
Applications

GENETIC
ALGORITHMS

The Practical
Handbook of

SECOND EDITION

Applications

Edited by

Lance Chambers

GENETIC
ALGORITHMS

The Practical
Handbook of

SECOND EDITION

CHAPMAN & HALL/CRC
Boca Raton London New York Washington, D.C.

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or
internal use of specific clients, may be granted by CRC Press LLC, provided that $.50 per page
photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923
USA. The fee code for users of the Transactional Reporting Service is ISBN 1-58488-240-
9/01/$0.00+$.50. The fee is subject to change without notice. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

 Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

© 2001 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-240-9

Library of Congress Card Number 00-064500
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

The practical handbook of genetic algorithms, applications / edited by
Lance D. Chambers.—2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 1-58488-2409-9 (alk. paper)

 1. Genetic algorithms. I. Chambers, Lance.
QA402.5 .P72 2000
519.7—dc21 00-064500

 CIP

disclaimer Page 1 Thursday, November 2, 2000 12:22 PM

Preface
Bob Stern of CRC Press, to whom I am indebted, approached me in late 1999
asking if I was interested in developing a second edition of volume I of the
Practical Handbook of Genetic Algorithms. My immediate response was an
unequivocal “Yes!” This is the fourth book I have edited in the series and each
time I have learned more about GAs and people working in the field. I am proud
to be associated with each and every person with whom I have dealt with over the
years. Each is dedicated to his or her work, committed to the spread of knowledge
and has something of significant value to contribute.

This second edition of the first volume comes a number of years after the
publication of the first. The reasons for this new edition arose because of the
popularity of the first edition and the need to perform a number of functions for
the GA community. These “functions” fall into two main categories: the need to
keep practitioners abreast of recent discoveries/learning in the field and to very
specifically update some of the best chapters from the first volume.

The book leads off with chapter 0, which is the same chapter as the first edition
by Jim Everett on model building, model testing and model fitting. An excellent
“How and Why.” This chapter offers an excellent lead into the whole area of
models and offers some sensible discussion of the use of genetic algorithms,
which depends on a clear view of the nature of quantitative model building and
testing. It considers the formulation of such models and the various approaches
that might be taken to fit model parameters. Available optimization methods are
discussed, ranging from analytical methods, through various types of hill-
climbing, randomized search and genetic algorithms. A number of examples
illustrate that modeling problems do not fall neatly into this clear-cut hierarchy.
Consequently, a judicious selection of hybrid methods, selected according to the
model context, is preferred to any pure method alone in designing efficient and
effective methods for fitting parameters to quantitative models.

Chapter 1 by Roubos and Setnes deals with the automatic design of fuzzy rule-
based models and classifiers from data. It is recognized that both accuracy and
transparency are of major importance and we seek to keep the rule-based models
small and comprehensible. An iterative approach for developing such fuzzy rule-
based models is proposed. First, an initial model is derived from the data.
Subsequently, a real-coded GA is applied in an iterative fashion, together with a
rule-based simplification algorithm to optimize and simplify the model,
respectively. The proposed modeling approach is demonstrated for a system
identification and a classification problem. Results are compared to other

vi

approaches in the literature. The proposed modeling approach is more compact
and interpretable.

Goldberg and Hammerham in Chapter 2, have extended their contribution to
Volume III of the series (Chapter 6, pp 119–238) by describing their current
research, which applies this technology to a different problem area, designing
automata that can recognize languages given a list of representative words in the
language and a list of other words not in the language. The experimentation
carried out indicates that in this problem domain also, smaller machine solutions
are obtained by the MTF operator than the benchmark. Due to the small variation
of machine sizes in the solution spaces of the languages tested (obtained
empirically by Monte Carlo methods), MTF is expected to find solutions in a
similar number of iterations as the other methods. While SFS obtained faster
convergence on more languages than any other method, MTF has the overall best
performance based on a more comprehensive set of evaluation criteria.

Taplin and Qiu, in Chapter 3, have contibuted material that very firmly grounds
GA in solving real-world problems by employing GAs to solve the very complex
problems associated with the staging of road construction projects. The task of
selecting and scheduling a sequence of road construction and improvement
projects is complicated by two characteristics of the road network. The first is that
the impacts and benefits of previous projects are modified by succeeding ones
because each changes some part of what is a highly interactive network. The
change in benefits results from the choices made by road users to take advantage
of whatever routes seem best to them as links are modified. The second problem
is that some projects generate benefits as they are constructed, whereas others
generate no benefits until they are completed.

There are three general ways of determining a schedule of road projects. The
default method has been used to evaluate each project as if its impacts and
benefits would be independent of all other projects and then to use the resulting
cost-benefit ratios to rank the projects. This is far from optimal because the
interactions are ignored. An improved method is to use rolling or sequential
assessment. In this case, the first year’s projects are selected, as before, by
independent evaluation. Then all remaining projects are reevaluated, taking
account of the impacts of the first-year projects, and so on through successive
years. The resulting schedule is still sub-optimal but better than the simple
ranking.

Another option is to construct a mathematical program. This can take account of
some of the interactions between projects. In a linear program, it is easy to specify
relationships such as a particular project not starting before another specific
project or a cost reduction if two projects are scheduled in succession. Fairly
simple traffic interactions can also be handled but network-wide traffic effects
have to be analysed by a traffic assignment model (itself a complex programming
task). Also, it is difficult to cope with deferred project benefits. Nevertheless,

vii

mathematical programming has been used to some extent for road project
scheduling.

The novel option, introduced in this chapter, is to employ a GA which offers a
convenient way of handling a scheduling problem closely allied to the travelling
salesman problem while coping with a series of extraneous constraints and an
objective function which has at its core a substantial optimising algorithm to
allocate traffic.

The authors from City University of Hong Kong are Zhang, Chung, Lo, Hui, and
Wu. Their contribution, Chapter 4, deals with the optimization of electronic
circuits. It presents an implementation of a decoupled optimization technique for
the design of switching regulators. The optimization process entails selection of
the component values in the regulator to meet the static and dynamic
requirements. Although the proposed approach inherits characteristics of
evolutionary computations that involve randomness, recombination, and survival
of the fittest, it does not perform a whole-circuit optimization. Consequently,
intensive computations that are usually found in stochastic optimization
techniques can be avoided. In the proposed optimization scheme, a regulator is
decoupled into two components, namely, the power conversion stage (PCS) and
the feedback network (FN). The PCS is optimized with the required static
characteristics such as the input voltage and output load range, whils”t the FN is
optimized with the required static characteristics of the whole system and the
dynamic responses during the input and output disturbances. Systematic
procedures for optimizing circuit components are described. The proposed
technique is illustrated with the design of a buck regulator with overcurrent
protection. The predicted results are compared with the published results
available in the literature and are verified with experimental measurements.

Chapter 5 by Hallinan discusses the problems of feature selection and
classification in the diagnosis of cervical cancer. Cervical cancer is one of the
most common cancers, accounting for 6% of all malignancies in women. The
standard screening test for cervical cancer is the Papanicolaou (or “Pap”) smear,
which involves visual examination of cervical cells under a microscope for
evidence of abnormality.

Pap smear screening is labour-intensive and boring, but requires high precision,
and thus appears on the surface to be extremely suitable for automation. Research
has been done in this area since the late 1950s; it is one of the “classical”
problems in automated image analysis.

In the last four decades or so, with the advent of powerful, reasonably priced
computers and sophisticated algorithms, an alternative to the identification of
malignant cells on a slide has become possible.

The approach to detection generally used is to capture digital images of visually
normal cells from patients of known diagnosis (cancerous/precancerous condition
or normal). A variety of features such as nuclear area, optical density, shape and

viii

texture features are then calculated from the images, and linear discriminant
analysis is used to classify individual cells as either “normal” or “abnormal.” An
individual is then given a diagnosis on the basis of the proportion of abnormal
cells detected on her Pap smear slide.

The problem with this approach is that while all visually normal cells from
“normal” (i.e., cancer-free) patients may be assumed to be normal, not all such
cells from “abnormal” patients will, in fact, be abnormal. The proportion of
affected cells from an abnormal patient is not known a priori, and probably varies
with the stage of the cancer, its rate of progression, and possibly other factors.
This means that the “abnormal” cells used for establishing the canonical
discriminant function are not, in fact, all abnormal, which reduces the accuracy of
the classifier. Further noise is introduced into the classification procedure by the
existence of two more-or-less arbitrary cutoff values – the value of the
discriminant score at which individual cells are classified as “normal” or
“abnormal,” and the proportion of “abnormal” cells used to classify a patient as
“normal” or “abnormal.”

GAs are employed to improve the ability of the system to discriminate and
therefore enhance classification.

Chapter 6, dealing with “Algorithms for Multidimensional Scaling,” offers
insights into looking at the potential for using GAs to map a set of objects in a
multidimensional space. GAs have a couple of advantages over the standard
multidimensional scaling procedures that appear in many commercial computer
packages. The most frequently cited advantage of Gas – the ability to avoid being
trapped in a local optimum – applies in the case of multidimensional scaling.
Using a GA or at least a hybrid GA, offers the opportunity to freely choose an
appropriate objective function. This avoids the restrictions of the commercial
packages, where the objective function is usually a standard function chosen for
its stability of convergence rather than for its applicability to the user’s particular
research problem. The chapter details genetic operators appropriate to this class of
problem, and uses them to build a GA for multidimensional scaling with fitness
functions that can be chosen by the user. The algorithm is tested on a realistic
problem, which shows that it converges to the global optimum in cases where a
systematic hill-descending method becomes entrapped at a local optimum. The
chapter also looks at how considerable computation effort can be saved with no
loss of accuracy by using a hybrid method. For hybrid methods, the GA is
brought in to “fine-tune” a solution, which has first been obtained using standard
multidimensional scaling methods.

Chapter 7 by Lam and Yin describes various applications of GAs to transportation
optimization problems. In the first section, GAs are employed as solution
algorithms for advanced transport models; while in the second section, GAs are
used as calibration tools for complex transport models. Both sections show that,
similar to other fields, GAs provide an alternative powerful tool to a wide variety

ix

of problems in the transportation domain.

It is well-known that many decision-making problems in transportation planning
and management could be formulated as bilevel programming models (single-
objective or multi-objectives), that are intrinsically non-convex and it is thus
difficult to find the global optimum. In the first example, a genetic-algorithms-
based (GAB) approach is proposed to solve the single-objective models.
Compared with the previous heuristic algorithms, the GAB approach is much
simpler in principle and more efficient in applications. In the second example, the
GAB approach to accommodate multi-objective bilevel programming models is
extended. It is shown that this approach can capture a number of Pareto solutions
efficiently and simultaneously which can be attributed to the parallelism and
globality of GAs.

Varela, Vela, Puente, Gomez and Vidal in Chapter 8 describe an approach to
solve job shop scheduling problems by means of a GA which is adapted to the
problem in various ways. First, a number of adjustments of the evaluation
function are suggested; and then it is proposed that a strategy to generate a
number of chromosomes of the initial population allows the introduction of
heuristic knowledge from the problem domain. In order to do that, the variable
and value ordering heuristics proposed by Norman Sadeh are exploited. These are
a class of probability-based heuristics which are, in principle, set to guide a
backtracking search strategy. The chapter validates all of the refinements
introduced on well known benchmarks and reports experimental results showing
that the introduction of the proposed refinements has an accumulative and
positive effect on the performance of the GA.

Chapter 9, developed by Raich and Ghaboussi, discusses an evolutionary-based
method called the implicit redundant representation genetic algorithm (IRR GA)
is applied to evolve synthesis design solutions for an unstructured, multi-objective
frame problem domain. The synthesis of frame structures presents a design
problem that is difficult, if not impossible, for current design and optimization
methods to formulate, let alone search. Searching for synthesis design solutions
requires the optimization of structures with diverse structural topology and
geometry. The topology and geometry define the number and the location of
beams and columns in the frame structure. As the topology and geometry change
during the search process, the number of design variables also change. To support
the search for synthesis design solutions, an unstructured problem formulation
that removes constraints that specify the number of design variables is used.
Current optimization methods, including the simple genetic algorithm (SGA), are
not able to model unstructured problem domains since these methods are not
flexible enough to change the number of design variables optimized. The
unstructured domain can be modeled successfully using the location-independent
and redundant IRR GA representation.

x

The IRR GA uses redundancy to encode a variable number of location-
independent design variables in the representation of the problem domain. During
evolution, the number and locations of the encoded variables dynamically change
within each individual and across the population. The IRR GA provides several
benefits: redundant segments protect existing encoded design variables from the
disruption of crossover and mutation; new design variables may be designated
within previously redundant segments; and the dimensions of the search space
dynamically change as the number of design variables represented changes. The
IRR GA synthesis design method is capable of generating novel frame designs
that compare favorably with solutions obtained using a trial-and-error design
process.

Craenen, Eiben and Marchiori in Chapter 10 develop a contribution that describes
evolutionary algorithms (EAs) for constraint handling. Constraint handling is not
straightforward in an EA because the search operators mutation and
recombination are “blind” to constraints. Hence, there is no guarantee that if the
parents satisfy some constraints the offspring will satisfy them as well. This
suggests that the presence of constraints in a problem makes EAs intrinsically
unsuited to solve this problem. This should especially hold when the problem
does not contain an objective function to be optimized, but only constraints – the
category of constraint satisfaction problems. A survey of related literature,
however, indicates that there are quite a few successful attempts to evolutionary
constraint satisfaction. Based on this survey, the authors identify a number of
common features in these approaches and arrive at the conclusion that EAs can be
effective constraint solvers when knowledge about the constraints is incorporated
either into the genetic operators, in the fitness function, or in repair mechanisms.
The chapter concludes by considering a number of key questions on research
methodology.

Chapter 11 provides a very valuable approach to fine-tuning fuzzy rules. The
chapter presents the design of a fuzzy logic controller (FLC) for a boost-type
power factor corrector. A systematic offline design approach using the genetic
algorithm to optimize the input and output fuzzy subsets in the FLC is proposed.
Apart from avoiding complexities associated with nonlinear mathematical
modeling of switching converters, circuit designers do not have to perform time-
consuming procedures of fine-tuning the fuzzy rules, which require sophisticated
experience and intuitive reasoning as in many classical fuzzy-logic-controlled
applications. Optimized by a multi-objective fitness function, the proposed
control scheme integrates the FLC into the feedback path and a linear
programming rule on controlling the duty time of the switch for shaping the input
current waveform, making it unnecessary to sense the rectified input voltage. A
200-W experimental prototype has been built. The steady-state and transient
responses of the converter under a large-signal change in the supply voltage and
in the output load are investigated.

xi

In Chapter 12, Grundler, from the University of Zagreb describes a new method
of complex process control with the coordinating control unit based upon a
genetic algorithm. The algorithm for the control of complex processes controlled
by PID and fuzzy regulators at the first level and coordinating unit at the second
level has been theoretically laid out. A genetic algorithm and its application to the
proposed control method have been described in detail. The idea has been verified
experimentally and by simulation in a two-stage laboratory plant. Minimal energy
consumption criteria limited by given process response constraints have been
applied, and improvements in relation to other known optimizing methods have
been made. Independent and non-coordinating PID and fuzzy regulator parameter
tuning have been performed using a genetic algorithm and the results achieved are
the same or better than those obtained from traditional optimizing methods while
at the same time the method proposed can be easily automated. Multilevel
coordinated control using a genetic algorithm applied to a PID and a fuzzy
regulator has been researched. The results of various traditional optimizing
methods have been compared with an independent non-coordinating control and
multilevel coordinating control using a genetic algorithm.

Chapter 13 discusses GA approaches to cancer treatment. The aim of radiation
therapy is to cure the patient of malignant disease by irradiating tumours and
infected tissue, whilst minimising the risk of complications by avoiding
irradiation of normal tissue. To achieve this, a treatment plan, specifying a
number of variables, including beam directions, energies and other factors, must
be devised. At present, plans are developed by radiotherapy physicists, employing
a time-consuming iterative approach. However, with advances in treatment
technology which will make higher demands on planning soon to be available in
clinical centres, computer optimisation of treatment plan parameters is being
actively researched. These optimisation systems can provide treatment solutions
that better approach the aims of therapy. However, direct optimisation of
treatment goals by computer remains a time-consuming and computationally
expensive process. With the increases in the demand for patient throughput, a
more efficient means of planning treatments would be beneficial. Previous work
by Knowles (1997) described a system which employs artificial neural networks
to devise treatment plans for abdominal cancers. Plan parameters are produced
instantly upon input of seven simple values, easily measured from the CT-scan of
the patient. The neural network used in Knowles (1997) was trained with fairly
standard backpropagation (Rumelhart et al., 1986) coupled with an adaptive
momentum scheme. This chapter focuses on later work in which the neural
network is trained using evolutionary algorithms. Results show that the neural
network employing evolutionary training exhibits significantly better
generalisation performance than the original system developed. Testing of the
evolutionary neural network on clinical planning tasks at Royal Berkshire
Hospital in Reading, UK, has been carried out. It was found that the system can
readily produce clinically useful treatment plans, considerably quicker than the

xii

human-based iterative method. Finally, a new neural network system for breast
cancer treatment planning was developed. As plans for breast cancer treatments
differ greatly from plans for abdominal cancer treatments, a new network
architecture was required. The system developed has again been tested on clinical
planning tasks at Royal Berkshire Hospital and results show that, in some cases,
plans which improve on those produced by the hospital are generated.

For those of you who are well-entrenched in the field, there are authors that you
will recognise as being some of the best; and for those of you who are new to
Gas, the same will apply – these are names you will certainly come to know and
respect. The contributors to this edition come from a cross-section of academia
and industry – theoreticians and practitioners. All make a significant contribution
to our understanding of and ability to use GAs.

One of the main objectives of the series has been to develop a work that will allow
practitioners to take the material offered and use it productively in their own work.
This edition maintains that objective. To that end, some contributors have also
included computer code so that their work can be duplicated and used productively
in your own endeavours. I will willingly e-mail the code to you if you send a
request to lchambers@transport.wa.gov.au or it may be found on the CRC Press
web site at www.crcpress.com.

The science and art of GA programming and application has come a long way in
the last 5 years since the publication of the first edition. However, I consider GAs
as still being a “new science” that has a long way to go before the bounds of the
effects are well-defined and their ability to contribute in a meaningful manner to
many fields of human endeavour are exhausted. We are, metaphorically, still
“scratching the surface” of our understanding and applications of GAs. This book
is designed to help scratch that surface just a little bit deeper and a little bit more.

As in the previous volumes, authors have come from countries around the world.
In a world, which we are told is continually shrinking, it is pleasing to obtain first
hand evidence of this shrinkage. As in the earlier volumes all communications
were by e-mail which has dramatically sped up the whole process. But even so, a
work of this nature invariably takes time.

The development of a chapter contribution to any field of serious endeavour is a
task that must, of need, be taken on only after serious consideration and
contemplation. I am happy to say that I believe all the authors contributing to this
volume have gone through those processes and I believe that because of the
manifest quality of the work presented.

http://www.crcpress.com

xiii

Lance Chambers
Perth, Western Australia

lchambers@transport.wa.gov.au

Note: I have not Americanised (sic) the spelling of English spelling contributors.
So, as you read, you will find a number of words with s’s where you may expect
z’s, and you may find a large number of u’s where you might least expect them as
in the word, “colour” and “behaviour.” Please do not be perturbed. I believe the
authors have the right to see their work in a form each recognises. I also have not
altered the referencing forms used (we all understand the various forms and this
should not detract from the book, but hopefully add some individuality) by the
authors.

Ultimately, however, I am responsible for all alterations, errors and omissions.

Contents

Chapter 0 Model Building, Model Testing and Model Fitting

0.1 Uses of Genetic Algorithms
0.1.1 Optimizing or Improving the Performance of Operating Systems

0.1.2 Testing and Fitting Quantitative Models

0.1.3 Maximizing vs. Minimizing

0.1.4 Purpose of this Chapter

0.2 Quantitative Models
0.2.1 Parameters

0.2.2 Revising the Model or Revising the Data?

0.2.3 Hierarchic or Stepwise Model Building: The Role of Theory

0.2.4 Significance and Meaningfulness

0.3 Analytical Optimization
0.3.1 An Example: Linear Regression

0.4 Iterative Hill-Climbing Techniques
0.4.1 Iterative Incremental Stepping Method

0.4.2 An Example: Fitting the Continents Together

0.4.3 Other Hill-Climbing Methods

0.4.4 The Danger of Entrapment on Local Optima and Saddle Points

0.4.5 The Application of Genetic Algorithms to Model Fitting

0.5 Assay Continuity in a Gold Prospect
0.5.1 Description of the Problem

0.5.2 A Model of Data Continuity

0.5.3 Fitting the Data to the Model

0.5.4 The Appropriate Misfit Function

0.5.5 Fitting Models of One or Two Parameters

0.5.6 Fitting the Non-homogeneous Model 3

0.6 Conclusion

Reference

Chapter 1 Compact Fuzzy Models and Classifiers through Model
Reduction and Evolutionary Optimization

1.1 Introduction

1.2 Fuzzy Modeling
1.2.1 The Takagi-Sugeno Fuzzy Model

1.2.2 Data-Driven Identification by Clustering

1.2.3 Estimating the Consequent Parameters

1.3 Transparency and Accuracy of Fuzzy Models
1.3.1 Rule Base Simplification

1.3.2 Genetic Multi-objective Optimization

1.4 Genetic Algorithms
1.4.1 Fuzzy Model Representation

1.4.2 Selection Function

1.4.3 Genetic Operators

1.4.4 Crossover Operators

1.4.5 Mutation Operators

1.4.5.1 Constraints

1.5 Examples
1.5.1 Nonlinear Plant

1.5.2 Proposed approach

1.6 TS Singleton Model

1.7 TS Linear Model
1.7.1 Iris Classification Problem

1.7.2 Solutions in the literature

1.7.3 Proposed Approach

1.8 Conclusion

References

Chapter 2 On the Application of Reorganization Operators for Solving a
Language Recognition Problem

2.1 Introduction
2.1.1 Performance across a New Problem Set

2.1.2 Previous Work

2.2 Reorganization Operators
2.2.1 The Jefferson Benchmark

2.2.2 MTF

2.2.3 SFS

2.2.4 Competition

2.3 The Experimentation
2.3.1 The Languages

2.3.2 Specific Considerations for the Language Recognition Problem

2.4 Data Obtained from the Experimentation

2.5 General Evaluation Criteria

2.6 Evaluation
2.6.1 Machine Size

2.6.2 Convergence Rates

2.6.3 Performance of MTF

2.7 Conclusions and Further Directions

References

Chapter 3 Using GA to Optimise the Selection and Scheduling of Road
Projects

3.1 Introduction

3.2 Formulation of the Genetic Algorithm
3.2.1 The Objective

3.2.2 The Elements of the Project Schedule

3.2.3 The Genetic Algorithm

3.3 Mapping the GA String into a Project Schedule and Computing
the Fitness

3.3.1 Data Required

3.3.2 Imposing Constraints

3.3.3 Calculation of Project Benefits

3.3.4 Calculating Trip Generation, Route Choice and Link Loads

3.4 Results
3.4.1 Convergence of Solutions to the Problem

3.4.2 The Solutions

3.4.3 Similarity and Dissimilarity of Solutions: Euclidean Distance

3.5 Conclusions: Scheduling Interactive Road Projects by GA
3.5.1 Dissimilar Construction Schedules with High and Almost Equal Payoffs

3.5.2 Similar Construction Schedules with Dissimilar Payoffs

References

Chapter 4 Decoupled Optimization of Power Electronics Circuits Using
Genetic Algorithms

4.1 Introduction

4.2 Decoupled Regulator Configuration
4.2.1 Optimization Mechanism of GA

4.2.2 Chromosome and Population Structures

4.2.3 Fitness Functions

4.3 Fitness Function for PCS
4.3.1 OF1 for Objective (1)

4.3.2 OF2 for Objective (2)

4.3.3 OF3 for Objective (3)

4.3.4 OF4 for Objective (4)

4.4 Fitness function for FN
4.4.1 OF5 for Objective (1)

4.4.2 OF6 and OF8 for Objective (2) and Objective (4)

4.4.3 OF8 of Objective (3)

4.5 Steps of Optimization

4.6 Design Example

4.7 Conclusions

References

Chapter 5 Feature Selection and Classification in the Diagnosis of
Cervical Cancer

5.1 Introduction

5.2 Feature Selection

5.3 Feature Selection by Genetic Algorithm
5.3.1 GA Encoding Schemes

5.3.2 GAs and Neural Networks

5.3.3 GA Feature Selection Performance

5.3.4 Conclusions

5.4 Developing a Neural Genetic Classifier
5.4.1 Algorithm Design Issues

5.4.2 Problem Representation

5.4.3 Objective Function

5.4.4 Selection Strategy

5.4.5 Parameterization

5.5 Validation of the Algorithm
5.5.1 The Dataset

5.5.2 Experiments on Two-Dimensional Data

5.5.3 Results of Two-Dimensional Data Experiments

5.5.4 Lessons from Artificial Data

5.5.5 Experiments on a Cell Image Dataset

5.6 Parameterization of the GA
5.6.1 Parameterization Experiments

5.6.2 Results of Parameterization Experiments

5.6.3 Selecting the Neural Network Architecture

5.7 Experiments with the Cell Image Dataset
5.7.1 Slide-Based vs. Cell-Based Features

5.7.2 Comparison with the Standard Approach

5.7.3 Discussion

References

Chapter 6 Algorithms for Multidimensional Scaling

6.1 Introduction
6.1.1 Scope of This Chapter

6.1.2 What is Multidimensional Scaling?

6.1.3 Standard Multidimensional Scaling Techniques

6.2 Multidimensional Scaling Examined in More Detail
6.2.1 A Simple One-Dimensional Example

6.2.2 More than One Dimension

6.2.3 Using Standard Multidimensional Scaling Methods

6.3 A Genetic Algorithm for Multidimensional Scaling
6.3.1 Random Mutation Operators

6.3.2 Crossover Operators

6.3.3 Selection Operators

6.3.4 Design and Use of a Genetic Algorithm for Multidimensional Scaling

6.4 Experimental Results
6.4.1 Systematic Projection

6.4.2 Using the Genetic Algorithm

6.4.3 A Hybrid Approach

6.5 The Computer Program
6.5.1 The Extend Model

6.5.2 Definition of Parameters and Variables

6.5.3 The Main Program

6.5.4 Procedures and Functions

6.5.5 Adapting the Program for C or C++

6.6 Using the Extend Program

References

Chapter 7 Genetic Algorithm-Based Approach for Transportation
Optimization Problems

7.1 GA-Based Solution Approach for Transport Models
7.1.1 Introduction

7.1.2 GAB Approach for Single-Objective Bilevel Programming Models

7.1.3 GAB Approach for Multi-Objective Bilevel Programming Models

7.1.4 Summary

7.2 GAB Calibration Approach for Transport Models
7.2.1 Introduction

7.2.2 Review of TFS

7.2.3 Calibration Measures

7.2.4 GAB Calibration Procedure

7.2.5 Calibration of TFS

7.2.6 Case Study

7.2.7 Summary

7.3 Concluding Remarks

References

Appendix I: Notation

Chapter 8 Solving Job-Shop Scheduling Problems by Means of Genetic
Algorithms

8.1 Introduction

8.2 The Job-Shop Scheduling Constraint Satisfaction Problem

8.3 The Genetic Algorithm

8.4 Fitness Refinement
8.4.1 Variable and Value Ordering Heuristics

8.5 Heuristic Initial Population

8.6 Experimental Results

8.7 Conclusions

References

Chapter 9 Applying the Implicit Redundant Representation Genetic
Algorithm in an Unstructured Problem Domain

9.1 Introduction

9.2 Motivation for Frame Synthesis Research
9.2.1 Modeling the Conceptual Design Process

9.2.2 Research in Frame Optimization

9.3 The Implicit Redundant Representation Genetic Algorithm
9.3.1 Implementation of the IRR GA Algorithm

9.3.2 Suitability of the IRR GA in Conceptual Design

9.4 The IRR Genotype/Phenotype Representation
9.4.1 Provision of Dynamic Redundancy

9.4.2 Controlling the Level of Redundancy in the IRR GA Initial Population

9.5 Applying the IRR GA to Frame Design Synthesis in an
Unstructured Domain

9.5.1 Unstructured Design Problem Formulation

9.5.2 IRR GA Genotype/Phenotype Representation for Frame Design Synthesis

9.5.3 Use of Repair Strategies on Frame Design Alternatives

9.5.4 Generation of Horizontal Members in Design Synthesis Alternatives

9.5.5 Specification of Loads on Unstructured Frame Design Alternatives

9.5.6 Finite-Element Analysis of Frame Structures

9.5.7 Deletion of Dynamically Allocated Nodal Linked Lists

9.6 IRR GA Fitness Evaluation of Frame Design Synthesis
Alternatives

9.6.1 Statement of Frame Design Objectives Used as Fitness Functions

9.6.2 Application of Penalty Terms in IRR GA Fitness Evaluation

9.7 Discussion of the Genetic Control Operators Used by the IRR GA
9.7.1 Fitness Sharing among Individuals in the Population

9.7.2 Tournament Selection of New Population Individuals

9.7.3 Multiple Point Crossover of Binary Strings

9.7.4 Single-Bit Mutation of Binary Strings

9.8 Results of the Implicit Redundant Representation Frame
Synthesis Trials

9.8.1 Evolved Design Solutions for the Frame Synthesis Unstructured Domain

9.8.2 Synthesis versus Optimization of Frame Design Solutions Using IRR GA

9.9 Concluding Remarks

References

Chapter 10 How to Handle Constraints with Evolutionary Algorithms

10.1 Introduction

10.2 Constraint Handling in EAs

10.3 Evolutionary CSP Solvers
10.3.1 Heuristic Genetic Operators

10.3.2 Knowledge-Based Fitness and Genetic Operators

10.3.3 Glass-Box Approach

10.3.4 Genetic Local Search

10.3.5 Co-evolutionary Approach

10.3.6 Heuristic-Based Microgenetic Method

10.3.7 Stepwise Adaptation of Weights

10.4 Discussion

10.5 Assessment of EAs for CSPs

10.6 Conclusion

References

Chapter 11 An Optimized Fuzzy Logic Controller for Active Power Factor
Corrector Using Genetic Algorithm

11.1 Introduction

11.2 FLC for the Boost Rectifier
11.2.1. Switching Rule for the Switch SW

11.2.2 Fuzzy Logic Controller (FLC)

11.2.3 Defuzzification

11.3 Optimization of FLC by the Genetic Algorithm
11.3.1 Structure of the Chromosome

11.3.2 Initialization of Si

11.3.3 Formulation of Multi-objective Fitness Function

11.3.4 Selection of Chromosomes

11.3.5 Crossover and Mutation Operations

11.3.6 Validation of SI: Recovery of Valid Fuzzy Subsets

11.4 Illustrative Example

11.5 Conclusions

References

Chapter 12 Multilevel Fuzzy Process Control Optimized by Genetic
Algorithm

12.1 Introduction

12.2 Intelligent Control

12.3 Multilevel Control
12.3.1 Optimal Control Concept

12.3.2 Process Stability during Genetic Algorithm Optimizing

12.3.3 Optimizing Criteria

12.4 Optimizing Aided by Genetic Algorithm
12.4.1 Genetic Algorithm Parameters

12.5 Laboratory Cascaded Plant

12.6 Multilevel Control Using Genetic Algorithm
12.6.1 Non-coordinated Multilevel Control Using a PID Controller

12.7 Fuzzy Multilevel Coordinated Control
12.7.1 Decision Control Table

12.8 Conclusions

References

Chapter 13 Evolving Neural Networks for Cancer Radiotherapy

13.1 Introduction and Chapter Overview

13.2 An Introduction to Radiotherapy
13.2.1 Radiation Therapy Treatment Planning (RTP)

13.2.2 Volumes

13.2.3 Treatment Planning

13.2.4 Recent Developments and Areas of Active Research

13.2.5 Treatment Planning

13.3 Evolutionary Artificial Neural Networks

13.3.1 Evolving Network Weights

13.3.2 Evolving Network Architectures

13.3.3 Evolving Learning Rules

13.3.4 EPNet

13.3.5 Addition of Virtual Samples

13.3.6 Summary

13.4 Radiotherapy Treatment Planning with EANNs
13.4.1 The Backpropogation ANN for Treatment Planning

13.4.2 Development of an EANN

13.4.3 EANN Results

13.4.4 Breast Cancer Treatment Planning

13.5 Summary

13.6 Discussion and Future Work

Acknowledgments

References

Figures

Figure 0.1 Simple linear regression

Figure 0.2 Iterative incremental stepping method

Figure 0.3 Fitting contours on the opposite sides of an ocean

Figure 0.4 Least misfit for contours of steepest part of continental shelf

Figure 0.5 The fit of the continents around the Atlantic

Figure 0.6 Entrapment at a saddle point

Figure 0.7 Cumulative distribution of gold assays, on log normal scale

Figure 0.8 Assay continuity

Figure 0.9 Log correlations as a function of r, the inter-assay distance

Figure 0.10 Correlations as a function of r, the inter-assay distance

Figure 0.11 Fitting model 0: ρ(r) = a

Figure 0.12 Fitting model 1: ρ(r) = exp(-kr)

Figure 0.13 Fitting model 2: ρ(r) = a.exp(-kr)

Figure 0.14 Comparing model 0, model 1 and model 2

Figure 0.15 Fit of model 3 using systematic projection

Figure 0.16 Fit of model 3 using the genetic algorithm

Figure 1.1 Example of a linguistic fuzzy rule

Figure 1.2 Fuzzy sets are defined by fitting parametric functions (solid
lines) to the projections (dots) of the point-wise defined fuzzy sets in the
fuzzy partition matrix U

Figure 1.3 Transparency of the fuzzy rule base premise

Figure 1.4 Similarity-driven simplification

Figure 1.5 Two modeling schemes with multi-objective GA optimization

Figure 1.6 Input u(k), unforced system g(k), and output y(k) of the plant in
(Equations 15 and 16)

Figure 1.7 Initial fuzzy sets and fuzzy sets in the reduced model

Figure 1.8 Local singleton models and the response surface

Figure 1.9 Simulation of the six-rule TS singleton model and error in the
estimated output

Figure 1.10 Local linear TS-model derived in five steps: (a) initial model
with ten clusters, (b) set merging, (c) GA-optimization, (d) set-merging,
(e) final GA optimization

Figure 1.11 Simulation of the six-rule TS singleton model and the error in
the estimated output

Figure 1.12 Local linear TS model and the response-surface

Figure 1.13 Iris data: setosa (×), versicolor (Ο), and virginica (∇)

Figure 1.14 Initial fuzzy rule-based model with three rules and 33
misclassifications

Figure 1.15 Optimized fuzzy rule-based model with three rules and three
misclassifications (Table 1.3-B)

Figure 1.16 Optimized and reduced fuzzy rule-based model with three
rules and four misclassifications (Table 1.3-E)

Figure 2.1 16-state/148-bit FSA genome (G1) map

Figure 2.2 Outline of the Jefferson benchmark GA. The two inserts will be
extra steps used in further sections as modifications to the original
algorithm

Figure 2.3 An example of the crossover used

Figure 2.4 An example of the mutation operator used

Figure 2.5 Outline of the MTF operator

Figure 2.6 Four tables depiction of MTF algorithm on a four-state FSM
genome

Figure 2.7 Outline of the SFS operator

Figure 2.8 Standardization formula for SFS algorithm (Step 2b, Figure 2.7)

Figure 2.9 Pictorial description of Figure 2.8 for max_num_states = 32

Figure 2.10 Table depiction of SFS algorithm on a four-state FSM genome

Figure 2.11 Outline of competition procedure

Figure 2.12 16-state/148-bit FSA genome (G2) map

Figure 2.13 Table of parameters for the languages

Figure 2.14 The seeds used to initialize the random number generator for
each run

Figure 2.15 Number of generations required to find a solution

Figure 2.16 Number of generations required to find a solution

Figure 2.17 Minimal number of states found in a solution

Figure 2.18 Minimal number of states found in a solution

Figure 2.19 Rankings of methods for each language based on machine size

Figure 2.20 Recommendations of methods for each language based on
efficiency

Figure 2.21 Recommendations of languages for each method based on
efficiency

Figure 3.1 The genetic algorithm for the road project construction
timetable problem

Figure 3.2 Relationship between the timetable analysis period and project
sub-periods

Figure 3.3 Procedure for calculation of the objective function value

Figure 3.4: Comparison of the Steps in the Improvement of the Objective
Function Values of the best individuals over GA generations in ten
experiments

Figure 3.5 Euclidean distance between two vectors in a R3 space

Figure 3.6 Hypothetical superior solutions and surrounding inferior
solutions

Figure 4.1 Block diagram of power electronics circuits: chromosome
structures and the fitness functions

Figure 4.2 Objective functions

Figure 4.3 Typical transient response of vd

Figure 4.4 Flowchart of the optimization steps of PCS

Figure 4.5 Reproducion process

Figure 4.6 Buck regulator with overcurrent protection

Figure 4.7 Φp and ΦF vs. the number of generation gen

Figure 4.8 Simulated start-up transients when vin is 20 V and RL is 5 Ω

Figure 4.9 Experimental start-up transients when vin is 20 V and RL is 5 Ω

Figure 4.10 Simulated start-up transients when vin is 60 V and RL is 5 Ω

Figure 4.11 Experimental start-up transients when vin is 60 V and RL is 5 Ω

Figure 4.12 Simulated transient responses when vin is changed from 20 V to
40 V

Figure 4.13 Experimental transient responses when vin is changed from 20
V into 40 V

Figure 4.14 Simulated transient responses when RL is changed from 5 Ω to
10 Ω and vin is 40 V

Figure 4.15 Experimental transient responses when RL is changed from 5 Ω
to 10 Ω and vin is 40 V

Figure 4.16 Simulated transient responses when RL is changed from 10 Ω
to 5 Ω and vin is 40 V

Figure 4.17 Experimental transient responses when RL is changed from 10
Ω to 5 Ω and vin is 40 V

Figure 5.1 Automated diagnosis from digital images

Figure 5.2 Architecture of the neural network

Figure 5.3 Organization of a chromosome coding for a simple three-layer
neural network

Figure 5.4 Two dimensional training data

Figure 5.5 ROC curves for 2-D data: select 2 from 7 features, training set

Figure 5.6 ROC curves for 2-D data: select 2 from 7 features, test set

Figure 5.7 Performance of a “good” classifier (Run 1) compared with that
of a “poor” classifier (Run 3) on training and validation data

Figure 5.8 Histogram of cell nuclear area

Figure 5.9 Correlation of AUC on the training data with maximum fitness
for the parameterization experiments

Figure 5.10 The presence of abnormal cells shifts the distribution of a
feature measured across all cells on a slide

Figure 5.11 ROC curves for test on train results

Figure 5.12 ROC curves for test on test results

Figure 5.13 ROC curves for test on train results

Figure 5.14 ROC curves for test on test results

Figure 5.15 Generalizability of the MACs classifiers

Figure 6.1 Global and local optima for the one-dimensional example

Figure 6.2 Misfit function (Y) for the one-dimensional example

Figure 6.3 Projected mutation

Figure 6.4 The genetic algorithm control panel

Figure 6.5 Systematic projection from ten random starting configurations

Figure 6.6 Genetic algorithm using the same ten random starting
configurations

Figure 6.7 Starting from Eigen vectors and from the Alscal solution

Figure 6.8 The Extend model

Figure 6.9 The Extend simulation setup screen

Figure 7.1 Example network 1

Figure 7.2 Demand multiplier versus generation number

Figure 7.3 Example network 2

Figure 7.4 Pareto optimal solutions

Figure 7.5 Flowchart of GAB calibration algorithm

Figure 7.6 Tuen Mun corridor network

Figure 7.7 Integral network cost vs. perception error coefficient

Figure 7.8 Total trip cost vs. perception error coefficient

Figure 7.9 Link choice entropy vs. perception error coefficient

Figure 7.10 Path choice entropy vs. perception error coefficient

Figure 7.11 NCV vs. OD variation coefficient

Figure 7.12 Path choice entropy vs. perception error coefficient in the pilot
tests

Figure 7.13 NCV vs OD variation coefficient in the pilot tests

Figure 7.14 Maximum fitness vs population size, generation, length of
chromosome

Figure 7.15 Maximum fitness vs. crossover probability and mutation
probability

Figure 7.16 Fitness vs perception error coefficient in the TFS calibration

Figure 7.17 Fitness vs OD variation coefficient in the TFS calibration

Figure 8.1 A JSS problem instance with three jobs

Figure 8.2 (a) Scheduling produced by the fitness1 strategy to the problem
of Figure 8.1 from the individual (3 3 1 1 1 2 2 2). The fitness1 value is 13.
(b) Scheduling produced from the same individual by the fitness2 strategy.
The fitness2 value is 11

Figure 8.3 Results of convergence of six versions of the GA

Figure 8.4 Results about convergence of four versions of the GA along
1000 generations

Figure 8.5 Comparison of various versions of the GA in solving the FT10
problem instance

Figure 9.1 C++ code for main() function that implements the IRR GA

Figure 9.2 SIndividual data structure used for the population individuals

Figure 9.3 Comparison of generic IRR GA and SGA genotype
representations

Figure 9.4 Dynamic redundancy provided by the IRR GA compared to the
SGA

Figure 9.5 Models of structured and unstructured frame design problem
formulations

Figure 9.6 Definition of design variables encoded in the IRR GA genotype

Figure 9.7 SNodeData structure for storing design variables

Figure 9.8 Definition of SaveNodes() function called by EvaluateBinary()

Figure 9.9 Definition of CreateNodeForList() and slsStore() called by
SaveNodes()

Figure 9.10 Assembly of complete structure from design variables

Figure 9.11 Linked lists of SNodeData structures for frame structure
defined in Figure 9.10

Figure 9.12 Definition of SStructure and SNode data structure for frame
alternatives

Figure 9.13 EvaluateBinary() code segment for structures with less than
two supports

Figure 9.14 Code segment for EvaluateBinary() and function
DeleteSingleNode()

Figure 9.15 E v a l u a t e B i n a r y () code segment and function
MakeSameNodes()

Figure 9.16 Common list functions called by DeleteSingleNode() and
MakeSameNodes()

Figure 9.17 Implementation of CreateHorzMembers()

Figure 9.18 SLoadVector data structure for structural loads and forces

Figure 9.19 Application of alternating span live loading to an example
structure

Figure 9.20 Implementation of SetGravityLoad()

Figure 9.21 Application of wind loading to the exterior nodes of two
example structures

Figure 9.22 SetWL() applies wind loading in each direction to frame
structures

Figure 9.23 Deletion of arrays of linked lists created dynamically by the
IRR GA program

Figure 9.24 Implementat ion of CalcVolumeFitness() and
CalcFloorFitness()

Figure 9.25 Code segment of CalcHorzDeflPenalty()

Figure 9.26 Implementation of CalcVertDeflPenalty()

Figure 9.27 Implementation of CalcNodeSymPenalty()

Figure 9.28 Code segment from SelectString() implementing tournament
selection

Figure 9.29 CrossoverBinary() code to set the number and location of
multiple crossover sites

Figure 9.30 Frame design solutions for four trials represented by the fittest
population individual of each IRR GA trial

Figure 9.31 Individuals in top 25% of the population ranked by fitness after
one generation

Figure 9.32 Individuals in top 25% of the population after 50 generations

Figure 9.33 Individuals in top 25% of the population after 200 generations

Figure 9.34 Maximum fitness and average fitness of the IRR GA
population over 500 generations for a single trial

Figure 11.1 Block diagram of the boost rectifier with APFC and FLC

Figure 11.2 Behavioral model of the APFC

Figure 11.3 Structure of the fuzzy subsets and chromosomes

Figure 11.4 Inference method

Figure 11.5 Flowcharts

Figure 11.6 Typical output response of the boost rectifier

Figure 11.7 Crossover and mutation operations

Figure 11.8 Validation of Si

Figure 11.9 GA-trained membership functions

Figure 11.10 Steady-state experimental waveforms when RL = 110 Ω

Figure 11.11 Transient responses when RL is changed from 110 Ω to 220
Ω

Figure 11.12 Transient responses when RL is changed from 220 Ω to 110
Ω

Figure 11.13 Transient responses when vin is changed from 110 V to 90 V

Figure 11.14 Transient responses when vin is changed from 90 V to 130 V

Figure 11.15 Transient output and control voltages when vin is changed
from 90 V to 130 V (Ch 1: output voltage (100 V/div); Ch2: control
voltage (2 V/div); Timebase: 20 ms/div)

Figure 12.1 Block diagram of a coordinate control concept

Figure 12.2 Block diagram of laboratory plant

Figure 12.3 Photo of laboratory plant

Figure 12.4 Block diagram of laboratory plant

Figure 12.5 Block diagram of the first stage of plant

Figure 12.6 Block diagram of the second stage of plant

Figure 12.7 Block diagram of the connecting tube

Figure 12.8 First process stage response for Zeigler-Nichols and GA tuned
PID, controller for step input qk1u from qk1u = 0.5 l/min to qk1u = 1.0 l/min

Figure 12.9 Second process stage response for Ziegler-Nicholos and GA
tuned PID2 controller for step input qk1u from qk1u = 0.5 l/min to qk1u = 1.0
l/min

Figure 12.10 First stage response to step disturbance qk1u (from qk1u = 0.5
l/min to qk1u = 1.0 l/min) controlled with genetic algorithm tuned decision
tables

Figure 12.11 First stage response to step disturbance qk1u (from qk1u = 0.5
l/min to qk1u = 0.2 l/min) controlled with genetic algorithm tuned decision
tables

Figure 12.12 Second stage response to step disturbance qk1u (from qk1u = 0.5
l/min to qk1u = 1.0 l/min) controlled with genetic algorithm tuned decision
tables

Figure 12.13 Second stage response to step disturbance qk1u (from qk1u = 0.5
l/min to qk1u = 0.2 l/min) controlled with genetic algorithm-tuned decision
tables

Figure 12.14 Comparison of energy consumption for both stages, at
different input step disturbances

Figure 12.15 Comparison of cumulative energy consumption for both
stages of the laboratory plant for total of six steps input disturbances

Figure 12.16 Response of the first stage of a plant controlled by fuzzy
controllers (decision tables are GA-tuned) for set point Tr = 37 °C

Figure 12.17 Response of the second stage of a plant controlled by fuzzy
controllers (decision tables are GA tuned) for set point Tr = 64.4°C

Figure 12.18 Behavior of the first stage of a plant controlled by fuzzy
controllers (decision tables are GA tuned) for set point Tr = 28.6°C

Figure 12.19 Behavior of the second stage of a plant controlled by fuzzy
controllers (decision tables are GA tuned) for set point Tr = 47.5°C

Figure 12.20 First stage response with nonlinear characteristic of thyristor
converter

Figure 12.21 Second stage response with nonlinear characteristic of
thyristor converter

Figure 12.22 First stage process response for various optimizing criteria

Figure 12.23 Second stage process response for various optimizing criteria

Figure 13.1 A schematic showing a typical beam setup for treatment of a
prostate cancer

Figure 13.2 The Philips multi-leaf collimator

Figure 13.3 A typical plot of the dose to a target volume plotted on a dose-
volume histogram

Figure 13.4 A cost function vs. gantry angle plot with the allowed gantry-
angle-windows also displayed

Figure 13.5 A typical routine for evolution of connection weights. (From
X. Yao, 1996.)

Figure 13.6 A typical cycle of the evolution of architectures. (From X.
Yao, 1996.)

Figure 13.7 A typical cycle of the evolution of learning rules. (From X.
Yao, 1996.)

Figure 13.8 Input measurements taken from a patient's CT-scan for input to
the neural network. Inputs 1, 2, and 3 are lengths and inputs 4, 5, and 6 are
angles

Figure 13.9 Neural network architecture showing inputs and outputs (some
connection lines are not shown)

Figure 13.10 Encoding of the connection weights on a chromosome

Figure 13.11 A plot of training set error and validation set error against
generation for the EANN

Figure 13.12 A plot of training set error and validation set error against
epoch for SAM

Tables

Table 1.1 Singleton TS fuzzy models for the dynamic plant

Table 1.2 Linear TS fuzzy models for the dynamic plant

Table 1.3 Fuzzy rule-based classifiers for the Iris data derived by means of
scheme 1 (A,B,C) and scheme 2 (D,E,F)

Table 2.1 Four-state FSM with start state Q13

Table 2.2 FSM with of Table 2.1 after Step 1 of MTF

Table 2.3 FSM of Table 2.2 after Next States for Q0 reassigned

Table 2.4 FSM of Table 2.1 after MTF

Table 2.5 Four-state FSM with start state Q13

Table 2.6 FSM with of Table 2.5 after Step 1 of SFS

Table 2.7 FSM of Table 2.6 after Next States for Q0 Reassigned

Table 2.8 FSM of Table 2.5 after SFS

Table 3.1 Details of road projects proposed for the rural road network in
the Pilbara and adjoining regions in Western Australia

Table 3.2 Effects of a project on travel time (TT) on link i

Table 3.3 Vehicle travel time on link i in year t: TTi(t)

Table 3.4 Values of the best ten GA I\individuals in each of experiments 1
and 2

Table 3.5 Summary of the best ten investment sequences

Table 3.6 Project sequence for the best solution converted to annual
investment

Table 3.7 Road project construction timetable determined by the best
solution

Table 3.8 Euclidean distances between the best ten solutions

Table 3.9 Differences between solutions: Euclidean distance and program
similarities

Table 3.10 Comparison of project implementation in the best and second
best solutions (Euclidean distance = 4.99)

Table 4.1 Parameters in GA optimization

Table 4.2(a) Initial values of L and C and the results after 500 generations

Table 4.2(b) Initial component values for the controller and the results after
500 generations

Table 5.1 Variables in the 2-D artificial data set

Table 5.2 Two-dimensional data: Selecting two features from seven

Table 5.3 Performance of run 3 with early stopping

Table 5.4 Description of BCCA dataset.

Table 5.5 Parameterization of the genetic algorithm

Table 5.6 Performance of slide-based and cell-based classifiers at various
operating points

Table 5.7 Confusion matrix for stepwise linear discriminant analysis at
operating point X

Table 5.8 Confusion matrix for best GA/NN at operating point Y

Table 5.9 Performance of the GA/NN and SLDA at the QC and PS
operating points

Table 6.1 An example data matrix of inter-object distances dij

Table 6.2 Inter-city flying mileages

Table 7.1 Input data for example network 1

Table 7.2 Solutions with alternative algorithms

Table 7.3 Input data for example network

Table 7.4 Pareto optimal solutions

Table 7.5 OD matrix (passenger car units per hour)

Table 7.6 The link data of the network

Table 8.1 Individual and aggregate demands of the initial state of the
problem of Figure. 8.1 for all tasks and resources over the time intervals

Table 8.2 Survivabilities of all ten tasks in the initial state of the problem
of Figure 8.1 over the time intervals

Table 8.3 Comparison of six versions of the GA against the ORR & FSS
heuristics

Table 8.4 Comparison of the heuristic strategies to generate individuals

Table 9.1 Values of scalar constants for calculating the fitness and penalty
function

Table 10.1 Specific features of three implemented versions of H-GA

Table 10.2 Specific features of Arc-GA

Table 10.3 Main features of Glass-Box GA

Table 10.4 Main features of the GLS algorithm

Table 10.5 Main features of the co-evolutionary algorithm

Table 10.6 Main features of heuristic-based microgenetic algorithm

Table 10.7 Main features of the SAW-ing algorithm

Table 12.1 Comparison of optimizing results of PID controllers

Table 12.2 49-element control decision table

Table 12.3 Comparison of energy consumption for fuzzy controllers

Table 12.4 Decision control table tuned by genetic algorithm for the first
process

Table 12.5 Decision control table tuned by genetic algorithm for the second
process

Table 13.1 Summary of EANN training times

Table 13.2 Comparison of SAM and EANN generalisation performance

Table 13.3 Summary of EANN and SAM generalisation performance

Table 13.4 Best validation set errors at various training set errors for
EANN and SAM

Table 13.5 Best validation set errors at various low training set errors for
EANN and SAM

Table 13.6 Summary of breast cancer treatment plans produced by the
EANN

Chapter 0 Model Building, Model Testing and Model
Fitting
J.E. Everett

Department of Information Management and Marketing
The University of Western Australia
Nedlands, Western Australia 6009
Phone (618) 9380-2908, Fax (618) 9380-1004
e-mail jeverett@ecel.uwa.edu.au

Abstract

Genetic algorithms are useful for testing and fitting quantitative models. Sensible
discussion of this use of genetic algorithms depends upon a clear view of the
nature of quantitative model building and testing. We consider the formulation of
such models, and the various approaches that might be taken to fit model
parameters. Available optimization methods are discussed, ranging from
analytical methods, through various types of hill-climbing, randomized search
and genetic algorithms. A number of examples illustrate that modeling problems
do not fall neatly into this clear-cut hierarchy. Consequently, a judicious selection
of hybrid methods, selected according to the model context, is preferred to any
pure method alone in designing efficient and effective methods for fitting
parameters to quantitative models.

0.1 Uses of Genetic Algorithms

0.1.1 Optimizing or Improving the Performance of Operating Systems

Genetic algorithms can be useful for two largely distinct purposes. One purpose is
the selection of parameters to optimize the performance of a system. Usually we
are concerned with a real or realistic operating system, such as a gas distribution
pipeline system, traffic lights, travelling salesmen, allocation of funds to projects,
scheduling, handling and blending of materials and so forth. Such operating
systems typically depend upon decision parameters, chosen (perhaps within
constraints) by the system designer or operator. Appropriate or inappropriate
choice of decision parameters will cause the system to perform better or worse, as
measured by some relevant objective or fitness function. In realistic systems, the
interactions between the parameters are not generally amenable to analytical
treatment, and the researcher has to resort to appropriate search techniques. Most
published work has been concerned with this use of genetic algorithms, to

optimize operating systems, or at least to improve them by approaching the
optimum.

0.1.2 Testing and Fitting Quantitative Models

The second potential use for genetic algorithms has been less discussed, but lies
in the field of testing and fitting quantitative models. Scientific research into a
problem area can be described as an iterative process. An explanatory or
descriptive model is constructed and data are collected and used to test the model.
When discrepancies are found, the models are modified. The process is repeated
until the problem is solved, or the researcher retires, dies, runs out of funds and
interest passes on to a new problem area.

In using genetic algorithms to test and fit quantitative parameters, we are
searching for parameters to optimize a fitness function. However, in contrast to
the situation where we were trying to maximize the performance of an operating
system, we are now trying to find parameters that minimize the misfit between the
model and the data. The fitness function, perhaps more appropriately referred to
as the “misfit function,” will be some appropriate function of the difference
between the observed data values and the data values that would be predicted
from the model. Optimizing involves finding parameter values for the model that
minimize the misfit function. In some applications, it is conventional to refer to
the misfit function as the “loss” or “stress” function. For the purposes of this
chapter, “fitness,” “misfit,” “loss” and “stress” can be considered as synonymous.

0.1.3 Maximizing vs. Minimizing

We have distinguished two major areas of potential for genetic algorithms:
optimizing an operating system or fitting a quantitative model. This could be
distinguished as the difference between maximizing an operating system’s
performance measure and minimizing the misfit between a model and a set of
observed data. This distinction, while useful, must not be pressed too far, since
maximizing and minimizing can always be interchanged. Maximizing an
operating system’s performance is equivalent to minimizing its shortfall from
some unattainable ideal. Conversely, minimizing a misfit function is equivalent to
maximizing the negative of the fitness function.

0.1.4 Purpose of this Chapter

The use of genetic algorithms to optimize or improve the performance of
operating systems is discussed in many of the chapters of this book. The purpose
of the present chapter is to concentrate on the second use of genetic algorithms:
the fitting and testing of quantitative models. An example of such an application,

which uses a genetic algorithm to fit multidimensional scaling models, appears in
Chapter 6.

It is important to consider the strengths and limitations of the genetic algorithm
method for model fitting. To understand whether genetic algorithms are
appropriate for a particular problem, we must first consider the various types of
quantitative model and appropriate ways of fitting and testing them. In so doing,
we will see that there is not a one-to-one correspondence between problem types
and methods of solution. A particular problem may contain elements from a range
of model types. It may therefore be more appropriately tackled by a hybrid
method, incorporating genetic algorithms with other methods, rather than by a
single pure method.

0.2 Quantitative Models

0.2.1 Parameters

Quantitative models generally include one or more parameters. For example,
consider a model that claims children’s weights are linearly related to their
heights. The model contains two parameters: the intercept (the weight of a
hypothetical child of zero height) and the slope (the increase in weight for each
unit increase in height). Such a model can be tested by searching for parameter
values that fit real data to the model. Consider the children’s weight and height
model. If we could find no values of the intercept and slope parameters that
adequately fit a set of real data to the model, we would be forced to abandon or to
modify the model.

In cases where parameters could be found that adequately fit the data to the
model, then the values of the parameters are likely to be of use in several ways.
The parameter values will aid attempts to use the model as a summary way of
describing reality, to make predictions about further as yet unobserved data, and
perhaps even to give explicative power to the model.

0.2.2 Revising the Model or Revising the Data?

If an unacceptable mismatch occurs between a fondly treasured model and a set
of data, then it may be justifiable, before abandoning or modifying the model, to
question the validity or relevance of the data. Cynics might accuse some
practitioners, notably a few economists and psychologists, of having a tendency
to take this too far, to the extent of ignoring, discrediting or discounting any data
that do not fit received models. However, in all sciences, the more established a
model is, the greater the body of data evidence required to overthrow it.

0.2.3 Hierarchic or Stepwise Model Building: The Role of Theory

Generally, following the principal of Occam’s razor, it is advisable to start with a
too simplistic model. This usually means the model's parameters are less than are
required. If a simplistic model is shown to inadequately fit observed data, then we
reject the model in favor of a more complicated model with more parameters. In
the height and weight example this might, for instance, be achieved by adding a
quadratic term to the model equation predicting weight from height.

When building models of successively increasing complexity, it is preferable to
base the models upon some theory. If we have a theory that says children’s height
would be expected to vary with household income, then we are justified in
including the variable in the model. A variable is often included because it helps
the model fit the data, but without any prior theoretical justification. That may be
interesting exploratory model building, but more analysis of more data and
explanatory development of the theory will be needed to place much credence on
the result.

As we add parameters to a model, in a stepwise or hierarchic process of
increasing complexity, we need to be able to test whether each new parameter
added has improved the model sufficiently to warrant its inclusion. We also need
some means of judging when the model has been made complex enough: that is,
when the model fits the data acceptably well.

Deciding whether added parameters are justified, and whether a model adequately
fits a data set, are often tricky questions. The concepts of significance and
meaningfulness can help.

0.2.4 Significance and Meaningfulness

It is important to distinguish statistical significance from statistical
meaningfulness. The explanatory power of a parameter can be statistically
significant but not meaningful, or it can be meaningful without being significant,
or it can be neither or both significant and meaningful.

In model building, we require any parameters we include to be statistically
significant and to be meaningful. If a parameter is statistically significant, then
that means a data set as extreme as found would be highly unlikely if the
parameter were absent or zero. If a parameter is meaningful, then it explains a
useful proportion of whatever it is that our model is setting out to explain.

The difference between significance and meaningfulness is best illustrated by an
example. Consider samples of 1000 people from each of two large communities.
Their heights have all been measured. The average height of one sample was 1
cm greater. The standard deviation of height for each sample was 10 cm. We

would be justified in saying that there was a significant difference in height
between the two communities because if there really were no difference between
the population, the probability of getting such a sampling difference would be
about 0.1%. Accordingly, we are forced to believe that the two communities
really do differ in height. However, the difference between the communities”
average heights is very small compared with the variability within each
community. One way to put it is to say that the difference between the
communities explains only 1% of the variance in height. Another way of looking
at it is to compare two individuals chosen at random one from each community.
The individual from the taller community will have a 46% chance of being
shorter than the individual from the other community, instead of the 50% chance
if we had not known about the difference. It would be fair to say that the
difference between the two communities” heights, while significant, is not
meaningful. Following Occam’s razor, if we were building a model to predict
height, we might not in this case consider it worthwhile to include community
membership as a meaningfully predictive parameter.

Conversely, it can happen that a parameter appears to have great explicative
power, but the evidence is insufficient to be significant. Consider the same
example. If we had sampled just one member from each community and found
they differed in height by 15 cm, that would be a meaningful pointer to further
data gathering, but could not be considered significant evidence in its own right.
In this case, we would have to collect more data before we could be sure that the
apparently meaningful effect was not just a chance happening.

Before a new model, or an amplification of an existing model by adding further
parameters, can be considered worth adopting, we need to demonstrate that its
explanatory power (its power to reduce the misfit function) is both meaningful
and significant.

In deciding whether a model is adequate, we need to examine the residual misfit:

• If the misfit is neither meaningful nor significant, we can rest content that we
have a good model.

• If the misfit is significant but not meaningful, then we have an adequate working
model.

• If the misfit is both significant and meaningful, the model needs further
development.

• If the misfit is meaningful but not significant, we need to test further against
more data.

The distinction between significance and meaningfulness provides one very
strong reason for the use of quantitative methods both for improving operating
systems and for building and testing models. The human brain operating in

qualitative mode has a tendency to build a model upon anecdotal evidence, and
subsequently to accept evidence that supports the model and reject or fail to
notice evidence that does not support the model. A disciplined, carefully designed
and well-documented quantitative approach can help us avoid this pitfall.

0.3 Analytical Optimization
Many problems of model fitting can be solved analytically, without recourse to
iterative techniques such as genetic algorithms. In some cases, the analytical
solubility is obvious. In other cases, the analytical solution may be more obscure
and require analytical skills unavailable to the researcher.

An analytical solution lies beyond the powers of the researcher, or the problem
may become non-analytical as we look at fuller data sets. The researcher might
then be justified in using iterative methods even when they are not strictly needed.

However, the opposite case is also quite common: a little thought may reveal that
the problem is analytically soluble. As we shall see, it can happen that parts of a
more intractable problem can be solved analytically, reducing the number of
parameters that have to be solved by iterative search. A hybrid approach
including partly analytical methods can then reduce the complexity of an iterative
solution.

0.3.1 An Example: Linear Regression

Linear regression models provide an example of problems that can be solved
analytically.

Consider a set of “n” data points {xi , yi } to which we wish to fit the linear model:

y = a + bx (1)

The model has two parameters “a” (the intercept) and “b” (the slope), as shown in
Figure 0.1.

The misfit function to be minimized is the mean squared error F(a,b):

F(a,b) = ∑(a + bxi - yi)
2 /n (2)

Differentiation of F with respect to a and b shows F is minimized when:

b = (∑yi ∑xi - n∑yi ∑xi) / ((∑xi)
2 - n∑xi

2
) (3)

a = (∑yi - b∑xi)/n (4)

It is important that the misfit function be statistically appropriate. We might with
reason believe that scatter around the straight line should increase with x. Use of

the misfit function defined in Equation (2) would then lead to points of large x
having too much relative weight. In this case, the misfit function to be minimized
would be F/x. Sometimes the appropriate misfit function can be optimized
analytically, other times it cannot, even if the model may itself be quite simple.

misfit

y=a+bx

(x , y)i i

a

b

1

y

x

Figure 0.1 Simple linear regression

More complicated linear regression models can be formed with multiple
independent variables:

y = a + b1x1 + b2x2 + b3x3 + b4x4 …… (5)

Analytical solution of these multiple regression models is described in any
standard statistics textbook, together with a variety of other analytically soluble
models. However, many models and their misfit functions cannot be expressed in
an analytically soluble form. In such a situation, we will need to consider iterative
methods of solution.

0.4 Iterative Hill-Climbing Techniques
There are many situations where we need to find the global optimum (or a close
approximation to the global optimum) of a multidimensional function, but we
cannot optimize it analytically. For many years, various hill-climbing techniques
have been used for iterative search towards an optimum. The term “hill-climbing”
should strictly be applied only to maximizing problems, with techniques for
minimizing being identified as “valley-descending.” However, a simple reversal

of sign converts a minimizing problem into a maximizing one, so it is customary
to use the “hill-climbing” term to cover both situations.

A very common optimizing problem occurs when we try to fit some data to a
model. The model may include a number of parameters, and we want to choose
the parameters to minimize a function representing the “misfit” between the data
and the model. The values of the parameters can be thought of as coordinates in a
multidimensional space, and the process of seeking an optimum involves some
form of systematic search through this multidimensional space.

0.4.1 Iterative Incremental Stepping Method

The simplest, moderately efficient way of searching for an optimum in a
multidimensional space is by the iterative incremental stepping method,
illustrated in Figure 0.2.

end

start
Parameter 1

Pa
ra

m
et

er
 2

Figure 0.2 Iterative incremental stepping method

In this simplest form of hill-climbing, we start with a guess as to the coordinates
of the optimum. We then change one coordinate by a suitably chosen (or guessed)
increment. If the function gets better, we keep moving in the same direction by

the same increment. If the function gets worse, we undo the last increment, and
start changing one of the other coordinates. This process continues through all the
coordinates until all the coordinates have been tested. We then halve the
increment, reverse its sign, and start again. The process continues until the
increments have been halved enough times that the parameters have been
determined with the desired accuracy.

