not easily shifted by EDP to another
position in the tree. We conclude that hybridization helps EDP and GP compensate
for their defects and build a better evolutionary system.

Future and Related Works

Probabilistic Incremental Program Evolution (PIPE) [19] was used to perform a pro-
gram search based on a probabilistic model. However, PIPE assumes the indepen-
dence of program nodes and differs from our approach using a Bayesian network in
this assumption. The merits of having probabilistic dependency relationship are as
follows:

1. Because an occurrence probability of a node symbol is dependent on its parent
node, estimation and generation are serial from a parent node to a child. There-
fore, it can derive and generate building blocks.

2. The past dominant structure can survive after switching the probability distribu-
tion based on a parent node symbol.

On the other hand, optimization using a Bayesian network is much researched,
e.g., EBNA (Estimation of Bayesian Network Algorithm) [12] and EGNA (Estima-
tion of Gaussian Networks Algorithm) [13]. Recently, EDA has been extended with
reinforcement learning [14]. We are also currently working on EDA application for
a gene expression-based classification [15]. However, their application is limited to
fixed length array search problems, not program search.

It is not clear how EDP really works in the hybrid system. In future works, the
details of EDP’s facilities in early generations will be researched. We are also inter-
ested in the control rule of the hybrid ratio r and the robust behavior shown in our
experiments.

The Bayesian network in our probabilistic model has the simplest topology, i.e.
only parent-child links exist. The model selection is one of the most important prob-
lems. As the number of dependent variables per a variable increases, the required
memory size is exponentially increasing. The adequate sampling size for updating a
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distribution is also proportional to the exponential of the number of dependency links
per a node. Therefore, the trade-off exists between the performance and calculation
costs. Our future research will be on the study of the system performance with other
topologies. We also plan to improve EDP in order to shift subtrees within a program
tree, independently from the hybridization with GP.

This chapter discussed the program evolution on the premise that program repre-
sentation consists of a single parse tree. However, the validity of the representation
depends on the problem class. Without recursion and memory, the expressiveness of
a parse tree is not Turing-complete. It is suggested that the different choice of rep-
resentation will result in the different program evolution [20]. The extension of the
program representation should be considered for the sake of establishing a proba-
bilistic model-based evolution.
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Summary. EDAs have been shown to perform well on a wide variety of single-objective
optimization problems, for binary and real-valued variables. In this chapter we look into the
extension of the EDA paradigm to multi-objective optimization. To this end, we focus the
chapter around the introduction of a simple, but effective, EDA for multi-objective optimiza-
tion: the naive MIDEA (mixture-based multi-objective iterated density-estimation evolution-
ary algorithm). The probabilistic model in this specific algorithm is a mixture distribution.
Each component in the mixture is a univariate factorization. As will be shown in this chapter,
mixture distributions allow for wide-spread exploration of a multi-objective front, whereas
most operators focus on a specific part of the multi-objective front. This wide-spread explo-
ration aids the important preservation of diversity in multi-objective optimization. To further
improve and maintain the diversity that is obtained by the mixture distribution, a specialized
diversity preserving selection operator is used in the naive MIDEA. We verify the effective-
ness of the naive MIDEA in two different problem domains and compare it with two other
well-known efficient multi-objective evolutionary algorithms (MOEAs).

1 Introduction

In this chapter, we apply the EDA paradigm to multi-objective optimization. We
put the focus on a specific EDA, which we call the naive mixture-based multi-
objective iterated density-estimation evolutionary algorithm (naive MIDEA). The
naive MIDEA is an instance of the MIDEA framework for multi-objective opti-
mization using EDAs. We will show how the naive MIDEA can be implemented for
both binary as well as real problem variables.

The remainder of this chapter is organized as follows. In Sect. 2, we first dis-
cuss multi-objective optimization. In Sect. 3 we develop the MIDEA framework
and specifically focus on the naive MIDEA instance. In Sect. 4 we validate the
performance of MIDEAs on eight test problems and compare the results with two
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other state-of-the-art MOEAs and discuss our findings. We present our conclusions
in Sect. 5.

2 Multi-objective Optimization

Multi-objective optimization differs from single-objective optimization in that we
have a multiple of objectives that we wish to optimize simultaneously without an
expression of weight or preference for any of the objectives. Often, these multiple
objectives are conflicting. Such problems naturally arise in many real world situa-
tions. An example of conflicting objectives that often arises in industry, is when we
want to minimize the costs of some production process while at the same time we
also want to minimize the pollution caused by the same production process. Such
conflicting objectives give rise to a key characteristic of multi-objective optimization
problems, which is the existence of sets of solutions that cannot be ordered in terms
of preference when only considering the objective function values simultaneously.
To formalize this notion, four relevant concepts exist. Assuming that we have m ob-
jectives fi(x), i ∈M = {0, 1, . . . ,m− 1}, that, without loss of generality, we seek
to minimize, these four concepts can be defined as follows:

1. Pareto dominance
A solution x is said to (Pareto) dominate a solution y (denoted x  y)
iff (∀i ∈M : fi(x) ≤ fi(y)) ∧ (∃i ∈ M : fi(x) < fi(y))

2. Pareto optimal
A solution x is said to be Pareto optimal iff ¬∃y : y  x

3. Pareto optimal set
The set PS of all Pareto optimal solutions: PS = {x|¬∃y : y  x}

4. Pareto optimal front
The set PF of all objective function values corresponding to the solutions in
PS : PF = {(f0(x), f1(x), . . . , fm−1(x))|x ∈ PS}

The Pareto optimal set PS is a definition of all trade-off optimal solutions in
the parameter space. The Pareto optimal front PF is the same set of solutions, only
regarded in the objective space. The size of either set can be infinite, in which case
it is impossible to find the optimal set or front with a finite number of solutions.
Regardless of the size of PS or PF , it is commonly accepted that we are interested
in finding a good representation of these sets with a finite number of solutions. The
definition of a good representation, is difficult however. The reason for this is that
it is desirable to obtain a diverse set of solutions as well as it is desirable to obtain
a front or set that is close to the optimal one. Furthermore, it depends on the map-
ping between the parameter space and the objective space whether a good spread
of the solutions in the parameter space is also a good spread of the solutions in the
objective space. However, it is common practice [9] to search for a good diversity of
the solutions along the Pareto front. The reason for this is that a decision-maker will
ultimately have to pick a single solution. Therefore, it is often best to present a wide
variety of trade-off solutions for the specified goals.
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The notion of searching a space by maintaining a population of solutions is char-
acteristic of evolutionary algorithms (EAs), which makes them natural candidates
for multi-objective optimization aiming to cover a good approximation of the Pareto
optimal front. A strongly increasing amount of research has indeed been done in
the field of evolutionary multi-objective optimization in recent years [9] with very
promising results.

3 The Naive MIDEA

To obtain EDAs that are well-suited for multi-objective optimization, we propose
to instantiate two steps in the framework. Firstly, to stimulate the preservation of
diversity along the Pareto front, we instantiate the selection mechanism by using a
diversity preserving truncation selection operator. Secondly, we partially instantiate
the search for a probability distribution to use by enforcing the use of mixture distri-
butions.

3.1 Diversity-preserving Truncation Selection

Background and Motivation

Selection in evolutionary algorithms is meant to select the better solutions of the
population to perform variation with. In multi-objective optimization however, the
notion of “a better solution” has two sides to it. On the one hand we want the so-
lutions to be as close to the Pareto optimal front as possible. On the other hand, we
want a good diverse representation of the Pareto optimal front. A good selection op-
erator in a MOEA must thus exert selection pressure with respect to both of these
aspects.

Selection Pressure towards the Pareto Optimal Front

In a practical application, we have no indication of how close we are to the Pareto
optimal front. To ensure selection pressure towards the Pareto optimal front in the
absence of such information, the best we can do is to find solutions that are dominated
as little as possible by any other solution.

A straightforward way to obtain selection pressure towards non-dominated solu-
tions is therefore to count for each solution in the population the number of times it
is dominated by another solution in the population, which is called the domination
count of a solution [3, 16]. The rationale behind the domination count approach is
that ultimately we would like no solution to be dominated by any other solution, so
the less times a solution is dominated, the better. A lower domination count is prefer-
able. Using this value we can apply truncation selection or tournament selection to
obtain solid pressure towards non-dominated solutions.

Another approach to ensuring a preference for solutions that are dominated as
little as possible, is to assign a preference to different domination ranks [12, 17].
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The solutions that are in the jth rank are those solutions that are non-dominated if
the solutions of all ranks i < j are disregarded. Note that the best domination rank
contains all solutions that are non-dominated in the complete population. A lower
rank is preferable. Using this value we can again apply for instance either truncation
selection or tournament selection. Similar to the domination count approach, this
approach effectively prefers solutions that are closer to the set of non-dominated
solutions. It has been observed that in practice the difference between domination-
counting and the domination-ranking schemes in practice is only very small [5].

Selection Pressure towards Diversity

In most multi-objective selection schemes, diversity is used as a second compari-
son key in selection. This prohibits tuning the amount of selection pressure towards
diversity to the amount of selection pressure towards getting close to the Pareto op-
timal front. An example is the approach taken in the NSGA-II in which solutions
are selected based on their non-domination rank using tournament selection [12]. If
the ranks of two solutions are equal, the solution that has the largest total distance
between its two neighbors summed over each objective, is preferred. This gives a
preference to non-crowded solutions.

The explicit selection pressure towards diversity may serve more than just
the purpose of ensuring that a diverse subset is selected from a certain set of
non-dominated solutions. If we only apply selection pressure to finding the non-
dominated solutions and enable diversity preservation only to find a good spread
of solutions in current Pareto front, we increase the probability that we only find a
subset of a discontinuous Pareto optimal front. Selection pressure towards diversity
will most likely be too late in helping out to find the other parts of the discontinu-
ous Pareto optimal front as well. Therefore, we may need to spend more attention
on diversity preservation during optimization and perhaps even increase the amount
of diversity preservation. Another reason why we may need to increase the selection
pressure towards diversity is that a variation operator is used that can find many more
non-dominated solutions, which could cause a MOEA to converge prematurely onto
subregions of a Pareto optimal front or onto locally optimal sets of non-dominated
solutions, unless the population size is increased. However, given a fixed number
of evaluations, this can be a significant drawback in approaching the Pareto optimal
front. This problem can be alleviated by placing more emphasis on selection pressure
towards diversity and by consequently reducing the effort in the selection pressure
towards getting close to the Pareto optimal front. By doing so, the variation opera-
tor is presented with a more diverse set of solutions from which a more diverse set
of offspring will result. Furthermore, solutions that are close to each other will now
have a smaller joint chance that they will both be selected, which improves the ability
to approach the Pareto optimal front since premature convergence is less likely.

Combining Selection Pressures

Concluding, to ensure pressure towards the Pareto optimal front and towards diver-
sity at the same time, the selection procedure must be provided with a component
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that prefers a diverse selection of solutions. However, since the goal is to preserve
diversity along the Pareto front, rather than to preserve diversity in general, the selec-
tion on the basis diversity should not precede selection on the basis of getting close
to the Pareto optimal front.

Selection Operator

In the selection operator that we propose, the ratio of the amount of selection pres-
sure towards the Pareto optimal front and the amount of selection pressure towards
diversity can be tuned using a single parameter δ to better fit the specific needs of
the problem solver. In most selection operators this ratio is fixed beforehand. Ulti-
mately, the selection operator selects �τn� solutions, where n is the population size
and τ ∈ [ 1

n ; 1] is the selection percentile. Just as there are two forms of selection
pressure to be exerted by the selection operator as discussed above, there are two
phases in our selection operator.

1. In the first phase, the domination count [16] of all solutions is first computed as
mentioned above. Subsequently, a pre-selection SP is made of �δτn� solutions
(δ ∈ [1; 1

τ ]) using truncation selection on the domination count (select the best
�δτn� solutions). However, if the solution with the largest domination count to
end up in SP by truncation selection has a domination count of 0, all solutions
with a domination count of 0 are selected instead, resulting in |SP | ≥ �δτn�.
This ensures that once the search starts to converge onto a certain Pareto front,
we enforce diversity over all of the available solutions on the front.

2. In the second phase, the final selection S is obtained from SP . To do so, a
nearest neighbor heuristic is used to promote diversity. First, a solution with an
optimal value for a randomly chosen objective is deleted from SP and added to
S. Note that the choice of objective is arbitrary as the key is to find a diverse
selection of solutions. To stimulate this, we can select a solution that is optimal
along any objective. For all solutions in SP , the nearest neighbor distance is
computed to the single solution in S. The distance that we use is the Euclidean
distance scaled to the sample range in each objective. The solution in SP with
the largest distance is then deleted from SP and added to S. The distances in
SP are updated by investigating whether the distance to the newly added point in
S is smaller than the currently stored distance. These last two steps are repeated
until �τn� solutions are in the final selection.

An example application of this operator is presented in Fig. 1. This selection
operator has a running time complexity ofO(n2). This is no worse than the minimum
of O(n2) for computing the domination counts which is required in all MOEAs.

3.2 Mixture Distributions

A mixture probability distribution is a weighted sum of k > 1 probability distrib-
utions. Each probability distribution in the mixture probability distribution is called
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1
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f0

f1

Fig. 1. An example of the application of the diversity preserving selection operator with n =
22, δ = 5

3
, τ = 3

10
, which gives �δτn� = 11 and �τn� = 6. Objectives f0 and f1 should

both be minimized. The dominated solutions are black whereas the non-dominated solutions
are white. The solutions that belong to the preselection are outlined. The solutions that are
finally selected are numbered in the order in which they are chosen from the preselection.
Here objective f0 has been chosen to initiate the selection process

a mixture component. Let Z = (Z0, Z1, . . . , Zl−1) be a vector for all random vari-
ables involved in the EDA (i.e. Zi is a random variable associated with the ith prob-
lem variable). A mixture probability distribution for random variables Z is then de-
fined as follows:

P mixture(Z) =
k−1∑

i=0

βiP
i(Z) (1)

where βi ≥ 0, i ∈ {0, 1, . . . , k − 1}, and
∑k−1

i=0 βi = 1. The βi with which the
mixture components are weighted in the sum are called mixing coefficients.

The Benefit of Mixture Distributions

The general advantage of mixture probability distributions is that a larger class of
independence relations between the random variables can be expressed than when
using non-mixture probability distributions since a mixture probability distribution
makes a combination of multiple probability distributions. In many cases, simple
probability distributions can be estimated to get accurate descriptions of the data in
different parts of the sample space. By adding the k “simple” probability distribu-
tions into the mixture probability distribution, an accurate description of the data in
the complete sample space can be obtained. This allows for the modelling of quite
complex dependencies between the problem variables. By using mixture probability
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distributions, a powerful, yet computationally tractable type of probability distribu-
tion can be used within EDAs, that provides for processing complicated interactions
between a problem’s variables.

For multi-objective optimization, mixture distributions can have a specific ad-
vantage that renders them particularly useful. The specific advantage is geometrical
in nature. If we for instance cluster the solutions as observed in the objective space
and then estimate a simpler probability distribution in each cluster, the probability
distributions in these clusters can portray specific information about the different re-
gions along the Pareto optimal front that we are ultimate interested in multi-objective
optimization. Each simpler probability distribution to be used in each cluster can for
instance be a factorized probability distribution as is used in most EDAs. Drawing
new solutions from the resulting mixture probability distribution gives solutions that
are more likely to be well spread along the front as each mixture component deliv-
ers a subset of new solutions. The use of such a mixture distribution thus results in
a parallel exploration along the current Pareto front. This parallel exploration may
very well provide a better spread of new solutions along the Pareto front than when
a single non-mixture distribution is used to capture information about the complete
Pareto front. In Fig. 2 an example is given of what the result of clustering the se-
lected solutions in the objective space typically looks like. The effect of splitting up
the solutions along the Pareto front, thereby facilitating parallel exploration along
the front, can clearly be seen.
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Population
Final selection
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f 1

Fig. 2. An example of the breaking up the front of selected solutions using clustering. Objec-
tives f0 and f1 should both be minimized. The four individual clusters that are defined in this
example are outlined
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Estimating Mixture Distributions

From the previous subsection describing the specific advantages of mixture prob-
ability distributions for multi-objective, we already have a straightforward manner
to estimate mixture probability distributions from data using clustering. To actually
build the mixture distribution from the simpler distributions, the mixing coefficients
βi must still be chosen. This can be done in various ways. A common approach is
to set βi to the proportion of the size of the ith cluster with respect to the sum of
the sizes of all clusters. For the specific application of multi-objective optimization
however, we propose to assign each cluster an equally large mixing coefficient, i.e.
βi = 1/k. The reason for this is that we want to distribute the solutions as good as
possible along the Pareto front. Giving each cluster an equal probability of producing
new solutions maximizes parallel exploration along the Pareto front. The only thing
left to choose then is which clustering algorithm to use. Exact algorithms for parti-
tioning (i.e. clustering into mutually disjoint subsets) exist [20], but the running times
for these algorithms are of no practical use for building EDAs. What we require, is
a fast approximate assessment of clusters such that we can estimate a relatively sim-
ple probability distribution in each cluster in a good way. Computationally efficient
clustering algorithms exist that provide useful results [20]. Examples are the leader
algorithm and the K-means algorithm.

A different approach to estimating a mixture probability distribution from data
is to compute a maximum likelihood estimation. To this end, the Expectation Maxi-
mization (EM) algorithm [14] can be used. The EM algorithm is a general iterative
approach to computing a maximum likelihood estimate. Although the EM algorithm
is a valid approach to obtaining mixture probability distributions, it tends to be time-
consuming, especially if the dimensionality of the data increases. Moreover, since we
expect the specific benefit of mixture probability distributions to reside in dividing
the data on the basis of its geometry in the objective space, using the EM algorithm
seems less attractive because it builds a model completely based on the data as given
in the parameter space.

3.3 Elitism

If elitism is used, the best solutions of the current generation are copied into the next
generation. Alternatively, an external archive of a predefined maximum size na may
be used that contains only non-dominated solutions. This is actually similar to using
elitism in a population, because this archive can be seen as the first few population
members in a population for which the size is at least np and at most np +na, where
np is the size of the population in an archive-based approach and na is the size of the
external archive.

Elitism plays an important role in multi-objective optimization since many so-
lutions exist that are all equally preferable. It is important to have access to many
of them during optimization to advance the complete set of non-dominated solu-
tions further. An ideal variation operator is capable of generating solutions that are
closer to the Pareto optimal front, but also spread out across the entire current set
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of non-dominated solutions as well as possibly outside it to extend the diversity of
the set of non-dominated solutions even further. However, obtaining new and diverse
non-dominated solutions is hard, especially as the set of non-dominated solutions ap-
proaches the Pareto optimal front. If a non-dominated solution gets lost in a certain
generation, it may take quite some effort before a new non-dominated solution in its
vicinity is generated again. For this reason, elitism is commonly accepted [24, 36] to
be a very important tool for improving the results obtained by any MOEA.

Elitism can be used within the MIDEA framework in a straightforward manner
because truncation selection is already used (Sect. 3.1). An elitist MIDEA selects
the best �τn� solutions using the diversity-preserving truncation selection operator.
Subsequently, only the worst n−�τn� solutions are replaced with new offspring that
result from sampling the estimated probability distribution. The best �τn� solutions
that were selected, are thus kept in the population.

3.4 The MIDEA Framework

The MIDEA variant that we use in our experiments is described in pseudo-code in
Fig. 3.

MIDEA

1 Initialize a population of n random solutions and evaluate their objectives
2 Iterate until termination

2.1 Compute the domination counts
2.2 Select �τn� solutions with the diversity preserving selection operator
2.3 Estimate a mixture probability distribution P mixture(Z)
2.4 Replace the non-selected solutions with new solutions drawn from P mixture(Z)
2.5 Evaluate the objectives of the new solutions

Fig. 3. Pseudo-code for the MIDEA framework

The Naive MIDEA Instance

Probability Distributions in Each Cluster

In Sect. 3.2 we have argued that mixture distributions can play an important role in
multi-objective optimization. Moreover, we have argued that a simple, but effective
approach to estimating mixture distributions is to cluster the selected solutions on
the bases of the geometry of their objective values. We therefore suggest keeping
the probability distributions to be estimated in each cluster as simple as possible.
This suggestion leads to the choice of using univariate factorized probability distri-
butions in each cluster in the naive MIDEA. In a factorized probability distribution,
each random variable is regarded separately, meaning that a probability distribution
is estimated for each random variable separately. For discrete random variables, this
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amounts to repeatedly counting frequencies and computing proportions for a single
random variable. For real-valued random variables this implies estimating for in-
stance the mean and variance of a one-dimensional normal distribution repeatedly.
The mathematical formulation of the univariate factorization is:

P univariate(Z) =
l−1∏

i=0

P (Zi) (2)

Since in each cluster we thus disregard all dependencies between random vari-
ables, we call this specific MIDEA instance naive in analogy with the well-known
naive Bayes classifier. However, the clusters are expected to already provide a large
benefit for multi-objective optimization. Moreover, algorithms such as UMDA [27]
and the compact GA [19] that use same probability distribution as in (2) (without
clustering) have provided good results on many interesting single-objective opti-
mization problems. Hence, we already expect good optimization behavior for the
naive MIDEA.

Clearly, non-naive instances of MIDEA can be made directly by estimating more
involved probability distributions in each cluster, such as Bayesian factorized prob-
ability distributions. Although we will present the results of some experiments with
such more involved probability distributions for comparison reasons, we refer the
interested reader for more details to the literature on either these probability dis-
tributions (e.g. [7, 10, 25]) or to the relevant literature on single-objective EDAs
(e.g. [1, 2, 4, 18, 23, 28, 29, 30, 31, 32, 33]).

Clustering Algorithm

Since we are interested in obtaining useful results in as little time as possible, we
suggest the use of a fast clustering algorithm. Possibly this adds to the naiveness of
our naive MIDEA instance, but other clustering algorithms are easily implemented
if required.

The algorithm that we propose to use is the leader algorithm. The leader algo-
rithm is one of the fastest partitioning algorithms [20]. The use of it can thus be
beneficial if the amount of overhead that is introduced by factorization mixture se-
lection methods is desired to remain small. There is no need to specify in advance
how many partitions there should be. The first solution to make a new partition is
appointed to be its leader. The leader algorithm goes over the solutions exactly once.
For each solution it encounters, it finds the first partition that has a leader being closer
to the solution than a given threshold Td. If no such partition can be found, a new
partition is created containing only this single solution. To prevent the first partitions
from becoming quite a lot larger than the later ones, we randomize the order in which
the partitions are inspected. The asymptotic running time for finding the first parti-
tion with a leader closer than Td is the same as going over all partitions and finding
the closest partition. Therefore, we prefer to find the closest partition.

One of the drawbacks of the (randomized) leader algorithm is that it is not in-
variant given the sequence of the input solutions. Most partitioning algorithms do
not have this property, but not as strongly as the leader algorithm. Therefore, to be
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sure that the ordering of the solutions is not subject to large repeating sequences of
solutions, we randomize the ordering of the solutions each time the leader algorithm
is applied.

Pseudo-Code

The naive MIDEA is an instance of the general MIDEA framework. Figure 4 shows
how the naive MIDEA can be obtained from the general MIDEA framework by
using a specific instantiation of lines 2.3 and 2.4.

naive MIDEA
(instantiation of steps 2.3 and 2.4 of the general MIDEA framework)

1 (c0, c1, . . . , ck−1) ← LeaderAlgorithm(Td)
2 for i ← 0 to k − 1 do

2.1 βi ← 1/k
2.2 for j ← 0 to l − 1 do

2.2.1 Estimate a one-dimensional probability distribution P i,j(Zj) for
random variable Zj from the solutions in the ith cluster (i.e. ci)

3 for i ← �τn� to n − 1 do
3.1 Initialize a new solution z
3.2 Choose an index q ∈ {0, 1, . . . , k − 1} with probability βq

3.3 for j ← 0 to l − 1 do
3.3.1 Draw a value for zj from the one-dimensional probability distribution

P q,j(Zj) associated with the qth-cluster
3.4 Add z to the set of new offspring.

Fig. 4. Pseudo-code for the naive MIDEA

4 Experiments

In this section we compare MIDEA instances to two well-known state-of-the-art
MOEAs that aim at obtaining a diverse set of solutions along the Pareto front. The
SPEA algorithm by Zitzler and Thiele [38] and the NSGA-II algorithm by Deb et
al. [12] showed superior performance compared to most other MOEAs [12, 36]. The
test suite we used consists of eight multi-objective optimization problems. We var-
ied the dimensionality of these problems to get a total of sixteen problem instances
to test the MOEAs on. The multi-objective optimization problems are described in
Sect. 4.1. The performance measures we use to score the results of the algorithms
with are described in Sect. 4.2. In Sect. 4.3 we present our experiment setup. In
Sect. 4.4 we discuss the obtained results. Finally, in Sect. 4.5 we give a short sum-
mary for the EA practitioner.
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4.1 Multi-objective Optimization Problems

Our test suite consists of problems with real-valued variables as well as with binary
variables. To make a clear distinction between these two cases, we write real-valued
variables as yi and binary variables as xi. In both cases we have used four different
optimization problems and two different dimensionalities for these problems to ob-
tain a total test suite size of 16 problems. In the following we give a brief description
of the problems in our test suite.

Real-valued Multi-objective Optimization Problems

A variety of test problems for real-valued variables has been proposed that may cause
different types of problems for multi-objective optimization algorithms [11, 13, 36].
From this set of problems, we have selected three problems that are commonly used
to benchmark multi-objective optimization algorithms. The fourth real-valued test
problem is a new test problem we have designed to test the performance of MOEAs
if there are strong interactions between the problem variables. These problems rep-
resent a spectrum of multi-objective problem difficulty as they make it difficult for a
multi-objective optimization algorithm to progress towards the global optimal front
and to maintain a diverse spread of solutions due to properties such as discontinuous
fronts and multi-modality. The problems with real-valued variables that we use in
our experiments are all defined for two objectives. An overview of our test problems
is given in Fig. 5.

BT1

Function BT1 differs from the other three functions in that it has multivariate (linear)
interactions between the problem variables. Therefore, more complex factorizations
are required to exploit these interactions, whereas the other functions are well-suited
to be optimized using the univariate factorization. The Pareto optimal front is given
by f1(y) = 1− y0.

ZDT4

Function ZDT4 was introduced by Zitzler et al. [36]. It is very hard to obtain the
optimal front f1(y) = 1−√y0 in ZDT4 since there are many local fronts. Moreover,
the number of local fronts increases as we get closer to the Pareto optimal front. The
main problem that a MOEA should be able to overcome to optimize this problem is
thus strong multi-modality.

ZDT6

Function ZDT6 was also introduced by Zitzler et al. [36]. The density of solutions
in ZDT6 increases as we move away from the Pareto optimal front. Furthermore,
ZDT6 has a non-uniform density of solutions along the Pareto optimal front as there
are more solutions as f0(y) goes up to 1. Therefore, a good diverse spread of solu-
tions along the Pareto front is hard to obtain. The Pareto front for ZDT6 is given by
f1(y) = 1− f0(y)2 with f0(y) ∈ [1− e−1/3; 1].
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Name Definition Range

BT1

Minimize (f0(y), f1(y))

Where • f0(y) = y0

• f1(y) = 1 − f0(y) +

107 − 100

(10−5+
∑ l−1

i=1|
∑ i

j=1 yi|)

• y0 ∈ [0; 1]

• yi ∈ [−3; 3]

(1 ≤ i < l)

ZDT4

Minimize (f0(y), f1(y))

Where • f0(y) = y0

• f1(y) = γ
(
1 −

√
f0(y)

γ

)

• γ = 1 + 10(l − 1) +
∑l−1

i=1

(
y2

i − 10cos(4πyi)
)

• y0 ∈ [0; 1]

• yi ∈ [−5; 5]

(1 ≤ i < l)

ZDT6

Minimize (f0(y), f1(y))

Where • f0(y) = 1 − e−4y0sin6(6πy0)

• f1(y) = γ

(

1 −
(

f0(y)
γ

)2
)

• γ = 1 + 9
(∑l−1

i=1
yi
9

)0.25

• yi ∈ [0; 1]

(0 ≤ i < l)

CTP7

Minimize (f0(y), f1(y))

Where • f0(y) = y0

• f1(y) = γ
(
1 − f0(y)

γ

)

• γ = 1 + 10(l − 1) +
∑l−1

i=1

(
y2

i − 10cos(4πyi)
)

Such that • cos(− 5π
100

)f1(y) − sin(− 5π
100

)f0(y) ≥

40| sin(5π
[
sin(− 5π

100
)f1(y)+

cos(− 5π
100

)f0(y)
]
)|6

• y0 ∈ [0; 1]

• yi ∈ [−5; 5]

(1 ≤ i < l)

Fig. 5. Real-valued multi-objective optimization test problems

CTP7

Function CTP7 was introduced by Deb et al. [13]. Its Pareto optimal front differs
slightly from that of ZDT4, but otherwise shares the multi-modal front problem. In
addition, this problem has constraints in the objective space, which makes finding
a diverse representation of the Pareto front more difficult since the Pareto front is
discontinuous and it is hard to obtain an approximation that has a few solutions in
each feasible part of that front.

Binary Multi-objective Optimization Problems

In Fig. 6, we have specified four binary multi-objective optimization problems. Next
to being binary, these problems are also multi-objective variants of well-known com-
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Name Definition

MS

(
Maximum

Satisfiability

)

Maximize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑ci−1

j=0 sgn
([∑l−1

k=0(Ci)jk ⊗ xk

])

• sgn(x) =






1 if x > 0

0 if x = 0

−1 if x < 0
• ⊗ 0 1

−1 1 0

⊗ 0 1

0 0 0

⊗ 0 1

1 0 1

KN
(Knapsack)

Maximize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑l−1

j=0 Pijxj

Such that • ∀i∈M :
∑l−1

j=0 Wijxj ≤ ci

SC
(Set Covering)

Minimize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑l−1

j=0 Cijxj

Such that • ∀i∈M : ∀0≤j<r :
∑l−1

k=0(Ai)jkxk ≥ 1

MST

(
Minimal

Spanning

Tree

)

Minimize (f0(x), f1(x), . . . , fm−1(x))

Where • ∀i∈M : fi(x) =
∑l−1

j=0 Wijxj

Such that • ∀S⊆V :
∑

xj∈(S×(V −S)) xj ≥ 1

• ∀S⊆V :
∑

xj∈(S×S) xj ≤ |S| − 1

Fig. 6. Binary multi-objective combinatorial optimization test problems

binatorial optimization problems. The number of objectives for these problems is not
restricted to two and is denoted by m.

It is important to note that we have used random instances for the combinatorial
optimization problems. In the case of only a single objective, random instances may
on average be easy for some combinatorial problems. However, in the case of multi-
ple objectives, finding the Pareto front is usually much more difficult, even if efficient
algorithms are available for the single-objective case [15]. Therefore, the instances
used in our test suite are not expected to be over-easy. Furthermore, the problems
also serve to indicate differences between the different multi-objective algorithmic
approaches other than the fact that dependencies between problem variables can be
exploited. This relative performance of the algorithms may be well observed using
our proposed test-suite. On the other hand, the degree of interaction between the
problem variables in randomly generated problem instances may not be too large,
which may cause optimization algorithms that regard the problem variables indepen-
dently of each other to be the most efficient.
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Maximum Satisfiability

In the maximum satisfiability problem, we are given a propositional formula in con-
junctive normal form. The goal is to satisfy as many clauses as possible. The solution
string is a truth assignment to the involved literals. These formulas can be represented
by a matrix in which row i specifies what literals appear either positive (1) or neg-
ative (−1) in clause i. In the multi-objective variant of this problem, we have m of
such matrices and only a single solution to satisfy as many clauses as possible in
each objective at the same time.

Knapsack

The multi-objective knapsack problem was first used to test MOEAs on by Zitzler
and Thiele [38]. We are given m knapsacks with a specified capacity and n items.
Each item can have a different weight and profit in every knapsack. Selecting item i
in a solution implies placing it in every knapsack. A solution may not cause exceed-
ing the capacity of any knapsack.

Set Covering

In the set covering problem, we are given l locations at which we can place some
service at a specified cost. Furthermore, associated with each location is a set of
regions ⊆ {0, 1, . . . r − 1} that can be serviced from that location. The goal is to
select locations such that all regions are serviced against minimal costs. In the multi-
objective variant of set covering, m services are placed at a location. Each service
however covers its own set of regions when placed at a certain location and has its
own cost associated with a certain location. A binary solution indicates at which
locations the services are placed.

Minimal Spanning Tree

In the minimal spanning tree problem we are given an undirected graph (V,E) such
that each edge has a certain weight. We are interested in selecting edges ET ⊆ E
such that (V,ET ) is a spanning tree. The objective is to find a spanning tree such that
the weight of all its edges is minimal. In the multi-objective variant of this problem,
each edge can have a different weight in each objective.

4.2 Performance Indicators

To measure the performance of a MOEA we only consider the subset of all non-
dominated solutions that is contained in the final population that results from running
the MOEA. We call such a subset an approximation set and denote it by S. The size
of the approximation set depends on the settings used to run the MOEA with.

To actually measure performance, performance indicators are used. A perfor-
mance indicator is a function that, given an approximation set S, returns a real value
that indicates how good S is with respect to a certain feature that is measured by the
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performance indicator. Performance indicators are commonly used to determine the
performance of a MOEA and to compare this performance with other MOEAs if the
number of evaluations is fixed beforehand. More detailed information regarding the
importance of using good performance indicators to evaluate MOEAs may be found
in dedicated literature [5, 22, 37].

Since we are interested in performance as measured in the objective space, we
define the distance between two multi-objective solutions z0 and z1 to be the Euclid-
ean distance between their objective values f(z0) and f(z1):

d(z0,z1) =

√
√
√
√

m−1∑

i=0

(fi(z1)− fi(z0))2 (3)

If we only want to measure diversity, we can use the FS (Front Spread) indicator.
This performance indicator was first used by Zitzler [35]. The FS indicator indicates
the size of the objective space covered by an approximation set. A larger FS indicator
value is preferable. The FS indicator for an approximation set S is defined to be the
maximum Euclidean distance inside the smallest m-dimensional bounding-box that
contains S. This distance can be computed using the maximum distance among the
solutions in S in each dimension separately:

FS(S) =

√
√
√
√

m−1∑

i=0

max(z0,z1)∈S×S{(fi(z0)− fi(z1))2} (4)

In combination with the FS indicator, it is also important to know how many
points are available in the set of non-dominated solutions, because a larger set of
trade-off points is more desirable. This quantity is called the FO (Front Occupation)
indicator and was first used by Van Veldhuizen [34]. A larger FO indicator value is
preferable.

FO(S) = |S| (5)

The ultimate goal is to cover the Pareto optimal front. An intuitive way to define
the distance between an approximation set S and the Pareto optimal front is to aver-
age the minimum distance between a solution and the Pareto optimal front over each
solution in S. We refer to this distance as the distance from a set of non-dominated
solutions to the Pareto optimal front and it serves as an indicator of how close an
approximation set has come to the Pareto optimal front. We denote it by DS→PF

.
This performance indicator was first used by Van Veldhuizen [34]. A smaller value
for this performance indicator is preferable.

DS→PF
(S) =

1
|S|

∑

z0∈S
minz1∈PS

{d(z0,z1)} (6)

An approximation set with a good DS→PF
indicator value does not imply that

a good diverse representation of the Pareto optimal set has been obtained, since the
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indicator only reflects how far away the obtained points are from the Pareto optimal
front on average. An approximation set consisting of only a single solution can al-
ready have a low value for this indicator. To include the goal of diversity, the reverse
of the DS→PF

indicator is a better guideline for evaluating MOEAs. In the reverse
distance indicator, we compute for each solution in the Pareto optimal set the dis-
tance to the closest solution in an approximation set S and take the average as the
indicator value. We denote this indicator by DPF →S and refer to it as the distance
from the Pareto optimal front to an approximation set. A smaller value for this per-
formance indicator is preferable. In the definition of this indicator, we must realize
that the Pareto optimal front may be continuous. For an exact definition, we there-
fore have to use a line integration over the entire Pareto front. For a 2-dimensional
multi-objective problem we obtain the following expression:

DPF →S(S) =
∫

PF

minz0∈S{d(z0,z1)}df(z1) (7)

In most practical experiments, it is easier to compute a uniformly sampled set of
many solutions along the Pareto optimal front and to use this discretized representa-
tion of PF instead. A discretized version of the Pareto optimal front is also available
if a discrete multi-objective optimization problem is being solved. In the discrete
case, the DS→PF

indicator is defined by:

DPF →S(S) =
1
|PS |

∑

z1∈PS

minz0∈S{d(z0,z1)} (8)

An illustration of the DPF →S indicator is presented in Fig. 7. The DPF →S in-
dicator represents both the goal of getting close to the Pareto optimal front as well as

f0(z)

f1(z)

S0 S1 PF

Fig. 7. The approximation set S1 is closer to the (discretized) Pareto optimal front but has less
diversity, while approximation set S0 is further away from the front but has greater diversity:
both sets have approximately the same DPF →S indicator value though
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the goal of getting a diverse, wide-spread front of solutions. The DPF →S indicator
for an approximation set S is zero if and only if all points in PF are contained in S
as well. Furthermore, a single solution from the Pareto optimal set will lead to the
same DPF →S indicator as a more diverse set of solutions that has objective values
that are slightly further away from the Pareto optimal front. Moreover, a similarly
diverse approximation set of solutions that is closer to the Pareto optimal front, will
have a lower DPF →S indicator value. However, an approximation set of solutions
that is extremely diverse but far away from the Pareto optimal front, such as the non-
dominated solutions of a randomly generated set of solutions, has a bad DPF →S
indicator value. This underlines the important point that diversity is not equally im-
portant as is getting close to the Pareto optimal front because a larger diversity is
often not hard to come by. What is important is the diversity along the objectives
of a set of non-dominated solutions that is as close as possible to the Pareto optimal
front.

