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Preface

Estimation of Distribution Algorithms (EDAs) are a set of algorithms in the Evo-
lutionary Computation (EC) field characterized by the use of explicit probability
distributions in optimization. Contrarily to other EC techniques such as the broadly
known Genetic Algorithms (GAs) in EDAs, the crossover and mutation operators
are substituted by the sampling of a distribution previously learnt from the selected
individuals.

Since they were first termed by Miihlenbein and Paa3 (1996) and the seminal
papers written three years later by Etxeberria and Larrafiaga (1999), Miihlenbein and
Mahnig (1999) and Pelikan et al. (1999), EDAs have experienced a high development
that has transformed them into an established discipline within the EC field. Evidence
of its establishment is the great number of papers on EDAs published in the main EC
conferences and in EC-related journals, as well as the tutorials given in the PPSN,
CEC and GECCO conferences.

The work developed in the field since our first edited book (Larrafiaga and
Lozano (2002)), has motivated us to compile a subset of the great advances on EDAs
in this new volume. We hope this will attract the interest of new researchers in the
EC field as well as in other optimization disciplines, and that it becomes a reference
for all of us working on this topic.

The twelve chapters of this book can be divided into those that endeavor to set a
sound theoretical basis for EDAs, those that broaden the methodology of EDAs and
finally those that have an applied objective.

In the theoretical field, Ochoa and Soto abound on the relation between the con-
cept of entropy of a distribution and EDAs. Particularly, the authors design bench-
mark functions for EDAs based on the principle of maximum entropy. The concept
of entropy is also applied by Ocenasek to base a stopping criterion for EDAs in dis-
crete domains. The author proposes to end the algorithm at the time point when the
generation of new solutions becomes ineffective.

Methodological contributions in the field of continuous optimization are carried
out by Ahn et al. The authors define the Real-coded Bayesian Optimization Algo-
rithm, an algorithm that endeavors to convey the good properties of BOA to the
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continuous domain. Hansen presents a comparison of the CMA (Covariance Matrix
Adaption) of evolution strategies with EDAs defined in continuous domains.

The extension of the EDAs framework to broader scopes is performed by Yanai
and Iba, Bosman and Thierens and Madera et al. Yanai and Iba introduce EDAS in
the context of Genetic Programming. In this context the probability distribution of
programs is estimated by using a Bayesian network. Bosman and Thierens extend
their IDEA algorithm to the problem of multi-objective optimization. They show
how the use of a mixture model of univariate components allows for wide—spread
exploration of a multi—objective front. The parallelization of EDAs is deal with by
Madera et al. The authors propose several island models for EDAs.

Other two works on the methodological arena are those of Robles et. al. and
Miquelez et al. In the view of the great practical success attained by hybrid algo-
rithms, Robles et al. propose several ideas to combine EDAs with GAs in order for
the hybrid to share the good points of both GAs and EDAs. Miquelez et al. de-
sign a sub-family of EDAs in which Bayesian classifiers are applied in optimization
problems. Using the classification labels, a Bayesian classifier is built instead of a
common Bayesian network.

Finally, the book contains some concrete examples on using and adapting the
EDA framework to the characteristics of complex practical applications. An example
of this is presented by Saeys et al. who apply the algorithm in a feature ranking
problem in the context of the biological problem of acceptor splice site prediction.
They obtain an ordering of the genes from the estimated distribution of an EDA.
Flores et al. use EDASs to induce linguistic fuzzy rule systems in prediction problems.
The authors integrate EDAs in the recently proposed COR methodology which tries
to take advantage of the cooperation among rules. Finally the quadratic assignment
problem is tackled by Zhang et al. The authors use an EDA couple with a 2-opt local
algorithm. A new operator “guided mutation” is used to generate the individuals.

We would finally like to thank all the contributors of this book for their effort
in making it a good and solid piece of work. We are also indebted to the Basque
country government for supporting by means of the SAIOTEK S-PE04UN25 and
ETORTEK-BIOLAN grants.

Spain Jose A. Lozano
August 2005 Pedro Larranaga
Iiiaki Inza

Endika Bengoetxea
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Linking Entropy to Estimation
of Distribution Algorithms

Alberto Ochoa and Marta Soto

Institute of Cybernetics, Mathematics and Physics, Cuba
{ochoa, mrosa}@icmf.inf.cu

Summary. This chapter presents results on the application of the concept of entropy to esti-
mation of distribution algorithms (EDAs). Firstly, the Boltzmann mutual information curves
are introduced. They are shown to contain a lot of information about the difficulty of the
functions. Next, a design method of discrete benchmark functions is presented. The newly
developed approach allows the construction of both single and random classes of functions
that obey a given collection of probabilistic constraints. This application and the next — the
construction of low cost search distributions — are based on the principle of maximum en-
tropy. The last proposal is the linear entropic mutation (LEM), an approach that measures the
amount of mutation applied to a variable as the increase of its entropy. We argue that LEM is
a natural operator for EDAs because it mutates distributions instead of single individuals.

1 Introduction

Entropy is a measure of the uncertainty of a random variable, whereas mutual in-
formation measures the reduction of the entropy due to another variable. These are
fundamental quantities of information theory [3], the building blocks of a field that
overlaps with probability theory, statistical physics, algorithmic complexity theory
and communication theory, among others disciplines.

In this chapter, we explore several novel uses of the concept of entropy in
evolutionary optimization. In particular, we investigate intersections of information
theory and the field of estimation of distribution algorithms (EDAs) [26].

A major challenge of evolutionary optimization is the preservation of the right
balance between exploitation and exploration. From an entropic point of view, ex-
ploitation can be seen as a low-entropy search, whereas exploration is better under-
stood as a high-entropy search. This occurs both at the system and variable levels.
At the system level, we see how the joint entropy is reduced as the run approaches
the optimum. At the variable level, the mutual information comes into play, the re-
duction in uncertainty of a variable due to the remainder variables is an indicator of
what kind of entropic balance should be enforced at that point. These are just few
evidences about the fact that entropy is at the heart of the dynamics of artificial evo-
lution. This has been a major motivation of our work. We believe that EDAs will

A. Ochoa and M. Soto: Linking Entropy to Estimation of Distribution Algorithms, StudFuzz 192, 1-38 (2006)
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2 A. Ochoa and M. Soto

profit from greater efforts in this area of research. Keeping in mind these arguments,
in this chapter we approach the following issues:

A method for analysing the difficulty of the functions (Sect. 3).

A design method of benchmark functions (Sect. 4).

A method for learning low cost maximum-entropy distributions (Sect. 5).
An entropic approach to mutation (Sect. 6).

Nowadays, simulation is a fundamental tool of verification, validation and com-
parison of evolutionary algorithms. For EDAs, the design of benchmark functions
should emphasize, in the first place, the complexity of the probabilistic structure
of the search distributions. We have developed a method, which gives the designer
the possibility of specifying a collection of probabilistic constraints that have to be
fulfilled by the search distributions. The method is connected to the concept of en-
tropy because it constructs a maximum entropy distribution that satisfies the given
constraints.

A good design method should be accompanied by a good analysis method. We
introduce a new approach for function complexity analysis in the context of EDA
optimization. Our approach investigates the mutual information of Boltzmann distri-
butions as a function of the temperature parameter.

A critical problem of learning search distributions in an EDA, is the sample com-
plexity. Large sample sizes mean large number of function evaluations. The chal-
lenge is to reduce the number of evaluations, without damaging the effectiveness
and efficiency of the search. We use the concept of entropy to achieve this goal; the
true search distribution is substituted by a maximum entropy approximation, which
can be reliably computed with less population size.

EDAs have to approach mutation from a distribution perspective, in contrast with
the genotype perspective of GAs. While a GA mutates single individuals, an EDA
must mutate distributions. We have developed an approach that uses the concept
of entropy to fulfill this requirement. The relation between entropy and mutation is
quite intuitive: when a random variable is mutated, a certain degree of randomness
is added to it. Therefore, it seems reasonable to measure the amount of mutation
applied to a variable as the increase of its entropy.

The outline of this contribution is as follows. Section 2 presents the background
material. Then we discuss the above problems in Sects. 3-6. Finally, the conclusions
are given.

2 Background

This section introduces the general notation of the chapter. It also gives a short intro-
duction to the theories that underlie our main results.
2.1 General Notation

In this chapter, X; represents a scalar random variable and p (z;) = p (X; = z;)
its probability mass function with z; € ¥ = {0,1,..., K}. Note that p (x;) and



Linking Entropy to EDAs 3

p(x;) refer to two different random variables, and have in fact different proba-
bility mass functions, p (X; = z;) and p (X; = z;), respectively. Similarly, X =
(X1,Xs,...,X,) denotes a n-dimensional random variable, x = (x1,x2,...,T,)
is a configuration and p (x1, 2, ...,x,) represents a joint probability mass. The
notation X , and x, is used to denote sub-vectors of X and x with indexes from
0 CH{L e nbp(@a) = 4. 10 p (@) and p (4| @) = p (24, 25) /p (25) define
marginal and conditional distributions, respectively. p (a) or p, are used to denote
p(za).

2.2 Boltzmann Estimation of Distribution Algorithms

At the center of most of the ideas and results of this chapter, lies the Boltzmann
distribution. Some authors have considered it as the corner stone of the theory of
estimation of distribution algorithms [19, 24, 25]. We believe that this chapter is new
evidence that supports this way of thinking.

Definition 1 For 8 > 0 define the Boltzmann distribution of a function f(x) as

SIE@) BI@)
pp.f(@) = >y Y Z(5)

where Z¢([3) is the partition function.

We also use Zg f, but to simplify the notation 3 and f can be omitted. If we
follow the usual definition of the Boltzmann distribution, then — f(x) is called the
free energy and 1/ the temperature of the distribution. The parameter £ is usually
called the inverse temperature.

Closely related to the Boltzmann distribution is Boltzmann selection:

Definition 2 Given a distribution p () and a selection parameter ~y, Boltzmann se-
lection calculates a new distribution according to

p(x)erf (@)

Boltzmann selection is important because the following holds [25]:

p*(z)

Theorem 1 Let pg () be a Boltzmann distribution. If Boltzmann selection is used
with parameter ~y, then the distribution of the selected points is again a Boltzmann

distribution with
N B+ f(T)

pie) = Sy €PN

The Boltzmann estimation of distribution algorithm (BEDA) was introduced in
[25] on the basis of the above. Here, it is shown as Algorithm 1. BEDA is an algo-
rithm with good theoretical properties, it has even a convergence proof. However, in
the form in which it is shown in algorithm 1, it is just a conceptional algorithm. The
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Algorithm 1 BEDA — Boltzmann Estimation of Distribution Algorithm

Step 1 t—0,3(t) < 0and p(zzx,t) = Z5(1,> ;

Step 2 t—t+1,AB(t) «— B(t) —B3(t—1)and

p(m,t)eAﬂ(t)f(w)

Step 3 If the stopping criterion is not reached, go to step 2.

p(e,t+1) — €0

reasons are twofold: the exponential complexity of the denominator of (1) and the
lack of a method for updating AB(t).

The next lemma solves the second problem. The reader is referred to [19] for
details.

Lemmal AZ(t) = c¢/\/Vary(6(t)) leads to an annealing schedule where the
average fitness, W (3(t)), increases approximately proportional to the standard de-

viation:
Wi(B(t+1)) = W (B(t) = cy/Varg(B(1))

where c is a constant and Var§(3(t)) = afc(ﬂ(t)) is the variance of the fitness func-
tion. This annealing schedule has been called standard deviation schedule (SDS).

The exponential complexity of computing the partition function can be avoided
if the Boltzmann distribution is approximated with a tractable distribution. There are
several ways of accomplishing this approximation [23]. However, for the purposes
of this chapter it is enough to restrict ourselves to the special case covered by the
factorization theorem [25].

The factorization theorem defines how and under what conditions the search dis-
tributions associated to discrete functions can be factorized. The factorization follows
the structure of the function and is only exact if the function obeys certain structural
constraints.

Definition 3 Let s; C {1,...,n} (1 <i < m) be index-sets and let f) be func-
tions depending only on the variables X; (j € s;). Then, f(x) = >_i", f© (x,) is
an additive decomposition of the fitness function f (x) .

Definition 4 Given s1, ..., S, the sets d;, b; and c; (i = 1,...,m) are defined as

Sfollows: dy := 0, d; := U§:1 sj, b =8, \ di—1 and ¢; == s; N d;_1.

Theorem 2 (Factorization theorem) For 3 > 0, let pg ¢ (x) be a Boltzmann distrib-
ution of a function f(x), and f(z) = Y=, @ (x,) be an additive decomposition.
Ifd,, ={1,...,n} and the following holds

Vie{l,...,m}, b;#0

Vi>2,dj <i suchthat ¢; C s; 2)
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then

m

po.s(@) =[] (@,

i=1

x,) 3)

The proof can be found in [25]. Assumption 2 is called the running intersection
property [16].

In the simulations of this chapter we use mainly two algorithms: the factorized
distribution algorithm (FDA) and the Boltzmann FDA. Both algorithms use the fac-
torization (3) as a model of the search distributions. However, while the FDA uses
truncation selection, the BFDA uses Boltzmann selection with SDS.

The following lemma is relevant to this chapter [19].

Lemma 2 BFDA is invariant under linear transformation of the fitness function with
a positive factor.

2.3 Factorizations

As was said in the previous section, the factorization of probability distributions is
a major concern of EDA researchers. In this chapter, Bayesian factorizations are
specially relevant. They are connected with the concept of Bayesian network.

A Bayesian network (BN) [30, 31] is a directed acyclic graph containing nodes,
representing the variables, and arcs, representing probabilistic dependencies among
nodes. For any node (variable) X;, and set of parents 7, the Bayesian network
specifies a conditional probability distribution p(z; | 7, ).

There are single-connected — no more than one undirected path connects two
nodes — and multiple-connected BNs. The single-connected BNs are also called
polytrees. In a polytree, a node may have several parents and many roots. Trees
are special class of polytrees, which have at most one parent and one root. Polytrees
describe higher-order interactions than trees, while retaining many of their compu-
tational advantages. In a polytree, structures like X — Z « Y are often called
head-to-head patterns. This type of pattern makes X and Y conditionally dependent
given Z, which cannot be represented by a tree.

A junction tree [10, 14, 16] is an undirected tree, where each node contains a
set of variables. The junction tree satisfies the junction property: for any two nodes
a and b and any node h on the unique path between a and b, a N'b C h. The arcs
between the nodes are labelled with the intersection of the adjacent nodes; usually,
they are called separating sets or separators.

Junction trees are important for inference and sampling because they have
tractable algorithms for these tasks. Given a BN, it is possible to construct at least
one junction tree. The reader is referred to [10, 14, 16] for a complete discussion on
the issue.

2.4 Entropy and Mutual Information

The entropy H (X)) of a discrete random vector X is defined in [3] by
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H(X)=-) p(x)logp(z) @

zeX

Note that entropy is a functional of the distribution of X. It does not depend on
the actual values taken by the random variable, but only on the probabilities. This
means that H (X) is a shortcut for H (p (X)). The logarithm in (4) is to the base
two and entropy is expressed in bits. We use the convention that 0log 0 = 0.

For a binary variable X, such that p (X = 1) = p, we have

H(X)=H (p(X)) =H (p) := —plogp — (1 —p)log (1 —p) )

The entropy of a binary variable is a nonnegative, symmetric and concave func-
tion of the distribution. It has the maximum at the point (0.5,1) and it is zero for
p € {0,1}.

The following theorem will be useful later on.

Theorem 3 (Independence bound on entropy [3]). Let p (x) be any joint probability
mass of a set of discrete random variables X = (X1, Xa,...,Xy,,), then

H(X) <3 H(X)

with equality if and only if the variables are independent.

The concepts of marginal and conditional mutual information will be intensively
used in the chapter. The mutual information, I (X,Y), is the reduction in the un-
certainty of X due to the knowledge of Y. The conditional mutual information,
I(X,Y|Z), represents the reduction in the uncertainty of X due to the knowledge
of Y given Z. The following theorem connects entropy and mutual information.

Theorem 4 Between mutual information and entropy the following holds [3]:

I(X,)Y)=H(X)+H(Y)-H(X,Y) (6)
I(X,Y|2)=H(X|Z) - H(X|Y,Z) ©)

The Maximum-Entropy Principle

The maximum-entropy principle (MEP) plays an important role in this chapter. It
is used to build probability mass functions that fulfill a collection of marginal con-
straints. The ideas behind this concept can be shortly explained as follows.

Frequently, partial prior information is available outside of which it is desired to
use a prior that is as non-informative as possible. For example, suppose some prior
marginal distributions are specified, and among prior distributions with these mar-
ginals the most non-informative distribution is sought [12, 13]. If we have the joint
distribution with the maximum-entropy of all the joints that fulfill a given collection
of marginals, choosing a joint with less entropy amounts to add some information
that is not justified by the constraints.
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The iterative proportional fitting (IPF) algorithm can be used to find the
maximum-entropy distribution [11, 12, 18, 32]. The proof that IPF converges against
the maximum-entropy solution can be found in [4]. Unfortunately, the naive imple-
mentation of the IPF takes exponential time and space. Therefore, it is not suitable
for computing distributions with many variables.

For large distributions, an efficient implementation of the maximum-entropy al-
gorithm was developed in [15, 21]. The general idea is to improve the performance
of IPF by combining it with the junction tree technique. It consists of performing
IPF locally on the nodes and passing messages to the neighboring nodes. It has been
proved that this converges to the unique maximum-entropy solution, so it is equiv-
alent to IPF. The reader is referred to [29] for details on the implementation of the
method for computing maximum-entropy distributions of polytrees.

3 Mutual Information and Functions Difficulty

This section presents preliminary ideas about a novel method for analysing the com-
plexity of functions for evolutionary algorithms. The corner stone of the approach is
the concept of mutual information, which is studied through its relation with selec-
tion.

3.1 Boltzmann Mutual Information Curves

The Goldberg’s Deceptive3 function belongs to the class of the so called decep-
tive problems [0, 7] that are those having local optima which are easier to find than
global optima. Deceptive problems contain deceptive attractors, which mislead the
algorithm to search for sub-optima because their basins of attraction are much larger
than the ones favoring global optima. Often, deceptiveness is considered a challenge
to search algorithms. However, deception is a relative category that emerges solely
in the context of the relationship problem-algorithm. In other words, a problem may
be deceptive for one algorithm, but not for another.

Deception has been intensively studied in the context of genetic algorithms. In [6,

, 91, the authors described ways to construct deceptive functions and gave sufficient
conditions for deception. Figure 1 (left) shows the usual way of describing deceptive
problems as a function of unitation. Note, the deep valley separating the optimum
from the sub-optimum and the different sizes of their attractors.

In this section, we introduce a new method for analysing the function complexity
in the context of EDA optimization. Our approach investigates the mutual informa-
tion of Boltzmann distributions as a function of the parameter 3. Given a function f,
this method computes the Boltzmann distribution py g for 3 > 0. Then, it computes
the marginal and the conditional mutual information on any sub-set of variables. We
show that the Boltzmann mutual information curves, I (/3), contain a lot of informa-
tion about the complexity of the function.

Table 1 shows the function Deceptive3 and its Boltzmann distribution for 5 =
10.49. On the other hand, Fig. 1 (right) presents the marginal mutual information



8 A. Ochoa and M. Soto

1

0.5

0.9

0 .
0 1 2 3

Unitation

60

Fig. 1. Explaining the complexity of Goldberg’s Deceptive3 function: (leff) unitation approach
— the optimum is isolated and separated from the sub-optima by a deep valley (right) mutual
information approach — marginal (dashed line) and conditional (solid line)

Table 1. Goldberg’s Deceptive3 function and its Boltzmann distribution for § = 10.49. At
this value, I (X,Y) =1 (X,Y|Z2)

T3T2T1  fdee3 (X)  Pp=1049 (X) 3T2%1  faees (X)  pp=10.49 (X)

000 0.9 0.2038 100 0.8 0.0714
001 0.8 0.0714 101 0 0
010 0.8 0.0714 110 0 0
011 0 0 111 1 0.5820

and the conditional mutual information. Note that all edges have the same marginal
and conditional values of mutual information, i.e. the function is symmetric. This
property of the Deceptive3 simplifies its analysis.

To begin with, we recall a result that was presented in [35], which states that
the difference between conditional and marginal mutual information is invariant to
permuting the variables. Remarkably, the result holds for any three sets of variables
X, Xp and X..

Proposition 1 (Whittaker [35, Proposition 4.5.1]) Suppose that the partitioned ran-
dom vector (X, Xp, X..) has a joint density function fqp.. The difference between
the divergence against the conditional independence of X, and X given X . and the
marginal independence of X, and Xy is invariant to permuting the symbols X ., Xy
and X..
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10 20 a0 5 40 50 60 70
Fig. 2. Conditional information I ( X,Y'| Z) (dashed line) and G (X,Y, Z) = [ (X,Y| Z) —
I(X,Y) (solid line)

The above difference is denoted by G (a, b, ¢). As a consequence of the proposi-
tion 1, the curve G (a, b, ¢) and the three conditional information curves also contain
all the marginal mutual information. Therefore, we also use pictures like Fig. 2 as
tools for analysing the complexity of functions. In our framework, we refer to these
curves as Boltzmann-mutual-information curves or simply Boltzmann-information
curves.

From an evolutionary point of view, the Boltzmann-information curves show
how selection influences the strength of the dependencies among the variables of the
problem. If the algorithm uses Boltzmann selection as is the case of BEDAs, then
[ directly measures the selection pressure. Although for other selection schemes the
connection is not direct, the information gathered from curves is still useful.

The curves are continuous, monotonously increasing up to their maximum values
and decreasing to zero as [ increases. This simple observation has an important
implication for learning: there is a strong correlation between mutual information
values at consecutive steps of the evolution.

Note in Fig. 1 (right), the horizontal lines at I ~ 0.0069 and I ~ 0.0107; they are
thresholds for marginal and conditional independence'. We recall that I (X,Y) =
I(X,Y|0); itis assumed that the empty set has zero variables and thus || = 1. The
above thresholds were computed with a confidence level of 95% and a sample size
of N = 280 (this is the sample size used in the numerical simulations).

We now discuss the critical points of the Boltzmann-information curves. There
are nine important critical points: the intersections of the threshold lines with

! Under the null hypothesis that conditional independence of X and Y given Z holds, the
value 2NT (X,Y| Z) — which is called deviance against conditional independence — ap-
proximates a x2 distribution with |Z| (|X| — 1) (]Y'| — 1) degrees of freedom, where N
is the number of configurations in the sample and |S| represents the number of possible
values of the set of variables in S [35, Proposition 7.6.2]
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the marginal and conditional Boltzmann curves determine two pairs of 3 values
that define a marginal and a conditional dependence intervals, [3]7;,,, B, and

min’ Mmazx

(8¢ © az)» Tespectively; the maximal values of the curves, 33}, 5%, and 6]?/,; the

min’ Mmazx

zero and minimum value of G (1,2, 3), 8% and ﬁg respectively.

3.2 Dissection of the Goldberg’s Deceptive3 Function

In this section we investigate the separable function

l

Fuccs = Y faees (€3i-2, T3i—1,T3;)
i=1

and some other functions derived from it. As a rule we use the BFDA, but a few
results are also presented for a FDA with truncation selection.

The notation used in the tables is as follows: N is the population size, n is the
number of variables, %. is the success rate in 100 independent runs and G, is the
average generation where the optimum is found. For the average 3 values, we use
Bmin after the initial selection and 3,4, at the end of successful runs.

Deception and the Complete Bayesian Model

We start our investigation of the Deceptive3 by running the BFDA with the complete
Bayesian model of the marginal distributions p (3;—2, 3,1, %3;). In other words,
it uses the factorizations

P (T3i—2,T3i—1,3;) = P (23i—2) p (x3:] T3i—2) P (T3i—1| T3i—2,23;)  (8)

Equation (8) is the natural model for this function; any other model performs
worse than it does. The following simulation confirms this behaviour. We run the
BFDA 100 times, in a problem with 30 variables and 280 configurations. The algo-
rithm always finds the optimum with G. = 12.97. The average (3 at the end of the
runs is 18.43, whereas the critical point 3¢ is reached as average at the generation 10.
This means that for approximately 3/4 of the evolution the conditional information
is stronger than the marginal information.

As can be seen from Fig. 1 (right) the variables are marginally and conditionally
dependent in the range of /3 observed in the simulation of [0, 18.43]. Note that this
interval is completely included in [8%,;,,, B%az) C [Biin: Bmqs]. We recall that for
three variables the complete model is the only one that does not have any indepen-
dence relation, i.e. it is the best for the pair BFDA-Deceptive3.

We believe that deceptiveness is a direct consequence of having high values of
mutual information. As we pointed out before, deception is a relative category that
emerges solely in the context of the relationship problem-algorithm. In this relation-
ship the problem contributes with high values of mutual information, whereas the
algorithm’s contributions are the selection and the collection of dependencies that it
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can deal with. The collection must be a proper sub-set of the problem’s dependen-
cies. We believe that the size and strength of the basins of attraction for any problem
attractor depend on the amount of mutual information relevant to it. Without these
three ingredients there can not be any deception at all. The amount of mutual infor-
mation is a source of difficulty even when the right model or factorization is used.

BFDAs are perfect tools for studying the difficulty of the functions. They have
everything that is needed:

Selection is given explicitly through the parameter .
The collection of dependencies the algorithm can deal with are fixed by the fac-
torization.

e The relation between mutual information and selection is given by the Boltzmann
information curves.

In BFDAs, deception arises in the context of the relationship problem-factorization,
i.e. a given problem may or may not be deceptive in relation to a particular factoriza-
tion.

Reducing the Mutual Information

Let py,..;,p¢ be the Boltzmann distribution of the Deceptive3 with ,BZG and Z 5,
i.e. the distribution when the mutual and conditional information are the same (see
Fig. 1).

In this section, we deal with the family of functions

l o loa (7 ¢
fdees (@) = O‘IQB(g )_|_ Og(ﬁc];ﬁz)

where a € {0,0.05,0.20,0.40,0.50} and p,, is a distribution that obeys the follow-
ing entropic relation

©))

H(poé) = (1 - a)H (pfdecsﬁzc> + 3o

This type of entropic relation is discussed in Sect. 6.3. For the purposes of the
current section it is enough to say that the mutual information in p, decreases as «
Srows.

Table 2 shows the family of fje.3 («) functions. Note that fgz..3 (0) is the Decep-
tive3. Besides, it is worth noting, that the symmetry of the Boltzmann information
curves for the Deceptive3 is slightly broken in these functions. However, the dif-
ference is so small, that it is enough to show in Fig. 3 only the curves [ (1,2) and
I(1,2|3). The reader can easily check this by constructing the Boltzmann mutual
information curves of these functions.

Table 3 presents the numerical results. The difficulty of the function decreases
with increasing «, which means with increasing joint entropy and with decreasing
mutual information. Note the influence of « in the convergence time: as o grows, G
decreases. On the other hand, both (3,,;, and [3,,,, increase as o grows. We recall
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Table 2. The family of faiec3 (o) functions

T3X2x1

o 000 001 010 011 100 101 110 111

0.00 090 080 0.80 0.00 080 0.00 000 1.00
0.05 09 080 080 047 080 040 039 1.00
020 09 082 081 063 081 057 056 0.99
0.40 0.89 083 082 071 082 0.66 065 0.98
0.50 0.89 083 083 074 082 0.70 069 0.97

0.45 0.5

0.4 0.45

* o

0.35 0.4

0.35

=

0.3

0.25

0.2

0.15

0.1

0.05

0 20 40 60
§

Fig. 3. Boltzmann mutual information curves for the family fgecs (a): (leff) marginal,

(right) conditional. From top to bottom, faecs, faees (0.05), faees (0.20), faees (0.40) and
Sdees (0.50)

Table 3. BFDA runs with the fgecs (o)) with the complete Bayesian model. The average 3
values after the initial selection and at the end of successful runs are shown in columns (3,,in
and a2, respectively. Setting: N = 280, n = 30

o %S Gc ﬁ'min /B'maw

0.00 100 1297 0.75 18.43
0.05 100 10.31 1.41 1825
0.20 100 932 214 21.11
0.40 100 839 296 23.14
0.50 100 8.14  3.53 2586
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that Bmin = B (1) = AB(1) = ¢/\/Varg(5(1)), i.e. the standard deviation of the
fitness decreases in the first generation with increasing «. Besides, for all functions
we have that the interval [Bpin, Bmaz] is included in their respective [5S,;,,, 8% ax)-
If the reader constructs the unitation representation (Fig. 1) of the functions
faees (a), he or she will observe that only the depth of the valley at unitation equal
to two changes significantly. For example, fj..3 (0.05) is exactly equal to the De-
ceptive3, except in the case when the unitation is equal to two. This is remarkable

because the definition of these functions did not consider any unitation argument.

Models with a Missing Arc

We investigate the performance of the BFDA when the marginal distributions of
the form p (23,2, 3,—1, 3;) are approximated with all Bayesian models with one
missing arc. Consider the following factorizations:

P23 (2, w9, m3) = p(21) p (23) p (02| 21, 73) (10)
p13—32 (231, 1‘2,363) = p(x1,23)p (z2]| x3) an
p12713 (x1,29,23) = p(x1,23) p (22| 21) (12)

Due to the symmetry of the function with respect to the mutual information, it
is enough to study these cases. For example, in the factorization 12-32 the arc 1-3 is
missing and the arcs 1 — 2 and 3 — 2 are present. However, it behaves exactly as
the factorizations 21-31 and 13-23.

The results are presented in the first row (o = 0) of Table 4. The BFDA behaves
much better with the factorization 12-32 than with the factorizations 12-13 and 13-
32. The use of the last two factorizations leads to similar results. In what follows, we
try to explain this behaviour in the context of Boltzmann information curves.

It is worth noting, that /3,4, is about 30 for all models, which is close to 5, ...
Furthermore, we have observed that the critical value 65 is reached as average in
the generation 10 with the model 12-32 and in the generation 12 with the models
12-13 and 13-32. This means that a successful run occurs in range of 3 where both
the marginal and the conditional information are above the independence thresholds,
i.e. the variables are not independent. Moreover, during the first half of the evolution
(before 3% is reached) G (1,2,3) > 0.

Table 4. BFDA runs with the fqecs (o). The marginal distributions p (x3;—2, T3i—1, 3;) are
approximated with all two-arcs models. Setting: N = 280, n = 30

12-32 12-13 13-32
(0% %S Gc ﬂmaz %S Gc ﬁmaz %S Gc ﬂmam

0 94 1857 305 22 21.82 3048 34 2220 29.64
0.05 99 1475 2958 92 1615 2931 84 16.11 28.67
0.20 100 1297 3203 99 1325 29.69 95 13.14 28.82
0.50 100 11.24 3726 100 1046 3295 100 1037 31.89
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By comparing (10)—(12) with the chain rule, it is easy to see that each equation
makes exactly one wrong assumption:

e Equation (10) assumes marginal independence of X; and X3.
e Equation (11) assumes conditional independence of X5 and X given X3.
e Equation (12) assumes conditional independence of X5 and X3 given X;.

The conditional mutual information is farther away from its independence thres-
hold than the marginal mutual information. The independence lines get closer as the
sample size increases; for N = 280, their difference is just 0.0038. Therefore, we can

assume that there is a unique threshold I;. It is easy to see that foﬁf G (1,2,3) df can
be used as an estimate of the magnitude of the error of using the factorizations 12-13
or 13-32 instead of 12-32. In other words, the assumption of the model 12-32 is much
less traumatic than the other assumptions when 3 € [8S,..., 354, The situation is
reversed for 3 > (3¢, ... but this happens when the first half of the evolution is already
gone, thus having little impact in the outcome of the optimization.

We have also tested the above factorizations with the functions fje.3 (o). Table 4
presents the results. As was shown in Sect. 3.2, the reduction of the mutual informa-
tion also implies a reduction of the difficulty of the function. Here, we can observe
the effect on the convergence time as well as on the success rate. Note for example,
that from « = 0 to @ = 0.05 the success rate goes from 22% to 92% in the case of the
factorization 12-13. Another interesting observation is about the difference between
the performance of different factorizations as « grows. For example, the difference
between the convergence time for the complete factorization (8), 12-13-32, and for
the factorization 12-13 decreases as v grows: 8.85, 5.84, 3.93, 2.66 and 2.32. We
believe that the last result is an evidence supporting the following statement: the
reduction of the mutual information increases our choices in model selection.

Some Results with Truncation Selection

For the sake of completeness, Table 5 presents the results of running a FDA with
truncation selection on the family of functions fge.3 («). The reader can easily check
the similarities of these results with those obtained with Boltzmann selection. For
example, they also support the claim that the reduction of the mutual information
amounts to a reduction of the functions difficulty.

4 Designing Test Functions by Maximum-Entropy

In spite of recent research advances in EDAs we still do not have a complete, sound,
consistent and rigorous theory of evolutionary algorithms. In practice, this leads to
the use of simulation as a fundamental tool of verification, validation and comparison
of algorithms. One common simulation method is the use of test functions obtained
by concatenation of elementary functions of small order. Usually, the design of such
functions is focused on considerations about specific aspects of the complexity of
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Table 5. FDA runs with the fgecs (o). Setting: N = 280, n = 30 and truncation selection of
0.3

12-13-32 12-32 12-13 13-32
o %S  Ge. %S Ge %S Ge %S G.

0 100 5.99 91 849 35 974 34 9.68
0.05 100 5.74 95 8.18 65 8.61 75 8.52
020 100 5.32 99 7.18 85 7.6l 89 7.65
050 100 491 100 6.74 100 6.30 9 642

the elementary functions: multimodality, isolation of the optimum value, proximity
of the function values of the good configurations, frustration of overlapped elemen-
tary functions, etc. In this scenario, it is important to know the properties of the
elementary functions and how these properties are combined to define the properties
of the whole function. Moreover, it would be useful to design functions that are not
given as a combination of smaller elementary functions.

The design of benchmark functions for testing EDAs have to emphasize, in the
first place, the complexity of the probabilistic structure of the search distributions.
The fitness function, the intensity and type of selection determine for each configu-
ration its probability of being in the selected set and consequently the probabilistic
structure of the search distributions.

A successful EDA builds a probabilistic model that captures the important cor-
relations of the search distribution, assigning high probability values to the selected
configurations. Therefore, it would be convenient to design functions that enforce a
given set of “important correlations”, but do not enforce any other correlation con-
straint. In this section, we present an approach to this problem, where the designer
gives a collection of probabilistic constraints that have to be fulfilled by the search
distributions of the function. Our method is connected to the concept of entropy
because it constructs a maximum-entropy distribution that satisfies the given con-
straints.

4.1 The General Framework

The corner stone of our approach to the design of benchmark functions for discrete
optimization is what we have called the family of Boltzmann functions

_ log(psp () | log (24 (B))
B g

Equation (13) comes from the definition of the Boltzmann probability mass
pr.3 (x). From the point of view of this model, (13) are members of the parametric
class § (8, Z,py g (x)), which could be refined by including additional parameters
of the distribution py g (x). For example, when the distribution factorizes and no
factor contains more than K variables, we are dealing with the parametric sub-class

§(8:Z,pp5 (®), K).

fs () (13)
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Avoiding the Exponential Effort

The computation of the partition function is always problematic; it needs an expo-
nential effort. Fortunately, in our approach this can be avoided. Note that in (13), the
second term is a constant that is added in all configurations. It is a shift along the
fitness dimension and has little to do with the complexity of the function. Therefore,
nothing prevents us from fixing the value of the partition function. Moreover, for
BFDA the following lemma holds.

Lemma 3 The difficulty of (13) for a BFDA is completely determined by the distrib-
ution py 3 ().

Proof 1 The proof follows immediately from lemma 2.

If the distribution ps 5 () is known and Z is set to an arbitrary value, then the
function fg (x) is well defined for any [, i.e. for any configuration x, the value
fa (&) can be computed. This means that the computation of the function for all
possible configurations is not necessary.

Usually, we use factorizations to deal with the exponential complexity of distrib-
utions. In the context of functions design, the factorizations also help to compute the
optima and the central moments of the functions. This kind of information is useful
to understand the functions’ properties. Moreover, sometimes it is useful to have a
fast procedure for computing the optima of benchmark functions when testing evo-
lutionary algorithms. For example, when the benchmark functions are drawn from
a distribution (Sect. 4.3) and the optima are needed to set the stopping criteria. The
reader is referred to [27, 28] for a complete description of two methods that compute
the above-mentioned values for junction tree factorizations.

Whenever we have a distribution we can build a Boltzmann function. For exam-
ple, there are famous Bayesian networks (like the ALARM network [2]) that can be
used for this purpose. However, in this chapter we are more interested in the case
when, instead of having a distribution, we have a collection of probabilistic con-
straints that must be satisfied by the distribution.

Dealing with Mutual Information Constraints

We have already met the family of functions (13) in Sect. 3.2. Also we have learned
that the mutual information of ps 5 (x) contains a lot of information about the com-
plexity of the function fs (x). Therefore, when dealing with complexity issues, it
makes sense to design functions that fulfill mutual information constraints like:

I( X, Xp| X.) > A
I(Xq, Xp| Xe) < B (14)
I(Xa, Xp| Xeo) < T(Xg, Xe| Xy)

In (14), the letters a, b, ¢, d, e and f denote sub-sets of indexes, and A, B are con-
stants. Moreover, X, and Xy may be empty, meaning that the expressions represent
marginal information.
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We formulate the general design problem as follows:

Given a collection of mutual information constraints € = {cy,...,cr}, find
a function f (x), whose Boltzmann distribution satisfies € within a given
temperature interval.

Our approach to the above-mentioned problem considers structural and paramet-
ric constraints. The structural constraints are specified by Bayesian or Markov net-
works, which use the separation and d-separation concepts [30] to codify statements
of probabilistic independence. The parametric constraints are statements about the
configurations’ probabilities.

In our method, the inequality

M-1
A, <3 agp (217) < By (15)
i=0
denotes the k-th parametric constraint. The sum is for all configurations z(9) of X,
i.e. M denotes the size of the space. Ay, By, are real constants and a;;, € {0,1}.

It is worth noting, that some sub-sets of the inequalities (15) may define mar-
ginal distributions of p () when A, = By, for all inequalities in the sub-set. In this
chapter, we deal only with this type of constraint. Therefore, the mutual information
constraints (14) have to be mapped to marginal distributions. It is an interesting open
question how to translate other types of constraints to probabilistic statements.

Once the collection of marginal constraints has been derived from the mutual
information constraints it is necessary to compute the joint probability distribution.
The next section presents the issue.

Computing the Joint Probability Distribution

Algorithm 2 presents the general scheme of the design of Boltzmann functions. In the
step 2, the algorithm computes a junction tree from the given structural constraints.
The computation of a junction tree out from a Bayesian or a Markov network is a
well-studied problem [31]. In the step 3, is computed a maximum-entropy distribu-
tion that is compatible with the given structural and parametric constraints. There are
two possibilities as it is explained below.

The classic implementation of the IPF algorithm can be used to compute the
joint probability distribution when the number of variables is small. If the collection
of marginals is consistent, the outcome of running the IPF is a maximum-entropy
joint.

For larger number of variables, the IPF has to be combined with the junction tree
technique. It is run locally on the nodes and the results are sent as messages to the
neighboring nodes. It has been proved that this converges to the unique maximum-
entropy solution, so it is equivalent to IPF. The interested reader is referred to [23, 29]
for details on the implementation of the method for computing maximum-entropy
distributions on multi-connected Bayesian networks and polytrees.

Finally, in the step 4, the desired function is computed as the function that makes
of p (x) a Boltzmann distribution with parameters 3, Z and f (x).
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Algorithm 2 A maximum-entropy method for designing Boltzmann functions

Step 1 Input 3, Z, and the collection of structural and parametric constraints.
Step 2 Compute a junction tree compatible with the structural constraints.
Step 3 Compute the maximum-entropy junction tree distribution p () that fulfill the

parametric constraints.
Step 4 Output f5 (z) = 7109(%@)) + 710952)

4.2 Designing the First-Polytree Functions

In this section, we take a closer look at our method through the design of three binary
functions whose structure of the search distribution is single-connected. For obvious
reasons, we say that they belong to the polytree class of functions. The functions have
been called FirstPolytree3 (f f;oly), FirstPolytree5 ( f}E’,Oly) and OneEdge (f3,.. 54 ge)-
Figure 4 presents their graph definitions, i.e. their structural constraints.

TyT

Fig. 4. Structural constraints of the first-polytree functions. From left to right: ff:,oly, ffaoly
3
and f OneEdge

The polytree functions can be specified with simple mutual information cons-
traints. The marginal mutual information of every pair of parents of a variable
should be below the marginal independence threshold I;, for the given confidence
level. Similarly, the marginal mutual information of every child-parent pair should
be greater than I;.

We first list the marginal mutual information constraints:

OneEdge: 1 (1,3) > I, I (1,2) < I, I (2,3) < I;

FirstPolytree3: I (1,3) < I; 1 (1,2) > I, I (2,3) > I;
. (, )<It (3, )<It (1,3)>It
F1rstPolytreeS 1(23)> 1, 1(3,5)> I, T(4,5) > I,
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Algorithm 3 Designing bivariate marginals

Step 1 Input I (X,Y).

Step 2 Set the univariate probabilities to some random values p, y py.
Step 3 if I (X,Y) < I, then set pry = papy.

Step 4 if I (X,Y) > I, then set p,, as far as possible from p, p,.

Another type of constraints is needed to specify the orientation of the edges. The
d-separation concept says that in the structure X — Z « Y, the variables X and Y
are marginally independent and conditionally dependent given Z [5]. If If denotes
the conditional independence threshold, then the second list of mutual information
constraints is the following:

OneEdge: I (1,3|2) > If I (1,2|3) < If I(2,3|1) < If

FirstPolytree3: I (1,3|2) > If I(1,2|3) > If 1(2,3|1) > If

1,32) > I¢ 1(1,2]3) > I¢ 1(2,3]1) > If
I( I(

. A
F1rstPolytreeS.I(374| 5) > I¢ I(3,5|4) > I¢ I(4,53)>I¢

Designing Bivariate Marginals with Given Mutual Information

Once the list of constraints has been given, we construct a set of bivariate marginals
that satisfy the constraints. The algorithm 3 does the job.

It is known, that the sufficient statistics for the specification of any binary bi-
variate marginal p (z,y), are the values p, = p(X =1), p, = p(Y =1) and
P = pzy (X =1,Y = 1). Moreover, either p,,, € [max (py +py — 1, 0), pspy]
O Pgy € [PaPy, Min (ps,py)]- Taking the univariate probabilities p, and p, as in-
put values, we proceed as follows: if I (X,Y") < I, then we just make py, = pzpy.
Otherwise, we put pg,, as far as possible from p,p, to maximize the mutual informa-
tion. Finally, the bivariate marginal is given by

Dzy (00) =1 — Pz — Py +pacy Pzy (10) = Dy — Pxy (16)
Pzxy (01) = Pz — Pazy Pxy (11) = Pzy

After all univariate and bivariate marginals have been computed, the next step of
the Algorithm 2 is the construction of the joint probability.

The classic implementation of the IPF algorithm can deal with our functions
because the number of variables is small. If the IPF is run with the above marginals,
a trivariate maximum-entropy joint is obtained. For larger number of variables we
must resort to the junction tree implementation of the maximum-entropy algorithm.