0.4.2 An Example: Fitting the Continents Together

A good example of this simple iterative approach is the computer fit of the
continents around the Atlantic. This study provided the first direct quantitative
evidence for continental drift (Bullard, Everett and Smith, 1965). It had long been
observed that the continents of Europe, Africa and North and South America
looked as if they fit together. We digitized the spherical coordinates of the
contours around the continents, and used a computer to fit the jigsaw together.
The continental edges were fit by shifting one to overlay the other as closely as
possible. This shifting, on the surface of a sphere, was equivalent to rotating one
continental edge by a chosen angle around a pole of chosen latitude and
longitude. There were thus three coordinates to choose to minimize the measure
of misfit:

• The angle of rotation

• The latitude and longitude of the pole of rotation

The three coordinates were as shown in Figure 0.3, in which point Pi on one
continental edge is rotated to point Pi´ close to the other continental edge.

The misfit function, to be minimized, was the mean squared under-lap or overlap
between the two continental edges after rotation.

If the under-lap or overlap is expressed as an angle of misfit αi, then the misfit
function to be minimized is:

F = ∑αi
2 /n (6)

It can easily be shown that F is minimized if φ, the angle of rotation is chosen so
that:

∑φi = 0 (7)

So, for any given center of rotation, the problem can be optimized analytically for
the third parameter, the angle of rotation, by simply making the average overlap
zero.

φ

centre of rotation
(latitude, longitude)

Pi
P'i

α i

Figure 0.3 Fitting contours on the opposite sides of an ocean

Minimizing the misfit can therefore be carried out using the iterative incremental
stepping method, as shown above in Figure 0.2, with the two parameters being the
latitude and longitude of the center of rotation. For each center of rotation being
evaluated, the optimum angle of rotation is found analytically to make the
average misfit zero.

A fourth parameter was the depth contour at which the continental edges were
digitized. This parameter was treated by repeating the study for a number of
contours: first for the coastline (zero depth contour) and then for the 200, 1000,
2000 and 4000 meter contours. Gratifyingly, the minimum misfit function was
obtained for contours corresponding to the steepest part of the continental shelf,
as shown in Figure 0.4.

This result, that the best fit was obtained for the contour line corresponding to the
steepest part of the continental shelf, provided good theory-based support for the
model. The theory of continental drift postulates that the continents around the
Atlantic are the remains of a continental block that has been torn apart. On this
theory, we would indeed expect to find that the steepest part of the continental
shelf provides the best definition of the continental edge, and therefore best fits
the reconstructed jigsaw.

0

100

200

0 1000 2000 3000 4000

RMS Misfit,

Contour Depth, metres

Figure 0.4 Least misfit for contours of steepest part of continental shelf

The resulting map for the continents around the Atlantic is shown in Figure 0.5.
Further examples of theory supporting the model are found in details of the map.
For example, the extra overlap in the region of the Niger delta is explained: recent
material was washed into the ocean, thus bulging out that portion of the African
coastline.

0.4.3 Other Hill-Climbing Methods

A more direct approach to the optimum can be achieved by moving in the
direction of steepest descent. If the function to be optimized is not directly
differentiable, then the method of steepest decent may not improve the efficiency,
because the direction of steepest descent may not be easily ascertained.

Another modification that can improve the efficiency of approach to the optimum
is to determine the incremental step by a quadratic approximation to the function.
The function is computed at its present location, and at two others equal amounts
to either side. The increment is then calculated to take us to the minimum of the
quadratic fitted through the three points. If the curvature is convex upwards, then
the reflection is used. Repeating the process can lead us to the minimum in fewer
steps than would be needed if we used the iterative incremental stepping method.
A fuller description of this quadratic approximation method can be found in
Chapter 6.

Figure 0.5 The fit of the continents around the Atlantic

0.4.4 The Danger of Entrapment on Local Optima and Saddle Points

Although the continental drift problem required an iterative solution, the clear
graphical nature of its solution suggested that local optima were not a problem of
concern. This possibility was in fact checked for by starting the solution at a
number of widely different centers of rotation, and finding that they all gave
consistent convergence to the same optimum. When only two parameters require
iterative solution, it is usually not difficult to establish graphically whether local
optima are a problem. If the problem requires iteration on more than two
parameters, then it may be very difficult to check for local optima.

While iterating along each parameter, it is also possible to become entrapped at a
point minimizing each parameter. The point may be not a local optimum but just
a saddle point. Figure 0.6 illustrates this possibility for a problem with two
parameters, p and q. The point marked with an asterisk is a saddle point. The

saddle point is a minimum with respect to changes in either parameter, p or q.
However, it is a maximum along the direction (p+q), going from the bottom left
to the top right of the graph. If we explore by changing each of the parameters p
and q in turn, as in Figure 0.2, then we will wrongly conclude that we have
reached a minimum.

0.4.5 The Application of Genetic Algorithms to Model Fitting

Difficulty arises for problems with multiple local optima, or even for problems
where we do not know whether a single optimum is unique. Both the iterative
incremental step and the steepest descent methods can lead to the solution being
trapped in a local optimum. Restarting the iteration from multiple starting points
may provide some safeguard against entrapment in a local minimum. Even then,
there are problems where any starting point could lead us to a local optimum
before we reached the global optimum. For this type of problem, genetic
algorithms offer a preferable means of solution. Genetic algorithms offer the
attraction that all parts of the feasible space are potentially available for
exploration, so the global minimum should be attained if premature convergence
can be avoided.

We will now consider a model building problem where a genetic algorithm can be
usefully incorporated into the solution process.

*

60

60

7080

80

70

50 40

40

50

q

p

Figure 0.6 Entrapment at a saddle point

0.5 Assay Continuity in a Gold Prospect
To illustrate the application of a genetic algorithm as one tool in fitting a series of
hierarchical models, we will consider an example of economic significance.

0.5.1 Description of the Problem

There is a copper mine in Europe that has been mined underground since at least
Roman times. The ore body measures nearly a kilometer square by a couple of
hundred meters thick. It is now worked out as a copper mine, but only a very
small proportion of the ore body has been removed. Over the past 40 years, as the
body was mined, core samples were taken and assayed for gold and silver as well
as copper. About 1500 of these assays are available, from locations scattered
unevenly through the ore body.

640.5
-1

0

1

2

3

1 2 4 8 16 32

Gold Assay (gms per tonne)

Standard Deviations
(Normal Distribution)

Cumulative Probability99%

90%

70%

50%

30%

Figure 0.7 Cumulative distribution of gold assays, on log normal scale

The cumulative distribution of the gold assay values is plotted on a log normal
scale in Figure 0.7. The plot is close to being a straight line, confirming that the
assay distribution is close to being log normal, as theory would predict for this
type of ore body. If the gold concentration results from a large number of random
multiplicative effects, then the Central Limit theorem would lead us to expect the
logarithms of the gold assays to be normally distributed, as we have found.

The gold assays average about 2.6 g/tonne, have a median of 1.9 g/tonne, and
correlate only weakly (0.17) with the copper assays. It is therefore reasonable to
suppose that most of the gold has been left behind by the copper mining. The

concentration of gold is not enough to warrant underground mining, but the
prospect would make a very attractive open-cut mine, provided the gold assays
were representative of the whole body.

To verify which parts of the ore body are worth open-cut mining, extensive
further core-sample drilling is needed. Drilling is itself an expensive process, and
it would be of great economic value to know how closely the drilling has to be
carried out to give an adequate assessment of the gold content between the drill
holes. If the holes are drilled too far apart, interpolation between them will not be
valid, and expensive mistakes may be made in the mining plan. If the holes are
drilled closer together than necessary, then much expensive drilling will have
been wasted.

0.5.2 A Model of Data Continuity

Essentially, the problem reduces to estimating a data “continuity distance” across
which gold assays can be considered reasonably well correlated. Assay values
that are from locations far distant from one another will not be correlated. Assay
values will become identical (within measurement error) as the distance between
their locations tends to zero. So the expected correlation between a pair of assay
values will range from close to one (actually the test/retest repeatability) when
they have zero separation, down to zero correlation when they are far distant from
each other. Two questions remain:

• How fast does the expected correlation diminishes with distance?

• What form does the diminution with distance take?

The second question can be answered by considering three points strung out along
a straight line, separated by distances r12 and r23 as shown in Figure 0.8. Let the
correlation between the assays at point 1 and point 2, points 2 and 3, and between
points 1 and 3 be ρ12, ρ23, ρ13 respectively.

1 2 3
ρ

12
ρ

23

r
12

r
23

Figure 0.8 Assay continuity

It can reasonably be argued that, in general, knowledge of the assay at point 2
gives us some information about the assay at point 3. The assay at point 1 tells us
no more about point 3 than we already know from the assay at point 2. We have

what is essentially a Markov process. This assumption is valid unless there can be
shown to be some predictable cyclic pattern to the assay distribution.

Examples of Markov processes are familiar in marketing studies where, for
instance, knowing what brand of toothpaste a customer bought two times back
adds nothing to the predictive knowledge gained from knowing the brand they
bought last time. In the field of finance, for the share market, if we know
yesterday’s share price, we will gain no further predictive insight into today’s
price by looking up what the price was the day before yesterday. The same model
applies to the gold assays. The assay from point 1 tells us no more about the assay
for point 3 than we have already learned from the assay at point 2, unless there is
some predictable cyclic behavior in the assays.

Consequently, we can treat ρ12 and ρ23 as orthogonal, so:

ρ13 = ρ12 • ρ23 (8)

ρ(r13) = ρ(r12+r23) = ρ(r12) • ρ(r23) (9)

To satisfy Equation (9), and the limiting values ρ(0) = 1, ρ (∞) = 0, we can
postulate a negative exponential model for the correlation coefficient ρ(r), as a
function of the distance r between the two locations being correlated.

MODEL 1 ρ(r) = exp(-kr) (10)

Model 1 has a single parameter, k whose reciprocal represents the distance at
which the correlation coefficient falls to (1/e) of its initial value. The value of k
answers our first question as to how fast the expected correlation diminishes with
distance. However, the model makes two simplifying assumptions, which we may
need to relax.

First, Model 1 assumes implicitly that the assay values have perfect accuracy. If
the test/retest repeatability is not perfect, we should introduce a second parameter
a = ρ(0), where a < 1. The model then becomes:

MODEL 2 ρ(r) = a.exp(-kr) (11)

The second parameter, a, corresponds to the correlation that would be expected
between repeat samples from the same location, or the test/retest repeatability.
This question of the test/retest repeatability explains why we do not include the
cross-products of assays with themselves to establish the correlation for zero
distance. The auto cross-products would have an expectation of one, since they
are not subject to test/retest error.

The other implicit assumption is that the material is homogeneous along the three
directional axes x, y and z. If there is geological structure that pervades the entire
body, then this assumption of homogeneity may be invalid. We then need to add
more parameters to the model, expanding kr to allow for different rates of fall off
(ka , kb , kc), along three orthogonal directions, or major axes, (ra , rb , rc). This
modification of the model is still compatible with Figure 0.8 and Equation (9), but
allows for the possibility that the correlation falls off at different rates in different
directions.

k r = sqrt(ka
2 ra

2 + kb
2 rb

2 + kc
2 rc

2) (12)

These three orthogonal directions of the major axes (ra , rb , rc) can be defined by a
set of three angles (α , β , γ). Angles α and β define the azimuth (degrees east of
north) and inclination (angle upwards from the horizontal) of the first major axis.
Angle γ defines the direction (clockwise from vertical) of the second axis, in a
plane orthogonal to the first. The direction of the third major axis is then
automatically defined, being orthogonal to each of the first two. If two points are
separated by distances (x, y, z) along north, east and vertical coordinates, then
their separation along the three major axes is given by:

ra = x.cosα.cosβ + y.sinα.cosβ + z.sinβ (13)

rb = -x(sinα.sinγ+cosα.sinβ.cosγ) + y(cosα.sinγ-sinα.sinβ.cosγ) + z.cosβ.cosγ
(14)

rc = x(sinα.cosγ-cosα.sinβ.sinγ) - y(cosα.cosγ+sinα.sinβ.sinγ) + z.cosβ.sinγ (15)

The six parameters (ka , kb , kc) and (α , β , γ) define three-dimensional ellipsoid
surfaces of equal assay continuity. The correlation between assays at two
separated points is now ρ(ra , rb , rc), a function of (ra , rb , rc), the distance between
the points along the directions of the three orthogonal major axes.

Allowing for the possibility of directional inhomogeneity, the model thus
becomes:

MODEL 3 ρ(ra , rb , rc) = a.exp[-sqrt(ka
2 ra

2 + kb
2 rb

2 + kc
2 rc

2)] (16)

In Model 3, the correlation coefficient still falls off exponentially in any direction,
but the rate of fall-off depends upon the direction. Along the first major axis, the
correlation falls off by a ratio 1/e for an increase of 1/ka in the separation. Along

the second and third axes, the correlation falls off by 1/e when the separation
increases by 1/kb and 1/kc, respectively.

0.5.2.1 A Model Hierarchy

In going from Model 1 to Model 2 to Model 3, as in Equations (10), (11) and
(16), we are successively adding parameters:

——> 1) ρ(r) = exp(-kr)

——> 2) ρ(r) = a.exp(-kr)

——> 3) ρ(ra , rb , rc) = a.exp[-sqrt(ka
2 ra

2 + kb
2 rb

2 + kc
2 rc

2)]

The three models can thus be considered as forming a hierarchy. In this hierarchy,
each successive model adds explanatory power at the cost of using up more
degrees of freedom in fitting more parameters. Model 1 is a special case of Model
2, and both are special cases of Model 3. As we go successively from Model 1 to
Model 2 to Model 3, the goodness of fit (the minimized misfit function) cannot
get worse, but may improve. We have to judge whether the improvement of fit
achieved by each step is sufficient to justify the added complexity of the model.

0.5.3 Fitting the Data to the Model

As we have seen, the assay data were found to closely approximate a log normal
distribution. Accordingly, the analysis to be described here was carried out on
standardized logarithm values of the assays. Some assays had been reported as
zero gold content: these were in reality not zero, but below a reportable threshold.
The zero values were replaced by the arbitrary low measure of 0.25 g/tonne
before taking logarithms. The logarithms of the assay values had their mean
subtracted and were divided by the standard deviation, to give a standardized
variable of zero mean, unit standard deviation and approximately normal
distribution. The cross-product between any two of these values could therefore
be taken as an estimate of the correlation coefficient. The cross products provide
the raw material for testing Models 1, 2 and 3.

The 1576 assay observations yielded over 1,200,000 cross products (excluding
the cross-products of assays with themselves). Of these cross-products, 362
corresponded to radial distances less than a meter, 1052 between 1 and 2 meters,
then steadily increasing numbers for each 1-meter shell, up to 1957 in the interval
between 15 and 16 meters. The average cross-product in each concentric shell can
be used to estimate the correlation coefficient at the center of the shell.

0 5 10 15

 1/1

 1/2

 1/4

 1/8

 1/16

Radial Distance between Assays (metres)

Correlation between Assays (log scale)

Approximate
straight line fit

Figure 0.9 Log correlations as a function of r, the inter-assay distance

Figure 0.9 shows the average cross-product for each of these 1-meter shells. This
provides an estimate of the correlation coefficient for each radial distance. The
vertical scale is plotted logarithmically, so the negative exponential Model 1 or 2
(Equations 10 or 11) should yield a negatively sloping straight-line graph. The
results appear to fit this model reasonably well.

The apparently increasing scatter as the radial distance increases is an artifact of
the logarithmic scale. Figure 0.10 shows the same data plotted with a linear
correlation scale. The curved thin line represents a negative exponential fitted by
eye. It is clear that the scatter in the observed data does not vary greatly with the
radial distance. There is also no particular evidence of any cyclic pattern to the
assay values. The data provide empirical support for the exponential decay model
that we had derived theoretically.

0.5.4 The Appropriate Misfit Function

The cross product of two items selected from a pair of correlated standardized
normal distributions has an expected value equal to the correlation between the
two distributions. We can accordingly construct a misfit function based upon the
difference between the cross-product and the modeled correlation coefficient.

So, in using our Models 1, 2 or 3 to fit the correlation coefficient to the observed
cross-products pi as a function of actual separation ri = (xi , yi , zi), our objective is
to minimize the misfit function:

F = ∑[pi - ρ(ri)]
2 /n (17)

In fitting a model, we are finding parameters to minimize F. The residual F, and
the amount it is reduced as we go through the hierarchy of models, helps in
judging the meaningfulness and overall explanatory power of the model.

We have seen that the available 1576 observations could yield more than a
million cross-products. The model fitting to be described here will be based upon
the 4674 cross-products that existed for assays separated by less than 5 meters. As
discussed above, the cross-products were formed from the standardized deviations
of the logarithms of the gold assays. Cross-products of assays with themselves
were of course not used in the analysis.

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15
Radial Distance between Assays (metres)

Correlation between Assays

Approximate
exponential fit

Figure 0.10 Correlations as a function of r, the inter-assay distance

Using data for separations of less than 5 meters is admittedly rather arbitrary. To
use the more than a million available cross-products would take too much
computer time. An alternative approach would be to sample over a greater
separation range. However, given the exponential fall-off model, the parameters
will be less sensitive to data for greater separations. So it was decided to carry out
these initial investigations with a manageable amount of data by limiting the
separation between assays to 5 meters. The theoretical model of Figure 0.8 and
Equation (9) gives us the reassurance that establishing the model for separations
less than 5 meters should allow extrapolation to predict the correlation for greater
separations.

0.5.5 Fitting Models of One or Two Parameters

We will first consider the models that require only one or two parameters. The
misfit function for these models can be easily explored without recourse to a
genetic algorithm. The analysis and graphs to be reported here were produced
using an Excel spreadsheet.

0.5.5.1 Model 0

If we ignore the variation with r, the inter-assay distance, we would just treat the
correlation coefficient as a constant, and so could postulate:

MODEL 0 ρ(r) = a (18)

This model is clearly inadequate, since we have already strong evidence that ρ
does vary strongly with r. The estimate “a” will just be the average cross-product
within the 5-meter radius that we are using data from. If we increased the data
radius, the value of the parameter “a” would decrease.

The parameter “a” can be simply estimated analytically by computing the average
value of the cross-product. The same answer can be obtained iteratively by
minimizing the misfit function F in Equation (17), using the hill-climbing
methods described in the earlier sections. The results are shown in Figure 0.11.
The misfit function is U-shaped, with a single minimum. This procedure gives us
a value of the misfit function, 1.4037, to compare with that obtained for the other
models.

1.4

1.5

1.6

1.7

0 0.2 0.4 0.6 0.8 1.0

Parameter 'a'

Misfit Function 'F'

Minimum F = 1.4037
at a = 0.555

Figure 0.11 Fitting model 0: ρ(r) = a

It should be pointed out that Model 0 and Model 1 do not share a hierarchy, since
each contains only a single parameter and they have different model structures.
Models 2 and 3 can be considered as hierarchical developments from either of
them.

1.4

1.5

1.6

0 0.2 0.4 0.6 0.8 1.0 1.2

Parameter 'k'

Misfit Function 'F'

Minimum F = 1.3910
at k = 0.217

Figure 0.12 Fitting model 1: ρ(r) = exp(-kr)

0.5.5.2 Model 1

Model 1 again involves only a single parameter, k which cannot be solved for
analytically. An iterative approach (as described in the earlier sections) is needed
to find the value of the parameter to minimize the misfit function. Only one
parameter is involved. We can easily explore the range of this parameter over its
feasible range (k > 0) and confirm that we are not trapped in a local minimum, so
the model does not require a genetic algorithm. The graph in Figure 0.12 shows
the results of this exploration.

Model 1 gives a misfit function of 1.3910, somewhat better than the misfit of
1.4037 for Model 0. This is to be expected, because the exponential decline with
distance of Model 1 better agrees with our theoretical understanding of the way
the correlation coefficient should vary with distance between the assays.

0.5.5.3 Model 2

Introducing a second parameter “a” as a constant multiplier forms Model 2. Since
there are still only two parameters, it is easy enough to explore the feasible space
iteratively, and establish that there is only the one global minimum for the misfit
function F.

1.389

1.390

1.391

0.10 0.15 0.20

Parameter 'k'

Misfit Function 'F'

Minimum F = 1.3895
at a = 0.870, k=0.168

a=1.0

a=0.95

a=0.75

a=0.80

a=0.85 a=0.90

Figure 0.13 Fitting model 2: ρ(r) = a.exp(-kr)

The results for Model 2 are summarized in Figure 0.13. The thin-line graphs each
show the variation of F with parameter k for a single value of the parameter a.
The graphs are U-shaped curves with a clear minimum. The locus of these
minima is the thick line, which is also U-shaped. Its minimum is the global
minimum, which yields a minimum misfit function F equal to 1.3895, a marked
improvement over the 1.3910 of Model 1. For this minimum, the parameter “a” is
equal to 0.87 and parameter k equals 0.168.

It should be pointed out that a hybrid analytical and iterative combination finds
the optimum fit to Model 2 more efficiently. For this hybrid approach, we
combine Equations (11) and (17), to give the misfit function for Model 2 as:

F = ∑[pi - a.exp(-kri)]
2/n (19)

Setting to zero the differential with respect to “a,”

a = ∑[pi.exp(-kri)] /∑[exp(-2kri)] (20)

So for any value of k, the optimum value of a can be calculated directly, without
iteration. There is therefore need to explore only the one parameter, k, iteratively.
This procedure leads directly to the bold envelope curve of Figure 0.13.

0.5.5.4 Comparison of Model 0, Model 1 and Model 2

Figure 0.14 summarizes the results of the three models analyzed so far.

Model 0 is clearly inadequate, because it ignores the relation between correlation
and inter-assay distance. Model 2 is preferable to Model 1 because it gives an
improved misfit function, and because it allows for some test/retest inaccuracy in
the assays.

0.0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0 4.0 5.0

Separation Between Assays, metres

Correlation between Assays

Model 0

Model 1

Model 2

Model 0

Model 1

Model 2

1.0

Figure 0.14 Comparing model 0, model 1 and model 2

0.5.5.5 Interpretation of the Parameters

The assays are all from different locations. But the value 0.87 of the intercept
parameter “a” for Model 2 can be interpreted as our best estimate of the
correlation that would be found between two assays made of samples taken from
identical locations. However, each of these two assays can be considered as the
combination of the “true” assay plus some orthogonal noise. Assuming the noise
components of the two assays to be not correlated with each other, the accuracy
of a single estimate, or the correlation between a single estimate and the “true”
assay is given by √a.

The value 0.168 of the exponential slope parameter “k” tells us how quickly the
correlation between two assays dies away as the distance between them decreases.
The correlation between two assays will have dropped to one-half at a distance of
about 3 meters, a quarter at 6 meters, and so on. Given that the data to which the
model has been fitted includes distances up to only 5 meters, it might be objected
that conclusions for greater distances are invalid extrapolations “out of the
window.” This objection would be valid if the model was purely exploratory,
without any theory base. However, our multiplicative model of Equation (8) is
based on theory. It predicts that doubling the inter-assay distance should square
the correlation coefficient. With this theoretical base, we are justified in

extrapolating the exponential fit beyond the data range, as long as we have no
reason to doubt the theoretical model.

0.5.6 Fitting the Non-homogeneous Model 3

Model 3, as postulated in Equation (16), replaces the single distance variation
parameter “k” by a set of six parameters. This allows for the fact that structure
within the ore body may cause continuity to be greater in some directions than in
others.

ρ(ra , rb , rc) = a.exp[-sqrt(ka
2 ra

2 + kb
2 rb

2 + kc
2 rc

2)] (21)

We saw that the model includes seven parameters, the test/retest repeatability “a”;
the three fall-off rates (ka, kb, kc); and three angles (α , β , γ) defining the
directions of the major axes, according to Equations (13) to (15). These last six
parameters allow for the possibility that the orebody is not homogeneous. They
can be used to define ellipsoid surfaces of equal continuity.

Although we cannot minimize the misfit function analytically with respect to
these six parameters, we can again minimize analytically for the multiplying
parameter “a.” For any particular set of values of the parameters (ka, kb, kc); and
three angles (α , β , γ), the derivative ∂F/∂a is set to zero when:

a = ∑[pi.exp[-sqrt(ka
2 rai

2 + kb
2 rbi

2 + kc
2 rci

2)]] / ∑[exp[-2.sqrt(ka
2 rai

2 + kb
2 rbi

2 + kc
2 rci

2

)]] (22)

In Equation (22), the cross-products pi are values for assay pairs with separation
(rai, rbi, rci

). The model can thus be fitted by a hybrid algorithm, with one of the
parameters being obtained analytically and the other six by using iterative search
or a genetic algorithm.

An iterative search is not so attractive in solving for six parameters, because it
now becomes very difficult to ensure against entrapment in a local minimum.
Accordingly, a genetic algorithm was developed to solve the problem.

0.5.6.1 The Genetic Algorithm Program

The genetic algorithm was written using the simulation package Extend, with
each generation of the genetic algorithm corresponding to one step of the
simulation. The use of Extend as an engine for a genetic algorithm is described
more fully in Chapter 6. The coding within Extend is in C. The program blocks
used for building the genetic algorithm model are provided on disk, in an Extend
library titled “GeneticCorrLib.” The Extend model itself is the file “GeneticCorr.”

The genetic algorithm used the familiar genetic operators of selection, crossover
and mutation. Chapter 6 includes a detailed discussion of the application of these
operators to a model having real (non-integer) parameters. It will be sufficient
here to note that:

• The population size used could be chosen, but in these runs was 20.

• Selection was elite (retention of the single best yet solution) plus tournament
(selection of the best out of each randomly chosen pair of parents).

• “Crossover” was effected by random assignment of each parameter value, from
the two parents to each of two offspring.

• “Random Mutation” consisted of a normally distributed adjustment to each of
the six parameters. The adjustment had zero mean and a preset standard
deviation, referred to as the “mutation radius.”

• “Projection Mutation” involved projection to a quadratic minimum along a
randomly chosen parameter. This operator is discussed fully in Chapter 6.

• In each generation, the “best yet” member was unchanged, but nominated
numbers of individuals were subjected to crossover, mutation and projection
mutation. In these runs, in each generation, ten individuals (five pairs) were
subjected to crossover, five to random mutation, and four to projection
mutation. Since the method worked satisfactorily, optimization of these
numbers was not examined.

The solution already obtained for Model 2 was used as a starting solution. For this
homogenous solution, the initial values of (ka, kb, kc) were each set equal to 0.168,
and three angles (α , β , γ) were each set equal to zero.

The model was run for a preset number of generations (500), and kept track of the
misfit function for the “best yet” solution at each generation. It also reported the
values of the six iterated parameters for the “best yet” solution of the most recent
generation, and calculated the “a” parameter, according to Equation (22).

As an alternative to running the genetic algorithm, the simulation could also be
used in “Systematic Projection” mode. Here, as discussed in Chapter 6, each of
the parameters in turn is projected to its quadratic optimum. This procedure is
repeated in sequence for all six parameters until an apparent minimum is reached.
As we have seen earlier, such a systematic downhill projection faces the
possibility of entrapment on a local optimum, or even on a saddle point (see
Figure 0.6).

0.5.6.2 Results Using Systematic Projection

The results of three runs using systematic projection are graphed in Figure 0.15.
For each iteration, the solution was projected to the quadratic minimum along
each of the six parameters (ka, kb, kc) and (α , β , γ). The order in which the six
parameters were treated was different for each of the three runs. It is clear that at
least one of the runs has become trapped on a local optimum (or possibly a saddle
point, as in Figure 0.6).

1.380

1.382

1.384

1.386

1.388

1.390

0 20 40 60 80 100

Misfit Function

Iterations

entrapment on local optimum

Figure 0.15 Fit of model 3 using systematic projection

0.5.6.3 Results Using the Genetic Algorithm

Figure 0.16 shows the results for seven runs of the genetic algorithm. Although
these took much longer to converge, they all converged to the same solution,
suggesting that the genetic algorithm has provided a robust method for fitting the
multiple parameters of Model 3.

0.5.6.4 Interpretation of the Results

At convergence, the parameters had the following values:

a = 0.88; (ka , kb , kc) = (0.307, 0.001, 0.006); (α , β , γ) = (34°, 19°, -43°)

The test/retest repeatability of 0.88 is similar to the 0.87 obtained for Model 2.

The results suggest that the fall-off of the correlation coefficient is indeed far
from homogeneous with direction. Along the major axis, the fall-off rate is 0.307
per meter. This means the correlation decreases to a proportion 1/e in each 3.3

(=1/0.307) meters. The figure corresponds to a halving of the correlation
coefficient every 2.3 meters.

Along the other two axes, the fall-off of the correlation coefficient is much
slower, on the order of 1% or less per meter.

The results are compatible with the geologically reasonable interpretation that the
material has a planar or bedded structure. The correlation would be expected to
fall off rapidly perpendicular to the planes, but to remain high if sampled within a
plane.

1.380

1.382

1.384

1.386

1.388

1.390

0 50 100 150 200 250 300

Misfit Function

Generations

minimum F = 1.3820

Figure 0.16 Fit of model 3 using the genetic algorithm

The direction of the major axis is 34° east of north, pointing 19° up from the
horizontal. The planes are therefore very steeply dipped (71° of horizontal).
Vertical drilling may not be the most efficient form of drilling, since more
information would be obtained by sampling along the direction of greatest
variability, along the major axis. Collecting samples from trenches dug along
lines pointing 34° east of north may be a more economical and efficient way of
gathering data.

Further analysis of data divided into subsets from different locations within the
project would be useful to determine whether the planar structure is uniform, or
whether it varies in orientation in different parts of the ore body. If the latter turns
out to be the case, then the results we have obtained represent some average over
the whole prospect.

0.6 Conclusion
In this chapter, I have attempted to place genetic algorithms in context by
considering some general issues of model building, model testing and model

fitting. We have seen how genetic algorithms fit in the top end of a hierarchy of
analytical and iterative solution methods.

The models that we wish to fit tend to be hierarchical, with models of increasing
complexity being adopted only when simpler models prove inadequate. Similarly,
analytical, hill-climbing and genetic algorithms form a hierarchy of tools. There is
generally no point using an iterative method if an analytical one is available to do
the job more efficiently. Similarly, genetic algorithms do not replace our standard
techniques, but rather supplement them. As we have seen, hybrid approaches can
be fruitful. Analytical techniques embedded in iterative solutions reduce the
number of parameters needing iterative solution. Solutions obtained by iterative
techniques on a simpler model provide useful starting values for parameters in a
genetic algorithm.

Thus, genetic algorithms are most usefully viewed, not as a self-contained area of
study, but rather as providing a useful set of tools and techniques to combine with
methods of older vintage to enlarge the areas of useful modeling.

Reference
Bullard E.C. Everett J.E. & Smith A.G. (1965). The fit of the continents around
the Atlantic, Philosophical Transactions of the Royal Society, 258, 41-51.

Chapter 1 Compact Fuzzy Models and Classifiers
through Model Reduction and Evolutionary
Optimization
Hans Roubos1 and Magne Setnes2

1 Delft University of Technology, Faculty of Information Technology and
Sciences, Control Laboratory,
P.O. Box 5031,
 2600 GA Delft,
The Netherlands,

hans@ieee.org,

http://lcewww.et.tudelft.nl/
2 Heineken Technical Services, Research & Development,
Burgemeester Smeetsweg 1,
2382 PH Zoeterwoude,
The Netherlands, magne@ieee.org

Abstract

The automatic design of fuzzy rule-based models and classifiers from data is
considered. It is recognized that both accuracy and transparency are of major
importance and we seek to keep the rule-based models small and comprehensible.
An iterative approach for developing such fuzzy rule-based models is proposed.
First, an initial model is derived from the data. Subsequently, a real-coded genetic
algorithm (GA) is applied in an iterative fashion together with a rule base
simplification algorithm in order to optimize and simplify the model, respectively.
The proposed modeling approach is demonstrated for a system identification and
a classification problem. Results are compared to other approaches in the
literature. The proposed modeling approach gives more compact, interpretable
and accurate models.

1.1 Introduction
Fuzzy sets and fuzzy logic, introduced in 1965 by Zadeh [1], are applied in a wide
variety of disciplines. Fuzzy modeling is one of those disciplines which is often
used in systems identification and control, fault diagnosis, classification and
decision support systems [2,3]. Like many non-symbolic modeling methods such
as neural networks, fuzzy models are also universal approximators [4]. However,
fuzzy models differ from non-symbolic methods mainly in that they can represent

http://lcewww.et.tudelft.nl/

knowledge in an inspectable manner using fuzzy if-then rules. This facilitates
validation and correction by human experts and provides a way of communicating
with the users. Fuzzy models can be built by encoding expert knowledge into
linguistic rules, giving a transparent system with knowledge that can be
maintained and expanded by human experts. However, knowledge acquisition is
not a trivial task. Experts are not always available, and their knowledge is often
incomplete, episodic and time-varying. Hence, there is an interest in data-driven
fuzzy modeling.

Different approaches have been proposed to obtain fuzzy models from data. Most
approaches, however, utilize only the function approximation capabilities of
fuzzy systems, and little attention is paid to the qualitative aspects. This makes
them less suited for applications in which emphasis is not only on accuracy, but
also on interpretability, computational complexity and maintainability [5,6,7].
This chapter also focuses on the problem of obtaining compact, interpretable and
accurate fuzzy rule-based models from data. We propose to combine the
optimization ability of genetic algorithms (GAs) with other modeling and rule-
based simplification tools.

GAs have received a lot of attention in systems modeling, owing its popularity to
the possibility of searching irregular and high-dimensional solution spaces. GAs
have been applied to learn both the antecedent and consequent parts of fuzzy
rules, and models with both fixed and varying number of rules have been
considered [8,9,10]. Also, GAs have been combined with other techniques like
fuzzy clustering [11,12], neural networks [13,14,15], statistical information
criteria [16], Kalman filters [16], hill-climbing [14] and even fuzzy expert control
of the GAs operators [17], to mention some. This has resulted in a wide collection
of GA-fuzzy modeling tools, but sadly, the transparency and compactness of the
resulting rule-based model is often not considered to be of importance.

We show that different tools can be favorably combined to obtain compact fuzzy
rule-based models of the Takagi-Sugeno (TS) type [18] with low complexity and
good approximation accuracy. A modeling scheme is presented that combines
three previously studied tools for rule-based modeling: fuzzy clustering [19],
similarity-driven simplification [20], and constrained GAs [21,22]. By combining
these tools, a powerful fuzzy modeling scheme is obtained. The algorithm starts
with an initial model of locally identified rules, obtained by means of fuzzy
clustering in the product space of sampled data. Fuzzy clustering helps ensure that
the initial model is of low complexity with rules that cover the relevant regions of
the systems input-output space. Thereafter, the fuzzy rule-based model is
simplified and optimized in an iterative scheme using a constrained real-coded
GA for optimization and the similarity-driven rule base simplification method. A

multi-criterion objective is used by the GA to search not only for model accuracy
but also for model redundancy. This redundancy is used by the simplification tool
to reduce and simplify the fuzzy rule-based model. The result is a compact fuzzy
rule-based model of low complexity with high accuracy. Finally, the GA is
applied once with a criterion function where the redundancy is suppressed in
order to get both distinguishable and accurate rules.

Next, Section 1.2 introduces fuzzy modeling and describes how to obtain an
initial fuzzy model. In Section 1.3 transparency issues and the rule base
simplification method are discussed and some iterative modeling schemes are
proposed. Section 1.4 presents the GA-based optimization strategy. In Section
1.5, the method is demonstrated by means of two examples: (i) a nonlinear
dynamic systems model and (ii) the Iris classification problem. The examples are
known from the literature, and the results are compared to other methods
published. Finally, Section 1.6 concludes this chapter.

1.2 Fuzzy Modeling
An important characteristic of fuzzy models is that they are based on partitioning
information into fuzzy regions by means of fuzzy sets [23]. Contrary to classical
set theory where a crisp set divides the universe of discourse into two groups,
members and non-members, fuzzy sets allows us to describe various forms of
gradual transition from total membership to total non-membership. This allows
for smooth transitions from one region of operation to another. In each of these
regions, the characteristics of the system are more or less different. The fuzzy
model is typically a rule base with fuzzy rules capturing these characteristics by
means of if-then rules with fuzzy predicates that establish relations between the
relevant system variables (e.g., inputs and outputs). When the fuzzy predicates are
associated with linguistic terms (labels), the fuzzy model becomes a qualitative
description of the system using rules like

If the temperature is moderate and the volume is small then the
pressure is low.

The fuzzy sets associated with the labels moderate, small and low are given by
membership functions defined in the numerical domain of the respective system
variables, temperature, volume and pressure, as illustrated in Figure 1.1. Such
models are often called linguistic fuzzy models.

One of the most commonly used inference mechanisms in fuzzy models is the
compositional rule of inference [23], a generalization of the traditional modus
ponens known from classical logic. In applying this inference, the fuzzy model is
seen as a relation R defined on X×Y, where X is the premise space and Y is the
consequent space. Each rule is a fuzzy relation defining a locally valid model.

The total relation is composed by combining the relations defined by the
individual rules. Different operators can be used for implementing this type of
fuzzy inference. A method proposed by Mamdani [24] is frequently encountered
in control engineering [25]. Mamdani fuzzy models use rules in which both the
premise and consequent are described by fuzzy sets (Figure 1.1). Another fuzzy
model type, often used in systems modeling and control, is the Takagi-Sugeno
(TS) model [18]. Like the Mamdani model, it has a fuzzy premise; the
consequents of the rules, however, are defined by (linear) functions of the premise
variables. This makes them more suitable for modeling dynamic systems and for
data-driven modeling. In the following we will consider fuzzy models of the TS
type.

�����

��

���

��� �������� ���		

���

���

��

�����

���������������� ������������		

���

���

�

����

������������

���

���������

���	�
� ���
�����

Figure 1.1 Example of a linguistic fuzzy rule

1.2.1 The Takagi-Sugeno Fuzzy Model

Rule-based models of the TS type [18] are suitable for the approximation of a
broad class of functions. The TS model consists of a set of rules where the rule
consequents are often taken to be linear functions of the inputs:

.1 ,...,

 is is :

111

11

,...,Mipxpxpg

Ax...Ax R

)i(nninii

innii

=++= +

then and If

(1)

Here, x =[x1, x2,… , xn]
T is the input vector and gi the output (consequent). Ri

denotes the ith rule, and Ai1,…, Ain are fuzzy sets defined in the antecedent space
by membership functions µ Aij(xj) :]1,0[→ℜ , pi1,… , pi(n+1) are the consequent

parameters and M is the number of rules.

Each rule in the TS model defines a hyperplane in the antecedent-consequent
product space, which locally approximates the real system’s hypersurface. The
output y of the model is computed as a weighted sum of the individual rule

contributions:

,

1

1

∑
∑

=

==
M

i i

M

i ii g
y

β

β

(2)

where βi is the degree of fulfillment of the ith rule:

.,...,1 ,)(
1

∏
=

==
n

j
jiji MixAβ

(3)

Aij(xj) is the membership of input xj in the fuzzy set Aij, i.e., it is the degree of
match between the given fact and the proposition Aij in the antecedent of the ith
rule.

1.2.2 Data-Driven Identification by Clustering

Transparency is strongly related to the number of rules used by the model and to
the partitioning of the input space (the premise of the rule base). Fixed
membership functions are often used to partition the feature space [10].
Membership functions derived from the data, however, explain the data patterns
in a better way. Typically, less sets and less rules result than in a fixed partition
approach. If the membership functions derived from data have simple shapes and
are well separated, then they can still be assigned meaningful linguistic labels by
the domain experts.

Fuzzy clustering methods have proven useful for identifying this partitioning
from data. Unlike the common approach of unsupervised clustering in the premise
space (inputs only), when output data (labels) are available, it can be useful to
supervise the clustering by considering the product space of the inputs and
outputs. The cluster algorithm then seeks to establish groups within the data that
are homogenous with regard to both the structure in the input and the output
[5,26]. This is the approach followed here.

From data, an initial fuzzy rule-based model is derived in two steps. First, the
fuzzy antecedents Aij are determined by means of fuzzy clustering. Then, with the
premise fixed, the rule consequents are determined by least squares parameter
estimation [19]. For clustering, a regression matrix XT = [x1,…, xK] and an output
vector yT =[y1,… , yK] are constructed from the available data. Note that the
number of used inputs (features) is important for the transparency of the resulting
model. However, we do not explicitly deal with feature selection in this chapter.
Assuming that a proper data collection has been done, clustering takes place in
the product space of X and y to identify regions where the system can be locally
approximated by TS rules. Various cluster algorithms exist, differing mainly in

the shape or size of the cluster prototypes applied. In the following, we will apply
the popular fuzzy c-means algorithm [26].

Given the data ZT = [X, y], the cluster algorithm computes the fuzzy partition
matrix U whose ikth element µik ∈ [0,1] is the membership degree of the data
object zk ∈ Z, in cluster i. The rows of U are thus multidimensional fuzzy sets
(clusters) represented point-wise. Univariate fuzzy sets A ij are obtained by
projecting the rows of U onto the input variables xj:

µAij(xjk)= projj (µik) , (4)

where proj is the point-wise projection operator [27]. The point-wise defined
fuzzy sets Aij are typically non-convex. However, the core and the corresponding
left and right parts of the set can be recognized. To obtain reasonable, e.g.,
convex, fuzzy sets, in order to compute µAij(xj) for any value of xj, the sets are
approximated by fitting suitable parametric functions to the point-wise
projections [19] as illustrated in Figure 1.2.

0 20 40 60 80 100
0

0.5

1

x

M
em

b
er

sh
ip

 d
eg

re
e

Figure 1.2 Fuzzy sets are defined by fitting parametric functions (solid lines)
to the projections (dots) of the point-wise defined fuzzy sets in the fuzzy
partition matrix U

In the following, we apply triangular membership functions, given by the
following parametric function:

()

−
−

−
−=

bc

xc

ab

ax
cbax ,min,0max,,;µ

(5)

If more smooth membership functions are used (e.g., (piece-wise) Gaussian or
exponential functions), the resulting model will in general have a higher accuracy
in fitting the training data. Such functions, however, are less suitable for linguistic
interpretation.

1.2.3 Estimating the Consequent Parameters

Once the antecedent membership functions have been fixed, the consequent
parameters piq, q = 1,…, n+1, of each individual rule are obtained as a local least
squares estimate. Let θi = [pi1,…, pin, pi(n+1)]

T, let Xe denote the matrix [X1] with
rows [xk, 1], and let Wi denote a diagonal matrix in KK×ℜ having the degree of

activation βi (xk) (Eq. 3) as its kth diagonal element. The consequents of the ith
rule is the weighted least squares solution of y = Xe θi + ε, where θi is given by:

 [] yiii WXXWX T
e

1

e
T
e

−
= (6)

1.3 Transparency and Accuracy of Fuzzy Models
The initial rule-based model constructed by fuzzy clustering typically fulfills
many criteria for transparency and good semantic properties [6] (see Figure 1.3):

Moderate number of rules: fuzzy clustering helps ensure a comprehensive
sized rule-based model with rules that describe important regions in the
data.

Distinguishability: a low number of clusters induces distinguishable rules
and membership functions.

Normality: by fitting parameterized functions to the projected clusters,
normal and comprehensive membership functions are obtained that can
be taken to represent linguistic terms.

Coverage: the deliberate overlap of the clusters (rules) and their position
in populated regions of the input-output data space ensure that the model
is able to derive an output for all occurring inputs.

The transparency and compactness of the rule-based model can be further
improved by methods like rule reduction [28] or rule base simplification [20]. We
will apply similarity-driven simplification, and this method is described in
Section 1.3.1. The approximation capability of the rule-based model, however,
remains sub-optimal. The projection of the clusters onto the input variables, and
their approximation by parametric functions like triangular fuzzy sets, introduce a
structural error since the resulting premise partition differs from the cluster
partition matrix. Moreover, the separate identification of the rule antecedents and
the rule consequents prohibits interactions between them during modeling. To
improve the approximation capability of the rule-based model, we apply a GA-
based optimization method as described in section 1.4.

Not moderate number of sets

Bad coverage, not normality

Low distinguishability

Transparent partitioning

x x

x x

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

Figure 1.3 Transparency of the fuzzy rule base premise

1.3.1 Rule Base Simplification

The similarity-driven rule base simplification method [20] uses a similarity
measure to quantify the redundancy among the fuzzy sets in the fuzzy rule-based
model. A similarity measure based on the set-theoretic operations of intersection
and union is applied:

()
BA

BA
BAS

∪
∩

=,
, (7)

where |.| denotes the cardinality of a set, and the ∩and ∪operators represent the
intersection and union, respectively. For discrete domains x ={xl | l=1,2,…, m},
this can be written as:

()
() ()()
() ()()∑

∑
=

=

∨

∧
=

m

l lBlA

m

l lBlA

xx

xx
BAS

1

1,
µµ

µµ

(8)

where ∧ and ∨ are the minimum and maximum operators, respectively.

S is a symmetric measure in [0,1]. If S(A,B) = 1, then the two membership
functions A and B are equal. S(A,B) becomes 0 when the membership functions
are non-overlapping. Similar fuzzy sets are merged when their similarity exceeds
a user-defined threshold γ ∈ [0,1] (γ = 0.5 is applied). Merging reduces the
number of different fuzzy sets (linguistic terms) used in the model and thereby
increases the transparency. If all the fuzzy sets for a feature are similar to the
universal set, or if merging led to only one membership function for a feature,
then this feature is eliminated from the model. The method is illustrated in Figure
1.4.

A
2 2

A
3 2

A
2 1

A
3 1

A
11

R
2

R
3 Class 3

Class 2

If x1 is ... and x2 is ... then y is ...

A
1 2

R
1

Class 1

A
2 3

A
3 3

and X3 is ...

A
1 3

All similar,
remove feature.

Merge similar sets.Similar to universe,
remove set.

A
2 2

If x2 is ...

A
1 2

S
IM

P
L

IF
Y

Figure 1.4 Similarity-driven simplification

1.3.2 Genetic Multi-objective Optimization

To improve the accuracy and transparency of the rule-based model, we apply a
GA-based optimization method [21,22,29]. When an initial fuzzy model has been
obtained from data, it is successively simplified and optimized in an iterative
fashion. Combinations of the GA with the rule base simplification described
above can lead to different modeling schemes. Two different approaches are
shown in Figure 1.5.

GA multi-objective

optimization (0)��

Rule base
simplification

Rule base
simplification

Rule base simplification
and GA optimization

Initial model

Data2.

Model

GA multi-objective

optimization (0)��
GA optimization

Initial model

Data1.

Model

GA multi-objective

optimization (0)��

Figure 1.5 Two modeling schemes with multi-objective GA optimization

The model accuracy is measured as the mean square error for system
approximation (Equation 10) and in terms of the number of misclassifications for
a classifier (Equation 11). To reduce the model complexity, the accuracy

objective is combined with a similarity measure in the GA objective function.
Similarity is rewarded during the iterative process, that is, the GA tries to
emphasize the redundancy in the model. This redundancy is then used to remove
unnecessary fuzzy sets in the next iteration. In the final step, fine-tuning is
combined with a penalty for similar fuzzy sets in order to obtain a distinguishable
term set for linguistic interpretation.

The GA seeks to minimize the following multi-objective function:

() **1 JSJ ⋅+= λ (9)

where J* is either the mean squared error (MSE) for system, approximation
problems:

()∑
=

−==
K

k
kk yy

K
J

1

2* 1
MSE

(10)

where y is the true output and y is the model output, or for classification
problems:

() ()

≠⋅+−= ∑∑

==

K

k
kk

K

k
kk ccyy

K
J

11

2* 1 σ
(11)

where the classification error is included, with c the class and c the predicted
class and σ a weight factor. The MSE was needed in previous optimization
schemes without redundancy measures [22], to differentiate between various
solutions with the same number of classification errors, and it was found to speed
up the convergence of the GA. Moreover, it helps to find fuzzy rules with
consequents in the neighborhood of the class labels which improves the accuracy
and prevents the optimization for making a black-box model based on
interpolation between rules only.

Finally, S* ∈ [0,1] is the average of the maximum pair-wise similarity that is
present in each input, i.e., S* is an aggregated similarity measure for the total
model:

()()
, ,,...,2,1, ,

1

,max1

1

* kjnskj
ns

AAS

n
S i

n

i i

ikij ≠∈

−

= ∑
= (12)

where n is the number of inputs and nsi the number of sets for each input variable.
The weighting function λ ∈ [-1,1] determines whether similarity is rewarded (λ <
0) or penalized (λ > 0).

1.4 Genetic Algorithms
Genetic algorithms (GAs) are gradient-free, parallel optimization algorithms that
use a performance criterion for evaluation and a population of possible solutions
to the search for a global optimum. GAs are capable of handling complex and
irregular solution spaces, and they have been applied to various difficult
optimization problems [30]. Moreover, GAs can handle high-dimensional,
nonlinear optimization problems. Other algorithms based on combinatorial
optimization, such as integer programming, dynamic programming and branch-
and-bound methods, are computationally expensive even for a moderate number
of variables and often only handle a limited amount of alternatives.

GAs are inspired by the biological process of Darwinian evolution where
selection, mutation and crossover play a major role. Good solutions are selected
and manipulated to achieve new, and possibly better solutions. The manipulation
is done by the genetic operators that work on the chromosomes in which the
parameters of possible solutions are encoded. In each generation of the GA, the
new solutions replace the solutions in the population that are selected for deletion.

We consider real-coded GAs [30,31]. Binary coded or classical GAs [32] are less
efficient when applied to multidimensional, high-precision or continuous
problems. The bit-strings can become very long and the search space blows up.
Furthermore, CPU time is lost to the conversion between the binary and real
representation. Other alphabets like the real coding can be favorably applied to
variables in the continuous domain. In real-coded GAs or evolutionary methods,
the variables appear directly in the chromosome and are modified by special
genetic operators. Various real-coded GAs were recently reviewed in [33]. The
main aspects of the proposed GA are discussed below and the implementation is
summarized at the end of this section.

1.4.1 Fuzzy Model Representation

The GA simultaneously optimizes the rules antecedent parameters and the
consequent parameters. Real-coded chromosomes are used to describe the
solutions given as the parameters of the TS-fuzzy model. With a population size
L, we encode the parameters of each fuzzy model (solution) in a chromosome sl, l
= 1,…,L, as a sequence of elements describing the fuzzy sets in the rule
antecedents followed by the parameters of the rule consequents. For a model of M
fuzzy rules, triangular fuzzy sets (each given by three parameters), an n-
dimensional premise and (n+1) parameters in each consequent function, a
chromosome of length N = M(3n+(n+1)) is encoded as:

()MMl θθ ,,,ant,,ant 11 KK=s , (13)

where i contains the consequent parameters piq of rule Ri, and anti = (ai1, bi1,

ci1,…, ain, bin, cin) contains the parameters of the antecedent fuzzy sets Aij, j=1,…,
n, according to (Eq. 5). In the initial population S0={s1

0,…, sL
0}, s1

0
 is the initial

model, and s2
0,…, sL

0
 are created by random uniform variations around s1

0

acknowledging the chromosome constraints (see Section 1.4.5).

1.4.2 Selection Function

The selection function is used to create evolutionary pressure. Well performing
chromosomes have a higher chance of surviving. The roulette wheel selection
method [30] is used to select nC chromosomes for operation. The chance on the
roulette-wheel is adaptive and is given as

∑
’

’
l

ll PP
, where

()
l

l
l

l J

J
P

’
’

min
=

, l,l” ∈ {1,…,L} (14)

and Jl is the performance (Eq. 9) of the model encoded in chromosome sl.

The inverse of the selection function (Pl
-1) is used to select chromosomes for

deletion. The best chromosome is always preserved in the population (elitist
selection). The chance that a selected chromosome is used in a crossover
operation is 90% and the chance for mutation is 10% (in this chapter). When a
chromosome is selected for crossover or mutation, one of the three crossover or
mutation operators, respectively, are applied with equal probability.

1.4.3 Genetic Operators

Two classical operators, simple arithmetic crossover and uniform mutation, and
four special real-coded operators are used in the GA. In the following, r ∈ [0,1] is
a random number (uniform distribution), t = {0, 1,… , T} is the generation
number, sv and sw are chromosomes selected for operation, k ∈ {1, 2,…, N} is the
position of an element in the chromosome, and vk

min and vk
max are the lower and

upper bounds, respectively, on the parameter encoded by element k.

1.4.4 Crossover Operators

For crossover operations, the chromosomes are selected in pairs (sv, sw).

Simple arithmetic crossover: sv
t and sw

t are crossed over at the kth position. The
resulting offsprings are: sv

t+1 = (v1,…,vk,wk+1,…,wN) and sw
t+1 = (w1,…,wk,vk+1,…,vN),

where k is selected at random from {2,…, N-1}.

Whole arithmetic crossover: a linear combination of sv
t and sw

t resulting in sv
t+1 =

r(sv
t) + (1-r)(sw

t) and sw
t+1 = r(sw

t) + (1-r)(sv
t).

Heuristic crossover: sv
t and sw

t are combined such that sv
t+1 = sv

t +r(sw
t - sv

t) and
sw

t+1 = sw
t +r(sv

t - sw
t).

1.4.5 Mutation Operators

For mutation operations, single chromosomes are selected:

Uniform mutation: a random selected element vk, k ∈ {1, 2,…, N} is replaced by
vk', which is a random number in the range [vk

min
, v k

min]. The resulting
chromosome is sv

t+1=(v1,…,vk',…,vm).

Multiple uniform mutation; uniform mutation of n randomly selected elements,
where n is also selected at random from {1, 2,…, N}.

Gaussian mutation; all elements of a chromosome are mutated such that
sv

t+1=(v1',…,vk',…,vm
”) where vk'

 = vk + fk, k= 1, 2,… , N. Here fk is a random
number drawn from a Gaussian distribution with zero mean and an adaptive

variance σk =
()

3

minmax
kk vv

T

tT −⋅−
. The parameter tuning performed by this operator

becomes finer and finer as the generation counter t increases.

1.4.5.1 Constraints

To maintain the transparency properties of the initial rule-based model as
discussed in Section 1.3, the optimization performed by the GA is subjected to
two types of constraints: partition and search space.

The partition constraint ensures that the model can derive an output for all
occurring inputs by prohibiting gaps in the partitions of the input (antecedent)
variables. The coding of a fuzzy set must comply with (Equation 5), i.e., a ≤ b ≤
c. To avoid gaps in the partition, pairs of neighboring fuzzy sets are constrained
by aR ≤ c L , where L and R denote left and right set, respectively. After
initialization of the initial population and after each generation of the GA, these
conditions are forced; e.g., if for some fuzzy set a > b, then a and b are swapped,
and if aR > cL, then aR and cL are swapped.

The GA search space is constrained by two user-defined bound parameters, α1

and α2, that apply to the antecedent and the consequent parameters of the rules,
respectively. The first bound, α1, is intended to maintain the distinguishability of
the models term set (the fuzzy sets) by allowing the parameters describing the
fuzzy sets Aij to vary only within a bound of ±α1·|Xj| around their initial values,
where |Xj| is the length (range) of the domain on which the fuzzy sets Aij are
defined. By a low value of α1, one can avoid the generation of domain-wide, and
multiple overlapping fuzzy sets, which is a typical feature of unconstrained

optimization. The second bound, α2, is intended to maintain the local-model
interpretation of the rules by allowing the qth consequent parameter of the ith
rule, piq, to vary within a bound of ±α2(maxi (piq) - min i (piq)) around its initial
value.

The search space constraints are coded in the two vectors, vmax = [v1
max,…, vN

max]
and vmin = [v1

min,…, vN
min], giving the upper and lower bounds on each of the N

elements in a chromosome. During generation of the initial partition, and in the
case of a uniform mutation, elements are generated at random within these
bounds. Only the heuristic crossover and the Gaussian mutation can produce
solutions that violate the bounds. After these operations, the constraints are
forced, i.e., all elements vk of the operated chromosomes are subjected to vk : =
max(vk

min, min(vk, vk
max)).

1.4.5.2 Proposed algorithm

Given the pattern matrix Z and a fuzzy rule base, select the number of generations
T, the population size L, the number of operations nC, and the constraints α1 and
α2.

Let St be the current population of solutions sl
t, l = 1, 2,… , L, and let Jt be the

vector of corresponding values of the evaluation function:

Make an initial chromosome s1
0 from the initial fuzzy rule-based model.

Calculate the constraint vectors vmin and vmax using s1
0 and α1 and α2.

Create the initial population S0 = {s1
0,… , sL

0} where s1
0, l = 2,… , L are

created by constrained random variations around of s1
0, and the partition

constraints apply.

Repeat genetic optimization for t = 0, 1, 2,…, T-1:
Evaluate St by simulation and calculate Jt.
Select nC chromosomes for operation.
Select nC chromosomes for deletion.
Operate on chromosomes acknowledging the search space constraints.
Implement partition constraints.
Create new population St+1 by substituting the operated chromosomes
for those selected for deletion.
Select best solution from ST by evaluating JT.

1.5 Examples

1.5.1 Nonlinear Plant

We consider the 2nd-order nonlinear plant studied by Wang and Yen in [16,34,28]:

() () ()() () ,2,1 kukykygky +−−= (15)

with

() ()() () () ()()
() () .

211

5.0221
2,1

22 −⋅−+
−−⋅−⋅−=−−

kyky

kykyky
kykyg

(16)

The goal is to approximate the nonlinear component g(y(k-1),y(k-2)) of the plant
with a fuzzy model. In [16], 400 simulated data points were generated from the
plant model (Equations 15 and 16). 200 samples of identification data were
obtained with a random input signal u(k) uniformly distributed in [-1.5, 1.5],
followed by 200 samples of evaluation data obtained using a sinusoid input signal
u(k) = sin(2πk/25) (Figure 1.6).

0 50 100 150 200 250 300 350 400
−2

0

2

u(
k)

0 50 100 150 200 250 300 350 400
−1

0

1

g(
k)

0 50 100 150 200 250 300 350 400
−2

0

2

y(
k)

k

Figure 1.6 Input u(k), unforced system g(k), and output y(k) of the plant in
(Equations 15 and 16)

Solutions in the Literature

We compare our results with those obtained by the three different approaches
described below. The best results obtained in each case are summarized in Table
1.1 and Table 1.2.

In [16], a GA was combined with a Kalman filter to obtain a fuzzy model of the
plant. The antecedent fuzzy sets of 40 rules, encoded by Gaussian membership
functions, were determined initially by clustering and kept fixed. A binary GA

was used to select a subset of the initial 40 rules in order to produce a more
compact rule-based model with better generalization properties. The consequents
of the various models in the GA population were estimated after each generation
by the Kalman filter, and an information criterion was used as the evaluation
function to balance the trade-off between the number of rules and the model
accuracy.

In [34], various information criteria were used to successively pick rules from a
set of 36 rules in order to obtain a compact, but accurate model. The initial rule-
based model was obtained by partitioning each of the two inputs y(k-1) and y(k-2)
by six equally distributed fuzzy sets. The rules were picked in an order
determined by an orthogonal transform.

In [28], various orthogonal transforms for rule selection and rule ordering were
studied using an initial model with 25 rules. In this initial model, 20 rules were
obtained by clustering, while five redundant rules were added to evaluate the
selection performance of the studied techniques.

1.5.2 Proposed approach

We applied both of the modeling schemes proposed in section 1.4. For both
methods, TS models with Singleton as well singleton as linear consequent
functions were studied. The GA was applied with L = 40, nC = 10, α1 = 25%, α2 =
25% and T = 400 in the final optimization and T = 200 in the iterative
optimization-complexity reduction step. The threshold λ = 1 for redundancy
searches and λ = -1 in the final optimization and the threshold for set merging
was 0.5 and 0.8 for removing sets similar to the universal set.

1.6 TS Singleton Model
First we apply scheme 1 (Figure 1.5). A singleton TS model consisting of seven
rules was obtained by fuzzy c-means clustering and genetic optimization. The
MSE for both training and validation data were comparable, indicating that the
initial model is not over-fitted. By GA optimization, the MSE was reduced by
73% from 2.4·10-2 to 6.6·10-3 on the training data, and by 78% from 4.5·10-2 to
9.9·10-3 on the evaluation data.

Next, the proposed scheme 2 (Figure 1.5), including the complexity reduction
step, was considered. During the iterative complexity reduction step, in each
iteration the model was sought for redundancy, simplified and finally optimized
by the GA. The model was reduced as follows in four steps: (i) simplification
reduces from 7 + 7 to 4 + 4 fuzzy sets, (ii) to 3 + 4 sets, (iii) to 3 + 3 sets, (iv) to 3
+ 2 sets and one rule was removed. The final model, has only six rules, using 3 +
2 fuzzy sets (Figure 1.7). The local submodels and the overall model are shown in

Figure 1.8. The identification and validation results, as well as the prediction
error, are presented in Figure 1.9. The resulting singleton TS model is compact
and has good approximation properties, except in the low region where almost no
data was provided*. The reduced model with six rules and five sets is almost as
accurate as the optimized model with seven rules and 14 sets (Table 1.1).

Table 1.1 Singleton TS fuzzy models for the dynamic plant

Ref. No. of rules No. of sets MSE
train

MSE
Eval

Wang and
Yen, 1999

40 (initial)

28 (optimized)

40 Gaussians
(2D)

28 Gaussians
(2D)

3.3e-4

3.3e-4

6.9e-4

6.0e-4

Yen and
Wang, 1998

36 (initial)

23 (optimized)

12 B-splines

12 B-splines

2.8e-5

3.2e-5

5.1e-3

1.9e-3

Yen and
Wang, 1999

25 (initial)

20 (optimized)

25 Gaussians
(2D)

20 Gaussians
(2D)

2.3e-4

6.8e-4

4.1e-4

2.4e-4

This chapter 7 (initial) 14 triangulars 2.4e-2 4.5e-2

scheme 1 7 (optimized) 14 triangulars 6.6e-3 9.3e-3

scheme 2 6 (optimized) 5 triangulars 2.7e-3 9.5e-3

* Better results are possible when a data set is used that covers the output domain better, as
is shown in [22].

Linguistic labels as “negative,” “zero” and “positive” can be assigned to the
fuzzy sets, resulting in comprehensible rules.

−2 −1 0 1 2
0

1

y(k−1)

µ

−2 −1 0 1 2
0

1

y(k−2)

µ

−2 −1 0 1 2
0

1

y(k−1)

µ

−2 −1 0 1 2
0

1

y(k−2)

µ

Figure 1.7 Initial fuzzy sets and fuzzy sets in the reduced model

−2

0

2

−2

0

2

−1

−0.5

0

0.5

1

y(k−1)y(k−2)

g(
k)

 −2

0

2

−2

0

2

−1

−0.5

0

0.5

1

y(k−1)y(k−2)

g(
k)

Figure 1.8 Local singleton models and the response surface

0 100 200 300 400
−1

0

1

g(
k)

, g
m

(k
)

0 100 200 300 400

−0.2

0

0.2

g(
k)

−
g m

(k
)

k
Figure 1.9 Simulation of the six-rule TS singleton model and error in the
estimated output

1.7 TS Linear Model
Subsequently, a TS model with linear consequents was considered, based on
scheme 1 (Figure 1.5). Because of the more powerful approximation capabilities
of the functional consequents, an initial model of only five rules was constructed
by clustering. The MSE for both training and validation data were, as expected,
better than for the singleton model. Moreover, the result on the validation data
(low frequency signal) is twice as good as on the identification data, indicating
the generality of the obtained model. By GA optimization, the MSE was reduced
by 71% from 4.9·10-3 to 1.4·10-3 on the training data, and by 80% from 2.9·10-3 to
5.9·10-4 on the evaluation data.

Finally, a TS model with linear consequents was obtained by scheme 2 (Figure
1.5). The initial model was obtained with five clusters, resulting in a model with
five rules and ten fuzzy sets. The model was reduced in two steps: (i)
simplification reduces from 5 + 5 to 3 + 5 fuzzy sets, (ii) simplification reduces
to 2 + 3 sets. The resulting TS model with linear consequents has only five rules
using 2 + 3 fuzzy sets (Figure 1.10). The identification and validation results as
well as the prediction error are presented in Figure 1.11. The approximation
properties are better than for the singleton TS model. The linear consequent TS
model also extrapolates well and the difficult part in the low region is nicely
approximated. The local submodels and the overall model output are shown in
Figure 1.12. The submodels approximate the local behavior well. Once again, the
reduced and optimized TS model with five rules and five sets is comparable in
accuracy to the initial TS model with five rules and ten fuzzy sets (Table 1.2).

Table 1.2 Linear TS fuzzy models for the dynamic plant

Ref. No. of Rules No. of Sets MSE
Train

MSE
Eval.

Yen and Wang 36 (initial) 12 B-splines 1.9e-6 2.9e-3

1998 24 (optimized) 12 B-splines 2.0e-6 6.4e-4

This chapter 5 (initial) 10 triangulars 4.9e-3 2.9e-3

scheme 1 5 (optimized) 10 triangulars 1.4e-3 5.9e-4

scheme 2 5 (optimized) 5 triangulars 8.3e-4 3.5e-4

From the results summarized in Table 1.1 and Table 1.2, we see that the proposed
modeling approach is capable of obtaining good results using fewer rules and
fuzzy sets than other approaches reported in the literature. Moreover, simple
triangular membership functions were used as opposed to cubic B-splines in [34]
and Gaussian-type basis functions in [16,28]. By applying the GA after each rule

base simplification step, not only accurate, but also compact and transparent rule-
based models were obtained.