A performance indicator that is closely related to the DPF →S indicator, is the
hypervolume indicator by Knowles and Corne [22]. In the hypervolume indicator, a
point in the objective space is picked such that it is dominated by all points in the
approximation sets that need to be evaluated. The indicator value is then equal to the
hypervolume of the multi-dimensional region enclosed by the approximation set and
the picked reference point. This value is an indicator of the region in the objective
space that is dominated by the approximation set. The main difference between the
hypervolume indicator and the DPF →S indicator is that for the hypervolume indi-
cator a reference point has to be chosen. Different reference points lead to different
indicator values. Moreover, different reference points can lead to indicator values
that indicate a preference for different approximation sets. Since in the DPF →S in-
dicator the true Pareto optimal front is used, the DPF →S indicator does not suffer
from this drawback. Of course, a major drawback of the DPF →S indicator is that in
a real application the true Pareto optimal front is not known beforehand. In that case,
the Pareto front of all approximation sets could be used as a substitute for the actual
Pareto optimal front.

4.3 Experiment Setup

Optimization Problem Dimensionalities

Real-Valued Multi-Objective Optimization Problems

For the real-valued problems, we tested all algorithms with both l = 10 and l = 100
problem variables.

Binary Multi-Objective Optimization Problems

For the binary problems, we used test instances with l = 100 and l = 1000. For
the maximum satisfiability problem, we generated the test instances by generating
2500 clauses for l = 100 and 12500 clauses for l = 1000 with a random number
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of literals between 1 and 5. For the knapsack problem, we generated instances by
generating random weights in [1; 10] and random profits in [1; 10]. The capacity of
a knapsack was set at half of the total weight of all the items, weighted according
to that knapsack objective. For set covering, the costs were generated at random
in [1; 10]. We used 250 regions and 2500 regions to be serviced for l = 100 and
l = 1000 respectively. We varied the problem difficulty through the region-location
adjacency relation. This relation was generated by making each location adjacent
to 70 and 50 randomly selected regions for l = 100 and l = 1000 respectively.
Finally, for the minimum spanning tree problem, we used full graphs with 105 edges
(15 vertices) and 1035 edges (46 vertices). The dimensionality of these problems
is therefore not precisely 100 and 1000. The weights of the edges were generated
randomly in [1; 10].

Optimization Problem Constraints

Problems CTP7, set covering, knapsack and minimal spanning tree have constraints.
To deal with them, we can use a repair mechanism to transform infeasible solu-
tions into feasible solutions. Another approach is based on the notion of constraint-
domination introduced by Deb et al. [13]. This notion allows to deal with constrained
multi-objective problems in a general fashion. A solution z0 is said to constraint-
dominate solution z1 if any of the following is true:

1. Solution z0 is feasible and solution z1 is infeasible
2. Solutions z0 and z1 are both infeasible, but z0 has a smaller overall constraint

violation
3. Solutions z0 and z1 are both feasible and z0  z1

The overall constraint violation is the amount by which a constraint is violated,
summed over all constraints. We have used this principle for problems CTP7 and
set covering. For the knapsack problem, an elegant repair mechanism was proposed
earlier by Zitzler and Thiele [38]. For the minimal spanning tree problem, the num-
ber of constraints grows exponentially with the problem size l. We therefore propose
to use repair mechanisms for these latter two problems.

Knapsack Repair Mechanism

If a solution violates a constraint, the repair mechanism iteratively removes items un-
til all constrains are satisfied. The order in which the items are investigated, is deter-
mined by the maximum profit/weight ratio. The items with the lowest profit/weight
ratio are removed first.

Minimal Spanning Tree Repair Mechanism

First the edges are removed from the currently constructed graph and they are sorted
according to their weight. Next, they are added to the graph so that no cycles are
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introduced. This is done by only allowing edges to be introduced between the con-
nected components in the graph. If after this phase, the number of connected com-
ponents has not been reduced to 1, all edges between the connected components are
regarded in increasing weight and again the connected components are merged until
a single component is left.

General Algorithmic Setup

We ran every algorithm 50 times on each problem. In any single run we chose to
allow a maximum of 20 · 103 evaluations for the real-valued problems of dimension-
ality l = 10 and the binary problems of dimensionality l = 100 and a maximum
of 100 · 103 evaluations for the real-valued problems of dimensionality l = 100 and
the binary problems of dimensionality l = 1000. As a result of imposing the restric-
tion of a maximum of evaluations, a value for the population size n exists for each
MOEA such that the MOEA will perform best. For too large population sizes, the
search will move towards a random search and for too small population sizes, there
is not enough information to perform adequate model selection and induction. We
therefore increased the population size in steps of 25 to find the best results. To ac-
tually select the best population size, we selected the result with the lowest value for
the DPF →S indicator.

Algorithms

We tested a few variants of three MOEAs. In the following we will describe the
details that are required in addition to the details given in earlier sections for con-
structing the actual MOEAs that we will use for testing.

SPEA

For SPEA, we used uniform crossover and one-point crossover with a probability of
0.8. Bit-flipping mutation was used in combination with either of these recombina-
tion operators with a probability of 0.01. These settings were used previously by the
SPEA authors [36]. We allowed the size of the external storage in SPEA to become
as large as the population size. For the real problems, we encoded every variable with
30 bits.

NSGA-II

For NSGA-II, we used the same crossover and mutation operators and the same
encoding for the real variables.

MIDEA

For MIDEA, we used the leader clustering algorithm in the objective space such
that four clusters were constructed on average. If the number of clusters becomes
too large, the requirements for the population size increases in order to facilitate
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proper factorization selection in each cluster. We do not suggest that the number of
clusters we use is optimal, but it will serve to indicate the effectiveness of parallel
exploration along the Pareto front as well as diversity preservation. In each cluster,
we either used the univariate factorization (i.e. naive MIDEA) or we estimated a
Bayesian factorization based upon normal distributions in the case of real variables.
For details on how the Bayesian factorization is learned, see [1]. However, in the case
of 100-dimensional real-valued problems, we allowed only at most a single parent
for any variable. In the case of binary variables, we used the optimal dependency
tree algorithm by Chow and Liu [8] to estimate a tree factorization in each cluster.
To further investigate the influence of the different components in the MIDEA algo-
rithm, we also performed tests in which only a single cluster is used. Furthermore, we
also replaced the use of estimating probability distributions by the use of one-point
crossover and uniform crossover with mutation as used in the SPEA and NSGA-II
algorithms. In the case of clustering in combination with the use of crossover oper-
ators, restricted mating was employed in order to ensure clustered exploration along
the front. In restricted mating crossover, an offspring is produced using two parent
solutions that are picked from the same cluster. For the truncation percentile, we used
the rule of thumb by Mühlenbein and Mahnig [26] and set τ to 0.3. Furthermore, for
the comparison benchmarks, we set the diversity preservation parameter to δ = 1.5,
which was experimentally determined to give good results both with respect to diver-
sity preservation as well as selective pressure. For an investigation of the influence of
δ on the performance of MIDEA, we also varied δ and observed the results in some
additional experiments, the results of which are reported below.

Overview of Abbreviations

In presenting the results, the different evolutionary algorithms that were tested are
abbreviated to save space. For reference, a list of abbreviations that we have used is
presented in Fig. 8.

Abbrev. Meaning

UX Uniform crossover (prob. 1) + bit-flipping mutation (prob. 0.01)

1X One-point crossover (prob. 1) + bit-flipping mutation (prob. 0.01)

Univariate The univariate factorization (2)

Learning A more advanced Bayesian factorization is learned

1 Cluster No clustering because everything is placed in a single cluster

Par. Clust. Clustering in the parameter space

Obj. Clust. Clustering in the objective space

M An instance of the MIDEA framework

Fig. 8. List of abbreviations used in the presentation of the results
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4.4 Results

To compare the MOEAs, we investigate their average performance with respect
to performance indicators introduced in Sect. 4.2. The performance indicators that
we use are the DPF →S indicator, the FS indicator and the FO indicator. For the
DPF →S performance indicator, we used different sets to represent the Pareto op-
timal front for the real-valued optimization problems and the binary optimization
problems. For the real-valued optimization problems we used a uniformly sampled
set of 5000 solutions along the Pareto optimal front. Since we do not know the Pareto
optimal front for the binary optimization problems, we used the Pareto front over all
results obtained by all MOEAs.

For each of the performance indicators, we computed their average and standard
deviation over the 50 runs to get an assessment of their performance. The averages
are tabulated in Figs. 9 through 14. The best results are written in boldface. For each
algorithm, the type of variation is indicated as a superscript. The MIDEA algorithms
are indicated by a single M symbol. For all tested MIDEA algorithms, the subscript
indicates whether only a single cluster was used or whether clustering was performed
in either the parameter space or the objective space. The population sizes that led to
the best performance, are tabulated in Figs. 15 and 16. For the standard deviations,
we refer the interested reader to a technical report [6]. Although the average behav-
ior is the most interesting, the standard deviations are vital to determine whether the
differences in the average behavior of the different algorithms are significant. To in-
vestigate these significances, we have performed Aspin-Welch-Satterthwaite (AWS)
statistical hypothesis T -tests at a significance level of α = 0.05. The AWS T -test is
a statistical hypothesis test for the equality of means in which the equality of vari-
ances is not assumed [21]. For each problem, we verified for each pair of algorithms
whether the average obtained performance indicator values differ significantly. We
assigned a value of 1 if an algorithm scored significantly better and a value of −1 if
an algorithm scored significantly worse. We summed the so obtained matrices over
all problems to get the statistically significant improvement matrices that are shown
in Figs. 17 through 19. We also computed the sum for each algorithm of its signif-
icant improvement values over all other algorithms to indicate the summed relative
statistically significant performance of the algorithms. A less detailed summary of
the statistical significance tests is shown in Fig. 21. In this figure histograms are
used to indicate the sum of the results of the statistical significance tests for each
algorithm compared with all other algorithms. The histogram represents the sums
for the real-valued problems and the combinatorial problems for the different tested
dimensionalities and the average of these four sums.

Influence of Problem Dimensionality

Although the MIDEA variants already mostly outperform the other tested algorithms
in the case in which the dimensionality of the problem is smaller (l = 10 for the real-
valued problems, l = 100 for the binary problems), they perform even better in the
case in which the dimensionality of the problem is larger. This is most likely due to
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DPF →S

EA BT10
1 ZDT10

4 ZDT10
6 CTP10

7 BT100
1 ZDT100

4 ZDT100
6 CTP100

7

SPEAUX 100 · 105 4.62 0.193 7.97 100 · 105 470 7.64 499

SPEA1X 100 · 105 3.90 0.172 7.31 100 · 105 447 7.06 476

NSGA-IIUX 100 · 105 4.39 0.303 7.25 100 · 105 360 5.99 348

NSGA-II1X 100 · 105 1.40 0.328 3.32 100 · 105 297 6.59 303

M
UX
1 Cluster 100 · 105 4.43 0.358 6.63 100 · 105 374 6.72 378

M
1X
1 Cluster 100 · 105 1.89 0.291 4.13 100 · 105 336 6.81 345

M
UX
Par. Clust. 100 · 105 4.01 0.368 6.42 100 · 105 400 6.98 394

M
1X
Par. Clust. 100 · 105 1.65 0.298 3.77 100 · 105 332 7.01 340

M
UX
Obj. Clust. 100 · 105 3.98 0.354 7.27 100 · 105 311 5.96 326

M
1X
Obj. Clust. 100 · 105 2.03 0.311 3.95 100 · 105 328 6.74 335

M
Univariate
1 Cluster 100 · 105 14.0 1.08 16.5 100 · 105 774 3.06 875

M
Learning
1 Cluster 100 · 105 11.2 0.00239 15.3 100 · 105 597 0.434 600

M
Univariate
Par. Clust. 999 · 104 5.36 0.798 7.93 100 · 105 168 3.70 192

M
Learning
Par. Clust. 999 · 104 14.0 0.159 17.1 100 · 105 416 0.470 523

naive MIDEA 100 · 105 5.00 0.306 8.64 100 · 105 157 4.60 161

M
Learning
Obj. Clust. 998 · 104 11.5 0.287 12.6 100 · 105 144 1.30 165

Fig. 9. Average of the DPF →S performance indicator on all real-valued problems. Note:
naive MIDEA could also have been abbreviated as M

Univariate
Obj. Clust.

DPF →S

EA MS100 KN100 SC100 MST105 MS1000 KN1000 SC1000 MST1035

SPEAUX 12.7 10.4 2.93 2.10 181 83.9 550 6.78

SPEA1X 11.8 9.14 2.99 2.12 270 105 484 6.40

NSGA-IIUX 11.5 8.29 1.79 1.88 180 76.4 289 7.15

NSGA-II1X 11.7 9.33 2.64 2.22 283 114 360 6.60

M
UX
1 Cluster 9.65 6.20 0.931 2.76 80.4 52.3 72.4 5.14

M
1X
1 Cluster 12.4 7.34 1.9 2.72 135 93.0 109 4.66

M
UX
Par. Clust. 10.6 6.96 1.23 2.69 104 58.8 75.4 5.42

M
1X
Par. Clust. 13.4 8.13 1.54 2.86 169 107 101 4.96

M
UX
Obj. Clust. 7.50 3.71 1.49 1.30 69.0 18.8 189 3.33

M
1X
Obj. Clust. 10.5 5.98 1.89 1.54 116 46.3 305 3.11

M
Univariate
1 Cluster 18.8 16.4 1.48 3.18 141 117 76.5 9.60

M
Learning
1 Cluster 11.4 7.25 1.50 2.70 262 77.6 94.2 5.89

M
Univariate
Par. Clust. 18.3 13.2 1.54 3.26 168 118 105 9.68

M
Learning
Par. Clust. 12.5 7.56 1.85 2.54 262 115 269 7.69

naive MIDEA 7.20 4.32 1.24 1.54 36.9 28.1 181 3.58

M
Learning
Obj. Clust. 9.37 5.91 2.52 1.72 52.4 37.4 650 2.64

Fig. 10. Average of the DPF →S performance indicator on all combinatorial problems. Note:
naive MIDEA could also have been abbreviated as M

Univariate
Obj. Clust
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Front Spread FS

EA BT10
1 ZDT10

4 ZDT10
6 CTP10

7 BT100
1 ZDT100

4 ZDT100
6 CTP100

7

SPEAUX 225 51.4 5.22 44.9 2.06 692 1.85 733

SPEA1X 369 55.8 5.26 46.3 2.31 736 3.02 773

NSGA-IIUX 179 3.60 1.09 1.76 0.413 35.2 0.756 29.3

NSGA-II1X 23.4 8.93 1.03 1.31 1.02 33.4 0.665 13.9

M
UX
1 Cluster 655 8.55 2.90 39.1 2.18 395 3.43 365

M
1X
1 Cluster 78.6 2.46 1.92 1.41 2.27 94.0 1.40 88.6

M
UX
Par. Clust. 357 12.2 5.05 4.85 2.11 384 3.10 345

M
1X
Par. Clust. 199 2.45 5.33 1.66 2.31 129 1.53 93.1

M
UX
Obj. Clust. 685 40.8 4.11 41.8 2.15 740 4.75 737

M
1X
Obj. Clust. 262 3.38 3.94 58.9 2.29 359 2.30 371

M
Univariate
1 Cluster 293 70.8 1.15 84.7 1.82 393 0.180 347

M
Learning
1 Cluster 129 · 101 84.9 3.00 87.4 2.12 635 2.20 342

M
Univariate
Par. Clust. 508 · 101 24.0 2.47 28.8 2.19 231 0.05 306

M
Learning
Par. Clust. 112 · 102 142 5.15 116 1.91 577 7.01 588

naive MIDEA 209 · 101 90.4 5.29 114 2.45 636 8.10 619

M
Learning
Obj. Clust. 164 · 102 197 3.68 188 3.28 175 · 101 3.97 183 · 101

Fig. 11. Average of the FS performance indicator on all real-valued problems. Note: naive
MIDEA could also have been abbreviated as M

Univariate
Obj. Clust.

Front Spread FS

EA MS100 KN100 SC100 MST105 MS1000 KN1000 SC1000 MST1035

SPEAUX 116 69.5 64.6 30.6 288 254 631 52.1

SPEA1X 126 82.6 50.1 32.3 399 308 636 50.8

NSGA-IIUX 120 78.3 17.3 26.3 370 288 144 33.7

NSGA-II1X 129 79.0 12.8 23.9 364 291 107 36.1

M
UX
1 Cluster 132 92.6 20.7 17.8 304 285 112 40.1

M
1X
1 Cluster 141 91.9 18.3 19.3 329 247 105 47.9

M
UX
Par. Clust. 129 90.8 20.1 18.4 265 289 125 40.7

M
1X
Par. Clust. 132 91.4 17.3 20.1 277 261 112 46.8

M
UX
Obj. Clust. 187 119 21.9 30.1 600 483 199 58.7

M
1X
Obj. Clust. 183 103 21.1 26.0 579 430 155 58.0

M
Univariate
1 Cluster 79.2 43.3 16.1 16.9 122 98.4 10.8 22.7

M
Learning
1 Cluster 143 90.0 18.2 19.7 124 214 135 37.5

M
Univariate
Par. Clust. 90.8 57.4 16.7 16.7 72.9 85.2 10.7 23.1

M
Learning
Par. Clust. 143 106 18.4 20.5 124 109 19.2 32.1

naive MIDEA 192 116 27.6 32.1 665 503 313 65.2

M
Learning
Obj. Clust. 191 125 22.4 30.3 784 512 66.2 60.2

Fig. 12. Average of the FS performance indicator on all combinatorial problems. Note: naive
MIDEA could also have been abbreviated as M

Univariate
Obj. Clust.
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Front Occupation FO

EA BT10
1 ZDT10

4 ZDT10
6 CTP10

7 BT100
1 ZDT100

4 ZDT100
6 CTP100

7

SPEAUX 60.9 99.0 50.0 43.5 49.8 27.6 18.7 26.7

SPEA1X 38.7 187 49.6 43.2 48.8 27.4 29.3 26.8

NSGA-IIUX 5.42 59.7 47.5 59.3 100 5.80 6.00 4.00

NSGA-II1X 29.5 32.7 31.2 9.98 75.0 5.00 6.60 3.00

M
UX
1 Cluster 9.92 41.7 8.06 9.00 14.4 12.8 14.4 12.6

M
1X
1 Cluster 13.4 30.3 6.52 11.9 16.5 7.10 6.64 5.94

M
UX
Par. Clust. 7.46 25.4 8.02 18.2 15.4 12.9 15.2 12.4

M
1X
Par. Clust. 9.78 24.7 7.80 11.9 17.5 7.20 8.12 6.68

M
UX
Obj. Clust. 13.9 10.0 8.48 8.62 19.1 20.0 19.6 21.7

M
1X
Obj. Clust. 9.94 31.4 7.32 15.6 17.4 12.2 9.76 12.2

M
Univariate
1 Cluster 5.74 6.88 4.90 4.14 36.7 6.9 2.55 3.20

M
Learning
1 Cluster 6.06 8.36 258 4.96 13.1 5.25 369 3.75

M
Univariate
Par. Clust. 29.6 98.8 30.0 82.0 33.4 69.4 3.70 18.3

M
Learning
Par. Clust. 52.7 65.4 104 69.2 149 105 92.0 112

naive MIDEA 12.5 68.7 56.3 34.0 64.5 106 27.7 78.9

M
Learning
Obj. Clust. 30.1 26.4 197 32.1 111 50.8 163 43.0

Fig. 13. Average of the FO performance indicator on all real-valued problems. Note: naive
MIDEA could also have been abbreviated as M

Univariate
Obj. Clust.

Front Occupation FO

EA MS100 KN100 SC100 MST105 MS1000 KN1000 SC1000 MST1035

SPEAUX 46.8 46.5 25.1 42.8 49.4 49.5 26.2 48.8

SPEA1X 46.1 77.6 24.3 93.2 49.9 49.7 26.5 95.0

NSGA-IIUX 33.5 35.5 12.0 32.3 35.4 33.1 7.50 64.7

NSGA-II1X 41.1 35.4 6.80 24.5 42.0 36.4 7.20 64.8

M
UX
1 Cluster 100 28.1 11.3 20.8 197 46.8 12.4 25.4

M
1X
1 Cluster 130 43.8 14.9 20.3 212 43.1 16.1 38.5

M
UX
Par. Clust. 112 32.2 10.6 23.7 171 46.9 13.0 26.0

M
1X
Par. Clust. 136 50.2 13.2 24.5 179 44.1 17.8 37.1

M
UX
Obj. Clust. 165 48.4 11.1 29.3 269 78.1 15.0 44.2

M
1X
Obj. Clust. 160 61.1 16.2 33.5 325 52.3 13.2 48.5

M
Univariate
1 Cluster 56.9 15.6 8.56 17.6 37.5 20.6 3.92 16.7

M
Learning
1 Cluster 105 37.5 10.0 20.9 48.5 64.2 19.2 61.0

M
Univariate
Par. Clust. 59.8 21.9 8.87 16.6 85.4 15.9 4.90 16.3

M
Learning
Par. Clust. 104 40.9 9.60 20.9 48.5 47.5 8.67 58.7

naive MIDEA 147 36.1 11.9 25.9 129 65.1 16.1 41.9

M
Learning
Obj. Clust. 143 51.8 10.0 25.3 411 101 8.0 65.9

Fig. 14. Average of the FO performance indicator on all combinatorial problems. Note: naive
MIDEA could also have been abbreviated as M

Univariate
Obj. Clust.
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Population Size n

EA BT10
1 ZDT10

4 ZDT10
6 CTP10

7 BT100
1 ZDT100

4 ZDT100
6 CTP100

7

SPEAUX 50 50 25 25 25 25 25 25

SPEA1X 25 100 25 25 25 25 25 25

NSGA-IIUX 200 200 100 100 100 200 200 150

NSGA-II1X 200 375 75 300 75 200 150 300

M
UX
1 Cluster 75 100 25 25 100 125 200 125

M
1X
1 Cluster 100 450 25 300 125 325 100 175

M
UX
Par. Clust. 175 75 25 100 75 125 150 175

M
1X
Par. Clust. 125 450 25 275 150 175 100 175

M
UX
Obj. Clust. 225 25 25 25 125 200 200 300

M
1X
Obj. Clust. 150 475 25 725 125 200 100 150

M
Univariate
1 Cluster 150 50 75 50 100 75 375 50

M
Learning
1 Cluster 150 75 425 75 175 100 700 100

M
Univariate
Par. Clust. 175 125 175 125 225 150 450 150

M
Learning
Par. Clust. 400 250 275 250 200 150 550 125

naive MIDEA 275 125 200 125 250 200 800 200

M
Learning
Obj. Clust. 450 200 250 150 225 300 400 250

Fig. 15. Population sizes used for the real-valued problems. Note: naive MIDEA could also
have been abbreviated as M

Univariate
Obj. Clust.

Population Size n

EA MS100 KN100 SC100 MST105 MS1000 KN1000 SC1000 MST1035

SPEAUX 25 25 25 25 25 25 25 25

SPEA1X 25 50 25 125 25 25 25 50

NSGA-IIUX 350 325 300 200 200 200 200 250

NSGA-II1X 100 325 250 200 150 250 150 200

M
UX
1 Cluster 575 350 550 1250 775 775 325 1000

M
1X
1 Cluster 550 400 300 1200 800 625 500 1050

M
UX
Par. Clust. 500 525 500 2600 650 775 350 1100

M
1X
Par. Clust. 525 575 425 2375 650 650 475 1200

M
UX
Obj. Clust. 550 425 550 1975 750 775 775 1800

M
1X
Obj. Clust. 475 425 825 1400 825 500 650 1750

M
Univariate
1 Cluster 700 200 450 5000 1375 800 225 800

M
Learning
1 Cluster 850 700 700 1850 1350 850 500 1600

M
Univariate
Par. Clust. 750 600 525 7000 300 375 250 700

M
Learning
Par. Clust. 1075 950 1050 1850 1350 700 700 2900

naive MIDEA 500 300 900 2500 875 750 900 1850

M
Learning
Obj. Clust. 1000 925 1050 4000 1400 1500 1100 2350

Fig. 16. Population sizes used for the combinatorial problems. Note: naive MIDEA could also
have been abbreviated as M

Univariate
Obj. Clust.
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SPEAUX 0 -8 -7 -4 -9 3 -10 3 -11 3 4 -4 -2 -1 -12 -7 -62

SPEA1X 8 0 -7 -3 -8 5 -8 6 -9 5 6 -3 -1 0 -12 -8 -29

NSGA-IIUX 7 7 0 2 -3 5 -4 4 -10 4 6 -2 -2 3 -13 -7 -3

NSGA-II1X 4 3 -2 0 -1 11 -1 9 -6 12 5 -5 0 -1 -11 -8 9

M
UX
1 Cluster 9 8 3 1 0 3 6 3 -8 2 11 7 6 6 -7 -6 44

M
1X
1 Cluster -3 -5 -5 -11 -3 0 -1 -4 -7 -8 -4 -7 -10 -8 -11 -11 -98

M
UX
Par. Clust. 10 8 4 1 -6 1 0 2 -7 1 11 6 6 5 -9 -8 25

M
1X
Par. Clust. -3 -6 -4 -9 -3 4 -2 0 -7 3 -4 -7 -10 -8 -10 -11 -77

M
UX
Obj. Clust. 11 9 10 6 8 7 7 7 0 6 8 6 2 8 -3 1 93

M
1X
Obj. Clust. -3 -5 -4 -12 -2 8 -1 -3 -6 0 -4 -8 -10 -8 -11 -11 -80

M
Univariate
1 Cluster -4 -6 -6 -5 -11 4 -11 4 -8 4 0 -10 -4 -7 -12 -11 -83

M
Learning
1 Cluster 4 3 2 5 -7 7 -6 7 -6 8 10 0 1 2 -8 -7 15

M
Univariate
Par. Clust. 2 1 2 0 -6 10 -6 10 -2 10 4 -1 0 -1 -6 -7 10

M
Learning
Par. Clust. 1 0 -3 1 -6 8 -5 8 -8 8 7 -2 1 0 -8 -6 -4

naive MIDEA 12 12 13 11 7 11 9 10 3 11 12 8 6 8 0 5 138

M
Learning
Obj. Clust. 7 8 7 8 6 11 8 11 -1 11 11 7 7 6 -5 0 102

Fig. 17. Number of times an improvement was found to be statistically significant in the
DPF →S performance indicator, summed over all tested problems. The numbers in a sin-
gle row indicate the summed number of significantly better or worse results compared to the
algorithms in the different columns. Note: naive MIDEA could also have been abbreviated as
M

Univariate
Obj. Clust.

the more powerful diversity exploration and preservation in MIDEA. As the dimen-
sionality of the problem goes up, the parameter space (i.e. the search space) becomes
larger. In the case of the binary combinatorial problems, the number of solutions in
the objective space becomes larger as well. If clustering in the objective space is used
in MIDEA, better results are obtained on average as the dimensionality of the prob-
lem increases. In Fig. 20 the Pareto fronts over 50 runs for a selection of algorithms
are plotted on one problem from each problem class and dimensionality. The better
diversity preservation and proper distribution of the points along the front can be
seen clearly for the problems of larger dimensionality. For the lower dimensionality
problems, better diversity preservation can also be observed, which is most exempli-
fied by the fact that MIDEA obtains non-dominated solutions at the outer ends of the
front for the knapsack problem with l = 100.
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SPEAUX 0 -7 8 8 2 13 5 11 -3 11 11 3 13 2 -7 -9 61

SPEA1X 7 0 16 14 8 15 10 13 0 13 11 5 13 3 -6 -7 115

NSGA-IIUX -8 -16 0 5 -8 3 -8 3 -15 1 3 -8 1 -6 -16 -14 -83

NSGA-II1X -8 -14 -5 0 -8 1 -8 1 -16 -1 1 -9 0 -6 -16 -14 -102

M
UX
1 Cluster -2 -8 8 8 0 12 3 11 -12 5 9 -2 10 -4 -16 -12 10

M
1X
1 Cluster -13 -15 -3 -1 -12 0 -12 -2 -13 -6 0 -11 -4 -7 -15 -14 -128

M
UX
Par. Clust. -5 -10 8 8 -3 12 0 12 -11 8 9 0 8 -3 -15 -11 7

M
1X
Par. Clust. -11 -13 -3 -1 -11 2 -12 0 -11 -6 0 -9 -5 -7 -15 -13 -115

M
UX
Obj. Clust. 3 0 15 16 12 13 11 11 0 9 11 9 14 6 -9 -8 113

M
1X
Obj. Clust. -11 -13 -1 1 -5 6 -8 6 -9 0 2 -8 2 -8 -16 -12 -74

M
Univariate
1 Cluster -11 -11 -3 -1 -9 0 -9 0 -11 -2 0 -11 1 -13 -15 -16 -111

M
Learning
1 Cluster -3 -5 8 9 2 11 0 9 -9 8 11 0 12 -4 -13 -13 23

M
Univariate
Par. Clust. -13 -13 -1 0 -10 4 -8 5 -14 -2 -1 -12 0 -14 -15 -16 -110

M
Learning
Par. Clust. -2 -3 6 6 4 7 3 7 -6 8 13 4 14 0 -8 -11 42

naive MIDEA 7 6 16 16 16 15 15 15 9 16 15 13 15 8 0 -2 180

M
Learning
Obj. Clust. 9 7 14 14 12 14 11 13 8 12 16 13 16 11 2 0 172

Fig. 18. Number of times an improvement was found to be statistically significant in the FS
performance indicator, summed over all tested problems. The numbers in a single row indicate
the summed number of significantly better or worse results compared to the algorithms in the
different columns. Note: naive MIDEA could also have been abbreviated as M

Univariate
Obj. Clust.

Influence of Mixtures by Clustering the Objective Space

The fact that the use of mixtures by clustering the objective space allows for en-
hanced diversity exploration and preservation, can also be observed by the difference
between the spread obtained by MIDEA with crossover operators using only a single
cluster versus the case in which on average four clusters are used. A wider spread
of solutions is found when clustering in the objective space is enabled. Furthermore,
although clustering in the parameter space is a powerful approach to enhance the
learning of probabilistic models, it does not immediately lead to better results in
multi-objective optimization.

Influence of the Problem Structure Exploitation Capabilities of EDAs

On the BT1 problem, modelling interactions in MIDEA clearly leads to better results
than those obtained by the other MOEAs. Thus, exploiting interactions can be bene-
ficial in multi-objective optimization. For the BT1 problem with l = 10, if we allow
for 5 ·105 evaluations, the MIDEA variant that learns Bayesian factorizations is even
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NSGA-IIUX -10 -11 0 2 -1 8 1 6 -3 8 11 -3 2 -8 -4 -6 -8

NSGA-II1X -12 -13 -2 0 -3 9 -3 8 -6 7 10 -4 0 -11 -8 -11 -39

M
UX
1 Cluster -11 -12 1 3 0 10 0 10 -10 9 14 2 3 -7 -14 -10 -12

M
1X
1 Cluster -16 -16 -8 -9 -10 0 -11 -4 -11 -8 -2 -5 -14 -16 -15 -15 -160

M
UX
Par. Clust. -11 -12 -1 3 0 11 0 10 -10 8 14 2 3 -5 -14 -12 -14

M
1X
Par. Clust. -16 -16 -6 -8 -10 4 -10 0 -12 -4 -1 -5 -14 -16 -16 -15 -145

M
UX
Obj. Clust. -7 -10 3 6 10 11 10 12 0 12 14 7 3 -2 -2 -8 59

M
1X
Obj. Clust. -16 -16 -8 -7 -9 8 -8 4 -12 0 -2 -4 -13 -16 -16 -15 -130

M
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1 Cluster -14 -14 -11 -10 -14 2 -14 1 -14 2 0 -12 -7 -16 -16 -16 -153

M
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Par. Clust. 3 1 8 11 7 16 5 16 2 16 16 3 11 0 2 -2 115

naive MIDEA -1 -3 4 8 14 15 14 16 2 16 16 6 10 -2 0 -3 112

M
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Obj. Clust. 4 0 6 11 10 15 12 15 8 15 16 8 9 2 3 0 134

Fig. 19. Number of times an improvement was found to be statistically significant in the FO
performance indicator, summed over all tested problems. The numbers in a single row indicate
the summed number of significantly better or worse results compared to the algorithms in the
different columns. Note: naive MIDEA could also have been abbreviated as M

Univariate
Obj. Clust.

capable of finding near optimal solutions whereas the other MOEAs were observed
not to be able to produce comparable results. Furthermore, if we compare the results
of the MIDEA without clustering and with learning interactions with the MIDEA
without clustering and also without learning interactions (i.e. M

Learning
1 Cluster vs. M

Univariate
1 Cluster ),

exploiting interactions often leads to better results and thus enhances the quality
of the multi-objective search process. However, the same can be said for clustering
the objective space in general. Moreover, the much cheaper operation of clustering
the objective space can lead to significant improvements, regardless of the type of
recombination used inside each cluster. Concordantly, the naive MIDEA in which
objective clustering is used obtains good results overall. In fact, summarized over
all problems, the naive MIDEA is arguably the best algorithm that we have tested.
Moreover, the naive MIDEA runs quickly, even for problems with many variables.
Hence, learning dependencies between a problems’ variables does not necessarily
lead to advanced information about the trade-off in objective space that is the most
important in multi-objective optimization problems. Clustering the objective space
on the other hand does seem to help directly.
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Fig. 20. Pareto fronts over 50 runs on a few of the tested problems. For clarity only a selection
of all tested algorithms is shown. Note: naive MIDEA could also have been written as MIDEA
Univariate Obj. Clust.

Using more advanced factorizations to further exploit a problem’s structure in
the form of dependencies between a problem’s variables can lead to the generation
of more solutions on a less preferred front. Although such an approximation set is a
result that can be found more efficiently by estimating involved probability distrib-
utions instead of using classical recombination operators, such a result is intuitively
less desirable. More research is required to investigate the issue of exploiting depen-
dencies between a problem’s variables in an EDA for multi-objective optimization
further. On the one hand it would be interesting to attempt to overcome this prob-
lem and ensure that the added complexity of the inductive capabilities of estimating
probability distributions results in a more effective exploration towards the Pareto
optimal front. On the other hand it would be interesting to investigate what type of
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Fig. 21. A summary of the results of the statistical hypothesis tests performed for each pair
of algorithms. For each algorithm, the sum of the outcome of the statistical hypothesis tests is
shown for the real-valued problems and the combinatorial problems for each dimensionality
separately. Furthermore, the average of these values is also shown, which serves as a global
indicator of the performance of an algorithm relative to the other tested algorithms. Note:
naive MIDEA could also have been abbreviated as M

Univariate
Obj. Clust.

(real-world) multi-objective optimization problems can be solved more efficiently
using MIDEA instances because of difficulties such as non-linear dependencies be-
tween the problem variables.

The Influence of δ

In our benchmarks, we have picked a specific value for δ. However, the δ parameter
is a unique parameter that determines the balance between non-domination selection
pressure and diversity preservation selection pressure. Although we acknowledge
the influence of this parameter, we find it outside the scope of this chapter for an
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in-depth discussion. We refer the interested reader to existing literature regarding the
influence of δ [5].

4.5 Practitioner’s Summary

Our experimental results indicate that clustering the objective space leads to superior
MOEAs. For EDAs this implies that constructing mixture probability distributions
in MIDEAs based on geometric aspects of the objective space is a good approach.
This makes the naive MIDEA instance based on mixture probability distributions
truly an effective and easy-to-use new tool for multi-objective optimization. Further-
more, NSGA-II is overall the most competitive. However, there is an added value
to the use of MIDEA in that it is able to obtain and maintain a larger and more
diverse Pareto front by parallel front exploration and diversity preserving selection.
The experiments underline these results as the front spread (Figs. 11 and 12), front
occupation (Figs. 13 and 14) and the global Pareto fronts in Fig. 20 indicate a better
performance. This increased performance is also statistically significant, as can be
seen in figures 18 and 19. The use of clustering to obtain mixture probability distri-
butions clearly leads to a significant increase of performance in the preservation and
exploration of diversity.

Overall, the naive MIDEA is a very good MOEA that could be applied to real-
world problems. We suggest setting δ ∈ [1; 11

2 ] and to first use simple factorizations
such as the univariate factorization. If more time and function evaluations are avail-
able, more complex factorizations can be used as well. An implementation of the
naive MIDEA in C is available for download from the website of the first author.

