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Preface

In my experience, teaching students to use recursion has always been a difficult
task. When it is first presented, students often react with a certain suspicion
to the entire idea, as if they had just been exposed to some conjurer’s trick
rather than a new programming methodology. Given that reaction, many stu-
dents never learn to apply recursive techniques and proceed to more advanced
courses unable to write programs which depend on the use of recursive strat-
egies. This book is intended to demystify this material and encourage the
student to ‘‘think recursively.”

This book is intended for use as a supplementary text in an intermediate
course in data structures, but it could equally well be used with many other
courses at this level. The only prerequisite for using this text is an introductory
programming course. Since Pascal is used in the programming examples, the
student must also become familiar with Pascal programming, although this can
easily be included as part of the same course. To support the concurrent pre-
sentation of Pascal and the material on recursion, the programming examples
in the early chapters require only the most basic features of Pascal.

In order to develop a more complete understanding of the topic, it is
important for the student to examine recursion from several different perspec-
tives. Chapter 1 provides an informal overview which examines the use of
recursion outside the context of programming. Chapter 2 examines the under-
lying mathematical concepts and helps the student develop an appropriate
conceptual model. In particular, this chapter covers mathematical induction
and computational complexity in considerable detail. This discussion is de-
signed to be nonthreatening to the math-anxious student and, at the same time,
include enough formal structure to emphasize the extent to which computer
science depends on mathematics for its theoretical foundations.

Chapter 3 applies the technique of recursive decomposition to various
mathematical functions and begins to show how recursion is represented in
Pascal. Chapter 4 continues this discussion in the context of recursive proce-
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viii Preface

dures, emphasizing the parallel between recursive decomposition and the more
familiar technique of stepwise refinement.

Chapters 5 through 9 present several examples of the use of recursion to
solve increasingly sophisticated problems. Chapter 7 is of particular importance
and covers recursive sorting techniques, illustrating the applicability of the
recursion methodology to practical problem domains. Chapter 9 contains many
delightful examples, which make excellent exercises and demonstrations if
graphical hardware is available.

Chapter 10 examines the use of recursive procedures in the context of
recursive data structures and contains several important examples. Structur-
ally, this chapter appears late in the text primarily to avoid introducing pointers
prematurely. For courses in which the students have been introduced to point-
ers relatively early, it may be useful to cover the material in Chapter 10 im-
mediately after Chapter 7.

Finally, Chapter 11 examines the underlying implementation of recursion
and provides the final link in removing the mystery. On the other hand, this
material is not essential to the presentation and may interfere with the student’s
conceptual understanding if presented too early.

I am deeply grateful for the assistance of many people who have helped
to shape the final form of the text. I want to express a special note of appre-
ciation to Jennifer Friedman, whose advice has been invaluable in matters of
both substance and style. I would also like to thank my colleagues on the
Wellesley faculty, Douglas Long, K. Wojtek Przytula, Eleanor Lonske, James
Finn, Randy Shull, and Don Wolitzer for their support. Joe Buhler at Reed
College, Richard Pattis at the University of Washington, Gary Ford at the
University of Colorado at Colorado Springs, Steve Berlin at M.1.T., and Suz-
anne Rodday (Wellesley ’85) have all made important suggestions that have
dramatically improved the final result.

Eric Roberts
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The Idea of Recursion m

Of all ideas | have introduced to children, recursion stands out as the
one idea that is particularly able to evoke an excited response.
—Seymour Papert, Mindstorms

At its essence, computer science is the study of problems and their solutions.
More specifically, computer science is concerned with finding systematic pro-
cedures that guarantee a correct solution to a given problem. Such procedures
are called algorithms.

This book is about a particular class of algorithms, called recursive al-
gorithms, which turn out to be quite important in computer science. For many
problems, the use of recursion makes it possible to solve complex problems
using programs that are surprisingly concise, easily understood, and algorithm-
ically efficient. For the student seeing this material for the first time, however,
recursion appears to be obscure, difficult, and mystical. Unlike other problem-
solving techniques which have closely related counterparts in everyday life,
recursion is an unfamiliar idea and often requires thinking about problems in
a new and different way. This book is designed to provide the conceptual tools
necessary to approach problems from this recursive point of view.

Informally, recursion is the process of solving a large problem by reducing
it to one or more subproblems which are (1) identical in structure to the original
problem and (2) somewhat simpler to solve. Once that original subdivision has
been made, the same decompositional technique is used to divide each of these
subproblems into new ones which are even less complex. Eventually, the sub-
problems become so simple that they can be then solved without further sub-
division, and the complete solution is obtained by reassembling the solved
components.

1-1 An Ilustration of the Recursive Approach
Imagine that you have recently accepted the position of funding coordinator
for a local election campaign and must raise $1000 from the party faithful. In

this age of political action committees and direct mail appeals, the easiest
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2 Thinking Recursively

approach is to find a single donor who will contribute the entire amount. On
the other hand, the senior campaign strategists (fearing that this might be
interpreted as a lack of commitment to democratic values) have insisted that
the entire amount be raised in contributions of exactly $1. How would you
proceed?

Certainly, one solution to this problem is to go out into the community,
find 1000 supporters, and solicit $1 from each. In programming terms, such a
solution has the following general structure.

PROCEDURE COLLECT1000;
BEGIN FOR I := 1 TO 1000 DO
Collect one dollar from person I
END;

Since this is based on an explicit loop construction, it is called an iterative
solution.

Assuming that you can find a thousand people entirely on your own, this
solution would be effective, but it is not likely to be easy. The entire process
would be considerably less exhausting if it were possible to divide the task into
smaller components, which can then be delegated to other volunteers. For
example, you might enlist the aid of ten people and charge each of them with
the task of raising $100. From the perspective of each volunteer, the new
problem has exactly the same form as the original task. The only thing which
has changed is the dimension of the problem. Instead of collecting $1000, each
volunteer must now collect only $100—presumably a simpler task.

The essence of the recursive approach lies in applying this same decom-
position repeatedly at each stage of the solution. Thus, each volunteer who
must collect $100 finds ten people who will raise $10 each. Each of these, in
turn, finds ten others who agree to raise $1. At this point, however, we can
adopt a new strategy. Since the campaign can accept $1 contributions, the
problem need not be subdivided further into dimes and pennies, and the vol-
unteer can simply contribute the necessary dollar. In the parlance of recursion,
$1 represents a simple case for the fund-raising problem, which means that it
can be solved directly without further decomposition.

Solutions which operate in this way are often referred to as ‘‘divide-and-
conquer’’ strategies, since they depend on splitting a problem into more man-
ageable components. The original problem divides to form several simpler
subproblems, which, in turn, ‘‘branch’’ into a set of simpler ones, and so on,
until the simple cases are reached. If we represent this process diagrammati-
cally, we obtain a solution tree for the problem:
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$1000

S100  S100 $100 S100 S100 $100 $100 $100 $100

NV NV Y N NI N N N7 N

$10 s10 S10 S10 SIC $10 S10 S10 $10

AN s AN

$1 St S1 81 $1 81 %1 S1 S$1 SI

In order to represent this algorithm in a form more suggestive of a pro-
gramming language, it is important to notice that there are several different
instances of a remarkably similar problem. In the specific case shown here,
we have the independent tasks “‘collect $1000’, ““collect $100", *‘collect $10”’
and *‘collect $1’°, corresponding to the different levels of the hierarchy. Al-
though we could represent each of these as a separate procedure, such an
approach would fail to take advantage of the structural similarity of each prob-
lem. To exploit that similarity, we must first generalize the problem to the task
of collecting, not some specific amount, but an undetermined sum of money,
represented by the symbol N.

The task of collecting N dollars can then be broken down into two cases.
First, if N is $1, we simply contribute the money ourselves. Alternatively, we
find ten volunteers and assign each the task of collecting one-tenth the total
revenue. This structure is illustrated by the procedure skeleton shown below:

PROCEDURE COLLECT(N);
BEGIN
IF N is $1 THEN
Contribute the dollar directly
ELSE
BEGIN
Find 10 people;
Have each collect N/10 dollars;
Return the money to your superior
END
END;
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The structure of this ‘‘program”’ is typical of recursive algorithms represented
in a programming language. The first step in a recursive procedure consists of
a test to determine whether or not the current problem represents a simple
case. If it does, the procedure handles the solution directly. If not, the problem
is divided into subproblems, each of which is solved by applying the same
recursive strategy. In this book, we will consider many recursive programs
that solve problems which are considerably more detailed. Nonetheless, all of
them will share this underlying structure.

1-2 Mondrian and Computer Art

During the years 1907 to 1914, a new phase of the modern art movement
flourished in Paris. Given the name Cubism by its detractors, the movement
was based on the theory that nature should be represented in terms of its
primitive geometrical components, such as cylinders, cones, and spheres. Al-
though the Cubist community was dissolved by the outbreak of World War I,
the ideas of the movement remained a powerful force in shaping the later
development of abstract art. In particular, Cubism strongly influenced the work
of the Dutch painter Piet Mondrian, whose work is characterized by rigidly
geometrical patterns of horizontal and vertical lines.

The tendency in Mondrian’s work toward simple geometrical structure
makes it particularly appropriate for computer simulation. Many of the early
attempts to generate ‘‘computer art’’ were based on this style. Consider, for
example, the following abstract design:

In this example, the design consists of a large rectangle broken up into smaller
rectangles by a sequence of horizontal and vertical lines.

For now, we will limit our concern to finding a general strategy for gen-
erating a design of this sort and will defer the details of the actual program
until Chapter 9, where this example is included as an exercise. To discover
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this strategy and understand how recursion is involved, it helps to go back to
the beginning and follow this design through its evolutionary history. As with
any work of art (however loosely the term is applied in this case), our design
started as an empty rectangular ‘‘canvas’’:

The first step in the process was to divide this canvas into two smaller
rectangles with a single vertical line. From the finished drawing, we can see
that there is only one line which cuts across the entire canvas. Thus, at some
point early on in the history of this drawing, it must have appeared as follows:

But now what? From here, the simplest way to proceed is to consider each
of the two remaining rectangles as a new empty canvas, admittedly somewhat
smaller in size. Thus, as part of the process of generating a ‘‘large’’ Mondrian
drawing, we have reduced our task to that of generating two ‘‘medium-sized”’
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drawings, which, at least insofar as the recursive process is concerned, is a
somewhat simpler task.

As a practical matter, we must choose one of these two subproblems first
and work on it before returning to the other. Here, for instance, we might
choose to work on the left-hand ‘‘subcanvas’’ first and, when we finish with
that, return to finish the right-hand one. For the moment, however, we can
forget about the right-hand part entirely and focus our attention on the left-
hand side. Conceptually, this is a new problem of precisely the original form.
The only difference is that our new canvas is smaller in size.

Once again, we start by dividing this into two subproblems. Here, since
the figure is taller than it is wide, a horizontal division seems more appropriate,
which gives us:
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Just as before, we take one of these smaller figures and leave the other aside
for later. Note that, as we proceed, we continue to set aside subproblems for
future solution. Accumulating a list of unfinished tasks is characteristic of
recursive processes and requires a certain amount of bookkeeping to ensure
that all of these tasks do get done at some point in the process. Ordinarily, the
programmer need not worry about this bookkeeping explicitly, since it is per-
formed automatically by the program. The details of this process are discussed
in Chapter 5 and again in Chapter 11.

Eventually, however, as the rectangles become smaller and smaller, we
reach a point at which our aesthetic sense indicates that no further subdivision
is required. This constitutes the ‘‘simple case’’ for the algorithm—when a
rectangle drops below a certain size, we are finished with that subproblem and
must return to take care of any uncompleted work. When this occurs, we simply
consult our list of unfinished tasks and return to the one we most recently set
aside, picking up exactly where we left off. Assuming that our recursive solution
operates correctly, we will eventually complete the entire list of unfinished
tasks and obtain the final solution.

1-3 Characteristics of Recursive Algorithms

In each of the examples given above, finding simpler subproblems within the
context of a larger problem was a reasonably easy task. These problems are
naturally suited to the divide-and-conquer strategy, making recursive solutions
particularly appropriate.

In most cases, the decision to use recursion is suggested by the nature of
the problem itself.* To be an appropriate candidate for recursive solution, a
problem must have three distinct properties:

*At the same time, it is important to recognize that ‘‘recursiveness’’ is a property of the solution
to a problem and not an attribute of the problem itself. In many cases, we can take a problem
which seems recursive in its structure and choose to employ an iterative solution. Similarly,
recursive techniques can be used to solve problems for which iteration appears more suitable
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1. It must be possible to decompose the original problem into simpler
instances of the same problem.

2. Once each of these simpler subproblems has been solved, it must be
possible to combine these solutions to produce a solution to the original
problem.

3. As the large problem is broken down into successively less complex
ones, those subproblems must eventually become so simple that they
can be solved without further subdivision.

For a problem with these characteristics, the recursive solution follows in
a reasonably straightforward way. The first step consists of checking to see if
the problem fits into the ‘‘simple case’” category. If it does, the problem is
solved directly. If not, the entire problem is broken down into new subsidiary
problems, each of which is solved by a recursive application of the algorithm.
Finally, each of these solutions is then reassembled to form the solution to the
original problem.

Representing this structure in a Pascal-like form gives rise to the following
template for recursive programs:

PROCEDURE SOLVE(instance);
BEGIN
IF instance is easy THEN
Solve problem directly
ELSE
BEGIN
Break this into new instances I1, 12, etc.;
SOLVE(I1); SOLVE(I2); . .. and so forth . . .;
Reassemble the solutions
END
END:;

1-4 Nonterminating Recursion

In practice, the process of ensuring that a particular decomposition of a problem
will eventually result in the appropriate simple cases requires a certain amount
of care. If this is not done correctly, recursive processes may get locked into
cycles in which the simple cases are never reached. When this occurs, a re-
cursive algorithm fails to terminate, and a program which is written in this way
will continue to run until it exhausts the available resources of the computer.
For example, suppose that the campaign fund raiser had adopted an even
lazier attitude and decided to collect the $1000 using the following strategy:

Find a single volunteer who will collect $1000.
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If this volunteer adopts the same strategy, and every other volunteer follows
in like fashion, the process will continue until we exhaust the available pool
of volunteers, even though no money at all will be raised. A more fanciful
example of this type of failure is shown in the following song.

THERE’S A HOLE IN THE BUCKET
Traditional

There’s a hole in the bucket, dear Liza, dear Liza
There’s a hole in the bucket, dear Liza, a hole
Then fix it, dear Charlie, dear Charlie

Then fix it, dear Charlie, dear Charlie, fix it

With what shall I fix it, dear Liza, dear Liza
With a straw, dear Charlie, dear Charlie

But the straw is too long, dear Liza, dear Liza
Then cut it, dear Charlie, dear Charlie

With what shall I cut it, dear Liza, dear Liza
With a knife, dear Charlie, dear Charlie

But the knife is too dull, dear Liza, dear Liza
Then sharpen it, dear Charlie, dear Charlie

With what shall I sharpen it, dear Liza, dear Liza
With a stone, dear Charlie, dear Charlie

But the stone is too dry, dear Liza, dear Liza
Then wet it, dear Charlie, dear Charlie

With what shall I wet it, dear Liza, dear Liza
With water, dear Charlie, dear Charlie

But how shall I fetch it, dear Liza, dear Liza
In a bucket, dear Charlie, dear Charlie

There’s a hole in the bucket, dear Liza, dear Liza,
There’s a hole in the bucket, dear Liza, a hole

1.5 Thinking about Recursion—Two Perspectives

The principal advantage of recursion as a solution technique is that it provides
an excellent mechanism for managing complexity. No matter how difficult a
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problem at first appears, if we can determine a way to break that problem down
into simpler problems of the same form, we can define a strategy for producing
a complete solution. As programmers, all we need to specify is (1) how to
simplify a problem by recursive subdivision, (2) how to solve the simple cases,
and (3) how to reassemble the partial solutions.

For someone who is just learning about recursion, it is very hard to believe
that this general strategy is powerful enough to solve a complex problem. Given
a particular problem, it is tempting to insist on seeing the solution in all its
gory detail. Unfortunately, this has the effect of reintroducing all the complexity
that the recursive definition was designed to conceal. By giving in to skepticism,
the usual result is that one takes a hard problem made simpler through recursion
and proceeds to make it difficult again. Clearly, this is not the optimal approach
and requires finding a new way to think about recursion.

The difference between the perspective of the programmer with consid-
erable experience in recursion and that of the novice is perhaps best defined
in terms of the philosophical contrast between ‘‘holism’* and ‘‘reductionism.”’
In Godel, Escher, Bach, Douglas Hofstadter defines these concepts by means
of the following dialogue:

Achilles I will be glad to indulge both of you, if you will first oblige me, by
telling me the meaning of these strange expressions, ‘‘holism’’ and
“‘reductionism.”’

Crab Holism is the most natural thing in the world to grasp. It’s simply
the belief that ‘‘the whole is greater than the sum of its parts.”” No
one in his right mind could reject holism.

Anteater Reductionism is the most natural thing in the world to grasp. It’s
simply the belief that ‘‘a whole can be understood completely if you

understand its parts, and the nature of their ‘sum’.”’ No one in her
left brain could reject reductionism.

Even though recursion acts as a reductionistic process in the sense that
each problem is reduced to a sum of its parts, writing recursive programs tends
to require a holistic view of the process. It is the big picture which is important,
not the details. In developing a ‘“‘recursive instinct,”’ one must learn to stop
analyzing the process after the first decomposition. The rest of the problem
will take care of itself, and the details tend only to confuse the issue. When
one cannot see the forest for the trees, it is of very little use to examine the
branches, twigs, and leaves.

For beginners, however, this holistic perspective is usually difficult to
maintain. The temptation to look at each level of the process is quite strong,
particularly when there is doubt about the correctness of the algorithm. Over-
coming that temptation requires considerable confidence in the general mech-
anism of recursion, and the novice has little basis for that confidence.
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Achieving the necessary confidence often requires the programmer to adopt
a strategy called the ‘‘recursive leap of faith.”’ As a strategy, this means that
one is allowed to assume the solution to simpler problems when trying to solve
a complex one. At first, this appears mystical to the point of being suspect. By
becoming more familiar with recursion and by understanding its theoretical
basis, however, this faith will be justified and lose its mystical quality.

Even so, it is probably impossible to avoid completely the tendency to
undertake the reductionistic analysis. Seeing the details has the effect of jus-
tifying the faith required to adopt the more holistic perspective, since one can
actually “‘see it work.’’ Seemingly, this is one of those techniques which must
be learned independently, with experience as the best teacher.

Glinda You've always had the power to go back to Kansas.
Scarecrow Then why didn’t you tell her before?

Glinda Because she wouldn’t have believed me. She had to learn it for
herself.

—The Wizard of Oz

Bibliographic Notes

The general nature and philosophy of recursion form the basis of Douglas
Hofstadter’s Pulitzer Prize winning book Godel, Escher, Bach [1979], which
includes an important discussion of the distinction between the holistic and
reductionistic view. The use of recursion as a general problem-solving tool is
also discussed briefly in Wickelgren [1974].

The example of the ‘*‘money tree’’ used in this chapter is the invention of
Wayne Harvey at the Stanford Research Institute and was conveyed to me by
Richard Pattis of the University of Washington. Further information concerning
the use of recursive algorithms in the design and construction of ‘‘computer
art’” may be found in Levitt [1976].

Exercises

1-1. Given the structure of the ‘*collect N dollars’ algorithm suggested by the
COLLECT procedure on page 1, what would happen if the original target
were 500 instead of 1000? How could this problem be fixed?
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1.2,

1-3.

Thinking Recursively

Using a large sheet of graph paper and a note pad to keep track of your
unfinished tasks, follow the steps required to generate a Mondrian rectangle
such as the one illustrated in the text. Use your own sense of aesthetics
to determine where to divide each rectangle and to decide whether or not
a rectangle should be divided at all.

Suppose that there is a pile of sixteen coins on a table, one of which is a
counterfeit weighing slightly less than the others. You also have a two-pan
balance which allows you to weigh one set of coins against another. Using
the divide-and-conquer strategy, how could you determine the counterfeit
coin in four weighings?

If you solve this problem, see if you can come up with a procedure
to find the counterfeit coin in just three weighings. The strategy is much
the same, but the problem must be subdivided in a different way. Can you
generalize this approach so that it works for any set of N coins?




Mathematical
Preliminaries

One cannot escape the feeling that these mathematical formulae have
an independent existence and an intelligence of their own, that they are
wiser than we are, wiser even than their discoverers —Heinrich Hertz

For many students who have become interested in computer science through
their experience with programming, the notion that computer science requires
a strong mathematical foundation is met with a certain level of distrust or
disapproval. For those students, mathematics and programming often seem to
represent antithetical aspects of the science of computing; programming, after
all, is usually fun, and mathematics is, to many, quite the opposite.

In many cases, however, understanding the mathematical foundations of
computer science can provide practical insights which dramatically affect the
programming process. Recursive programming is an important case in point.
As outlined in Chapter 1, programmers often find the concept of recursion
difficult primarily because they lack faith in its correctness. In attempting to
supply this faith, experience is critically important. For this reason, much of
this book consists of programming examples and related exercises which rein-
force the skills and tactics required for recursive programming. On the other
hand, the ability to prove, through a reasonably cogent mathematical argument,
that a particular recursive algorithm does what it is supposed to do also serves
to increase one’s level of confidence in the underlying process.

This chapter addresses two separate mathematical issues that arise in any
complete discussion of recursion. The first is mathematical induction, which
provides a powerful tool for proving the correctness of certain useful formulae.
The second issue is that of computational complexity, which is considered here
in a very elementary form. Throughout the text, it will often be necessary to
compare the efficiency of several different algorithms for solving a particular
problem. Determining the computational complexity of each algorithm will
provide a useful standard for making that comparison.

13



14 Thinking Recursively
2-1 Mathematical Induction

Recursive thinking has a parallel in mathematics which is called mathematical
induction. In both techniques, one must (1) determine a set of simple cases for
which the proof or calculation is easily handled and (2) find an appropriate rule
which can be repeatedly applied until the complete solution is obtained. In
recursive applications, this process begins with the complex cases, and the rule
successively reduces the complexity of the problem until only simple cases are
left. When using induction, we tend to think of this process in the opposite
direction. We start by proving the simple cases, and then use the inductive
rule to derive increasingly complex results.

The nature of an inductive proof is most easily illustrated in the context
of an example. In many mathematical and computer science applications, we
need to compute the sum of the integers from 1 up to some maximum value
N. We could certainly calculate this number by taking each number in order
and adding it to a running total. Unfortunately, calculating the sum of the
integers from 1 to 1000 by this method would require 1000 additions, and we
would quickly tire of performing this calculation in longhand. A much easier
approach involves using the mathematical formula

424340+ N =D
This is certainly more convenient, but only if we can be assured of its correctness.

For many formulae of this sort, mathematical induction provides an ideal
mechanism for proof. In general, induction is applicable whenever we are trying
to prove that some formula is true for every positive number N.*

The first step in an inductive proof consists of establishing that the formula
holds when N = 1. This constitutes the base step of an inductive proof and is
quite easy in this example. Substituting 1 for N in the right-hand side of the
formula and simplifying the result gives

1(1+1)
2

=1

NN

The remaining steps in a proof by induction proceed as follows:

1. Assume that the formula is true for some arbitrary number N. This
assumption is called the inductive hypothesis.

2. Using that hypothesis, establish that the formula holds for the number
N+1.

*Mathemgtica_lly speaking, induction is conventionally used to prove that some property holds for
any positive integer N, rather than to establish the correctness of a formula. In this chapter,
however, each of the examples is indeed a formula, and it is clearer to define induction in that
domain.
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Thus, in our current example, the inductive hypothesis consists of making
the assumption that

_ N(N+1)

1+2+3+---+N >

holds for some unspecified number N. To complete the induction proof, it is
necessary to establish that

(N+1)N+2)

1+2+34 -+ (N+1) = >

Look at the left-hand side of the expression. If we fill in the last term
represented by the ellipsis (i.e., the term immediately prior to N+ 1), we get

1+2+3+---+ N+ (N+1)

The first N terms in that sum should look somewhat familiar, since they are
precisely the left-hand side of the inductive hypothesis. The key to inductive
proofs is that we are allowed to use the result for N during the derivation of
the N + 1 case. Thus, we can substitute in the earlier formula and complete the
derivation by simple algebra:

I+2+3+ -+ N+ N+
N(N+1)
2
N?+ N 2N +2
2 2
N2 + 3N + 2
2
_ (N+D(N+2)
2

+ (N+1)

Even though mathematical induction provides a useful mechanism for proving
the correctness of this formula, it does not offer much insight into how such
a formula might be derived. This intuition often has its roots in the geometry
of the structure. In this example, the successive integers can be represented
as lines of dots arranged to form a triangle as shown:
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(000000
o000
\®

:

Clearly, the sum of the first N integers is simply the number of dots in the
triangle. As of yet, we have not simplified the problem but have merely changed
its form. To determine the number of dots, we must apply some geometrical
insight. If, for example, we take an identical triangle, invert it, and write it
above the first triangle, we get a rectangular array of dots which has exactly
twice as many dots as in the original triangle:

-

N+1

0000000
000000
@0 00000
\@ 000000

N—

(QC...OO
0 000 OO

—
N

Fortunately, counting the number of dots in a rectangle is a considerably
easier task, since the number of dots is simply the number of columns times
the number of rows. Since there are N columns and N + | rows in this diagram,
there are N x (N +1) dots in the rectangle. This gives '

N(N +1)
2

as the number of dots in the original triangle.
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As a second example, suppose we want to find a simple formula for com-
puting the sum of the first N odd integers:

1+3+5+ .-+ (Nth odd number)

The expression ‘‘(Nth odd number)’ is a little cumbersome for mathematical
manipulation and can be represented more concisely as ““2N—~1"",

1 +3+5+---+@QN-1

Once again, we can gain some insight by considering a geometric repre-
sentation. If we start with a single dot and add three dots to it, those three
dots can be arranged to form an L shape around the original, creating a2 x 2
square. Similarly, if we add five more dots to create a new row and column,
we get a 3 X 3 square. Continuing with this pattern results in the following
figure:

.e

[
Ww
¢ ]
~)
o

Since we have both an extra row and column, each new L-shaped addition
to the figure requires two more dots than the previous one. Given that we
started with a single dot, this process therefore corresponds to adding the next
odd number each time. Using this insight, the correct formula for the sum of
the first N odd numbers is simply

l +3 45+ -+ @N—-1) = N?

Although the geometric argument above can be turned into a mathemati-
cally rigorous proof, it is simpler to establish the correctness of this formula
by induction. One such proof follows. Both the base step and the inductive
derivation are reasonably straightforward. Give it a try yourself before turning
the page.
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Inductive proof for the formula
1+3+5+-+-+ @2N-1) = N?
Base step: 1 =12
Inductive derivation:

1+3+54 -+ QN-1) + 2(N+1)—1
—— —

N2 4+ 2(N+1)—1
= N2+ 2N + 1

(N+1)Y

If

There are several ways to visualize the process of induction. One which
is particularly compelling is to liken the process of an inductive proof to a chain
of dominos which are lined up so that when one is knocked over, each of the
others will follow in sequence. In order to establish that the entire chain will
fall under a given set of circumstances, two things are necessary. To start with,
someone has to physically knock over the first domino. This corresponds to
the base step of the inductive argument. In addition, we must also know that,
whenever any domino falls over, it will knock over the next domino in the
chain. If we number the dominos, this requirement can be expressed by saying
that whenever domino N falls, it must successfully upset domino N+ 1. This
corresponds to using the inductive hypothesis to establish the result for the
next value of N.

More formally, we can think of induction not as a single proof, but as an
arbitrarily large sequence of proofs of a similar form. For the case N = 1, the
proof is given explicitly. For larger numbers, the inductive phase of the proof
provides a mechanism to construct a complete proof for any larger value. For
example, to prove that a particular formula is true for N = 5, we could, in
principal, start with the explicit proof for N = 1 and then proceed as follows:

Since it is true for N = 1, I can prove it for N = 2,

Since I know it is true for N = 2, I can prove it for N = 3.
Since 1 know it is true for N = 3, I can prove it for N = 4,
Since I know it is true for N = 4, I can prove it for N = 5.

In practice, of course, we are not called upon to demonstrate a complete proof
for any value, since the inductive mechanism makes it clear that such a deri-
vation would be possible, no matter how large a value of N is chosen.
Recursive algorithms proceed in a very similar way. Suppose that we have
a problem based on a numerical value for which we know the answer when
N = 1. From there, all that we need is some mechanism for calculating the
result for any value N in terms of the result for N — 1. Thus, to compute the
solution when N = 5, we simply invert the process of the inductive derivation:
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5, I need the value when N
4, I need the value when N

To compute the value when N
To compute the value when N
To compute the value when N = 3, I need the value when N
To compute the value when N = 2, I need the value when N
I know the value when N = 1 and can use it to solve the rest.

Il
—_ N WA

Both recursion and induction require a similar conceptual approach in-
volving a ‘‘leap of faith.”’ In writing a recursive program, we assume that the
solution procedure will correctly handle any new subproblems that arise, even
if we cannot see all of the details in that solution. This corresponds to making
the inductive hypothesis—the point at which we assume that the formula is
true for some unspecified number N. If the formula we are trying to prove is
not correct, this assumption will be contrary to fact in the general case. None-
theless, the proof technique requires us to make that assumption and hold to
it until we either complete the proof or establish a contradiction.