−2 −1 0 1 2
0

1

y(k−1)

µ

−2 −1 0 1 2
0

1

y(k−2)

µ

−2 −1 0 1 2
0

1

y(k−1)

µ

−2 −1 0 1 2
0

1

y(k−2)

µ

(a) 5 rules + 10 sets (b) 5 rules + 8 sets

−2 −1 0 1 2
0

1

y(k−1)

µ

−2 −1 0 1 2
0

1

y(k−2)

µ

−2 −1 0 1 2
0

1

y(k−1)

µ

−2 −1 0 1 2
0

1

y(k−2)

µ

(c) 5 rules + 8 sets (d) 5 rules + 5 sets

−2 −1 0 1 2
0

1

y(k−1)

µ

−2 −1 0 1 2
0

1

y(k−2)

µ

(e) 5 rules + 5 sets

Figure 1.10 Local linear TS-model derived in five steps: (a) initial model with
ten clusters, (b) set merging, (c) GA-optimization, (d) set-merging, (e) final
GA optimization

0 100 200 300 400
−1

0

1

g(
k)

, g
m

(k
)

0 100 200 300 400

−0.2

0

0.2

g(
k)

−
g m

(k
)

k

Figure 1.11 Simulation of the six-rule TS singleton model and the error in the
estimated output

Figure 1.12 Local linear TS model and the response-surface

1.7.1 Iris Classification Problem

The Iris data is a common benchmark in classification and pattern recognition
studies [8,17,37,38]. The problem is low dimensional, which makes it suitable to
illustrate the proposed algorithm. It contains 50 measurements of four features
from each of the three species Iris setosa, Iris versicolor, and Iris virginica [39].
The original Iris data was recently republished in [37]. We label the species 1, 2
and 3, respectively, which gives a 5×150 pattern matrix Z of observation vectors.

150, 2,..., 1, 3}, 2, {1,],,,,,[4321 =∈= kccxxxx kkkkkk
T
kx

(17)

where xk1, xk2, xk3, and xk4 are the sepal length, the sepal width, the petal length,
and the petal width, respectively. The measurements are shown in Figure 1.13.

0 50 100 150
4

5

6

7

8

Se
pa

l l
en

gt
h

Sample k
0 50 100 150

2

3

4

5

Se
pa

l w
id

th

Sample k

0 50 100 150
0

2

4

6

8

Pe
ta

l l
en

gt
h

Sample k
0 50 100 150

0

1

2

3

Pe
ta

l w
id

th

Sample k

Figure 1.13 Iris data: setosa (×), versicolor (Ο), and virginica (∇)

1.7.2 Solutions in the literature

Ishibuchi et al. [38] reviewed nine fuzzy classifiers and ten non-fuzzy classifiers
from the literature, giving between 3 and 24 misclassifications for the Iris
classification problem for leaving-one-out validation. Bezdek et al. [40] compared
various multiple prototype generation schemes. With the so-called dog-rabbit
model, five prototypes were obtained which gave three resubstitution errors. In
[41], a nearest prototype approach, with three prototypes selected by either a
binary coded GA or random search, also gave three resubstitution errors. Shi et al.
[17] used a GA with integer coding to learn a Mamdani-type fuzzy model.
Starting with three fuzzy sets associated with each feature, the membership
function shapes and types, and the fuzzy rule set, including the number of rules,
were evolved using a GA. Furthermore, a fuzzy expert system was used to adapt
the GA's learning parameters. After several trials with varying learning options, a
four-rule model was obtained, which gave three errors in learning the data.

1.7.3 Proposed Approach

The fuzzy c-means clustering was applied to obtain an initial TS model with
singleton consequents. In order to perform classification, the output yk of the TS
model was used with the following classification rule:

,5.32.5 if3

,5.21.5 if2

,5.10.5 if1

≤<
≤<
≤<

=

k

k

k

k

y

y

y

c

(18)

First, an initial model with three rules was constructed from clustering, where
each rule described a class (singleton consequents). The classification accuracy of
the initial model was rather discouraging, giving 33 misclassifications on the
training data. The rule antecedents sets are shown in Figure 1.14 and the
estimated rule consequents were {1.00, 2.10, 2.95}, which is close to the class
labels as expected. These are changed for transparency reasons into {1,2,3}
before further optimization. We applied both of the optimization schemes as
proposed in Section 1.3. The GA was applied with L = 40, nC = 10, T = 200 in the
iterative optimization-complexity reduction step and T = 400 in the final
optimization. The threshold for set merging was 0.5 and 0.8 for removing sets
similar to the universal set. The weight σ in the objective (Eq. 11) was 1 and the
threshold λ = 0.5 for redundancy searches and λ = -0.5 for the final optimization
step. The other parameters are varied and given in Table 1.3.

First, scheme 1 was applied with all the data for learning and validation. The
result is expected to be similar to the leave-one-out or resubstitution error, which
needs many repetitions for an accurate average result and highly depends on the
chosen samples. The results for three typical runs with different parameters are
presented in Table 1.3 (A,B,C). The number of misclassification is quickly
reduced to 3 or 4. The obtained model is accurate and is suitable for interpretation
since the rules consequents are the same or close to the actual class labels such
that each rule can be taken to describe a class. The fuzzy sets of the optimized
model B are shown in Figure 1.15. The corresponding rules are:

R1: If x1 is short and x2 is wide and x3 is short and x4 is narrow then
the class is 1.

R2: If x1 is medium and x2 is narrow and x3 is medium and x4 is
medium then the class is 2.

R3: If x1 is long and x2 is medium and x3 is long and x4 is wide then
the class is 3.

Second, scheme 2 was applied. The results for three typical runs with different
parameters are presented in Table 1.3 (D,E,F). The number of misclassification is
quickly reduced to 1, 3 or 4. One intermediate model had 1 misclassification only
but was not very transparent due to overlapping sets; however, it resulted in a
perfect rule-interpolation which shows the good optimization property of the GA.
The rule-base reduction is one or two times applied and, subsequently, the model
is optimized for transparency. The resulting models are highly reduced while the

misclassification error is not really increased. The fuzzy sets of the optimized
model E are shown in Figure 1.16. The corresponding rules are:

R1: If x3 is short and x4 is narrow then the class is 1.

R2: If x3 is medium and x4 is long then the class is 2.

R3: If x3 is long and x4 is wide then the class is 3.

The proposed iterative reduction scheme removed seven sets from the three-rule
model and thereby removing two inputs. By comparing the reduced fuzzy model
with the data in Figure 1.15, one observes that the inputs with the highest
information content are maintained.

Table 1.3 Fuzzy rule-based classifiers for the Iris data derived by means of
scheme 1 (A,B,C) and scheme 2 (D,E,F)

No. α1 α2 λ Rules Misclass.

A 0.25 0.25 0/-0.5 {3333} {4}
B 0.25 0 0/-0.5 {3333} {3}
C 0.5 0 0/-0.5 {3333} {2}
D 0.25 0.25 0.5/-0.5 {2133}, {2232}, {0032} {4},{3},{4}
E 0.25 0 0.5/-0.5 {2233}, {2032}, {0032} {3},{3},{4}
F 0.5 0 0.5/-0.5 {2032}, {0032} {1},{3},{4}

Note: Rules gives the number of sets for each input and misclassifications the
performance, after each rule-base simplification step.

5 6 7 8
0

1

Sepal length

µ

2.5 3 3.5 4 4.5
0

1

Sepal width

µ

2 4 6
0

1

Petal length

µ

0.5 1 1.5 2 2.5
0

1

Petal width

µ

Figure 1.14 Initial fuzzy rule-based model with three rules and 33
misclassifications

The results obtained with the proposed modeling approach for the Iris data case
illustrate the power of the GA for optimizing fuzzy rule-based classifiers. By
simultaneously optimizing the antecedent and/or consequent parts of the rules,
according scheme 1, the GA found an optimum for the model parameters in the
neighborhood of the initializations, which gave drastic improvements in the
classification performance. Moreover, compact fuzzy models with a low amount
of inputs and fuzzy sets were obtained by the proposed model reduction scheme
2. The results on the Iris data are nice; however, more complicated classification
problems must be solved to prove the real power of the method. A modified
version of the proposed algorithm is already applied in [42] to the Wine data that
has three classes and 13 attributes.

5 6 7 8
0

1

Sepal length

µ

2.5 3 3.5 4 4.5
0

1

Sepal width

µ

2 4 6
0

1

Petal length

µ

0.5 1 1.5 2 2.5
0

1

Petal width

µ

Figure 1.15 Optimized fuzzy rule-based model with three rules and three
misclassifications (Table 1.3-B)

2 4 6
0

1

Petal length

µ

0.5 1 1.5 2 2.5
0

1

Petal width

µ

Figure 1.16 Optimized and reduced fuzzy rule-based model with three rules
and four misclassifications (Table 1.3-E)

1.8 Conclusion
We have described an approach to construct compact and transparent, yet
accurate fuzzy rule-based models from measured input-output data. Methods for
modeling, complexity reduction and optimization are combined in the approach.
Fuzzy clustering is first used to obtain an initial rule-based model. Similarity-
based simplification and GA-based optimization are then used in an iterative
manner to decrease the complexity of the model while maintaining high accuracy.
The proposed algorithm was successfully applied to two problems known from
the literature. The accuracy of the obtained models was comparable to the results
reported in the literature; however, the obtained models use fewer rules and less
fuzzy sets than other models reported in the literature.

Acknowledgments The authors are grateful to Dr. Liang Wang, (co)author of
references [16,34,28], for unconditionally sharing his results and computer code
for this research.

References
[1] L.A. Zadeh, Fuzzy sets, Information and Control, Vol. 8, pp. 338-353, 1965.

[2] H.B. Verbruggen and R. Babuska, Fuzzy Logic Control - Advances in
Applications, World Scientific, Singapore, 1999.

[3] R. Isermann, On fuzzy logic applications for automatic control, supervision,
and fault diagnosis, IEEE Transactions on Systems, Man and Cybernetics - Part
A: Systems and Humans, Vol. 28, pp. 221-235, 1998.

[4] B. Kosko, Fuzzy systems as universal approximators, IEEE Transactions on
Computers, Vol. 43, pp. 1329-1333, 1994.

[5] M. Setnes, R. Babuska, and H.B. Verbruggen, Rule-based modeling: Precision
and transparency, IEEE Transactions on Systems, Man and Cybernetics - Part C:
Applications and Reviews, Vol. 28, no. 1, pp. 165-169, 1998.

[6] J. Valente de Oliveira, Semantic constraints for membership function
optimization, IEEE Transactions on Fuzzy Systems, Vol. 19, no. 1, pp.128-138,
1999.

[7] J.G. Martín-Blázquez, From approximative to descriptive models, in 9th IEEE
International Conference of Fuzzy Systems, San Antonio, Texas, USA, May 7-10,
2000, IEEE, pp. 829-834.

[8] H. Ishibuchi, T. Murata, and I.B. Türksen, Single-objective and two-objective
genetic algorithms for selecting linguistic rules for pattern classification
problems, Fuzzy Sets and Systems, Vol. 89, pp. 135-150, 1997.

[9] C. H. Wang, T. -P. Hong, and S. -S. Tseng, Integrating fuzzy knowledge by
genetic algorithms, Fuzzy Sets and Systems, Vol. 2, no. 4, pp. 138-149, 1998

[10] H. Ishibuchi, T.Nakashima, and T.Murata, Performance evaluation of fuzzy
classifier systems for multidimensional pattern classification problems, IEEE
Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, Vol. 29,
no. 5, pp. 601-618, 1999.

[11] L.O. Hall, I.B. Özyurt, and J.C. Bezdek, Clustering with genetically
optimized approach, IEEE Transactions on Evolutionary Computing, Vol. 3, no.
2, pp. 103-112, 1999.

[12] H.-S. Hwang, Control strategy for optimal compromise between trip time
and energy consumption in a high-speed railway, IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans, Vol. 28, no. 6, pp. 791-802,
1998.

[13] I. Jagielska, C. Matthews, and T. Whitfort, An investigation into the
application of neural networks, fuzzy logic, genetic algorithms, and rough sets to
automated knowledge acquisition for classification problems, Neurocomputing,
Vol. 24, pp. 37-54, 1999.

[14] M. Russo, FuGeNeSys - a fuzzy genetic neural system for fuzzy modeling,
IEEE Transactions on Fuzzy Systems, Vol. 6, no. 3, pp. 373-388, 1998.

[15] A. Blanco, M. Delgado, and M.C. Pegalajar, A genetic algorithm to obtain
the optimal recurrent neural network, International Journal of Approximate
Reasoning, Vol. 23, pp. 67-83, 2000.

[16] L. Wang and J. Yen, Extracting fuzzy rules for system modeling using a
hybrid of genetic algorithms and Kalman filter, Fuzzy Sets and Systems, Vol. 101,
pp. 353-362, 1999.

[17] Y. Shi, R. Eberhart, and Y. Chen, Implementation of evolutionary fuzzy
systems, IEEE Transactions on Fuzzy Sytems, Vol. 7, no. 2, pp. 109-119, 1999.

[18] T. Takagi and M. Sugeno, Fuzzy identification of systems and its application
to modeling and control, IEEE Transactions on Systems, Man and Cybernetics,
Vol. 15, pp. 116-132, 1985.

[19] R. Babuska, Fuzzy Modeling for Control, Kluwer Academic Publishers,
Boston, 1998.

[20] M. Setnes, R. Babuska, U. Kaymak, and H.R. van Nauta Lemke, Similarity
measures in fuzzy rule base simplification, IEEE Transactions on Systems, Man
and Cybernetics - Part B: Cybernetics, Vol. 28, no. 3, pp. 376-386, 1998.

[21] M. Setnes and J.A. Roubos, Transparent fuzzy modeling using fuzzy
clustering and GA's, in 18th International Conference of the North American

Fuzzy Information Processing Society, New York, USA, June 10-12, 1999,
NAFIPS, pp. 198-202.

[22] M. Setnes and J.A. Roubos, GA-fuzzy modeling and classification:
complexity and performance, IEEE Transactions on Fuzzy Systems, in press
2000.

[23] L.A. Zadeh, Outline of a new approach to the analysis of complex systems
and decision processes, IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 1, pp. 28-44, 1973.

[24] E.H. Mamdani, Application of fuzzy algorithms for control of a simple
dynamic plant, in Proceedings IEE, number 121, pp. 1585-1588, 1974.

[25] R. Jager, Fuzzy Logic in Control, Ph.D. thesis, Delft University of
Technology, Department of Electrical Engineering, Control Laboratory, 1995.

[26] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Functions, Plenum
Press, New York, 1981.

[27] R. Kruse, J. Gebhardt, and F. Klawonn, Foundations of Fuzzy Systems, John
Wiley & Sons, Chichester, 1994.

[28] J. Yen and L. Wang, Simplifying fuzzy rule-based models using orthogonal
transformation methods, IEEE Transactions on Systems, Man and Cybernetics -
Part B: Cybernetics, Vol. 29, no. 1, pp. 13-24, 1999.

[29] J.A. Roubos and M. Setnes, Compact fuzzy models through complexity
reduction and evolutionary optimization, in Proceedings 9th IEEE Conference on
Fuzzy System, San Antonio, USA, May 7-10, 2000, pp 762-767.

[30] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, Springer Verlag, New York, 2nd edition, 1994.

[31] L.D. Davis, K. De Jong, M.D. Vose, and L.D. Whitley eds., Evolutionary
Algorithms. The IMA Volumes in Mathematics and its Applications, Vol. 111,
Springer, 1999.

[32] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA, 1989.

[33] F. Herrera, M. Lozano, and J.L. Verdegay, Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis, Artificial Intelligence
Review, Vol. 12, pp. 265-319, 1998.

[34] J. Yen and L. Wang, Application of statistical information criteria for
optimal fuzzy model construction, IEEE Transactions on Fuzzy Systems, Vol. 6,
no. 3, pp. 362-371, 1998.

[35]J.C. Bezdek, J.M. Keller, R.Krishnapuram, L.I. Kuncheva, and N.R. Pal, Will
the real Iris data please stand up?, IEEE Transactions on Fuzzy Systems, Vol. 7,
no. 3, pp. 368-369, 1999.
[36] H. Ishibuchi and T. Nakashima, Voting in fuzzy rule-based systems for
pattern classification problems, Fuzzy Sets and Systems, Vol. 103, pp. 223--238,
1999.
[37] E. Anderson, The Irises of the Gaspe peninsula, Bulletin American Iris
Society, Vol. 59, pp. 2-5, 1935.
[38] J.C. Bezdek, T.R. Reichherzer, G.S. Lim, and Y. Attikiouzel, Multiple-
prototype classifier design, IEEE Transactions on Systems, Man and Cybernetics
-Part Applications and Reviews, Vol. 28, no. 1, pp. 67-79, 1998.
1391 L.I. Kuncheva and J.C. Bezdek, Nearest prototype classification: clustering,
genetic algorithms, or random search?, IEEE Transactions on Systems, Man and
Cybernetics - Part C: Applications and Reviews}, Vol. 28, no. I , pp. 160- 164,
1998.
[40] J.A. Roubos, M. Setnes and J. Abonyi, Learning fuzzy classification rules
from data, in Proceedings RASC2000: Recent Advances in Sqft Computing,
Leicester, U.K., June 29-30, 2000.

NamacA

NamacA

NamacA

NamacA

Chapter 2 On the Application of Reorganization
Operators for Solving a Language Recognition
Problem

Robert Goldberg Natalie Hammerman
Dept of Computer Science Dept of Math and Computer Science
Queens College Molloy College
65-30 Kissena Blvd. PO Box 5002
Flushing, NY 11367 Rockville Centre, NY 11571-5002

Goldberg@qcunix1.acc.qc.edu nhammerman@fsmail.pace.edu

Abstract

The co-authors (1998) previously introduced two reorganization operators (MTF
and SFS) that facilitated the convergence of a genetic algorithm which uses a
bitstring genome to represent a finite state machine. Smaller solutions were
obtained with a faster convergence than the standard (benchmark) approaches.
The current research applies this technology to a different problem area,
designing automata that can recognize languages given a list of representative
words in the language and a list of other words not in the language. The
experimentation carried out indicates that in this problem domain also, smaller
machine solutions were obtained by the MTF operator than the benchmark. Due
to the small variation of machine sizes in the solution spaces of the languages
tested (obtained empirically by Monte Carlo methods), MTF is expected to find
solutions in a similar number of iterations as the other methods. While SFS
obtained faster convergence on more languages than any other method, MTF has
the overall best performance based on a more comprehensive set of evaluation
criteria.

2.1 Introduction
Two reorganization operators were introduced that facilitated the convergence of
a genetic algorithm using a bitstring genome to represent a finite state machine
(Hammerman and Goldberg, 1999). The motivation behind these operators (MTF
and SFS) is that equivalent FSMs would compete against each other in a
population because of a reordering of the state numbers (names). Each of the
algorithms, by reorganizing a population of these machines during run time,
yielded uniform representation of equivalent FSMs with the same number of
states. The MTF algorithm, in addition, was designed to shorten the defining

length of the resultant schemata for an FSM genome. The authors originally
applied these modified genetic algorithms to the trail following problem (John
Muir trail of Jefferson et al., 1992) and smaller solutions were obtained with a
faster convergence than the standard (benchmark) approaches (Goldberg and
Hammerman, 1999).

Finite state machines describe solutions to a number of different application areas
in artificial life and artificial intelligence research. This chapter analyzes the
effects that reorganization operators have on genetic algorithms obtaining finite
state machines that differentiate between words in a language and words not in
the language (the language recognition problem.)

2.1.1 Performance across a New Problem Set

This research tests the reorganization operators on a new set of problems,
constructing automata that recognize languages. Given an alphabet Σ and a
language L(Σ) ⊆ Σ*, find an automata that can differentiate between words in L
and words not in L. For the purposes of this research, L is assumed to be finite so
that the language L is regular and can be recognized by a finite state automata.

The Tomita Test Set (1982) was used as the basis for the experimentation. This
set consists of 14 languages. To add some complexity, the Tomita Test Set was
augmented with six additional languages (Section 2.3.1). Two of the Tomita Set
languages were deemed trivial for testing because solutions appeared in the initial
randomly generated population before the operators were applied. Thus, 18 of
these 20 languages were used for the experiments examining the effect of MTF
and SFS on GA efficiency/convergence. A brief history of using finite state
automata in evolutionary computation is now presented.

2.1.2 Previous Work

The finite state machine genome has been used to model diverse problems in
conjunction with a simulated evolutionary process. Jefferson et al. (1992) and
Angeline and Pollack (1993) used a finite state machine genome to breed an
artificial ant capable of following an evaporating pheromone trail. This work was
the original motivation for the reorganization operators discussed in this chapter
and will be discussed next. The Jefferson et al. genetic algorithm (described in
Section 2.2.1) will form the benchmark of the experimentation of this chapter.
Fogel (1991), Angeline (1994), and Stanley et al. (1994) used FSMs to analyze
the iterated prisoner's dilemma. MacLennan (1992) represented his simulated
organisms (simorgs) by FSMs to explore communication development. This work
is particularly interesting in that learning is passed on from generation to
generation.

Jefferson et al. (1992) used a GA to locate an FSM which represents a strategy to
successfully complete the John Muir trail with the application of a maximum of
200 pairs of transition-output rules. Traversing this trail from start to finish
becomes progressively harder due to the increasing occurrence of unmarked
sections along the trail. A successful trail following strategy was located by
Jefferson et al.'s GA using a genome which allowed for an FSM with a maximum
of 32 states. According to schema theory, shorter defining lengths are more
beneficial to the growth of useful schemata (Goldberg 1989), which in turn
enhances convergence rates. Based on this, the layout of the FSM within its
genome should inhibit the GA's progress towards a solution.

In an attempt to enhance schema growth and provide a more efficient search with
a GA, two reorganization operators (MTF and SFS, Sections 2.2.2 and 2.2.3
respectively) were designed for finite state machines that are represented by bit
arrays (bitstrings). These operators were applied to successive generations of
FSMs bred by a GA to see if one or both of these operators would hasten the
search for a solution.

As shown in Goldberg and Hammerman (1999) for the trail following problem,
the MTF algorithm performed better and resulted in faster (fewer generations and
less processor time) convergence to a solution. The boost that MTF gave the GA
on the trail following problem is impressive, but a set of tests on a single problem
is not sufficient. The question arises as to whether the results are particular to this
problem or whether the results will carry across other problems such as the
language recognition problem considered in this chapter.

Section 2.2 presents the GA outline and modifications considered in this research
(reorganization operators and competition). Section 2.3 details the experiments
performed to see if similar results can be obtained by applying the reorganization
operators. Then, Section 2.4 contains the evaluation criteria applied to the data
from these experiments, and in Section 2.5 the data from these new experiments
are evaluated. Conclusions and further research directions are presented in
Section 2.6.

2.2 Reorganization Operators
This section introduces the genetic algorithm methods used in the experiments
(Section 2.3). The benchmark used is that of Jefferson et al. (1992) which is
described as a GA shell (based on Goldberg, 1989) for the modified operators of
Section 2.2.2 (MTF) and of Section 2.2.3 (SFS). Section 2.2.4 considers the
incorporation of competition.

2.2.1 The Jefferson Benchmark

The genetic algorithm involves manipulating data structures that represent
solutions to a given problem. Generally, the population of genomes considered by
a genetic algorithm consists of many thousands. Problems that involve
constructing finite state automata typically utilize binary digit arrays (bitstrings)
which encapsulate the information necessary to describe a Finite State Automata
(start state designation, state transition table, final states designation).

Genome Map
Bit # 0 3 4 5 8 9 12

____ _ ____ ____
Contents start state final next state next state

 state? for q0 with input 0 for q0 with input 1

Bit # 13 14 17 18 21
 _ ____ ____

Contents final next state next state
state? for q1 with input 0 for q1 with input 1

Bit # 4+9i 5+9i 12+9i
 . . . _ ____ ____ . . .

Contents final next state next state
 state? for qi with input 0 for qi with input 1

Bit # 139 140 143 144 147
 _ ____ ____

Contents final next state next state
state? for q15 with input 0 for q15 with input 1

Figure 2.1 16-state/148-bit FSA genome (G1) map

Before considering the finite state machine (FSM) as a genome, the FSM is
defined. A finite state machine (FSM) is a transducer. It is defined as an ordered
septuple (Q, s, F, I, O, δ, λ), where Q and I are finite sets; Q is a set of states; s ∈
Q is the start state; F ⊆ Q is the set of final states; I is a set of input symbols; O is
a set of output symbols; δ: Q×I → Q is a transition function; and λ:Q×I → O is an
output function. A finite state machine is initially in state s. It receives as input a
string of symbols. An FSM which is in state q ∈ Q and receiving input symbol a
∈ I will move to state qnext ∈ Q and produce output b ∈ O based on transmission
rule δ(q,a) = qnext and output rule λ (q,a) = b. This information can be stored in bit
array (bitstring).

For the language recognition problem analyzed in this research, the languages
chosen for the experimentation were based on the Tomita set (1982) and involve
an alphabet of size 2 (Σ = {0,1}). Also for this problem, there is no output for
each input per se, but rather a designation of whether a given state is accepting
upon the completion of the input (termed a final state). This is opposed to the
finite state machine necessary for the trail following problem, for example, where
an output directs the ant where to go next for each input scanned, and final state
designation is omitted.
A mapping that implements a 16-state FSA for the language recognition problem
is described pictorially in Figure 2.1. The start state designation occupies bits 0-3
since the maximum sized automata to be considered has 16 states. Then, for each
of the possible 16 states, nine bits are allocated for the final state designation (1
bit) and for the next states of the two possible inputs (four bits each since 16
possible states.) Thus, a total of 4 + 9 * 16 = 148 bits are necessary for each
genome in the population.

GA: Outline of a Genetic Algorithm
1) Randomly generate a population of genomes represented as bitstrings.
2) Assign a fitness value to each individual in the population.

[GA Insert #I1: Competition. See Section 2.2.4.]
3) Selection:

a) Retain the top 5% of the current population.
 [GA Insert #I2: Reorganization Operators.

See Section 2.2.2 for MTF and Section 2.2.3 for SFS.]
b) Randomly choose mating-pairs.

4) Crossover: Randomly exchange genetic material between the two genomes in each
mating pair to produce one child.

5) Mutation: Randomly mutate (invert) bit(s) in the genomes of the children.
6) Repeat from step 2 with this new population until some termination criteria is

fulfilled.

Figure 2.2 Outline of the Jefferson benchmark GA. The two inserts will be
extra steps used in further sections as modifications to the original algorithm

Consider Figure 2.2 for an overview of the algorithm. This section introduces the
genetic algorithm that manipulates the genome pool (termed population) in its
search to find a solution to the problem with best “fitness.” Fitness is a metric on
the quality of a particular genome (solution), and in the context of the language
recognition problem is the number of words in the language representative set that
is recognized by the automata plus the number of words not in the language that
are rejected. (Within the context of the trail following problem, instead of one bit
for final state determination, two bits were used to describe the output and the

fitness was simply the number of marked steps of the trail traversed within the
given time frame.) The genetic algorithm shell that is used by many researchers is
based on Goldberg (1989). The outline presented above (figure 2.2) indicates that
the insertion point for incorporating into the modified benchmark the new
operators, MTF and SFS, will come between steps 3a and 3b. The details of MTF
will be presented in the next section and for SFS in the section following that.

a) parent 1 1011010001
parent 2 0100111110 donor
child 010 change donor

b) parent 1 101 1010001 donor
parent 2 010 0111110
child 010 10 change donor

c) parent 1 101 10 10001
parent 2 010 01 11110 donor
child 010 10 1111 change donor

d) parent 1 101 10 1000 1 donor
parent 2 010 01 1111 0
child 010 10 1111 1 done

Figure 2.3 An example of the crossover used

Within the context of FSM genomes (Section 2.2.2), this algorithm will be
considered the benchmark of Jefferson et al. (1992). Jefferson et al. started the
GA with a population of 64K (65,536) randomly generated FSMs. The fitness of
each FSM was the number of distinct marked steps the ant covered in 200 time
steps. Based on this fitness, the top 5% of each generation was retained to parent
the next generation. Once the parent pool was established, mating pairs were
randomly selected from this pool without regard to fitness. Each mating pair
produced a single offspring.

Crossover (Figure 2.3) and mutation (Figure 2.4) and were carried out at a rate of
1% per bit on the single offspring. To implement the per-bit crossover rate, one
parent was selected as the initial bit donor. Bits were then copied from this
parent’s genome into the child’s genome. A random number between 0 and 1 was
generated as each bit was copied. When the random number was below 0.99, the
bits of the donating parent were used for the next bit of the child; otherwise, the
other parent became the bit donor for the next bit. Step Insert #I2 is not used by
the benchmark and refers to the operators introduced in the next section. To

implement mutation, a random number was generated for each bit of the child.
When the random number fell above 0.99, the corresponding bit was inverted.

Selected for mutation 0101011111
Mutated 0111011111
Selected for mutation 0111011111
Mutated 0111011101

Figure 2.4 An example of the mutation operator used

2.2.2 MTF

The MTF (M ove T o F ront) operator has been described and tested in
Hammerman and Goldberg (1999). It systematically reorganizes FSM genomes
during GA execution so that the following two conditions hold true for each
member of the current parent pool:

The significant data will reside in contiguous bits at the front of the
genome.

Equivalent finite state machines (FSMs) with the same number of states
will have identical representations.

Not only does this reorganization avoid competition between equivalent FSMs
with different representations and the same number of states, but it also reduces
schema length (Hammerman and Goldberg, 1999). According to schema theory,
shorter defining lengths are more beneficial to the growth of useful schemata
(Goldberg 1989), which in turn enhances convergence rates. A simple overview
of the MTF algorithm is presented here in outline form (Figure 2.5) and an
example is worked out illustrating the concepts (Figure 2.6). The reader is
referred to the original chapter for further algorithmic details and C language
implementations (Hammerman and Goldberg, 1999).

MTF Operator: Move To Front
Assign the Start State as state 0 and set k, the next available state number, to 1.
For each active state i of the current genome do

For each input j do
If Next State [i,j] has not been “moved” then

Assign k as the Next State for state i with input j
Increment k

Figure 2.5 Outline of the MTF operator

For step 2, state i is considered “active” if it is reachable (i.e., there exists a
connected path) from the start state. For step 2.a.i, the Next State of state i with
input j will have moved if it is the Next State of an active state i that has already
been visited in the current genome or, alternatively, if its number is less than k.
The MTF reorganization operator would be inserted between steps 3a and 3b of
Figure 2.2. A pictorial example of how this operator would be applied to a
genome is now depicted in Figure 2.6 (consisting of state transition Tables 2.1-2.4
for a four state finite state machine).

MTF

Table 2.1 Four-state FSM with start state Q13

Start state Q13 reassigned:

Present State/
Final State?

Next State
For Input = 0

Next State
For Input = 1

Q13/0 Q5 Q9

Q5/1 Q13 Q5

Q9/0 Q5 Q12

Q12/0 Q13 Q12

Table 2.2 FSM with of Table 2.1 after Step 1 of MTF

Start state Q0 reassigned: Q0
Present State/
Final State?

Next State
For Input = 0

Next State
For Input = 1

Q0/0 Q5 Q9

Q5/1 Q0 Q5

Q9/0 Q5 Q12

Q12/0 Q0 Q12

Table 2.3 FSM of Table 2.2 after Next States for Q0 Reassigned

Start state Q0 reassigned: Q0,Q1,Q2
Present State/
Final State?

Next State
For Input = 0

Next State
For Input = 1

Q0/0 Q1 Q2

Q1/1 Q0 Q1

Q2/0 Q1 Q12

Q12/0 Q0 Q12

Table 2.4 FSM of Table 2.1 after MTF

Start state Q0 reassigned: Q0,Q1,Q2,Q3
Present State/
Final State?

Next State
For Input = 0

Next State
For Input = 1

Q0/0 Q1 Q2

Q1/1 Q0 Q1

Q2/0 Q1 Q3

Q3/0 Q0 Q3

Figure 2.6 Four tables depiction of MTF algorithm on a four-state FSM
genome

2.2.3 SFS

The reason that the reorganization operators were introduced is based on the
following rationale: (1) sparse relevant genome data could be spread out along a
large genome and (2) characterizations of families of finite state machines from
their genomes is not a straightforward task. By simply reassigning the state
numbers (or names), finite state automata can have many different
representations. The consequence of these issues is that (1) useful schemata could
have unnecessarily long defining lengths, and (2) finite state automata that differ
only in state name, but are in fact equivalent, will be forced to compete against
each other. This hinders the growth of useful schemata within the genetic

algorithm. To compensate for these disadvantages in the last section, a new
operator MTF was designed which placed the significant genome information at
the front of the genome, thus shortening the defining length.

In this section, the SFS (Standardize Future State) operator has in mind the
second consideration (unnecessary competition) while relaxing to some degree
the first consideration (shorter defining lengths). Both operators standardize
where the Next State would point to for each state of the automata. This policy
tends to avoid unnecessary competition because the states of the equivalent
machines will be renumbered consistently. Yet, in order to retain the effects of
crossover, the SFS standardized automata will have information more spread out
in the genome than their MTF counterparts. As well, if the calculated
(standardized) position is not available, then the information will be placed in the
genome as close to the current state’s information as possible. Figure 2.7 outlines
this procedure. (See Hammerman and Goldberg, 1999 for a C language
implementation.) The mathematical calculation for the next state (step 2b of
algorithm SFS, Figure 2.7) is presented in Figure 2.8. For the benefit of the
reader, this is pictorially depicted in Figure 2.9 for max_num_states = 32.

SFS operator: Standardize Future (Next) States

1) Standardize state 0 as the start state. Let cut_off = max_num_states/2.

2) Reassign Present State/Next State pairs (when possible).

a) If the Next State of state i for input j = 0,1 has previously been assigned, no further
action is necessary. Go to Step 2e.

b) Given state i, for input j = 0,1 suggest Next State k based on a standardization
formula (calculated in Figure 2.8 and depicted in Figure 2.9).

c) If Next State k has already been assigned (conflict), then place on Conflict Queue.

d) Interchange states i and k, including all references to i and k in Next State part of
transition table.

e) If some Present State has not been processed, go to beginning of Step 2.

3) For a state on Conflict Queue, reassign next state by placing it as close as possible to
the Present State. Go to Step 2e.

Figure 2.7 Outline of the SFS operator

Present State Desired Next State
i ≤ cut_off-2 k = 2i+j+1
i = cut_off-1 k = max_num_states-1
cut_off ≤ i < max_num_states k = 2(max_num_states-2- i)+j+1
i = max_num_states Place on the Conflict Queue

Figure 2.8 Standardization formula for SFS algorithm (Step 2b, Figure 2.7)

Figure 2.10 presents a small example of the SFS algorithm on the same automata
used to demonstrate the MTF algorithm in section 2.2 (Figure 2.5). The data is
presented in state transition tables for a four-state machine.

Figure 2.9 Pictorial description of Figure 2.8 for max_num_states = 32

SFS
Table 2.5 Four-state FSM with start state Q13

Start state Q13 reassigned:
Present State/
Final State?

Next State
For Input = 0

Next State
For Input = 1

Q13/0 Q5 Q9

Q5/1 Q13 Q5

Q9/0 Q5 Q12

Q12/0 Q13 Q12

Table 2.6 FSM with of Table 2.5 after Step 1 of SFS

Start state Q0 reassigned: Q0
Present State/
Final State?

Next State
For Input = 0

Next State
For Input = 1

Q0/0 Q5 Q9

Q5/1 Q0 Q5

Q9/0 Q5 Q12

Q12/0 Q0 Q12

Table 2.7 FSM of Table 2.6 after Next States for Q0 Reassigned

Start state Q0 reassigned: Q0,Q1,Q2
Present State/
Final State?

Next State
For Input = 0

Next State
For Input = 1

Q0/0 Q1 Q2

Q1/1 Q0 Q1

Q2/0 Q1 Q12

Q12/0 Q0 Q12

Table 2.8 FSM of Table 2.5 after SFS

Start state Q0 reassigned: Q0,Q1,Q2,Q6
Present State/
Final State?

Next State
For Input = 0

Next State
For Input = 1

Q0/0 Q1 Q2

Q1/1 Q0 Q1

Q2/0 Q1 Q6

Q6/0 Q0 Q6

Figure 2.10 Table depiction of SFS algorithm on a four-state FSM genome

Note the consistency of Tables 2.7 and 2.8 with the Next State calculation of
Figure 2.8; the Next State for Q12 with input 1 is reassigned to Q(2*2+1+1) =
Q6.

2.2.4 Competition

A lesson borrowed from the evolutionary algorithm (EA) can be considered in a
genetic algorithm as well. Each individual in the population competes against a
fixed number of randomly chosen members of the population. The population is
then ranked based on the number of wins. Generally, in the EA, the selection
process retains the top half of the population for the next generation. The
remaining half of the next generation is filled by applying mutation to each
retained individual, with each individual producing a single child. Consequently,
for each succeeding generation, parents and children compete against each other
for a place in the following generation. This provides a changing environment
(fitness landscape) and is less likely to converge prematurely (Fogel, 1994).

In an evolutionary algorithm, the fitness of an individual is determined by a
competition with other individuals in the population, even in the situation where
the fitness can be explicitly defined. When a genetic algorithm uses a fitness-
based selection process and the fitness is an explicitly defined function, the
solution space consists of a static fitness landscape of valleys and hills for the
population to overcome; this fitness landscape remains unchanged throughout a
given run. Thus, the population could gravitate towards a local rather than a
global optimum when the fitness landscape consists of multiple peaks.

These two different approaches (GA vs. EA) have relative strengths and
weaknesses. Each one is more appropriate for different types of problems
(Angeline and Pollack 1993), but a competition can easily be integrated into the

fitness procedure of a genetic algorithm to reduce the chance of premature
convergence. Since the newly designed reorganization operators of Sections 2.2.3
(MTF) and 2.2.4 (SFS) create a more homogeneous population by standardizing
where the genome information will be found, these operators might make the GA
more prone to premature convergence. Competition possibly can provide a
mechanism of avoiding this. Figure 2.11 details the competition procedure. This
step should be inserted after step 2 in Figure 2.2 which outlined the genetic
algorithm shell used in this research (Section 2.1). Note that for this research,
each FSM faced n = 10 randomly chosen competitors. The reader is referred to
Hammerman and Goldberg (1999) for C language implementation of this
procedure.

Competition: Dealing with Premature Convergence
1) Calculate the language recognition fitness of the individuals in the population.

2) For each individual i of the population do

a) Randomly select n competitors from the population.

b) For each of the n competitors do

i) Assign a score for this competition for individual i

(1) 2 points, if fitness is higher than that of the competitor’s

(2) 1 points, if fitness is equal to that of the competitor’s

(3) 0 points, if fitness is lower than that of the competitor’s

c) Sum the competition scores

3) New fitness = 100 times total competition score + original fitness.

Figure 2.11 Outline of competition procedure

2.3 The Experimentation
A standard test bed was needed to further test the effect of MTF and SFS on
convergence. Angeline (1996) wrote that the Tomita Test Set is a semi-standard
test set used to "induce FSAs [finite state automatons] with recurrent NNs [neural
networks]." The Tomita Test Set consists of sets of strings representing 14 regular
languages. Tomita (1982) used these sets to breed finite state automata (FSA)
language recognizers. Angeline (1996) suggests “that a better test set would
include some languages that are not regular.” These languages should contain
strings that are "beyond the capability of the representation so you can see how it
tries to compensate."

As per Angeline's suggestion (1996), three additional sets were drawn up. These
three sets were designed to represent languages which are not regular; however,
reducing the description of each of these languages to a finite set as Tomita did,

effectively reduces the language to a regular language. When creating each set, an
attempt was made to capture some properties of the strings in the language. The
Tomita Test Set and the three additional languages are presented in Section 2.3.1.
Specific considerations for the language recognition problem are presented in
Section 2.3.2. The experimentation results will be presented in Section 2.5 based
on the evaluation criteria described in Section 2.4.

2.3.1 The Languages

There are seven Tomita sets (1982). Each set represents two languages and
consists of two lists: a list of strings belonging to one of two of the defined
regular languages and a list of strings which do not belong to that language. In the
lists which follow, λ represents the empty string.

Seven of the Tomita languages and sets representing those languages are as
follows:

L1: 1* L2: (10)*
in L1 not in L1 | in L2 not in L

|
λ 0 | λ 1
1 10 | 10 0
11 01 | 1010 11
111 00 | 101010 00
1111 011 | 10101010 01
11111 110 | 10101010101010 101
111111 11111110 | 100
1111111 10111111 | 1001010
11111111 | 10110

| 110101010

L3: Any string which does not contain an odd number of consecutive zeroes at
some point in the string after the appearance of an odd number of consecutive
ones.

in L3 | not in L3
|

λ | 10

1 | 101

0 | 010

01 | 1010

11 | 1110

00 | 1011

100 | 10001

110 | 111010

111 | 1001000

000 | 11111000

100100 | 0111001101

110000011100001 | 11011100110

111101100010011100 |

L4: No more than two consecutive 0's L5: Even length strings which, when
the bits are paired, have an
even number of 01 or 10 pairs

in L4 not in L4 | in L5 not in L5
|

λ 000 | λ 1

1 11000 | 11 0

0 0001 | 00 111

10 000000000 | 1001 010

01 11111000011 | 0101 000000000

00 1101010000010111 | 1010 1000

100100 1010010001 | 1000111101 01

001111110100 0000 | 1001100001111010 10

0100100100 00000 | 111111 1110010100

11100 | 0000 010111111110

010 | 0001

| 011

L6: The difference between the number L7: 0*1*0*1* of 1's and 0's is 3n.
in L6 not in L6 | in L7 not in L7

|

λ 1 | λ 1010

10 0 | 1 00110011000

01 11 | 0 0101010101

1100 00 | 10 1011010

101010 101 | 01 10101

111 011 | 11111 010100

000000 11001 | 000 101001

10111 1111 | 00110011 100100110101

0111101111 00000000 | 0101

100100100 010111 | 0000100001111

10111101111 | 00100

1001001001 | 011111011111

| 00

Furthermore, incorporating Angeline's suggestion (1996), representative sets for
three non-regular languages were drawn up. They are as follows:

L8: prime numbers in binary form

in L8 not in L8
10 λ 0110
11 0 0000110

101 1 0000000110

111 100 110011

1011 110 10110

1101 1000 11010

11111 1001 111110

100101 1010 10010110

1100111 1100 10010

10010111 1110 1001011

011 1111 111111

0011 11001

0000011

0000000011

L9: 0i1i

in L9 not in L9
λ 0 010 1010

01 1 011 1100

0011 00 100 1010011000111

000111 10 101 010011000111

00001111 11 110 010101

0000000011111111 000 111 01011

001 1000

L10: Binary form of perfect squares
in L10 not in L10
0 0000100 λ 1110000

1 0000000100 10 11100000

100 10000 11 11100000000

1001 100000000 101 00000111

11001 1100100 110 000000111

0100 11001000000 111 100000

1100 100000000000

00111 1100100000

There were several goals that were behind the selection of the strings in the sets
for L8, L9, and L10. When designing these sets, different criteria were taken into
account.

An attempt was made to keep the sets as small as possible even though a larger
set would provide a better representation. For example, it is desirable for all
prefixes of strings on the lists to also appear on the lists, but this would create
rather large sets of strings. As it is, the sets for L8, L9, and L10 are much larger
than Tomita's sets (1982).

Include some strings indicating a "pattern" in a language. For example, preceding
a binary number with a string of zeroes does not change its value; therefore, in L8
and L10, a string preceded by zeroes is on the same list as the shorter string.
Similarly, appending "00" to the end of a binary number effectively multiplies it
by four; consequently, in L10, a string ending with an even number of zeroes
belongs on the same list as the one without the trailing zeroes. A few
representative strings for each of these patterns have been included for L8 and
L10.

In addition to defining L1 through L10, these ten sets are used to define ten more
languages labeled L1c through L10c; by interchanging the list of strings
belonging to a language with the list of strings which do not belong to that
language another ten languages (L1c through L10c) are defined. The languages Li
and Lic are called complementary languages. Section 2.3.2 will look at some
aspects of the problem of accepting or rejecting strings in a language.

2.3.2 Specific Considerations for the Language Recognition Problem

While the solution to the language acceptance problem can be modeled by a finite
state automaton, it differs significantly from the trail problem. First, using the GA
to find an FSA for L1 and L1c was deemed too simple a problem to provide
useful data for this study. Among other problems, finding a set of 100 seeds such
that none of the seeds would result in a solution in generation 0 proved to be a
problem. While it was doable, handpicking too many seeds for testing was not
acceptable.

In the research for this chapter, no attempt was made to find solutions to the
verbal descriptions or regular expressions defining the languages. Tomita (1982)
focused on finding an FSA corresponding to the regular expression or verbal
description of the language. The work for this chapter was limited to finding an
FSA which defined the membership function for the representative set of strings
for a given language. For any given language, the fitness function tested the
strings on the two lists for that language. The fitness of an individual is the total
number of strings which are correctly identified as to their membership or lack of
membership in the language.

The benchmark, SFS, and MTF, each with competition (referred to as methods
B2, M2 and S2) and without competition (referred to as methods B1, M1 and S1),
were applied to a total of 18 sets—nine of the original ten sets (L2 through L10)
and their complements (L2c through L10c). As the data became available, it was
clear that MTF was not necessarily predominant with respect to efficiency.
Consequently two hybrid methods were added to these experiments to see if
either would consistently perform better than B1. For these hybrids, MTF and
SFS were applied alternating generations, both with and without competition.
MTF was applied to all even generations including to the initial generation, and
SFS was applied to every odd generation. These two hybrids were labeled A1 (no
competition) and A2 (competition included).

Several modifications were made to the C language programs used for the trail
following problem (Hammerman and Goldberg, 1999). Obviously, the fitness
function had to be changed for each language. The merge-sort for the trail
following problem was replaced with a heap sort (Knuth, 1973) for the language
recognition problem; the sort was used to locate the top 5% of the population. For
the initial testing of the programs for the trail problem, a stable sort was desired.
Also, for some of the early testing of the programs, it was necessary to sort the
whole population. The merge-sort was deemed the best to use under these
conditions. When the language recognition problem was studied, it was felt that a
stable sort was no longer necessary. In addition, in each generation, sorting could
stop once the parent pool was filled; the heap sort could accomplish this more
efficiently. By replacing the merge-sort with the heap sort, runtime could be
greatly reduced.

As previously mentioned, an FSA for the language problem is different from the
FSM for the trail following problem. Consequently, the genome had to be
modified, and the program functions involved in bitstring to FSM state transition
table conversion and vice versa also had to be changed. Based on the nature of the
trail problem, the finite state machine (generic FSM defined in Section 2.2.1)
used to model a solution for the trail following problem is a transducer which
produces an output/reaction each time a transition rule is applied. Thus, the FSM

for the trail problem requires an output function in addition to the transition
function. In addition, the set of final sets is empty.

In the case of the language recognition problem, the FSA is used to examine
strings to determine whether or not they belong to a language. The finite state
automaton implemented for this part of the study does not give a response with
each application of a transition rule. Hence, an output function is not defined.
When applying an FSA to a string and when the last character of a string brings
the FSA into a final state, the string is accepted as a member of the language;
otherwise, the string is rejected. Hence, in order to define a string's membership in
a language, the corresponding FSA's set of final states cannot be empty.

To identify the membership function of strings with respect to given language,
each present state has to be identified as to whether it is or is not a final state. This
requires a single bit; 1 is used to indicate a final state. The 18 languages have two
characters in their alphabets, so two next states are needed for each present state.
The number of bits needed for each future state is strictly dependent on the
maximum number of states permitted.

There were two lines of thought as to how to order the three pieces of data for
each present state. One approach is that since the single bit defining a state as a
final state is associated with the present state, it comes first. It is followed by the
next state for an input of 0, which is then followed by the next state for an input
of 1 (see Figure 2.1 of Section 2.2.1). However, this order actually ties that single
bit closer to the next state for input 0 with respect to the crossover operator than
for an input of 1. The probability of retaining the single bit defining final state
status and the next state for an input of 1, and of disrupting the next state for input
0 is

2i

M 1C +

=

+

−∑ P Px
2i

x
M-i)

i 1

M 1

2

() (1 2

where Px is the per bit probability of crossover and M is the number of bits used
to represent the state number. The reader is referred to the dissertation
(Hammerman, 1999) for details about this formula and the subsequent formula
(next paragraph), including the complete proof. For all but two (L2, and L2c) of
the languages used for this part of the study, M = 4; that is, the genome allows for
16 states. Px was set at 1%. Thus, for a given present state, the probability that the
single bit defining membership in the set of final states will be sent to a child with
only the next state for input 1 is approximately 0.00094.

For a given present state, the probability that the single bit defining membership
in the set of final states will be sent to a child with only the next state for input 0

is (1-Px)
M [1- (1-Px)

M]. Thus, for a 16-state machine and Px = .01, the total
probability is approximately .04. This shows that for a given present state, the
single bit defining membership in the set of final states is much more likely to
transfer to a child with only the next state for input 0 intact than it is to transfer to
an offspring with only the next state for input 1 intact. If instead, the bit defining
membership in the set of final states is positioned between the two future states
for a present state, crossover is equally likely to send that bit to a child with either
of the next states. Figure 2.12 below shows the layout for such a genome allowing
for a 16-state FSA; Figure 2.1 in Section 2.2.1 (above) contains the first 16-state
genome map. To study the effects of the bias indicated, the experiments were also
carried out with the latter of the two genomes.

Bit # 0 3 4 7 8 9 12
____ ____ _ ____

Contentsstart state next state final next state
for q0 with input 0 state? for q0 with input 1

Bit # 13 16 17 18 21
____ _ ____

Contents next state final next state
for q1 with input 0 state? for q1 with input 1

Bit # 4+9i 8+9i 12+9i
 . . . ____ _ ____ . . .

Contents next state final next state
for qi with input 0 state? for qi with input 1

Bit # 139 142 143 144 147
____ _ ____

Contents next state final next state
for q15 with input 0 state? for q15 with input 1

Figure 2.12 16-state/148-bit FSA genome (G2) map

Tomita (1982) presented a set of solutions for his language recognition problems.
Some of these solutions were in minimized form. The maximum number of states
he presented for a single language was six. Clearly, it was not necessary to allow
for a 32-state solution. Genome sizes of 4, 8, and 16 states were tried and
population sizes of 24 up to 210 were tried, depending on the size of the genome.
(All population sizes were powers of 2.) Note that a smaller genome has a
smaller genome space, therefore a smaller population size can be used. The parent
pool was kept in the neighborhood of the top 5% of the population with the parent
pool containing a minimum of two parents in order to permit the possibility of

crossover between two different parents as opposed to crossover between copies
of a single individual.

As a result of this search for parameter values, the search by the GA for FSAs to
define L1 and L1c was deemed inappropriate to provide useful data for this study
due to the simplicity of these problems. As explained earlier, for several of the
seeds the GA found a solution in generation 0. The table in Figure 2.13 indicates
the final set of parameters chosen for each of the remaining languages. With a
maximum of eight states, the genome contains 3 bits for the start state + 8 states *
(2 inputs * 3 bits for each next states + 1 bit for final state status) = 59 bits.
Similarly for a maximum of 16 states, the number of bits in the genome is 4 +
16(2 * 4 + 1) = 148 bits.

Language Maximum # of States
Allowed

Population Size Size of
Parent Pool

L2 and L2c 8 32 2

L3 and L3c 16 128 6

L4 and L4c 16 64 3

L5 and L5c 16 128 6

L6 16 64 4

L6c 16 64 3

L7, L7c, L8, L8c, L9, and 16 128 6

L10 and L10c 16 256 13

Figure 2.13 Table of parameters for the languages

The set of 100 seeds from the trail problem was used with a few changes for L2
and L2c. A few of the seeds for each of these languages yielded a solution in the
initial generation. Since the GA terminates when a solution is found, the few
seeds which resulted in a solution in generation 0 were changed to permit the GA
to move beyond the initial population in every run. For L2, seeds
.532596024438298 and .877693349889729 from the original list of 100 seeds
(Figure 2.14) were changed to .532196024438298 and .877293349889729
respectively, and for L2c, .269971117907016 and .565954508722250 were
altered to .269571117907016 and .565554508722250 respectively. The fourth
digit in each of these seeds was decreased by four to get the two new seeds for
each language. The remaining 98 seeds for each language were not changed. The
following seeds were used to start the random number generator which first
generated the initial population for each run and continued in use for the rest of
the genetic algorithm.

0.396464773760275, 0.840485369411425, 0.353336097245244, 0.446583434796544,
0.318692772311881, 0.886428433223031, 0.015582849408329, 0.584090220317272,
0.159368626531805, 0.383715874807194, 0.691004373382196, 0.058858913592736,
0.899854306161604, 0.163545950630365, 0.159071502581806, 0.533064714021855,
0.604144189711239, 0.582699021207219, 0.269971117907016, 0.390478195463409,
0.293400570118951, 0.742377406033981, 0.298525606318119, 0.075538078537782,
0.404982633583334, 0.857377942708183, 0.941968323291899, 0.662830659789996,
0.846475779930007, 0.002755081426884, 0.462379245025485, 0.532596024438298,
0.787876620892920, 0.265612234971371, 0.982752263101030, 0.306785130614180,
0.600855136489105, 0.608715653358658, 0.212438798201187, 0.885895130587606,
0.304657101745793, 0.151859864068570, 0.337661902873531, 0.387476950965358,
0.643609828900129, 0.753553275640016, 0.603616098781568, 0.531628251750810,
0.459360316334315, 0.652488446971034, 0.327181163850650, 0.946370485960081,
0.368039867432817, 0.943890339354468, 0.007428261719067, 0.516599949702389,
0.272770952753351, 0.024299155634651, 0.591954502437812, 0.204963509751600,
0.877693349889729, 0.059368693380250, 0.260842551926938, 0.302829184161332,
0.891495219672155, 0.498198059134410, 0.710025580792159, 0.286413993907622,
0.864923577399470, 0.675540671125631, 0.458489973232272, 0.959635562381060,
0.774675406127844, 0.376551280801323, 0.228639116426205, 0.354533877294422,
0.300318248151815, 0.669765831680721, 0.718966572477935, 0.565954508722250,
0.824465313206080, 0.390611909814908, 0.818766311218223, 0.844008460045423,
0.180467770090349, 0.943395886088908, 0.424886765414069, 0.520665778036708,
0.065643754874575, 0.913508169204363, 0.882584572720003, 0.761364126692378,
0.398922546078257, 0.688256841941055, 0.761548303519756, 0.405008799190391,
0.125251137735066, 0.484633904711558, 0.222462553152592, 0.873121166037272

Figure 2.14 The seeds used to initialize the random number generator for
each run

The runs were permitted to breed a maximum of 1000 generations recording the
per run data. To see if the results would carry across a wide range of maxgens
(maximum number of generations bred) rather than across only a few good
choices for maxgen, data was collected for a wide range of values from
unrealistically low to 1000, which is extremely high. This is in consideration of
the fact that a researcher using a GA to locate the solution to a problem could
very easily select an inappropriate value for maxgen. Hence, data was recorded
for maxgens of 1000, 750, 500, 300, 250, 200, 150, 100, 75, 50, and 25.

2.4 Data Obtained from the Experimentation
This section presents in table form some significant pieces of empirical data
obtained from the experimentation. The experiments outlined in the previous
section indicated that two types of genomes were tested for the language

recognition problem and that the testing data involved languages L2-L10 and
their complements L2c-L10c.

G1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L2c L3c L4c L5c L6c L7c L8c L9cL10c B B* W W*

A1 1 1 3 3 1 1 2 2 2 3 2 3 6 9 2 3 4 6 6 0 3 0
B1 1 1 4 4 2 3 2 2 3 3 2 3 5 7 3 3 4 5 5 2 8 4
M1 1 1 3 3 1 2 3 2 3 2 2 2 7 7 2 4 4 7 6 0 5 3
S1 1 1 3 2 1 1 2 2 1 2 2 2 7 9 3 3 4 6 9 2 3 0

EQU 1 1 1 1 1 5 5

G1/C L2 L3 L4 L5 L6 L7 L8 L9 L10 L2c L3c L4c L5c L6c L7c L8c L9cL10c B B* W W*

A2 1 1 3 3 1 2 1 3 2 2 1 2 8 9 2 3 7 9 8 1 4 1
B2 1 1 3 4 2 2 2 3 2 4 3 2 8 12 2 4 10 7 2 0 10 5
M2 1 1 2 3 1 2 1 2 2 3 1 2 8 8 3 4 6 6 7 0 3 0
S2 1 1 2 3 1 3 3 2 2 3 3 1 8 6 3 3 4 5 9 4 4 2

EQU 1 1 1 1 4 4

Figure 2.15 Number of generations required to find a solution. Data obtained
by a genetic algorithm using the first genome with/out competition (/C). EQU
indicates that all methods performed the same way for a given language.
B(est)/W(orst) counts the number of languages for which a given method was
the minimum/maximum number of generations when compared to the other
methods. * indicates that the minimum/maximum number was achieved
solely by this method

G2 L2 L3 L4 L5 L6 L7 L8 L9 L10 L2c L3c L4c L5c L6c L7c L8c L9cL10c B B* W W*

A1 1 1 2 3 1 2 2 2 2 2 2 3 8 8 2 4 5 4 7 2 6 1
B1 1 1 3 4 1 2 2 2 2 1 2 3 6 8 3 3 7 7 6 0 8 3
M1 1 1 2 4 1 3 2 3 2 2 3 2 6 8 2 3 6 7 4 0 8 2
S1 1 1 2 3 1 2 2 2 1 1 3 2 7 7 1 4 6 6 9 3 2 0

EQU 1 1 1 1 4 4

G2/C L2 L3 L4 L5 L6 L7 L8 L9 L10 L2c L3c L4c L5c L6c L7c L8c L9cL10c B B* W W*

A2 1 1 2 3 2 2 2 2 2 2 3 2 9 10 3 3 6 6 6 2 3 1
B2 1 1 3 4 2 3 3 2 1 2 3 3 6 5 3 4 7 7 4 3 9 5
M2 1 1 3 3 2 2 2 2 2 2 2 2 8 11 3 4 6 7 4 0 5 1
S2 1 1 3 1 2 2 1 3 2 2 2 2 7 6 3 4 4 6 7 3 4 1

EQU 1 1 1 1 1 5 5

Figure 2.16 Number of generations required to find a solution. Data obtained
by a genetic algorithm using the second genome with/out competition (/C).
EQ indicates that all methods performed the same way for a given language.
B(est)/W(orst) counts the number of languages for which a given method was
the minimum/maximum number of generations when compared to the other
methods. * indicates that the minimum/maximum number was achieved
solely by this method

The data presented in Figures 2.15-2.18 will be first for determining the effects of
the methods (Benchmark, MTF, SFS, and Alternating between MTF and SFS)
without competition (name followed by a 1) on all of these languages with respect
to the first generation that a solution appeared. Then the data for the methods
incorporating competition (name followed by a 2) will be presented. This will be
for the first genome G1 (data in Figure 2.15; genome map in Figure 2.1) followed
by the same for the second genome G2 (data in Figure 2.16; genome map in
Figure 2.12). After that, the same order will be used in presenting the data for the
minimal sized solution found (Figures 2.17 and 2.18). It should be noted that
these data are among all 100 seeds. Thus, a minimal solution found by one
method may occur from a different seed than for another method. This data does
not differentiate those situations.

G1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L2c L3c L4c L5c L6c L7c L8c L9cL10c B B* W W*

A1 3 3 5 5 7 7 5 6 3 3 7 7 8 8 6 8 9 10 10 2 4 1
B1 3 3 7 7 8 7 6 4 4 5 8 9 10 9 6 6 11 9 4 0 11 7
M1 3 3 5 5 5 6 6 4 3 3 6 5 9 9 7 5 9 10 11 3 4 1
S1 3 4 8 7 5 7 6 5 3 3 5 8 8 9 6 8 9 9 8 1 7 2

EQU 1 1 1

G1/C L2 L3 L4 L5 L6 L7 L8 L9 L10 L2c L3c L4c L5c L6c L7c L8c L9cL10c B B* W W*

A2 3 3 6 6 5 5 6 4 3 3 6 7 9 8 7 5 9 9 10 2 3 0
B2 3 3 7 5 8 8 7 4 3 4 8 8 8 9 7 8 10 10 3 2 11 6
M2 3 3 6 6 4 6 4 4 3 3 6 7 9 8 5 6 9 9 11 3 2 0
S2 3 3 6 6 6 8 6 8 3 3 6 7 9 9 7 8 10 11 4 0 9 2

EQU 1 1 1 3 3

Figure 2.17 Minimal number of states found in a solution. Data obtained by a
genetic algorithm using the first genome with/out competition (/C). EQ
indicates that all methods performed the same way for a given language.
B(est)/W(orst) counts the number of languages that a given method was the
minimum/maximum number of generations when compared to the other
methods. * indicates that the minimum/maximum number was achieved
solely by this method

Considering the large amounts of data generated and the variety of the results, the
main focus here will be to state some observed trends (based on the tables
presented in Figures 2.15-2.18). Overall, the best results were obtained by the
methods without competition using the first genome. Despite the bias (or perhaps
because of the bias?) that the first genome has in favoring the association between
the final state status and the next state for input 0 over the next state for input 1,
the first genome seems to be more effective than the second genome. More testing

would be required to conclusively establish this observation as fact. SFS
consistently has more “bests” than “worsts” over all four tables of faster
convergence, while the opposite is true (except for genome G1 without
competition) for the minimal size solution tables. MTF consistently has many
more “bests” than “worsts” over all four tables of minimal sized solutions while
the opposite is true for faster convergence using the second genome. Benchmark
consistently has more “worsts” than “bests” in all tables and has more “worsts”
than any other method across the tables. Alternating methods is consistently
between MTF and SFS in all tables.

G2 L2 L3 L4 L5 L6 L7 L8 L9 L10 L2c L3c L4c L5c L6c L7c L8c L9cL10c B B* W W*

A1 3 3 6 6 6 5 4 5 3 3 7 7 8 9 6 6 10 10 5 2 3 1
B1 3 3 6 5 7 8 5 5 3 3 9 8 9 9 6 8 10 10 2 0 8 3
M1 3 3 5 5 6 5 6 5 3 3 5 8 8 9 6 5 9 10 8 4 2 0
S1 3 3 7 5 7 4 7 5 3 3 7 8 9 9 7 7 10 9 3 2 7 3

EQU 1 1 1 1 1 1 6 6

G2/C L2 L3 L4 L5 L6 L7 L8 L9 L10 L2c L3c L4c L5c L6c L7c L8c L9cL10c B B* W W*

A2 3 3 6 6 5 7 5 5 3 3 6 7 9 9 6 5 9 10 9 3 4 1
B2 3 3 5 5 6 7 7 6 3 7 8 6 9 10 8 6 10 11 2 1 11 6
M2 3 3 5 6 5 7 6 6 3 3 7 5 8 9 6 6 9 9 9 3 2 0
S2 3 3 5 7 6 5 6 5 3 3 7 7 9 9 7 8 10 10 5 1 6 2

EQU 1 1 1 3 3

Figure 2.18 Minimal number of states found in a solution. Data obtained by a
genetic algorithm using the second genome with/out competition (/C). EQ
indicates that all methods performed the same way for a given language.
B(est)/W(orst) counts the number of languages that a given method was the
minimum/maximum number of generations when compared to the other
methods. * indicates that the minimum/maximum number was achieved
solely by this method

The results from the data are quite interesting in that we can conjecture that the
SFS operator enables faster convergence for the language recognition problem,
while the MTF operator enables smaller solutions to this problem. This is
different from the results obtained by the trail following problem (Goldberg and
Hammerman, 1999) where MTF enabled both faster convergence and smaller
solutions. (Section 2.5 will address this concern.) Because of the variation of
results among the genomes, and whether competition should be incorporated, we
turn to a wider set of criteria in determining overall performance for the language
recognition problem. These issues will be addressed in the next two sections
detailing the protocol used to evaluate the total data from the experimentation.

2.5 General Evaluation Criteria
The 18 experiments (L2-L10 and L2c-L10c of Section 2.3) with the 8 methods
per experiment (B1, B2, M1, M2, S1, S2, A1, A2), 100 runs per method, and 11
values of maxgen per run generated an immense amount of data. The data was
subject to nine criteria for general evaluation of efficiency. The reader is referred
to the dissertation (Hammerman, 1999) for full descriptions of these criteria. The
criteria are K (Koza, 1992), GAV (average number of generations for successful
runs), TAV:S (processor time corresponding to GAV), two Gµs and Tµs (mean
number of generations and processor time considering both the failure rate and
GAV [or TAV] based on either subsets of the seed set used, or an entire population),
and the probability of getting a solution first based on the number of generations
and the corresponding processor times. The speedup (Angeline and Pollack,
1993) or percent increase when applicable was summarized for the nine criteria.
The percent decrease for average machine size was also summarized and
examined. All of these summaries/worksheets appear in the dissertation. A
sample of these worksheets for languages L2, L2c and L8c appear in the appendix
for elucidation of concepts that follow in this section. The reader is referred to the
dissertation for the experimental results on the remainder of the languages.

The methods are recommended on two levels: first on the criterion level and then
on the language level. In both cases, recommendation is based on a language
showing some improvement in efficiency over B1 (the benchmark). On each
worksheet, there is a separate table for each of seven of the nine criteria and
machine size. The tables for two of the criteria Gµ and Tµ considering a finite
sample have been omitted because in most cases they are identical to the tables
for Gµ and Tµ for the population. When there are differences in these tables, the
differences are minimal and have no effect on the recommendations.