5 Conclusions

In this paper we have presented the naive MIDEA for multi-objective optimization.
The naive MIDEA clusters the selected solutions in the objective space, after which it
estimates a univariate factorization in each cluster separately. New solutions are then
drawn from the so-obtained mixture probability distribution. The naive MIDEA is a
specific instance of the algorithmic framework MIDEA which is a general form of
an EDA for multi-objective optimization in which a probabilistic model is learned.
For the specific task of multi-objective optimization, the use of mixture distributions
obtained by clustering the objective space has been observed to stimulate the desir-
able parallel exploration along the Pareto front. The naive MIDEA has only little
computational overhead since clustering in the objective space can be done very fast
as can the estimation of a univariate factorization. Furthermore, although no fur-
ther exploitation of dependencies between a problem’s variables is used in the naive
MIDEA, the results obtained for the naive MIDEA are already superior to results
obtained with algorithms in which clustering the objective space is not used. Con-
cluding, the naive MIDEA has been found to be a fast, easy-to-use and effective tool
for multi-objective optimization.
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Summary. In this work we address the parallelization of the kind of Evolutionary Algorithms
(EAs) known as Estimation of Distribution Algorithms (EDAs). After an initial discussion on
the types of potentially parallel schemes for EDAs, we proceed to design a distributed island
version (dEDA), aimed at improving the numerical efficiency of the sequential algorithm in
terms of the number of evaluations. After evaluating such a dEDA on several well-known
discrete and continuous test problems, we conclude that our model clearly outperforms exist-
ing centralized approaches from a numerical point of view, as well as speeding up the search
considerably, thanks to its suitability for physical parallelism.

1 Introduction

Estimation of Distribution Algorithms are a relatively recent type of optimization and
learning techniques based on the concept of using a population of tentative solutions
to iteratively approach the problem region where the optimum is located [21, 27].
EDAs are often listed as a kind of evolutionary algorithms in which an initial popu-
lation of individuals, each one encoding a possible solution to the problem, is itera-
tively improved by the application of stochastic operators. Every individual encodes
a solution that is weighted with respect to the others by assigning a fitness value
according to the objective function being optimized.

Just as in other areas of learning and optimization, reducing the cost of the search
process is a critical issue in EDAs. This cost is usually measured as the number of
evaluations of the objective function. But reducing the wall-clock time is also very
important in real world applications, in which time consuming operations lead to
unaffordable computation times. A combined reduction (numerical-plus-physical)
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in the cost of the algorithm will permit researchers to address the many classes of
complex problems that usually appear in academy and especially in industry.

Thus, our work is motivated by an apparently simple question: how could we
reduce the number of total fitness function evaluations of an EA? Ideas for reducing
the total number of function evaluations include, for example, the use of hybrid tech-
niques combining global and local search. Also, decentralized algorithms such as
distributed evolutionary algorithms and cellular genetic algorithms [2] can alleviate
the problem of a large numerical effort. In fact, decentralized algorithms can be later
parallelized to obtain a still higher degree of numerical and real time efficiency. This
question relates to the term Low Cost Evolutionary Algorithm (LCEA) that was in-
troduced in [30, 31]. With this term we label a set of features that lead the considered
strategy to:

• learn and use the probabilistic structure of the problem,
• learn “appropriate” evaluation functions,
• make partial evaluations of individuals, and
• use parallel and distributed techniques.

These directives are targeted to create efficient algorithms, in a similar way as
Goldberg has recently defined competent GA [15]. We focus our research interest
on the first and last points of the above list, namely: in learning the probabilistic
structure of the problem and also in using parallelism.

The idea behind the first line of research is that detecting and using the most im-
portant interactions among the problem variables is a really important key to achiev-
ing an efficient sampling of the solution space. The aim of the last point is related
to the use of parallel and distributed architectures to reduce the number of function
evaluations (numerical point of view). Another motivation for parallelism is to re-
duce the computational cost of each EDA step (physical point of view).

The contributions of this paper are the discussion of distributed alternatives for
EDAs and the proposal of a concrete distributed algorithm that outperforms its se-
quential version. Unlike many existing works, we deal in this study both with dis-
crete and continuous benchmarks. The algorithm proposed here reduces drastically
the number of function evaluations, as well as the run time.

The paper is structured as follows. Section 2 examines the state of the art in
EDAs from the point of view of their parallelization. Section 3 reviews the parallel
techniques available to design new EDA algorithms. Section 4 presents the parallel
distributed version of the Univariate Marginal Distribution Algorithm (dUMDA) de-
veloped here. Then, we present the benchmark used in our analysis in Sect. 5. Later,
in Sect. 6, we show some experimental results obtained from the analysis of two dis-
tributed versions of dUMDA over discrete and continuous domains. Finally, Sect. 7
contains some concluding remarks and discusses future work issues.
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2 EDAs and Parallelism: State-of-the-Art

This section revisits the most relevant concepts concerning EDAs and parallelism
needed to understand the present work. The general Estimation of Distribution Al-
gorithm, or EDA, [25] can be defined conceptually as shown in Algorithm 5.

Algorithm 5 EDA
Set t ← 1;
Generate N >> 0 points randomly;
while termination criteria are not met do

Select M ≤ N points according to a selection method;
Estimate the distribution ps(x, t) of the selected set;
Generate N new points according to the distribution ps(x, t);
Set t ← t + 1;

end while

The chief step in this algorithm is to estimate ps(x, t) and to generate new points
according to this distribution. This represents a clear difference with respect to other
evolutionary algorithms that use recombination and/or mutation operators to com-
pute a new population of tentative solutions. Since the results of the EDA depend
on how the mentioned probability distribution is estimated, graphical models have
became common tools capable of efficiently representing the probability distribu-
tion. Some authors [20, 26, 32, 36] have proposed Bayesian networks to represent
the probability distribution for discrete domains, while Gaussian networks are usu-
ally employed for continuous domains [19]. The reader can find in [21] references
to some popular implementations of the different EDA families, namely EBNA,
EMNA, BOA, PADA, etc.

We will distinguish several levels at which an EDA could be parallelized:

• estimation of probability distribution level,
• sampling of new individuals level,
• population level,
• fitness evaluation level, and
• any combination of the above levels.

The first level, that is, learning of the model (either Bayesian or Gaussian) can be
achieved in parallel. In general, learning Bayesian networks is an NP-hard problem
[11], because learning a model requires exponentially increasing computational re-
sources. Many algorithms for learning the probability distribution use a score+search
procedure. These methods define a metric that measures the goodness of every can-
didate Bayesian network with respect to a database of cases. In addition, a search
procedure to move efficiently through the space of possible networks is needed. In
these algorithms, a single-link lookahead search is commonly adopted for efficiency.
Xiang and Chu [12] have studied the parallel learning of belief networks. They pro-
pose an algorithm to decompose the learning task for parallel processing, which is
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based on a multi-link lookahead search [5]. They partitioned the processors into two
types: one processor is designated as the search manager, and the other ones explore
the network structure (see [12] for details). Following this idea, the authors of [22]
propose an EDA that learns the probability distribution of the selected points in par-
allel. They concentrate on the property of decomposing the score BIC (Bayesian
Information Criteria), i.e., the score can be calculated as the sum of the separate
local BICi scores for the variables [35]. Similarly, in [6] the author extends this re-
sult applying two different parallelism techniques, shared memory with multithreads
programming and messages passage between processes.

Mendiburu et. al. [24] implement an extension to the algorithm developed in [6,
22], that consists in realizing the generation of new individuals in a distributed form.
Each slave receives from the manager process a variable order and the probabilities,
to generate a portion of the population and send it to the master. As its ancestors, it
suffers the problem of the communication highest costs.

Ocenásek and Schwarz proposed a different algorithm for computing the Bayesian
network in parallel; this parallel algorithm is applied to BOA [32] and the resulting
technique is called PBOA [29]. In this algorithm, the authors used explicit topologi-
cal ordering of variables to keep the model acyclic.

One distributed version was implemented in [34]. A new semi naive-Bayes par-
allel algorithm was proposed. This algorithm is named Parallel Interval Estimation
naive-Bayes (PIENB). The algorithm is based on the island model, where each island
contains a different population evolving in isolation for a number of generations, and
after a predetermined scheme of migration is applied, the islands interchange the best
individuals with their newborn.

The second level is another hot topic, because few works have been proposed
to achieve parallel sampling of the new individuals. In the Bivariate Marginal Dis-
tribution Algorithm [33], Pelikan proposes an algorithm for the generation of new
individuals using the dependency graph. The algorithm is well suited for paralleliza-
tion because the generation of different individuals is independent from each other.
However, this algorithm has not been yet implemented by the authors. BMDA is
mentioned just as an example, because many other EDAs show the same indepen-
dency in the phase of generation of individuals.

The population-based parallel approach (third level) finds its inspiration in the
observation that natural populations show a spatial structure. As a result, the so-
called demes could be used to separately evolve a solution. Demes are semi-indepen-
dent groups of individuals or subpopulations loosely coupled to other neighbor
demes. This coupling takes the form of the migration or diffusion of some individu-
als from one deme to another. This technique admits an easy parallelization that has
been largely investigated in the field of EAs (see [2, 10]), and the existing findings
can be also applied to the parallelization of EDAs. In this paper, we deal with this ap-
proach; and in the following sections we will discuss how to use it in the distributed
Univariate Marginal Distribution Algorithm (dUMDA) for discrete and continuous
domains.

Parallelization at the fitness evaluation level (the fourth level) does not require
any change in the standard EDA, since the fitness of an individual is independent of
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the rest of the population and can be computed in parallel in a farming style. More-
over, in many real-world problems, the calculation of the individual’s fitness is by far
the most time consuming step of the algorithm. This is also a necessary condition for
the success of such a kind of parallelism, in order to keep the communication time
small to the computation time. In this case, an obvious approach is to evaluate each
individual fitness simultaneously on a different processor. A master process manages
the population and hands out individuals to evaluate to a number of slave processes.
After the evaluation, the master collects the results and applies the necessary opera-
tions to produce the next generation.

The last level, known as the hybrid level, is a combination of different paralleliza-
tion methods. For example, we could have an algorithm that uses parallelization at
the population level conjugated with a farming model for the evaluation of the indi-
viduals.

3 Parallel Evolutionary Algorithms

In this section we focus on the parallelization at the population level, what represents
the main research line of this paper. First, we present the parallel architectures used
to implement these algorithms, and then we analyze the so-called coarse-grained or
distributed parallel EA.

3.1 Parallel Architectures

In this subsection we will present some widely used parallel architectures and their
influence in the implementation of a parallel EA. Nowadays, the most popular type
of parallel configuration is a distributed system, a kind of Multiple Instruction Mul-
tiple Data streams computer after the well-known Flynn’s taxonomy. A distributed
system is composed of separate computers (usually workstations or PCs) intercon-
nected by a high-speed network. This world-wide trend of building parallel machines
as networks of computers immediately suggests the application of coarse-grained
parallelism, which is characterized by a high computation/communication ratio.

One distinguished parallel algorithm that successfully exploits these architec-
tures efficiently is the coarse-grained parallel genetic algorithm (also called distrib-
uted, multi-population or island model) [37]. This kind of algorithm has multiple
populations interconnected in a particular topology (ring, hyper-cube, etc.), perform-
ing sparse migrations of information (usually individuals) among its component is-
lands. Our present study is based on this type of algorithm (see Fig. 1).

We should notice that the World Wide Web and the existing Wide Area Network
technologies provide an important infrastructure for distributed computation, that
could be used as a platform to implement coarse-grained parallel EAs. This is usually
referred to as grid computing [14], a very interesting topic of research.
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Fig. 1. Distributed Estimation of Distribution Algorithm (dEDA)

3.2 Coarse-Grained Parallel Evolutionary Algorithms

The coarse-grain computational EA model has been largely studied in the EA com-
munity, as well as in other branches of optimization and learning. The island model
[13] features geographically separated sub-algorithms each one having its own sub-
population of a relatively large size. These subalgorithms may exchange information
with a given frequency, e.g., by allowing some individuals to migrate from one is-
land to another. The main idea of this approach is to periodically re-inject diversity
into subpopulations which would otherwise converge prematurely. As could be ex-
pected, different islands will tend to explore different portions of the search space
in parallel, and to provide independent solutions to the same problem [38]. Within
each subpopulation, a standard sequential EA is usually executed between migration
phases.

The algorithms having multiple populations must be tuned because they are con-
trolled by several new parameters that affect their efficiency and precision. Among
other things, we must decide the number and size of the subpopulations, the connec-
tion topology among them, the number of migrants (alternatively it can be defined
as a migration rate), the frequency of the migrations, and the criteria for selecting
the migrants and the replaced individuals when the new ones arrive. The importance
of these parameters in the quality of the search and its efficiency has been largely
studied [3, 17, 37], although the optimal values clearly depend on the problem being
solved.

We are using for the present study a unidirectional ring topology, since it is easy
to implement and analyze (see a discussion on this and other topologies in [10]).

3.3 Migration Policy in a Parallel Distributed Evolutionary Algorithm

The working principles of a distributed EA include a communication phase,
which is governed by a migration policy. The migration policy determines how
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communication is carried out by the islands of the distributed EA, and it is defined
by five parameters:

• Number of migrants (m). It is the number of individuals to exchange among
the islands, m ∈ {0, 1, 2 . . .}. The value 0 means in this case no interaction at
all among the subpopulations (idle search). Alternatively, this parameter could
be measured as a subpopulation percentage or rate.

• Migration frequency (r). Number of generations in isolation, r ∈ {0, 1, 2 . . .}.
Alternatively, it can be measured as the number of function evaluations before
migration, which is more appropriate when comparing algorithms having a dif-
ferent step grain (in terms of the number of evaluations).

• Policy for selecting migrants (S). The migrant selection can be made according
to any of the selection operators available in the literature (fitness proportional,
tournament, etc.), e.g., S = {best, random}. The most used are truncation (se-
lect the best) and random.

• Policy for migration replacement (R). It is used for integrating the incoming
individual in the target subpopulation, e.g., R = {worst, random}. It decides
which individuals will be replaced by the incoming migrants.

• Synchronization. It is a flag indicating whether the algorithm islands are per-
forming regular blocking input/output from/to another island, or whether indi-
viduals are integrated whenever they arrive, at any moment during the search.

In practice, many useful combinations of these techniques are possible. In our
implementation, the algorithm can be tested with any combination of these parame-
ters, although for the experiments we will keep some of them fixed.

4 Parallel Estimation of Distribution Algorithms Using Islands

After discussing the different parameters affecting the parallelization of EAs, we
will now move to the EDA domain. As we pointed out, the distributed approach
will be used here because it allows the exploitation of clusters of machines, which is
the most popular parallel platform available in labs and departments. The resulting
dEDA works as reported in the Algorithm 6.

The asynchronous dEDA algorithm can be seen as the combination of d islands
each one executing an EDA algorithm. This is graphically depicted in Fig. 1.

We directly stress the use of asynchronous dEDAs because they lead to faster
executions than synchronous ones when the component subalgorithms run the same
kind of algorithm on similar processors [4].

The main idea of our asynchronous algorithm is to execute in each island an
EDA algorithm, and periodically (e.g., after the generation of each new individual)
to verify whether the migration step has been reached. In that case, there will be
an exchange of individuals with the neighbors according to the selected topology
and the rest of migration parameters. The arriving individuals replace the selected
individuals; e.g., worst or random individuals are replaced by the newcomers. In
our case, we select the best individuals in the source island and replace the worst
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Algorithm 6 dEDA
Islandi

Set t ← 1;
Generate N >> 0 points randomly;
while termination criteria are not met do

Select M ≤ N points according to a selection method;
Estimate the distribution ps(x, t) of the selected set;
Generate N new points according to the distribution ps(x, t);
// Communication between Islands -Migration-
Send and receive individuals asynchronously, according to the migr. parameters;
Set t ← t + 1;

end while

individuals of the target neighboring island. This choice is expected to induce a larger
selection pressure that will hopefully accelerate the convergence of the algorithm as
a whole [9].

In a more general conception, each island in a dEDA could execute a different
EDA, resulting in a heterogeneous dEDA, which also represents a very interesting
open research line. For example, we could have one dEDA of four islands where
the first one executes UMDA, the second one MIMIC, the third one EBNA, and the
last one executes PADA (see Fig. 2). Each algorithm, depending on the problem, has
potential advantages and weaknesses that could be conjugated with the features of
the other algorithms. To deal with the differences in the execution time of each algo-
rithm, we suggest the distributed algorithm be implemented asynchronously, in order
to better exploit the power of each algorithm. In a different heterogeneous scenario,
each island could execute the same base algorithm, but with different parameters.

EBNA

MIMIC

PADA

TOPOLOGY

UMDA

Fig. 2. Conceptual dEDA running different EDAs in each island (heterogeneity)

In this paper, our implementation is based on the execution of one asynchronous
UMDA (for discrete and continuous domains) in each island, i.e., we use one homo-
geneous dEDA. We defer heterogeneous dEDAs for a future work, since they deserve
careful consideration.
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For the discrete version of dUMDAD the only difference with the above is the
definition domain (discrete or continuous) of the fitness function, and the way in
which the statistical model is estimated. In the discrete UMDA we estimate the (also
discrete) distribution that better adjusts each variable in the selected population; in
the continuous domain we estimate the mean and variance for each variable of the
univariate normal distribution from the selected population of the algorithm (see Al-
gorithm 7 for all the details).

Algorithm 7 dUMDA
Islandi executing UMDA

Set t ← 1;
Generate N >> 0 points randomly according to the definition domain (discrete or contin-
uous) of the fitness function;
while termination criteria are not met do

Select M ≤ N points according to a selection method;
/∗
Estimate the distribution ps(x, t) of the selected set according to the domain
∗/
if domain == discrete then

/∗
Each univariate marginal distribution is estimated from marginal frequencies
∗/
ps(x, t) =

n∏

i=1

ps(xi, t);

else
/∗
Since the univariate distributions are assumed to follow a normal distribution, the two
parameters to be estimated for each variable are the mean, µt

i , and the standard devia-
tion, σt

i

∗/
ps(x, t) = f(x, t, µt, σt) =

n∏

i=1

f(xi, t, µ̂
t
i, σ̂

t
i);

and,

µ̂t
i = X

t
i = 1

N

N∑

r=1

xt
i,r ;

σ̂t
i =

√

1
N

N∑

r=1

(xt
i,r − X

t
i)2 ;

end if
Generate N new points according to the distribution ps(x, t) and the domain (continuous
or discrete);
/∗
Communication between Islands (Migration)
∗/
Send and receive individuals asynchronously, according to the migr. parameters;
Set t ← t + 1;

end while
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We now proceed to discuss the test benchmark we have selected to evaluate the
performance of dUMDA.

5 Set of Test Functions

The set of test functions considered in our work is divided into two sub-groups:
discrete problems and continuous problems. In the case of the discrete domain we
study six functions, namely FOneMax, FPlateau, FIsoPeak, FQuadratic, FMuhl and
FCuban1. For the continuous problems we test our algorithms on four case of studies,
namely FSphere, FGriewangk, FAckley and FWater. We selected such a benchmark
to be representative and to facilitate the comparisons with other works. In all the
cases, n represents the dimension of the problem.

5.1 Discrete Domain

Let us describe the functions used to test the proposed algorithms in discrete do-
mains. For all functions xi ∈ {0, 1}.

The OneMax Function

This function is defined as follows:

FOneMax(−→x ) =
n∑

i=1

xi

FOneMax has (n + 1) different fitness values, which are multinomially distributed.
For Additively Decomposed Functions (ADFs) the multinomial distribution occurs
fairly often [16] .

The objective is to maximize the function FOneMax. The global optimum is lo-
cated at the point (1, 1, . . . , 1).

Plateau Function

This problem was studied in [28]. It is also known as a 3-bit royal road problem. The
solutions for this function consist of an n-dimensional vector, such that n = 3 ×m
(the genes are divided into groups of three). First, we define an auxiliary function g
as:

g(x1, x2, x3) =
{

1, if x1 = 1 and x2 = 1 and x3 = 1
0, otherwise

Now, we can define the Plateau function as:
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FPlateau(−→x ) =
m∑

i=1

g(−→si )

Where −→si = (x3i−2, x3i−1, x3i). The goal is to maximize the function FPlateau,
and the global optimum is located at the point (1, 1, . . . , 1).

IsoPeak Function

This problem was investigated in [23]. The solutions for this function consist of an
n-dimensional vector, such that n = 2 × m (the genes are divided into groups of
two). First, we define two auxiliary functions Iso1 and Iso2 as:

−→x 00 01 10 11

Iso1 m 0 0 m − 1
Iso2 0 0 0 m

Now, we can define the IsoPeak function as:

FIsoPeak(−→x ) = Iso2 (x1, x2) +
m∑

i=2

Iso1 (x2i−1, x2i)

The goal is to maximize the function FIsoPeak and the global optimum is located
at the point (1, 1, 0, 0, . . . , 0, 0).

Quadratic Function

This problem has been taken from [33]. The solution for this function is an n-
dimensional vector, such that n = 2 × m (the genes are divided into groups of
two). First, we define an auxiliary function g as:

g(u, v) =






0.9, if u = 0 and v = 0
1.0, if u = 1 and v = 1
0.0, otherwise

Now, we can define the Quadratic function as:

FQuadratic(−→x ) =
m∑

i=1

g(x2i−1, x2i)

The goal is to maximize the function FQuadratic, and the global optimum is
located at the point (1, 1, . . . , 1).



170 J. Madera et al.

Cuban Function

This problem was proposed in [27]. The solution to this function is an n-dimensional
vector, with n = 4×m + 1 and m odd. The definition is as follows:

F 3
Cuban1(

−→x ) =






0.595, for x = (0, 0, 0)
0.200, for x = (0, 0, 1)
0.595, for x = (0, 1, 0)
0.100, for x = (0, 1, 1)
1.000, for x = (1, 0, 0)
0.050, for x = (1, 0, 1)
0.090, for x = (1, 1, 0)
0.150, for x = (1, 1, 1)

F 5
Cuban1(x, y, z, v, w) =

{
4 · F 3

Cuban1(x, y, z), if v = y and w = z
0, otherwise

Hence, we can define the FCuban1 function as:

FCuban1(−→x ) =
m∑

i=1

F 5
Cuban1(x4i−3, x4i−2, x4i−1, x4i, x4i+1)

The goal is to maximize FCuban1 and the global optimum is formed by alternat-
ing substrings 10000 and 00101. The first sub-string is the optima of the sub-function
F 5

Cuban1, but the second one has only the third best value. The optimum is very dif-
ficult to reach even with local search [27].

Mühlenbein Function

This problem was proposed in [27]. The solution to this function is an n−dimensional
vector, with n = 5×m. The definition follows:

F 5
muhl(

−→x ) =






3.0, for x = (0, 0, 0, 0, 1)
2.0, for x = (0, 0, 0, 1, 1)
1.0, for x = (0, 0, 1, 1, 1)
3.5, for x = (1, 1, 1, 1, 1)
4.0, for x = (0, 0, 0, 0, 0)
0.0, otherwise

Hence, we can define the FMuhl function as:

FMuhl(−→x ) =
m∑

i=1

F 5
muhl(

−→si )

where −→si = (x5i−4, x5i−3, x5i−2, x5i−1, x5i).
The goal is to maximize FMuhl, and the global optimum is located at point

(0, 0, . . . , 0).
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5.2 Continuous Problems

In this section we describe four functions broadly used in the literature for optimiza-
tion [7, 20] to test the proposed algorithms in the continuous domain.

Sphere Model

This is a well-known minimization problem, used to provide a base line for compar-
ison with other problems or algorithms. The variables xi are defined in the interval
−600 ≤ xi ≤ 600, i = 1, 2, . . . , n, and the fitness value for each individual is
computed as follows:

FSphere(−→x ) =
n∑

i=1

x2
i

The optimum fitness value F ∗
Sphere(

−→x ) = 0 is reached when all the variables
equal 0.

Griewangk

This is a minimization problem. The variables xi are defined in the interval −600 ≤
xi ≤ 600, i = 1, 2, . . . , n, and the fitness value for each individual is computed as
follows:

FGriewangk(−→x ) = 1 +
n∑

i=1

x2
i

4000
−

n∏

i=1

cos
(

xi√
i

)

The optimum fitness value F ∗
Griewangk(−→x ) = 0 is reached when all the variables

equal 0.

Ackley

This minimization problem has an optimum value at F ∗
Ackley(−→x ) = 0. This fitness

value is obtained when all the variables are set to 0. The variables xi are defined in
the interval −6.0 ≤ xi ≤ 6.0, i = 1, 2, . . . , n. The definition of the fitness function
for n dimensions is as follows:

FAckley(−→x ) = −20 · exp



−0.2 ·

√
√
√
√ 1

n
·

n∑

i=1

x2
i



− exp

(
1
n
·

n∑

i=1

cos(2 · π · xi)

)
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Water Function

This minimization problem was proposed by [8] for two variables, having an opti-
mum value at F ∗

Water(
−→x ) = 0. We extend this problem to n variables. The minimum

fitness value is obtained when all the variables are equal to 0. The variables xi are
defined in the interval−1.5 ≤ xi ≤ 1.5, i = 1, 2, . . . , n. The definition of the fitness
function for n dimensions is as follows:

FWater(−→x ) =
n/2∑

i=1

a · x2
2i−1 + b · x2

2i − c · cos(α · x2i−1)− d · cos(γ · x2i) + c + d

Where a = 1.0, b = 50.0, c = 3.0, d = 4.0, α = 3 · π, and γ = 4 · π have been
used for all test runs. This function is hard for many optimization algorithms as well
as for very specialized search methods [18]. We show how dUMDAC can optimize
this problem efficiently.

6 Computational Experiments

In this section, we report and discuss the results of applying two kinds of EDA on
the previously explained test functions. In the case of the discrete domain UMDAD
(UMDA for discrete problems) versus dUMDAD are tested. In the continuous do-
main, we will test the UMDAC (UMDA for continuous problems) versus dUMDAC.

The methodology that we follow is first to find the population size for a UMDA
that solves the proposed problem with at least 95% out success. It is to be able to
perform further comparisons for the success rate and number of function evalua-
tions. We analyze different parameterizations of dUMDA to study the influence of
the migration in the results. Our goal is also to look for the existence of a dUMDA
that could show a much smaller number of evaluations of the objective function than
the panmictic (single population) one. After this, a separate study on the run time
is addressed in a different subsection to report the physical efficiency in a cluster of
workstations.

We initially focus on the behavior of the algorithm for the FOneMax problem
exhaustively, and then we analyze the hypothesis that dUMDA is more efficient than
the single-populated UMDA for the rest of problems. We did not introduce any spe-
cial bias, and then did not search for highly tuned parameters of the decentralized
version.

All the algorithms, discrete and continuous, use truncation selection with ratio
0.3 (30% of the population) without elitism (the new generation completely replaces
the old one). For each problem the population size N is shown in the result tables.
The algorithms stop after finding the optimum (hit) or after reaching 105 evaluations.
The number of evaluations is averaged over 100 independent runs. For the distributed
versions, the number of function evaluations is the sum of the evaluations carried out
by each island. All the results (fitness evaluations and speedup) are average values
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over the successful runs. In the continuous case, the first generation was created by
using a normal distribution and estimating µ and σ in the definition interval (a, b) for
the problem variables, µ = a+b

2 and σ = b−a
6 . This definition allows out 99% of the

generated points to be in the interval and around the center. When a value is out of
the definition interval it is sampled again until a valid point is generated.

6.1 dUMDA Can Decrease the Numerical Effort

We begin the experimental section by trying to answer the following question: can
our dUMDAD perform with a larger numerical efficiency with respect to UMDAD?
We empirically explore the answer to this question by analyzing the behavior of these
algorithms in a set of problems.

The FOneMax Problem

We begin by analyzing the results related to the FOneMax function. Table 1 shows
the success percentage (hits) and the number of evaluations of UMDAD for four
different population sizes. In the experiments, the FOneMax function is defined over
a vector of 1000 variables. The execution stops if the optimum has not been reached
after 40000 fitness evaluations.

Table 1. Success percentage and number of evaluations (mean plus standard deviation) ob-
tained with UMDAD for different population sizes (N ) when solving the FOneMax problem
with 1000 variables

N Success Percentage Number of Evals.

400 97% 16437.11 ± 224.22
200 3% 8600 ± 200
100 0% -
50 0% -

Note in Table 1 that UMDAD only converges to the optimal solution with a
success percentage above 95% for a population size of 400. Our goal is to reduce the
reference cost attained by UMDAD with 400 individuals (97% success), by using
dUMDAD algorithms of two, four and eight islands (with subpopulations of 200,
100 and 50 individuals, respectively).

Let us begin by analyzing the case of 2 islands. Figure 3 shows the percentage of
success for different values of the parameters in a ring topology of two islands for the
FOneMax problem. We plot one line per r value, where r is the migration frequency.
The number of migrants (m) varies from 5 to 60, which is approximately the size of
the selected population. As we can observe, the percentage of success stays relatively
high for most of the combinations of the migration parameters. With the exception of
r = 1 (high coupling), all of them stay over 90% of success for any of the tested m
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Fig. 3. Percentage of success versus number of migrants for different migration frequencies
(r) and migration rates (m) in two islands connected in a ring topology for the FOneMax

problem

between 5 and 30. For m ≤ 20 practically every r surpasses 95% with the exception
of r = 1 and r = 2. All this means that accurate results can be obtained by enlarging
the isolation time (r) or/and by enlarging the set of exchanged individuals (with the
mentioned exceptions of highly coupled subalgorithms having r = 1 and r = 2).
This result confirms similar experiments with different EAs reported in the past [3].

Table 2 shows in each cell the percentage of hits (%) and the average number
of fitness evaluations with their standard deviation. Almost every case with r < 8
(specially with m = 10), the average number of evaluations is clearly reduced with
respect to the centralized algorithm having a population size of 400 individuals. An
example is for r = 1 and m = 5, where the percentage of success is as high as 97%
with a saving of around 1620 evaluations.

In the case with four islands (see Table 3) we can conclude that the best (m, r)
configuration is a dUMDAD using r = 1 and m = 5. This claim comes out if we
inspect all the combinations where the success percentage is 95% and then select the
one that executes the smaller number of fitness evaluations. However, it is clear that
the algorithm is quite sensitive to the used parameterizations when r = 1 is used.
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Table 2. Success percentage plus mean number of evaluations to converge to the optimum
with the two island dUMDAD when solving the FOneMax problem. Results are shown for
different combinations of the number of migrants (m) and migration frequencies (r)

m = 5 m = 10

r = 1 97% 93%
14816.5 ± 237.4 13882.6 ± 226.1

r = 2 98% 98%
15737.9 ± 226.8 15109.6 ± 257.9

r = 4 100% 97%
16356 ± 204.1 15904.1 ± 238.8

r = 8 99% 99%
16868.7 ± 280.1 16448.4 ± 230.5

r = 16 96% 98%
17229.2 ± 493.3 16914.2 ± 281.3

r = 32 92% 99%
18639.1 ± 2841.4 17442.4 ± 307.3

The Rest of the Discrete Problems

In the case of the other problems we exhaustively test two functions, FMuhl and
FPlateau. The frequency of the migration (r) variate from 1 to 32 and the number of
migrants (m) ranges from 1 to 50; we show the percentage of success in the Tables
4 and 5. Fig. 4 shows the number of function evaluation for the FMuhl and FPlateau

problems. We only show the values when the percentage of success is larger than
95%. This is due to the fact that we must select the configuration (r,m) that less
function evaluations makes of all those that obtain over 95% of hits. In general, we
observe that a high coupling makes the dUMDAD resemble the single-population
behavior in terms of success rate but with a more reduced effort. In academic prob-
lems like FOneMax, FMuhl and FPlateau a high coupling is the better strategy. In
other more complex problems larger isolation would probably be more efficient. In
fact, for a physically parallel implementation high coupling is a undesirable strategy
due to its higher communication overhead. We similarly set (m, r) for the other prob-
lems, with the results shown in Table 6, where we show first the percentage of hits
and second the average fitness evaluations with their associated standard deviation.

The figures in Table 6 allow us to clearly conclude the higher efficiency of dUM-
DAD. We must notice that all the results are statistically significant for the t-student
test (p-value well below 0.05, for a 95% significance level). This algorithm is either
more efficient for the same success rate than UMDAD (this holds for the first 4 out of
5 problems) or it works out a clearly higher success rate than UMDAD (see the last
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Table 3. Success percentage plus mean number of evaluations to converge to the optimum with
the four island dUMDAD when solving FOneMax problem. Results are shown for different
combinations of the number of migrants (m) and migration frequencies (r)

r = 1 r = 2 r = 4 r = 8

m = 1 99% 99% 98% 97%
16921.2 ± 293.9 18371.4 ± 411.1 20639.1 ± 944.5 25266.6 ± 2263.2

m = 5 95% 99% 97% 96%
14265.2 ± 264.8 15653.1 ± 267.1 16900.0 ± 338.4 18160.0 ± 486.1

m = 10 76% 95% 95% 97%
13236.8 ± 237.1 14863.8 ± 264.3 16234.1 ± 283.8 17316.6 ± 332.9

m = 15 62% 77% 90% 97%
12954.8 ± 209.3 14736.0 ± 271.4 16094.3 ± 225.8 17204.1 ± 335.8

m = 20 58% 81% 94% 97%
12979.3 ± 261.4 14680.0 ± 214.8 16038.7 ± 257.5 17091.6 ± 340.7

m = 25 53% 80% 89% 93%
12988.6 ± 230.1 14673.4 ± 252.5 16050.0 ± 269.9 17191.3 ± 355.6

m = 30 51% 81% 92% 89%
12933.3 ± 206.5 14670.0 ± 244.6 16128.8 ± 298.7 17290.9 ± 362.5

Table 4. Percentage of success for the FMuhl problem

r = 1 r = 2 r = 4 r = 8 r = 16 r = 32

m = 1 44% 18% 16% 7% 11% 10%

m = 5 95% 77% 48% 26% 21% 10%

m = 10 88% 96% 73% 43% 20% 17%

m = 15 93% 93% 87% 64% 30% 14%

m = 20 81% 88% 93% 77% 26% 7%

m = 25 84% 88% 92% 83% 42% 13%

m = 30 86% 90% 95% 94% 44% 19%

m = 35 85% 88% 91% 92% 53% 20%

m = 40 80% 84% 90% 95% 69% 24%

m = 45 72% 89% 92% 93% 79% 31%

m = 50 77% 86% 93% 96% 95% 85%
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Table 5. Percentage of success for the FPlateau problem

r = 1 r = 2 r = 4 r = 8 r = 16 r = 32

m = 1 100% 99% 75% 5% 0% 0%

m = 5 96% 98% 100% 100% 91% 55%

m = 10 97% 97% 99% 99% 98% 100%

m = 15 94% 95% 99% 97% 100% 98%

m = 20 97% 100% 99% 98% 99% 97%

m = 25 87% 99% 99% 100% 99% 100%

m = 30 95% 97% 97% 98% 98% 98%

m = 35 95% 97% 98% 98% 99% 99%

m = 40 94% 97% 98% 99% 94% 88%

m = 45 91% 96% 97% 98% 74% 37%

m = 50 91% 96% 96% 96% 68% 27%
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Fig. 4. Numerical effort for FMuhl (left) and FPlateau (right) problems

function). In the first column of Table 6 we list the problem to be solved. The second
column (dUMDAD header) shows for each problem, the (r,m) pair where dUM-
DAD overcomes the centralized version plus the result of the run in total isolation
for comparison (no migration between islands (r = 0,m = 0)). The third column
shows the results with the above parameters (r,m). The fourth and fifth columns
present the parameters and results, respectively, of running UMDAD in the problem.
In all cases the results columns show the percentage of convergence, and the average
number of fitness evaluations.

Why dUMDA Reduce the Numerical Effort?

In the following, we explain the reasons for these reductions (for the case of trun-
cation selection, two islands, and r = 1). The initial motivation resides in that, in



178 J. Madera et al.

Table 6. Success percentage plus mean number of evaluations to converge to the optimum
with the four island dUMDAD when solving all the discrete problems. Results are shown for
different combinations of the number of migrants (m), migration frequencies (r) and popula-
tion sizes (N )

Functions dUMDAD with 4-islands UMDAD p-value

FIsoP eak , n = 64 r = 1, m = 40 98% N = 3200 97%
45954.6 ± 2739.7 55158.7 ± 4424.7 0.0

r = 0, m = 0 46% N = 800 10%
54191.3 ± 3193.0 13360.0 ± 386.4 0.0

FP lateau, n = 600 r = 1, m = 30 95% N = 600 100%
17640 ± 627.4 22152.0 ± 550.5 0.0

r = 0, m = 0 0% N = 150 0%
- - -

FQuadratic, n = 66 r = 1, m = 12 95% N = 2000 96%
33452.6 ± 2448.4 34583.3 ± 2426.4 0.0015

r = 0, m = 0 18% N = 500 0%
34000.00 ± 0.00 - -

FMuhl, n = 200 r = 1, m = 5 95% N = 1400 96%
39505.4 ± 1503.1 41183.3 ± 1646.3 0.0

r = 0, m = 0 1% N = 350 0%
43400.0 ± 0.0 - -

FCuban1, n = 21 r = 2, m = 10 92% N = 800 46%
5408.7 ± 521.9 5043.4 ± 372.1 0.00004

r = 0, m = 0 53% N = 200 45%
8256.6 ± 1535.4 1355.5 ± 84.1 0.0

each generation, the migration increases the average fitness of the population. This
implies that the response to selection [25] of the algorithm in each island increases
with regard to the case of no migration (notice that some the islands could show a
larger increase than the others). The gains in the response to selection lead to a con-
vergence acceleration in the dEDA, but the required balance between exploitation
and exploration causes this to reach a limit. This analysis is valid and extensible to
any other fitness function.