To illustrate this, suppose that we are attempting to prove the rather du-
bious proposition that ‘‘all positive integers are odd.”” As far as the base step
is concerned, everything seems fine; the number 1 is indeed odd. To continue
with the proof, we still begin by making the assumption that N is odd, for some
unspecified value of N. The proof does not fall apart until we use that as-
sumption in an attempt to prove that N+1 is also odd. By the laws of
arithmetic, N+1 is even whenever N is odd, and we have discovered a
contradiction to the original assumption.

In the case of both recursion and induction, we have no a priori reason to
believe in the truth of our assumption. If it is valid, then the program or formula
will operate correctly through all its levels. However, if there is an error in the
recursive decomposition or a flaw in the inductive proof, the entire structure
breaks down—the domino chain is broken. This faith in the correctness of
something in which we as yet have no confidence is reminiscent of Coleridge
when he describes ‘‘that willing suspension of disbelief for the moment, that
constitutes poetic faith.”” Such faith is as important to the mathematician and
the programmer as it is to the poet.

2-2 Computational Complexity

A few years ago, before the advent of the video arcade and the home computer,
computer games were a relatively rare treat to be found at your local science
or children’s museum. One of the most widely circulated was a simple Guess-
the-Number game which was played as follows:

Hi! Welcome to Guess-the-Number! I’m thinking of
a number in the range 1 to 100. Try to guess it.
What is your guess? 20

That’s too small, try again.
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What is your guess? 83
That’s too big, try again.

The game continued in this fashion, accepting new guesses from the player,
until the computer’s secret number was discovered.

What is your guess? 37
Congratulations! You got it in 12 guesses!

For children who were happy to spend a little extra time with one of these
games, twelve guesses hardly seemed excessive. Eventually, however, even
relatively young players would discover that they could do a little better than
this by exploiting a more systematic strategy.

To develop such a strategy, the central idea is that each guess must narrow
the range to be searched as quickly as possible. This is accomplished by choos-
ing the value closest to the middle of the available range. For example, the
original problem can be expressed in English as

Guess a number in the range 1 to 100.
If we guess 50 and discover that it is too large, we reduce this to the problem
Guess a number in the range 1 to 49.

This has the effect of reducing the original problem to an identical subproblem
in which the number is limited to a more restricted range. Eventually, we must
guess the correct number, since the range will get smaller and smaller until
only a single possibility remains.

In the language of computer science, this algorithm is called binary search
and is an example of the recursive ‘‘divide-and-conquer’ strategy presented
in Chapter 1.* For this problem, binary search seems to work reasonably well.
On the other hand, it is certainly not the only possible approach. For example,
when asked to find a number in the range 1 to 100, we could certainly just ask
a series of questions of the form

Isit 1?
Is it 27
Is it 3?

and so forth. We are bound to hit it eventually, after no more than 100 guesses.
This algorithm is called linear search and is used quite frequently in computer
science to find a value in an unordered list.

*As an algorithmic technique, binary search is of enormous practical importance to computer
science and can be applied to many problems that are more exciting than the Guess-the-Number
game. Nonetheless. Guess-the-Number provides an excellent setting for examining the algorithmic
properties of the binary search technique




Mathematical Preliminaries 21

Intuitively, we have a sense that the binary search mechanism is a better
approach to the Guess-the-Number game, but we are not sure how much better
it might be. In order to have some standard for comparison, we must find a
way to measure the efficiency of each algorithm. In computer science, this is
most often accomplished by calculating the computational complexity of the
algorithm, which expresses the number of operations required to solve a prob-
lem as a function of the size of that problem.

The idea that computational complexity includes a consideration of prob-
lem size should not come as much of a surprise. In general, we expect that
larger problems will require more time to solve than smaller ones. For example,
guessing a number in the 1 to 1000 range will presumably take more time than
the equivalent problem for 1 to 100. But how much more? By expressing
efficiency as a relationship between size (usually represented by N) and the
number of operations required, complexity analysis provides an important in-
sight into how a change in N affects the required computational time.

As of yet, however, the definition of complexity is somewhat less precise
than we might like, since the definition of an algorithmic operation depends
significantly on the presentation of the algorithm involved. For a program that
has been prepared for a particular computer system, we might consider each
machine-language instruction as a primitive operation. In this context, counting
the number of operations corresponds precisely to counting the number of
instructions executed. Unfortunately, this would result in a measure of com-
plexity which varies from machine to machine.

Alternatively, we can adopt the more informal definition of an ‘‘operation””
as a simple conceptual step. In the case of the number-guessing problem, the
only operation we perform is that of guessing a number and discovering how
that number stands in relation to the value we are trying to discover. Using
this approach, our measure of complexity is therefore the number of guesses
required.

For many algorithms, the number of operations performed is highly de-
pendent on the data involved and may vary widely from case to case. For
example, in the Guess-the-Number game, it is always possible to ‘‘get lucky”’
and select the correct number on the very first guess. On the other hand, this
is hardly useful in estimating the overall behavior of the algorithm. Usually,
we are more concerned with estimating the behavior in (1) the average case,
which provides some insight into the typical behavior of the algorithm, and (2)
the worst case possible, which provides an upper bound on the required time.

In the case of the linear search algorithm, each of these measures is rel-
atively easy to analyze. In the worst possible case, guessing a number in the
range 1 to N might require a full N guesses. In the specific example involving
the 1 to 100 range, this occurs if the number were exactly 100. To compute the
average case, we must add up the number of guesses required for each pos-
sibility and divide that total by N. The number 1 is found on the first guess, 2
requires two guesses, and so forth, up to N, which requires N guesses. The
sum of these possibilities is then
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_ N(N+1)

1+2+3+---+N 5

Dividing this by N gives the average number of guesses, which is

N+1
2

The binary search case takes a little more thought but is still reasonably
straightforward. In general, each guess we make allows us to reduce the size
of the problem by a factor of two. For example, if we guess 50 in the 1 to 100
example and discover that our guess is low, we can immediately eliminate the
values in the 1 to 50 range from consideration. Thus, the first guess reduces
the number of possibilities to N/2, the second to N/4, and so on. Although, in
some instances, we might get lucky and guess the exact value at some point
in the process, the worst case will require continuing this process until there
is only one possibility left. The number of steps required to accomplish this is
illustrated by the diagram

N/2/2/2---/2=1
———
k times

where k indicates the number of guesses required. Simplifying this gives

or

Since we want an expression for k in terms of the value of N, we must use the
definition of logarithms to turn this around.

k = lng N

Thus, in the worst case, the number of steps required to guess a number through
binary search is the base-2 logarithm of the number of values.* In the average
case, we can expect to find the correct value using one less guess (see Exercise
2-5).

*In analyzing the complexity of an algorithm, we frequently will make use of loganthms which,
in almost all instances, are calculated using 2 as the logarithmic base. For the rest of this text, we
will follow the standard convention in computer science and use “‘log N’ to indicate base 2
logarithms without explicitly writing down the base.
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Estimates of computational complexity are most often used to provide
insight into the behavior of an algorithm as the size of the probiem grows large.
Here, for example, we can use the worst-case formula to create a table showing
the number of guesses required for the linear and binary search algorithms,
respectively:

Linear Binary

N search search
10 10 4
100 100 7
1,000 1,000 10
10,000 10,000 14
100,000 100,000 17

1,000,000 1,000,000 20

This table demonstrates conclusively the value of binary search. The difference
between the algorithms becomes increasingly pronounced as N takes on larger
values. For ten values, binary search will yield the result in no more than four
guesses. Since linear search requires ten, the binary search method represents
a factor of 2.5 increase in efficiency. For 1,000,000 values, on the other hand,
this factor has increased to one of 50,000. Surely this represents an enormous
improvement.

In the case of the search algorithms presented above, the mechanics of
each operation are sufficiently simple that we can carry out the necessary
computations in a reasonably exact form. Often, particularly when analyzing
specific computer programs, we are forced to work with approximations rather
than exact values. Fortunately, those approximations turn out to be equally
useful in terms of predicting relative performance.

For example, consider the following nested loop structure in Pascal:

FORI:=1TO N DO
FOR J := 1 TO I DO
A[LJ] := 0

The effect of this statement, given a two-dimensional array A, is to set each
element on or below the main diagonal to zero. At this point, however, our
concern is not with the purpose of the program but with its computational
efficiency. In particular, how long would this program take to run, given a
specific matrix of size N?

As a first approximation to the running time, we should count the number
of times the statement

AlLJ] := 0

is executed. On the first cycle of the outer loop, when I is equal to I, the inner
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loop will be executed only once for J = 1. On the second cycle, J will run
through both the values 1 and 2, contributing two more assignments. On the
last cycle, J will range through all N values in the 1 to N range. Thus, the total
number of assignments to some element A[LJ] is given by the formula

1+2+3+---+N

Fortunately, we have seen this before in the discussion of mathematical in-
duction and know that this may be simplified to

N(N+1)
2

or, expressing the result in polynomial form,
iIN? + IN

Although this count is accurate in terms of the number of assignments, it
can be used only as a rough approximation to the total execution time since it
ignores the other operations that are necessary, for example, to control the
loop processes. Nonetheless, it can be quite useful as a tool for predicting the
efficiency of the loop operation as N grows large. Once again, it helps to make
a table showing the number of assignments performed for various values of N.

Assignments

N to A[lJ]
10 55
100 5,050
1,000 500,500
10,000 50,005,000

From this table, we recognize that the number of assignments grows much
more quickly than N. Whenever we multiply the size of the problem by ten,
the number of assignments jumps by a factor of nearly 100.

The table also illustrates another important property of the formula

iN2 + IN

As N increases, the contribution of the second term in the formula decreases
in importance. Since this formula serves only as an approximation, it was
probably rather silly to write 50,005,000 as the last entry in the table. Certainly,
50,000,000 is close enough for all practical purposes. As long as N is relatively
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large, the first term will always be much larger than the second. Mathematically,
this is often indicated by writing

N2 >> N

The symbol **>>"" is read as ‘‘dominates’’ and indicates that the term on the
right is insignificant compared with the term on the left, whenever the value
of N is sufficiently large. In more formal terms, this relationship implies that

lim 5 =0

Since our principal interest is usually in the behavior of the algorithm for
large values of N, we can simplify the formula and say that the nested loop
structure runs in a number of steps roughly equal to

IN?

Conventionally, however, computer scientists will apply yet another sim-
plification here. Although it is occasionally useful to have the additional pre-
cision provided by the above formula, we gain a great deal of insight into the
behavior of this algorithm by knowing that it requires a number of steps pro-
portional to

NZ

For example, this tells us that if we double N, we should expect a fourfold
increase in running time. Similarly, a factor of ten increase in N should increase
the overall time by a factor of 100. This is indeed the behavior we observe in
the table, and it depends only on the

NZ

component and not any other aspect of the complexity formula.

In computer science, this ‘‘proportional’” form of complexity measure is
used so often that it has acquired its own notational form. All the simplifications
that were introduced above can be summarized by writing that the Pascal
statement

FORI:= 1 TO N DO
FOR J := TO DO
A[LJ] :=

has a computational complexity of

Oy
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This notation is read either as *‘big-O of N squared’’ or, somewhat more simply,
““order N squared.”
Formally, saying that a particular algorithm runs in time

Oy

for some function f(N) means that, as long as N is sufficiently large, the time
required to perform that algorithm is never larger than

C x f(N)

for some unspecified constant C.

In practice, certain orders of complexity tend to arise quite frequently.
Several common algorithmic complexity measures are given in Table 2-1. In
the table, the last column indicates the name which is conventionally used to
refer to algorithms in that class. For example, the linear search algorithm runs,
not surprisingly, in linear time. Similarly, the nested Pascal loop is an example.
of a quadratic algorithm.

Table 2.1. Common Complexity Characteristics

Given an algorithm When N doubles, Conventional

of this complexity the running time name

0@ Does not change Constant

Oflog N) Increases by a Logarithmic
small constant

o) Doubles Linear

O(N log N) Slightly more than N log N
doubles

ONgy Increases by a Quadratic
factor of 4

O(Ny Increases by a Polynomial

factor of 2*

O a>1 Depends on «, but Exponential
grows very fast

The most important characteristic of complexity calculation is given by
the center column in the table. This column indicates how the performance of
the algorithm is affected by a doubling of the problem size. For example, if we
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double the value of N for a quadratic algorithm, the run time would increase
by a factor of four. If we were somehow able to redesign that algorithm to run
in time N log N, doubling the size of the input data would have a less drastic
effect. The new algorithm would still require more time for the larger problem,
but the increase would be only a factor of two over the smaller problem (plus
some constant amount of time contributed by the logarithmic term). If N grows
even larger, this constitutes an enormous savings in time.

In attempting to improve the performance of almost any program, the
greatest potential savings come from improving the algorithm so that its com-
plexity bound is reduced. ‘‘Tweaking’’ the code so that a few instructions are
eliminated along the way can only provide a small percentage increase in per-
formance. On the other hand, changing the algorithm offers an unlimited re-
duction in the running time. For small problems, the time saved may be rela-
tively minor, but the percentage savings grows much larger as the size of the
problem increases. In many practical settings, algorithmic improvement can
reduce the time requirements of a program by factors of hundreds or thou-
sands—clearly an impressive efficiency gain.

Bibliographic Notes

One of the best discussions of mathematical induction and how to use it is
contained in Solow’s How to Read and Do Proofs [1982]. The classic text in
this area is Polya [1957]. A more formal discussion of asymptotic complexity
and the use of the big-O notation may be found in Knuth [1973] or Sedgewick
[1983].

The inductive argument used in Exercise 2-6 to ‘‘prove’’ that all horses
are the same color is adapted from Joel Cohen’s essay ‘‘On the Nature of
Mathematical Proofs’” [1961].

Exercises

2-1. Prove, using mathematical induction, that the sum of the first N even
integers is given by the formula

Nz + N

How could you predict this expression using the other formulae developed
in this chapter?

2-2. Establish that the following formulae are correct using mathematical
induction:

(@ 1 +2+4+8+ -+ 2N =2N _ |



28

23.

2-4.

2:5.

Thinking Recursively

3N+l_l
(b) 1+3+9+27+---+3N=T

() 1x1 +2%x2 +3x4+4x8+ ---+ Nx2N ! =(N-1)2V + 1

The year: 1777. The setting: General Washington’s camp somewhere in
the colonies. The British have been shelling the Revolutionary forces with
a large cannon within their camp. You have been assigned a dangerous
reconnaissance mission—to infiltrate the enemy camp and determine the
amount of ammunition available for that cannon.

Fortunately for you, the British (being relatively neat and orderly)
have stacked the cannonballs into a single pyramid-shaped stack. At the
top is a single cannonball resting on a square of four cannonballs, which
is itself resting on a square of nine cannonballs, and so forth. Given the
danger in your situation, you only have a chance to count the number of
layers before you escape back to your own encampment.

Using mathematical induction, prove that, if N is the number of layers,
the total number of cannonballs is given by

N(N+D@2N+1)
6

Assuming that N is an integer which defines the problem size, what is the
order of each of the program fragments shown below:

(a) K:= 0;
FOR I := 1 TO 1000 DO
K:=K +1I*N;
(b) K:= 0;
FORI:=1TO N DO
FOR J := 1 TO N DO
K:=K +1*];
{c) K:= 0
WHILE N > 0 DO
BEGIN
N := N DIV 2;
K:=K +1
END;

Assuming that the statements within the loop body take the same amount
of time, for what values of N will program (a) run more quickly than
program (c)?

[For the mathematically inclined] In trying to locate a number by binary
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2-6.

search, it is always possible that it will require many fewer guesses than
would be required in the worst possible case. For example, if 50 were in
fact the correct number in the 1 to 100 range, binary search would find it
on the very first guess. To determine the average-case behavior of binary
search, we need to determine the expected value of the number of guesses
over the entire possible range.

Assuming that there are N numbers in the complete range, we know
that only one of them (specifically, the number at the center of the range)
will be guessed on the very first try. Two numbers will be guessed in two
tries, four numbers in three tries, and so forth. Thus, the average number
of guesses required is given by the formula

IX1 +2x2 +3x4 +4%x8 + -+ + Gx26!
N

where G is the maximum number of guesses that might be required, which
in this case is simply log N.

Using the expression from Exercise 2-2(c), simplify this formula. As
N grows large, what does this approach?

Mathematical induction can have its pitfalls, particularly if one is careless.
For example, the following argument appears to be a proof that all horses
are the same color. What is wrong here? Is there really no horse of a
different color?

Preliminary Define a set of horses to be monochromatic if all the horses
in the set have the same coloration.

Conjecture  Any set of horses is monochromatic.
Technique  Proof by induction on the number of horses.
Base step Any set of one horse is monochromatic, by definition.
Induction Assume that any set of N horses is monochromatic. Consider
a set of N + 1 horses. That can be divided into smaller subsets
in several ways. For example, consider the division indicated
in the following diagram:
H,H,: - -Hy Hyny
—_—— ——
A A’

The subset labeled A in this diagram is a set of N horses and
is therefore monochromatic by the inductive hypothesis.
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Similarly, if we divide the complete set as follows:

H, Hz' -+ HhHn 4o
~ N—————
B’ B

we get a subset B which is also monochromatic.
Thus, all the horses in subset A are the same color as are all
the horses in subset B. But H, is in both subsets A and B,

which implies that both subsets must contain horses of the
same color.
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To iterate is human, to recurse divine —Anonymous

In Chapter 1, recursion was defined as a solution technique that operates by
reducing a large problem to simpler problems of the same type. As written,
this is an abstract definition and describes the recursive process in terms which
do not necessarily imply the use of a computer. In order to understand how
recursion is applied in the context of a programming language, this definition
must be recast in a more specific form.

In formulating this new definition, we must first find a way to represent
an algorithm so that it solves not only a specific problem but also any sub-
problems that are generated along the way. Returning to the fund-raising ex-
ample from Chapter 1, it is not sufficient to write a single procedure which
collects 1000 dollars. Instead, the recursive implementation must correspond
to the more general operation of raising N dollars, where N is a parameter that
changes during the course of the recursive solution.

Given that we need parameters to define a specific instance of the problem,
recursive solutions are usually implemented as subroutines* whose arguments
convey the necessary information. Whenever a recursive routine breaks a large
problem down into simpler subproblems, it solves those subproblems by calling
the original routine with new arguments, updated to reflect each subproblem.

During the course of a recursive solution, old problems are set aside as
new subproblems are solved; when these are completed, work must continue
on the problems that were previously deferred. As discussed in Chapter 1, this
requires the system to maintain a list of unfinished tasks.

In order for recursion to be a useful tool, the programming language must
ensure that this bookkeeping is performed automatically so that the programmer
need not be bothered with the details. Unfortunately, many of the older and
more established languages, such as FORTRAN, were designed when the im-

*In this context, **subroutine’" is used as a generic term to refer to either of the two program types
supported by Pascal: procedures and functions.
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portance of recursive programming techniques was not so widely recognized
and do not ‘‘support recursion’’ in this way. In these languages, recursive
techniques are much more difficult to use and must be simulated using the
techniques described in Chapter 11.

3-1 Functional vs. Procedural Recursion

Like most modern programming languages, Pascal provides two distinct sub-
routine types: procedures and functions. In many respects, the two are nearly
identical from a technical point of view. They share a common syntactic struc-
ture and are usually represented by the same sequence of instructions in the
underlying machine-language implementation. The principal difference is con-
ceptual. Procedures are used at the statement level and are executed for their
effect. Functions are used as part of an expression and are executed for the
value they return.

In languages which support recursion, both functions and procedures can
be written to take advantage of recursive techniques. Recursive functions op-
erate by defining a particular function in terms of the values of that same
function with simpler argument values. Recursive procedures tend to be ori-
ented toward problem solving and therefore correspond more closely to the
abstract examples of recursion given in Chapter 1.

Even though recursive procedures tend to provide a better conceptual
model for understanding how a problem can be subdivided into simpler com-
ponents, recursive functions are traditionally introduced first. There are two
principal advantages to this mode of presentation. First, there are several math-
ematical functions (such as the factorial and Fibonacci functions described
below) which are particularly elegant when expressed in a recursive form.
Second, the recursive character of these examples follows directly from their
mathematical definition and is therefore more clear.

3-2 Factorials

In word games such as the SCRABBLE Crossword Game,* the play consists
of rearranging a set of letters to form words. For example, given the seven
letters

T 1 R N E G S

we can form such words as RIG, SIRE, GRINS, INSERT, or RESTING. Often,
there is a considerable advantage in playing as long a word as possible. In

*SCRABBLE is a registered trademark of the Selchow and Righter Company of Bay Shore.
New York.
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SCRABBLE, for example, playing all seven tiles in the same turn is rewarded
with a bonus of 50 points, making RESTING (or STINGER) a particularly
attractive play.

In Chapter 6, we will turn our attention to the more interesting problem
of generating all the possible arrangements, but we already have the necessary
tools to consider a somewhat simpler question. Given a set of seven distinct
letters, how many different arrangements must we check to discover all possible
seven-letter words?

On the whole, this is not too difficult a task. In constructing all possible
arrangements, there are seven different ways to select the starting letter. Once
that has been chosen, there are six ways to choose the next letter in sequence,
five to choose the third, and so on, until only one letter is left to occupy the
last position. Since each of these choices is independent, the total number of
orderings is the product of the number of choices at each position. Thus, given
seven letters, there are

TX6X5x4x3x2x1

arrangements, which works out to be 5040.

In mathematical terms, an arrangement of objects in a linear order is called
a permutation. Given a set of N distinct objects, we can calculate the number
of permutations of that set by applying much the same analysis. There are N
ways of choosing the first object, N-1 for the second, N-2 for the third, and
so forth down to 1. Thus, the total number of permutations is given by the
formula

N X (N=1) x (N=2) x ... x 1

This number is defined to be the factorial of N and is usually written as N! in
mathematics. Here, to ease the transition to Pascal, factorials will be repre-
sented in a functional form, so that the appropriate definition is

FACT(N) = N x (N-1) x (N-2) x ... x 1

Our task here is to write a Pascal function which takes an integer N as its
argument and returns N! as its result. Given this definition of the problem, we
expect the function header line to be

FUNCTION FACT(N : INTEGER) : INTEGER;

All that remains is writing the necessary code that implements the factorial
computation.

To gain some intuition about the behavior of the function FACT, it helps
to construct a table for the first few values of N, including the case N = 0,
for which the factorial is defined to be 1 by mathematical convention.
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FACT(0) = 1
FACT(1) = 1= 1
FACT(Q2) = 2x 1= 2
FACT(@3) = 3x2x1= 6
FACTM4) =4 x 3 x2x1=24

At this point, there are two distinct approaches to this problem. The it-
erative approach consists of viewing the factorial computation as a series of
multiplications. To calculate FACT(4), for example, start with 1 and multiply
it by each of the numbers up to 4. This gives rise to a program such as

FUNCTION FACT(N : INTEGER) : INTEGER;

VAR
I, PRODUCT : INTEGER;
BEGIN
PRODUC =1
FOR1I:=1TO N DO

PRODUCT = I * PRODUCT;
FACT := PRODUCT
END;

Proceeding recursively leads to a rather different implementation of the
FACTORIAL function. In examining the factorial table, it is important to
observe that each line contains exactly the same product as the previous one,
with one additional factor. This makes it possible to represent the table in a
simpler form:

FACT(©) = 1
FACT(1) = 1 x FACT(0)
FACT(2) = 2 x FACT(I)

FACT(@3) = 3 x FACT(2)
FACT(4) = 4 x FACT(3)

or, in more general terms,
FACT(N) = N * FACT(N-1)

This is a recursive formulation because it expresses the calculation of one
factorial in terms of the factorial of a smaller integer. To calculate FACT(50),
we simply take 50 and multiply that by the result of calculating FACT(49).
Calculating FACT(49) is accomplished by multiplying 49 by the result of
FACT(48), and so forth.

As in any recursive problem, a simple case is necessary to ensure that the
calculation will terminate at some point. Since 0 is conventionally used as the
base of the factorial table in mathematics, this suggests the following definition:
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I, ifN =0

FACT(N) = {N x FACT(N—1), otherwise

In a language like Pascal that supports recursion, it is easy to take the
recursive definition of factorial and transform it into the necessary Pascal code:

FUNCTION FACT(N : INTEGER) : INTEGER;

BEGIN
IF N = 0 THEN
FACT := 1
ELSE
FACT := N * FACT(N-1)
END;

Note that the program and the abstract definition have almost exactly the same
form. This represents a significant advantage if we are concerned with program
clarity. In particular, if we are convinced of the correctness of a recursive
mathematical definition, the similarity in form between that definition and the
corresponding program makes the correctness of the program that much easier
to establish.

As in the case of any recursive implementation, we can look at the process
of computing factorials from two philosophical perspectives. The holistic ob-
server examines the mathematical definition along with the corresponding pro-
gram and then walks away quite satisfied. For the reductionist, it is necessary
to follow the program at a much more detailed level.

For example, in order to calculate FACT(6), the function evaluates its
argument, discovers that it is not zero, and proceeds to the ELSE clause. Here
it discovers that it needs to compute the expression

N * FACT(N-1)

and return this as the value of the function. Given that N = 6 here, this means
that the solution at this level is simply

6 * FACT(5)

Evaluating the second term in this expression, however, requires making a
recursive call to the FACT function. At this point, the program ‘‘remembers’’
(by making the appropriate notations on the list of unfinished tasks) that it is
in the process of multiplying 6 by the result of a new factorial computation,
specifically FACT(5). Repeating this process leads to a cascading set of factorial
calculations which can be represented diagrammatically as follows:



36 Thinking Recursively
FACT(6) = 6 x FACT(5)
|
|
5 x FACT(4)
il
4 x FACT(3)
I
3 x FACT(2)
Il
2 x FACT(I)
—_—

I
I x FACT(0)
———

When the last level is reached and N is equal to 0, the solution is provided
by the simple case expression within the body of the FACT function. Now that
the computation of FACT(0) is completed, the program is ready to return to
the previous level of call. By referring back to the list of unfinished tasks, we
discover that we were in the middle of computing

1 * FACT(0)

Given the new information that FACT(0) is 1, we can complete this operation
and return to the next higher level. From here, we simply climb back up through
the sequence of multiplications, eventually computing 720 as the final answer.

3-3 The Fibonacci Sequence

In his text on computation (Liber Abbaci) written in 1202, the Italian mathe-
matician Leonardo Fibonacci includes an exercise which may be considered
as one the earliest excursions into the field of population biology. Rendered in
more modern terms, the Fibonacci problem has the following form:

Assume that the reproductive characteristics of rabbits can be defined by
the following rules:

1. Each pair of fertile rabbits produces a new pair of offspring each
month.

2. Rabbits become fertile in their second month of life.

3. OIld rabbits never die.

If a single pair of newborn rabbits is introduced at the end of January,
how many pairs of rabbits will there be at the end of a year?

We can begin this calculation by tracing through the history of the rabbit
colony during the first few months. At the end of the first month, we have only
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our original pair of rabbits. Since these are newborn rabbits, February is an
unproductive month, and we still have only one pair of rabbits at the end of
month 2. In March, however, our original pair is now fertile, and a new pair
of rabbits is born, increasing the colony’s population (counting by pairs) to
two. In April, the original pair goes right on producing, but the March rabbits
(distant relatives of the March Hare) are as yet too young. This gives us three
pairs of rabbits at the end of month 4.

From here (as rabbits are wont to do), things begin to grow rather explo-
sively. In May, both the original pair and the March rabbits are in the rabbit-
making business, and two new pairs of rabbits are born. Given that there were
three before, this results in a total of five. We can summarize the information
to date in a simple table:

At the end Number of
of month rabbit pairs

OV W N -
QW N =

From here, we can calculate the remaining entries by making an important
observation. The rabbits that are part of the population at the end of any month
come from two distinct sources. First of all, since old rabbits never die, all the
rabbits that were around in the previous month are still around. In addition,
every pair of rabbits that is old enough to reproduce gives birth to a new pair.
This number is equivalent to the number of pairs that were alive two months
ago, since all of these must, by this time, be capable of reproduction. This
observation gives rise to the following computational rule:

The number of rabbit pairs at the end of month N is equal to the sum of
1. The number of pairs at the end of month N-1

2. The number of pairs at the end of month N-2

If we use the notation FIB(N) to denote the number of rabbit pairs at the
end of month N (where FIB is chosen in honor of Fibonacci), we can rephrase
this discovery in a more compact form:

FIB(N) = FIB(N-1) + FIB(N-2)

An expression of this type, which defines a particular element of a sequence
in terms of earlier elements, is called a recurrence relation and is part of a
recursive definition.
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The recurrence relation makes it possible to complete the table and answer
Fibonacci’s question concerning the number of rabbits at the end of the year.
To compute each entry in the right-hand column, we simply add the two pre-
vious entries.

N FIB(N)
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34

10 55

11 89

12 144

In mathematics, this set of numbers is called the Fibonacci sequence and turns
up in a surprising number of practical contexts.