To the left of some of the recommended methods (in the appendix) are the
symbols ?, s or *. These characters are the criterion level recommendations. The
question mark or the appearance of two of these characters indicates some criteria
recommend the methods while others do not and, thus, it is not clear how to rate
that method. The s indicates that the method is considered equivalent in
performance to B1. The * indicates recommendation because the method is
considered to have better performance than B1. A method is recommended for a
criterion if the method generally shows improvement over the benchmark across
the 11 maxgens, occasionally (if ever) matches the performance of the
benchmark, and rarely (if ever) falls below the benchmark in a ranking. Poor
performance for the extreme values of maxgen (lowest and/or highest values) is
not considered a deterrent to recommendation.

A method is recommended for a language based on the following considerations:

It is marked with one of the three symbols on each of the tables for the nine
criteria.
Most of the markings are *.
Timing data is considered important so the method should be recommended
with respect to some timing data.

GAV and TAV:S are not considered critical to the recommendation except when
there are very low failure rates. For example, for L8c (see appendix for
worksheet), almost all of the methods do poorly with respect to GAV and TAV:S

with smaller values of maxgen. The failure rate is high for the corresponding
values of maxgen. A high failure rate will dominate the measures of the number
of generations and amount of processor time. Consequently, the poor performance
of the methods with respect to GAV and TAV:S for the smaller values of maxgen
does not prevent recommendation of a method for L8c.

Essentially, a method is recommended for a language if it does well for the
language. Does well is interpreted to mean that the method is recommended for
most but not necessarily all criteria. In addition to these criteria, the percent
decrease in machine size is summarized and the methods are ranked based on the
range of the percent decreases across the 11 values of maxgen. When the range
for two methods is similar, the values for each maxgen are examined to determine
rank.

The next section presents the evaluation of the complete experimentation based
on the above described criteria.

2.6 Evaluation
The nine criteria selected in the previous section to evaluate efficiency and the
single criteria for machine size are applied to 18 experiments: nine languages (L2
through L10) and the nine complementary languages (L2c through L10c). Each
experiment consists of eight methods: B (benchmark), M (MTF), S (SFS), and A
(hybrid which alternates between MTF and SFS) with the letter followed by a 1
(no competition) or 2 (competition incorporated into the fitness function).

2.6.1 Machine Size

With respect to machine size, the rankings only consider those machines which
generally reduce machine size by more than 3% when compared to B1 across the
11 values of maxgen and generally have a 0.9 or better degree of confidence
based on the U-test. Those which perform similar or worse than B1 are left out.
(See sample worksheets in the appendix.) The rankings are determined by the
range of the percent decreases for the average machine size as compared to B1
across the 11 maxgens. When the ranges are similar for two methods, the specific

values across the lines on the table in the appendix are compared. The rankings
are as follows:

 L2 L2c L3 L3c L4 L4c
 M2 A1 M1, M2 M2 M2 M2
 A2 M1 A1, A2 M1 A2 M1
 A1 M2 S1 A1 M1 A2
 M1 A2 A1 S1
 S1
 B2

L5 & L10 L5c L6 L6c L7 L7c
M2 M2 M2 A2 M2 M1
A1 M1 A1, A2 M1 M1 M2
M1 M1 M2 A1 A2

 A1 A2, S1 A1

 L8 L8c L9 L9c L10 & L5 L10c
M1, M2 M2 M1, M2 M1 M2 M1
A1, A2 M1 A2 A1 M2

A1, A2 A1 M1 A1
S1,S2,B2 A2

 S1

Figure 2.19 Rankings of methods for each language based on machine size

When two methods appear on the same line of a list, they are considered to be
equally effective in locating solutions with fewer states than B1.

Note that M1 and M2 produce smaller FSAs than B1, as indicated by the fact that
both methods are on all the lists except one. For L9c, M2 did produce smaller
FSAs than B1, but not enough to make the list. Recall that the methods appearing
on the above lists are placed there only if they produce FSMs which are generally
more than 3% smaller than those produced by B1 across the 11 maxgens. Also
note that A1 and A2 appear on the lists rather frequently, indicating that the MTF
part of these hybrids tends to influence these hybrids toward smaller solutions,
just not as consistently as MTF.

2.6.2 Convergence Rates

With respect to efficiency/convergence, the results are first presented from the
perspective of the languages and then from the perspective of the methods. The
methods recommended for each language are as follows (order does not indicate
that one method is better than another):

L2, L6: M1, M2, and A1 are recommended.

L2c: M1 and A1 are recommended.

L3: S1 and S2 are recommended.

L3c, L10: S1 is recommended.

L4: S1, S2, and A2 are recommended.

L4c: S1, S2, and A1 are recommended.

L5, L5c, L7: No method stands out as being consistently better than B1.

L6c: M1, A1, A2, and S1 are recommended.

L7c: M2 is recommended.

L8: S1 and B2 are recommended.

L8c: S1, S2, A1, and A2 are recommended.

L9, L9c: B1 is the most efficient.

L10c: S1 is good for maxgen ≥ 200 based on criteria which include the failure
rate.

Figure 2.20 Recommendations of methods for each language based on
efficiency

For L8c (see appendix for worksheet data), all methods did not perform well on
GAV and TAV:S with smaller values of maxgen, but the failure rate is high for these
values of maxgen and the failure rate has more of an influence on the number of
generations and amount of processor time.

The same recommendations presented by method are as follows:
A1: L2, L2c, L4c, L8c, L6, L6c
A2: L4, L6c, L8c
B1: L9, L9c
B2: L8
M1: L2, L2c, L6, L6c
M2: L2, L6, L7c
S1: L3 L3c, L4, L4c, L6c, L8, L8c, L10
S2: L3, L4, L4c, L8c

Figure 2.21 Recommendations of languages for each method based on
efficiency

Note that the methods with competition do not seem to do as well as those
without competition. Each is recommended for fewer languages than the
corresponding method without competition.

Clearly, no one method prevails fully, based on this data. S1 is recommended
more than the other methods (8 times out of 18 possibilities); this is consistent

with the experimentation of S1 from the trail following problem. Yet, this is not
enough for it to be considered generally better than B1. However, for the
language recognition problem, MTF did not consistently outperform the other
methods as it did for the trail problem, an issue now addressed.

2.6.3 Performance of MTF

The data in the previous section does not support the conclusions obtained from
the trail problem (Goldberg and Hammerman, 1999) with respect to MTF. To
understand why MTF performed nicely on the trail problem and did not do so
well for the languages, it is necessary to look at the sizes of the solutions located
by the GA. For the trail problem, M1 and M2 located FSMs which averaged
between 11.32 and 13.91 states for a 32 state genome. Thus, for that problem
domain with a 32-state genome (453 bits), the MTF-GAs used only
100*(11.32/32) ≈ 35% to 100*(13.91/32) ≈ 45% of the genome size since all the
relevant data had been moved to the front of the genome. For the 453-bit genome,
the MTF-GAs tend to produce significantly shorter schemata. For the other
methods, however, the relevant data is spread across the genome. Recall that
shorter useful schemata are more likely to survive crossover and increase their
presence in subsequent generations. Therefore, it is reasonable that MTF is more
efficient for the trail problem in terms of machine size and convergence rates.

The data for the language recognition problem is much different. The genome for
L2 and L2c (see appendix for worksheet data) allows for a maximum of eight
states. For these two languages, the average number of states in a the MTF-GA
solutions ranges between 5.79 to 6.65, or 72% to 83%. For the remaining 16
languages (see dissertation for worksheet data), the genome allows for a
maximum of 16 states. For these 16 languages, the average number of states in a
solution ranges between 11.04 and 14.44. Thus for these languages,
100*(11.04/16) ≈ 69% to 100*(14.44/16) ≈ 90% of the genome's 148 bits is being
used by MTF as opposed to 35% to 43% of the 453 bits required for the trail
following problem. The genetic algorithm utilizing the MTF operator for these
languages apparently does not get sufficiently smaller schemata than the other
methods to allow MTF to consistently perform better than the benchmark.

The next section summarizes the conclusions of the data presented and suggests
directions for further research.

2.7 Conclusions and Further Directions
This research extends prior efforts by the authors (1999) to study the effects of the
reorganization of finite state automata stored as bitstring genomes for genetic
algorithms. Two reorganization operators, MTF and SFS, were introduced
(Hammerman and Goldberg, 1999) to prevent the competition of structurally

equivalent finite state automata that differ only in the state names. These
operators were applied to the trail following problem (Goldberg and
Hammerman, 1999) with results indicating that MTF improves the convergence
of the genetic algorithm and SFS, to a lesser degree. In addition, MTF provides
smaller solutions to the problem because by moving the relevant genome
information to the front, shorter defining lengths are generally obtained.

The current research applies these operators to a different domain, the language
recognition problem. A set of languages (based on Tomita, 1982) were chosen as
the testing data which provides a list of representative words that are members of
the language and a second list of words that are not in the language, for each of 20
languages. An evaluation protocol (Section 2.4) was introduced to evaluate the
efficiency of different methods. Initial experimentation showed that two of these
languages were trivial in that random attempts found the solution in the initial
population. For the remaining 18 languages, experimentation indicated that MTF
(and SFS to a much lesser degree) obtained smaller solutions than the standard
methods within a similar number of iterations. Previously (for the trail following
problem), in addition to smaller solutions, faster convergence rates were
experienced as well by MTF. In the current research, SFS had faster convergence
in more cases than the other methods (benchmark had the least), but not to such
an excessive degree that a general claim can yet be made. On the whole, the
benchmark performed poorly relative to the reorganization methods.

Based on data obtained by Monte Carlo methods, the solution space of the
language recognition problem requires much more of the genome than the trail
following problem. Therefore, MTF did not outperform the other methods in
terms of convergence rate because there was not much efficiency gained by
moving the relevant portions of the genome to the front. From a practical
standpoint, however, without any prior knowledge about the solution for a given
problem, one generally tends to use a (much) larger genome than is necessary.
Methods that spread out an individual across a genome are more susceptible to
crossover. Methods that use more of the genome are more susceptible to
mutation. Thus, while for the language recognition problem MTF did not offer
tremendous savings in terms of the convergence rate to a solution, in a general
application MTF is still expected to outperform the other methods and has been
found to provide smaller solutions. Reorganization shows promise for genetic
algorithms with finite state machine genomes, but more research is necessary
before a reorganization paradigm can be recommended which produces consistent
results across different problem sets.

These conclusions suggest a number of different directions for further research:

1) Examine the sensitivity of the different methods to other parameters such
as the number of competitions.

2) For MTF, examine the trade-off between improved performance due to a
larger genome vs. the additional work incurred due to the increased size
of the genome and the correspondingly larger population size.

3) Consider hybrids of SFS and MTF that incorporate one method to jump-
start the search and resorts to another method to complete the process.

4) Examine the effect of altering the fitness function to favor smaller
machines over those with equal fitness.

5) Store the genomes from generation to generation for progression analysis.

6) Explore different mapping layouts of data in the genome.

References
Angeline, Peter J. (1994) "An Alternate Interpretation of the Iterated Prisoner's

Dilemma and the Evolution of Non-Mutual Cooperation." In Artificial Life IV,
pp. 353-358, edited by Rodney A. Brooks and Pattie Maes. Cambridge, MA:
MIT Press.

Angeline, Peter J. (1996) Personal communication.

Angeline, Peter J., and Jordan B. Pollack. (1993) "Evolutionary Module
Acquisition." In Proceedings of the Second Annual Conference on
Evolutionary Programming, edited by D.B. Fogel and W. Atmar. Palo Alto,
CA: Morgan Kaufman.

Fogel, D. B. (1991) "The Evolution of Intelligent Decision Making in Gaming."
Cybernetics and Systems, pp. 223-226, Vol. 22.

Fogel, D. B. (1993) "On the Philosophical Differences between Evolutionary
Algorithms and Genetic Algorithms." In Proceedings of the Second Annual
Conference on Evolutionary Programming, edited by D.B. Fogel and W.
Atmar. Palo Alto, CA: Morgan Kaufman.

Fogel, D. B. (1994) "An Introduction to Simulated Evolutionary Optimization."
IEEE Transactions on Neural Networks, pp. 3-14, Vol. 5, no. 1, Jan. 1994.

Goldberg, David E. (1989) Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, MA: Addison-Wesley.

Goldberg, Robert and Natalie Hammerman. (1999) "The Dynamic Reorganization
of a Finite State Machine Genome." submitted to the IEEE Transactions on
Evolutionary Computation.

Hammerman, Natalie. (1999) "The Effects of the Dynamic Reorganization of a
Finite State Machine Genome on the Efficiency of a Genetic Algorithm."
CUNY Doctoral Dissertation, UMI Press.

Hammerman, Natalie and Robert Goldberg. (1998) "Algorithms to Improve the
Convergence of a Genetic Algorithm with a Finite State Machine Genome." in
Lance Chambers, Editor: Handbook of Genetic Algorithms, Vol. 3, CRC Press,
pp. 119-238.

Jefferson, David, Robert Collins, Claus Cooper, Michael Dyer, Margot Flowers,
Richard Korf, Charles Taylor, and Alan Wang. (1992) "Evolution as a Theme
in Artificial Life: The Genesys/Tracker System." In Artificial Life II, pp. 549-
578, edited by Christopher G. Langton, Charles Taylor, J. Doyne Farmer, and
Steen Rasmussen. Reading, MA: Addison-Wesley.

Knuth, Donald E. (1998) The Art of Computer Programming: Sorting and
Searching, 2nd edition. Reading, MA: Addison-Wesley.

Koza, John R. (1992) "Genetic Evolution and Co-evolution of Computer
Programs." In Artificial Life II, pp. 603-629, edited by Christopher G.
Langton, Charles Taylor, J. Doyne Farmer, and Steen Rasmussen. Reading,
MA: Addison-Wesley.

MacLennan, Bruce. (1992) "Synthetic Ethology: An Approach to the Study of
Communication." In Artificial Life II, pp. 631-658, edited by Christopher G.
Langton, Charles Taylor, J. Doyne Farmer, and Steen Rasmussen. Reading,
MA: Addison-Wesley.

Stanley, E. Ann, Dan Ashlock, and Leigh Tesfatsion. (1994) "Iterated Prisoner's
Dilemma with Choice and Refusal of Partners." In Artificial Life III, pp. 131-
175, edited by Christopher G. Langton. Reading, MA: Addison-Wesley.

Appendix: Worksheets for L2, L2c and L8c.

L2 worksheet

average machine size-
recommendations M1, M2, A1 degree of confidence that method better than B1

degree of confidence < .90 or method worse than B1
average machine size maxgen--> 1000 750 500 300 250 200 150 100 75 50 25
 ranking M2, A2, A1, M1, S1 M1 .95------------> .94----------->
 range 5.83 - 6.65 M2 .99--->

A1 .98------------------------------> .96 .95 .96 .93 .91
F= 0 - 17 lo Gav= 6.23 - 16.6 lo A2 .99------------------------------> .98 .96 9.7----------->

 1 - 31 hi 8.43 - 33.24 hi S1 .94------------------------------> .91 .92 .90
S2
B2

average machine size-%dec
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

 same as B1 range rank
worse than B1 2.6 - 5 4 M1 5--------------> 4.9-----------> 3.5 3.4 3.2 2.6 4

*: recommended 8.8 - 10 1 M2 10-------------> 9.9-----> 9.8 8.9 8.8 9.2 9.8 9.6
s: similar to B1 5 - 6.4 3 A1 6.4------------> 6.3-----------> 5.4 5.2 5.8 5.4 5
?: not conclusive 5.4 - 7.5 2 A2 7.5------> 7.2 7-------------> 6.2 5.4 6.1 6 6.3

1.1 - 3.7 5 S1 3.5------------> 3.7-----------> 2.9 3.2-----> 2 1.1
S2

2.2 - 3.4 B2 3.2------------> 3.4-----------> 2.2 2.3 2.9 2.6----->
Failure rate & K-speedup
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

s * M1 1.3 1.6 1.4 1.3 1.2
s * M2 1.3 1.6 1.4 1.2 1.4
s * A1 1.5-----> 1.2-----> 1.3
s * A2 1.3 1.2 1.1 1.2----->

S1 1.1
S2 1.3

?s B2 1.1 1.3 Continued on next page.

L2 continued

Gav-speedup Tav:s-speedup
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25 maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

* M1 1.6------------> 1.4 1.5 1.7 1.4 1.1-----------> * M1 1.5------------> 1.4-----> 1.6 1.3 1.1
* M2 1.8------------> 1.6-----> 1.9 1.4 1.1 1.2 1.3 * M2 1.5------------> 1.4-----> 1.6 1.2 1.1
* A1 1.6------------> 1.5 1.4-----> 1.1 S 1.2-----> * A1 1.5------------> 1.4----------> 1.1----->
* A2 1.2------> 1.6 1.4-----------> 1.2 1.1 1.2 1.1 s * A2 1.4 1.2----------> 1.1

S1 1.1 1.4 1.2 1.1-----------> S1 1.1 1.3 1.1 1.1----->
?s S2 1.1------------> 1.1-----------> S2
* B2 1.3-----------> 1.2 1.1-----> 1.2 B2 1.2-----> 1.1

Gmu:population-speedup Tmu:population-speedup
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25 maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

* M1 1.6------------------------------------> 1.5 1.4 1.3 1.2 * M1 1.5------------> 1.6 1.5----------------> 1.4 1.3 1.2
* M2 1.1 1.2 1.3 1.5-----------> 1.6 1.5 1.4 1.3-----> * M2 1.1 1.2 1.3-----> 1.4----------> 1.3 1.2----->
* A1 1.6------------------> 1.5-----------> 1.4 1.3-----------> * A1 1.5------------------------------> 1.4 1.3 1.2----------->
* A2 1.2------------> 1.3-----------> 1.4 1.3 1.2-----------> * A2 1.1 1.2-----------------> 1.1----------------->

S1 1.1 1.1-----> S1 1.1
s S2 1.1------------------------> S2

s * B2 1.1----------------------------> 1.2 B2 1.1

probability of fewer generations-% inc probability of less procesor time-% inc
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25 maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

* M1 19--> 18 16 * M1 13------------------------------------> 14 13 12 9.2
* M2 18--> 17 18 * M2 2.5------------------> 2.4-----> 2.5 2.4 2.1
* A1 23--> 22------> 23 * A1 18--> 16------> 17
* A2 8.3------------------------------> 8.4 8.2 7.7-----------> A2
* S1 9.1------------------------> 9 9.5 9.8 9.3 9.5 12 * S1 4.3------------------> 4.2-----> 4.5-----> 3.9 3.6 4.9

S2 S2
B2 1.9 B2

L2c worksheet

average machine size-
recommendations M1, A1 degree of confidence that method better than B1

degree of confidence < .90 or method worse than B1
average machine size maxgen--> 1000 750 500 300 250 200 150 100 75 50 25
 ranking A1, M1, M2 M1 .96---> .97 .96 .90
 range 5.79 - 6.37 M2 .95------------------------------------> .96 .92

A1 .98---> .99 .96
F= 0 - 16 lo Gav= 6.5 - 15.35 lo A2

 1 - 27 hi 7.77 - 32.99 hi S1
S2
B2

average machine size-%dec
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

 same as B1 range rank
 worse than B1 5.3 - 7 2 M1 6.7------------------------------------> 6.8 7-------> 5.3

*: recommended 2.3 - 5.7 3 M2 5.3------------------------> 5.4 5.6 5.7 4.9 3.8 2.3
s: similar to B1 6.5 -7.3 1 A1 7--------------------------------> 6.9 7.3-----------> 6.5
?: not conclusive 1.1 - 1.9 A2 1.6------------> 1.8-----------> 1.4 1.9 1.6 1.9 1.1

S1
2.1 - 3.2 S2 2.2------------> 2.4-----> 2.1-----> 2.5 3.2 3 2.3

B2 1.1 1.3----->
Failure rate & K-speedup
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

* M1 1.2 1.1-----------> 1.4
M2 1.1

* A1 1.2 1.1 1.3 1.4----->
A2 1.1
S1 1.2
S2 1.2
B2 Continued on next page.

L2c continued

Gav-speedup Tav:s-speedup
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25 maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

* M1 1.2------------------------------> 1.1 1.2-----> * M1 1.2-----------------------------> 1.1---------->
M2 1.1 1.2 M2

* A1 1.4------------------------------> 1.3 1.4 1.2 1.1 * A1 1.3--> 1.1---->
A2 1.1 1.2 A2 1.1
S1 1.1 1.2 1.3 S1 1.3
S2 1.1 1.1 1.3 S2 1.2
B2 1.1 B2

Gmu:population-speedup Tmu:population-speedup
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25 maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

* M1 1.2---> 1.3 * M1 1.2-----------------------------------> 1.1-----> 1.2 1.3
M2 1.1 M2

* A1 1.4---> 1.3 * A1 1.3--->
A2 1.1 A2
S1 1.1 S1 1.1
S2 1.2 S2
B2 B2

probability of fewer generations-% inc probability of less procesor time-% inc
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25 maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

* M1 15--> 16 19 * M1 9.4------------------------------------> 9.3 9.2 9.9 12
M2 M2

* A1 17--> 18-----------> * A1 10--> 11
A2 2.2 A2
S1 4.2 S1
S2 1.3 6.6 S2
B2 B2

L8c continued

Gav-speedup Tav:s-speedup
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25 maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

* M1 1.1 1.1-----> 1.2 1.1-----> ?s M1 1.1 1.1----------->
M2 M2

?s A1 1.1 1.2-----> 1.1 A1 1.1------------>
? A2 1.1 1.2-----> 1.1-----> 1.1 ?s A2 1.1 1.1 1.1

S1 1.4 1.5 1.3 1.1 1.1 S1 1.4------> 1.2 1.1
* S2 1.3 1.4-----> 1.2 1.1 1.3 1.1 1.1 ? S2 1.2 1.3-----> 1.2 1.2 1.1

B2 B2

Gmu:population-speedup Tmu:population-speedup
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25 maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

M1 1.1 M1
M2 M2

* A1 1.1------> 1.2-----> 1.3 1.2 1.1-----------> 1.2 * A1 1.1------------> 1.2-----> 1.1-----> 1.1 1.1
* A2 1.1 1.2----------------> 1.4 1.3 1.2-----> * A2 1.1----------------> 1.3 1.2 1.1----->
* S1 1.4------> 1.5 1.6-----> 1.5-----> 1.4-----> 1.3 * S1 1.4-----> 1.5-----> 1.6 1.4 1.5 1.4 1.3----->
* S2 1.2------> 1.3 1.4 1.5 1.4 1.5 1.7-----> 1.6 1.1 * S2 1.2------------> 1.3 1.4 1.3 1.4 1.6-----> 1.5

B2 1.1------------------> B2

probability of fewer generations-% inc probability of less procesor time-% inc
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25 maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

M1 7 M1 2.8
M2 M2

* A1 14-------> 15 18 19 15 11 10 11 13 19 * A1 9.1------> 9.7 12 13 8.6 5 4.2 4.5 11
* A2 16-------> 17 20 21 20 23 32 26 22 16 * A2 8.3 8 9.2 11 12 10 13 21 15 12 6
* S1 40 41 42 44 46 40 43 36 30 25 * S1 37-------> 38 40 41 36 39 31 26 21
* S2 37-------> 39 42 46 43 49 59-----> 54 10 * S2 31 30 32 34 38 35 41 49 50 45 2.1

B2 1.8 1.6 B2

L8c worksheet average machine size-

degree of confidence that method better than B1
recommendations A1, A2, S1, S2 # : insufficient number of data points

all fail tests for Gav & Tav:s when failure rate high degree of confidence < .90 or method worse than B1
average machine size maxgen--> 1000 750 500 300 250 200 150 100 75 50 25
 ranking M1, M2, {A2, A1}, {S1, S2, B2} M1 .999---> .99 .96
 range 12.09 - 14.07 M2 .999---------------------------------------> .98 .95 #

A1 .999----------------> .99----------------> .98
F= 2 - 85 lo Gav= 14.13 - 156.2 lo A2 .999----------------> .99 .999--------------> .99

 13 - 93 hi 17 - 271.49 hi S1 .99-----------------------------------> .98 .97 .91
S2 .97 .98 .99-----> .98 .97 .99 .98 .97
B2 .91 .94 .96-----> .95 .98-----> .99 .98 .97

average machine size-%dec
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

 same as B1 range rank
 worse than B1 8.1 - 10 2 M1 8.6 8.1 9.3 8.9 9.2 9.8----> 9 10 9.7 8.7

*: recommended 2 - 12 1 M2 10 11-----------------> 12 11-----> 8 7.7 2
s: similar to B1 3.4 - 7.6 3 A1 6.8 7.1 7.6 7.3 6.2 6 6.4 6.2 6.1 3.4 4.2
?: not conclusive 4.2 - 9 3 A2 6.1 6.2 6.6----> 5.6 6.3 7.9 8.3 9 7.1 4.2

-6.6 4 S1 4.9 5.1 5.6 5.8----> 6.3 6.6 4.9 5 4.3
1 - 6.5 4 S2 3.5 4.1 5.1 5.5 4.7----> 6.3 6.5 6.2 4.4
1.6 - 10 4 B2 1.6 2.1 2.6 3.2 3.4 3.5 4.7 5.9 8.1 7.1 10

Failure rate & K-speedup
maxgen--> 1000 750 500 300 250 200 150 100 75 50 25

M1 1.1
M2

* A1 1.1 1.3-----> 1.2 1.1-----------> 1.2
* A2 1.1 1.2 1.1 1.2 1.4 1.3-----> 1.2
* S1 1.1------> 1.4 1.6 1.7 1.5 1.6 1.5 1.4----->
* S2 1.1 1.1 1.3 1.4 1.3 1.5 1.7-----------> 1.1
? B2 1.4 1.2 1.1-----------> 1.1 Continued on next page.

Chapter 3 Using GA to Optimise the Selection and
Scheduling of Road Projects

John H.E. Taplin and Min Qiu
Department of Information Management and Marketing

University of Western Australia

3.1 Introduction
The task of selecting and scheduling a sequence of road construction and
improvement projects is complicated by two characteristics of the road network.
The first is that the impacts and benefits of previous projects are modified by
succeeding ones because each changes some part of what is a highly interactive
network. The change in benefits results from the choices made by road users to
take advantage of whatever routes seem best to them as links are modified. The
second problem is that some projects generate benefits as they are constructed
whereas others generate no benefits until they are completed.

There are three general ways of determining a schedule of road projects. The
default method has been to evaluate each project as if its impacts and benefits
would be independent of all other projects and then to use the resulting cost-
benefit ratios to rank the projects. This is far from optimal because the
interactions are ignored. An improved method is to use rolling or sequential
assessment. In this case, the first year’s projects are selected, as before, by
independent evaluation. Then all remaining projects are reevaluated, taking
account of the impacts of the first-year projects, and so on through successive
years. The resulting schedule is still sub-optimal but better than the simple
ranking.

Another option is to construct a mathematical program. This can take account of
some of the interactions between projects. In a linear program, it is easy to specify
relationships such as a particular project not starting before another specific
project or a cost reduction if two projects are scheduled in succession. Fairly
simple traffic interactions can also be handled but network-wide traffic effects
have to be analysed by a traffic assignment model. Also, it is difficult to cope
with deferred project benefits. Nevertheless, mathematical programming has been
used to some extent for road project scheduling.

The novel option is using a genetic algorithm which offers a convenient way of
handling a scheduling problem closely allied to the travelling salesman problem
while coping with a series of extraneous constraints and an objective function

which has at its core a substantial optimising algorithm to allocate traffic.
Something more than 90% of the entire computing time is taken by the traffic
assignment algorithm.
The study area is in the north of Western Australia and includes the rural road
network of the Pilbara and parts of the Gascoyne and Kimberley, together with a
simplified network connecting to the rest of Western Australia and the eastern
states. Details of the 34 project proposals to be assessed and scheduled are shown
in

3.2 Formulation of the Genetic Algorithm
The genetic algorithm for this problem has the following components.

3.2. I The Objective

The construction timetable for a group of road projects is required to maximise
the resulting community welfare. In this study, the optimal construction timetable
is found by maximising user and supplier cost savings.

3.2.2 The Elements oftlie Project Schedule

An order-based integer vector is used to represent the road project sequence. The
vector is then transformed into the corresponding construction schedule. This
specifies construction tasks, with start and finish times, and determines the
resources required within budget constraints. Specifically, the schedule indicates:

The proportions of each project to be constructed in one or more specific years
The start and finish years of each project
The corresponding expenditure by years
The annual budgets estimated to be available
Divisibility or indivisibility of benefits

3.2.3 The Genetic Algorithm

The genetic algorithm has the following features:

An Order-Based Integer Vector: to represent the sequence of investment in road
projects.

Table 3.1

E
.I 5 %

Taplin and Qiu 103

Binary Tournament Selection: Two individuals are chosen at random from the
population, and the better one is duplicated in the next generation, the process
being repeated until the number of individuals in the next generation reaches the
predetermined population size. Binary tournament selection is equivalent to a
linear ranking selection and has the advantage that the linear ranking mechanism
is implicitly embedded in the tournaments between individuals rather than
explicitly realised by using an assignment function. This eliminates the process of
defining the parameters in the assignment function.

Partially Mapped Crossover: A crossover operator exchanges information
contained in two parent individuals chosen from the population to produce two
offspring which then replace the parents. Parent individuals are chosen at random
from the population. In each generation, the number of times a crossover operator
is applied to the population (Nx) is determined by the probability of crossover (pi)

and the population size (N):

Nx = NPX
The partially mapped crossover operator follows Michalewicz (1992) but uses a
different rule to fix duplicated elements. The following example shows how the
operator works.

l Two ranking strings R’ and R’, which represent two sets of rankings of fifteen
road projects, are chosen as parent individuals:

R’ =[2 3 1 13 4 8 14 15 6 7 11 9 12 5 lo]

R2 =[9 8 6 5 1 11 12 3 10 14 4 7 13 2 151

l The partial crossover operator randomly selects two common positions (P’ and
P’) between which the corresponding elements swap information. The domains
of these two positions are:

P, ’ [I? P - 11 and

‘2 +I +I, P], h w ere p is the number of road projects.

In this example, suppose P, = 5 and P, = 10, and the elements between these

positions (including P, and P,) are exchanged to obtain two offspring R’ and a*.
At this stage, the two offspring are infeasible because each of them has redundant
elements, which need to be fixed:

104 Optimise the Selection and Scheduling of Road Projects

i?=[2 3 1 13 1 11 12 3 10 14 11 9 12 5 lo]

i’=[9 8 6 5 4 8 14 15 6 7 4 7 13 2 151.

Those elements identified in bold italic duplicate some of the swapped elements.
Each of the individuals now has five duplicated elements which need to be fixed.

A stochastic method is used to fix duplicated traits in preference to a deterministic
method because the latter sometimes produces offspring which are very similar to
their parents. First, the two sets of duplicated elements are expressed in two
vectors D’ and D’:

D’ = [3 1 11 12 101,

D2 = [8 6 4 7 151.

If the repair were done in a deterministic way, then the information would simply
be exchanged between the corresponding elements of the two vectors; that is,

dl’ W dr (where i = 1, 5), to obtain:

b’=[8 6 4 7 151,

b,” =[3 1 11 12 101.

Inserting these elements back into the duplicated positions on

original r?’ and i” would give the following repaired r?’ and i” :

i?=[2 8 6 13 1 11 12 3 10 14 4 9 7 5 151,

ii” =[9 3 1 5 4 8 14 15 6 7 11 12 13 2 lo].

Such a deterministic procedure would not be a simple reversal of the original R'
and R’ but the result could be similar to such a reversal. The similarity is reduced
by randomising the order of the swapped elements in vectors D’ and D’. The
possibilities are the permutations of five traits from five elements (i.e., 5 * 4 * 3 *

Taplin and Qiu 105

2 * 1). The following is the result of one possible stochastic swap between D’ and
D’:

b,’ = [15 4 7 6 81,

b,” = [lo 12 1 11 31.

Now, when these elements are inserted back into the duplicated positions on

original r?’ and r?‘, the following repaired r?’ and r?’ are obtained

i?=[2 15 4 13 1 11 12 3 10 14 7 9 6 5 81,

i’=[9 10 12 5 4 8 14 15 6 7 1 11 13 2 31.

This method fixes duplicated elements without creating new duplication, and the
offspring keep some characteristics of the parents.

Mutation: The mutation operator randomly selects an individual from the
population of order-based integer vectors and then chooses two elements in this
individual to exchange positions. The following example shows how the mutation
operator works.

An individual, say,
R = [2 3 1 13 4 8 14 15 6 7 11 9 12 5 lo], is selected

from the population, and the 4th element (13) and the 10th element (7) are chosen
to be exchanged. When the chosen elements have been exchanged, the new
individual is:
R=[2 3 1 7 4 8 14 15 6 13 11 9 12 5 lo]

Because such mutations of an ordered vector make only a modest change to the
individual, they are performed at a relatively high rate.

3.2.3.1 Genetic Algorithm Parameters

The following parameters were specified:

Population size

Number of generations

Probability of partially mapped crossover

Probability of mutation

200 and 500

100

0.6

0.5

3.2.3.2 Summary of the Genetic Algorithm Procedure
shows the procedure in diagrammatic form.

3.3 Mapping the GA String into a Project Schedule and Computing
the Fitness
At every stage of the genetic algorithm computation, each project string must be
converted to a feasible program of projects satisfying all constraints and the net
present value calculated to give the fitness value.

Sct Gcncralion Indcx: I = 0

Projccl Priority Vcclor R

Project Timetable K by Imposing
the Problem’s Constraints

Objective

Sclcction Schcmc to Road Project
Prioritv Vector R

Operators to Road Project Priority
Vcclor R

*
Output the Solution to the Problem

Figure 3.1 The genetic algorithm for the road project construction timetable
problem

The calculation of the objective function, which involves the application of
transport models and the project evaluation process, is independent of the
operators in the genetic algorithm. A road project construction timetable is taken

Figure 3.1

Taplin and Qiu 107

as the input, and the objective function value is fed back to the genetic operators.
The separation of the genetic operators from the calculation of the objective
function makes it possible to use realistic transport models and a road project
evaluation method without sacrificing the efficiency of the search for the
optimum.

The order-based vector is transformed into a construction timetable on the
assumption that when the construction of a road project needs to be spread over
more than 1 year, then it is normally spread over consecutive years. This is based
on the fact that construction of a project over non-consecutive years results in
extra costs that are unlikely to engender extra benefits. The added costs are
associated with setting up construction sites and mobilising construction
equipment. If it is optimal to spread the construction of a road project over non-
consecutive years, then this study treats it as a project being constructed in stages,
each of the stages being an individual sub-project scheduled separately.

3.3.1 Data Required

Information required to transform the order-based vector into a construction
timetable includes data on constraints and the condition of alternative routes as
well as data needed to calculate traffic flows and the value of network
improvement. These requirements include:

l The base road network inventory to establish the network in the base case,
including the link lengths and travel speeds to derive travel times on the links

l Construction costs, annual budgets, limits to annual expenditure on individual
projects, preferred investment profiles over years for individual projects, and
projects constructed in stages

l The benefit divisibility or indivisibility of the projects

l Populations and identified tourist destinations to be used in the light vehicle
travel demand model

l A fixed data file of origins and destinations of heavy vehicle traffic

l The value of time, vehicle operating costs, road maintenance costs by road
classification and the discount rate

3.3.2 Imposing Constraints

A GA string is already a tentative project sequence but in mapping to a viable
road construction timetable, it is necessary to conform to the following groups of
constraints:

l Construction staging requirements

108 Optimise the Selection and Scheduling of Road Projects

l Financial limitations:

- Annual budgets

- Limits to annual expenditure on individual projects

- Preferred investment profiles over years for individual projects
(engineering constraints)

The mapping process takes account of these constraints on the timetable as
follows.

Step 1: Proiects to be Constructed in Stages

It is often reasonable to construct in stages, for example, to construct a gravel
pavement and subsequently upgrade to sealed pavement when the traffic warrants
it. In general, construction of the two stages together as a single project is cheaper
than doing it in two separate stages.

If a project is constructed in stages and the objective function values indicate that
a successor stage should be constructed before its predecessor stages, then this is
a physical impossibility. The indicated reversal must be overridden and the
relevant costs adjusted. For example, Project A has two construction stages A1 and
A2 with costs of cl and ~2, respectively. Stage A1 is the predecessor of Stage A2. If
they are scheduled in a sequence of A2 3 . . . 3 A1 with some other projects
constructed in between, then the only way to implement this project is to
construct it in one stage, because the prerequisite for constructing A2 is the
completion of AL Accordingly, Project A is constructed in one stage.

In this step, all potentially staged projects are checked individually and the
construction stages and related costs are adjusted as necessary. Project options are
added to allow for a predecessor project being ranked lower than its successor
project. In such a case, the construction of the successor project also includes the
part that would otherwise be constructed as the predecessor project (i.e., the two
projects are constructed in one stage). Therefore, the cost of the predecessor
project becomes zero and that of the successor project is normally less than the
sum of the two stages constructed separately.

Step 2: Financial Constraints

The three constraints are imposed sequentially in descending order of project
ranking.

Taplin and Qiu 109

1. Budget Constraints

If the annual budget available is more than the project cost, it may be
allocated an amount of investment up to its cost in the year; otherwise, the
project may be allocated at most the amount of budget left.

Limits to Yearly Expenditure on Individual Projects

If the amount of investment that could be allocated to a project is above the
limit to annual expenditure on one project, then the amount of investment in
the project in that year is at most equal to the expenditure limit.

Preferred Investment Profile for a Project

If the amount of investment that could be allocated to the project in a
particular year is greater than the amount specified in the project’s preferred
profile, then the amount invested in the project is equal to the amount
specified by the profile. If there is not enough budget to satisfy the investment
profile in the year, the amount under-invested is carried over to the next year
- when expenditure on the project may exceed the profile.

The whole step is repeated until annual budgets are exhausted, projects that have
not been allocated any investments being dropped from the lo-year program.

3.3.3 Calculation of Project Benefits

After each GA sequence has been converted to a road construction timetable
which satisfies the constraints, the procedure to arrive at an objective function
value is implemented, ending with the calculation of net present value. This
requires the following processes and travel modelling:

l The base network and project construction sequence are used to derive the new
road network, which changes in physical condition as project investments are
made progressively

l The travel demand model is used to derive passenger vehicle origin/destination
traffic volumes by years, based on populations and identified tourist
destinations

l The multipath traffic assignment model loads passenger vehicle
origin/destination traffic onto the network

l An all-or-nothing model is used to assign heavy vehicle traffic volumes to the
network

110 Optimise the Selection and Scheduling of Road Projects

3.3.3.1 Calculation of User Benefits from Projects

When a link is upgraded, the costs of using all routes which pass through that link
are reduced, so that traffic will be diverted from other links to this one. In year t,
the user benefits, B(t), are given by:

~[F;(t)+F;(t)].C;(t)-x[F;(t)+FI(t)].C;(t)
I m (1)

where: Fib(t) year t traffic flow on the base network assigned to base network
link 1,

F,“(t) year t traffic flow on the new network assigned to base network link I,

CF (t) travel cost on link I in the base network in year t ,

FL(t) year t traffic flow on the base network assigned to link m in the new
network,

F:(t) year t traffic flow on the new network assigned to link m in the new
network,

Ci (t) the travel cost on link m in the new network.

3.3.3.2 Information Required

In Equation (l), link flows F,b (t) , F,“(t) , FL(t) and Fi (t) are also functions of

travel costs c:(t) and c:(t). This functional relationship is explained in
Section 3.5. In this study, travel costs c:(t) and c:(t) include the travel time
costs and the vehicle operating cost, and can be written as
Cp(t)=I)*TT,b(t)+VOCP(t) and

C;(t) = w TTI(t) + VOC;(t)
where: TJb (t) travel time on link I in the base network in year t,

TT: (t) travel time on link m in the new network in year t,

VOCF (t) vehicle operating cost on link I in the base network in year t,

VOC: (t) vehicle operating cost on link m in the new network in year t,
2) the value of a unit of time.

The benefit is the difference between vehicle operating costs in the base and
project cases, so that fixed costs are irrelevant. The variable operating costs,
including tyre wear, maintenance and fuel consumption, are taken to be a function
of average speed or travel time only.

Taplin and Qiu 111

3.3.3.3 Divisibility of User Benefits and Relationship to Travel Times

If the performance of the network is improved when any part of the project is
finished, then the project is benefit divisible (BD). If it has no effect on network
performance until completed, then it is benefit indivisible (BI). Thus, a benefit
divisible project can produce pro rata benefits in the course of construction, while
a benefit indivisible one generates no benefits until the entire construction is
completed. There are two important consequences.

1. A benefit indivisible (BI) project needs to be completed as soon as possible,
whereas there is more flexibility to adapt a benefit divisible (BD) project to
annual budgets and it may not need to be completed as soon as possible

2. If it cannot be completed within the specified program period, a BI project will
make no contribution to calculated benefits whereas a BD project contributes in
proportion to the degree of completion

Specific cases are as follows:

l New road links cannot be used by vehicles until the total project is finished (BI)

l Upgrading pavement (e.g. gravel to sealed pavement) affects the existing
formation and any part of the upgraded pavement project can be open to traffic
immediately after completion (BD)

l New lanes or widening are implemented on the existing formation, so that
partly finished projects can be open to traffic immediately after completion
VW

l A realigned road link is virtually constructed from scratch and most of the
existing alignment is abandoned, so that realignment is like a new project and is
benefit indivisible (BI)

l A new bridge cannot serve vehicle traffic until the whole of the project is
finished, and is benefit indivisible (BI)

l Upgrading an existing bridge may be to enhance structural integrity, increase
load capacity or to widen the bridge:

- If the project requires closure during upgrading, it is benefit indivisible
@I).

2) If the project only requires partial closure, the upgraded part being open to
traffic immediately after completion, it is benefit divisible (BD)

Table 3.2 Effects of a project on travel time (TT) on link i

Type of Project Benefit Divisibility Travel Time

BD - Divisible Base Case * Project Case
BI - Indivisible

New link B1 W TT,"

Upgrading pavement BD TT,h TT,"

Widening link BD TT,~ TT,"
Adding lanes RD TT,~ TT,"

Link realignment BI TT,~ TT,"

New bridge BI W TT,"

Upgrading bridge BI or BD TT,h or w TT,"

TT,h is travel time on link i in the base case. Infinity ''00'' means that the travel
time is large enough to make the choice impossible.
TT" is travel time on link i in the project case.

The changes in the physical condition of a link change average speed and travel
time. The changes in travel time in different project situations are shown in

. TT: is the vehicle's travel time on link i in the base case, and is determined
by the l i n k s initial physical condition. TT: is the vehicle's travel time on link i
in the project case, and depends on the link's ultimate physical condition when
the project is finished.
The analysis period is divided into two sub-periods, as shown in for
project i. Construction is carried out and completed in the first sub-period and
benefits accrue in the second.

A vehicle's travel time TTi"(t) and travel speed TS;(t) on link i in year t depend
on the initial and ultimate travel times and speeds on the link, the construction
status of the proposed project on the link, and whether the project is benefit
divisible or indivisible. Formulae for calculating TTi"(t) in the various cases are
shown in

Table
3.2

Figure 3.2

Table 3.3

Taplin and Qiu 113

<
analysis period for a project timetable

>

program period for
a project timetable

sub-period 1
for project i * sub-period 2 for project i

I\ >
III II III II I I I I b

12345678910 15 20 25 30 35
ye=

started in year si

Construction of
Project i is ended
in year ei

Figure 3.2 Relationship between the timetable analysis period and project
sub-periods

Table 3.3 Vehicle travel time on link i in year t: TTi(t)

Construction Stage Project Type

Benefit Divisible Benefit Indivisible

Not started (0 I t < si) TTi(t) = TT; = +$

LE(t) iR.(t)

TTi(t) = TT; = $
1

Started but incomplete (si I TTi (I) = TSP + 1
t I ei) 1 TS; TTi(t) = TT; = &

I

Completed (ei < t I 35). TT,(t) = TT,” = & TT,(t) = TT: = &

Where: si

ei

LFi(O

W(t)

L;

TS;

TT,”

year in which the project on link i is started

year in which the project on link i is completed

length of the part of link i where construction has finished by year z

length of the part of the link where construction has not finished by year z

length of link i in the base case, L:

travel speed on link i in the base case, TS:

travel time on link i in the base case, TTi”

The formulae in are based on three assumptions, the first being that
during construction traffic can be detoured locally without causing serious
congestion on nearby roads. The second is that, when construction of a benefit
divisible project is partially complete, LF,(t) is proportional to the percentage of
project cost already spent. For benefit divisible projects, such as upgrading
pavement, widening a link, or adding lanes, work on one section is assumed to be
completed before another is commenced.

3.3.3.4 Maintenance Saving Benefits
Benefit Equation (1) is based on savings of travel time and vehicle operating
costs, which are both dependent on traffic volumes, and does not include savings
of road maintenance costs. For this study, it has been assumed that road
maintenance costs are independent of traffic volumes. Pavement roughness is
certainly affected by traffic volume and is reduced by maintenance work (Han
1999), but the focus here is on new road construction and upgrading rather than
maintenance strategies. Therefore, average maintenance cost by road
classification has been used.
In year t of the analysis period for a road project, the saving in road maintenance
MC(t) can be positive or negative, depending on the maintenance costs in the base
and project cases, and is equal to the difference between maintenance costs in the
base and project cases:

where: MCb(t)
(2) MC(t)= MCh(t)-MC"(t)

year t maintenance cost in the base case (= 0 if the project is a
new road link)
year t maintenance cost in the project case MC"(t)

3.3.4 Calculating Trip Generation, Route Choice and Link Loads

The user benefits come from two types of traffic: heavy and light vehicles. A
fixed matrix of origin-destination flows, determined primarily by mining activity,
is used for heavy vehicle traffic. This is assigned to least cost routes, which are
affected by the road projects.
Car and light vehicle user benefits can only be calculated after the impact of
projects on user choices have been estimated. This requires a travel demand and
route choice model, which is run for each period for every alternative
configuration generated by the genetic algorithm. The number of trips between

centroids i and j by route k, 'i;, is given by the combined trip generation and
route choice model:

Table 3.3

Taplin and Qiu 115

T,; =
a[(1 + (p,c)P,(l + cp,c)P,]‘C;‘” ‘e ecb’cF

eck /CV
ce lJ lJ

where
Pi , Pj
<pi, <pj
C;

a

P
Y
5
8

Kij

keKii

(3)

the travel time between centroids i and j by route k
populations at centroids i and j
dummy variables: 1 for tourist destinations, 0 otherwise

the minimum travel time between centroids i and j
a scale parameter
the demand elasticity with respect to population
the demand elasticity with respect travel time
population multiplier for tourist-destination centroids
a route choice parameter
the set of reasonable routes, defined by the Dial (1971) single-passing
rule, from i to j

The parameter values, obtained by maximum likelihood estimation, are:
a 0.04183

P 0.43304

F -1.82986 4.56253

8 -14.9895

Travel routes and road links are related by a link-route incidence matrix whose
elements are defined as:

6: = 1, if link 1 is on route k (k E K,),

0, otherwise.

With the incidence matrix, the travel time of a route is obtained from travel times
on individual links which compose the route:

where 1 is a link and L is the set of all links in the network.

The flow on link I(A) is also obtained with the incidence matrix:

The steps in the calculation are shown in
(Inpm from the Genetic

algorithm) *
Project IwieCit

divisihility / coiist ructinii ti nietahle Base road network

Inilialisalion or vrar indrx 1 = 1

Sct of road projccts that can
bc fully or partially uscd by B- \chicks in y w r 1

I Populations at travel I
centroids and information

The direct traavel
I demand model I

networks

The shortest path traffic
assignment model

values ol lime, vrhicle
operating cost models,

Ilravy vrhicle link
flows on the basr

Passrnger vehicle
linkrlows on the

base and new and new networks road maintenance

'Iota1 b e f i t rrom thc road
projects in year t

Pali:ii latioii or Ihr li)litl
net prcseiiL value CoI

the mad priijects

9
(Feedback to the Genetic

Algxithm)

Figure 3.3 Procedure for calculation of the objective function value

Figure 3.3

3.4 Results
Ten GA experiments were carried out, considerable diversity being found in those
project sequences which come fairly close to the best in terms of net present
value.

3.4.1 Convergence of Solutions to the Problem

Convergence in the experiments is shown in
be classified into three groups according to speed of convergence.

. The ten experiments can

Rapid Convergence: In experiments 4 and 6, the best GA individual is reached
after 16 and 3 generations. Experiments in this group generate “super” GA
individuals at an early generation and they are so superior to other GA individuals
that they inhibit the full exploration of the search space. In other words, the
genetic algorithm finds premature solutions. The maximum objective function
value of 8,330,211 reached in experiment 6 was the lowest maximum in the ten
experiments.

Moderate Rate of Convergence: In experiments 1, 3, 7, 8 and 9, the best GA
individual is reached between generations 23 and 70. Experiments in this group
show normal convergence, thoroughly exploring the search space and then
finding one or several solutions which are better than any later solution. Because
the search space has been thoroughly explored, the final solution is more likely to
be optimal. Experiment 1 reached the highest objective function value of all,
9,566,049.

Slow Convergence: In experiments 2, 5 and 10, the GA individuals continue to
improve for more than 90 generations. Experiments in this group explore the
search space even more thoroughly. However, an improving trend in the objective
function continues almost to the end of 100 generations. If more GA generations
were allowed, the objective function might improve further.
None of the ten experiments resulted in homogeneous GA individuals at the last
generation. lists objective function values for the best ten of 200 GA
individuals at generation 100 (the last) in each of experiments 1 and 2, including
the two largest objective function values in the ten experiments. It is clear that the
GA populations have not been homogenised by generation 100, although the best
result had been reached by the 36th generation.

Figure 3.4

Table 3.4

118 Optimise the Selection and Scheduling of Road Projects

Figure 3.4: Comparison of the Steps in the Improvement of the Objective
Function Values of the Best individuals over GA Generations in Ten
Experiments

Table 3.4 Values of the best ten GA findividuals in each of experiments 1
and 2

Ranking of GA Objective Function Value

Individual Experiment 1 Experiment 2

1st 9,566,049 9,083,365

2nd 7,201,082 4,209,282

3rd 6,521,931 3,349,806

4th 1,016,665 1,228,772

5th 235,282 846,669

6th 120,496 -247,767

7th -31,552 -267,308

8th -162,193 -590,302

9th -1,025,132 -1,038,559

10th -1,271,847 -3,713,518

In summary, experiments 1, 3, 7, 8 and 9 converge normally in 100 generations;
experiments 4 and 6 exhibit premature convergence and experiments 2, 5 and 10
continued to improve. Experiment 1 has the largest objective function for the best

GA individual, which is likely to be a near-optimal solution to the project
timetable for the 34 road projects in the Pilbara Region in Western Australia.

3.4.2 The Solutions

Although the projects are presented as a sequence, in reality they are grouped by
year, with some being spread across adjoining years. A solution to the road
project construction timetable problem is a collection of information on the
various aspects of the road projects in question, between which the relationships
are complicated. Solutions are presented in the following order:

Construction sequence and net present value for the ten best solutions (

Allocation of investment amounts according to the GA sequence so as to satisfy
the annual budget constraints, the limits to annual expenditure on any one

A detailed construction timetable, containing all relevant information (

)

project and the preferred investment profiles ()

)

3.4.2.1 The Ten Best Project Sequences
The project sequence and net present value for each of the best ten project
schedules across all experiments are shown in . The solution ranked
first, which is in Experiment 1, is probably near-optimal. The other highly ranked
GA individuals differ considerably in sequence, as well as in objective function
values.
Although the entire ordered string of projects is presented, only those which could
be completed within budget are actually implemented. All projects remain in the
string but those which are not implemented have no influence on the solution or
the calculated net present value. The projects to be implemented are shown in
bold in each of the solutions in . In some cases, the final project is only
partially completed in Year 10, the final construction year of the analysis.

The benefit from a road project in a sequence to be implemented in a network
depends on the other projects in the sequence and the benefits and benefit-cost
ratios for individual projects are unknown. The marginal benefit-cost ratio of an
individual project could be calculated by deleting it from the optimal schedule, re-
calculating total benefits of the remaining project group and expressing the lost
benefits as a ratio to the cost saved on the particular project.

Table
3.5

Table 3.6
Table

3.7

Table 3.5

Table 3.5

Table 3.5 Summary of the best ten investment sequences

Ranking of Road Project Construction Order' Net Present Value
Solution c€J

1 St

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

8 23 22 6 18 7 14 25 28 31 33 9 21 2 27 13 10 5 20
34291226 19 11 17 3 2 4 3 3024 1 6 1 15

15 34 8 21 1 10 18 23 4 24 17 3 5 31 19 14 26 22 2
331632289201129253071213627

1 21 8 4 17 24 27 33 19 5 12 16 34 3 22 29 18 14 6
1 5 2 3 2 8 9 7 1020225 1331303226 11

1 7 2 3 1 6 8 2 1 2 2 0 3 1 3 0 4 1 2 1 0 5 3 4 3 3 2 2 2 3 3 1 4
2629241927 1 8 6 1 3 9 1 2 8 7 1 1 2 5 1 5

3 0 2 8 1 6 2 2 3 2 4 5 2 0 2 4 3 1 7 2 6 2 7 2 1 2 8 1 7 1 9 3 3
3 1 1 1 5 6 1 3 3 4 1 2 3 2 9 2 5 1 4 1 0 9 1 2 1 8

8 2 2 2 3 3 1 2 4 1 9 5 3 4 2 8 2 5 6 2 7 2 6 2 3 1 1 2 0 1 5 1 7
3 1 3 2 9 9 1 2 1 1 6 3 0 1 3 2 4 1 8 107 1432

8 2 2 2 3 3 1 2 4 1 9 5 3 4 2 8 1 1 6 2 7 2 6 2 3 2 5 2 0 1 5 1 7
3 1 3 2 9 9 1 2 1 1 6 3 0 1 3 2 4 1 8 1 0 7 1432

2 1 8 1 1 2 2 0 2 1 8 4 1 5 2 5 3 1 1 0 7 9 3 1 6 3 4 5 2 7 2 9
30262417331332 1422 1923 11628

22 8 23 24 33 2 21 6 12 13 5 26 17 18 15 30 19 14
1 6 2 8 3 1 1 1 9 7 2 0 2 7 2 9 1 0 1 2 5 3 2 4 3 3 4

12 17 30 8 22 4 7 23 1 3 33 10 32 28 31 19 Y 20 6
15342272621112429 14 1816525 13

9,566,049

9,08 3,3 65

8,825,857

8,825,826

8,824,625

8,824,545

8,824,536

8,728,765

8,615,099

8,542,897

The projects in bold are those to be wholly or partly implemented within the program period which contribute
to the objective function. In some cases, an oullier in bold is a 'predecessor' project lo he implemented as part
of its more highly ranked 'successor.'

3.4.2.2 Project Sequence Converted to Annual Investment
shows the best project sequence converted to amounts invested by

years. It shows how the computation procedure maps the sequence of projects in
bold in the first row of into annual expenditures. If there are insufficient
funds to complete a project in a year, then further amounts are allocated to it in
subsequent years. If a benefit indivisible project cannot be completed within a
ten-year program period, nominal rather than actual amounts of investment are
allocated to it during the program period. This leads to total investment in later
years of the program (the 8th, 9th and 10th) being less than the annual budget of

Table 3.6

Table 3.5

$27 million. This treatment of such benefit indivisible projects is justified on two
grounds :

The firmness of the schedule of road projects decreases with time because
funding projcctions and travcl dcmand forccasts bccomc lcss rcliablc.
Road project programming is a rolling process. which should be repeated every
year or every few years. In the next programming round, those benefit
indivisible projects which cannot be completed in the current program period
will have an extended time span for completion, and the nominal amounts of
investment in the projects will become actual amounts of investment in the new
program period.

Projects 29 and 26 are the last two to enter the investment program of
thus exhausting the budget. Project 12, which came between them in the GA
sequence (first case in). was a predecessor of Project 13, which enters
the program in Year 7 and therefore absorbs Project 12. Such cases of absorption
of predecessor by successor has been taken into account i n the assessment of
network effects and benefits for every GA individual in every generation. Other
cases of I)redecessor-successor relationships in the best solution are considered in
the next section.
It can also be seen in that some projects are spread over more than two
succcssivc ycars. This is duc to financial constraints, cithcr thc absolutc limit on
annual expenditure on an individual project, as in Project 22, or the effect of a
preferred investment profile, as in the case of Project 14 (which is also
constrained by the absolute limit in its third construction year). In some cases,
spreading over only two years is also due to a financial constraint specific to the
project, as in Project 6 where the preferred investment profile has been imposed.

3.4.2.3 Full Statement of the Best Project Schedule
Details of the implementation plan for the best solution are shown in
Presentation in the table of the predecessor project numbers, divisibility of
benefits. preferred investment profile by years, and budget provides a reminder
that the solution had to satisfy a series of constraints.
As alrcady noted, thc proccdurc for stagcd construction has a substantial cffcct. In

, cases where a predecessor project has been absorbed by its successor,
because the siiccessor is higher in the GA ranking, are:

Table 3.6

Table 3.5

Table 3.6

Table 3.7

Table 3.7

122 Optimise the Selection and Scheduling of Road Projects

Predecessor Proiect No.
1

12

21

27

Successor Project No.
2

13

22

28

Project 1 is very low in the ranking but the combination of 1 and 2 ranks high
enough to be implemented in Year 7. An important case of two stages being
constructed separately is provided by predecessor Project 25 followed by
successor Project 26, with a two-year gap between.

3.4.3 Similarity and Dissimilarity of Solutions: Euclidean Distance

If the GA individuals with large objective function values cluster together in the
search space, it is likely that there is a single peak in the vicinity of these
individuals; otherwise, there may be multiple peaks. The shape of the search
space is one of the factors affecting the ability of a genetic algorithm to find the
optimal solution.

Three different types of outcome are observed in the actual genetic algorithm
results:

l Similar project sequences with similar objective function values

l Significantly different project sequences but similar objective function values

l Similar project sequences but significantly different objective function values

These phenomena are associated with the interdependence of road project
benefits. Because it is extremely difficult to investigate algebraically the shape of
the search space of the road project problem, a numerical investigation is carried
out. In each of the ten experiments, the best ten GA individuals represent ten good
solutions obtained by running the genetic algorithm repeatedly. Pooling the best
ten GA individuals in each of the ten experiments forms a set of 100 fair to good
solutions for the problem and provides the basis for investigating the shape of the
search space and the relationships between solutions.

The Euclidean distance for any two vectors X=(xl9 x 2 3 ... x n) and

y = (Y I 3 Y2 7
. ‘ ’ Y n) in a Rn space can algebraically be written as:

where d ~ ? ; is the Euclidean distance between vector X and vector Y .

‘Dimension 2

/
Dimension 1

Figure 3.5 Euclidean distance between two vectors in a R3 space

It is difficult to comprehend differences between road project construction
timetables because the investment in each construction timetable has 340
elements or dimensions (i.e., 34 projects x 10 years). Consequently, it is not
feasible to investigate the distribution of solutions by plotting objective values
against the corresponding space dimensions, and a summary measurement for the
space dimensions is necessary. Euclidean distance has been used to measure
distance between vectors in the real number space (i.e., R,,, where “R’ stands for a
real number space and “n” for the number of dimensions of the space), as shown
in for two vectors in a R , space. Figure 3.5

Taplin and Qiu 127

Two sets of Euclidean distances are calculated:

l Distances between the very best solution and other solutions in the set of 100
good solutions

l Distances between the second best solution and other solutions in the set of 100
good solutions

Table 3.8 Euclidean distances between the best ten solutions

Euclidean distances between solutions’
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

1st 0.00 4.99 5.23 4.66 5.09 4.86 5.09 5.00 4.87 4.96

2nd 0.00 4.96 4.44 4.99 4.98 4.96 4.81 4.92 5.45

3rd 0.00 4.14 4.98 4.71 4.78 5.16 4.55 5.61

4th 0.00 4.76 4.40 4.37 4.48 4.35 4.97

5th 0.00 4.62 4.67 5.36 4.95 5.49
6th 0.00 2.77 5.23 4.76 5.48

7th 0.00 5.18 4.54 5.14

8th 0.00 5.34 5.26

9th 0.00 5.36

10th 0.00

NPV 9.566 9.083 8.826 8.826 8.825 8.825 8.825 8.729 8.615 8.543
CM

The matrix of Euclidean distances between vectors in a real number space is a symmetric matrix with values
of zero for the diagonal elements. In this case, the possible Euclidean distances range between 0 and 18.44.

The distances are calculated by using the amounts of investment in projects scaled
by the corresponding project costs, i.e., the proportions of road projects
constructed over years. The reason for this is that each of the 340 elements in the
proportion matrix has a uniform domain range of [O,l], and the Euclidean
distance accordingly has a domain range of

[&zm = 0, &ii% = 18.441

The first set of distances (i.e., the Euclidean distances between the best solution
and other solutions in the set of the 100 good solutions) has a minimum value of
4.3072 and a maximum value of 5.6512. The second set of distances (i.e., the
Euclidean distances between the second best solution and other solutions in the
set of the 100 good solutions) has a minimum value of 2.1539 and a maximum
value of 5.6738. The Euclidean distance between the best solution and the second

best solution is 4.9857. Euclidean distances between the best ten solutions are
shown in

Another way of illustrating differences and the practical meaning of Euclidean
distance is presented in . The last two columns are not surprising in
indicating that where the Euclidean distance is small, there is a high proportion of
projects common to both solutions, with many of these being implemented over
identical periods. The striking result is the dissimilarity of the two best solutions.
Thus, it is of practical importance to take note of more than one GA solution
because it may turn out that, for other reasons, the radically different plan given
by the second best solution is more acceptable than the best and yet its
implcmcntation would mean a ncgligiblc sacrifice in terms of total payoff.

Table 3.9 Differences between solutions: Euclidean distance and program
similarities

Best and Second Best Solution Sixth and
Second Best and the Second Seventh Best

Solutions Closest to it in Solutions
Euclidean Distance

Number of oroiects (and percentage of total1

Total projects to be 28 (100%) 26 (1007c) 24 (1007c)
implemented by either solution

Projects common to both 12 (43%) 20 (77%) 23 (96%)
solutions

- Identical implementation I (47r) 14 (54%) 12 (50%) ?
periods and construction
proportions

- Different implementation 1 I (39%) 6 (23%) 11 (46%) ?
periods or construction
proportions

Projects not common to both 16 (57%) 6 (23%) 1 (4%)
solutions

Euclidean distance between
solutions

4.99 3.03 2.77

3.4.3.1 Similar Solutions with Close Objective Function Values

The Euclidean distance between the sixth and seventh best solutions is 2.77
(), meaning that the road project construction plans from the two
solutions are very similar. Differences between them are merely in slight
divergences in construction periods and project proportions. Yet another feature

Table 3.9

Table 3.8

Table 3.8

of the two solutions is that their objective function values are virtually the same,
the objective function value being 8,824,545 for the sixth best solution and
8,824,536 for the seventh.

3.4.3.2 Different Solutions with Similar Objective Function Values
As shown in , the Euclidean distances between the best ten solutions,
except for that between the sixth and seventh best solutions, are all greater than
4.0. If this is taken as the borderline between similarity and dissimilarity of
solutions then all of the top ten, except for the sixth and seventh best, can be
regarded as dissimilar from one another. On the other hand, as shown in

, objective function values for these solutions are very close to each other. The
largest objective function value is 9,566,049 and the smallest in the top ten is
8,542,897, a difference of 11%. If the results are expressed in cost-benefit terms,
then the largest and smallest benefit-cost ratios differ by about 1%.
In order to capture differences between solutions in the context of the road
network in question, the road project construction plans derived from the best and
second-best solutions are shown in . These solutions are shown to
differ not only in projects to be implemented but also in their construction years
and the proportions of projects to be implemented annually.

3.4.3.3 Similar Solutions with Dissimilar Payoffs: The Shape of the Search Space
It is apparent from that a solution with a large objective function value
may not be close, in terms of Euclidean distance, to the solution with the next
highest objective function value. The best and second best solutions illustrate this
point (). For any two superior solutions with large objective
function values, some inferior solutions with small objective function values may
exist between the two superior solutions, as illustrated in three-dimension space
R’ in
There are a number of examples in the top 100 solutions (some being shown in

) of both spatial separation between solutions which have similar
payoffs and also the spatial affinity in terms of Euclidean distance between
solutions with very different payoffs. This phenomenon implies that around very
good solutions to the road construction timetable problem, there may exist some
inferior solutions (). If the inferior ones are developed from the good
solutions through the evolutionary process in the genetic algorithm, they are
likely to be similar in construction sequence but with significantly different
objective function values.

and

Table 3.8

Table
3.8

Table 3.10

Table 3.8

Table 3.9 3.10

Figure 3.6

Table 3.9

Table 3.8

Figure 3.6

130 Optimise the Selection and Scheduling of Road Projects

Table 3.10 Comparison of project implementation in the best and second best
solutions (Euclidean distance = 4.99)

100.0

Table 3.10 (cont’d)

31

32

33

34

100.0

Best 4.0 62.0 34.0
2nd Best 33.0 33.0 34.0
Best
2nd Best 50.0
Best 100.0
2nd Best 100.0
Best 100.0

A good example of similar road project solutions with radically different payoffs
is provided by the second-best solution and its second-closest solution which are
separated by a Euclidean distance of only 3.03 (second last column of

). Twenty out of a total of 26 projects in the two solutions are the same and
14 have identical implementation timetables and construction proportions.
However, the objective function value for the second-best solution is 9,083,365,
whereas it is a very poor -1,038,558 for the other very similar solution. This
suggests that in some situations, small differences between road project
construction timetables may lead to a significant disparity between the

Table
3.10

132 Optimise the Selection and Scheduling of Road Projects

corresponding net present values, one being economically desirable and the other
highly undesirable on the net present value criterion.