Let R(t) be the response to selection of generation t before the migration, then:

R (t) = f (t + 1) − f (t) (1)

where f (t) and f (t + 1) are the means of the fitness function evaluations in the
population t and t + 1.

Let f b (t + 1) , fw (t + 1) , fr (t + 1) be the respective averages of the values of
the fitness function for the subsets of the best M , the worst M and the (N − 2 ·M)
remaining individuals of a population with size N . In our analysis M is equal to m,
i.e., the number of individuals exchanged among the islands. Then:

f (t + 1) =
M · fb (t + 1) + (N − 2 · M) · fr (t + 1) + M · fw (t + 1)

N
(2)
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We can assume that the values f b (t + 1) of each island are similar. This assump-
tion is correct and largely used in the literature, because the islands are homogenous
and the subsets of the best M (in each island) are an approximation of an equally fit-
ted individuals set. Now we can write for the population average (after the migration
of the best M takes place, and replace the worst M in the neighbor islands):

fmig (t + 1) =
2 · M · fb (t + 1) + (N − 2 · M) · fr (t + 1)

N
(3)

Therefore, the migration produces an increase in the response to selection equal
to:

∆Rmig(t) = Rmig (t) − R (t) = fmig (t + 1) − f (t + 1) =
M ·

(
fb (t + 1) − fw (t + 1)

)

N
(4)

Note that if M increases (larger coupling), then f b (t + 1) tends to decrease,
while fw (t + 1) tends to increase. Therefore,

(
f b (t + 1)− fw (t + 1)

)
decreases

when M increases. This provokes a convergence acceleration of the algorithm. This
is seen in the experimental results for FOneMax (see Tables 2 and 3): when M in-
creases first, the results improve, but later the percentage of success decreases consid-
erably. It is important to remember that the levels of response to the selection of the
algorithm without migration are not enough to obtain the convergence to an optimum
with high probability. Finally, note that the magnitude

(
f b (t + 1)− fw (t + 1)

)
de-

pends on the problem, and thus for each problem, different (m, r) pairs could mini-
mize the total number of fitness evaluations that the dUMDA makes.

On the other hand, if the frequency of migration r is decreased, then we will
decrease also the response to selection. In this case, we would observe that the con-
vergence decelerates, decreasing also drastically the success percentage, but with
an enhanced exploration that is suitable for many complex problems. In some way,
existing studies like that of [9] and [38] lead to the same conclusions by different
means.

Figure 5 shows the change in the response to selection (left) and the average fit-
ness value for the FOneMax function. We must point out that the UMDAD response
to selection is very similar to that of the dUMDAD with r = 1 and m = 1. In fact
this is common sense, since such a high coupling resembles a centralized behavior.
The right figure shows the increment of the average fitness evaluations per genera-
tion for the tested bounding cases of dUMDAD and UMDAD. This corroborates that
dUMDAD with r = 1 and m = 1 can show the same selection pressure as the
UMDAD. Another important result is the fact that dUMDA with high isolation
(r = {32, 0} and m = {1, 0}) represents a too slow search for FOneMax and the
algorithm does not converge to the solution. The most efficient behavior is detected
when the algorithm uses the parameters shown in the preceding tables. This is an
indication that the exploration and exploitation phases change when different para-
meters are used.

Figure 6 shows the algorithm behavior for another two functions (FPlateau left
and FIsoPeak right). Again, the results observed in FOneMax are confirmed in these
problems, with special clarity in the graphic of the FPlateau function.
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Fig. 5. Response to selection (left) and average fitness evaluations for the FOneMax problem
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Continuous Problems

After finishing the analysis with discrete problems, we encompass in this section a
similar study on continuous ones. Applications of parallel or distributed EDAs to
continuous domains in optimization are rare in literature, because in fact there are
not many works accounting for parallelism in EDAs in general.

In the case of the continuous problems we test exhaustively two functions,
FSphere and FWater. The frequency of the migration (r) variate from 1 to 32 and
the number of migrants (m) ranges from 1 to 50, we show the percentage of suc-
cess in the Tables 7 and 8. Fig. 7 show the number of function evaluation for the
FSphere and Fwater problems, where we only show the values when the percentage
of success is larger than 95%. In general, as in discrete domain, we observe that a
high coupling makes dUMDAC resemble the single-population behavior in terms of
success rate but with a more reduced effort. In all the results a high coupling is the
better strategy. In other more complex problems larger isolation would probably be
more efficient.
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Table 7. Percentage of success for the FSphere problem

r = 1 r = 2 r = 4 r = 8 r = 16 r = 32

m = 1 100% 100% 100% 100% 95% 77%

m = 5 100% 100% 100% 100% 100% 100%

m = 10 100% 100% 100% 100% 100% 100%

m = 15 100% 100% 100% 100% 100% 100%

m = 20 100% 100% 100% 100% 100% 100%

m = 25 100% 100% 100% 100% 100% 100%

m = 30 100% 100% 100% 100% 100% 100%

m = 35 100% 100% 100% 100% 100% 100%

m = 40 100% 100% 100% 100% 100% 100%

m = 45 100% 100% 100% 100% 100% 100%

m = 50 100% 100% 100% 100% 100% 100%

Table 8. Percentage of success for the FWater problem

r = 1 r = 2 r = 4 r = 8 r = 16 r = 32

m = 1 100% 100% 100% 100% 100% 100%

m = 5 100% 100% 100% 100% 100% 100%

m = 10 100% 100% 100% 100% 100% 100%

m = 15 100% 100% 100% 100% 100% 100%

m = 20 100% 100% 100% 100% 100% 100%

m = 25 100% 100% 100% 100% 100% 100%

m = 30 100% 100% 100% 100% 100% 100%

m = 35 100% 100% 100% 100% 100% 100%

m = 40 100% 100% 100% 100% 100% 100%

m = 45 100% 100% 100% 100% 100% 100%

m = 50 100% 100% 100% 100% 100% 100%

Table 9 shows the results of executing dUMDAC over four functions defined
in the continuous domain. Notice that in all the cases we confirm the preceding
results found on discrete problems, i.e., the dUMDAC algorithm improves the re-
sults of UMDAC. In the continuous function set the results are still more relevant:
even a more clear reduction of the number of evaluations than the one noticed for
the discrete problems, can be appreciated. The distributed version, independently of
whether we are interested in using a parallel execution platform or not, makes a much
smaller number of function evaluations.

Notice also that when dUMDAC has no migration and UMDAC is executed with
the same population size of one island the percentage of convergence is very low or
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Fig. 7. Numerical effort for FSphere (left) and FWater (right) problems

Table 9. Success percentage plus mean number of evaluations to converge to the optimum
with the four island dUMDAD when solving all the continuous problems. Results are shown
for different combinations of the number of migrants (m), migration frequencies (r) and pop-
ulation sizes (N )

Functions dUMDAC with 4-islands UMDAC p-value

FSphere, n = 100 r = 1, m = 45 100% N = 600 100%
55002.0 ± 330.8 75630.0 ± 421.0 0.0

r = 0, m = 0 45% N = 150 16%
78000.0 ± 3167.1 20820.0 ± 2097.1 -

FAckley , n = 100 r = 1, m = 20 97% N = 400 100%
45430.9 ± 315.3 62832.0 ± 358.1 0.0

r = 0, m = 0 0% N = 100 0%
- - -

FGriewangk , n = 100 r = 1, m = 20 99% N = 400 100%
29301.0 ± 281.9 40336.0 ± 315.1 0.0

r = 0, m = 0 0% N = 100 0%
- - -

FW ater , n = 100 r = 1, m = 45 100% N = 800 99%
64856.0 ± 498.9 128945.4 ± 2941.3 0.0

r = 0, m = 0 0% N = 200 0%
- - -

null. This table again corroborates the results presented in discrete domains: com-
plete isolation is not an interesting technique from a numerically efficiency point of
view. Also, like for the discrete cases, all the p− values point out a high confidence
in the claims, since they all resulted significant.

We want to comment apart, the case of the difficult FWater problem, in which the
decentralized version reduces the number of functions evaluation drastically (even
more intensely than for the other problems). We selected this problem since it moti-
vated a considerably large number of papers in the past trying to solve it with multi-
start, parallel and advanced search methods. Our dUMDAC seems also an efficient
alternative to traditional and enhanced mathematical algorithms.
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6.2 Run Time Analysis

In this subsection, we show how dUMDA (discrete and continuous) can improve the
results in terms of the execution time used to solve the same problem that UMDA.
The speedup can be defined as follow:

Speedup =
sequential time

parallel time

To evaluate the speedup we use the taxonomy proposed in [1]. This taxonomy
divides the speedup analysis into two types, strong speedup, - type I - and weak
speedup, - type II -. Strong speedup is intended to compare the parallel algorithm
with the best-so-far sequential algorithm. The second measure compares the paral-
lel algorithm with its own sequential version that is more pragmatic in most works.
Before the algorithm runs, the stop condition is set (find an optimum) and then the
speedup is measured (type II.A). In this work we select a weak speedup (type II.A.2),
called Orthodox. This type of analysis runs the same algorithm (dUMDA) with four
islands over 1, 2, and 4 processors to provide a meaningful comparison, i.e. the al-
gorithm run in one processor is not the panmictic UMDA, but the dUMDA itself
(in parallel studies it is not fair to compare time against a different algorithm, since
any result could be obtained). We demonstrate that the execution time decreases sig-
nificantly as more processors are used. All the tests were executed on four Pentium
4 at 2.4 GHz and 512 MB of RAM running Linux, inter-connected with a Gigabit
Ethernet network.

Table 10 shows the speedup in the discrete and continuous problems. Note that
in the discrete case, specially for problems needing large population sizes (FIsoPeak

and FQuadratic functions) the speedup is super-linear. The reason can be found in
the stochastic nature of the algorithms, that asynchronously perform the search in a
different way depending on the number of processors.

For continuous problems all the results are super-linear. In this case we have the
same reasons as for the discrete results, with additional reductions in times since the
use of float values, because the operations are encoded in more complex expressions
and larger data structures in memory are needed (that are faster to deal with in parallel
when split among the processors).

7 Conclusions and Future Work

This paper has presented an asynchronous distributed implementation of an EDA al-
gorithm that we call dUMDA, although the basic parallel model could be generalized
to other EDA subtypes. The algorithm distributes the population among the available
processors and make migrations among them. We have performed a very complete
set of tests to analyze the numerical and wall-clock time behavior on a network of
computers, and we did so for continuous and discrete test functions. All these con-
siderations were made before engaging in the study to ensure that our conclusions
are really of valuable interest for other researchers and free of bias.
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Table 10. Speedup results on discrete and continuous problems

Discrete problems

Functions 1-Processor 2-Processors 4-Processors

FOneMax 1.00 1.65 2.28
FIsoPeak 1.00 10.55 13.75
FPlateau 1.00 2.71 3.13
FQuadratic 1.00 6.40 7.51
FMuhl 1.00 3.19 3.62

Continuous problems

FSphere 1.00 4.94 6.43
FAckley 1.00 5.86 7.96
FGriewangk 1.00 5.57 7.47
FWater 1.00 3.35 6.82

Results show that dUMDA is able to solve problems of considerable complexity
(hard problems and large population sizes), and that its capabilities can be improved
with an adequate configuration of the migration policy (tuning the (m, r) pairs) with
important reductions of the number of function evaluations; this can lead to obtain
remarkable results also in the speedup.

Globally stated, the dUMDA algorithm is a step forward to low cost algorithms,
and it shows that the decentralization of EDAs can provide fast algorithms that in-
crease the numerical efficiency and reduce the run time.

According to these results, we will extend this analysis to study other types of
EDAs (PADA, EBNA, MIMIC) to include multi-population behavior, because these
models are easy to implement and exploit. We also will extend this work by applying
the algorithms to more complex problems, as training neural networks, and other
complex industrial problems. Also, a different next step could be the analysis of
parallelization at the learning level, and the way it could be conjugated with the
algorithms proposed in this paper. Of course, we will check for new evidences of the
results shown in this paper with a larger set of machines in the near future.
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21. P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms. A New Tool for
Evolutionary Computation. Kluwer Academic Publishers, 2002. 159, 161
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Summary. Hybrid metaheuristics have received considerable interest in recent years. A wide
variety of hybrid approaches have been proposed in the literature. In this paper a new hybrid
approach, named GA-EDA, is presented. This new hybrid algorithm is based on genetic and
estimation of distribution algorithms. The original objective is to benefit from both approaches
and attempt to achieve improved results in exploring the search space. In order to perform
an evaluation of this new approach, a selection of synthetic optimization problems have been
proposed, together with some real-world cases. Experimental results show the competitiveness
of our new approach.

1 Introduction

Over the last years, interest in hybrid metaheuristics has risen considerably among
researchers. The best results found for many practical or academic optimization prob-
lems are obtained by hybrid algorithms. Combination of algorithms such as descent
local search [32], simulated annealing [21], tabu search [12] and evolutionary algo-
rithms have provided very powerful search algorithms.

Two competing goals govern the design of a metaheuristic [39]: exploration
and exploitation. Exploration is needed to ensure every part of the search space is
searched thoroughly in order to provide a reliable estimate of the global optimum.
Exploitation is important since the refinement of the current solution will often pro-
duce a better solution. Population-based heuristics (where genetic algorithms [18]
and estimation of distribution algorithms [23] are found) are powerful in the explo-
ration of the search space, and weak in the exploitation of the solutions found.

With the development of our new approach, GA-EDA, a hybrid algorithm based
on genetic algorithms (GAs) and estimation of distribution algorithms (EDAs), we
aim to improve the exploration power of both techniques.

V. Robles et al.: GA-EDA: A New Hybrid Cooperative Search Evolutionary Algorithm, StudFuzz 192, 187–219 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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This hybrid algorithm has been tested on combinatorial optimization problems
(with discrete variables) as well as real-valued variable problems. Results of several
experiments show that the combination of these algorithms is extremely promising
and competitive.

This paper is organized in the following way: First, we will focus on different
taxonomies of hybrid algorithms found in the literature; in Sect. 3, the new GA-
EDA approach is proposed with a complete performance study presented in Sect. 4.
Finally we close with our conclusions and further, future work.

2 Taxonomy of Hybrid Algorithms

The goal of the general taxonomies is to provide a mechanism to allow comparison
of hybrid algorithms in a qualitative way. Additionally, taxonomies are useful to
indicate areas in need of future work, as well as assist in classifying new hybrid
approaches. In this section we include a survey of the current, most important hybrid
taxonomies.

In [4] three different forms of hybridization are described:

• Component Exchange Among Metaheuristics.
One of the most popular ways of hybridization concerns the use of trajec-
tory methods, such as local search, Tabu Search or Simulated Annealing, in
population-based algorithms. Most of the successful applications of Evolution-
ary Computation (EC) make use of local search algorithms. The reason for the
success comes from the strengths of trajectory methods and population-based
methods, finding a proper balance between diversification (exploration) and in-
tensification (exploitation).
The power of population-based methods is based on the concept of recombining
solutions to obtain new ones. In EC algorithms, explicit recombinations are im-
plemented by one or more recombination operations. In EDAs recombination is
implicit because new solutions are generated using a distribution over the search
space which is a function of earlier populations. This allows making guided steps
in the search space which are usually larger than the steps done by trajectory
methods.
The strength of trajectory methods is found in the way they explore a promising
region of the search space. A promising area in the search space is searched in a
more structured way than in population-based methods. In this way, the danger of
being close to good solutions but “missing” them is not as high as in population-
based methods.
In summary, population-based methods are better at identifying promising areas
in the search space, whereas trajectory methods are better at exploring promising
areas in the search space. Thus, metaheuristic hybrids that manage to combine the
advantages of population-based methods with the strength of trajectory methods
are often very successful.
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Some examples of this trend are: GASAT [14] which incorporates local search
within the genetic framework for solving the satisfiability problem or [45] a hy-
brid algorithm based on the combination of EDA with Guided Local Search for
Quadratic Assignment Problems.

• Cooperative Search.
A loose form of hybridization is provided by cooperative search [1, 8, 17, 38,
42, 43], which consists of a search performed by possibly different algorithms
that exchange information about states, models, entire sub-problems, solutions
or other search space characteristics. Typically, cooperative search algorithms
consist of the parallel execution of search algorithms with a varying level of
communication. The algorithms can be different or they can be instances of the
same algorithm working on different models or running with different parameters
settings.
Presently, cooperative search receives more attention which, among other rea-
sons, is due to the increasing research on parallel implementations of metaheuris-
tics [3, 6, 24, 34, 35]. The aim of research on parallelization of metaheuristics is
twofold. First, metaheuristics should be redesigned to make them suitable for
parallel implementation in order to exploit intrinsic parallelism. Second, an ef-
fective combination of metaheuristics has to be found, both to combine different
characteristics and strengths, and to design efficient communication mechanisms.

• Integrating Metaheuristics and Systematic Methods.
This approach has recently produced very effective algorithms especially when
applied to real-world problems. Discussions on similarities, differences and
possible integration of metaheuristics and systematic search can be found in
[11, 12, 15]. A very successful example of such an integration is the combination
of metaheuristics and Constraint Programming [10].

Our hybrid GA-EDA algorithm, which is a completely new approach, can be
classified in the second form; cooperative search, of Blum and Roli’s classification.

Another excellent taxonomy can be found in [39]. In this hierarchical classifi-
cation, at the first level, low-level and high-level hybridizations are distinguished. In
low-level algorithms, a given function of a metaheuristic is replaced by another meta-
heuristic. In high-level algorithms, the different metaheuristics are self-contained; we
have no direct relationship to the internal workings of a metaheuristic.

At the second level, relay and co-evolutionary hybridizations are distinguished.
In relay hybridization, a set of metaheuristics is applied one after another, each using
the output of the previous as its input, acting in a pipeline fashion.

Four classes are derived from this hierarchical taxonomy:

• LRH (Low-level Relay Hybrid).
Algorithms in which a given metaheuristic is embedded into a single-solution
metaheuristic. A few examples from the literature belong to this class. For in-
stance in [28] a LRH hybrid which combines simulated annealing with local
search to solve the travelling salesman problem, is introduced.

• LCH (Low-level Co-evolutionary Hybrid).
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Algorithms in which population based heuristics have been coupled with local
search heuristics such as hill-climbing, Simulated Annealing and Tabu Search.
The local search algorithms will try to optimize locally, while the population
based algorithms will try to optimize globally. It is exactly the same form as
previously defined component exchange among metaheuristics.

• HRH (High-level Relay Hybrid).
In HRH hybrid self-contained metaheuristics are executed in a sequence. For
example, a HRH hybridization may use a greedy heuristic to generate a good
initial population for an EC algorithm. Once the high performance regions are
located, it may be useful to apply local search heuristics to these regions; thus,
in this example, we have three pipelined algorithms. Many authors have used
the idea of HRH hybridization for EC. In [25] the authors introduce simulated
annealing to improve the population obtained by a GA. In [27] the proposed
algorithm starts from simulated annealing and uses GAs to enrich the solutions
found.

• HCH (High-level Co-evolutionary Hybrid).
This schema is similar to the previously defined cooperative search. It involves
several self-contained algorithms performing a search in parallel, and cooperat-
ing to find an optimum. Intuitively, HCH will ultimately perform at least as well
as one algorithm alone, and more often perform better. Each algorithm provides
information to the others to help them. An example of HCH based on parallel
EDAs is the island model [34, 35].

In Talbi’s taxonomy GA-EDA is heterogeneous because different metaheuristics
are used; global because the algorithm search the whole state space, and general
because both, GAs and EDAs, solve the same target optimization problem (HCH
algorithm).

3 Hybrid GA-EDA Algorithm

Hybrid GA-EDA are new algorithms based on both techniques [33]. The original
objective is to get benefits from both approaches. The main difference from these
two evolutionary strategies is how new individuals are generated. These new indi-
viduals generated on each generation are called offspring. On the one hand, GAs use
crossover and mutation operators as a mechanism to create new individuals from the
best individuals of the previous generation. On the other, EDAs builds a probabilistic
model with the best individuals and then sample the model to generate new ones.

3.1 Introduction

Our new approach generates two groups of offspring individuals, one generated by
the GA mechanism and the other by EDA one. Populationp+1 is composed of the best
overall individuals from (i) the past population (Populationp), (ii) the GA-evolved
offspring, and (iii) EDA-evolved offspring.
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Fig. 1. Hybrid Evolutionary Algorithm Schema

The individuals are selected based on their fitness function. This evolutionary
schema is quite similar to Steady State GA in which individuals from one population,
with better fitness than new individual from the offspring, survive in the next one. In
this case we have two offspring pools. Figure 1 shows how this model works.

3.2 Participation Functions

In this approach an additional parameter appears, this parameter has been called Par-
ticipation Function. Participation Function provides a ratio of how many individuals
are generated by each mechanism. In other words, the size of GA and EDA offspring
sets. The size of these sets also represents how each of these mechanisms participates
on the evolution of the population. These ratios are only a proportion for the number
of new individuals each method generates, it is not a proportion of individuals in the
next population, which is defined by the quality of each particular individual. If a
method were better than the other in terms of how it combines the individuals, there
would be more individuals from this offspring set than from the other.

The following alternatives for Participation Functions are introduced:

Constant Ratio (x% EDA / y% GA)

The percentage of individuals generated by each method is constant during all the
generations.
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Alternative Ratio (ALT)

On each generation it alternates either GA or EDA generation method. If the genera-
tion is an even number GA mechanism generates all offspring individuals, if it is an
odd number, it is the EDA method.

Incremental Ratio (EDA++ and GA++)

The partition ratio for one of the mechanism increases from one generation to the
other. There are two incremental Participation Functions, GA Incremental Function
and EDA Incremental Function. The ratio is defined by the formula3:

i − ratio =
gen

M + gen
(1)

where,
i − ratioGA = 1 − i − ratioEDA (2)

Dynamic Ratio (DYNAMIC)

The previous functions do not take into account the quality of the evolution methods
they are merging. There is no simple method that outperforms the other in all the
cases and a static Participation Function could lead toward the same problem. A
constant ratio function, like 50% EDA / 50% GA could balance the benefits and the
problems from each approach, but if, for one problem, GAs do not provide good
individuals, the former Participation Function would waste computational resources
dealing with genetic operators and fitness evaluations for individuals that would not
improve the overall population.

As a difference with the previous Participation Functions that are static and de-
terministic, we also propose a dynamic adaptative Participation Function. The idea
is to have a mechanism that increases the participation ratio for the method which
happens to generate better individuals. This function evaluates each generation con-
sidering the possibility to change the participation criterion as defined by the ratio
array.

This function performs according to the algorithm in Fig. 2.
In Fig. 2 avg score represents an array of the average fitness score of the top

25% of the individual generated by each of the offspring methods. base is the av-
erage fitness of the first generation. dif represents the relative difference in terms
of improvement that the best method has compared with the other. ADJUST is
a constant that defines the trade-off between these two methods when one of them
performs better than the other (5% in our experimentation).

This algorithm starts with 50%/50% ratio distribution between the two methods.
On each generation the best offspring individuals from each method are compared

3 gen is the number of the current generation and M , called the Mid-point, represents at
which generation the ratio is 50%/50%. Participation Function is 0 at the first generation
and never reaches 1
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diff=(MAX(avg score[GA],avg score[EDA])-base) /

(MIN(avg score[GA],avg score[EDA])-base);

if (avg score[GA]>avg score[EDA]) {
ratio inc=ratio[EDA] * ADJUST * dif;

ratio[GA] += ratio inc;

ratio[EDA] = 1.0 - part[GA];

}
else if (avg score[GA]<avg score[EDA]) {

ratio inc=ratio[GA] * ADJUST * dif;

ratio[EDA] += ratio inc;

ratio[EDA] = 1.0 - part[GA];

}
Fig. 2. Pseudocode of Dynamic Participation Function

and the wining method gets a 5% of the opposite method ratio (scaled by the amount
of relative difference between the methods, dif variable). This mechanism provides
a contest-based DYNAMIC function in which methods are competing to get higher
ratios as they generate better individuals.

4 Binary-encoded Problems

Part of the experiments have been performed considering six different binary-
encoded problems:

❶ The MaxBit problem.
❷ Two deceptive tramp functions.
❸ A Feature Subset Selection wrapper approach for a classification problem.
❹ The Holland Royal Road function.
❺ One Satisfiability (SAT) problem.

On the figures, which represent the experiments, it is shown the results using five
different constant ratio functions: CONST 0.00 (0%GA / 100%EDA, pure EDA al-
gorithm), CONST 0.25 (25%GA / 75%EDA), CONST 0.50 (50%GA / 50%EDA),
CONST 0.75 (75%GA / 25%EDA) and CONST 1.00 (100%GA / 0%EDA, pure
GA). The best of these five constant Participation Functions is included also in the
second figure of the experiment, as well as the four variable Participation Functions:
ALT (Alternative Function), GA++ (Incremental GA function), EDA++ (Incremen-
tal EDA function), and DYNAMIC (Dynamic Participation Function).

The proposed hybrid algorithm is composed of the simplest versions of both
GA and EDA components. In this sense a single bit-string chromosome (for binary-
encoded problems) and real string (for continuous problem) have been used to code
all the problems. GA uses Roulette Wheel selector, one-point crossover, flip muta-
tion (with probability 0.01) and uniform initializer. EDA uses the Univariate Mar-
ginal Distribution Algorithm (UMDA) [30] in discrete problems and the continuous
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version (UMDAc) [22] in continuous problems. The overall algorithms generate an
offspring twice the size of the population. Depending on the ratios provided by the
Participation Function, this offspring is then divided between the two methods. The
composition of the new population is defined by a deterministic method, selecting the
best fitness scores from the previous population and both offspring sets. The stopping
criteria is quite straightforward, we stop when the difference of the sum of the fitness
values of all individuals in two successive generations is smaller than a predefined
value.

The experiments have been executed ten times and the average of these execu-
tions are presented. Several population sizes have been tested, but only the most
representative size has been included. All the experiments have been performed in
an 8-nodes cluster of bi-processors with Intel Xeon 2.4Ghz with 1GB of RAM and
Gigabit network running Linux 2.4.

In most cases we have applied the Mann-Whitney statistical test to compare the
results achieved by the algortihms. The fitness values of the best solutions found in
the search are used for this purpose.

It is important to highlight that the use of different individual representations to
the ones here used, can guide to very different results.

4.1 The MaxBit Problem

Definition

We try to obtain the maximum of the function defined as:

fM256(x) =
∑256

i=1 xi

n
xi ∈ {0, 1}

fM256(x∗) = max(fM256(x))

This problem is a typical benchmark function to evaluate the performance of
evolutionary algorithms and the global maximum is found in 1.

Results

We have done this experiment using a population size of 100 individuals. Figure 3a
shows that the performance of the pure genetic algorithm is very poor, while EDA
outperforms all the constant Participation Functions, although these other functions
also reach the optimum value.

Variable Participation Functions (see Fig. 3b) also succeed in finding the max-
imum but with few more iterations to converge. Dynamic Participation Function is
the second best approach.

This problem shows a lineal independence among the genes of each of the in-
dividuals. EDA profits from this characteristic better than any other Participation
Function. It should be considered that this feature is not quite realistic when consid-
ering real-world problems.
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4.2 4-bit Fully Deceptive Function

Definition

Deceptive trap functions are used in many studies of GAs because their difficulty
is well understood and it can be regulated easily [7]. We have used the 4-bit fully
deceptive functions of order 2 and order 3, defined in [44].

These deceptive functions (fD2 and fD3) are 40 bit long maximization problems,
and are comprised of 10 sub-problems, each 4 bits longs. The sub-problems evaluate
4 bits using the following lookup table shown in Table 1. Thus, the global maximum
is 300.

Table 1. Evaluation of four bits for 4-bit fully deceptive function

Evaluation Evaluation
Chromosome Order 2 Order 3 Chromosome Order 2 Order 3
1111 30 30 0000 28 10
1100 8 5 0101 16 5
1110 6 0 0001 26 25
1101 4 0 0110 14 5
1011 2 0 0010 24 26
0111 0 0 1001 12 5
0011 18 5 0100 22 27
1010 10 5 1000 20 28

Results

These problems have been solved with a population size of 250 individuals.
In both problems GAs get a performance better than EDAs, with p-value < 0.001.

Nevertheless in fD2 CONST 0.75 with p-value = 0.649 and Dynamic Participation
Function with p-value = 0.649 slightly improve the results of pure GA algorithms.
In fD3 CONST 0.50 with p-value = 0.811 and Dynamic Participation Function with
p-value = 0.257 also slightly improve to GAs.

Fully deceptive functions are problems designed to get GAs into trouble be-
cause the fitness values of the points in the neighborhood of the optimal values
are worse than points located far away. This characteristic penalizes EDAs more
severely, which are prone to fall into the deceptive tramps due to the combination
method used to generate new individuals (distribution of single genes in the individ-
ual encoding).

The combination of both techniques performs better because once the mutation
and crossover operators have reached the optimal value for a subproblem, no mu-
tation will break this building block afterwards. The performance of the different
constant or variable Participation Functions is not the same based on the particular
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characteristics of the deceptive tramp. DYNAMIC seems to perfectly adapt the par-
ticipation ratio in order to balance GA and EDA recombination techniques to deal
with these problems.

4.3 Feature Subset Selection

Definition

Feature Subset Selection (FSS) [20] is a well-known task in the Machine Learning,
Data Mining, Pattern Recognition and Text Learning fields. FSS formulates as fol-
lows: Given a set of candidate features, select the best subset under some learning
algorithm. As the learning algorithm, we are going to use naı̈ve Bayes [9, 13]. A
good review of FSS algorithm can be found in [26]. To test the FSS problem we will
use the chess dataset from the UCI repository [31], which has a total of 36 features
and 699 instances.

Results

We have done this experiment using a population size of 1000 individuals. Figure
4c shows that pure GAs are a better option than EDAs for the FSS problem, with p-
value = 0.004. The other constant Participation Functions do not reach results as good
as GAs. For instance, with respect to CONST 0.25, the best constant Participation
Function, the Mann-Whitney p-value is 0.197.

On the other hand, Fig. 4d also shows that variable Participation Functions are
close to the results of GAs, being DYNAMIC the best of these functions, with p-
value = 0.819. Nevertheless, the results achieved by GAs are the best for this prob-
lem.

It is important to consider that the number of generations is quite low and the
complexity of the problem is not very significant. A detailed study of more complex
FSS scenarios should be addressed to confirm the performance of the different al-
gorithms on this problem. The morphology of the problem, the dataset, its features
and the relationships among them, is very relevant to evaluate the performance of the
algorithms in them.

4.4 240 bit Holland Royal Road - JHRR

Definition

The Holland Royal Road functions were introduced in [29]. They were designed as
functions that would be simple for a genetic algorithm to optimize, but difficult for a
hillclimber. In [19], Holland presented a revised class of Royal Road functions that
were designed to create insurmountable difficulties for a wider class of hillclimbers,
and yet still admissible to optimization by a GA.



198 V. Robles et al.

-
a
-

-
b

-

-
c
-

-
d

-

F
u

ll
y

D
e
c
e
p

ti
v
e

f3

2
5

0

2
5

5

2
6

0

2
6

5

2
7

0

2
7

5

2
8

0

2
8

5

2
9

0

2
9

5

3
0

0

1
5

9
1

3
1

7
2

1
2

5
2

9
3

3
3

7
4

1
4

5
4

9
5

3
5

7
6

1
6

5
6

9
7

3

G
e

n
e

ra
ti

o
n

s

Fitness
C

O
N

S
T

0
.0

0

C
O

N
S

T
0

.2
5

C
O

N
S

T
0

.5
0

C
O

N
S

T
0

.7
5

C
O

N
S

T
1

.0
0

F
u

ll
y

D
e
c
e
p

ti
v
e

f3

2
5

0

2
5

5

2
6

0

2
6

5

2
7

0

2
7

5

2
8

0

2
8

5

2
9

0

2
9

5

3
0

0

1
4

7
1

0
1

3
1

6
1

9
2

2
2

5
2

8
3

1
3

4
3

7
4

0
4

3
4

6
4

9
5

2
5

5
5

8

G
e

n
e

ra
ti

o
n

s

Fitness

C
O

N
S

T
0

.5
0

A
L
T

E
D

A
+

+

G
A

+
+

D
Y

N
A

M
IC

F
S

S

0
,7

9
9

0
,8

0
,8

0
1

0
,8

0
2

0
,8

0
3

0
,8

0
4

0
,8

0
5

0
,8

0
6

0
,8

0
7

0
,8

0
8

1
3

5
7

9
1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

G
e

n
e

ra
ti

o
n

s

Fitness

C
O

N
S

T
0

.0
0

C
O

N
S

T
0

.2
5

C
O

N
S

T
0

.5
0

C
O

N
S

T
0

.7
5

C
O

N
S

T
1

.0
0

F
S

S

0
,7

9
9

0
,8

0
,8

0
1

0
,8

0
2

0
,8

0
3

0
,8

0
4

0
,8

0
5

0
,8

0
6

0
,8

0
7

0
,8

0
8

1
3

5
7

9
1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

G
e

n
e

ra
ti

o
n

s
Fitness

C
O

N
S

T
1

.0
0

A
L
T

E
D

A
+

+

G
A

+
+

D
Y

N
A

M
IC

F
ig

.4
.F

ul
ly

D
ec

ep
tiv

e
f3

so
lv

ed
w

ith
-a

-c
on

st
an

tP
ar

tic
ip

at
io

n
Fu

nc
tio

ns
an

d
-b

-v
ar

ia
bl

e
Pa

rt
ic

ip
at

io
n

Fu
nc

tio
ns

an
d

Fe
at

ur
e

Su
bs

et
Se

le
ct

io
n

so
lv

ed
w

ith
-c

-
co

ns
ta

nt
Pa

rt
ic

ip
at

io
n

Fu
nc

tio
ns

an
d

-d
-

va
ri

ab
le

Pa
rt

ic
ip

at
io

n
Fu

nc
tio

ns



GA-EDA: A New Hybrid Cooperative Search Evolutionary Algorithm 199

The Holland Royal Road function takes a binary string as input and produces
a real value. The function is used to define a search task in which one wants to
locate strings that produce high function values. The string is composed of 2k non-
overlapping continuous regions, each of length b+g. With Holland’s defaults, k = 4,
b = 8, g = 7, there are 16 regions of length 15, giving an overall string length of
240. Each region is divided into two non-overlapping pieces. The first, of length
b, is called the block, and the second, of length g, is called the gap. In the fitness
calculation, only the bits in the block part of each region are considered. The fitness
calculation proceeds in two steps: the PART calculation, that considers each block
individually and, the BONUS calculation, created to reward completed blocks and
some combinations of completed blocks.

Results

We have done this experiment using a population size of 500 individuals. Holland
Royal Road problem, as shown by Fig. 5a, is a very complex scenario for EDAs. This
problem was designed to highlight and compare the benefits of GAs to hill climbers
or other optimizers that are neighborhood-oriented search methods. Although GAs
are well-suited for this problem, a combination of 25% EDAs and 75% GAs gets
better results, with Mann-Whitney p-value = 0.0353. As one of the benefits men-
tioned in the introduction of this technique, hybrid algorithms improves the results
by using two different exploratory techniques which increase the probability to find
the optimal values as the range of possible movements is more complete.

In this case, ALT Participation Function outperforms all the other functions,
including CONST 0.75 with p-value = 0.306. Figure 5b presents how GA++ also
performs better than CONST 0.75 with less number of generations and a
p-value = 0.3267. ALT gets more iterations to converge (∼ 10% more) which means
that GA and EDA offsprings change a little more when they are near to the optimum
value and then the exploration is more exhaustive.

4.5 SAT problem

Definition

The goal of the satisfiability (SAT) problem [36] is to attempt to find an assignment
of truth values to the literals of a given Boolean formula, in its conjunctive normal
form, that satisfies it. In theory, SAT is one of the basic core NP-complete problems.
In practice, it has become increasingly popular in different research fields, given
that several problems can be easily encoded into propositional logic formula such
as planning, formal verification, knowledge representation and so on. In GAs and
EDAs the SAT problem can be represented using binary strings of length n in which
the i-th bit represents the true value of the i-th propositional variable in the formula.
The fitness function used is the fraction of clauses satisfied.
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fSAT (x) =
1
C

C∑

c=1

s(xc)

s(xc) =

{
1 if the clause c is satisfied

0 in other case

In previous equation C denotes the number of clauses that the formula has. To
test the developed algorithm, the SAT instances 4blocksb.cnf was used since they
are widely-known and easily available from the SATLIB benchmark4. 4blocksb.cnf
contains 24758 clauses, 410 propositional variables and is satisfiable.