To complete the recursive definition of the Fibonacci sequence, however,
we need to specify certain simple cases in order to ensure that the recursion
terminates. In this example, defining

FIB(1) = 1

is not sufficient, since it leaves us unable to compute FIB(2). From the recur-
rence relation, FIB(2) is calculated as

FIB(2) = FIB(1) + FIB(0)

To accomplish this addition, both values on the right-hand side must be defined.
In order for FIB(2) to have the correct value, FIB(0) must be defined as

FIB(0) = 0
This makes it possible to complete the formal definition
0, ifN=20

FIB(N) = 41, ifN =1
FIB(N-1) + FIB(N-2) otherwise
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As in the case of the factorial function, a definition of this sort can be
turned into a recursive program in an entirely straightforward way. Taking
advantage of the fact that FIB(N)=N for both of the simple cases N=0
and N=1, we can implement this function in Pascal as

FUNCTION FIB(N : INTEGER) : INTEGER;

BEGIN
IF (N = 0) OR (N = 1) THEN
FIB := N
ELSE
FIB := FIB(N-1) + FIB(N-2)
END;

On the other hand, this solution technique is hardly ideal. To its credit,
we should note that this implementation is both correct and concise; moreover,
its correctness is easily justified by appealing to the corresponding mathematical
definition. The problem here is one of efficiency.

To understand why this implementation is considerably less efficient than
we would like, it helps to examine the complete computation sequence for a

simple value, such as N = 4. The complete computation involves the following
recursive decomposition:

FIB (4)
FIB (3) \
FIB (2) FIB (2)
/ \
FIB (1) FIB (0) FIB (1) FIB (1) FIB (0)
) + 0 + 1 + 1 + 0

This diagram begins to illustrate the source of the efficiency problem. In
calculating FIB(4) by this approach, FIB(2) and FIB(0) are each calculated
twice, and FIB(1) is calculated three times. As N increases, the re-
dundancy of computation grows even worse. For example, to calculate FIB(5),
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we would not only be forced to duplicate the entire calculation above, but we
would also recalculate from scratch another copy of FIB(3).

By counting the number of additions required to calculate FIB(N) for small
values of N, we can begin to derive some sense of the computational complexity
of this algorithm.

Additions
N FIB(N) required
0 0 0
1 1 0
2 1 1
3 2 2
4 3 4
5 5 7
6 8 12
7 13 20
8 21 33

Clearly, as N grows, the number of additions required to compute FIB(N)
by this mechanism increases fairly quickly. Although we as yet have only
circumstantial evidence for this conjecture (see Exercise 3-7), it appears that
the number of additions required to compute FIB(N) is given by the formula

FIB(N+1) - 1

By applying some additional mathematics, we can use this result to es-
tablish that the complexity order for this algorithm is

O™
where
¢ = 1.618034

The details of this derivation are largely irrelevant to understanding the com-
putational complexity that this implies and have been left to the mathematically
inclined reader as Exercise 3-9. The important observation is that this approach
to computing the Fibonacci sequence results in an exponential algorithm and
is, as such, impractical for all but the smallest values of N.

The problem is not inherent in the calculation of the Fibonacci sequence
itself, but is instead a property of the solution technique. A much more efficient
method of computing the Fibonacci sequence is illustrated by the following
iterative version of FIB:
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FUNCTION FIB(N : INTEGER) : INTEGER;
VAR
A, B, C, 1 : INTEGER;
BEGIN
IF (N = 0) OR (N = 1) THEN
FIB :=
ELSE
BEGIN
A:= 0
B:=1;
FOR 1 := 2 TO N DO
BEGIN
+ B;

ng=>

C:
A:
B:
END;
FIB := C

END
END;

On the negative side, this program is considerably longer and requires
several temporary variables. Moreover, the correspondence between this al-
gorithm and the mathematical formulation is not immediately clear. On the
other hand, by examining the structure of the FOR loop in the program, we
can determine that it does run in time proportional to the value of N. We have
thus transformed an exponential implementation into a linear one. This rep-
resents a dramatic improvement in efficiency.

After looking at the Fibonacci example, there is a certain temptation to
condemn recursive strategies as inherently inefficient. From the circumstantial
evidence above, this seems entirely reasonable, but it is actually rather unfair.
The culprit here is not recursion, but the way recursion is applied. The recur-
rence relation

FIB(N) = FIB(N-1) + FIB(N-2)
is intended to define the mathematical properties of this sequence and need

not be regarded as an appropriate computational technique. This question is
examined further in the exercises.

Bibliographic Notes

Almost all programming texts which include a discussion of recursion approach
the topic from the standpoint of recursive functions. Thus, reasonable sources
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of additional material include such texts as Cooper and Clancy [1982], Grogono
[1984], and Tenenbaum and Augenstein [1981]. Further information about the
mathematical properties of the Fibonacci sequence is available in Knuth [1973].

Exercises

3-1.

32

3-3.

3-4.

3-5.

Ostensibly for reasons of efficiency, Pascal contains no operator which
will raise a number to a given power. Assuming that the exponent K is
always a nonnegative integer, write a recursive function POWER(X, K)
which raises the real value X to the K power.

Without using the explicit formula, write a recursive function which com-
putes the answer to the ‘‘cannonball’’ problem from Exercise 2-3.

As illustrated in Chapter 2, the sum of the first N odd integers has the
value N squared. In particular, this makes it possible to write a recurrence
relation that defines the square of an integer in terms of the square of the
previous integer.

Write out this recurrence relation, and, by adding an appropriate sim-
ple case, complete the definition of the Pascal function

FUNCTION SQUARE(N : INTEGER) : INTEGER;
which squares its argument.

The greatest common divisor of two nonnegative integers X and Y is
defined to be the the largest integer which divides evenly into both. For
example, given the numbers 28 and 63, the greatest common divisor is 7.
This problem was considered to be of great importance to classical math-
ematicians, including Euclid, whose Elements (book 7, proposition II} con-
tains an elegant solution.

The essence of Euclid’s discovery is that the greatest common divisor
of X and Y must always be the same as that of Y and R, where R is the
remainder of X divided by Y. By providing an appropriate simple case,
use this relationship to develop a recursive coding of a function GCD which
takes two integers and returns their greatest common divisor.

As noted in the text, the number of arrangements of the seven letters in a
SCRABBLE rack can be determined by computing seven factorial. In
playing SCRABBLE, however, one is rarely lucky enough to play all seven
tiles at once and must often be content with finding a shorter word. This
suggests a related question: Given a rack of seven distinct letters, how
many different arrangements are possible using some smaller number of
letters?
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3-6.

If we generalize this, we derive the problem of selecting an ordered
set of K elements from a collection of N distinct objects. In mathematics,
this is represented as the function

P(N,K)

which is interpreted as ‘‘the number of permutations of N objects taken
K at a time.”

By following through the analysis in the text, determine the recursive
structure for P(N,K) and construct a Pascal function which implements
this algorithm.

In working with permutations, the order in which the elements are selected
is significant. Thus, ‘*‘ABC"’ is not the same permutation as ‘“‘CBA’. In
some applications, this order is irrelevant. For example, if we are merely
interested in determining how many different sets of four letters can be
chosen from the set {A, B, C, D, E, F, G}, we have a different type of
problem.

Mathematically, selections which are made without regard to order
are called combinations. Although other notations are also used, it is con-
venient to represent the number of combinations that can be selected from
a set of N objects taken K at a time as the function

C(N,K)

There are many ways to calculate the value of C(N,K). One of the most
aesthetically interesting is to use the Pascal triangle (named for the mathe-
matician, not the programming language):

1

1 2 ]
1 3 3 1
1 4 6 4 1
! 5 10 10 5 ]
] 6 15 20 15 6 1
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In this triangle, the left and right edges are always 1, and every remaining
element is the sum of the two elements above it to the right and left.

If we use N to indicate a row in this table, and K a diagonal ‘‘column,’’
then the entry at position (N,K) in the Pascal triangle corresponds to C(N,K).
This is made more explicit by labeling the diagram as shown:

Z
I
o
(S}
~
1l
BN

For example, this shows that C(4,2) has the value 6. This means that, given
a set of four objects, there are six different ways to choose an unordered

pair.
By considering the rule given above for constructing the Pascal tri-
angle, write a recursive implementation of the function C(N,K).

3-7. Using mathematical induction, prove that the number of additions required
to calculate FIB(N) using the recursive algorithm given in the text is given
by

FIBN+1) — 1
3-8. Consider the following pair of function definitions:

FUNCTION G(N, A, B : INTEGER) : INTEGER;

BEGIN
IF N = 0 THEN
G:= A
ELSE
G := G(N-1, B, A + B)
END;

FUNCTION F(N : INTEGER) : INTEGER;
BEGIN
F := G(N, 0, 1)
END;
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39.

Compute the values of F(0), F(1), F(2), and so forth up to F(5). What
mathematical function does F compute? In terms of N, how many additions
are performed during this calculation? Given this, what is the complexity
order of this algorithm?

Note that all the work here is performed by the recursive function G
and that F exists only to set the correct initial values of the parameters A
and B. This is a common technique in recursive programming and will
reappear in Chapter 7.

[Mathematically oriented] The constant ¢ referred to in the text is called
the ‘‘golden ratio”’ and has considerable significance, not only in mathe-
matics but also in art. During the Renaissance, ¢ was often called the
‘*divine proportion’’ and was considered to have important aesthetic value
when used as the ratio between different elements within an artistic rep-
resentation. Mathematically, ¢ is defined as the number which satisfies the
proportionality equation:

_¢
e+1

€ |-

Using cross-multiplication, we can rearrange the terms so that ¢ is ex-
pressed in quadratic form:

¢ —p-1=0

From here, we can use the quadratic formula to find the two solutions to
this equation:

and

The relationship between the golden ratio and the Fibonacci numbers
was demonstrated by the mathematician A. de Moivre, who discovered
that the Nth Fibonacci number can be expressed using the formula

(™ = &)

Vs
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Using mathematical induction, prove that this formula is correct. To do
this, it is necessary to prove that this formula gives the correct values of
FIB(0) and FIB(1) and then show that

FIB(N) = FIB(N-1) + FIB(N-2)

for all larger values. In working through the details of the proof, it is often
useful to remember that both ¢ and ¢ satisfy the equation

=9 + 1



The Procedural
Approach

“Well,” said Owl, “the customary procedure in such cases is as
follows.”
“What does Crustimoney Proseedcake mean?” said Pooh. “For | am
a Bear of Very Little Brain, and long words Bother me.”
“It means the Thing to Do "
“As long as it means that, | don't mind,” said Pooh humbly.
—A. A Milne, Winnie-the-Pooh

For each of the functions presented in Chapter 3, the necessary recursive
decomposition into simpler instances follows directly from the mathematical
definition. For example, the Fibonacci sequence is most clearly defined by the
recurrence relation

FIB(N) = FIB(N-1) + FIB(N-2)

Given this definition, the recursive implementation seems the most natural one,
even if it is not the most efficient.

Mathematical formalism, such as the use of recurrence relations, is more
easily applied to the domain of recursive functions than to recursive procedures.
Intuitively, functions are mathematical entities, while procedures are more
algorithmic in character. Thus, procedures are less likely to have a simple
mathematical formulation, making the necessary recursive decomposition of
the problem somewhat harder to find. Learning to apply recursive techniques
in a procedural context is the essence of thinking recursively and requires a
relatively abstract view of procedures themselves.

To the reductionist, a procedure call is simply a transfer of control that
remembers the address of the instruction making that call. When the operation
of the procedure is complete, control returns to that saved address, allowing
the calling program to continue from the point at which the call was made.
From a more holistic perspective, however, the procedure acts principally as
a mechanism for suppressing irrelevant detail.

For example, many programming applications consist of (1) reading a set
of data, (2) analyzing some aspect of that data, and (3) generating reports that
present the results of the analysis. To the extent that these components rep-
resent independent phases of the total solution, it is useful to separate them
algorithmically by making each component a separate procedure. Adopting this
approach leads to a main program of the following form:

47
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BEGIN
READDATA;
ANALYZEDATA;
PRINTREPORT

END.

The advantage of this programming style is that it enables us, as readers
of the program, to consider the algorithm at varying levels of detail. At the
most general level, for example, we can understand how the principal com-
ponents fit together by looking at the main program in isolation. Beyond that,
the individual components of the task can be examined in any order, and only
when additional detail is required.

When we think about programming languages from the perspective of
human linguistics, writing a procedure has the effect of defining a new imper-
ative verb. When we write the procedure READDATA, for example, the word

READDATA

is added to our command vocabulary and can be used in the same fashion as
any of the built-in operations. Once the debugging is complete and we develop
the necessary level of confidence in READDATA’s correctness, we begin to
ignore its internal detail and think of it as a new high-level operation.

In a sense, the definition of a procedure establishes a boundary between
two different levels of abstraction. When the procedure is defined, we are
principally concerned with the details of its operation. When the procedure is
called, however, we are on the opposite side of the fence and consider only
the effect of that call.

For example, returning to the problem of generating ‘‘computer art’’ out-
lined in Chapter 1, we might define the procedure DRAWCUBIST (with ap-
propriate arguments to specify the size and location of the canvas) to be the
phrase

*‘Draw a Cubist painting on the indicated canvas’’

When we call this from the main program, we ignore the details and accept
this definition at its abstract level.

When we write the body of DRAWCUBIST, we need to consider its internal
operation, but must limit our attention to a single level of detail. As in the case
of any recursive program, we will eventually reach a point in DRAWCUBIST
at which we have isolated a subproblem in precisely the same form as the
original. Here, we will again need to perform the operation

““Draw a Cubist painting on the indicated canvas”’

for a canvas with smaller dimensions. Fortunately, we have a procedure
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which accomplishes precisely this task, and we can simply use a call to
DRAWCUBIST with the appropriate set of arguments. Since this is a procedure
call, we consider only the effect of the procedure rather than its internal details.
Admittedly, adopting this conceptual perspective is a bit difficult. Intui-
tively, our minds rebel a bit at the idea of using (especially in such a trusting
way) a procedure we have not yet finished writing. Nonetheless, doing just
that is the essential tactical step in writing recursive programs and constitutes
the “‘recursive leap of faith.’" Trying to analyze further than this only clouds
the picture with irrelevant detail. Metaphorically, looking inside to ensure that
the recursive call does the job is very much like Orpheus looking back to make
sure that Eurydice is still following—sometimes you just have to believe.

4-1 Numeric Output

To anyone working in the environment of a modern high-level language, the
idea of calling a subroutine without first understanding the details of its internal
operation should hardly be unfamiliar. In the case of library functions, we tend
to do it all the time. For example, to set Y to the square root of X in Pascal,
we unhesitatingly write

Y := SQRT(X)

We have a good sense of what the SQRT function does at a macroscopic level—
it calculates square roots. At the same time, we have no clue as to how it does
it. There are many possible algorithms for computing square roots. Some im-
plementations may expand the appropriate Maclauren series; others might use
Newton’s method or even reduce the square root problem to its equivalent
expression in terms of logarithms and exponentials. In any case, the user has
little concern for the details.
As another example, if N is an integer and we use the Pascal statement

WRITEN : 1)

Pascal will write out the value of N in a field which is exactly as large as it
needs to be for that number. In programming, we use this statement freely,
and are quite unconcerned about the details of that operation. In point of fact,
this operation is considerably more complicated than it appears.

The reason that printing a number is complicated arises from the fact that
most systems are not capable of printing numeric values directly. Instead, any
number must first be converted into the appropriate sequence of characters,
which can then be transmitted to the output device. For example, if N is 1492,
the actual output will consist of the characters '1’, ’4’, '9’, and '2’, in that
order.

To make the problem specification concrete (and simplify it slightly at the
same time), we will define the following as our goal:



50 Thinking Recursively

In Pascal, write a procedure PRINTNUM(N), which takes a nonneg-
ative integer N, and writes it out without any extraneous spaces.*
As such, PRINTNUM(N) should simulate the function of

WRITENN : 1)
but is allowed to perform only character output.

The complete solution to the problem consists of two largely independent
tasks: (1) breaking up a large number into its component digits and (2) translating
each digit into its character code. The second is somewhat easier, and it is
useful to consider it first.

In Pascal, each value of type CHAR is represented internally by a numeric
code. Given any character, we can determine the corresponding internal code
through the use of the built-in function ORD. Similarly, given a numeric value
within the legal character range, we can convert it into a character by using
the CHR function. For example, on a system which uses ASCII (American
Standard Code for Information Interchange),

ORD(CA’) = 65
and
CHR(65) = ’A’.

The exact correspondence between characters and numeric codes, how-
ever, will differ from system to system, since it depends on which character
set is used. Although a large percentage of modern implementations use ASCII,
others may use EBCDIC (Extended Binary-Coded-Decimal Interchange Code)
or even less common representational encodings. In each of these, the character
values are different. Thus, programs should never assume that ORD(’A’) is 65,
since that assumption may be incorrect on some systems.

Even though Pascal does not require the use of a specific character set, it
does enforce certain restrictions on the internal representation. In particular,
Pascal requires that the internal codes for the characters '0’ through 9’ be
consecutively increasing. Thus, if the character '0’ has the numeric value 48
(as it does in ASCII), then I’ must be represented as 49, ’2’ by 50, and so
forth. In a different character set, ’0’ may correspond to some other value, but
the remaining digits must follow in sequence. This requirement makes it pos-
sible to write a Pascal function DIGITCHAR, which converts an integer in the
range 0 through 9 into its corresponding character code:

*The constraint that N be nonnegative is included here only to simplify the PRINTNUM task
Removing this constraint is discussed in Exercise 4-2.
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FUNCTION DIGITCHAR(D : INTEGER) : CHAR;
BEGIN
DIGITCHAR := CHR(D + ORD(0"))
END;

Armed with this function, we can proceed to the problem of dividing a
number into its component digits. Intuitively, we would like to design a loop
structure which would select each digit of the number in turn, convert that
digit to a character, and print it. If we follow the discipline of top-down design
and leave the details to subroutines, we might start with the following definition:

PROCEDURE PRINTNUM(N : INTEGER);
VAR
I : INTEGER;
BEGIN
FOR I := 1 TO NDIGITS(N) DO
WRITE(DIGITCHAR(ITHDIGIT(N, 1))
END;

Here, we assume that NDIGITS(N) returns the number of digits in a number
N and that ITHDIGIT(N, I) returns the value of the Ith digit of N, numbering
from the left. If we write these routines correctly, PRINTNUM will operate as
advertised.

Unfortunately, neither of these routines is easy to code, particularly if
efficiency is of any concern. In fact, after making a few attempts (see Exercise
4-1), it is reasonably likely that we would abandon this course and search for
an alternative approach.

To determine if recursion can be helpful in this case, we must try to find
a subdivision of the problem which results in a simpler instance of the same
problem. For example, if we can find a way to transform the problem of printing
a number into the problem of printing a smaller one, we will be well on the
way to a recursive solution.

In searching for a recursive subdivision, it is not enough to find instances
of simple subproblems within the context of a larger problem. It is equally
important to find some way to reassemble the solutions to those simpler
subproblems to generate a complete solution. For example, in writing
PRINTNUM(N) recursively, it would certainly be legitimate to call
PRINTNUM(N-1). On the other hand, it is hardly helpful. If N has the value
2000, calling PRINTNUM(N-1) would print out *1999°. Clearly, this does not
help much toward the goal of printing the number *2000°.

It would be more useful if there were some way to divide a
number along digit boundaries so that the solution would consist of
printing two strings side by side. The key to finding the appropriate
subdivision lies in discovering that it is possible to split a number
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into its leading digits and its final digit by using the operations DIV and MOD.
Given any integer N, the expression

N MOD 10

always gives the value of the final digit, irrespective of the size of the original
number. The digits which precede the final digit can be determined by the
expression

N DIV 10

For example, given N = 1492, N DIV 10 is 149 and N MOD 10 is 2. To print
out the entire number, all we need to do is write out 149 and then write out
the 2, with no intervening spaces.

This decomposition suggests the beginning of a recursive implementation.
If we write the outline of the procedure in Pascal, but leave the internal op-
erations in English, we are left with the following procedure ‘‘definition’’:

PROCEDURE PRINTNUM(N : INTEGER);
BEGIN
Print the number N DIV 10;
Print the character corresponding to N MOD 10
END;

This does not as yet constitute a complete recursive algorithm, since it
provides only the decompositional rule and fails to define a simple case. For-
tunately, defining an appropriate simple case is reasonably straightforward here.
If a number has only one digit, we can simply convert the number to a character
and print it out. Adding this to the informal definition gives us the following
algorithmic specification:

PROCEDURE PRINTNUM(N : INTEGER);
BEGIN
IF N < 10 THEN
Print the character corresponding to N
ELSE
BEGIN
Print the number N DIV 10;
Print the character corresponding to N MOD 10
END
END;
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From here, all we need to do is replace the English commands with their
Pascal equivalents. For two of those commands, this is reasonably simple since
all the hard work has already been done in DIGITCHAR. After this refinement,
the procedure has the form

PROCEDURE PRINTNUM(N : INTEGER);
BEGIN
IF N < 10 THEN
WRITE(DIGITCHAR(N))
ELSE
BEGIN
Print the number N DIV 10;
WRITE(DIGITCHAR(N MOD 10))
END
END;

Clearly, we are almost finished. All that remains is a single English phrase
to be translated into Pascal:

*‘Print the number N DIV 10"

Fortunately, we are in the process of designing .. procedure which does exactly
that. Thus, we have at our disposal a new command which performs this
operation, and we can write this using a recursive call:

PRINTNUM(N DIV 10)
Thus, the complete definition of PRINTNUM is as follows:

PROCEDURE PRINTNUM(N : INTEGER);
BEGIN
IF N < 10 THEN
WRITE(DIGITCHAR(N))
ELSE
BEGIN
PRINTNUM(N DIV 10);
WRITE(DIGITCHAR(N MOD 10))
END
END;
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Taking the final step in the above derivation does not require cleverness
so much as courage. The key to this example lies in a willingness to translate
the informal algorithmic statement ‘‘print a number’ into a call to the
PRINTNUM procedure itself.

4-2 Generating a Primer (with apologies to Dick and Jane)

This is Spot.
See Spot run.
Run, Spot, run.

For those who attended elementary school in the United States, sentences like
this are almost certainly familiar. For many years, first-graders were taught to
read through the use of primer texts designed to develop reading skills through
the repetition of simple sentence patterns. Of these, the most widely circulated
was the Dick and Jane series, in which we were introduced to the quintessen-
tially suburban lives of Dick, Jane, and Sally, along with their pets Puff and
Spot.

By their very nature, primers use a limited vocabulary and a highly re-
stricted sentence structure. Presumably, this makes them more easily under-
stood by those who are just learning to read. If we look at this from the opposite
perspective, this same simplicity of structure should also make this sort of text
easier to write. In particular, if we want to design a program that generates
English text, Dick and Jane may prove to be ideal.

As a first step toward solving this problem, we should take advantage of
the fact that many of the sentences in the typical Dick and Jane story are drawn
from a rather simple set of patterns. For example, as the characters are intro-
duced, we usually see a sentence of the following form:

Thisis [Pattern #1]

(name)

where the blank space is filled in with the appropriate name. We will refer to
this as sentence pattern #1. In addition to pattern #1, there are several other
patterns which occur quite frequently in Dick and Jane. For example, we
encounter sentences having the following forms:

See = [Pattern #2]

(name)

or

See [Pattern #3]

(name) (verb)
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The last pattern contains two blanks for substitution, and we can fill each one
independently with a word of the appropriate class. For example, if our col-
lection of names consists of “Dick * “‘Jane,”” ‘‘Sally,”” “‘Spot,’’ and *‘Puff’
and the available verbs are ‘“‘run,”” *‘jump,’’ and ‘‘play,’” we can create fifteen
different sentences from pattern #3 alone.

Although we can add more patterns to this list, it is probably useful to
stop at this point and turn our attention to the problem of generating random
sentences in Pascal. The principles of top-down design suggest starting at the
sentence level, but we get a better feeling for the necessary structure if we
begin the implementation at a simpler level. For instance, our first step might
be to write a procedure NAME which prints out the name of one of the five
main characters. Ordinarily, this is accomplished by choosing a random integer
in the range 1 to 5 and using that to select one of the five names.

Since we will often be making choices of this kind, it will be helpful to
define a function CHOOSE(N) which returns a random integer in the 1 to N
range. Unfortunately, the details of the CHOOSE function are rather difficult
to specify because random number generation is not defined as part of standard
Pascal. Nonetheless, most systems implement some mechanism for generating
random numbers, even though it may differ from machine to machine. Typi-
cally, a system will provide a library function RANDOM which takes an ar-
bitrary argument and returns a random real number, uniformly distributed in
the interval (0.0, 1.0). To make this value correspond to our definition of
CHOOSE, we need to scale this value to the proper range using a function

such as:

FUNCTION CHOOSE(N : INTEGER) : INTEGER;
BEGIN
CHOOSE := 1 + TRUNC(N * RANDOM(0))
END;

Even though most definitions of CHOOSE will be quite similar to this model,
it is important to emphasize that this function is not portable, in the sense that
changes may be necessary before it is used on a particular computer system.

Once this detail is out of the way, we can easily complete the coding of
the NAME procedure:

PROCEDURE NAME;
BEGIN

CASE CHOOSE(5) OF

1 : WRITE('Dick’);

2 : WRITE( Jane’);

3 : WRITE(Sally’);

4 : WRITE('Spot);

5 : WRITE('Puff)
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We can use this same technique to generate the verbs:

PROCEDURE VERB;
BEGIN
CASE CHOOSE(3) OF
1 : WRITECrun’);
2 : WRITE(Cjump’);
3 : WRITE(’play’)
END
END;

From here, we can easily define procedures which write out sentences
according to each of the patterns in our current collection:

PROCEDURE PATI; PROCEDURE PAT3;
BEGIN BEGIN
WRITE(CThis is *); WRITE(’See °);
NAME NAME;
END; WRITE( °);
VERB
PROCEDURE PAT2; END;
BEGIN
WRITE(See °);
NAME
END;

Finally, we can construct a random sentence-generating procedure simply
by adding one more level to the structure:

PROCEDURE SENTENCE;
BEGIN
CASE CHOOSE@3) OF
1 : PATI;
2 : PAT2;
3: PAT3
END;
WRITELN(’.?)
END;

So far, this application depends entirely on procedural decomposition to
accomplish its goal. Starting from the sentence level, we first choose a pattern,
break that down into its components, and then proceed to select random words
as necessary to complete the pattern. At each step in the process, we adhere
to the discipline of considering only a single procedural level at a time. For
example, looking at the code
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PROCEDURE PATS3;
BEGIN
WRITE('See ’);
NAME;
WRITE( °);
VERB
END;

tells us everything we need to know about the pattern at this level; the details
of choosing a noun and verb are deferred to the appropriate procedures.

As of now, the sentence-generating program is still a bit on the boring side,
since it only handles proper names and a few simple verbs. To make things a
little more exciting, we can extend the program by adding a new sentence
pattern:

[Pattern #4]

(name) (transitive verb) (noun phrase)
The idea here is to generate sentences of the form
Jane hit the red ball.
or
Spot found the little green stick.

Conceptually, most of this is quite straightforward. First, we need to define a
PAT4 procedure and add a corresponding line to SENTENCE so that PAT4 will
be included in the list of available patterns.

PROCEDURE PAT4;
BEGIN
NAME;
WRITE( ),
TRANSVERB;
WRITE( °);
NOUNPHRASE
END;

For use with this pattern, we can also define a few transitive verbs:*

*Note that it is not possible to define a single verb category and share that between patterns #3
and #4, since the form of the verb is different in the two patterns.



58 Thinking Recursively

PROCEDURE TRANSVERB;
BEGIN
CASE CHOOSE@4) OF
1 : WRITE(’watched’);
2 : WRITE(liked’);
3 : WRITE(’found’);
4 : WRITE(Chit’)
END
END;

At this point, we are left with the problem of generating a ‘‘noun phrase."’
From the sample sentences given above, a noun phrase consists of the word
“‘the,”’ possibly followed by one or more adjectives, and finally a noun. Just
to get all the preliminaries out of the way, we can define the procedures NOUN
and ADJECTIVE to generate words which fit that category in the pattern:

PROCEDURE NOUN; PROCEDURE ADJECTIVE;
BEGIN BEGIN
CASE CHOOSE(3) OF CASE CHOOSE@) OF
1 : WRITE(Cball’); 1 : WRITE(’big’);
2 : WRITE(’stick’); 2 : WRITEC(little’);
3 : WRITE(house’) 3 : WRITE(red’);
END 4 : WRITE(’green’)
END; END
END;

From here, we must finally turn to the problem of the ‘‘noun phrase’’ itself
and determine how the corresponding procedure NOUNPHRASE might best
be defined.