Dimension 3

A

O l oo 0 0 0 0 0

Dimension 1

0 0 0
”)Dimension 2

Legend:
l a superior solution with a large

objective function value

0

an inferior solution with a small
objective function value

Figure 3.6 Hypothetical superior solutions and surrounding inferior
solutions

Thus, it is concluded that the search space of the road project problem has
multiple peaks in the vicinity of the good solutions, with some of these peaks
being surrounded by inferior solutions. This finding is consistent with the result
of an early investigation into the shape of solution space for the transport network
design problem (Pearman 1979), which is similar to the road project construction
timetable problem in this study.

3.5 Conclusions: Scheduling Interactive Road Projects by GA

The results of this study to optimise the selection and scheduling of road projects
are based only on road user and supplier effects, but other environmental and
social impacts could be incorporated in the model. The narrow focus is
appropriate in this rural area where the effects on road users and suppliers would
dominate any comprehensive evaluation.

Not only does the genetic algorithm for the project scheduling problem generate
an apparently best solution, but it also generates a set of very good solutions
which make it easy for the decision-maker to select between alternatives without
reducing the payoff to any substantial extent. The GA also discloses that traffic
responses make the fitness of a program of road projects sensitive to small
changes in project sequence. Two contrasting cases have emerged from the

Taplin and Qiu 133

analysis, both having significant implications for practical decisions and the
formulation of policy.

3.5.1 Dissimilar Construction Schedules with High and Almost Equal Payoffs

The presence of a number of good solutions makes the search for the optimal
solution to the road project problem difficult and may even indicate that the
optimum has not been found. However, the multiplicity of good but dissimilar
solutions may be valuable for decision-makers. They are interested not only in the
efficiency of resource allocation but also in other issues, such as environment
protection and the development of the local economy. These considerations could
influence a marginal decision. From a group of almost equally good solutions, in
terms of narrowly specified resource allocation efficiency, decision-makers can
choose the most effective by other criteria. In other words, they can choose a
solution that is still good in terms of efficiency but better on other grounds.

3.5.2 Similar Construction Schedules with Dissimilar Payoffs

The presence of similar construction timetables with different economic payoffs,
of which some are positive and high and the others are negative, has an important
implication for practical decision-making on road investment programs. When a
road project construction timetable with high economic payoff needs to be
modified to a seemingly small degree, caution is required to avoid a substantial
decrease in the total economic payoff which may be caused by the adjustment.
The genetic algorithm search has generated a number of examples of programs
with very poor payoff which differ only slightly from those giving excellent
results. These show that small modifications may cause large and damaging
results.

References

Dial R. B. (1971) A Probabilistic Multipath Traffic Assignment Model which
Obviates Path Enumeration, Transportation Research, Vol. 5, 83-l 11.

Han R. L. (1999) Optimising Road Maintenance Projects on a Rural Network
Using Genetic Algorithms, Proceedings of the Australian Transport Research
Forum 1999, Perth, Australia, Vol. 23,477-491.

Michalewicz, Z. (1992) Genetic Algorithms + Data Structures = Evolution
Programs, Springer-Verlag.

Pearman, A.D. (1979) The Structure of the Solution Set to Network Optimisation
Problems, Transportation Research, Vol. 13B, 81-90.

134 Optimise the Selection and Scheduling of Road Projects

Qiu, M. (1995) Prioritising and Scheduling Road Projects by Genetic Algorithm,
Proceedings of the International Congress on Modelling and Simulation,
Newcastle, Australia, Vol. 1,290-295

Chapter 4 Decoupled Optimization of Power
Electronics Circuits Using Genetic Algorithms
J. Zhang, Henry S. H. Chung†, W. L. Lo, S. Y. R. Hui, and A. Wu

Department of Electronic Engineering

City University of Hong Kong

Tat Chee Avenue

Hong Kong

Abstract

This chapter presents an implementation of a decoupled optimization technique
for design of switching regulators using genetic algorithms (GA). The
optimization process entails selection of the component values in the regulator to
meet the static and dynamic requirements. Although the proposed approach
inherits characteristics of evolutionary computations that involve randomness,
recombination, and survival of the fittest, it does not perform a whole-circuit
optimization. Consequently, intensive computations that are usually found in
stochastic optimization techniques can be avoided. In the proposed optimization
scheme, a regulator is decoupled into two components, namely the power
conversion stage (PCS) and the feedback network (FN). The PCS is optimized
with the required static characteristics such as the input voltage and output load
range, while the FN is optimized with the required static characteristics of the
whole system and the dynamic responses during the input and output
disturbances. Systematic procedures for optimizing circuit components are
described. The proposed technique is illustrated with the design of a buck
regulator with overcurrent protection. The predicted results are compared with the
published results available in the literature and are verified with experimental
measurements.

4.1 Introduction
It is now widely recognized that computer-aided-design (CAD) tools can reduce
the time and cost of production for electrical circuit design. Although much
research work is focused on the analysis of periodically switching circuits [1]-[3],
techniques developed so far are not fully applicable for power electronics circuits
(PEC). As the operation of the switches in PEC is dictated by various constraint

† Corresponding author

© 2001 by Chapman & Hall/CRC

equations, the topology duration and sequence of operation are dependent on the
intrinsic circuit waveforms [1], [3].

In the last two decades, small-signal models have been widely applied in the
design of feedback circuit for switching regulators. Among various approaches,
the state-space averaging and its variant [4]-[7] are the most common ones. By
recognizing that a converter has an output filter with corner frequency, which is
much lower than the switching frequency, a linear time-invariant model can be
derived to approximate the time-variant PEC. Based on the generic feature of
slow-varying output, a concept of injected and absorbed current has been
proposed [5]. This concept extracts the output capacitor from the circuit, yielding
an order reduction in the system differential equations [6]. By performing a Bode
plot of the converter characteristics and applying the classical control theories,
circuit components in the feedback compensation network can be designed.
Although the procedures are simple and elegant, they are usually applied to
specific circuits and control schemes [8]-[9], which require comprehensive
knowledge on the circuit operation. In addition, as the circuit has been converted
into a mathematical model and its state variables have been averaged, no detailed
information about the exact waveforms and the response profiles can be obtained.
Circuit designers would sometimes find it difficult to predict precisely the circuit
responses under large-signal conditions [7].

As power electronics technology continues to develop, there is a continuous need
for automated synthesis that starts with a high-level statement of the desired
behavior and optimizes the circuit component values for satisfying some required
design objectives. About two decades ago, techniques for analog circuit design
automation began to emerge. These methods incorporated heuristics [10],
knowledge bases [11], simulated annealing [12], and other algorithms, in which
circuit optimization techniques are a powerful adjunct in the design stage.
Classical optimization techniques such as the gradient methods and hill-climbing
techniques have been applied [13]-[14]. However, some methods might be subject
to becoming trapped into local minima, leading to sub-optimal parameter values,
and thus, having a limitation of operating in large, multimodal, and noisy spaces.

Over the last few years, modern stochastic optimization techniques involving
evolutionary computation such as genetic algorithms (GA) [15] have been shown
to be an effective way to find solutions close to the global optimum and are less
dependent upon the initial starting point of the search [16]. A set of guided
stochastic search procedures that are based loosely on the principles of genetics is
formulated. The procedures are flexible, allowing mixed type, bounded decision
variables and complex multifaceted goals. Although GA are appropriate for
solving off-line engineering design problem, the stochastic search procedures are
computationally intensive. The additional burden of performing an exhaustive or

© 2001 by Chapman & Hall/CRC

probabilistic search of each proposed trial solution in order to establish its
sensitivity is very tedious. This chapter presents an implementation of a
decoupled optimization technique for design of switching regulators using GAs.
Circuit components are depicted as vectors of parameters that are usually named
chromosomes. The constructed data structures are manipulated with the GA. The
optimization process entails selection of the component values in the regulator to
meet the static and dynamic requirements. Although the proposed approach
inherits characteristics of evolutionary computations that involve randomness,
recombination, and survival of the fittest, it does not perform a whole-circuit
optimization so that intensive computations can be lessened. In the proposed
optimization scheme, a regulator is decoupled into two components including the
power conversion stage (PCS) and the feedback network (FN). The circuit
components in the PCS are optimized with the required static characteristics such
as the input voltage and output load range. The circuit components in the FN are
optimized with the required static behaviors of the whole regulator and the
dynamic responses during the input voltage and output load disturbances. Sec. II
shows the decoupled regulator configuration. Section 4.3 describes the
chromosome structures and the fitness functions for the PCS and FN in the GA
optimization. Section 4.4 describes the optimization procedures. In Section 4.5,
the proposed approach is illustrated with the design of a buck regulator with
overcurrent protection. A prototype using the GA-optimized component values
has been built. Simulated results are compared with the waveforms obtained in
available literature and experimental measurements.

4.2 Decoupled Regulator Configuration
The basic block diagram of a power electronics circuit including the PCS and FN
is shown in Figure 4.1. The PCS is supplied from the source vin to the load RL. The
PCS consists of IP resistors (R), JP inductors (L), and KP capacitors (C). The FN
consists of IF resistors, JF inductors, and KF capacitors. The resistors in the PCS
represent the parasitic resistors of the components such as the equivalent series
resistance of inductors and capacitors since no explicit resistors are usually added
in power processing. The signal conditioner Ho converts the PCS output voltage vo

into a suitable form (i.e., vo′) for comparing with a reference voltage vref. Their
difference vd is then sent to an error amplifier (EA). The EA output ve is combined
with the feedback signals Wp, derived from the PCS parameters, such as the
inductor current and input voltage, to give an output control voltage vcon after
performing a mathematical function g(ve, Wp). vcon is then modulated with a pulse-
width modulator to derive the required gate signals for driving the switches in the
PCS. Mathematically, all passive components in the PCS and the FN can be
represented with the use of two vectors ΘPCS and ΘF N, respectively. They are
defined as follows.

© 2001 by Chapman & Hall/CRC

][PPPPCS CLR=Θ and][FFFFN CLR=Θ (1)

where

][21 PIP RRRR L= ,][21 PJP LLLL L= ,

][21 PKP CCCC L= ,][21 FIF RRRR L= ,

][21 FJF LLLL L= , and][21 FKF CCCC L=

Power Conversion Stage (PCS)

Error Amplifier
(EA)

g

Drive
Circuit

Ho

Feedback
Network (FN)

vd

vg Wmon
Wp

vcon

vf

ve

vref

RL

vin

v’o

vramp

vo

][21 IFF RRRR L=
][21 JFF LLLL L=

][21 KFF CCCC L=

][21 IPp RRRR L=

][21 JPp LLLL L=
][21 KPp CCCC L=

Figure 4.1 Block diagram of power electronics circuits: chromosome
structures and the fitness functions

Apart from satisfying the operating requirements, including the static and
dynamic responses, the components might also be required to optimize for other
factors such as the physical size and the total cost of the components.
Conventional techniques usually perform a whole-circuit optimization, in which
all components are optimized at the same time. Such approach will be
computationally intensive because it involves considerable searching dimensions.
In this chapter, ΘPCS and ΘFN are optimized separately with the GA by decoupling
the PCS and FN. For example, if the searching dimension of the PCS is NPCS and
that of FN is NFN, the total training time is equal to the sum of the time taking to

© 2001 by Chapman & Hall/CRC

train NPCS parameters in the PCS and NFN parameters in the FN. The required time
will be shorter than training (N PCS + NFN) parameters in the whole-circuit
optimization. This new approach greatly simplifies the optimization procedures
and reduces the computation time. The parameters in ΘPCS is optimized by
considering the steady-state operating requirements in the PCS such as the input
and output load range, steady-state error, and output ripple voltage. With the
determined ΘPCS, parameters in ΘFN are then optimized for the whole-system
steady-state characteristics and dynamic behaviors such as the maximum
overshoot and undershoot, and the settling time during the input and output
disturbances.

4.2.1 Optimization Mechanism of GA

The parameters in ΘPCS and ΘFN are grouped in a chromosome-like structure. A
group of these chromosomes constitutes a population. An index of merit (fitness
value) is assigned to each individual chromosome, according to a defined fitness
function. A new generation is evolved by a selection technique, in which there is
a larger probability of the fittest individuals being chosen. Pairs of chosen
chromosomes are used as the parents in the construction of the next generation. A
new generation is produced as a result of reproduction operators applied on
parents. There are two main reproduction operators, namely mutation and
crossover. New generations are repeatedly produced until a predefined
convergence level is reached.

4.2.2 Chromosome and Population Structures

The chromosome structure for optimization of ΘPCS and ΘFN is similar to Equation
(1). The formats of the chromosome CP for the PCS and the chromosome CF for
the FN in a population are as follows;

]||[212121 PPP KJI CCCLLLRRRCP LLL=

 (2)

]||[212121 FFF KJI CCCLLLRRRCF LLL=

CP and CF are coded as vectors of floating point numbers, of the same length as
the solution vector. Each parameter in CP and CF is forced to be within the
desired range. The precision of such an approach depends on the underlying
machine, but is generally much better than that of the binary representation in
conventional GA-training [17]. Same chromosome structure is defined in C
language for CP and CF in their respective population,

typedef struct {
long double ∗RValue, ∗LValue, ∗CValue;

© 2001 by Chapman & Hall/CRC

long double FitnessValue;
}chromosome;

The values of the component are stored in arrays, which are pointed by RValue,
LValue, and CValue, corresponding to each individual component type. The
fitness value of the chromosome is stored in FitnessValue, which is determined
by considering the static and dynamic responses, and its computation will be
described in the next section. The chromosomes in the population are also stored
in the form of structures. That is,

struct PCS_Population {
int NumOfChromosome, NumOfR, NumOfL, NumOfC;
long double Rmin, Rmax, Lmin, Lmax, Cmin, Cmax;
chromosome *CP; };

struct FN_Population {
int NumOfChromosome, NumOfR, NumOfL, NumOfC;
long double Rmin, Rmax, Lmin, Lmax, Cmin, Cmax;
chromosome *CF; };

The number of chromosomes in a population is stored in NumOfChromosome.
The chromosomes in the respective population are stored in arrays, which are
pointed by CF and CP, respectively. The numbers of R, L, and C in a chromosome
are stored in NumOfR, NumOfL, and NumOfC, respectively. The searching
space of each component value is bounded within a predefined range. That is, the
values of R, L , and C will lie between [Rmin, Rmax], [Lmin, Lmax], and
[Cmin, Cmax] in the respective population.

4.2.3 Fitness Functions

An index (fitness value) is assigned to each chromosome in the population
according to a predefined fitness function. The fitness value shows the degree of
attainment of the chromosome on the optimization objectives. In this chapter, a
multi-objective optimization is adopted. Better chromosome will have a higher
fitness value. The optimization objectives of the PCS are based on the steady-
state behaviors and the optimization objectives of the FN are based on the steady-
state behaviors of the whole system and dynamic responses under the input and
output disturbances. Their definitions are described as follows.

4.3 Fitness Function for PCS
The fitness function ΦP for evaluating each chromosome in PCS_Population
is based on the following considerations, including

© 2001 by Chapman & Hall/CRC

1) The steady-state error of vo within the required input voltage range vi n ∈
[Vin,min , Vin,max] and output load range RL ∈ [RL,min , RL,max]

2) The operation constraints on circuit components, such as the maximum
voltage and current stresses, ripple voltage and ripple current

3) The steady-state ripple voltage on vo,

4) The intrinsic factors concerning with the components in the selected
chromosome, such as the total cost, physical size, etc.

Hence, ΦP measures the attainment of a generic chromosome CP for the above
four objectives in the static operating conditions. Each objective is expressed by
an objective function (OF). For the nth chromosome in the population, ΦP is
expressed in the form of

ΦP n L in n L in n
v V v

V

R R R

R

l in n L in n

CP OF R v CP OF R v CP

OF R v CP OF R v CP

in in in

in

L L L

L

() [(, ,) (, ,)

, , (, ,)]

,min

,max

,min

,max

,,

= + +

() +

==
∑∑ 1 2

4

δδ

 (3)

where δRL and δvin are the steps in varying RL and vin, respectively, for evaluating
ΦP. The definitions all OFs in Equation (3) are defined as follows.

4.3.1 OF1 for Objective (1)

The steady state vo is a crucial factor that considers the suitability of ΘPCS in the
population. The implied goal is to find whether there exists a value of vcon in
Figure 4.1 such that the value of vo after the signal conditioning of Ho [i.e., vo′] is
same as vref. An iterative Secant method [18] is applied to determine the steady
state waveforms. An integral square error function Ε2

(r) is defined in the rth
iteration in order to estimate the closeness of vo” with vref in Ns simulated samples,
where

∑
=

−=Ε
sN

m
ref

r
o

r vmv
1

2)()(
2])(’[

(4)

vo′ is obtained by performing a time-domain simulation for a given value of vcon

and the initial state vector x(0) in the PCS with the FN excluded. If Ε2 is less than
a tolerance ε, it is assumed that the system is in steady-state conditions.
Otherwise, another guess of vcon

(r+1) and x(r+1)(0) will be iterated by,

)(
2)1(

2
)(

2

)1()(
)()1(

~~
~~ r

rr

rr
rr xx

xx Ε
Ε−Ε

−−= −

−
+

(5)

© 2001 by Chapman & Hall/CRC

where)]0([~)()()(rr
con

r xvx = .
)1(~ +rx will be used in the next iteration until a steady-state solution is determined.

However, the iteration will also be terminated when r is larger than a preset
number Nr.

Formulation of OF1 is based on Ε2. The major objective is that if no steady-state
solution can be found if OF1 should be small. Otherwise, OF1 should be large.
OF1 is defined as follows,

)(/
11

22 εΕ−= KeKOF (6)

where K1 is the maximum attainable value of OF1 and K2 adjusts the sensitivity of
OF1 with respect to Ε2. The relationships between OF1 and (Ε2 / K2 ε) are shown
in Figure 4.2(a). It can be seen that OF1 decreases as Ε2 increases. It shows a 90%
reduction when Ε2 is larger than 2.3 times K2 ε. Thus, if K2 is set smaller, higher
creditable components will be selected for ΘPCS. However, the searching process
will become tight, causing longer computation time.

4321

OF1

2.3 50

0.5K1

K1

E2 /(K2ε)

(a) OF1 vs. E2 / K2 ε.

© 2001 by Chapman & Hall/CRC

OF2

0

K4
(1)<K4

(2)<K4
(3)

K4
(3)

K4
(2)

K4
(1)

0.5K3

0

K3

q’m

(b) OF2 vs. qm'.

Figure 4.2 Objective functions

4.3.2 OF2 for Objective (2)

Under the steady-state condition, there are constraints that control the operating
limits of some waveforms. For example, if λC is the limit of a considered quantity
q, such as the maximum voltage stress across a switch, OF2 is defined as

∑
=

−λ−+
=

C

mmCm

N

m
qK

m

e

K
OF

1
)(

,3
2

,,41
(7)

where NC is the number of constraints, K3,m is the maximum value of the mth
constraint, and K4,m determines the sensitivity of considered quantity. If K4,m is
large, the variation of OF2 is more critical to the quantity variation. It will affect
the searching process in the optimization. The relationships between (qm′ = λC,m -
qm) and OF2 are shown in Figure 4.2(b). If qm” is large, OF2 will also be large. For
example, if λC represents the maximum voltage rating of a switch and q is the
actual voltage stress, OF2 is large when q is much smaller than λC (i.e., qm′ >> 0).

© 2001 by Chapman & Hall/CRC

4.3.3 OF3 for Objective (3)

The ripple voltage on vo has to lie within a limit of ±∆vo around the expected
output vo,exp. A measure of the attainment of the chromosome CPn in this objective
is to count the area of vo outside vo,exp ± ∆vo in Ns simulated samples. Hence, OF3

is defined as
61 /

53
KAeKOF −= (8)

where K5 is the maximum attainable value for this objective, K6 is the decay
constant for OF3, and A1 is the ripple area outside the tolerance band, for example
±2% of vo,exp. Its form is similar to OF1. Thus, OF3 decreases as A1 increases.

4.3.4 OF4 for Objective (4)

Apart from the electrical performance of the PCS, some intrinsic factors relating
to the components are considered in this objective function. Factors such as the
cost, physical size, lifetime of the components can be included. In general, they
are in nonlinear relationships with the components. Thus, OF4 can be expressed as

∑∑∑
===

φ+φ+φ=
PPP K

k

kC

J

j

jL

I

i

iR CLROF
111

4)()()(
(9)

where φ R , φ L , and φC are the objective functions for measuring individual
component type. For example, if the cost of L increases with its inductance, φL

can be expressed

j
jL

L

K
L 7)(=φ

(10)

where K7 is a scaling factor. If Lj is large, φL will decrease accordingly.

4.4 Fitness function for FN
Similar to the PCS, the fitness function ΦF for evaluating each chromosome in
FN_Population is based on several operating conditions, including

1) The steady-state error of vo within the required input voltage range vin ∈ [Vin,min

, Vin,max] and output load range RL ∈ [RL,min , RL,max]

2) The maximum overshoot and undershoot, and the settling time of vo (or vd)
during the startup

3) The steady-state ripple voltage on vo

4) The dynamic behaviors as in 2) during the input voltage and output load
disturbances.

© 2001 by Chapman & Hall/CRC

ΦF measures the attainment of CF for the above four objectives. Mathematically,
for the hth chromosome in the population, ΦF is expressed as

ΦF h L in h L in h
v V v

V

R R R

R

L in h h

CF OF R v CF OF R v CF

OF R v CF OF CF
in in in

in

L L L

L

() [(, ,) (, ,)

(, ,)] ()
,min

,max

,min

,max

,,

= +

+ +
==
∑∑ 5 6

7 8

δδ

(11)

The definitions of all OFs are described as follows.

4.4.1 OF5 for Objective (1)

With a defined set of component values in the PCS, the steady state condition of
the whole system is determined by the dual loop iteration method in [18]. As this
objective is similar to OF1, formulation of OF5 is also based on Ε2 in Equation (5)
and is defined as

)(/
85

92 εΕ−= KeKOF (12)

where K8 is the maximum attainable value of OF3 and K9 adjusts the sensitivity
with respect to Ε2.

4.4.2 OF6 and OF8 for Objective (2) and Objective (4)

During the start-up or external disturbances, a transient response appears at vd,
where

’orefd vvv −= (13)

A typical response of vd is shown in Figure 4.3. OF6 and OF8 are used to measure
the transient response of vd, including (1) the maximum overshoot, (2) the
maximum undershoot, and (3) the settling time of the response, during the startup
and disturbances, respectively. The general form of OF6 and OF8 can be
expressed as

),,(),,(),,(6 LinLLinLhinL RvRSTRvRUVCFvROVOF ++=
(14a)

∑
=

++=
TN

i

LiiniLLiiniLhiiniL RvRSTRvRUVCFvROVOF
1

,,,,,,8),,(),,(),,((14b)

where NT is the number of the input and load disturbances in the performance test.

In the above expressions, O V, UV, and ST are the objective functions for
minimizing the maximum overshoot, maximum undershoot, and settling time of
vd. They are defined as,

© 2001 by Chapman & Hall/CRC

110 /]/)[(
10

1 KvMM refppe

K
OV −−+

=
(15)

where K10 is the maximum attainable value of this objective function, Mp0 is the
desired maximum overshoot, Mp is the actual overshoot, and K11 is the passband
constant.

130 /]/)[(

12

1 KvMM refvve

K
UV −−+

=
(16)

where K12 is the maximum attainable value of this objective function, Mv0 is the
desired maximum undershoot, Mv is the actual undershoot, and K 13 is the
passband constant.

150 /)(
14

1 KTT SSe
K

ST −−+
=

(17)

where K14 is the maximum attainable value of the objective function, Ts0 is the
desired settling time, Ts is the actual settling time, and K15 is the passband
constant. TS is defined as the settling time of vd that falls within a ±σ % band. That
is,

σ≤ 01.0|)(| tvd , t ≥ TS (18)

Ts

vd

0
Mv

Mp

Time
Figure 4.3 Typical transient response of vd.

© 2001 by Chapman & Hall/CRC

Start

Initialize Np, Gmax, px, and pm

Set gen = 0

Initialize a population

U(0) = {CPn(0), n = 1, ..., Np}

Calculate Φ[CPn(0)] for all CPn(0), n = 1, ..., Np

Find CPB(0) from U(0)

gen = gen + 1

Use roulette-wheel rule to select Np chromosomes

 from U(gen - 1) and form a new population U(gen)

Apply crossover and mutation operations on U(gen)

Calculate Φ[CPn(gen)] for all CPn(gen), n = 1, ..., Np

Find CPB(gen) and CPw(gen) from U(gen)

Φ[CPB(gen)] >

Φ[CPB(gen - 1)] ?

CPw(gen) = CPB(gen - 1)

Yes

gen > Gmax
No

Stop

CPB(gen) = CPB(gen - 1)

No

Yes

Step 1

Step 2

Step 3

Step 4

Figure 4.4 Flowchart of the optimization steps of PCS

© 2001 by Chapman & Hall/CRC

4.4.3 OF8 of Objective (3)

The definition of OF8 is the same as the criteria in the PCS optimization, in which
the number of samples that are outside the tolerance band of the steady state
output ±∆vo are measured. Hence OF8 is same as Equation (8). That is,

61 /
538

KAeKOFOF −== (19)

The values of ΦP and ΦF are stored in the FitnessValue in the chromosome
structure for quantifying their attainments. Their usage is described in the next
section.

4.5 Steps of Optimization
The optimization procedures for the PCS and FN are similar. Their major
differences are in the definitions of the fitness functions and population. Thus,
with the aid of the flowchart in Figure 4.4, only the steps of optimizing the PCS in
one generation are illustrated in the following.

Step 1: Initialization

The population size (Np), which is the NumOfChromosomes in Section 4.2, the
maximum number of generations (Gmax), the probability of crossover operation
(px), the probability of mutation operation (pm), and the generation counter (gen)
are initialized at the start of the optimization. Moreover, all chromosomes are
initialized with random numbers, which lie within the practical design limits (i.e.,
Rmin ≤ RI ≤ Rmax, Lmin ≤ Lj ≤ Lmax, Cmin ≤ Ck ≤ Cmax). By using (4)
[or (12) for FN optimization], the fitness values of all chromosomes are then
calculated. The best chromosome in the initial generation CPB(0) having the
highest fitness value {i.e., Φ[CPB(0)] = Max{Φ[CPn(0)], n = 1, … Np}, is then
selected as reference for the next generation.

Step 2: Selection of Chromosomes

A selection process, which is based on applying the roulette wheel rule, is
performed. It starts with the calculation of the fitness value Φp[CPn(gen)], the
relative fitness value Φp,r[CPn(gen)] and the cumulative fitness value
Φp,c[CPn(gen)] for the CPn(gen),

∑
=

Φ

Φ=Φ
pN

z
zp

np
nrp

genCP

genCP
genCP

1

,

)]([

)]([
])([

© 2001 by Chapman & Hall/CRC

∑
=

Φ=Φ
n

z
zrpncp genCPgenCP

1
,,)]([])([

(20)

A random probability variable p ∈ [0,1] is generated and compared with the
cumulative fitness values Φp,c[CPn(gen)] for n = 1 … Np. If Φp,c[CPz-1(gen)] < p <
Φp,c[CPz(gen)], CPz is selected to be a member of the new population. This
selection process is repeated until Np members have been selected for the new
population. In this selection process, the chromosomes with higher fitness values
will have higher probability to survive. It is noted that same chromosome of
having high fitness value might appear repeatedly in the new population.

 Step 3: Reproduction Operations

After the above selection process, a new chromosome is reproduced by
performing two operations including crossover and mutation operations. The
crossover operation is illustrated in Figure 4.5(a), in which two chromosomes are
selected from the population for the crossover operation. In order to determine
whether a chromosome will undergo a crossover operation, a random selection
test (RST) is performed. The RST is based on generating a random number p ∈
[0, 1] for the considered chromosome. If p < px , the chromosome will be selected
for crossover. By performing a similar procedure, another chromosome will be
chosen. [In Figure 4.5(a), CP1 and C P2 are illustrated.] A crossover point is
selected randomly with equal probability from 1 to the total number of
components in the chromosomes. The genes after the crossover point will be
exchanged, thus, forming two new chromosomes (i.e., CP1′ and CP2′). The above
operations are repeated until all members in the population have been considered.

The mutation operation, which is illustrated in Figure 4.5(b), also starts with a
RST for each chromosome. If the generated random number p ∈ [0, 1] for a
chromosome is larger than pm, the chromosome will undergo mutation. In Figure
4.5(b), CP1 is illustrated. The mutation is slightly different from the method with
chromosome using binary representation. A random number will be generated for
the respective type of component with the value lie within the limits of the
components. For example, if a capacitor is selected for mutation, a random
number will be generated in the range of [Cmin, Cmax] and will be substituted
into the original component value (i.e., CP1′). The procedures will be repeated
until all members have been considered.

© 2001 by Chapman & Hall/CRC

R1 R2 RIP... L1 L2 LJP... C1 C2 CKP...

R1 R2 RIP... L1 L2 LJP... C1 C2 CKP...

Crossover Point

R1 R2 RIP... L1

L2 LJP... C1 C2 CKP...R1 R2 RIP... L1

L2 LJP... C1 C2 CKP...

Crossover Operation

CP1

CP2

CP’1

CP’2

Before
Crossover

After
Crossover

(a) Crossover operation.

R1 R2 RIP... L1 L2 LJP... C1 C2 CKP...

C1

R1 R2 RIP... L1 L2 LJP... C1 C2 CKP...

Mutation Operation

CP1

CP’1

Random

Before
Mutation

After
Mutation

(b) Mutation operation.

Figure 4.5 Reproducion process

Step 4: Elitist function

After finishing the reproduction operation and the calculation of the fitness value
of each chromosome, the best member CPB(gen) that has the largest fitness value
and the worst member C Pw(gen) that has the smallest fitness value will be
identified. CPB(gen) will be compared with the best one in the last generation

© 2001 by Chapman & Hall/CRC

[i.e., CPB(gen – 1)]. If the fitness value of CPB(gen) is smaller than the one of
CPB(gen – 1), the chromosome content of CPB(gen – 1) will replace the content of
CPB(gen). Afterwards, the chromosome content of CPB(gen – 1) will be
substituted into CPw(gen) and the next GA cycle will be started from step (2).

4.6 Design Example
The proposed optimization scheme is illustrated with the design of a buck
regulator with overcurrent protection [1]. The schematic is shown in Figure 4.6.
The regulator consists of a classical buck converter and a proportional-plus-
integral (PI) controller. The required specifications are as follows.

1) Input voltage range: 40 V ± 20 V

2) Output load range: 5 Ω - 10 Ω
3) Nominal output voltage: 5 V

4) Output ripple voltage: 1%

5) Switching frequency: 20 kHz

8) Maximum settling time: 20 ms

+

-

+

-

Driver
Circuit

rE

vg1

LrL

C

rC

C2

R4

C3

C4

R2

RC3
R1

SW

Power Stage

Control Stage

RL

vref

iL

vramp

vcon

Figure 4.6 Buck regulator with overcurrent protection

For the PCS, L and C are the design parameters and RL, rC , and rE are assumed to
be known parameters. For the FN, all components are the design parameters. The
parameters for the GA optimization are tabulated in Table 4.1. It takes 1 hour to

© 2001 by Chapman & Hall/CRC

optimize the PCS and 2 hours to optimize the FN on a Pentium II 300 MHz PC.
Based on the design criteria in Section 4.3.1, Table 4. 2(a) shows the initial values
of L and C and the results after 500 generations. The optimized values of the
inductor and capacitor in the buck converter were found to be 194 µH and 1054
µF, respectively. These two values are close to the ones in [1]. The PI controller
is then optimized after the PCS optimization. Table 4.2(b) shows the initial
component values for the controller and the optimized results after 500
generations. Figure 4.7 shows the fitness values of ΦP and ΦF versus the number
of generation. It can be observed that the fitness value has come to a satisfactory
level after 500 generations. The predicted results are then verified with
experimental measurements.

Table 4.1 Parameters in GA optimization

Power Conversion Stage (PCS) Feedback Network (FN)

Parameter Value Parameter Value

px 0.85 px 0.85

Pm 0.25 pm 0.25

Gmax 500 Gmax 500

Np 30 Np 30

K1 2.0 K8 2.0

K2 ε 500 K9 ε 500

K5 2.0 K10 4.0

K6 500 K11 0.0013647

Switching
frequency

20 kHz K12 4.0

Ramp voltage 0.2 V/µs K13 0.006833

vref 5 V K14 4.0

Tso 0.005s

K15 0.0008

© 2001 by Chapman & Hall/CRC

0 100 200 300 400 500

60

80

100

120

140

160

Φp

No. of gen.

(a) Φp vs. gen.

0 100 200 300 400 500
100

105

110

115

120

125

130

ΦF

No. of gen.
(b) ΦF vs. gen.

Figure 4.7 Φp and ΦF vs. the number of generation gen

© 2001 by Chapman & Hall/CRC

Table 4.2(a) Initial values of L and C and the results after 500 generations

Component Initial Value Optimized value after 500 generations

L 200 µH 194 µH

C 1000 µF 1054 µF

Table 4.2(b) Initial component values for the controller and the results after
500 generations

Component Initial Value Optimal Value after 500 generations

RC3 4.7 kΩ 3.448 kΩ
C2 2 µF 5.863 µF

C3 3.3 µF 0.461 µF

R2 300 kΩ 766.56 kΩ
C4 1.8 µF 1.089 µF

R4 1 kΩ 6.535 kΩ
R1 0.6 kΩ 1.09356 kΩ

Firstly, two extreme operating conditions with input voltage equal 20 V and 60 V
are studied, respectively. The simulated startup transients when the input voltage
is 20 V and the output load is 5 Ω are shown in Figure 4.8. Compared with the
original component values used in [1], the GA-optimized component values have
better performance, giving smaller overshoot in the inductor current and faster
settling time. Moreover, the steady-state error is zero and the output ripple voltage
is less than 1%. Figure 4.9 shows the experimental results, which are all in close
agreement with the predicted waveforms. When the input voltage is 60 V, the
startup transients are shown in Figure 4.10 and the experimental results are shown
in Figure 4.11. The settling time is less than 20ms in both input voltages. They are
stable in the two extreme operating conditions. This confirms that the regulator
with the GA-optimized component values give satisfactory results for the start-up
transients.

© 2001 by Chapman & Hall/CRC

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0

1

2

3

4

5

6

vcon

vo

V
ol

ta
ge

(V
)

Time (Sec)
(a) vo and vcon.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0

1

2

3

4

C
ur

re
nt

(A
)

Time (Sec)
(b) iL.

Figure 4.8 Simulated start-up transients when vin is 20 V and RL is 5 Ω

© 2001 by Chapman & Hall/CRC

(a) vo (1V/div) and vcon (1V/div). [Timebase:5ms/div]

(b) iL (0.5A/div). [Timebase:2ms/div]

Figure 4.9 Experimental start-up transients when vin is 20 V and RL is 5 Ω

vo

vcon

© 2001 by Chapman & Hall/CRC

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0

1

2

3

4

5

6

vcon

vo

V
ol

ta
ge

(V
)

Time(Sec)
(a) vo and vcon.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0

1

2

3

4

C
ur

re
nt

(A
)

Time(Sec)
(b) iL .

Figure 4.10 Simulated start-up transients when vin is 60 V and RL is 5 Ω

© 2001 by Chapman & Hall/CRC

(a) vo (1V/div) and vcon (1V/div).[Timebase:5ms/div]

b) iL (1A/div). [Timebase:2ms/div]

Figure 4.11 Experimental start-up transients when vin is 60 V and RL is 5 Ω

vo

vcon

© 2001 by Chapman & Hall/CRC

A similar large-signal disturbance test as [1] is performed. When the input voltage
is 20 V and the regulator is in steady state, the input voltage is suddenly changed
into 40 V. The transients are shown in Figure 4.12. The experimental results are
shown in Figure 4.13. Compared with [1], when the voltage is changed into 40 V,
the system will become unstable and is in sub-harmonic oscillation. With the
optimized component values, the system is still stable.

-2

0

2

4

6

8

10

12

14

0.0250.0150.005 0.030

vcon

vo

0.0200.0100

V

ol
ta

ge
(V

)

Time(Sec)

(a) vo and vcon.

0

1

2

3

4

0.0250.0150.005 0.0300.0200.0100

C
ur

re
nt

(A
)

Time(Sec)

(b) iL.

Figure 4.12 Simulated transient responses when vin is changed from 20 V to
40 V

© 2001 by Chapman & Hall/CRC

(a) vo (2V/div) and vcon (2V/div)[Timebase:2ms/div]

(b) iL(1A/div) [Timebase: 2ms/div]

Figure 4.13 Experimental transient responses when vin is changed from 20 V
into 40 V

vo

vcon

© 2001 by Chapman & Hall/CRC

Similar tests on load disturbances are performed with the input voltage at 40 V.
When the system is in the steady state, the output load is suddenly changed from
5 Ω into 10 Ω . The simulated and experimental transients are shown in Figure
4.14 and Figure 4.15, respectively. Afterwards, the output load is changed into 5
Ω. The simulated and experimental transients are shown in Figures 4.16 and 4.17,
respectively.

-1

0

1

2

3

4

5

6

7

0.005 0.0250.015

vcon

vo

0.0300.010 0.0200

V

ol
ta

ge
(V

)

 Time(Sec)

(a) vo and vcon.

0

1

2

3

0.0250.005 0.015 0.020

0.02

0.0300.0100

C
ur

re
nt

(A
)

Time(Sec)

(b) iL

Figure 4.14 Simulated transient responses when RL is changed from 5 Ω to
10 Ω and vin is 40 V

© 2001 by Chapman & Hall/CRC

(a) vo (1V/div) and vcon (1V/div) [Timebase: 2ms/div]

(b)iL (0.5A/div) [Timebase: 2ms/div]

Figure 4.15 Experimental transient responses when RL is changed from 5 Ω
to 10 Ω and vin is 40 V

vo

vcon

© 2001 by Chapman & Hall/CRC

-1

0

1

2

3

4

5

6

7

0.0250.0150.005

vcon

vo

0.0300.0200.0100

V
ol

ta
ge

(V
)

Time(Sec)

(a) vo and vcon

0

1

2

3

0.0250.0150.005 0.0100 0.0300.020

C
ur

re
nt

(A
)

Time(Sec)

(b) iL

Figure 4.16 Simulated transient responses when RL is changed from 10 Ω to
5 Ω and vin is 40 V

© 2001 by Chapman & Hall/CRC

(a) vo(1V/div) and vcon (1V/div). [Timebase:2ms/div]

(b)iL (0.5A/div). [Timebase: 2ms/div]

Figure 4.17 Experimental transient responses when RL is changed from 10 Ω
to 5 Ω and vin is 40 V

vo

vcon

© 2001 by Chapman & Hall/CRC

The experimental measurements agree well with the predicted results using the
proposed off-line GA optimization technique. Both the static and the dynamic
responses are close to the designed specifications, confirming the validity of the
proposed optimization approach. In addition, it can be seen from the above tests
that the proposed technique is independent of the operating mode of the PCS. For
example, during the transient period at startup or large-signal disturbances, the
converter may operate between continuous and discontinuous mode. It is because
the optimization is based on the actual time-domain performance, without
assuming any predetermined operating mode.

4.7 Conclusions
This chapter presents a systematic decoupled optimization technique for the
design of switching regulators using genetic algorithms. The process entails the
selection of the component values in the power conversion stage and the feedback
network in the regulator to meet some defined static and dynamic requirements.
No complicated mathematical analysis of the whole system is needed. The
algorithm automatically determines the optimum values of the components to
meet the specifications, independent of the circuit structure and control schemes.
The proposed technique is illustrated with an example of a buck regulator. The
predicted results are compared to the performance of the one in the available
literature and are verified with experimental measurements. Further research will
be dedicated to an automated synthesis of the circuit structure of the regulator.

References
[1] D. Bedrosian and J. Vlach, “Time-domain analysis of networks with

internally controlled switches,” IEEE Trans. Circuits Systs. I, Vol. 39, pp. 199-
212, Mar. 1992.

[2] T. Ström and S. Signell, “Analysis of periodically switched linear circuits,”
IEEE Trans. Circuits Systs., Vol. 24, pp. 531-541, Oct. 1977.

[3] B. Wong and H. Chung, “An efficient technique for the time-domain
simulation of power electronic circuits,” IEEE Trans. Circuits Systs. I, Vol.
45, no.4, pp. 364-376, Apr. 1998.

[4] R. D. Middlebrook and S. Cuk, Advances in Switched-Mode Power
Conversion, Pasadena, California, TESLACO, 1983.

[5] P. R. Chetty, “Current injected equivalent circuit approach to modeling
switching dc-dc converters,” IEEE Trans. Aerosp. Electron. Syst., Vol. 17, pp.
802-808, Nov. 1981.

[6] A.S. Kislovski, “On the role of physical insight in small-signal analysis of
switching power converters,” in Proc. 1993 IEEE Applied Power Electron.
Conf. and Expo., APEC, pp. 624-630, 1993.

© 2001 by Chapman & Hall/CRC

[7] Y. S. Lee, Computer-Aided-Analysis of Switch-Mode Power Supplies, Marcel-
Dekker, 1993.

[8] R. D. Middlebrook, “Modelling current-programmed buck and boost
regulators,” IEEE Trans. Power Electron., Vol. 4, pp. 36-52, Jan. 1989.

[9] G. C. Verghese, C. A. Bruzos, and K. N. Mahabir, “Averaged and sampled-
data model for current-mode control: A reexamination,” in Proc. PESC
Record, 1989, pp. 484-491.

[10] G. J. Sussman and R. M. Stallman, “Heuristic techniques in computer-aided
circuit analysis,” IEEE Trans. Circuits Systs., Vol. 22, Nov. 1975.

[11] R. Harjani, R. A. Rutenbar, and L. R. Carley, “OASYS: a framework for
analog circuit synthesis,” IEEE Trans. Computer-Aided Design, Vol. 8, pp.
1247-1266, 1989.

[12] E. S. Ochotta, R. A. Rutenbar, and L. R. Carley, “Synthesis of high-
performance analog circuits in ASTRX/OBLX,” IEEE Trans. Computer-Aided
Design, Vol. 15, pp. 273-294, Mar. 1996.

[13] L. P. Huelsman, “Optimization - a powerful tool for analysis and design,”
IEEE Trans. Circuits Systs. I, Vol. 40, no. 7, Jul. 1993.

[14] R. E. Massara, Optimization Methods in Electronic Circuit Design, New
York: Longman Scientific & Technical.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison Wesley, 1989.

[16] V. Petridis, S. Kazarlis, and A. Bakirtzis, “Varying fitness functions in
genetic algorithm constrained optimization: the cutting stock and unit
commitment problems,” IEEE Trans. System, Man and Cybernetics B, Vol.28,
no.5, pp. 629-640, Oct. 1998.

[17] Z. Michalewicz, Genetic algorithms + Data Structure = Evolution
Programs, Springer-Verlag, 1996.

[18] B. Wong and H. Chung, “Steady-state analysis of PWM dc/dc switching
regulators using iterative cycle time-domain simulation,” IEEE Trans. Ind.
Electron., Vol. 45, no. 3, pp. 421-432, June 1998.

© 2001 by Chapman & Hall/CRC

Chapter 5 Feature Selection and Classification in the
Diagnosis of Cervical Cancer
Jennifer Hallinan

Institute for Molecular Biosciences

University of Queensland

St. Lucia, Brisbane, Australia 4072

j.Hallinan@imb.uq.edu.au

5.1 Introduction
Cervical cancer is one of the most common cancers, accounting for 6% of all
malignancies in women (National Cancer Institute, 1999). The standard screening
test for cervical cancer is the Papanicolaou (or “Pap”) smear, which involves
visual examination of cervical cells under a microscope for evidence of
abnormality (Mackay, Beischer, Cox & Wood, 1983).

Pap smear screening is labour-intensive and boring, but requires high precision,
and so appears on the surface to be extremely suitable for automation. Research
has been done in this area since the late 1950s (Husain & Watts, 1988); it is one
of the “classical” problems in automated image analysis (see also Banda-Gamboa,
Ricketts, Cairns, Hussein, Tucker & Husain, 1992; Bartels, 1992 and Danielson,
Kanagasingam, Jirgensen, Reith & Nesland, 1994).

It was initially assumed that an automated system would operate in essentially the
same way as an expert human cytologist, scanning slides visually, and looking for
the same changes in cells that the human would detect. Unfortunately, progress
has been slow. Abnormal cells may represent only a few of the thousands of cells
on a slide; and they may be difficult or impossible for a machine vision system to
detect amid the irregular clumps of different types of cells and scattered debris
commonly present on a Pap smear slide.

In the last four decades or so, with the advent of powerful, reasonably priced
computers and sophisticated algorithms, an alternative to the identification of
malignant cells on a slide has become possible. This is the detection of so-called
Malignancy Associated Changes (MACs) – subvisual alterations to the texture of
apparently normal cells from the vicinity of a cancerous or precancerous lesion.

The approach to MAC detection generally used is to capture digital images of
visually normal cells from patients of known diagnosis (cancerous/precancerous

condition or normal). A variety of features such as nuclear area, optical density,
shape and texture features are then calculated from the images, and linear
discriminant analysis is used to classify individual cells as either “normal” or
“abnormal.” An individual is then given a diagnosis on the basis of the proportion
of abnormal cells detected on her Pap smear slide (Figure 5.1).

Image

Features

Classifier

Diagnosis

Feature
Measurement

Classifier
Training

Classification

TRAINING DATA

Image

Features

Feature
Measurement

TEST DATA

Figure 5.1 Automated diagnosis from digital images

The problem with this approach is that while all visually normal cells from
“normal” (i.e., cancer-free) patients may be assumed to be normal, not all such
cells from “abnormal” patients will, in fact, be abnormal. The proportion of
MAC-affected cells from an abnormal patient is not known a priori, and probably
varies with the stage of the cancer, its rate of progression, and possibly other
factors. This means that the “abnormal” cells used for establishing the canonical
discriminant function are not, in fact, all abnormal, which reduces the accuracy of
the classifier. Further noise is introduced into the classification procedure by the
existence of two more-or-less arbitrary cutoff values: the value of the
discriminant score at which individual cells are classified as “normal” or
“abnormal,” and the proportion of “abnormal” cells used to classify a patient as
“normal” or “abnormal.”

5.2 Feature Selection
In the course of four decades of study into the phenomenon of MACs, literally
hundreds of potentially discriminatory features have been proposed, measured
and used. The choice of which features to measure and use has in general been a
somewhat arbitrary one – the usual approach is to measure as many features as
possible, and then look for useful variation in the measured values. This approach
is acceptable for small academic studies, but for real-world applications a more
systematic approach is desirable.

“Feature selection” is the process of selecting an optimum subset of features from
the enormous set of potentially useful features which may be available in a given
problem domain (Gose, Johnsonbough & Jost, 1996). It is often performed
implicitly, by the human designer of a classifier selecting the features which
appear to him or her to be of most potential use. In many cases, this approach is
perfectly adequate; in many problem domains, enough is known about the
characteristics of the problem for valid features to be identified a priori. A task
such as the discrimination of normal cells from cancer cells is a good example –
cancer cells are larger and darker than normal cells, with a much larger
nucleus/cytoplasm ratio. Features representing size and optical density should be
sufficient to discriminate between the two types of cell in most cases.

The situation is not so clear-cut for MACs, however, since the changes are
subvisual. Since a human observer cannot distinguish MAC-affected cells from
normal cells, the choice of discriminatory features is far from obvious. An
objective feature selection algorithm is required.

A feature selection algorithm aims to identify the optimum subset of features for a
particular problem. This set has been defined as “the subset that performs the best
under some classification system” (Jain & Zongker, 1997, p. 153). “Performs the
best” here has been interpreted in two slightly different ways:

1. The subset of features which gives the lowest classification error (an
unconstrained combinatorial optimization problem); or

2. The smallest subset of features for which the classification error proportion is
below a set threshold (constrained combinatorial optimization) (Siedlecki &
Sklansky, 1989).

Combining the above leads to the definition:

Feature selection is the process of selecting a subset X of a feature
set Y, such that

() ()ZJXJ
YZ

max
⊆

=
(1)

where J(X) is the feature selection criterion function for set X . J(X)
may be constrained with regard to the number of features
incorporated and/or the maximum permissible error, and will be
specific to a given classifier.

Why is feature selection worthwhile? Intuitively it would appear that simply
measuring as many features as possible and including them all in the
classification process would increase classification accuracy. This is not,
however, always the case, and there are a number of inter-related reasons why
feature selection is desirable.

3) Using a smaller feature set may improve classification accuracy by
eliminating noise-inducing features (Jain & Zongker, 1997; Siedlecki &
Sklansky, 1989).

4) Small feature sets should be more generalizable to unseen data. If training
data is in short supply, the use of a small number of features may reduce the
risk of “overfitting” the parameters of a classifier to the training data (Yang &
Honavar, 1998).

5) The use of a small feature set raises the credibility of the estimated
performance of the classifier (Siedlecki & Sklansky, 1989).

6) Knowledge about the most informative features and the way in which they
interact (via the classifier) may shed new light on the problem domain.

7) Once the best features for a given classifier have been identified, the time and
computation required to measure features may be reduced, which in turn may
reduce the cost and/or running time of the system (Jain & Zongker, 1997;
Vafaie & DeJong, 1992).

8) If the development of the classifier involves a search or learning algorithm,
reducing the number of features also reduces the search space that needs to be
explored by the learning algorithm, and therefore may reduce the time needed
to learn a sufficiently accurate classification function (Yang & Honavar,
1998).

5.3 Feature Selection by Genetic Algorithm
Vafaie and DeJong (1992) point out that genetic algorithms (GAs) are best known
for their ability to efficiently search large spaces about which little is known a
priori. Genetic algorithms provide a viable alternative to statistical approaches for
problem domains where the mathematical assumptions underlying the statistical
model, such as smoothness, continuity and differentiability of a function, are not
met (Chatterjee, Laudato & Lynch, 1996). The applicability of GAs to the

optimum feature subset selection problem is obvious, and there has been
considerable interest in this area in the last decade.

Vafaie and DeJong (1993) observe that many feature selection algorithms are
“brittle”; that is, the quality of their results varies widely over data sets. They
suggest that this is due to higher-order interactions between features causing local
minima in search space in which the algorithm becomes trapped. GAs may escape
from such minima by chance, since they are highly stochastic. Siedlecki and
Sklansky (1989) suggested that the GA approach is particularly useful when the
dimensionality of the entire feature set is greater than 20 – not a large number by
image processing standards. In contrast, however, Jain and Zongker (1997) found
that the performance of their feature selection GA degraded for dimensions above
20 – 30. These contradictory findings have yet to be resolved.

GAs have been applied to the feature selection process in problem domains as
diverse as theoretical problems (20 Trains problem, Lavrac, Gamberger &
Turney, 1997), document retrieval (Martin-Bautista & Vila, 1998), speaker
verification (Haydar, Demirekler & Yurtseven, 1998), medical diagnosis
(Raymer, Sanschagrin, Puch, Venkataraman, Goodman & Kuhn, 1997; Yang &
Honavar, 1998), discrimination of soil samples (Punch, Goodman, Pei, Chia-
Shun, Hovland & Enbody, 1993) and especially image and signal classification
(e.g. Brill, Brown & Martin, 1992; Vafaie & DeJong, 1992; Smith, Fogarty &
Johnson, 1994; Vafaie & Imam, 1994; Sahiner et al., 1996; Yang & Honavar,
1998; Chtioui, Bertrand & Barba, 1998; Wang, Chen & Pan, 1998). Despite this
diversity there are some common themes which become apparent through a
perusal of this literature.

5.3.1 GA Encoding Schemes

The usual approach to the use of GAs for feature selection involves encoding a set
of d features as a binary string of d elements, in which a 0 in the string indicates
that the corresponding feature is to be omitted, and a 1 that it is to be included.
This problem representation has been almost universally adopted.

Punch et al. (1993) modified this approach by considering each bit as a weighting
on the relevant feature. They then extended the representation to allow each
weighting to range between 0 and 10 instead of 0 and 1, producing what they
describe as a “warping” of feature space. This representation allows the relative
importance of each feature to the final classifier to be assessed according to its
weighting.

Whitley, Beveridge, Guerra-Salcedo and Graves (1997) used a representation
known as a “messy genetic algorithm.” In this type of GA each gene consists of a
(Gene Number, Allele Value) pair, and a chromosome is a collection of such
genes. Chromosomes may be variable in length, and the corresponding candidate

solution may be underspecified (a given gene is not represented) or overspecified
(a single gene is represented more than once). These authors interpreted a messy
chromosome in such a way that every gene specified was included in the feature
subset, and genes not so specified were not included. They applied their algorithm
to a geometric matching problem and some synthetic feature selection problems,
and conclude that the messy GA is particularly well suited to sparse subset feature
selection problems, where the variable-length chromosome provides an efficient
representation of the solution.

5.3.2 GAs and Neural Networks

GAs have been used for feature selection in combination with neural network
classifiers by several authors. Yang and Honavar (1998) combined a neural net
classifier with a genetic algorithm, using the GA to select features for
classification by the neural net and incorporating the net as part of the objective
function of the GA. They used an iterative constructive neural network learning
algorithm to train the net, while the problem representation was the standard n-
bits for n-features binary string, with a 0 indicating that the corresponding feature
was not used, and a 1 indicating that it was. The fitness function was designed to
incorporate both classification accuracy and the cost of incorporating additional
features, and therefore acted to reduce the number of features utilized.

Brill et al. (1992) combined a GA with a neural network classifier in a slightly
different manner. The GA they used incorporated modified genetic operators, and
consisted of a collection of populations which evolved separately for a specified
number of generations before exchanging the best few solutions from each
population with those from other populations. They claim that this genetic
algorithm with punctuated equilibria has been shown to outperform a standard
GA on several problems. These workers also used a nearest neighbour classifier
instead of the neural network as the basis for the fitness function of the GA,
because they found that training a neural network for each evaluation is
prohibitively computationally expensive. The neural network was used in the
assessment of the final classifier.

Sahiner et al. (1996) also used a simple binary representation in a GA to select
features for the classification of breast masses in mammograms.

5.3.3 GA Feature Selection Performance

Most of the studies of GAs for feature selection found that feature selection did in
fact produce a classifier which operated as well as one using the full feature set,
although Haydar et al. (1998) found that reducing the data set actually reduced the
error proportion in their speaker verification task by 4.5%. This finding provides
support for the use of feature selection, but not necessarily for the use of a GA for

feature selection. How does GA-based feature selection perform in comparison
with other feature selection algorithms?

While some authors present either test-on-train results (Vafaie & Imam, 1994;
Yang & Honavar, 1998) or results of the GA alone (Chtioui et al., 1998; Smith et
al., 1994; Brill et al., 1992; Punch et al., 1993; Whitley et al., 1997), many
workers report comparisons of the performance of a GA-based feature selection
system against other, more traditional systems. Vafaie and De Jong (1992) found
that in comparison with a sequential backward selection algorithm the GA
produced more accurate classification, but at the cost of selecting a larger feature
subset. Raymer et al. (1997) found that on two biomedical data sets the GA
technique worked as well as feature weighting alone, while requiring fewer
features.

Sahiner et al. (1996) compared GA feature selection and classification by a
backpropagation neural network with stepwise linear discriminant analysis, using
the area under the Receiver Operating Characteristic (ROC) curve both as a
measure of fitness for the GA and as a means of comparison between the two
techniques. They achieved an average area under the curve (AUC) of 0.9 for the
GA/neural network combination, and 0.89 for stepwise LDA. Although these
authors do not present standard errors for their curves, these are easily calculated
from the data provided by the authors. The 95% confidence limits for the GA/NN
curve are 0.855 to 0.945, and for the SLDA are 0.843 to 0.937, so the two
techniques appear to be equivalent in classification power.

Siedlecki and Sklansky (1989) aimed to find the smallest subset of features for
which the classification error on simulated data was below a given threshold. On
their data sets, they claim that their GA outperforms all other nonexhaustive
methods. Jain and Zongker (1997), however, claim that Siedlecki and Sklansky’s
GA reached convergence prematurely, at about the seventh or eighth generation,
which may indicate excessive selection pressure keeping the GA at a suboptimal
local error minimum (Chatterjee et al., 1996).

Another interesting comparison, this time between different types of GA, was
carried out by Guerra-Salcedo and Whitley (1998), who compared the
performance of a “traditional” GA, as described above, with a more flexible
implementation incorporating novel genetic operators. They found that the latter
outperformed the former on two image classification datasets. This finding
supports the contention that GAs, although commonly touted as a general
optimization tool, may benefit from some tailoring to the problem domain.

5.3.4 Conclusions

Genetic algorithms have been widely used for feature selection in the last decade
or so. The GA approach is intuitively appealing; the possibility of evolving a

near-optimum solution, with the flexibility to use any type of problem
representation, in combination with any classifier, linear or nonlinear, is very
attractive to researchers faced with complex multivariate problems. A common
theme to all the literature reviewed, however, is the preliminary nature of the
work – results tend to be “promising.” This is hardly surprising, given the
immaturity of the whole field of evolutionary computing; although the basic
principles were proposed as early as the 1950s (Mitchell, 1996), it is only
relatively recently that adequate computer power has been cheaply and readily
available. Indeed, the earliest reference we found to the use of GAs in feature
selection dates from 1989, just over a decade ago (Siedlecki & Sklansky, 1989).

GAs have generally been applied to the feature selection problem as an
independent front end to a classifier. Given the power of this technique, it may be
preferable to co-evolve the feature set and the classifier, in such a way that the
feature set is tailored to the classifier produced. This approach has been referred
to as the “wrapper” approach, since the GA acts as a search engine “wrapped” by
a classifier, which forms the basis of the fitness function (Liu & Setiono, 1997;
Guerra-Salcedo & Whitley, 1998). It promises to offer maximal power from the
classifier, and there is some empirical evidence that this is the case (Guerra-
Salcedo & Whitley, 1998). This is the approach we decided to take for the
detection of MACs – the co-evolution of a feature subset and a nonlinear (neural
network) classifier. This combination promises to be a powerful approach to a
non-trivial, real-world problem.

5.4 Developing a Neural Genetic Classifier

5.4.1 Algorithm Design Issues

There are a number of practical issues which must be considered in the design of
a GA, particularly one involving a neural network. Perhaps the most important is
computational feasibility – a GA consists of a population of individuals, the
fitness of each of which must be assessed each generation. Since a GA may run
for many generations, fitness assessment is frequently a performance bottleneck
for a GA.

If the classifier to be incorporated in the GA is a simple one, such as a k-nearest
neighbour classifier, assessment of the fitness of an individual chromosome is
straightforward. The chromosome is decoded and the set of features to which it
refers is used by the classifier in the usual manner. If, however, the classifier has a
stochastic element, the situation is not so clear-cut. A neural network, for
example, is usually initialized with the weight vector set to small random values
(Haykin, 1994). Each run of the neural network therefore starts from a different
point in weight space, and depending upon the characteristics of the error surface,
may converge at a different error minimum, which may or may not correspond to

the global minimum. In order to overcome this problem neural networks trained
by backpropagation are usually assessed on the basis of several runs with
different random starting points, since the results of a single run may be atypical.

In the context of a genetic algorithm, the necessity for multiple runs of a neural
network must be addressed. Evaluation of the fitness of a single chromosome
involves training a neural net for each generation of the GA. Due to the stochastic
element of neural net training, this process should be iterated several times to
determine the general behaviour of a net on a given set of inputs; Setiono and Liu
(1997) recommend 30 runs of the neural network. This adds to the already
considerable computational overhead of this approach, while the question of
whether an optimal classifier has been reached remains unanswered.

Attempts have been made to reduce the computational cost by using a simpler
evaluation function in the GA and only training the neural network at the end of
evolution (Brill et al., 1992), or by partially training only a subset of the networks
in each generation (Guo & Gelfland, 1992; Yang & Honavar, 1998). A different
approach to “training” the neural network is to allow the GA to select the weights
for the network as well as the features to be classified. GAs have previously been
used to evolve the weight vector and/or the architecture of neural networks (see
Yao (1999) for a review of combined GA/neural network systems). The
simultaneous evolution of a feature subset and a neural net weight vector appears
to offer potential benefits as an approach to classifier construction. This is the
approach taken for our algorithm.

5.4.2 Problem Representation

The most widely used neural net for classification is a three-layer feedforward
perceptron. In the interests of simplicity of implementation and ease of
understanding the behaviour of the system, a three-layer feedforward net was
used for this algorithm, with a sigmoid activation function

sig x
e x() =

+ −

1

1
(2)

on the hidden and output units, and an evolvable bias weight on the hidden nodes
only (Figure 5.2).

Bias weights
Linear Input nodes

Sigmoid Hidden nodes

Sigmoid Output node

Feature Subset

Figure 5.2 Architecture of the neural network

Each net was encoded as a single binary string, with each eight bits coding for a
single integer in the range 0 to 255. Eight bits was chosen as the length for the
feature representation because there are 184 features in the large MACs data set,
and eight bits can encode numbers from 0 to 255. The integers representing
weights were also coded in eight bits so that feature “genes” and weight “genes”
would be subject to the same chances of mutation and crossover. The weights
associated with a given feature were located close to that feature to facilitate the
development of schemata during evolution.

F0 F1 F2

W00
W01 W10 W11

W20 W21

B1 B2

w00 w01

F0 W00 W01 F1 W10 W11 F2 W20 W21 w00 w01 B1 B2

01001010111101010100010101010010010100000101010101101101010010100101010010110101100101010

Neural Network

Conceptual Organization

Physical Implementation

Figure 5.3 Organization of a chromosome coding for a simple three-layer
neural network

The organization of the chromosome is depicted in Figure 5.3. This figure shows
the way in which the bit string which is the “individual” in the GA is interpreted
as a string of numbers, which in turn is interpreted as a three-layer, fully
connected feedforward network.

In this figure F0 ... F2 are features, W00 is the weight from feature 0 to hidden
unit 0, w00 is the weight from hidden unit 0 to output unit 0, and B1 and B2 are
the bias weights.

Assuming that fmeasured features are measured, integers representing features are
then rescaled to lie between 0 and fmeasured-1 by multiplying by (fmeasured -
1)/255. The result was rounded, and this integer was interpreted as an index to a
particular feature. Integers representing weights were scaled initially to lie in the
range ±n, using:

n
n

ww −

=

255

2
*’

(3)

where w is the original integer, and ±n are the bounds of the weight range.

The original weight range chosen was ±3.0. This weight range was chosen
because it is fairly small and centered around 0.0, which is in the linear range of
the sigmoid activation function used.

5.4.3 Objective Function

The objective function for the GA attempts to minimize the mean squared error of
the net over the training data. That is, for each fitness assessment, a single
chromosome is decoded into its neural net “phenotype.” Each member of the
training set is presented to the net, and the output and squared error are calculated.
The errors are summed over the whole training set and divided by the number of
training exemplars to give the Mean Squared Error (MSE).

MSE
o t

n
x

n

=
−()

=∑ 2

1 (4)

where o is the observed output, t is the target output (0 or 1) and n is the number
of training exemplars.

The fitness of an individual chromosome is then (1 - MSE), and the GA attempts
to maximize this.

5.4.4 Selection Strategy

Individuals are selected to reproduce on the basis of their fitness, so that fitter
individuals from one generation will contribute proportionately more to the next
generation than will individuals of low fitness. There have been many fitness-

proportionate selection schemes proposed; perhaps the simplest is “roulette-
wheel” selection (Mitchell, 1996). Under this scheme each individual is allocated
a slice of a circular “roulette wheel,” of a size proportional to its fitness. The
wheel is spun N times for a population of N individuals; the individual under the
marker on each spin is selected as a parent for the next generation. Roulette-wheel
selection has been criticized on the grounds that in a small population, chance
effects can result in disproportionate allocation of offspring to individuals
(Mitchell, 1996). However, it is easy to implement and has been widely used.

In addition to fitness-proportionate selection, generational replacement in the GA
incorporated “elitism,” in which the fittest x percent (Generation Gap) of the
previous generation is copied unchanged to the next generation. This strategy
ensures that fit individuals are not lost due to chance.

5.4.5 Parameterization

The parameters used for the initial testing of the GA were those recommended by
Mitchell (1996), to wit: population size 100, crossover rate 0.6, mutation rate
0.001. Generation gap was 0.1. These values were later modified in response to
experimental findings.

5.5 Validation of the Algorithm
The GA/NN is highly nonlinear, and would be expected to perform well on a
nonlinear classification problem. The first tests of the algorithm were therefore
performed using several sets of artificial data.

5.5.1 The Dataset

Artificial data was generated in the form of points from a set of multidimensional,
nested spheres. Parameters which could be set included the number of spheres
(equivalent to the number of classes in the data), the dimensionality of the dataset
and the radius of each sphere. This format was chosen because the nested spheres
problem is clearly not linearly separable, but is readily visualizable by humans.
Datasets can be plotted in order to visually check the distribution of the data and
the performance of the algorithm.

The first data set consisted of a 2-dimensional, 2-class problem. 1000 points from
each class were generated for the training set (a total of 2000 training cases), and
an equivalent number was generated for each of a test set and a validation set. The
spheres were centred on 0.5, the inner sphere having a radius of 0.25, and the
outer forming an annulus of thickness 0.25 around the inner sphere. The data
points comprising this training set are plotted in Figure 5.4.