Results

SAT problem is one of the best scenarios for EDAs (Fig. 5c) by getting the top results
using less number of generations. The difference, when compared with GAs, are very
significant with a p-value < 0.001. This problem has been solved with a population
size of 1000 individuals.

A very interesting issue is that as the constant ratio varies the progression of the
algorithm seems to be the same with a gap between each of the graphs. This means
that the lack of accuracy shown by the GA components is located on the earliest
stages of the evolutionary process (the first iterations). The evolution curves are quite
similar after these first generations.

None of the constant or variable Participation Functions, see Figs. 5c and 5d,
reach the same fitness value as pure EDAs. Although their performance is not as bad
as GAs, their p-values are in all the cases smaller than 0.001.

Dynamic Participation Function goes quite slowly on the first generation. This
could drive to a new definition of this Dynamic Participation Function, with more
aggressive behavior in early generations and more conservative changes later.

5 Continuous Problems

The other part of the experiments have been performed considering ten continuous
problems:

➀ Five well-known continuous optimization problems: Branin RCOS function,
Griewank function, Rastrigin function, Rosenbrock function and Schwefel’s
problem. [16, 41]

➁ A new synthetic problem has been also defined (proportional Participation Func-
tion).

➂ A continuous version of the MaxBit problem.
➃ A real-coded solution for three different TSP problems.

4 http://www.satlib.org/benchm.html
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5.1 Branin RCOS Function

Definition

Results

This problem is a two-variable continuous problem with three global minimum and
no local minimum. The problem is defined as follows [5]:

fB(x1, x2) =
(

x2 −
5

4π2
x2

1 +
5
π

x1 − 6
)2

+ 10
(

1 − 1
8π

)

cos(x1) + 10

−5 < x1 < 10
0 < x2 < 15

The global optimum for this problem is 0.397887 that is reached in the points
(x1, x2) = (−π, 12.275), (π, 2.275), (9.42478, 2.475).

This problem is considered easy not only because of the number of variables, but
the small chance to miss the basin of the global minimum in a global optimization
procedure. This is due to the probability of reaching the global optimum using local
optimization methods, started with a small number of random points, is quite high.

This problem was solved using a population size of 150 individuals.
Branin is a very simple problem where in few generations all the algorithms

converge. Figure 6 shows CONST 0.25 is the best function, and GAs a very poor
option to solve this problem. CONST 0.25 aheads EDA with p-value = 0.063 and
CONST 0.50 with p-value = 0.339.

In this problem GA++ performs similarly to EDA. This is due to the reduced
number of generations which represents the participation share of GAs which do
not increase too fast to recover the majority of individuals generated by the EDA
mechanism. See Fig. 6b.

The simplicity of this function biases the performance of the algorithm towards
the trend addressed by the very first generations. Few modifications are achieved af-
ter these generations. For the DYNAMIC function, this could be a good justification
to define a more radical variations of the first iterations of the algorithm.

5.2 Griewank Function

Definition

This problem has ten variables with a unique global optimum with many (O(103))
local minima nearby.

fG10(x) = 1 +
1
d

n∑

i=1

x2
i −

n∏

i=1

cos
(

xi√
i

)

d = 4000;n = 10
−500 < xi < 500
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The global minimum for this problem can be found in the solution xi = 0, i =
1, . . . , n with a fitness value of 0.

It is considered a moderately difficult optimization problem, because of its non-
separable characteristic. Non-separable means that there is non-linear interaction
among variables.

Results

This problem was solved using a population size of 250 individuals.
In this problem the results achieved by EDAs are better than the ones provided by

GAs with p-value < 0.001. This feature is emphasized when it is shown even a small
participation ratio of EDAs increases the fitness obtained by the overall algorithm,
as shown by Fig. 6c.

In Fig. 6d, a very similar performance of the variable Participation Functions can
be seen. There is almost no significant difference on any of the variable Participation
Function. For instance, between CONST 0.75 and EDA++ we have p-value = 0.853
and between CONST 0.75 and DYNAMIC we have p-value = 0.795.

It is interesting that this problem shows an interaction between variables which
could lead EDA evolution, when using UMDA, to suboptimal values, with higher
probability than GAs. Actually the dependence factor is not very significant as
the sum of the quadratic terms of the first part of the function, which is lineal-
independent, is much more significant than the product of values between [−1, 1].

5.3 Rastrigin Function

Definition

It is a scalable, continuous, and multimodal function that must be minimized. It is
the result of modulating n-dimensional sphere equation with a · cos(ωxi).

fRa5(x) = a · n +
n∑

i=1

(
x2

i − a · cos(ωxi)
)

a = 10;ω = 2π;n = 5
−5.12 < xi < 5.12

The global minimum for this problem can be found in the solution xi = 0, i =
1, . . . , n with a fitness value of 0.

Results

This problem was solved using a population size of 1000 individuals.
Rastrigin (Fig. 7a) function has no lineal dependency among the variables, but

the performance of EDAs is very poor. Near the optimum value there are many lo-
cal optimum and EDAs seems to be very sensitive to this characteristic. The best
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constant ratio function is CONST 0.50, with a p-value < 0.001 respect to GA. This
means that pure GA could be improved by the help of EDAs even if this method is
not very well-suited by itself.

In Fig. 7b, we can see that DYNAMIC is able to provide the best participation
ratio to outperform CONST 0.50 with a p-value = 0.006 and the other variable Par-
ticipation Functions.

5.4 Rosenbrock Function

Definition

It is a continuous, non-separable, and unimodal function. It has the global minimum
located in a steep parabolic valley with a flat bottom [37]. This issue represents a big
challenge to the optimization process.

fRo10(x) =
n−1∑

i=1

(
100 · (xi+1 − x2

i )
2 + (xi − 1)2

)

n = 10
−500 < xi < 500

The global minimum for this problem can be found in the solution xi = 0, i =
1, . . . , n with a fitness value of 0.

Results

This problem was solved using a population size of 1000 individuals.
In Fig. 7c, EDAs perform much better than the other approaches, and GAs are

far worse than any Participation Function with at least a small EDA ratio.
Variable Participation Functions on this problem are not better than pure EDAs.

It is very significant, as shown by Figure 7d, that performance of GA++ is much
better than EDA++. This is due to the small number of generations that represents a
more intensive participation of EDAs.

DYNAMIC does not perform very well. This can be explained in the same terms
previously used. In problems with few generations our Dynamic Participation Func-
tions has no time to balance the participation ratios of the algorithms.

5.5 Schwefel’s Problem

Definition

It is also a continuous unimodal function. Its difficulty also concerns the fact of
searching along the coordinate axes only gives a poor rate of convergence because
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function gradient is not oriented along the axes. As in the previous case global opti-
mum is surrounded by several local optimum in the neighborhood.

fS10(x) =
n∑

i=1

xi · sin(
√

|xi|)

n = 10
−500 < xi < 500

fS10(x∗) = min(fS10(x))

The global minimum for this problem can be found in the solution xi =
420.9687, i = 1, . . . , n with a fitness value of 0.

Results

This problem has been solved with a population of 250 individuals.
Schwefel’s problem is very difficult due to the large number of suboptimal points,

especially those near the global optimum. This feature drives EDAs to a very poor
performance, also due to the non-lineal relationships among the variables.

In Fig. 8a GAs is the best approach, much better than any other of the constant
ratio functions, although they are not able to find the optimal value in all of the cases.

All the results achieved by other than pure GA algorithms are not able to improve
the results reached after the first generations. Even GA++, which increments the ratio
of GA-based individuals, are very poor on this problem (see Fig. 8b). Many studies
have proved that significantly high mutation rates could help improve the results of
this problem.

5.6 Proportion Problem

Definition

This new function represents a model of similar real-world problems that deal with
the search of the correct proportions that should make it true that:

n∑

i=1

xi = 1 (3)

The fitness function is:

fP128(x) =
1
n

n∑

i=1

(
1 − |xi − x∗

i |1/p
)

n = 128; p = 2;x∗
i =

i
n·(n+1)

2

0 ≤ xi ≤ 1
fP128(x∗) = max(fP128(x))
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The objective of the function is to find the right proportion (represented by x∗),
with p-order distance function.

This problem is not difficult, as the distance function is separable and lineal. In
order to be compliant with the restriction expressed by Eq. 3 a Lamarckian correc-
tion is performed to the individual represented by x, instead of dropping malformed
elements.

xc
i =

xi∑n
i=1 xi

(4)

The individual xc substitutes the individual x in the population, before fitness calcu-
lation is performed.

Results

This problem has been solved with a population of 250 individuals.
EDAs deal with this problem much better than any other constant functions. Be-

tween EDAs and CONST 0.25, the best constant function, the p-value is p-value <
0.001.

DYNAMIC slightly outperforms EDAs (with p-value = 0.185) and seems to
adapt perfectly to the characteristic of this problem (see Fig. 8d). EDA++ converges
prematurely due to the heavy ratio of the GA-based individuals.

5.7 The MaxBit Continuous Problem

Definition

This problem is a redefinition of the binary MaxBit problem previously presented.
The aim is to maximize:

fM12(x) =
∑n

i=1 xi

n
xi ∈ {0, 1};n = 12

In the continuous domain this problem is more complex, as the optimum value
of the function is located on the boundary of the search space.

Results

This problem has been solved with a population of 250 individuals.
Figures 9a and 9b contain the obtained results. All the constant and variable

Participation Functions perform in a very similar way reaching the global optimum
in almost the same number of generations. However, pure GAs, which converge after
more generation, only reach a suboptimal value.

MaxBit performance, as we can see, is very similar in both cases with continuous
and with bit-string individuals.
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5.8 TSP Continuous

Definition

The Travelling Salesman Problem (TSP) objective is to find the shortest route for
a travelling salesman who, starting from his home city, has to visit every city on a
given list precisely once and them return to his home city. The main difficult of this
problem is the immense number of possible tours: (n − 1)!/2 for n cities.

The TSP is a relatively old problem. It was documented as early as 1759 by
Euler, however not using that name, whose interest was in solving the knights’ tour
problem in chess. A correct solution would have a knight visit each of the 64 squares
of a chessboard exactly once on its tour. The term “traveling salesman” was first
used in 1932, in a German book written by a veteran traveling salesman. The RAND
CORPORATION introduced the TSP in 1948. The corporation’s reputation helped
to make the TSP a well-known and popular problem.

Although there are different alternatives to encode this problem, in this paper
individuals of population are represented by using vectors with real numbers. Thus,
we need a method to translate these real vectors to a valid tour for the TSP. In the
following table we see one of these translations.

In Table 2 we can see a 6-city example. In the original vector the generated real
numbers are between 3 and -3. The obtained tour will be an integer vector in which
each of the elements is the index after the values of the original vector are sorted.
Thus, the calculus of the fitness function of individuals is more complex to compute.

Table 2. Translation of an individual to a correct tour

Original vector: 1.34 2.14 0.17 0.05 –1.23 2.18
Resulting tour: 4 5 3 2 1 6

The following files have been used in the empirical study: The well known
Gröstel24, Gröstel48 and Gröstel120. These are files that can be obtained via web
or ftp in many sites. They represent the distances between 24, 48 and 120 imaginary
cities. They are often used in TSP problems to know the fitness of the algorithm we
use, and can be defined as a classical experiment in the TSP.

Results for Gröstel24 Problem

This problem has been solved with a population of 1000 individuals.
In the TSP problem of 24 cities (see Fig. 9c) the best algorithms are pure GA,

CONSTANT 0.75 and CONSTANT 0.50 (p-values > 0.9 between them). The worst
algorithm is EDA which presents a very poor performance.

In the variable Participation Functions (see Fig. 9d) obtained results are excellent,
being the DYNAMIC approach being better than GA with a p-value = 0.161.

Although it has a very good beginning because of the number of GA individuals
created in the first generations, the EDA++ approach presents bad results.
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Results for Gröstel48 Problem

This problem has been solved with a population of 1500 individuals.
The results obtained for 48 cities with the constant Participation Functions (see

Fig. 10a) are very similar to the previous ones, CONSTANT 0.75 and pure GAs be-
ing the best constant approaches, without statistical significance difference between
them.

However, in this case, in the variable Participation Functions (Fig. 10b), GA++
is similar to the DYNAMIC approach, with p-value = 0.722, but worse than CONST
0.75, with p-value = 0.147.

Results for Gröstel120 Problem

This problem has been solved with a population of 1500 individuals.
TSP with 120 cities is a very hard problem for heuristic optimization approaches

such as GAs and EDAs without the help of local optimization techniques. How-
ever, the obtained results are quite similar to the previous ones, GA being the best
approach with constant Participation Function, and GA++ the best with variable Par-
ticipation Function, without significant difference respect to GA (p-value = 0.7393).

6 Conclusion and Further Work

In this chapter we have proposed a new hybrid algorithm based on genetic and es-
timation of distribution algorithms. This new algorithm has been tested on a set of
different problems. Although the hybrid algorithm proposed is composed by the sim-
plest versions of both GA and EDA components, the experimentation shows it is re-
ally promising and competitive. In most of the experiments we reach the best of the
values found by GAs or EDAs or we even improve them. There is still a lot of further
future work. Here are some possibilities: Extend the implementation to support more
sophisticated individual representations, make new Participation Functions based on
statistical tests, implement a parallel version based on the island model or use more
complex GAs and EDAs in the hybrid solution.

6.1 Evolution of the Dynamic Participation Function

One interesting issue is to survey the evolution of the dynamic Participation Function
in the series of different experiments. This function, as we have seen, adjusts the
participation ratio depending on the quality of the individuals each of the methods is
providing. Indirectly, this measure could be used to evaluate the quality of each of
the methods across the continuous generations of an algorithm.

As we see in Fig. 11 the evolution of the dynamic functions are able to guide the
hybrid algorithms towards the best option, either GA, EDA or other constant ratio
Participation Functions. For example, in TSP, GAs outperforms clearly all the other
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Evolution of dynamic PF

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generations

%
G
A

Branin
Griewank
Rastrigin
Rosenbrock
Schwefel
Proportional
MaxBit
TSP 24

Fig. 11. Evolution of Dynamic Participation Function (Continuous)

constant ratio approaches, and DYNAMIC (with similar results) changes the partici-
pation ratio in this direction. A similar case is shown by Proportion. However, in this
case EDAs are the best algorithm. In other problems, with a best option between pure
EDAs and pure GAs, the Participation Function moves to find the correct balance in
order to improve the results of the overall algorithm.

On the other hand, for bit-string problems in Fig. 12, the dynamic Participation
Function has this general trend:

• On early generations GA performs better than EDAs, the exploratory technique
is able to find better individuals using the same input information (the last gener-
ation).
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• When the algorithm is close to the optimum, EDAs generate the best solutions.
That is probably due to the mutation ratio, which is very useful to avoid local
optimum, but once the environment of the global solution is reached it drives
towards malformed individuals, far from the local optimum.

This trend is also shown, with small variations, by the continuous problems
shown before, in the case neither pure GAs nor pure EDAs are clear options. Al-
though special abnormalities are present, for example Rosenbrock is best solved by
EDAs, but DYNAMIC trend increases the participation ratio of GAs instead.

These trends of the fitness, provided by each of the methods, could be useful in
order to tune up either genetic and estimation of distribution algorithms by them-
selves. Updating mutation rate is one of the issues already considered by works such
as [2, 40].

6.2 Experiments Summary

On Tables 3 and 4, the summary of the results obtained by these experiments show
that hybrid algorithms, in most of the cases, are a better option than the pure EDA or
GA algorithms by themselves. Although there are specific problems in which EDA
(SAT, Proportion and Rosenbrock) or GA (FSS and Schwefel) are the best options,
hybrid algorithms show a competitive behavior. The opposite is not as common, as
there are experiments (like JHRR, Branin, Griewank, Rastrigin, and MaxBit Contin-
uous) in which neither EDAs nor GAs present good results compared to most of the
hybrid approaches.

Table 3. Result Summary Table

EDA CONST 0.25 CONST 0.50 CONST 0.75 GA
Problem Mean Gen Mean Gen Mean Gen Mean Gen Mean Gen

Max Bit 1 45 1 48 1 51 1 59 0,9793 115
Deceptive f2 280,0 28 289,8 62 296,4 45 298,2 42 297,6 38
Deceptive f3 272,4 68 296,5 74 298,6 51 298,3 41 298,2 40
FSS 0,8041 20 0,8059 22 0,8057 20 0,8057 20 0,8070 27
JHRR 12,85 43 20,09 130 20,75 111 20,99 92 19,37 74
SAT 47803,6 42 47800,1 44 47790,9 47 47752,7 51 47096,5 63
Branin –0,4035 19 –0,3999 19 –0,4006 19 –0,4235 19 –0,4513 19
Griewank 626,38 24 626,45 25 626,51 25 626,42 25 625,45 32
Rastrigin –3,69683 43 –0,06368 34 –0,00054 32 –0,00473 30 –0,10823 30
Rosenbrock –12403 21 –29197 21 –81222 22 –118522 22 –157107 23
Schwefel 1778,36 19 1863,85 20 1894,66 20 1862,60 20 2068,70 24
Proportion 0,9851 51 0,9810 51 0,9756 51 0,9473 19 0,9449 19
MaxBit Cont 0,9999 37 0,9999 37 1 36 1 35 0,9909 53
TSP 24 –2324,7 45 –1531,3 128 –1381,3 104 –1378,9 95 –1372,2 69
TSP 48 –15037,2 45 –8873 181 –6814,2 126 –6222,8 142 –6227,3 131
TSP 120 –41809,1 35 –34666,9 145 –22859,9 154 –19983,7 149 –19640,5 134
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Table 4. Result Summary Table

ALT GA++ EDA++ DYNAMIC
Problem Mean Gen Mean Gen Mean Gen Mean Gen

Max Bit 1 52 1 56 1 51 1 50
Deceptive f2 296,8 55 292,4 49 296,6 48 298,2 42
Deceptive f3 298,0 55 297,7 52 297,3 58 299,2 45
FSS 0,8057 21 0,8060 22 0,8059 21 0,8065 21
JHRR 21,48 121 21,33 82 18,40 105 20,88 97
SAT 47783,0 48 47745,9 47 47799,4 46 47798,7 50
Branin –0,4006 19 –0,4001 19 –0,4085 19 –0,4033 19
Griewank 626,42 25 626,47 25 626,49 26 626,42 25
Rastrigin –0,00159 33 –0,00027 32 –0,00472 31 –0,00005 30
Rosenbrock –70688 22 –36544 21 –366490 22 –73786 22
Schwefel 1826,47 19 1863,35 20 1874,48 20 1836,26 24
Proportion 0,9574 36 0,9659 36 0,9426 19 0,9851 54
MaxBit Cont 1 36 1 36 0,9999 37 1 35
TSP 24 –1371,6 93 –1378 95 –1522,5 95 –1351,3 78
TSP 48 –6962,8 169 –6413,1 128 –9484,5 127 –6641,9 113
TSP 120 –24875,1 159 –19457,4 159 –33759,5 121 –21327,8 147

In order to compare the results, for the experiments carried out, the relative po-
sition (ranked-based) has been computed. This ranking has been developed using
fitness-driven criteria. The best fitness is #1, next one #2, and so on. Using this
method, the average ranking has also been computed:

avg rank(PF ) =
∑N

i=1 rank(PF, i)
N

(5)

being rank(PF, P ) the relative ranking of Participation Function PF in the problem
P .

DYNAMIC is the best Participation Function, as can be seen on Table 5. Another
interesting result is that CONST 0.50 also behaves quite well. Among the worst re-
sults are both pure EDAs and pure GAs. Of course, the set of experiments is not rep-
resentative of all the possible optimization problems, but have been selected to cover
a wide spectrum of possible real-world scenarios. In the performance of EDA++ and
GA++, we should consider that several experiments do not last for many genera-
tions, thus the influence of the first generations biases the results achieved by these
approaches.

The experimentation and research perspective of hybrid methods is very promis-
ing, and several issues are still open in terms of alternatives of the presented Partici-
pation Functions, using of more complex EDAs approaches, hybridization with local
heuristics, three or multi hybrid algorithms (using more than one GA or one EDA
algorithm), and parallel definition of the hybrid algorithms.
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Table 5. Average ranking of the Participation Functions

Participation Function avg rank

EDA 6,625
CONST 0.25 4,9375
CONST 0.50 3,8125
CONST 0.75 4,4375
GA 5,4375
ALT 4,25
GA++ 3,5
EDA++ 5,6875
DYNAMIC 3,0625
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Summary. This chapter introduces a new Evolutionary Computation method which applies
Bayesian classifiers in the construction of a probabilistic graphical model that will be used
to evolve a population of individuals. On the other hand, the satisfiability problem (SAT) is
a central problem in the theory of computation as a representative example of NP-complete
problems. We have verified the performance of this new method for the SAT problem. We
compare three different solution representations suggested in the literature. Finally, we apply
local search methods for this problem.

1 Introduction

This chapter introduces Evolutionary Bayesian Classifier-based Optimization Algo-
rithms (EBCOAs) as a new approach in Evolutionary Computation. The originality
of these algorithms comes from the fact that they evolve a generation of individu-
als by constructing Bayesian classifier models that take into account deeper differ-
ences rather than simply a subset of the better individuals of the previous population.
The main difference between this approach and Estimation of Distribution Algo-
rithms (EDAs) is the fact that the probabilistic graphical model in discrete EDAs is
a Bayesian network, while in EBCOAs we construct a Bayesian classifier that in-
cludes an extra C node that represents the different classes to which each individual
of a population is classified. EBCOAs take into account the differences between the
individuals in the population that make them be more or less fit regarding their fit-
ness value, and apply this knowledge to create a new population by enhancing the
characteristics of the fitter ones and tries to avoid such of the less fit ones. In order to
better understand the motivation for EBCOAs, this chapter analyzes the issues that
allows Estimation of Distribution Algorithms (EDAs) to converge to the best solu-
tion of a problem, as well as several new methods for improving the way in which
this convergence is done. The aim of this idea is to avoid a too fast convergence that
could lead to fall in local optima.

T. Miquélez et al.: Bayesian Classifiers in Optimization: An EDA-like Approach, StudFuzz 192, 221–242 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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In order to analyze the potential of this new method, we tried its performance
with a typical NP-hard optimization algorithm such as the SAT problem. This op-
timization problem is regarded as a very interesting one in the field of computer
science due to the big number of problems that can be formulated and solved using
SAT instances.

The rest of the chapter is structured in the following way. Section 2 is devoted
to the introduction to EBCOAs and the different Bayesian classifiers that can be
applied. The SAT problem is defined in Sect. 3. Section 4 shows the experimental
results obtained with this new method, and the conclusions of the chapter as well as
ideas for future work can be found in Sect. 5.

2 The Evolutionary Bayesian Classifier-based Optimization
Algorithm Approach

This section describes the EBCOAs [22]. Similarly as EDAs, EBCOAs combine
both probabilistic reasoning and evolutionary computing. The main characteristic of
EBCOAs that distinguish them from EDAs is that the learning of the probabilistic
graphical model is based on using Bayesian classifiers.

2.1 Motivation

In many Evolutionary Computation techniques such as Genetic Algorithms (GAs)
and EDAs only the best individuals of the generation are taken into account to pro-
ceed to apply crossover and mutation techniques–in GAs – or to learn the probabilis-
tic graphical model – in EDAs. In these approaches, the aim is to take into account
the characteristics of the N fittest individuals of the population. However, in most
of the cases the fitness value differences among the individuals are not taken into
account but for the purpose of deciding whether the phenotype of an individual is
relevant for generating the next generation. Therefore, in the case of most EDAs, the
best and worst individuals within the selected population of the lth generation are
considered to have the same relevance for the learning of the probabilistic graphical
model.

However, in many optimization problems the fitness differences between the se-
lected individuals are also important in order to ensure an adequate convergence of
the search process. This is essential in the case of EDAs in order to ensure conver-
gence. The literature shows different possibilities for taking into account the fitness
of each of the selected individuals in the learning step of EDAs:

• Making fitter individuals to influence the learning of the probabilistic graph-
ical model regarding their fitness value: this approach assigns a weight to each
individual to have more influence in the learning step in EDAs regarding the
respective fitness value. An example of this idea was proposed in BSC [26].

• Applying a proportional selection method: An example of this approach is the
use of a Boltzman distribution based selection [24].



An EDA-like Approach 223

• Considering the fitness value as an additional node in the probabilistic
graphical model: the fact of including such a new variable together with vari-
ables X1, . . . , Xn makes a direct influence on the learning and sampling steps of
EDAs. Unfortunately, this fitness value variable is typically continuous and it is
therefore difficult to apply learning algorithms that are able to handle at the same
time discrete and continuous variables. In addition, these learning procedures are
computationally more complex and require considerable CPU time.

• Transform the learning of the probabilistic graphical model into a super-
vised classification problem: this approach is the one proposed in EBCOAs, in
which all the individuals of a population are classified in different classes, and
then these are used to build Bayesian classifiers that have the form of a Bayesian
network. These Bayesian networks have the characteristic of including the class-
variable in the probabilistic graphical model as the parent of the rest of the vari-
ables X1, . . . , Xn. The main idea of this approach is to guide the search taking
into account both the genotypes of the fittest and the less fit individuals.

EBCOAs are not the only approach in the literature that apply classification tech-
niques in optimization. The most relevant statistical approach that follows a similar
idea is the Learnable Evolution Model (LEM) [20] –in which an original machine
learning method based on inductive rules is applied– although other approaches that
apply decision trees [18] and hill climbing methods [2] can also be found. Examples
on the use of classification paradigms in optimization for the continuous domain can
also be found in the literature, such as the use of Gaussian modeling [1].

2.2 Main Steps of the EBCOA Approach

EBCOAs can be regarded as an Evolutionary Computation approach very similar to
EDAs in the sense that there are steps such as the learning of a probabilistic graphi-
cal model and the posterior sampling of this model in order to obtain the individuals
of the new population. These two steps are present in both paradigms, although the
most relevant differences are precisely in the type of Bayesian network to build:
in EDAs the learning algorithms applied are general purpose Bayesian network in-
duction algorithms while EBCOAs build Bayesian classifiers using the information
provided by the fitness function. In order to better compare the main differences be-
tween these two paradigms, Figs. 1 and 2 illustrate the EDA and EBCOA approaches
respectively. These two figures evidence this difference, in which it appears clearly
that the probabilistic graphical model learned in EBCOAs contains the additional
class variable which is the parent of the rest, and is denoted as C. Note also the dif-
ference in both approaches regarding the selection of individuals –in EDAs– or the
division in classes following a supervised classification approach made in EBCOAs.
Figures 3 and 4 show the pseudocode of these two different paradigms for a clearer
explanation of these main differences.

We denote by X = (X1, . . . , Xn) an n–dimensional random variable, and we
represent by x = (x1, . . . , xn) one of its possible instantiations –that is, one of the
possible individuals. The probability distribution of X will be denoted as p(x), and
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...

34.12

D0

Selection of N<R individuals

Induction of the
probability model

Sampling R individuals
from  p l (x )

Selection of
N<R individuals

p l (x ) = p l (x |Dl  )

X1 X2

X3

Xn-1

Xn

N

Fig. 1. Illustration of the EDA approach in the optimization process

the conditional probability distribution of the variable Xi given the value xj of the
variable Xj will be written as p(xi|xj).

Let Dl be the population (database) of the l-th generation, formed by R individu-
als. This population has to evolve to the (l+1)-th one. In EBCOA, instead of having
a selection of the fittest step as in EDAs, the population Dl is firstly divided in |E|
different classes, where following a supervised classification approach the variable
E is defined so that to take the values {1, 2, . . . , |E|}. We denote by DE

l the database
Dl after being divided in |E| classes, in which each of the individuals in the popu-
lation is assigned to a class of the variable E. In many cases we will be interested
in enhancing the characteristics of the fittest and least fit classes, and therefore it is
very likely not to use all the different classes for the learning. Therefore, we select
|C| ≤ |E| classes and we ignore the rest of them for learning the Bayesian classifier.
We denote by DC

l the subset of DE
l that will be used for the learning, and similarly

we denote by C the variable that assigns a class c –with 1 ≤ c ≤ |C|– to each of the
individuals in DC

l .
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Fig. 2. Illustration of the EBCOA approach in the optimization process

The hardest task in EBCOA and the most critical one regarding the convergence
aspect, is the estimation of pl(x, c). This probability is estimated from the Bayesian
classifier that is learned every generation. As EBCOAs are based on Bayesian classi-
fiers, the Bayesian network structure S that is induced as a result of the learning step
contains the variables X1, . . . , Xn as in EDAs, but also the newly defined variable
C, and it will always be the parent of all the other variables in S. The next section
introduces the main characteristics of the different methods for building Bayesian
classifiers. See [22] for more details.

2.3 Bayesian Classifiers

The problem of supervised classification consists of assigning one of the |C| classes
of a variable C to a vector x = (x1, . . . , xn). The true class is denoted by c and
it takes values in {1, 2, . . . , |C|}. Following this definition, a classifier can be seen
as a function γ : (x1, . . . , xn) → {1, 2, . . . , |C|} that assigns a class label to each
observation.

The loss function is defined as the cost of misclassifying an observation. A loss
function 0/1 is defined as a loss function in which the cost of misclassifying an
element is always 1. In this case, it has been demonstrated that the optimum Bayesian
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D0← Generate R individuals (the initial population) at random

Repeat for l = 0, 1, . . . until satisfying a stopping criterion

DN
l ← Select N < R individuals of Dl following

a certain selection method

pl(x) = p(x|DN
l )← Estimate the distribution of probability

for an individual to be among the selected individuals

Dl+1← Sample R new individuals (the new population) from pl(x)

Fig. 3. Generic pseudocode of EDA

D0 ← Generate R individuals (the initial population) randomly

Repeat for l = 0, 1, 2 . . . until a stopping criterion is met

DE
l ← Divide the R individuals in E < R different classes from Dl

according to a criterion

DC
l ← Select the C ≤ E classes of DE

l that will be used for building the
Bayesian classifier, usually taking into account at least the best
and worst classes.
The individuals of the classes not included in DC

l ⊂ DE
l are ignored

pl(c|x) ∝ pl(c) · pl(x|c) ← Estimate the probability distribution of an individual
in DC

l of being part of any of the different possible C classes

Dl+1 ← Sample R individuals (the new population) from pl(x|c)

Fig. 4. Generic pseudocode for the EBCOA approach

classifier that minimizes the total misclassification error cost is obtained by assigning
to the observation x = (x1, . . . , xn) the class with the highest a posteriori probability
[5].

This optimum Bayesian classifier is expressed more formally as follows:

γ(x) = arg max
c

p(c|x) (1)

In informative or generative classifiers such as the ones that are revised in this
section, p(c|x1, . . . , xn) is obtained indirectly by applying the Bayes rule:

p(c|x1, . . . , xn) ∝ p(c, x1, . . . , xn) ∝ p(c)p(x1, . . . , xn|c)

This section revises Bayesian classifiers that have been proposed specifically for
classification problems.
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X 1 X 2 X4X3
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(c)

(a) (b)

X1 X 2 X4

C

X 3 X 4X 1

C

X1

X2 X4

X3

C

(d)

Fig. 5. Example of graphical structures of different Bayesian classifiers for a problem of four
variables. The Bayesian classifiers presented are examples of (a) Naive Bayes, (b) Selective
Naive Bayes, (c) Seminaive Bayes, and (d) Tree Augmented Naive Bayes

Naive Bayes

The naive Bayes approach [21] is the most simple one presented in this section.
The Bayesian network structure that is applied is always fixed: all the variables
X1, . . . , Xn are considered to be conditionally independent given the value of the
class value C. Figure 5(a) shows the structure that would be obtained in a problem
with four variables.

In the naive Bayes classifier, when classifying an example x, this will be assigned
to the class c which has a higher a posteriori probability. This a posteriori probability
is computed as follows:

p(c | x) ∝ p(c,x) = p(c)
n∏

i=1

p(xi|c) (2)

The a priori probability of the class, p(c), and the conditional probabilities
p(xi|c) are estimated from the database of cases.

Selective Naive Bayes

The main restriction of naive Bayes is that this model forces the classifier to take into
account all the variables. This aspect appears to be a drawback for some classifica-
tion problems, since some of the observed variables could be irrelevant or redundant
for classification purposes. Furthermore, it is known [13, 17] that the behavior of the



228 T. Miquélez et al.

naive Bayes paradigm degrades with redundant variables, and therefore the motiva-
tion for this approach is to remove those variables in order to obtain more efficient
classifiers.

In the selective naive Bayes approach [14, 16] the variables in the classifier are
considered to be independent as well as in naive Bayes, but in this case some of the
variables can be ignored and not have them present in the final model. Figure 5(b)
shows the structure that could be obtained in a problem with four variables, where
one of them is missing in the final structure.

Following the selective naive Bayes model, and using the selective naive Bayes
classifier shown in Fig. 5(a), an individual x = (x1, x2, x3, x4) would be assigned
to the class

c∗ = arg max
c

p(c)p(x1|c)p(x2|c)p(x4|c) (3)

Seminaive Bayes

The previous two Bayesian classifiers have as a common property the fact that all
the variables in the structure are considered to be conditionally independent. That is,
all the variables can have uniquely the class variable C as a parent. The seminaive
Bayes approach [15] is able to take into account dependencies between the variables
X1, · · · ,Xn as it allows groups of variables to be considered as a single node in
the Bayesian network. Figure 5(c) illustrates an example of a seminaive Bayesian
classifier in a problem with four variables, showing that the Bayesian network struc-
ture treats those grouped variables as a single node regarding the factorization of the
probability distribution. The grouping of variables as a single node means that all
the dependencies between them are considered implicitly for classification purposes.
On the other hand, and similarly as in selective naive Bayes, in seminaive Bayes it
is also allowed that some variables are not included in the final classifier (Fig. 5(c)
shows an example of this).

In [25] we can find a greedy approach to build seminaive Bayes classifiers, in
which redundant as well as dependent variables are detected. When dependent vari-
ables are found, a new variable is created as the cartesian product of these. Two
greedy algorithms are presented, the first of them on a forward direction called FSSJ
(Forward Sequential Selection and Joining), and the second on the opposite back-
ward direction named BSEJ (Backward Sequential Elimination and Joining). The
pseudocode of FSSJ is shown in Fig. 6. The algorithm BSEJ follows an analogous
approach, and can be interesting in optimization problems in which the objective
function depends on all or nearly all the variables. Figure 5(c) shows an example
of a possible structure for the Bayesian classifier that could be obtained as a result of
the seminaive Bayes approach.

Therefore, applying the seminaive Bayes model and using the final classifier ob-
tained in Fig. 5(c), an individual x = (x1, x2, x3, x4) would be assigned to the
following class:

c∗ = arg max
c

p(c)p(x1|c)p(x3, x4|c) (4)
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Initialize the set of variables to be used to the null set
Classify all the examples as being of the class with higher p(c)
Repeat in every iteration: choose the best option between

(a) Consider each variable that is not in the model as a new one to be
included in it. Each variable should be added as conditionally
independent of the variables in the model given the class

(b) Consider grouping each variable not present in the model with a variable
that is already in it

Evaluate each possible option by means of the estimation of the percentage
of cases well classified

Until no improvement can be obtained

Fig. 6. Pseudocode of the FSSJ algorithm for seminaive Bayes models

Tree Augmented Naive Bayes

The tree augmented naive Bayes [7] is another Bayesian network classifier in which
dependencies between the variables X1, · · · ,Xn are also taken into account, condi-
tioned to the class variable C, by using a tree structure. In seminaive Bayes a wrapper
approach3 is applied to search for a good structure. In the tree augmented naive Bayes
algorithm the method follows a procedure analogous to the filter approaches where
only pairwise dependencies are considered.

The tree augmented naive Bayes structure is built in a two phase procedure illus-
trated in Fig. 7. Firstly, the dependencies between the different variables X1, . . . , Xn

are learned by means of a score based on the information theory. The weight of a
branch (Xi,Xj) is given by I(Xi,Xj |C), which is the mutual information measure
conditioned to the class variable. These conditional mutual information values are
used to build a tree structure. Secondly, the structure is augmented to the naive Bayes
paradigm.