Each node of the junction tree associated to a polytree is formed by one vari-
able and the set of its parents. This means that the trivariate functions have only one
clique and therefore, the simple IPF will be enough. The junction tree for the func-
tion FirstPolytree5 contains two cliques and therefore, the advanced implementation
of the algorithm is needed. In this way, we have constructed high order marginals
using only univariate and bivariate marginals. We must check that the second list of
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constraints are also fulfilled. Moreover, to guarantee consistency the design of these
marginals must satisfy additionally the following constraint [17]:
Let d be the number of variables in a junction tree node. For all 2 < k < d and

all possible choices ji, . .., ji of k elements out of {1, ...,d} the condition
k k
L= iji - Z Dy
i=1 i1=1,i#l
must be fulfilled.

We use the values 12.94, 16.40 and 87.97 as input values for the partition func-
tions of f3,.pager oty a0d [P, respectively. The univariate probabilities also
are set. For example, the values used in the function ff;olu are 0.79, 0.46 and 0.24
for X, X5 and X3, respectively. Finally, we set 3 = 2.

Tables 6, 7 and 8 present the resulting functions f3,,. pager o, ad B, 1e-
spectively. The Boltzmann distributions with parameter 5 = 2 are polytree distribu-
tions satisfying the structural and parametric constraints given above. The reader can
easily check this by computing their Boltzmann distributions and then computing the
mutual information values.

Table 6. OneEdge function

32271 fgneEdge (X) T3T2T1 fgneEdge (X)

000 1.042 100 —0.083
001 —0.736 101 0.092
010 0.357 110 —0.768
011 —1.421 111 —0.592

Table 7. FirstPolytree3 function

T3X2X1 f}%oly (X) T3T2T1 fl?;oly (X)

000 —1.186 100 —4.391
001 1.074 101 —1.122
010 0.469 110 —0.083
011 0.096 111 0.553

Investigating the Polytree Functions

Figure 5 presents the Boltzmann conditional curves and the curve G (1,2, 3) for
the FirstPolytree3 function. Note that the curves I (1, 3|2) and G (1,2, 3) coincide
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Table 8. FirstPolytree5 function (x = (x5, 24, 3, T2, 1))

X flioly (X) X f}goly (X) X f}ioly (X) X fISDOly (X)
00000 —-1.141 01000 -0.753 10000 -3.527 11000 —6.664
00001 1.334 01001 1.723 10001 -1.051 11001 4.189
00010 -5.353 01010 -4.964 10010 7.738 11010 -10.876
00011 -1.700 01011 -1.311 10011 -4.085 11011 -7.223
00100 0.063 01100 1.454 10100 1.002 11100 -1.133
00101 -0.815 01101 0.576 10101 0.124 11101 -2.011
00110 -0.952 01110 0.439 10110 -0.013 11110 -2.148
00111 -0.652 01111 0.739 10111 0.286 11111 -1.849

0.45
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0.35[ 4
0.3r q
g 0.25¢ 1
g
— 0.2r B
0.15[ 4
0.1 e o 1
oot/ o S\Q@m g
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Fig. 5. Boltzmann information curves for the FirstPolytree3 function: (plus) I (2,3|1),
(square) I (1,2|3), (solid line) and (circle) G (1,2, 3). Note that the last two curves coin-
cide at the chosen scale

at the chosen scale. This means that the marginal curve I (1,3) is close to zero.
The actual values are below 102, which amounts to independence for sample sizes
below 2000 configurations. The other two marginal dependencies are quite strong
for 5 = 2 (the value used in the design of the function). As far as G (1,2, 3) is
always positive we conclude that for any selection pressure we have more evidence to
decide against conditional independence than against marginal independence. Note
that the conditional interval 3¢, 55,..] for I (1,3|2) is completely included in
the other two conditional intervals for any sample size. Note that in contrast with the
Deceptive3, in this function the value 3 is not inside the interval [55,.,, 3% az]-

Figure 6 presents the conditional and marginal Boltzmann curves for the OneEdge
function. For all 3, the values I (1,3) and I (1, 3|2) are very close; their difference,
G (1,2,3), is less than 10~® and negative. The curves I (1,2]3) and I (2, 3| 1) are
below 10~?, which implies independence.
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Fig. 6. Boltzmann information curves for the OneEdge function. The second row, from /eft
to right, contains the conditional curves I (1,2]3), I (1,3]2) and I (2, 3] 1). The upper row
contains the corresponding marginal curves

In what follows, we use the BFDA to investigate two separable functions of
30 and 60 variables. The functions are formed by concatenating either the function
fnerage or the function f3,, .

By just looking at Tables 1, 6 and 7 it is difficult to draw any conclusion about
what is the best factorization and which is the more difficult function for the BFDA.
Following the theorem 2 the choice would be the complete model, which was shown
to be the best factorization for the Deceptive3. However, the simulations of this sec-
tion show that this is not the case for the other functions.

Table 9 presents the results of running the BFDA with the population size set
to 120 for the FirstPolytree3. This time the factorization 12-32 is the clear winner.
The convergence is almost twice as fast and its success rate is twice as high, in the
factorization 12-32, as in the complete model. Similarly, the number of function eval-
uations is much bigger if the complete factorization is used. Therefore, we conclude

Table 9. BFDA runs with the FirstPolytree3. Setting: N = 120

12-32 12-13-32
n %S Gc /Bmzn /Bmaz %S Gc /Bmzn /Bmaz
30 95 1332 0.197 4927 55 2229 0.139 7.954
60 85 1349 0.196 5.526 38 2195 0.139 8.715
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that the assumption making the variables 1 and 3 marginally dependent is wrong.
This is what we expected from our design decisions.

Regarding the Boltzmann curves the important observation is that the runs occur
within the most inner interval [5S,,,,, 55,4.]- Moreover, the better the conditions for
the optimization are, the smaller the value of (3,,,4,. For example, for a fixed model,
the smallest problem converges with the smallest (,,,,,. Alternatively, if the size of
the problem is fixed, then the best model has a smaller [3,,,,,. The same is observed

in the simulations with the OneEdge. Table 10 presents the results.

Table 10. BFDA runs with the OneEdge. Setting: N = 120

12-32 12-13-32 13
n %S GC 5maz %S GC ﬂmaz %S Gc ﬁmaz

30 94 11.64 4.724 98 936 3917 100 9.25 3.867
60 39 20.82 7.026 75 17.067 6.151 98 17.03 6.045

For the OneEdge function three models are investigated. The model 13 — the
one that is used in the design of the function — is the best. For example, compare
the success rate of the complete model and the best model for 60 variables. Note
that the convergence time is the same. In the model 12-32 the variables 1 and 3 are
independent, which explains its poor performance.

We also have investigated the functions with the FDA. Besides the separable
problem, in the simulations an overlapped additive function have been included. The
overlapped case is constructed as follows: the last variable of a sub-set is also the
first variable of the next sub-set in the additive decomposition. We use the letter O to
denote this case. For example, contrast O-12-32 with 12-32.

Tables 11 and 12 present the numerical results. The factorizations 12-32 and O-
12-32 are the best for the functions f j“;oly. Similarly, the models 13 and O-13 perform
better for the function f3 _x dge- Both the separable and the overlapped complete
models do not scale well. For example, compare the success rates for the overlapped
case of the OneEdge function.

Table 11. FDA runs with the FirstPolytree3

N %S Ge %S G. %S G.

n = 30 n = 60 n = 90
12-13-32 120 92 5.39 42 9.10 6 12.33
12-32 120 93 5.36 67 9.46 27 13.04
n =31 n =061 n =91

O-12-13-32 200 83 6.81 25 11.04 4 14.00
0-12-32 200 94 6.59 63 11.28 20 14.90
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Table 12. FDA and the OneEdge function

N %S Ge %S Ge %S Ge

n = 30 n = 60 n = 90
12-13-32 60 54 5.12 6 8.33 0 -
13 60 95 4.53 65 8.18 28 10.71

n =31 n = 61 n =91
0O-12-13-32 100 71 5.57 20 10.00 2 12.50
0-13 100 100 5.20 81 9.03 57 12.52

We summarize the results as follows. The behaviour of the polytree functions
investigated in this section, agrees with our design expectations. On the other hand, a
clear correspondence between what happened in the simulations and the Boltzmann
curves was observed. We take this as a sort of validation of both the usefulness of the
analysis and design method introduced in this chapter.

4.3 Designing Random Class of Functions

In the previous section, we followed the common practice of concatenating low order
functions to form larger additively decomposable functions. However, it would be
useful if we could design a complete additive function with a given structure without
resorting to the trick of concatenating small sub-functions. Moreover, it would be
even more useful to design random class of functions, instead of isolated functions.
To accomplish this task our method has to be extended.

In this section, we restrict ourselves to the design of the random class of binary
polytree functions. This will provide the reader with general ideas and guidelines
that might be helpful to undertake other design efforts.

Sampling the Structural Constraints

The first step is the generation of a random polytree graph. As was explained in Sect.
4.2, it is the structural constraint.

There exist simple methods for generating random graphs. Any of these algo-
rithms together with a rejection sampling technique to reject graphs with directed
cycles and undirected cycles, will do the job. At this stage the method outputs the
graph, its junction tree and two lists, Ly and Ls. If a pair (¢, j) belongs to the first
list, both ¢ and j are parents of the same node and therefore, I (X;, X;) < I;. On
the other hand, the second list contains a pair (i, j), if and only if, j is the parent of
i. In this case, I (X;, X;) > I,. For each pair (¢, j) in the lists, we sample a bivari-
ate marginal distribution p (z;, ), that obeys the corresponding mutual information
constraint. This non-trivial task is discussed in what follows.
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Sampling Bivariate Marginals Under Independence

The problem is related to the evaluation of the exact sampling distributions of the
cell counts in applied multivariate analysis [35]. Therefore, we set n;, = Np(x;),
n; = Np(z;) and n;; = Np(z;,x;), where N is the sample size.

Let assume Poisson, multinomial or independent multinomial sampling. Under
the null hypothesis of independence, the conditional distribution of n;; given the ob-
served marginal counts n; and n; is the central hyper-geometric distribution, which
is known exactly. The random scalar variable IV;; is given by

() ()
Nij ~ i ]Gj — 4 a7
()

Let n; and n; be given. Then, for any pair (4, j) in the list L; we generate the
bivariate marginal p (z;, x;) by sampling n;; from (17), and then substituting p;; =
n;; /N, p; and p; in (16).

It is worth noting, that the method can be extended to deal with variables of
cardinality greater than two [35].

Sampling Correlated Bivariate Marginals

For the computation of the marginals associated to the list Lo, the solution comes
from the exact non-null distribution theory [1].

Let assume multinomial sampling and let 6 be the odds ratio [35]. Conditional
on n; and n;, the distribution of n;; depend only on 6, and is given by

(m) (N—ni>9m]

T4 n; — Mgy

Nij T J n; ] N—]n- 1o
()

u=m

where m = maz (0,n; + n; —n) and M = min (n;, n;).

As far as the constraints are specified using the mutual information, one could try
a reparameterization of (18). However, we use directly the odds ratio, which obeys
0 < 0 < oo. Values of 8 farther from 1.0 in a given directions represent higher
values of mutual information. Moreover, if §; = 1/65, then both 0; and 0, represent
the same level of dependence.

Let n; and n; be given. For any pair (¢, j) in the list Lo, we compute 6 according
to the mutual information I (X;, X;). Then, n;; is sampled from (18) and p (z;, ;)
is obtained from (16).

Once all the bivariate marginals have been computed we are ready to build the
maximum-entropy junction tree. Afterwards, we obtain an instance of the random
class by substituting in (13) the distribution and the given [3.
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How to Test EDA Algorithms

The procedure introduced in the previous sections allows us to define a large class of
functions: the class of random Boltzmann polytree functions (RBPF). We denote the
classby RBPF (n, K, (3), where K is the maximum number of parents in the poly-
tree. Note that Z is not included as a parameter because it is chosen automatically in
such a way to make the function non-negative for any configuration x.

Testing evolutionary algorithms have been recognized as a major problem in cur-
rent EDA research [23]. We believe that the approach presented in this chapter will
improve the ability of the research community to test and compare EDA algorithms.
Moreover, the design of random classes of Boltzmann functions should help to un-
derstand the complex mechanisms involved in EDA optimization, because now we
have an explicit control of the dependencies presented in the functions. We are con-
fident that others random classes can be designed using similar ideas to the ones
presented in this chapter.

Within our framework, any optimization algorithm should be tested in samples
of carefully designed random classes of functions. In other words, instead of using
a single function and running the algorithm 100 times, we prefer to use once 100
different functions sampled from the same random class.

S Learning Low Cost Max-Entropy Distributions

A critical problem of learning search distributions in EDAs is the sample complexity,
which is related with the number of functions evaluations. One important challenge
of an evolutionary algorithm is the reduction of the number of evaluations, while
the effectiveness and efficiency of the search is preserved. In this section we will
use the concept of entropy to achieve this goal. Our idea is simple: the true search
distribution is substituted by an approximation, which can be reliably computed with
less population size.
The following definitions will help to clarify our ideas.

Algorithm 4 Maximum-entropy EDA

Step 1 Set ¢ +— 1. Generate N > 0 points randomly.

Step 2 Select M points according to a selection method.

Step 3 Find a suitable R and learn a Rs (), r from the selected set.
Step 4 Compute the maximum entropy distribution p% (X).

Step 5 Sample N new points according to the distribution

p(z,t+1) =pr(z1,...,Tn)

Step 6 Set t < t + 1. If termination criteria are not met, go to step 2.
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Definition 5 Ler p (X1, ..., X,,) be the factorization of the selected set. We say that
p (X1, ..., Xp) is a true search distribution if it was computed from a data set, whose
size allows reliable estimates of the factors’ probabilities.

Definition 6 Let X be a random vector of dimension n and R = {ry,...,rn} be
a set of index-sets. A restriction of a joint distribution p (x) is a set of marginal
distributions

IFgp(X),R = {p (XTI) yoe e 7p(XTm)}
of p (x), such that the following holds:

L Vi,1<i<m, 7, C{l,...,n}andr; #0
2. Vi, j,1<i,j<myr; Lr,

Definition 7 Let R, x) r be a restriction of p(x), then pr (x) is defined as the
maximum-entropy distribution that fulfills the constraints R ,(x) g-

Using the above definitions, we introduce an EDA that uses the MEP (see algo-
rithm 4). We have called it maximum-entropy EDA (meEDA).

Step 2 is a critical point of the meEDA algorithm because the algorithm has to
choose a suitable restriction set. It is an open problem how to identify good restric-
tions of the search distributions. For example, besides the primary goal of getting a
sampling distribution with less cost than the true distribution, there could be other
reasons that determine a good choice of the restriction set. On the other hand, an
efficient procedure for the computation of the maximum-entropy distribution exists
only if the structure of the restriction set satisfies certain constraints. The next sec-
tion presents an algorithm EDA where the maximum-entropy distribution can be
computed efficiently.

5.1 Extending PADA2 with Maximum-Entropy

The polytree functions designed in Sect. 4 have a common property: their search
distributions are single-connected. In this section we modify PADA?2 — an algorithm
specially designed to deal with single connected Bayesian networks — to transform it
into a meEDA.

The polytree approximation distribution algorithm (PADA) [33, 34] was de-
signed to deal with the whole class of single-connected Bayesian networks; also
called the polytree class. It uses first, second and third order marginals to recover
polytrees from data. In this work we will use PADA2 [33] — variant of PADA, which
learns only first and second order marginals distributions. PADA? is inspired by an
algorithm proposed by Rebane and Pearl [30]. We shortly outline the basic ideas
behind the algorithm.

A polytree with n variables has a maximum of n — 1 arcs, otherwise it would
not be single connected. PADA2 chooses the edges that have the largest values of
the magnitude H (X) + H (Y) — H (X,Y), which is also called mutual informa-
tion [3]. The selection of the edges is done by a greedy maximum weight spanning
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tree algorithm. These edges form the so-called skeleton (the underlying undirected
graph).

After the construction of the skeleton is done, a procedure tries to orient the
edges by using the following scheme: if X — Z — Y € skeleton, then whenever
H((X)+ H(Y) = H(X,Y) holds statistically it orients the edges to Z. In this
case it is said that Z is a head to head connection. The edges that were not oriented
after the above test are directed at random without introducing new head to head
connections.

Both during learning and sampling, EDAs that learn general Bayesian networks
need a population size, which is exponential in the number of parents. This is im-
portant to get reliable estimates of the conditional probabilities. However, although
PADAZ? only learns first and second order marginals, it has to deal with the same
exponential problem in the sampling step, i.e. what is gained in learning is lost in the
sampling.

To transform PADA?2 into mePADA2 we must define the polytree’s restriction
set, i.e. all bivariate marginals that belong to the skeleton and the bivariate marginals
defined for each pair parent-child. Note that this restriction set was used as a para-
metric constraint in Sect. 4.2. The next step consists in computing the higher order
marginals as the maximum-entropy distributions that obey the given second order
marginals. Consistency is guaranteed by propagating across the junction tree associ-
ated to the polytree as was explained in Sect. 2.4.

Now we present some numerical results to support the theoretical claims. We use
two separable ADF functions, which are based on the Deceptive3 and FirstPolytreeS.
Although the structure of the Deceptive3 function is not single-connected, PADA?2
tries to build the better single-connected approximation it can. It is remarkable that
the method still produces very good results. We recall that the basic claim of our
research is that the maximum-entropy distribution, which can be computed with a
smaller population size than the true search distribution, is suitable for sampling.
Moreover, sometimes it gives better results than the true distribution.

The algorithms are run until a maximum of 20 generations with a truncation
selection of 0.3 and without elitism. Each experiment is repeated 100 times. The
problem sizes were set to 21 variables for the Deceptive3 and 20 variables for the
FirstPolytree5.

As can be seen from Table 13 the improvement of mePADA?2 is enormous as
compared to PADA2. For the f f;oly, the superiority of mePADA is more evident; not
only it scales much better than PADA2, but the convergence time is drastically re-
duced. It is also remarkable that the number of generations until success always stays
the same or even improves. It has also stabilized as can be seen from the decrease in
the standard deviation.

The idea of improving the performance of EDAs by constructing maximum-
entropy approximations of the search distributions was first introduced in [29]. Later
it was further developed in [23] for multi-connected networks.
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Table 13. PADA2 vs. mePADA?2 with fg4..3 and f}‘zoly

fdecs fPoly
PADA2 mePADA2 PADA2 mePADA2
N %S Ge %S G. %S Ge %S Ge
200 0 _ 2 85407 25 101421 59 51+1.1

600 8 9715 69 74+11 50 104+£26 100 3.9£0.7
800 10 87£32 90 70+12 54 106£23 100 3.7+0.6
5000 92 72412 100 58+£09 55 10815 100 29+£04

6 Entropy and Mutation

The last section of this chapter relates the concept of entropy toa powerful operator
of evolutionary algorithms: mutation.

The mutation operator did not receive much attention during the early years of re-
search in EDAs. It was believed to play no important role due the dramatic improve-
ment in search efficiency achieved by EDAs, with regard to GAs. People profoundly
believed that the success of EDAs is determined by the amount of knowledge it has
about the search distributions, i.e. the best informed models were considered — and
still are considered — the best models. Within this way of thinking there was little
space for mutations. However, after some years of hard work, researchers have come
to the conclusion that mutation is also a powerful operator within EDAs. Therefore,
new and original developments are needed in the field to deal with this issue.

To begin with, we must draw the reader attention to the fundamental shift in the
interpretation of mutation: EDAs have to approach mutation from a distribution per-
spective, in contrast with the genotype perspective of GAs. While a GA mutates sin-
gle individuals, an EDA must mutate distributions. We have developed an approach
to fulfill this requirement.

6.1 How do we Measure the Effect of the Mutation?

A major problem with the mutation operator in evolutionary algorithms, is the lack
of a comprehensible, uniform and standard mechanism for measuring its impact in
the evolution. There are almost as many mutation operators as problems, and only
few of them are problem-independent. The common way of assessing the amount
of mutation considers the probability or frequency of application of the operator,
i.e. there are no measurements units for mutation. The obvious drawback of this
approach is that it is difficult to compare the impact of different operators or the
effect of the same operator in different situations.

Our approach to mutation solves the above-mentioned problems. It has a distri-
bution perspective, is problem-independent, has measurements units, and its impact
in different scenarios can be easily compared. It is based on the concept of entropy.

The relation between entropy and mutation is quite intuitive: when a random
variable is mutated a certain degree of randomness is added to it. In others words,
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mutation increases the level of uncertainty we have about the exact value of a random

variable. Therefore, it seems reasonable to measure the amount of mutation applied

to a variable as the increase of its entropy. This connection was first made in [33].
Linking the concepts of mutation and entropy has some important advantages:

e Entropy is a well understood information-theoretic concept, which encapsulates
the notion of randomness and uncertainty.

e [t connects the mutation to other fundamental concepts like mutual information
and relative entropy.

e Mutation also gets from entropy measurements units: bits or nats, instead of using
the popular, but less clear notion of probability of application of the mutation
operator.

6.2 From Bit-flip to Entropic Mutation

In this section, we shortly discuss two important mutation schemes that precede
our proposal. One was introduced in GAs, and the other was recently introduced
in EDAs. The observation of the entropic variations produced by these schemes was
a major motivation for our work.

Bit-flip Mutation

The classical GA mutation operator for binary problems is a bit-flip (B F') operation
that is applied to each gene with a certain given probability p [8]. The next lemma
relates BF-mutation with the univariate probabilities.

Lemma 4 For binary variables, BF mutation changes the probability according to

pr—pi=p(1—2p;)
where py is the probability after mutation and p; is the probability before mutation.

Proof 2 Let the probability of a bit flip be i, and p; be the probability of a gene being
1 before mutation. As these events are independent, we can write for the probability
Dy of the gene being 1 after mutation

pr=pi(l—p)+ A —pi)pu=pi(1-2u)+n (19)
and from this we get
pr—pi=p(l—2p;) O (20)
If we compute the entropy of a variable before and after the BF-mutation, H (p;)
and H (py) respectively, then we can measure the increase of entropy produced by
this operation
0H = H (py) — H (pi)
Figure 7 shows § H curves for six different values of the probability of mutation
u. Note that H is nonlinear for small values of the initial entropy, H (p;), and
small p. However, for large values of H (p;) the curves approach a linear function.
Moreover, for large i the curves approach lines. The limit case, ;1 = 0.5, defines a
random walk: for any p; the probability after mutation is 0.5.
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Fig. 7. Entropic curves  H vs H for bit-flip mutation

Prior Mutation

Prior mutation was introduced in [20]. It uses the concept of Bayesian prior, which
assumes that the probability of an event has an a priori known distribution. Usually,
for binomial variables, the family of Dirichlet distributions plays the role of prior
distributions.

In an EDA with prior mutation, the univariate probabilities are not approximated
by the maximum likelihood estimates m /N (m is the number of 1 in N cases). In-
stead the approximation (m + r) / (N + 2r) is used, where r is the hyper-parameter
of the Dirichlet distribution. Prior mutation is linked to bit-flip mutation. The follow-
ing theorem was proved in [20].

Theorem 5 For binary variables, a Bayesian prior with parameter r corresponds to
mutation rate ;1 = v/ (N + 2r)

Therefore, for the univariate case bit-flip mutation amounts to prior mutation,
and as a consequence, they have the same entropic curves.

6.3 Entropic Mutation

The linear properties of both the bit-flip and prior entropic curves, have suggested
that we consider a mutation scheme where § H changes linearly. As a result we have
come out with a novel mutation scheme that we have called linear entropic mutation
(LEM). In this chapter, we just outline the general ideas.
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The Univariate Case

In this section, we discuss the entropic mutation of a binary scalar random variable.

Definition 8 Ler X be a random scalar variable with entropy H (X ). We say that to
the variable X has been applied the univariate entropic mutation 0H (X) , if after
mutation the entropy of the variable is given by

Hy (X) = H(X) + 6H (X)

This is a general definition, which can be applied as well to discrete and contin-
uous random vector variables. Besides the univariate mutation, we have defined the
conditional and the joint entropic mutations. However, these cases are beyond the
scope of this work.

Definition 9 (Full mutation) Let X be a binary random scalar variable with entropy
H (X). We say that 6 H (X) is a full (or complete) mutation of the variable X if

SH(X)=1-H(X)

Full mutation amounts to bit-flip mutation with y = 0.5. In this case, a variable
gets an increase of entropy equal to what it needs to reach its maximum entropy.
This kind of mutation has little use in an optimization context. At this point it is
natural to ask ourselves when and how much the entropy of a given variable should
be changed. A simple answer based on common sense says that one would like to
change a variable if it has low entropy. Indeed, it does not make any sense to mutate
a variable with probability p = 0.5 (H(p) = 1).

Figure 8 shows the line of full mutation as a function of the initial entropy, to-
gether with two others linear functions of H. The slopes of the lines are the mutation
intensities, a. The following definition formalizes this idea.

Definition 10 Ler X be a random scalar variable with entropy H (X ). We say that to
the variable X has been applied the linear entropic mutation 6 H (X ) with parameter
« if after mutation it has entropy H,, (X) and the following holds

SH(X)=(1-H(X))a & Hy(X)=(1-a)H(X)+a (21

Note in Fig. 8, that « is the ordinate for H(X) = 0. So, it is bounded by o = 1
(full mutation) and o = 0 (no mutation).

The mutation intensity « controls the strength of the mutation, i.e. how much the
entropy of a variable is changed. In an optimization scenario o might change across
time; thus, the general form of the mutation intensity is « ().

The computation of a LEM-mutation of p (X) is accomplished in two steps.
Firstly, H,, (X) is computed according to (21), and then the new probability distrib-
ution p,, (X) is obtained from H,, (X). However, as the entropy of binary variables
is symmetric — each entropy value is mapped to exactly two probability values — we
introduce the following definition to resolve the ambiguity.
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Fig. 8. LEM-mutation of a random binary variable. From top to bottom the slopes («) are
equal to 1, 0.5 and 0.1

Definition 11 (Inverse function of H (X)). Let H=Y) : [0,1] x [0,1] — [0,1] be a
function such that for any real numbers p and q, with 0 < p,q < 1,

p=H"Y(H(p),q)= (2p—1)(2¢—1) >0

Definition 11 says that for a given pair (h,q) (with h = H (p)), the function
HED (h, q) returns a probability p, such that both p and ¢ lie together in the interval
[0,0.5) or in [0.5, 1]. This definition is useful because for any p, p, lie in the same
half of [0, 1] as p. Finally we can write the expression for p,, as follows:

Pa=HY((1—a)H(X)+a,p) (22)

A Note on the Multivariate Case

The multivariate LEM is more difficult than the univariate case, even for binary vari-
ables. Here we just give a necessary condition. Other results for multidimensional
distributions will be published elsewhere soon.

Definition 12 Let p (x1, zo, ..., xy) and ps (1,2, .. ., x,) denote a binary joint
probability mass and its LEM-mutation with mutation intensity o. If H (X) and
H, (X) are their respective entropy values, then the following holds:

SH(X)=(n—H(X))a and Hy, (X)=(1—-a)H (X) +na (23)

Table 14 shows the set of joint probability distributions p, (21, x2, ..., Z,) that
were used to compute the family of functions fge.3 (@) in Sect. 3.2. Note in the
second column that the entropy values obey the relation (23), where H (X) is the
entropy of the first row and n = 3. However, computing p,, (z1, Z2, ..., ;) from
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Table 14. LEM mutation and the family faecs ().

T3Xx2X1
o H, 000 001 010 011 100 101 110 111

0.00 1.74 0204 0.071 0.071 0.000 0.071 0.000 0.000 0.582
0.05 1.80 0202 0.075 0.074 0.002 0.073 0.001 0.001 0.572
0.20 199 0.197 0.084 0.082 0.012 0.078 0.006 0.006 0.536
0.40 224 0.189 0.095 0.091 0.028 0.086 0.017 0.015 0.479
0.50 237 0.184 0.100 0.096 0.038 0.090 0.024 0.022 0.446

p(z1,22,...,2,) and « is not a trivial task and is beyond the scope of this chapter.
Here we just present a special case where we easily can show a distribution that fulfill
(23). The following theorem gives the details.

Theorem 6 Let p (x) be the joint probability mass of a set of independent random
variables X = (X1, Xo,..., X,). If

n

Pa (1131,1’2, e axn) = HH(il) ((1 - a)H (Xl) + aapi) (24)
i=1

then
H(pa (X)) = (1 - ) H (X) + no (25)

Proof 3 The lemma follows from theorem 3 and the linearity of the LEM-mutation.
We rewrite the right term of (25)

[
=
s

From (22) and (24) follows that p, (x1, %2, ..., x,) is the distribution of inde-
pendence with univariate probabilities p, (x;). Therefore, the left term of (25) is
given by

Ho (X) =Y Ha(X;)
i=1

This completes the proof. 0O
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Closely related to the above theorem is the following general result.

Theorem 7 Let p(x) be any joint probability mass of a set of random variables
X = (Xl,XQ, . 7)(n), then

Hy (X) < Zn:H (X3),

with equality if and only if the variables are independent.

Proof 4 The proof follows immediately from theorem 3 and the linearity of LEM.

6.4 Testing the UMDA with LEM

On the basis of theorem 6 we can add LEM-mutation to the UMDA [22], which is a
FDA with full factorization. The mutation operation is inserted before the sampling
step, i.e. the distribution of the selected set is mutated.

Mutation is a powerful mechanism that does not only makes the optimization
algorithm more robust and effective, but also might reduce its population size re-
quirements. The search using mutation takes more time and less population size than
without it. With regard to the number of function evaluations these are conflicting
factors. We just illustrate this issue with an example.

We run the UMDA with the OneMax function, which outputs the number of vari-
ables set to one in its input. The UMDA solves this function (with high probability)
if the population size is close to the problem size [22]. For the experiment we have
chosen a population size that is half the problem size (N = 30, n = 60), which
implies a dramatic reduction of the success rate. Figure 9 shows the success rate and
the number of function evaluations as a function of «. Note that for « = 0 (no mu-
tation), the success rate is ~ 18% (out from 100 runs). However, for o € [0.06, 0.2]
the success rate is above 90%.

Note that for o € [0.08, 0.12], the number of functions evaluations reaches the
minimum. This value is less than the minimum population size (N =~ 55) that is
needed to have a success rate above 90% without mutation. This value is shown as a
threshold dot line in the figure. We conclude that the gain due to the population size
is not eliminated by the increment in the convergence time.

In summary, with small populations and low or high mutation rates the algorithm
performs badly. However, there exists a window [tnin, Qmas] Where the success
rate is high, that might contain another window where the algorithm reaches the
minimum possible number of functions evaluations.

7 Conclusions

This chapter has highlighted several important issues regarding the relation between
the concept of entropy and EDAs.
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Fig. 9. UMDA and the Onemax function. Success rate and number of function evaluations vs.
the mutation intensity c. Setting N = 30, n = 60

We have introduced a tool to investigate the levels of interactions of the variables
under Boltzmann selection: the Boltzmann mutual information curves. It constitutes
the corner stone of a method for analysing the complexity of functions for EDAs.

Closely related to the analysis method, is our approach to the design of single
and random classes of benchmark functions. We are confident that the use of random
classes of Boltzmann functions improves our ability to test EDA algorithms in a
more scientific way giving to the benchmark approach a sound theoretical basis. The
point is that our method offers an explicit control of the dependencies presented in
the functions.

We have used the maximum entropy principle as a key element of the design
method and also to build low cost approximations of search distributions that obey a
given collection of constraints. We believe that the building of low cost distributions
may have tremendous impact on real-world applications of EDAsS, so it deserves the
special attention of the research community.

Finally, a short introduction to a new scheme of mutation, which is based on the
concept of entropy was presented. The linear entropic mutation is a natural opera-
tor for EDAs because it mutates distributions instead of single individuals. From a
theoretical point of view it opens new exciting directions of research toward a better
understanding of the complex dynamics describing the golden equilibrium between
exploration and exploitation.
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Summary. This chapter presents an entropy-based convergence measurement applicable to
Estimation of Distribution Algorithms. Based on the measured entropy, the time point when
the generation of new solutions becomes ineffective, can be detected. The proposed termi-
nation criterion is inherent to the complexity of used probabilistic models and automatically
postpones the termination if inappropriate models are used.

1 Introduction

In most Estimation of Distribution Algorithms (EDAs) [8, 11, 6] the probabilistic
model learned from the population of candidate solutions is used mainly for generat-
ing new solutions. In this chapter we propose an additional usage of the probabilistic
model in an information-theoretical way. The entropy of the probabilistic model pro-
vides a measure of the amount of information contained in the population. This can
be used for controlling the EDA, for example for detecting the proper termination
point.

The proposed termination criterion has been integrated with the Mixed Bayesian
Optimization Algorithm (MBOA) [9]. The following sections focus mainly on its
mathematical formulation, implementation aspects, and demonstration of its behav-
ior on the 2D Ising spin glass optimization problem.

2 Main Principles of EDAs

EDAs explore the search space by sampling a probability distribution that is devel-
oped during the optimization. They work with a population of candidate solutions.
Each generation, the fittest solutions are used for the model building or model up-
dating and new solutions are generated from the model. These new solutions are
evaluated and incorporated into the original population, replacing some or all of the
old ones. This process is repeated until the termination criterion is met.
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We will focus on discrete domains. A Bayesian network (BN) is one of the gen-
eral models to express discrete probability distributions. The underlying probability
distribution p(X) is estimated as the product of conditional probability distributions
of each parameter X; given II; — the parameters that influence X;.

p(Xo, ... X. Hp XTI, (1

We use upper case symbol X; to denote the ith design parameter (or the ith gene
in Evolutionary Algorithms terminology or the 7th random variable in mathematical
terminology) whereas lower-case symbols x; denote a realization of this parame-
ter. Boldface symbols distinguish vectors from scalars. The symbol N denotes the
population size whereas n denotes the problem size.

The construction of an optimal Bayesian network from the population of can-
didate solutions is itself an NP-hard problem [!], and EDAs usually use either an
incremental or a greedy version of the learning algorithm to accelerate the BN con-
struction. An example of an algorithm to learn a Bayesian network with implemen-
tation details can be found in [5].

Well known EDAs using Bayesian networks are for example the Bayesian Op-
timization Algorithm (BOA) [10], the Estimation of Bayesian Network Algorithm
(EBNA) [3] and the Learning Factorized Distribution Algorithm (LFDA) [7]. The
Bayesian network can be also considered as a generalization of models with re-
stricted cardinality of interactions used in early EDAs.

3 Entropy Computation

3.1 Bayesian Networks with Tabulated Conditional Probabilities

The entropy H(X) can be computed as the sum of local conditional entropies ac-
cording to the factorization of the probability distribution p(X) in (1):

n—1
H(Xo, ., Xpo1) = Z (X;|IL;) Z Z Z (x4, ;) logy p(a;|m;)
i=0 1=0 m, €P; z;, €X;

2
where the outer sum loops over all design parameters X;, the middle sum loops over
‘P; — the set of possible vectors that can be assigned to II; — and the inner sum loops
over X; — the set of possible values of X;. For example the two inner sums go over all
rows of the local conditional probability table if p(X;|IL;) is given in tabular form.

The probabilities p(x;, 7;) and p(x;|m;) can be estimated from the population D
as p(xi, ;) = m(a;, ) /N and p(xi|m;) = m(z;,m)/m(m), where m(z;, m;) is
the number of solutions in D having parameter X; set to x; and parameters II; set to
;5 m(7;) counts solutions in D with IT; set to ;.
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3.2 Bayesian Networks with Local Structures

In the previous section we focused on the Bayesian network with tabular form of the
conditional probability distributions. Unfortunately, the size of the necessary tables
grows exponentially with respect to the order of captured dependencies. For example
in the binary case one needs a table with 2* rows to describe the probability of
X; = 1 given all combinations of its k parents. This exponential complexity emerged
as a major problem in learning Bayesian network models with tabular representation.

More compact representations can be achieved by using local structures in the
form of decision trees or decision graphs'. For each variable one decision tree is con-
structed. The variables that determine X; are used as decision nodes in that tree (no
dependency graph has to be explicitly maintained) and concrete values of p(z;|m;)
are stated in the leaves. Usually the number of leaves of the decision tree is smaller
than the number of rows of the corresponding table, thus the frequency estimation is
more precise.

The entropy of a Bayesian network with local structures represented in the form
of decision trees can be computed as

n—1
H(Xo,., Xn1) == > > Y plwi,j)logs plailj) 3)

i=0 jeL; x;€X;

where L; denotes the set of leaf nodes in the ith decision tree corresponding to vari-
able X;; X; denotes the set of possible values of X;; p(x;, j) denotes the probability
that the solution traverses to the jth leaf of the ith tree and has the parameter X; set
to x;; p(x;]j) denotes the probability of X; = x; only within the jth leaf of the ith
tree. These probabilities are estimated using the frequencies computed from popula-
tion D as p(z;, j) = m(x;,5)/N and p(z;[7) = m(z;, j)/m(j), where m(z;, j) is
the number of solutions in D having parameter X; set to z; and traversing to the jth
leaf of the ith tree; m(j) counts for solutions in D traversing to the jth leaf of the
ith tree.

The first EDA with decision graphs was the hierarchical Bayesian Optimization
Algorithm (hBOA) [12]. Another example is the Mixed Bayesian Optimization Al-
gorithm (MBOA)? [9] which uses various types of graph nodes to optimize problems
with both continuous and discrete parameters.

4 Entropy-based Convergence Measurement

Every unique discrete solution which can be sampled from the model can be en-
coded by a unique string. Let us assume that such encoding is chosen optimally —

! In accordance with [2], we use the term decision trees to denote the tree representation of
probability distributions. Some references distinguish between deterministic decision trees
and stochastic probability trees.

2 MBOA can be downloaded from http://jiri.ocenasek.com/.
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less frequently sampled solutions receive longer representations and more frequently
sampled solutions receive shorter representations — such that the average encoding
per sample is minimal. This average length for optimal encoding is given by the en-
tropy. Since we used logarithms with base 2 in (2) and (3), the entropy is given in bits,
regardless of the cardinality of the original alphabet. In other words, the model en-
tropy denotes the average number of binary decisions per individual that the random
generator has to take to generate the new population. Intuitively, the models built
during the initial few generations are of high entropy, since the sampling process in
the initial stages is close to uniform sampling. As the evolutionary process starts con-
verging, the sampling preferably generates solutions that are mutually similar and the
entropy drops. Therefore, we propose that the entropy can be utilized as convergence
measurement in those Evolutionary Algorithms that operate via probabilistic model
building and sampling.

Figure 1 shows an example of entropy changes during the optimization. The run
shows how MBOA solves a random 2D Ising spin glass benchmark of size 10 x 10.
The population size was N = 2000 and the problem size was n = 100. The exact
definition of Ising spin glass model is presented in Sect. 8.1. In each generation the
entropy was computed from the decision trees using (3). We see that the entropy
decreases during the run, which means that the population gets less stochastic as
longer partial solutions occur and multiply. As the evolution continues, the informa-
tion about the dependencies between parameters becomes evident and sizeable by the
model, thus decreasing the entropy of the search distribution. In another words, the
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Fig. 1. The change of entropy during an optimization of a 10 x 10 random 2D Ising spin glass
instance (see Sect. 8.1) with MBOA (solid line, left value axis) and the corresponding change
of fitness value (dashed line, right value axis). Population size is N = 2000 and the problem
size is n = 100; tournament selection and Restricted Tournament Replacement are used. The
employed model is a Bayesian network with local probabilities in form of decision trees. Each
line represents the median values of 10 runs. On average, the globally optimal fitness value
138 is reached in generation 17
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original n-dimensional spin glass problem is being transformed into lower dimen-
sional problem as the dependencies are captured. However, note that MBOA uses
a Restricted Tournament Replacement (RTR) [4] as a niching technique to protect
diversity in the genotype space. This phenomenon is also evident in Fig. | — from the
generation number 45 the entropy decrease is decelerated.

5 Entropy-based Termination Criterion

Our goal is to identify the optimal time point for terminating an EDA. In the ideal
case the termination should be allowed only if the entropy drops to zero, because
then there is a guarantee that no improved solution can be discovered by sampling
the model. However, in our approach we are interested in the efficiency. We would
like to detect the moment when the sampling process becomes ineffective. Precisely
speaking, we would like to stop when the probability that the newly generated so-
Iution was already observed in the past, reaches some confidence level « close to
1.

To make this development tractable, we use the assumption that sampling the
original n-dimensional distribution over the search space X is equivalent to sampling
the uniform distribution with H (X) independent binary parameters. The problem of
effective stopping can then be formulated as “How many observations of uniformly
generated vectors of H(X) binary variables are sufficient to be sure (with confidence
level o) that we observed each of 277 (%) vectors at least once?” The probability that a
concrete sample of probability 1/2% (X) appears at least once during k trials is given

by
1 k
1— (1—2H(X)> 4

The probability that all 277 (X) different samples appear should be greater than c:

o H(X)

1 k

The k for which this inequality holds can be approximated using power expan-
sion for « close to 1 as:

1
k> 20X g (X)In(2) — 27X Inln — (6)
(6

This gives us the number of solutions that have to be generated from the given
model before we can be sure with probability « that the solution sampled afterwards
is just a duplicate of some formerly observed solution, thus reaching inefficiency.

Note that the simplification used to formulate the stopping problem ignores the
true distribution of solutions in the population and assumes that all solutions are
equally likely to be sampled, thus focusing on the average-case samples. This is
an optimistic assumption — in real situations usually the good solutions are harder
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to get and reside in the tail of the distribution. Therefore, the proposed termination
criterion should be considered as a necessary condition, but not a sufficient condition
for termination.

6 Implementation Details

Let us denote by H (t)(X) the entropy of the model built in generation ¢ and the
corresponding number of samples suggested according to (6) by k£(*). The number of
solutions sampled each generation from the model will be denoted by N’. If k(*) is
less or equal to N, then the algorithm stops in the current generation after evaluating
the new solutions. If k(*) is greater than the size of the newly generated population
N’, the algorithm continues until generation number ¢ + k() /N’, assuming that the
models in generations ¢+ 1 to ¢ + k() /N are not divergent with respect to the model
in generation ¢t and that the generality of constructed models does not change (see
discussion in Sect. 7).

The whole pseudocode of an EDA driven by the proposed termination criterion
can be written as in Fig. 2.

t =0

Uniformly generate (Population(0)); Evaluate (Population(0)) ;

termination = infinity; while (termination > t) do
Parents (t) = Select (Population(t)) ;

M(t) = Build Bayesian network (Parents(t));
Offspring(t) = Sample (M(t)) ;

H(t) = Compute entropy(M(t)) ;

k(t) = Compute required samples (H(t));

if (termination > (t + k(t)/Size of (Offspring(t))))
termination = t + k(t)/Size of (Offspring(t));

end if

Evaluate (Offspring(t)) ;

Population(t+1l) = Replace (Population(t),Offspring(t));
t =t + 1;

end while

Fig. 2. Pseudocode of an EDA driven by the proposed termination criterion

7 Model Generality Issues

7.1 Inappropriate Model Class

In the previous sections we assumed that the allowed model complexity is appro-
priate to capture the nonlinear interaction between the variables of the optimized
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problem. Now we will discuss what happens if the used probabilistic model is inap-
propriate to the optimized problem.