Figure 5.4 Two dimensional training data

In addition to the two informative variables generated in this way, five additional
variables with values in the range (0,1) were generated for each case. The
variables are described in Table 5.1.

5.5.2 Experiments on Two-Dimensional Data

The genetic algorithm described previously was run on this data set. The neural
network had two inputs, six hidden units and a single output. A mutation rate of
0.01, crossover rate of 0.6, generation gap of 0.1 and population size 100 were

used. Runs were considered to have converged to a solution when the maximum
fitness observed in the population remained unchanged for 50 generations.

Table 5.1 Variables in the 2-D artificial data set

Variable Description

0 x axis coordinate of 2-D sphere

1 y axis coordinate of 2-D sphere

2 random number in the range (0,1)

3 (Variable 0 + a random number in the range (0,1)) / 2

4 (Variable 0 * Variable 1) / 1.5; values >1.0 set to 1.0

5 random number in the range (0,1)

6 (Variable 2 + Variable 5) / 2

In each generation of training, the individual identified as fittest on the training
set was used to classify the validation data set, and its mean squared error on the
validation set recorded. The performance of a classifier on a validation set can be
used as a stopping criterion – when the validation performance begins to diverge
from the performance on the training set, training should be stopped. The
validation set was not used in this way for these experiments, but validation set
results were recorded for later investigation into whether early stopping using a
validation set would be a useful addition to the algorithm. At the end of training
the fittest individual was used to classify the test set, and the results of this
classification were recorded.
Over the course of several runs it became apparent that there was a strong
tendency to select the same feature multiple times. Instead of selecting the
features 0 and 1, which are the x and y coordinates of the points in the spheres,
the algorithm tended to converge to 0,0 or 1,1. These points appear to represent
local minima in the search space, in which the system tended to become trapped,
although the correct solution was found occasionally. It was therefore decided to
penalize any individual which selected the same feature more than once. This was
accomplished by multiplying the SSE for each individual by a penalty factor
during fitness evaluation (1.1 for each duplicate feature). This modification to the
fitness function had the desired effect of eliminating the selection of duplicate
features.

5.5.3 Results of Two-Dimensional Data Experiments

The results of 15 runs of the algorithm with different random number seeds are
presented in Table 5.2. Of the 15 runs, the correct features (0, 1) were selected 12
times. On the other two runs, the features selected were 1 and 4. Feature 4 was

created by multiplying together features 0 and 1, and dividing the result by 1.5; it
is thus a reasonably good discriminator between the two classes. When the correct
features were selected both training and test data was classified with high
accuracy. When the wrong features were selected, however, accuracy on the test
set was markedly reduced, indicating that the system is overfitting the training
data.

Table 5.2 Two-dimensional data: Selecting two features from seven

Run Seed Max Fitness Features
Selected

AUC Train (SE) AUC Test (SE)

1 1 0.967654 0, 1 0.999 (0.001) 1.000 (0.000)

2 666 0.956097 0, 1 0.997 (0.001) 0.997 (0.001)

3 94532 0.954428 1, 4 0.996 (0.001) 0.776 (0.010)

4 1234 0.946097 0, 1 0.997 (0.001) 0.997 (0.001)

5 5869 0.976209 0, 1 0.999 (0.001) 1.000 (0.000)

6 97421 0.962493 0, 1 0.999 (0.001) 0.999 (0.001)

7 45 0.967025 0, 1 0.998 (0.001) 0.999 (0.001)

8 7654 0.973874 0, 1 1.000 (0.000) 1.000 (0.000)

9 92354 0.965439 0, 1 0.999 (0.001) 0.999 (0.001)

10 746 0.970483 0, 1 0.999 (0.001) 0.999 (0.001)

11 88 0.973171 0, 1 0.999 (0.001) 0.999 (0.001)

12 500 0.968198 0, 1 0.999 (0.001) 0.999 (0.001)

13 678 0.960385 0, 1 0.997 (0.001) 0.997 (0.001)

14 9812 0.958530 1, 4 0.997 (0.001) 0.801 (0.010)

15 884 0.975198 0, 1 1.000 (0.000) 1.000 (0.000)

The ROC curves for the first five runs of the training set are plotted in Figure 5.5
and for the test set in Figure 5.6. Only five of the 15 runs were plotted for each set
to enhance the readability of the graphs; from Table 5.2 it can be seen that the
other runs produced very similar results to those plotted.

In Figure 5.6, the aberrant curve is that for run 3, one of the two runs which
selected a sub-optimal feature set. Although this classifier performed well on the
training set, it performed quite poorly on the test set. A failure to generalize is
often a symptom of overfitting of the training data. In order to check whether this
phenomenon is occurring here, the results of the classifier on the validation set are
useful. Figure 5.7 shows the performance of the classifiers from runs 1 and 3 on
the training set, plotted against their performance on the validation set. The plots

trace the evolution of performance from the initial generation to convergence in
steps of one generation.

Figure 5.5 ROC curves for 2-D data: select 2 from 7 features, training set

Figure 5.6 ROC curves for 2-D data: select 2 from 7 features, test set

Figure 5.7 Performance of a “good” classifier (Run 1) compared with that of
a “poor” classifier (Run 3) on training and validation data

From Figure 5.7 it can be seen that Run 1, which selected the best features, had
comparable performance on the training and validation sets throughout the course
of training. Run 3, in comparison, always had better performance on the training
data. At a point which corresponds to generation 65, performance on the two sets
diverges sharply, and this is probably the point at which training would be
stopped if the validation set were to be used for this purpose. Table 5.3 shows the
performance of the Run 3 classifier, trained for 65 generations only, on the
training and test data.

Table 5.3 Performance of run 3 with early stopping

Run Seed Max Fitness Features
Selected

AUC Train
(SE)

AUC Test (SE)

3b 94532 0.905951 1, 4 0.971 (0.004) 0.851 (0.009)

The difference between the performance of the classifier on the two data sets is
still significantly different at the 95% level. It appears that for a problem which is
heavily dependent on the selection of the correct features, early stopping of

training using a validation set does not help to avoid overfitting of the training
data.

5.5.4 Lessons from Artificial Data

On an artificial data set with large amounts of data, the GA/NN algorithm
produces a classifier which selects the most discriminatory features 12 times out
of 15, and generalizes well to unseen test data. This suggests that the algorithm
can combine feature selection and classifier construction within the limits of the
data set.

The main problem with the GA/NN algorithm is the length of time it takes to
train. On a DEC workstation, a run involving long chromosomes coding for
moderately complex neural networks (on the order of 6 to 10 inputs and 6 to 10
hidden units) can take anything from 6 hours to several days to run to
convergence. Each run must be repeated several times, with a different seed for
the random number generator each time, adding to the time requirement of the
algorithm. This is not necessarily a major drawback; once the classifier has been
trained, its application to new data is quick and easy. If the GA-trained classifier
performs better than a standard classifier, the extra training time is not important.
If this is not the case, however, the GA becomes irrelevant.

Why would a GA-based classifier be an improvement over standard techniques?
Feature selection techniques are often applied to data sets having large numbers
of features, but relatively few cases. Division of data into training and test sets,
while essential, further aggravates the situation. In such a situation, the use of a
subset of features is highly likely to lead to improved generalizability of a
classifier. In addition, the use of a nonlinear classifier, such as a neural network,
should improve performance on messy, real-world data sets. The algorithm
described here permits network architecture to be kept simple, but strongly
tailored to a feature subset, to reduce the computation time and enhance the
generalizability of the resulting classifier.

5.5.5 Experiments on a Cell Image Dataset

The dataset for the next set of experiments consisted of nearly 100,000 digital
images of thionin-stained cells from cervical smears, taken by the British
Columbia Cancer Agency (BCCA) using their cytometer.

The data consists of nuclear images from slides which have previously been
diagnosed by cytologists at the BCCA. British Columbia classifies Pap smears as
severe dysplasia (sev in Table 5.4), benign cellular changes (ben), carcinoma in
situ (cis), mild dysplasia (mld), moderate dysplasia (mod), negative (neg) or
suspicious (susp).

Cervical smears in British Columbia are air-dried before staining, which may lead
to enlarged, diffuse nuclei (Wittekind, 1985). Visual inspection of a subset of the
cell images confirmed that there is a wide range in nuclear area and apparent
density. In order to restrict analysis to visually normal cells, cutoffs were
established for minimum and maximum nuclear area. This was done by
measuring the nuclear area of all cells designated as “diploid” from 50 of the
negative and 50 of the severe slides selected at random from the slides which
were to be used as the training set. The distribution of nuclear area in this dataset
is depicted in Figure 5.8.

Figure 5.8 Histogram of cell nuclear area

Inspection of Figure 5.8 led to the selection of a minimum nuclear area of 400
pixels and a maximum of 700 as the criteria for inclusion in the analysis.

The final experimental dataset consisted of all cells designated by the BCCA
classifier as normal intermediate cells and meeting the above inclusion criteria
from slides classified as “negative” (normals) or “moderate dysplasia,” “severe
dysplasia,” or “carcinoma in situ” (abnormals). The data was divided into a
training set and a test set of approximately equal size. The data sets are described
in Table 5.4.
The images were segmented by BCCA. Ninety-three features were measured
from the nucleus of every cell meeting the inclusion criteria in the training and
test sets, and the mean and standard deviation of each feature was calculated for
each slide, resulting in a total of 186 features. Each feature was scaled to lie in the
range (0.0,1.0) using the maximum and minimum feature values observed in the

training set. Scaled feature values in the test set which were less than 0.0 were set
to 0.0, and those which were greater than 1.0 were set to 1.0.

Table 5.4 Description of BCCA dataset

Training Set Test Set Total

Class Cells Slides Cells Slides Cells Slides

Normal 19,949 94 18,480 91 38,429 185

CIS 8,644 41 10,325 41 18,969 82

Sev 30,459 95 27,864 92 58,323 187

Mod 23,913 82 24,353 79 48,266 161

Abnormal 63,016 218 62,524 212 125,558 430

Total 82,965 312 81,004 303 163,987 615

5.6 Parameterization of the GA
The GA was set up to select the input features and weight vector for a fully
connected feedforward network. Each run was repeated several times with a
different random number seed each time, and a run was considered to have
converged when the maximum fitness in the population remained unchanged for a
specified number of generations (which varied between experiments).

The first task undertaken with this dataset was to parameterize the GA/NN
algorithm. The parameterization experiments were performed using a neural
network architecture with six inputs, three hidden units and a single, real-valued,
output unit with a target value of 0.0 for normals and 1.0 for abnormals. The
neural network architecture was explored systematically after the GA parameters
had been set.

In a classification task it is important to keep the test set distinct at all times from
the training set, in order to provide a valid test of the final classifier on completely
unseen data. Consequently, all the parameterization experiments were performed
using the training set alone.

5.6.1 Parameterization Experiments

The selection of parameter values for the GA was achieved using a simplex
approach, starting with the values recommended by Mitchell (1996) (population
size 20 to 50; mutation rate 0.001; crossover rate 0.6). One parameter at a time
was varied and the GA run to convergence. “Convergence” was defined, for the
purposes of this experiment, as 200 generations without an increase in the
maximum fitness of the population. At the conclusion of each run, the maximum
fitness achieved, and the generation at which it was reached, was recorded. The
methodology used can be summarized as follows:

1. One parameter was selected and several runs were made with values of the
parameter at, above and below those suggested in Mitchell (1996)

2 . The parameter setting which produced the highest maximum fitness at
convergence of the GA was selected and used from then on

3. Another parameter was selected, and the process iterated until all parameters
were decided.

GA parameters such as mutation rate, crossover rate and population size were set
before neural net architecture features, on the assumption that “optimal” settings
for these parameters would apply to a range of similar architectures. This
assumption was not tested.

5.6.2 Results of Parameterization Experiments

The results of the parameterization runs are shown in Table 5.5. The shaded
column represents the final parameterization chosen.

Table 5.5 Parameterization of the genetic algorithm

Run

1 2 3 4 5 6 7 8

Pop. Size 50 50 50 50 50 50 50 100

Crate1 0.6 0.8 0.4 0.6 0.6 0.6 0.6 0.6

Mrate2 0.001 0.001 0.001 0.01 0.1 0.01 0.01 0.01

Ggap3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Inputs 6 6 6 6 6 6 6 6

Hunits 3 3 3 3 3 5 10 5

Fitness .80752 .77995 .79909 .81991 .78152 .83874 .82175 .84305

Gen4 3663 1281 1740 3251 300 4502 3800 3327

AUC Train 0.777
(0.026)

0.695
(0.031)

0.755
(0.028)

0.805
(0.025)

0.683
(0.031)

0.848
(0.021)

0.808
(0.024)

0.850
(0.021)

95% Lower5 0.726 0.635 0.700 0.757 0.622 0.806 0.761 0.809

95% Upper6 0.828 0.755 0.801 0.853 0.744 0.890 0.855 0.891
1Crossover rate.
2Mutation rate.
3Generation gap – proportion of each generation carried over to the next
generation.
4Generation at which convergence was achieved.
5,6Lower and upper limits of 95% confidence interval.

Figure 5.9 Correlation of AUC on the training data with maximum fitness
for the parameterization experiments

The major assumption made when using this methodology is that the maximum
fitness achieved by the GA is a good measure of the performance of the classifier
on the training (and hopefully the test) data. This assumption can be validated by
inspection of Figure 5.9, in which the maximum fitness is plotted against the area
under the curve on the training set for each run, along with the linear regression
line of best fit for the data. The Pearson coefficient of correlation between the two
measures is 0.9093.

5.6.3 Selecting the Neural Network Architecture

The choice of architecture of a neural network for given problem is rarely
obvious. The approach generally taken is trial-and-error, with a “reasonable”

architecture selected initially, and then modified in the light of empirical results.
The neural network architecture used for the parameterization runs described
above (six inputs, three hidden units, one output) was selected because it appeared
to represent a reasonable compromise between classification power and
simplicity. In order to determine whether this is, in fact, a good architecture for
this problem, several further experiments were carried out, with different
parameters of the architecture varied systematically. These experiments also
provide some insight into the robustness of the algorithm with respect to
variations in architecture.

The experiments indicate that a robust choice for the configuration for this
algorithm on this problem includes six inputs, three to five hidden units, and a
single output, with a mutation rate for the GA of 0.01 and a crossover rate of 0.6.
It is interesting to note that runs of the GA with different random number seeds or
different parameterization select different feature subsets – there is very little
commonality among the features selected. This phenomenon persists throughout
the experiments, and appears to reflect the fundamental structure of the data for
this problem.

There is one major problem with making decisions about the parameterization
and architecture of the GA/NN in the way that we have done. This arises from the
stochastic nature of the algorithm. Ideally, each configuration would be run
multiple times with different random number seeds, in order to obtain a broad
view of the behaviour of the algorithm. Because this is too time-consuming,
decisions have been made on the basis of a single run of each configuration. The
assumption here is that, although individual runs may be subject to random
fluctuation, a valid overall picture will emerge.

5.7 Experiments with the Cell Image Dataset
Having established reasonable parameters for the GA, and a good architecture for
the neural network, we now evaluate the performance of the GA/NN algorithm on
the large cell image dataset, as described in Table 5.5. This data consists of a
training set comprising 94 normal slides (18,480 cells) and 218 abnormal slides
(62,524 cells), and a separate test set of 91 normal slides (38,429 cells) and 212
abnormal slides (125,558 cells).

5.7.1 Slide-Based vs. Cell-Based Features

The majority of MACs classifiers described in the literature have used a cell-by-
cell approach to classification, with each cell being classified as “normal” or
“abnormal” and slides classified on the basis of the proportion of abnormal cells
on the slide. There are a number of potential problems with this approach. First, it
involves the use of two thresholds – the threshold score for classification of a cell

as abnormal, and the threshold proportion of abnormal cells required to classify a
slide as abnormal. These thresholds are usually chosen in an ad hoc manner, by
inspection of the data. The second problem is the presence of an unknown,
variable proportion of normal cells in any cell population designated as MAC-
affected. This proportion is impossible to quantify visually, since MACs are
subvisual, and adds noise to the data which is used to train the classifier. This
noise may well degrade the performance of the classifier.

To overcome these problems, a slide-based approach to classification may be
useful. With this approach, features are measured from each cell, and then
features for each slide, such as the mean and standard deviation of the feature
values, are calculated from the cell measurements. It is hypothesized that the
presence of MAC-affected cells on a slide will shift the feature distribution
enough to change the summary statistics (Figure 5.10).

Mean of normal population

Mean of normal + abnormal population

Normals Abnormals

Figure 5.10 The presence of abnormal cells shifts the distribution of a feature
measured across all cells on a slide

The slide-by-slide approach was used for the GA parameterization experiments
described in the previous section. In this section, we look more closely at the
performance of slide features as compared with the usual cell-by-cell approach,
using the entire large dataset.

Probably the most widely used summary statistics are the mean and standard
deviation, which are based on the first two moments of the distribution. For a
Gaussian distribution, these are the only two non-zero moments. There is no
reason to believe that features measured from a cell image will have a Gaussian
distribution. Other distributions will have non-zero values for the higher
moments, but these are not considered here. Instead, we have also computed a
non-parametric measure of central tendency – the median.

For the dataset described in Table 5.4, the mean, standard deviation and median
for each feature across all cells was computed for each slide. The resulting data
set contained 279 features. The GA/NN algorithm was run repeatedly with a
different random number seed for each run, as described previously.

ROC curves for the cell-based and slide-based classifiers are shown in Figures
5.13 (test on training set) and 5.14 (test on unseen test data). The “optimal”
classification threshold (point closest to the top left corner) is marked with an X
in each case.

Figure 5.11 ROC curves for test on train results

Summary statistics, of the type often reported as the results of MACs classifiers,
were calculated for the threshold represented by the Xs in Figures 5.13 and 5.14.
These statistics are presented in Table 5.6. There are two further operating points
of particular interest to practitioners of cervical screening. An automated screener
may be used as a primary scanner (PS, prescreening slides to reduce the
laboratory workload) or as a quality control machine (QC, rescreening slides
already screened by humans to check accuracy and identify missed positives)
(Husain & Butler, 1994).

Figure 5.12 ROC curves for test on test results

The operating points for both types of automated scanner have been identified. A
prescreener should have very high sensitivity, and can afford a relatively high
false positive proportion, since the slides it identifies will be rescreened by
humans. The point on the ROC curve at which such a machine should operate is
either 50% false positives or 75% false positives. For these analyses a cutoff of
75% false positives has been used. A machine to be used for quality control in a
laboratory will generally operate at the 10% false positive point, since most
positive slides will already have been identified by human screening, and large
numbers of false alarms are expensive in a QC system.

Summary statistics for each of the classifiers at these points are also reported in
Table 5.6.

On the training data, a classifier using the mean, standard deviation and median of
the features values across a slide significantly outperforms one which uses the
proportion of abnormal cells per slide. On the unseen test data, however, the
difference between the AUCs for the two classifiers diminishes. The cell-based

classifier performs better at the lower end of the ROC curve, but worse at the top
end – the region in which a screening system must operate. Because the curves
overlap (at about 50% true positives), the difference between the AUC for the two
classifiers just fails to reach significance at the 95% level.

Table 5.6 Performance of slide-based and cell-based classifiers at various
operating points

Classifier Data
set

Point True
Positive

(%)

False
Positive

(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Slide based Train X 83.5 23.9 83.5 76.1 81

Cell based Train X 69.3 31.5 69.3 68.5 69

Slide based Train QC 62.0 10.0 62.0 90.0 71

Cell based Train QC 41.0 10.0 41.0 90.0 56

Slide based Train PS 99.0 75.0 99.0 25.0 77

Cell based Train PS 96.0 75.0 96.0 25.0 74

Slide based Test X 78.0 25.6 78.0 74.4 77

Cell based Test X 73.5 37.8 73.5 62.2 70

Slide based Test QC 35.0 10.0 35.0 90.0 51

Cell based Test QC 43.0 10.0 43.0 90.0 57

Slide based Test PS 97.0 75.0 97.0 25.0 76

Cell based Test PS 93.0 75.0 93.0 25.0 73

Despite the similarity of overall performance on test data, the two classifiers do
differ significantly at point X. At this point, the classifiers differ on 76 cases, with
the GA/NN being correct on 48 of these cases. A binomial test on this data gives
a probability of 0.014 that this result would be achieved by chance. It can be
concluded that the classifiers are significantly different at this point. For the QC
point, the number of cases different is 79, with the GA/NN correct on 38 of these,
giving a probability of 0.674; at the PS point the classifiers differ on 25 cases,
with the GA/NN correct on 16, leading to a probability of 0.115.

5.7.2 Comparison with the Standard Approach

The slide-based dataset described in the previous section was used for a series of
experiments designed to compare the performance of the classifier usually used
for MACs detection, a stepwise linear discriminant analysis (SLDA) classifier,
with the nonlinear GA/NN. The SLDA selected eight features, while the GA/NN
was set up to select six or fewer features, as before. The ROC curves for the
results of these experiments are plotted in Figures 5.13 and 5.14.

Figure 5.13 ROC curves for test on train results

None of the test-on-test curves are significantly different from each other at the
95% level. The best of the GA curves is that from run number 12. Inspection of
the ROC curve shows, however, that most of this advantage is in the lower part of
the curve, away from the area in which a screener should operate. In the top
section of the graph, the best curve is number 14. Figure 5.14 further shows the
optimal operating point for the SLDA (point X) and for the classifier produced by
run 14 (point Y). The confusion matrices for these points are shown in Tables 5.7
and 5.8.

Figure 5.14 ROC curves for test on test results

Table 5.7 Confusion matrix for stepwise linear discriminant analysis at
operating point X

Classification

True Diagnosis Positive Negative Total

Positive 163 49 212

Negative 22 69 91

Total 185 118 303

Tables 5.7 and 5.8 illustrate that the GA/NN classifier is operating at a higher true
positive point (88%) than the SLDA classifier (77%), albeit with a
correspondingly higher false positive proportion (40% compared with 24%). In
order for the SLDA classifier to operate at the same true positive level, it would
produce a false positive proportion of approximately 66%. Using the simple
binomial test, the one-tailed probability that the two classifiers have the same

performance is 0.063. The GA/NN does appear to outperform the SLDA classifier
at the selected operating points.

Table 5.8 Confusion matrix for best GA/NN at operating point Y

Classification

True
Diagnosis

Positive Negative Total

Positive 187 25 212

Negative 36 55 91

Total 223 80 303

Table 5.9 Performance of the GA/NN and SLDA at the QC and PS operating
points

Classifier Point True
Pos (%)

False
Pos (%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

SLDA QC 46.0 10.0 46 90 59

Run 12 QC 55.0 10.0 55 90 66

SLDA PS 97.0 75.0 97 25 76

Run 12 PS 96.0 75.0 96 25 75

It is also interesting to compare the performance of the SLDA and GA/NN at the
two points at which commercial screening systems operate – the quality control
(QC) point and the prescreening (PS) point. Table 5.9 shows the performance of
the SLDA and that of the best GA/NN run, run12, on the test data at both of these
points.

At the QC point, the GA/NN outperformed the SLDA on 57 of 99 cases on which
the two algorithms gave different classifications. Using a binomial test, these
figures give

()()∑
= −

99

57

995.0
!5799!57

!99

s ,

a 0.08 probability that the GA/NN is no better than the SLDA.

At the PS point the two algorithms differ on 43 cases, with the GA/NN correct on
20 of these. The binomial test gives

()()∑
= −

43

20

435.0
!2043!20

!43

s ,

or a probability of 0.73 that the performance of the two algorithms is the same. It
can be concluded that the GA/NN is significantly better than the SLDA as a
quality control screener, but not as a prescreener.

The final issue on which the algorithms may be usefully compared is that of
generalizability. Figure 5.15 is the generalizability graph for the classifiers in
Table 5.9. For each classifier, the AUC on the training data has been plotted
against the AUC on the test data. A point falling on the diagonal (x = y) indicates
good classifier generalizability; points lying below the diagonal represent
classifiers with poorer generalizability. Point 2 is the SLDA; the other numbers
indicate which run of the GA/NN each point represents.

It is clear from this figure that the SLDA classifier has the poorest generalization
performance of any of the classifiers examined. The generalizability of the
GA/NN classifiers is less variable than their classification performance.

Figure 5.15 Generalizability of the MACs classifiers

The point marked 2 is the stepwise LDA; the others are different runs of the GA.

It can be concluded that the GA/NN algorithm produces classifiers which
generalize more consistently than those produced by SLDA, while having similar
specificity. Some runs of the GA/NN produce classifiers with greater sensitivity

at their optimal operating point, but due to the stochastic nature of the algorithm
this is not always the case.

5.7.3 Discussion

The GA/NN algorithm outperforms a standard linear classifier for MACs
detection for specific points on the ROC curve. On the training data, the linear
classifier performs better than any of the nonlinear classifiers, but this superior
performance does not carry across to the test set, on which the nonlinear
classifiers perform about as well as the linear classifier.

When the classifiers are compared at their respective optimum operating points,
three of the seven nonlinear classifiers outperform the linear classifier. Despite
this, the area under the ROC curves for the linear and nonlinear classifiers on the
test data are not significantly different at the 95% level.

A secondary aim of this project was to investigate the contribution which could
be made by evolutionary computation (EC) techniques to a difficult, real-world
problem such as MACs detection. The approach selected here was deliberately
kept simple, to enhance the comprehensibility of the system. Refinements to an
algorithm can always be added as their potential usefulness becomes apparent, but
the operation of a simple algorithm provides a “baseline” for comparison of future
work. The approach used for this project was a simple genetic algorithm for the
selection of a feature subset and the weight vector for the corresponding neural
network classifier.

In experiments on nonlinear artificial datasets, the GA/NN algorithm performed
well, selecting discriminatory features and classifying two-dimensional, two-class
datasets with high accuracy. It can be concluded that the algorithm provides a
valid approach to feature selection and classification.

On the MACs data the algorithm performed at or slightly above the level of the
SLDA, but no great improvement in performance was apparent. This may be
because of the structure of the data, or because of the inherent simplicity of the
algorithm; these issues await further investigation. The question which remains to
be addressed is “does an evolutionary computation approach have benefits for
the solution of difficult classification problems such as MACs detection?”

The main disadvantage of an evolutionary computation approach is the time taken
to train the classifier. Since each training run should be repeated several times
with different random number seeds, running time is a consideration. It can be
argued that training time for the classifier is irrelevant, since once trained most
classifiers are quick to apply to new data. However, unless the EC approach
provides significant benefits over the alternative, there is no reason to use a time-
consuming algorithm. SLDA is quick to apply and has a sound basis in statistical

theory; unless the EC results are significantly better, it is hard to argue against the
statistical approach.

With respect to MACs detection it appears that, while feature selection is
valuable, the computational overhead of the GA/NN is not warranted. This
finding is in keeping with those of several others using GAs for feature selection
tasks (e.g., Vafaie & DeJong, 1992; Raymer et al., 1997; Sahiner et al., 1996);
GAs do not appear to offer significant benefits for feature selection in practice.

References
1 . Banda-Gamboa, H., Ricketts, I., Cairns, A., Hussein, K., Tucker, J. &

Husain, N. 1992. 'Automation in cervical cytology: An overview', Analytical
Cellular Pathology, Vol. 4, p.25 – 48.

2. Bartels, P. H. 1992. 'Computer-generated diagnosis and image analysis: An
overview', Cancer: Diagnosis, Treatment, Research, Vol. 69, no. 6, p.1636 –
1642.

3. Brill, F. Z., Brown, D. E. & Martin, W. N. 1992. 'Fast genetic selection of
features for neural network classifiers', IEEE Transactions on Neural
Networks, Vol. 3, no. 2, p.324-328

4. Chatterjee, S., Laudato, M. & Lynch, L. A. 1996. 'Genetic algorithms and
their statistical applications: an introduction', Computational Statistics and
Data Analysis, Vol. 22, p.633 - 651.

5. Chtioui, Y., Bertrand, D. & Barba, D. 1998. 'Feature selection by a genetic
algorithm. Application to seed discrimination by artificial vision', Journal of
Science of Food and Agriculture, Vol. 76, p.77 – 86.

6. Danielson, H. E., Kanagasingam, Y. M., Jirgensen, T., Rieth, A. & Nesland,
J. M. 1994. 'Objective analysis of chromatin structure as a tool for diagnosis
and prognosis in cancer', Analytical and Quantitative Cytology and
Histology, Vol. 16, no. 1, p.40 – 43.

7. Gose, E., Johnsonbaugh, R. & Jost, S. 1996, Pattern Recognition and Image
Analysis, Prentice-Hall PTR, Upper Saddle River, NJ.

8. Guerra-Salcedo, C. & Whitley, D. 1998, “Genetic search for feature subset
selection: A comparison between CHC and GENESIS,” Symposium on
Genetic Algorithms, July 22 – 25, University of Wisconsin, Madison.

9. Guo, H. & Gelfand, S. B. 1992. 'Classification trees with neural network
feature extraction', IEEE Transactions on Neural Networks, Vol. 3, no. 6,
p.923 - 933.

10. Haydar, A., Demirekler, M. & Yurtseven, M. K. 1998. 'Feature selection
using genetic algorithm and its application to speaker verification',
Electronics Letters, Vol. 34, no. 15, p.1457 – 1459.

11. Haykin, S. 1994, Neural Networks: A Comprehensive Foundation,
Macmillan College Publishing Company, New York.

12. Husain, O. A. N. & Butler, E. B. 1994. “The role of automated scanners in
quality control,” in Automated Cancer Screening, ed H. K. Grohs & O. A. N.
Husain, Igaku-Shoin, New York.

13. Husain, N. & Watts, K. 1988. 'Computerized cell scanners', Physics Bulletin,
Vol. 39, p.198 – 200.

14. Jain, A. & Zongker, D. 1997. 'Feature selection: Evaluation, application and
small sample performance', IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 19, no. 2, p.153 – 158.

15. Lavrac, N., Gamberger, D. & Turney, P. 1997. 'Cost-sensitive feature
reduction applied to a hybrid genetic algorithm', Lecture Notes in Computer
Science, Vol. 1160, p.127 – 134.

16. Liu, H. & Setiono, R. 1997, “Feature selection and classification - a
probabilistic wrapper approach,” 9th International Conference on Industrial
and Engineering Applications of AI and Expert Systems, Fukuoka, Japan,
June 1996, p. 419-424.

17. Mackay, E. V., Beischer, N. A., Cox, R. J. & Wood, C. 1983, Illustrated
Textbook of Gynaecology, W. B. Suanders/Bailliere Tindall, Sydney.

18. Martin-Bautista, M. J. & Vila, M.-A. 1998. 'Applying genetic algorithms to
the feature selection problem in information retrieval', Lecture Notes in
Computer Science, Vol. 1495, p.272 – 281.

19. Mitchell, M, 1996, An Introduction to Genetic Algorithms, MIT Press,
Cambridge, MA.

20. National Cancer Institute 1999, Website of the United States National
Cancer Institute, http://cancernet.nci.nih.gov. Downloaded 26/5/99.

21. Punch, W. F., Goodman, E. D., Pei, M., Chia-Shun, L., Hovland, P. &
Enbody, R. 1993, “Further research on feature selection and classification
using genetic algorithms,” in Proceedings of the Fifth International
Conference on Genetic Algorithms, Champaign, IL: 557 -564.

22. Raymer, M. L., Sanschagrin, P. C., Punch, W. F., Venkataraman, S.,
Goodman, E. D. & Kuhn, L. 1997, “Simultaneous feature scaling and
selection using a genetic algorithm,” in Proceedings of the 7th International
Conference on Genetic Algorithms, East Lansing, MI, July 19—23, 1997. ed
Th. Bäck, Morgan Kaufmann, CA, p. 561—567.

http://www.cancernet.nci.nih.gov

23. Sahiner, B., Chan, H. P., Wei, D., Petrick, N., Helvie, M. A., Adler, D. D. &
Goodsitt, M. M. 1996. 'Image feature selection by a genetic algorithm:
application to classification of mass and normal breast tissue', Medical
Physics, Vol. 23, no. 10, p.1671 - 1684.

24. Setiono, R. & Liu, H. 1997. 'Neural-network feature selector', IEEE
Transactions on Neural Networks, Vol. 8, no. 3, p.654 – 662.

25. Siedlecki, W. & Sklansky, J. 1989. 'A note on genetic algorithms for large-
scale feature selection', Pattern Recognition Letters, Vol. 10, no. 5, p.335 -
347.

26. Smith, J. E., Fogarty, T. C. & Johnson, I. R. 1994, “Genetic feature selection
for clustering and classification,” in Proceedings of the IEE Colloquium on
Genetic Algorithms in Image Processing and Vision, London IEE Digest
1994/193.

27. Vafaie, H. & De Jong, K. 1992, “Genetic algorithms as a tool for feature
selection in machine learning,” in Proceedings of the International
Conference on Tools with AI, Arlington, VA. IEEE Society Press, p. 200 –
204.

28. Vafaie, H. & De Jong, K. 1992, “Genetic algorithms as a tool for feature
selection in machine learning,” in Proceedings of the International
Conference on Tools with AI, Arlington, VA. IEEE Society Press, p. 200 –
204.

29. Vafaie, H. & DeJong, K. 1993, “Robust feature selection algorithms,” in
Proceedings of the International Conference on Tools with AI, Boston,
Mass., IEEE Computer Society Press, p. 356 – 364.

30. Vafaie, H. & Imam, I. F. 1994, “Feature selection methods: Genetic
algorithms vs. greedy-like search,” in Proceedings of the International
Conference on Fuzzy and Intelligent Control Systems, Louisville, KY.

31. Wang, J.-W., Chen, C.-H. & Pan, J.-S. 1998. 'Genetic feature selection for
texture classification using 2-D non-separable wavelet bases', IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences Vol. 81, no. 8, p.1635 – 1644.

32. Whitley, D., Beveridge, J. R., Guerra-Salcedo, C. & Graves, C. 1997,
“Messy genetic algorithm for subset feature selection,” in Proceedings of the
7th International Conference on Genetic Algorithms, July 19 – 23, East
Lansing, MI.

33. Wittekind, D. 1985. 'Standardization of dyes and stains for automated cell
pattern recognition', Analytical and Quantitative Cytology and Histology,
Vol. 7, no. 1, p.6 – 30.

34. Yang, J. & Honavar, V. 1998. 'Feature subset selection using a genetic
algorithm', IEEE Intelligent Systems, Vol. 13, p.44 – 49.

35. Yao, X. 1999. 'Evolving artificial neural networks', Proceedings of the IEEE,
Vol. 87, no. 9, p.1423 – 1447.

Chapter 6 Algorithms for Multidimensional Scaling
J.E. Everett

Department of Information Management and Marketing
The University of Western Australia
Nedlands, Western Australia 6009

e-mail jeverett@ecel.uwa.edu.au

Abstract

In this chapter, we will be looking at the potential for using genetic algorithms to
map a set of objects in a multidimensional space. Genetic algorithms have a
couple of advantages over the standard multidimensional scaling procedures that
appear in many commercial computer packages. We will see that the most
frequently cited advantage of genetic algorithms, the ability to avoid being
trapped in a local optimum, applies in the case of multidimensional scaling. Using
a genetic algorithm, or at least a hybrid genetic algorithm, offers the opportunity
to choose freely an appropriate objective function. This avoids the restrictions of
the commercial packages, where the objective function is usually a standard
function chosen for its stability of convergence rather than for its applicability to
the user’s particular research problem. We will develop some genetic operators
appropriate to this class of problem, and use them to build a genetic algorithm for
multidimensional scaling with fitness functions that can be chosen by the user.
We will test the algorithm on a realistic problem, and show that it converges to
the global optimum in cases where a systematic hill-descending method becomes
entrapped at a local optimum. We will also look at how considerable computation
effort can be saved with no loss of accuracy by using a hybrid method. For hybrid
methods, the genetic algorithm is brought in to “fine tune” a solution, which has
first been obtained using standard multidimensional scaling methods. Finally, a
full program description will be given allowing the reader to implement the
program, or a modification, in a C or C++ environment.

6.1 Introduction
6.1.1 Scope of This Chapter

In this chapter, we will be considering the nature and purpose of
multidimensional scaling and the types of problems to which it can be applied.
We shall see that multidimensional scaling techniques are susceptible to being
trapped in local optima, and that it is important to use a measure of misfit that is
statistically appropriate to the particular multidimensional scaling model being

analyzed. These factors will be shown to be a problem with the standard
multidimensional scaling techniques available in commercial statistical packages,
a problem that can be overcome by using a suitable genetic or hybrid algorithm.
A number of suitable genetic operators will be discussed, differing from the more
standard genetic operators because of the continuous nature of the parameters,
and because of the ascription of these parameters to individual objects. The
problem of evolving the best mapping of a number of interacting bodies is
analogous to the evolution of a social organism with a joint fitness function. This
analogy will be developed. It provides a rationale for using the alternative genetic
operators suggested.

Some extensive test results on a realistic multidimensional scaling problem will
be reported and examined.

The chapter ends with a program listing and a full description of each of its
component parts. The program is written in C, using the simulation package
Extend. Any reasonably proficient user of the language should be able to transfer
the program to another C or C++ environment.

6.1.2 What is Multidimensional Scaling?

In many situations, we have data on the interrelationships between a set of
objects. These interrelationships might be, for example:

• Distances or the travel times between cities
• Perceived similarities between different brands of beer

• Words shared between members of a group of languages

 • Frequencies with which libraries lend items to each other

• Frequencies with which journals cite each other

• Similarities between shades of colors

• Correlation between adjectives used to describe people.

In each of the cases listed above, the data take the form of a matrix D, whose
components dij represent some measure of the similarity or dissimilarity between
object “i” and object “j.” Each case is an example of a general and common
situation. It would be useful to produce a mapping of the objects. This has been
the subject of published research where multidimensional scaling has been used
to produce such maps. On the map, the relative positions of the objects should
provide a concise graphical representation of their interrelationships. Object “i”
will be mapped at a point having coordinates xif , where f ranges from 1 up to
however many dimensions are being mapped.

For example, in the case of the Morse code confusions, we would want a map
where the symbols that get confused with each other most frequently appear close
together. Symbols rarely confused with each other map far apart.

Multidimensional scaling is a modeling technique using the matrix of
interrelationships between a set of objects. These interrelationships could either
be measures of similarity (such as the rate of confusion between symbols in
Morse code) or of dissimilarity (such as the travel time between pairs of cities).
Multidimensional scaling techniques attempt to find a set of coordinates for the
objects, in a multidimensional space, so that the most similar objects are plotted
close together and the most dissimilar objects are plotted furthest apart.

6.1.2.1 Metric and Non-metric Multidimensional Scaling

In metric multidimensional scaling, the distances between objects are required to
be proportional to the dissimilarities, or to some explicit function of the
dissimilarities. In non-metric multidimensional scaling, this condition is relaxed
to require only that the distances between the objects increase in the same order as
the dissimilarities between the objects.

6.1.2.2 Choice of the Misfit or Stress Function

In a multidimensional scaling model, the parameters of the model are the
coordinates at which we map the objects. These parameters, or coordinates, have
to be chosen so as to minimize some measure of misfit, which will be a function
of the differences between the observed inter-object data matrix, and a
comparable matrix calculated from the model. As in most examples of model
fitting, the fitness function is actually a misfit function, requiring minimizing.
Multidimensional scaling texts tend to refer to this misfit function as “stress.”
Generalized treatments of nonlinear modeling commonly refer to it as “loss.” For
our purposes, fitness function, misfit, stress and loss will be treated as
synonymous. In general, the fitness function to be minimized will here be referred
to as misfit.

Standard multidimensional scaling procedures, commercially available in
statistical computer packages such as SPSS, SAS and SYSTAT, use some
convenient standard measure of misfit, chosen for its convergence properties,
such as Kruskal's stress (Kruskal, 1964). However, the appropriate measure of
misfit will be different for different problems, depending on the statistical nature
of the model we are trying to fit. For example, when dissimilarities are distances,
the misfit or stress may appropriately be some function of the squared errors
between the computed and actual distances between objects. The treatment of
error depends on a knowledge of the way the data were gathered, and therefore of
how errors might arise. It may be statistically more appropriate to use absolute
error instead of squared errors, or to proportionate the error to the inter-object

distance. For frequency data, such as the rate of confusions in the Morse code
example, the maximum likelihood fit may be obtained by choosing parameters
(coordinates) to minimize a chi-square function of the difference between
observed and predicted frequencies. Statistical packages do not readily allow the
user to tailor the misfit or stress function in these statistically appropriate ways.

6.1.2.3 Choice of the Number of Dimensions

There is no reason why a mapping should be in only two dimensions, but we
generally would want to produce a map with as few dimensions as possible. It is
not surprising that most published work in multidimensional scaling has produced
two-dimensional (or at most, three-dimensional) solutions. Mapping objects in
one direction tends to be inadequate or trivial. More than three dimensions are
impossible for us mere mortals to visualize. More than two dimensions are
unpopular with editors who like to publish figures on flat pages, which can be
easily understood.

In fitting a model to the data, for a given number of dimensions, the object
coordinates will be chosen so as to minimize the residual misfit. Whatever
function of misfit is used, it will be found that, unless a perfect fit has been
obtained, the residual misfit can always be decreased by increasing the number of
dimensions. In the limit, n objects can always be plotted perfectly in n – 1
dimensions (although, in certain cases, some of the coordinates may be
imaginary!). However, such a perfect fit may be entirely spurious, and an
adequate fit may usually be obtained in fewer dimensions, with the residual misfit
being ascribed to statistical error. Occam’s razor (or its modern counterpart
KISS) tells us that the preferred mapping model is one which represents the
objects in as few dimensions as are needed to conform adequately to the inter-
object data. Again, it is important to have a misfit function appropriate to the
statistical properties of the model being fitted. We can then reasonably decide
whether residual misfit is significant or not, and therefore decide whether the
mapping requires more or fewer dimensions.

If the misfit function is statistically appropriate to the way the data were formed
or gathered, the appropriate number of dimensions will be achieved when the
residual misfit becomes small enough to be ascribed to random error. In practice,
we may compromise on meaningfulness rather than statistical significance, and
accept a simpler model, of fewer dimensions, that explains most of the original
misfit, even if it leaves a statistically significant residue. This compromise
between meaningfulness and significance has been discussed more fully in the
earlier chapter on Modeling (Chapter 0), and is the essence of Occam’s razor.

6.1.2.4 Replicated Data Matrices

A further extension of multidimensional scaling occurs when the data consist of
several matrices, one for each respondent. These replicated data matrices may be
treated as repeat estimates of the same configuration, so that a single best-fit map
is produced. However, it may be reasonable to model each respondent as having a
different map, with the same configuration, but stretched differently along the
axes for different individual respondents. This refinement of multidimensional
scaling is known as Indscal. For example, in the study of Morse code confusions
by Shepard (1963), it was found that the symbols plotted on a two-dimensional
map. One axis varied as the proportion of dashes in the symbol, so that Morse
symbols containing mainly dashes were at one extreme, and those containing
mainly dots were plotted at the other extreme. The second axis was found to
relate to the number of items (dots or dashes) in the symbol, increasing from only
one item to two, three, four and more item symbols. The data for individual
operators could have been analyzed using Indscal. Individual respondents’ maps
would then be elongated in the first dimension for those operators who were less
confused by the dot/dash distinction than by the number of dots and dashes.
Those operators who had more trouble distinguishing dots from dashes rather
than identifying the number of dots and dashes would produce maps elongated
along the second dimension.

6.1.2.5 Arbitrary Choice of Axes

In ascribing coordinates to objects, a number of arbitrary choices do not affect the
goodness of fit:
• Adding or subtracting a constant to coordinates of any particular dimension

• Reversing the axis of any dimension

• Rotating the entire set coordinate axes by any angle lying in any plane

• Scaling the entire set of coordinates by any consistent factor

Any of these operations will leave the misfit or stress function unaltered. To this
extent, there are in theory an infinite number of global optima or, perhaps more
appositely, an infinite number of representations of a single global solution. Some
arbitrary rules have to be imposed to select which representation of the global
solution to use. One set of rules used in the standard implementations is:
• Set the coordinates on each dimension to have zero mean

• Make the first dimension be the one with greatest variance, and scale it to unit
variance

• Make each subsequent dimension be the remaining one of greatest variance

An alternative set of rules, computationally easier to implement is to:
• Set the first object to have zero coordinates in all directions (x1f = 0, all f)

• Establish the first dimension with (x21 = 1, x2f = 0 for f > 1)

• Establish further dimensions as needed with (xnf = 0 for f > n - 1)

In this approach, each successive object is used to introduce a new dimension.

In models where the inter-object data are specifically distances, then the scaling
of the coordinates will be determined, although their origin, sense and rotation
will still be arbitrary.

6.1.3 Standard Multidimensional Scaling Techniques

Several multidimensional scaling procedures are available in commercial
statistical computer packages. Each package tends to offer a variety of
procedures, dealing with metric and non-metric methods, and single or multiple
data matrices. Among the most used procedures are Alscal, Indscal, KYST and
Multiscale. Their development, methods and applications are well described by
Schiffman et al. (1981), Kruskal and Wish (1978), and Davies and Coxon (1982).
They are available to researchers in many major statistical computer packages,
including SPSS (Norusis, 1990) and SYSTAT (Wilkinson et al., 1992).

6.1.3.1 Limitations of the Standard Techniques

Standard multidimensional scaling methods have two deficiencies:

• The dangers of being trapped in a local minimum

• The statistical inappropriateness of the function being optimized

The standard multidimensional scaling methods use iterative optimization that
can lead to a local minimum being reported instead of the global minimum. The
advantages of genetic algorithms in searching the whole feasible space and
avoiding convergence on local minima have been discussed by many authors (see,
for example, Goldberg, 1989, and Davis, 1991). This advantage of genetic
algorithms makes them worthy of consideration for solving multidimensional
scaling problems.

The second deficiency of the standard multidimensional scaling methods is
perhaps more serious, although less generally recognized. They optimize a misfit
or stress function, which is a convenience function, chosen for its suitability for
optimizing by hill-descending iteration. The type of data and sampling conditions
under which the data have been obtained may well dictate a maximum-likelihood
misfit function or other statistically appropriate function, which differs from the
stress functions used in standard multidimensional scaling procedures. One great

potential advantage of a genetic algorithm approach is that it allows the user to
specify any appropriate function for optimizing.

The advantages that a genetic algorithm offers in overcoming these problems of
the standard multidimensional scaling techniques will be discussed in more detail
in the next section.

6.2 Multidimensional Scaling Examined in More Detail

6.2.1 A Simple One-Dimensional Example

In multidimensional scaling problems, we refer to the dimensionality of the
solution as the number of dimensions in which the objects are being mapped. For
a set of n objects, this object dimensionality could be any integer up to n – 1. The
object dimensionality should not be confused with the dimensionality of the
parameter space. Parameter space has a much greater number of dimensions, one
for each model parameter or coordinate, of the order of the number of objects
multiplied by the number of object dimensions.

We will start by considering a simple problem, which in this particular case can
be modeled perfectly with the objects lying in only one object dimension. The
problem will seem quite trivial, but it exhibits more clearly some features that are
essential to the treatment of more complicated and interesting problems of greater
dimensionality.

Consider three objects, which we shall identify as Object n, for n = 1, 2 and 3.
The distance dij has been measured between each pair of objects i and j, and is
shown in Table 6.1.

Table 6.1 An example data matrix of inter-object distances dij

The purpose is to map the objects in one dimension, with Object i located at xi, to
minimize the average proportionate error in each measurement. Thus, a suitable
misfit function to be minimized is:

Y = ∑|(|xi-xj |-dij)|/dij (1)

With no loss of generality, we can constrain x1 = 0, since a shifting of the entire
configuration does not change the inter-object distances.

Using a spreadsheet program, such as Excel or Lotus, we can calculate the
function Y over a range of values of x2 and x3 , keeping x1 zero. The three objects
fit perfectly (with Y = 0) if x = (0, 10, 20), or its reflection x = (0, –10, –20). This
global solution is drawn in Figure 6.1, with the three objects being the three solid
spheres. However, if we move Object 3 to x3 = 0, leaving the other two objects
unmoved, we find a local minimum Y = 1 at x = (0, 10, 0). Small displacements
of any single object from this local minimum cause Y initially to increase.

0 2010 X = Object Location

Object 1 Object 2 Object 3

Global
Optimum

Local
Optimum

Figure 6.1 Global and local optima for the one-dimensional example

 Figure 6.2 Misfit function (Y) for the one-dimensional example

Figure 6.2 shows the misfit function values for the relevant range of values of x2

and x3. Values are shown on a grid interval of 2, for x2 increasing vertically and
for x3 increasing horizontally. The global minima are surrounded by heavy bold
circles, the local minima by light bold, and the saddle points are italicised inside
ordinary circles.

A simple hill-descending optimization is in danger of being trapped, not only at
the local minimum of x = (0, 10, 0), and its reflection, but also at the saddle point
x = (0, 0, 10) and its reflection. It can be seen that the axes of the saddle point are
tilted, so a method that numerically evaluates the gradients along the axes will not
find a direction for descending to a lower misfit value.

The problem we have considered, of fitting three objects in one dimension, had
two parameters that could be adjusted to optimize the fit. It was therefore a
comparatively straightforward task to explore the global and local minima and the
saddle points in the two-dimensional parameter space. If we increase the number
of dimensions and/or the number of objects, the dimensionality of the parameter
space (not to be confused with the dimensionality of the object space) increases,
precluding graphical representation. This makes analysis very difficult. The
problem is especially severe if (as in our example) the misfit function is not
universally differentiable.

We might expect the problem of local optima to diminish as we increase the
number of dimensions and/or the number of objects, since there are more
parameters available along which descent could take place. However, it is still
possible that objects closely line up within the object space, or within a subset of
it, generating local optima of the form we have just encountered. Without
evaluating the misfit function over the entire feasible space, we cannot be entirely
sure that a reported solution is not just a local optimum. This entrapment problem
remains a real danger in multidimensional scaling problems. It cannot be ruled
out without knowing the solution. Since entrapment may generate a false solution,
the problem is analogous to locking oneself out of the house and not being able to
get in without first getting in to fetch the key. Any optimization method that has a
danger of providing a local solution must be very suspect.

6.2.2 More than One Dimension

If we have n objects to be mapped (i = 1, 2 … n) in g dimensions (f = 1, 2, … g),
then the data dij will comprise a matrix D measuring n by n, and the problem will
require solution for g(2n–1–g)/2 coordinate parameters xif , where f goes from 1 to
g, and i goes from f+1 to n.

Because any translation or rotation of the solution will not alter the inter-object
distances, we can arbitrarily shift or translate the whole set of objects so that the
first object is zero on all coordinates. Rotations then allow us to make zero all but

one of the coordinates for the second object, all but two of the coordinates for the
third object, and so on. These operations are equivalent to setting xif to zero when
i ≤ f.

The data matrix D, with elements dij, can be any appropriate measure of similarity
or dissimilarity between the objects. At its simplest, it might just be measured
inter-object distance, as in our one-dimensional example. In such a case, the
diagonal of the data matrix will contain zeroes, and the data matrix D will be
symmetric (dij = dji), so there will be only n(n–1)/2 independent data observations.

Consider a symmetric data matrix with a zero diagonal. The number of coordinate
parameters will be equal to the number of independent data observations if the
number of dimensions is equal to (n-1), one less than the number of objects. Such
a symmetric zero diagonal data matrix can always be mapped into (n–1), or less,
dimensions. However, if the data matrix is not positive definite, the solution will
not be real.

Multidimensional scaling methods are designed to find a solution in as few
dimensions as possible that adequately fits the data matrix. For metric
multidimensional scaling, this fit is done so that the inter-object distances are a
ratio or interval transformation of the measured similarities or dissimilarities. For
non-metric multidimensional scaling, the inter-object distances are a monotonic
ordinal transformation of the measured similarities or dissimilarities, so that as far
as possible the inter-object distances increase with decreasing similarity or
increasing dissimilarity. In either case, we can refer to the transformed similarities
or dissimilarities as “disparities.” The usual approach with standard
multidimensional scaling methods is to find an initial approximate solution in the
desired number of dimensions, and then iterate in a hill-descending manner to
minimize a misfit function, usually referred to as a “stress” function. For
example, the Alscal procedure (Schiffman et al., 1981, pp 347-402) begins by
transforming the similarities matrix to a positive definite vector product matrix
and then extracting the eigen vectors, by solving:

Vector Product Transform of D = XX′ (2)

In this decomposition, X is a matrix composed of n vectors giving the dimensions
of the solution for the n objects coordinates, arranged in order of decreasing
variance (as indicated by their eigen values). The nth coordinate will of course be
comprised of zeroes since, as we have seen, the solution can be fitted with (n-1)
dimensions. If, for example, a two dimensional solution is to be fitted, then the
first two vectors of X are used as a starting solution, and iterated to minimize a
stress function. The usual stress function minimized is “s-stress.” This is
computed as the root mean square value of the difference between the squares of

the computed and data disparities, divided by the fourth power of the data
disparities (see Schiffman et al., 1981, p. 355-357). The s-stress function is used
because it has differentiable properties that help in the iteration towards an
optimum.

6.2.3 Using Standard Multidimensional Scaling Methods

We have already seen, in the introduction to this chapter, that there are two major
problems in the use of standard multidimensional scaling procedures to fit a
multidimensional space to a matrix of observed inter-object similarities or
dissimilarities.

The first shortcoming considered was the danger of a local minimum being
reported as the solution. This problem is inherent in all hill-descending methods
where iterative search is confined to improving upon the solution by following
downward gradients. A number of writers (for example, Goldberg, 1989, and
Davis, 1991) have pointed out the advantage in this respect of using genetic
algorithms, since they potentially search the entire feasible space, provided
premature convergence is avoided.

The second and most serious shortcoming of standard multidimensional scaling
procedures was seen to lie in the choice of the stress or misfit function. If we are
trying to fit a multidimensional set of coordinates to some measured data, which
has been obtained with some inherent measurement error or randomness, then the
misfit function should relate to the statistical properties of the data. The misfit
functions used in standard multidimensional procedures cannot generally be
chosen by the user, and have been adopted for ease of convergence rather than for
statistical appropriateness. In particular, the formulation of s-stress, used in Alscal
and described above, will often not be appropriate to the measured data.

For example, if the data consists of distances between Roman legion campsites
measured by counting the paces marched, and we are fitting coordinates to give
computed distances dij* that best agree with the data distances dij , then sampling
theory suggests that an appropriate measure of misfit to minimize is:

Y = ∑(dij*-dij)
2 /dij (3)

In other cases, the data measured may be the frequency of some sort of interaction
between the objects, and the misfit function should more properly make use of the
statistical properties of such frequency data. Kruskal and Wish (1978) describe a
classic study by Rothkopf (1957), analyzed by Shepard (1963). The data
comprised a table of frequencies that novices are confused when distinguishing
between the 36 Morse code signals. The confusion frequencies were used as
measures of similarities between the code signals. They were analyzed using

multidimensional scaling to generate an interpretable two-dimensional map of the
Morse code signals. It was found that the complexity of the signals increased in
one direction and the proportion of dashes (as opposed to dots) increased along
the second dimension. However, instead of the standard stress function, it would
have been more appropriate to use a misfit measure that related the generation of
confusions to a Poisson process, with the Poisson rate for each pair of Morse code
signals depending upon their inter-object distance dij . Following Fienberg (1980,
p. 40) a maximum likelihood solution could then be obtained by minimizing the
function:

Y = G2 = 2 Σij Fij . log(Fij / Eij) (4)

where Fij = observed confusion frequency, Eij = modelled confusion frequency,
and:

Eij = exp(–dij) (5)

The log-likelihood function defined in Equation (4) has the fortunate property of
being approximately a chi-squared distribution. The chi-square value can be
partitioned, so that we can examine a series of hierarchical models step by step.
We can fit the inter-object distances dij to models having successively increasing
numbers of dimensions. Increasing the model dimensions uses an increasing
number of parameters and therefore leaves a decreasing number of degrees of
freedom. The improvement in the chi-square can be tested for significance against
the decrease in the number of degrees of freedom, to determine the required
number of dimensions, beyond which improvement in fit is not significant. This
method could, for example, have provided a statistical test of whether the Morse
code signals were adequately representable in the two dimensions, or whether a
third dimension should have been included.

In some cases, the data matrix may not be symmetric. For example, Everett and
Pecotich (1991) discuss the mapping of journals based on the frequency with
which they cite each other. In their model, the frequency Fij with which journal j
cites journal i depends not only on their similarity Sij, but also upon the source
importance Ii of journal i, and the receptivity Rj of journal j. In their model, the
expected citation frequencies Eij are given by:

Eij = Ii Rj Sij (6)

They use an iterative procedure to find the maximum likelihood solutions to I and
R, then analyzed the resulting symmetric matrix S using standard

multidimensional scaling procedures, with the usual arbitrary rules applied to
using the residual stress to judge how many dimensions to retain. They could
instead have used the model:

Eij = Ii Rj exp(–dij) (7)

It would have then been possible to evaluate the chi-square for a series of
hierarchical models where dij has increasing dimensionality, to find the
statistically significant number of dimensions in which the journals should be
plotted.

The standard multidimensional scaling procedures available in statistical
computing packages do not allow the user the opportunity to choose a statistically
appropriate misfit function. This choice is not possible because the stress
functions they do use have been designed to be differentiable and to facilitate
convergence. On the other hand, genetic algorithms do not use the differential of
the misfit function, but require only that the misfit function be calculable, so that
it is not difficult for users to specify whatever function is statistically appropriate
for the particular problem being solved.

We will now discuss the design of a genetic algorithm for solving
multidimensional scaling problems, and report some preliminary test results.

6.3 A Genetic Algorithm for Multidimensional Scaling
Genetic algorithms, as described in many of the examples in this book, commonly
use binary parameters, with each parameter being an integer encoded as a string
of binary bits. The two most standard genetic operators of mutation and crossover
have also been described in previous chapters.

In designing a genetic algorithm for multidimensional scaling, we will find some
differences in the nature of the parameters, and in the genetic operators that are
appropriate. The parameters in a multidimensional scaling model are the
coordinates of the objects being mapped, so they are essentially continuous. The
application of genetic algorithms to optimizing continuous (or “real”) parameters
has been discussed by Wright (1991).

In our multidimensional scaling case, the situation is further enriched by some
ambiguity as to whether the set of objects being mapped is best thought of as the
optimization of a single entity, or as optimization of a community of interacting
individuals. We shall see that the latter analogy, treating the set of objects as an
interacting community of individuals, provides some insight triggering the design
of purpose-built genetic operators.

6.3.1 Random Mutation Operators

In mutation, one parameter is randomly selected, and its value changed, generally
by a randomly selected amount.

6.3.1.1 Binary and Real Parameter Representations

In the more familiar binary coding, mutation randomly changes one or more bits
in the parameter. One problem with binary coding is that increases and decreases
are not symmetric. If a parameter has a value of 4 (coded as 100), then a single bit
mutation can raise it to 5 (coded as 101), but the much more unlikely occurrence
of all three bits changing simultaneously is needed to reduce it to 3 (coded as
011). This asymmetry can be avoided by using a modified form of binary coding,
called Gray coding after its originator, in which each number’s representation
differs from each of its neighbors, above and below, by changing only one bit
from ‘0’ to ‘1’ or vice versa.

In either standard binary or Gray coding of integers, if the parameter is a binary
coded integer with maximum feasible value Xmax, then changing a randomly
selected bit from ‘0’ to ‘1’ or vice versa, the parameter value is equally likely to
change by 1, 2, 4, … (Xmax /2) units.

This greater likelihood of small changes, while allowing any size of change, has
obvious attractions. It can be mimicked for real parameters by setting the
mutation amplitude to ±Xmax/2

p, where p is a randomly chosen integer in the range
1 to q, and Xmax/2

q is the smallest mutation increment to be considered, and the
sign of the mutation is chosen randomly.

An alternative approach is to set the mutation to N(0, MutRad), a Gaussian
distribution of zero mean and standard deviation MutRad, the desired mutation
radius. Again, with this form of mutation smaller mutation steps are more likely,
but larger steps are possible, so that the entire feasible space is potentially
attainable. In an evolving algorithm, the mutation radius can start by
encompassing the entire feasible space, and shrink to encompass a smaller search
space as convergence is approached.

Like Gray coding, mutation of continuous parameters avoids the asymmetry we
noted for standard binary-coded integer parameters. With either of the continuous
parameter mutation procedures just described, not only are small changes in
parameter value more likely than large changes, but negative changes have the
same probability as positive changes of the same magnitude.

6.3.1.2 Projected Mutation: A Hybrid Operator

A third way to specify the mutation amplitude provides a hybrid approach,
making use of the local shape of the misfit function. The method can be applied
only if the misfit function is locally continuous (although not necessarily
differentiable).

Figure 6.3 shows how the suggested projection mutation operator works. The
parameter to be mutated is still randomly selected (so that a randomly selected
object is shifted along a randomly selected direction). However, the direction and
amount of the projection is determined by evaluating the function three times, for
the object at its present location (Y1) and displaced small equal amounts ∆X in
opposite directions, to yield values Y0 and Y2. A quadratic fit to these three values
indicates whether the misfit function is locally concave upwards along the chosen
direction. If it is, the mutation sends the object to the computed minimum of the
quadratic fit. Otherwise, the object is sent in the downhill direction by an amount
equal and opposite to its distance from the computed maximum of the quadratic
fit. In Figure 6.3, both situations are depicted, with the original location in each
case being the middle of the three evaluated points, identified by small circles. In
the first case, where the curvature is concave downward, the solution is projected
downhill to the right by a horizontal amount equal but opposite to the distance of
the fitted quadratic maximum. In the second case, where the curvature is concave
upward, the solution is projected downhill to the left, to the fitted quadratic
minimum.

10

12

14

16

0 0.5 1 1.5 2 2.5

If concave
Project to minimum

of quadratic

If concave

Project to reflection
of maximum of

quadratic

Misfit Function
(to be minimised)

Parameter

Figure 6.3 Projected mutation

6.3.2 Crossover Operators

Crossover consists of the interchange of parameter values, generally between two
parents, so that one offspring receives some of its parameter values from one
parent, and some from the other. Generally, a second offspring is given the
remaining parameter values from each parent.

Originally, a single crossover point was used (Goldberg, 1989). If the parameters
were listed in order, an offspring would take all its parameters from one parent up
to the crossover point (which could be in the middle of a parameter), and all the
remaining parameters from the other parent. Under uniform crossover (Davis,
1991) each parameter (or even each bit of each parameter if they are binary
coded) is equally likely to come from either parent. Uniform crossover can break
up useful close coding, but has the opportunity to bring together useful distant
coding. With continuous parameters, where the parameters have no natural
ordering or association, an attractive compromise is to use uniform coding
modified so that the offspring obtains each parameter at random from either
parent.

In the multidimensional scaling, there is no a priori ordering of the objects.
Suitable uniform crossover modifications would therefore be to get either:

• Each parameter (a coordinate on one dimension for one object) from a random
parent, or

• Each object’s full set of coordinates from a single random parent.

6.3.2.1 Inter-object Crossover

A third, unorthodox, form of crossover that can be considered is to use only a
single parent, and to create a single offspring by interchanging the coordinate sets
of a randomly selected pair of objects. This postulated crossover variant has the
attraction that it could be expected to help in situations of entrapment, where a
local optimum prevents one object passing closely by another towards its globally
optimum location.

We can consider the set of objects being mapped as a sub-population or group of
individuals whose misfit function is evaluated for the group rather than for the
individual. Using a biological analogy, a colony of social animals (such as a coral
colony or a beehive) may be considered either as a collection of individuals or as
a single individual. If we view the objects as a set of individuals, then each
individual’s parameter set comprises its identifier “i” plus its set of coordinates.
Inter-object crossover is then equivalent to a standard single point crossover,
producing two new objects, each getting its identifier from one parent object and
its coordinates from the other.

6.3.3 Selection Operators

We have considered how each generation may be created from parents, by
various forms of mutation, crossover or combinations thereof. It remains to be
considered how we should select which members of each generation to use as the
basis for creating the following generation.

A fundamental principle of genetic algorithms is that the fittest members should
breed. Many selection procedures have been implemented. It would appear
preferable to avoid selection methods where a simple re-scaling of the fitness
function would greatly change the selection probabilities.

Procedures based on rank have the advantage of not being susceptible to the
scaling problem. One approach is to assign a selection probability that descends
linearly from the most fit member (with the smallest misfit value) to zero for the
least fit member (with the largest misfit value). Tournament selection can achieve
this effect without the need to sort or rank the members. Two members are
selected at random, and the most fit of the pair is used for breeding. The pair is
returned to the potential selection pool, a new pair selected at random, the best
one used for breeding, and so on until enough breeders have been selected. The
selection with replacement process ensures that a single individual can be selected
multiple times. This procedure is equivalent to ranking the population and giving
them selection probabilities linearly related to rank, as shown in the following
proof:

• Consider m members, ranking from r = 1 (least fit, with highest Y) to r = m
(most fit, with lowest Y)

• Each member has the same chance of selection for a tournament, a chance equal
to 2/m.

• But its chance of winning is equal to the chance that the other selected member
has lower rank, a chance equal to (r-1)/(m-1)

• So P(win) = 2(r–1)/[m(m–1)], which is linear with rank

In selecting members of the next generation, it would appear unwise to lose hold
of the best solution found in the previous generation. For this reason, an “elitist”
selection procedure is often employed, with the “best yet” member of each
generation being passed on unaltered into the next generation (in addition to
receiving its normal chance to be selected for breeding).