Following the tree augmented naive Bayes model building pseudocode presented
in Fig. 7, if we obtain the Bayesian classifier structure shown in Fig. 5(d) an individ-
ual x = (x1, x2, x3, x4) will be assigned to the class

c∗ = arg max
c

p(c)p(x1|c)p(x2|c, x1)p(x3|c, x1)p(x4|c, x3) (5)

2.4 Description of the Main Steps of EBCOAs

Evolutionary Bayesian Classifier-based Optimization Algorithms (EBCOAs) is an
approach that combines Bayesian classifiers such as the ones presented in the pre-
vious section and Evolutionary Computation to solve optimization problems. The

3 The wrapper approach consists of applying the induction algorithm itself as a part of the
evaluation function. On the other hand, the filter approach looks only at the intrinsic char-
acteristics of the data, such as probabilistic or distance scores, or the mutual information



230 T. Miquélez et al.

Calculate I(Xi, Xj | C) =
∑n

i=1

∑m
j=1

∑w
r=1 p(xi, yj , cr) log

p(xi,yj |cr)

p(xi|cr)p(yj |cr)

with i < j, j = 2, . . . , n
Build an undirected complete graph, where the nodes correspond to the predictor

variables: X1, . . . , Xn. Assign the weight I(Xi, Xj | C) to the edge connecting
variables Xi and Xj

Assign the largest two branches to the tree to be constructed

Repeat in every iteration:
Examine the next largest branch and add it to the tree unless it forms a loop.
In the latter case discard it and examine the next largest branch

Until n − 1 branches have been added to the structure

Transform the undirected graph in a directed one, by choosing a random
variable as the root

Build the tree augmented naive Bayes structure adding a node labelled as C, and
later add one arc from C to each of the predictor variables Xi (i = 1, . . . , n)

Fig. 7. Pseudocode of the tree augmented naive Bayes algorithm

main idea is that, having a population of solutions for the optimization problem, this
population will be evolved to a new generation formed by a next population of fitter
individuals. The main difference between EDAs and EBCOAs is that in EDAs the
evolution to the next population is performed by learning a probabilistic graphical
model using uniquely the information of the best individuals, ignoring simply the
worst ones, whilst in EBCOAs these worst individuals are also taken into account.
The EBCOA approach is based on constructing a Bayesian classifier that will rep-
resent the main characteristics between the fittest and the least fit individuals. This
approach, illustrated in Fig. 2, contains the following steps:

• Firstly, the initial population D0 of R individuals is generated. This initial popu-
lation is generated usually by assuming an uniform distribution on each variable,
similarly as in EDAs. Each of the created individuals is evaluated by means of
the fitness function.

• Secondly, each of the individuals in Dl are given a label e ∈ E to classify them
regarding their respective fitness value. This is the supervised classification step,
in which each of the R individuals is assigned an e label. As a result of this, the
class variable E is created in the new database denoted by DE

l .
• Thirdly, DC

l is created by selecting from DE
l only the |C| ≤ |E| classes that

will be used for building the Bayesian classifier. In EBCOAs we take into ac-
count uniquely the best and worst classes of individuals. The rest of the classes
in DE

l could be discarded to facilitate the learning by enhancing the differences
between the most distant classes. The individuals which are in DE

l \DC
l are sim-

ply ignored.
• A Bayesian classifier is built using the database DC

l and applying Bayesian
classifier model construction techniques such as the ones described in the pre-
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vious section. This classifier estimates the probability distribution pl(c|x) ∝
pl(c)pl(x|c) which represents the probability of any individual x to be classi-
fied in any of the different possible |C| classes.

• Finally, the new population Dl+1 constituted by the R new individuals is ob-
tained by carrying out the sampling of the probability distribution pl(c)pl(x|c).
This step can be performed very similarly as in EDAs.

Steps 2, 3, 4 and 5 are repeated until a stopping criterion is satisfied. Examples of
stopping conditions are: achieving a fixed number of populations or a fixed number
of different evaluated individuals, uniformity in the generated population, and the
fact of not obtaining an individual with a better fitness value after a certain number
of generations.

The performance of EBCOAs is mainly responsibility of the step of learning the
Bayesian classifier. In order to compare possible classifiers to be applied in EBCOAs,
the most strict criterion to be used would be the use of an honest validation using the
initial database of cases. However, this procedure is very expensive in computation
time and very often this is approximated using a filter approach. It is important to
note that in EBCOAs the most important criterion when choosing a Bayesian clas-
sifier is not to apply the one that best represents a strictly correct classifier, since
the convergence speed and computation time are also important aspects to take into
account. Indeed, the best Bayesian classifiers are usually the most time consuming
ones. A balance between these two performance criteria is required since this learn-
ing step (i.e. the classifier building step) is going to be applied every generation.

3 The Satisfiability Problem

The SAT is one of the most known problems in computational theory because it
results in a generic model in which many different decision making problems can be
represented. The SAT problem is known to be NP-hard.

This particular problem has been analysed for many years and diverse methods
have been applied for its resolution. Evolutionary computation methods have also
been applied to it, mainly GAs, but also EDAs [11].

3.1 Definition of the Optimization Problem

The SAT problem is proposed in a formula in conjunctive normal form composed by
a set of clauses. Each clause is formed by a set of literals, and a literal is a variable
or its negation. A possible interpretation for the problem is a function that assigns a
boolean value to each of the variables. An instantiation is said to be satisfiable if it
satisfies every single clause. In order to satisfy a clause, it is necessary that at least
one of the literals of the clause is satisfied by the instantiation.

The SAT problem is based on a set of Boolean variables Z = (Z1, . . . , Zv), and
a Boolean function g : Bv → B, B = {0, 1}. The formula g is in conjunctive normal
form g(z) = c1(z) ∧ . . . ∧ cu(z), where u is the number of clauses of the problem
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and each clause ci is a disjunction of literals. A literal is a variable or its negation. A
literal zi is said to be satisfied if the value 1 is assigned to zi, while the literal z̄i is
satisfied if the value 0 is assigned. A SAT instance is called satisfiable if there exists
such an z, and otherwise it is called unsatisfiable. Here the aim is to analyze and
check the existence of an assignation of z = (z1, . . . , zv) ∈ Bv such that g(z) = 1.

For example,

g(z) = (z1 ∨ z3 ∨ z̄4) ∧ (z2 ∨ z̄3 ∨ z4) ∧ (z̄1 ∨ z2 ∨ z̄3) (6)

This instance is considered satisfiable if all its clauses are satisfied, and each of
the single clauses is satisfiable if at least one of the literals is according to Z. For
instance,

z = (z1, z2,−, z4) (7)

satisfies the instance, where the value − in Z3 means that this variable can take the
positive or negated value.

One might find easy to find a solution to this type of problems, but when we
increase the number of variables and clauses the problem becomes very difficult to
be solved.

The sub-type of SAT problems called k-SAT is defined as the one that contains in
each clause exactly k different literals. While the 2-SAT class is solved in polynomial
time, k-SAT appears to be NP-hard for k ≥ 3. In 1971, Cook [3] showed that this
problem is NP-hard and that the SAT problem can be understood as a representative
for solving other NP-hard problems.

The optimization version of the SAT problem is known as MAXSAT, and it con-
sists on finding an assignation that maximizes the number of clauses satisfied for a
particular SAT problem. If the original set of clauses is insatisfiable, MAXSAT is
supposed to search for the assignation that satisfies the highest number of clauses
possible.

3.2 Related Research Work

SAT is a generic method for problem solving that has been analysed for many years
in the literature using very different approaches. This section concentrates on the
work oriented to solve SAT by means of heuristic methods, and more precisely on
Evolutionary Computation methods. In 1989, in [4] the authors apply GAs to the SAT
problem to transform other NP-hard problems into SAT. This initial work concludes
that GAs cannot perform better for the SAT, than other problem-specific algorithms,
although GAs are referred to as a robust, efficient, and promising method.

More recent works apply different ways of representing solutions, techniques to
adapt the definition of the fitness function, variations in crossover and mutation op-
erators, or local optimization techniques. The aim of all these techniques in most of
the cases is to improve the results obtained by GAs. As an example of these, [10]
proposes to concentrate on the importance of the clause regarding the problem and
proposes a new individual representation to guide the search following this idea. In
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[9] this option and its corresponding fitness function with improvements is com-
pared to using other type of representations, which also enhances the relevance of
the clause, although the paper concentrates on the need to satisfy a single literal in
each clause so that it becomes satisfied.

Finally, we would like to mention the work [8] in which the authors show an
interesting revision of evolutionary algorithms for the SAT problem.

3.3 Representation Types and Their Associated Fitness Function

When solving any optimization problem using Evolutionary Computation techniques
we need to choose a means of representing each of the possible solutions and to
define a fitness function that measures how good each solution is for this problem.
These two components are critical for an appropriated convergence of the algorithm.
We can find in the literature many different options to represent a solution for the SAT
problem. Each of these representations has a different appropriated fitness function.
Next, we will analyse three different individual representations and their respective
fitness functions: the first of them focuses on the individual literals that form the
problem, while the other two are concentrated on the clauses and on how to satisfy
them.

Bit-String Representation

This option is one the most applied in the literature, since it is the most natural way
of representing the SAT problem. It consists on representing each possible solution
as a string of bits of length v: (z0, . . . , zv), where v is the number of variables of the
problem, and each variable Zi is associated to a bit.

In this case, the aim is to satisfy the maximum number of clauses. Taking into ac-
count that the MAXSAT fitness function consists on counting the number of clauses
that are satisfied, and the idea is to maximize this value, in the MAXSAT formula-
tion the fitness value is equivalent to the number of satisfied clauses directly in the
following way:

gMAXSAT(z) = c1(z) + . . . + cu(z) (8)

where ci represents the true value of the ith clause.

EXAMPLE 1:
Given Equation 6, a possible solution would be za = (1, 0, 0, 0) where

gMAXSAT(za) = 3, since all the clauses are satisfied with this particular
assignation.

On the other hand, if we consider another individual zb = (1, 0, 1, 0), we
have that gMAXSAT(zb) = 1, since the second and third clauses are not
satisfied.
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Path Representation

This representation was suggested in [9]. It is based on the idea that for satisfying
each particular clause it is enough with satisfying a single literal. Therefore, in order
to create a possible satisfiable solution, it also would be possible to select a clause
each time and generate a continuous path among clauses by choosing a literal in
each single clause. That is, in this case a possible solution has as many variables
as clauses, and each variable takes a value in 1, . . . , k (k-SAT) which expressed the
literal that is chosen in a particular clause.

The obvious problem created using this idea is that the same literal that appears
in different clauses with different boolean values can be selected in two positions of
the path, creating inconsistencies.

EXAMPLE 2:
Given Equation 6, the path (1-1-3), which means z1 = 1, z2 = 1, satisfies

the SAT problem and induces the next complete assignations to literals:
z = (1, 1, 0, 0), z = (1, 1, 0, 1), z = (1, 1, 1, 0), z = (1, 1, 1, 1).

On the other hand, the path (1-3-1), z1 = 1, z4 = 1, z1 = 0, contains an
inconsistency for z1.

A reasonable fitness function for this representation is the one that measures the
number of inconsistencies, with the aim of minimizing this function.

If the path with a smaller number of inconsistencies has at least a single one,
that particular SAT problem is not satisfiable. Otherwise, the fact of not having a
single inconsistency in the path means that it exists at least a sequence of assigning
variables that satisfies the SAT problem.

Clause Representation

A new individual representation also based on the clause-variables is proposed in
[10], in which the effect of each of the variables within the clause is stressed. In
other words, the main idea is to concentrate initially on finding an assignment of
values to satisfy individual clauses, and next to search for the particular assignment
of values in the literals of them to satisfy the problem globally.

Each clause with k literals can be regarded as to take 2k − 1 possible combina-
tions of value assignments to its literals that satisfy the clause, while only one would
not satisfy it. In the particular case of a 3-SAT problem, there exist eight different
possible values for each clause, and only one of would not satisfy the clause. There-
fore, in this representation the main idea is to choose any of the 2k − 1 combinations
of literal values in the clause that would satisfy it.

Following this idea, we can obtain an assignment that would satisfy all the
clauses. However, this representation is likely to propose different values (accord-
ing to whether the variable is negated or not) for the same literal which is present in
different clauses. This case would result in an inconsistency in a similar way than in
the previous path representation. Therefore, the idea is to choose any other clause-
value so that the total number of inconsistencies among clauses is minimized.
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Just as a simple example, for a clause (z2 ∨ z̄3 ∨ z4), the assignation of variables
not satisfied by this clause would be (z2, z3, z4) = (0, 1, 0). Next, we can see the
illustration of how to use this representation in an overall 3-SAT problem.

EXAMPLE 3:
Given Equation 6 the forbidden assignations are: (0 0 1), (0 1 0),
(1 1 0) respectively, which correspond to the representation (1 2 6). A pos-

sible solution is (0 1 1), that is (0 0 0), (0 0 1), (0 0 1),
000 → z1 = 0, z3 = 0, z4 = 0,
001 → z2 = 0, z3 = 0, z4 = 1,
001 → z1 = 0, z3 = 0, z2 = 1,
however, this solution presents inconsistencies in z2 and z4.
On the other hand, the solution (2 6 3), that is (0 1 0), (1 1 0),
(0 1 1), does not present inconsistencies.
010 → z1 = 0, z3 = 1, z4 = 0,
110 → z2 = 1, z3 = 1, z4 = 0,
011 → z1 = 0, z3 = 1, z2 = 1,
therefore there exists a global assignation of variables (0 1 1 0) that satisfies

the problem.

Similarly as with the previous representation, the fitness function proposed for
this representation measures the amount of inconsistencies, and the aim of optimiza-
tion algorithms is to minimize it.

When the clause representation is used, if the solution with the less possible
number of inconsistencies has at least one inconsistency, the SAT is not satisfiable.
Otherwise, the SAT problem is satisfiable.

3.4 Local Optimization

We propose in this section two types of local optimization techniques to converge
to a satisfactory solution. The local optimization types presented in this section are
applied in this case to EBCOAs, although they can also be used in other evolutionary
computation methods. These techniques are suggested to be applied after the search
process arrives to a determined generation number.

Firstly, we introduce a local optimization technique that flips each of the values
in the individual after it has been generated, evaluating the fitness of each of the
flips. If the individual is not improved, the original individual is included in the next
generation, and otherwise, the fittest flipped version is included in the population.
We call this method local optimization with flip.

Secondly, we present a method that detects the most difficult clauses of the prob-
lem to be satisfied, assigning them a higher weight in an adapted fitness function.
This method is called optimization through adaptation of weights.

These local optimization procedures try to improve the search for a satisfiable
version. Initially, the fitness function guides the search in a very efficient way, but
due to the ambiguity on assigning the same fitness value to very different individu-
als that are given rise by many individual representations and fitness functions, this
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guidance is not precise enough to guide the algorithm towards finding a satisfiable
solution in the search space. We suggest to apply this local optimization procedure
once the search has found a number of different individuals that have the same best
fitness value, since the algorithm will have no appropriated means to continue the
search. The key decision here is to choose the best time to start applying the local
optimization. The criterion that we propose is to start applying the local optimiza-
tion when all the individuals of the highest (fittest) class have all the same fitness
value. Other options are also possible, for instance to start to apply it once a concrete
generation number has been reached.

Local Optimization with Flip

The local optimization that we propose in this section is based on the FlipGA method
proposed in [19] for GAs. The main idea of FlipGA consists on applying the “Flip”
heuristic to each individual after the crossover and mutation operations. The heuristic
explores the genes randomly: each gen is “flipped”, and this modification is accepted
only if the improvement is bigger or equal than zero (that is, the number of satisfied
clauses after the modification is the same or higher).

We propose in this section a procedure to apply local optimization as follows:

1. Each generated individual will be evaluated and its variables that worsen the
individual – i.e. they make a clause not to be satisfied or create inconsistencies –
will be marked.

2. Next, the marked variables are taken individually, and each time we modify a
single variable and re-evaluate the individual. If a better fitness value is obtained,
this modification is kept for this variable, otherwise we discard it.

Depending on the type of individual representation chosen, the local optimization
will be applied in a different way.

Bit-string representation: The variables of the individuals represent directly the lit-
erals of the problem, while in the path and clause representations the variables
of the individual represent the different clauses and the value of the literals are
implicit.

Path representation: When a variable creates an inconsistency this means that for the
same literal a clause has assigned a value while in another the value is the op-
posite. When this is identified, the literal that creates an inconsistency is marked
in order to choose another literal of the clause and try to satisfy it. This helps at
finding a satisfiable solution.

Clause representation: When a variable of the individual that creates an inconsis-
tency, this means that the value of at least a literal that has been assigned to
satisfy the clause is said to take a different value in two different clauses. This
variable of the individual is marked and the local optimization will try to choose
another combination of values of the clause to satisfy it and avoid the inconsis-
tency.
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Optimization Through Adaptation of Weights

The improvement presented in this section proposes to consider the different clauses
differently according to the difficulty to satisfy each of them. This idea has been
proposed for the first time in [6], and they apply the stepwise adaption of weights
principle (SAW) combined with the fitness function.

gSAW(z) = w1 · c1(z) + . . . + wu · cu(z) (9)

The weights wi ∈ N are adapted to identify the most difficult clauses to satisfy in
each step of the search. Initially, all the weights are initialized to 1 (wi = 1 ), which
is equivalent to apply a MAXSAT function. After some time, the weights are adapted
according to wi ← wi+1−qi(z∗), where qi(z∗) is the actual fitness. This adaptation
increases only the weights that correspond to clauses that have not been satisfied at
that time. This forces implicitly the evolutionary search focusing it on these difficult
clauses, and therefore guiding the search process applying these weights.

Here one of the tasks to perform is to decide when to start applying the opti-
mization to the search. Similarly as in the previous case, we consider that the search
process must start per se without applying the optimization procedure until some
concrete conditions are detected. A possible proposal is to start applying this proce-
dure when reaching a concrete generation number, or also when all the individuals
in the fittest class have the same fitness value. Another decision to take is the number
of generations after which we will adapt periodically the vector of weights.

4 Experimental Results

4.1 Comparison of the Different EBCOAs

In order to perform some experiments we have chosen 3-SAT instances randomly
from the collection of problems offered publicly by SATLIB [12]. The files se-
lected contain definitions of different SAT problems for which we know that a
satisfiable solution exists. We have used 5 different problem instances with 20 lit-
erals and 91 clauses each. For each instance we run each EBCOA presented in
Sect. 2.3 (EBCOANaiveBayes, EBCOASelectiveNB , EBCOAFSSJ , EBCOABSEJ

and EBCOATAN ) 10 times under the same conditions. For each algorithm we have
also applied three exposed possible individual representations and their respective
fitness functions as described in Sect. 3.3.

Table 1 shows the results of these experiments for each individual representation
type and EBCOA algorithm, without the addition of any local optimization at all.
The column Porc. shows the percentage of runs in which a satisfiable solution has
been found. The Dif. column represents the mean number of clauses that are not sat-
isfied in the last generation of the runs. As we can see, this column corresponds to
the percentage of runs in which a possible solution was found for the SAT problem:
the value in Dif. is bigger when the percentage of runs in which a satisfiable solution
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Table 1. Experimental results obtained with 5 different SAT problems containing 20 literals
and 91 clauses. No local optimization technique has been applied in any of these results

Bits Path Clause
Porc. Dif. Eval. Porc. Dif. Eval. Porc. Dif. Eval.

EBCOANaiveBayes 0.86 0.18 2222.84 0.06 1.72 54443.32 0.00 39.12 49832.62
EBCOASelectiveNB 0.82 0.20 2256.10 0.02 1.78 53788.66 0.00 41.78 49856.22
EBCOAFSSJ 0.98 0.02 2472.10 0.00 2.76 50253.64 0.00 53.56 49753.52
EBCOABSEJ 0.92 0.08 1700.60 0.02 1.74 52330.42 0.00 49.50 49881.02
EBCOATAN 0.52 0.66 5285.12 0.00 4.60 52767.50 0.00 26.02 49639.46

has been found. On the other hand, the Eval. column represents the number of differ-
ent individuals that have been evaluated, that is, the number of different individuals
that have been analyzed in the search process. The stopping criterion chosen for all
the cases is the fact of finding a satisfiable solution or to reach a maximum of 500
generations.

As we can see in Table 1 the bit-string representation is the one that shows the
best performance. The other two representations obtain considerably worse results
due to having a bigger search space and more different individuals with the same
fitness value. The EBCOA that performed best is the one that learns a seminaive
Bayes classifier, with which we obtain a satisfiable version in more than 90% of the
executions. In the case of EBCOAFSSJ we obtain even a result of 98%. EBCOATAN

is the one that obtains a satisfiable solution in only 50% of the executions.

4.2 The Result of Applying Local Optimization

In order to analyse the effect of local optimization in EBCOAs, we have performed
a set of experiments to compare the performance of not applying local optimization,
applying the optimization described in Sect. 3.4, and the optimization through adap-
tation of weights of Sect. 3.4. Table 2 shows the results obtained in our experiments.

On the other hand, when local optimization with flip is applied more bal-
anced results are obtained, and the differences between EBCOAs are reduced.
This is the result on a better guidance for the different EBCOAs over the search
space. EBCOATAN improves its performance to the 76% of the executions, and
EBCOAFSSJ obtains a lower percentage of success, although it is still far behind
the 90%.

When the weight adaptation optimization is applied, a satisfiable solution is ob-
tained in the 100% of the cases when applying an EBCOA based on a Selective Naive
Bayes classifier. For the rest of EBCOAs the success rate is also quite high (98% for
EBCOANaiveBayes and EBCOAFSSJ ) except for EBCOATAN which remains in a
72%.

It is also important to note that the effect of the individual representation is very
important in EBCOAs. Other studies in the literature also show that the path repre-
sentation has a worse performance than bit-string representation even when applied
to GAs [9]; however, under the conditions of our experiments using EBCOAs the
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Table 2. Experimental results obtained with 5 different SAT problems containing 20 literals
and 91 clauses

Results applying local optimization with flip
Bits Path Clause

Porc. Dif. Eval. Porc. Dif. Eval. Porc. Dif. Eval.
EBCOANaiveBayes 0.92 0.08 1326.24 0.16 1.40 51113.16 0.00 12.52 49656.04
EBCOASelectiveNB 0.80 0.22 2274.98 0.12 1.48 50822.18 0.00 12.90 49654.14
EBCOAFSSJ 0.92 0.08 2137.82 0.00 2.20 49956.84 0.00 29.28 49655.04
EBCOABSEJ 0.94 0.08 1806.74 0.06 2.02 48897.10 0.00 15.04 49600.00
EBCOATAN 0.76 0.28 3437.08 0.00 4.10 50130.92 0.00 70.44 49625.38

Results applying weight adaptation optimization
Bits Path Clause

Porc. Dif. Eval. Porc. Dif. Eval. Porc. Dif. Eval.
EBCOANaiveBayes 0.98 0.04 2155.10 0.58 0.76 31726.54 0.00 12.58 49600.00
EBCOASelectiveNB 1.00 0.00 4912.80 0.52 0.88 34284.70 0.00 11.42 49600.00
EBCOAFSSJ 0.98 0.04 3105.50 0.00 5.86 49600.00 0.00 33.86 49600.00
EBCOABSEJ 0.94 0.08 5420.42 0.64 0.76 32599.72 0.00 12.38 49600.00
EBCOATAN 0.72 0.38 14698.92 0.00 6.42 49600.00 0.00 47.86 49600.00

performance is quite poor. EBCOAs are able to find a satisfiable version when using
this representation, and only if we apply weight adaptation optimization we man-
age to find satisfiable solutions in more than 50% of the cases – but not for all the
EBCOA types. Results are even worse for the case of clause representation, since no
EBCOA did manage to find a satisfiable solution in any of the executions.

4.3 Performance of EBCOAs Depending on the Complexity
of the SAT Problem

It is a common practise to define the complexity of a SAT problem by using a u/v
ratio, where u is the number of clauses and v is the number of variables. In all our ex-
periments, we use instances with ratio u/v ≈ 4, 3, which have been reported by [23]
to be the hardest instances. With this ratio, we performed an experiment to analyse
the performance of EBCOAs when increasing the number of literals of the SAT prob-
lem. For this, we have applied other problems from SATLIB [12] containing SAT
with 50 literals and 218 clauses. We chose again 5 different instances of these SAT
problems and we run 10 times each EBCOA using the different local optimization
possibilities. This time we have applied uniquely the bit-string representation. The
results obtained are presented in Table 3.

As we can see in this table, the tendency shown in the previous experiments
is kept for this case, although the increase in complexity results in a much lower
performance than the case with 20 literals.
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Table 3. Results for a SAT problem with 50 literals and 218 clauses. These results have been
obtained using a bit-string representation

Results without local optimization
Porc. Dif. Eval.

EBCOANaiveBayes 0.18 1.62 15933.72
EBCOASelectiveNB 0.08 1.78 16633.78
EBCOAFSSJ 0.34 1.14 98698.86
EBCOABSEJ 0.14 1.90 17962.96
EBCOATAN 0.00 4.06 25691.80

Results applying local optimization with flip
Porc. Dif. Eval.

EBCOANaiveBayes 0.10 1.62 13620.32
EBCOASelectiveNB 0.20 1.36 14232.72
EBCOAFSSJ 0.46 0.94 90296.14
EBCOABSEJ 0.26 1.44 14749.36
EBCOATAN 0.00 3.76 20471.18

Results applying weight adaptation optimization
Porc. Dif. Eval.

EBCOANaiveBayes 0.50 1.06 69199.38
EBCOASelectiveNB 0.52 0.94 66921.32
EBCOAFSSJ 0.62 0.74 72924.72
EBCOABSEJ 0.46 1.14 71453.36
EBCOATAN 0.10 2.82 110144.16

5 Conclusions

This chapter presents a new evolutionary computation approach called EBCOA, and
its performance has been studied for a classical NP-hard problem, the satisfiability
one. We have analysed the behavior of EBCOAs for three different individual rep-
resentations together with the appropriated fitness function for each case. In our ex-
perimental results we demonstrate that the bit-string representation obtains the best
results than the ones based on the clause structures. This is due to the fact that the
bit-string representation reduces the search space since the variables of the individual
are binary.

We have also applied two different local optimization options based on the spe-
cific characteristics of the SAT problem. In this sense, in one of them we differentiate
the clauses which are more difficult to be satisfied and a weight is assigned to each
clause regarding this aspect. The results obtained in this local optimization method
are the most promising.

EBCOAs are a very new research paradigm that has still a lot of work to be done.
Possible future working trends that we are currently facing are the use of other more
complex Bayesian classifiers, the definition of other mechanisms to adapt the learn-
ing step in EBCOAs to take into account the a priori information of the optimization
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problem, and the use of other local optimization techniques designed specifically for
EBCOAs.
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Summary. Feature subset selection is an important pre-processing step for classification. A
more general framework of feature selection is feature ranking. A feature ranking provides an
ordered list of the features, sorted according to their relevance. Using such a ranking provides
a better overview of the feature elimination process, and allows the human expert to gain
more insight into the processes underlying the data. In this chapter, we describe a technique to
derive a feature ranking directly from the estimated distribution of an EDA. As an example, we
apply the method to the biological problem of acceptor splice site prediction, demonstrating
the advantages for knowledge discovery in biological datasets with many features.

1 Introduction

Reduction of data dimensionality has become an apparent need in machine learn-
ing during the past decades. Examples of large datasets with instances described by
many features include problems in image processing, text mining and bioinformat-
ics. To efficiently deal with such data, dimension reduction techniques emerged as a
useful pre-processing step in the flow of data analysis. A subset of these techniques
is referred to as feature (subset) selection techniques. These techniques differ from
other reduction techniques (like projection and compression techniques) in that they
do not transform the original input features, but merely select a subset of them.

The reduction of data dimensionality has a number of advantages: attaining
good or even better classification performance with a restricted subset of features,
faster and more cost-effective predictors, and the ability to get a better insight in the
processes described by the data. An overview of feature selection techniques can be
found in [10] and [5].

Techniques for feature selection are traditionally divided into two classes: fil-
ter approaches and wrapper approaches [12]. Filter approaches usually compute a
feature relevance score such as the feature-class entropy, and remove low-scoring
features. As such, these methods only look at the intrinsic properties of the dataset,
providing a mechanism that is independent of the classification algorithm to be used
afterwards. In the wrapper approach, various subsets of features are generated, and
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evaluated using a specific classification model. A heuristic search through the space
of all subsets is then conducted, using the classification performance of the model as
a guidance to find promising subsets. In addition to filter and wrapper approaches,
a third class of feature selection methods can be distinguished: embedded feature
selection techniques [1]. In embedded methods, the feature selection mechanism is
built into the classification model, making direct use of the parameters of the induc-
tion model to include or reject features. Examples of these methods are the pruning
of decision trees, and recursive feature elimination (RFE) using the weight vector of
a linear Support Vector Machine [6].

In this chapter, we will focus on the wrapper approach for feature selection.
Wrapper based methods combine a specific classification model with a strategy to
search the space of all feature subsets. Commonly used search strategies are sequen-
tial forward or backward selection [11], and stochastic iterative sampling methods
like genetic algorithms (GA, [13]) or estimation of distribution algorithms (EDA,
[14]). The EDA approach to feature selection is shown in Fig. 1. In this case, each
individual in the population represents a feature subset, coded as a binary string. Each
bit represents a feature, a 1 indicating the presence, a 0 the absence of a particular
feature. Individuals are evaluated (step 2, Fig. 1) by training a classification model
with the features present in the individual (i.e. the ones having a 1), and afterwards
validating it, either by cross-validation on the training set, or by using a separate
training and holdout set. The feature subset returned by the algorithm is then the best
subset found during the search.

Instead of using the traditional crossover and mutation operators, inherent to GA,
an EDA explicitly constructs a model of the selected feature subsets (step 4). De-
pending on the complexity of the model, univariate, bivariate or multivariate inter-
actions between the encoded features are modelled. In a subsequent step (step 5),
the new population is created by sampling feature subsets from this model. The new
population can either be completely sampled from the distribution, or can partly con-
sist of sampled subsets and subsets retained from the previous population (elitists).
The use of EDAs for feature subset selection was pioneered in [8] and the use of
EDAs for FSS in large scale domains, was reported to yield good results [9, 22].

2 EDA-based Feature Ranking

2.1 Feature Ranking

As mentioned in the introduction, the standard approach to using EDA for feature
subset selection (FSS), is to select the best feature subset encountered in the iterative
process as the final solution. However, selecting the single best subset of features
provides a rather static view of the whole elimination process. When using FSS to
gain more insight in the underlying processes, the human expert has no idea of the
context of the specific subset. Questions about how much and which features can still
be eliminated before the classification performance drastically drops down provide
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1. Generate initial population P0 
of feature subsets

3. Select a number of subsets

4. Estimate probability distribution

5. Generate new subsets by 
sampling the estimated distribution

Termination
criteria met ?

No

Yes

End

6. Create new population of subsets

2. Evaluate each subset by training 
and testing a classification model

Fig. 1. The general scheme of the EDA approach to wrapper based feature selection

interesting information, yet remain unanswered using a static analysis. Feature rank-
ing is a first step towards a dynamical analysis of the feature elimination process.
The result of a feature ranking is an ordering of the features, sorted from the least
relevant to the most relevant. Starting from the full/empty feature set, features can
then be removed/added and the classification performance for each subset can be
calculated, providing a dynamic view.

Traditional sequential wrapper algorithms such as sequential forward/backward
search inherently provide a feature ranking. These algorithms either start from the
full or empty feature set, and greedily add or discard one feature at the time. If this
process is iterated until all features are added or removed, a complete view of the
selection process can be obtained. A similar methodology can be applied in the case
of most filter methods, where the feature relevance scores can be sorted and provide
a feature ranking.

When using stochastic methods like GA or EDA, a hybrid approach can be used
to yield a dynamical view of the selection process. The solution found by the evo-
lutionary algorithm is then used as the starting point for a sequential forward or
backward wrapper method. However, such practice may result in a large, sometimes
unfeasible, number of additional calculations, depending on the number of features
selected, or the range of the dynamic view.
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Instead of combining an evolutionary method with a sequential method into a
hybrid, we present an EDA-based technique that directly results in a feature ranking.
Instead of using a single best solution, we use the estimated probability distribution
as a basis for the feature ranking. As a consequence, this technique does not require
any additional calculations and, as all features are modelled in the estimated distrib-
ution, it provides a dynamic view of the whole selection process.

2.2 Deriving a Ranking from an EDA

The main action to be taken in an EDA-based evolutionary algorithm is the con-
struction of the probability distribution that models the variables and their dependen-
cies. In general, most EDAs can be represented graphically as probabilistic graphical
models [19]. The structure of the graphical model determines the expressive power
of the EDA to model dependencies between variables, and constitutes the major cri-
terion to distinguish subclasses of EDAs. The most common subclassification distin-
guishes between EDAs modelling univariate, bivariate and multivariate dependencies
between the variables. A second aspect of the probabilistic graphical model is a set
of generalized probability distributions, associated with the variables. Depending on
the domain of the variables, these distributions can be either discrete or continuous.
In the case of feature subset selection, all variables are discrete and binary. Fig. 2
shows a few examples of probabilistic graphical models for the three major classes
of EDAs in the case of a feature selection problem with eight features (X1, · · · ,X8).
The notation p(xj

i ) denotes the probability of feature i having value j. As features
are either present or absent, j can only be 0 or 1.
The Univariate Marginal Distribution Algorithm (UMDA [18]) is a very simple
model, assuming variables are independent. This is reflected in the structure of the
graphical model, as no arcs between different variables are present, and the prob-
ability distributions do not contain conditional probabilities. In the Bivariate Mar-
ginal Distribution Algorithm (BMDA [21]), pairwise interactions between variables
are modelled, and in the case of multiple dependencies, higher order interactions
between the variables are modelled. Examples of these include the Bayesian Opti-
mization Algorithm (BOA [20]) and the Estimation of Bayesian Networks Algorithm
(EBNA [4]).

To derive a feature ranking from a probability distribution, some sort of impor-
tance or relevance score for each feature needs to be calculated. Evidently, a feature
i having a higher value for p(x1

i ) could be considered more important than a feature
j with a lower value for p(x1

j ). The generalized probabilities p(x1
i ) can thus be con-

sidered as feature relevance scores, and a list of features sorted by these probabilities
returns a feature ranking. The general algorithm to calculate such a ranking consists
of the steps presented in Fig. 3.

The most important step in this algorithm is the extraction of the probabilities
p(x1

i ) from the model. For models with univariate dependencies like the UMDA, the
extraction of these probabilities is trivial, as they can be directly inferred from the
model. For higher order EDAs like BMDA, BOA and EBNA, the probabilities p(x1

i )
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Fig. 2. Some examples of probabilistic graphical models for EDAs with varying complexity:
univariate dependencies (UMDA), bivariate dependencies (BMDA) and multiple dependen-
cies (BOA, EBNA). The probability distributions are illustrated for a problem with discrete,
binary variables, e.g. FSS. The notation xj

i denotes the instantiation of variable i with value j
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EDA-R

1. Select S individuals from the final population Dfinal
2. Construct the probability model P from D

Sj

final, j ∈ 1, · · · , S
using an EDA (e.g. UMDA, BMDA, BOA/EBNA)

3. For each variable (feature) Xi, calculate the probability
p(x1

i )
4. Sort features X1, · · · , Xn by their p(x1

i ) probabilities
5. Write out the array of sorted features

Fig. 3. General algorithm to calculate a feature ranking (EDA-R)

need to be calculated in a forward manner, as they may involve conditional proba-
bilities. To enable this, an ancestral ordering of the nodes in the graphical model is
needed. The probabilities of nodes without ancestors are calculated first. Afterwards,
probabilities for nodes depending on these ancestors can be calculated, followed by
the probabilities of their descendants. This process is repeated in a forward manner,
until all probabilities are calculated. It has to be noted that an ancestral ordering is
not unique [7], yet the forward procedure of calculating the probabilities results in
a unique probability distribution. For the example network of BOA and EBNA in
Fig. 2, a possible ancestral ordering of the nodes is X1,X2,X3,X4,X5,X6,X7,X8.
Another possible ordering would be for example X1,X3,X4,X6,X5,X8,X7,X2.

Conceptually, the idea of EDA-based feature ranking is based on a balance be-
tween two characteristics of the population. On the one hand, the population should
consist of medium to good quality solutions, implying that already some sort of con-
vergence has been accomplished. On the other hand, the population should still pre-
serve some diversity, implying that it has not fully converged yet (e.g. in the ultimate
case of convergence all individuals in the populations are the same). Thus, we seek
a measure to define how long the iterative process should be continued, resulting in
a population that has already converged, but not too much.

To quantify this idea of “convergence” of a population we need a measure of how
similar/diverse it is. In the case of feature selection, the individuals are represented by
bitstrings, and we can use the Hamming distance as a measure of distance between
two individuals [15]. The Hamming distance HD(x, y) between two bitstrings of
length N is the number of bits in which the two strings differ. This number thus
varies between 0 and N . To normalize this number we calculate the scaled hamming
distance as

HDs(x, y) =
HD(x, y)

N
(1)

The convergence of a population can then be calculated as the average scaled ham-
ming distance between all pairs of individuals. For a population P of size S the
convergence is calculated as

C(P ) =
2 (

∑S−1
i=1

∑S
j=i+1 HDs(xi,xj))

S (S − 1)
(2)
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where xi denotes the ith individual in the population. The parameter C(P ) can then
be monitored during the stochastic iterative sampling process, which can be stopped
when C(P ) falls below an a priori specified threshold. The calculation of this thresh-
old can be done using a sub-sample of the data.

A more advanced, yet computationally more expensive way of tuning the para-
meter C(P ) can be thought of, stopping the iterative procedure automatically when
the “optimal” convergence point has been reached. This can be done by calculating
at each iteration the feature ranking curve, and tracking the area under this curve. A
simple greedy heuristic can then be used to halt the iterative process when the area
under the ranking curve of the current iteration is less then the area under the ranking
curve of the previous iteration.