As an example, let us consider a Bayesian network without dependencies. The
probabilities are just captured in the form of a vector of marginal probabilities. The
evolution of the entropy of this model used for optimizing the 2D spin glass problem
of size 10 x 10 is shown in Fig. 3. One can see that the computed entropy is higher
than that in Fig. 1.
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Fig. 3. The change of entropy during an optimization of a 10 x 10 random 2D Ising spin glass
instance with MBOA (solid line, left value axis) and the corresponding change of fitness value
(dashed line, right value axis). Population size is N = 2000 and the problem size is n = 100;
tournament selection and Restricted Tournament Replacement are used. In contrast to Fig. 1,
the employed model is a univariate vector of marginal probabilities. Each line represents the
median values of 10 runs. On average, the globally optimal fitness value 138 is reached in
generation 297

From the Gibbs’ theorem it follows that the entropy computed using the approx-
imative probability distribution ¢ cannot be lower than the entropy computed using
the true probability distribution p:

— Y p(x)logp(x) < = p(x)log g(x) )

where x goes for all possible instances of X and the equality holds only if both
distributions are equal.

In other words, the model is unable to capture the underlying probability distri-
bution, which makes the population appear to be more stochastic. Compared to the
case with an appropriate model, the termination will be postponed. This behavior is
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desirable, since it reflects the inability of the evolutionary algorithm to effectively
converge using an insufficient model.

7.2 Overtrained Model

The goal of building a Bayesian network is to capture the general dependencies be-
tween parameters of the problem being optimized, but to avoid the spurious depen-
dencies that are specific to the concrete population instance. Most algorithms for
learning Bayesian networks penalize higher order dependencies in order to avoid
overtraining.

Let us investigate the usefulness of entropy-based termination criterion in the
case of overtrained models. The extremal case of overtraining is the fully determin-
istic model where all leaf nodes p(z;, 7;) are either p(x;,m;) = 0 or p(z;,m;) = 1.
Intuitively, there is no search space exploration involved, the model sampling just du-
plicates the solutions that were already discovered. In this case the computed model
entropy is zero and the termination criterion suggests immediate stopping as a conse-
quence of the deficient model building. This behavior is reasonable, since the model
sampling is deterministic and reproduces known solutions.

The approach assumes that the new solutions are generated exclusively by sam-
pling the probabilistic model and no additional search space exploration mechanism
is used. For example, the hill climbing algorithm for local improvement® of the so-
lutions would require the postponing of the stopping time because it increases the
chance for discovering unobserved solutions.

8 Experiments

The simplification used to derive the termination criterion in Sect. 5 ignores the true
distribution of solutions in the population and assumes that all solutions are equally
likely to be sampled, thus focusing on the average-case sampling complexity. To
investigate the behavior of the proposed termination criterion on real problems, we
experimented with the Ising spin glass benchmark.

8.1 Ising Spin Glass Benchmark

Finding the lowest energy configuration of spin glass system is an important task in
modern quantum physics. We choose the spin glass optimization problem as a typical
example of problem which does not fulfill the said average-case assumption. In [13]
it was shown that the computational complexity of studied spin glass systems was
dominated by rare events of extremely hard spin glass samples.

Each configuration of spin glass system is defined by the set of spins

S ={s;|Vie{l,...,5%) : s € {+1,-1}}, (8)

3 Also known in the literature as local optimization.
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where d is the dimension of spin glass grid and s is the size of spin glass grid. For
the optimization by MBOA the size of spin glass problem s¢ is equal to the length
of chromosome n, thus

n= s’ ©)

Each spin glass benchmark instance is defined by the set of interactions {J; ;} be-
tween neighboring spins s; and s; in the grid. The energy of given spin glass config-
uration S can be computed as

E(S) = Z Ji’jSiSj (10)

i,j€{1,...,n}

where the sum runs over all neighboring positions ¢ and j in the grid. For general
spin glass systems the interaction is a continuous value J; ; € [—1, 1], but we focus
only on Ising model with either ferromagnetic bond J; ; = —1 or antiferromagnetic
bond J; ; = +1, thus J; ; € {—1,+1}. Obviously, in the case of ferromagnetic
bond the lower (negative) contribution to the total energy is achieved if both spin
are oriented in the same direction, whereas in the case of antiferromagnetic bond the
lower (negative) contribution to the total energy is achieved if both spins are oriented
in opposite directions.

8.2 Empirical Results

Figures 4 and 5 indicate how realistic the proposed termination criterion for the real
spin glass problem is. We measure how the efficiency of MBOA changes during the
optimization. Each spin glass configuration sampled from the model is archived. In
each generation the archive is searched to compute how many of the newly generated
configurations were already seen at least once in the previous generations. In Fig. 4
we see that in the final stages of optimization MBOA becomes ineffective because
most configurations are seen more than once. The termination criterion proposed
in Sect. 5 suggested stopping in 350th generation. On the one hand, we see that
the suggested stopping point (350) is more than 20 times larger than the average
number of generations needed to discover the global optimum (17). This indicates
that from the empirical point of view the proposed termination criterion is reliable for
terminating the optimization of 2D Ising spin glasses. On the other hand, we see that
the observed portion of resampled solutions in 350th generation is approximately
78%, which is lower than the chosen confidence level o = 0.95. This indicates that
for real problems the confidence level o appears to be too optimistic. To make the
criterion more realistic, the existence of extremal solutions would have to be taken
into account.
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Fig. 4. The empirical efficiency of MBOA during an optimization of a 10 x 10 random
2D Ising spin glass instance. In each generation the portion of generated solutions that were
already visited at least once in the previous generations is shown. Population size is N =
2000 and the problem size is n = 100; tournament selection and Restricted Tournament
Replacement are used. The line represents the average values of 10 runs. On average, the
globally optimal fitness value 138 is reached in generation 17
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Fig. 5. The relation between the model entropy and the empirically measured efficiency of
MBOA. This experiment is identical to the experiment from Fig. 4, but the horizontal axis
displays H (X)) for each generation. The entropy in the first generation was H (X) = 61.75.
The dashed line indicates the proposed termination point in 350th generation (with H(X) =
13.52), whereas the dotted line indicates the 1650th generation where the measured resam-
pling probability reached the desired 95% level (with H(X) = 11.67)
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9 Conclusions

This chapter presents an entropy-based convergence measurement for EDAs.

Based on the measured entropy, we propose a method for detecting the time point
when the sampling process becomes ineffective. The proposed termination criterion
is inherent to the complexity of used probabilistic models and automatically post-
pones the termination if an inappropriate class of models is used.

We focus mainly on the mathematical and implementation aspects of the pro-
posed termination criterion. On several instances of spin glass problems we also
demonstrate the practical usefulness of this approach.

Future work will be oriented on the usage of the proposed approach in EDAs
working in continuous domains and on the investigation of the limits of this approach
in different scenarios, for example in the case of problems with a great number of
local optima.
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Summary. This chapter describes a real-coded (i.e., continuous) Estimation of Distribution
Algorithm (EDA) that solves real-valued (i.e., numerical) optimization problems of bounded
difficulty quickly, accurately, and reliably. This is the real-coded Bayesian Optimization Al-
gorithm (rBOA). The objective is to bring the power of (discrete) BOA to bear upon the area
of real-valued optimization. That is, the rBOA must properly decompose a problem and ef-
fectively perform Probabilistic Building-Block Crossover (PBBC) for real-valued multivariate
data. In other words, a unique feature of rBOA is to learn complex dependencies of variables
and make use of mixture models at the level of substructures. To begin with, a Bayesian factor-
ization is performed. The resulting factorization that contains linkage information is then uti-
lized for finding implicit subproblems (i.e., substructures). Mixture models are employed for
independently fitting each of these substructures. Subsequently, an independent substructure-
wise sampling draws the offspring. Experimental studies show that the rBOA finds, with a
sub-quadratic scale-up behavior for (additively) decomposable problems, a solution that is su-
perior in quality to that found by advanced real-coded EDAs regardless of inherent problem
characteristics. Moreover, comparable or better performance is achieved for nondecomposable
problems.

1 Introduction

Estimation of Distribution Algorithms (EDAs), also known as Probabilistic Model
Building Genetic Algorithms (PMBGAS), signal a paradigm shift in genetic and evo-
Iutionary computation research [13, 23]. Incorporating (automated) linkage learning
techniques into a graphical probabilistic model, EDAs exploit a feasible probabilistic
model built around superior solutions found thus far while efficiently traversing the
search space [23]. EDAs iterate the three steps listed below, until some termination
criterion is satisfied:

1. Select good candidates (i.e., solutions) from a (initially randomly generated)
population of solutions.

C.W. Ahn et al.: Real-coded Bayesian Optimization Algorithm, StudFuzz 192, 51-73 (2006)
www . springerlink.com (© Springer-Verlag Berlin Heidelberg 2006
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2. Estimate the probability distribution from the selected individuals.
3. Generate new candidates (i.e., offspring) from the estimated distribution.

It must be noted that the third step uniquely characterizes EDAs as it replaces
traditional recombination and mutation operators employed by simple Genetic and
Evolutionary Algorithms (SGEAs). Although the sGEAs (with well-designed mixing
operator) and EDAs deal with solutions (i.e., individuals) in quite different ways, it
has been theoretically shown (and empirically observed) that their performances are
quite close (to each other) [13, 23]. Moreover, EDAs ensure an effective mixing and
reproduction of Building Blocks (BBs) due to their ability to accurately capture the
(BB) structure of a given problem, thereby solving GA-hard problems with a linear
or sub-quadratic performance in terms of (fitness) function evaluations [23, 21, 1, 3,

]. However, there is a trade-off between the accuracy of the estimated distribution
and the efficiency of computation. For instance, a close and complicated model is
recommended if the fitness function to be evaluated is computationally expensive.

A large number of EDAs have been proposed for discrete and real-valued (i.e.,
continuous) variables in this regard. Depending on how intricate and involved the
probabilistic models are, they are divided into three categories: no dependencies,
pairwise dependencies, and multivariate dependencies [23]. Among them, the cat-
egory of multivariate dependencies endeavors to use general probabilistic models,
thereby solving many difficult problems quickly, accurately, and reliably [13, 23].
The more complex the probabilistic model the harder as well is the task of find-
ing the best structure. At the expense of some computational efficiency (with regard
to learning the probabilistic model), they can significantly improve the overall time
complexity for large (additively) decomposable problems due to their innate abil-
ity to reduce the number of (computationally expensive) fitness function evaluations.
Extended compact Genetic Algorithm (EcGA) [7], Factorized Distribution Algorithm
(FDA) [ 18], Estimation of Bayesian Networks Algorithm (EBNA) [11], and (hierar-
chical) Bayesian Optimization Algorithm (h)BOA) [21, 22] are some leading exam-
ples for discrete variables.

Note that the BOA is perceived to be an important effort that employs general
probabilistic models for discrete variables [23, 1]. It utilizes techniques for modeling
multivariate data by Bayesian networks so as to estimate the (joint) probability dis-
tribution of promising solutions. The BOA is very effective even on large decompos-
able (discrete) problems with loose and tight linkage of BBs. It is important to note
that the power of BOA arises from realizing Probabilistic Building-Block Crossover
(PBBC) that approximates population-wise building-block crossover by a probability
distribution estimated on the basis of proper (problem) decomposition [21, 22]. The
underlying decomposition can be performed regardless of types of dependency be-
tween variables because it is capable of accurately modeling any type of dependency
due to the inherent characteristic (i.e., finite cardinality) of the discrete world. The
PBBC may shuffle as many superior partial solutions (i.e., BBs) as possible in order
to bring about an efficient and reliable search for the optimum. Therefore, it is only
natural that the principles of BOA be tried on real-valued variables. In this regard,
real-coded EDAs, also known as continuous EDAs, have been developed. Estimation
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of Gaussian Networks Algorithm (EGNA) [12, 14], Iterative Density-estimation Evo-
lutionary Algorithms (IDEAs) [3, 4], and Mixed Bayesian Optimization Algorithm
(MBOA) [19, 20] are representative schemes. A brief review of them is presented in
the sequel.

In the EGNA, the Gaussian network is induced in each generation by means of
a chosen (scoring) metric and the offspring is created by simulating the learned net-
work. However, the EGNA is not suitable for solving complicated problems because
it only constructs a single-peak (Gaussian) model.

The IDEAs exploit Bayesian factorizations and mixture distributions for learning
probabilistic models. There is a general, but simple factorization mixture selection
to be named ‘mixed IDEA’ (mIDEA) in this chapter. It clusters the selected individ-
uals and subsequently estimates a factorized probability distribution in each cluster
separately. It is evident that the mIDEA can learn various types of dependency. How-
ever, it cannot realize the PBBC because different clusters (that may create important
BBs) do not share all the common features.

The MBOA learns a Bayesian network with local structures in the form of de-
cision trees coming with univariate normal-kernel leaves. One decision tree is built
for each target variable, and the split nodes of the decision tree are used to linearly
split the domain of parent variables into parts. This results in a decomposition of
the conditional distribution’s domain into axis-parallel partitions, thereby efficiently
approximating the variables by univariate (kernel) distributions [19, 20]. Although
the MBOA can be very effective for problems involving variables with simple in-
teractions (i.e., linearity), it is inefficient for nonlinear, symmetric problems because
finding the (linear) split boundaries for detecting the inherent characteristics is very
difficult and quite often even impossible.

In this chapter, we propose a real-coded BOA (rBOA) along the lines of (discrete)
BOA. The rBOA can solve various types of decomposable problem in an efficient
and scalable manner, and also find a high quality solution to traditional real-valued
benchmarks that represent a variety of difficulties beyond decomposability.

The rest of the chapter is organized as follows. Section 2 outlines rBOA. Sec-
tion 3 suggests a learning strategy for probabilistic models. Section 4 presents a
popular technique for model sampling. Real-valued test problems are cited in Sect. 5.
Experimental results are presented in Sect. 6. We conclude with a summary in Sect. 7.

2 Description of Real-coded BOA

This section describes the rBOA as an efficient tool for solving real-valued prob-
lems of bounded difficulty with a sub-quadratic scale-up behavior. The purpose is to
transplant the strong points of BOA into the continuous world.

Generously drawing on generic procedures of EDAs (Sect. 1), the following
pseudo-code summarizes the rBOA:
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STEP 1. INITIALIZATION

Randomly generate initial population P
STEP 2. SELECTION

Select a set of promising candidates S from P
STEP 3. LEARNING

Learn a probabilistic model M from & using a metric (and constraints)
STEP 4. SAMPLING

Generate a set of offspring O from the estimated probability distribution
STEP 5. REPLACEMENT

Create a new population P by replacing some individuals of P with O
STEP 6. TERMINATION

If the termination criteria are not satisfied, go to STEP 2

In spite of similar behavior patterns, EDAs can be characterized by the method
of learning a probabilistic model (in the STEP 3). That is, the performance of EDAs
depends rather directly on the efficiency of probabilistic model learning. In general,
the learning of probabilistic models consists of two tasks: learning the structure and
learning the parameters [2 1], also known as model selection and model fitting, respec-
tively [3]. The former determines the structure of a probabilistic model. The structure
defines conditional dependencies (and independencies). Model fitting estimates the
(conditional) probability distributions with regard to the found structure.

It is noted that model selection is closely related to model fitting. In the model
selection phase, the best structure is searched by investigating the values of a chosen
metric for all possible structures. However, the results of model fitting are directly
or indirectly needed for computing the metric. Due to the large number of possible
structures, the outcome may be unacceptably high computational complexity unless
model fitting is performed in some simple way. (A detailed investigation is described
in Sect. 3.1)

On the other hand, there is a significant difference between discrete and real-
coded EDAs from the viewpoint of probabilistic model learning. Discrete EDAs can
easily estimate a probability distribution for a given/observed data by simply count-
ing the number of instances for possible combinations. Moreover, the estimated dis-
tribution converges to its true distribution as the data size increases. Thus, discrete
EDAs can quickly and accurately carry out model selection and model fitting at the
same time.

A typical attempt to bring the merit of discrete EDAs to bear on real-valued
variables is to use histogram methods. This follows from the observation that con-
structing the histogram for a discrete distribution (from population statistics) and ap-
proximating it for a continuous distribution are analogous tasks [27]. Of course, the
problem is tricky in higher dimensions, but nonetheless, it is theoretically possible.
Indeed, it converges as the population size tends to infinity.

On the other hand, real-coded EDAs cannot use this simple (counting) method to
estimate a probability distribution for real-valued data due to (uncountably) infinite
cardinality. There is an efficient method of reliably approximating the true proba-
bility distribution. The method relies on (finite) mixture models [16]. Some recent
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methods for unsupervised learning of mixture models are capable of automatically
selecting the exact number of mixture components and overcoming some drawbacks
of the Expectation-Maximization (EM) algorithm [16, 6]. Due to its iterative nature,
however, reconciling the unsupervised mixture learning techniques with the EDA
framework is obviously hopeless (regardless of the frequency of its use). In this re-
gard, faster mixture models are believed to be useful for efficiently estimating the
probability distribution, in spite of sacrificing the accuracy. Although the fast alter-
natives can significantly reduce the computational cost, they are still not suitable
candidates as model fitting is required for every considered structure.

It is, therefore, impossible to directly employ the learning procedure of discrete
EDAs (such as BOA) in order to learn a probabilistic model for real-valued variables.
An alternative technique for learning probabilistic models in real space is needed.
Such a technique can draw on the power of EDAs in the discrete domain. By incor-
porating the solution with offspring generation procedure (i.e., model sampling), the
proper decomposition and the PBBC that are important characteristics of BOA can
be realized. The solution is explained in Sect. 3.

3 Learning of Probabilistic Models

This section presents an efficient technique for learning probabilistic models. Two
tasks stand out in this regard: model selection and model fitting.

3.1 Model Selection

Factorizations (or factorized probability distributions) discover dependencies (and
independencies) among random variables. A factorization is a probability distribu-
tion that can be described as a product of Generalized Probability Density Functions
(GPDFs) which are themselves Probability Density Functions (PDFs) involving real-
valued random variables [3, 5]. Bayesian factorizations, also known as Bayesian fac-
torized probability distributions come under a general class of factorizations [3, 15].
A Bayesian factorization estimates a (joint) GPDF for multivariate (dependent) vari-
ables by a product of univariate conditional GPDF of each random variable. The
Bayesian factorization is represented by a directed acyclic graph, called a Bayesian
factorization graph, in which nodes (or vertices) and arcs identify the correspond-
ing variables (in the data set) and the conditional dependencies between variables,
respectively [3, 15].

An n-dimensional real-valued optimization problem is considered for discussion.
We denote the random variables in the problem by Y = (Y7,...,Y},) and their
instantiations by y = (y1,...,yn). The PDF of Y is represented by f(Y)(y). The
second parenthesis of probability distribution can be omitted for convenience. (This
causes no ambiguity.)

In general, a PDF is represented by a probabilistic model M that consists of a
structure ¢ and an associated vector of parameters 0 (i.e., M = ((,0)) [3, 4]. As
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the rBOA employs the Bayesian factorization, the PDF f(Y') for the problem can be
encoded as

f(Y) = fieo (V) = [ [ £ (M) )
i=1
where Y = (Y1,...,Y,,) presents a vector of real-valued random variables, Iy, is

the set of parents of Y; (i.e., the set of nodes from which there exists an arc to Y;),
and f,v; (Y;|Ily,) is the univariate conditional PDF of Y; conditioned on ITy, with

its parameters 6

Although there are various methods for learning the structure of a probabilistic
model (i.e., model selection), a widely used approach has two basic factors: a scoring
metric and a search procedure [2 1, 3]. The scoring metric measures the quality of the
structures of probabilistic models (i.e., Bayesian factorization graphs) and the search
procedure efficiently traverses the space of feasible structures for finding the best one
with regard to a given scoring metric.

Scoring Metric

A penalized maximum likelihood criterion known as the Bayesian Information Cri-
terion (BIC) is employed as the scoring metric. Although any metric can be used, the
reason for choosing the BIC is its empirically observed effectiveness in greedy esti-
mation of factorized probability distributions [13, 18, 4]. Let S be the set of selected
individuals, viz. 8 = (y',...,y!l), where |S| is the number of the individuals.
The BIC that assigns the structure ¢ a score is formulated as follows [3, 4]:

15|
BIC () =In H feo(Y)¥') | = Aln(|S]) 6|

|S|

= nfeo(Y)y’) — Al ()6 @)
j=1

Here, \ regularizes the extent of penalty and |@)| is the number of parameters of
f(c,0)(Y). Physically, the first and second terms represent the model accuracy and
the model complexity, respectively.

Computing the BIC score for the structure ¢ requires its parameters 6 which fit
the structure. However, the relations of cause and effect among them lead to un-
acceptably high computational complexity. This is because the number of possible
structures to be tested/traversed increases exponentially with the problem size and
the parameter fitting for the data set in real space is by no means a simple undertak-
ing.

In short, the impracticality arises from the close relationship between model se-
lection and model fitting. One way to cross the hurdle is to break the connection with-
out obscuring their intrinsic objectives. An important feature of model selection is to
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acquire out a priori knowledge of the variables which are (conditionally) dependent
regardless of linearity, nonlinearity, or symmetry. The reason is that the dependent
type itself is learned (with probability distributions) by model fitting (in Sect. 3.2).
Decoupling the connection can be achieved by computing the needed probability
distributions for possible structures from a reference distribution. This is so because
computing a marginal distribution (with regard to an interesting structure) from a
(reference) probability distribution fitted on the whole (problem) space is much sim-
pler than directly estimating the exact probability distribution corresponding to the
real-valued data set. EGNA and IDEAs are widely known in this respect. However,
this can be hazardous in that it may fail to discover specific dependencies such as
nonlinearity or symmetry.

In order to overcome the difficulty, multiple (probability) distributions are em-
ployed instead of one, with a view to capture the specific dependencies by a combi-
nation of piecewise linear interactions. In other words, the probability distributions
used should lead to correct structures by capturing the dependency itself. We define
the correct structure as the Bayesian factorization graph that encodes only the true or
false interactions of the variables, regardless of the types of dependencies. Moreover,
we learn one structure because it has been shown empirically that using one suitably
constructed structure is sufficient to solve difficult problems [ 1, 22, 20].

We employ mixture models for efficiently modeling the selected individuals by
a mixture of probability distributions. With this in view, the BIC in (2) must be
modified further.

As the PDF f(¢ ¢)(Y) can be described by a linear combination of a number of
mixture components, (2) can be extended to

S|

K K
BIC (¢) = Zln (Z aif(g,eq(Y)(yf)) —AIn(|S)) Z |6"] 3)

where K is the number of mixture components, o, . . ., ax are the mixing probabil-
ities satisfying a;; > 0, Vi, and Zfil a; = 1, and 8" is the set of parameters defined
on the ¢th mixture component.

The observed-data vector (i.e., the selected individuals &) can be viewed as be-
ing incomplete due to the unavailability of the associated component-label vectors,
wl, ..., wlSlI [16, 6]. Each label w' is a K -dimensional binary vector and each ele-
ment w; is defined to be 0 or 1, depending on whether y’ did or did not arise from
the ¢th mixture component. The component-label vectors are taken to be the real-
ized values of the random vectors, W', ... ,W|S|, in which it is assumed that they
agree with an unconditional multinomial distribution [16]. That is, the probability
distribution of the complete-data vector carries an appropriate distribution for the
incomplete-data vector. Hence, (3) can be rewritten as
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K |S] K
BIC () =>_ > wi{lna; +Infen(Y)(y")} = An(|S)) > _|6°]
=1 j=1 i=1
K |S] ‘ K S| _ . K .
= o Y wh+ > Y wiln feon(Y)(y?) = Aln(IS]) D |67
i=1 j=1 i=1 j=1 i=1

“

,...,w!S| can be simulated by the resulting mixture distri-
bution, it is natural that Z‘]‘jl wj coincides with the expected number of selected
individuals drawn from the probability distribution f¢ gi) (Y), denoted by |S;|, and
the maximal log-likelihood is equivalent to the maximal negative entropys, i.e.:

As the vectors wt

S|
> wiln fie.00(Y)(y?) = = |8l b (ficor) (Y))
j=1

where h (f(c.gi) (Y)) represents the differential entropy of f(¢ gi) (Y). Moreover,
the number of parameters for each distribution is the same (i.e., [8'| = |0'| = ... =
|0K |) because the structure ( is fixed for every distribution to be mixed. Thus, (4) is
rewritten as

K
BIC (¢) = > _I8i| {lna; — h (fc.o0(Y))} = KEAIn(|S])]6']. )

i=1

Since the terms |S;| and In «; are not affected by the structure ¢, (5) can be further
reduced to

K
BIC(¢)=—)_ISilh (fic.on) (Y)) — KX (|S]) 6] ©)

i=1

Thus, the BIC in (6) leads to a correct factorization even if there is some kind of
nonlinearity and/or symmetry between variables.

Search Procedure

Learning the structure of a probabilistic model given a scoring metric is NP-complete
[21, 3, 9]. However, most EDAs have successfully employed a greedy approach for
searching a promising structure with a chosen metric. We employ the incremental
greedy algorithm, a kind of greedy search algorithm. Being one among many vari-
ants, this greedy algorithm starts with an empty graph with no arcs, and proceeds
by (incrementally) adding an arc (such that no cycles are introduced) that maximally
improves the metric until no more improvement is possible [9]. The greedy algorithm
is not guaranteed to discover an optimal structure in general because searching for
the structure is an NP-complete problem. However, the resulting structure is good
enough for encoding most important interactions between variables of the problem

[21, 22].
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3.2 Model Fitting

Note that the BOA models any type of dependency because it maintains all the con-
ditional probabilities according to the learned structure, without losing any informa-
tion due to the finite cardinality (of discrete variables). Moreover, the BOA naturally
performs the PBBC with regard to the proper decomposition as it treats all the sub-
problems independently through the model selection, model fitting, and model sam-
pling (i.e., offspring generation) phases. Hence, the BOA can solve difficult problems
quickly, accurately, and reliably [21, 22].

With this in view, the model fitting (of the rBOA) must realise the probabil-
ity distribution of a problem as a product of conditionally independent distributions
accurately estimated on the basis of subproblems. In other words, the PBBC can
be prepared by subspace-based model fitting. Unlike discrete EDAs, however, a pre-
processing step for explicitly discovering subproblems (i.e., problem decomposition)
is essential in real-coded EDAs, before performing the subspace-based model fitting.
This is because discrete EDAs can implicitly carry out the problem decomposition
in the course of (probabilistic) model learning while real-coded EDAs cannot do so
(see Sect. 2).

Problem Decomposition

Problem decomposition can be easily accomplished because a set consisting of a
node and its parents in the Bayesian factorization graph represents a component
subproblem of decomposable problems. Here, the sets of variables of component
subproblems may or may not be disjoint, but they cannot properly contain each
other. In Fig. 1, the Bayesian factorization graph consists of five component sub-
problems, viz., {Ys, Y35}, {Y5, Y1}, {Yo, Y3, Y5}, { Yo, Ys, Y5}, {Ya, Y7}. However, it
is not proper to directly use the component subproblems for model fitting. The reason
is explained below.

Fig. 1. Bayesian factorization graph involving component subproblems
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The probability distribution of a problem can be constructed as a product of uni-
variate conditional distributions which are computed from the probability distribu-
tions of component subproblems. Hence, the fitting process must be applied to every
component subproblem. Since the fitting process itself is relatively complex (even
with a simple technique), it follows that fitting the model on the basis of component
subproblems is not adequate, especially as the problem size increases.

Thus, an alternative decomposition is required for quickly and accurately per-
forming the model fitting on the basis of subproblems. In this regard, there is an
observation that the set of a parent and its child nodes can be grouped as a kind of
subproblem because the child nodes share a common feature even though they do not
directly interact with each other. The set is called the dual component subproblem. It
follows that the conditional distributions can be accurately computed from the prob-
ability distributions over the dual component subproblems. At this juncture, mini-
mal compound subproblems are defined as the largest component or dual component
subproblems that are not proper subsets of each other. In this way, a large number of
fitting processes can be avoided (in proportion to the problem size) without losing
fitting accuracy. For the problem in Fig. 1, the five component subproblems reduce
to three minimal compound subproblems, viz., {Y2,Ys, Y5, Y5}, {Y3, Y1}, {V4, Y7}
shown in Fig. 2(a).

There is another decomposition that is simple and also quite efficient for large
problems. Consider the maximal connected subgraphs of a Bayesian factorization
graph. Nodes in a maximally connected subgraph are looked on as a family; they
have a common feature of being bound with common ancestors or descendants. Thus,
the nodes can be thought of as interacting with each other in some sense. The condi-
tional distributions can then be obtained from the probability distributions fitted over
the maximally connected subgraphs without unduly compromising on the fitting ac-
curacy. Here, the maximal connected subgraph is called the maximal compound sub-
problem. In Fig. 2(b), three minimal compound subproblems of Fig. 2(a) can be re-
duced to two maximal compound subproblems, viz., {Y2, Y3, Ys, Y5, Y1}, {Yy, Y7}
Since this decomposition is a special case of decomposing the problem by minimal
compound subproblems, minimal compound subproblems are employed for explain-
ing the subspace-based model fitting.

Note that most real-coded EDAs (in the category of multivariate dependencies)
such as EGNA and IDEAs choose an alternative that is far from being perfect. That
is, conditional distributions are computed from the referencing distributions fitted
over the problem space itself (instead of subspaces). This cannot provide the PBBC,
thereby resulting in an exponential scale-up performance. The reason is explained
below.

BBs can be defined by groups of real-valued variables, each having values in
some neighborhood (i.e., small interval), that break up the problem into smaller
chunks which can be intermixed to reach the optimum. Assume that the mixture
models have been employed for model fitting. Univariate conditional distributions
are computed from the mixture distributions fitted over the problem space itself. In
the model sampling phase, an entire individual is drawn from a proportionately cho-
sen mixture component. Regardless of the result of Bayesian factorization, it does not
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Z'={Y,, Y, Y, Y5} Al={} X'={Y,, Y, Yo Yo}
2={Y, Y} A=Y X=(Y )
={Y, Y} A={} X={Y,, Y;}

(a) Minimal compound subproblems.

(b) Maximal compound subproblems.

Fig. 2. Examples of the problem decomposition

perform the PBBC as any mutual information of different regions cannot be shared.
Instead, at least one mixture component must contain almost all the (superior) BBs
of the problems for the sake of finding an optimal solution. In order to construct the
mixture distribution that contain such mixture components, however, a huge popu-
lation and a very large number of mixture components are required. It may result
in an exponential scale-up behavior, even if the problem can be decomposable into
subproblems of bounded order.
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Subspace-based Model Fitting

Following proper decomposition, each substructure (corresponding to each subprob-
lem) must be independently fitted. We employ the mixture models as an efficient tool
for the purpose. The aim of mixture models is twofold: comprehending the type of
dependency between variables and traversing the search space effectively. Since each
mixture component can model a certain linearity, the mixture models can approxi-
mate any type of dependency (e.g., nonlinearity or symmetry) by a combination of
piecewise linear interaction models. In addition, it has the effect of partitioning each
(sub)space for effective search.

LetZ = {Zi,.... 2y,
lem in which the variables have already been topologically sorted for drawing new
partial-individuals corresponding to the substructure. Moreover, Z* ¢ Uz;ll Z* and
U Z = Y. Let X! = Z /A" (or X' = 7' — AY) where A” = 7 () (UjZ} 2").
An example is given in Fig. 2(a).

} be a vector of random variables of the ¢th subprob-

Let¢ Z' and %" indicate a structure for the variables Z (i.e., substructure) and its
associated parameters, respectively (viz., MZ = ((Zi,ezi)). Let f(czi,ezi) (Z7)
represent a PDF of Z* and f(CAiﬂAi) (A%) = in f(<2i702i) (Z') dX;. As the mix-
ture models are being employed, the PDF f< ¢z o) (ZT) can generally be repre-
sented by linearly combining f( D) (Zl) (for all j) that presents the PDF of jth

mixture component over Z’. Therefore, the PDF of Y can be written as a product of
linear combinations of subspace-based (i.e., subproblem) PDFs as given by

n ) (2)
om0 =[50, 700

1=1j=1

where m is the number of subproblems, ¢; is the number of mixture components for
VA Bij is the mixture coefficients, 3;; > 0, and Z;Zl Bij = 1 for each ¢. In general,
the mixture coefficient 3;; is proportional to the (expected) number of individuals of
the jth mixture component of the subproblem Z?.

Any PDF can be rewritten as the product of univariate conditional PDFs accord-
ing to its probabilistic model structure. Therefore, (7) can be rewritten as

y o TP 1 ()

f Y) = Bij .
(c,e)( ) 21;[1; |A7|fAL (A;]HA)

®)

With a view to generating the offspring (i.e., model sampling), (8) can be simpli-
fied to

m ¢ \Xl

fieo(Y Hzﬂwnf@ (Xk|HXL)~ )

=1 j=1
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Therefore, the structure learned is efficiently fitted by the subspace-based mixture
distributions even in the presence of nonlinearly and/or symmetrically dependent
variables.

4 Sampling of Probabilistic Models

After model fitting, new individuals (i.e., offspring) are generated from sampling
the resulting factorization of (9). Due to its simplicity and efficiency, Probabilistic
Logic Sampling (PLS) is employed [10]. Model sampling is performed in a straight-
forward manner. At first, the PDF of the jth mixture component for the ¢th sub-
problem is selected with a probability 3;;. Subsequently, a multivariate string (i.e.,
partial-individual) corresponding to Z* can be drawn by simulating the univariate
conditional PDFs of the chosen PDF which models one of the promising partitions
(i.e., a superior BB) of a subspace (i.e., subproblem). By repeating this for all the
subproblems, superior BBs can be mixed and bred for subsequent search.

To sum up, model selection amounts to a proper decomposition. The PBBC is
realized successfully by model fitting and sampling on the basis of the proper de-
composition.

5 Real-valued Test Problems

This section presents real-valued test problems: (additively) decomposable problems
and traditional real-valued optimization problems.

Decomposable problems are created by concatenating basis functions of a certain
order. The overall fitness is equal to the sum of all the basis functions. Two types of
real-valued decomposable problem are presented.

The first problem is a (Real-valued) Deceptive Problem (RDP) composed of trap
functions. The RDP to be maximized is defined by

frop(y) = Z frrap (Y2i—1,Y2i) (10)

i=1

where y; € [0, 1], Vj, m are the number of subproblems, and f;,q, (e, ®) is defined
as follows:

) lfijy]+1257

2. .2 11
(5\/%—?]“), otherwise . (in

Here, o and (3 are the global and the local (i.e, deceptive) optimum, respectively, so

that /8 indicates the signal to noise ratio (SNR), and ¢ is the border of attractors.
Note that the trap function is not only flexible but also quite simple because §

controls the degree of BB supply and the SNR is adjusted by «/3. As an interesting

ftmp(ij yj+1) =

o @
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characteristic, it retains 2™ optimal plateaus, out of which there is only one global
optimum. The optimum is isolated and there is no attractor around the region, thereby
not being amenable to hill climbing strategies (such as mutation) only. It is clear
that recombination is essential to efficiently solve the RDP. In other words, linkage
friendly recombination operation should be included for preventing disruption of
(superior) partial solutions (i.e., BBs).

The second problem is a (Real-valued) Nonlinear, Symmetric Problem (RNSP)
that is constructed by concatenating nonlinear, symmetric functions. The RNSP to
be maximized is

Frnsp(Y) =Y Fron-sym(Y2i—1,Y2:) 12)

i=1
where y; € [—5.12,5.12], Vj, and fron-sym(® , ®) is defined by

13
—100(y;11 —y7)* — (1 —y;)?, otherwise . (13

fnon-sym(yja yj+1) - {

Here, § adjusts the degree of BB supply, and the nonlinear, symmetric function re-
tains the traits of Rosenbrock function presented in Table 1.

It is important to note that linkage friendly recombination which is also capa-
ble of capturing nonlinear, symmetric interactions is required for effectively solving
the RNSP. It is seen that the RNSP provides a real challenge for real-coded opti-
mization algorithms. Moreover, incorporating the mutation operation further helps
find the global optimum as the nonlinear, symmetric function (i.e., basis function) is
unimodal so that the hill-climbing strategy at any point eventually leads toward its
optimum.

On the other hand, four well-known real-valued optimization problems shown in
Table | are investigated. The task is to minimized the problems. They have some in-
triguing characteristics beyond decomposability which most optimization algorithms
find hard to negotiate.

Griewangk function [26] consists of many local optima that prevent optimization
algorithms from converging to the global optimum if (fine-grained) gradient infor-
mation is incorporated.

Table 1. Traditional problems for numerical optimization.

Problem Definition Range
Griewangk o5 27, (35 — 100)* = [Ty cos (Z3%) +1  y; € [~600,600)
.2
Michalewicz -0 sin(y;)sin®° (%) y; € [0, 7]

Cancellation (10*5 + Xy + ) yi|> / 100 y; €[~3,3]
Rosenbrock >, {100 (y; — v+ (1 —y;-1)%} y; € [-5.12,5.12]
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Michalewicz function [17] also has many suboptimal solutions (albeit to a lesser
degree than the Griewangk) and some long valleys along which the minimum value
is the same. Thus, gradient information does not lead to better local optima found at
the intersections of the channels.

Summation cancellation function [2] has (multivariate) linear interactions be-
tween variables. Moreover, the optimum is located on a very narrow peak. Thus, it is
hard to find the optimal solution without some information on dependencies (of the
variables) and dense-searching in the vicinity of the optimum.

Rosenbrock function [24, 25] is highly nonlinear and symmetric around quite a
flat curved valley. Due to the very small gradient and the strong signal (to solution
quality) along the bottom of the valley, it is very hard to find the (global) optimum.
Oscillations from one side of the valley to the other is likely unless a starting point
is selected in the vicinity of the optimum. No algorithm finds it easy to discover the
global optimum of Rosenbrock function.

6 Experimental Results

This section investigates the ability of rBOA to benefit from the strengths of BOA
(i.e., the proper decomposition and the PBBC) in real space.

6.1 Experiment Setup

The performance of rBOA is measured by the average number of (function) evalua-
tions until convergence to the optimum. A comparative study is performed by com-
paring the solution quality (returned by the fixed number of evaluations) of rBOA
with that of EGNA [14], mIDEA [4], and MBOA [20] (these are advanced real-
coded EDAs). The references are appropriately tuned in the interest of fair compari-
son. For instance, the references employ selection and replacement strategies which
are identical to those of rBOA.

Among various (un)supervised learning algorithms for accomplishing mixture
models, clustering is perceived to be a suitable candidate in terms of computational
efficiency [1, 3]. In this respect, k-means algorithm [8] is employed for model se-
lection and BEND (random) leader algorithm [3, 8] (with a threshold value of 0.3)
is used for model fitting. A promising number of clusters (i.e., mixture components
K) empirically obtained for each problem is used for model selection. Model fitting
and model sampling are carried out on the basis of maximal compound subprob-
lems in view of their efficiency for large decomposable problems. Moreover, normal
probability distribution has been employed due to its inherent advantages — close ap-
proximation and simple analytic properties. Truncation selection that picks the top
half of the population and the BIC of (6) whose regularization parameter A is 0.5
have been invoked for learning a probabilistic model. The renewal policy replaces
the worst half of the population with the newly generated offspring (i.e., elitism-
preserving replacement). Since no prior information about the problem structure is
available in practice, we set |Y| — 1 for the number of allowable parents (i.e., no
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constraint in the model selection). Each experiment is terminated when the optimum
is found or the number of generations reaches 200. All the results were averaged over
100 runs.

6.2 Results and Discussion

Figure 3 shows the average number of evaluations that rBOA performs to find the
optimum of RDP with « = 1.0, § = 0.8, § = 0.8, and n ranging from 10 to
100. The figure also shows results for RNSP with 6 = 0.2 and n = 10 to 60. The
population size supplied is empirically determined by a bisection method so that the
optimum is found. In Fig. 3, it is seen that the results for the RDP and the RNSP are
closely approximated (fitted) by ©(n!-?) and ©(n!®), respectively. Thus, rBOA can
solve (additively) decomposable problem of bounded difficulty with a sub-quadratic
complexity (in terms of fitness function evaluations).

Figure 4 provides a comparative study of the performance of rBOA and refer-
ences (i.e., EGNA, mIDEA, and MBOA) as applied to the decomposable problems
(i.e., RDP and RNSP). Since a decomposable problem consists of m subproblems,
the effective problem difficulty tends to be proportional to m. Hence, the population
is supplied by a linear model, viz., N = r - m, for simplicity.

Figure 4(a) compares the proportion of correct BBs as applied to the RDP with
a = 1.0, 0 = 0.8, = 0.8, and varying m. The rBOA employs one mixture com-
ponent, viz., K = 1, for model selection. The population is supplied by N = 100m.
The results show that the solutions found by rBOA and MBOA are much better than
those computed by mIDEA and EGNA. Although the MBOA seems to be somewhat
superior to the rBOA, it has no statistical significance. Table 2 supports this asser-
tion. It is also seen that the rBOA and the MBOA achieve stable quality of solutions
while the performance of mIDEA and EGNA rapidly deteriorates as the problem size
increases. From Figs. 3(a) and 4(a), it is clear that the scale-up behavior of rBOA and
MBOA is sub-quadratic; while the mIDEA and the EGNA have an exponential scal-
ability.

Figure 4(b) depicts the BB-wise objective function values returned by the algo-
rithms when applied to the RNSP with § = 0.2 and varying m. Mixture models
for model selection use three mixture components (X = 3). A linear model, viz.,
N = 200m, is used for supplying the population. As in the RDP, it is seen that the
performance of rBOA and MBOA remains uniform irrespective of the problem size.
It can mean that they have a sub-quadratic scalability for the RNSP. However, the
results show that the rBOA outperforms the MBOA quite substantially with regard
to the quality of solution. This consequence is clearly seen in the statistical test in
Table 2. It is also observed that the mIDEA and the EGNA find solutions of unaccept-
able quality as the problem size increases and their scalabilities obviously become
exponential.

From the results, we may conclude that the rBOA finds a better solution with a
sub-quadratic scale-up behavior for decomposable problems than does the MBOA,
the mIDEA, and the EGNA, especially as the size and difficulty of problems increase.
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Table 2. Performance comparison of algorithms on frpp and frysp
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Problem [Measure[]  EGNA mIDEA | MBOA | BOA
RDP | 1igos 0.196000 0.418000 1.0 0.988000
(m=5)| 0gos 0.197949 0.169900 0.0 0.047497
RDP | jigos 0.002000 0.175000 1.0 0.992000
(m =10)| ogos 0.019900 0.187283 0.0 0.030590
RNSP | ugos || —0.229916 | —0.200973 | —0.063843 | —0.001384
(m=5)| 0gos 0.030276 0.136850 0.056469 0.005965
RNSP | ugos || —0.238623 | —0.299768 | —0.056143 | —0.001456
(m =10)| ogos 0.017609 0.111364 0.030395 0.002651
Statistical t-test
Test case RDP RNSP
m=>5 [ m = 10 m=>5 [ m = 10
BOA — EGNA 38.307 273.207 71.727 110.787
rBOA — mIDEA 32.807 41.927 14.457 13.59F
rBOA — MBOA —2.51 —1.99 11.107 13.347
MBOA — EGNA 40.417 499.007 27.187 33.51F
MBOA — mIDEA 34.08F 43.83F 14.717 10.43F
mIDEA — EGNA 8.107 9.057 2.19 —1.97

T The value of ¢ is significant at & = 0.01 by a paired, two-tailed test.