Internally, the structure of a noun phrase is somewhat more complex than
the examples considered earlier, since it contains an element (specifically, the
adjective) which can be repeated within the pattern. If we think about this
repeated operation as a FOR loop, we come up with an iterative procedure
with the following form:

PROCEDURE NOUNPHRASE;
VAR
I : INTEGER;
BEGIN
WRITE(the °);
FOR I := 1 TO CHOOSE(3) DO
BEGIN
ADJECTIVE;
WRITEC )
END;
NOUN
END;
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This procedure approximates the desired effect, but there are two rather im-
portant problems. Although we could change the limits in the FOR loop so that
the program could produce more than three adjectives, the maximum number
of adjectives is always limited by a fixed upper bound. While this may be a
useful limitation in the context of a primer text, the corresponding pattern in
English allows any number (including zero) of adjectives to modify the noun.
The second problem is that NOUNPHRASE has an entirely different structure
from each of the other procedures we have defined, in that it contains a FOR
loop along with local variables. If this program is to be easily extended and
modified, it is helpful to preserve as symmetrical a structure as possible.

We can find a solution to these problems by thinking about the structure
of a noun phrase in a slightly different way. At present, we have a conceptual
pattern for a noun phrase which can be diagrammed as follows:

the

(several adjectives) (noun)

As an alternative, we can define the noun-phrase pattern using a two-level
structure. To start with, we can separate out the problem of the word *‘the”’
by defining a noun phrase as having the following pattern:

the

(modified noun)

Moving one step further, a modified noun consists of one of two possi-
bilities: (1) a simple noun or (2) an adjective followed by a modified noun. For
example, ‘“‘house’’ is a legal modified noun because it conforms to the first
possibility. So is ‘‘red house,’” because ‘‘red’’ is an adjective and ‘*house™’ is
a modified noun. Similarly, **big red house’’ is a modified noun, since it also
consists of an adjective and a modified noun.

Since this approach defines a modified noun in terms of other modified
nouns, the definition is itself recursive, and it would not be surprising to see
recursion used in the implementation. In fact, once the definition is out of the
way, the procedures used for a noun phrase are quite straightforward, since
they again correspond closely to the conceptual definition:

PROCEDURE MODNOUN;
BEGIN
CASE CHOOSE(Q2) OF
1 : NOUN;
2 : BEGIN
ADJECTIVE;
WRITE( ’);
MODNOUN
END
END
END;
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PROCEDURE NOUNPHRASE;
BEGIN
WRITE(’the ’);
MODNOUN
END;

In this chapter, we have produced a relatively powerful primer generator,
which can produce the following sentences:

This is Spot.

See Spot run.

Sally watched the ball.

Jane liked the little house.
Spot found the big red stick.

These, of course, seem perfectly in character. Unfortunately, the program can
equally well come up with sentences of questionable literary merit, such as

Dick watched the little big house.
or even such obvious monstrosities as

Spot liked the green little red red big red ball.

The problem here is that the program is concerned only with the form or syntax
of its output and takes no account of its content.

The technique used to generate the sentences in this section is based on
a linguistic structure called a context-free grammar. The name is derived from
the fact that, within any pattern, the legal substitutions are not restricted by
the surrounding context, even if this results in meaningless combinations. Al-
though this approach has some obvious drawbacks when used to generate
English text,* context-free grammars are extremely important to the translation
of programming languages and will be covered in detail by more advanced
courses.

*On the other hand, the use of context-free grammars has hidden virtues. Since all names are
chosen without regard to context, the generated sentences are much less likely to reflect cultural
biases and stereotypes. Thus, it is just as likely to generate **Jane hit the ball’’ or **Dick liked the
little house’’ as the other way around
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Bibliographic Notes

When textbooks give examples of recursive procedures, they are usually at a
more difficult level than the ones presented in this chapter. Some of the best
sources for additional exercises at this level are found in Ford [1982 and 1984].
Certain exercises from Tenenbaum and Augenstein [1981] are appropriate as
well.

Exercises

4-1. Without using recursion, complete the iterative coding of PRINTNUM by
defining the functions NDIGITS and ITHDIGIT. In terms of the number
of digits in the input number, what is the complexity order of your algorithm?

4.2, As written, PRINTNUM does not handle negative numbers. We can fix
this within the recursive coding as follows:

PROCEDURE PRINTNUM(N : INTEGER);
BEGIN
IF N < 0 THEN
BEGIN
WRITE(’-’);
PRINTNUM(-N)
END
ELSE
IF N < 10 THEN
WRITE(DIGITCHAR(N))
ELSE
BEGIN
PRINTNUM(N DIV 10);
WRITE(DIGITCHAR(N MOD 10))
END
END;

What are the disadvantages of this particular coding? How might you
correct this?

4.3. In several of the applications that we encounter later in this book, we will
see that zero often makes a better simple case than one. For example, in
the PRINTNUM problem, we used a one-digit number as the simple case.
However, printing a number with no digits is even easier, and we might
be tempted to write PRINTNUM as follows:
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44.

4-5.

4-6.

47.

48
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PROCEDURE PRINTNUM(N : INTEGER);
BEGIN
IF N > 0 THEN
BEGIN
PRINTNUM(N DIV 10);
WRITE(DIGITCHAR(N MOD 10))
END
END;

This program, however, does not always produce exactly the same output
as the version in the text. Describe the difference.

Using the recursive decomposition from PRINTNUM, write a function
DIGITSUM which takes an integer and returns the sum of all its digits.

The digital root of a number is calculated by taking the sum of all the digits
in a number and then repeating that process with the resulting sum until
only a single digit remains. For example, if we start with 1969, we first
add the digits to get 25. Since this is more than a single digit, we must
repeat the operation, giving 7 as the final answer.

Starting with the DIGITSUM function from exercise 4-4, write a func-
tion DIGITALROOT(N) which calculates this value.

Extend the definition of a ‘‘noun phrase’’ so that proper names are also
acceptable. This would allow sentences such as

Sally liked Jane.

or
Spot found Dick.

As written, the most general routine in the Dick and Jane example is the
SENTENCE procedure, which generates a single sentence using a random
pattern. Extend this by adding a PARAGRAPH procedure, which generates
a ‘‘paragraph’’ consisting of a random number of sentences. Make sure
that the PARAGRAPH procedure operates recursively and uses the same
general structure as the other procedures designed for this chapter.

Following the general outline of the primer-generation example, write a
collection of procedures that will generate syntactically correct (albeit
meaningless) Pascal programs. This program should not try to incorporate
all of Pascal’s structure, but it should include many of the more common
forms.



The Tower of Hanoi

WA

“Firstly, | would like to move this pile from here to there,” he explained,
pointing to an enormous mound of fine sand; “but I'm afraid that all |
have is this tiny tweezers.” And he gave them to Milo, who immediately
began transporting one grain at a time

—Norton Juster, The Phantom Tollbooth

Toward the end of the nineteenth century, a new puzzle appeared in Europe
that quickly became quite popular on the continent. In part, its success can be
attributed to the legend that accompanied the puzzle, which was recorded in
La Nature by the French mathematician De Parville (as translated by the
mathematical historian W. W. R. Ball):

In the great temple at Benares beneath the dome which marks the
center of the world, rests a brass plate in which are fixed three diamond
needles, each a cubit high and as thick as the body of a bee. On one
of these needles, at the creation, God placed sixty-four disks of pure
gold, the largest disk resting on the brass plate and the others getting
smaller and smaller up to the top one. This is the Tower of Brahma.
Day and night unceasingly, the priests transfer the disks from one
diamond needle to another according to the fixed and immutable laws
of Brahma, which require that the priest on duty must not move more
than one disk at a time and that he must place this disk on a needle
so that there is no smaller disk below it. When all the sixty-four disks
shall have been thus transferred from the needle on which at the
creation God placed them to one of the other needles, tower, temple
and Brahmins alike will crumble into dust, and with a thunderclap the
world will vanish.

As is so often the case with legend, this tale has evolved in the telling,
even to the point of acquiring a new geographic setting. In more modern times,
the Tower of Brahma has become known as the Tower of Hanoi, and it is in
this form that it has been passed on to today’s students as the classic example
of procedural recursion.

Before attempting to tackle the complete problem with 64 golden disks
(gold prices being what they are), it is useful to consider a simplified version
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of the puzzle. For example, if there are only six disks, the initial state of the
puzzle can be represented with all the disks on needle A:

A B C

The object is to perform the right sequence of moves so that all the disks end
up on needle B:

A B C

Of course, by the laws of the game (and to avoid ending the universe prema-
turely), we are not allowed to pick up the whole stack and move it as a unit.
We are therefore faced with the problem of breaking down this high-level
solution into a series of individual moves.

5-1 The Recursive Solution

Recursively, the critical point to notice is that the complete goal (in this case,
moving the entire stack of six disks from needle A to needle B) can be broken
down into the following subgoals:

1. Move the top five disks from A to C:
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2. Move the bottom disk from A to B:

A B C

3. Move the top five disks back from C to B, leaving the desired final
state:

A B C

Once again, given the rules of the game, we cannot move the entire set of
five disks as a unit. On the other hand, there is certainly no rule that prohibits
thinking about a five-disk transfer as a single operation, and using that as a
way of simplifying the problem. Thinking recursively, we know that if we can
transform the six-disk problem into one that requires transferring a stack con-
taining only five disks, we are well on the way to a complete solution.

We do, however, need to exercise some caution here. In breaking the
problem down into a simpler case, we must be certain that the new subproblem
has precisely the same form. Here, for example, it is important to verify that
we can apply the recursive technique to the tower of five disks without violating
any of the rules of the games. In particular, we must ensure that a further
decomposition of this task will not force us to move a larger disk on top of a
smaller one.

Given this recursive decomposition, this does not turn out to be a problem.
Whenever we move a tower as part of a recursive operation, all the disks in
that tower are smaller than any of the other disks that might already be on one
of the needles. Since they are smaller, we can freely move these disks from
one tower to another, even if larger disks are already there.

Before we write a program to solve this puzzle, it helps to define the
procedures involved in a relatively informal way. Here, what we need is a
procedure which writes out all the moves necessary to transfer a tower of a
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given size. Since the operation involved is moving a tower, MOVETOWER
seems like an appropriate name.

In designing a recursive procedure like MOVETOWER, it is essential to
remember that the procedure is not only responsible for the complete problem
as perceived by the outside user, but for a variety of internally generated
subproblems as well. Thus, although it is tempting to think of MOVETOWER
as having only one argument indicating the number of disks, this will not provide
enough information to solve the general case. The statement

MOVETOWER(6)

tells us the number of disks involved but gives us no insight as to where they
start or where they finish. Even though the complete problem might always
move disks from A to B, the recursive calls will not. For example, somewhere
deep in the recursive structure the program will need to be able to ‘““move a
tower of size 3 from C to A using B for temporary storage.’’

In order to make MOVETOWER sufficiently general, the parameters to
MOVETOWER must include which needles are involved, in addition to the
number of disks. Thus, we need the following procedure header for
MOVETOWER:

PROCEDURE MOVETOWER(N:INTEGER;
START, FINISH, TEMP:CHAR);

where N is the number of disks to move and START, FINISH and TEMP
indicate the role currently assigned to each needle in the current subproblem.
Thus, in the main program to solve the six-disk problem, we would expect the
call

MOVETOWER(6, ’A’, ’B’, ’C’)

which can be rendered in English as the sentence ‘‘move a tower of size 6 from
A to B using C as the temporary needle.’’ Internally, if we do reach a position
in the algorithm where we need to ‘‘move a tower of size 3 from C to A using
B for temporary storage,’’ that would be represented as a call with the values

MOVETOWER(3, °C’, ’A’, ’B’)

The complete solution also requires that we find a simple case which allows
the recursion to terminate. Finding the simple case is usually much more
straightforward than determining the recursive decomposition, and this is in-
deed true in the Tower of Hanoi problem. Although we will consider another
possibility in Exercise 5-2, an obvious choice is the case when there is only a
single disk to move. This leads to a recursive solution with the following form:
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If N (the number of disks to move) is one, simply move that disk from
START to FINISH.
If N > 1, divide the problem up into three subgoals:

1. Using this same algorithm, move the top N-1 disks from START to
TEMP. In the process of making this transfer, the FINISH needle will
be used as the new temporary repository.

2. Move the bottom disk from START to FINISH.

3. Move the top N-1 disks back from TEMP to FINISH, using START
as the new temporary.

Given this informal algorithmic description, we can proceed to the problem
of coding it in Pascal. As in the case of most recursive routines, the procedure
definition corresponds quite closely to the algorithmic definition:

PROCEDURE MOVETOWER(N : INTEGER;
START, FINISH, TEMP : CHAR);
BEGIN
IF N = 1 THEN
WRITELN(START, ’ to ’, FINISH)
ELSE.
BEGIN
MOVETOWER(N-1, START, TEMP, FINISH);
WRITELN(START, °’ to ’, FINISH);
MOVETOWER(N-1, TEMP, FINISH, START)
END
END;

If this procedure is compiled together with a main program consisting of the
single statement

MOVETOWERG(, ’A’, ’B’, ’C’)

the program will write out a complete history of the moves necessary to solve
the six-disk Hanoi problem.

But how? This is the question that always seems to arise whenever the
MOVETOWER procedure is presented. The recursive decomposition is all well
and good as a theoretical idea, but this is a program definition! Where are the
details? Where is the solution?

5.2 The Reductionistic View

One of the first things that new programmers learn is that computer program-
ming requires a meticulous attitude with respect to details. When programming
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is involved, the statements *‘it’s right except for a few details’’ and *‘it’s wrong’’
are hard to differentiate experimentally. In a recursive implementation, those
details are sometimes difficult to see, because the work consists primarily of
keeping track of a list of active subproblems—details which are handled au-
tomatically for the programmer by the compiler.

To understand the underlying process behind that record keeping, it is
useful to examine the execution history of a recursive program in complete
detail. The Tower of Hanoi problem has two characteristics which make it
particularly appropriate for this analysis. The problem is (1) hard enough that
the solution is not obvious and (2) simple enough that we can follow the re-
cursive logic without getting lost. With any luck, going through the details here
will dispel any lingering reductionistic tendencies and provide additional con-
fidence in the recursive approach.

To simplify the basic problem, we will consider the necessary operations
when only three disks are involved. Thus, the main program call is

MOVETOWERG(, ’A’, 'B’, ’C’)

From here, all we need to do is keep track of the operation of the program,
particularly as it makes new calls to the MOVETOWER procedure.

Following the logic of a recursive procedure is often tricky and may not
be advisable for the fainthearted. The best way, of course, is to let the computer
handle all of this, but our purpose here is to expose those details. To do this,
we must ‘‘play computer’” and simulate its internal operations. For recursive
problems, one of the best ways of keeping track of all the necessary operations
is with a stack of 3 X 5 index cards, where a new card is used every time a
new procedure call is made.

Since we have just made the procedure call

MOVETOWERG, ’A’, ’B’, 'C’)

we are ready for our first index card. On each card, the first thing we do is
write down the English interpretation of the call and refer to that as our current
goal. Following that, we also specify the values for each parameter:

Goal: Move three disks from A to B

N START FINISH TEMP
3 A B C
Things to do.

MOVETOWER(N — 1, START, TEMP, FINISH)
WRITELN(START, * to ’, FINISH)
MOVETOWER(N — 1, TEMP, FINISH, START)




The Tower of Hanoi 69

On the bottom of the card, we make a list of the various tasks we must
perform to solve the problem ar this level. Here, the ‘‘things to do’’ list is
simply the statements that form the ELSE clause in the MOVETOWER procedure.

From here, we go through each of the subtasks in turn. Thus, in order to
begin the solution at this level, we need to execute the statement

MOVETOWER(N-1, START, TEMP, FINISH)

As with any procedure call, the first step is the evaluation of the arguments.
To do this, we need to find the values of the variables N, START, TEMP and
FINISH. Whenever we need to find the value of a variable, we must use the
value as it is defined on the current index card. Thus, the MOVETOWER call
is equivalent to

MOVETOWER(2, ’A’, °C’, ’B’)

This operation, however, indicates a recursive call. This means that we
must suspend our current operation and repeat this entire process with a new
index card. On this new card, we simply copy in the parameter values in the
order in which they appeared in the procedure call:

Goal: Move three disks from A to B 1
Subgoal Move two disks from A to C
N START FINISH TEMP
2 A C B
Things to do.

MOVETOWER(N — 1, START, TEMP, FINISH)
WRITELN(START, ‘ to ', FINISH)
MOVETOWER(N - |, TEMP, FINISH, START)

Our original index card still has several unfinished tasks, so we cannot
dispense with it, but must set it aside until we complete the new subgoal. Thus,
in the diagram above, the new card is placed on top of the previous one, hiding
the previous values of the variables. As long as this index card is active, N
will have the value 2, START will be "A’, FINISH will be 'C’, and TEMP will
be 'B’. When the operations on the new ‘‘things to do’’ list are complete, we
will throw this card away, restoring the original card to the active position. In
programming terminology, the information stored on each index card is called
an environment.
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Since we have just made a new call to the MOVETOWER routine, we
must start over at the beginning of the procedure body. Once again, N is not
1, so that our first operation is

MOVETOWER(N-1, START, TEMP, FINISH)

Here, however, the parameters have changed. Substituting the new values (that
is, the values on the current index card) into this statement gives

MOVETOWER(, ’A’, ’B’, ’C’)

Once again, we have a recursive call, giving rise to a third level of subgoal:

Goal Move three disks from A to B ]
Subgoal: Move two disks from A to C l
Subsubgoal- Move one disk from A to B
N START FINISH TEMP
1 A B C
Simple case-

WRITELN(START. ‘ to” FINISH)

This, however, represents an easy case. All we need do is write out the message
““A to B”’, and we are finished. This leaves us in the configuration:

At this point, we are done with the current card and can remove it from our
active list. This brings us back to the previous card, having just completed the
first item on the ‘‘to-do”’ list. To indicate that this operation is complete, we
simply cross it off and move on to the next item.
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Goal Move three disks from A to B ]
Subgoal Move two disks from A to C
N START FINISH TEMP
2 A C B
Things to do-

v

WRITELN(START," to ’ , FINISH)
MOVETOWER(N — 1, TEMP, FINISH,START)

The next operation does not require any further calls; we simply move the
indicated disk to reach the position:

A B C

Since we have finished yet another operation on the current card, we can cross
this off as well, leaving our current list of pending operations as follows:

Goal Move three disks from A to B 1
Subgoal Move two disks from A to C
N START FINISH TEMP
2 A C B
Things to do.

[} i} 0}
3 3

WRITFEENGSTARTto—FINISH)-
MOVETOWER(N — 1, TEMP, FINISH, START)

Here, we again need to ‘‘move a tower of size 1.”’ Internally, we know
that this will be handled by a new call to MOVETOWER (and will thus require
a new index card), but we should be able to see by this point that the program
will be able to handle this as a simple case and end up in the following state:
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Goal. Move three disks from A to B _I
Subgoal: Move two disks from A to C
N START FINISH TEMP
2 A B C

Things to do:

Once again, we are completely done with one of the index cards and can throw
it away. This restores the first index card to our current operation pile with
the first subtask completed.

Goal* Move three disks from A to B

N START FINISH TEMP
3 A B C
Things to do:

WRITELN(START. ‘ to ’ , FINISH)
MOVETOWER(N — 1, TEMP, FINISH. START)

At this point, we have made three moves:
AtoB
AtoC
Bto C

This puts us in the following position:




The Tower of Hanoi 73

As this diagram illustrates, we have just completed the first major subgoal and
are pretty much halfway through the process. From here, we simply move the
largest disk from A to B and tackle the remaining subgoal. Again, this will
require further decomposition, and you are encouraged to continue the analysis
on your own.

Bibliographic Notes

The Tower of Hanoi is such a perfect example of recursion that it is used in
almost all texts that include the topic. A thorough trace of the recursive op-
eration at a more machine-oriented level is included in Tenenbaum and Au-
genstein [1981]. For a more popular account, Dewdney’s article in Scientific
American [1984] is quite good and includes a discussion of the more advanced
**Chinese-ring’’ puzzle. This puzzle is also included in Ford [1984], along with
other problems that are appropriate at this level.

Exercises

5-1. In making a recursive subdivision of a problem, it is extremely important
to ensure that any generated subproblems obey exactly the same rules as
the original. With this in mind, consider the following decomposition:

To move a tower of N disks:

1. Move the top disk from START to TEMP.

2. Using a recursive call, move the remaining tower of N—1 disks from
START to FINISH.

3. Move the top disk back from TEMP to FINISH.

Why does this algorithm fail?

5-2. Although the version presented here is somewhat easier to explain, it is
possible to write a simpler version of MOVETOWER by changing the
simple case. Although the one-disk case is certainly simple, there is even
less work required when there are no disks at all. Using this as the simple
case gives MOVETOWER the form shown at the top of the next page.
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PROCEDURE MOVETOWER(N : INTEGER;
START,FINISH,TEMP : CHAR);
BEGIN
IF N > 0 THEN
BEGIN
MOVETOWER(N-1, START, TEMP, FINISH);
WRITELN(START, ’ to ’, FINISH);
MOVETOWER(N-1, TEMP, FINISH, START)
END
END;

Although this is more concise than the original version, it is slightly less
efficient. Starting with the statement

MOVETOWER(3, ’A’, ’B’, °C’)

how many calls to MOVETOWER are required to complete the transfer?
How does this compare with the implementation used in the text?

5-3. Which of you, intending to build a tower,
sitteth not down first, and counteth the cost?
—Luke 14:28

Using mathematical induction, prove that the number of moves required
to transfer a tower of size N by the MOVETOWER algorithm is given by

2N — 1
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The order is rapidly fading
And the first one now will later be last
—Bob Dylan, “The Times They Are A-Changin' "

As part of the discussion of factorials in section 3-2, we introduced the term
permutation to refer to an arrangement of objects in a linear order. At the time,
our goal was simply to determine the number of possible permutations given
a collection of N distinct objects. We reasoned that there are N ways to choose
the first object, N—1 ways to choose the second, and so forth. This means that
the total number of arrangements can be determined by calculating N!:

N X (N-1) x (N=-2) x ... x1

For example, given the string 'ABCD’, there are twenty-four (4!) different
permutations:

ABCD BACD CABD DABC
ABDC BADC CADB DACB
ACBD BCAD CBAD DBAC
ACDB BCDA CBDA DBCA
ADBC BDAC CDAB DCAB
ADCB BDCA CDBA DCBA

In this chapter, our goal is to write a program which will generate this list.
Before we write the actual code, however, it is important to define the data
structures to be used. In Pascal, strings are conventionally represented as a
packed array of characters of a constant length. Thus, to define the type STRING
suitable for storing 'ABCD’, we will use the following CONST and TYPE
declarations*:

*In practice (sce Exercise 6-1), it is probably better to define the type STRING to be a much larger
array and use a separate vanable to keep track of the number of ‘*active’’ characters. This would
allow the same PERMUTE procedure to be used with strings of different length. By defining N as

a constant in this example, we can simplify the problem somewhat and focus attention more directly
on the recursive structure of the algorithm,
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CONST
N = 4;

TYPE
STRING = PACKED ARRAY [1..N] OF CHAR;

Given this representation, we can turn our attention to the details of the
Pascal implementation. From an ‘‘exterior’” point of view (such as that of the
main program), we would like to define a procedure PERMUTE so that calling

PERMUTE(CABCD’)
corresponds to the English operation
Generate and display all possible permutations of 'TABCD’.

This provides an informal definition of the PERMUTE procedure and establishes
its argument structure:

PROCEDURE PERMUTE(S : STRING);

In demonstrating that a set of N objects has N factorial permutations, we
gave the basic outline of the recursive procedure necessary to generate those
arrangements. Starting with the string "ABCD’, for example, there are four
different ways to choose the first letter. This divides the possible permutations
into four distinct groups:

All permutations starting with A’
All permutations starting with 'B’
All permutations starting with 'C’
All permutations starting with D’

If we consider any of these individual subproblems, however, we make
an important discovery. The set of all permutations starting with 'A’ is simply
the permutations of "ABCD’ in which the A’ is left alone and only the substring
'BCD’ is affected by the recursive call. Similarly, to find the permutations
beginning with B’, we move the B’ to the front and generate all permutations
of 'BACD’, again limiting any rearrangement to the last three characters. Thus,
the entire process of generating all permutations of 'ABCD’ can be decomposed
into the following subgoals:

1. Generate the permutations of "TABCD’, changing only *BCD".
2. Generate the permutations of 'BACD’, changing only 'ACD".
3. Generate the permutations of '"CABD’, changing only 'ABD’.

4. Generate the permutations of "'DABC’, changing only "ABC".
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This insight, however, forces us to change our conception of the problem.
From the subproblem level, the principal operation is no longer

Generate and print all permutations of S.
but the somewhat more detailed statement

Generate and print all permutations of S, manipulating only those
characters which occur between some position K and the end of the
string.

To accommodate this change in the informal specification, we must also
change the procedure header for PERMUTE. In addition to the string S, PER-
MUTE must also know the position which marks the boundary between the
fixed letters and the letters which may still be manipulated by the recursive
call. Thus, we must add a new argument K which indicates the first position
in S which may be changed by this level of call:

PROCEDURE PERMUTE(S : STRING; K : INTEGER);

Thus, when the main program makes the call
PERMUTE(C’'ABCD’, 1)

this can be interpreted as ‘‘generate and print all permutations of "TABCD’,
changing only the characters in positions 1 to 4. Since K = 1 here, this
indicates that the entire string is subject to change. As we proceed through the
recursive process, however, K will increase by one at each level of call. As K
increases, the number of characters which can be manipulated by this algorithm
gets smaller, so that the problem becomes simpler at each level.

To ensure proper termination, we must define a simple case. Here, the
case K = N seems most appropriate, as this implies that there is only one
letter left. Since there is only one way to arrange a single letter, we can simply
write out the current value of S and consider the problem solved.

We are now in a position to outline the general structure of the PERMUTE
algorithm:

If K = N, write out S and return.
Otherwise, for each character in positions K through N:

1. Move that character to position K by exchanging it with the character
formerly in that position.

2. Generate all permutations of S, working only with the positions
K + 1 through N.

The operation of exchanging two characters in a string is simple enough
that we could perform it directly within the PERMUTE procedure. On the other
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hand, using a separate procedure for this purpose improves the overall program
structure and makes the operation of the PERMUTE program considerably
more clear. Thus, we will define a procedure SWAPCHAR(S, P1, P2) which
exchanges the characters in S at positions P1 and P2:

PROCEDURE SWAPCHAR(VAR S : STRING; P1, P2 : INTEGER);
VAR
TEMP : CHAR;
BEGIN
TEMP := S[P1];
S[P1] := S[P2];
S[P2] := TEMP
END;

This procedure clears away the last hurdle to completing the definition of
PERMUTE:

PROCEDURE PERMUTE(S : STRING; K : INTEGER);
VAR
I : INTEGER;
BEGIN
IF K = N THEN
WRITELN(S)
ELSE
FOR 1 := K TO N DO
BEGIN
SWAPCHARGS, K, I);
PERMUTE(S, K+1)
END
END;

Throughout the discussion of both the algorithm and its implementation,
we have relied on an assumption which deserves more explicit attention. As
we go through the FOR loop in the above procedure, the SWAPCHAR operation
continually changes the contents of S. Assuming that S starts out as "ABCD’,
the first cycle simply exchanges the 'A’ with itself and therefore has no effect.
When I = 2, the first and second characters of S are exchanged, so that S has
the value 'BACD’. When I = 3, the first and third characters switch positions,
resulting in '"CABD’.

These observations, however, are only true if the recursive PERMUTE
call has no effect on S. Here, we have avoided the issue entirely by making S
a value parameter to the PERMUTE procedure. At each level, the PERMUTE
procedure receives a copy of the string in the next higher level. Within that
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level, any changes made to S are made only to the copy and therefore cannot
affect the original argument.

Bibliographic Notes

There are several distinct approaches to the problem of generating permuta-
tions, and each textbook chooses its own conceptual model to present this
problem. Knuth [1973] presents several methods for generating permutations
and includes some historical background on the use of permutations in math-
ematics. Generating permutations is also discussed in Tenenbaum and Augen-
stein [1981] and Sedgewick [1983].

Exercises

6-1. In this program, we can improve on the data structure design by declaring
STRING as a much larger array:

CONST
MAXSTR = 20;

TYPE
STRING = PACKED ARRAY [1..MAXSTR] OF CHAR;

Whenever a procedure requires a string-valued argument, we will pass two
parameters: (1) a variable of type STRING which contains the characters
and (2) an INTEGER which specifies the number of characters actually in
use.

Change the implementation of PERMUTE so that it accepts a string
of any length (up to MAXSTR) and prints out a list of its permutations. In
testing this program, remember that a string of length 5 already has 120
permutations, so the sample runs should probably be kept small.

6-2. Using the index-card method described in Chapter 5, go through the op-
eration of the PERMUTE program for the string ’TABCD’. Remember that
each call to PERMUTE has its own copy of the string S. Thus, any changes
which are made to S by SWAPCHAR are local to that level and are thus
made only on the current index card.

6-3. Using mathematical induction, prove the following proposition:

If the characters in S are in alphabetical order, as in "ABCD’,
PERMUTE(S) will generate the permutations in alphabetical order.
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6-4.

6-5.

Thinking Recursively

Throughout the discussion of permutations, we have required each letter
to be distinct. The reason for this restriction is that the algorithm given
will generate multiple copies of the same arrangement if any letter appears
more than once. For example, if we attempt to list the permutations of
*ABBC’ using this algorithm, each entry will appear twice.