6.3.4 Design and Use of a Genetic Algorithm for Multidimensional Scaling

To investigate some of the issues that have been discussed, a genetic algorithm
program was designed, using the simulation package Extend, which is written in
C. The algorithm has been used to fit the inter-object distances of ten cities in the
United States. This example has been chosen because it is also used as a worked

example in the SPSS implementation of the standard multidimensional scaling
procedure Alscal (Norusis, 1990, pp. 397-409). The data as given there are shown
in Table 6.2.

Table 6.2 Inter-city flying mileages

Atlanta Chicago Denver Houston L.A. Miami N.Y. S.F. Seattle D.C.

Atlanta 0 587 1,212 701 1,936 604 748 2,139 2,182 543

Chicago 587 0 920 940 1,745 1,188 713 1,858 1,737 597

Denver 1,212 920 0 879 831 1,726 1,631 949 1,021 1,494

Houston 701 940 879 0 1,374 968 1,420 1,645 1,891 1,220

Los Angeles 1,936 1,745 831 1,374 0 2,339 2,451 347 959 2,300

Miami 604 1,188 1,726 968 2,339 0 1,092 2,594 2,734 923

New York 748 713 1,631 1,420 2,451 1,092 0 2,571 2,408 205

San Francisco 2,139 1,858 949 1,645 347 2,594 2,571 0 678 2,442

Seattle 2,182 1,737 1,021 1,891 959 2,734 2,408 678 0 2,329

Washington D.C. 543 597 1,494 1,220 2,300 923 205 2,442 2,329 0

After Norusis, 1990, p. 399

On the reasonable assumption that the expected variance of any measured
distance is proportional to the magnitude of that distance, the misfit (or stress)
function to be minimized was expressed as the average of the squared misfits,
each divided by the measured inter-city distance. The elements dij* representing
the fitted distances and dij the measured distances:

Misfit Function = Y = Average[(dij*–dij)
2 /dij] (8)

This is equivalent to the misfit function used in Equation (3) above, but expressed
as an average rather than as a sum, to aid interpretation.

The genetic algorithm in Extend was built with a control panel, as shown in
Figure 6.4. It was designed so that the inter-object distances could be pasted into
the panel, and the results copied from the panel. The control panel permits
specification of how many objects and dimensions are to be used, and whether the
optimization is to be by systematic hill descent, or to use the genetic algorithm. If
the genetic algorithm is being used, then the population size can be specified,
together with how many members are to be subjected to each type of genetic
operator. The allowed genetic operators, discussed in the previous sections,
include:

• Projection Mutation of a randomly selected object along a randomly selected
dimension, to the quadratic optimum, if the misfit function is upwardly

concave for this locality and direction. If the function is downwardly
concave, the projection is downhill to the reflection of the quadratic fit
maximum, as shown in Figure 6.3

• Random Mutation of a randomly selected object along a randomly selected
dimension, by an amount randomly selected from a normal distribution. The
normal distribution has a zero mean, and a standard deviation set by a
Mutation Radius, which shrinks in proportion to the root mean square misfit,
as convergence is approached

• Standard Crossover Pairing where each offspring takes the coordinates of
each object from one of its two parents (the source parent being selected at
random for each object)

• Crossover Objects where an offspring is created from a single parent by
interchanging the coordinate set of a randomly selected pair of objects

Figure 6.4 shows the control panel for a run, fitting an initial random
configuration to the matrix of inter-city distances.

The initial coordinates can be specified, if it is not desired to start with all objects
at the origin, or if a continuation is being run from the ending state of a previous
run.

As the run progresses, the best fitting solution yet found (lowest Y value) is
reported in the fitted coordinates table. This solution is preserved as a member of
the new generation. The parents of the new generation are selected by pairwise
tournament selection, which we have seen is equivalent to ranking the population
and giving them selection probabilities linearly related to rank.

The C language coding for the program is listed at the end of this chapter.

6.4 Experimental Results

6.4.1 Systematic Projection

The program was run first using systematic projection, with only a single
population member, projected to the quadratic minimum once for each parameter,
during each iteration. Since the ten cities were being plotted in two dimensions,
there were 20 projections during each iteration. The fitting was repeated for ten
different starting configurations, each randomly generated by selecting each
coordinate from a uniform distribution in the range zero to 2000 miles. The
results for the ten runs are plotted in Figure 6.5.

It can be seen from Figure 6.5 that half the solutions converged to the global
minimum, with the misfit function equal to 0.0045, but that the other five
solutions became trapped on a local optimum, with the misfit function equal to
5.925.

Figure 6.4 The genetic algorithm control panel

Since the misfit function, Y, of Equation (8) is the average of the squared error
divided by the inter-city distance, the global minimum corresponds to a believable
standard error of plus or minus one mile in a distance of 220 miles, or 2.1 miles in
a 1000-mile distance. The local optimum corresponds to an unbelievably high
standard error of 77 miles in a 1000-mile inter-city distance.

6.4.2 Using the Genetic Algorithm

The genetic algorithm was used on the same set of ten starting configurations. For
the genetic algorithm (as shown in the control panel of Figure 6.4) a population
size of twenty was used. An elitist policy was used, with the best member of the

previous generation being retained unaltered in the next. Nineteen tournament
selections were made from the previous generation for breeding each new
generation. Ten new generation members were created from their parents by a
projection mutation (along one randomly selected dimension for one randomly
selected city), and for the remaining nine members, a randomly selected pair of
cities were interchanged.

0.001

0.01

0.1

1

10

100

1000

0 10 20 30 40 50

Ten Random Starting Configurations

Five Solutions Converge to the
Global Optimum (0.00425)

Five Solutions Converge to a
Local Optimum (5.925)

Fitness
Function

Iteration

Figure 6.5 Systematic projection from ten random starting configurations

Figure 6.6 shows that the genetic algorithm brought all ten starting configurations
to the global optimum, even in the five cases where the systematic projection had
resulted in entrapment on a local optimum.

As is commonly the case with genetic algorithm solutions, the reliability of
convergence on the global optimum is bought at the cost of a greater number of
computations.

6.4.3 A Hybrid Approach

A hybrid approach that can greatly reduce the computation effort is to use a
starting configuration that has been obtained by a conventional method, and home
in on the global optimum using the genetic algorithm. This hybrid approach is
illustrated in Figure 6,7.
The eigen values were extracted from the vector product transformation of D, as
shown in Equation (2) above. The vector product transformation is constructed by
squaring the dij elements, subtracting the row and column means and adding the

overall mean of this squared element matrix, and finally halving each element
(see Schiffman et al., 1981, p. 350). Figure 6.7 shows that the genetic algorithm
was able to converge the eigen solution to the global optimum in about 130
generations, only a moderate improvement upon the 150 to 200 needed for the
random initial configurations. A much quicker convergence, in about 30
generations, was obtained using the Alscal solution in the SPSS computer
package. As was discussed above, the Alscal solution optimizes a different misfit
function, the s-stress, instead of the proportional error variance of Equation (8).
Consequently, it is to be expected that the two different misfit functions will have
different optimal solutions. The statistically inappropriate Alscal solution gives a
convenient starting point for the genetic algorithm to approach the global
optimum of the statistically appropriate misfit function.

0.001

0.01

0.1

1

10

100

1000

0 50 100 150 200 250

Ten Random Starting Configurations

All Solutions Converge to the
Global Optimum (0.00425)

Fitness
Function

Generation

Figure 6.6 Genetic algorithm using the same ten random starting
configurations

Further investigations have been run, using standard genetic operators of random
mutation and crossover of pairs of solutions, as described earlier. The same ten
starting configurations were used as for Figures 6.5 and 6.6. The standard
operators gave slower convergence than our projection mutation and object
crossover operators. They were sometimes trapped on a local minimum, as was
the systematic downhill projection of Figure 6.5. However, the possibility

remains that the most efficient algorithm may need to be built from a combination
of our modified operators with the standard genetic operators. The interested
reader is invited to experiment, using and adapting the computer software
provided.

0.001

0.01

0.1

1

10

100

0 50 100 150

Starting Configuration uses
the First Two Eigen Vectors

Starting Configuration
uses the Alscal Solution

Fitness
Function

Generation

Figure 6.7 Starting from Eigen vectors and from the Alscal solution

6.5 The Computer Program

6.5.1 The Extend Model

The computer program was written using the simulation package Extend, which is
coded in a version of C. Users without Extend but some knowledge of C or C++
will be able to implement the program with little alteration.

Figure 6.8 The Extend model

 Figure 6.8 shows the layout of the Extend model. It comprises a single program
block, “HybridMDS,” connected to the standard library plotter, which collects
and displays spreadsheet and graphical output for each computer run.

Each simulation step in Extend corresponds to one generation of the genetic
algorithm.

The program block can be double clicked to open up and display the control panel
of Figure 6.4. As is standard with Extend, option-double-click on the program
block displays the code listing of the block, in a form of C. The program is listed
below.

6.5.2 Definition of Parameters and Variables

6.5.2.1 Within the Control Panel (Dialog Box)

A number of parameters are defined within the control panel or dialog box of
Figure 6.4. These are:

• ClearData Clicked if the control panel is to be cleared

• NumObj The number of objects to be mapped

• NumDim The number of dimensions to be mapped

• Data Inter-object source data (NumObj by NumObj)

• Xopt The number of dimensions to be mapped

You can choose to use systematic projection or the genetic algorithm by clicking
one of:

• SystProj To use systematic projection

• GenAlg To use the genetic algorithm

If you choose to use the genetic algorithm, you should specify:

• NumPop The number of population members in each generation

• NumRandProj The number of members created by random projection

• NumCross The number of pairs created by crossover

• MutRad The initial mutation radius

• NumMut The number of members created by random mutation

• NumCrossObj The number of members created by object crossover

An initial configuration should be entered (random, eigen vectors or Alscal
solution)

• Xinit The initial coordinate configuration (NumObj by
NumDim)

The program reports into the control panel:

• Avinit The initial average misfit value

And at each generation, updates:

• Xopt The coordinate configuration of the best solution so far

• Avopt The average misfit value of the best solution so far

6.5.2.2 To the Library Plotter

The program block also has four connectors to the library plotter:

• Con0Out The average misfit value of the best solution so far
(Avopt)

• Con1Out =Y[0] = Best total misfit so far = Avopt x NumObj x
NumObj

• Con2Out =Y[1] } Two more total misfit values from

• Con3Out =Y[2] } members of the current generation

6.5.2.3 Variables and Constants Set Within the Program Listing

The following variables and constants are set within the program listing:

integer m, i, j, k, d, MaxObj, MaxDim, BlankRow, BlankCol, MaxPop,
NumObjSq;

real Diff, Total, TotalSum, DX[20][20], X[][20][5], Y[], Xold[][20][5], Yold[];

real Yopt, Yinit, Y0, Y1, Y2, DelX, DelX2, Temp, LogSqData[20][20];

constant AllowObj is 10; constant AllowDim is 5; constant Increment is 100;

6.5.3 The Main Program

The main program comprises three Extend calls.

The first is activated when the control panel is closed, and checks that the data are
valid:

on DialogClose { CHECKVALIDATA();}

The second acts at the start of a simulation, checks for valid data, and initialises
the simulation:

On InitSim{CHECKVALIDATA(); TotalSum/=NumObj*NumObj;DelX =
TotalSum/Increment; DelX2=2*DelX; INITIALISE();}

The third is activated at the each step of the simulation, and simulates one
generation of the genetic algorithm (or one sequence of the systematic projection,
if that is being used):

on Simulate {if(SystProj) {m=0; for i=0 to MaxObj for d=0 to MaxDim
DESCEND();} else
 {TOURNELITE(); m=1; for k=1 to NumRandProj RANDPROJ(); for k=1 to

NumCross CROSSOVER();
 for k=1 to NumCrossObj CROSSOBJ(); MutRad=Sqrt(Avopt*1000); for k=1 to

NumMut MUTATE(); }
 XYoptGET(); Avopt=Yopt/NumObjSq; Con0Out=Avopt; if(NumPop> 1)

Con1Out=Y[0];
 if(NumPop>2) Con2Out=Y[1]; if(NumPop>3) Con3Out=Y[2];}

6.5.4 Procedures and Functions

The main program calls upon several procedures. To make the program operation
easier to follow, they will be listed here in the order in which they are called.

In the actual program listing, any procedure or function which is called must have
already appeared in the listing, and therefore the listing order will not be the same
as shown here.

6.5.4.1 CHECKVALIDATA()

Checks the input data for internal consistency.

Procedure CHECKVALIDATA()
 {if(SystProj) NumPop=1; if(ClearData) {NumObj=0; NumDim=0; for i=0 to

AllowObj-1
 {for j=0 to AllowObj-1 Data[i][j]=0; for d=0 to AllowDim-1 Xopt[i][d] =0; }
 ClearData=0; usererror("Data Cleared: Object Data Needed"); abort;}
 if((NumObj>AllowObj)OR(NumDim>Min2(AllowDim,NumObj-1))OR

(NumDim<1)OR(NumObj<2))
 {usererror("Error: You must set the number of Objects in the range 2 to

"+AllowObj
 +" and the number of Dimensions in the range 1 to "+AllowDim+,” but less

than the number of Objects"); abort;}
 MaxObj=NumObj-1; MaxDim=NumDim-1; TotalSum=0; ** CHECK FOR

BLANK ROWS OR COLUMNS
 BlankRow=0; for i=0 to MaxObj {Total=0; for j=0 to MaxObj Total+=

Data[i][j]; TotalSum+=Total; if(Total==0) BlankRow+=1;}

 BlankCol=0; for i=0 to MaxObj {Total=0; for j=0 to MaxObj Total+=
Data[j][i]; if(Total==0) BlankCol+=1;}

 if(BlankRow+BlankCol>0) {usererror(BlankRow+" Rows Total Zero
"+BlankCol+" Columns Total Zero"); abort;}

 Temp=0; for i=0 to MaxObj for d=0 to MaxDim Temp+= realabs(Xinit[i][d]);
 if (!((TotalSum>0)&&(NumObj>0)&&(NumDim>0)&&(NumPop>0)))

{usererror("Blank Data"); abort;};
 if(GenAlg) if (!(MutRad>0)) {usererror("Set Mutation Radius"); abort;};
 if (!SystProj) if(NumPop<=NumRandProj+2*NumCross+NumCrossObj+

NumMut) {usererror("Increase NumProj"); abort;}}

6.5.4.2 INITIALISE()

This initialises all the first generation to the initial configuration, entered in the
control panel.

Procedure INITIALISE()
{for i=0 to MaxObj for j=i+1 to MaxObj LogSqData[i][j]= 2*Log(Data[i][j]);
MatCopy(Xopt,Xinit,NumObj,NumDim);
for m=0 to MaxPop for d=0 to MaxDim for i=0 to MaxObj X[m][i][d]=

Xinit[i][d];
m=0; Yinit=EVALUATE(); for m=0 to MaxPop Y[m]=Yinit; Yopt= Yinit;

NumObjSq= (NumObj*MaxObj)/2;
 Avinit=Yinit/(NumObjSq); Avopt=Avinit; MakeArray (X,NumPop); MakeArray

(Y,NumPop);
 MakeArray (Xold,NumPop); MakeArray (Yold,NumPop); MaxPop= NumPop-

1;}

6.5.4.3 EVALUATE()

This function evaluates the misfit Y for the mth population member. The misfit Y
is the sum of the squared errors each divided by the inter-object distance, as
defined in Equation (3) above.

real EVALUATE() {integer ip, jp, dp; real Y; Y=0; for ip=0 to MaxObj for
jp=ip+1 to MaxObj
{DX[ip][jp]=0; for dp=0 to MaxDim DX[ip][jp]+=(X[m][ip][dp]-

X[m][jp][dp])^2; DX[ip][jp]=SQRT(DX[ip][jp]);
 Y+=((DX[ip][jp]-Data[ip][jp])^2)/Data[ip][jp];} return(Y);}

6.5.4.4 DESCEND()

This procedure projects the solution Y[m] = fn(X) along the dth dimension of the
ith object, to its quadratic minimum, as illustrated in Figure 6.3.

Procedure DESCEND(){Y1=Y[m]; X[m][i][d]-=DelX; Y0=EVALUATE ();
X[m][i][d]+=DelX2; Y2=EVALUATE();
 X[m][i][d]-=DelX; Diff=(Y0+Y2)/2-Y1; if(Diff<>0) Temp=Delx*(Y0-

Y2)/Realabs(4*Diff); X[m][i][d]+=Temp;
 Y[m]=EVALUATE(); if(Y[m]>Y0) {Y[m]=Y0; X[m][i][d]-=Temp;} }

6.5.4.5 TOURNELITE()

Here we preserve the best solution yet, then choose the rest of the breeders for the
next generation by tournament contest of randomly selected pairs. A pair of the
previous generation are chosen at random, and the better of the two is used for
breeding.

Procedure TOURNELITE() {integer mp, mq, BestYet;
 for m=0 to MaxPop {Yold[m]=Y[m]; for i=0 to MaxObj for d=0 to MaxDim

Xold[m][i][d]=X[m][i][d];}
 BestYet=0; for m=1 to MaxPop if (Y[m]<Y[BestYet]) BestYet=m;
 if (BestYet>0) for i=0 to MaxObj for d=0 to MaxDim {X[0][i][d]=

X[BestYet][i][d]; Y[0]=Y[BestYet];}
 for m=1 to MaxPop {mp=Random(NumPop); mq=Random(NumPop); if

(Yold[mq]<Yold[mp]) mp=mq;
 Y[m]=Yold[mp]; for i=0 to MaxObj for d=0 to MaxDim X[m][i][d]=

Xold[mp][i][d];}}

6.5.4.6 RANDPROJ()

This procedure selects a random object, then projects it to the quadratic optimum
along each coordinate.

Procedure RANDPROJ() {i=RANDOM(NumObj); for d=0 to MaxDim
DESCEND(); m++;}

6.5.4.7 CROSSOVER()

This procedure assigns the objects of two parent solutions at random to two
members of the next generation.

Procedure CROSSOVER() {integer ip, dp; real Dum;
for ip=0 to MaxObj if(RANDOM(2)) for dp=0 to MaxDim
 {Dum=X[m][ip][dp]; X[m][ip][dp]=X[m+1][ip][dp]; X[m+1][ip][dp]= Dum;}
 Y[m]=EVALUATE(); m++; Y[m]=EVALUATE(); m++; }

6.5.4.8 CROSSOBJ()

Coordinates of two randomly selected objects are interchanged for a member of
the population.

Procedure CROSSOBJ() {integer ip, jp, dp; real Dum;

ip=RANDOM(NumObj); jp=RANDOM(NumObj); for dp=0 to MaxDim
 {Dum=X[m][ip][dp]; X[m][ip][dp]=X[m][jp][dp]; X[m][jp][dp]=Dum;}
 Y[m]=EVALUATE(); m++;}

6.5.4.9 MUTATE()

One randomly selected object is mutated a random distance (normally distributed,
with standard deviation equal to the mutation radius). The mutation radius is
revised each generation in the “on Simulate” call, so that it contracts at the same
rate as the misfit function shrinks.

Procedure MUTATE()
 {i=RANDOM(NumObj); for d=0 to MaxDim X[m][i][d]+= Gaussian (0.0,

MutRad); Y[m]=EVALUATE(); m++;}

6.5.4.10 XYoptGET()

Copies the best yet solution (m=0) into Yopt and Xopt.

Procedure XYoptGET() {integer ip, dp; Yopt=Y[0]; for dp=0 to MaxDim for
ip=0 to MaxObj Xopt[ip][dp]=X[0][ip][dp];}

6.5.5 Adapting the Program for C or C++

If Extend is not available to the user, then the following revisions are needed to
implement the program in C or C++. The program can also be translated into
Pascal without major change.

6.5.5.1 Substitution for the Control Panel Input and Output

The following parameters (described in Section 6.4.2.1) should be read in, either
from an input file such as a text spreadsheet, or by prompted request on the
screen:

NumObj, NumDim, Data, Xopt, SystProj, GenAlg, NumPop, NumRandProj,
NumCross, MutRad, NumMut, NumCrossObj, Xinit

Avinit can be reported to the screen at the start of the run.

Xopt, Avopt can be output for each generation, to a text file.

6.5.5.2 Substitution for the Library Plotter

Con0Out, Con1Out, Con2Out, Con3Out can be output for each generation, to a
text file.

6.5.5.3 Changes to the Main Program

The commands within the three Extend calls will need to be incorporated into a
main program.

on DialogClose and on InitSim commands would be unaltered;

on Simulate commands would be placed within a do-loop, with each iteration
corresponding to one generation. The extent of the do-loop would be set to the
number of generations required.

6.6 Using the Extend Program
To use the Extend program supplied requires version 2 or later of Extend
(Imagine That, Inc.). The model itself (as shown in Figure 6.8) is in the file
“GeneticMDS.” It requires the library file “GeneticMDSLib” to supply the two
blocks “HybridMDS” and the modified plotting routine “Plotter, I/O.”

Figure 6.9 The Extend simulation setup screen

Once the model file “GeneticMDS” has been opened, the control panel (as seen in
Figure 6.4) can be opened by double-clicking on the “HybridMDS” block.
Starting parameters can then be entered into the control panel. This can be done
by directly typing them in. Other parameters, such as the inter-object distances or
the initial solution may be better entered by copying and pasting them from a
spreadsheet or other source file.

The Simulation Setup panel shown in Figure 6.9 can be brought down from the
Run menu in Extend. The parameters should be entered as shown in Figure 6.9,
except that the “End simulation at time” box can be changed if more or less than
500 generations are required.

The program can then be run. The “Plotter, I/O” block can be double-clicked to
monitor progress of the simulation run.

References
Davies, P.M. & Coxon, A.P.M. (Eds.) (1982). Key Texts in Multidimensional

Scaling. London: Heinemann.

Davis, L. (ed.) (1991). Handbook of Genetic Algorithms. New York: Van
Nostrand Reinhold.

Everett, J.E. & Pecotich, A. (1991). A combined loglinear/MDS model for
mapping journals by citation analysis. Journal of the American Society for
Information Science, 42, 405-413.

Fienberg, S.E. (1980). The Analysis of Cross-Classified Categorical Data. 2nd ed.
Cambridge, MA.: The MIT Press.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Beverly Hills: Sage.

Kruskal, J.B. (1964). Nonmetric multidimensional scaling: A numerical method.
Psychometrika, 29, 115-129.

Kruskal, J.B. & Wish, M. (1978). Multidimensional Scaling. Beverly Hills: Sage.

Norusis, M.J. (1990) SPSS® Base System User’s Guide. Chicago: SPSS.

Rothkopf, E.Z. (1957). A measure of stimulus similarity and errors in some
paired-associate learning tasks. Journal of Experimental Psychology, 53, 94-
101.

Schiffman, S., Reynolds, M.L. & Young, F.W. (1981). Introduction to
Multidimensional Scaling. New York: Academic Press.

Shepard, R.N. (1963) Analysis of proximities as a technique for the study of
information processing in man. Human Factors, 5, 33-48.

Wilkinson, L. Hill, M. & Vang, E. (1992) SYSTAT: Statistics. Evanston, IL:
SYSTAT.

Wright, A.H. (1991). Genetic algorithms for real parameter optimization, in
Rawlins G.J.E., (Ed.) Foundations of Genetic Algorithms. San Mateo, CA:
Morgan Kaufman, 205-218.

Chapter 7 Genetic Algorithm-Based Approach for
Transportation Optimization Problems
William H. K. Lam‡ and Y.F. Yin

Department of Civil and Structural Engineering,
The Hong Kong Polytechnic University,
Hung Hom, Kowloon,
Hong Kong Special Administration Region,
China

Abstract
The motivation for using genetic algorithms (GAs) for transportation optimization
problems is due to the globality, parallelism and robustness of GAs. In addition,
GAs are simple and powerful in their search for improvement, and not
fundamentally limited by restrictive assumption about the search space. Recent
related studies using GAs have shown advantages in dealing with non-convexity,
locality and complexity of transportation optimization problems, especially in
optimal pavement management (Fwa et al., 1994), optimal traffic signal control
(Hadi and Wallace, 1993; Memon and Bullen, 1996; Lo et al., 2000), urban transit
system design problems (Pattnaik et al., 1998; Chakrobort et al., 1998), aircraft
gate re-assignment problem (Gu and Chung, 1999) and origin-destination matrix
estimation problem (Reddy and Chakroborty, 1999).

In this chapter, we present various applications of GAs to transportation
optimization problems. In the first section, GAs are employed as solution
algorithms for advanced transport models while in the second section, GAs are
used as calibration tools for complex transport models. Both sections show that,
similar to other fields, GAs provide an alternative powerful tool to a wide variety
of problems in the transportation domain.

‡ Author of correspondence. Fax (852) 2334-6389; Tel (852) 2766-6045;

e-mail: cehklam@polyu.edu.hk

7.1 GA-Based Solution Approach for Transport Models

7.1.1 Introduction

In this section, we present two examples of applying GAs as solution algorithms
for transportation optimization problems. It is well-known that many decision-
making problems in transportation planing and management could be formulated
as bilevel programming models (single-objective or multi-objectives) that are
intrinsically non-convex and thus difficult to find the global optimum. In the first
example, a genetic-algorithms-based (GAB) approach is proposed to solve the
single-objective models. Compared with the previous heuristic algorithms, the
GAB approach is much simpler in principle and more efficient in applications.
Furthermore, it is believed that the GAB approach is more promising to achieve
the global optimum based on the globality of GAs. In the second example, we
extend the GAB approach to accommodate multi-objective bilevel programming
models. It is shown that the GAB approach can capture a number of Pareto
solutions efficiently and simultaneously, which attribute to the parallelism and
globality of GAs.

7.1.2 GAB Approach for Single-Objective Bilevel Programming Models

In the decision-making problems for transportation system planning and
management, the supplier of transportation services or the regulating agency
wishes to determine optimal operation plans, rates, and controls, taking into
account users” responses. Meanwhile, the user makes his or her travel choice
decision in a user equilibrium (UE) manner, responding to these plans, rates and
controls. These problems fit within the framework of a leader-follower or
Stackelberg game, where the supplier or the regulating agency is the leader and
the user is the follower (Fisk, 1984). Consequently, such a game can be expressed
mathematically by a bilevel programming problem in which the upper-level
problem represents the decision-making behavior of the supplier or of the
regulating agency, and the lower-level problem represents the user travel choice
behavior under the leader's decisions. Many of these types of decision-making
problems have been formulated as bilevel programming models in the literature.
Examples include road network design (LeBlanc and Boyce, 1986; Yang and
Bell, 1998), balance of demand and supply of parking spaces (Lam et al., 1999),
optimal ramp metering in freeway networks (Yang et al, 1994; Yang and Yagar,
1994), optimal congestion pricing (Yang and Lam, 1996), reserve capacity
maximization of a signal-controlled road network (Wong and Yang, 1997)
optimal speed detector density for the network with travel time information (Chan
and Lam, 1998), etc.

7.1.2.1 Bilevel Programming Problems

In a Stackelberg game, the leader knows the followers who will respond to any
decision he may make. In other words, the system manager can influence, but
cannot control the travelers' travel choice behaviors. In the light of any control
decision, travelers make their travel choices, specifically, route choice decisions
in a user equilibrium manner. As Yang and Yagar (1994) stated, this interaction
can be formulated as the following bilevel programming problem:

))(,(min uvu
u

F
(1a)

subject to 0))((≤uvu,G (1b)

where v(u) is implicitly defined by

),(min vu
v

f (1c)

subject to 0)(≤vu,g (1d)

where F = the objective function of the upper-level decision-maker (system
manager); u = is the decision vector of the upper-level decision-maker (system
manager); G = the constraint set of the upper-level decision vector; f = the
objective function of the lower-level decision-maker (travelers); v = the decision
vector of the lower-level decision-maker (travelers); g = the constraint set of the
lower-level decision vector.

The upper-level problem of model (1) represents the decision-making behavior of
the system manager. The system manager can choose many alternative system
objectives F. Correspondingly, different control vectors u are determined.
It is assumed that for any given control pattern u, there is a unique equilibrium
flow distribution, v(u), obtained from the lower-level problem. v(u) is also
referred to as the response or reaction function. It is noted that v(u) defined by the
lower-level problem is, in effect, a nonlinear equity constraint of the upper-level
problem; thus, whatever the objective function would be, the problem (1) is
intrinsically non-convex and it might be difficult to search for a global optimum
(Yang et al., 1994).

The lower-level problem of model (1) represents the user route choice behavior
responding to the controls. It is assumed that the travelers make their route
choices in a user equilibrium manner; the lower-level problem can be formulated
as a standard user equilibrium (UE) traffic assignment problem, or as a stochastic
user equilibrium (SUE) problem (Sheffi, 1985), or their variants.

A number of attempts have been made to solve the bilevel model (1), such as
iterative optimization assignment algorithm by Asakura and Sasaki (1990),
sensitivity analysis based (SAB) algorithm by Yang et al. (1994), a simulated
annealing method by Friesz et al. (1992), etc. The sensitivity analysis-based
(SAB) algorithm may be the most often cited and has been successfully applied to
many problems (Yang et al, 1994; Yang and Yagar, 1994; Yang and Lam, 1996;
Wong and Yang, 1997; Lam et al., 1999; etc.). The basic idea of the SAB
algorithm is to formulate a local linear approximation of the upper-level objective
function and the implicit, nonlinear constraints with the use of the derivative
information from the sensitivity analysis of the equilibrium network flows. The
resultant linear programming problem can then be solved by the well-known
simplex method. One thus arrives at a new point from which a new linear
programming problem is generated again. Therefore, the SAB algorithm is in fact
a sequence of linear approximations to the original problem (Yang et al., 1994).

Despite the various intriguing attempts that were made in solving the bilevel
programming problem, these algorithms are unfortunately either incapable of
finding the global optimum or very computation intensive and impractical for
problems of a realistic size (Yang and Bell, 1998). Even for the efficient SAB
algorithm, the resultant converged solution might be a local optimum.
Furthermore, the basic idea of sensitivity analysis for equilibrium network flows
may be difficult for most practitioners. Therefore, it is still a challenging task for
transportation researchers to develop a simpler efficient algorithm for the bilevel
programming problems.

7.1.2.2 GAB Approach

The basic idea of the genetic algorithms-based (GAB) approach is to code the
decision variables of the upper-level problem to finite strings and to calculate the
fitness of each string by solving the lower-level problem. After the reproduction,
crossover and mutation operations of GAs, the optimal string may be achieved.
The GAB method is outlined as follows:

GAB approach:

Step 0. Code the decision variable u of the upper-level problem to a finite string

jx ; determine the transform equation to map the objective function of upper-

level problem to a fitness function.

Step 1. Select at random the initial population X(1). Set k=1.

Step 2. Calculate the fitness functions for individuals Nkkx j ,,2,1),(L= by

solving the lower-level optimization problem, for instance, user equilibrium
assignment by Frank-Wolfe algorithm, and reproduce the population X(k)
according to the distribution of the fitness function values.

Step 3. By a random choice with probability cP , carry out the crossover

operation.

Step 4. By a random choice with probability mP , carry out the mutation operation.

Then we have a new population X(k + 1).

Step 5. If k =maximum number of generations, the individual with the highest
fitness is adopted as the optimal solution of the problem. Else, set k = k + 1
and return to Step 2.

At Step 0, the decision variable u is usually mapped and represented by a string
of binary alphabets. For problems with multi-variables, a sub-string represents
each variable. The coding process is illustrated as below:

1111| |0111|0101x (string)chromosome

 mapping

u | | u | u u ariablesdecision v n21

L

L

=
↓↓↓↓

=

The length of the sub-string can be determined by the following relationships with
the desired precision of decision variables:

 +

−
≥ 1

)(
log minmax

2 π
α

uu

(2)

where α denotes the length of the sub-string; π denotes the desired precision of
the decision variables; umax and umin denote the upper and lower bound of the
decision variables respectively. Another important task at Step 0 is the mapping
of the upper-level objective function to the fitness form. The transformation is
generally straightforward for most of the bilevel programming models. It is
noteworthy that if there are other inequality constraints besides the bound
constraints of the decision variables, the fitness function should be incorporated
with the possible constraint violations by a penalty method.

It is obvious that the GAB approach is simple to implement. The work needed to
be undertaken in the optimization process is to solve the lower-level problem by

the conventional optimization techniques while the remaining works can be left to
the "blackbox" of GAs. Fortunately, the lower-level problems are always easy to
solve based on the fruitful works of transportation researchers.

7.1.2.3 Numerical Example

Wong and Yang (1997) defined and formulated the reserve capacity of a signal-
controlled road network. They measured the reserve capacity of the road network
by how large a common multiplier could be applied to an existing origin-
destination (OD) matrix subject to the flow on each link not exceeding a
prescribed degree of saturation. Since the traffic flows and link-exit capacities are
dependent on the traffic signal settings in the signal-controlled road network, the
key problem here is to determine the signal settings for maximization of the
network reserve capacity. Their bilevel model is described as follows:

Maximise
µ

µ
,?

 (3a)

subject to

v p Ca a a(,) ()µ ? ?≤ ∀a (3b)

G bi iλi ≥ ∀i (3c)

where the equilibrium flow va(,)µ ? is obtained by solving

Minimize t da
a

a

v
 ?

 v
(,)ϖ ϖ

0∫∑
subject to

f qk
rs

rs
k

=∑ µ ∀r s, (3d)

fk
rs ≥ 0 ∀k r s, , (3e)

v fa k
rs

ak
rs

krs

= ∑∑ δ ∀a (3f)

whereµ = the OD matrix multiplier for the whole network; ˙̇E = a vector of all

signal split (proportions of green times); C Ea
˙̇() = the link-exit capacity as a

function of signal split |Ł . ap = the maximum acceptable degree of saturation

for link a ; matrix iG and vector
ib

are dependent on the specific timing

specification for intersection i, whether it is stagebased or groupbased (Allsop,
1989).

Wong and Yang (1997) used the following numerical example to illustrate their
proposed model and SAB algorithm. Consider an example network, shown in

Figure 7.1, with seven links and six nodes, of which nodes E and F are signal-
controlled intersections. The current OD demand from node A to node B is 18
veh.min-1 and that from C to D is 6 veh.min-1. For the signalized intersections E
and F, signal controls are represented by two independent splits 1λ and 2λ
respectively (13 1 λλ −= , and 24 1 λλ −=). The lower and upper bounds of the

splits are 95.0,05.0 21 ≤≤ λλ . Assume that the maximum degree of saturation

for all signal-controlled approaches takes the same value of p = 0.9. The
following link travel time function is used

⋅+=

2

0 5.01)(
aa

a
aaa s

v
tvt

λ
(4)

where 0.1=aλ for any link not connecting to a signal-controlled intersection.

Free-flow link travel time 0
at and link capacity as are given in Table 7.1.

Figure 7.1 Example network 1

Table 7.1 Input data for example network 1

Link a 1 2 3 4 5 6 7
0
at 2.0 1.0 2.0 3.0 1.0 2.0 1.0

as 24 30 30 35 24 30 30

3

4A B

7

D

1

2 6

5

2λ

3λ

C

E1λ

F

4λ

We apply the GAB algorithm to this numerical example. In the model (3), the
violations of inequality constraint (3b) should be represented in the fitness
function. For the present problem, we formulate two different mapping functions
as follows:

>
≤

=
)(),(0

)(),(
)(1

aaaaa

aaaaa

Cpv

Cpv
xf

µ
µµ

(5)

f x
v ? p C ?

x ? p C ? v ? p C ?
a a a a a

a
a a a a a a a a a a

2 0()
(,) ()

max , max (,) () (,) ()=
≤

− −()() >

µ µ
µ µ µ

(6)

The sub-string length of the OD matrix multiplier is 13 and that of 1λ and 2λ is

11. Thus, the precision is more than 0.001.

Following the recommendation by Goldberg (1989), the GAB algorithm is
performed with the following parameters:

l Population size is 50

l Reproduction operator is binary tournament selection

l Crossover operator is single-point crossover, and the probability is 0.6

l Mutation operator is single-bit point mutation operator, and the probability is
0.0333

l The maximum number of generations is 200

The convergence of the GAB algorithm with different fitness functions is shown
in Figure 7.2. The resultant signal settings and OD demand multiplier are
compared with that obtained by the SAB algorithm in Table 7.2.
The computation result of SAB listed here is a little different from that in Wong
and Yang (1997). If we take their results, the flow on approach 3 in Figure 7.1
will exceed its maximum degree of saturation. We understand this difference is
due to the programming precision in our C codes.

It can be seen in Figure 7.2 that the GAB algorithm with different fitness
functions exhibits quite different convergence behavior. The algorithm with
fitness function f x2 () converges more quickly. Actually, so far, we have only
used the simple genetic algorithms in our numerical example in order to facilitate
the presentation of the essential ideas. However, it should be noted that
appropriate choices of advanced techniques and operators available in GAs would
further improve the efficiency and breadth of the GAB approach.
Another observation from the current example is that both algorithms (SAB and
GAB) converge to the same optimum. The upper-level objective function of
model (3) takes a simple linear form, together with the nonlinear, implicit

constraint. In such a case, the optimal solution will be located at the boundary of
the constraint set (Yang and Bell, 1998). From the experimental computations, it
is believed that the solution is the global optimum. It is also shown from the
computations that there might be only one global optimum in the current
example.

Figure 7.2 Demand multiplier versus generation number

Table 7.2 Solutions with alternative algorithms

Signal Splits Demand Multiplier
Solution Algorithms

1λ 2λ µ

SAB 0.625 0.678 1.686

GAB 0.625 0.678 1.686

From the results of the numerical example, we can summarize some computation
properties of the GAB approach as follows:

* The GAB approach is efficient and very simple to implement. Based on the
globality and parallelism of genetic algorithms, we believe that the GAB
approach can lead to the global optimum

* In the non-uniqueness condition of global optima, the SAB and GAB
algorithms may not always converge to the same point. Although the two
converged points are quite different, the corresponding objective values are
equal

* Appropriate choices of advanced techniques and operators available in GAs
would further improve the efficiency of the GAB approach

* The GAB approach requires more computation efforts than the previous
sensitivity analysis-based (SAB) algorithm. In this numerical example, the
convergence is achieved in four iterations by the SAB algorithm. However, the
GAB approach avoids the complex computation of the sensitivity analysis for
equilibrium network flows and does not need any derivative or other auxiliary
knowledge; thus the GAB approach can be applied to a broader problem
domains

7.1.3 GAB Approach for Multi-Objective Bilevel Programming Models

From the above discussion, we can observe that many decision-making problems
for transportation system planning and management could be described
mathematically as bilevel programming models. Furthermore, all the related
models in the literature have been formulated as single-objective optimization
problems. However, the decision-making problems of transportation planning and
management are generally involved with multiple objectives because the supplier
of transportation services, or the regulating agency, always has several aims and
social concerns. Therefore, it is necessary to make some trade-offs among
alternative system objectives. A weighted combination of these objectives is
required, but in most cases it might not be simple enough to transform these
differently measured and scaled objectives into comparable units. A better way is
to apply multi-objective optimization (programming) to generate non-dominated
or Pareto optimal alternatives and then multiple-criteria decision-making is used
to evaluate and select the compromise solution from those non-inferior
alternatives (Yang and Bell, 1998). Some recent studies using multi-objective
optimization include network design (Friesz et al., 1993), air services planning
(Flynn and Ratick, 1988), passenger train service planning (Chang et al., 2000).

It seems straightforward to formulate the transportation decision-making
problems as multi-objective bilevel models. It can be foreseen that the multi-
objective bilevel modeling approach can become a powerful, and possibly
interactive, decision tool, allowing the decision-makers to learn about the problem
before committing to a final decision. Unfortunately, due to their intrinsic non-
convexity and multiple objectives, such models are difficult to solve and thus
their implementations are deterred in practice.

 Because GAs deal with a population of points, it seems natural to use GAs for
solving multi-objective optimization problems so as to capture a number of
solutions simultaneously. Several GAB methods have been proposed recently
(Tamaki et al., 1996). It is expected herein that the extension of the GAB
approach is also capable of searching for multi-criteria optima in bilevel
programming models.

7.1.3.1 Multi-Objective Bilevel Models

Decision-making problems for transportation system planning and management
might be formulated as the following multi-objective bilevel programming
problem:

min (, ())

(, ())

(, ())

(, ())

u
F u v u

u v u

u v u

u v u

=

F

F

Fk

1

2

LL
(7a)

subject to G u,v u(()) ≤ 0 (7b)

where v(u) is implicitly defined by

min (,)
v

u vf (7c)

subject to g u,v() ≤ 0 (7d)

where F(u,v(u)) = the objective function vector of the upper-level decision-
maker (system manager); the other notations are the same as those in model (1).

The upper-level problem of model (7) represents the decision-making behavior of
the system manager. The system manager may wish to achieve several alternative
objectives within some constraints. For instance, Friesz et al. (1993) and Yang
and Bell (1998) enumerate the objectives for network design problems so as to
minimize the total user transport cost, total construction (improvement) costs,
total vehicle miles traveled and total dwelling units taken for rights-of-way. Yang
and Lam (1996) also suggest the minimization of the total network cost,
maximization of total revenue and maximization of consumers’ surplus as the
objectives for optimal road toll problem.

The multi-objective optimization problem seeks for the optimal solutions that
minimize the values of a set of objective functions within the feasible region. In
the multi-objective optimization, as opposed to the single-objective optimization,
there may not exist an unambiguous optimal solution due to the trade-off
characteristics among the various objectives. Hence, a concept of the Pareto
optimal set, a family of feasible solutions which is optimal in the sense that no
improvement can be achieved in any objective without degradation in others, is
introduced (Tamaki et al., 1996). Based on these non-dominated solutions,
multiple-criteria decision-making would be used to evaluate and select the
compromise. So far, several traditional methods such as the weighted sum
method, theε -constraint method have been proposed to search the Pareto optimal
solutions. However, such traditional methods cannot find the multiple Pareto
optimal solutions simultaneously (Srinivas and Deb, 1995). Because the GAB

method can search a number of Pareto optimal solutions in parallel, it has been
highly emphasized in recent years. Tamaki et al. (1996) have given an excellent
review on the GAB method for multi-objective optimization problems.

7.1.3.2 The Solution Procedure

In this section, we combine the GAB approach with the O-K algorithm (Osyczka
and Kundu, 1995) to solve the multi-objective bilevel problem (7).

The basic idea of the O-K algorithm involves the evaluation of the fitness for each
solution generated by the GAs and this fitness has a greater value if the solution is
farther away from the existing Pareto set (Osyczka and Kundu, 1995).

The proposed hybrid algorithm is outlined as follow:

GA-Based Algorithm:

Step 1. Select at random the initial population X()1 . Set k=1.

Step 2. Decode each individual Nkkx j ,,2,1),(L= and then solve the lower-

level optimization problem. Calculate the fitness value by O-K algorithm and
generate the new Pareto solution set.

Step 3. Reproduce the population X()k according to the distribution of the fitness
values and carry out the cross over operation by a random choice with
probability cP ,

Step 4. By a random choice with probability mP , carry out the mutation operation.

Then we have a new population X()k +1 .

Step 5. If k =
 maximum number of generations, the present Pareto solution set is

adopted as the non-dominated solutions of the problem. Else, set k k= +1
and return to Step 2.

For a detailed description of the O-K algorithm, readers may refer to Osyczka and
Kundu (1995).

7.1.3.3 Numerical Example

In this section, we apply the proposed solution algorithm to a multi-objective
bilevel programming model and present the computational results.

Yang and Lam (1996) presented a bilevel programming approach for
determination of optimal road toll pattern. The low-level problem is a user
equilibrium problem that describes users' route choice behavior. The upper-level
problem is to determine the road tolls for minimizing the total network travel cost
(F1) or maximizing the total revenue (F2), or maximizing the ratio of the total
revenue to total cost (F3).

The models in Yang and Lam (1996) are single-objective and we extend herein
their model (the model of example 2 in Yang and Lam, 1996) to multi-objective
optimization. It is noted that their third objective (F3) is designed to consider both
the congestion control and investment benefit simultaneously. Within the
framework of the multi-objective optimization, we can incorporate the objective
F3 into the objectives F1 and F 2. Therefore, a two-objective bilevel model for
optimal road toll problem is formulated as below:

Min v t va a a
a

u

⋅∑ () (8a)

Max v ua a
a

u

⋅∑ (8b)

subject to

u u ua a a
min max≤ ≤ ∀a (8c)

where va and t va a() are obtained by solving

Min t u d
v

a a

v

a

a

(,)ϖ ϖ

0∫∑
subject to:

f qk
rs

rs
k

=∑ ∀r s, (8d)

fk
rs ≥ 0 ∀k r s, , (8e)

v fa k
rs

ak
rs

krs

= ∑∑ δ ∀a (8f)

where va = the traffic volume on link a; ta = the travel time on link a; ua = the toll

charges on link a; ua
min= the lower bound of toll charges on link a; ua

max= the

upper bound of toll charges on link a; fk
rs= the traffic flow on route k connecting

OD pair rs; qrs= the demand between OD pair rs; and δak
rs =1 if route k uses link

a, and 0 otherwise.

The following input data are used in Yang and Lam (1996). Figure 7.3 shows the
example network that consists of six nodes and seven links, of which all links are
toll links. The following link travel time function is used

⋅+=

4

0 15.01)(
a

a
aaa s

v
tvt

(9)

The free-flow link travel time ta
0 and link capacity sa of the example network are

given in Table 7.3. It is assumed that there are only two OD pairs (1→3 and
2→4) and the demands are fixed to be D13 = D24 = 30.0. The lower and upper

bounds of the link tolls are set as: 0.50.0 ≤≤ au for 2,1=a and

0.20.0 ≤≤ au for a = 3, 4, 5, 6,7.

Figure 7.3 Example network 2

Table 7.3 Input data for example network

Link a 1 2 3 4 5 6 7

0
at 8.0 9.0 2.0 6.0 3.0 3.0 4.0

as 20 20 20 40 20 25 25

Now, we apply the proposed GAB algorithm to this numerical example in which
the sub-string length is determined to be 11 for all decision variables, and the
precision is more than 0.005.

In addition, we take binary tournament selection as reproduction operator and
single-bit point mutation operator as mutation operator. The solution algorithm
described as above was coded in Borland C++ and run on a Toshiba Satellite
4030CDT notebook and the average CPU time for 50 populations and 500
generations was 25 minutes.

1 3

5 6

42

1

2

4

63

75

The resultant Pareto optimal solutions are illustrated in Figure 7.4. It can be seen
that 79 Pareto optimal solutions are generated. These solutions can provide an
efficient frontier to the decision-makers for consideration, so that they can choose
and rank the solution in the multiple-criteria decision-making process.

Figure 7.4 Pareto optimal solutions

Table 7.4 gives some examples of the generated Pareto optimal solutions. It is
noted that the first and second solutions in Table 7.4 are also the optimal solution
of the single-objective model with objective F1 and F2 separately. Due to the non-
convexity of the bilevel optimization problems, there might exist multiple optimal
solutions for single-objective bilevel optimization problems (Yang and Lam,
1996). However, most of the optimal solutions will be dominated by the Pareto
optimal solutions in the multi-objective optimization. For instance, it is illustrated
in Table 7.4 that the optimal solution of the single-objective (F1) optimization
problem reported by Yang and Lam (1996) is not the Pareto optimal solution of
the multi-objective problem presented here.

It can be found that the proposed GAB algorithm is efficient to search
simultaneously the Pareto optimal solutions of the multi-objective bilevel models.
Furthermore, the algorithm is also simple in principle for transportation
practitioners.

Table 7.4 Pareto optimal solutions

Pareto
Optimal
Solutions

1 2 3 4 5 6 7 8a

Toll
Pattern
Link 1 4.95 5.00 4.95 4.96 4.95 5.00 4.99 3.82

2 4.94 5.00 4.99 4.96 4.99 4.94 4.93 4.27
3 1.82 1.89 0.96 1.82 1.95 1.96 1.94 0.47
4 0.68 1.96 0.53 1.30 1.38 1.39 1.44 0.48
5 0.35 1.96 0.94 0.61 1.63 1.85 1.99 0.29
6 0.10 1.94 1.76 0.61 1.03 1.95 1.93 0.47
7 0.74 1.98 1.38 1.72 1.29 1.50 1.72 0.29

Total
Network

Cost
628.6 762.2 641.4 662.6 688.8 722.7 733.9 628.6

Total
Revenue

232.5 304.7 264.7 279.6 291.1 298.5 299.8 176.7

a The solution is reported by Yang and Lam (1996) and is a optimal solution of single-
objective model with objective F1; But it is dominated by the solution 1 and hence is not
a Pareto optimal solution.

7.1.4 Summary

This section has proposed a GAB approach for solving the single-objective and
multi-objective bilevel programming problems in transportation. The proposed
solution approach is illustrated, using two numerical examples from the previous
related studies.

For the single-objective bilevel programming models, it is found that the
proposed GAB approach is efficient and much simpler than the previous related
algorithms. Furthermore, based on the global perspective and implicit parallelism,
it is believed that the proposed GAB approach can lead to the global optimum.

For the multi-objective bilevel programming models, it is found that the proposed
algorithm is efficient to search simultaneously the Pareto optimal solutions, which
also can attribute to the global perspective and implicit parallelism of GAs. The
multi-objective bilevel modeling approach will provide a powerful, and possibly
interactive, decision tool, allowing the decision-makers to learn about the problem
before committing to a final decision.

7.2 GAB Calibration Approach for Transport Models

7.2.1 Introduction

The genetic algorithms (GAs) approach can provide a new alternative for
calibration of transport models. GAs are advantageous because of their capability
for optimized stochastic search (Goldberg, 1989). They have been widely used for
the optimization of complex systems. For instance, the GAs technique has been
used by Wong et al. (1998) for calibrating a land-use model (i.e.; Lowry model).
In this section, a calibration algorithm based on GAs is presented for the
calibration of the Traffic Flow Simulator (TFS) proposed by Lam and Xu (1999).

This section is structured as follows. Following the review of TFS, the measures
that can be used for the TFS calibration are presented and discussed. Then the
GAB calibration approach is described. A case study is employed for examination
of the proposed calibration measures. Finally, a summary is given, together with
recommendations for further study. Definitions of key variables that are
employed in the remainder of the section are given in the Appendix.

7.2.2 Review of TFS

The TFS was proposed by Lam and Xu (1999) for the assessment of network
travel time reliability (Iida, 1999) based on the partial traffic counts and a prior
OD matrix. It can be formulated as

Min − + − + −()∑ ∑ ∫∑ ∑q S c v v t v t w dw q qrs rs
rs

rs
a a a

a
a

v

a
rs rs

rs

a

[()] () () ˆ
0

2λ (10)

subject to q p vrs e
rs

rs
e∑ = ˜ , for links without detectors (11)

q p vrs d
rs

rs
d∑ = ˆ , for links with detectors (12)

() ˆ () ˆ1 1− ≤ ≤ +δ δq q qrs rs rs , for all OD pairs (13)

˜ ˆv v B B v ve e 21 11
1

d d= + −()− (14)

In TFS, it is assumed that link flows are multivariate, normally distributed
random variables (Daganzo, 1979). Link flows can be denoted as
v v B~ (,)MVN , where v is the vector for the mean value of link flows and B is
the variance/covariance matrix of link flow.

As partial traffic counts can be collected by detectors installed on some links, the
link flows and variance/covariance matrix can be partitioned according to whether
the links are installed with detectors or not. The order of the links can be
rearranged so that the links with detectors appear first. If there are m out of totally

n links installed with detectors, the link flow and mean link flow vector can be
decomposed as shown below.

v v vd e= [] = []+v v v vm m n

T T

1 1L M L (15)

v v vd e= [] = []+v v v vm m n

T T

1 1L M L (16)

Similarly, the link flow variance/covariance matrix B can also be decomposed as

follows:

B =

+

+

+ + + + +

+

b b b b

b b b b

b b b b

b b b b

m m n

m m m m m m n

m m m m m m n

n n m n m n n

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1

, , , ,

, , , ,

, , , ,

, , , ,

L L

L L L L L L

L L

L L

L L L L L L

L L

=

B B

B B
11 12

21 22

(17)

From the probit-based stochastic user equilibrium assignment (Bolduc, 1999), the
mean value of link flow v and their covariance matrix B can be obtained. On the
other hand, the actual link flow v̂d will be available for the links with detectors.

However, a difference between v̂d and vd may exist due to various reasons such
as inaccurate estimation of the OD matrix. The mean and variance of link flows
on those links without detectors can be updated on the basis of the actual link
flows obtained by the detectors. The mean value of link flow ṽe can then be
estimated from Equation (14).

In the proposed TFS, the perceived travel time on the kth path connecting OD pair

rs is assumed to follow a normal distribution of N c ck
rs

k
rs,ω() , where ck

rs is the

actual path travel time, ω is the perception error coefficient and will be calibrated
in this section. The perception error coefficient is assumed to be known for
application of the TFS. Note that different values taken by ω will result in
different route choice patterns of drivers. The larger the parameter ω , the more
diversified the route choice pattern (Bell and Iida, 1997).

On the other hand, the OD flows are not constant in real life due to stochastic
variation in travel demand over time and/or the inconsistency of travel time with
the time traffic counts obtained. It is assumed in the TFS that all the OD flows
follow a normal distribution as below:

()rsrsrs qqNQ β,~ (18)

where β is the OD variation coefficient. Such OD fluctuation has also been
considered in the road network reliability analysis by Asakura and Kashiwadani
(1991).

Apart from assessing the travel time reliability, the TFS can also provide the
estimated link flows for the whole network, link/path travel times, together with
their variances and covariances. In addition, the prior OD matrix can be updated
simultaneously. In order to apply the TFS model in practice, the perception error
coefficient ω and the OD variation coefficient β have to be calibrated in
advance.

7.2.3 Calibration Measures

The selection of suitable measures for the model calibration plays an important
role in the whole calibration process. The suitable measures vary from one
problem to the next due to the different characteristics of the problem under
study. For the calibration of a single parameter, the best measure(s) should be a
monotonic function of the parameter that is to be calibrated so as to guarantee that
the parameter and the value of the chosen measure have a one-to-one mapping.
Otherwise, two or more different parameter values may lead to the same result of
the chosen measure. Hence, the value of a parameter cannot be determined
uniquely if the selected measure is not sufficient for the calibration.

A combined trip distribution and assignment (CDA) model for networks with
multi-user classes was calibrated by Lam and Huang (1992). It was shown that
three quantities, the mean trip cost or the OD trip entropy or the integral network
cost, could be used individually for the model calibration. And the OD trip
entropy was found to be the best measure for the CDA model. The best measure
that can be used for calibration of the TFS will be determined through a study on
the characteristics of the following five measures.

The first measure is the integral network cost defined as:

c t x dxn a

v

a

a= ∫∑ ()
0

(19)

In fact, this is the objective function for the deterministic user equilibrium (DUE)
model and is equivalent to the third item in the objective function (10) of TFS. It
is noted that the integral network cost is a decreasing function with respect to the
parameter to be calibrated for the CDA model as reported by Lam and Huang
(1992). However, there is no evidence or rigorous theoretical proof that cn is a
monotonic function of the perception error coefficient ω .

The second measure is the total trip cost of a network as shown below:

c v t vt a a
a

= ()∑ (20)

It is the second item in the objective function (10) of TFS and is often used as the
objective function for the traffic system optimization (SO) problem. It was found
by Lam and Huang (1992) that the total trip cost will decrease when the
dispersion parameter α of the CDA model increases. The increase of the
dispersion parameter α in the logit-based CDA model is equivalent to 'reduction
of perception error' that can be modeled by a decrease of the perception error
coefficient ω in probit-based models (Sheffi, 1985). However, Maher and
Hughes (1996) reported that in their probit model the reduction of the link-based
dispersion coefficient does not always lead to a reduction in the total trip cost. In
their example, the total trip cost increased while the dispersion coefficient
decreased from 0.1 to 0. As defined before, ω is a path-based perception error
coefficient and is not the same as the link-based dispersion coefficient that
employed by Maher and Hughes (1996). As the total trip cost may not be a
monotonic function of ω in the probit-based model, tests should therefore be
carried out to determine whether the total trip cost can be used as a suitable
measure for the TFS calibration.

Entropy is the best measure suggested for calibration of the CDA model (Lam
and Huang, 1992). Under user equilibrium (UE) conditions, no driver can find an
alternative path with less travel time than the path he has chosen. Intuitively, the
whole system is extremely stable under UE conditions and entropy should be
minimized. Due to the perception error in the stochastic user equilibrium (SUE)
condition, some drivers do not choose the shortest path and the system status
varies from a stable one to some stochastic cases. If the perception error
coefficient approaches infinity, the status of the system is totally unstable. This
may correspond to a maximum entropy. It is expected that the entropy is a
monotonic function with respect to the perception error coefficient. There are two
types of entropy to be tested in this section, the link choice entropy and the path
choice entropy.

The link choice entropy, which is the third measure, can be simply defined as

h v vl a a
a

= −∑ ln (21)

The path choice entropy can be calculated based on the path flow information.
However, such information is unavailable in the TFS, as the TFS is basically
aimed to obtain/store the link flow information. Akamatsu (1997) proposed a
decomposition formula as shown below to calculate the path choice entropy based
on the link flow information. The path choice entropy, which is the fourth

measure, is decomposed from the most likely link flow patterns over the network
as follows:

h v v v vp a a
a

ij
i

ij
ij

= − +

∑ ∑ ∑∑ln ln (22)

where vij represents the flow on the link from node i to node j and vij
i
∑ is the

total flows entering node j .

The above four measures are based on the mean values of link flows that are
mainly affected by the perception error coefficient ω . On the other hand, the OD
variation coefficient β will affect the variations of link flows but with little
impact on the mean values of link flows due to the normal distribution given by
Equation (18). Therefore the measures for calibrating β should be related to the
variation of link flows. The network coefficient of variation (NCV), which was
used by Asakura and Kashiwadani (1991) for calibration of link flow pattern, is
considered as a measure for calibration of β in this section.

In the TFS, the traffic flow on link a follows a normal distribution of N va a,σ 2().
Then the NCV, which is the fifth measure, can be defined as

NCV va
a

a
a

= ∑ ∑σ 2 (23)

The NCV provides an indication of link flow variation throughout the whole
network.

The five measures proposed in this section will be examined, with an example
used to investigate the best measures that can be applied for calibration of the
TFS. It is easy to calibrate a single parameter of TFS, ω or β , by choosing a
suitable measure and using a one-dimension search technique. However, the TFS
calibration is a complicated problem since two parameters have to be calibrated
simultaneously. It may be difficult to find a suitable measure that is monotonic
with respect to both of the parameters. Therefore, we have to choose measures
that are suitable for the two parameters separately. The least squares formula can
be used to integrate these measures to calibrate ω and β simultaneously. Under
such circumstances, the traditional one-dimension search technique can not be
applied directely as it is difficult to find search directions for the two parameters
respectively based on the least squares values. Therefore, a stochastic search
technique is considered and a GAB approach is adopted for the calibration of TFS
in this section.

7.2.4 GAB Calibration Procedure

The first step of GAs is to code the perception error coefficient ω and the OD
variation coefficient β as a binary finite-length string. Each coded string is called
a chromosome and consists of a list of genes. In the binary coding employed in
this section, each gene can either be 0 or 1. Each chromosome can be decoded
and mapped to a certain value of ω and β . If the feasible solution of ω is

assumed to fall in the range of ω ωmin max,[], the length of the chromosome for

coding of ω is b , then the value of ω corresponding to a string of 1011 (the
decimal integer is 11) can be decoded as

ω ω ω ω= + −()min max min

11

2b
(24)

The length of the chromosome will influence the accuracy of the solution as well
as the convergence of the algorithm. A decoding equation similar to Equation
(24) can be applied for decoding β accordingly. In the TFS calibration, the same
length b is adopted for coding both ω and β .

In the operation of the GAs, each chromosome in the parent generation is
evaluated to obtain their fitness with respect to an objective function. With the
fitness values of all the chromosomes in the parent generation, three operators
(reproduction, crossover and mutation) are used to generate new chromosomes,
which will then produce the child generation. Considering that the objective of
the TFS calibration is to select ω and β that can best fit the OD matrix and the
actual link counts together with their variations, the fitness can be defined as
below.

f u M Mω β ω β, , ˆ() = − () −()2
(25)

In Equation (25), M ω β,() is the value of the selected measure corresponding to

ω and β . M̂ is the value of the selected measure corresponding to the actual
information or may be referred to as the target value of the selected measure, and
u is a constant to ensure that the fitness is always positive. The values of ω and
β corresponding to the maximum fitness value f ω β,() are the optimum
calibrated parameters.

Reproduction is an operation process through which chromosomes are copied into
the mating pool with a probability proportional to their fitness. A hybrid model
based on the combination of tournament selection and an elitist model is adopted
in this section. In the parent generation, two chromosomes will be selected
randomly. The one with the higher fitness will be copied into the mating pool.
The reproduction process will be carried out repeatedly until the number of

chromosomes in the mating pool reaches the predetermined population size z. If
the chromosome in the parent generation with the highest fitness is not
reproduced, then it will be copied into the mating pool.

The crossover operator provides search capability in the GAs. The uniform
crossover operator is adopted in this section. Two chromosomes in the mating
pool will be randomly selected. A binary crossover mask with the same length as
that of the chromosomes in the mating pool will be randomly generated according
to a predetermined crossover probability Pc . Then the genes of the crossover
mask will be scanned one by one. If a gene in the crossover mask is “1,” the
corresponding genes for the selected pair of chromosomes are exchanged;
otherwise, they remain unchanged.

After the reproduction and crossover processes, the strings or the parameters in
the child generation are improved. But these two processes may not lead to
reliable results, since the optimal solution may be trapped into a local optimum.
Mutation is a process used to overcome the above problem by the possibility of
jumping out from a local optimum. The mutation process is done at the level of
genes on the chromosomes obtained after the crossover. Each gene of a selected
chromosome is allowed to mutate to the other possible value (i.e., in binary
coding, if the gene is 0, it will change to 1) with a certain probability known as
the mutation probability Pm .

7.2.5 Calibration of TFS

With the integration of GAs approach with TFS, the proposed calibration
procedure can be described in the following steps.

Step 1. Initialize. Set generation count g = 1, population count n = 1

Step 2. Generate the initial population of chromosomes

Step 3. Decode the nth chromosome to get the perception error coefficient ω
and the OD variation coefficient β

Step 4. Running TFS with ω and β

Step 5. Calculate the fitness of the present chromosome

Step 6. If n equals the population size z, go to Step 7; otherwise, n = n + 1,
return to Step 3

Step 7. If g equals the predetermined maximum generation, go to Step 8;
otherwise, generate the g+1th generation by reproduction, crossover and
mutation operators, set g = g + 1 and n = 1, then return to Step 3

Step 8. Find the chromosome with the highest fitness value, the decoded
parameter is the result of the calibration

The above calibration algorithm is illustrated in Figure 7.5 and will be tested
using an example network in the next section.

7.2.6 Case Study

The Tuen Mun corridor network in Hong Kong is used in this section for
examining the effectiveness of the proposed GAB calibration algorithm. As
shown in Figure 7.6, the network consists of ten links and four nodes, in which
three nodes are connected to the three zone centroids. The Bureau of Public Road
(BPR) function is adopted as the link travel time function:

t v t k
v

sa a a
a

a

p

() = +

0 (26)

The OD matrix is shown in Table 7.5. The relevant link data and the observed
traffic flows are given in Table 7.6. Note that the observed link flows are obtained
by the TFS with the perception error coefficient ω = 0 3. and the OD variation
coefficient β = 0 5. .

Figure 7.5 Flowchart of GAB calibration algorithm

reproduction crossover mutation

Parent Mating Mating Child

10001101
00101001

00101001
00101001

00101001
00101001

00101001
00101001

TFS

1

2

3

4
C1

C3

C2

Castle Peak Road

Tuen Mun Road

Kowloon

Tuen Mun

N

2

4

3

1

6 5 8

7

9

10

Figure 7.6 Tuen Mun corridor network

Table 7.5 OD matrix (passenger car units per hour)

To

From
C1 C2 C3

C1 - 220 4952

C2 313 - 127

C3 4492 78 -

Table 7.6 The link data of the network

ParametersLink
No.

)0(at

(hrs)

as

(pcu/hr)
p k

Observed link
flow (pcu/hr)

1 0.0900 5175 3.5 0.1050 3360

2 0.0900 5175 3.5 0.1050 3687

3 0.1106 850 3.6 0.1408 1491

4 0.1106 850 3.6 0.1408 1451

5 0.0056 1150 3.6 0.0071 1476

6 0.0056 1150 3.6 0.0071 1569

7 0.0335 4800 3.6 0.0335 3743

8 0.0335 4800 3.6 0.0335 3323

9 0.0767 1000 3.6 0.1073 1368

10 0.0767 1000 3.6 0.1073 1279

7.2.6.1 Path Choice Entropy and NCV: the Best Measures for Calibration

The proposed calibration measures are tested with this example. Figure 7.7 shows
the integral network cost with different ω in the example network. The integral
network cost tends to increase with increasing ω when β remains unchanged;
thus, it can be used as an alternative measure.