Table 3 compares the solutions found by the algorithms as applied to the well-
known real-valued optimization problems depicted in Table 1. Three mixture com-
ponents are employed for all the benchmarks. However, any number of components
is acceptable for Griewangk and Michalewicz functions as there is no interaction
between variables. The results show that the MBOA is superior to the rBOA, the
mIDEA, and the EGNA (they find acceptable solutions, however) for the Griewangk
function because it can capture some knowledge about independence as well as
overcome numerous traps (i.e., local optima) due to the kernel distributions. In the
Michalewicz function, the performances of MBOA and rBOA are comparable, and
both algorithms outperform the EGNA and the mIDEA. It means that the EGNA
and the mIDEA fail to discover independent interactions between variables. It is also
seen that the EGNA and the rBOA are quite superior to the mIDEA and the MBOA
in the Cancellation function. Although all the algorithms can successfully capture
the information about linear interactions, the EGNA achieves the best performance
due to its inherent efficiency when it comes to single-peak functions. Even though
the rBOA traverses multiple regions of the unimodal function, its performance is
acceptably high. It is important to note that the rBOA outperforms the MBOA, the
mIDEA, and the EGNA in the case of the Rosenbrock function whose optimum is
hard to find. Further, the performance of MBOA and EGNA is very poor. This is
explained below.
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Table 3. Performance of algorithms on real-valued benchmarks (n = 5)

Problem [Measure][ EGNA mIDEA MBOA rBOA
Griewangk | pgos 0.061968 0.067873 0.003258 0.065993
(N = 2000)| 0gos 0.016287 0.018634 0.005205 0.017604
Michalewicz| pgos || —4.637647 | —4.613430 | —4.687653 | —4.687640
(N =500) | 0gos 0.013388 0.076301 0.005857 0.000044
Cancellation| pgos 0.000034 0.014854 0.001654 0.000557
(N =100) | 0gos 0.000122 0.006420 0.001663 0.000740
Rosenbrock | ftgos 2.141721 0.003518 0.664121 0.000177
(N = 3000)| 0gos 0.182596 0.017894 0.521631 0.001283

Statistical ¢-test
Test case H Griewangk | Michalewicz | Cancellation | Rosenbrock

EGNA — rBOA —1.70 37.177 —6.697 116.647
mIDEA — rBOA 0.74 9.687 21.977 1.83
MBOA — rBOA —33.777 0.00 5.727 12.677
EGNA — MBOA 32.767 37.167 —9.587 25.49°
mIDEA — MBOA 33.077 9.687 19.83F —12.65T
EGNA — mIDEA —2.35 —3.307 —22.917 115.467

T The value of ¢ is significant at o = 0.01 by a paired, two-tailed test.

The variables of the Rosenbrock function strongly interact around a curved val-
ley. Also, the function is symmetric. It is clear that incorrect factorizations (i.e., no
dependencies between variables) are encountered at an early stage of the algorithms.
Due to the incorrect structure, they try to solve the problems by treating the vari-
ables in isolation. Of course, finding an optimum in this way is difficult because any
given algorithm does not cross the intrinsic barrier. After a few generations, however,
individuals start to collect around the curved valley. At this time, the rBOA can eas-
ily capture such a nonlinear, symmetric dependency due to mixture models. On the
other hand, the mIDEA can cope with the cancellation effect (arising from symme-
try) to some extent by clustering in the overall problem space. However, the MBOA
does not deal successfully with the situation because finding a promising set of split
boundaries so as to cross the barrier is very difficult. In addition, the EGNA finds it
impossible to overcome the hurdles by a (simple) single-peak model.

From Table 3, it can be concluded that the rBOA finds good solutions to com-
plicated problems in terms of dependencies (of decision variables) while achieving
comparable or acceptable solutions to others.

As a result, the rBOA achieves the optimal solution with a sub-quadratic scale-
up behavior for decomposable problems. Note that the sub-quadratic scalability is
solely due to proper decomposition brought about by correct factorization and the
PBBC realized by the subspace-based model fitting and model sampling.
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Moreover, the rBOA finds better solutions for decomposable problems and ac-
ceptable (or even better) solutions to traditional real-valued optimization bench-
marks, than those found by the state-of-the-art real-coded EDAs.

7 Conclusion

In this chapter, we have presented a real-coded BOA in the form of (advanced)
real-coded EDAs. Decomposable problems were the prime targets and sub-quadratic
scale-up behavior (of rBOA) was a major objective. This was achieved by proper
decomposition (i.e., linkage learning) and probabilistic building-block crossover on
real-valued variables. As a step in this direction, Bayesian factorization was per-
formed by means of mixture models, the substructures were extracted from the re-
sulting Bayesian factorization graph (i.e., problem decomposition), and each sub-
structure was fitted by mixture distributions whose parameters were extracted (by
estimation) from the subspaces (i.e., subproblems). In the model sampling phase, the
offspring was generated by an independent subproblem-wise sampling procedure.

Experimental studies demonstrated that that the rBOA finds the optimal solution
with a sub-quadratic scale-up behavior. The comparative studies exhibited that the
rBOA outperforms the up-to-date real-coded EDAs (EGNA, mIDEA, and MBOA)
when faced with decomposable problems regardless of inherent problem character-
istics such as deception, nonlinearity, and symmetry. Moreover, the solutions com-
puted by rBOA are acceptable in the case of traditional real-valued optimization
problems while they are generally better than those found by EGNA, mIDEA, and
MBOA. Further, the quality of solutions improves with the degree of problem diffi-
culty.

It is noted that the rBOA learns complex dependencies of variables by means
of mixture distributions and estimate the distribution of population by exploiting
mixture models at the level of substructures. This allows us to keep options open
at the right level of attention throughout the run. In the past, most (advanced) real-
coded EDAs used single normal models or mixtures at the level of the problem, but
these are unable to capture the critical detail.

More work on the proper number of mixture components and fast mixture models
needs to be done. However, rBOA’s strategy of decomposing problems, modeling
the resulting building blocks, and then searching for better solutions appears to have
certain advantages over existing advanced probabilistic model building methods that
have been suggested and used elsewhere. Certainly, there can be many alternatives
with regard to exploring the method of decomposition, the types of probabilistic
models utilized, as well as their computational efficiency, but this avenue appears
to lead to a class of practical procedures that should find widespread use in many
engineering and scientific applications.
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Summary. Derived from the concept of self-adaptation in evolution strategies, the CMA (Co-
variance Matrix Adaptation) adapts the covariance matrix of a multi-variate normal search
distribution. The CMA was originally designed to perform well with small populations. In
this review, the argument starts out with large population sizes, reflecting recent extensions of
the CMA algorithm. Commonalities and differences to continuous Estimation of Distribution
Algorithms are analyzed. The aspects of reliability of the estimation, overall step size control,
and independence from the coordinate system (invariance) become particularly important in
small populations sizes. Consequently, performing the adaptation task with small populations
is more intricate.

Nomenclature

Abbreviations

CMA Covariance Matrix Adaptation

EDA Estimation of Distribution Algorithm

EMNA Estimation of Multivariate Normal Algorithm
ES Evolution Strategy

(1t/ g1, wy» A)-ES, evolution strategy with y parents, with recombination of all 1
parents, either Intermediate or Weighted, and A offspring.

OP : R" — IR™",x + xx", denotes the outer product of a vector with itself,
which is a matrix of rank one with eigenvector x and eigenvalue ||x||%.

RHS Right Hand Side.
Greek symbols

A > 2, population size, sample size, number of offspring.

1 < )\ parent number, number of selected search points in the population.

N. Hansen: The CMA Evolution Strategy: A Comparing Review, StudFuzz 192, 75-102 (2006)
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Leov, parameter for weighting between rank-one and rank-p update, see (22).

-1 . . .
pet = (D4, w?) ™, the variance effective selection mass, see (5).

o9 € Ry, step size.
Latin symbols

B € IR", an orthogonal matrix. Columns of B are eigenvectors of C with unit
length and correspond to the diagonal elements of D.

C@ e IR™*"™, covariance matrix at generation g.
¢;;, diagonal elements of C.

¢. < 1, learning rate for cumulation for the rank-one update of the covariance
matrix, see (17) and (33).

Ccov < 1, learning rate for the covariance matrix update, see (11), (21), (22), and
(34).

¢s < 1, learning rate for the cumulation for the step size control, see (23) and (31).

D € IR", a diagonal matrix. The diagonal elements of D are square roots of eigen-
values of C and correspond to the respective columns of B.

d;;, diagonal elements of D.

d, ~ 1, damping parameter for step size update, see (24), (28), and (32).

E Expectation value

f:IR" = IR,x — f(x), objective function (fitness function) to be minimized.
Fuphere : R™ = RyX = fupnere (%) = [x]|? = 0, a2,

g € N, generation counter, iteration number.

I € IR™*", Identity matrix, unity matrix.

m(? € IR™, mean value of the search distribution at generation g.

n € Ny, search space dimension, see f.

N (0, T), multi-variate normal distribution with zero mean and unity covariance ma-
trix. A vector distributed according to A (0, I) has independent, (0, 1)-normally
distributed components.

N (m, C) ~ m + N (0, C), multi-variate normal distribution with mean m € IR"
and covariance matrix C € IR"™*". The matrix C is symmetric and positive
definite.

p € IR", evolution path, a sequence of successive (normalized) steps, the strategy
takes over a number of generations.

w;, where ¢ = 1, ..., u, recombination weights, see also (3).
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xfcg *1 ¢ IR™, k-th offspring from generation g + 1. We refer to x(91)_ as search
point, or object parameters/variables, commonly used synonyms are candidate
solution, or design variables.

x ) i-th best individual out of x{¢T . x {7t

1 Introduction

We assume a search scenario, where we want to minimize an objective function
f: R" — IR,x +— f(x)." The only accessible information on f are function
values of evaluated search points. Our performance measure is the number of func-
tion evaluations needed to reach a certain function value. Many continuous domain
evolutionary algorithms use a normal distribution to sample new search points. In
this chapter, we focus on algorithms with a multi-variate normal search distribution,
where the covariance matrix of the distribution is not restricted to a priori, e.g., not
a diagonal matrix. Estimation of Distribution Algorithms (EDAs) falling into this
class, include the Estimation of Multi-variate Normal Algorithm (EMNA), the Esti-
mation of Gaussian Network Algorithm (EGNA) [15, 16], and the Iterated Density
Estimation Evolutionary Algorithm (IDEA) [4]. Evolution Strategies (ESs) falling
into this class include a (11/u1, \)-ES? with self-adaptation of correlated mutations
[19], and the ES with Covariance Matrix Adaptation (CMA) [10]. Originally, the
CMA was interpreted as derandomized self-adaptation [12]: in contrast to the orig-
inal self-adaptation, where changes of the distribution parameters obey their own
stochastics, in the CMA, changes of the distribution parameters are deterministically
linked to the object parameter variations. In this chapter, we will review the CMA
from a different perspective revealing the close relationship to EDAs like the EMNA.

The Multi-variate Normal Distribution

Any normal distribution, A'(m, C), is uniquely determined by its mean m € RR"
and its symmetric and positive definite covariance matrix C € IR"*". Covariance
matrices have an appealing geometrical interpretation: they can be uniquely identi-
fied with the (hyper-)ellipsoid {x € IR™|xTC~!'x = 1}, as shown in Fig. 1. The
ellipsoid is a surface of equal density of the distribution. The principal axes of the
ellipsoid correspond to the eigenvectors of C, the squared axes lengths correspond
to the eigenvalues. The eigendecomposition is denoted by C = B (D)2 BT, where
columns of B are eigenvectors of C with unit length (B is orthogonal), and the
squared diagonal elements of the diagonal matrix D are the corresponding eigenval-
ues.
The normal distribution A/ (m, C) can be written in different forms.

N(m,C) ~ m+N(0,C) ~ m+BDB*AN(0,I) ~ m+BDN(0,I) (1)

! In fact, the image needs not to be IR. Any totally ordered set is sufficient.
2 (u/ 1, \) refers to the non-elitist selection scheme with y parents, Intermediate recombi-
nation of all p parents, and \ offspring.
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N (0,D?) N(0,C)
Fig. 1. Six ellipsoids, depicting one-o lines of equal density of six different normal distrib-

utions, where 0 € IR, D is a diagonal matrix, and C is a positive definite full covariance
matrix. Thin lines depict exemplary objective function contour lines

where “~” denotes equality in distribution and I denotes the identity matrix. If D =
oI, wherec € R4, C = 021 and the ellipsoid is isotropic (Fig. 1, left). f B =1,
the ellipsoid is axis parallel oriented (middle). In the coordinate system given by B,
the distribution NV (0, C) is uncorrelated.

Objective

The objective of covariance matrix adaptation is, loosely speaking, to fit the search
distribution to the contour lines of the objective function f to be minimized. In Fig. 1
the solid-line distribution in the right figure follows the objective function contour
most suitably, and it is easy to foresee that it will help to approach the optimum the
most. On convex-quadratic objective functions, setting the covariance matrix of the
search distribution to the inverse Hessian matrix is equivalent to rescaling the ellip-
soid function into a spherical one. We assume that the optimal covariance matrix
equals the inverse Hessian matrix, up to a constant factor.> Consequently, the adapta-
tion mechanism should aim to approximate the inverse Hessian matrix. Choosing a
covariance matrix or choosing a respective affine linear transformation of the search
space is equivalent [7].

Basic Equation

In the CMA evolution strategy, a population of new search points is generated by
sampling a multi-variate normal distribution. The basic equation for sampling the

search points, for generation number g = 0, 1,2, ..., reads*
2
XD N<m<9>, (a(9>) c<9>) fork=1,..., A ©)

3 Even though there is good intuition and strong empirical evidence for this statement, a
rigorous proof is missing.
4 Framed equations belong to the final algorithm of a CMA evolution strategy.
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where

~ denotes the same distribution on the left and right side.

Nm®) (6(9)2C9)) ~ m9) 4 ¢@DN(0,C9) ~ m9) +c@OBUODGOAN(0,T)
is the multi-variate normal search distribution.

x,(cg D e R”, k-th offspring (search point) from generation g + 1.

m(9 € IR", mean value of the search distribution at generation g.

@) e IR, “overall” standard deviation, step size, at generation g.

C) ¢ IR™ ™ covariance matrix at generation g.

A > 2, population size, sample size, number of offspring.

To define the complete iteration step, the remaining question is, how to calculate
m@+1) Clo+D) and o9+ for the next generation g + 1. The next three sections
will answer these questions, respectively.

2 Selection and Recombination: Choosing the Mean

The new mean m(9+1) of the search distribution is a weighted average of u selected

(9+1) (g+1),
points from the sample x;” "/, ..., x)/"
m(o sz A 3)
n
Zwizl, w; >0 fori=1,...,u 4)

where

< )\ is the parent population size, i.e. the number of selected points.

wi=1...,, € IR, positive weight coefficients for recombination, where w; > wy >

- > w, > 0. Setting w; = 1 /i, (3) calculates the mean value of u selected
points.

x ) i-th best individual out of x{“", ... x{¢™™) from (2). The index i : A de-

notes the index of the i-th ranked 1nd1V1dual and f (xlg;' b ) < f(x (9+1)) <

-<f (Xg\g ;_ ), where f is the objective function to be minimized.
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Equation (3) implements recombination by taking a weighted sum of p individ-
uals, and selection by choosing p < A and/or assigning different weights w;.

The measure
i -1
ot = (Z w?> )
i=1

can be paraphrased as variance effective selection mass. From the definition of w; we
derive 1 < peg < p, and peg = p for equal recombination weights, i.e. w; = 1/
forallé = 1...u. Usually, pes =~ A/4 indicates a reasonable setting of w;. A typical
setting would be w; oc p — i+ 1, and p &~ \/2.

3 Adapting the Covariance Matrix

In this section, the update of the covariance matrix, C, is derived. We will start out es-
timating the covariance matrix from a single population of one generation (Sect. 3.1).
For small populations this estimation is unreliable and an adaptation procedure has
to be invented (Sect. 3.2). The adaptation procedure takes into account more than one
generation and can be further enhanced by exploiting dependencies between succes-
sive steps (Sect. 3.3).

3.1 Estimating the Covariance Matrix

For the moment we assume that the population contains enough information to reli-
ably estimate a covariance matrix from the population.’ For the sake of convenience
we assume ¢(9) = 1 in this section. For 0(9) £ 1 the discussion holds except for a
constant factor.

Referring to (2), we can (re-)estimate the original covariance matrix C(9) from

the sample population, xgg L ‘XE\g +1), by

A ( 12 1A T
(9+1) g+1) _ + (g+1) 9+1) - (g+1)
ca) = Z 3 Z X Z
(6)
The empirical covariance matrix Cg?nﬁ)l) is an unbiased estimator of C(%): assuming
the x(-gﬂ) i = . A, to be random variables (rather than a realized sample), we

have that E[ gH) | C@ ] = C¥. Consider now a slightly different approach to
get an estimator for Cc,

5 To re-estimate the covariance matrix, C, from a N(0,I) distributed sample such that
cond(C) < 10 a sample size A\ > 4n is needed. The condition number of the ma-
trix C is defined via the Euclidean norm: cond(C) = def IC|l x [|[C™Y|, where |C|| =
SUP| =1 ||Cx||. For the covariance matrix C holds cond(C) = Jmax > 1, where Amax
and Amin are the largest and smallest eigenvalue of C.
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cut _ L () @) (20D @)
)\Z(Xi m )(xz m ) (7)

CE\QH) is an unbiased maximum likelihood estimator of C(9). The re-

markable difference between (6) and (7) is the reference mean value. For C((;%H)l) it

C(g+1)

The matrix

is the mean of the actually realized sample. For it is the true mean value of

the distribution, m‘9) (see (2)). Therefore the estimators Cgﬁf;l and Cf\g +1) can be

interpreted dlfferently while CCmp estimates the distribution variance within the
sampled points, C (71) estimates variances of sampled steps, x\9T" — m(®
the CMA the second approach is chosen.

Equation (7) re-estimates the original covariance matrix. To “estimate” a “better”
covariance matrix (7) is modified and the same, weighted selection mechanism as in

(3) is used [8].

. For

sz( 50— m@) (x5 - m@) ®)

The matrix C,(Lg +1) is an estimator for the distribution of selected steps, just as C(Ag +1)

is an estimator of the original distribution of steps before selection. Sampling from
CELg 1 tends to reproduce selected, 1.e. successful steps, giving a justification for
what a “better” covariance matrix means.

We compare (8) with the EMNA ;04 approach [15, 16], where

1 T
C +1 j : +1) + +1 +
E(gl\/ﬂ‘])Aglobal m ( (g (g 1)) ( EQA ) IIl(g 1)) ’ (9)
and l’l’l(g n =1 i=1 XEQ)\ b . The subtle difference iS again the choice of the

reference mean value.® Equation (8) estimates selected steps while in (9) the vari-
ance within the selected population is estimated. Equation (8) always reveals larger
variances than (9), because the reference mean value in (9) is the minimizer for the
variances. Moreover, in most conceivable selection situations (9) decreases the vari-
ances.

Figure 2 demonstrates the estimation results on a linear objective function for
A = 150, p = 50, and w; = 1/p. While (8) increases the expected variance in
direction of the gradient (where the selection takes place, here the diagonal), given
ordinary settings for parent number p and recombination weights ws, ..., wy, (9)
decreases this variance! Therefore, (9) is highly susceptible to premature conver-
gence, in particular with small parent populations, where the population cannot be
expected to bracket the optimum at any time. However, for large values of p in large
populations with large initial variances, the impact of the different reference mean
value can be marginal.

6 Taking a weighted sum, >t w;. .., instead of the mean, L S™# .., is an appealing,

u L2ai=1
but less important, difference.
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a)
(b)
sampling estimation new distribution
Fig. 2. Estimation of the covariance matrix on fiinear(X) = — le x; to be minimized.

Contour lines (dotted) indicate that the strategy should move toward the upper right corner.
(a) Estimation of C,(f"“) according to (8), where w; = 1/u; (b) estimation of Cgﬁ&kglubal
according to (9). Left: sample of A = 150 A/ (0, I) distributed points. Middle: the pn = 50
selected points (dots) determining the entries for the estimation equation (solid straight lines),
and the estimated covariance matrix (ellipsoid). Right: search distribution of the next gen-
eration. Given w; = 1/pu, (a) increases the expected variance in gradient direction for all
1 < A/2, while (b) decreases this variance for any p < A

To ensure CEE’ +1) is a reliable estimator implementing (2), (3), and (8), the vari-
ance effective selection mass peg (cf. (5)) must be large enough: to get condition
numbers smaller than ten for C,(f) on fsphere(X) = Y., 2, to our experience,
Left = 10n is needed. The next step is to circumvent this restriction on fieg.

3.2 Rank-pu-Update

To achieve fast search (opposite to more robust or more global search), e.g. competi-
tive performance on fspnere, the population size A must be small. Because pteg =~ A/4
also peg must be small and we may assume, e.g., fer < 1 + Inn. Then, it is not
possible to get a reliable estimator for a good covariance matrix from (8) alone. As a
remedy, information from previous generations is added. For example, after a suffi-
cient number of generations, the mean of the estimated covariance matrices from all
generations,

1 1 ‘
clo+) — _— = U+ 10
g+1 ; O (10)
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becomes a reliable estimator for the selected steps. To make Cff ) from different
generations comparable, the different o(*) are incorporated. (Assuming ¢ = 1,
(10) resembles the covariance matrix from EMNA; [16].)

In (10), all generation steps have the same weight. To assign recent generations
a higher weight, exponential smoothing is introduced. Choosing C(?) = T to be the
unity matrix and a learning rate 0 < c.ov < 1, then C+D) reads

1
Ccletl) — (1— CCOV)C(g) + Ceow 2C(ngl)
0’(9) i
[ (g+1) _ _ (g)
X m
= (1= Ceoy)C@ +ccov§w¢ oP <>\0(9)> (11)

where

Ccov < 1 learning rate for updating the covariance matrix. For c.,, = 1, no prior
information is retained and C9t1) = ﬁ(},&gﬂ). For ccoy = 0, no learning
takes place and C9+1) = C(0),

OP:IR" — IR"™*"™,x + xx 7, denotes the outer product of a vector with itself.

This covariance matrix update is called rank-p-update [9], because the sum of outer
products in (11) is of rank min(u, n) (with probability one). Note that this sum can
even consist of a single term, if ;1 = 1.

The factor 1/c¢oy can be interpreted as the backward time horizon. Because (11)
expands to the weighted sum

g
CUT = (1 = Ceon )T CO 4 ooy D (1= Ceor)? ™" citv . 12

i=0 o(®?
the backward time horizon, Ag, where about 63% of the overall weight is summed
up, is defined by

g
; 1
Cov Y. (1= Ceoy)? " m0.6371—= . (13)
i=g+1—Ag ¢

Resolving the sum yields

1
(1= coon)™ =, (14)
e
and resolving for Ag, using the Taylor approximation for In, yields
1
Ag =~ . (15)
Ccov

That is, approximately 37% of the information in C(9+1) is older than 1/cc,, gener-
ations, and, according to (14), the original weight is reduced by a factor of 0.37 after
approximately 1/c.o, generations.
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The choice of c..y is crucial. Small values lead to slow learning, too large values
lead to a failure, because the covariance matrix degenerates. Fortunately, a good
setting seems to be largely independent of the function to be optimized.” A first order
approximation for a good choice is ccoy & foft/ n?2. Therefore, the characteristic time
horizon for (11) is roughly n?/jief.

Even for the learning rate c.., = 1, adapting the covariance matrix cannot be
accomplished within one generation. The effect of the original sample distribution
does not vanish until a sufficient number of generations. Assuming fixed search costs
(number of function evaluations), a small population size A allows a larger number
of generations and therefore usually leads to a faster adaptation of the covariance
matrix.

3.3 Cumulation: Utilizing the Evolution Path
We have used the selected steps, (xl(.:g/\ﬂ) —m)/0(9), to update the covariance
matrix in (11). Because OP(x) = xx' = OP(—x), the sign of the steps in (11)
is irrelevant — that is, the sign information is not used for calculating CltD) T
exploit this information, the so-called evolution path is introduced [ 10, 12].

We call a sequence of successive steps, the strategy takes over a number of gener-
ations, an evolution path. An evolution path can be expressed by a sum of consecutive
steps. This summation is referred to as cumulation. To construct an evolution path,
the step size o is disregarded. For example, an evolution path of three steps can be
constructed by the sum

m@t) —m@  m@ —m-1 m-1 _ ple-2)

) t—w v vt e (16)

Again, we use exponential smoothing as in (11), to construct the evolution path,

pc € IR™, starting with p((;o) =0.

p£g+1) =(1—-c) gg) + v/ ce(2 = co)pesr

(9+1) _ )9
m m (17)

0'(9)

where

pgg ) e IR, evolution path at generation g.

¢ < 1. Again, 1/c. is the backward time horizon of the evolution path p.. (compare
(15)). A time horizon between /n and n is reasonable.

The factor \/c.(2 — ¢ )pefs is @ normalization constant for pgg ). For ¢, = 1 and

tet = 1, the factor reduces to one, and p((;gH) = (xg‘f;rl) - m(g))/a(g). The factor
is chosen, such that

" We use the sphere model fiphere(x) = >, x7 to empirically find a good setting for the
parameter ccov, dependent on n and pes. The setting found was applicable to any non-noisy
objective function we had tried so far.
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pl¥™) ~ N(0,C) (18)

if
(9+1)

Xix — m(g)

pl¥ ~ ~N(0,C) foralli=1,...,u . (19)

0‘(9)
To derive (18) from (19) and (17) remark that

o
(1—co?+Vel2—c) =1 and > wN;(0,C) ~
=1

1
N(0,C) . (20)
F( )

Heff

The (rank-one) update of the covariance matrix C@ via the evolution path
pggH) reads [10]

CUHD = (1 — ¢0y)C@ + Ccovp£9+1)pg9+1)T . Q1)

An empirically validated choice for the learning rate in (21) is ceoy = 2/ n?. For
cc=1and =1, (21) and (11) are identical.

Using the evolution path for the update of C is a significant improvement of
(11) for small peq, because correlations between consecutive steps are exploited.
The leading signs of steps, and the dependencies between consecutive steps, play a
significant role in the resulting evolution path pé" 1 For ¢e ~ 3/n the number of
function evaluations needed to adapt a nearly optimal covariance matrix on cigar-like
objective functions becomes O(n).

As a last step, we combine (11) and (21).

3.4 Combining Rank-p-Update and Cumulation

The final CMA update of the covariance matrix combines (11) and (21), where picoy
determines their relative weighting.

CUHD) — (1 0 )CW) 1 S0 et plarnT 4 (1 _ )
Heov  N—— e’ Hecov
rank-one update

I (g+1) _ _ (q9) (6+) )\ *
. Xi:A m Xi:k m
X 2‘”( o(9) ) ( (@) ) (22)

1=

rank-y update

where
Leov = 1. Choosing picoy = lesr 1S mOst appropriate.

Ceov N min(,ucow Heff s n2)/n2'
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Equation (22) reduces to (11) for oy — oo and to (21) for peoy = 1. The
equation combines the advantages of (11) and (21). On the one hand, the information
within the population of one generation is used efficiently by the rank-p update.
On the other hand, information of correlations between generations is exploited by
using the evolution path for the rank-one update. The former is important in large
populations, the latter is particularly important in small populations.

4 Step Size Control

We know two reasons to introduce a step size control in addition to the adaptation
rule of (22) for C),

1. The optimal overall step length cannot be well approximated by (22), in particu-
lar if fies is chosen larger than one. For example, on fiphere(X) = Y i, @7, the
optimal step size o equals approximately 1 v/ fsphere(X)/n, given C(9) a T and
tef = 0 <K n [2, 17]. This dependency on p cannot be realized by (11), and is
also not well approximated by (22).

2. The largest reliable learning rate for the covariance matrix update in (22) is too
slow to achieve competitive change rates for the overall step length. To achieve
optimal performance on fpnhere With an evolution strategy, the overall step length
must decrease by a factor of approximately exp(0.202) a 1.22 within n function
evaluations, as can be derived from progress formulas [2, p.229]. That is, the
time horizon for the step length change must be proportional to n or shorter.
From the learning rate c.., in (22) it follows that the adaptation is too slow to
perform competitively on fiphere Whenever peg < m. This can be validated
by simulations even for moderate dimensions, say, n > 10 and small p.g, say,
et < 14 1nn.

To control the step size o9) we utilize an evolution path, i.e. a sum of successive
steps (see page 84). The method is denoted cumulative path length control, cumula-
tive step size control, or cumulative step size adaptation. The length of an evolution
path is exploited, based on the following reasoning.

o If the evolution path is long, the single steps are pointing to similar directions.
Loosely speaking, they are correlated. Because the steps are similar, the same
distance can be covered by fewer but longer steps in the same directions — con-
sequently the step size should be increased.

e If the evolution path is short, single steps cancel each other out. Loosely speak-
ing, they are anti-correlated. If steps annihilate each other, the step size should
be decreased.

e In the desired situation, the steps are approximately perpendicular in expectation
and therefore uncorrelated.



The CMA Evolution Strategy: A Comparing Review 87

To define “long” and “short”, we compare the length of the evolution path with its
expected length under random selection.® Under random selection consecutive steps
are independent and therefore uncorrelated. If selection biases the evolution path to
be longer then expected, o will be increased, and, vice versa. If selection biases the
evolution path to be shorter than expected, o will be decreased. In the ideal situation,
selection does not bias the length of the evolution path at all.

Because, in general, the expected length of the evolution path p&" 1 from 17
depends on its direction (compare (18)), a conjugate evolution path is constructed:

1 m(g""l) — m(g)

P = (1 - o)l + Vo (2 = oo 92 ————  (23)

where

pc(,g) € IR" is the conjugate evolution path at generation g.

¢; < 1. Again, 1/c, is the backward time horizon of the evolution path (compare
(15)). For small p, a time horizon between +/n and n is reasonable.
¢y (2 — ¢o) et 18 @ normalization constant, see (17).

-1 def

C(‘J) — B((J)D(Q)ilB(‘J)T’ where C(‘J) — B(‘]) (D(‘J))Q B((J)T is an eigende_
composition of C(g), where B is an orthonormal basis of eigenvectors, and
the diagonal elements of the diagonal matrix D(9) are square roots of the corre-
sponding positive eigenvalues.

_1
2

For C9) =1, (23) replicates (17), because Cc)
1
C9) "2 re-scales the step m9+1) — m(9) within the coordinate system given by

B(9). The single factors of the transformation C(9) ™~ 2 = B@WD® 'B®" can be
read as follows (from right to left):

= I then. The transformation

T . .

B() " rotates the space such that the columns of B(9) i.e. the principle axes of the
distribution (0, C(9)), rotate into the coordinate axes. Elements of the resulting
vector relate to projections onto the corresponding eigenvectors.

-1 . . .

D) applies a (re-)scaling such that all axes become equally sized.

B rotates the result back into the original coordinate system. This last transfor-
mation ensures that directions of consecutive steps are comparable.

1

Consequently, the transformation C(9)” ? makes the expected length of p&/™

independent of its direction, and for any sequence of realized covariance matri-

ces C;g:)o,172,4.. we have under random selection pY™" ~ A(0,T), given p&) ~

N(0,1) [6].
To update o(9), we “compare” ||p£,g+1)|| with its expected length E||A(0,1) ||,
that is

8 Random selection means that the index 7 : A (compare (3)) is independent of the value of
xz(.f’;rl) foralli=1,...,)\ egi:\=41.
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In (g+1) In (9) + Co ||p((7'g+1)H 1 (24)
g = g — |\ = — s
do \ EIN(0,T) |

where

d, ~ 1, damping parameter, scales the change magnitude of In o(9). The factor
¢, /ds is based on in-depth investigations of the algorithm [6].

E|N(0,T) || = V2T (22)/T(%) ~ /n+ O(1/n), expectation of the Euclidean
norm of a A/ (0, I) distributed random vector.

For ||p<(,g+1) | = E|INM(0,T) || the second summand in (24) is zero, and o(9) is un-

changed, while o) is increased for ||p<(,g+1)|\ > E|IN(0,T) ||, and o9 is decreased
for ||p((fg+1) || < E[JA(0,1) || The step size change is unbiased on the log scale, be-
cause E[Ino@tD 009 | = In o9 for p¥™™) ~ A(0,T). The role of unbiasedness
is discussed in Sect. 6.

We show that successive steps taken by m(9) are approximately C(9) L

conjugate. Equations (23) and (24) adapt o such that the length of pgﬁl)

2

equals approximately E||A/(0,T) |. Starting from (E|A/(0,1) )2 ~ [p¥ ™| =
T

pz(rgH) pgg+1) = RHSTRHS of (23) and assuming that the expected squared length

1
of C9) 2 (m(+Y) — m(9) is unchanged by selection we get

p@ " CO T (M) _ m@) ~0 | (25)
and T
(Cw)%pgg)) co ™ (mlot) —m®) ~0 . (26)

T 1
Given 1/ccoy > 1 and (25) we assume that pyV clo) 2 (mtD) —m@) ~ 0
and derive

(m(m _ m(g—1)>T clo! (m<g+1> _ m(g)) ~0 . 27

That is, consecutive steps taken by the distribution mean become approximately
C(g)_l-conjugate.
Because o(9) > 0, (24) is equivalent to

(5+1) — 5@ op [ &2 I o8)
g =0 X - —_— Y —
dy \ EIN(0,T) |

The length of the evolution path is an intuitive and empirically well validated good-
ness measure for the overall step length. For p.g > 1 it is the best measure to our
knowledge. Nevertheless, it fails to adapt nearly optimal step sizes on very noisy
objective functions [3].
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S Simulations
The complete algorithm of the CMA evolution strategy is summarized in Appen-

dix A, where all (default) parameter settings are given. We show single simulation
runs of the CMA-ES on the test functions from Table 1, where n = 8.2 All func-

Table 1. Convex-quadratic test functions. y = Ox, where O is an orthogonal matrix

Function cond(H) fstop Initial interval
fophere(x) = 3 30 a7 - 1 107 [0.1,0.3]"
femi(x) = 2 320 10%7=142 108 107°  [0.1,0.3]"
feigtab(x) = 3 (y7 +10* 300 v7 + 10%y7) 108 107° [5,25]™
Fovons(30) = (S 02 F 10T o 0) 200 107 (529

tions are convex-quadratic and can be written in the form f(x) = 1 x"Hx, where
H is the positive definite Hessian matrix. For each function we run an axis parallel
version and a randomly oriented version. In the axis parallel version the Hessian is
diagonal, because we choose O = I (see Table 1). For the randomly oriented version
each column of O is uniformly distributed on the unit hypersphere [12], fixed for
each run. The matrix O defines the coordinate system where the Hessian is diago-
nal. On fephere, instead of O, we set B© to an arbitrary orthogonal matrix in the
“randomly oriented” version. Furthermore, the diagonal elements of D) are set to
dy; = 10733%=1 and CO) = BODODOBO" That is, the condition number
of C(©) equals to 10° and C has to become spherical (condition number one) during
the adaptation (see Fig. 3). Further settings and initial values for the CMA-ES are
according to Fig. 7 and Table 2 in Appendix A.

By tracking eigenvalues and variances of the covariance matrix we can pursue,
whether the objective of the covariance matrix adaptation is achieved, to approxi-
mate the inverse Hessian matrix of the objective function up to a constant factor.
Eigenvalues of the Hessian correspond to the coefficients in Table 1 ({1,...,1} for
Fipheres {10571 | = 1,...,n} for fen, {1,104, 108} for feigran. and {1,108} for
f twoax)~

The runs are shown in Fig. 3—6. The bottom figures show the square root of the
eigenvalues of the covariance matrix, that is the lengths of the principal axes of the
distribution ellipsoid, corresponding to diagonal elements, d;;, of D. After about
3500, 3500, 4000, and 5000 function evaluations, respectively, the adaptation has
taken place and the axes lengths d;; reflect the square root of the inverse eigenvalues
of the Hessian, properly. Notice the striking connection between the matching of the
lengths of the axes and the slope of the function value graph. Apart from effects of

9 For exhaustive investigations of the CMA-ES on larger test function sets see [0, 8,9, 11, 12]
and for scale-up investigation up to n = 320 see [12].
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function value, sigma, axis ratio s function value, sigma, axis ratio
1071 f=6.00798940868139e-10 1070 =6.08824698723074e-10
0 1000 2000 3000 4000 0 1000 2000 3000 4000
) sqrt(diagonal of C) , sqrt(diagonal of C)
10 8 10 1
5 5
10° Al e 8
6 4
7 2
_2 —2
10 3 10 3
2 7
107 1| 107 6
0 1000 2000 3000 4000 0 1000 2000 3000 4000
sqrt(eigenvalues of C) sqrt(eigenvalues of C)
0 0
10 10
107 107
107 107
0 1000 2000 3000 4000 0 1000 2000 3000 4000
function evaluations function evaluations
0 — (0) ;
(@) fsphere, B =1 (b) fsphere, B'"’ randomly oriented

Fig. 3. Two runs on fsphere, Where the initial covariance matrix, C(O), is not spher-
ical Above: function value (thick line), o (lower graph), /cond(C) (upper graph).
Middle: \/diag(C), index annotated. Below: square root of the eigenvalues of C, i.e.
diag(D) = [d11, - ., dnn], versus number of function evaluations

different x(°) and different random seeds, the upper and lower figures are equivalent
for the axis parallel (a) and the randomly oriented version (b).

On axis parallel functions, the principal axes of the search distribution should
become axis parallel after the adaptation has taken place. The middle figures show
the square root of the diagonal elements of the covariance matrix, /c;;. The elements
\/Ci; align to the principal axes lengths d;; in the left figures. That means, the search
ellipsoid becomes axis parallel oriented (apart from subspaces of equal eigenvalues,
where the final orientation is irrelevant). The final ordering of the /c;; reflects the
ordering of the coefficients in the objective function. In contrast, the ordering of the
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function value, sigma, axis ratio
5

10
10°
107
1071 =8.02149949225233e-10

0 1000 2000 3000 4000

sqrt(diagonal of C)
2
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10°
107
107

0 1000 2000 3000 4000

sqrt(eigenvalues of C)

10°
107

0 1000 2000 3000 4000

function evaluations
(a) axis parallel foiii

0 N O O~ W N =

10

10

function value, sigma, axis ratio

o O BA NN = 0 W

=8.76551386422799¢e-10
0 1000 2000 3000 4000
sqrt(diagonal of C)
0 1000 2000 3000 4000
sqrt(eigenvalues of C)
0 1000 2000 3000 4000

function evaluations

(b) randomly oriented fou;

Fig. 4. Two runs on fen; Above: function value (thick line), o (lower graph), \/cond(C)

diag(C), index annotated. Below: square root of the eigenval-
, dny], versus number of function evaluations

(upper graph). Middle:
ues of C, i.e. diag(D) = [d11, ...

\/ci; on the randomly oriented functions is arbitrary. The course of ,/c;; depends on
the given coordinate system and therefore is remarkably different between (a) and
(b). After the adaptation has taken place, in all cases the optimum is approached as

fast as with an isotropic search distribution on fsphere-

All the data give clear evidence that the inverse Hessian is well approximated.
A measure for “well” can be derived from the runs on fsphere (Fig. 3): the final

condition number of C is smaller than five.

91
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function value, sigma, axis ratio

-10 | f=5.05423600603613e-10

0 1000 2000 3000 4000 5000

sqrt(diagonal of C)

0 1000 2000 3000 4000 5000

sqrt(eigenvalues of C)

0 1000 2000 3000 4000 5000
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(a) axis parallel fcigtab
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10°
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sqrt(eigenvalues of C)

1000 2000 3000 4000 5000
function evaluations

(b) randomly oriented feigtab

Fig. 5. Two runs on fecigtab Above: function value (thick line), o (lower graph),

v/ cond(C) (upper graph). Middle:

of the eigenvalues of C, i.e. diag(D) = [di1,...

evaluations

6 Discussion

In effect, the CMA-ES transforms any ellipsoid function into a spherical function. It
is highly competitive on a considerable number of test functions [6, 8, 9, 11,

diag(C),

index annotated. Below: square root
,dnn], versus number of function

was successfully applied to real world problems.'? We discuss a few basic design

principles.

10 To our knowledge a few dozen successful applications have been published up to now, see
http://www.icos.ethz.ch/software/evolutionary_computation/cmaapplications.pdf

] and
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" function value, sigma, axis ratio 0 function value, sigma, axis ratio
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1071 =9.906401:60640063e—10 1070 =9.48172219807718e-10
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(a) axis parallel fiwoax (b) randomly oriented fiwoax

Fig. 6. Two runs on fiwoax Above: function value (thick line), o (lower graph),
v/ cond(C) (upper graph). Middle: \/diag(C), index annotated. Below: square root
of the eigenvalues of C, i.e. diag(D) = [di1,...,dnn], versus number of function
evaluations

Change Rates

A great deal of differences between continuous domain EDAs with multiple depen-
dencies and the CMA-ES can be found in the change rates of distribution parameters.
We refer to a change rate as the expected parameter change per sampled search point,
given a certain selection situation. The CMA-ES separately controls change rates for
the mean value of the distribution, m, the covariance matrix, C, and the step size, 0.

e The change rate for the mean value m, given a fixed sample distribution, is deter-
mined by the parent number and the recombination weights. The larger piog, the



94 N. Hansen

smaller the possible change rate of m is. This is consistent with most EDAs. In-
terestingly, an explicit control parameter for the change rate for m is proposed in
the Stochastic Hill Climbing with Learning by Vectors of Normal Distributions
[18] and in the Population Based Incremental Learning for continuous domain
(PBILc) [20], and even an adaptive control parameter is proposed in [21].

e The change rate of the covariance matrix C is explicitly controlled by the learn-
ing rate c.., and detached from parent number and population size. The learning
rate reflects the model complexity. An incremental update of distribution para-
meters from the selected population, similar to CMA, was already proposed in
Population Based Incremental Learning (PBIL) [1] and expanded to continuous
domain [5, 18, 20]. In contrast to CMA, these algorithms do not consider covari-
ances. In EMNA,, [15], both, mean and covariances are incrementally updated,
but the change rates are equal for m and C.

e The change rate of the step size o is independent from the change rate of C. The
chosen time constant ensures a fast change of the overall step length in particular
with small population sizes.

Invariance

Invariance properties of a search algorithm denote identical behavior on a set of ob-
jective functions. Invariances are highly desirable: they imply uniform performance
on classes of functions and therefore allow for generalization of empirical results.
Translation invariance should be taken for granted in continuous domain optimiza-
tion. Further invariances to linear transformations of the search space are desirable.
The CMA-ES and the EMNA approaches exhibit the following invariances.

e Invariance against order preserving (i.e. strictly monotonic) transformations of
the objective function value. The algorithms only depend on the ranking of func-
tion values.

e Invariance against angle preserving transformations of the search space (rotation,
reflection, and translation) if the initial search point(s) are transformed accord-
ingly.

e Scale invariance if the initial scaling, e.g. o(?), and the initial search point(s) are
chosen accordingly.

e Invariance against any invertible linear transformation of the search space, A, if
the initial covariance matrix C(©) = A1 (A‘l)T, and the initial search point(s)
are transformed accordingly.

In our opinion, invariance should be a fundamental design criterion for any search
algorithm.