Consider the following suggested implementation:

PROCEDURE PERMUTESS : STRING; K : INTEGER);
VAR
I : INTEGER;
BEGIN
IF K = N THEN
WRITELN(S)
ELSE
FORI := KTO N DO
IF S[K] <> S[I] THEN
BEGIN
SWAPCHARSG, K, I);
PERMUTE(S, K+1)
END
END;

This is the same procedure as before, except for the addition of the IF
statement within the FOR loop. The intent of this statement was to elim-
inate any permutation which had been generated before by checking for
the duplicate letter.

Unfortunately, this implementation is seriously flawed. What does it
print out given the string "ABBD’? What logical errors have been made in
its design?

Rewrite this program so that it operates correctly when given a string
with repeated letters. For example, given "TABBD’, the program should
produce

ABBD BABD BBDA DABB
ABDB BADB BDAB DBAB
ADBB BBAD BDBA DBBA

Like permutations, the problem of generating all subsets of a set of N
elements has a simple recursive formulation. For example, if we start with
the set {A,B,C}, the set of all subsets can be divided into two groups: (1)
those that contain A and (2) those that do not. In either case, the subsets
in each group simply contain all possible subsets of the remaining elements
{B,C}. Thus, the complete list of subsets of {A,B,C} is

Group 1: {A,B,C} {A,B} {A,C} {A}
Group2: {B,C} {B} {C} {}
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Using a string of characters to represent a set, write a recursive program
which generates all subsets of {A,B,C,D}.

6-6. Rewrite Exercise 6-5 using Pascal’s SET type instead of strings to represent
the set of characters.

6-7. On a standard telephone, each of the digits (except 1 and 0) is associated
with three letters as follows:

ABC DEF

1 2 3
GHI JKL MNO

4 5 6
PRS TUOV WXY

7 8 9

OPER
0

For certain telephone numbers, this makes it possible to find words which
correspond to the necessary digits. For example, in the Boston area, a
recorded message giving the time of day is available by dialing ‘*“NER-
VOUS”’ (637-8687).

Write a program which accepts a string of digits and prints out all
sequences of letters which correspond to that telephone number.
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“| weep for you,” the Walrus said'
“| deeply sympathize.”
With sobs and tears he sorted out
Those of the largest size
—Lewis Carroll, “The Walrus and the Carpenter,’
Through the Looking Glass

’

In business and commercial applications, programming typically consists of a
relatively simple set of operations. For example, report generation is often
limited to reading in a file of data and printing it out again in some specific
format, possibly including some summary calculations along the way. As long
as the operations remain this easy to perform, the fact that these applications
also tend to work with vast quantities of data is not an insurmountable concern.
Operations such as formatting a report or adding up a column of figures tend
to run in linear time. As discussed in Chapter 2, this implies that doubling the
size of the data merely doubles the amount of time required. For most appli-
cations, this increase in running time seems entirely reasonable and well within
acceptable bounds.

Unfortunately, not all the operations that characterize business-oriented
computing are quite so well-behaved. Many applications that work with large
amounts of data require that data to be arranged in some sequential order.
Membership lists and telephone directories, for example, are arranged alpha-
betically to make each individual entry easier to find. Similarly, bulk mailings
are arranged according to ZIP codes to meet the requirements of the U.S.
Postal Service. The process of taking an unordered set of data and arranging
it in sequence is called sorting.

Unlike many other operations that arise frequently in practice, sorting
cannot be performed in linear time. When sorting is involved, doubling the
number of items to be sorted will require more than twice as much time. As
the size of the data grows large, this can result in a tremendous explosion in
the required computation time. To control this phenomenon, it is essential to
choose an algorithm which reduces the computational complexity as much as
possible.

In this chapter, we will consider two distinct algorithms for sorting and
compare their behavior. The first is called selection sorting, which operates
iteratively by selecting the smallest element on the first cycle of a loop, followed

83



84 Thinking Recursively

by the second smallest, and so forth. The second method is called merge sorting
and is characterized by the recursive process of (1) dividing an array in half,
(2) sorting each piece, and (3) reassembling the sorted subarrays. Conceptually,
selection sorting is quite intuitive, while merge sorting seems complex. How-
ever, as the number of items to be sorted becomes large, merge sorting turns
out to be considerably more efficient.

In describing each of these algorithms, we will simplify the problem by
assuming that we are sorting an array of integers. Moreover, we will also make
the illustrations more concrete by naming the array A and assuming it is ini-
tialized to contain the following eight values:

A

90 99 63 82 93 76 81 76

Our goal is to write a procedure SORT which rearranges these numbers into
increasing order.

To make the structure of the implementation more specific, we can write
out an explicit procedure header for SORT, even though we have not yet written
the code. Here, SORT needs access to the array of integers A. Since the
elements of that array will be changed during the operation of SORT, the array
must be passed as a VAR parameter. Moreover, since it is often necessary in
Pascal to declare a large array and use only part of it, we should also pass the
number of elements to be considered. This makes it possible to use SORT on
arrays which differ in their number of active elements. Thus, the procedure
header for SORT should be

PROCEDURE SORT(VAR A : INTARRAY; N : INTEGER);
where INTARRAY is defined in the TYPE section as
INTARRAY = ARRAY [1..MAXSIZE] OF INTEGER;

for some constant MAXSIZE.

Specifying the parameters to SORT and determining the types involved
are part of designing the interface or calling sequence for the SORT procedure.
Completing this specification early in the design phase is very important in the
computing industry, particularly if it is part of a large programming project.
One of the important advantages that comes from making such design decisions
early is that it is then possible for the implementation of the SORT procedure
to proceed in parallel with the application programs that will use it.
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7-1 Selection Sorting

With the design of the SORT procedure interface out of the way, we can return
to the algorithmic problem of sorting the array

90 99 63 82 93 76 81 76

In selection sorting, the first step is finding the smallest value (in this case, 63),
since this is certain to be the first value in the sorted array. If we copy this
value to a separate array called NEW and conceptually ‘‘remove’’ it from the
original, we are left with the following picture:

A —— — ——
90 99 82 93 76 81 76
| > 3 a4 5 6 7 8
NEW
_____ T T Tt r T T AT T T T T T T T TT T T ™
R
[}
63 ! | | | ! | |
1 I I I ) ] I
e S e Y L]
1 2 3 4 5 6 7 8

Repeating this process until each element has been moved into NEW results
in a fully sorted array. The fact that each step in the sorting procedure consists
of “‘selecting”’ the next element gives rise to the term *‘selection sort.”” For
many people, this is a familiar operation and is used, for example, in sorting
a hand of cards. After the deal, the cards are held in one hand and then selected
in order by the other, resulting in a properly sequenced hand.

As described, this algorithm is not particularly well suited to implemen-
tation, primarily because the idea of ‘‘removing’’ an entry from an array is not
one that is easily expressed in most programming languages. For this reason,
it is helpful to modify the algorithm so that, instead of removing an element,
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we simply exchange it with the value in the desired position. Thus, in the
original array, we must first find the smallest value (indicated by the “*S’" in
the diagram below):

90 99 63 82 93 76 81 76
1 2 3 4 5 6 7 8
A A
I S

and then exchange it with the value in the first position.

63 99 90 82 93 76 81 76
1 2 3 4 5 6 7 8
A A
1 S

At this point, the first element is correctly in place and the remaining items
yet to be sorted are in positions 2 through 8. If we repeat this operation for
each remaining position, we will end up with all the elements in order.

In point of fact, we will not actually need to perform all eight cycles here.
If positions 1 through 7 contain the correct values, then the one remaining
value must belong in position 8. Thus, our more general algorithm need only
exchange elements into the positions from 1 up to N-1.

If we choose a reasonable way of breaking up the problem into appropriate
subsidiary procedures, this algorithm is readily translated into Pascal. Devel-
oping the SORT procedure using the principles of top-down design makes the
problem easier still. The essence of the algorithm is represented by the following
Pascal program:

PROCEDURE SORT(VAR A : INTARRAY; N : INTEGER);
VAR
I, S : INTEGER;
BEGIN
FOR I := 1 TO N-1 DO
BEGIN
S := FINDSMALLEST(A, I, N);
SWAP(A[I], A[SD
END
END;
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Translated into English, this can be interpreted as*

For each position I between | and N-1:

1. Call the function FINDSMALLEST to determine the position of the
smallest element in A in the index range I to N. Assign that position
number to S.

2. Swap the values in A[I] and A{S].

The remaining procedures are equally easy to code and should be familiar
from any introductory programming course.

PROCEDURE SWAP(VAR X, Y : INTEGER);
VAR
TEMP : INTEGER;
BEGIN
TEMP := X;
X:=Y;
Y:=T
END;

MP

FUNCTION FINDSMALLEST(VAR A : INTARRAY;
P1,P2 : INTEGER) : INTEGER;

VAR

S, I : INTEGER;
BEGIN

S:=P1;

FOR 1 := P1+1 TO P2 DO
IF A[I] < A[S] THEN S := I
FINDSMALLEST := S
END;

In order to have any idea whether or not this is a reasonable sorting
algorithm, we must determine a metric for judging the quality of its operation.
Although we may end up being interested in other characteristics of the program
operation (such as how much space it uses or how well it operates on arrays
that are already partially ordered), computational complexity is certainly of
considerable importance.

To calculate the complexity order, the most common approach is to choose
some operation in the program and count the number of times it is performed.

*In this chapter. the selection sort algorithm is coded iteratively using a FOR loop to cycle through
each position. Alternatively (see Exercise 7-2), this could also be viewed as a recursive procedure
which correctly positions the first item and then sorts the rest of the list recursively.
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In order to ensure that this measure is at all useful, it is important to select an
operation that is executed at least as often as any other. Thus, the usual ap-
proach is to select some operation from the innermost loop. Here, since the
body of the loop within FINDSMALLEST is executed several times during each
cycle of the loop in SORT, it is conventional to choose some operation there,
such as the comparison in the statement

IF A[I] < A[S] THEN S := L

Using the eight-element example presented earlier, we can compute the
number of comparisons required for each cycle of the SORT program. On the
first cycle, FINDSMALLEST is called with P1 equal to 1 and P2 equal to 8,
which means that the comparison will be performed seven times—once for
each cycle of the loop

FOR1I:= Pl1+1 TOP2DO ...
On the second cycle of SORT, there will be six comparisons, five on the third,
and so on. Thus, the total number of comparisons in the eight-element example

18

7+6+5+4+3+2+1=28

More generally, if the original array contains N elements, the number of
comparisons is given by

I +2+3+ -+ (N-)

We can simplify this formula by taking advantage of the result from Chapter
2, which establishes that

_ N(N+1)

l+2+3+---+N >

Thus, the number of comparison operations required to sort an array of size
N is

(N-1)N
2

or, in polynomial form
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Since the second term in this formula becomes relatively insignificant for large
values of N, the complexity of selection sort is simply

Oy

The derivation of this result is almost exactly the same as that of the nested
loop example presented in Chapter 2. In particular, the computational char-
acteristics are just as bad. The dimensions of the problem are indicated by the
following table:

Number of
N comparisons
10 45
20 190
50 1,225
100 4,950
1000 499,500
10000 49,995,000

From this table, we see that the number of comparisons required grows much
more quickly than the number of items to be sorted. For small values of N,
this is not particularly significant, but, as N grows, this soon becomes a matter
of no small concern. For example, if the computer we are using can perform
100,000 comparisons per second, sorting 10,000 data items using this method
will take nearly 8 1/2 minutes for the comparison operations alone. Even this
may not seem completely preposterous (to anyone who is not paying directly
for computer time), but it quickly gets worse. For 100,000 items (which is
entirely within the range of a company working with a large bulk mailing list),
the program will require nearly 5,000,000,000 comparisons. This would require
almost fourteen hours, given the same rate of computation.

As these figures indicate, this algorithmic inefficiency makes selection
sorting unacceptable for most applications involving large collections of data.
We can do better than this by adopting a recursive approach.

7-2 Merge Sorting
In looking for a recursive solution, we must first discover what characteristics
of sorting make it a recursive problem. To do this, it helps to review the

conditions that recursive problems must satisfy:

1. There must be some way to break large problems down into simpler
instances of the same problem.



Q0 Thinking Recursively

2. Assuming that each of those subproblems can be solved by successive
applications of the recursive procedure, there must be some way to
generate a solution to the original problem from the solution to each of
these smaller parts.

3. We must be able to determine a set of simple cases which can be solved
directly, without any further decomposition.

To be sure that we are heading in a profitable direction, it often pays to
consider the simple cases first. Here, given that the problem is sorting an array
of size N, the easiest case is when N = 1. When this occurs, we have a list
of a single element, which, considered all by itself, is already sorted. Thus, for
recursive sorting, the simple case requires no work at all.

Once this is out of the way, we can return to the more complicated task
of subdividing the problem. Given a large array, we can break it up into smaller
arrays in several different ways. When we are trying to reduce the computa-
tional complexity of an algorithm, it usually helps to divide the problem into
components which are approximately equal in size. In general, this approach
takes maximum advantage of the divide-and-conquer strategy and ensures that
the size of the resulting subproblems diminishes quickly as the recursive so-
lution proceeds. Thus, in this case, the most promising approach is to (1) divide
the array in half, (2) sort each of the subarrays using a recursive call, and (3)
find some way to reassemble the two subarrays into a fully sorted array.

Before tackling the details of this algorithm, however, we must recognize
that the use of this recursive approach requires some changes in the structure
of the SORT procedure itself. Before we settled on the algorithm to be used
in the implementation, we designed the SORT procedure to take two arguments
as indicated by its header line

PROCEDURE SORT(VAR A : INTARRAY; N : INTEGER);

In the case of the selection sort algorithm from the previous section, this was
quite sufficient, because the algorithm was designed to work with the entire
array all at once.

In the recursive implementation, however, the algorithm is predicated on
an ability to divide the complete array into subarrays, which are handled in-
dividually. For example, in sorting an array with eight elements, we will first
call SORT recursively on elements 1 through 4, and then call it again for
elements 5 through 8. Thus, the SORT procedure must be given both endpoints
of the desired range rather than the number of elements alone.

Having made this discovery, we are tempted to change the procedure
header for SORT to

PROCEDURE SORT(VAR A : INTARRAY; LOW, HIGH : INTEGER);
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Unfortunately, this approach is extremely poor from the point of view of project
management. Presumably, other programmers have written application pro-
grams which assume that the SORT procedure will conform to its design spec-
ifications. Altering the calling sequence at this point requires all those programs
to change.

A better solution to this problem is to leave the calling sequence for SORT
alone and introduce a new procedure which adds in the extra argument. Thus,
the SORT routine itself is simply

PROCEDURE SORT(VAR A : INTARRAY; N : INTEGER);
BEGIN
MERGESORT(A, 1, N)
END;

All of the actual work for the recursive solution is performed by the new
MERGESORT procedure, which is designed to handle the more general case
of arbitrary subarrays. This technique of using two procedures, one which
provides a simple external interface and a second (typically with more param-
eters) which implements the actual algorithm, is quite important in recursive
programming and will be used again in subsequent chapters.

Even though we have yet to specify the details of the complete algorithm,
we are in a position to outline the code for the MERGESORT procedure, in
accordance with the structure suggested by the informal algorithmic description:

PROCEDURE MERGESORT(VAR A : INTARRAY;
LOW, HIGH : INTEGER);
BEGIN
IF there is any work to do THEN
BEGIN
Find the middle element and mark that as MID;
Recursively sort the subarray from LOW to MID;
Recursively sort the subarray from MID+1 to HIGH;
Reassemble the two sorted subarrays END
END
END;

To handle the simple case correctly, we must check if there is more than

a single element in the LOW to HIGH range. This is true only if LOW is less
than HIGH, so that the necessary IF test is simply

IF LOW < HIGH THEN

The remainder of the MERGESORT procedure is executed only if there is more
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than a single element, since a subarray with only one element requires no
sorting operations at all.

If there is more than a single element, we must determine the middle of
the range by computing the average of LOW and HIGH. Once this midpoint
is calculated, the resulting subarrays can be sorted by making recursive calls
to MERGESORT, updating the arguments appropriately.

The final step in the algorithm consists of reassembling these two subarrays
so that A contains all the elements in their proper order. In computer science,
the operation of combining two or more sorted arrays into a single larger array
is called merging. Since merging involves quite a number of steps, it is useful
to separate this phase of the algorithm by defining a separate MERGE proce-
dure. This improves the overall program structure and makes it possible to
complete the definition of the MERGESORT procedure itself:

PROCEDURE MERGESORT(VAR A : INTARRAY;
LOW, HIGH : INTEGER);
VAR
MID : INTEGER;
BEGIN
IF LOW < HIGH THEN
BEGIN
MID := (LOW + HIGH) DIV 2;
MERGESORT(A, LOW, MID);
MERGESORT(A, MID + 1, HIGH);
MERGE(A, LOW, MID, HIGH)
END
END;

Before we turn to the details of the MERGE procedure, it is useful to trace
the MERGESORT operation on a specific example. If we run MERGESORT
onthe array A introduced earlier in the chapter, the first step consists of dividing
A into two halves by regarding the elements in positions 1 through 4 and 5
through 8 as conceptually distinct arrays.

A

90 99 63 82 93 76 81 76

Drawing courage from the recursive leap of faith, we assume that these
simpler problems can be solved by making recursive calls to the MERGESORT
procedure. This assumption means that we can reach the configuration
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63 82 90 99 76 76 81 93

This brings us to the point at which we must apply the MERGE operation.
Merging two sorted arrays into a single larger array turns out to be considerably
simpler than sorting in terms of its computational efficiency. This increase in
efficiency comes from the fact that, in order to choose the next element for
the combined array, it is necessary to look at only one element from each of
the subarrays.

To keep track of our progress in each of the subarrays, we will introduce
the variables I1 and I2 and initialize them so that they indicate the beginning
of each subarray:

A
63 82 90 99 76 76 81 93
1 2 3 4 S 6 7 8
A A
12

1

The general procedure for performing the merge operation consists of (1) choos-
ing the smaller of the elements at positions I1 and 12, (2) copying that element
into the next position in a temporary array named TEMP, and (3) incrementing
either I1 or 12, depending on which element was selected.

On the first cycle, 63 is less than 76, so the first data value is chosen from
position I1. This value is then copied into the first element in TEMP, and I1
is incremented to reference the next element in the first subarray. This gives
rise to the following situation:

—
— >
w
'S
o> W
(@}
-
oo
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For each of the next three cycles, the value to be chosen comes from the
second subarray, so that the I2 position index will move up to 8 as the elements
in positions 5 through 7 are copied into TEMP:

A
== - - ——=
| | | !
| 63 82 90 9 || 76 | 76 1 sl 93
| | | |
| I, I IR [
1 2 3 4 5 6 7 8
A A
¥ 2
TEMP
I R S
! | | [
63 76 76 81 | | I :
] | | |
—_——— ]
! 2 3 4 5 6 7 8

When the remaining elements have been processed in the same way, TEMP
will contain the completely sorted array.

TEMP
63 76 76 81 82 90 93 99
1 2 3 4 S 6 7 8

Conceptually, the MERGE algorithm therefore has the following form:
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PROCEDURE MERGE(VAR A : INTARRAY;
LOWMID,HIGH : INTEGER);

VAR

TEMP : INTARRAY;

I, I1, 12 : INTEGER;
BEGIN

I1 := LOW;

12 := MID + 1;

FOR I := LOW TO HIGH DO

BEGIN
IF (A[I1] should be chosen before A[I2])

THEN BEGIN TEMP[I] := A[ll]; Il := I1 + 1 END
ELSE BEGIN TEMP[I] := A[I2]; I2 := 12 + 1 END
END;
FOR I := LOW TO HIGH DO A[l] := TEMPII]
END;

In this program, I1 and I2 are set to the position numbers corresponding to the
beginning of each subarray. From there, we go through each of the positions
in TEMP and fill it with either the value A[I1] or A[I2] as appropriate. Whichever
one we choose, we must also increment that index value so that it refers to
the next element in the subarray.

Of course, the implementation is not complete until we replace the English
phrase

A[I1] should be chosen before A[12]

with Pascal code to accomplish the same job. In the usual case, the condition
that belongs in this position is simply

A[ll] < A[12]

This, however, does not take into account the fact that we might have exhausted
the elements in one of the two parts. A more correct interpretation for the
intent of the above English phrase is indicated by the following case-by-case
analysis:

If we are past the end of PARTI, choose A[I2].
If we are past the end of PART2, choose A[I1].
Otherwise, choose the smaller of A[I1] and A[I2].

One of the easiest ways to represent this in Pascal is to introduce a Boolean
variable CHOOSE1 which is TRUE exactly when the element A[I1] should be
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chosen. We set CHOOSE]1 using Pascal code which represents the set of tests

above:

IF 11 > MID
THEN CHOOSE] := FALSE

ELSE IF 12 > HIGH
THEN CHOOSEI1 := TRUE
ELSE CHOOSE! := (A[lI1] < A[l2]);

Note that the last ELSE clause sets CHOOSE] to TRUE or FALSE depending
on whether or not A[I1] is smaller than A[I2]. Thus, the complete implemen-

tation of MERGE is
PROCEDURE MERGE(VAR A : INTARRAY;
LOW, MID, HIGH : INTEGER);

VAR
TEMP : INTARRAY;

I, I1, 12 : INTEGER;

CHOOSE1 : BOOLEAN;
BEGIN

I1 := LOW;

12 := MID + 1;

FOR I := LOW TO HIGH DO

BEGIN
IF 11 > MID
THEN CHOOSEI] := FALSE

ELSE IF 12 > HIGH
THEN CHOOSEI] := TRUE
ELSE CHOOSEI1 := (A[l1] < A[l2));

IF CHOOSE1
THEN BEGIN TEMP{I] := A[ll1]; I1 := I1 + 1 END

ELSE BEGIN TEMP[I] := A[I2}; I2 := I2 + 1 END
END;
FOR I := LOW TO HIGH DO A[l] := TEMP[I]

END;

At this point, we have a working MERGESORT procedure. As of yet,
however, we have not demonstrated that it provides any increase in perform-
ance over selection sorting. To verify this claim, we must analyze the com-

putational complexity of the merge sort algorithm.
Pictorially, we can get some idea of the computational requirements by

considering a diagram of the complete recursive decomposition:
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Sorting a list of 8

requires

merging two lists of 4

requires

merging four lists of 2

requires

merging eight lists of |

At each level, all the real work is done by the MERGE routine. Whenever we
call MERGE with two sublists whose combined size is K, the main internal
loop runs for exactly K cycles. This suggests that the operation of MERGE is
linear in the size of the sublist. We may be a little concerned by the fact that
there are two independent loops requiring K cycles and that many operations
are required to carry out the first loop, but this can only increase the running
time of MERGE by a constant factor. The behavior of MERGE remains linear.

We can further generalize the above diagram by allowing the size of the
original list to be some arbitrary value N. At each level, we cut the size of the
subarrays in half. Since we carry this out until the size of each subarray is 1,
there must be log N levels of recursive call below the original problem level,
as shown in the following diagram:

Sorting a list of size N
requires
fmerging two lists of size N/2
requires
merging four lists of size N/4
requires

log N
times

requires
\ merging N lists of size 1

The key insight revealed by this diagram is that the same amount of work
is required at each level of the recursive decomposition. Each successive level
requires merging twice as many sublists, each of which is half the previous
size. Since the MERGE operation is linear in the number of elements to be
merged, dividing the size of the list in half should also cut the time requirements
in half. However, since we have twice as many MERGE operations to perform,
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the work required at each level remains constant. Thus, the total work is
proportional to the cost of the MERGE operation for the first level multiplied
by the number of levels. This indicates that the complexity of merge sorting
must be

O log N)

Just looking at the complexity formula, however, is not altogether con-
vincing. To show that this is an enormous improvement, it helps to go back to
the earlier table which indicated the performance for selection sort given various
values of N:

N N2 Nlog N
10 100 33
20 400 86
50 2,500 282

100 10,000 664

1000 1,000,000 9,966

10000 100,000,000 132,877

In reality, we have cheated a bit here. Reducing the complexity calculation to
big-O notation invariably means that we have ignored much of the underlying
detail. In particular, big-O notation throws away the coefficient on the leading
term. From our complete analysis, we remember that selection sorting required
approximately

iN?

steps. Thus, the figures in the center column are too high by a factor of two.
Similarly, the figures in the last column are probably much too low. The MERGE
procedure requires two complete cycles through the data, once to enter values
into the TEMP array and once to copy it back. Furthermore, the main loop
inside MERGE is considerably more complicated than many of the operations
required for selection sorting. Measured in the same time units as selection
sort, it may be that merge sorting requires as much as

5N log N

although this is clearly just a guess. To get exact values, it would be necessary
to count instructions or measure the required time. Using this guess as a more
representative indication of the actual time requirements for merge sort gives
the following table:
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N N2/2 5N log N
10 50 166
20 200 432
50 1,250 1,411

100 5,000 3,322

1000 500,000 49,829

10000 50,000,000 646,385

This table shows a more interesting situation. As long as N is reasonably
small, merge sorting takes more time than selection sorting. As soon as N gets
larger than about 60, however, merge sorting begins to pull into the lead. The
bottom line remains impressive. To sort 10,000 items using merge sorting re-
quires only 1.3% of time that selection sorting would require—a savings of
98.7%. Compared with the fourteen hours required to sort 100,000 items using
selection sort, merge sort should be able to do the job in just under a minute
and a half.

As an aside, there is an alternative method of calculating the complexity
order for merge sort that does not require looking at the complete recursive
decomposition and is therefore more consistent with the holistic view of re-
cursion. Except when the easy cases are encountered, the MERGESORT rou-
tine performs the following operations:

MID := (LOW + HIGH) DIV 2;
MERGESORT(A, LOW, MID);
MERGESORT(A, MID + 1, HIGH);
MERGE(A, LOW, MID, HIGH)

If we use N to represent the number of elements in the range LOW to HIGH,
we can immediately conclude that

<run time needed to sort N items>
= 2 X <run time needed to sort N/2 items>
+ <run time needed to merge N items>

If we use sorttime(N) as as abbreviation for *‘run time needed to sort N items”’
and remember that the time required to merge N items is proportional to N,
we can rewrite this as

sorttime(N) = 2 X sorttime(N/2) + N

This is a recursive definition and requires a simple case, which turns out to be
the same as that used in the MERGESORT procedure itself.

sorttime(1) = 0
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This means that we could even write a Pascal function to compute the running
time as

FUNCTION SORTTIME(N : INTEGER) : INTEGER
BEGIN
IF N<= 1
THEN SORTTIME :=
ELSE SORTTIME :=
END;

0
2 * SORTTIME(N DIV 2) + N

Although it is not immediately obvious, this recursive formulation (at least for
powers of 2) is equal to N log N. This fact can be demonstrated using math-
ematical induction and is discussed further in Exercise 7-3.

Bibliographic Notes

As noted earlier in the chapter, sorting algorithms are of enormous practical
importance in computer science. For this reason, considerable research has
been dedicated to the problem of sorting techniques, and the list of sources in
this area is extremely large. The landmark text is Volume I1I of Don Knuth’s
Art of Computer Programming (Sorting and Searching) [1973]. This text also
includes extensive bibliographic references associated with each of the algo-
rithms presented. Sedgewick [1983] also contains an excellent discussion of
the sorting techniques presented here.

Exercises

7-1. Deal a hand of thirteen playing cards and sort it using the merge sort
procedure described in the text. Use this experience to defend the notion
that, even though merge sorting may be computationally superior, selec-
tion sorting still has its place.

7-2. Recode the ‘‘selection sort’” algorithm from section 7-1 so that it operates
recursively.

7-3. Assuming that N is always a power of two, prove that the recursive
formula

0, if N =1

sorttime(N) = {2 * sorttime(N/2) + N otherwise

can be simplified to

sorttime(N) = N log N
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7-4.

The proof of this proposition can be simplified considerably by using a
more powerful form of mathematical induction than the technique of sim-
ple induction presented in Chapter 2. The principle of strong induction
is based on the observation that, as we build upward from the simple
case, we generate an entire sequence of theorems. For example, in trying
to prove that a formula is true for N = 5, we should be able to draw
upon the fact that it is true for N = 1, 2, 3, and 4, and not just the N =
4 assumption allowed by the simple induction.
A proof using strong induction proceeds as follows:

1. Prove that the base case holds by establishing the correctness of
the formula when N = 1.

2. Assume that the formula is true for all values from 1 up to some
arbitrary number N.

3. Using that hypothesis, establish that the formula holds for N+1.

Even though merge sorting is computationally more efficient than many
of its competitors, it has its problems. First, since the MERGE procedure
uses a temporary array, the algorithm will require twice as much storage
as an algorithm which sorts the array ‘‘in place.”’ Moreover, merge sort
does have a relatively high constant of proportionality. This is reflected
in the observation that, in practice, merge sorting performs relatively
poorly on small lists.

To get around each of these problems, other sorting algorithms have
been developed. One of the most useful is the ‘‘Quicksort’ algorithm,
developed by C. A. R. Hoare in the early 1960s. Conceptually, the Quick-
sort algorithm operates as follows:

1. Arbitrarily select some element in the array and call it the pivor
value. For example, we could always choose the first element for
this purpose.