2.3 Deriving a Feature Weighting Scheme from an EDA

In the previous section, we described how a feature ranking could be derived from the
generalized probabilities p(x1

i ). However, these probabilities could also be directly
used as feature relevance scores, or feature weights. In this way, we can construct
a wrapper based feature weighting mechanism. The derivation of feature weights
conveys important additional information, that can be used to gain new insights in the
processes that generated the data (knowledge discovery). We will elaborate further
on that aspect in the second part of this chapter, where we will discuss the application
of the method to a biological classification problem.

The advantage of using EDA-R as a feature weighting mechanism, compared to
other feature weighting methods like filter methods, is that it can directly use the
feedback (classification performance) of classifiers that allows modelling of higher
order dependencies, whereas most filter methods only determine the relevance of
each feature by itself. As a direct extension of using EDA-R to rank individual fea-
tures, it can be easily seen that the method can be generalized to subsets of k features
(e.g. weighting of all pairs, triples, of features). Thus the method can be easily ex-
tended to feature subset weighting. Another possibility for future extensions of this
method is by incorporating a more sophisticated weighting scheme, and also tak-
ing into account the fitness of the selected individuals when assigning the feature
weights.

3 A Real-World Application: Acceptor Splice Site Prediction

Recent advances in genomics have generated large amounts of biological sequence
data. An important problem in bioinformatics is to analyse these sequences and pre-
dict the location and structure of genes, often referred to as gene prediction. Because
the problem of correctly predicting genes is quite complex [16], gene prediction sys-
tems have a modular structure, combining the outputs of several components that
are specialized in recognizing specific structural elements of a gene. An example
of such structural elements are the so-called splice sites. These sites are the bound-
aries between coding and non coding regions in the genomes of higher organisms
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(eukaryotes), and are of key importance in identifying the correct gene structure. In
this chapter we will focus on acceptor splice site prediction, which is the transition
from a non coding region (intron) to a coding region (exon). Acceptor splice sites are
characterized by the fact that they have a conserved AG subsequence at the intron
border side. As a result, acceptor prediction can be formally stated as a two-class
classification task: given an AG subsequence, predict whether it is a true acceptor
splice site or not. In this chapter we will focus on the prediction of acceptor splice
sites in the plant model species Arabidopsis thaliana.

The Arabidopsis thaliana data set was generated from sequences that were re-
trieved from the EMBL database, and contained only experimentally validated genes
(i.e. no genes that resulted from a prediction). Redundant genes were excluded, and
splice site datasets were constructed from 1495 genes. More details on how these
datasets were generated can be found in [2].

Because in real sequences, the number of true acceptor sites is largely outnum-
bered by the number of false acceptor sites, we chose to enforce a class imbalance in
our datasets for feature selection. We constructed a dataset of 6000 positive instances
and 36,000 negative instances. To obtain stable solutions for feature selection, a 10-
fold validation of this dataset was used to test all feature selection methods. This was
done by doing 5 replications of a two-fold cross-validation, maintaining the same
class imbalance of 1 positive versus 6 negative instances in every partition. For the
EDA-based wrapper approach, the internal evaluation of classification performance
was obtained by doing a 5-fold cross-validation on the training set.

As the EDA-R method is a wrapper approach, it is specific to a fixed classifica-
tion model. In our experiments, we used the Naive Bayes method (NBM [3]). This
classification method follows the Bayes optimal decision rule, combining it with the
assumption that the probability of the features given the class, is the product of the
probabilities of the individual features (conditional independence assumption). The
advantages of using NBM in the context of feature selection are its abilities to cope
with high-dimensional data, its robustness and its speed. The latter aspect is of par-
ticular importance when using population based methods like EDA or GA , because
for every individual, a classification model has to be trained, and tested by cross-
validation. As a measure of classification performance, we used the F-measure [17]
due to its ability to deal well with imbalanced datasets.

3.1 Feature Ranking for Acceptor Prediction

We start from the knowledge that the discrimination between true and false acceptor
sites is determined by the part of the sequence where the site is located, more pre-
cisely the local context around the acceptor site. Therefore, the nucleotides A,T,C
and G occurring on either side of the acceptor constitute a basic feature set. A lo-
cal context of 100 nucleotides (50 to the left, 50 to the right) around the acceptor
sites was chosen, having at each position one of the four nucleotides {A,T,C,G}.
These features were extracted for the positive and negative instances, resulting in
a dataset of 100 4-valued features, which were converted into binary format using
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Fig. 4. Evolution of the population convergence as a function of the number of iterations

sparse vector encoding (A = 1000, T = 0100, C = 0010, G = 0001). This results in a
dataset described by 400 binary features.

To this dataset, we applied the EDA-R feature ranking method. For different
population sizes, ranging from 100 to 1000 individuals, we ran the experiments for 40
iterations. For each iteration i, we monitored the value of C(P ) and derived a feature
ranking Fi. Afterwards, we compared the evaluations for each feature ranking.

The convergence of the population was calculated at each iteration using equa-
tion 2, and its evolution for population sizes of 500 and 1000 is shown in Fig. 4.
The x-axis shows the number of iterations, while the y-axis shows the convergence
value C(P ) of the population. At the beginning of the iterative process, the initial
population consists of randomly generated feature subsets, where, for every feature,
p(x1

i ) = p(x0
i ) = 0.5. As a result, feature subsets will have, on average, half of the

features in common, and C(P ) will be approximately equal to 0.5. When the itera-
tive process would be repeated ad infinitum, all individuals in the population would
converge to the same individual, resulting in C(P ) = 0. The figure shows that for 40
iterations, convergence will be roughly half way between 0.5 and 0.

As mentioned earlier, the ideal value of C(P ) is achieved when the population
has already converged, yet not too much. To explore the effect of the number of
iterations (and thus C(P )) on the feature ranking, we compared the evaluation of
the feature ranking during the course of evolution. For a particular iteration number,
we derived a feature ranking from the population at that time. This was done by
starting with the full feature set, and iteratively eliminating the least relevant feature,
according to the feature ranking. The results for a few iterations (iteration 1, 20 and
40) are shown in Fig. 5.

The left part of the figure shows the results for a population of 500 individuals,
the right part for a population of 1000 individuals. The results after the first iteration
are shown as a baseline result. As soon as the first iterations have passed, the feature
ranking improves quickly, until at some point a good feature ranking is obtained (it-
eration 20). If the iterative process is then continued, populations that are too specific
are obtained (iteration 40), characterized by the fact that classification performance
drops down earlier when smaller feature sets are evaluated. Furthermore it can be ob-
served that the results for a population size of 1000 individuals are only marginally
better than the results using a population of 500 individuals. Gradually worse results
are obtained when populations smaller than 500 individuals are used.
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Fig. 5. Evaluation of a feature ranking for a number of iterations (1, 20 and 40). The left part
shows the results for a population size of 500 individuals, the right part for a population of
1000 individuals. The origin represents the full feature set. The x-axis represents the num-
ber of features that have been eliminated thus far, while the y-axis shows the classification
performance on the test set (F-measure)

It can be observed that, e.g. for the case of 20 iterations, many features can be
eliminated before the classification performance drops down, showing that many
irrelevant or redundant features are present in the dataset. The advantage of a feature
ranking is the identification of a “break-point” region. This is the part of the graph
where the classification performance drastically drops down, indicating the removal
of strongly relevant features. It should be noted that the observation of a break-point
region is strongly dependent on the dataset. For many biological processes, it is not
completely known which features are relevant for the classification task at hand.
Therefore, many potentially useful features are included in the dataset, hoping that
the relevant features are included as well. As a result, many irrelevant or redundant
features will be present, and a clear break-point can be observed. For other datasets
with little or no redundant features, this phenomenon will not be observed.

Strictly speaking, the identification of the break-point region should be consid-
ered as a part of the training process. Therefore, the identification of this region
should be done on the training set, and only thereafter the test set can be used for
evaluation. Fig. 6 shows the results for feature selection on both the training and test
set. When comparing the results, it can observed that the break-point regions for both
data sets are very similar.

3.2 Feature Weighting for Knowledge Discovery in Acceptor Prediction

An important advantage of feature selection techniques is their ability to distinguish
between relevant and irrelevant features, providing new insights in complex datasets.

It is known that correlations exist between nucleotides in the vicinity of splice
sites. To detect these dependencies, higher-order (i.e. non-linear) classification meth-
ods can be used. When combining higher-order classification methods with EDA-
based feature selection, this would require the use of higher-order estimation mod-
els. An example of such a combination could be a second order polynomial Support
Vector Machine , in combination with the BMDA. However, using such higher order
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classification algorithms and estimation models would make the EDA-R method very
slow.

To circumvent the use of higher order models, yet still be able to extract corre-
lations between nucleotides, we applied the following trick. We constructed an addi-
tional set of features that captures the nucleotide correlations already at the feature
level. This has the advantage that linear models can still be used, while at the same
time considering nucleotide dependencies. Another important advantage is that the
combination with feature selection techniques allows us to select those dependencies
that are of primary importance, and visualize them.

In addition to the simple nucleotide features used in the previous section, we
added two layers of more complex features. The first layer captures the idea of com-
positional sequence information. These type of features extract sequence information
that is position invariant. In our experiments, we included position invariant features
of length 3, capturing the occurrence of subsequences of length 3 in the sequence
neighbouring the splice site. An example of such a feature would be the occurrence
of the subsequence “TCA” in the sequence to the left of the acceptor site. For the se-
quence on either side of the acceptor, including these features results in an additional
set of 128 binary features, a 1 indicating the presence, a 0 the absence of the spe-
cific subsequence. The second layer of complexity comprises features that capture
dependencies between adjacent nucleotides. To this end, we included all position
dependent dinucleotides (subwords of length 2) in our analysis, resulting in an ad-
ditional set of 1568 features. Summing up all features eventually results in a dataset
described by 2096 features.

To this dataset we applied the EDA-R feature ranking method, deriving the fea-
ture weights from the probabilities p(x1

i ) of the population at iteration 20 (for com-
putational reasons we used the same EDA setting as in the previous experiment).
A nice way of visualizing the feature weights is by color coding them using a heat
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Fig. 7. Color coding of the feature weights using a gradient from black (the feature should be
left out) to white (the feature should be included). Part ‘a’ shows the result for the simplest
dataset (400 features), part ‘b’ shows the result for the complex dataset (2096 features). Fea-
tures are grouped by their position relative to the acceptor site, which is denoted by the blank
space in the middle. For each part of the context the position invariant features of length 3 are
grouped according to their composition (A-rich, T-rich, C-rich, G-rich, equally distributed)

map, where a gradient ranging from black (the feature should be left out) to white
(the feature should be included) shows the feature weights. This is shown in Fig. 7
where we graphically show the feature weights for both the simple dataset (400 fea-
tures) and the extended dataset (2096 features). In this figure, features are shown row
wise, while the columns indicate positions around the splice site (the gap in the mid-
dle). Part ‘a’ shows the results for the simplest dataset: every row represents one of
the nucleotides A,T,C and G. Part ‘b’ shows the results for the complex dataset, with
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Fig. 8. Evaluation of the classification performance on both datasets, when features are it-
eratively discarded. The left part of the figure shows the result for the most simple dataset
(400 features), while the right part shows the result for an extended version of this dataset,
using also position invariant features and position dependent dinucleotide features (2096 fea-
tures). The x-axis shows the number of features that have been eliminated, the y-axis shows
the classification performance (F-measure)

the position invariant features (middle part) and the position dependent dinucleotides
(lower part).

Several patterns can be observed. In both datasets, the nucleotides immediately
surrounding the acceptor splice site are of key importance. Another pattern can be
explained by looking at the right side of the context. In the simplest dataset, a clear
periodical pattern is visible for the nucleotides T and G, capturing the fact that the
right side of the context is a coding region (exon). In this region, nucleotides are
organised in codons (triplets). However, as this is a general characteristic of the se-
quence, it is observed that the position invariant features in the second dataset better
seem to grasp this characteristic.

Another important pattern are the nucleotides T at the left side of the acceptor
for the simplest dataset. In the complex dataset, this pattern has completely disap-
peared, and is replaced by a stretch of AG dinucleotides that now seems to be most
important. This is a nice example of the combination of a wrapper based method
with NBM. It is known that the classification performance of NBM can be improved
by discarding correlated features. Without going into much detail, we here mention
that the presence of a poly-pyrimidine stretch (an excess of nucleotides C and T) to
the left of the acceptor is correlated with the absence of AG dinucleotides in this
part of the sequence. Apparently, NBM chooses the absence of AG dinucleotides as
being more informative than the importance of T, and thus discards the T features
to the left of the acceptor. The benefit of not including these features is even more
apparent when looking at the position invariant features in part ‘b’, where all T-rich
subsequences of length 3 are colored dark. This indicates that NBM strongly benefits
from not including these features.

To verify that the features selected for the complex dataset are indeed better at
describing the acceptor prediction problem, we compared the classification perfor-
mance for both datasets (Fig. 8). This figure shows that better classification perfor-
mance can be obtained using the more complex features.
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4 Conclusions

In this chapter, we introduced two extensions of EDA-based feature selection: EDA-
based feature ranking and EDA-based feature weighting. Using the EDA framework,
these extensions can be naturally derived from the estimated distribution, and are
immediately available when using simple EDA algorithms like the UMDA. We il-
lustrated both techniques on a biological classification problem: the prediction of
acceptor splice sites, an important subtask of gene prediction. Using the combina-
tion of more complex features and feature selection, we were able to extract a new,
important feature for acceptor prediction: the inhibition of dinucleotides AG imme-
diately upstream the acceptor site. Using feature selection allows us in this way to
gain more insight in the computational modelling of this particular biological classi-
fication problem.
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8. I. Inza, P. Larrañaga, R. Etxeberria, and B. Sierra. Feature subset selection by Bayesian
network-based optimization. Artificial Intelligence, 123(1-2):157–184, 2000. 245
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Summary. Learning models from data which have the double ability of being predictive and
descriptive at the same time is currently one of the major goals of machine learning and data
mining. Linguistic (or descriptive) fuzzy rule-based systems possess a good tradeoff between
the aforementioned features and thus have received increasing attention in the last few years.

In this chapter we propose the use of estimation of distribution algorithms (EDAs) to
guide the search of a good linguistic fuzzy rule system. To do this, we integrate EDAs in
a recent methodology (COR) which tries to take advantage of the cooperation among rules.
Experiments are carried out with univariate and bivariate EDAs over four test functions, and
the results show that the exploitation of (pairwise) dependencies done by bivariate EDAs yield
to a better performance than univariate EDAs or genetic algorithms.

1 Introduction

It is clear that machine learning and data mining have lately become a focus of atten-
tion in the computational scientific world [16]. There is great interest in the automatic
construction of a model from a data set, specially for complex domains and/or in the
absence of experts capable of collaborating on such modelling. Those models which
are at the same time descriptive and predictive are specially interesting, because they
allow us to estimate the system outcome and also to obtain insight into the inner
structure of the problem domain.

Fuzzy rule-based systems (FRBSs) are a formalism that has gained relevance in
data mining because of its dual predictive and modelling capability. These systems
are based on fuzzy set theory, proposed by Zadeh [24] and, therefore, they are able to
cope with those problems presenting uncertainty and/or vagueness [1, 10]. Among
all different types of fuzzy rules existing in literature [1, 18, 21, 22], linguistic or
descriptive fuzzy rules result specially attractive because they permit us to achieve
the double-goal of description plus prediction. On this field, also known as, linguistic
modelling of a system we will focus this work.

M.J. Flores et al.: Learning Linguistic Fuzzy Rules by Using Estimation of Distribution Algorithms as the Search Engine
in the COR Methodology, StudFuzz 192, 259–280 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



260 M.J. Flores et al.

There are different approaches to the fuzzy rule learning problem. Among them,
we are interested in the COR (cooperative rules) [7] methodology since it sets the
learning problem as a combinatorial optimisation task. The goal of this work is to
study the application of estimation of distribution algorithms (EDAs) [13, 14] to
carry out the corresponding search. Therefore, this chapter is structured in five sec-
tions, apart from this introduction. Section 2 is a revision of concepts relating to
fuzzy logic rule based systems and some algorithms used for learning them. In Sect.
3 we revise estimation of distribution algorithms. In Sect. 4 we specify the search
space considered in this work, while in Sect. 5 we present all the material related to
the experiments carried out. Finally in Sect. 6 we present our final conclusions.

2 Fuzzy Logic Rule Based System (FLBRS) Learning

A linguistic fuzzy rule has the following structure:

If X1 is vj
1 & . . . & Xn is vj

n then Y is vj
y

where, variables X1, . . . , Xn and Y are linguistic variables [25, 26, 27], i.e. variables
that take values in a set of linguistic labels {v1

i , . . . , vki
i } that define the semantics of

such variables. Each label has a fuzzy set associated to it (see Fig. 1).

Hence, in a FLRBS we find two clearly different components (Fig. 1):

• A domain data base, in which domains would be defined (fuzzy sets) underlying
each linguistic variable.

• A linguistic fuzzy rule base.

HIGHMEDIUMLOW C AMAMBB BABB

IF X is very(LOW) THEN Y is more−or−less(BB)

Data Base
(domains)

IF X is LOW THEN Y is BB
IF X is MEDIUM THEN Y is MA
IF X is LOW  AND  Y is BA THEN Z is HIGH

Rule Base

Variable X Variable Y

Fig. 1. Structure of a FLRBS
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In this work we will assume that the domains of the linguistic variables have
been obtained from the range of values that the corresponding variable takes in the
instances of the training set, and considering a symmetrical fuzzy partition in k labels
using triangular membership functions.1

For example, the domain for the variable Y in Fig. 1 is obtained by taking 7
linguistic labels. Then, we will focus on the rule base generation process. Although,
in literature we find several methods for this kind of system generation, we will only
revise the Wang and Mendel algorithm and the COR methodology, because these are
the methods used in this work.

2.1 Wang and Mendel Algorithm

The Wang and Mendel algorithm (WM) [23] belongs to the category of ad hoc data-
driven methods. In this kind of method the learning process is guided by covering
criteria of the examples in the training set. These methods fall into the category of
heuristic and deterministic, and are computationally very efficient.

Let X1, . . . , Xn be the variables in the rule antecedent, Y the variable in the rule
consequent, C(Xi) = {v1

i , . . . , vki
i } the linguistic label set for Xi, µA(x) the degree

of membership of value x to fuzzy set A, and D = {(x1, y1), . . . , (xd, yd)} the data
base (examples) for the learning process, where xi is a configuration of (real) values
for input variables, xi↓j is the j-th component of the array xi, and yi is the (real)
output value for such configuration.

If we assume that the linguistic variables (domain base) have already been
specified/constructed, WM algorithm generates the rule set in the following way (for
details see [23]):

• A space of possible (antecedents for the) rules is created and it is made up of the
Cartesian product C(X1) × C(X2) × · · · × C(Xn).

• For every example (xi, yi) generate the rule Ri: If X1 is vr1
1 & . . . & Xn is vrn

n

then Y is vrm

Y , where rj = arg max
l=1..kj

µXl
j
(xi↓j ). Associate the obtained rule

with the sub-space {vr1
1 , . . . , vrn

n }.
• For every non-empty sub-space select the rule with the highest degree of impor-

tance

G(Ri) = µv
r1
1

(xi↓1) · · · · · µvrn
n

(xi↓j ) · µvrm
Y

(yi)

and add it to the fuzzy rules system.

In spite of its simplicity, the Wang and Mendel algorithm has clearly demon-
strated a high performance in practice.
1 The membership degree for a triangular function defined in the interval [a,c] and maximum

value in b is obtained as:

µTriangular(x) =






x−a
b−a

, if a ≤ x ≤ b
c−x
c−b

, if b ≤ x ≤ c

0, otherwise
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2.2 Wang and Mendel in Practice

As we assume that potential readers of this book are more familiar with EDAs than
with fuzzy logic, we introduce an example of WM execution. Suppose that we have
a problem with two input variables {X1,X2} taking values in [0, 10] and one out-
put variable Y taking values in [0, 20]. For the sake of simplicity we consider lin-
guistic variables with only three labels ({Left, Center,Right} for {X1,X2} and
{Low,Medium,High} for Y, depicted on the left part of Fig. 2).

L M H

20
0

100

1

L C R

0

1

0 105

X1 X2 Y X1-label (µ) X2-label (µ) Y -labels (µ) G(Ri)
(1) 1 6 4 L (0.8) C (0.8) L (0.6) ; M (0.4) 0.38
(2) 2 5 7 L (0.6) C (1.0) L (0.3) ; M (0.7) 0.42
(3) 9 3 10 R (0.8) C (0.6) M (1.0) 0.48
(4) 4 2 3 C (0.8) L (0.6) L (0.7) ; M (0.3) 0.37
(5) 8 1 9 R (0.6) L (0.8) L (0.1) ; M (0.9) 0.43
(6) 5 10 15 C (1.0) R (1.0) M (0.5) ; H (0.5) 0.5

Fig. 2. Example for Wang and Mendel algorithm. Left: domains for {X1, X2} (up) and Y
(down); Middle: data set; Right: execution of WM algorithm

If we run WM algorithm over the data set shown in the central part of Fig. 2, and
using the linguistic variables previously specified, we get five non-empty subspaces
(as shown in the right part of Fig. 2): {(L,C), (R,C), (C,L), (R,L), (C,R)}. From
them, only (L,C) has more than one candidate rule. Two to be precise:

If X1 is L & X2 is C then Y is L and If X1 is L & X2 is Cthen
Y is M . As the second rule has a higher degree than the first one, the output of WM
algorithm is:






If X1 is L & X2 is C then Y is M
If X1 is R & X2 is C then Y is M
If X1 is C & X2 is L then Y is L
If X1 is R & X2 is L then Y is M
If X1 is C & X2 is R then Y is H

Where we should notice that the consequent of the last rule could be Y is M ,
because µM (15) = µH(15) = 0.5, and we chose H randomly.

2.3 COR Methodology

Despite the advantages exhibited by the WM algorithm, it also has some shortcom-
ings. The WM algorithm looks for the rules with the best individual performance,
taking the rule that best covers each sub-space. That implies a local action, without
considering that the interaction between all the system rules will actually define its
global performance. Furthermore, the local way in which the rules are treated, makes
this procedure more sensitive to noise.
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Because of these problems, Casillas et al. ([7, 6]) propose a WM-based method
in which they study the cooperation between the different rules of the system. This
modification, known as COR methodology (from cooperative rules) is based on re-
placing the greedy behaviour of WM algorithm in the selection of each rule, by a
combinatorial search of cooperative rules in the space of all rule candidate sets. As
opposed to the greedy and local philosophy of the WM algorithm, the use of COR
tries to accomplish a global analysis.

If ant(SEl) is the antecedent corresponding to the sub-space SEl, and
cons(SED

l ) represents the set of possible consequents (depending on D) for the
sub-space SEl, then, as we have seen applying WM the resulting system would be
formed by:

⋃

l:cons(SED
l )≥1

(

ant(SEl), best
ci∈cons(SED

l )

)

,

whereas applying the COR methodology the best consequent set (cl1 , . . . , clt ) would
be sought in the Cartesian product:

cons(SED
l1 ) × · · · × cons(SED

lt ),

where SED
l1

, . . . , SED
lt

is the sub-spaces set with cons(·) ≥ 1. Thus, in the example
of our previous section, each subspace will have all the labels (with µ(value) > 0)
as possible consequents instead of directly taking the best one (underlined in Fig. 2)
as WM does.

In [6, 19] the authors propose to use simulated annealing or ant colony optimiza-
tion as the method to guide the search and therefore to select the best rule set as that
which minimises the mean square error when we apply it to the training set D.

3 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) family [14] is a new metaheuristics
which have attained interest during the last 5 years. EDAs are evolutionary algo-
rithms based on populations as well as genetic algorithms2(GAs), but in which ge-
netics has been removed and replaced by the estimation/ learning and sampling
of a probability distribution which relates the variables or genes forming an in-
dividual or chromosome. In this way the dependence/independence relations be-
tween these variables are explicitly modelled in the EDAs framework. To learn these
(in)dependencies (some of the individuals of) the population are used as training set.

Figure 3 shows the general outline of EDAs evolution process. As we can see,
steps (b) and (c) replace the classical selection+crossover+mutation used in genetic
algorithms. Step (b) is the key point in EDAs algorithms, because working with joint
probability distribution is not useful even in small problems, so a simpler model
has to be estimated/learned. Depending on the complexity of the model considered,

2 In this chapter we assume basic knowledge of genetic algorithms. Good descriptions can
be found in [15]
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EDA Approach

1. D0 ← Generate the initial population (m individuals)
2. Evaluate the population D0

3. k = 1
4. Repeat

a) Dtra ← Select N ≤ M individuals from Dk−1

b) Estimate/learn a new model M from Dtra

c) Daux ← Sample M individuals from M
d) Evaluate Daux

e) Dk ← Select M individuals from Dk−1 ∪ Daux

f) k = k + 1
Until stop condition

Fig. 3. Description of EDAs operation mode

different models of EDAs arise. Thus, the more complex this model is the better
collection of dependencies between variables it will show, but the more complex/time
consuming its estimation will be. In literature we can find several proposals that can
be grouped into: univariate models (no dependencies are allowed), bivariate models
(pairwise dependencies are allowed), and n-variate models. The first and second
group are algorithms that provides fast model estimation, while the last one allows
for a great capability of modelling, using Bayesian networks [11] as a probabilistic
model in most of the cases.

In [9] the authors started the investigation into using EDAs to learn linguistic
fuzzy rule based systems. In that work the results were not too strong, mainly because
few experiments were carried out. In this work, we have extended and improved our
previous approach to the FLRBS learning problem using EDAs. Because of the good
complexity-accuracy trade-off shown by bivariate models, we focus our research on
this family, although univariate models are also considered in our study.

3.1 Univariate Models

In this case it is supposed that the n-dimensional joint probability distribution is
factorised as,

p(x1, x2, . . . , xn) =
n∏

i=1

p(xi)

That is, no structural learning is needed, and only marginal probabilities are
required during parameter learning. We have experimented with two classic ap-
proaches to the univariate case:

UMDA

The univariate marginal distribution algorithm (UMDA) [17] fits in the general de-
scription of univariate models given above. Marginal probabilities for each variable
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are estimated by using frequencies found in Dtra. In our case, Laplace correction
has been used to smooth the resulting probabilities.

PBIL

As an alternative to UMDA we have considered population-based incremental learn-
ing (PBIL) [3], or more concretely a variant of this algorithm that can be viewed as
an incremental UMDA [17]. In this case, we start with an initial model (a uniform
one) and at each generation we refine this reference model by using the estimated
one. The degree of importance of the estimated model with respect to the model of
reference is given by a constant α ∈ (0, 1] known as the learning ratio. Specifically,
if M is the reference model and Mi is the model learned in this generation, M is
refined as follows:

M(Xj) = (1 − α) · M(Xj) + α ·Mi(Xj)

Notice that if α = 1 this algorithm coincides with UMDA.

3.2 Bivariate Models

In this case it is supposed that the n-dimensional joint probability distribution is
factorised as

p(x1, x2, . . . , xn) = p(xr)
∏

xi �=xr

p(xi|pa(xi)),

where Xr is the root variable in the model (the only one without parents) and the
remaining variables have a unique parent (pa(Xi)).

In this case, structural and parametric learning is needed. Below we briefly de-
scribe the approaches considered in this work.

MIMIC

In mutual information maximizing input clustering algorithm [5] the probabilistic
model has the shape of a chain (X1 → X2 → · · · → Xl). The chain is learned by
using a greedy algorithm as follows:

1. Select as root node the variable Xi with minimum entropy H(Xi).
2. For the remaining nodes, if Xp is the last variable included in the chain, then

choose the variable Xi which maximizes the mutual information with respect to
Xp, that is, I(Xp,Xi).

Again we use Laplace correction when estimating the probabilities.

TREE

Now the structure of the probabilistic model has the shape of a tree. The learning
method, described in [4], is based on Chow and Liu algorithm [8], in which mutual
information I(Xi,Xj) is used as weight for link (Xi,Xj) and the tree is obtained as
the spanning tree of maximum weight. As in previous methods we have used Laplace
correction to smooth the estimated probabilities.
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Normalizing Mutual Information

Finally, as in our problem the genes or variables representing positions in the individ-
ual take different numbers of states, we have decided to use [0, 1]-normalized mutual
information when applying MIMIC and TREE, yielding the algorithms MIMIC01

and TREE01. Mutual information has been normalized as follows

I01(Xi,Xj) =
2 · I(Xi,Xj)

H(Xi) + H(Xj)

4 The Search Space

In Sect. 2.3 we have seen that the search space for COR methodology is made up
of the Cartesian product of every set Cons(SED

i ), for all sub-space SEi so that
Cons(SED

i ) ≥ 1. But actually, the condition could be strictly greater than 1, seeing
that for the one-consequent sub-spaces the election is unique.

For example, in the example used in Sect. 2.2 we get the following distribution
of examples and possible consequents among the different sub-spaces (see the right
part of Fig. 2):

X2

L C R
L (1)(2) {L, M}

X1 C (4) {L, M} (6) {M, H}
R (5) {L, M} (3) {M}

Our individual would then have four variables

SEL,C SEC,L SEC,R SER,L

{L, M} {L, M} {M, H} {L, M}

and moreover to every learned system we should add the rule: If X1 = R and
X2 = C then Y = M

Nevertheless, in this work we will also consider the proposal presented in [19],
in which seeking rule cooperation, we admit that some of them can be removed.
For that we must add a new value ℵ to the set of possible consequents. We do this
in a way that in those individuals where the involved variable has such a value, the
rule corresponding to the sub-space represented by this variable will not be in the
resulting FLRBS. Coming back to our example we would have:

X2

L C R
L {ℵ, L, M}

X1 C {ℵ, L, M} {ℵ, M, H}
R {ℵ, L, M} {ℵ, M}

And, therefore, the individuals would have the following representation:

SEL,C SEC,L SEC,R SER,L SER,C

{ℵ, L, M} {ℵ, L, M} {ℵ, M, H} {ℵ, L, M} {ℵ, M}
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As we can see, this consideration makes the problem more difficult, that is be-
cause the cardinality of the search space increases significantly. In this example we
will go from 2 · 2 · 2 · 2 = 16 to 3 · 3 · 3 · 3 · 2 = 162.

5 Experimental Study

In this section we will describe the experiments carried out in order to evaluate the
suitability of using EDAs as a search engine inside the COR methodology.

5.1 Test Suite

In our experiments we have used four problems borrowed from the FMLib reposi-
tory3: two laboratory problems and two real-world modelling problems.

Function F1

By F1 we refer to the mathematical function (Fig. 4.a):

F1(x1, x2) = x2
1 + x2

1 x1, x2 ∈ [−5, 5], F1(·) ∈ [0, 50]

Therefore, we have two predictive variables and one output variable. The goal
is to model F1 by learning a FLRBS. The downloaded training set has 1681 tuples
uniformly distributed in the two-dimensional input space (x1 × x2). The test set
contains 168 tuples randomly sampled.

Function F4

By F4 we refer to the mathematical function (Fig. 4.b):

F4(x1, x2) = x2
1 + x2

1 − cos(18x1) − cos(18x2)
x1, x2 ∈ [−1, 1], F4(·) ∈ [−2, 3.383]

As in F1 we have two predictive variables and one output variable, and again the
goal is to model F4 by learning a FLRBS. The cardinality of the training and test
sets are the same as in the previous function, as well as the method used to generate
them.

Problem E1

By E1 we refer to the following real-world problem taken from the engineering field.

3 http://decsai.ugr.es/fmlib
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(a) Function F1 (b) Function F4

Fig. 4. Graphical representation of F1 and F4

The problem involves finding a model that relates the total length of low
voltage line installed in a rural town with the number of inhabitants in the
town and the mean of the distances from the centre of the town to the three
furthest clients in it. The goal is to use the model to estimate the total length
of line being maintained.

Therefore,wehavetwopredictivevariables (x1 ∈ [1, 320] and x2 ∈ [60, 1673.33])
and one output variable defined in [80, 7675]. The cardinality of the training and test
sets are 396 and 99 respectively (we have used the first partition available in FMLib).

Problem E2

By E2 we refer to another real-world problem also taken from the electrical engi-
neering field.

The problem involves finding how to estimate the minimum maintenance
costs. There are four input variables: sum of the lengths of all streets in the
town, total area of the town, area that is occupied by buildings, and energy
supplied to the town.

The domains for the four predictive variables are: [0.5, 11], [0.15, 8.55],
[1.64, 142.5] and [1, 165]. The output variable takes its value in [64.47, 8546.03].
Again we have considered the first partition available in FMLib, having 844 and 212
tuples in the training and test set respectively.

5.2 Evaluation/Fitness Function

To evaluate the quality of an individual I , it is translated to the corresponding FLRBS
Rules(I) and used for processing every d case within the training set D. If for a given
tuple (xi, y), ŷ represents the obtained value when processing xi with Rules(I),
then the fitness of I is calculated by using the mean square error (MSE) as:
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fitness(I) = MSERules(I) =
1
|D|

|D|∑

i=1

(ŷi − yi)2.

It is evident that our goal is to minimise fitness(I), because the smaller the MSE is,
the better the system will be.

Several inference models can be used, which can give rise to different results. In
this work we have taken the following decisions:

• The input values are fuzzyfied using punctual fuzzyfication (that is, as singleton
fuzzy sets).

• Max-Min inference is used.
• Defuzzyfication is made using the gravity centre.
• The FITA-Weighted4 approach is used for obtaining a single result when several

rules are fired for an example (tuple).

Finally, let us to say that our search algorithms have been written in Java and for
the definition and evaluation of the fuzzy rule systems, we interact with FuzzyJess
[2, 20] also written in Java.

5.3 Algorithms and Parameters

In the four problems, we have considered two different options: to associate 5 or
7 labels to each linguistic variable, defined to give rise to a symmetric partition of
the real domain with triangular fuzzy sets. Of course, the optimization problem is
more complex when 7 labels are considered. Table 1 shows some data related to the
optimization task of each problem: the cardinality of the search space, the individual
length, and the number of values taken by each individual’s position (gene).

Table 1. Some data about the considered problems

5 labels 7 labels
Prob. cardinality length values(variables) cardinality length values(variables)

F1 4.22E13 25 2(1),3(9),4(15) 1.99E27 49 2(1),3(16),4(31),5(1)

F4 6.25E16 25 4(7),5(18) 1.98E36 49 5(24),6(24),7(1)

E1 1.38E06 12 2(3),3(3),4(4),5(2) 6.37E09 22 2(11),3(4),4(4),5(2),6(1)

E2 1.27E22 56 2(39),3(17) 6.74E34 104 2(84),3(20)

In the experiments, we have worked with the algorithms previously described:
Wang and Mendel (WM) algorithm (that will be taken as a reference), GA, UMDA,
PBIL, MIMIC, TREE, MIMIC01 and TREE01. The following parameters have been
considered.

4 In FITA (First Infer Then Aggregate), the fuzzy set obtained by each rule is defuzzified
and the final value is obtained as a combination of such values weighted by the matching
degree of the example with respect to the antecedents (see [12] for details)
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• The population size (PopSize) that has been fixed to 500 and 1000 for the cases
of 5 and 7 labels respectively.

• The initial population has been initialised by giving 10% of probability to the
null consequent and distributing the remaining 90% uniformly among the rest of
possible consequents.

• In GA the crossover probability (cp) has been fixed to 1.0 and the mutation prob-
ability (mp) to 0.01. That is, at each generation PopSize/2 pairs of individuals
are selected by using rank-based selection, they are crossed and we apply the
bit-to-bit mutation to the resulting children with mp = 0.01 Classical one-point
crossover has been used.

• α = 0.5 has been used in PBIL.
• The population Dk is obtained by truncation, that is, the best PopSize individuals

of Dk−1 ∪ Daux are selected, Daux being the sampled population in the case of
EDAs and the genetically-generated population in GAs.

• In EDAs, to estimate the model at the k-th generation we use the best PopSize/2
individuals from DSe

k−1.
• Stop condition: the algorithm will be stopped when the best individual in Daux

does not improve any of the best PopSize/2 individuals of Dk−1, that is, the
best PopSize/2 individuals of Dk coincide with the best PopSize/2 individ-
uals of Dk−1. Moreover, we have fixed a maximum number of 100 generations.

5.4 Results

Each algorithm has been run 20 times in each of the eight cases (4 problems with 5 or
7 labels). In Tables 2 to 9 we report mean (first row) and standard deviation (second
row) for the following statistics:

• MSE over the training set.
• MSE over the test set.
• Number of evaluations. This figure accounts for the number of individuals actu-

ally evaluated, because a hash table is used during the search process.
• Number of generations carried out before the algorithm stops.
• Number of fuzzy rules included in the generated system.