Stationarity

An important design criterion for a stochastic search procedure is unbiasedness of
variations of object and strategy parameters [13, 12]. Consider random selection,
e.g. the objective function f(x) = rand to be independent of x. The population
mean is unbiased if its expected value remains unchanged in the next generation, that
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is E[m(g‘m | m(9) ] = m(9). For the population mean stationarity under random
selection is a rather intuitive concept. In the CMA-ES, stationarity is respected for
all parameters in (2). The distribution mean m, the covariance matrix C, and In ¢ are
unbiased. Unbiasedness of In o does not imply that ¢ is unbiased. Actually, under
random selection, E[J(ngl) | oAl ] > g9, compare 24).1

For variances (or step sizes) a bias toward increase or decrease will entail the
danger of divergence or premature convergence, respectively, whenever the selection
pressure is low. Nevertheless, on noisy problems a properly controlled bias toward
increase, even on the log scale, can be beneficial.

7 Summary and Conclusion

We have compared the CMA evolution strategy with EDAs that estimate the com-
plete covariance matrix of a multi-variate normal search distribution. We summarize
identified key points.

e Estimation principle: Most EDAs estimate the distribution parameters from a set
of selected points. The CMA estimates them from a set of selected steps. Us-
ing steps is much less prone to premature convergence and supports explorative
search behavior.

e Step size control: Methods to estimate or adapt the covariance matrix do not
achieve good overall step lengths. In EDAs, step size control is usually absent,
making a potential increase of the overall step length almost impossible. In the
CMA-ES, the adaptation of the covariance matrix is complemented with step
size control. The adjustment of the step size is based on a different adaptation
principle. Cumulative path length control often adapts nearly optimal step sizes
usually leading to considerably larger step lengths. This improves convergence
speed and global search capabilities at the same time.

e Population size, adaptation, and change rates: Choosing the population size X is
always a compromise. Small A lead to faster convergence, and large A help to
avoid local optima. To achieve a fast learning scheme for a covariance matrix

1. the population size A must be comparatively small (see end of Sect. 3.2) and
2. an adaptation procedure must be established, where parameters are updated
rather than estimated from scratch in every generation.

Appropriate time constants for change rates of the population mean, of the co-
variance matrix, and of the overall step length are essential for competitive per-
formance. In the CMA-ES, learning rates can be adjusted independently and only
the change rate of the population mean is (indirectly) associated with the popula-
tion size A (via peg). Determining different change rates for different parameters
by adjusting learning rates is an open issue in EDAs.

11 Alternatively, if (28) would have been designed to be unbiased for ‘9%, this would pre-

(9+1)

sumably imply E [ Ino o ] < Ino'9, to our opinion a less desirable possibility.
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Invariances: To generalize empirical performance results, invariance properties

are invaluable. Many EDAs use the given coordinate system to estimate the dis-
tribution, and are consequently not invariant to rotations of the search space.
The CMA-ES is invariant under search space rotation and exhibits further invari-
ances. Admittedly, a rotation invariant method cannot exploit separability of the
objective function efficiently.'?

Based on these key points the CMA can improve the performance on ill-conditioned
and/or non-separable problems by orders of magnitude, leaving the performance on
simple problems unchanged. In conclusion, the CMA evolution strategy is a state-
of-the-art continuous domain evolutionary algorithm which is widely applicable and
quasi parameter free.
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A Algorithm Summary: The (pw, A)-CMA-ES

Figure 7 outlines the complete algorithm, summarizing (2), (3), (17), (22), (23), and
(28). Symbols used are:

xfng) € R", for k = 1,..., A. Sample of X search points of generation g + 1.

N (m, C), multi-variate normal distribution with mean m and covariance matrix

C.
xz(.?;l), i-th best point out of x(1g+1), ... ,xf\gﬂ) from (29). The index 4 : A de-
notes the index of the i-th ranked point and f(x(ff;rl)) < f(Xé?;rl)) < - <
(9+1)
SR
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Set parameters

Set parameters A, jt, Wi=1...u, Co, o, Ce, fhcov, aNd Ceov to their default values accord-
ing to Table 2.

Initialization

Set evolution paths pf,o) =0, p£°> = 0, and covariance matrix C(©) = 1.
Choose step size o'®) € IR, and distribution mean m®) € IR™ problem dependent.!

For generation g = 0,1, 2, ..., until stopping criterion met:

Sample new population of search points
2
x| N(m<9>, (a@) c<9)) fork=1,...,\ (29)
Selection and recombination

mtD — Zwl (g41), Zw =1, w; >0 (30)

Step size control

Mm@+ _ @

pf,ngl) =(1-co (9) + \/TMH C(g)_7 —_— (€20)
o(9)

o) — 5@ oy [ Eo [ P i [ 32)
EN(O,D) |

Covariance matrix adaptation

(9+1) _ m(9)

m
B = (1= cpl® + e = e =B )
C(9+1 (1 _ CCOV)C(Q) + ;COV <p£g+1) (g+1)7T + 5(h(9+1))c(9)>
(J+1) (g)
+ Ccov ( Mcov) Zl w; OP T (34)
K2

"The optimum should presumably be within the cube m® + 20 (1,...,1)". If
the optimum is expected to be in [0, 1]™ (initial interval) we may choose the initial search
point, m©®, uniformly randomly in [0, 1]™, and o(® = 0.5. Different search intervals
As; for different variables can be reflected by a different initialization of C, in that the
diagonal elements of C® obey c(0> (As;)?

Fig. 7. The (uw, \)-CMA evolution strategy. Symbols: see text
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1. . . .
Leff = ( le wzz) is the variance effective selection mass. It holds 1 < peg <

L.
C(g)*% def B(g)D(g)*lB(g)T’ where C(9) = B(g)D(g)D(g)B(g)T is an eigende-

composition of the symmetric, positive definite covariance matrix C9). Columns
of B(¥) are an orthonormal basis of eigenvectors, B(Q)TB(Q) = B(g)B(g)T =1
Diagonal elements of the diagonal matrix D) are square roots of the corre-
sponding positive eigenvalues. The matrix D(9) can be inverted by inverting its
diagonal elements.

EIN(O.I) || = V2T (5 /T(§) = Vi (1 = 45 + 515)-

, lp D] 1
h((.;g-’_l) _ 1 lf \/ﬁ < (15 + m)EHN(O,I) H
0 otherwise

the Heaviside function 1™ stalls the update of pt? in (17) if |[p¥ Y] is

large. This prevents a too fast increase of axes of C in a linear surrounding, i.e.
when the step size is far too small. This is useful when the initial step size chosen
is far too small or when the objective function changes in time.

5(/1,(,9“)) =(1- h,(;g+1))cc(2 — ¢.) < 1is of minor relevance and can be set to 0.

In the (unusual) case of hf,g + 0, it substitutes for the second term from (33)
in (34).

OP :IR" — IR"*"™,x + xx 7, denotes the outer product of a vector with itself.

Default Parameters

The (external) strategy parameters are A, i, Wi=1...us Cos Aos Cos fhcov,> AN Ceoy. De-
fault strategy parameters values are given in Table 2. An in-depth discussion of most
parameters is given in [ | 2]. The default parameters of (37)—(39) are in particular cho-
sen to be a robust setting and therefore, to our experience, applicable to a wide range
of functions to be optimized. We do not recommend changing this setting. In con-
trast, the population size ) in (35) can be increased by the user.'® If the A-dependent
default values for 1 and w; are used, the population size A has a significant influ-
ence on the global search performance [8]. Increasing A usually improves the global
search capabilities and the robustness of the CMA-ES, at the price of a reduced con-
vergence speed. The convergence speed decreases at most linearly with .

Implementation

We discuss a few implementational issues.

13 Decreasing ) is not recommended. Too small values regularly have strong adverse effects
on the performance.
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Table 2. Default Strategy Parameters, where preg = ﬁ >land Y wi=1
Selection and Recombination:
A=4+4|3Inn|, p=|[N2], (35)
In(pp+1) —Ins )
w; = ~ fori=1,...,u, (36)
i (n(u+1) —Inj)
Step size control:
Meff + 2 Meff — 1
o= T2 g, =1+2max |0, /EIZ 1) +¢, 37
N+ feff + 3 * < n+1 G

Covariance matrix adaptation:

4
c = s cov — Me 38
“ nta M Hott (38)
1 1 eff — 1
oy = %2 <1 - 7) min(l, _ e =1 a8 ) (39)
Hecov (n + \/5)2 Hecov ('I’l + 2) + Meff

Multi-variate normal distribution: The distribution N(m(g),a(g)QC(g)) in (29) is

1
distributed as m9) 4 (@ BUWDWA(0,1) (see C9 2 above for the defini-
tions). This can be used to generate the random vector on the computer, because
N(0,T) is a vector with independent, (0, 1)-normally distributed components
that can be easily sampled on a computer.
Strategy internal numerical effort: In practice, the re-calculation of B(9), D(9) and

1
C(9) "2 does not need to be done until max(1, |1/(10nceoy)|) generations. For
reasonable c.., values, this reduces the numerical effort due to the eigende-
composition from O(n?) to O(n?) per generated search point. On a Pentium
4, 2.5 GHz processor the overall strategy internal time consumption is roughly
4(n + 2)% x 1078 seconds per function evaluation [14].

Flat fitness: In the case of equal function values for several individuals in the popu-
lation, it is feasible to increase the step size (see lines 92-96 in the source code
below).

Constraints: A simple, and occasionally sufficient, way to handle any type of bound-

aries and constraints is re-sampling unfeasible ng 1 until they become feasible.

B MATLAB Code

001 function xmin=purecmaes

002 % CMA-ES: Evolution Strategy with Covariance Matrix Adaptation for
003 % nonlinear function minimization.

004 %

005 % This code is an excerpt from cmaes.m and implements the key parts
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of the algorithm. It is intendend to be used for READING and
UNDERSTANDING the basic flow and all details of the CMA xalgorithmx.
Computational efficiency is sometimes disregarded.

o0 o oe

§ mmmm - Initialization ---------------------~-~-~-~-~—~—~—~—~—~—
% User defined input parameters (need to be edited)

strfitnessfct = ’felli’; % name of objective/fitness function

N = 10; % number of objective variables/problem dimension

o

xmean = rand(N,1); objective variables initial point

o

sigma = 0.5; coordinate wise standard deviation (step size)
stopfitness = 1le-10; % stop if fitness < stopfitness (minimization)
stopeval = 1e3xN"2; % stop after stopeval number of function evaluations
% Strategy parameter setting: Selection

lambda = 4+floor(3+log(N)); % population size, offspring number

mu = floor (lambda/2) ; % number of parents/points for recombination

weights = log(mu+l)-log(l:mu)’; % muXone array for weighted recombination

% lambda=12; mu=3; weights = ones(mu,1); % uncomment for (3_I,12)-ES

weights = weights/sum(weights) ; % normalize recombination weights array
mueff=sum(weights) "2/sum(weights.”2); % variance-effective size of mu

% Strategy parameter setting: Adaptation

cc = 4/ (N+4) ; % time constant for cumulation for covariance matrix
cs = (mueff+2)/ (N+mueff+3); % t-const for cumulation for sigma control
mucov = mueff; % size of mu used for calculating learning rate ccov
ccov = (1/mucov) * 2/(N+1.4)"2 + (l-1/mucov) =x % learning rate for
((2«mueff-1)/((N+2) "2+2xmueff)) ; % covariance matrix
damps = 1 + 2smax(0, sqgrt((mueff-1)/(N+1))-1) + cs; % damping for sigma

o

% Initialize dynamic (internal) strategy parameters and constants

pc = zeros(N,1); ps = zeros(N,1); % evolution paths for C and sigma

B = eye(N); % B defines the coordinate system

D = eye(N); % diagonal matrix D defines the scaling
C = B+Dx (BxD) ' ; % covariance matrix

eigeneval = 0; B and D updated at counteval == 0

chiN=N"0.5%(1-1/(4%N)+1/(21xN"2)) ; expectation of

| IN(0,I)|| == norm(randn(N,1))

o0 o0 oo

counteval = 0; % the next 40 lines contain the 20 lines of interesting code
while counteval < stopeval

o

% Generate and evaluate lambda offspring
for k=1:lambda,

arz(:,k) = randn(N,1); % standard normally distributed vector
arx(:,k) = xmean + sigma * (BxD x arz(:,k)); % add mutation % Eq. 29
arfitness (k) = feval (strfitnessfct, arx(:,k)); % objective function call
counteval = counteval+l;

end

% Sort by fitness and compute weighted mean into xmean

[arfitness, arindex] = sort(arfitness); % minimization
xmean = arx(:,arindex(1l:mu))+weights; % recombination % Eq. 30
zmean = arz(:,arindex(1l:mu))*weights; % == sigma”-1+D"-1%B’* (xmean-xold)

% Cumulation: Update evolution paths
ps = (1-cs)*ps + (sgrt(csx(2-cs)+mueff)) x (B * zmean); % Eq. 31
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hsig = norm(ps)/sqrt(1-(1l-cs)” (2+counteval/lambda))/chiN < 1.5+1/(N-0.5);
pc = (1l-cc)*pc + hsig * sgrt(cc*(2-cc)+mueff) * (BxDxzmean) ; % Eqg. 33

% Adapt covariance matrix C
C = (l-ccov) % C

+ ccov % (1/mucov) x (pc*pc’

% regard old matrix % Eq. 34
% plus rank one update
+ (l-hsig) % ccx(2-cc) x Q)
+ ccov % (l-1/mucov) ... % plus rank mu update
* (BxDxarz(:,arindex(1l:mu)))
x diag(weights) % (BxD#arz(:,arindex(l:mu)))’;

% Adapt step size sigma

sigma = sigma % exp((cs/damps) « (norm(ps)/chiN - 1)) ; % Eq. 32
% Update B and D from C
if counteval - eigeneval > lambda/ccov/N/10 % to achieve O(N"2)
eigeneval = counteval;
C=triu(C)+triu(C,1)’; % enforce symmetry
[B,D] = eig(C); % eigen decomposition, B==normalized eigenvectors
)

D = diag(sgrt(diag(D))
end

; % D contains standard deviations now

o

% Break, if fitness is good enough

if arfitness(1l) <= stopfitness
break;

end

% Escape flat fitness

if arfitness(l) == arfitness(min(l+floor (lambda/2), 2+ceil (lambda/4)))
sigma = sigma * exp(0.2+cs/damps) ;
disp (’escape flat fitness’);

end

disp ([num2str (counteval) ’: ' num2str(arfitness(1))]);

o

end % while, end generation loop

disp ([num2str (counteval) ’: ' num2str(arfitness(1l))]);
xmin = arx(:, arindex(1l)); % Return best point of last generation.

o0

Notice that xmean is expected to be even
% better.

function f=felli (x)
N = size(x,1); if N < 2 error('dimension must be greater one’); end
f=1le6.” ((0:N-1) /(N-1)) * x.72; % condition number le6
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Summary. We describe a framework for program evolution with an EDA-based approach.
In this framework, the probability distribution of programs is estimated using a Bayesian net-
work, and individuals are generated based on the estimated distribution. Considering that a
dependency relationship of nodes in a program tree is explicit, i.e. the dependency relation-
ship is strong between a parent node and its child node in a program expressed as a tree
structure, we have chosen a Bayesian network as the distribution model of programs.

In order to demonstrate the effectiveness of our approach, this chapter shows results of
comparative experiments with Genetic Programming. Thereafter, we discuss how Estimation
of Distribution Programming works and the transitions of the evolved programs that are the
forte of our methods. We also analyze the performance of a hybrid system which combines
Estimation of Distribution Programming and Genetic Programming.

1 Introduction

In this chapter, we describe a program evolution method based on a probabilistic
model and investigate the behavior of the proposed system.

A well-known technique for a program search is Genetic Programming (GP)[9].
Although various types of crossover and mutation operators were proposed for GP!
there have been very few basic algorithms comparable to GP. We use a program
evolution method which has different mechanisms from GP, and show that some of
the GP difficulties can be solved effectively”.

This chapter proposes Estimation of Distribution Programming (EDP) based on
a probability distribution expression using a Bayesian network. EDP is a search

1 For example, uniform crossover and one-point crossover [16], homologous crossover
and size fair crossover [10], depth-dependent crossover [8] [7], macromutation [2], self-
adaptive crossover [ 1], recombinative guidance crossover [6], and so on.

2 It is well known that GP search space is significantly constrained [5], and that the bloat
control is difficult [11]. Other GP difficulties have been reported in solving a royal tree
problem [ 18] and a max problem [17].

K. Yanai and H. Iba: Estimation of Distribution Programming: EDA-based Approach to Program Generation, StudFuzz
192, 103-122 (2006)
www . springerlink.com (© Springer-Verlag Berlin Heidelberg 2006
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method that uses an EDA-like approach to solve GP-applicable problems. In EDA,
it is important to assume a gene locus dependency relationship. In a program tree
this relationship is strong between the parent node and its child node, so that it is
expected that the EDA approach will be effective for solving tree structure search
problems [21]. We compare the performance of EDP and GP on several benchmark
tests, and discuss the trends of problems that are the forte of EDP.

We also discuss the performance of a hybrid system which consists of EDP and
GP. Applying the hybrid system of EDP and GP to a function regression problem,
we discover some important tendencies in the behavior of this hybrid system. The
hybrid system is not only superior to pure GP in a search performance but also have
interesting features in program evolution. More tests reveal how and when EDP and
GP compensate for each other.

2 Estimation of Distribution Programming

2.1 Algorithm of EDP

We give an outline of the proposed algorithm. EDP starts with a randomly gener-
ated population. Secondly, each individual in the current population is evaluated by
a fitness function and assigned its fitness value. Next, superior individuals with high
fitness values are selected, and a new distribution is estimated based on those se-
lected individuals (see Sect. 2.3). We use the elitist strategy and then individuals are
generated by using a newly acquired distribution (see Sect. 2.4). The estimation of
distribution and the program generation are repeated until a termination criterion is
met. Figure | indicates a pseudo code of EDP.

Initial Population

According to function node generation probability Pr and terminal node generation
probability Pr (1 — Pr), initial M individuals are generated randomly, where M is

Let P be a population, S a set of selected individuals, D a distribution, E's an
elite size, and M a population size.

1. P := Generate_Programs_Randomly

2. While (True)

Evaluate_Individuals(P)

If (termination_criterion) Return(P)

S := Selection(P)

D := Estimate _Distribution(S)

P := Elite_Selection(P, Es)

P :=P + Generate_Individuals(D, M — Eg)

P NN R W

Fig. 1. Pseudo code of EDP
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the population size. However, if tree size limitation is reached, terminal nodes are
generated. Let F' be the function node set and let T" be the terminal node set. For

@, .9

example, the probabilities of function node “+” and terminal node “z” are given:

If tree size limitation is not reached,

o« ” _ 1
{P(X +7) 7PF><|f| o
P(X = “a”) :PTxm
If tree size limitation is reached,
P(X: “_"_’7) :O (2)
P(X — zcxn) — |Tl“|

EDP Operator

Superior individuals with high fitness values are selected within sampling size S,
and a new distribution is estimated based on those selected individuals. We use the
elitist strategy, i.e. elite F'g individuals are selected from the population in the order
of fitness superiority and copied to the new population, where Eg is the elite size.

Then the remaining population, that is M — E's individuals, is generated by using
a newly acquired distribution. This new distribution is considered better than the
previous one because it samples superior individuals in the population.

2.2 Distribution Model

We use a Bayesian network as the distribution model of programs. Values of prob-
abilistic variables are symbols for each node in the program tree. Assign the index
numbers to each node of evolving programs as in Fig. 2, the range of probabilistic
variable X; is the symbols of node i, thatis, X; € T U F'.

For instance, assume F' = {+, —, %, /} and T = {x1, 22} ,

2
P(X5:“+”|X2:“/”):? (3)

10O #1 # # #e

N ® W x@x @

2 30) ( . ‘
‘R}S} 6@ ®@2@ ®@i® ®-\® @-

Fig. 2. Program tree Fig. 3. Efficient network topology




106 K. Yanai and H. Iba

means that the conditional probability that node 5 becomes “ + 7 is % if node 2 is
“/”. C; is the set of probabilistic variables which X is dependent on. In the former
example, C5 = {X>}.

The topology of a Bayesian network is fixed during evolution, and only condi-
tional probability tables are learned by sampling superior individuals in a population.
Let d,, 4. be the depth of a Bayesian network. We assume that the max arity of node
symbols is 2 in this chapter. Although EDP cannot generate a larger program than a
complete binary tree with a depth d,, 4, it can generate a smaller one.

There are several efficient topologies of a Bayesian network as indicated in Fig. 3.
The simplest one, that is, #1 in Fig. 3, is used for our experiments. The topology of a
Bayesian network is tree-like and it is the same as program’s topology. In this model,
the probability of each node in a program tree is dependent on only its parent node
symbol. This is based on the assumption that a dependency relationship is strong
between the parent node and its child nodes.

2.3 Estimation of Distribution

The probability distribution is updated incrementally [3] as follows:

Pi(X;=2|Ci=c)=1—n)P(X, =2|Ci=c¢)+nP(X; =z|C; =¢) (4)

where P,(X; = z|C; = ¢) is the distribution of the ¢th generation and P(X; =
x|C; = c) is the distribution estimated based on superior individuals in the (¢ 4 1)th
population, 7 is the learning rate which means dependence degree on the previous
generation. The closer 7 is to 1, the less a change of distribution is. Especially in case
of n = 0, the distribution is updated based on the population at only the (¢ + 1)th
generation without referring to the past distribution.

P(X; = z|C; = ¢) is estimated as follows. At first, Sg individuals are sam-
pled by tournament selection with tournament size 1¢q;,, and maximum likelihood

estimation is performed based on these selected individuals. Therefore,

#(X1 = l’,Ci = C)
#(Ci =c)

where #(X; = z,C; = c) is the number of selected individuals that node ¢ is x
when its parent node is ¢, and #(C; = c¢) is the number of selected individuals that
the parent node of node i is c.

In most cases, a program tree of a selected individual is smaller than the Bayesian
network. Therefore, probabilistic variables in deeper position have fewer samples.

P(X; =z|Ci=c) = ®)

2.4 Program Generation

At first, the acquired distribution P;(X; = z|C; = ¢) is modified applying Laplace
correction [4] by

P/(X; =z|C; =c¢) = (1 — o) Pi(X; = 2|C; = ¢) + aPyias(X; = z|C; = ¢) (6)
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where « is a constant that expresses the Laplace correction rate, Py;qs(X; = 2|C; =
c) is the probability to bias distribution. For instance, if it is already known that
Xo = “+7 is desirable, adjusting Py;os(X; = x|C; = c¢) as the probability of
X5 = “+47 is high would lead to more effective evolution. In this way, the system can
incorporate preknowledge by Laplace correction. For our experiments, the Laplace
correction rate « is decided as

a = 0.01(|F| + |T)) @)

This modification also makes all occurrence probabilities of node symbols posi-
tive. Next, according to P{(X; = x|C; = ¢), node symbols are decided in sequence
from root to terminals. If the size of generated tree reaches d,;, 4, only terminal node
symbols are selected. Therefore, a larger program tree than the Bayesian network is
not generated.

3 Performance of EDP

3.1 Comparative Experiments with GP

The performance was compared for EDP and GP in standard benchmark problems,
i.e. a max problem [17], a boolean 6-multiplexer problem [9], and a function regres-
sion problem [9]. Let prog; be a program tree of the ¢th individual in a population. If
the program tree has some variables, prog; (X ) represents the value obtained by sub-
stituting X. If the program tree has no variable, prog; represents the value returned
by the program tree. Let fit; be the fitness value of the ith individual.

Max Problem

In a max problem, the purpose is to create the maximum value, based on the assump-
tion that T = {0.5} and F' = {+, «}, and the maximum tree depth is 7. For a tree
produces the largest value, the + nodes must be used with 0.5 to assemble subtrees
A with the value 2.0. These can then be connected via *, as shown in Fig. 4. Hence,
65536 is the optimum solution *. The fitness value for ith individual is the value of
tree, that is,

fit; = prog; (®)

The parameters of EDP and GP are indicated in Table 1.

Figure 5 and Table 2 show the results of a comparative test using EDP, GP and a
random search. The vertical axis represents the max fitness value in a population at
each generation: fit,,q,, 1.€.

fitmae = I@Iéz}v}fi fit; )

3 The maximum node size for the depth of 7 is 127 in a complete binary tree. Within the
node size of 127, it is proved that the maximum value is not 65536, but 123596.1914.
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Fig. 4. The maximum value by a tree of limited depth

Table 1. Parameters for a max problem

Common parameters for EDP and GP

M population size

Es: elite size

F': function node sets

T': terminal node sets

Pr: generation probability of function node
Pr: generation probability of terminal node
Tree size limitation in initializing population

200

5
{+,#}
{0.5}

BN

3
max depth="7

EDP parameters
«: Laplace correction rate 0.03
Pyiqs: the probability to bias distribution m = %
n: learning rate 0.2
Sg: sampling size 200
Teap: tournament size for sampling 20
Tree size limitation max depth =7
GP parameters
Phs: mutation probability 0.1
Pc: crossover probability 0.9
Typ: tournament size for GP operator 5
Tree size limitation max depth =7

The mean and the standard deviation for 100 runs are indicated in Fig. 5. Note that
they are not a mean fitness value and a standard deviation of a population. The solu-
tion in an evolutionary computing is given by an individual who has the maximum
fitness value in a population. Therefore, system performances should be compared
in maximum fitness values. It can be seen that EDP method produces a higher mean
fitness value at each generation and also higher performance on the average. In ad-
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Mean of max fitness Standard deviation of max fitness
values at each generation values at each generation
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Fig. 5. Comparative results with a max problem

dition, the standard deviation of EDP, i.e. the deviation due to the search runs, is so
small that the likelihood of the search being successful is higher.

As presented in Table 2, EDP was able to find the optimal solution in all runs,
whereas only 34 runs (out of 100 runs) resulted in evolving the optimal solution with
GP. These results suggest intrinsic difference between EDP and GP.

Next, the experiment was carried out with the addition of “0” to the terminal node
set. In this problem “0” is completely useless and harmful as a node, and produces
non-functional code segments, i.e. introns. As shown in Fig. 6, although the perfor-
mance of GP was low, with EDP algorithm the most suitable solution was found
successfully.

Boolean 6-Multiplexer Problem

Consider the problem of learning the Boolean 6-multiplexer function Fg,y,,
{0,1}°* — {0,1}. The input to the Boolean 6-multiplexer function consists of 2
address bits and 22 data bits, where 6 = 2 + 22. The value of the Boolean multi-

Table 2. Percentage of runs finding the optimal solution

Method Max problem Multiplexer problem Max problem adding
“0” terminal node
EDP 100 23 86
GP 34 82 0
Random 0 0 0
Mean of max fitness Standard deviation of max fitness
values at each generation values at each generation

35000

EDP 30000

25000

20000

15000

10000

5000

GP 0
1oogeneration

60000

40000

20000

20 20 60 80 Togieneration

Fig. 6. Comparative results when “0” terminal node was added with a max problem
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plexer function is the Boolean value (0 or 1) of the particular data bit that is singled
out by the 2 address bits of the multiplexer. Formally,

Femp(ao, ay,do, dy,da, d3) = daig, 4q, (10)

The node set is T' = {xo, x1, T2, T3, T4, 5}, I = {and, or, not}. The parame-
ters of EDP and GP are indicated in Table 3. There are 26 = 64 possible combina-
tions of the 6 arguments, and we use the entire set of 64 combinations of arguments
as the fitness cases for evaluating fitness. That is, we do not use sampling. The fitness
values are simply the number of fitness cases for which the individual tree returns
a correct Boolean value. Let X; be an input data set, i.e. X; = {:cjl, . ,:cjﬁ},
where x;, is the kth digit of the number j. Then, the fitness value is given with the
following formula:

63
fiti =y match(progi(X;), Fomp(X;)) (11)
J=0
where
Table 3. Parameter for a boolean 6-multiplexer problem
Common parameters for EDP and GP
M population size 500
FE's: elite size 5
F': function node sets {and, or,not}
T': terminal node sets {zo, 21,22, 23,24, %5}
Pr: generation probability of function node g
Pr: generation probability of terminal node g
Tree size limitation in initializing population max depth = 6
EDP parameters
a: Laplace correction rate 0.09
Pyia.: the probability to bias distribution T = 5
7n: learning rate
Sg: sampling size 200
Teap: tournament size for sampling 20
Tree size limitation max depth = 6
GP parameters
Phs: mutation probability 0.1
Pc: crossover probability 0.9
Typ: tournament size for GP operator 5

Tree size limitation max depth =6
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1 ifa=
match(a,b) = { ifa =0 (12)

0 else

Figure 7 shows the results of a comparative test using EDP, GP and a ran-
dom search. We cannot confirm the superiority of EDP with this experiment. In
6-multiplexer problem, EDP could not search more efficiently than GP. However,
EDP was superior to a random search.

Mean of max fitness Standard deviation of max fitness
values at each generation values at each generation
5
60 EDP

55 EDP

50
i Random

asffl - T

.. GP

°~ Random

40

35

eneration eneration
1007 1007

20 40 60 80 20 40 60 80

Fig. 7. Comparative results with a boolean 6-multiplexer problem

Function Regression Problem

Consider a function regression problem. f,;; is the function to be approximated. The
fitness value is given with the following formula:

30
fitness = 1000 — 502 [prog(X;) — fov; (X;)] (13)
Jj=1
where
X;=02(-1) (14)

i.e. training examples are the real values at intervals of 0.2 from 0 to 5.8. Objective
functions are

A fopj(7) = (2 — 0.32) sin(27) cos(3x) + 0.012” (15)
)

B : fopj(x) = x cos(z) sin(z)(sin?(x) cos(x) — 1) (16)
C: fopj(x) = 2% cos(z) sin(z)e ™ (sin?(x) cos(x) — 1) (17

which are plotted in Fig. 8. Objective function C is cited from [19]. Although B is
obtained from simplification of C, B is more difficult to search. A is our original
function and the most difficult of the three objective functions.

As indicated in Figs. 9, 10 and 11, EDP’s performance was worse than GP’s in
a function regression problem. This result seems to suggest that EDP is not always
superior. However, as we can see later, the EDP operator plays an inevitable role
in combination with GP. The effectiveness of the hybrid system of EDP and GP is
described in Sect. 4.
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Fig. 9. Comparative results with objective function A

Mean of max fitness Standard deviation of max fitness
values at each generation values at each generation
........ P eereaer et s
.................. G e GP
14
600 0
120
500
EDP
400 EDP
S T == —  Random
300} T
AT . Random
- :
720 20 60 g0 Top generation Too deneration
Fig. 10. Comparative results with objective function B
Mean of max fitness Standard deviation of max fitness
values at each generation values at each generation
900 o
850
800
750 )
EDP 4 T
7001 5 omemm Random (N el GP
650 =TT
- ~—~
600} /.7 ! * =~ Random

£DP. eneration
20 20 0 80 1op generation T~ g 700 7

Fig. 11. Comparative results with objective function C

3.2 Summaries of EDP Performance

EDP was able to search for a solution effectively in a GP-hard problem, i.e. a max
problem. On the other hand, in both a boolean 6-multiplexer problem and a function
regression problem, it has been shown that EDP’s performance was worse than GP’s.
In order to conclude that the differences of these values are statistically significant
and reliable, not only mean but also standard deviation and sample size (100) should
be taken into consideration. We used Welch’s test for the obtained experimental re-
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Table 4. Parameter for a function regression problem

Common parameters for EDP and GP

M population size 1000

Es: elite size 5

F': function node sets {+,—, %, /,cos,sin}

T': terminal node sets {z,0.05,0.10,0.15,...,1.00}

Pr: generation probability of function node 0.8

Pr: generation probability of terminal node 0.2

Tree size limitation in initializing population max depth = 6
EDP parameters

a: Laplace correction rate 0.27

Prigs: the probability to bias distribution m = 2—17

7n: learning rate 0.2

Ss: sampling size 200

Teqp: tournament size for sampling 20

Tree size limitation max depth =6

GP parameters

Pyr: mutation probability 0.1

Pc: crossover probability 0.9

Typ: tournament size for GP operator 5

Tree size limitation max depth = 6

Table 5. P-values on Welch’s test

Problem EDP and GP EDP and Random
Max problem 3.49 x 10725 1.10 x 107340
Multiplexer problem  4.53 x 107%'  2.52 x 10759
Regression A 253 x 107" 1.80 x 1077
Regression B 8.52x 1073 544 x 1071
Regression C 6.96 x 107" 7.03 x 10710

sults. By means of Welch’s test, it can be judged whether 2 data sets are samples
from the same statistical population or not. As a result of Welch’s test with 5% sig-
nificance level, the differences between EDP and GP at the 100th generation were
significant in all cases. Statistically speaking, the null hypothesis that data in EDP
and in GP were sampled from the same statistical population was rejected (the prob-
ability that the null hypothesis is correct is less than 5%). Welch’s test concluded that
the differences were significant. Table 5 indicates the p-values obtained in the test.
This seems to indicate that EDP works intrinsically differently from the traditional
GP.
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In a max problem, in order to produce better solutions, it is necessary for EDP to
increase the generation probability of “+” from the depth 1 to 4, and the probability
of “+” at the depth 6. In the early stage of the evolution, the generation probability
of “+” is expected to become high in a shallow part. Then, more frequently subtrees
identical to (+ (+ 0.5 0.5) (4 0.5 0.5)) (subtree A shown in Fig. 4) are produced in
a deep part, the higher the generation probability of “x”” becomes.

In a boolean 6-multiplexer problem, a positional restriction of EDP operator
seems to have caused the worse performance. Using the 3-multiplexer function
F3,,p, it is easy to compose the 6-multiplexer function in the following way:

FGmp(aO»aladOad17d27d3) =
(or (and Fimp(a1,do,d1) (not ag))
(and Fzpmp(a1,ds, ds) ap)) (18)

Furthermore, it has been reported that the 11-multiplexer function and the 6-multipl-
exer function were easily acquired by GP with the 6-multiplexer and the 3-multiplexer
structures respectively [9]. An individual equivalent to the 3-multiplexer function
would be assigned a high fitness value, i.e. 32 + 16 = 48. Therefore, the composi-
tion of the 3-multiplexer functions is so important for the effective evolution of the
6-multiplexer function that they are expected to prosper in a population. Note that
useful subtrees, i.e. so-called building blocks, cannot shift their position with EDP
because the probability distribution is dependent on the position within a tree, while
GP crossover can move them to an arbitrary position. In other words, EDP imposes a
positional restriction. Consequently, EDP could not always use the generated struc-
ture of the 3-multiplexer function efficiently in order to compose the 6-multiplexer
function. This is the reason why EDP operator failed to generate better individuals
in some cases.

4 Hybrid System of EDP and GP

4.1 Algorithm of Hybrid System

We research the hybrid system which consists of EDP and GP. Figure 12 indicates a
pseudo code of our hybrid system.

The most important parameter in this algorithm is “r”, it decides the system be-
havior and the ratio of GP to EDP in an individual generation, called the hybrid ratio.
Through the combination of EDP and GP, the difficulty indicated in Sect. 3.2 might
be overcome. However, it is not obvious whether GP gains anything from hybridiza-
tion. In this section, we test the system performance in a function regression problem
changing the hybrid ratio 7 from 0 to 1.

4.2 Performance Difference Due to the Hybrid Ratio

Figures 13, 14, and 15 show the mean of max fitness values for 100 runs. Note that it
is not a mean fitness value of a population, but a mean value of the maximum fitness
value.
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Let P be a population, S a set of selected individuals, D a distribution, r a
hybrid ratio, E's an elite size, and M a population size.

1. P := Generate_Programs_Randomly

2. While (True)

Evaluate_Individuals(P)

If (termination_criterion) Return(P)

S := Selection(P)

D := Estimate _Distribution(S)

P := Elite_Selection(P, Es)

P :=P + Crossover&Mutation(P, rM — Eg)
P :=P + Generate_Individuals(D, (1 — r) M)

e

Fig. 12. Pseudo code of the hybrid system
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Fig. 13. Results for objective function A

Mean of max fitness Mean of max fitness
values at each generation values at the 500th generation
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Fig. 14. Results for objective function B

Figure 16 shows the frequency of runs in which the maximum fitness value at the
500th generation is over z, that is,

100

F(z) = Z 6(x < f10uk,500) (19)

k=1

where f, 1 500 is the maximum fitness value in a population of the 500th genera-

tion at the kth run, and

1 :z<a
d(z<a)= 0 'm;a (20)
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Mean of max fitness Mean of max fitness
values at each generation values at the 500th generation
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Fig. 16. F'(z): frequency of max fitness at the 500th generation greater than z, with objective
functions A and B

Figures 13, 14, 15, and 16 indicate the similar tendency in each case. Although
the = 1.0 system which is pure GP, demonstrated the best performance in younger
generations, gradually hybrid systems overtook pure GP one after another. The
“overtaking” was conspicuous when » = 0.3 or r = 0.4. At the 500th genera-
tion, the performance of the r = 0.5 system was the best in all cases. The system
performances at the 500th generation reached a peak at » = 0.5, and got worse as
the hybrid ratio was biased.

As aresult of Welch’s test with 5% significance level, the differences between the
r = 0.5 system and pure GP at the 500th generation were significant in all cases. The
p-values obtained in the test for objective function A, B, and C were 2.57 x 1077,
1.23 x 1074, and 1.52 x 10~27 respectively. In the case of objective function C,
although the difference in values was slight, standard deviation was negligible (see
Fig. 16); Welch’s test concluded that the differences were significant.

Mean cannot give adequate information for system performances, hence we
showed Fig. 16. Figure 16 demonstrates that the hybrid system is also superior to
pure GP in the success rate of a search. For instance, in the case of A, the probabili-
ties that the maximum fitness value at the 500th generation is over 700 are -5 with

100
r = 0.5 and % with pure GP respectively.

4.3 Analysis of the Behavior of EDP

This section investigates the hybrid system’s performance, changing the hybrid ratio
r at each generation. In Fig. 13, until the 50th generation, the higher the GP ratio of
the system is, the better its performance. Therefore, the system that has a high GP
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Table 6. Systems with changing r, where i is the generation number

System r
A: classical hybrid r=0.3
B: classical hybrid r=0.5
C: pure GP r=1.0
D: linear increasin, r= L
: & ~ 500,
E: linear decreasing r=1-— 500
F: random r is a random value at each generation

1.0 11 < 205
G: switching r= { !

0.3 112> 205

1.0 14 < 40
H: switching r= { !

0.5 11> 40

ratio in younger generations and decreases the ratio later is expected to have higher
performance.

Comparative experiments were carried out with 8 variations of systems, as shown
in Table 6. The objective function is the first one used in Sect. 3.1, i.e. (15). In the
system D, the GP ratio is linearly increased from 0, at the initial generation, to 1.0, at
the 500th generation, whereas it is linearly decreased in the system E. In the system
G, the ratio is changed from 1.0 to 0.3 at the 205th generation. Note that the r = 0.3
system overtook the pure GP at the 205th generation (see Fig. 13). In the system H,
the ratio is tuned in the same manner as G. Therefore, H and G are supposed to be
the top favorites among these systems.

Figures 17 and 18 show the results of comparative experiments. Surprisingly,
system A overtook G. As a result of Welch’s test with 5% significance level, the
differences were significant. The p-value obtained in the test was 0.026. This result
means that population states of A and G are far different in spite of close performance
at the 205th generation. In other words, EDP’s behavior before the 205th generation
likely has a good influence later. Although B also overtook H, the result was not
significant statistically. The p-value obtained in the test for system B and H was
0.364.

Another interesting result is that system D was superior to all other systems,
especially E. As a result of Welch’s test with 5% significance level, the differences
were significant. The p-value was 0.0473. Although it was expected that D would be
worse than E, judging from Fig. 13, the result was quite the opposite. This point is
evidence that EDP functions well in early generations.

In order to test the hypothesis that the probability distribution memorizes the past
EDP’s work, the system of = 0 was simulated. This system estimates distribution
without referring to the past distribution (see Sect. 2.3). Objective function A was
used.



118 K. Yanai and H. Iba

Mean of max fitness

values at the 500th generation
800

780
760
740

720

700
680

660
A B C D E F G H

Fig. 17. Mean of max fitness values at the 500th generation
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Fig. 19. System of n = 0

As indicated in Fig. 19, the characteristic of the hybrid system was kept. The
“overtaking” still took place and the » = 0.5 system was the best. Therefore, the
past information accumulated in the probability distribution does not cause the high
performance of the hybrid system.

5 Discussion

The previous experimental results revealed the following aspects of EDP:

e EDP’s search was intrinsically different from GP’s.
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e EDP’s search was successful in a max problem with the addition of “0” to the
terminal node set.
Subtrees were not easily shifted in EDP.
The hybrid system outperformed the pure GP in later generations.
The hybrid system with linearly increasing hybrid ratio gave the best perfor-
mance.

EDP does not refer to the previous generation directly, but abandon all individu-
als in previous generation and generate new individuals based on the distribution at
an every generation. Thus, a random search is regarded as EDP with an uniform dis-
tribution. In 6-multiplexer problem and a regression problem, although EDP could
not search more efficiently than GP, EDP was superior to a random search. There-
fore, the probability distribution could be estimated effectively. The estimation of a
distribution was done to some extent for the program search.

In the r = 0.5 hybrid system, the updating times of the maximum fitness values
at each generation of the EDP operator and the GP operator are counted respec-
tively. Surprisingly, the EDP operator hardly contributes to construction of the best
individual directly, and only the GP operator does. In addition, as shown in Fig. 17,
system D, which has linearly increasing hybrid ratio, gave the best performance of
all. System D cannot benefit from EDP in later generations. These results suggest
individuals constructed by EDP have more multifarious sub-structures in an early
stage, and these various structures are put together in later generations. It is GP that
can build better individuals, but not EDP.

The hybrid algorithm was tested in a function regression problem where the be-
havior of the EDP algorithm was bad. We also research how the hybrid system de-
grades in a max problem where previously EDP behaved properly. Figure 20 shows
the performance of the hybrid system in a max problem. Although the performance
of the hybrid system was a little worse than pure EDP’s, the search by the hybrid
system was successful.

Mean of max fitness
values at each generation

60000 EDP
40000 Hybrid System: r=0.5

20000

20 40 60 80 Jogieneration

Fig. 20. Performance of the hybrid system in a max problem
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6 Conclusion

This paper presented a new EDA-based approach, i.e. EDP, to program evolution and
have shown the experimental results with EDP and GP.

When “0” was added to a set of terminal nodes, EDP performed much better
than GP. We cannot always know what are effective nodes for problems before. This
result suggests that EDP can perform evolution skillfully even if harmful nodes are
included in a node set. Thus, it is expected that the occurrence probability of this
harmful node is kept lower by the EDP method due to the obtained distribution.
This indicates that EDP can control introns effectively, while GP may suffer from
increasing introns and allow them to cause a bloat [10].

The experimental results clearly indicated that EDP worked effectively in early
generations and contributed to later high performance. It turned out that pure GP
could not generate enough kinds of subtrees in early generations to build better so-
Iutions. On the other hand, useful subtrees are not easily shifted by EDP to another
position in the tree. We conclude that hybridization helps EDP and GP compensate
for their defects and build a better evolutionary system.

Future and Related Works

Probabilistic Incremental Program Evolution (PIPE) [19] was used to perform a pro-
gram search based on a probabilistic model. However, PIPE assumes the indepen-
dence of program nodes and differs from our approach using a Bayesian network in
this assumption. The merits of having probabilistic dependency relationship are as
follows:

1. Because an occurrence probability of a node symbol is dependent on its parent
node, estimation and generation are serial from a parent node to a child. There-
fore, it can derive and generate building blocks.