2. Go through the entire array, rearranging the elements so that the
array is divided into two subarrays separated by the pivot value.
All elements which come before the pivot must be smaller than the
pivot, while those which follow must be at least as large. This
operation is usually referred to as partitioning the array.

3. Recursively sort the subarrays that precede and follow the pivot,
respectively.

This process can be illustrated in the context of the array used
throughout the examples from this chapter. Initially, the array contains
the elements
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90 99 63 82 93 76 81 76

1 2 3 4 5 6 7 8

with the first element chosen to be the pivot. After partitioning the array,
we hope to reach a configuration like

76 63 82 76 81 90 93 99
1 2 3 4 5 6 7 8
A
P

where the pivot has moved into the interior of the array. From here,
sorting the subarrays before and after the pivot results in a completely
sorted list.

It is important to note that the actual array we get after this step
depends entirely on how the partition operation is implemented. The only
requirement for partition is that the elements before and after the pivot
value in the partitioned list are correctly oriented with respect to the
pivot. There are no requirements as to how they get there or how they
are oriented with respect to each other.

Given this flexibility, there are many acceptable methods for accom-
plishing the partition phase of Quicksort. One of the simplest is attributed
to Nico Lomuto and operates as follows:

1. Let the variable BOUNDARY hold the position which separates
the values smaller than the pivot from those which are not. Orig-
inally, BOUNDARY is set to the first position in the array where
the pivot element resides.

2. Look at each remaining item in the array. If this element is smaller
than the pivot value, we would like to move it toward the beginning.
This is accomplished by (a) switching that element with the first
element after the current BOUNDARY and (b) moving BOUNDARY
over by one.

3. Switch the first element (i.e., the pivot) with the value at position
BOUNDARY. Return this position as the value of the pivot index,
denoted by P in the diagrams above.

Using the algorithmic description above, write a Pascal implementation
of Quicksort. If you need further explanation of the procedure, consult
Jon Bentley’s ‘‘Programming Pearls’’ section of the April 1984 issue of
Communications of the ACM.
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A mighty maze' but not without a plan
—Alexander Pope, An Essay on Man, 1733

Of those areas that make up computer science, there is one which has captured
more popular attention in recent years than any of the rest—artificial intelli-
gence. The idea that a machine could be endowed with the capacity for thought
is enticing to some and profoundly disturbing to others.

Prior to the development of modern computers, the debate over artificial
intelligence and its potential was principally theoretical in character, giving the
entire question a certain philosophical quality. Since that time, however, tech-
nology has improved to the point where computers can perform many activities
which seem to require a considerable level of ‘‘understanding.”” For example,
the MACSYMA system (developed by Joel Moses and others at M.I.T.) can
apply complex mathematical techniques in ways that seem to require insight
or cleverness. The MYCIN system (by Edward Shortliffe at Stanford) integrates
information about a patient’s medical history, current symptoms, and test re-
sults to produce a diagnosis and plan for treatment.

Even at the level of the personal computer, many programs have been
written which, to some extent, ‘‘understand’’ English sentences. Of these, the
best known examples are found in ‘‘adventure’” games, where one can order
the computer, for example, to

Throw the treasure to the troll, then cross the bridge.

While the context may seem too limited and esoteric to be useful, the algorithms
used in these games are very much the result of artificial intelligence research.

Rather than attempting to survey artificial intelligence as a field, this chap-
ter illustrates the use of recursion as a decision-making mechanism in two
problem domains: (1) finding a path through a maze and (2) choosing a move
in a strategy game.

103



104 Thinking Recursively
8-1 Backtracking through a Maze

As at most conferences, the participants at the 1979 National Computer Con-
ference in New York City spent much of their time attending technical sessions
or surveying the new tools of the trade. In that year, however, there was a
special event that made the conference much more exciting, for this was the
setting for the first ‘*‘Amazing Micro-Mouse Maze Contest,”’ sponsored by
IEEE/Spectrum. The engineering teams that entered the contest had built me-
chanical ‘‘mice’’ in accordance with a detailed set of rules published in 1977.
The mission of these cybernetic mice was to perform the classic demonstration
of rodent intelligence—running a maze.

Although the idea of building a mechanical mouse brings up a wide range
of interesting engineering problems (such as how it should move or notice
walls), the programming aspect of the problem is interesting in its own right.
Suppose, for example, that we want to write a Pascal program to solve mazes
like the one pictured below:

Such a maze consists of a rectangular array of smaller squares, which can be
either empty (representing a corridor section) or filled in (representing a wall).
In addition, two of the squares are labeled with the letters 'S’ and 'F’, repre-
senting the start and finish squares, respectively.

From the programming point of view, the problem here is to find some
way to generate a solution path. More specifically, we can try to construct a
program that, given a representation of the above maze as input, will generate
a diagram in which one of the possible solution paths is marked.
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In order to develop an algorithm for solving a maze, it will be necessary
to adopt a systematic approach that explores every possible path until a solution
is found. Since some of the paths will lead to dead ends, the process of exploring
those paths will necessarily require ‘‘backing up’® when no further progress
can be made. For example, if we begin by going two squares forward (marking
our path as we go), we reach a point where we must choose between two
possible paths. Such a square will be called a ‘*choice point’’ in the subsequent
discussion.

From here, we must choose one path for an initial exploration, and, if that
proves unsuccessful, return to this choice point to try the other. Looking down
on the maze from above, it is clear that we should continue east and not north,
since the latter choice runs quickly into a dead end. Any program that we write
to solve this problem, however, will be forced to attempt this path until that
dead end is actually discovered.
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If the program is unlucky enough to choose the north path first, it will
explore ahead until it reaches the end of that path and notices that it can no
longer proceed.

When this occurs, the program must enter a backtracking phase, during which
it moves backward along its original path until it reaches an earlier choice point.
Here, for example, it will back up to the first junction where it made its original
decision to go north. From here, it will try the east path from this square and
proceed on toward an eventual solution. Algorithms that use this approach of
testing possible solutions and returning to previous decision points when such
attempts fail are generally referred to as backtracking algorithms.

The general idea outlined above can be turned into an informal algorithmic
description as follows:

1. Start initially at the square labeled by °S’.
2. Drawing an 'X’ on each square that you cross, follow the current path
until you encounter any of the following:

a. If you hit the 'F’ marker, you are finished and the correct path is
indicated by the chain of 'X’ markers currently in place.

b. If you hit a choice point, consider each of the possible directions in
some fixed order. Repeat this process along that path until you are
told to return to this square. When this occurs, choose the next
possible direction. If all the possible directions have been attempted,
this entire area represents a dead end, and you should proceed to
case (d).

c. If you hit a square which has already been marked, then the maze
contains a loop. To avoid going around that loop forever, it is essential
to consider this case as one of the ‘‘failure’’ cases and follow the
instructions for case (d).

d. If you hit a dead end, return to the previous choice point and try the
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next possible direction. As you return, erase the "X’ markers along
the path. If there are no previous choice points, the maze has no
solution.

Although this algorithmic description is readily understood, it is based on
several notions which are difficult to integrate into a working program. For
example, the phrase ‘‘follow the current path’ seems straightforward enough.
but turns out to be somewhat more difficult to implement than it sounds.
Similarly, the idea that we can ‘‘return to the previous choice point and try
the next possible direction’’ is more easily expressed in English than in Pascal.

We can simplify the process of translating this algorithm into Pascal by
making it a little less clever. As described above, the algorithm must be able
to tell if a given square in the maze is a dead end, a choice point, or a ‘‘normal’’
square along some path. First of all, we can eliminate the need for dead-end
detection simply by letting the program ‘‘run into the wall.’" If the program
takes a step forward and finds that it has reached a wall square, then it was
not possible to proceed in that direction. We can further reduce the complexity
by considering every square in the maze to be a choice point with exactly four
possible directions. Some of these, of course, run directly into walls, but this
situation can be handled as part of the standard course of events.

It is easiest to illustrate these changes in the context of a very simple maze.
Except for its size, this maze is similar to the earlier example. The only struc-
tural difference is that the start position has been replaced by a small diamond
which indicates the position of the ‘‘current square.”’

As noted above, we will consider each square in the maze to be a choice
point with four possible exit paths leading north, east, south, and west. If we
select these in that order, the next position we will consider is the one we reach
by moving one square to the north. This puts us in the following state:

From here, the process starts all over again, and the program will once
again try each of the four directions starting with north. In this case, the north
path is less successful and leads to the following configuration:
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In this figure, the fact that the diamond indicating the current square is now
sitting on top of a wall means that we are unable to proceed in this direction
and must retreat. We return to the position

and try moving east. Unfortunately, this is no better, so we again retreat and
try south. Here we encounter a square which is already marked, indicating
that we have doubled back onto our previous path. Since there is no point in
reexploring old territory (particularly since we are likely to get stuck in a loop
this way), we reject this direction as well and try the remaining one. When
moving west proves to be equally unsuccessful, we know that we have reached
a dead end. This forces us to back up one more square, erasing the mark from
this one.
When we do this, we are back in the configuration

ready to try moving east. On the whole, this proves more profitable, and, after
banging into many more walls, we reach the final configuration:
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To implement this algorithm in Pascal, we must find a way to manage the
backtracking operation. Somehow, we must keep track of where we have been
in the maze and what directions we have tried at each choice point. This is
where recursion comes in handy.

In order to see how recursion can be applied to this problem, we must
frame this solution technique so that solving a maze can be represented in terms
of solving simpler ones. To do this, it is again helpful to consider a specific
maze.

Throughout the earlier discussion of this problem, whenever we have looked
at a potential solution, we have followed that possibility all the way to a con-
clusion. Thus, if we were to try moving north in this maze, we would keep on
pursuing that path until we discovered the dead end around the corner. Thinking
in this way, however, is not ordinarily conducive to finding the recursive struc-
ture of the problem. Here we must simplify the problem one step at a time.

The insight necessary to design the recursive algorithm comes from the
following observation:

Starting from the position

the entire maze has a solution if, and only if, at least one of the
following mazes can be solved:
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H

(a) (b)
(c) (d)

Think about this assertion carefully. In making these new mazes, we have
transformed the original problem into four new ones by replacing the current
position with an X’ marker and advancing in each of the four compass di-
rections. Using recursion, we will try to solve each subproblem in turn. If any
of these yields a solution, then we have a solution from our initial configuration.
If none do, then the maze is unsolvable from the given initial state. Moreover,
if we mark each blank square we encounter with an "X’ and then unmark it
only after we have tried all four directions, then the final maze will show the
solution path.

Each of these new subproblems is simpler than the original because the
number of open corridor squares has been reduced by one, since the square
we previously occupied has been replaced by an "X’ marker. For this recursion
to be effective, this simplification must eventually result in simple cases that
allow the recursion to terminate. For the most part, these are the same as those
given in the informal algorithmic description.

1. If the current square is marked with an 'F’, then we have found a

solution path.
2. If the current square is a wall square or is already marked with an "X,
then no path exists in this direction.

Before we turn to coding this in Pascal, we need to choose an appropriate
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data structure. For the maze itself, a two-dimensional matrix of characters
seems appropriate:

VAR
MAZE : ARRAY [1.MAXWIDTH, 1..MAXHEIGHT] OF CHAR;

If X and Y represent our current coordinates within the maze, then
MAZE [X,Y] contains a character which indicates the type of square. Those
characters are selected according to the following code:

Space An open passageway

#’ A wall square
'F° The finish square
X’ A marked square

The start square will not be explicitly represented in the matrix, since it is used
only to establish the current position at the beginning of the algorithm.

To put the entire program in perspective, we will assume that we have a
procedure READMAZE, which (1) reads in the MAZE matrix and (2) sets the
variables STARTX and STARTY to indicate the coordinates of the initial square.
Once this data structure is initialized, we must then call a subprogram which
applies the recursive strategy above to solve that maze. Since that subprogram
must return an indication of whether or not it was able to find a solution path,
it makes sense to design it as a function which returns TRUE or FALSE to
indicate success or failure. On a successful return from FINDPATH, the pro-
gram can simply print the current MAZE structure since that will show the
correct path as a line of 'X’ markers. Otherwise, the program should indicate
that no solution exists. Thus, the main program has the following general
structure.

BEGIN
READMAZE;
IF FINDPATH(STARTX, STARTY)
THEN PRINTMAZE
ELSE WRITELN(’There is no solution.’)
END.

We are now in a position to sketch an outline of the FINDPATH routine,
as shown on the top of page 112. Turning the internal English description into
legal Pascal is a bit tricky, given the restrictiveness of the control structures
provided by Pascal. Structurally, we need a loop that exits when either (1) a
solution is found or (2) all four directions have been tried. In Pascal, this requires
a WHILE loop that updates the direction variable explicitly as part of the body.
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FUNCTION FINDPATH(X, Y : INTEGER) : BOOLEAN;

BEGIN
CASE MAZE(X,Y) OF
F : FINDPATH =TRUE;

*#°, °X’ : FINDPATH := FALSE;
9 .
BEGIN

Set MAZE[X,Y] to ’X’;

For each possible direction, call
FINDPATH recursively until a
solution is found;

If none is found then set
MAZE[X,Y] back to ’°

END
END
END;

FUNCTION FINDPATH(X, Y : INTEGER) : BOOLEAN;
VAR
DIR : DIRECTION;
FOUND : BOOLEAN;

BEGIN
CASE MAZE(X,Y) OF
' : FINDPATH := TRUE;
= FALSE;

'#’, ’°X’ : FINDPATH :
BEGIN
MAZE[X,Y] := ’X’;
FOUND := FALSE;
DIR := NORTH;
WHILE (NOT FOUND) AND (DIR <> FAILED) DO
BEGIN
CASE DIR OF
NORTH : FOUND := FINDPATH(X, Y-1);
EAST : FOUND := FINDPATH(X+1, Y);
SOUTH : FOUND := FINDPATH(X, Y+1);
WEST : FOUND := FINDPATH(X-1, Y)
END;
DIR := SUCC(DIR)
END;
IF NOT FOUND THEN MAZE[X,Y] := ’ ’;
FINDPATH := FOUND
END
END
END;
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Although we could use, for example, the integers 1 through 4 to indicate
the four compass points, this application is ideal for the introduction of a user-
defined scalar type which will serve as the type for the loop control variable:

DIRECTION = (NORTH, EAST, SOUTH, WEST, FAILED);

The value FAILED is included in the list so that the WHILE loop can test if
the list of directions is exhausted. In that loop, we will start by setting the
variable DIR to NORTH. After each cycle, we will use the built-in function
SUCC to increment DIR so that it specifies the next direction:

DIR := SUCC(DIR)

This makes it possible to complete the Pascal implementation of FIND-
PATH, as shown on the bottom of page 112.

8-2 Lookahead Strategies

In 1769, the Hungarian inventor Wolfgang von Kempelen developed a machine
that, from all outward appearances, represented a remarkable advance in en-
gineering. Christened ‘“The Turk,’’ the machine consisted of a life-sized figure
(complete with turban and Turkish attire) seated behind a chessboard. Accom-
panied by the requisite grinding of gears and sliding of rods, The Turk would
play exhibition chess matches during which it displayed great proficiency at
the game. Brought to the United States in 1826 by Johann Maelzel (better
known for his invention of the metronome), The Turk was given to the Chinese
Museum in Philadelphia, where it was eventually destroyed by a fire which
devastated much of the museum collection.

On closer examination, The Turk’s success as a chess player was revealed
as somewhat less than remarkable, since it depended rather intimately on the
human chess player hidden inside. One of the most detailed accounts of this
hoax was provided in 1836 by Edgar Allen Poe, who wrote an essay entitled
‘*Maelzel’s Chess Player,”’ outlining his suspicions about its operation:

There is a man, Schlumberger . . . about the medium size, and has a
remarkable stoop in the shoulders. Whether he professes to play chess
or not, we are not informed. It is quite certain, however, that he is
never to be seen during the exhibition of the Chess-Player, although
frequently visible just before and after the exhibition.

Since that time, of course, technology has proceeded apace. With modern
computers, the idea of a chess-playing machine is no longer outlandish, and
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there are even programs which have been awarded master ratings by the United
States Chess Federation.* For the most part, these programs employ a rela-
tively simple lookahead approach, which is applicable to a wide variety of
games.

In many respects, playing a game of strategy is similar to solving a maze.
Each move constitutes a choice point that leads to a different game path. Some
of those paths lead to victory, others to defeat. A program that attempts to
play such games intelligently must explore each of those paths to discover
which options offer the best chances for victory.

Although games like chess and checkers may be more exciting, it is easier
to illustrate the general structure of game-playing programs in the context of
a much simpler game. For this purpose, one of the best examples is the game
of Nim, which is simple enough to analyze in detail without being completely
trivial.

The name Nim is derived from the Middle English verb nimen (meaning
“‘to take’’ or ‘‘to steal’’) and applies to a variety of ‘‘take-away’’ games. One
of the most widely known versions is 3-4-5 Nim, which is played with twelve
pennies arranged to form three horizontal rows as shown below.

- Q@@
- 0000
- 0000®

Playing alternately, each of the two players then takes away any number of
pennies from any one of the horizontal rows. The object of the game is to take
the last coin.

For example, the first player (player A) might take away all five pennies
from the last row, leaving the position

- Q@@
- QO O®

Row 3:

*For a report on the Fourth World Computer Chess Championship and a commentary on the
current state of chess programming, see the August 1984 issue of Communications of the ACM
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Player B must then remove pennies from one of the first two rows. Thus, player
B might take three coins from the second row, leaving the position

—YY
Row 2: .

Row 3:

Looking at this position, it is not hard to see that the best move for player
A is to take two of the coins in the first row. This results in the situation

Row 1:

Row 2:

Row 3:

From here, player B must take one of the two remaining coins, and player A
wins by taking the other.

Even though player A eventually discovered a winning move in the position
3-1-0 (that is, the position with three pennies in the first row, one in the second,
and none in the third), each player has already thrown away a winning oppor-
tunity. Starting with the 3-4-5 arrangement, the first player can always win by
making the right sequence of moves. After player A takes all five coins from
the last row, however, player B had an opportunity to win the game by making
the correct response. Before reading further, try to see if you can determine
the mistake that each player made and devise a winning strategy.

After playing a few games, it becomes clear that some positions are much
more promising than others. Using examples from the earlier game, the position
1-1-0 is fatal if it happens to be your move. You must take one of the two
coins, leaving your opponent free to take the other. On the other hand, the
configuration 3-1-0 is a ‘‘good’’ position from which to move, because taking
two from the first row leaves your opponent in the 1-1-0 position. Since this
position will guarantee a loss for your opponent, this implies a win for you.

The discovery that Nim has ‘‘good’” and ‘*bad’’ positions makes it possible
to derive an algorithmic strategy for Nim, since it allows us to differentiate
between ‘‘good’’ and ‘*bad’’ moves. Intuitively, a move is ‘‘good’’ if it leaves
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your opponent with a ‘‘bad’’ position. Similarly, a position is ‘‘bad’’ if there
are no ‘‘good’’ moves.

Although it may seem rather astonishing at first, this definition provides
almost everything we need to write a program to play a winning game of Nim.
The key here is to take the informal definitions of ‘‘good move’’ and ‘‘bad
position”’ and turn those into recursive routines. Just as these concepts are
each defined in terms of the other, each of these two routines will call the other
in order to complete its operation.

Before we turn to the details of the implementation, it is helpful to define
the data structures involved. First, we must be able to represent the current
position in the game. A position in Nim is completely defined by the number
of pennies in each row, which means that an array of three integers can be
used to represent that position:

TYPE
POSITION = ARRAY [1..3] OF INTEGER;

A move is specified using two integers, the number of pennies taken (N) and
the row from which those pennies are removed (R).
Given these definitions, we need to write two routines:

1. A function BADPOSITION(POS) which analyzes the position POS and
returns TRUE if that position is a losing one, such as 1-1-0.

2. A procedure FINDGOODMOVE(POS, N, R) which, given the position
POS, sets the parameters N and R so that they correspond to a good
move. In some cases, however, there are no good moves, and N is set
to zero to indicate that fact.

Each of the routines above operates by calling the other, as suggested by
the informal definition. Thus, since a bad position is one in which there are no
good moves, the function BADPOSITION simply calls FINDGOODMOVE and
tests whether it returns 0 for N. Inside FINDGOODMOVE, we simply make
every possible move until we find one that BADPOSITION tells us would cause
our opponent to lose.

As of yet, we are not quite ready to write the actual code, since we have
not defined a simple case which allows the recursive process to terminate.
When the structure involves mutually recursive routines, the simple case test
can usually go in any one of the routines, but the programmer must take care
to ensure that the simple cases are always encountered somewhere along the
line. Here, the most straightforward solution is to define the simplest ‘*bad™
positions explicitly as part of the BADPOSITION function.

At first glance, it seems that the position 1-1-0 (along with the symmetric
positions 1-0-1 and 0-1-1) are the simplest bad positions. These, however, are
not the best choices in this case. It is certainly true that these positions are so
bad that we must lose no matter how our opponent plays, but things could be
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worse—we could have already lost. This is true if we reach the position 0-0-
0. since our opponent must have taken the last penny.

Using the 0-0-0 case as the ‘‘fundamentally’’ bad position, we can write
the code for the BADPOSITION function itself:

FUNCTION BADPOSITION(POS : POSITION) : BOOLEAN;
VAR
N, R : INTEGER;
BEGIN
IF POS[1] + POS[2] + POS[3] = 0 THEN
BADPOSITION := TRUE
ELSE
BEGIN
FINDGOODMOVE(POS, N, R);
BADPOSITION := (N = 0)
END
END;

The coding of FINDGOODMOVE is somewhat trickier, mostly because
Pascal makes it difficult to represent the necessary control structure. Intuitively,
we would like to use the following definition:

PROCEDURE FINDGOODMOVE(POS : POSITION;
VAR N, R : INTEGER);

BEGIN
FOR R :=1TO 3 DO
FOR N := 1 TO POS[R] DO
BEGIN

POS[R] := POS[R] - N;
IF BADPOSITION(POS) THEN return;
POS[R] := POS[R] + N
END;
N:=0
END;

The two FOR loops run through every possible move by selecting each row R
and each legal value of N within that row. The body of the inner FOR loop
makes each move by subtracting N from the Rth row. If BADPOSITION in-
dicates that this new position would result in a loss for our opponent, we simply
return from the procedure with the current values of N and R indicating the
proper move. If not, we must retract the move we just tested with the statement

POS[R] := POS[R] + N

and try the next. If we get all the way to the end of each FOR loop without
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discovering a good move, N is set to zero to signify this condition and the
program returns normally.

Unfortunately, Pascal forces a more complex coding because (1) the return
statement does not exist, and (2) many compilers will not allow VAR parameters
to be used as an index variable in a FOR loop. To get around these problems,
each FOR loop must be rewritten as an equivalent WHILE loop that performs
all of the index calculation explicitly. In addition, each of the new WHILE
loops must also test a Boolean variable (called FOUND in this example) so that
the loops will exit when the first good move is found. Making these changes
results in the following code:

PROCEDURE FINDGOODMOVE(POS : POSITION;
VAR N, R : INTEGER);
VAR
FOUND : BOOLEAN;
BEGIN
FOUND := FALSE;
R:= 0
WHILE (NOT FOUND) AND (R < 3) DO
BEGIN
R:=R + 1;
N:= 0
WHILE (NOT FOUND) AND (N < POS[R]) DO
BEGIN
N:= N + I;
POS[R] := POS[R] - N;
IF BADPOSITION(POS) THEN FOUND := TRUE;
POS[R] := POS[R] + N
END
END;
IF NOT FOUND THEN N := 0
END;

There is, however, one more Pascal wrinkle which we must consider. In
Pascal, a procedure must ordinarily be defined before it is called. Here, BAD-
POSITION calls FINDGOODMOVE and vice versa. This makes it impossible
to follow the standard Pascal convention, since we can hardly define each of
them before the other. To get around this problem, we must write a forward
declaration for one of these procedures and then defer the actual definition of
that procedure until after the other routine. Thus, if we choose to present these
routines in the order in which they were developed, we must declare FIND-
GOODMOVE as FORWARD using the lines
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PROCEDURE FINDGOODMOVE(POS : POSITION;
VAR N, R : INTEGER);
FORWARD;

Following this, we write the definition for BADPOSITION and, finally, the
actual code for FINDGOODMOVE.

When the code for FINDGOODMOVE is defined, Pascal insists that only
the name of the procedure be specified and not the parameters. This makes
the code much more difficult to follow, and it helps considerably to repeat the
parameters as a comment to the procedure definition when it finally appears.
Thus, the definition line of FINDGOODMOVE should probably be written as

PROCEDURE FINDGOODMOVE(* POS:POSITION;
VAR N,R:INTEGER *);

followed by the actual code for the procedure.

The technique used to solve the Nim game is applicable to most two-
handed strategy games, at least in theory. The difficulty with this approach is
that most games are so complex that it is impossible to carry through with this
analysis to any significant depth. For any game of reasonable complexity, a
program is forced to limit the number of positions that it analyzes before making
its turn.

In chess, for example, a player ordinarily has approximately 32 options at
each turn. For each of these, the opponent has 32 possible replies, giving a
rough total of 1000 positions after a single pair of moves. Since the average
chess game involves about 40 moves for each player, the total number of
different lines of play is therefore

]00040 = ]0]20

This number is so preposterously large that, if a trillion computers on each of
a trillion different planets were each able to analyze a trillion positions every
second, it would still require more than

107° years

just to make the opening move!

In light of the enormous number of possibilities in a complete game, it is
usually necessary to reduce this complexity by limiting the number of moves
the program looks ahead and by eliminating unattractive variations relatively
early.
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Exercises

8-1. In the maze-solving program presented in this chapter, the program un-
marks each square as it retreats during its backtracking phase. Since this
removes the marks from the blind alleys that the program tries along the
way, this process ensures that the final path will be displayed correctly.
However, if the goal is to find the finish square in the shortest possible
time, it is more efficient to leave these markers in place.

Discuss how this change affects the efficiency of the algorithm. In
what situations would this new approach improve the program’s performance?

8-2. Instead of awarding the game to the player who takes the last coin, Nim
can also be played *‘in reverse’’ so that the player who takes the last coin
loses. Redesign the strategy routines so that they give the correct moves
for this ‘‘Reverse Nim'* game, making as few changes to the routines as
you can.

8-3. In the implementation of Nim used in the text, the simple case test included
in BADPOSITION is not strictly necessary, and the function may be written
simply as

FUNCTION BADPOSITION(VAR POS : POSITION) : BOOLEAN;
VAR
N, R : INTEGER;
BEGIN
FINDGOODMOVE(POS, N, R);
BADPOSITION := (N = 0)
END;

Why does this work here?
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8-4.

8-5.

8-6.

The algorithm presented here to solve the Nim game is quite inefficient
because it must analyze the same position many different times. For ex-
ample, if the computer plays first from the 3-4-5 position, making the first
move requires 25,771 calls to BADPOSITION. Since the total number of
possible positions is only 120, this seems rather excessive.

The efficiency of the solution can be improved dramatically by having
the program keep track of the result each time a position is analyzed. In
this case, for example, we can construct a table with one entry for each
of the 120 positions so that each entry indicates whether that position is
“good,”’ *‘bad,”” or ‘‘undetermined.”’ Whenever we analyze a particular
position in the course of the game, we can store this value in the table.
The next time BADPOSITION is called, we can simply return the remem-
bered information. Adopting this approach reduces the number of
BADPOSITION calls to 213—improving the algorithmic performance by a
factor greater than 100.

Write a complete program for the Nim game, using this extension.
Try your program with longer initial rows. How quickly does it operate?

As presented, the recursive strategy discussed in the text is not directly
applicable to games in which draws are possible, since one can no longer
classify all positions as good or bad. On the other hand, it is reasonably
simple to adapt this approach to handle draws by replacing BADPOSITION
with a RATEPOSITION function that examines a position and assigns it a
numerical score. For example, a simple assignment would be to use -1
to represent a losing position, +1 to represent a winning position, and 0
to represent one which is drawn.

With more than two possible ratings for positions, we need to define
the recursive structure of the problem a little more carefully, although the
basic structure remains the same. As before, the recursive insight is that
the move that is best for us is the one that leaves our opponent in the
worst position. Furthermore, the worst position is the one which has the
least promising best move. Since our goal is to select a move which min-
imizes our opponent’s best opportunity, this strategy is called the minimax
algorithm.

Using this expanded strategy, write a program which plays a perfect
game of Tic-Tac-Toe. In your implementation, the human player should
make the first move, and the program should make the optimum reply.

Before Rubik made all similar puzzles seem rather pointless by comparison,
many toy departments carried a puzzle with four painted cubes, marketed
under the name of ‘‘Instant Insanity.’” The cube faces were painted with
the colors green, white, blue, and red (symbolized as **G’", W', “*B,”"
and 'R’ in the diagrams), and each of the four cubes was composed of a
distinct arrangement of colors. Unfolding the cubes makes it possible to
show the color patterns.
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8-7.
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The object of the puzzle was to arrange these cubes into a line so that each
line of four faces contained one face of each color.
Write a program to solve ‘‘Instant Insanity’’ by backtracking.