5.5 Analysis

In order to be in a position to analyse our results, we have carried out a series of
statistical tests among the seven stochastic algorithms used in the experiments. We
have performed t-tests (α = 0.05) with respect to the five parameters reported in
the previous section: Training error, test error, evaluations, generations and number
of rules in the resulting system. Tables 10 to 13 show the results of the statistical
analysis.
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Table 2. Results for F1 problem with 5 labels and population size 500

Training Test Evaluations Generations Rules
Algorithm error error

WM 19.97 19.38 – – 25
GA 7.2404 5.3403 8742.20 23.75 25.00

0.1100 0.2377 1104.84 2.21 0.00
UMDA 7.1955 5.3188 12045.30 33.75 25.00

0.0898 0.2682 3438.45 6.78 0.00
PBIL 7.1618 5.2160 13350.85 44.35 25.00

0.0489 0.0935 4200.88 6.78 0.00
MIMIC 7.1506 5.1946 5665.95 17.10 25.00

0.0000 0.0000 794.23 1.81 0.00
MIMIC01 7.1506 5.1946 5819.95 17.40 25.00

0.0000 0.0000 720.73 1.11 0.00
TREE 7.1506 5.1946 5925.30 18.00 25.00

0.0000 0.0000 1073.65 2.97 0.00
TREE01 7.1506 5.1946 5599.50 17.30 25.00

0.0000 0.0000 778.56 1.49 0.00

Table 3. Results for F1 problem with 7 labels and population size 1000

Training Test Evaluations Generations Rules
Algorithm error error

WM 5.4067 5.8188 – – 49
GA 2.8965 2.3886 32664.35 40.80 49.00

0.0757 0.1435 4867.68 5.21 0.00
UMDA 2.8451 2.3205 31847.80 40.35 49.00

0.0280 0.0379 3912.91 6.97 0.00
PBIL 2.8387 2.3204 49189.95 62.15 49.00

0.0000 0.0185 6057.39 5.96 0.00
MIMIC 2.8415 2.3104 22405.70 29.20 49.00

0.0122 0.0236 4317.12 4.24 0.00
MIMIC01 2.8451 2.3419 21683.70 29.15 49.00

0.0280 0.0857 3345.78 4.27 0.00
TREE 2.8387 2.3213 20775.30 28.30 49.00

0.0000 0.0174 2921.23 2.97 0.00
TREE01 2.8387 2.3223 22789.15 29.45 49.00

0.0000 0.0125 3541.41 4.02 0.00
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Table 4. Results for F4 problem with 5 labels and population size 500

Training Test Evaluations Generations Rules
Algorithm error error

WM 1.2836 1.4957 – – 25
GA 1.0016 1.0861 13502.60 32.95 20.00

0.0003 0.0034 2737.86 5.37 0.95
UMDA 1.0015 1.0850 8145.70 20.80 21.00

0.0000 0.0000 358.10 0.75 0.00
PBIL 1.0015 1.0850 12653.20 31.90 20.95

0.0000 0.0000 382.28 0.89 0.22
MIMIC 1.0015 1.0850 10185.75 25.75 20.90

0.0000 0.0000 1363.60 3.31 0.44
MIMIC01 1.0015 1.0850 10284.40 26.80 20.70

0.0000 0.0000 1393.07 3.92 0.56
TREE 1.0015 1.0850 10981.20 28.15 20.65

0.0000 0.0000 1375.46 3.54 0.57
TREE01 1.0015 1.0850 10063.40 26.85 20.75

0.0000 0.0000 740.49 2.39 0.54

Table 5. Results for F4 problem with 7 labels and population size 1000

Training Test Evaluations Generations Rules
Algorithm error error

WM 3.4074 3.9503 – – 49
GA 1.0068 1.0841 51629.35 59.30 47.85

0.0025 0.0273 6780.26 6.28 0.79
UMDA 1.0092 1.0982 27755.00 34.05 48.95

0.0007 0.0100 1787.83 1.47 0.22
PBIL 1.0094 1.0932 44828.25 53.25 48.85

0.0004 0.0077 3130.93 1.73 0.36
MIMIC 1.0059 1.0970 37130.15 44.30 48.20

0.0026 0.0153 7411.94 7.48 0.75
MIMIC01 1.0071 1.0920 34983.90 41.20 48.55

0.0021 0.0161 4268.03 5.62 0.59
TREE 1.0058 1.0973 39939.25 46.45 48.25

0.0020 0.0127 8983.31 9.65 0.70
TREE01 1.0062 1.0999 38732.80 46.30 48.25

0.0027 0.0201 6775.04 6.42 0.77
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Table 6. Results for E1 problem with 5 labels and population size 500

Training Test Evaluations Generations Rules
Algorithm error error

WM 560417.6055 548392.0448 – – 12
GA 397270.1750 384926.6230 3780.05 13.95 9.70

0.0000 0.0124 875.16 1.99 0.46
UMDA 397270.1750 384926.6230 3029.70 16.40 10.00

0.0000 0.0124 580.28 3.76 0.00
PBIL 397270.1750 384926.6230 4389.65 20.30 9.85

0.0000 0.0124 727.23 2.37 0.36
MIMIC 397270.1750 384926.6230 3333.75 12.30 9.95

0.0000 0.0124 527.26 1.31 0.22
MIMIC01 397270.1750 384926.6230 3173.10 12.25 9.95

0.0000 0.0124 710.36 1.34 0.22
TREE 397318.8916 388147.7117 2994.75 12.15 9.80

212.3506 14040.4003 727.15 1.35 0.51
TREE01 397270.1750 384926.6230 3217.20 12.70 9.90

0.0000 0.0124 1037.48 2.69 0.30

Table 7. Results for E1 problem with 7 labels and population size 1000

Training Test Evaluations Generations Rules
Algorithm error error

WM 467587.4102 417365.2408 – – 22
GA 313178.5100 349513.1792 13306.30 20.10 17.55

467.2229 1308.1185 2123.61 2.02 0.92
UMDA 313334.2509 349077.1397 10636.90 15.95 17.90

0.0000 0.0055 1488.49 1.07 0.30
PBIL 313334.2509 349077.1397 15318.65 22.75 17.95

0.0000 0.0055 2109.85 0.54 0.22
MIMIC 313334.2509 349077.1397 11207.55 17.95 17.80

0.0000 0.0055 2116.06 1.72 0.40
MIMIC01 313502.6448 349295.1594 10847.75 17.30 17.60

1142.7346 950.3260 2221.21 1.73 0.97
TREE 312729.1387 350033.7056 12578.10 18.95 16.60

744.8612 3496.8269 2247.71 2.50 1.46
TREE01 313118.4911 348943.6069 12129.65 18.95 17.45

517.7311 2893.3934 2747.53 2.56 1.07
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Table 8. Results for E2 problem with 5 labels and population size 500

Training Test Evaluations Generations Rules
Algorithm error error

WM 381649.0877 383753.3989 – – 56
GA 189959.4115 196317.5345 29291.35 66.95 37.60

314.2939 3075.5425 4102.90 8.35 1.50
UMDA 190958.1161 196141.4127 19356.95 44.80 39.10

783.2563 2497.3381 2796.77 5.85 1.04
PBIL 190945.1776 196187.6407 28475.95 66.05 39.40

725.1868 2990.8605 4337.75 9.64 1.07
MIMIC 190103.5788 199283.7667 18936.35 44.50 38.00

813.6191 2077.8690 3189.97 6.42 1.67
MIMIC01 189837.1496 198392.2004 19051.80 44.85 37.85

546.5796 2061.4484 2807.63 5.83 1.74
TREE 189881.8106 198416.6743 18776.05 43.80 37.75

469.8954 2309.9994 3211.51 6.60 1.41
TREE01 189759.6925 197657.9061 19475.95 45.85 37.55

304.9269 2375.1651 4335.95 8.78 1.66

Table 9. Results for E2 problem with 7 labels and population size 1000

Training Test Evaluations Generations Rules
Algorithm error error

WM 116843.85 122701.0448 – – 104
GA 83690.2321 94923.8170 55835.45 66.65 80.55

505.9616 2377.8009 7568.60 7.09 1.75
UMDA 85092.6175 91147.7307 26117.05 31.80 84.30

631.0082 2735.7334 3459.33 2.80 1.62
PBIL 85081.1355 90970.5983 42678.00 50.00 84.25

674.4282 2312.6308 5112.42 5.11 1.73
MIMIC 83769.0245 94639.7871 32139.90 38.90 81.35

483.8130 1279.4342 5559.05 5.76 1.53
MIMIC01 83541.2357 94635.8839 35906.55 42.40 80.40

260.9488 610.4732 7890.08 8.06 1.50
TREE 83640.1622 94417.7968 33971.60 40.35 81.05

476.2109 1208.2838 5431.16 5.47 1.47
TREE01 83443.5197 94408.1091 34355.45 41.25 80.65

142.7718 337.1590 3457.35 4.12 1.06
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Table 10. Results of t-tests for function F1: upper diagonal (5 labels) and lower diagonal (7
labels). T/t/e/g/r stands for statistical difference (significance level α = 0.05) in Training
error/test error/evaluations/generations/rules

GA UMDA PBIL MIMIC MIMIC01 TREE TREE01

GA eg Tteg Tteg Tteg Tteg Tteg GA
UMDA Tte eg Tteg Tteg Tteg Tteg UMDA

PBIL Tteg eg eg eg eg eg PBIL
MIMIC Tteg eg eg MIMIC

MIMIC01 Teg eg eg MIMIC01
TREE Tteg eg eg e TREE

TREE01 Tteg eg eg t TREE01

GA UMDA PBIL MIMIC MIMIC01 TREE TREE01

Table 11. Results of t-tests for function F4: upper diagonal (5 labels) and lower diagonal (7
labels). T/t/e/g/r stands for statistical difference (significance level α = 0.05) in Training
error/test error/evaluations/generations/rules

GA UMDA PBIL MIMIC MIMIC01 TREE TREE01

GA egr er gr gr eg gr GA
UMDA Tegr eg eg eg egr eg UMDA

PBIL Tegr eg eg eg egr eg PBIL
MIMIC tegr Tegr Tegr eg MIMIC

MIMIC01 egr Tegr Tegr e MIMIC01
TREE eg Tegr Tegr r Tgr e TREE

TREE01 tegr Tegr Tegr g r TREE01

GA UMDA PBIL MIMIC MIMIC01 TREE TREE01

Table 12. Results of t-tests for function E1: upper diagonal (5 labels) and lower diagonal (7
labels). T/t/e/g/r stands for statistical difference (significance level α = 0.05) in Training
error/test error/evaluations/generations/rules

GA UMDA PBIL MIMIC MIMIC01 TREE TREE01

GA eg eg egr egr eg e GA
UMDA g egr eg g gr g UMDA

PBIL egr eg eg eg eg eg PBIL
MIMIC eg eg eg e MIMIC

MIMIC01 g eg eg e MIMIC01
TREE Ter egr egr er Tegr TREE

TREE01 e egr egr g Ter TREE01

GA UMDA PBIL MIMIC MIMIC01 TREE TREE01
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Table 13. Results of t-tests for function E2: upper diagonal (5 labels) and lower diagonal (7
labels). T/t/e/g/r stands for statistical difference (significance level α = 0.05) in Training
error/test error/evaluations/generations/rules

GA UMDA PBIL MIMIC MIMIC01 TREE TREE01

GA Tegr Tr teg teg teg Teg GA
UMDA Ttegr eg Tter Tter Tter Tter UMDA

PBIL Ttegr eg Ttegr Ttegr Ttegr Tegr PBIL
MIMIC eg Ttegr Ttegr Tt MIMIC

MIMIC01 eg Ttegr Ttegr Tr MIMIC01
TREE eg Ttegr Ttegr e e TREE

TREE01 Teg Ttegr Ttegr T Te TREE01

GA UMDA PBIL MIMIC MIMIC01 TREE TREE01

By taking into account the results shown in the previous section and the hy-
pothesis testing carried out, we can reach some general and (sometimes) relevant
conclusions depending on the parameter considered. First, we take into account the
fitness value, that is, a quality measure of the estimated model. In this aspect, there
are four main observations:

• It seems that there are different set of rules that yield the same error over the
training set but have different behaviour over the test set. As we have used the
error over the training set as fitness measure, we will base our conclusions on this
error, though we are considering taking the error using a cross validation over the
training set as fitness in future works.

• In all cases WM is surpassed by evolutionary algorithms. That is clear, since
these methods pursued an improvement of the first one. Figure 5 shows a graph-
ical example of the error committed by the system obtained by WM and that
obtained by EDAs (MIMIC) in function F1.

• Taking the MSE (evaluation/fitness function) as reference, we find that univari-
ate EDAs behave quite similarly to the genetic algorithm. There is no statistical
difference only in problems F1 (in favour of univariate EDAs) and E2 (in favour
of GAs). Finally, there is no statistical difference between PBIL and UMDA in
any of the eight cases.

• Finally, bivariate EDAs provide in general the best results, being always, at least,
as good as the others. In fact, when we consider bivariate EDAs globally, there
is statistical difference in 4 out of the 8 cases with respect to univariate EDAs,
and in 2 out of the 8 cases with respect to the genetic algorithm. However, if we
focus our attention on tree-shaped algorithms, then there is statistical difference
in 5 out of the 8 cases with respect to GAs. It is worth mentioning that TREE01
is the algorithm obtaining the best results in problem E2 (with 5 and 7 labels),
having statistical difference with respect to GAs and univariate EDAs.

The second, but not less important parameter to study, is the number of genera-
tions. That is directly related to the number of evaluated individuals. Let us remember
that the evaluation of an individual (a FLBRS) takes a large amount of time (i.e. up to
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Fig. 5. A plot of predicted vs actual value for the test set in function F1

one minute in some of the problems studied here). Therefore, the fewer the genera-
tions, the quicker the method results, this being a considerable difference. Regarding
this factor, the main conjectures we can draw from the previous experiments (and
supported by the statistical hypothesis testing) are:

• PBIL and GA need more iterations than the other algorithms. Normally this num-
ber of generations seems related to the accuracy of the obtained system (error).

• When the population size is 1000, UMDA shows the tendency to stop after fewer
generations. That would be nice if the obtained system was as good as the rest.
Unfortunately, this is not the case.

• Bivariate models are almost always those running few iterations. This fact indi-
cates that real and significant dependencies among the considered variables (i.e.
fuzzy rules) exist. And that is why they obtained the better results for the MSE.
Furthermore, there is no (statistically supported) ranking among them.

The last value to analyse might be the number of rules. For the purpose of this
work, this parameter is not as important as the other two parameters, but it is clear
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that fewer rules makes easier systems. In our experiments we have found that the
reduction over the maximum number of rules depends heavily on the considered
problem. Thus, it is in problems F4 and E2 where statistical differences are found
with respect to the behaviour of the different algorithms: (1) GAs and bivariate mod-
els yield fewer rules than univariate models in both problems, and (2) GAs yield
fewer rules than bivariate EDAs in problem F2.

5.6 Discussion

After analyzing the results, let us briefly discuss our conclusions and also some re-
lated aspects not mentioned previously:

• As a summary of the previous analysis, we can conclude that bivariate models
are more reliable than GAs and univariate models, because they get better (or at
least equal) results than GAs or univariate models and they do few generations
(evaluations).

• Among the bivariate models, it seems that on average tree-shaped models work
better than chain-shaped models, but there is no statistical difference in most of
the cases. On the other hand, no significant differences have been found between
using or not [0, 1]-normalized mutual information.

• Another point to be taken into account is the different complexity of model gen-
eration between GAs, univariate EDAs and bivariate EDAs. Of course, the com-
plexity of inducing bivariate models is higher than that of inducing univariate
models or applying genetic operators. However, in our problem this difference
has a small impact when we consider the time necessary to evaluate a popula-
tion. Thus, in the largest problem considered here (E2 with 7 labels) the time to
induce+sample a model is 0.037s for GAs, 0.055s for univariate EDAs and 0.35s
for bivariate EDAs. Therefore, bivariate models need ten times more CPU than
GAs, but if we take into account that evaluating a population takes 55s, then the
differences between 55.037s, 55.055s and 55.35s are almost insignificant.

• With respect to comparison with similar works, we can refer to [7, 19], where
the COR methodology is instantiated by using simulated annealing [7] or ant
colonies [19] as search engine. A fair comparison is not possible because there
are some degrees of freedom in the implementation (specially) of the fuzzy infer-
ence engine, i.e., which value should be returned by the fuzzy inference engine
when an example does not fire any rule?. As an example, in [7] the training error
yielded by WM algorithm in problem F1 is 4.09635, while in our case we get
5.4067, and WM is (almost6) deterministic.

Because of this, we focus our comparison on the reduction of the errors made by
COR over the results obtained by WM. Thus, for problem F1 COR with simulated

5 We have multiplied by 2 the errors reported in [7, 19] because in such works the MSE is
multiplied by 1/2.

6 Notice that in the example of Sect. 2.2 we choose arbitrarily/randomly the consequent for
the rule produced by instance number 6
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annealing or ant colonies has only 78%(54%) of the training(test) error committed
by WM, while COR with TREE get a training(test) error which is 52.5%(40%) of
the error committed by WM. For problem E2, COR with simulated annealing has
a training(test) error of about the 74%(88%) of WM error, while COR with ACO
and TREE has, respectively, an error of 74%(70%) and 67%(84%) over the error
committed by WM. From this (approximate) comparison, we can see that bivariate
EDAs are a very good choice to instantiate the COR methodology, although they
seem to need more evaluations than simulated annealing or ant colonies [7, 19].

6 Concluding Remarks

In this work we have presented an application of EDAs in quite an interesting and
hard problem which is the machine learning or data mining field. Concretely, we
have shown how EDAs are a clear alternative to other metaheuristic algorithms in
the problem of learning linguistic fuzzy rule systems. Our experiments show that
simple instances of EDAs as is the case of bivariate models offer good behaviour,
being quite reliable in both important points: optimisation of the fitness function and
number of required evaluations (generations).

Furthermore, the superior behaviour of bivariate models with respect to univari-
ate models, is a clear indication of existing dependence relations among the vari-
ables (rules) of the system. This fact constitutes an important starting point for future
works.
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Summary. This chapter proposes a combination of estimation of distribution algorithm
(EDA) and the 2-opt local search algorithm (EDA/LS) for the quadratic assignment problem
(QAP). In EDA/LS, a new operator, called guided mutation, is employed for generating new
solutions. This operator uses both global statistical information collected from the previous
search and the location information of solutions found so far. The 2-opt local search algorithm
is applied to each new solution generated by guided mutation. A restart strategy based on sta-
tistical information is used when the search is trapped in a local area. Experimental results on
a set of QAP test instances show that EDA/LS is comparable with the memetic algorithm of
Merz and Freisleben and outperforms estimation of distribution algorithm with guided local
search (EDA/GLS). The proximate optimality principle on the QAP is verified experimentally
to justify the rationale behind heuristics (including EDA/GLS) for the QAP.

1 Introduction

The Quadratic Assignment Problem (QAP) is a combinatorial optimization prob-
lem introduced by Koopmans and Beckmann [1] to formulate and solve the situation
where a set of facilities have to be assigned in an optimal manner to given locations.
The problem can model a variety of applications in scheduling, manufacturing, sta-
tistical data analysis, etc. Çela [2] gives a good overview of theory and algorithms
for the QAP.

Given N = {1, 2, · · · , n} and two n× n matrices A = (aij) and B = (bkl), the
QAP can be stated as follows:

min
π∈Sn

c(π) =
n∑

i=1

n∑

j=1

aπ(i)π(j)bij (1)

where π is a permutation of N and Sn is the set of all possible permutations of
N . In the facility location context, A is the distance matrix, so that aij represents
the distance between locations i and j. B is the flow matrix, so that bkl represents
the flow between facilities k and l. π represents an assignment of n facilities to n
locations. More specifically, π(i) = k means that facility i is assigned to location k.

Q. Zhang et al.: Estimation of Distribution Algorithm with 2-opt Local Search for the Quadratic Assignment Problem,
StudFuzz 192, 281–292 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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The QAP is one of the most difficult NP-hard combinatorial problems. Solv-
ing QAP instances with n > 30 to optimality is computationally impractical for
exact algorithms such as the branch-and-bound method [18]. Therefore, a variety of
heuristic algorithms for dealing with large QAP instances have been developed, e.g.
simulated annealing [4], threshold accepting [5], neural networks [6], tabu search
[7], guided local search [8], evolution strategies [9] , genetic algorithms [10], ant
colony optimization [11], memetic algorithms [12], and scatter search [13]. These
algorithms cannot be guaranteed to produce optimal solutions, but they are able to
produce fairly good solutions at least some of the time.

Estimation of Distribution Algorithms (EDAs)[3] are a new class of evolutionary
algorithms (EAs). Unlike other EAs, EDAs do not use crossover or mutation. Instead,
they explicitly extract global statistical information from the previous search and
build a posterior probability model of promising solutions, based on the extracted
information. New solutions are sampled from the model thus built. Like other EAs,
EDAs are good at identifying promising areas in the search space, but lack the ability
of refining a single solution. A very successful way to improve the performance
of EAs is to hybridize them with local search techniques. In fact, combinations of
genetic algorithms and local search heuristics, often called memetic algorithms in the
literature, have been applied successfully to a number of combinatorial optimization
problems. Recently, we have combined an EDA with guided local search (EDA/GLS)
[19] for the QAP and obtained some encouraging preliminary experimental results.

A combination of an EDA with a very simple local search (EDA/LS) for the
QAP is proposed and studied in this chapter. EDA/LS maintains a population of po-
tential solutions and a probability matrix at each generation. The offspring generation
scheme in EDA/LS is guided mutation [19][20]. Guided by the probability matrix,
guided mutation randomly mutates a selected solution to generate a new solution.
Each new solution is improved by the 2-opt local search. A novel restart strategy
is used in EDA/LS to help the search escape from areas where it has been trapped.
The experimental results show that EDA/LS is comparable to the memetic algorithm
(MA) of Merz and Freisleben [12] and outperforms EDA/GLS on a set of QAP in-
stances.

The rest of the chapter is organized as follows. In Sec. 2, EDA/LS is introduced.
Section 3 presents the comparison of EDA/LS, EDA/GLS and the memetic algorithm
[12]. The proximate optimality principle, the underlying assumption in heuristics
including EDA/LS, has been experimentally verified in Sec. 3. Section 4 concludes
the chapter.

2 Algorithm

At each generation t, EDA/LS maintains a population Pop(t) = {π1, π2, . . . , πN}
of N solutions and a probability matrix:
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p(t) =






p11(t) . . . p1n(t)
...

...
pn1(t) . . . pnn(t)




 ,

where p(t) models the distribution of promising solutions in the search space. More
precisely, pij(t) is the probability that facility i is assigned to location j in a promis-
ing assignment.

2.1 2-opt Local Search

The local search used in this chapter is the 2-opt local search [16]. Let π be a solution
for the QAP. Then its 2-opt neighborhood N (π) is defined as the set of all possible
solutions resulting from π by swapping two distinct elements. The 2-opt local search
algorithm searches the neighborhood of a current solution for a better solution. If
such a solution is found, it replaces the current solution and the search continues.
Otherwise, a local optimum has been reached. In our experiments, the first better
solution found is accepted and used to replace the current solution. In other words,
we use the first-improvement principle.

2.2 Initialization

EDA/LS randomly chooses N solutions and then applies the 2-opt local search to
improve them. The N resultant solutions {π1, π2, . . . , πN} constitute the initial pop-
ulation Pop(0). The initial probability matrix p(0) is set as

pij =
1
n

.

2.3 Update of Probability Matrix

Assume that the population at generation t is Pop(t) = {π1, π2, . . . , πN}. Then the
probability matrix p(t) can be updated (as in PBIL [14]) as follows:

pij(t) = (1 − β)
1
N

N∑

k=1

Iij(πk) + βpij(t − 1), (1 ≤ i, j ≤ n) , (2)

where

Iij(π) =

{
1 if π(i) = j ,

0 otherwise .

0 ≤ β ≤ 1 is a learning rate. The bigger β is, the greater the contribution of the
solutions in Pop(t) is to the probability matrix p(t).
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GuidedMutation(π, p, α) Input: a permutation
π = (π(1), . . . , π(n)), a probability matrix p = (pij) and a positive
parameter δ < 1. Output: σ = (σ(1), . . . , σ(n)), a permutation.

Step 1 Randomly pick [αn] integers uniformly from {1, 2, . . . n} and
let these integers constitute a set K ⊂ I. Set V = I\K and
U = I.

Step 2 For each i ∈ K, set σ(i) = π(i) and U = U\{π(i)}.
Step 3 While(U 	= ∅) do:

Select a i from V, then randomly pick up a k ∈ U with
probability

pik∑
j∈U pij

.

Set σ(i) = k, U = U\{k} and V = V \{i}.
Step 4 Return σ.

Fig. 1. Guided Mutation for creating offspring with permutation representation

2.4 Generation of New Solutions: Guided Mutation

Guided by a probability matrix p = (pij)n×n, guided mutation [19][20] mutates
an existing solution to generate a new solution. This operator also needs a control
parameter 0 < α < 1. It works as shown in Fig. 1.

The goal of guided mutation is to generate a solution σ. Step 1 randomly divides
the facilities into two groups. The first group has [αn] facilities and the second one
has n − [αn] facilities. In Step 2, facility i in the first group is assigned to location
π(i), which is the location for this facility in solution π. Step 3 arranges the facilities
in the second group sequentially, based on the probability matrix p.

2.5 Restarting Strategy

In EDA/LS, if the average cost of the population does not decrease for successive L
generations, EDA/LS will re-initialize its population. New initial solutions should
be as far from the current population as possible, since EDA/LS has intensively
exploited the current area. Let p = (pij) be the current probability matrix. Then
EDA/LS generates a new initial solution as shown in Fig. 2.

Obviously, the larger pij is, the smaller the probability that π(i) = j is in the
above procedure. Therefore, the resultant π should be far from the current population.

Two other commonly-used restart strategies are the random restart and the mu-
tation restart. The random restart generates the new initial population randomly. It
does not take into consideration any information from the previous search. In the
mutation restart [12], each solution except the best one in the current population is
mutated to yield a new initial solution. Mutation restart does not explicitly utilize
global statistical information in the current population.
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REstart(p)
Input: p = (pij) : a probability matrix.
Output: π = (π(1), . . . , π(n)), a solution.

Step 1 Set U = {1, 2, . . . , n}
Step 2 For i = 1, 2, . . . , n

Randomly pick a k ∈ U with probability

[1 − pik]
∑

j∈U [1 − pij ]
.

Set π(i) = k and U = U\{k}.

Step 3 2-opt Local Search: use the 2-opt local search to improve π.
Step 4 Return π.

Fig. 2. The probability-based restart strategy

2.6 Structure of EDA/LS

The framework of EDA/LS is described in Fig. 3.

3 Computational Experiments and Analysis

3.1 Experimental Comparison with EDA/GLS and MA

EDA/LS has been compared with the memetic algorithm (MA) of Merz and Freisleben
[12] and EDA/GLS [19] on a set of QAPLIB test instances [15]. EDA/LS was im-
plemented in C++. All the experiments reported in this chapter were performed on
identical PCs (AMD Athlon 2400MHZ) running Linux. The parameter settings for
EDA/LS were as follows:

• Population size N = 10;
• The number of new solutions generated at each generation: M = N

2 ;
• The number of generations used in the restart condition: L = 30;
• The control parameter in Guided Mutation α and the learning rate β used in

the update of probability matrix. We have used two different settings: (α, β) =
(0.3, 0.3) and (α, β) = (0.5, 0.1).

The experimental results are given in Table 1.
In this table, the MA results are from one of the best MA variants with the diversi-

fication rate R = 1 and CX recombination operator (please see [12] for details). The
instance column lists the QAPLIB instances (the number in the name is the problem
size). The cost of the best-known solution for each instance is given in the best known
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Step 0 Parameter Setting Population Size: N . The number of new solutions generated at
each generation: M . The control parameter in GuidedMutation: α. The learning rate
used in the update of the probability matrix: β. The number of generations used in the
restart strategy: L.

Step 1 Initialization Set t := 0. Do initialization as described in subsection 2.2. Set π∗ to
be the solution with the lowest cost in Pop(0).

Step 2 Guided Mutation For j = 1, 2, . . . , M , do:
pick up a solution π from Pop(t), do
guided mutation

σ = GuidedMutation(π, p(t), α)
2-Opt local search

improve σ by the 2-opt local search.
Step 3 New Population Choose the N best solutions from {σ1, . . . σM} ∪ Pop(t) to

form Pop(t + 1). Set t := t + 1. Set π∗ to be the solution with the lowest cost in
Pop(t). Update the probability matrix using (2).

Step 4 Stopping Condition If the stopping condition is met, stop. Return π∗.
Step 5 Restart Condition If the restart condition is not met, go to Step 2.
Step 6 Restart For j = 1, 2, . . . , N, set πj = REstart(p(t)). Set

Pop(t) = {π1, π2, . . . , πN}. Find the lowest cost solution σ∗ in Pop(t). If
c(π∗) > c(σ∗), set π∗ = σ∗. Update the probability matrix using (2). Go to Step 2.

Fig. 3. The framework of EDA/LS

column. The average percentage excess over the best-known solution obtained over
10 runs for MA, EDA/LS and EDA/GLS is listed under avg% for each algorithm.
t/s is the time in seconds used in each run. A number in bold type indicates the result
is the best among the three algorithms.

The one tailed t-test results at the 0.05 significance level are also presented in Ta-
ble 1 for the alternative hypothesis that the mean best solutions obtained by EDA/LS
have lower costs than those obtained by EDA/GLS or MA. Column t-test1 lists the
t-test values between EDA/LS and EDA/GLS and column t-test2 lists the values be-
tween EDA/LS and MA, where t is the absolute value of the t statistic. sig < 0.05
suggests that EDA/LS is better than EDA/GLS or MA in terms of solution quality.

In Table 1, the better results obtained by the two sets of parameters in EDA/LS
are listed. The respective results of EDA/LS with the two sets of parameters on these
test QAP instances are listed in Table 2. In Table 2, “∗” denotes that the version of the
algorithm with the parameter set (α, β) = (0.3, 0.3), while “+” denotes the version
with the parameter set (α, β) = (0.5, 0.1). The numbers in bold in these two tables
indicate the better result of the two obtained

The results in Table 1 show that in 5 QAP instances (tai60a, tai80a, tai100a,
tho150, and tai256c), the results obtained by EDA/LS are better than those of MA,
whereas they are worse in 3 instances (sko100a, tai100b, and tai150b). Based on the
t-test, EDA/LS is significantly better than MA in 2 instances (with sig < 0.05). In
7 instances EDA/LS is significantly better than EDA/GLS. Therefore, we can claim



EDAs with 2-opt local search for the QAP 287

Table 1. Comparison of EDA/GLS, MA and EDA/LS

EDA/GLS MA EDA/LS t-test1 t-test2
instance best known avg% avg% avg% t sig t sig t/s
els19 17212548 0.000 0.000 0.000 - - - - 5
chr25a 3796 2.391 0.000 0.000 6.129 0.000 - - 15
bur26a 5426670 0.000 0.000 0.000 - - - - 20
nug30 6124 0.000 0.001 0.000 - - 1.000 0.172 20
kra30a 88900 0.000 0.000 0.000 - - - - 20
ste36a 9526 0.041 0.087 0.000 2.475 0.018 1.769 0.056 30
tai60a 7208572 1.209 1.517 1.320 0.555 0.296 0.989 0.174 90
tai80a 13557864 0.887 1.288 1.138 0.827 0.215 0.850 0.204 180
tai100a 21125314 0.779 1.213 1.158 3.137 0.006 0.627 0.273 300
sko100a 152002 0.066 0.027 0.034 2.395 0.020 0.786 0.226 300
tai60b 608215054 0.132 0.000 0.000 1.906 0.045 - - 180
tai80b 818415043 0.513 0.000 0.000 4.419 0.001 - - 300
tai100b 1185996137 0.135 0.000 0.005 3.966 0.001 1.000 0.176 300
tai150b 498896643 0.351 0.180 0.357 0.989 0.348 3.422 0.004 600
tho150 8133484 0.091 0.187 0.169 1.899 0.045 0.485 0.319 600
tai256c 44759294 0.042 0.096 0.074 1.695 0.062 2.077 0.034 1200
Avg. % 0.414 0.287 0.265

“-” indicates that the t-test has not been carried out for these instances since the corresponding
algorithms found the optimal solutions.

Table 2. Comparison of EDA/LS and MA

EDA/LS∗ EDA/LS+

instance avg.% avg.%

els19 0.000 0.000
chr25a 0.000 1.713
bur26a 0.000 0.000
nug30 0.000 0.039
kra30a 0.000 0.728
ste36a 0.000 0.075
tai60a 1.522 1.320
tai80a 1.206 1.138
tai100a 2.080 1.158
sko100a 0.222 0.034
tai60b 0.000 0.000
tai80b 0.034 0.000
tai100b 0.142 0.005
tai150b 0.508 0.357
tho150 0.364 0.169
tai256c 0.120 0.074
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that EDA/LS outperforms EDA/GLS and is comparable with MA in terms of solution
quality within a given time limit.

3.2 The QAP and the Proximate Optimality Principle

The proximate optimality principle (POP) assumes that good solutions have similar
structure [17]. It is an underlying assumption in most heuristics including EDA/LS.
In fact, only when the POP holds, a probability model used in EDA/LS approximates
a promising area.

To verify the POP on the QAP instances, we have conducted the following exper-
iments: 500 different local optima π1, . . . , π500 are generated by applying the 2-opt
local search on randomly generated solutions, then we sort all the 500 obtained local
optima with respect to their costs in ascending order. For each local optimum πk, we
generate 1000 distinct local optima σ1

k, . . . , σ1000
k by applying the 2-opt local search

on randomly generated solutions in a neighborhood of πk (the set of all the solutions
differing from πk on at most 0.1n items in our experiments). We compute the aver-
age cost and the average Hamming distance to πk of the local optima σ1

k, . . . , σ1000
k .

Figures 4 and 5 plot these average costs and average distances.
From these figures we can observe the following:

• The average of local optima around a better local optimum is lower.
• The better πk, the shorter the average distance of σ1

k, . . . , σ1000
k to πk is.

These observations verify the POP in these QAP instances. Therefore, it is reasonable
to use statistical information collected from the better local optima visited in the
previous search to build the probability model.

4 Conclusion

In this chapter, we have proposed EDA/LS, a hybrid evolutionary algorithm for the
QAP. In EDA/LS, a new operator, guided mutation, is used to produce new solutions.
Guided by a probability model which characterizes the distribution of promising
solutions in the search space, guided mutation alters a parent solution randomly to
generate a new solution. Every new solution is then improved by the 2-opt local
search. The search is re-initialized when it gets trapped in a local area. EDA/LS has
been compared with MA and EDA/GLS on a set of QAP instances. The comparison
results show that EDA/LS is comparable with MA, and outperforms EDA/GLS.

Most, if not all, meta-heuristics implicitly or explicitly use the proximate opti-
mality principle The preliminary experiments in this chapter have verified the POP
on several QAP instances. We believe that a deep understanding of the POP will be
helpful in designing efficient algorithms for hard optimization problems.
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coarse-grained 163, 164
combinatorial search of cooperative rules

263
conditional mutual information 6
conjugate evolution path 87
COR methodology 263
correlated mutations 77
covariance matrix adaptation 77
cross validation 244, 250
cumulative path length control 86

cumulative step size adaptation 86

deceptive problems 7
degree of membership 261
demes 162
derandomized self-adaptation 77
dominance 124

entropy 5, 40, 41, 58
evolution path 84, 86
expectation-maximization algorithm 55,

130
exploitation 187
exploration 187

factorized distribution algorithm 5
feature ranking 245, 246, 248, 249, 251,

253, 256
feature subset selection 243
filter 243, 245, 249
flat fitness 100
free energy 3
full mutation 32
fuzzy rule-based systems 259
fuzzy set theory 259

genetic algorithms 222, 231, 232, 244,
245, 250

histogram methods 54

incremental univariate marginal distribution
algorithm 265

invariance properties 94



294 Index

Ising spin glass 39, 46
island model 159, 164
iterative proportional fitting 7

junction tree 5

Laplace correction 265
leader algorithm 132
learning ratio 265
linear entropic mutation 31
linguistic fuzzy rules 259, 260
linguistic variables 260

maximum-entropy principle 6, 27
mean square error 263
memetic algorithms 282, 285
metaheuristics 187
migration 164
MIMD 163
mixture distributions 127
mixture models 54
multi–objective 123
multi-objective evolutionary algorithms

125
mutation

correlated 77
mutual information 6, 265
mutual information maximizing input

clustering 265

naive Bayes 132, 162, 250
normalized mutual information 266
NP-hard 40
NSGA-II 142

order preserving transformations 94

parallelism 161
Pareto front 125
polytree 5
polytree approximation distribution

algorithm 27
population-based incremental learning 265

quadratic assignment problem 281

random Boltzmann polytree functions 26
regression problem 104
rule consequent 261
running intersection property 5

sampling 63
satisfiability problem 222, 231
SATLIB 237, 239
scale invariance 94
selection pressure 125
self-adaptation 77
self-adaptation

derandomized 77
seminaive Bayes 228
SPEA 133, 142
speedup 183
splice site prediction 250, 252, 256
stationarity

design criterion 94
step size control 86
support vector machines 244, 252

temperature 3
termination criterion 39, 43, 44
transformations

order preserving 94
tree augmented naive Bayes 229
triangular membership functions 261

unbiasedness 94
design criterion 94

univariate entropic mutation 32
univariate marginal distribution algorithm

246, 247, 256, 264

variance effective selection mass 80

Wang and Mendel algorithm 261
weighted recombination 79
wrapper 243, 245, 249, 255