2. The past dominant structure can survive after switching the probability distribu-
tion based on a parent node symbol.

On the other hand, optimization using a Bayesian network is much researched,
e.g., EBNA (Estimation of Bayesian Network Algorithm) [12] and EGNA (Estima-
tion of Gaussian Networks Algorithm) [13]. Recently, EDA has been extended with
reinforcement learning [14]. We are also currently working on EDA application for
a gene expression-based classification [15]. However, their application is limited to
fixed length array search problems, not program search.

It is not clear how EDP really works in the hybrid system. In future works, the
details of EDP’s facilities in early generations will be researched. We are also inter-
ested in the control rule of the hybrid ratio » and the robust behavior shown in our
experiments.

The Bayesian network in our probabilistic model has the simplest topology, i.e.
only parent-child links exist. The model selection is one of the most important prob-
lems. As the number of dependent variables per a variable increases, the required
memory size is exponentially increasing. The adequate sampling size for updating a
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distribution is also proportional to the exponential of the number of dependency links
per a node. Therefore, the trade-off exists between the performance and calculation
costs. Our future research will be on the study of the system performance with other
topologies. We also plan to improve EDP in order to shift subtrees within a program
tree, independently from the hybridization with GP.

This chapter discussed the program evolution on the premise that program repre-
sentation consists of a single parse tree. However, the validity of the representation
depends on the problem class. Without recursion and memory, the expressiveness of
a parse tree is not Turing-complete. It is suggested that the different choice of rep-
resentation will result in the different program evolution [20]. The extension of the
program representation should be considered for the sake of establishing a proba-
bilistic model-based evolution.
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Summary. EDAs have been shown to perform well on a wide variety of single-objective
optimization problems, for binary and real-valued variables. In this chapter we look into the
extension of the EDA paradigm to multi-objective optimization. To this end, we focus the
chapter around the introduction of a simple, but effective, EDA for multi-objective optimiza-
tion: the naive MIDEA (mixture-based multi-objective iterated density-estimation evolution-
ary algorithm). The probabilistic model in this specific algorithm is a mixture distribution.
Each component in the mixture is a univariate factorization. As will be shown in this chapter,
mixture distributions allow for wide-spread exploration of a multi-objective front, whereas
most operators focus on a specific part of the multi-objective front. This wide-spread explo-
ration aids the important preservation of diversity in multi-objective optimization. To further
improve and maintain the diversity that is obtained by the mixture distribution, a specialized
diversity preserving selection operator is used in the naive MIIDEA. We verify the effective-
ness of the naive MIDEA in two different problem domains and compare it with two other
well-known efficient multi-objective evolutionary algorithms (MOEAs).

1 Introduction

In this chapter, we apply the EDA paradigm to multi-objective optimization. We
put the focus on a specific EDA, which we call the naive mixture-based multi-
objective iterated density-estimation evolutionary algorithm (naive MIDEA). The
naive MIDEA is an instance of the MIDEA framework for multi-objective opti-
mization using EDAs. We will show how the naive MIDEA can be implemented for
both binary as well as real problem variables.

The remainder of this chapter is organized as follows. In Sect. 2, we first dis-
cuss multi-objective optimization. In Sect. 3 we develop the MIDEA framework
and specifically focus on the naive MIDEA instance. In Sect. 4 we validate the
performance of MIDEAs on eight test problems and compare the results with two
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other state-of-the-art MOEAs and discuss our findings. We present our conclusions
in Sect. 5.

2 Multi-objective Optimization

Multi-objective optimization differs from single-objective optimization in that we
have a multiple of objectives that we wish to optimize simultaneously without an
expression of weight or preference for any of the objectives. Often, these multiple
objectives are conflicting. Such problems naturally arise in many real world situa-
tions. An example of conflicting objectives that often arises in industry, is when we
want to minimize the costs of some production process while at the same time we
also want to minimize the pollution caused by the same production process. Such
conflicting objectives give rise to a key characteristic of multi-objective optimization
problems, which is the existence of sets of solutions that cannot be ordered in terms
of preference when only considering the objective function values simultaneously.
To formalize this notion, four relevant concepts exist. Assuming that we have m ob-
jectives f;(x),i € M ={0,1,...,m— 1}, that, without loss of generality, we seek
to minimize, these four concepts can be defined as follows:

1. Pareto dominance
A solution z is said to (Pareto) dominate a solution y (denoted x > y)
HE (Vi € M : fi(@) < fi(y) A (Zi€ M fi@) < fily))
2. Pareto optimal
A solution z is said to be Pareto optimal iff ~Jy : y > «
3. Pareto optimal set
The set Pg of all Pareto optimal solutions: Pg = {z|-Jy : y > x}
4. Pareto optimal front
The set Pr of all objective function values corresponding to the solutions in

Ps: Pr = {(fo(z), fi(z),..., fm-1(x))|z € Ps}

The Pareto optimal set Pg is a definition of all trade-off optimal solutions in
the parameter space. The Pareto optimal front P is the same set of solutions, only
regarded in the objective space. The size of either set can be infinite, in which case
it is impossible to find the optimal set or front with a finite number of solutions.
Regardless of the size of Pg or P, it is commonly accepted that we are interested
in finding a good representation of these sets with a finite number of solutions. The
definition of a good representation, is difficult however. The reason for this is that
it is desirable to obtain a diverse set of solutions as well as it is desirable to obtain
a front or set that is close to the optimal one. Furthermore, it depends on the map-
ping between the parameter space and the objective space whether a good spread
of the solutions in the parameter space is also a good spread of the solutions in the
objective space. However, it is common practice [9] to search for a good diversity of
the solutions along the Pareto front. The reason for this is that a decision-maker will
ultimately have to pick a single solution. Therefore, it is often best to present a wide
variety of trade-off solutions for the specified goals.



Multi—objective Optimization with the Naive MIDEA 125

The notion of searching a space by maintaining a population of solutions is char-
acteristic of evolutionary algorithms (EAs), which makes them natural candidates
for multi-objective optimization aiming to cover a good approximation of the Pareto
optimal front. A strongly increasing amount of research has indeed been done in
the field of evolutionary multi-objective optimization in recent years [9] with very
promising results.

3 The Naive MIDEA

To obtain EDAs that are well-suited for multi-objective optimization, we propose
to instantiate two steps in the framework. Firstly, to stimulate the preservation of
diversity along the Pareto front, we instantiate the selection mechanism by using a
diversity preserving truncation selection operator. Secondly, we partially instantiate
the search for a probability distribution to use by enforcing the use of mixture distri-
butions.

3.1 Diversity-preserving Truncation Selection
Background and Motivation

Selection in evolutionary algorithms is meant to select the better solutions of the
population to perform variation with. In multi-objective optimization however, the
notion of “a better solution” has two sides to it. On the one hand we want the so-
lutions to be as close to the Pareto optimal front as possible. On the other hand, we
want a good diverse representation of the Pareto optimal front. A good selection op-
erator in a MOEA must thus exert selection pressure with respect to both of these
aspects.

Selection Pressure towards the Pareto Optimal Front

In a practical application, we have no indication of how close we are to the Pareto
optimal front. To ensure selection pressure towards the Pareto optimal front in the
absence of such information, the best we can do is to find solutions that are dominated
as little as possible by any other solution.

A straightforward way to obtain selection pressure towards non-dominated solu-
tions is therefore to count for each solution in the population the number of times it
is dominated by another solution in the population, which is called the domination
count of a solution [3, 16]. The rationale behind the domination count approach is
that ultimately we would like no solution to be dominated by any other solution, so
the less times a solution is dominated, the better. A lower domination count is prefer-
able. Using this value we can apply truncation selection or tournament selection to
obtain solid pressure towards non-dominated solutions.

Another approach to ensuring a preference for solutions that are dominated as
little as possible, is to assign a preference to different domination ranks [12, 17].
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The solutions that are in the ;' rank are those solutions that are non-dominated if
the solutions of all ranks ¢ < j are disregarded. Note that the best domination rank
contains all solutions that are non-dominated in the complete population. A lower
rank is preferable. Using this value we can again apply for instance either truncation
selection or tournament selection. Similar to the domination count approach, this
approach effectively prefers solutions that are closer to the set of non-dominated
solutions. It has been observed that in practice the difference between domination-
counting and the domination-ranking schemes in practice is only very small [5].

Selection Pressure towards Diversity

In most multi-objective selection schemes, diversity is used as a second compari-
son key in selection. This prohibits tuning the amount of selection pressure towards
diversity to the amount of selection pressure towards getting close to the Pareto op-
timal front. An example is the approach taken in the NSGA-II in which solutions
are selected based on their non-domination rank using tournament selection [12]. If
the ranks of two solutions are equal, the solution that has the largest total distance
between its two neighbors summed over each objective, is preferred. This gives a
preference to non-crowded solutions.

The explicit selection pressure towards diversity may serve more than just
the purpose of ensuring that a diverse subset is selected from a certain set of
non-dominated solutions. If we only apply selection pressure to finding the non-
dominated solutions and enable diversity preservation only to find a good spread
of solutions in current Pareto front, we increase the probability that we only find a
subset of a discontinuous Pareto optimal front. Selection pressure towards diversity
will most likely be too late in helping out to find the other parts of the discontinu-
ous Pareto optimal front as well. Therefore, we may need to spend more attention
on diversity preservation during optimization and perhaps even increase the amount
of diversity preservation. Another reason why we may need to increase the selection
pressure towards diversity is that a variation operator is used that can find many more
non-dominated solutions, which could cause a MOEA to converge prematurely onto
subregions of a Pareto optimal front or onto locally optimal sets of non-dominated
solutions, unless the population size is increased. However, given a fixed number
of evaluations, this can be a significant drawback in approaching the Pareto optimal
front. This problem can be alleviated by placing more emphasis on selection pressure
towards diversity and by consequently reducing the effort in the selection pressure
towards getting close to the Pareto optimal front. By doing so, the variation opera-
tor is presented with a more diverse set of solutions from which a more diverse set
of offspring will result. Furthermore, solutions that are close to each other will now
have a smaller joint chance that they will both be selected, which improves the ability
to approach the Pareto optimal front since premature convergence is less likely.

Combining Selection Pressures

Concluding, to ensure pressure towards the Pareto optimal front and towards diver-
sity at the same time, the selection procedure must be provided with a component
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that prefers a diverse selection of solutions. However, since the goal is to preserve
diversity along the Pareto front, rather than to preserve diversity in general, the selec-
tion on the basis diversity should not precede selection on the basis of getting close
to the Pareto optimal front.

Selection Operator

In the selection operator that we propose, the ratio of the amount of selection pres-
sure towards the Pareto optimal front and the amount of selection pressure towards
diversity can be tuned using a single parameter § to better fit the specific needs of
the problem solver. In most selection operators this ratio is fixed beforehand. Ulti-
mately, the selection operator selects |77 | solutions, where n is the population size
and 7 € [%, 1] is the selection percentile. Just as there are two forms of selection
pressure to be exerted by the selection operator as discussed above, there are two
phases in our selection operator.

1. In the first phase, the domination count [ 16] of all solutions is first computed as
mentioned above. Subsequently, a pre-selection ST is made of [§7n | solutions
(6 € [1;1]) using truncation selection on the domination count (select the best
|07n] solutions). However, if the solution with the largest domination count to
end up in S by truncation selection has a domination count of 0, all solutions
with a domination count of 0 are selected instead, resulting in |ST| > |§7n].
This ensures that once the search starts to converge onto a certain Pareto front,
we enforce diversity over all of the available solutions on the front.

2. In the second phase, the final selection & is obtained from S?T. To do so, a
nearest neighbor heuristic is used to promote diversity. First, a solution with an
optimal value for a randomly chosen objective is deleted from S* and added to
S. Note that the choice of objective is arbitrary as the key is to find a diverse
selection of solutions. To stimulate this, we can select a solution that is optimal
along any objective. For all solutions in S¥, the nearest neighbor distance is
computed to the single solution in S. The distance that we use is the Euclidean
distance scaled to the sample range in each objective. The solution in S with
the largest distance is then deleted from S and added to S. The distances in
ST are updated by investigating whether the distance to the newly added point in
S is smaller than the currently stored distance. These last two steps are repeated
until |7n] solutions are in the final selection.

An example application of this operator is presented in Fig. 1. This selection
operator has a running time complexity of O(n?). This is no worse than the minimum
of O(n?) for computing the domination counts which is required in all MOEAs.

3.2 Mixture Distributions

A mixture probability distribution is a weighted sum of £ > 1 probability distrib-
utions. Each probability distribution in the mixture probability distribution is called
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fi

Fig. 1. An example of the application of the diversity preserving selection operator with n =
22,6 = 2,7 = 3, which gives [67n] = 11 and [tn] = 6. Objectives fo and f1 should
both be minimized. The dominated solutions are black whereas the non-dominated solutions
are white. The solutions that belong to the preselection are outlined. The solutions that are
finally selected are numbered in the order in which they are chosen from the preselection.
Here objective fo has been chosen to initiate the selection process

a mixture component. Let Z = (Zy, Z1,...,Z;_1) be a vector for all random vari-
ables involved in the EDA (i.e. Z; is a random variable associated with the i'" prob-
lem variable). A mixture probability distribution for random variables Z is then de-
fined as follows:

k—1
pr(2) =Y BiPY(Z) M
1=0

where 5; > 0,7 € {0,1,...,k — 1}, and Zf:_ol B; = 1. The [3; with which the
mixture components are weighted in the sum are called mixing coefficients.

The Benefit of Mixture Distributions

The general advantage of mixture probability distributions is that a larger class of
independence relations between the random variables can be expressed than when
using non-mixture probability distributions since a mixture probability distribution
makes a combination of multiple probability distributions. In many cases, simple
probability distributions can be estimated to get accurate descriptions of the data in
different parts of the sample space. By adding the k£ “simple” probability distribu-
tions into the mixture probability distribution, an accurate description of the data in
the complete sample space can be obtained. This allows for the modelling of quite
complex dependencies between the problem variables. By using mixture probability
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distributions, a powerful, yet computationally tractable type of probability distribu-
tion can be used within EDAs, that provides for processing complicated interactions
between a problem’s variables.

For multi-objective optimization, mixture distributions can have a specific ad-
vantage that renders them particularly useful. The specific advantage is geometrical
in nature. If we for instance cluster the solutions as observed in the objective space
and then estimate a simpler probability distribution in each cluster, the probability
distributions in these clusters can portray specific information about the different re-
gions along the Pareto optimal front that we are ultimate interested in multi-objective
optimization. Each simpler probability distribution to be used in each cluster can for
instance be a factorized probability distribution as is used in most EDAs. Drawing
new solutions from the resulting mixture probability distribution gives solutions that
are more likely to be well spread along the front as each mixture component deliv-
ers a subset of new solutions. The use of such a mixture distribution thus results in
a parallel exploration along the current Pareto front. This parallel exploration may
very well provide a better spread of new solutions along the Pareto front than when
a single non-mixture distribution is used to capture information about the complete
Pareto front. In Fig. 2 an example is given of what the result of clustering the se-
lected solutions in the objective space typically looks like. The effect of splitting up
the solutions along the Pareto front, thereby facilitating parallel exploration along
the front, can clearly be seen.

70 T

T T
Population ©
Final selection &

65 - -

55 |-

50 -

fi

45 -

30 |-

25 I I I I I I I I I
25 30 35 40 45 50 55 60 65 70 75

fo

Fig. 2. An example of the breaking up the front of selected solutions using clustering. Objec-
tives fo and f1 should both be minimized. The four individual clusters that are defined in this
example are outlined
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Estimating Mixture Distributions

From the previous subsection describing the specific advantages of mixture prob-
ability distributions for multi-objective, we already have a straightforward manner
to estimate mixture probability distributions from data using clustering. To actually
build the mixture distribution from the simpler distributions, the mixing coefficients
(; must still be chosen. This can be done in various ways. A common approach is
to set 3; to the proportion of the size of the i'" cluster with respect to the sum of
the sizes of all clusters. For the specific application of multi-objective optimization
however, we propose to assign each cluster an equally large mixing coefficient, i.e.
B; = 1/k. The reason for this is that we want to distribute the solutions as good as
possible along the Pareto front. Giving each cluster an equal probability of producing
new solutions maximizes parallel exploration along the Pareto front. The only thing
left to choose then is which clustering algorithm to use. Exact algorithms for parti-
tioning (i.e. clustering into mutually disjoint subsets) exist [20], but the running times
for these algorithms are of no practical use for building EDAs. What we require, is
a fast approximate assessment of clusters such that we can estimate a relatively sim-
ple probability distribution in each cluster in a good way. Computationally efficient
clustering algorithms exist that provide useful results [20]. Examples are the leader
algorithm and the K -means algorithm.

A different approach to estimating a mixture probability distribution from data
is to compute a maximum likelihood estimation. To this end, the Expectation Maxi-
mization (EM) algorithm [14] can be used. The EM algorithm is a general iterative
approach to computing a maximum likelihood estimate. Although the EM algorithm
is a valid approach to obtaining mixture probability distributions, it tends to be time-
consuming, especially if the dimensionality of the data increases. Moreover, since we
expect the specific benefit of mixture probability distributions to reside in dividing
the data on the basis of its geometry in the objective space, using the EM algorithm
seems less attractive because it builds a model completely based on the data as given
in the parameter space.

3.3 Elitism

If elitism is used, the best solutions of the current generation are copied into the next
generation. Alternatively, an external archive of a predefined maximum size n, may
be used that contains only non-dominated solutions. This is actually similar to using
elitism in a population, because this archive can be seen as the first few population
members in a population for which the size is at least n,, and at most n,, + n,, where
ny, is the size of the population in an archive-based approach and n,, is the size of the
external archive.

Elitism plays an important role in multi-objective optimization since many so-
lutions exist that are all equally preferable. It is important to have access to many
of them during optimization to advance the complete set of non-dominated solu-
tions further. An ideal variation operator is capable of generating solutions that are
closer to the Pareto optimal front, but also spread out across the entire current set
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of non-dominated solutions as well as possibly outside it to extend the diversity of
the set of non-dominated solutions even further. However, obtaining new and diverse
non-dominated solutions is hard, especially as the set of non-dominated solutions ap-
proaches the Pareto optimal front. If a non-dominated solution gets lost in a certain
generation, it may take quite some effort before a new non-dominated solution in its
vicinity is generated again. For this reason, elitism is commonly accepted [24, 36] to
be a very important tool for improving the results obtained by any MOEA.

Elitism can be used within the MIDEA framework in a straightforward manner
because truncation selection is already used (Sect. 3.1). An elitist MIDEA selects
the best | 7n | solutions using the diversity-preserving truncation selection operator.
Subsequently, only the worst n — | 7n| solutions are replaced with new offspring that
result from sampling the estimated probability distribution. The best | 7n | solutions
that were selected, are thus kept in the population.

3.4 The MIDEA Framework

The MIDEA variant that we use in our experiments is described in pseudo-code in
Fig. 3.

] MIDEA

1 Initialize a population of n random solutions and evaluate their objectives
2 Iterate until termination
2.1 Compute the domination counts

2.2 Select | 7n | solutions with the diversity preserving selection operator

2.3 Estimate a mixture probability distribution P""""(Z)

2.4 Replace the non-selected solutions with new solutions drawn from P""( Z)
2.5 Evaluate the objectives of the new solutions

Fig. 3. Pseudo-code for the MIDEA framework

The Naive MIIDEA Instance
Probability Distributions in Each Cluster

In Sect. 3.2 we have argued that mixture distributions can play an important role in
multi-objective optimization. Moreover, we have argued that a simple, but effective
approach to estimating mixture distributions is to cluster the selected solutions on
the bases of the geometry of their objective values. We therefore suggest keeping
the probability distributions to be estimated in each cluster as simple as possible.
This suggestion leads to the choice of using univariate factorized probability distri-
butions in each cluster in the naive MIIDEA. In a factorized probability distribution,
each random variable is regarded separately, meaning that a probability distribution
is estimated for each random variable separately. For discrete random variables, this
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amounts to repeatedly counting frequencies and computing proportions for a single
random variable. For real-valued random variables this implies estimating for in-
stance the mean and variance of a one-dimensional normal distribution repeatedly.
The mathematical formulation of the univariate factorization is:

-1
Pmnvmim‘c( Z) — H p( Zi) 2)
=0

Since in each cluster we thus disregard all dependencies between random vari-
ables, we call this specific MIDEA instance naive in analogy with the well-known
naive Bayes classifier. However, the clusters are expected to already provide a large
benefit for multi-objective optimization. Moreover, algorithms such as UMDA [27]
and the compact GA [19] that use same probability distribution as in (2) (without
clustering) have provided good results on many interesting single-objective opti-
mization problems. Hence, we already expect good optimization behavior for the
naive MIDEA.

Clearly, non-naive instances of MIIDEA can be made directly by estimating more
involved probability distributions in each cluster, such as Bayesian factorized prob-
ability distributions. Although we will present the results of some experiments with
such more involved probability distributions for comparison reasons, we refer the
interested reader for more details to the literature on either these probability dis-

tributions (e.g. [7, 10, 25]) or to the relevant literature on single-objective EDAs
(e'g‘ [ 9 9 9 o b 9 b b b b ])'
Clustering Algorithm

Since we are interested in obtaining useful results in as little time as possible, we
suggest the use of a fast clustering algorithm. Possibly this adds to the naiveness of
our naive MIDEA instance, but other clustering algorithms are easily implemented
if required.

The algorithm that we propose to use is the leader algorithm. The leader algo-
rithm is one of the fastest partitioning algorithms [20]. The use of it can thus be
beneficial if the amount of overhead that is introduced by factorization mixture se-
lection methods is desired to remain small. There is no need to specify in advance
how many partitions there should be. The first solution to make a new partition is
appointed to be its leader. The leader algorithm goes over the solutions exactly once.
For each solution it encounters, it finds the first partition that has a leader being closer
to the solution than a given threshold ;. If no such partition can be found, a new
partition is created containing only this single solution. To prevent the first partitions
from becoming quite a lot larger than the later ones, we randomize the order in which
the partitions are inspected. The asymptotic running time for finding the first parti-
tion with a leader closer than T is the same as going over all partitions and finding
the closest partition. Therefore, we prefer to find the closest partition.

One of the drawbacks of the (randomized) leader algorithm is that it is not in-
variant given the sequence of the input solutions. Most partitioning algorithms do
not have this property, but not as strongly as the leader algorithm. Therefore, to be
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sure that the ordering of the solutions is not subject to large repeating sequences of
solutions, we randomize the ordering of the solutions each time the leader algorithm
is applied.

Pseudo-Code

The naive MIDEA is an instance of the general MIDEA framework. Figure 4 shows
how the naive MIDEA can be obtained from the general MIDEA framework by
using a specific instantiation of lines 2.3 and 2.4.

naive MIDEA
(instantiation of steps 2.3 and 2.4 of the general MIDEA framework)
1 (% ¢, ..., c*~ 1) — LeaderAlgorithm(T )
2fori—0tok —1do
2.1 8; — 1/k
22forj«—0tol—1do
2.2.1 Estimate a one-dimensional probability distribution P*7 (Z;) for
random variable Z; from the solutions in the i*® cluster (i.e. ¢?)
3fori— |Tn|ton —1do
3.1 Initialize a new solution 2
3.2 Choose an index ¢ € {0,1,...,k — 1} with probability 3,
33forj —O0tol—1do
3.3.1 Draw a value for z; from the one-dimensional probability distribution
P9 (Z;) associated with the ¢*"-cluster
3.4 Add z to the set of new offspring.

Fig. 4. Pseudo-code for the naive MIDEA

4 Experiments

In this section we compare MIDEA instances to two well-known state-of-the-art
MOEAs that aim at obtaining a diverse set of solutions along the Pareto front. The
SPEA algorithm by Zitzler and Thiele [38] and the NSGA-II algorithm by Deb et
al. [12] showed superior performance compared to most other MOEAs [12, 36]. The
test suite we used consists of eight multi-objective optimization problems. We var-
ied the dimensionality of these problems to get a total of sixteen problem instances
to test the MOEAs on. The multi-objective optimization problems are described in
Sect. 4.1. The performance measures we use to score the results of the algorithms
with are described in Sect. 4.2. In Sect. 4.3 we present our experiment setup. In
Sect. 4.4 we discuss the obtained results. Finally, in Sect. 4.5 we give a short sum-
mary for the EA practitioner.
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4.1 Multi-objective Optimization Problems

Our test suite consists of problems with real-valued variables as well as with binary
variables. To make a clear distinction between these two cases, we write real-valued
variables as y; and binary variables as x;. In both cases we have used four different
optimization problems and two different dimensionalities for these problems to ob-
tain a total test suite size of 16 problems. In the following we give a brief description
of the problems in our test suite.

Real-valued Multi-objective Optimization Problems

A variety of test problems for real-valued variables has been proposed that may cause
different types of problems for multi-objective optimization algorithms [11, 13, 36].
From this set of problems, we have selected three problems that are commonly used
to benchmark multi-objective optimization algorithms. The fourth real-valued test
problem is a new test problem we have designed to test the performance of MOEAs
if there are strong interactions between the problem variables. These problems rep-
resent a spectrum of multi-objective problem difficulty as they make it difficult for a
multi-objective optimization algorithm to progress towards the global optimal front
and to maintain a diverse spread of solutions due to properties such as discontinuous
fronts and multi-modality. The problems with real-valued variables that we use in
our experiments are all defined for two objectives. An overview of our test problems
is given in Fig. 5.

BT,

Function BT differs from the other three functions in that it has multivariate (linear)
interactions between the problem variables. Therefore, more complex factorizations
are required to exploit these interactions, whereas the other functions are well-suited
to be optimized using the univariate factorization. The Pareto optimal front is given

by fi(y) =1 —yo.
Z DTy

Function ZDT, was introduced by Zitzler et al. [36]. It is very hard to obtain the
optimal front f1(y) = 1—/yo in ZDT 4 since there are many local fronts. Moreover,
the number of local fronts increases as we get closer to the Pareto optimal front. The
main problem that a MOEA should be able to overcome to optimize this problem is
thus strong multi-modality.

ZDTy

Function ZDTg was also introduced by Zitzler et al. [36]. The density of solutions
in ZDTg increases as we move away from the Pareto optimal front. Furthermore,
ZDTg¢ has a non-uniform density of solutions along the Pareto optimal front as there
are more solutions as fo(y) goes up to 1. Therefore, a good diverse spread of solu-
tions along the Pareto front is hard to obtain. The Pareto front for ZDT is given by

fily) =1— fo(y)? with fo(y) € [ —e~1/3;1].
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l Name \ Definition \ Range ‘
Minimize (fo(y), f1(y))
Where o fo(y) = yo .
BT, e fily) =1-fo(y) + e [‘73; ’
o oo (1<i<l)
(105421212, wi)
Minimize (fo(y), f1(y))
Where o fo(y) = yo sl
T « fily) =7 (1-/22) .?12[1 <5715)]
oy =1+10(0 - 1)+ 3iZ] (47 — L0cos(4my:))
Minimize (fo(y), f1(y))
Where o fo(y) = 1 — e~ *¥0sin® (67y0) ey €[0;1]
ZDT .fl(y):7(1,<%y>)2> 0<i<i)
er=14o(xw)
Minimize (fo(y), f1(y))
Where o fo(y) = yo
-fl(y)=v(1—w> svo 0l
1P, oy =1+10(1— 1)+ 2] (¥7 — 10cos(4ry,)) | ® ¥i € [=5;5]
Such that e cos(—l%)fl(y) - Sin(_%)ﬁ)(y) z (lse<h
40| sin(57 [sin(—£5) f1(y)+
cos(—g5) fo(¥)])I°

Fig. 5. Real-valued multi-objective optimization test problems

CTP;

Function CTP~ was introduced by Deb et al. [13]. Its Pareto optimal front differs
slightly from that of ZDT, but otherwise shares the multi-modal front problem. In
addition, this problem has constraints in the objective space, which makes finding
a diverse representation of the Pareto front more difficult since the Pareto front is
discontinuous and it is hard to obtain an approximation that has a few solutions in
each feasible part of that front.

Binary Multi-objective Optimization Problems

In Fig. 6, we have specified four binary multi-objective optimization problems. Next
to being binary, these problems are also multi-objective variants of well-known com-
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Name Definition ‘
Maximize (fo(x), fi(x),..., fm-1(x))

Where o Vicam : fi(x) = E;":_Ol sgn q LGk ® ka

MS

1if x>0
Maximum L4 Sgn(ﬂﬁ) = 0if =0
Satisfiability -l1ifz<0

e ®|01 ®(0 1 ®0 1
—1/10 0[00 1101
Maximize (Jo(@), 1 (@), -, fn1(2))

KN Where [ ) VigM : fl(ar:) = Zé;t Pij:Ej
(Knapsack)

Such that e V;caq : Zz;}) Wijzj < ¢
Minimize (fo(x), f1i(x),..., fm-1(x))
sC Where o Vieaq : fi(z) = 52470 Cijay

. j=0
(Set Covering)

Such that e VigM : V0§j<r : 2_:10(147/)]]@$k Z 1
Minimize (fo(z), fi(z),..., fm-1(z))
Where o Viea : fi(z) = Y'_ Wijz;
Minimal
( > Such that e Vscy : ZIjE(Sx(st)) z; > 1

Spanning
® VsV i) s e(sxs) Li S ISI—1

MST

Tree

Fig. 6. Binary multi-objective combinatorial optimization test problems

binatorial optimization problems. The number of objectives for these problems is not
restricted to two and is denoted by m.

It is important to note that we have used random instances for the combinatorial
optimization problems. In the case of only a single objective, random instances may
on average be easy for some combinatorial problems. However, in the case of multi-
ple objectives, finding the Pareto front is usually much more difficult, even if efficient
algorithms are available for the single-objective case [15]. Therefore, the instances
used in our test suite are not expected to be over-easy. Furthermore, the problems
also serve to indicate differences between the different multi-objective algorithmic
approaches other than the fact that dependencies between problem variables can be
exploited. This relative performance of the algorithms may be well observed using
our proposed test-suite. On the other hand, the degree of interaction between the
problem variables in randomly generated problem instances may not be too large,
which may cause optimization algorithms that regard the problem variables indepen-
dently of each other to be the most efficient.
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Maximum Satisfiability

In the maximum satisfiability problem, we are given a propositional formula in con-
junctive normal form. The goal is to satisfy as many clauses as possible. The solution
string is a truth assignment to the involved literals. These formulas can be represented
by a matrix in which row ¢ specifies what literals appear either positive (1) or neg-
ative (—1) in clause ¢. In the multi-objective variant of this problem, we have m of
such matrices and only a single solution to satisfy as many clauses as possible in
each objective at the same time.

Knapsack

The multi-objective knapsack problem was first used to test MOEAs on by Zitzler
and Thiele [38]. We are given m knapsacks with a specified capacity and n items.
Each item can have a different weight and profit in every knapsack. Selecting item 7
in a solution implies placing it in every knapsack. A solution may not cause exceed-
ing the capacity of any knapsack.

Set Covering

In the set covering problem, we are given [ locations at which we can place some
service at a specified cost. Furthermore, associated with each location is a set of
regions C {0,1,...r — 1} that can be serviced from that location. The goal is to
select locations such that all regions are serviced against minimal costs. In the multi-
objective variant of set covering, m services are placed at a location. Each service
however covers its own set of regions when placed at a certain location and has its
own cost associated with a certain location. A binary solution indicates at which
locations the services are placed.

Minimal Spanning Tree

In the minimal spanning tree problem we are given an undirected graph (V, E) such
that each edge has a certain weight. We are interested in selecting edges Er C E
such that (V, E) is a spanning tree. The objective is to find a spanning tree such that
the weight of all its edges is minimal. In the multi-objective variant of this problem,
each edge can have a different weight in each objective.

4.2 Performance Indicators

To measure the performance of a MOEA we only consider the subset of all non-
dominated solutions that is contained in the final population that results from running
the MOEA. We call such a subset an approximation set and denote it by S. The size
of the approximation set depends on the settings used to run the MOEA with.

To actually measure performance, performance indicators are used. A perfor-
mance indicator is a function that, given an approximation set S, returns a real value
that indicates how good S is with respect to a certain feature that is measured by the
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performance indicator. Performance indicators are commonly used to determine the
performance of a MOEA and to compare this performance with other MOEAs if the
number of evaluations is fixed beforehand. More detailed information regarding the
importance of using good performance indicators to evaluate MOEAs may be found
in dedicated literature [5, 22, 37].

Since we are interested in performance as measured in the objective space, we
define the distance between two multi-objective solutions z° and 2! to be the Euclid-
ean distance between their objective values f(z°) and f(2!):

m—1
d(z°,2") = \| D (filz}) = filz9))? &)

i=0
If we only want to measure diversity, we can use the FS (Front Spread) indicator.
This performance indicator was first used by Zitzler [35]. The FS indicator indicates
the size of the objective space covered by an approximation set. A larger F'S indicator
value is preferable. The FS indicator for an approximation set S is defined to be the
maximum Euclidean distance inside the smallest m-dimensional bounding-box that
contains S. This distance can be computed using the maximum distance among the

solutions in S in each dimension separately:

FS(S) = i max(zo z1)esxs{(fi(2°) — fi(21))?} “)

=0

In combination with the FS indicator, it is also important to know how many
points are available in the set of non-dominated solutions, because a larger set of
trade-off points is more desirable. This quantity is called the FO (Front Occupation)
indicator and was first used by Van Veldhuizen [34]. A larger FO indicator value is
preferable.

FO(S) = |5] ©)

The ultimate goal is to cover the Pareto optimal front. An intuitive way to define
the distance between an approximation set S and the Pareto optimal front is to aver-
age the minimum distance between a solution and the Pareto optimal front over each
solution in S. We refer to this distance as the distance from a set of non-dominated
solutions to the Pareto optimal front and it serves as an indicator of how close an
approximation set has come to the Pareto optimal front. We denote it by Ds_.p,..
This performance indicator was first used by Van Veldhuizen [34]. A smaller value
for this performance indicator is preferable.

1
DSH'PF(S) = E Z minzleps{d(z07z1)} (6)

2eS

An approximation set with a good Ds_,p,. indicator value does not imply that
a good diverse representation of the Pareto optimal set has been obtained, since the
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indicator only reflects how far away the obtained points are from the Pareto optimal
front on average. An approximation set consisting of only a single solution can al-
ready have a low value for this indicator. To include the goal of diversity, the reverse
of the Ds_,p,. indicator is a better guideline for evaluating MOEAs. In the reverse
distance indicator, we compute for each solution in the Pareto optimal set the dis-
tance to the closest solution in an approximation set S and take the average as the
indicator value. We denote this indicator by Dp,._,s and refer to it as the distance
from the Pareto optimal front to an approximation set. A smaller value for this per-
formance indicator is preferable. In the definition of this indicator, we must realize
that the Pareto optimal front may be continuous. For an exact definition, we there-
fore have to use a line integration over the entire Pareto front. For a 2-dimensional
multi-objective problem we obtain the following expression:

Dp._s(S) = minzoes{d(z°, 2")}df (2") @)
Pr
In most practical experiments, it is easier to compute a uniformly sampled set of
many solutions along the Pareto optimal front and to use this discretized representa-
tion of Pr instead. A discretized version of the Pareto optimal front is also available
if a discrete multi-objective optimization problem is being solved. In the discrete
case, the Ds_,p,. indicator is defined by:

1

D’PF—nS'(S) = @ Z minz”ES{d<z07z1)} ®)
zlePs

An illustration of the Dp,._,s indicator is presented in Fig. 7. The Dp, _.s in-
dicator represents both the goal of getting close to the Pareto optimal front as well as

fi(2)

fo(z)
o So e 5 - Pr
Fig. 7. The approximation set S is closer to the (discretized) Pareto optimal front but has less

diversity, while approximation set Sy is further away from the front but has greater diversity:
both sets have approximately the same Dp,._. s indicator value though
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the goal of getting a diverse, wide-spread front of solutions. The Dp,._, s indicator
for an approximation set S is zero if and only if all points in Pg are contained in &
as well. Furthermore, a single solution from the Pareto optimal set will lead to the
same Dp,._, s indicator as a more diverse set of solutions that has objective values
that are slightly further away from the Pareto optimal front. Moreover, a similarly
diverse approximation set of solutions that is closer to the Pareto optimal front, will
have a lower Dp,._.s indicator value. However, an approximation set of solutions
that is extremely diverse but far away from the Pareto optimal front, such as the non-
dominated solutions of a randomly generated set of solutions, has a bad Dp,._.s
indicator value. This underlines the important point that diversity is not equally im-
portant as is getting close to the Pareto optimal front because a larger diversity is
often not hard to come by. What is important is the diversity along the objectives
of a set of non-dominated solutions that is as close as possible to the Pareto optimal
front.

A performance indicator that is closely related to the Dp,._,s indicator, is the
hypervolume indicator by Knowles and Corne [22]. In the hypervolume indicator, a
point in the objective space is picked such that it is dominated by all points in the
approximation sets that need to be evaluated. The indicator value is then equal to the
hypervolume of the multi-dimensional region enclosed by the approximation set and
the picked reference point. This value is an indicator of the region in the objective
space that is dominated by the approximation set. The main difference between the
hypervolume indicator and the Dp,._,s indicator is that for the hypervolume indi-
cator a reference point has to be chosen. Different reference points lead to different
indicator values. Moreover, different reference points can lead to indicator values
that indicate a preference for different approximation sets. Since in the Dp,._,s in-
dicator the true Pareto optimal front is used, the Dp,._,s indicator does not suffer
from this drawback. Of course, a major drawback of the Dp,._, s indicator is that in
areal application the true Pareto optimal front is not known beforehand. In that case,
the Pareto front of all approximation sets could be used as a substitute for the actual
Pareto optimal front.

4.3 Experiment Setup
Optimization Problem Dimensionalities
Real-Valued Multi-Objective Optimization Problems

For the real-valued problems, we tested all algorithms with both | = 10 and [ = 100
problem variables.

Binary Multi-Objective Optimization Problems

For the binary problems, we used test instances with [ = 100 and [ = 1000. For
the maximum satisfiability problem, we generated the test instances by generating
2500 clauses for [ = 100 and 12500 clauses for [ = 1000 with a random number
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of literals between 1 and 5. For the knapsack problem, we generated instances by
generating random weights in [1; 10] and random profits in [1; 10]. The capacity of
a knapsack was set at half of the total weight of all the items, weighted according
to that knapsack objective. For set covering, the costs were generated at random
in [1;10]. We used 250 regions and 2500 regions to be serviced for [ = 100 and
I = 1000 respectively. We varied the problem difficulty through the region-location
adjacency relation. This relation was generated by making each location adjacent
to 70 and 50 randomly selected regions for [ = 100 and I = 1000 respectively.
Finally, for the minimum spanning tree problem, we used full graphs with 105 edges
(15 vertices) and 1035 edges (46 vertices). The dimensionality of these problems
is therefore not precisely 100 and 1000. The weights of the edges were generated
randomly in [1; 10].

Optimization Problem Constraints

Problems CTP7, set covering, knapsack and minimal spanning tree have constraints.
To deal with them, we can use a repair mechanism to transform infeasible solu-
tions into feasible solutions. Another approach is based on the notion of constraint-
domination introduced by Deb et al. [13]. This notion allows to deal with constrained
multi-objective problems in a general fashion. A solution 2 is said to constraint-
dominate solution z' if any of the following is true:

1. Solution zY is feasible and solution z' is infeasible

2. Solutions z° and z! are both infeasible, but z° has a smaller overall constraint
violation

3. Solutions 2° and z! are both feasible and 20 > z!

The overall constraint violation is the amount by which a constraint is violated,
summed over all constraints. We have used this principle for problems CTP7 and
set covering. For the knapsack problem, an elegant repair mechanism was proposed
earlier by Zitzler and Thiele [38]. For the minimal spanning tree problem, the num-
ber of constraints grows exponentially with the problem size [. We therefore propose
to use repair mechanisms for these latter two problems.

Knapsack Repair Mechanism

If a solution violates a constraint, the repair mechanism iteratively removes items un-
til all constrains are satisfied. The order in which the items are investigated, is deter-
mined by the maximum profit/weight ratio. The items with the lowest profit/weight
ratio are removed first.

Minimal Spanning Tree Repair Mechanism

First the edges are removed from the currently constructed graph and they are sorted
according to their weight. Next, they are added to the graph so that no cycles are
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introduced. This is done by only allowing edges to be introduced between the con-
nected components in the graph. If after this phase, the number of connected com-
ponents has not been reduced to 1, all edges between the connected components are
regarded in increasing weight and again the connected components are merged until
a single component is left.

General Algorithmic Setup

We ran every algorithm 50 times on each problem. In any single run we chose to
allow a maximum of 20 - 103 evaluations for the real-valued problems of dimension-
ality [ = 10 and the binary problems of dimensionality [ = 100 and a maximum
of 100 - 103 evaluations for the real-valued problems of dimensionality [ = 100 and
the binary problems of dimensionality [ = 1000. As a result of imposing the restric-
tion of a maximum of evaluations, a value for the population size n exists for each
MOEA such that the MOEA will perform best. For too large population sizes, the
search will move towards a random search and for too small population sizes, there
is not enough information to perform adequate model selection and induction. We
therefore increased the population size in steps of 25 to find the best results. To ac-
tually select the best population size, we selected the result with the lowest value for
the Dp,._.s indicator.

Algorithms

We tested a few variants of three MOEAs. In the following we will describe the
details that are required in addition to the details given in earlier sections for con-
structing the actual MOEAs that we will use for testing.

SPEA

For SPEA, we used uniform crossover and one-point crossover with a probability of
0.8. Bit-flipping mutation was used in combination with either of these recombina-
tion operators with a probability of 0.01. These settings were used previously by the
SPEA authors [36]. We allowed the size of the external storage in SPEA to become
as large as the population size. For the real problems, we encoded every variable with
30 bits.

NSGA-II

For NSGA-II, we used the same crossover and mutation operators and the same
encoding for the real variables.

MIDEA

For MIDEA, we used the leader clustering algorithm in the objective space such
that four clusters were constructed on average. If the number of clusters becomes
too large, the requirements for the population size increases in order to facilitate
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proper factorization selection in each cluster. We do not suggest that the number of
clusters we use is optimal, but it will serve to indicate the effectiveness of parallel
exploration along the Pareto front as well as diversity preservation. In each cluster,
we either used the univariate factorization (i.e. naive MIDEA) or we estimated a
Bayesian factorization based upon normal distributions in the case of real variables.
For details on how the Bayesian factorization is learned, see [ | ]. However, in the case
of 100-dimensional real-valued problems, we allowed only at most a single parent
for any variable. In the case of binary variables, we used the optimal dependency
tree algorithm by Chow and Liu [8] to estimate a tree factorization in each cluster.
To further investigate the influence of the different components in the MIDEA algo-
rithm, we also performed tests in which only a single cluster is used. Furthermore, we
also replaced the use of estimating probability distributions by the use of one-point
crossover and uniform crossover with mutation as used in the SPEA and NSGA-II
algorithms. In the case of clustering in combination with the use of crossover oper-
ators, restricted mating was employed in order to ensure clustered exploration along
the front. In restricted mating crossover, an offspring is produced using two parent
solutions that are picked from the same cluster. For the truncation percentile, we used
the rule of thumb by Miihlenbein and Mahnig [26] and set 7 to 0.3. Furthermore, for
the comparison benchmarks, we set the diversity preservation parameter to § = 1.5,
which was experimentally determined to give good results both with respect to diver-
sity preservation as well as selective pressure. For an investigation of the influence of
0 on the performance of MIDEA, we also varied § and observed the results in some
additional experiments, the results of which are reported below.