In the game of chess, most of the pieces move in relatively conventional
patterns along horizontal, vertical, or diagonal lines. The knight, however,
is an exception to this conservatism and moves in a rather unusual way.
From its starting point, the knight moves two squares in any direction,
horizontally or vertically, and then moves one square at a right angle to
the original direction of motion. Thus, pictorially, the knight shown below
can move to any of the eight black squares indicated by a diamond:

Even though its motion seems rather limited, the knight certainly gets
around and can reach all 64 squares on the chessboard in as many moves.
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A series of knight moves that traverses an entire chessboard without ever
landing on the same square twice is known as a knight’s tour. For example,
the following diagram shows a knight’s tour that returns to its initial square
on the sixty-fourth move:

Write a Pascal program to find a knight’s tour on an 8 X 8 chessboard,
using a backtracking algorithm similar to the one used in the MAZE program.

Although the simple backtracking algorithm used to solve the maze
in this chapter is sufficient to solve the knight’s tour problem, it consumes
far too much computation time to be practicable. Therefore, if you intend
to test this program, you must improve the algorithmic performance sub-
stantially. One approach is to use a separate matrix to keep track of the
number of squares from which any particular square can be reached. If
making any move results in isolating some other square, then no solution
is possible, and the program can immediately reject this possibility.






Graphical
Applications

Dost thou love pictures?
—William Shakespeare, The Taming of the Shrew

In teaching almost any discipline, one quickly comes to appreciate the truth
of the old saying that ‘*a picture is worth a thousand words.”’ As a means of
expressing a general concept, a simple diagram often conveys far more than
many pages of descriptive text. In computer science, however, this adage has
another interpretation—a program which generates a picture is often a thousand
times more captivating and exciting than one whose output is limited to words
or numbers.

There are many applications in computer graphics in which recursion plays
an important role. In Chapter 1, one of the first examples used to illustrate the
idea of recursion was the problem of generating ‘‘computer art’’ reminiscent
of Mondrian’s style:

In this example, the complete picture is produced by dividing the original
rectangle into parts which are, in turn, recursively subdivided until the program
determines that the units are small enough to remain undivided.

125
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9-1 Computer Graphics in Pascal

Writing a program to generate designs of this sort requires more than an un-
derstanding of its recursive structure. To see these programs work and thereby
experience some of the excitement of computer graphics, it is necessary to
have hardware and software capable of generating line drawings. Unfortu-
nately, not all computer systems are equipped with a plotter or graphical display
screen, and the examples in this chapter may not be implementable on all
systems.

Even on those systems which have the appropriate hardware, using Pascal
to generate diagrams is complicated by the fact that there is no standardized
way to express graphical operations in the language. For the purposes of this
chapter, we will assume the existence of two procedures, SETPOINT and
VECTOR, which comprise our graphics library.

To understand the operation of these routines, imagine that you are using
a pencil on a large piece of graph paper marked off in inches, with position
(0,0) in the lower left-hand corner. A call to SETPOINT(X,Y) corresponds to
picking up the pencil and moving it to a new position, indicated by its X and
Y coordinates. A call to VECTOR(DX,DY) corresponds to drawing with the
pencil from that point. The parameters DX and DY indicate the change in each
coordinate. For example, the call

VECTORG@3,1)

indicates a line segment to the point 3 inches right and 1 inch up from its
previous position.

If another call to VECTOR is made, the new line starts at the end of the
last vector, so that a sequence of connected line segments can be drawn with
a sequence of VECTOR calls. Calls to SETPOINT are required only to (1) set
the initial position and (2) *‘lift your pencil’” and move it to some other point
on the page.

As an example, the rectangle

is drawn by the following sequence of Pascal statements:
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SETPOINT(2, 2);
VECTOR®, 0);
VECTOR(O0, 1);
VECTOR(-4, 0);
VECTOR(, -—-1);

The first SETPOINT call sets the initial position to the point (2, 2) relative to
the lower left-hand corner of the picture. The four VECTOR calls draw the
bottom, right side, top, and left side of the box, in that order.

For many of the diagrams that appear in this chapter, a line segment will
not be defined in terms of X and Y components, but by specifying its length
and angular direction. For example, the line

is a l-inch line inclined at an angle of 45°. To simplify diagrams of this sort,
we will introduce the additional procedure POLARVEC(R, THETA), which
draws a line of length R moving in direction THETA, where THETA is an angle
measured in degrees from the horizontal axis. Thus, the above line can be
generated by calling

POLARVEC(1, 45)
The name POLARVEC is derived from the mathematical concept of *‘polar

coordinates’’ and is based on the simple trigonometric relationships illustrated
by the diagram below:

resinf

re-cosf

Using these relationships, it is easy to define POLARVEC in terms of VECTOR
as follows:
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PROCEDURE POLARVEC(R, THETA : REAL);
VAR
RADIANS : REAL;
BEGIN
RADIANS := THETA * PI/180;
VECTORRR * COS(RADIANS), R * SIN(RADIANS))
END;

The first statement in the procedure is used to convert the angle THETA from
degrees into radians, since the COS and SIN routines expect angles to be
expressed in this form.

9-2 Fractal Geometry

In his essay ‘‘On Poetry—A Rhapsody’” written in 1735, Jonathan Swift offers
the following observation on the continuity of natural processes:

So, naturalists observe, a flea

Hath smaller fleas that on him prey;
And these have smaller still to bite em
And so proceed, ad infinitum.

Taking a large amount of anatomical license, we can begin to diagram this
process by representing an idealized flea as an equilateral triangle, shown here
under considerable magnification:

Putting a smaller flea on each of the two segments that form the back of the
large flea gives the next stage in Swift’s progression:
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Each of these two new fleas plays host to two smaller fleas, which gives us the
following menagerie:

Clearly, this process can be repeated (as Swift suggests) ad infinitum with
progressively smaller fleas.

Patterns such as this one turn out to have considerable mathematical sig-
nificance and are known collectively as fractals. The term ‘‘fractal’” was coined
in 1975 by Benoit Mandelbrot, who synthesized several earlier mathematical
discoveries to create a new geometry of fractal patterns. The principal defining
characteristic of a fractal is that the components of a figure retain the same
shape regardless of their size. In the case of the flea diagram, for example,
each flea has exactly the same shape and, moreover, is oriented in exactly the
same way, relative to the larger flea on which it sits. As it turns out, this
property of ‘‘independence of scale’” and the characteristic roughness of shape
make fractals an excellent model for many of nature’s irregularities.

The classic example used to illustrate the fractal tendencies of nature is
the problem of determining the length of a coastline. The answer to this question
depends on how closely you look. Conventional satellite photography reveals
comparatively little detail, and any measurement based on those photographs
will fail to account for peninsulas and inlets which are too small to be seen at
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that scale. With higher resolution, certain features may become visible, but
there will still be smaller aberrations in the coastline (peninsulas on peninsulas
in much the same manner as Swift’s fleas) that escape our notice.

Before we investigate the relationship between fractals and recursive pro-
gramming, it will be helpful to modify our ‘‘nested fleas’’ example to produce
a figure which is somewhat more uniform in its structure. Once again, we will
start with an equilateral triangle:

This figure represents the initial stage in the construction of a pattern called
the Koch fractal, after the mathematician Helge von Koch. Since we have yet
to add any fractal distortion to this pattern, we will call this triangle the Koch

fractal of order 0.
To reach the next level, we put smaller triangles on all three sides and
eliminate the interior lines:

This is the Koch fractal of order 1.
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To obtain the next stage, we replace the center of each line segment with
a smaller triangular wedge, resulting in the Koch fractal of order 2:

3

Repeating this process one more time produces the ‘‘snowflake™ curve of

order 3:

Writing a program to construct this pattern turns out to be surprisingly
simple. As a start, we can certainly write a program to draw the original triangle:
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PROCEDURE TRIANGLE(L : REAL);
BEGIN
SETPOINT(XCENTER - L/2, YCENTER - SQRT(3)*L/4);
POLARVEC(L, 0);
POLARVEC(L, 120);
POLARVEC(L, 240)
END;

In this program, XCENTER and YCENTER are constants which give the co-
ordinate values of the center of the screen. The —L/2 and —SQRT(3)*L/4 in
the SETPOINT call are derived from the trigonometric properties of an equi-
lateral triangle and serve only to center the triangle on the screen. The important
statements in the program are the POLARVEC calls which draw the triangle
itself.

To reach the next level, each of these straight lines must be replaced with
a “‘fractured’’ line of the following form:

Starting in the direction of the original line, we (1) draw a line one-third of the
way across, (2) turn 60° to the right and draw another line of this same distance,
(3) turn back so that we are pointing 60° degrees to the left of the original
direction and draw another line, and (4) complete the figure with a line segment
in the original direction. Thus, we can draw the order 1 fractal with code:

PROCEDURE FRACTLINE(L, THETA : REAL);
BEGIN
POLARVEC(L/3, THETA);
POLARVEC(L/3, THETA — 60);
POLARVEC(L/3, THETA + 60);
POLARVEC(L/3, THETA)
END;

PROCEDURE ORDERIFRACT(L : REAL);
BEGIN
SETPOINT(XCENTER — L/2, YCENTER — SQRT(3)*L/4);
FRACTLINE(L, 0);
FRACTLINE(L, 120);
FRACTLINE(L, 240)
END;
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Of course, we could continue this process by adding additional nested
procedures, but this is self-defeating. What we would like is a single mechanism
that will allow the construction of a fractal of any order.

To do this, we need to recognize two things. Inside FRACTLINE, each of
the calls to POLARVEC should, in the more general case, draw fractal lines
of exactly the same form, but of the next smaller order. Thus, to draw a fractal
line of order 3, we simply draw four lines of order 2 in the appropriate directions.
The other observation is that the order 0 line has no distortions and is simply
a straight line. This leads immediately to the complete recursive solution.

PROCEDURE FRACTLINE(ORDER : INTEGER; L, THETA : REAL);
BEGIN
IF ORDER = 0 THEN
POLARVEC(L, THETA)
ELSE
BEGIN
FRACTLINE(ORDER-1, L/3, THETA);
FRACTLINE(ORDER-1, L/3, THETA - 60);
FRACTLINE(ORDER-1, L/3, THETA + 60);
FRACTLINE(ORDER-1, L/3, THETA)
END
END;

PROCEDURE SNOWFLAKE(ORDER : INTEGER; L : REAL);
BEGIN
SETPOINT(XCENTER — L/72, YCENTER - SQRT(3)*L/4);
FRACTLINE(ORDER, L, 0);
FRACTLINE(ORDER, L, 120);
FRACTLINE(ORDER, L, 240)
END;

Bibliographic Notes
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which is described in Papert [1981] and Abelson and diSessa [1981]. Fractal
patterns are described in Mandlebrot [1983]. For a more advanced treatment
of computer graphics, consult Foley and Van Dam [1982].
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Exercises
9.1 *‘Once upon a time, there was a sensible straight line who was

9-2,

hopelessly in love with a dot.”

With these words, we are introduced to the hero of Norton Juster's de-
lightful story The Dot and the Line, who eventually discovers the versatility
of his linear form and lives ‘‘if not happily ever after, at least reasonably
so.”” In demonstrating his new found talents to the object of his affection,
one of his displays has the following form:

ENIGMATIC

—

Taking advantage of the fact that this diagram consists of several repetitions

of the figure

drawn at various sizes and angles, write a Pascal program to generate this
diagram. In this example, recursion is not strictly necessary, but it provides
a fairly simple way of generating the repeated figures.

Using the definitions of SETPOINT and VECTOR given in this chapter,
complete the code for the Cubist painting program described in Chapter
1. The difficulty here lies in choosing some criterion for terminating the
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9-4.

recursion. Ideally, the deciston of whether to split a subcanvas should
depend on the size of the canvas in some way; larger problems should be
subdivided more often than smaller ones.

. Modify the SNOWFLAKE program to generate the flea diagrams used in

this text. Although the figures are quite similar in structure, the need to
retrace interior lines adds some interesting complexity.

In the text, the scale-independence of fractals is described in terms of the
problem of coastline measurement. Fractals can also be used to generate
random coastal patterns in a way that illustrates their application to natural
phenomena.

For example, suppose that we wanted to generate a random stretch
of coastline, linking two points A and B. The unimaginative solution (using
creativity of order 0) is to connect them with a simple straight line.

w X

A

To give this coastline some semblance of irregularity, we can introduce
triangular fractal distortion exactly like that used to generate the snowfiake
design. The difference here is that the direction in which the triangle points
is chosen at random, so that some points go ‘‘up’’ while others go ‘‘down.”’
Thus, after two levels of fractal decomposition, we might get the line

Repeating this with a fractal of order S produces a fairly elaborate coastline
which shows almost no trace of the triangular pattern used to generate it:
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Using the method described here, write a program that generates a
fractal coastline for any given order.

9-5. One particularly interesting class of fractals can be constructed using the

following technique. Start with any polygon, such as the pentagon shown
below:

At each corner of the figure, draw an identical figure one-half the size,
outside of the original figure. This creates the following structure:

Using recursion, repeat this process for each of the newly generated corners
to any desired depth. Thus the next figure in this process would be:
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Write a Pascal program which generates diagrams that follow this rule.
In designing your program, you should make it easy to change any of the
following:

(a) The number of sides in the basic figure
(b) The length of the edge
{¢) The number of recursive levels
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If somebody there chanced to be
Who loved me in a manner true
My heart would point him out to me
And | would point him out to you.
~—Gilbert and Sullivan, Ruddigore

One of the important strengths of Pascal as a programming language lies in the
flexibility it offers for data representation. Many languages, including FOR-
TRAN, restrict the user to certain simple objects and arrays. In Pascal, the
programmer has considerably more freedom, primarily because the language
supports two important mechanisms for defining new data structures: records
and pointers. A record makes it possible to combine related data values so that
the collection may be treated as a single object. Pointers provide a powerful
mechanism for expressing the relationships between data objects and are quite
efficient when those relationships are subject to frequent change.

Inasmuch as the focus of this book is on recursion and not on the mechanics
of structured data, this chapter assumes that the reader has some familiarity
with records and pointers and with the use of these structures in Pascal. In
this chapter, our purpose is to show how these pointers, particularly when
used in conjunction with record objects, make it possible to extend the general
idea of recursion from algorithms into the domain of data structures.

In Pascal, a recursive data type is one in which the complete description
of that type includes a pointer to that type. For example, the type definition

TYPE
PTRPTR = {PTRPTR;

is recursive, since it defines the type PTRPTR as a pointer to objects of that
type. Such a definition, however, is at most marginally useful (see Exercise
10-4), since it contains no data other than the pointer itself.

A more useful situation occurs when the recursive type consists of a record
in which certain fields contain data values and others are pointers used to link
individual objects together to form more complicated structures. For example,
the definition

139
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TYPE
OBJECT = RECORD
DATA : INTEGER;
LINK : 1 OBJECT
END;

introduces the new data type OBJECT which consists of a DATA field holding
an integer and a LINK field of type “‘pointer to an OBJECT. ’ Often, the LINK
field will be used to point to another OBJECT to establish a chained relationship
between the two. At the end of such chains, however, the LINK field will have
the special value NIL, which is a legal value for any pointer type. Each of these
possibilities is illustrated in the diagram below which shows a linked list con-
sisting of the integers 1 and 2.

1 Emmm 2 NIL

DATA  LINK DATA LINK

In many cases, it will be more convenient to consider the pointer as the
principal data entity rather than the record type itself. In this case, we will
name the pointer type first and subsequently define the record type which
contains it. Thus, this definition will more commonly be expressed using two
TYPE section entries:

TYPE
LIST = 1 OBJECT;

OBJECT = RECORD
DATA : INTEGER;
LINK : LIST
END;

When recursive data structures are introduced in conventional textbooks,
the algorithms to manipulate those structures are often presented in an iterative
form. In many cases, this sacrifices the symmetry and simplicity that are pos-
sible in a recursive solution. Whenever a recursive data structure is used, the
relationships implied by that structure provide a natural model for the recursive
algorithms used to work with that data. In the examples which follow, the
emphasis is placed on the recursive character of the solutions and the rela-
tionship between the data and algorithmic structure.
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10-1 Representing Strings as Linked Lists

Despite the power provided by Pascal’s data structure facility, there are also
several limitations. One of the most serious problems arises in the handling of
character strings. In standard Pascal, all string variables are declared as char-
acter arrays of a specific length. Once declared, that length is not allowed to
vary. For those applications which specify specific field widths for all data
items (as in the case, for example, of a record where the name field fits in
columns 1 to 25, the address in 26 to 50, and so forth), this is of little concern.
However, if the application must work with strings of different lengths, this
becomes a serious problem.

One approach to the representation of variable length strings is to use a
linked list of characters instead of an array. To establish such a structure, we
need the following data definitions:

TYPE
STR = 1 CELL;
CELL = RECORD
CH : CHAR;
LINK : STR
END;

In this implementation, if the string ’ABC’ is stored in the variable S, we
can diagram the internal structure as follows:

\l—o

L A’ o——p| B o—p—7>p{ 'C’ | NIL

Similarly, if T contains only the single character *D’, it has the form:

T

‘D" | NIL
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Finally, if Z contains the empty string (the string with no characters at all), it
is represented as:

NIL

It is important to recognize that the variables S, T, and Z in these examples
are declared as objects of type STR, and that the object referred to by that
name consists only of the pointer itself. The characters that form the string
can easily be determined by following the chain, but the STR structure itself
is a small object of a fixed size.

In addition to the definition of STR, a general string-handling package also
requires a set of subroutines that operate on string data represented in that
form. From our experience with strings, we know that there are certain basic
operations that must be implemented in order to make strings behave in an
intuitively satisfying way. Given a new data type, the functions and procedures
which implement the necessary basic operations are called primitives for that
type. In the case of strings, for example, we would certainly want the following
primitives:

LENGTH(S) Returns the length of S, where S is a STR.
WRITESTR(S) Writes S to the standard output.

READSTR(S) Reads S from the standard input.

CONCAT(S,T) Concatenates S and T and returns the combined STR.

Before we write the code for each of these primitives, it will help to adopt
a somewhat different perspective on the definition of a string. At the level of
machine representation, a string is a pointer to a CELL which, in turn, is a
record containing both a character and a pointer. At the level of the application,
we must be able to think of a string as a single conceptual entity consisting of
a sequence of characters, irrespective of the underlying representation. To
develop the primitives, however, it is useful to adopt an intermediate view in
which the definition of string (1) parallels the recursive structure of the rep-
resentation and (2) makes it possible to think about that string at a relatively
abstract conceptual level.

To do this, it helps to adopt an informal definition for a string which is
reminiscent of the definition of a noun phrase from Chapter 4:

A string is either
1. The empty string
2. A character followed by a string
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The principal advantage of this definition is that it provides a model for
recursive routines which take strings as arguments. The simple case in such
routines is always that of the empty string. In the general case, the recursive
decomposition will consist of dividing a string into its first character and the
remainder. For example, the function to calculate the length of a string can be
defined as follows:

FUNCTION LENGTH(S : STR) : INTEGER;

BEGIN
IF S = NIL THEN
LENGTH := 0
ELSE
LENGTH := 1 + LENGTH(S 1 .LINK)
END;

Rendered in English, this function indicates that (1) the length of the empty
string is zero and (2) that the length of any other string is one more than the
length of that string after taking away its first character.

The procedure WRITESTR follows much the same form. To write the
empty string, we do nothing at all. Any other string is written by (1) writing
out its first character and (2) recursively writing out the rest of the string:

PROCEDURE WRITESTR(S : STR);
BEGIN
IF S <> NIL THEN
BEGIN
WRITES 1 .CH);
WRITESTR(S 1 .LINK)
END
END;

The operations READSTR and CONCAT, however, are somewhat different
from the two primitives described above. In each of these operations, it is
necessary to create a new object of type STR to be returned to the calling
program. Given our current model of string operations, it is not surprising to
find that the operation of constructing a string is symmetrical to that of breaking
it down. We decompose a string by removing its first character; we build up
by adding new first characters to existing strings.

Since this operation of combining a character and a string to form a new
string is common to both READSTR and CONCAT (as well as many of the
other functions we are likely to define), it is useful to implement this operation
separately as the MAKESTR function:
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FUNCTION MAKESTR(C : CHAR; L : STR) : STR;
VAR
RESULT : STR;

BEGIN
NEW(RESULT);
RESULT 1.CH := C;
RESULT 7 .LINK := L;
MAKESTR := RESULT

END;

The first statement in this function obtains a new cell from the dynamic storage
allocator and stores a pointer to that cell in the variable RESULT. The sub-
sequent statements simply assign the parameters C and L to the appropriate
components of that cell and return the pointer as the value of the function.

Once MAKESTR has been defined, we are in a position to define each of
the remaining primitives. The definition of READSTR looks somewhat con-
voluted, but the complexity exists primarily to accomodate the vagaries of
Pascal’s input/output structure. In standard Pascal, EOLN is initially true, so
that the READLN call must be performed before any characters are read. This
is accomplished by defining the READSTR operation using two routines. The
READSTR routine itself performs only the necessary setup operations, leaving
the real work to the function READS.

FUNCTION READS : STR;
VAR
CH : CHAR;
BEGIN
IF EOLN THEN
READS := NIL
ELSE
BEGIN
READ(CH);
READS := MAKESTR(CH, READS)
END
END;

PROCEDURE READSTR(VAR S : STR);
BEGIN
READLN;
S := READS
END;

The definition of CONCAT is reasonably straightforward, now that
MAKESTR is available as a tool.
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FUNCTION CONCAT(X, Y : STR) : STR;
BEGIN
IF X = NIL THEN
CONCAT := Y
ELSE
CONCAT := MAKESTR(X 1 .CH, CONCAT(X 1 .LINK, Y))
END;

Go through this definition on your own to see exactly how its internal operation
corresponds to the recursive definition.

10-2 Binary Trees

In Chapter 7, we looked at a variety of sorting algorithms and compared their
algorithmic efficiencies. Although we discovered that certain algorithms are
considerably more efficient than others, sorting continues to be a time-con-
suming operation when large amounts of data are involved. In many practical
applications, it is advantageous to avoid these sorting operations by inserting
each new data value in its proper sequence at the time it is first encountered.

Inserting a new item in its proper order can be broken down into two
distinct operations. First, we must find the correct position for the new item.
This constitutes the search phase of the operation. Second, we must be able
to insert the new item in its proper place without disturbing the overall ar-
rangement. This is the insert phase. In analyzing various strategies for per-
forming these operations, we will discover that the efficiency of each phase
depends quite dramatically on the data structure we use. Moreover, one data
structure may be much more efficient for part of the operation and yet be
preposterously inefficient for the other.

For example, storing the numbers in a large array provides for a relatively
efficient search phase. As we discovered in Chapter 2, searching a sorted list
for a particular element can be performed in log N time by using the binary
search technique. On the other hand, the insert phase is extremely complicated
here. To ensure that the array remains sorted, it is necessary to move the rest
of the elements in the entire array over one position to make room for the new
element. Since this could require moving every element if the new element
occurs at the beginning, this phase of the operation requires order N steps.

By contrast, representing the array as a linked list has precisely the op-
posite computational properties. Here, once we have located the correct po-
sition, the insertion phase can be performed in constant time. All we need to
do is allocate a new cell and adjust the internal pointers to maintain the order.
Here, however, the search phase can no longer exploit the advantages of binary
search, since there is no simple way to perform the operation of selecting the
middle element.

Thus, for each of these representations, we have the following computa-
tional efficiencies:



146 Thinking Recursively

Search insert Total
Sorted array Ofiog N) Oom) Om)
Linked list O(N) 0() ON)

Since each of these representations leads to an order N combined time for
the search-and-insert operation, neither structure is ideal for the task of main-
taining a sorted list. What we would like to find is some mechanism which
combines the search properties of a sorted array with the insertion properties
of a linked list. To do this, it helps to start with the linked list arrangement
and repair its flaws.

Conceptually, if we were to store the numbers | through 7 in a linked list,
we would use a structure of the following form:

| w— ) o 3 e [ - 5 e (]

Our current difficulty arises from the fact that, given this structure, there is no
simple way to find the center of the list. To find the **4’", we are obligated to
start at the beginning and follow the chain through each of its links, until we
reach that cell.

In seeking a solution to this problem, one idea is simply to change the list
structure so that the initial pointer always indicates the center of the list rather
than its beginning:

| = 2 = 3 =4 =P 5 =P =P ]

In making this change, it is also necessary to reverse the direction of the first
three pointers so that the elements 1, 2, and 3 continue to be accessible. Notice
that this requires the element 4 to be associated with two pointers: one points
to a list of those elements that precede 4, and one points to those which fol-
low it.

At this point, however, we have only solved the first level of the problem.
In this diagram, we can certainly find the center of the original list, but we are
back to our original problem for each of the sublists. The answer is simply to
apply this same transformation recursively, so that each sublist begins in the
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middle and proceeds in both directions. Applying this to the above diagram
results in the structure

N\

;(/////4\\\\\\\
/ 2 \ /6

I 3 5 7
At each level, this structure branches to form two smaller structures, which
are in turn decomposed in precisely the same way. In computer science, this
type of structure is called a binary tree. In a binary tree such as the one
represented here, each individual element is called a node. The topmost node
in a tree is called the root of the tree, and the nodes at the bottom which have

no descendants are called terminal nodes.*

In the binary tree represented here, each node is associated with an integer
value and a pair of pointers indicating two subtrees: the subtree which contains
all elements before the current value and one containing those elements after

this node. This description leads directly to the appropriate data structure in
Pascal:

TYPE
TREE = 1 NODE;
NODE = RECORD

VALUE : INTEGER;
BEFORE : TREE;
AFTER : TREE

END;

As indicated by the earlier discussion, our central task is to develop a
mechanism to allow the incremental insertion of new data into a binary tree.
Before we look at that aspect of the problem, however, it will help to design

a simpler primitive for trees so that we can get a sense of how tree manipulation
is performed.

*Since many programmers have rarely been seen outside during the daylight hours, it is perhaps
understandable that the prevailing convention in computer science is to draw trees with their root
at the top and their branches pointing down. Those offended by this affront to nature are invited
to turn this book upside down before proceeding
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For example, it would be quite useful to have a procedure which prints
out all the values in a tree in properly sorted order. Thus, given the tree

/\
NN

we need a procedure WRITETREE which prints the values

1 2 3 4 5 6 7

in that order. At first, this appears difficult, since this tree initially points to
the 4, which must be printed in the middle of the sequence.

The solution to this problem lies in writing a procedure whose structure
parallels that of the data. In working with strings earlier, we adopted a definition
of ‘‘string’” that made the recursive structure explicit. Here, we should adopt
a similar definition for binary trees, and define a tree as follows:

A tree is either
1. The empty tree represented by NIL
2. A number preceded and followed by a tree

Working from this definition, the WRITETREE primitive has almost ex-
actly the same structure as the WRITESTR primitive. Once again, there is
nothing at all to do in the simple case. Otherwise, we have a number preceded
and followed by sets of numbers represented as binary trees. To obtain a
correctly ordered display, all we need do is write out the numbers in the
“‘before’” collection, write the current value, and then write out the numbers
in the “‘after’” collection, as indicated by the following code:

PROCEDURE WRITETREE(T : TREE);
BEGIN
IF T <> NIL THEN
BEGIN
WRITETREE(T 1 .BEFORE);
WRITE(T 1 .VALUE : 5);
WRITETREE(T 1 .AFTER)
END
END;
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From here, we are in a position to develop the procedure which performs
the actual insertion. Here, we will define this operation to have the parameter
structure

PROCEDURE INSERTTREE(N : INTEGER; VAR T : TREE);

The effect of this procedure is to insert the value N into its proper position in
the tree T. Since the tree pointer will in some cases be changed, T is passed
as a VAR parameter.

Like any recursive procedure, INSERTTREE must correctly handle the
simple cases. Here, for example, if we start with an empty tree, the program
must correctly create a new node and change the tree T so that it points to
this new node. This is accomplished by the following code:

PROCEDURE INSERTTREE(N : INTEGER; VAR T : TREE);
BEGIN
IF T = NIL THEN
BEGIN
NEW(T);
T 1.VALUE := N;
T 1 .BEFORE := NIL;
T 1 .AFTER := NIL
END
ELSE
. recursive case . . .
END;

Thus, if we start with an empty binary tree called DATATREE, calling
INSERTTREE(6, DATATREE) will result in the following structure:

DATATREE
- 1

NIL | NIL
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If we already have some nodes of the tree in place, the operation is some-
what more elaborate. In general, given any new value, we must first check it
against the number in the topmost node of the tree. If it is less than the value
in that position, we know that the new value should be entered in the
T 1 .BEFORE subtree. Similarly, a value larger than that in the current node
should be entered in the T 1 .AFTER subtree. Thus, we should be able to
complete the problem by calling either

INSERTTREE(N, T 1 .BEFORE)
or

INSERTTREE(N, T 1 .AFTER)

We should also decide what action should be taken in the case of duplicate
nodes. The problem description did not define what action should occur if the
value 6 is to be entered into a tree which already contains a node labeled 6.
Here, we will make the arbitrary assumption that each value is to be stored
only once in the tree, and that requests which would duplicate a value are
simply ignored. This gives rise to the complete definition of INSERTTREE
shown below:

PROCEDURE INSERTTREE(N : INTEGER; VAR T : TREE);
BEGIN
IF T = NIL THEN
BEGIN
NEW(T);
T1.VALUE := N;
T 1 .BEFORE := NIL;
T 1 .AFTER := NIL
END
ELSE
IF T 1 .VALUE <> N THEN
IF T1.VALUE > N THEN
INSERTTREE(N, T 1 .BEFORE)
ELSE
INSERTTREE(N, T 1T .AFTER)
END;

To illustrate the operation of INSERTTREE, suppose that DATATREE
consists of the single number 6 when INSERTTREE(3, DATATREE) is called.
Since 3 is smaller than the value of the current node, the procedure recognizes
that this value should be inserted in the ‘‘before’’ subtree and the procedure
calls

INSERTTREE(N, T { .BEFORE)
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Since T is defined as a VAR parameter, this means that the next recursive level
uses a value of T which is shared with the actual component of the record at
this level. Thus, the parameter T in the second level call is precisely the cell
indicated by the dotted line below:

DATATREE
: ﬁl
6
r==—"
:Nu,:rﬂL
| R |

This means that when the new node is allocated and assigned to T, the result
will be:

DATATREE
: <1
6
A~ | NI
3
NIL | NIL

If from here we were to insert the value 5, the first level of the recursive
call would choose the BEFORE subtree of the node containing 6, the second
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would choose the AFTER subtree of the node containing 3, and the new tree
pointer would be inserted in the AFTER component of that node.

As long as the input values are distributed in a reasonably random order,
inserting a new value into its proper position in a binary tree requires only log
N time. This represents an enormous increase in computational efficiency over
arrays and linked lists, both of which require linear time for the combined
‘‘find-and-insert’’ operation.

10-3 Expression Trees

In addition to offering a computationally efficient mechanism for maintaining
a sorted collection of data, tree structures have many other applications in
computer science. Of these, one of the most important arises in the design and
implementation of compilers, which are responsible for translating statements
in a programming language into a form more easily handled by the computer
itself.

In order to perform this translation, compilers must translate the statements
in the source language into an internal form that represents the semantic struc-
ture of the program. For example, given the Pascal expression

2*X +3

the compiler must convert it into an internal representation that reflects the
order of operations. Here, since multiplication is an operator with greater
precedence than addition, this statement is the same as

2*X)+3

and the compiler must interpret this as a sum of two subexpressions: (a) the
product of 2 and X and (b) the number 3. Conventionally, this is represented
internally by the compiler in the form of a binary expression tree:

*/+
RN
2 X

One of the advantages of tree representation is that the order of operations
is explicit and there is no need to represent parentheses or precedence values
within the tree itself. For example, even though the parentheses are significant
in the expressions
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2*X) +3 and 2*(X + 3)

the corresponding expression trees indicate the order of operations through
the structure of the tree itself:

2*X)+3 2*(X +3)

Before we proceed to the internal representation, it is necessary to define
the notion of expression in greater detail. Conceptually, we know that expres-
sions consist of numbers, variables (limited in this example to single characters
in the range A to Z), and some set of operators (here +, —, *, and /). Paren-
theses may be used in the original expression to indicate the order of operations,
but they are not preserved in the internal representation.

In attempting to translate this conceptual structure into Pascal, however,
we encounter a slightly different situation from that in our earlier use of binary
trees. In the example from the previous section, all nodes in the tree had exactly
the same form. Here, there are three different node types: numbers, variables,
and compound nodes which indicate the application of some operator to two
subexpressions. Each of these node types requires different internal data. More
specifically, numbers must be associated with their value, variables with their
name, and compound nodes must include an operator and each of the two
subexpressions.

In order to represent structures in which the components have several
possible forms, Pascal offers a special mechanism called variant records. In a
variant record, one field is selected as the rag field and is used to determine
the interpretation of the remaining fields. Here, for example, we have three
different types of expression node. Depending on its type, the node itself con-
tains an integer, a character, or the data required for a compound node.

The first step in establishing a variant record of this sort is to define a new
scalar type which specifies the possible formats:

XTYPES = (NUMBER, VARIABLE, COMPOUND);

This statement defines the names NUMBER, VARIABLE, and COMPOUND
as constants of the type XTYPES (represented internally by the integers 0, 1,
and 2). In working with expression trees, we will use these values in their
symbolic form to differentiate the three expression formats. Expressions them-
selves are defined by the following TYPE section entries:
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EXP = 1 EXPNODE;

EXPNODE =
RECORD
CASE EXPTYPE : XTYPES OF
NUMBER : (VALUE : INTEGER);
VARIABLE : (NAME : CHAR);
COMPOUND : (OP : CHAR; LHS, RHS : EXP)
END;

Once again, the EXP type is the pointer, and the record type itself will not
ordinarily appear explicitly in the code. The record definition specifies the
structure of a node in each of the three possible interpretations. According to
the setting of the EXPTYPE field, an EXPNODE has either (1) an integer field
named VALUE, (2) a character field called NAME, or (3) an OP field repre-
senting an operator character and two additional expression pointers indicating
the left and right subexpressions.

To make the use of this structure more clear, the following diagram pro-
vides a pictorial representation of the expression

2*X +3
as it would appear internally:
R
COM —>»1 COM NUM

+ * 2

4/ a4
—

—1—\ .__ﬂ L _}
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In many ways, the most interesting aspect of this problem is that of generating
the expression tree from its original programming language form. This phase
of the compilation process is known as parsing the input text. Unfortunately,
an adequate treatment of parsing is beyond the scope of this book. On the other
hand, many of the other operations that may be performed on expression trees
are quite straightforward and fit well into the context of this discussion.

For example, one operation that might prove useful (particularly during
the development and debugging of the compiler itself) is that of converting an
expression tree back into its programming language form. This ‘‘unparsing’’
operation is considerably easier than that of parsing it in the first place and is
accomplished by the following code:

PROCEDURE UNPARSE(T : EXP);
BEGIN
CASE T 1 .EXPTYPE OF
NUMBER : WRITE(T 1 .VALUE : 1);
VARIABLE : WRITE(T 1 .NAME);
COMPOUND : BEGIN
WRITE(();
UNPARSE(T 1 .LHS);
WRITE( °, T 1.0P, * °);
UNPARSE(T 1 .RHS);
WRITE(’)’)
END
END
END;

Given an expression tree T, the UNPARSE program looks at the expression
type and handles it accordingly. Numbers and variables constitute the simple
cases; compounds are handled by recursively unparsing each subexpression,
separating them with the appropriate operator, and enclosing the entire unit in
parentheses. Thus, given the expression tree

e
2/ \X

the UNPARSE procedure will produce

(2*X) + 3)
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This chapter contains material which is generally the central focus of a course
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and Reingold and Hansen [1983].

Exercises

10-1. Rewrite each of the functions LENGTH, WRITESTR, READSTR and
CONCAT so that they operate iteratively without using recursion.

10-2. Given a string S, what does the following procedure do?

PROCEDURE UNKNOWN(S : STR);
BEGIN
IF S <> NIL THEN
BEGIN
UNKNOWN(S 1 .LINK);
WRITE(S 1 .CH)
END
END;

Can you duplicate its function without using recursion?

10-3. In addition to the string primitives defined in the chapter, there are several
others which might be useful in a general library of string routines. As
examples, implement the following:

INDEX(S, CH) Given the string S and the character CH, returns
the position number corresponding to the first oc-
currence of CH in that string. For example, if S is
the STR representation of "HELLO’, and CH is L,
INDEX should return 3. If CH does not occurin L,
INDEX should return 0.

SEG(S,N1,N2) Returns the substring of S that lies between char-
acter positions N1 and N2, inclusive. Remember
that this function must return an object of type STR
and may not change the value of the original

string S.

STREQGS, T) Returns TRUE if strings S and T contain an identical
sequence of characters.

REVERSE(S) Returns a string composed of the characters in S in

reverse order.
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10-4.

10-5.

10-6.

10-7.

Try implementing the INDEX function iteratively. Be sure you test your
implementation thoroughly, since this is harder than it may appear.

[Mathematically oriented] Although the type PTRPTR defined by

TYPE
PTRPTR = 1 PTRPTR;

seems rather useless, there are an infinite number of objects of this type.
For example, NIL is certainly a PTRPTR, but so is a pointer to NIL, and
a pointer to that, and so on.

Since this definition allows us to define chains of pointers with any
arbitrary length, we can use this structure as a model of the natural
numbers 0, 1, 2, 3, . . . by associating each number with the PTRPTR
chain of that length. Thus, 0 is associated with NIL, 1 with a pointer to
NIL, and so forth.

Using this structure, write the functions ADD1 and SUB1 which, given
a number represented as a PTRPTR, return its successor and predecessor,
respectively. Armed with these functions, write ADD and MULT for
PTRPTR’s.

As presented here, using the type STR to represent string data is very
inefficient in terms of space utilization. In this representation, each char-
acter requires enough storage to hold both a character and a pointer object
which is often considerably larger than that character.

To reduce this overhead, it is possible to define strings so that the
chaining is done on the basis of character blocks rather than individual
characters. Design a data structure which accommodates more than a
single character within each cell. Discuss the effect that this new repre-
sentation has on the primitive functions, along with any design trade-offs
you anticipate.

In the discussion of the complexity order of insertion using a binary tree,
the statement includes the disclaimer that the input values must be dis-
tributed in a reasonably random order. What would happen if an over-
zealous clerk sorted a large batch of entries by hand and then fed them
into the binary tree insertion mechanism in that order?

Diagram the tree that results if the following values are inserted into an
empty tree in the specified order:

90, 99, 63, 82, 93, 76, 81, 76
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10-8. The deprh of a binary tree is defined to be the length of the longest path

10-9.

10-10.

10-11.

that runs from the root of the tree to one of the terminal nodes. Thus, in
the tree

4

N

5

)
7N
AN

the depth of the tree is 3, since that is the length of the path from node
7 to node 5. .

Write a Pascal function DEPTH(T) which, given a binary tree T,
returns its depth.

Write a Pascal procedure DELETETREE(N, T), which deletes the node
with value N from tree T. If there is no node with the indicated value,
DELETETREE should have no effect.

Many of the electronic calculators produced in the early 1970s required
the user to enter the data in reverse Polish notation. In this represen-
tation, the operands to an expression are written first, followed by the
operator. For example, the expression

2*X +3
in conventional algebraic notation becomes
2X*3 +
in reverse Polish.
Using UNPARSE as a model, write the procedure RPN which prints
an expression tree in reverse Polish form.
Many conversational language systems (including most implementations

of BASIC) are based on an interpreter rather than a traditional compiler.
In a compiler, the expression trees must be translated into machine
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10-12.

10-13.

language instructions which can then be executed by the machine. In an
interpreter, the necessary operations are performed by working directly
from the expression tree. For example, given the tree

the program would look up the current value of X, multiply it by 2, add
3, and return the answer directly.

Suppose that the system includes a variable SYMTAB (for symbol
table) which is simply an array of the current values for each of the
variables A to Z:

SYMTAB : ARRAY [’A’..’Z’] OF INTEGER;

Using this, write a Pascal function EVAL which takes an expression tree
and calculates its value by applying the appropriate operations to each
of the terms making up the expression. Thus, if SYMTAB[’X’] contains
4, evaluating the above expression tree would return 1.

In the UNPARSE example given in the text, parentheses appear fre-
quently in the output text, even if they were not present in the original
text. In order to simplify the output form by eliminating unnecessary
parentheses, UNPARSE must ‘‘know’’ about the precedence structure
of the operators involved.

Extend the definition of UNPARSE so that it displays an expression
tree using as few parentheses as possible. To do this will require splitting
UNPARSE into several internal routines.

In light of its enormous importance in the design of compilers, the prob-
lem of parsing arithmetic expressions is one of the most thoroughly
studied areas in computer science. Unfortunately, constructing an
expression parser that takes advantage of the results of that study re-
quires the presentation of so much theory as to be beyond the scope of
this book.

There are, however, other types of expressions for which the design
of a parser is feasible. One of these comes from the game WFF'N PROOF,
designed by Layman E. Allen of the University of Michigan. WFF'N
PROOF is based on symbolic logic and involves recognizing and ma-
nipulating well-formed formulas, or WFFs.
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An expression is a WFF if and only if one of the following three
rules applies:
1. It is the single letter 'p’, ’q’, 'r’, or ’s’.
2. It is the letter "N’ followed by a legal WFF.
3. Itis one of the letters C", "A, 'K’, or ’E’ followed by two legal
WFFs.

For example, the strings

p [Rule 1]
Np [Rule?]
ApNp [Rule 3}

are all WFFs as shown by applications of the indicated rule.

Each of the symbols that make up a WFF has an interpretation in
propositional logic. The letters 'p’, ’q’, ’r,” and ’s’ represent propositional
variables which ordinarily correspond to statements which are either
true or false. Thus, *p’ might represent the statement *‘it is raining now,”’
and ’q’ the statement ‘I should carry an umbrella.”” The letters 'N’, K",
'A’, ’C’, 'E’ represent the logical functions ‘‘not,” *‘and, or,”
“if . . . then,”” and ‘‘is equivalent to,”” respectively. Thus, the WFF

LX I

Cpq

means ‘‘if it is raining now, then I should carry an umbrella.”’
Based on this idea:

(a) Write a function VALIDWFF that reads in a line of characters
from the terminal and returns TRUE or FALSE according to
whether the line represents a valid WFF.

(b) Design a data structure to represent WFFs internally.

(c) Using much the same logic as in VALIDWFF, write a function
PARSEWFF which returns the structure of the WFF it reads.

(d) Write a function EVALWFF which takes the internal structure
for a WFF and returns TRUE or FALSE depending on the truth
value of the entire WFF, given the above interpretation of the
connectives 'N’°, 'C’, "A’, ’K’, and 'E’. Assume that the vari-
ables P, Q, R, and S are defined as Boolean variables and that
each contains the current value of the appropriate lowercase
symbol.
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Never trust to general impressions, my boy, but concentrate yourself
upon details
—Sherlock Holmes, A Case of |dentity, Sir Arthur Conan Doyle

Up to this point, our concern has been with developing a strategy for recursive
programming based on a relatively general understanding of the underlying
mechanism. For the person who shares with Sherlock Holmes a desire to reduce
a problem to its smallest details, it is important to consider the implementation
of recursion from a more intimate perspective.

In Chapter 5, we developed a model for the implementation of recursion
using a stack of index cards to manage the necessary bookkeeping operations.
When faced with a recursive implementation, a computer system must keep
track of the same information in its internal storage. More specifically, for each
call to a procedure, we must (1) remember the values of all local variables and
(2) find some way to keep track of our progress through each of the subtasks.

The only thing that makes this at all difficult is the fact that we must
simultaneously maintain this information for each level in the recursive de-
composition. Whenever a new procedure is called, a new environment is in-
troduced which temporarily supersedes the previous one. When that procedure
returns, the old environment is restored.

11-1 The Control Stack Model

In order to accomplish this operation, most computers make use of special
hardware which implements a structure called the control stack. Internally,
the control stack consists of an array of consecutive memory locations asso-
ciated with a stack pointer register (called SP in the subsequent text) which
points to the last item entered on the stack.

Manipulation of the stack is performed by two hardware operations tra-
ditionally called PUSH and POP. The PUSH operation takes a value and
stores it on the stack. For example, if we start with an empty stack, and push
the value 3, we are left in the position

161
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Control stack

sp [e—>{ 3 ]

Pushing the value 5 results in the configuration

Control stack

3

SPE—> 5

The POP operation returns the most recent value pushed onto the stack (in
this case, the 5) and adjusts the SP register to indicate the next most recent
value. Conventionally, the value 5 is not actually removed from storage, but
it can no longer be accessed by the stack instructions:

Control stack

In a stack, the last value pushed is always the first value to be popped.
For this reason, a stack is sometimes referred to as a LIFO storage mechanism,
where LIFO is an acronym for ‘‘last in/first out.’’ Significantly, this is precisely
the behavior of procedures. The last procedure called is always the first from
which we return. This similarity between the behavior of procedures and stack
operation is the primary reason that stacks are chosen as the underlying data
structure for keeping track of the control history.

Whenever a call is made to a procedure, the first step in the operation is
to evaluate each of the arguments and place them on the stack. Thus, when
the main program makes the call

MOVETOWER(3, ’A’, 'B’, °C’)

the stack will contain the values
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Control stack
3

YA

A
=
SP B—» 'C

The next step consists of transferring control to the procedure itself. In-
ternally, this is implemented in much the same way as the GOTO statement,
but with an additional hitch. When we make a procedure call, we must be able
to return to exactly that point at which we left off. Thus, in the main program

)

BEGIN
WRITELN(’Tower of Hanoi program for 3 disks.’);
MOVETOWER(, ’A’, ’B’, ’C’);
—  WRITELNC(CFinished.’)
END.

we must be able to return to the point indicated by the arrow. This position is
called the return address and is pushed on the stack as part of the call operation.

In a conventional machine, the return address will be the location number
of the appropriate instruction in the stored program. At the Pascal level, how-
ever, we are never in a position to work with physical addresses, and it is
easier to represent this in a symbolic way. Here, we will use the symbol
<MAIN> to represent the address of the statement

WRITELN( Finished.’)

Thus, after the mechanics of executing the first call are complete, we are ready
to begin the execution of MOVETOWER with the following values on the stack:

Control stack

3 N
A’ START
‘B’ FINISH
' TEMP
< MAIN > Return address
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These five locations correspond to the first index card in the analysis given
in Chapter 5. From the implementation point of view, the region of the stack
which contains the data pertaining to each environment is called a stack frame,
or activation record. As long as this environment is active, any references to
the variables N, START, FINISH, or TEMP refer to the contents of the stack
location with the corresponding label. Thus, when the program reaches the line

IF N = 1 THEN

the value of N is determined by checking the current stack frame. Since that
value is currently 3, the IF condition is false, and the operation continues with
the ELSE block of the MOVETOWER procedure.

Within that block, the first instruction encountered is

MOVETOWER(N-1, START, TEMP, FINISH)

which constitutes a recursive call to MOVETOWER. To make this call, we
simply repeat the original process. First, the arguments are evaluated using the
values in the current stack frame. Here, N is 3, START is "A’, FINISH is 'B’,
and TEMP is 'C’, so that the above call is equivalent to

MOVETOWER(2, ’A’, °C’, °B’)

Each of these values is pushed on the stack, followed by the return address.
Once again, we will refer to these addresses symbolically by using the following
labels:

BEGIN
MOVETOWER(N-1, START, TEMP, FINISH);
<1> —  WRITELN(START, ’ to ’, FINISH);
MOVETOWER(N-1, TEMP, FINISH, START);
<2> — END

Here, we are returning to label <1>, so that the new stack frame has the
values:
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Control stack

I I
F____i___-i
A
b e B __
l C’ |
—————————— -
| <MAIN > (
Current . > N
frame
A’ START
C FINISH
‘B’ TEMP
SP E—> <I|> Return address

We can continue this analysis to any required depth, just as we did in the
case of the index-card model. Thus, the next operation will be yet another call
to MOVETOWER which generates a third stack frame:

Control stack

SR
. N
=== |
A,
L C . '
¢ <MAIN > |
|
b . 3
l L] L]
I S
I —
L] B J
F <l> |
Current 1 N
frame
A’ START
B’ FINISH
o TEMP
SP E-—P <> Return address

In this case, N is equal to 1, and we have therefore reached a simple case
from which no additional recursive calls are required. The WRITELN statement
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is executed to produce the line
AtoB

and the MOVETOWER procedure is ready to return.
Returning from a procedure consists of two steps:

1. Moving the current frame pointer back to indicate the previous frame
2. Transferring control to the address in the ‘‘return address’’ field on the
stack

The return address here is <1>, so that we begin at label 1 in the MOVETOWER
body after restoring the previous frame:

Control stack

T
i 3 |
f'—""'—,—',____—{
LA
r vBs |
Il- ————————— 4
I S
! <MAIN > |
Current > N
frame
A’ START
c FINISH
‘B’ TEMP
SP E—b <l1> Return address

From here, we simply continue the evaluation of MOVETOWER, performing
call and return operations as indicated, until control returns to the main program.

11-2 Simulating Recursion

When using a language like Pascal, the stack operations described in the pre-
vious section are carried out automatically, and the programmer ordinarily
remains oblivious to the details. In part, the attractiveness of recursion lies in
the fact that much of this complexity is hidden away and the programmer can
properly concentrate on the algorithm itself.

On the other hand, it is possible for the programmer to perform the stack
operations explicitly and thereby simulate the recursive operation. When using
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a language in which recursion is not supported (such as FORTRAN, for ex-
ample), defining an explicit control stack is often the only way to code a
recursive algorithm. In Pascal, such an approach is less important, but it helps
to provide a more intimate understanding of the underlying mechanics.
Following the lead of the hardware model described in the previous section,

we will represent the stack using an array and a special stack pointer variable
SP.

CONST
MAXSTACK = 100;

VAR

STACK : ARRAY [1..MAXSTACK] OF INTEGER;
SP : INTEGER;

Here, we have designed the stack to contain integer values. This corresponds
closely to the unit of a memory word in the underlying machine. To store other
information (such as characters) in the stack, we will convert those values to
their integer equivalents.

The SP variable keeps track of the number of items currently in the stack.
Initially, the SP is therefore set to 0. The two principal stack operations are
defined as follows:

PROCEDURE PUSH(X : INTEGER);
BEGIN
SP:=SP + I;
STACK[SP] := X

END;
PROCEDURE POP(VAR X : INTEGER);
BEGIN
X := STACK][SP];
SP:=8SP -1
END;

To illustrate how the stack structure can be used to eliminate recursion
from the Tower of Hanoi program, it helps to begin at the main program level.
In our earlier implementation, the main program consisted of a simple call to
MOVETOWER indicating the initial arguments:

MOVETOWER(@3, ’A’, °B’, °C’)
In the new version, MOVETOWER will no longer be able to use Pascal’s

conventional parameter passing mechanism and will expect its arguments on
the control stack. Thus, the main program must store these arguments in the
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correct locations in the stack frame. This can be done with four calls to the
PUSH procedure:

PUSH@3);

PUSH(ORD(’A’));
PUSH(ORD(’B’));
PUSH(ORD(’C?));

For the last three values, it is necessary to use the ORD function to obtain the
ASCII values of the characters so that they can be stored as integers in the
stack.

On the other hand, writing four PUSH instructions each time we make a
new call to MOVETOWER seems somewhat tedious. Inside MOVETOWER,
we will also have occasion to push these arguments, and it will simplify these
programs if we define the following routine:

PROCEDURE PUSHARGS(N : INTEGER;
START,FINISH,TEMP : CHAR);
BEGIN
PUSH(N);
PUSH(ORD(START));
PUSH(ORD(FINISH));
PUSH(ORD(TEMP));
END;

This procedure handles the pushing of all four arguments simultaneously so
that we can think of this as a single operation.

In addition to pushing the arguments, the main program must complete
the first stack frame by pushing the appropriate return address. As noted above,
return addresses cannot be supplied explicitly in Pascal, but we can assign
numeric codes to refer to the possible return points. For consistency with the
previous section, we will define a constant MAIN and use that as a sentinel to
indicate a return to the main program. The actual value of MAIN is immaterial
(-1 was used here) but must not interfere with any other labels that we assign
during the implementation of MOVETOWER.

Thus, as it now stands, the main program consists of the following statements:

BEGIN
SP := 0;
PUSHARGS(@3, ’A’, °B’, ’C%);
PUSH(MAIN);
MOVETOWER

END.

and produces the following stack frame:
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STACK [1] 3
STACK [2] ‘A’

STACK (3] B’

STACK [4] 'C Sp
STACK [5] <MAIN>

From here, we can turn our attention to the MOVETOWER procedure

itself. From this perspective, the most important thing to remember is that the
parameters N, START, FINISH, and TEMP are no longer stored in simple
variables but occupy specific positions within the stack frame as shown in the

diagram below:

STACK[SP—4] 3 N
STACK[SP—-3] A’ START
STACK{SP-2] B’ FINISH
STACK{SP-1] C TEMP
STACK|[SP] <MAIN > Return address

Thus, every time we need to refer to the value of N, we must determine that
value by finding the value in

STACK[SP- 4]

Since this calculation is performed relative to the current setting of the stack
pointer, this expression will always give the value of N in the currently active
stack frame, as required by the recursive implementation.

To simplify references to arguments within the MOVETOWER routine, it
is useful to define the names N, START, FINISH, and TEMP not as variables
but as functions which access the correct location in the stack frame:

FUNCTION N : INTEGER;
BEGIN
N := STACK[SP—4]
END;

FUNCTION START : CHAR;
BEGIN
START := CHR(STACK[SP-3))
END;
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FUNCTION FINISH : CHAR;
BEGIN
FINISH := CHR(STACKI[SP-2))
END;

FUNCTION TEMP : CHAR;
BEGIN
TEMP := CHR(STACK[SP-1])
END;

These functions also handle the conversion of the integer stack values back
into their character equivalents. Thus, it is now possible to write the statement

WRITELN(START, ’ to ’, FINISH);
instead of the more cryptic
WRITELN(CHR(STACKI[SP-3]), ’ to ’, CHR(STACK|SP-3]));

The only remaining task is the elimination of the recursive calls inside
MOVETOWER. In the recursive version, the body of MOVETOWER appears
as follows:

IF N = 1 THEN
WRITELN(START, ’ to ’, FINISH)
ELSE
BEGIN
MOVETOWER(N—1, START, TEMP, FINISH);
WRITELN(START, ’ to ’, FINISH);
MOVETOWER(N—1, TEMP, FINISH, START)
END

and contains two recursive calls. For each of these, the revised code must
perform the following operations:

1. Using the PUSHARGS routine defined above, each of the arguments in
the call must be pushed onto the stack to begin the definition of the
next frame.*

2. A value must be pushed on the stack to indicate the return address for
this call. Here the two possible return points are given the labels 1: and
2: (after the first and second calls, respectively) and the return address
is indicated by pushing the corresponding integer.

*Here, the use of PUSHARGS turns out to be quite important. If this operation were performed
using four separate calls to PUSH, the stack pointer would change between each operation which,
in turn, would affect the calculation of the arguments Here, all the arguments are evaluated using
the old value of SP and passed to PUSHARGS where the stack pointer is actually changed
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3. The program must jump back to the first instruction in the MOVE-
TOWER procedure. Here this is accomplished by labeling the first state-
ment as 0: and using the statement GOTO 0.

Thus, up to this point, the new body of MOVETOWER appears as follows:

0: IF N = 1 THEN
WRITELN(START, ’ to ’, FINISH)
ELSE
BEGIN
PUSHARGS(N—1, START, TEMP, FINISH);
PUSH(1);
GOTO 0;

1: WRITELN(START, ’ to ’, FINISH);
PUSHARGS(N-1, TEMP, FINISH, START);
PUSH(2);

GOTO 0;

;
END;

It is important to recognize how closely this program corresponds to the orig-
inal. The only transformations that have been made are replacing any recursive
call of the form

MOVETOWER(n, start, finish, temp);
with the lines:

PUSHARGS(n, start, finish, temp);
PUSH(label);
GOTO 0;

label:

where ‘‘label’’ is some integer label uniquely identifying the return point.

To finish this program, we must simulate the return from the MOVE-
TOWER procedure. Returning from MOVETOWER requires clearing the pre-
vious stack frame and jumping to the label indicated by the return address.
This is accomplished by the following code:

POP(RETADD);
FLUSH(4);
CASE RETADD OF
1: GOTO 1;
2 : GOTO 2;
MAIN : (* return to main program *);
END;
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The procedure FLUSH(N) simply pops the top N elements from the stack and
throws them away. This can be accomplished merely by adjusting the stack
pointer as shown in the following code:

PROCEDURE FLUSH(N : INTEGER);
BEGIN
SP := SP-—-N
END;

The POP call takes the return address marker off the control stack and
stores it in the variable RETADD. The FLUSH(4) statement pops off the four
parameters, restoring the previous frame. Finally, the CASE statement inter-
prets the value of RETADD and jumps to the appropriate label. It is important
to note that labels and integers are not at all the same object, and it is impossible
to write GOTO RETADD as a statement in Pascal. You should also notice that
if RETADD has the value MAIN (— 1), the CASE statement performs no action
and MOVETOWER returns to the main program.

Thus, the complete nonrecursive coding for MOVETOWER is:

PROCEDURE MOVETOWER;
VAR
RETADD : INTEGER;
BEGIN
0: IF N = 1 THEN
WRITELN(START, °’ to °, FINISH)
ELSE
BEGIN
PUSHARGS(N — 1, START, TEMP, FINISH);
PUSH(1);
GOTO 0;
1: WRITELN(START, °’ to ’, FINISH);
PUSHARGS(N—1, START, TEMP, FINISH);
PUSH(Q2);
GOTO 0;

END;
POP(RETADD);
FLUSH(4);
CASE RETADD OF
1: GOTO 1;
2 : GOTO 2;
MAIN : (* return to main program ¥*);
END;
END;
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Go through this program carefully and make sure that you can follow its internal
operation.

At the same time, it is important to keep in mind that this sort of imple-
mentation is not required if the language permits recursive procedure calls.
Compared with the recursive version presented in Chapter 5, this new imple-
mentation is both less clear and less efficient.

Bibliographic Notes
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