Overview of Abbreviations

In presenting the results, the different evolutionary algorithms that were tested are
abbreviated to save space. For reference, a list of abbreviations that we have used is
presented in Fig. 8.

Abbrev. ||Meaning

Ux Uniform crossover (prob. 1) + bit-flipping mutation (prob. 0.01)

1X One-point crossover (prob. 1) 4 bit-flipping mutation (prob. 0.01)

Univariate || The univariate factorization (2)

Learning || A more advanced Bayesian factorization is learned

1 Cluster ||No clustering because everything is placed in a single cluster

Par. Clust. ||Clustering in the parameter space

Obj. Clust. ||Clustering in the objective space
M An instance of the MIDEA framework

Fig. 8. List of abbreviations used in the presentation of the results
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4.4 Results

To compare the MOEAs, we investigate their average performance with respect
to performance indicators introduced in Sect. 4.2. The performance indicators that
we use are the Dp,._,s indicator, the FS indicator and the FO indicator. For the
Dp,_.s performance indicator, we used different sets to represent the Pareto op-
timal front for the real-valued optimization problems and the binary optimization
problems. For the real-valued optimization problems we used a uniformly sampled
set of 5000 solutions along the Pareto optimal front. Since we do not know the Pareto
optimal front for the binary optimization problems, we used the Pareto front over all
results obtained by all MOEAs.

For each of the performance indicators, we computed their average and standard
deviation over the 50 runs to get an assessment of their performance. The averages
are tabulated in Figs. 9 through 14. The best results are written in boldface. For each
algorithm, the type of variation is indicated as a superscript. The MIDEA algorithms
are indicated by a single M symbol. For all tested MIDEA algorithms, the subscript
indicates whether only a single cluster was used or whether clustering was performed
in either the parameter space or the objective space. The population sizes that led to
the best performance, are tabulated in Figs. 15 and 16. For the standard deviations,
we refer the interested reader to a technical report [6]. Although the average behav-
ior is the most interesting, the standard deviations are vital to determine whether the
differences in the average behavior of the different algorithms are significant. To in-
vestigate these significances, we have performed Aspin-Welch-Satterthwaite (AWS)
statistical hypothesis T'-tests at a significance level of o = 0.05. The AWS T'-test is
a statistical hypothesis test for the equality of means in which the equality of vari-
ances is not assumed [2 1]. For each problem, we verified for each pair of algorithms
whether the average obtained performance indicator values differ significantly. We
assigned a value of 1 if an algorithm scored significantly better and a value of —1 if
an algorithm scored significantly worse. We summed the so obtained matrices over
all problems to get the statistically significant improvement matrices that are shown
in Figs. 17 through 19. We also computed the sum for each algorithm of its signif-
icant improvement values over all other algorithms to indicate the summed relative
statistically significant performance of the algorithms. A less detailed summary of
the statistical significance tests is shown in Fig. 21. In this figure histograms are
used to indicate the sum of the results of the statistical significance tests for each
algorithm compared with all other algorithms. The histogram represents the sums
for the real-valued problems and the combinatorial problems for the different tested
dimensionalities and the average of these four sums.

Influence of Problem Dimensionality

Although the MIIDEA variants already mostly outperform the other tested algorithms
in the case in which the dimensionality of the problem is smaller (! = 10 for the real-
valued problems, [ = 100 for the binary problems), they perform even better in the
case in which the dimensionality of the problem is larger. This is most likely due to
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Dpp—s
EA BTi0 |zDTI®| ZDTE® |CTPL®| BTi%0 |ZDT}%0|ZDTL%0|CTPO0
SPEAYX 100-10% | 4.62 | 0.193 | 7.97 | 100-10° | 470 | 7.64 | 499
SPEA'X 100-10% | 3.90 | 0.172 | 7.31 | 100-10° | 447 | 7.06 | 476
NSGA-II'X || 100-10% | 4.39 | 0.303 | 7.25 | 100-10° | 360 | 5.99 | 348
NSGA-II'* || 100-10° | 1.40 | 0.328 |3.32 |100-10° | 297 | 6.59 | 303
MYX er 100-10° | 4.43 | 0.358 | 6.63 | 100-10° | 374 | 6.72 | 378
M e 100-10° | 1.89 | 0.291 | 4.13 | 100-10° | 336 | 6.81 | 345
MY e 100-10% | 4.01 | 0.368 | 6.42 [ 100-10° | 400 | 6.98 | 394
M s 100-10° | 1.65 | 0.298 | 3.77 | 100-10° | 332 | 7.01 | 340
MISX s 100-10° | 3.98 | 0.354 | 7.27 [100-10° | 311 | 596 | 326
M5 cuse 100-10° | 2.03 | 0.311 | 3.95 | 100-10° | 328 | 6.74 | 335
M Vnivariate 100-10° | 14.0 | 1.08 | 16.5 | 100-10° | 774 | 3.06 | 875
M mine 100 -10° | 11.2 |0.00239| 15.3 | 100- 105 | 597 | 0.434 | 600
Mynivariate 999 -10% | 5.36 | 0.798 | 7.93 | 100-10° | 168 | 3.70 | 192
Mipcoaine 999-10* | 14.0 | 0.159 | 17.1 | 100-10° | 416 | 0.470 | 523
naive MIDEA || 100 - 105 | 5.00 | 0.306 | 8.64 |100-10% | 157 | 4.60 | 161
Mo, 998 - 10%| 11.5 | 0.287 | 12.6 {100 -10%| 144 | 1.30 | 165

145

Fig. 9. Average of the Dp . _.s performance indicator on all real-valued problems. Note:
naive MIIDEEA could also have been abbreviated as

Univariate
Obj. Clust.

Dpg—s
EA MSIOO KNlOO SClOO MST105 MSlOOO KNlOOO SC1000 MSTIOSS
SPEAYX 12.7 | 104 | 2.93 | 2.10 | 181 | 83.9 | 550 | 6.78
SPEAX 11.8 | 9.14 | 2.99 | 212 | 270 | 105 | 484 | 6.40
NSGA-IT'X 115 [ 829 | 1.79 | 1.88 | 180 | 76.4 | 289 | 7.15
NSGA-II'X 11.7 | 933 | 2.64 | 2.22 | 283 | 114 | 360 | 6.60
MPE er 9.65 | 6.20 [0.931| 2.76 | 80.4 | 52.3 | 72.4 | 5.14
M e 124 | 734 | 1.9 | 272 | 135 | 93.0 | 109 | 4.66
MEX st 10.6 | 6.96 | 1.23 | 2.69 | 104 | 58.8 | 75.4 | 5.42
M et 13.4 | 813 | 1.54 | 2.86 | 169 | 107 | 101 | 4.96
MIOY e 7.50 | 3.71| 1.49 | 1.30 | 69.0 | 18.8 | 189 | 3.33
MO clus 10.5 | 5.98 | 1.89 | 1.54 | 116 | 46.3 | 305 | 3.11
MY nivariate 18.8 | 16.4 | 1.48 | 3.18 | 141 | 117 | 76.5 | 9.60
M eaming 11.4 | 7.25 | 1.50 | 2.70 | 262 | 77.6 | 942 | 5.89
MYivariate 18.3 | 13.2 | 1.54 | 3.26 | 168 | 118 | 105 | 9.68
Mg 12.5 | 7.56 | 1.85 | 2.54 | 262 | 115 | 269 | 7.69
naive MIDEA || 7.20 | 4.32 | 1.24 | 1.54 | 36.9 | 28.1 | 181 | 3.58
Mg 9.37 | 5.91 | 252 | 1.72 | 524 | 37.4 | 650 | 2.64

Fig. 10. Average of the Dp._. s performance indicator on all combinatorial problems. Note:

Univariate

naive MIDEA could also have been abbreviated as My Cios
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Front Spread FS
EA BTi0 |zDTI0|ZDTY®|CTPO|BT10| ZDTI%0 |ZDTi%| CTPLO0
SPEAYX 225 51.4 | 5.22 | 44.9 | 2.06 | 692 1.85 733
SPEA'X 369 55.8 | 5.26 | 46.3 | 2.31 736 3.02 773
NSGA-II*X 179 3.60 | 1.09 | 1.76 |0.413| 352 | 0.756 | 29.3
NSGA-IT'* 234 | 893|103 | 131 |1.02| 334 |0665| 139
MYX er 655 8.55 | 2.90 | 39.1 | 2.18 | 395 3.43 365
M er 78.6 | 2.46 | 1.92 | 1.41 | 2.27 | 94.0 1.40 88.6
MY e 357 12.2 | 5.05 | 4.85 | 2.11 384 3.10 345
M 199 2.45 | 5.33 | 1.66 | 2.31 129 1.53 93.1
MK e 685 40.8 | 4.11 | 41.8 | 2.15 | 740 4.75 737
MY cruse 262 3.38 | 3.94 | 58.9 | 229 | 359 2.30 371
M Vnivariate 293 70.8 | 1.15 | 84.7 | 1.82 | 393 0.180 347
M mine 129-10% | 84.9 | 3.00 | 87.4 | 2.12 635 2.20 342
MYnivariate 508 -10' | 24.0 | 2.47 | 28.8 [ 2.19 | 231 0.05 306
Momee 112-10% | 142 | 5.15 | 116 | 1.91 577 7.01 588
naive MIDEA || 209 - 10' | 90.4 | 5.29 | 114 | 2.45 | 636 8.10 619
Morrers, 164 -102%| 197 | 3.68 | 188 | 3.28 (175 -10| 3.97 |183-.101

Fig. 11. Average of the FS performance indicator on all real-valued problems. Note: naive
MIDEA could also have been abbreviated as Mgy e

Front Spread FS
EA MSlOO KNIOO SCIOO MST105 MSlOOO KNlOOO SCIOOO MSTIOSS
SPEAUX 116 | 69.5 |64.6| 30.6 | 288 | 254 | 631 | 52.1
SPEA'X 126 | 82.6 | 50.1 | 32.3 | 399 | 308 | 636 | 50.8
NSGA-TI'X 120 | 78.3 | 17.3 | 26.3 | 370 | 288 | 144 | 33.7
NSGA-IT'X 129 | 79.0 | 12.8 | 23.9 | 364 | 291 | 107 | 36.1
MY er 132 | 92.6 | 20.7 | 17.8 | 304 | 285 | 112 | 40.1
MY er 141 | 91.9 | 18.3 | 19.3 | 329 | 247 | 105 | 47.9
MYX o 129 | 90.8 | 20.1 | 184 | 265 | 289 | 125 | 40.7
M o 132 | 91.4 | 17.3 | 20.1 | 277 | 261 | 112 | 46.8
MION e 187 | 119 | 21.9 | 30.1 | 600 | 483 | 199 | 58.7
M, s 183 | 103 | 21.1| 26.0 | 579 | 430 | 155 | 58.0
M Ypivariate 79.2 | 433 | 16.1 | 16.9 | 122 | 98.4 | 10.8 | 22.7
My caming 143 | 90.0 | 18.2 | 19.7 | 124 | 214 | 135 | 375
MYniariate 90.8 | 57.4 | 16.7 | 16.7 | 72.9 | 852 | 10.7 | 23.1
Mg 143 | 106 | 18.4 | 20.5 | 124 | 109 | 19.2 | 32.1
naive MIDEA|| 192 | 116 | 27.6 | 32.1 | 665 | 503 | 313 | 65.2
Mg 191 | 125 | 224 | 30.3 | 784 | 512 | 66.2 | 60.2

Fig. 12. Average of the FS performance indicator on all combinatorial problems. Note: naive
MIDEA could also have been abbreviated as Mg e
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Front Occupation FO
EA BT10|zDT30|ZDTEC | CTPLC | BT100| ZDT 00 | ZDTE 0 | CTPiO0
SPEAUX 60.9| 99.0 | 50.0 | 43.5 | 49.8 | 27.6 | 18.7 | 26.7
SPEA'X 38.7| 187 | 49.6 | 43.2 | 48.8 | 27.4 | 29.3 | 26.8
NSGA-IIYX  ||5.42| 59.7 | 47.5 | 59.3 | 100 | 5.80 | 6.00 | 4.00
NSGA-II'*  |129.5| 32.7 | 31.2 | 9.98 | 75.0 | 5.00 | 6.60 | 3.00
MY er 9.92| 41.7 | 8.06 | 9.00 | 14.4 | 12.8 | 144 | 126
MY, er 13.4| 30.3 | 6.52 | 11.9 | 16.5 | 7.10 | 6.64 | 5.94
MY e 7.46| 254 | 8.02 | 182 | 154 | 12.9 | 152 | 124
MEX e 9.78| 24.7 | 7.80 | 11.9 | 17.5 | 7.20 | 8.12 | 6.68
MIGX s 13.9| 10.0 | 8.48 | 8.62 | 19.1 | 20.0 | 19.6 | 21.7
MOy cuust 994 31.4 | 7.32 | 15.6 | 174 | 12.2 | 9.76 | 12.2
MVpivariate 5.74| 6.88 | 4.90 | 4.14 | 36.7 | 6.9 | 2.55 | 3.20
M &mine 6.06| 8.36 | 258 | 4.96 | 13.1 | 5.25 | 369 | 3.75
Mnivariae 29.6 | 98.8 | 30.0 | 82.0 | 334 | 69.4 | 3.70 | 18.3
Mg 52.7| 65.4 | 104 | 69.2 | 149 | 105 | 92.0 | 112
naive MIDEA || 12.5 | 68.7 | 56.3 | 34.0 | 64.5 | 106 | 27.7 | 78.9
Moes 30.1| 26.4 | 197 | 32.1 | 111 | 50.8 | 163 | 43.0
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Fig. 13. Average of the FO performance indicator on all real-valued problems. Note: naive

MIDEA could also have been abbreviated as M

Univariate
Obj. Clust.

Front Occupation FO
EA MSIOO KNIOO SCIOO MST105 MSIOOO KNlOOO SCIOOO MST1035
SPEAYX 46.8 | 46.5 | 25.1| 42.8 | 49.4 | 495 | 26.2 | 488
SPEA'X 46.1 | 77.6 | 24.3 | 93.2 | 499 | 49.7 | 26.5 | 95.0
NSGA-IIYX || 33.5 | 35.5 | 12.0 | 32.3 | 354 | 33.1 | 7.50 | 64.7
NSGA-II'X 41.1 | 35.4 | 6.80 | 24.5 | 42.0 | 364 | 7.20 | 648
MY er 100 | 28.1 | 11.3 | 20.8 | 197 | 46.8 | 12.4 | 254
MY er 130 | 43.8 | 149 | 20.3 | 212 | 43.1 | 16.1 | 385
MYX o 112 | 32.2 | 10.6 | 23.7 | 171 | 46.9 | 13.0 | 26.0
M o 136 | 50.2 | 13.2 | 24.5 | 179 | 44.1 | 17.8 | 37.1
MION e 165 | 48.4 | 11.1| 29.3 | 269 | 781 | 15.0 | 44.2
M, s 160 | 61.1 | 16.2 | 33.5 | 325 | 523 | 13.2 | 485
M Ypivariate 56.9 | 15.6 | 8.56 | 17.6 | 37.5 | 20.6 | 3.92 | 16.7
M} amine 105 | 37.5 | 10.0 | 20.9 | 485 | 64.2 | 19.2 | 61.0
MUnivariate 59.8 | 21.9 | 8.87 | 16.6 | 85.4 | 159 | 4.90 | 16.3
Mg 104 | 40.9 | 9.60 | 20.9 | 48.5 | 47.5 | 8.67 | 58.7
naive MIDEA|| 147 | 36.1 | 11.9 | 25.9 | 129 | 65.1 | 16.1 | 41.9
Mg 143 | 51.8 | 10.0 | 25.3 | 411 | 101 | 8.0 65.9

Fig. 14. Average of the FO performance indicator on all combinatorial problems. Note: naive
MIDEA could also have been abbreviated as Mg e
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Population Size n
EA BT10|zDT30|ZDTEC | CTPLC | BT100| ZDT 00 | ZDTE 0 | CTPiO0
SPEAUX 50| 50 | 25 | 25 | 25 25 25 25
SPEA'X 25 | 100 | 25 | 25 | 25 25 25 25
NSGA-IIYX || 200 | 200 | 100 | 100 | 100 | 200 | 200 | 150
NSGA-II'™ || 200 | 375 | 75 | 300 | 75 | 200 | 150 | 300
MY er 75| 100 | 25 | 25 | 100 | 125 | 200 | 125
MY, er 100 | 450 | 25 | 300 | 125 | 325 100 | 175
MY e 175 | 75 25 | 100 | 75 | 125 150 | 175
MEX e 125 | 450 | 25 | 275 | 150 | 175 100 | 175
MIGX s 225 | 25 25 | 25 | 125 | 200 | 200 | 300
M5 s 150 | 475 | 25 | 725 | 125 | 200 | 100 | 150
M Vpivariate 150 50 | 75 | 50 | 100 | 75 375 50
M} emine 150 | 75 | 425 | 75 | 175 | 100 | 700 100
MYnivariate 175 | 125 | 175 | 125 | 225 | 150 | 450 | 150
Mg 400 | 250 | 275 | 250 | 200 | 150 | 550 125
naive MIDEA || 275 | 125 | 200 | 125 | 250 | 200 | 800 | 200
Moes 450 | 200 | 250 | 150 | 225 | 300 | 400 | 250

Fig. 15. Population sizes used for the real-valued problems. Note: naive MIDEA could also

Univariate

have been abbreviated as Mgy Ciug:.

Population Size n
EA MSL00 | gA100] 5100 4767105 4761000 [ gAr1000 [ §1000 [ 47571035
SPEAUX 25 25 25 25 25 25 25 25
SPEA™* 25 50 25 125 25 25 25 50
NSGA-IIYX 350 | 325 | 300 200 200 200 200 250
NSGA-II'** 100 | 325 | 250 200 150 250 150 200
MY ¥ sier 575 | 350 | 550 | 1250 775 775 325 1000
M ster 550 | 400 | 300 | 1200 800 625 500 1050
MEX e 500 | 525 | 500 | 2600 650 775 350 1100
MR e 525 | 575 | 425 | 2375 650 650 475 1200
Mgfjﬂus,_ 550 | 425 | 550 | 1975 750 775 775 1800
Mgy clust 475 | 425 | 825 | 1400 825 500 650 1750
M piyariate 700 | 200 | 450 | 5000 | 1375 800 225 800
My caming 850 | 700 | 700 | 1850 | 1350 850 500 1600
Mpnivariate 750 | 600 | 525 | 7000 300 375 250 700
Mg 1075 | 950 | 1050 | 1850 | 1350 700 700 2900
naive MIDEA|| 500 | 300 | 900 | 2500 875 750 900 1850
Mgi‘:"gli‘ 1000 | 925 | 1050 | 4000 | 1400 | 1500 | 1100 | 2350

Fig. 16. Population sizes used for the combinatorial problems. Note: naive MIDEA could also
have been abbreviated as Mg e
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Dpp_s

swavicaly | 8 |212| 2| 221512 S SIS 2 E |5 E
Significant ||*=|> |5 | > |27 |2 |27 |2 | |2 |ZE|E2|ed 22| S |02

Improvement ™ *':C =1 2|2 |2 |2 |RE|RE 2% % g%

Matrix Al =

>

SPEAUX 0|-8-7[-4|-9]3]|-10]3]|-11 4|-4|-2]-1]-12]-7||-62
SPEA'X 810(-7|-3|-8 8]6|-9|5(6]-3]-1 12| -8 |[-29
NSGA-II'X 7170102 |3|5|-4|4|-10]4|6]-2|2]3|-13]-7] -3
NSGA-II'X 4132 A1 -1|9|-6|12(5|-5]0|-1]-11|-8( 9
MYE er 9|83 0[3|6|3[-8[2(11|7|6]|6|-7|-6]|44
M e 3[-5(-5[-11]-3|0]|-1|-4|-7|-8|-4]|-7]|-10]-8 |-11|-11||-98
MY e 100841 [-6|1|0|2-7|1|11|6|6]|5|-9]-8] 25
MEX e 3l-6-4[-9]-3[4]2]|0[-7]3]|-4]|-7]-10]-8|-10|-11|-77
MO e 1joftol 6|8 |7]7 0(6|8|6|2]8[-3|1]93
M, clus -3|-5|-4|-12-2| 8 |-1|-3|-6| 0 |-4|-8|-10|-8 |-11|-11]|-80
MV nivariate 41-6[-6]-5|-11|4|-11|4 -8 |4 |0 |-10] -4 | -7 |-12|-11||-83
My caming 4(3(2(5(-7|7|-6|7|-6|8|10[0]|1]2]|-8]-7]]15
MUnivariate 201(2/0|-6|10[-6[10|-2|10{4 |-1|0 |-1|-6]-7 |10
Mg 110[-3|1]-6[8[-5(8[-8|8|7]-2]1 8|-6| -4
naive MIDEA |[12]12]13] 11 11 9 [10| 3 |11]12 6 0|5 (/138
Mgees 7(8(7]8 1] 8 [11] -1 |11|11 7 510 [|102

Fig. 17. Number of times an improvement was found to be statistically significant in the
Dp,._s performance indicator, summed over all tested problems. The numbers in a sin-
gle row indicate the summed number of significantly better or worse results compared to the
algorithms in the different columns. Note: naive MIDEA could also have been abbreviated as
Mg

the more powerful diversity exploration and preservation in MIDEA. As the dimen-
sionality of the problem goes up, the parameter space (i.e. the search space) becomes
larger. In the case of the binary combinatorial problems, the number of solutions in
the objective space becomes larger as well. If clustering in the objective space is used
in MIDEA, better results are obtained on average as the dimensionality of the prob-
lem increases. In Fig. 20 the Pareto fronts over 50 runs for a selection of algorithms
are plotted on one problem from each problem class and dimensionality. The better
diversity preservation and proper distribution of the points along the front can be
seen clearly for the problems of larger dimensionality. For the lower dimensionality
problems, better diversity preservation can also be observed, which is most exempli-
fied by the fact that MIIDEEA obtains non-dominated solutions at the outer ends of the
front for the knapsack problem with [ = 100.
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Front Spread FS

saisicaty || 8| € |2\Z) 2155158 S5 =158
Significant || = | % |5 |3 2|2 |2 |2 2 |2 |E2 oo

Improvement e ':C':_: S |2 |2 | |2 |°2 %;m

Matrix Al =
>

SPEAYX 0|-7(8](8 13| 5 (11| -3 {11|11) 3 13| 2 [-7|-9 || 61
SPEA'X 710 (16/14] 8 |15/ 10|13| O (13|11 5 |13| 3 |-6|-7 || 115
NSGA-TIVX -81-16/0[5[-8(3|-8|3|-15/1|3|-8|1]|-6]|-16/-14||-83
NSGA-II'* -8 |-14|-5/0-8|1[-8|1]-16|-1|1]-9|0]|-6|-16[-14||-102
MY ¥ wster 2(-8(8[8]0 (12| 3 [11|-12|5|9|-2|10|-4|-16|-12|| 10
M, er -13]-15(-3|-1{-12| 0 |-12|-2|-13|-6 | O |-11|-4 | -7 |-15|-14]|-128
MPX st -51-1018 (8| -3 (12| 0 [12(-11{ 8|9 | O | 8 |-3 |-15|-11|] 7
MX -11]-13|-3|-1]-11] 2 [-12[ 0 [-11]-6 | 0 | -9 | -5 | -7 |-15|-13][-115
Mgg_cm_ 310 [15(16(12 (13|11 {11] O |9 (11| 9 |[14] 6 |-9|-8]| 113
M crus a1]-13[-1f1]-5]|6]-8][6]-9]0|2]-8|2]-8]16]-12] -74
M Ynivaiate S11}-11{-3|-1{-9|{0|-9|0|-11|-2]0 |-11] 1 |-13|-15|-16]|-111
pLeuming 3|-5|8l9f2]11]o|o]-9]8|11]o0 [12]-4]-13]-13] 23
Mpnivaiate -13]-13|-1| 0 |-10{ 4 | -8 | 5 |-14|-2|-1|-12| O |-14|-15|-16]|-110
Mg 2(-3|6(6|4|73[7|-6|8][134|14|0 |-8|-11]| 42
naive MIDEA || 7 | 6 [16|16]16 15| 15|15| 9 |16(15|13|15| 8 | O | -2 || 180
Mgaree 9| 7 14|14 12|14] 11 [13| 8 |12|16| 13 |16|11| 2 | 0 |[ 172

Fig. 18. Number of times an improvement was found to be statistically significant in the FS
performance indicator, summed over all tested problems. The numbers in a single row indicate
the summed number of significantly better or worse results compared to the algorithms in the
different columns. Note: naive MIIDIEA could also have been abbreviated as Mgg}f“g{ﬁj_

Influence of Mixtures by Clustering the Objective Space

The fact that the use of mixtures by clustering the objective space allows for en-
hanced diversity exploration and preservation, can also be observed by the difference
between the spread obtained by MIDIEA with crossover operators using only a single
cluster versus the case in which on average four clusters are used. A wider spread
of solutions is found when clustering in the objective space is enabled. Furthermore,
although clustering in the parameter space is a powerful approach to enhance the
learning of probabilistic models, it does not immediately lead to better results in
multi-objective optimization.

Influence of the Problem Structure Exploitation Capabilities of EDAs

On the BT, problem, modelling interactions in MIIDIEA clearly leads to better results
than those obtained by the other MOEAs. Thus, exploiting interactions can be bene-
ficial in multi-objective optimization. For the BT} problem with [ = 10, if we allow
for 5-10° evaluations, the MIDEA variant that learns Bayesian factorizations is even
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Front Occupation FO
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Matrix | =
>

SPEAUX 0|-3|10|12|11(16[11|16| 7 |16|14 71-3|1]-4]| 116
SPEA™* 310 (11(13(12(16[12(16]/10|16(14 8 |-1|3 |0 | 140
NSGA-II'¥ -10{-11{ 0 | 2 [-1 |8 1|6 |-3|8[11|-3|2|-8]|-4|-6] -8
NSGA-II'* -12{-13{-2{ 0 [-3[9|-3|8|-6|7 [10]-4| 0 |-11|-8 |-11]| -39
MY o -11]-12] 1 | 3 | 0 [10] 0 [10|-10] 9 [14] 2 | 3 | -7 |-14]-10]| -12
M -16(-16] -8 | -9 [-10] 0 |-11]-4 |-11[-8 [-2| -5 |-14|-16|-15|-15||-160
MY (e 1f-12[ -1 3 | o [11] 0 [10|-10] 8 [14] 2 | 3 | -5 |-14]-12]| -14
ME o -16[-16| -6 | -8 |-10] 4 |-10| 0 |-12] -4 |-1]| -5 |-14|-16|-16|-15||-145
MY i 71100 3|6 [10f11]10[12] 0 [12[14] 7 {3 |-2|-2]-8]| 59
M crus -16|-16| -8 | -7 |-9| 8 | -8 | 4 |-12| 0 |-2| -4 |-13]-16]|-16]-15||-130
M Univarate -14[-14]-11|-10[-14] 2 |-14] 1 |-14] 2 [ 0 |-12| -7 |-16]-16|-16||-153
VL eaming 5|-7)3|al2]|5]2]5]-7]4]12]0]2]3]-6]-8] -5
MYnivarate 71820 |-3[14]-3[14|-3[13]7]-2]0 |-11]-10]-9 || -10
Mg 3|18 [11]7 165 [16] 2 |16[16 3 [11]| 0|2 |-2]|115
naive MIDEA || -1|-3| 4 |8 [14[15|14|16| 2 |16{16] 6 |10|-2| O |-3 || 112
Mg 4106 [11[10[15/12{15] 8 [15(16] 8 |9 |2 |3 |0 |[134

Fig. 19. Number of times an improvement was found to be statistically significant in the FO
performance indicator, summed over all tested problems. The numbers in a single row indicate
the summed number of significantly better or worse results compared to the algorithms in the
different columns. Note: naive MIIDIEA could also have been abbreviated as Mgg;_“g;ﬁ:

capable of finding near optimal solutions whereas the other MOEAs were observed
not to be able to produce comparable results. Furthermore, if we compare the results
of the MIDEA without clustering and with learning interactions with the MIDEA
without clustering and also without learning interactions (i.e. M5 v, MI/meie),
exploiting interactions often leads to better results and thus enhances the quality
of the multi-objective search process. However, the same can be said for clustering
the objective space in general. Moreover, the much cheaper operation of clustering
the objective space can lead to significant improvements, regardless of the type of
recombination used inside each cluster. Concordantly, the naive MIDEA in which
objective clustering is used obtains good results overall. In fact, summarized over
all problems, the naive MIDEA is arguably the best algorithm that we have tested.
Moreover, the naive MIDEA runs quickly, even for problems with many variables.
Hence, learning dependencies between a problems’ variables does not necessarily
lead to advanced information about the trade-off in objective space that is the most
important in multi-objective optimization problems. Clustering the objective space
on the other hand does seem to help directly.
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Fig. 20. Pareto fronts over 50 runs on a few of the tested problems. For clarity only a selection
of all tested algorithms is shown. Note: naive MIDEA could also have been written as MIDEA
Univariate Obj. Clust.

Using more advanced factorizations to further exploit a problem’s structure in
the form of dependencies between a problem’s variables can lead to the generation
of more solutions on a less preferred front. Although such an approximation set is a
result that can be found more efficiently by estimating involved probability distrib-
utions instead of using classical recombination operators, such a result is intuitively
less desirable. More research is required to investigate the issue of exploiting depen-
dencies between a problem’s variables in an EDA for multi-objective optimization
further. On the one hand it would be interesting to attempt to overcome this prob-
lem and ensure that the added complexity of the inductive capabilities of estimating
probability distributions results in a more effective exploration towards the Pareto
optimal front. On the other hand it would be interesting to investigate what type of
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Fig. 21. A summary of the results of the statistical hypothesis tests performed for each pair
of algorithms. For each algorithm, the sum of the outcome of the statistical hypothesis tests is
shown for the real-valued problems and the combinatorial problems for each dimensionality
separately. Furthermore, the average of these values is also shown, which serves as a global
indicator of the performance of an algorithm relative to the other tested algorithms. Note:
naive MIDEA could also have been abbreviated as Mgy, e

(real-world) multi-objective optimization problems can be solved more efficiently
using MIDEA instances because of difficulties such as non-linear dependencies be-
tween the problem variables.

The Influence of §

In our benchmarks, we have picked a specific value for 6. However, the § parameter
is a unique parameter that determines the balance between non-domination selection
pressure and diversity preservation selection pressure. Although we acknowledge
the influence of this parameter, we find it outside the scope of this chapter for an
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in-depth discussion. We refer the interested reader to existing literature regarding the
influence of 6 [5].

4.5 Practitioner’s Summary

Our experimental results indicate that clustering the objective space leads to superior
MOEAs. For EDAs this implies that constructing mixture probability distributions
in MIDEAs based on geometric aspects of the objective space is a good approach.
This makes the naive MIDEA instance based on mixture probability distributions
truly an effective and easy-to-use new tool for multi-objective optimization. Further-
more, NSGA-II is overall the most competitive. However, there is an added value
to the use of MIDEA in that it is able to obtain and maintain a larger and more
diverse Pareto front by parallel front exploration and diversity preserving selection.
The experiments underline these results as the front spread (Figs. 11 and 12), front
occupation (Figs. 13 and 14) and the global Pareto fronts in Fig. 20 indicate a better
performance. This increased performance is also statistically significant, as can be
seen in figures 18 and 19. The use of clustering to obtain mixture probability distri-
butions clearly leads to a significant increase of performance in the preservation and
exploration of diversity.

Overall, the naive MIIDEA is a very good MOEA that could be applied to real-
world problems. We suggest setting § € [1; 1%] and to first use simple factorizations
such as the univariate factorization. If more time and function evaluations are avail-
able, more complex factorizations can be used as well. An implementation of the
naive MIDEA in C is available for download from the website of the first author.

5 Conclusions

In this paper we have presented the naive MIIDEA for multi-objective optimization.
The naive MIDEA clusters the selected solutions in the objective space, after which it
estimates a univariate factorization in each cluster separately. New solutions are then
drawn from the so-obtained mixture probability distribution. The naive MIDEA is a
specific instance of the algorithmic framework MIDIEA which is a general form of
an EDA for multi-objective optimization in which a probabilistic model is learned.
For the specific task of multi-objective optimization, the use of mixture distributions
obtained by clustering the objective space has been observed to stimulate the desir-
able parallel exploration along the Pareto front. The naive MIDEA has only little
computational overhead since clustering in the objective space can be done very fast
as can the estimation of a univariate factorization. Furthermore, although no fur-
ther exploitation of dependencies between a problem’s variables is used in the naive
MIDEA, the results obtained for the naive MIDEA are already superior to results
obtained with algorithms in which clustering the objective space is not used. Con-
cluding, the naive MIDEA has been found to be a fast, easy-to-use and effective tool
for multi-objective optimization.
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Summary. In this work we address the parallelization of the kind of Evolutionary Algorithms
(EAs) known as Estimation of Distribution Algorithms (EDAs). After an initial discussion on
the types of potentially parallel schemes for EDAs, we proceed to design a distributed island
version (dEDA), aimed at improving the numerical efficiency of the sequential algorithm in
terms of the number of evaluations. After evaluating such a dEDA on several well-known
discrete and continuous test problems, we conclude that our model clearly outperforms exist-
ing centralized approaches from a numerical point of view, as well as speeding up the search
considerably, thanks to its suitability for physical parallelism.

1 Introduction

Estimation of Distribution Algorithms are a relatively recent type of optimization and
learning techniques based on the concept of using a population of tentative solutions
to iteratively approach the problem region where the optimum is located [21, 27].
EDAs are often listed as a kind of evolutionary algorithms in which an initial popu-
lation of individuals, each one encoding a possible solution to the problem, is itera-
tively improved by the application of stochastic operators. Every individual encodes
a solution that is weighted with respect to the others by assigning a fitness value
according to the objective function being optimized.

Just as in other areas of learning and optimization, reducing the cost of the search
process is a critical issue in EDAs. This cost is usually measured as the number of
evaluations of the objective function. But reducing the wall-clock time is also very
important in real world applications, in which time consuming operations lead to
unaffordable computation times. A combined reduction (numerical-plus-physical)
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in the cost of the algorithm will permit researchers to address the many classes of
complex problems that usually appear in academy and especially in industry.

Thus, our work is motivated by an apparently simple question: how could we
reduce the number of total fitness function evaluations of an EA? Ideas for reducing
the total number of function evaluations include, for example, the use of hybrid tech-
niques combining global and local search. Also, decentralized algorithms such as
distributed evolutionary algorithms and cellular genetic algorithms [2] can alleviate
the problem of a large numerical effort. In fact, decentralized algorithms can be later
parallelized to obtain a still higher degree of numerical and real time efficiency. This
question relates to the term Low Cost Evolutionary Algorithm (LCEA) that was in-
troduced in [30, 31]. With this term we label a set of features that lead the considered
strategy to:

learn and use the probabilistic structure of the problem,
learn “appropriate” evaluation functions,

make partial evaluations of individuals, and

use parallel and distributed techniques.

e o o o

These directives are targeted to create efficient algorithms, in a similar way as
Goldberg has recently defined competent GA [15]. We focus our research interest
on the first and last points of the above list, namely: in learning the probabilistic
structure of the problem and also in using parallelism.

The idea behind the first line of research is that detecting and using the most im-
portant interactions among the problem variables is a really important key to achiev-
ing an efficient sampling of the solution space. The aim of the last point is related
to the use of parallel and distributed architectures to reduce the number of function
evaluations (numerical point of view). Another motivation for parallelism is to re-
duce the computational cost of each EDA step (physical point of view).

The contributions of this paper are the discussion of distributed alternatives for
EDAs and the proposal of a concrete distributed algorithm that outperforms its se-
quential version. Unlike many existing works, we deal in this study both with dis-
crete and continuous benchmarks. The algorithm proposed here reduces drastically
the number of function evaluations, as well as the run time.

The paper is structured as follows. Section 2 examines the state of the art in
EDAs from the point of view of their parallelization. Section 3 reviews the parallel
techniques available to design new EDA algorithms. Section 4 presents the parallel
distributed version of the Univariate Marginal Distribution Algorithm (dUMDA) de-
veloped here. Then, we present the benchmark used in our analysis in Sect. 5. Later,
in Sect. 6, we show some experimental results obtained from the analysis of two dis-
tributed versions of dUMDA over discrete and continuous domains. Finally, Sect. 7
contains some concluding remarks and discusses future work issues.



A Parallel Island Model for Estimation of Distribution Algorithms 161

2 EDAs and Parallelism: State-of-the-Art

This section revisits the most relevant concepts concerning EDAs and parallelism
needed to understand the present work. The general Estimation of Distribution Al-
gorithm, or EDA, [25] can be defined conceptually as shown in Algorithm 5.

Algorithm 5 EDA

Sett «— 1;

Generate N >> 0 points randomly;

while termination criteria are not met do
Select M < N points according to a selection method;
Estimate the distribution p°(z, t) of the selected set;
Generate N new points according to the distribution p°(z, t);
Sett —t+1;

end while

The chief step in this algorithm is to estimate p®(x, t) and to generate new points
according to this distribution. This represents a clear difference with respect to other
evolutionary algorithms that use recombination and/or mutation operators to com-
pute a new population of tentative solutions. Since the results of the EDA depend
on how the mentioned probability distribution is estimated, graphical models have
became common tools capable of efficiently representing the probability distribu-
tion. Some authors [20, 26, 32, 36] have proposed Bayesian networks to represent
the probability distribution for discrete domains, while Gaussian networks are usu-
ally employed for continuous domains [19]. The reader can find in [21] references
to some popular implementations of the different EDA families, namely EBNA,
EMNA, BOA, PADA, etc.

We will distinguish several levels at which an EDA could be parallelized:

estimation of probability distribution level,
sampling of new individuals level,
population level,

fitness evaluation level, and

any combination of the above levels.

The first level, that is, learning of the model (either Bayesian or Gaussian) can be
achieved in parallel. In general, learning Bayesian networks is an NP-hard problem
[11], because learning a model requires exponentially increasing computational re-
sources. Many algorithms for learning the probability distribution use a score+search
procedure. These methods define a metric that measures the goodness of every can-
didate Bayesian network with respect to a database of cases. In addition, a search
procedure to move efficiently through the space of possible networks is needed. In
these algorithms, a single-link lookahead search is commonly adopted for efficiency.
Xiang and Chu [12] have studied the parallel learning of belief networks. They pro-
pose an algorithm to decompose the learning task for parallel processing, which is
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based on a multi-link lookahead search [5]. They partitioned the processors into two
types: one processor is designated as the search manager, and the other ones explore
the network structure (see [12] for details). Following this idea, the authors of [22]
propose an EDA that learns the probability distribution of the selected points in par-
allel. They concentrate on the property of decomposing the score BIC' (Bayesian
Information Criteria), i.e., the score can be calculated as the sum of the separate
local BIC; scores for the variables [35]. Similarly, in [6] the author extends this re-
sult applying two different parallelism techniques, shared memory with multithreads
programming and messages passage between processes.

Mendiburu et. al. [24] implement an extension to the algorithm developed in [6,

], that consists in realizing the generation of new individuals in a distributed form.
Each slave receives from the manager process a variable order and the probabilities,
to generate a portion of the population and send it to the master. As its ancestors, it
suffers the problem of the communication highest costs.

Ocenasek and Schwarz proposed a different algorithm for computing the Bayesian
network in parallel; this parallel algorithm is applied to BOA [32] and the resulting
technique is called PBOA [29]. In this algorithm, the authors used explicit topologi-
cal ordering of variables to keep the model acyclic.

One distributed version was implemented in [34]. A new semi naive-Bayes par-
allel algorithm was proposed. This algorithm is named Parallel Interval Estimation
naive-Bayes (PIENB). The algorithm is based on the island model, where each island
contains a different population evolving in isolation for a number of generations, and
after a predetermined scheme of migration is applied, the islands interchange the best
individuals with their newborn.

The second level is another hot topic, because few works have been proposed
to achieve parallel sampling of the new individuals. In the Bivariate Marginal Dis-
tribution Algorithm [33], Pelikan proposes an algorithm for the generation of new
individuals using the dependency graph. The algorithm is well suited for paralleliza-
tion because the generation of different individuals is independent from each other.
However, this algorithm has not been yet implemented by the authors. BMDA is
mentioned just as an example, because many other EDAs show the same indepen-
dency in the phase of generation of individuals.

The population-based parallel approach (third level) finds its inspiration in the
observation that natural populations show a spatial structure. As a result, the so-
called demes could be used to separately evolve a solution. Demes are semi-indepen-
dent groups of individuals or subpopulations loosely coupled to other neighbor
demes. This coupling takes the form of the migration or diffusion of some individu-
als from one deme to another. This technique admits an easy parallelization that has
been largely investigated in the field of EAs (see [2, 10]), and the existing findings
can be also applied to the parallelization of EDAs. In this paper, we deal with this ap-
proach; and in the following sections we will discuss how to use it in the distributed
Univariate Marginal Distribution Algorithm (dUMDA) for discrete and continuous
domains.

Parallelization at the fitness evaluation level (the fourth level) does not require
any change in the standard EDA, since the fitness of an individual is independent of
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the rest of the population and can be computed in parallel in a farming style. More-
over, in many real-world problems, the calculation of the individual’s fitness is by far
the most time consuming step of the algorithm. This is also a necessary condition for
the success of such a kind of parallelism, in order to keep the communication time
small to the computation time. In this case, an obvious approach is to evaluate each
individual fitness simultaneously on a different processor. A master process manages
the population and hands out individuals to evaluate to a number of slave processes.
After the evaluation, the master collects the results and applies the necessary opera-
tions to produce the next generation.

The last level, known as the hybrid level, is a combination of different paralleliza-
tion methods. For example, we could have an algorithm that uses parallelization at
the population level conjugated with a farming model for the evaluation of the indi-
viduals.

3 Parallel Evolutionary Algorithms

In this section we focus on the parallelization at the population level, what represents
the main research line of this paper. First, we present the parallel architectures used
to implement these algorithms, and then we analyze the so-called coarse-grained or
distributed parallel EA.

3.1 Parallel Architectures

In this subsection we will present some widely used parallel architectures and their
influence in the implementation of a parallel EA. Nowadays, the most popular type
of parallel configuration is a distributed system, a kind of Multiple Instruction Mul-
tiple Data streams computer after the well-known Flynn’s taxonomy. A distributed
system is composed of separate computers (usually workstations or PCs) intercon-
nected by a high-speed network. This world-wide trend of building parallel machines
as networks of computers immediately suggests the application of coarse-grained
parallelism, which is characterized by a high computation/communication ratio.

One distinguished parallel algorithm that successfully exploits these architec-
tures efficiently is the coarse-grained parallel genetic algorithm (also called distrib-
uted, multi-population or island model) [37]. This kind of algorithm has multiple
populations interconnected in a particular topology (ring, hyper-cube, etc.), perform-
ing sparse migrations of information (usually individuals) among its component is-
lands. Our present study is based on this type of algorithm (see Fig. 1).

We should notice that the World Wide Web and the existing Wide Area Network
technologies provide an important infrastructure for distributed computation, that
could be used as a platform to implement coarse-grained parallel EAs. This is usually
referred to as grid computing [14], a very interesting topic of research.
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TOPOLOGY
(Migration)

Fig. 1. Distributed Estimation of Distribution Algorithm (dEDA)

3.2 Coarse-Grained Parallel Evolutionary Algorithms

The coarse-grain computational EA model has been largely studied in the EA com-
munity, as well as in other branches of optimization and learning. The island model
[13] features geographically separated sub-algorithms each one having its own sub-
population of a relatively large size. These subalgorithms may exchange information
with a given frequency, e.g., by allowing some individuals to migrate from one is-
land to another. The main idea of this approach is to periodically re-inject diversity
into subpopulations which would otherwise converge prematurely. As could be ex-
pected, different islands will tend to explore different portions of the search space
in parallel, and to provide independent solutions to the same problem [38]. Within
each subpopulation, a standard sequential EA is usually executed between migration
phases.

The algorithms having multiple populations must be tuned because they are con-
trolled by several new parameters that affect their efficiency and precision. Among
other things, we must decide the number and size of the subpopulations, the connec-
tion topology among them, the number of migrants (alternatively it can be defined
as a migration rate), the frequency of the migrations, and the criteria for selecting
the migrants and the replaced individuals when the new ones arrive. The importance
of these parameters in the quality of the search and its efficiency has been largely
studied [3, 17, 37], although the optimal values clearly depend on the problem being
solved.

We are using for the present study a unidirectional ring topology, since it is easy
to implement and analyze (see a discussion on this and other topologies in [10]).

3.3 Migration Policy in a Parallel Distributed Evolutionary Algorithm

The working principles of a distributed EA include a communication phase,
which is governed by a migration policy. The migration policy determines how
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communication is carried out by the islands of the distributed EA, and it is defined
by five parameters:

e Number of migrants (m). It is the number of individuals to exchange among
the islands, m € {0,1,2...}. The value 0 means in this case no interaction at
all among the subpopulations (idle search). Alternatively, this parameter could
be measured as a subpopulation percentage or rate.

e Migration frequency (7). Number of generations in isolation, r € {0,1,2...}.
Alternatively, it can be measured as the number of function evaluations before
migration, which is more appropriate when comparing algorithms having a dif-
ferent step grain (in terms of the number of evaluations).

e Policy for selecting migrants (.S). The migrant selection can be made according
to any of the selection operators available in the literature (fitness proportional,
tournament, etc.), e.g., S = {best, random}. The most used are truncation (se-
lect the best) and random.

e Policy for migration replacement (R). It is used for integrating the incoming
individual in the target subpopulation, e.g., R = {worst, random}. It decides
which individuals will be replaced by the incoming migrants.

e Synchronization. It is a flag indicating whether the algorithm islands are per-
forming regular blocking input/output from/to another island, or whether indi-
viduals are integrated whenever they arrive, at any moment during the search.

In practice, many useful combinations of these techniques are possible. In our
implementation, the algorithm can be tested with any combination of these parame-
ters, although for the experiments we will keep some of them fixed.

4 Parallel Estimation of Distribution Algorithms Using Islands

After discussing the different parameters affecting the parallelization of EAs, we
will now move to the EDA domain. As we pointed out, the distributed approach
will be used here because it allows the exploitation of clusters of machines, which is
the most popular parallel platform available in labs and departments. The resulting
dEDA works as reported in the Algorithm 6.

The asynchronous dEDA algorithm can be seen as the combination of d islands
each one executing an EDA algorithm. This is graphically depicted in Fig. 1.

We directly stress the use of asynchronous dEDAs because they lead to faster
executions than synchronous ones when the component subalgorithms run the same
kind of algorithm on similar processors [4].

The main idea of our asynchronous algorithm is to execute in each island an
EDA algorithm, and periodically (e.g., after the generation of each new individual)
to verify whether the migration step has been reached. In that case, there will be
an exchange of individuals with the neighbors according to the selected topology
and the rest of migration parameters. The arriving individuals replace the selected
individuals; e.g., worst or random individuals are replaced by the newcomers. In
our case, we select the best individuals in the source island and replace the worst
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Algorithm 6 dEDA
Island;
Sett «— 1;
Generate N >> 0 points randomly;
while termination criteria are not met do
Select M < N points according to a selection method;
Estimate the distribution p°(x, t) of the selected set;
Generate N new points according to the distribution p°(z, t);
/I Communication between Islands -Migration-
Send and receive individuals asynchronously, according to the migr. parameters;
Sett —t+1;
end while

individuals of the target neighboring island. This choice is expected to induce a larger
selection pressure that will hopefully accelerate the convergence of the algorithm as
a whole [9].

In a more general conception, each island in a dEDA could execute a different
EDA, resulting in a heterogeneous dEDA, which also represents a very interesting
open research line. For example, we could have one dEDA of four islands where
the first one executes UMDA, the second one MIMIC, the third one EBNA, and the
last one executes PADA (see Fig. 2). Each algorithm, depending on the problem, has
potential advantages and weaknesses that could be conjugated with the features of
the other algorithms. To deal with the differences in the execution time of each algo-
rithm, we suggest the distributed algorithm be implemented asynchronously, in order
to better exploit the power of each algorithm. In a different heterogeneous scenario,
each island could execute the same base algorithm, but with different parameters.

TOPOLOGY

Fig. 2. Conceptual dEDA running different EDAs in each island (heterogeneity)

In this paper, our implementation is based on the execution of one asynchronous
UMDA (for discrete and continuous domains) in each island, i.e., we use one homo-
geneous dEDA. We defer heterogeneous dEDAs for a future work, since they deserve
careful consideration.
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For the discrete version of dUMDAD the only difference with the above is the
definition domain (discrete or continuous) of the fitness function, and the way in
which the statistical model is estimated. In the discrete UMDA we estimate the (also
discrete) distribution that better adjusts each variable in the selected population; in
the continuous domain we estimate the mean and variance for each variable of the
univariate normal distribution from the selected population of the algorithm (see Al-
gorithm 7 for all the details).

Algorithm 7 dUMDA
Island; executing UMDA
Sett «— 1;
Generate N >> 0 points randomly according to the definition domain (discrete or contin-
uous) of the fitness function;
while termination criteria are not met do
Select M < N points according to a selection method;

/*
Estimate the distribution p®(z, t) of the selected set according to the domain
*/
if domain == discrete then
/*
Each univariate marginal distribution is estimated from marginal frequencies
*/
p(x,t) = [ p* (@i, 1);
i=1
else
/*

Since the univariate distributions are assumed to follow a normal distribution, the two
parameters to be estimated for each variable are the mean, pf, and the standard devia-

tion, o}

*/

p*(z,t) = fz,t,p',0") = T flzi,t, 17, 67);

i=1

and,

"t 3t 1 X

1% 7Xi_ﬁzxz,r )

r=1

t 1 il t ~ ¢

o=y v X @, - X
end if

Generate N new points according to the distribution p®(x, t) and the domain (continuous
or discrete);
/*
Communication between Islands (Migration)
*/
Send and receive individuals asynchronously, according to the migr. parameters;
Sett «—t+1;
end while
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We now proceed to discuss the test benchmark we have selected to evaluate the
performance of dUMDA.

5 Set of Test Functions

The set of test functions considered in our work is divided into two sub-groups:
discrete problems and continuous problems. In the case of the discrete domain we
Study six functions, namely FoneMaz> Friateaus FisoPeaks FQuadratic’ Farun and
Feupani- For the continuous problems we test our algorithms on four case of studies,
namely Fspheres Faricwangks FAckley and Fiygier. We selected such a benchmark
to be representative and to facilitate the comparisons with other works. In all the
cases, n represents the dimension of the problem.

5.1 Discrete Domain

Let us describe the functions used to test the proposed algorithms in discrete do-
mains. For all functions z; € {0,1}.

The OneMax Function

This function is defined as follows:

n
FOne]\/Iaa:(?) = Z-Ti
=1

Fonemaz has (n + 1) different fitness values, which are multinomially distributed.
For Additively Decomposed Functions (ADFs) the multinomial distribution occurs
fairly often [16] .

The objective is to maximize the function Fo,enrq,- The global optimum is lo-
cated at the point (1,1,...,1).

Plateau Function

This problem was studied in [28]. It is also known as a 3-bit royal road problem. The
solutions for this function consist of an n-dimensional vector, such that n = 3 x m
(the genes are divided into groups of three). First, we define an auxiliary function g
as:

1, if z1=1 and z9=1 and z3=1
0, otherwise

9($17x27$3) = {

Now, we can define the Plateau function as:
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m

FPlateau(?) = Zg(‘s—;)
=1

Where 5; = (x3;_2,23i_1,*3;). The goal is to maximize the function Fpjatequ.
and the global optimum is located at the point (1,1,...,1).

IsoPeak Function

This problem was investigated in [23]. The solutions for this function consist of an
n-dimensional vector, such that n = 2 x m (the genes are divided into groups of
two). First, we define two auxiliary functions Isol and Is02 as:

Z 00 01 10 11

Isol m 0 0 m-—1
Iso2 0 0 O m

Now, we can define the IsoPeak function as:

m

FlsoPeak(y) = Is02 (371, $2) + Z Isol (7:21'—17 IQi)
1=2

The goal is to maximize the function F7,,peqx and the global optimum is located
at the point (1,1,0,0,...,0,0).

Quadratic Function

This problem has been taken from [33]. The solution for this function is an n-
dimensional vector, such that n = 2 X m (the genes are divided into groups of
two). First, we define an auxiliary function g as:

09, if u=0 and v=0
g(u,v) =< 1.0, if u=1 and v=1
0.0, otherwise

Now, we can define the Quadratic function as:

m
Fouadratic(T) = Z g(x2i-1, T2;)
i=1

The goal is to maximize the function Fgyadratic, and the global optimum is
located at the point (1,1,...,1).
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Cuban Function

This problem was proposed in [27]. The solution to this function is an n-dimensional
vector, with n = 4 x m + 1 and m odd. The definition is as follows:

ing

0.595, for x=1(0,0,0)

0.200, for x=1(0,0,1)

0.595,  for x=(0,1,0)

3 — 0.100, for x=(0,1,1
Féupan: (7)) = 1.000, for z= El,o,og
0.050, for z=(1,0,1)

0.090, for x=(1,1,0)

0.150, for xz=(1,1,1)

4. F3 ; = d =
Fgubanl (x7 y7 Z7 U7 w) = { 0 CU’banl(x’ y, Z)’ Zf v y an w z

otherwise
Hence, we can define the Foyparn1 function as:
m
— 5
Foupan1 (@) = E Feupan1 (Tai—3, Tai—2, Tai—1, Tai, Tait1)
i=1

The goal is to maximize Fioypqy,1 and the global optimum is formed by alternat-
substrings 10000 and 00101. The first sub-string is the optima of the sub-function

F2..ban1» but the second one has only the third best value. The optimum is very dif-
ficult to reach even with local search [27].

Miihlenbein Function

This problem was proposed in [27]. The solution to this function is an n—dimensional
vector, with n = 5 x m. The definition follows:

3.0, for x=1(0,0,0,0,1)
2.0, for x=(0,0,0,1,1)
5 ,—_ )10, for x=(0,0,1,1,1)
Fount(T) =N 35 for z=(L1.1.1.1)
40, for z=1(0,0,0,0,0)

0.0, otherwise

Hence, we can define the F);,5; function as:

Frruni(T) = Z Fpura(57)
i=1

where 5] = (5i—4, T5i—3, T5i—2, T5i—1, T57).
The goal is to maximize F,p;, and the global optimum is located at point

(0,0,...,0).
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5.2 Continuous Problems

In this section we describe four functions broadly used in the literature for optimiza-
tion [7, 20] to test the proposed algorithms in the continuous domain.

Sphere Model

This is a well-known minimization problem, used to provide a base line for compar-
ison with other problems or algorithms. The variables z; are defined in the interval
—600 < x; < 600,72 = 1,2,...,n, and the fitness value for each individual is
computed as follows:

n

FSphere(?) = ng

i=1

The optimum fitness value nghere(?) = 0 is reached when all the variables
equal 0.

Griewangk

This is a minimization problem. The variables z; are defined in the interval —600 <
z; < 600,7 = 1,2,...,n, and the fitness value for each individual is computed as
follows:

n 2 n .
FGriewangk(?) =1+ Z L H COS <l>
i=1 4000 i=1 \/i

The optimum fitness value F¢,, ;.. angk (Z') = 0is reached when all the variables

equal 0.

Ackley

This minimization problem has an optimum value at F chley(7) = 0. This fitness
value is obtained when all the variables are set to 0. The variables x; are defined in
the interval —6.0 < x; < 6.0,7 = 1,2,...,n. The definition of the fitness function
for n dimensions is as follows:

FAck,ley(?) =-20- exp —0.2-
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Water Function

This minimization problem was proposed by [8] for two variables, having an opti-
mum value at Fy,,,.,.(Z') = 0. We extend this problem to n variables. The minimum
fitness value is obtained when all the variables are equal to 0. The variables xz; are
defined in the interval —1.5 < z; < 1.5,7 =1, 2, ..., n. The definition of the fitness

function for n dimensions is as follows:

n/2

Fwater(T) = Za . l’%i—1 +b- x%z —c-cos(a-xgi—1) —d-cos(y-xg)+c+d
i=1

Where a = 1.0, b = 50.0, ¢ = 3.0,d = 4.0, = 3 - m, and 7 = 4 - 7 have been
used for all test runs. This function is hard for many optimization algorithms as well
as for very specialized search methods [18]. We show how dUMDAC can optimize
this problem efficiently.

6 Computational Experiments

In this section, we report and discuss the results of applying two kinds of EDA on
the previously explained test functions. In the case of the discrete domain UMDAD
(UMDA for discrete problems) versus dUMDAD are tested. In the continuous do-
main, we will test the UMDAC (UMDA for continuous problems) versus dUMDAC.

The methodology that we follow is first to find the population size for a UMDA
that solves the proposed problem with at least 95% out success. It is to be able to
perform further comparisons for the success rate and number of function evalua-
tions. We analyze different parameterizations of dUMDA to study the influence of
the migration in the results. Our goal is also to look for the existence of a dUMDA
that could show a much smaller number of evaluations of the objective function than
the panmictic (single population) one. After this, a separate study on the run time
is addressed in a different subsection to report the physical efficiency in a cluster of
workstations.

We initially focus on the behavior of the algorithm for the Fo,ensq problem
exhaustively, and then we analyze the hypothesis that dUMDA is more efficient than
the single-populated UMDA for the rest of problems. We did not introduce any spe-
cial bias, and then did not search for highly tuned parameters of the decentralized
version.

All the algorithms, discrete and continuous, use truncation selection with ratio
0.3 (30% of the population) without elitism (the new generation completely replaces
the old one). For each problem the population size N is shown in the result tables.
The algorithms stop after finding the optimum (hit) or after reaching 10° evaluations.
The number of evaluations is averaged over 100 independent runs. For the distributed
versions, the number of function evaluations is the sum of the evaluations carried out
by each island. All the results (fitness evaluations and speedup) are average values
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over the successful runs. In the continuous case, the first generation was created by
using a normal distribution and estimating x4 and o in the definition interval (a, b) for
the problem variables, y = %b and o = b’T“. This definition allows out 99% of the
generated points to be in the interval and around the center. When a value is out of

the definition interval it is sampled again until a valid point is generated.

6.1 dUMDA Can Decrease the Numerical Effort

We begin the experimental section by trying to answer the following question: can
our dUMDAD perform with a larger numerical efficiency with respect to UMDAD?
We empirically explore the answer to this question by analyzing the behavior of these
algorithms in a set of problems.

The Foneniar Problem

We begin by analyzing the results related to the Fonenrq, function. Table 1 shows
the success percentage (hits) and the number of evaluations of UMDAD for four
different population sizes. In the experiments, the Fio,earq, function is defined over
a vector of 1000 variables. The execution stops if the optimum has not been reached
after 40000 fitness evaluations.

Table 1. Success percentage and number of evaluations (mean plus standard deviation) ob-
tained with UMDAD for different population sizes (N) when solving the Fonenrae problem
with 1000 variables

N Success Percentage Number of Evals.
400 97% 16437.11 422422
200 3% 8600 £ 200
100 0% -

50 0% -

Note in Table 1 that UMDAD only converges to the optimal solution with a
success percentage above 95% for a population size of 400. Our goal is to reduce the
reference cost attained by UMDAD with 400 individuals (97% success), by using
dUMDAD algorithms of two, four and eight islands (with subpopulations of 200,
100 and 50 individuals, respectively).

Let us begin by analyzing the case of 2 islands. Figure 3 shows the percentage of
success for different values of the parameters in a ring topology of two islands for the
Fonenaz problem. We plot one line per r value, where r is the migration frequency.
The number of migrants (m) varies from 5 to 60, which is approximately the size of
the selected population. As we can observe, the percentage of success stays relatively
high for most of the combinations of the migration parameters. With the exception of
7 = 1 (high coupling), all of them stay over 90% of success for any of the tested m
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Fig. 3. Percentage of success versus number of migrants for different migration frequencies
(r) and migration rates (m) in two islands connected in a ring topology for the Fonenmax
problem

between 5 and 30. For m < 20 practically every r surpasses 95% with the exception
of r = 1 and r = 2. All this means that accurate results can be obtained by enlarging
the isolation time (r) or/and by enlarging the set of exchanged individuals (with the
mentioned exceptions of highly coupled subalgorithms having » = 1 and r = 2).
This result confirms similar experiments with different EAs reported in the past [3].

Table 2 shows in each cell the percentage of hits (%) and the average number
of fitness evaluations with their standard deviation. Almost every case with r < 8
(specially with m = 10), the average number of evaluations is clearly reduced with
respect to the centralized algorithm having a population size of 400 individuals. An
example is for 7 = 1 and m = 5, where the percentage of success is as high as 97%
with a saving of around 1620 evaluations.

In the case with four islands (see Table 3) we can conclude that the best (m, r)
configuration is a dUMDAD using » = 1 and m = 5. This claim comes out if we
inspect all the combinations where the success percentage is 95% and then select the
one that executes the smaller number of fitness evaluations. However, it is clear that
the algorithm is quite sensitive to the used parameterizations when r = 1 is used.
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Table 2. Success percentage plus mean number of evaluations to converge to the optimum
with the two island dUMDAD when solving the Fonenrar problem. Results are shown for
different combinations of the number of migrants (m) and migration frequencies (1)

m=>5 m = 10

r=1 97% 93%

14816.5 £ 237.4 13882.6 £ 226.1
r=2 98% 98%

15737.9 4 226.8 15109.6 £+ 257.9
r=4 100% 97%

16356 + 204.1 15904.1 £ 238.8
r=2=8 99% 99%

16868.7 4 280.1 16448.4 £ 230.5
r=16 96% 98%

17229.2 4+ 493.3 16914.2 4+ 281.3
r =32 92% 99%

18639.1 £2841.4

17442.4 £ 307.3

The Rest of the Discrete Problems

In the case of the other problems we exhaustively test two functions, Fr,p; and
Fpiatean- The frequency of the migration (r) variate from 1 to 32 and the number of
migrants (m) ranges from 1 to 50; we show the percentage of success in the Tables
4 and 5. Fig. 4 shows the number of function evaluation for the Fy;y,p; and Fpiatean
problems. We only show the values when the percentage of success is larger than
95%. This is due to the fact that we must select the configuration (r,m) that less
function evaluations makes of all those that obtain over 95% of hits. In general, we
observe that a high coupling makes the dUMDAD resemble the single-population
behavior in terms of success rate but with a more reduced effort. In academic prob-
lems like Fonenrars Faruni and Fpigieqy @ high coupling is the better strategy. In
other more complex problems larger isolation would probably be more efficient. In
fact, for a physically parallel implementation high coupling is a undesirable strategy
due to its higher communication overhead. We similarly set (m, 7) for the other prob-
lems, with the results shown in Table 6, where we show first the percentage of hits
and second the average fitness evaluations with their associated standard deviation.
The figures in Table 6 allow us to clearly conclude the higher efficiency of dUM-
DAD. We must notice that all the results are statistically significant for the t-student
test (p-value well below 0.05, for a 95% significance level). This algorithm is either
more efficient for the same success rate than UMDAD (this holds for the first 4 out of
5 problems) or it works out a clearly higher success rate than UMDAD (see the last



176 J. Madera et al.

Table 3. Success percentage plus mean number of evaluations to converge to the optimum with
the four island dUMDAD when solving Fopenraz problem. Results are shown for different

combinations of the number of migrants (m) and migration frequencies ()

r=1 r=2 r=4 r=2_8

m=1 99% 99% 98% 97%
16921.2 £293.9 183714 £411.1 20639.1 £944.5 25266.6 4 2263.2

m=2>5 95% 99% 97% 96%
14265.2 £264.8 15653.1 +267.1 16900.0 £+ 338.4 18160.0 £ 486.1

m =10 76% 95% 95% 97%
13236.8 £237.1 14863.8 +264.3 16234.1 £283.8 17316.6 £ 332.9

m =15 62% 77% 90% 97%
12954.8 £209.3 14736.0 = 271.4 16094.3 £225.8 17204.1 £ 335.8

m =20 58% 81% 94% 97%
12979.3 £261.4 14680.0 &= 214.8 16038.7 £257.5 17091.6 £ 340.7

m = 25 53% 80% 89% 93%
12988.6 £230.1 14673.4 +252.5 16050.0 £269.9 17191.3 £ 355.6

m = 30 51% 81% 92% 89%
12933.3 £206.5 14670.0 &= 244.6 16128.8 £298.7 17290.9 £ 362.5

Table 4. Percentage of success for the Faso,1; problem

r=1 r=2 r=4 r=8 r=16 1r =32
m = 44% 18% 16% 7% 11% 10%
m=2>5 95% 77% 48% 26% 21% 10%
m=10 88% 96% 73% 43% 20% 17%
m=15 93% 93% 87% 64% 30% 14%
m=20 81% 88% 93% 77% 26% 7%
m=25 84% 88% 92% 83% 42% 13%
m=30 86% 90% 95% 94% 44% 19%
m=35 85% 88% 91% 92% 53% 20%
m =40 80% 84% 90% 95% 69% 24%
m=45 72% 89% 92% 93% 79% 31%
m=>50 77% 86% 93% 96% 95% 85%
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Table 5. Percentage of success for the F'piqteqw problem

r=1 r=2 r=4 r=8 r=16 r =32

m=1 100%  99% 75% 5% 0% 0%

m=35 96% B%  100% 100% 91% 55%
m=10 97% 97% 99% 99% 98% 100%
m=15  94% 95% 99% 97% 100% 98%
m=20 97% 100% 99% 98% 99% 97%
m=25 87% 99% 9%  100% 99% 100%
m=30 95% 97% 97% 98% 98% 98%
m=235 95% 97% 98% 98% 99% 99%
m=40 94% 97% 98% 99% 94% 88%
m=45 91% 96% 97% 98% 74% 37%
m=250 91% 96% 96% 96% 68% 27%

Plateau Function

Function Evaluations
Function Evaluations

Fig. 4. Numerical effort for Fisyuni (left) and Fpiateqn (right) problems

function). In the first column of Table 6 we list the problem to be solved. The second
column (AUMDAD header) shows for each problem, the (r,m) pair where dUM-
DAD overcomes the centralized version plus the result of the run in total isolation
for comparison (no migration between islands (r = 0,m = 0)). The third column
shows the results with the above parameters (r,m). The fourth and fifth columns
present the parameters and results, respectively, of running UMDAD in the problem.
In all cases the results columns show the percentage of convergence, and the average
number of fitness evaluations.

Why dUMDA Reduce the Numerical Effort?

In the following, we explain the reasons for these reductions (for the case of trun-
cation selection, two islands, and » = 1). The initial motivation resides in that, in
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Table 6. Success percentage plus mean number of evaluations to converge to the optimum
with the four island dUMDAD when solving all the discrete problems. Results are shown for
different combinations of the number of migrants (m), migration frequencies (r) and popula-
tion sizes (IV)

Functions dUMDAD with 4-islands UMDAD p-value
Frsopeak,n = 64 r=1,m =40 98% N = 3200 97%
45954.6 £ 2739.7 55158.7 £ 4424.7 0.0
r=0,m=0 46% N = 800 10%
54191.3 + 3193.0 13360.0 + 386.4 0.0
Fpiateau, n = 600 r=1,m =30 95% N = 600 100%
17640 &+ 627.4 22152.0 + 550.5 0.0
r=0,m=0 0% N = 150 0%
FQuadratic:n =66 r=1,m =12 95% N = 2000 96%
33452.6 + 2448.4 34583.3 + 2426.4  0.0015
r=0,m=0 18% N =500 0%
34000.00 + 0.00 -
Farunt, n = 200 r=1,m=>5 95% N = 1400 96%
39505.4 + 1503.1 41183.3 £ 1646.3 0.0
r=0,m=0 1% N = 350 0%
43400.0 £ 0.0 -
Fcoubani,n = 21 r=2m=10 92% N = 800 46%
5408.7 £ 521.9 5043.4 + 372.1 0.00004
r=0,m=0 53% N = 200 45%
8256.6 £ 15354 1355.5 £ 84.1 0.0

each generation, the migration increases the average fitness of the population. This
implies that the response to selection [25] of the algorithm in each island increases
with regard to the case of no migration (notice that some the islands could show a
larger increase than the others). The gains in the response to selection lead to a con-
vergence acceleration in the dEDA, but the required balance between exploitation
and exploration causes this to reach a limit. This analysis is valid and extensible to
any other fitness function.

Let R(t) be the response to selection of generation ¢ before the migration, then:

R()=[ft+1)—f(@) (1
where f (t) and f (t + 1) are the means of the fitness function evaluations in the
population ¢ and t + 1.

Let f, (t+1), f,, (t+ 1), f, (t + 1) be the respective averages of the values of
the fitness function for the subsets of the best M, the worst M and the (N — 2 - M)
remaining individuals of a population with size N. In our analysis M is equal to m,
i.e., the number of individuals exchanged among the islands. Then:

?(t+1):M'fb(”1)+(N*Q'M])V'fr(t+1)+M'fu,(t+1)

(@)
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We can assume that the values f, (¢ + 1) of each island are similar. This assump-
tion is correct and largely used in the literature, because the islands are homogenous
and the subsets of the best M (in each island) are an approximation of an equally fit-
ted individuals set. Now we can write for the population average (after the migration
of the best M takes place, and replace the worst M in the neighbor islands):

7mig(t+1):Q'M'fb(tH)H%_Q'M)~fr(t+1) 3)

Therefore, the migration produces an increase in the response to selection equal
to:

M- (Fyt+1) =Ty (t+1))

AR'm'ig (t) = Rmiy (t) - R (t) = ?Wm‘,g (t + 1) - ?(t + 1) = N

“

Note that if M increases (larger coupling), then f, (t + 1) tends to decrease,
while f,, (t + 1) tends to increase. Therefore, (f, (t + 1) — f,, (t + 1)) decreases
when M increases. This provokes a convergence acceleration of the algorithm. This
is seen in the experimental results for Fopenrqr (see Tables 2 and 3): when M in-
creases first, the results improve, but later the percentage of success decreases consid-
erably. It is important to remember that the levels of response to the selection of the
algorithm without migration are not enough to obtain the convergence to an optimum
with high probability. Finally, note that the magnitude (f, (¢t + 1) — f,, (¢t + 1)) de-
pends on the problem, and thus for each problem, different (m, r) pairs could mini-
mize the total number of fitness evaluations that the dUMDA makes.

On the other hand, if the frequency of migration r is decreased, then we will
decrease also the response to selection. In this case, we would observe that the con-
vergence decelerates, decreasing also drastically the success percentage, but with
an enhanced exploration that is suitable for many complex problems. In some way,
existing studies like that of [9] and [38] lead to the same conclusions by different
means.

Figure 5 shows the change in the response to selection (left) and the average fit-
ness value for the Fonenrqar function. We must point out that the UMDAD response
to selection is very similar to that of the dUMDAD with » = 1 and m = 1. In fact
this is common sense, since such a high coupling resembles a centralized behavior.
The right figure shows the increment of the average fitness evaluations per genera-
tion for the tested bounding cases of dUMDAD and UMDAD. This corroborates that
dUMDAD with » = 1 and m = 1 can show the same selection pressure as the
UMDAD. Another important result is the fact that dUMDA with high isolation
(r = {32,0} and m = {1,0}) represents a too slow search for Fo,errq. and the
algorithm does not converge to the solution. The most efficient behavior is detected
when the algorithm uses the parameters shown in the preceding tables. This is an
indication that the exploration and exploitation phases change when different para-
meters are used.

Figure 6 shows the algorithm behavior for another two functions (F'pjgteqq left
and FTgopeqk right). Again, the results observed in Foy,eprq, are confirmed in these
problems, with special clarity in the graphic of the F'p;4teq,, function.
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Fig. 5. Response to selection (left) and average fitness evaluations for the Fonenrax problem

Problem: Plateau Problem: Muhlenbein
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Fig. 6. Change in the average fitness for Fpiqtean (left) and Fiasyni (right)

Continuous Problems

After finishing the analysis with discrete problems, we encompass in this section a
similar study on continuous ones. Applications of parallel or distributed EDAs to
continuous domains in optimization are rare in literature, because in fact there are
not many works accounting for parallelism in EDAs in general.

In the case of the continuous problems we test exhaustively two functions,
Fsphere and Fyyqier. The frequency of the migration (r) variate from 1 to 32 and
the number of migrants (m) ranges from 1 to 50, we show the percentage of suc-
cess in the Tables 7 and 8. Fig. 7 show the number of function evaluation for the
Fsphere and Fiy,qier problems, where we only show the values when the percentage
of success is larger than 95%. In general, as in discrete domain, we observe that a
high coupling makes dUMDAC resemble the single-population behavior in terms of
success rate but with a more reduced effort. In all the results a high coupling is the
better strategy. In other more complex problems larger isolation would probably be
more efficient.
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Table 7. Percentage of success for the Fisppere problem

r=1 r=2 r=4 r=38 r=16 r =32

m=1 100% 100% 100% 100% 95% 7%
m=>5 100% 100% 100% 100% 100% 100%
m =10 100% 100% 100% 100% 100% 100%
m =15 100% 100% 100% 100% 100% 100%
m = 20 100% 100% 100% 100% 100% 100%
m =25 100% 100% 100% 100% 100% 100%
m = 30 100% 100% 100% 100% 100% 100%
m =35 100% 100% 100% 100% 100% 100%
m = 40 100% 100% 100% 100% 100% 100%
m =45 100% 100% 100% 100% 100% 100%
m = 50 100% 100% 100% 100% 100% 100%

Table 8. Percentage of success for the Fiy4ter problem

r=1 r=2 r=4 r=2~8 r =16 r =32

m=1 100% 100% 100% 100% 100% 100%
m=>5 100% 100% 100% 100% 100% 100%
m = 10 100% 100% 100% 100% 100% 100%
m =15 100% 100% 100% 100% 100% 100%
m = 20 100% 100% 100% 100% 100% 100%
m = 25 100% 100% 100% 100% 100% 100%
m = 30 100% 100% 100% 100% 100% 100%
m = 35 100% 100% 100% 100% 100% 100%
m = 40 100% 100% 100% 100% 100% 100%
m =45 100% 100% 100% 100% 100% 100%
m = 50 100% 100% 100% 100% 100% 100%

Table 9 shows the results of executing dUMDAC over four functions defined
in the continuous domain. Notice that in all the cases we confirm the preceding
results found on discrete problems, i.e., the dUMDAC algorithm improves the re-
sults of UMDAC. In the continuous function set the results are still more relevant:
even a more clear reduction of the number of evaluations than the one noticed for
the discrete problems, can be appreciated. The distributed version, independently of
whether we are interested in using a parallel execution platform or not, makes a much
smaller number of function evaluations.

Notice also that when dUMDAC has no migration and UMDAC is executed with
the same population size of one island the percentage of convergence is very low or



182 J. Madera et al.

Sphere Function

Function Evaluations

Function Evaluations

Water Function

= °
§8 8w o -
13 0
SEETIiS Lt EEefi gyl
[ £ oL
E £ E £

Fig. 7. Numerical effort for Fisphere (left) and Fywy ater (right) problems

Table 9. Success percentage plus mean number of evaluations to converge to the optimum
with the four island dUMDAD when solving all the continuous problems. Results are shown
for different combinations of the number of migrants (m), migration frequencies () and pop-

ulation sizes (V)

Functions dUMDAC with 4-islands UMDAC p-value
Fsphere.n = 100 r=1,m =45 100% N = 600 100%
55002.0 £ 330.8 75630.0 £ 421.0 0.0
r=0m=0 45% N = 150 16%
78000.0 £ 3167.1 20820.0 £ 2097.1 -
Fackley,n = 100 r=1m =20 97% N = 400 100%
454309 £ 3153 62832.0 £ 358.1 0.0
r=0,m=20 0% N =100 0%
Fgricwangk,n =100 7 =1,m = 20 99% N =400 100%
29301.0 £ 281.9 40336.0 £ 315.1 0.0
r=0m=20 0% N =100 0%
Fwater,n = 100 r=1m=45 100% N =800 99%
64856.0 £ 498.9 128945.4 4-2941.3 0.0
r=0,m=20 0% N =200 0%

null. This table again corroborates the results presented in discrete domains: com-
plete isolation is not an interesting technique from a numerically efficiency point of
view. Also, like for the discrete cases, all the p — values point out a high confidence
in the claims, since they all resulted significant.

We want to comment apart, the case of the difficult Fyy4¢¢, problem, in which the
decentralized version reduces the number of functions evaluation drastically (even
more intensely than for the other problems). We selected this problem since it moti-
vated a considerably large number of papers in the past trying to solve it with multi-
start, parallel and advanced search methods. Our dUMDAC seems also an efficient
alternative to traditional and enhanced mathematical algorithms.
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6.2 Run Time Analysis

In this subsection, we show how dUMDA (discrete and continuous) can improve the
results in terms of the execution time used to solve the same problem that UMDA.
The speedup can be defined as follow:

sequential time
Speedup = —————
parallel time

To evaluate the speedup we use the taxonomy proposed in [1]. This taxonomy
divides the speedup analysis into two types, strong speedup, - type I - and weak
speedup, - type II -. Strong speedup is intended to compare the parallel algorithm
with the best-so-far sequential algorithm. The second measure compares the paral-
lel algorithm with its own sequential version that is more pragmatic in most works.
Before the algorithm runs, the stop condition is set (find an optimum) and then the
speedup is measured (type II.A). In this work we select a weak speedup (type I1.A.2),
called Orthodox. This type of analysis runs the same algorithm (d(UMDA) with four
islands over 1, 2, and 4 processors to provide a meaningful comparison, i.e. the al-
gorithm run in one processor is not the panmictic UMDA, but the dUMDA itself
(in parallel studies it is not fair to compare time against a different algorithm, since
any result could be obtained). We demonstrate that the execution time decreases sig-
nificantly as more processors are used. All the tests were executed on four Pentium
4 at 2.4 GHz and 512 MB of RAM running Linux, inter-connected with a Gigabit
Ethernet network.

Table 10 shows the speedup in the discrete and continuous problems. Note that
in the discrete case, specially for problems needing large population sizes (Frsopeak
and Fyyqadratic functions) the speedup is super-linear. The reason can be found in
the stochastic nature of the algorithms, that asynchronously perform the search in a
different way depending on the number of processors.

For continuous problems all the results are super-linear. In this case we have the
same reasons as for the discrete results, with additional reductions in times since the
use of float values, because the operations are encoded in more complex expressions
and larger data structures in memory are needed (that are faster to deal with in parallel
when split among the processors).

7 Conclusions and Future Work

This paper has presented an asynchronous distributed implementation of an EDA al-
gorithm that we call dUMDA, although the basic parallel model could be generalized
to other EDA subtypes. The algorithm distributes the population among the available
processors and make migrations among them. We have performed a very complete
set of tests to analyze the numerical and wall-clock time behavior on a network of
computers, and we did so for continuous and discrete test functions. All these con-
siderations were made before engaging in the study to ensure that our conclusions
are really of valuable interest for other researchers and free of bias.
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Table 10. Speedup results on discrete and continuous problems

Discrete problems

Functions 1-Processor  2-Processors  4-Processors
Fonemax 1.00 1.65 2.28
Frsopeak 1.00 10.55 13.75
Fpiateau 1.00 2.71 3.13
Fouadratic 1.00 6.40 7.51
Farun 1.00 3.19 3.62

Continuous problems

Fsphere 1.00 4.94 6.43
Fackiey 1.00 5.86 7.96
FGTiewangk 1.00 5.57 7.47
Fwater 1.00 3.35 6.82

Results show that dUMDA is able to solve problems of considerable complexity
(hard problems and large population sizes), and that its capabilities can be improved
with an adequate configuration of the migration policy (tuning the (m, r) pairs) with
important reductions of the number of function evaluations; this can lead to obtain
remarkable results also in the speedup.

Globally stated, the dUMDA algorithm is a step forward to low cost algorithms,
and it shows that the decentralization of EDAs can provide fast algorithms that in-
crease the numerical efficiency and reduce the run time.

According to these results, we will extend this analysis to study other types of
EDAs (PADA, EBNA, MIMIC) to include multi-population behavior, because these
models are easy to implement and exploit. We also will extend this work by applying
the algorithms to more complex problems, as training neural networks, and other
complex industrial problems. Also, a different next step could be the analysis of
parallelization at the learning level, and the way it could be conjugated with the
algorithms proposed in this paper. Of course, we will check for new evidences of the
results shown in this paper with a larger set of machines in the near future.
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Summary. Hybrid metaheuristics have received considerable interest in recent years. A wide
variety of hybrid approaches have been proposed in the literature. In this paper a new hybrid
approach, named GA-EDA, is presented. This new hybrid algorithm is based on genetic and
estimation of distribution algorithms. The original objective is to benefit from both approaches
and attempt to achieve improved results in exploring the search space. In order to perform
an evaluation of this new approach, a selection of synthetic optimization problems have been
proposed, together with some real-world cases. Experimental results show the competitiveness
of our new approach.

1 Introduction

Over the last years, interest in hybrid metaheuristics has risen considerably among
researchers. The best results found for many practical or academic optimization prob-
lems are obtained by hybrid algorithms. Combination of algorithms such as descent
local search [32], simulated annealing [2 1], tabu search [12] and evolutionary algo-
rithms have provided very powerful search algorithms.

Two competing goals govern the design of a metaheuristic [39]: exploration
and exploitation. Exploration is needed to ensure every part of the search space is
searched thoroughly in order to provide a reliable estimate of the global optimum.
Exploitation is important since the refinement of the current solution will often pro-
duce a better solution. Population-based heuristics (where genetic algorithms [18]
and estimation of distribution algorithms [23] are found) are powerful in the explo-
ration of the search space, and weak in the exploitation of the solutions found.

With the development of our new approach, GA-EDA, a hybrid algorithm based
on genetic algorithms (GAs) and estimation of distribution algorithms (EDAs), we
aim to improve the exploration power of both techniques.

V. Robles et al.: GA-EDA: A New Hybrid Cooperative Search Evolutionary Algorithm, StudFuzz 192, 187-219 (2006)
www . springerlink.com (© Springer-Verlag Berlin Heidelberg 2006
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This hybrid algorithm has been tested on combinatorial optimization problems
(with discrete variables) as well as real-valued variable problems. Results of several
experiments show that the combination of these algorithms is extremely promising
and competitive.

This paper is organized in the following way: First, we will focus on different
taxonomies of hybrid algorithms found in the literature; in Sect. 3, the new GA-
EDA approach is proposed with a complete performance study presented in Sect. 4.
Finally we close with our conclusions and further, future work.

2 Taxonomy of Hybrid Algorithms

The goal of the general taxonomies is to provide a mechanism to allow comparison
of hybrid algorithms in a qualitative way. Additionally, taxonomies are useful to
indicate areas in need of future work, as well as assist in classifying new hybrid
approaches. In this section we include a survey of the current, most important hybrid
taxonomies.

In [4] three different forms of hybridization are described:

e Component Exchange Among Metaheuristics.
One of the most popular ways of hybridization concerns the use of trajec-
tory methods, such as local search, Tabu Search or Simulated Annealing, in
population-based algorithms. Most of the successful applications of Evolution-
ary Computation (EC) make use of local search algorithms. The reason for the
success comes from the strengths of trajectory methods and population-based
methods, finding a proper balance between diversification (exploration) and in-
tensification (exploitation).
The power of population-based methods is based on the concept of recombining
solutions to obtain new ones. In EC algorithms, explicit recombinations are im-
plemented by one or more recombination operations. In EDAs recombination is
implicit because new solutions are generated using a distribution over the search
space which is a function of earlier populations. This allows making guided steps
in the search space which are usually larger than the steps done by trajectory
methods.
The strength of trajectory methods is found in the way they explore a promising
region of the search space. A promising area in the search space is searched in a
more structured way than in population-based methods. In this way, the danger of
being close to good solutions but “missing” them is not as high as in population-
based methods.
In summary, population-based methods are better at identifying promising areas
in the search space, whereas trajectory methods are better at exploring promising
areas in the search space. Thus, metaheuristic hybrids that manage to combine the
advantages of population-based methods with the strength of trajectory methods
are often very successful.
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Some examples of this trend are: GASAT [14] which incorporates local search
within the genetic framework for solving the satisfiability problem or [45] a hy-
brid algorithm based on the combination of EDA with Guided Local Search for
Quadratic Assignment Problems.
Cooperative Search.
A loose form of hybridization is provided by cooperative search [, 8, 17, 38,
, 43], which consists of a search performed by possibly different algorithms
that exchange information about states, models, entire sub-problems, solutions
or other search space characteristics. Typically, cooperative search algorithms
consist of the parallel execution of search algorithms with a varying level of
communication. The algorithms can be different or they can be instances of the
same algorithm working on different models or running with different parameters
settings.
Presently, cooperative search receives more attention which, among other rea-
sons, is due to the increasing research on parallel implementations of metaheuris-
tics [3, 0, 24, 34, 35]. The aim of research on parallelization of metaheuristics is
twofold. First, metaheuristics should be redesigned to make them suitable for
parallel implementation in order to exploit intrinsic parallelism. Second, an ef-
fective combination of metaheuristics has to be found, both to combine different
characteristics and strengths, and to design efficient communication mechanisms.
Integrating Metaheuristics and Systematic Methods.
This approach has recently produced very effective algorithms especially when
applied to real-world problems. Discussions on similarities, differences and
possible integration of metaheuristics and systematic search can be found in
[11, 12, 15]. A very successful example of such an integration is the combination
of metaheuristics and Constraint Programming [10].

Our hybrid GA-EDA algorithm, which is a completely new approach, can be

classified in the second form; cooperative search, of Blum and Roli’s classification.

Another excellent taxonomy can be found in [39]. In this hierarchical classifi-

cation, at the first level, low-level and high-level hybridizations are distinguished. In
low-level algorithms, a given function of a metaheuristic is replaced by another meta-
heuristic. In high-level algorithms, the different metaheuristics are self-contained; we
have no direct relationship to the internal workings of a metaheuristic.

At the second level, relay and co-evolutionary hybridizations are distinguished.

In relay hybridization, a set of metaheuristics is applied one after another, each using
the output of the previous as its input, acting in a pipeline fashion.

Four classes are derived from this hierarchical taxonomy:

LRH (Low-level Relay Hybrid).

Algorithms in which a given metaheuristic is embedded into a single-solution
metaheuristic. A few examples from the literature belong to this class. For in-
stance in [28] a LRH hybrid which combines simulated annealing with local
search to solve the travelling salesman problem, is introduced.

LCH (Low-level Co-evolutionary Hybrid).
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Algorithms in which population based heuristics have been coupled with local
search heuristics such as hill-climbing, Simulated Annealing and Tabu Search.
The local search algo