Figure 7.7 Integral network cost vs. perception error coefficient

The total trip cost of the example network with various ω is plotted in Figure 7.8.
It is obvious that the total trip cost is not a monotonic function of ω . When ω
increases from 0 to 0.3, the total trip cost decreases, which leads to the same
result reported by Maher and Hughes (1996). But the total trip cost turns to
increase when the value of ω increases from 0.3 to 1.0. As a result, two different
ω may have the same total trip cost. Therefore the total trip cost should not be
used for the TFS calibration as it is preferred to have a monotonic relationship
between the measure and the parameter.

Figure 7.8 Total trip cost vs. perception error coefficient

Both the link choice and path choice entropy have been tested. The results are
presented in Figure 7.9 and 7.10 respectively. It can be seen that both entropy
indices show monotonic tendency with respect to the perception error coefficient
ω . And the curve of the path choice entropy seems to be more stable than that of
the link choice entropy.

Figure 7.9 Link choice entropy vs. perception error coefficient

Figure 7.10 Path choice entropy vs. perception error coefficient

The NCV values corresponding to different values of β are plotted in Figure
7.11. It is clear that the NCV is a monotonic function with respect to β , and
therefore is suitable for the calibration of β in the TFS.

Figure 7.11 NCV vs. OD variation coefficient

Based on the above results, it can be found that the path choice entropy and NCV
are the best measures for the calibration of TFS in the example network, provided
that all the link flow information is available. However, it may be difficult and
expensive to collect the complete traffic flow data. In practice, partial flow
information is usually available. In view of this, the combination of integral

network cost and NCV would be the better alternative if the objective path choice
entropy cannot be obtained, particularly when the complete link flow information
is not available.

7.2.6.2 Calibration Results

The discussion on the calibration measures in the previous section is based on the
assumption that one parameter changes while the other one remains unchanged.
However, in the TFS calibration, two parameters ω and β will be calibrated
simultaneously.

By integration of the path choice entropy and NCV as the calibration measures,
the fitness function (25) can be written as

f u
h h

h

NCV NCV

NCV

q q

q
p p

p

o

o

rs rs

rsrs

= −
() −

 − () −

− −

∑η

ω β
η

ω β
η1

2

2

2

3

2
, ˆ

ˆ
, ˆ

ˆ
(27)

where η1, η2 and η3 are the coefficients to scale the corresponding least squares

terms within the range of []1,0 . These three coefficients can be determined by the

following equations.

η1

2

=
−

h

h h
p

p p

min

max min
,η2

2

=
−

NCV

NCV NCV

min

max min
and η3

2

=
−

q

q q
rs

rs rs

min

max min
(28)

In order to determine the values of these coefficients, pilot tests on TFS are
undertaken to find the approximate lower and upper limits of the path choice
entropy and NCV. The path choice entropy with respect to ω is plotted in Figure
7.12. It can be seen that the monotonicity is not violated although the OD
variation coefficientβ is not fixed. And the maximum path choice entropy is
about 20,000, while the minimum is about 18,000. Therefore, the value of η1 is
set to 100.

Figure 7.13 shows the relationship between NCV and β . It is obvious that the
NCV is not a strictly monotonic function of β in the calibration process due to
the influence of various ω . According to Equation (28), η2 is initially set to be

0.25. By combining constraint (13) and Equation (28), η δ
δ3

2
1

2
= −

. Assuming

δ = 0 5. in the numerical example, η3 0 25= . .

Based on the initial values of η1, η2 and η3 as shown above, it has been found

that u = 0 1. can guarantee that the fitness value is always positive, ranging from
0 to 0.1. A multiplier of 1000 is used to amplify the fitness value to the range of

[]100,0 . Therefore the values for these coefficients in the TFS calibration are

u = 100, η1
510= and η η2 3 250= = . It should be noted that the determination

of these parameters is based on the assumption that the information on traffic
count and NCV is accurate. However, it is generally believed that the accuracy of
traffic counts is greater than that of NCV. Hence, a greater value should be taken
for η1.

18.0

18.5

19.0

19.5

20.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Perception Error Coefficient, ω

P
at

h
 C

h
o

ic
e

E
n

tr
o

p
y

(
10

3)

Figure 7.12 Path choice entropy vs. perception error coefficient in the pilot
tests

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

OD Variation Coefficient, β

N
C

V

Figure 7.13 NCV vs OD variation coefficient in the pilot tests

Before carrying out the calibration, some parameters in the GAs should be
determined in advance. Such parameters include population size, length of
chromosome, maximum number of generations, crossover probability and
mutation probability. Several tests have been carried out with different
combinations of population size, z, and chromosome length for coding each
parameter, b. The resultant maximum fitness values are presented in Figure 7.14.

20.0

40.0

60.0

80.0

100.0

120.0

0 5 10 15 20 25 30 35 40

Generation

M
ax

im
u

m
 F

it
n

es
s

z=5, b=7
z=5, b=10
z=10, b=7
z=10, b=10

Figure 7.14 Maximum fitness vs population size, generation, length of
chromosome

In Figure 7.14, it can be seen that the test result of the combination of a
population size of 10 with a length of 10 bits for each parameter leads to the
largest fitness value of all three combinations. Therefore, the population size is set
to be 10 and the maximum generation is set to be 30. Each parameter will be
coded into a 10-bit length binary string and the chromosome will then have a total
length of 20 bits.

Similarly, various combinations of crossover probability Pc and mutation
probability Pm have been tested to find the suitable values of the captioned
parameters for the example. The results of these tests are shown in Figure 7.15.

In Figure 7.15, it is obvious that the combination with the crossover probability of
0.5 and the mutation probability of 0.02 shows better result than the other four
combinations. Therefore the crossover probability is set to be 0.5 and the
mutation probability is set to be 0.02. The hybrid reproduction operator described
in the above section is adopted. The search space is ω ∈[,]0 1 and β ∈[,]0 1 .

The TFS is calibrated based on the above coefficients and probabilities. Figure
7.16 shows the fitness values during the calibration iteration with respect to the
perception error coefficient ω . The calibrated result of ω is found to be 0.299.

The relationship between the fitness value and the OD variation coefficient is
presented in Figure 7.17. It is shown that the calibrated OD variation coefficient
β = 0 509. . The calibrated results of the two parameters are very close to their
actual values α = 0 3. and β = 0 5. respectively. The maximum relative
calibration error is 1.8% only. So it can be concluded that the GAB calibration
algorithm can be used for the TFS calibration as satisfactory results were found in
the numerical example.

20.0

40.0

60.0

80.0

100.0

120.0

0 5 10 15 20 25 30

Generation

M
ax

im
u

m
 F

it
n

es
s

Pc=0.4, Pm=0.02

Pc=0.5, Pm=0.02

Pc=0.6, Pm=0.02

Pc=0.5, Pm=0.01

Pc=0.5, Pm=0.04

Figure 7.15 Maximum fitness vs. crossover probability and mutation
probability

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Perception Error Coefficient, ω

F
it

n
es

s

Figure 7.16 Fitness vs perception error coefficient in the TFS calibration

7.2.7 Summary

A TFS has recently been proposed for the assessment of network reliability in
terms of travel time reliability. However, the perception error coefficient (ω) and
the OD variation coefficient (β) need to be calibrated before the application of
the model. In view of the complexity of the constrained probit-type SUE model in
the TFS, a new algorithm based on GAs has been developed in this section. The
proposed calibration algorithm has been tested on an example network. The
calibration results are promising and the performance of the proposed calibration
measures are illustrated. It is found that the path choice entropy and NCV are the
best measures for the TFS calibration. The GAs parameters, such as population
size, maximum generations, crossover probability and mutation probability, are
optimized before the TFS calibration. Therefore, it can be concluded that the
proposed GAB method is suitable for calibration of complex transport models.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

OD Variation Coefficient, β

F
it

n
es

s

Figure 7.17 Fitness vs OD variation coefficient in the TFS calibration

7.3 Concluding Remarks
It was shown in this chapter that GAs would provide new alternatives for
modeling transport because of their simplicity, minimal problem restrictions,
global perspective, and implicit parallelism. The GAB approach may serve as the
solution algorithm, calibration method and other tools for transport modeling
purpose. This chapter presented some applications of GAs to transportation
optimization models.

In the first section, a GAB approach was proposed for solving the single-objective
and multi-objective bilevel programming problems in transportation. The
proposed solution approach was illustrated with the aid of two numerical

examples from the previous related studies. It was found that the proposed GAB
approach is much simpler and more efficient to search for the optimal solutions as
compared to the previous related algorithms. Furthermore, based on the global
perspective and implicit parallelism, it is believed that the proposed GAB
approach can lead to the global optimum for transport-related bilevel
programming problems.

In the second section, a calibration method based on GAs was presented for
calibration of the Traffic Flow Simulator (TFS). The proposed calibration method
was tested on an example network. It was found that the calibration results are
promising and the proposed GAB method is suitable for calibration of advanced
transport models.

GAs might be applicable to a wide variety of problems in the transportation
domain. However, how to apply GAs to various transport problems depends on
the nature or characteristics of the problem under study. First, the researchers
should describe the problem with the concept or principle of GAs, then make
appropriate choices of techniques and choose the operators available in GAs for
application. Although GAB approaches generally require more computation
efforts, these efforts are always worthwhile because no other approach is more
promising than GAs in view of their simpleness, globality, parallelism and
robustness.

References
Akamatsu, T. (1997) Decomposition of path choice entropy in general transport

networks. Transportation Science, 31, 349-362.

Allsop, R.E. (1989). Evolving application of mathematical optimization in design
and operation of individual signal-controlled road junctions. In Mathematics in
Transportation Planning and Control, ed. J.D. Griffiths, 1-24, Clarendon
Press, Oxford.

Asakura, Y. and Sasaki, T. (1990). Formulation and feasibility test of optimal
road network design model with endogenously determined travel demand.
Proceedings of the 5th World Conference on Transportation Research,
Yokohama, Japan, July, 351-365.

Asakura, Y. and Kashiwadani, M. (1991) Road network reliability caused by
daily fluctuation of traffic flow. In Proceedings of 19th PTRC Summer Annual
Meeting, Seminar G, 73-84. PTRC Education and Research Services Ltd.,
London.

Bell, M.G.H. and Iida, Y. (1997) Transportation Network Analysis, Wiley,
Chichester.

Bolduc, D. (1999) A practical technique to estimate multinomial probit models in
transportation. Transportation Research, 33B(2), 63-79.

Chakroborty, P., Deb, K. and Srinivas B. (1998). Network-wide optimal
scheduling of transit systems using genetic algorithms. Computer Aided Civil
and Infrastructure Engineering, 13(5), 363-376.

Chan, K.S. and Lam, W.H.K. (1998). A sensitivity analysis based algorithm for
determining the optimal detector density of the network with variable message
sign. Proceedings of the Third Conference of Hong Kong Society for
Transportation Studies, Hong Kong, China, December, 247-256.

Chang, Y.H., Yeh, C.H. and Shen, C.C. (2000). A multi-objective model for
passenger train service planning: application to Taiwan’s high-speed rail line.
Transportation Research, 34B(2), 91-106.

Daganzo, C.F. (1979) Multinomial Probit: The Theory and Its Application to
Demand Forecasting, Academic Press, New York.

Fisk, C.S. (1984). Game theory and transportation system modeling.
Transportation Research, 18B(4/5), 301-313.

Flynn, J. and Ratick, S. (1988). A multi-objective hierarchical covering model for
the essential air services program. Transportation Science, 22,139-147.

Friesz, T.L., Cho, H.J., Mehta, N.J., Tobin, R.L. and Anandalingam,G. (1992). A
simulated annealing approach to the network design problem with variational
inequality constraints. Transportation Science, 26(1), 18-26.

Friesz, T.L., Anandalingam, G., Mehta, N.J., Nam, K., Shah, S. and Tobin,
R.L.(1993). The multi-objective equilibrium network design problem
revisited: a simulated annealing approach. European Journal of Operational
Research, 65(1), 44-57.

Fwa, T.F., Chan, W.T. and Tan, C.Y. (1994). Optimal programming by genetic
algorithms for pavement management. Transportation Research Record, 1455,
31-40.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Inc.

Gu, Yu and Chung, C.A. (1999). Genetic algorithm approach to aircraft gate
reassignment problem. Journal of Transportation Engineering, 125(5), 384-
389.

Hadi, M.A. and Wallace, C.E. (1993). Hybrid genetic algorithm to optimize
signal phasing and timing. Transportation Research Record, 1421, 104-112.

Iida, Y. (1999) Basic concepts and future directions of road network reliability
analysis. Journal of Advanced Transportation, 33(2), 125-134.

Lam, W.H.K. and Huang, H.J. (1992) Calibration of the combined trip
distribution and assignment model for multiple user classes. Transportation
Research, 26B(4), 289-305.

Lam, W.H.K. and Xu, G. (1999) A traffic flow simulator for network reliability
assessment. Journal of Advanced Transportation, 33(2), 159-182.

Lam, W.H.K., Tam, M.L., Yang H. and Wong, S.C. (1999) Balance of Demand
and Supply of Parking Spaces. In Transportation and Traffic Theory, Edited
by Ceder, A., Elsevier, Oxford, 707-731.

LeBlanc, L. and Boyce, D.E. (1986). A bilevel programming for exact solution of
the network design problem with user-optimal flows. Transportation
Research, 20B(3), 259-265.

Lo, H.K., Chang, E. and Chan, Y.C. (2000). Dynamic network traffic control.
Forthcoming in Transportation Research-A.

Maher, M.J. (1992) SAM: a stochastic assignment model. In Mathematics in
Transport Planning and Control (J.D. Griffiths, ed.), 121-131. Clarendon
Press, Oxford.

Maher, M.J. and Hughes, P.C. (1996) Estimation of the potential benefits from an
ATT system using a multiple user class stochastic user equilibrium assignment
model. In Proceedings of the Fourth International Conference on Applications
of Advanced Technologies in Transportation Engineering (Y.J. Stephanedes &
F. Filippi, ed.), 700-704. ASCE, New York.

Memon, G. Q. and Bullen, A.G.R. (1996). Multivariate optimization strategies for
real-time traffic control signals. Transportation Research Record, 1554, 36-42.

Osyczka, A. and Kundu, S. (1995). A new method to solve generalized multi-
criteria optimization problems using the simple genetic algorithm. Structural
Optimization, 10, 94-99.

Pattnaik, S.B., Mohan, S. and Tom, V.M. (1998). Urban bus transit route network
design using genetic algorithm. Journal of Transportation Engineering,
124(4), 368-375.

Reddy, K.H. and Chakroborty, P. (1999). Procedure to estimate the origin-
destination matrix from marginal trip totals and ordinal information on matrix
elements. Transportation Planning and Technology, 22(4), 247-270.

Sheffi, Y. (1985). Urban Transportation Network. Prentice-Hall, Englewood
Cliffs, NJ.

Srinvas, N. and Deb, K. (1995). Multi-objective optimization using nondominated
sorting in genetic algorithms, Evolutionary Computation, 2(3), 221-248.

Tamaki, H., Kita, H. and Kobayashi, S. (1996). Multi-objective optimization by
genetic algorithm: a review. Proceedings of the 1996 IEEE International
Conference on Evolutionary Computation, 517-522.

Wong, S.C. and Yang, H. (1997). Reserve capacity of a signal-controlled road
network. Transportation Research, 31B(5), 397-402.

Wong, C.K., Wong, S.C. and Tong, C.O. (1998) A new methodology for
calibrating the Lowry model. Journal of Urban Planning and Development,
124(2), 72-91.

Yai, T., Iwakura, S. and Morichi, S. (1997) Multinomial probit with structured
covariance for route choice behavior. Trans. Res.-B., 31(3), 195-207.

Yang, H. and Yagar, S. (1994). Traffic assignment and traffic control in general
freeway-arterial corridor systems. Transportation Research, 28B(6), 463-386.

Yang, H., Yagar, S., Iida, Y. and Asakura, Y. (1994). An algorithm for the inflow
control problem on urban freeway networks with user-optimal flows.
Transportation Research, 28B(2), 123-139.

Yang, H. (1995). Heuristic algorithms for the bilevel origin-destination matrix
estimation problem. Transportation Research, 29B(4), 231-242.

Yang, H. and Lam, W.H.K. (1996). Optimal road tolls under conditions of
queuing and congestion. Transportation Research, 30A(5), 319-332.

Yang, H. and Bell, M.G.H. (1998). Models and algorithms for road network
design: a review and some new developments. Transport Review, 18(3), 257-
278.

Yin, Y.F. (2000a). Genetic-algorithms-based approach for bilevel programming
models. Journal of Transportation Engineering, 126(2), 115-120.

Yin, Y.F. (2000b). Multi-objective bilevel optimization for transportation
planning and management Problems. Journal of Advanced Transportation
(Submitted).

Appendix I: Notation
The following symbols are used in this chapter:

B = variance/covariance matrix of link flows

)(|ŁaC = the link-exit capacity as a function of signal split |Ł

rs
kc = actual travel time on path k between Origin-Destination (OD) pair rs

f = the objective function of the lower-level decision maker (travelers)

)(xf = the fitness function

F = the objective function of the upper-level decision-maker (system
manager)

F = the objective function vector of the upper-level decision-maker
(system manager)

rs
kf = the traffic flow on the route k connecting OD pair rs

G = the constraint set of the upper-level decision vector

g = the constraint set of the lower-level decision vector

ap
= the maximum acceptable degree of saturation for link a

rs
ap = link choice proportion for link a of OD pair rs (i.e. proportion of flow

from r to s using link a). According to the links equipped with
detector or not, the link choice proportion can be divided into two

subsets of rs
dp and rs

ep

cP = probability of crossover operation

mP = probability of mutation operation

rsq = the (mean) demand between OD pair rs

rsq = prior Origin-Destination (OD) travel demand

as = capacity of link a

rsS = expected minimum travel time between OD pair rs

)(aa vt = the link travel time of link a

0
at = free-flow link travel time

u = the decision vector of the upper-level decision-maker

au = the toll charges on link a

min
au = the lower bound of toll charges on link a

max
au = the upper bound of toll charges on link a

maxu = the upper bound of decision variables

minu = the lower bound of decision variables

v = the decision vector the lower-level decision-maker

av = the traffic volume on link a

dv = mean flow on link with detector

dv = detected link flow

ev = mean flow on link without detector

ev~ = estimated flow on link without detector based on the detected data

jx = a finite string j

)(kX = the population of generation k

)(xZ = the objective value of the upper-level problem

α = the length of sub-string

β = coefficient of variance for OD variation

ω = coefficient of variance for perception error of path travel time

µ = the OD matrix multiplier for the whole network

|Ł = a vector of all signal split (proportions of green times)

π = the desired precision of decision variables

δ = tolerance parameter of OD flows
rs
akδ = 1 if route k uses link a, and 0 otherwise

Chapter 8 Solving Job-Shop Scheduling Problems by
Means of Genetic Algorithms
Ramiro Varela*, Camino R. Vela*, Jorge Puente*, Alberto Gomez** and
Ana M. Vidal

*Centro de Inteligencia Artificial. **Dpto. de Admon. de Empresas y
Contabilidad

Universidad de Oviedo. Campus deViesques. E-33271 Gijón. Spain.

Tel. +34-8-5182032. FAX +34-8-5182125.

e-mail: *{ramiro, camino, puente}@aic.uniovi.es, **agomez@etsiig.uniovi.es

http:\\www.aic.uniovi.es

8.1 Introduction
It is well known that sequencing problems are a subclass of combinatorial
problems that arise everywhere. We can find problems of this class in many areas
of industry, management and science, ranging from production organization to
multiprocessor scheduling. This not only justifies the intensive research carried
out in this field over the last several years (5, 6, 13, 16), but also the interest in
finding new solutions to specific problems. Because sequencing problems are in
general NP-hard, the only practical approaches are heuristic strategies (16, 25).
Hence, one can find the application of almost every artificial intelligence
technique; for instance, logic programming (12, 27), neural nets (1), machine
learning (29), space state heuristic search (2, 11, 22), branch and bound (21), local
search (25) and genetic algorithms (GAs) (4, 7, 19, 24, 17), among others. Jain
and Meeran (13) summarize the main techniques applied to solve a family of
these problems, the job-shop scheduling problem, together with the category each
technique belongs to. The application of GAs to scheduling problems has
interested many researchers because they seem to offer the ability to cope with
the huge search spaces involved in optimising schedules.

In this work we describe an approach to solve job-shop scheduling problems by
means of a GA which is adapted to the problem in various ways. First, a number
of adjustments of the evaluation function are suggested, and then we propose a
strategy to generate a number of chromosomes of the initial population that
allows us to introduce heuristic knowledge from the problem domain. In order to
do that, we exploit the variable and value ordering heuristics proposed by Norman
Sadeh (22). These are a class of probability-based heuristics which are, in

http://www.aic.uniovi.es

principle, aimed to guide a backtracking search strategy. We validated all the
refinements introduced on well-known benchmarks and report experimental
results showing that the introduction of the proposed refinements have an
accumulative and positive effect on the performance of the GA. The software we
have used in our experiments, as well as further releases, will be public through
our Web site.

The remainder of this chapter is organized as follows. Section 8.2 introduces the
job-shop constraint satisfaction problem. Section 8.3 describes the genetic
algorithm used in this work, in particular the codification of chromosomes and the
genetic operators; and discusses two possibilities to define the fitness function, as
well as the refinements proposed to the evaluation function (i.e., the penalty and
scaling techniques) and how these techniques can be adapted to the confronted
problem. Section 8.4 reviews the variable and value ordering heuristics proposed
by Sadeh. Section 8.5 describes the way we propose to generate the initial
population from the probabilistic knowledge provided by these heuristics. Section
8.6 reports the experimental results; here, we consider results about the efficiency
and convergence of various versions of the GA, and compare the GA
performance against other approaches. And finally, in Section 8.7, we present the
main conclusions and some ideas for future work.

8.2 The Job-Shop Scheduling Constraint Satisfaction Problem
The Job Shop Scheduling Problem (JSS) can be posed with small variations (1,
18, 22). In this work we consider the problem as posed in (22): the JSS requires
scheduling a set of jobs {J1,...,Jn} on a set of physical resources or machines
{R1,...,Rq}. Each job Ji consists of a set of tasks or operations {ti1,...,timi} to be
sequentially scheduled, and each task has a single resource requirement. We
assume that every job has a release date and a due date between which all the
tasks have to be performed. Each task has a fixed duration duij and a start time stij

whose value has to be selected. The domain of possible start times of the tasks is
initially constrained by the release and due dates.

Therefore, there are two non-unary constraints of the problem: precedence
constraints and capacity constraints. Precedence constraints defined by the
sequential routings of the tasks within a job translate into linear inequalities of the
type: stil + duil ≤ stil+1 (i.e., stil before stil+1). Capacity constraints that restrict the
use of each resource to only one task at a time translate into disjunctive
constraints of the form: stil + duil ≤ stjk ∨ stjk + dujk ≤ stil (two tasks that use the
same resource cannot overlap). The objective is to come up with a feasible
solution as fast as possible, a solution being a vector of start times, one for each
task, such that starting at these times all the tasks end without exceeding the due
date and all the constraints are satisfied. None of the simplifying assumptions are

required by the approach that will be discussed: jobs usually have different
release and due dates, tasks within a job can have different duration, several
resource requirements, and several alternatives for each of these requirements.

t11 R1 2 t12 R2 2 t13 R3 2

t21 R2 2 t22 R4 2 t23 R3 2

t31 R1 3 t32 R3 3

P1 P2

P3 P4

P5

C1

C2 C3

C4

C5

[0,4]

[0,4]

[0,4]

[2,6]

[2,6] [4,8]

[4,8]

[3,7]

Figure 8.1 A JSS problem instance with three jobs. The release dates
have value 0 for every task and the due dates have value 10. The
duration of the tasks is indicated within the boxes, together with the task
identification and the resource requirement

Figure 8.1 depicts an example with three jobs {J1,J2,J3} and four physical
resources {R1,R2,R3,R4}. It is assumed that the tasks of the first two jobs have
duration of two time units, whereas the tasks of the third one have duration of
three time units. The release time is 0 and the due date is 10. Label Pi represents a
precedence constraint and label Cj represents a capacity constraint. Start time
values constrained by the release and due dates and the duration time of tasks are
represented as intervals. For instance, [0,4] represents all start times between time
0 and time 4, as allowed by the time granularity, namely {0,1,2,3,4}.

8.3 The Genetic Algorithm
GAs were successfully used to solve sequencing problems (7, 8, 9, 17, 18, 24), in
particular the job-shop scheduling problem. In this section we describe a classic
implementation whose components are taken from the literature. The codification
of individuals is the permutation with repetition (4, 8, 17, 24). According to this
codification, an individual represents a permutation of the whole set of operations
of the problem at hand. Consider for example the problem depicted in Figure 8.1
and the permutation of its tasks (t21 t31 t22 t11 t32 t12 t13 t23). From this permutation,
an individual is obtained by replacing the identifier of each task by the number of
its job; therefore, we obtain (2 3 2 1 3 1 1 2). So, this representation should be
understood to mean the following: the first 2 represents the first task of the second
job, the first 3 is the first task of the third job, the second 2 is the second task of

the second job, and so on. The main reason for introducing this representation of
individuals is that every individual produced by the genetic operators is feasible,
as we will see in the following paragraphs. The mutation operator we use in this
work is the order-based mutation: two tasks are selected at random and their
positions are interchanged. At the same time, we consider two crossover
operators. First, the generalized order crossover (GOX) which works as follows:
Consider the following two parents:

Parent1 (1 2 2 1 2 1) Parent2 (1 1 2 2 1 2)

A substring is selected at random from parent1, for example the underlined
substring that includes the second 2 and the second 1, and these tasks are deleted
in parent2. Afterwards, the substring is implanted in parent2 at the position where
the first operation of the substring has occurred in parent2. So, in this case we
obtain the offspring (1 2 2 1 1 2). Another common crossover suitable for this
codification is the generalized position crossover (GPX) which is similar to GOX.
The only difference is the insertion position of the substring in the offspring, this
position in GPX is the same as the first parent. In the example, the same result is
obtained.

In order to define a fitness function, we have to consider which potential solution
is represented by an individual. Remember that a solution to our job-shop
problem is a scheduling of the tasks that satisfies every constraint of the problem,
including, of course, the completion of every job by its due date. In this work, we
consider that a potential solution is a scheduling of the tasks satisfying every
constraint except, maybe, the completion of jobs by their due dates. So a potential
solution is actually a solution when this constraint is also satisfied. In order to
display the potential solution represented by an individual, and to establish a
rating among individuals, we consider two possibilities to implement the fitness
function that in the following we refer to as fitness1 and fitness2, respectively. In
both cases, a strategy is defined to build a scheduling from the individual
representation, then the completion time of every job is calculated, and the
maximum value of these times, that is the makespan, is the fitness value of the
individual. It is clear that the lower the fitness, the better the individual.
Therefore, we have a minimization problem.

Now we describe the scheduling strategies of both fitness functions. In both of the
cases, the sequence of tasks is enumerated following the order in which the tasks
appear in the individual. For each task, a start time is assigned which is
compatible with the start time assignments made to the previous tasks. In the first
case, this start time is calculated as the largest completion time of those previous
tasks sharing a constraint, either precedence or capacity, with the current task. In

the second case, the start time assigned to the current task is the lowest possible
that is compatible to the previous assignments. We clarify both strategies by
means of an example. Consider the individual (3 3 1 1 1 2 2 2), which represents
a potential solution to the problem of Figure 8.1. Figure 8.2a shows the Gantt
chart produced by the fitness1 scheduling strategy, and Figure 8.2b shows the
correspondent chart produced by the fitness2. The fitness1 value is 13, whereas
the fitness2 value is 11 for the individual. As we can observe, the individual does
not represent a solution to either of the strategies.

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10

R1 t31 t11 R1 t31 t11

R2 t12 t21 R2 t21 t12

R3 t32 t13 t23 R3 t32 t13 t23

R4 t22 R4 t22

a) b)

Figure 8.2 (a) Scheduling produced by the fitness1 strategy to the problem of
Figure 8.1 from the individual (3 3 1 1 1 2 2 2). The fitness1 value is 13. (b)
Scheduling produced from the same individual by the fitness2 strategy. The
fitness2 value is 11

It is clear that the fitness1 value is always greater than or equal to the fitness2
value, but the fitness2 function is more costly than the fitness1 function. It is easy
to see that the first one has a complexity of O(n) whereas the second has a
complexity of O(n2), n being the number of tasks of the problem. Moreover, as we
will see in Section 8.6, for every scheduling that can eventually be produced by
the fitness2 function, there is an individual that produces the same scheduling by
the fitness1 strategy. Therefore, in principle, we adopt fitness1 due to its lower
complexity. Nevertheless, in this work we also use the fitness2 in a number of
experiments. Moreover, we use this second scheduling strategy as a basis for a
heuristic repair method to obtain an improved chromosome as we will see in
Section 8.5.

8.4 Fitness Refinement
The former fitness functions can be adjusted in order to better discriminate among
good and bad individuals. Here we consider two common techniques (18) and
adapt them to our problem

Penalty: this technique consists of adding to the fitness a value for each of the
jobs exceeding its due date. This amount can be, for example, the exceeding
time of each job or a fixed amount for each of the exceeding jobs. This
refinement allows the GA to discriminate among individuals displaying the
same makespan, but having different exceeding time beyond their due dates.
But the results can be misleading due to the fact that the lowest fitness does
not guarantee the lowest makespan.

Scaling: in this case, the objective is either to remark or smooth the difference
between good and bad chromosomes in order to obtain a more accurate
discrimination. The underlying idea is that small relative differences in the
fitness of good and bad individuals do not facilitate the selection of the best
individuals and the elimination of the worst. Whereas, large relative
differences might produce a dominance of semi-optimum chromosomes and
then a premature convergence of the GA. Here, we consider a linear scaling
which consists of replacing the original fitness f by

f′ = f + b, (1)

b being a parameter which can be provided by the user or automatically
determined from the problem either at the beginning or at each generation.

8.4.1 Variable and Value Ordering Heuristics

As we have pointed out in the introduction, one of the main contributions of this
work will be the utilization of heuristic information in the initial population
generation to solve JSS problems. Our purpose is to incorporate the variable and
value ordering heuristics proposed by Sadeh and Fox in (22). These heuristics are
based on a probabilistic model of the search space. A framework is introduced
that accounts for the chance that a given value will be assigned to a variable and
the chances that values assigned to different variables conflict with each other.
These heuristics are evaluated from the profile demands of the tasks for the
resources. In particular the individual demand and the aggregate demand values
are considered. The individual demand Dij(Rp,T) of a task tij for a resource Rp at
time T is simply computed by adding the probabilities σij(τ) of the resource Rp

demanded by the task tij at some time within the interval [T–duij+1,T]. The
individual demand is an estimation of the reliance of a task on the availability of a
resource. Consider, for example, the initial search state of the problem depicted in
Figure 8.1. As the task t12 has five possible start times or reservations, and
assuming that there is no reason to believe that one reservation is more likely to
be selected than another, each reservation is assigned an equal probability to be
selected, in this case 1/5. Given that the task t12 has duration of 2 time units, this

task will demand to the resource R2 at interval 4≤t<5 if its start time is either 3 or
4. Hence, the individual demand of the task t12 for resource R2 at this interval is
estimated as D12(R2,t) = σ12(3)+σ12(4) = 2/5. On the other hand, the aggregate
demand Daggr(R,τ) for a resource is obtained by adding the individual demands of
all tasks over the time. Table 8.1 shows the individual demands of all ten tasks of
the problem, as well as the aggregate demands for all four resources. From the
aggregate demand of a resource, a contention peak is identified. This is an
interval of the aggregate demand of duration equal to the average duration of all
the tasks with the highest demand. Table 8.1 shows the contention peaks of all
four resources. Then, the task with the largest contribution to the contention peak
of a resource is determined as the most critical and so it is selected first for
reservation. This is the heuristic referred in (22) as ORR (Operation Resource
Reliance).

Table 8.1 Individual and aggregate demands of the initial state of the
problem of Figure. 8.1 for all tasks and resources over the time intervals.
(The shadow regions correspond to the contention peaks of the respective
resources.)

0 1 2 3 4 5 6 7 8 9

D11(R1,T) 0.2 0.4 0.4 0.4 0.4 0.2

D31(R1,T) 0.2 0.4 0.6 0.6 0.4 0.2 0.2

Daggr(R1,T) 0.4 0.8 1 1 0.8 0.4 0.2

D12(R2,T) 0.2 0.4 0.4 0.4 0.4 0.2

D21(R2,T) 0.2 0.4 0.4 0.4 0.4 0.2

Daggr(R2,T) 0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2

D13(R3,T) 0.2 0.4 0.4 0.4 0.4 0.2

D23(R3,T) 0.2 0.4 0.4 0.4 0.4 0.2

D32(R3,T) 0.2 0.4 0.6 0.6 0.6 0.4 0.2

Daggr(R3,T) 0.2 0.8 1.4 1.4 1.4 1.2 0.6

D22(R4,T) 0.2 0.4 0.4 0.4 0.2

Daggr(R4,T) 0.2 0.4 0.4 0.4 0.2

On the other hand, the value ordering heuristic proposed in (22) is also computed
from the profile demands for the resources. Given a task tij that demands the
resource Rp, the heuristic consists of estimating the survivability of the
reservations. The survivability of a reservation 〈stij=T〉 is the probability that the
reservation will not conflict with the resource requirements of other tasks, that is,

the probability that none of the other tasks require the resource during the interval
[T,T+duij–1]. When the task demands are for only one resource, this probability is
estimated as

() ()()
()()

()() ()()11

1

,,
1

−∗∗−

−

−
−

duAVGdunAVG

p

pijp
aggr ijp

nAVG

RDRDAVG
τ

τ
ττ

 (2)

where du stands for the average duration of the tasks, np(τ) is the number of tasks
that might demand the resource Rp at time τ and AVG(f(τ)) represents the average
value of f(τ) in the interval [T,T+duij–1]. Table 8.2 shows the survivability of all
the reservations possible for all ten tasks of the problem. In principle, the value
ordering heuristic consists of trying first those reservations with large
survivabilities. However, in (22), some more refinements are introduced: first, the
survivabilites are utilized to estimate the number of solutions to a relaxation of
the problem which are compatible with a reservation to a given task; and then this
heuristic is combined with a filtering mechanism used to further refine the
ranking of reservations. The resulting heuristic is referred as FSS (Filtered
Survivable Schedules). For a full description of these heuristics, we refer the
interested reader to (22).

Table 8.2 Survivabilities of all ten tasks in the initial state of the
problem of Figure 8.1 over the time intervals

0 1 2 3 4 5 6 7 8

t11 0.75 0.57 0.48 0.48 0.57

t12 0.6 0.6 0.7 0.89 1

t13 0.42 0.3 0.3 0.36 0.54

t21 1 0.89 0.7 0.6 0.6

t22 1 1 1 1 1

t23 0.4 0.3 0.3 0.36 0.54

t31 0.61 0.54 0.54 0.61 0.75

t32 0.54 0.35 0.27 0.27 0.35

8.5 Heuristic Initial Population
In this section, we describe the strategy to build up a heuristic initial population.
Initialization in GAs is an important issue as proven in (10), even though some
authors argue against this technique because it might produce premature
convergence due to the dominance of sub-optimal individuals. We propose two

different strategies to be used in conjunction to generate initial individuals. We
refer to these strategies as heuristic-a and heuristic-b, respectively. The aim of the
first is to introduce knowledge from the variable and value ordering heuristics
into the initial population. The idea is first to consider the most critical resources,
those with the highest contention peaks, and then try to put the tasks requiring
these resources in a good position within the representation of individuals. We
assume that a good position will be one that probably translates into an
assignment of the starting time of the task to a value close to the time with the
highest survivability of the task. In order to achieve such a distribution of tasks in
the representation of individuals, we propose the following strategy.

First, determine the critical resources as the resources whose contention peaks are
over the average of the contention peaks of all the resources. These will include
the bottleneck and, possibly, other resources.
For each of the critical resources, determine the critical tasks as the set of tasks
that demand the resource and order these tasks by their respective times of highest
survivability.

Generate a set of individuals containing the critical tasks in the order determined
before. Then, distribute the remainding tasks within the individual taking only
into account the precedence constraints of the problem, selecting at random when
there is more than one possibility.

The intuition behind heuristic-a is to assume that the relative ordering among the
critical tasks, according to their times of maximum survivability, is a good
building block to generate chromosomes.

On the other hand, the heuristic-b strategy consists of rebuilding an individual
representation in such a way that both of the scheduling strategies, fitness1 and
fitness2, produce the same result. This is a heuristic repair method that transforms
an individual into another one which is better or, in the worst case, equal to the
original. In this case, the purpose is that some holes that the fitness1 strategy
might waste for a given chromosome are used in the transformed representation.

We clarify the application of both heuristics by means of an example. Consider
the problem depicted in Figure 8.1. As is shown in Table 8.2, the most critical
resource is R4, which is required by the set of tasks {t13, t23, t32}. If we sort this set
(the critical tasks) by the times of maximum survivabilities, the result is either (t32,
t13, t23) or (t32, t23, t13). Therefore, according to the strategy of heuristic-a, from the
first ordering we could generate the individuals (t31 t32 t11 t12 t13 t21 t22 t23) and (t11 t31

t32 t21 t12 t13 t22 t23), which translated to the genetic algorithm notation are (3 3 1 1 1
2 2 2) and (1 3 3 2 1 1 2 2) respectively. At the same time, from the second
ordering we could generate the chromosome (t31 t21 t22 t11 t32 t12 t23 t13), or (3 2 2 1 3

1 2 1). Figure 8.2 depicts the scheduling produced from the first of the former
individuals by functions fitness1 and fitness2 respectively.

From the scheduling of Figure 8.2b, following the heuristic-b, we can build an
individual whose fitness1 value is equal to the fitness2 value of the original, by
simply ordering the tasks by the values of their starting times in that scheduling.
This individual is (t21 t31 t22 t11 t32 t12 t13 t23) or (2 3 2 1 3 1 1 2) which is finally
inserted as a new individual of the heuristic initial population. As we can observe,
the relative ordering among the critical tasks is maintained after reconstruction.
Therefore, the intuition behind heuristic-b is that it can maintain the building
blocks as long as it reorganizes the remaining tasks so that the scheduling
improves.

The overall approach to generate the initial population consists of generating a
fraction of the chromosomes by first applying the heuristic-a strategy and then
reconstructing these individuals by means of heuristic-b. The remainder of the
chromosomes are generated at random in order to guarantee the diversity of the
population.

8.6 Experimental Results
This section reports the results of an experimental study comparing various
versions of our genetic algorithm. A preliminary version of a part of these results
was also presented in (26). The test of data is the benchmark of 60 problems
proposed in (22). These problems were randomly generated, each with five
resources and ten jobs of five operations. Each job has to visit each of the five
resources, and the order of visiting was randomly generated except for the
bottleneck resources, which were each visited after a fixed number of operations.
Two parameters were used to cover different scheduling conditions: RG, a range
parameter, controlled the distribution of release dates and due dates, and a
bottleneck parameter, BK, controlled the major bottleneck resources. Three values
of RG were used (0.0, 0.1 and 0.2). When RG is 0.0, all release dates are the
same, as well are due dates. For higher values of RG, different values are
determined from a uniform probability distribution parameterized by RG. Two
values of BK were considered (1 and 2), determining the number of bottleneck
resources. Therefore, six groups of ten problems were generated.
We consider six versions of the genetic algorithm starting from a Basic (B)
version with the initial population generated at random and the fitness1 function
as defined in Section 8.4. We consider also a Local Search (LS) strategy; this is
also a common approach (23) which can be implemented in many ways. Our LS
approach consists of tuning the final solution by means of the heuristic repair
method of the heuristic-b as reported in Section 8.5. Then we introduce the
refinements described in the previous sections. That is, Penalty (P), in this case by

adding to the fitness1 a value of 2 time units for each of the jobs exceeding its due
date; and scaling (S) by defining the parameter b of expression (1) to be

{ }∑∈
−= ijkjk

RRR
Rorequires ttduMaxb

Ni

 :
,...,1

where N is the number of jobs. This is a solution of a problem relaxation where
all sequential constraints are eliminated and every release date is assumed to be 0.
Hence, the cost of this solution is a lower bound of the best solution of the real
problem. Of course, other relaxations can be considered to estimate the parameter
b, for example, the MST (Minimum Spanning Tree) relaxation described in (20).
Finally, the Heuristic Initial Population (HIP) is considered; in this case, a number
of (15) heuristic individuals were introduced into the initial population for each of
the critical resources (1 or 2 in every case), while the remainding individuals were
generated at random. Except for the Basic case, every version includes Local
Search, even though this refinement in conjunction with the other refinements has
a lower effect than when used together with the Basic approach.

Table 8.3 Comparison of six versions of the GA against the ORR & FSS
heuristics

Percentage of Problems Solved by the GA ORR & FSS

B LS P S P+S HIP P+S+
HIP

Solved
(%)

Time
(sec)

RG=0.2 BK=1 45 71 77.3 78 90,7 98 100 100 88.5

RG=0.2 BK=2 12 29 42 47.3 56 100 100 100 93

RG=0.1 BK=1 72 82 87.3 94 97,3 100 100 80 331.5

RG=0.1 BK=2 25 40 50 66 70,67 100 100 90 184

RG=0.0 BK=1 83 87 91.3 94.7 98 100 100 70 475

RG=0.0 BK=2 31 41 45.3 65.3 67,3 90 98,7 80 300.5

Note: Different versions of the GA are obtained by combining the Basic (B) version with
Local Search (LS), Penalty (P), Scaling (S) and Heuristic Initial Population (HIP). In
every case, each of the 60 problems was solved 15 times. Then the mean values of the
percentage of experiments solved is represented to every set of 10 problems with the same
values of the parameters RG and BK. In every case, the running time of the GA to solve a
problem was less than 1 second (the GA program is written in C++ and run on a 233 MHz
Pentium). The ORR & FSS heuristics are used to guide a backtracking schema and
implemented in Allegro Common LISP on a DECstation 5000/200

In all of the experiments, we run the genetic algorithm with a population size of
100 individuals, the GOX operator, 50 generations and crossover probability and
mutation probability values of 0.8 and 0.01 respectively. For each of the 60
problems, we run each one of the six versions of the algorithms 15 times, and
report in Table 8.3 the mean values of the 15 executions for each of the six groups
of ten problems defined by the parameters RG and BK. In (22), some results were
reported comparing the ORR and FSS ordering heuristics against a number of
similar strategies to guide a classic depth first backtracking search algorithm in
solving these problems. The last two columns of Table 8.3 show the summary of
the results obtained by the ORR&FSS strategy presented in (22). The first
component is the number of experiments of each group solved in less than 500
states, and the second shows the running time, in seconds, of the program when
codified in Allegro Common LISP. As is pointed out in (22), the procedure runs
about 30 times faster when written in C++.

As we can see in Table 8.3, the performance of the GA improves as long as the
refinements are introduced. The improvement is especially notable when all
refinements are used in conjunction. In this case, almost all of the 60 problems are
solved by the GA in less than 1 second.

160

170

180

190

200

210

220

230

1 6 11 16 21 26 31 36 41 46 51

B
P
S
P + S
HIP
P + S + HIP

165

185

205

225

245

265

1 6 11 16 21 26 31 36 41 46 51

B
P
S
P + S
HIP
P + S + HIP

(a) best individual (b) average fitness

Figure 8.3 Results of convergence of six versions of the GA. Mean values of
15 experiments are considered for one of the 60 problems. Because different
versions uses different fitness functions, due to penalty and scaling, the
fitness1 value is shown in every case, independently of the fitness function
utilized

In addition to the efficiency of the GA, it is also worthwhile to consider the effect
that the elements introduced produce on its convergence. As usual, we consider
average and best fitness convergence along the generations. Figure 8.3 shows the
convergence of all of the six versions of the genetic algorithm for one of the 60

problems. As before, mean values of 15 executions are represented. As we can
observe in Figure 8.3, initial fitness values when starting from a heuristic initial
population are smaller – as was expected. At the same time, convergence rates
depend on the evaluation function; it can be observed that both of the refinements
introduced, scaling and penalty, speed up the convergence. The mean fitness
convergence is especially rapid when these refinements are used in conjunction
with the heuristic initial population. In the case of the best individual, we can
observe a similar influence of the refinements on the convergence. Here, it is
worth noting that the introduction of heuristic individuals into the initial
population does not provide much opportunity for improvement.
As we have noticed in Section 8.6, some authors (18) argue against seeding the
initial population with non-random individuals. The argument is that these seeds
might represent semi-optimal solutions that dominate the remainder of the
population and conduct the GA rapidly towards local optima of the search space.
This effect would be observed in the convergence graphics as a quick
convergence during the first generations followed by a stabilization on a higher
value than a normal non-premature convergence. Therefore we must experiment
with a number of generations greater than 50 in order to clearly observe the
stabilization of the best and mean fitness values. Figure 8.4 shows results from
experiments on one of the 60 problems over 1000 generations. As we can
observe, mean fitness values get stabilized after about 200 generations; the
stabilization value depending on concrete version of the GA; but in any case,
premature convergence is not observed. On the other hand, we can observe in
Figure 8.4a the effect of premature convergence on the evolution of the best
solution. As we can see, when penalty and scaling are used, the convergence of
the GA is quicker than when these techniques are not used. Moreover, when the
initial population is randomly generated, the best individual fitness obtained
without the use of penalty and scaling improves with respect to the case of using
these techniques after about 200 generations. At the same time, when the initial
population is seeded with heuristic individuals the effect of the premature
convergence is not observed, at least during the first 1000 generations. In any
case, the effect of premature convergence can be reduced by smoothing the
scaling and penalty parameters, as pointed out in (18). Consequently, we can
consider that premature convergence is not a real problem in our approach,
mainly when we are interested in obtaining good solutions as soon as possible, for
instance by the time of 50 generations.

Another issue that is worth analyzing is the contribution of each of the heuristic-a
and heuristic-b strategies to the characteristics of the heuristic individuals and to
the GA performance. In the former experiments, these two strategies were used in
conjunction to generate individuals. Now we consider some experiments from the

application of each one independently of the other, and compare the results
against their use in conjunction. Table 8.4 shows the results from experiments on
four problems selected out of the 60 problems among the most hard to solve by
the GA. In every case, the initial population is generated heuristically, first by
means of the heuristic-a alone, then by the heuristic-b and finally by the
conjunction of heuristic-a and heuristic-b. In these cases we show results about
the mean and best fitness of the heuristic individuals introduced into the initial
population, as well as the mean fitness of the last generation and the best solution
found by the GA after 50 generations.

160

170

180

190

200

210

220

200 400 600 800 1000

B

P + S
HIP

P + S + HIP

160

180

200

220

240

260 B
P +
SHIP
P + S + HIP

200 400 600 800 1000

(a) best individual (b) mean fitness

Figure 8.4 Results about convergence of four versions of the GA along 1000
generations. Mean values of 15 experiments are considered for one of the 60
problems. As before, fitness1 values are shown in every case

As we can observe in Table 8.4, when both of the heuristics are used together the
results are better than when they are used independently of each other. Moreover,
if we compare the performance of heuristic-a and heuristic-b when each of them
is used alone, we can observe that the mean and best fitness of the heuristic
individuals, and consequently, the mean and best individuals of the initial
generation are better when heuristic-b is used. However, the use of heuristic-a
produces better final results; in particular, the number of solutions obtained in the
15 experiments is, in general, greater. In our opinion, this fact confirms the
underlying idea of the heuristic-a strategy which, as we have pointed out, is aimed
at generating good building blocks rather than generating individuals with low
fitness.

The problems of the former set are actually small problems, they are of size 5×10;
that is, 5 jobs of 10 tasks each. Now we consider the FT10 problem; this is a well-
known 10×10 problem that was proposed by Fisher and Thompson in 1963 but it
was not solved to optimality until 21 years later. Figure 8.5 shows some results of
solving this problem with different versions of the GA. In these experiments we

have combined both evaluation functions fitness1 and fitness2 with scaling and
the heuristic initial population. As we can see, in any case, the convergence is
quicker with fitness2 than with fitness1, as could be expected. At the same time,
the running time is about 20% higher with fitness2 than with fitness1. On the
other hand, we can observe that the effect of the heuristic initial population
changes drastically from one evaluation function to the other. When used in
conjunction with fitness1, the heuristic initial population clearly improves the
convergence; but in conjunction with fitness2, the improvement almost vanishes.
However, the small improvement achieved by means of the heuristic initial
population persists in other experiments. In our own opinion, this fact confirms
that the use of heuristic initial population is a good idea even for larger problem
instances than those proposed in (22), but also that more research effort is
required in order to better exploit the knowledge the heuristics offer.

Table 8.4 Comparison of the heuristic strategies to generate individuals

Fitness of Heuristic
Individuals

Final Population
Fitness

Problem Heuristic Mean Best Mean Best

Number of
Experiments

Solved

a 249.4 206 185.9 171.8 4

e0ddr2-10-by-5-9 b 196.8 176 184.4 174.1 0

a + b 201 172 175.1 168.3 13

a 260.6 213 196.9 184.6 11

ewddr2-10-by-5-9 b 209.6 188 197.8 186.3 15

a + b 204.6 175 175.1 166.5 15

a 247.5 223 188.1 174.9 13

enddr2-10-by-5-9 b 203.5 183 195.9 181.2 4

a + b 196.7 174 174.7 166.8 15

a 222.5 185 161.7 155.9 12

ewddr1-10-by-5-8 b 189.4 169 171.9 164.1 2

a + b 181.2 153 157.3 153 15

Note: Here we consider four problems that are among the most difficult to solve using
GAs. We display the mean and best fitness values of the heuristic individuals generated,
as well as the results after running the GA 15 times, starting from an initial population
seeded with these individuals

1100

1150

1200

1250

1300

1350

1400

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Scaling

Scaling + HIP

(a) Best fitness evolution with fitness1

1100

1200

1300

1400

1500

1600

1700

1 10 19 28 37 46 55 64 73 82 91 100

Scaling

Scaling + HIP

(b) Mean fitness evolution with fitness1

1030

1050

1070

1090

1110

1130

1 9 17 25 33 41 49 57 65 73 81 89 97

Scaling

Scaling + HIP

(c) Best fitness evolution with fitness2

1030

1080

1130

1180

1230

1280

1 10 19 28 37 46 55 64 73 82 91 100

Scaling

Scaling + HIP

(d) Mean fitness evolution with fitness2

Figure 8.5 Comparison of various versions of the GA in solving the FT10
problem instance. Whenever scaling is used, the value of the parameter b is -
930. (930 is the value of the optimum makespan for this problem.) Mean
values of 50 experiments are shown. The running time of an experiment is
about 1 second. In these experiments we have used the GPX operator and
crossover and mutation probabilities of 0.8 and 0.01, respectively

8.7 Conclusions
GAs are suitable tools for complex problem-solving such as job-shop and related
problems. But, as it was pointed in (17), the efficiency of standard GAs in search
of near-optimal solutions is limited. However, when combined with other
techniques like simulated annealing (14) or local search (28), GAs are quite
competitive with the most efficient approaches. For example, in (17), Mattfeld
proposed a strategy to hybridize a GA with a local search strategy and a
structured population that produces very good results on the most popular
benchmarks of job-shop problems. The local search transforms every individual
into a near local optimum, and the structured population is used to constrain
mating among neighbors.

In this chapter, we have presented a strategy to hybridize a standard GA by
introducing heuristic knowledge in a fraction of individuals of the initial
population. The experimental results reported show that this strategy accelerates
the convergence during the first generations and that the improvement is
particularly good when the problem instance presents bottleneck resources. Hence
it looks to be appropriate when a solution to the problem is required as soon as
possible. However, in order to made a full exploitation of a heuristic initial
population, further investigations should be carried out. Therefore, we propose for

subsequent research a number of ideas, such as exploiting all the information
provided by the variable and value ordering heuristics, as well as other related
heuristics, as well as systematic experimentation combining the heuristic initial
population with other strategies such as local search and structured populations.

References
1 Adorf, H.M. and Johnston, M. D. A discrete stochastic neural network

algoritm for constraint satisfaction problems. Proc. of the International Joint
Conference on Neural Networks. San Diego. 1990.

2 Beck, J.C. and Fox, M.S. Dynamic problem structure analysis as a basis for
constraint-directed scheduling heuristics. Artificial Intelligence, 117, 31-81,
2000.

3 Blazewicz, J., Domschke, W. and Pesch, E. The job shop scheduling
problem: Conventional and new solution techniques, European Journal of
Operational Research, 93, 1-33, 1996.

4 Bierwirth, C. A generalized permutation approach to jobshop scheduling with
genetic algorithms. OR Spectrum, 17, 87-92, 1995.

5 Conway, R.W., Maxwell, W.L. and Miller, L.W. Theory of Scheduling,
Reading, MA, Addison-Wesley, 1967.

6 Corne, D. and P. Ross. Practical Issues and Recent Advances in Job- and
Open- Shop Scheduling. Eds. D. Dasgupta and Z. Michalewicz. Springer-
Verlag.

7 Dorndorf, U. and Pesch, E. Evolution based learning in a job shop scheduling
environment, Computers & Operations Research, 22, 25-40, 1995

8 Fang, H.L., Ross, P., and Corne, D. A promising genetic algorithm approach
to job-shop scheduling, rescheduling, and open-shop scheduling problems,
in Proceedings of the Fifth International Conference On Genetic Algorithms,
1993, 375-382.

9 Goldberg, D. Genetic Algorithms in Search, Optimization & Machine
Learning, Addison-Wesley, Reading, MA, 1985.

10 Grefenstette, J.J. Incorporating problem specific knowledge in genetic
algorithms, in Genetic Algorithms and Simulated Annealing, Morgan
Kaufmann (1987), 42-60.

11 Hatzikonstantis, L. and Besant, C.B. Job-shop scheduling using certain
heuristic search. The International Journal of Advanced Manufacturing
Technology, 7, 251-261, 1992.

12 Hentenryck, H. Simonis and M. Dincbas. Constraint satisfaction using
constraint logic programming. Artificial Intelligence, 58, 113-159, 1992.

13 Jain, A.S. and Meeran, S. Deterministic job-shop scheduling: Past, present
and future. European Journal of Operational Research, 113, 390-434, 1999.

14 Kolonko, M. Some new results on simulated annealing applied to the job
shop scheduling problems. European Journal of Operational Research, 113,
123-136, 1999.

15 Larrosa, J. and Messeguer, P. Generic CSP techniques for the job-shop
problem, in Methodology and Tools in Knowledge-Based Systems, Lecture
Notes in Artificial Intelligence, 1415, Mira, J., del Pobil, A.P., and Ali, M.
(eds.), Springer, 1998, 46-55.

16 Maccarthy, B.L. and Liu, J. Addressing the gap in scheduling research: a
review of optimization and heuristic methods in production scheduling.
International Journal Production Research, 31, 59-79, 1993.

17 Mattfeld, D.C. Evolutionary Search and the Job Shop. Investigations on
Genetic Algorithms for Production Scheduling. Springer-Verlag, November
1995.

18 Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution
Program, Second, Extended Edition, Springer-Verlag. 1994.

19 Parreño, J., Gómez, A., and Priore, P. FMS loading and scheduling problem
solving using genetic algorithms. in INFORMS XXXIV, Barcelona, 1997,
156-166.

20 Pearl, J. Heuristics. Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley 1984.

21 Varela, R., Vela, C.R., Puente, J. and Alonso, C. Parallel Logic
Programming for Problem Solving, International Journal of Parallel
Programming, to appear in June 2000.

22 Yamada, T. and Nakano, R., Scheduling by genetic local search with multi-
step crossover. In Fourth Int. Conf. on Parallel Problem Solving from Nature
(PPSN IV), Berlin, Germany, 22-26 Sep., 960-969, 1996.

23 Zweben, M. Davis, E., Daun, B., Drascher, E., Deale, M. and Eskey, M.
Learning to improve constraint-based scheduling. Artificial Intelligence 58,
271-296, 1992.

Chapter 9 Applying the Implicit Redundant
Representation Genetic Algorithm in an Unstructured
Problem Domain
A.M. Raich and J. Ghaboussi

Department of Civil and Environmental Engineering

University of Illinois at Urbana-Champaign

Urbana, IL 61801

9.1 Introduction
An evolutionary-based method called the implicit redundant representation
genetic algorithm (IRR GA) is applied to evolve synthesis design solutions for an
unstructured, multi-objective frame problem domain. The synthesis of frame
structures presents a design problem that is difficult, if not impossible, for current
design and optimization methods to formulate, let alone search. Searching for
synthesis design solutions requires the optimization of structures with diverse
structural topology and geometry. The topology and geometry define the number
and the location of beams and columns in the frame structure. As the topology
and geometry change during the search process, the number of design variables
also changes. To support the search for synthesis design solutions, an
unstructured problem formulation that removes constraints that specify the
number of design variables is used. Current optimization methods, including the
simple genetic algorithm (SGA) are not able to model unstructured problem
domains since these methods are not flexible enough to change the number of
design variables optimized. The unstructured domain can be modeled successfully
using the location-independent and redundant IRR GA representation.

The IRR GA uses redundancy to encode a variable number of location-
independent design variables in the representation of the problem domain. During
evolution, the number and location of the encoded variables dynamically change
within each individual and across the population. The IRR GA provides several
benefits: redundant segments protect existing encoded design variables from the
disruption of crossover and mutation; new design variables may be designated
within previously redundant segments; and the dimensions of the search space
dynamically change as the number of design variables represented changes (Raich
& Ghaboussi, 1997). The IRR GA synthesis design method is capable of
generating novel frame designs that compare favorably with solutions obtained
using a trial-and-error design process (Raich & Ghaboussi, 1999).

9.2 Motivation for Frame Synthesis Research
Structural optimization lowers the total cost of frame structures by reducing the
volume of material used and the fabrication and construction time. The
optimization process is constrained by having to satisfy code requirements and
serviceability limits. Previously, the sizes of the beams and columns in frame
structures with fixed topology and geometry were commonly optimized during
the final stage of design. This type of discrete structural optimization is called
shape optimization. During shape optimization, the number of design variables is
equal to the number of members in the structure and remains fixed.

9.2.1 Modeling the Conceptual Design Process

The pressure to design more economical structures, however, has necessitated
research that focuses on applying optimization techniques earlier in the design
process during conceptual design. The conceptual design process consists of the
following steps (Reich & Fenves, 1995):

Problem statement detailing the design criteria:

1. Synthesis of potential design alternatives

2. Calculation of level of objective satisfaction and constraint violation

3. Modification of design alternatives

4. Selection of design(s) for further optimization and analysis

The motivation for focusing on conceptual design is the realization that greater
cost savings result from design changes made during conceptual design than for
design changes made later in the design process. Optimization of the conceptual
design process requires concurrent design and analysis of design solutions. These
methods must not only optimize the shape of individual beams and columns in the
structure, but must also optimize the topology and geometry of the structure itself.
Performing geometry optimization defines the length of the members and the
location of the joints within the problem domain. Providing changes to the
geometry of the structure during design requires the designation of additional
design variables that optimize the geometric location of the joints in the structure.
The total number of design variables optimized remains fixed and known.
Topology optimization is performed to define the number of joints in the
structure, the joint support locations, and the number of members connected to
each joint. The optimal number of members and joints is unknown and must be
allowed to change during optimization.

9.2.2 Research in Frame Optimization

Camp, Pezeshk, & Cao (1998) researched the shape optimization of a single-bay,
eight-story frame and a three-bay, three-story frame under three loading
conditions for a structure with a fixed geometry and topology. Sugimoto & Banali
(1996) also analyzed the performance of GAs on the shape optimization of
structural frames. Grierson & Park (1996) used GAs to develop the conceptual
topology design of three-dimensional building frameworks based on cost analysis
to determine the optimal bay size and number of stories for structures with fixed
topology. In addition to GAs, researchers have applied other optimization
methods to the shape optimization of frames. Simoes (1996) investigated the
shape optimization of two-bay, three-story, semi-rigid frames with fixed topology
and geometry. Saka (1997) applied the optimality criteria method to optimize the
shapes of tapered steel beams and frames with one or two bays having fixed
topology and geometry.

9.3 The Implicit Redundant Representation Genetic Algorithm
Genetic algorithms provide a random directed search method that borrows both
its form and search operators from natural evolution. The defining components of
the genetic algorithm selected by the designer are: the genotype/phenotype
representation of the problem domain, fitness evaluation and penalty functions,
selection scheme, crossover and mutation methods, and crossover and mutation
rates. This chapter discusses the application of an evolutionary-based search
methodology called the implicit redundant representation (IRR) (Raich &
Ghaboussi, 1997), which extends the GA first proposed by Holland (1975) and
the simple GA (SGA) further developed by Goldberg (1989) to the synthesis of
frame design solutions.

The IRR GA was developed to support the synthesis of design solutions defined
in unstructured problem domains (Raich & Ghaboussi, 1999). The IRR GA uses
redundancy to encode a varying number of location-independent design variables
to represent the diverse alternatives modeled in the unstructured problem domain.
Since the number of design variables to be optimized is not known, the number
cannot be fixed in the encoded representation. Instead, the number of encoded
design variables is itself a variable to be optimized. The IRR GA population
individuals can dynamically change the number of encoded design variables
during the evolutionary process through the actions of crossover and mutation.
The concurrent optimization of the shape, geometry, and topology of frame
structures that is performed by the IRR GA is not currently available using any
existing design or optimization method. The simple genetic algorithm (SGA), for
example, does not have the representational flexibility required to represent
diverse topology and geometry configurations. The performance of the IRR GA

was shown to be better than an SGA and a structured GA experimentally on a
cantilever beam optimization problem (Raich & Ghaboussi, 1997). The IRR GA
method is robust enough to handle multi-objectives, multiple loading
environments, and a dynamically changing number of design variables while
concurrently optimizing the size, geometry and topology of frame design
solutions.
void main()

 {

 // Initialize Random Population of Binary Encoded Strings

InitBinary();

// Start Generational Cycle

while (m_iIterations < MAX_GEN){

// Evaluate fitness of binary encoded strings in population
EvaluateBinary();

// Select Individuals based on fitness

 ();

// Perform crossover operations

 CrossOver();

// Perform mutation operations

MutationBinary();

m_iIterations++;

}

 }

Figure 9.1 C++ code for main() function that implements the IRR GA

// Provides all of the IRR GA values required for the evolutionary
process

struct SIndividual{
int m_iString[STR_LENGTH];// Array of bit values for each
individual
float m_fPenalty[NUM_PENALTY]; // Array of penalty
function values
float m_fFitness[NUM_FITNESS]; // Array of fitness
function values
float m_fTotalFitness;// Result of Composite Fitness
Evaluation

};

// Array of individuals in current population

struct SIndividual Pool[POP_SIZE];

Figure 9.2 SIndividual data structure used for the population individuals

9.3.1 Implementation of the IRR GA Algorithm

The IRR GA iterative computational algorithm is the same algorithm as used for
the SGA. Figure 9.1 lists the main() C++ code that implements the IRR GA. The
functions for SelectString(), CrossOver(), and MutationBinary() are the same as
used in a typical SGA program. The distinct differences between the IRR GA and
the SGA occur in InitBinary() and EvaluateBinary(). The implementation
requirements of these two functions will be discussed in greater detail in this
chapter.

The designer selects the population size based on diversity and computational
issues and the IRR GA randomly initializes the bit values of the population
individuals. The IRR GA program stores the binary-bit string values, the
calculated individual penalty and fitness values, and the calculated overall fitness
of each individual in the population in SIndividual data structures. The entire
population of individuals in the program is stored as an array of SIndividual data
structures in the variable Pool[] as defined in Figure 9.2.

9.3.2 Suitability of the IRR GA in Conceptual Design

The evolutionary optimization process performed by genetic algorithms parallels
the conceptual design process. The GA operations of maintaining a population of
solutions, fitness evaluation and selection, and application of crossover and
mutation parallel the conceptual design operations of synthesis of potential design
alternatives, calculation of objective satisfaction and constraint violation, and
modification of the design alternatives. The benefits of using GAs to represent
and search for synthesis design solutions were discussed by Roston and Sturges
(1996):

1 . Explores a wide (grammer-defined) space of design alternatives not
limited to present design configurations

2 . Supports a diverse range of design alternatives for application or
additional, more refined optimization

3 . Performs the conceptual design process of synthesis and analysis
concurrently

9.4 The IRR Genotype/Phenotype Representation
Genetic algorithms work with an encoding of the design variables that defines a
genotype representation of the solution. The genotype representation is decoded
during fitness evaluation into a phenotype representation, which consists of the
decoded values of the design variables that define a solution. The IRR genotype
representation provides a mechanism that allows essential and redundant sections

of the encoded binary-bit string to interact dynamically. The essential segments of
the string encode the design variables. The portions of the IRR GA string that do
not encode gene instances are the redundant segments. In order to provide space
to define redundant segments within the string, the IRR GA uses a string length
that is longer than the length required to encode only the design variables. All
individuals in the population have the same string length. The design variables
encoded in each individual represent a complete solution to the problem, but the
number of encoded variables defining the solution may be different. The binary-
bit strings in the population are initialized by the function InitBinary() using the
defined string length, which for the examples presented in this chapter is 600 bits.
The IRR GA genotype representation consists of the design variables and
additional redundant segments that do not currently contain encoded design
variables.

In the IRR GA, the encoded design variables are called gene instances. Each gene
instance encoded in the IRR string, as shown in Figure 9.3(a), consists of two
parts: a pre-selected Gene Locator (GL) pattern and the encoded design variable.
The GL pattern, which is a selected pattern of bit values such as [1 1 1], identifies
the location of the gene instance in the string. The design variable is encoded in
the string by a pre-specified number of bits similar to other GAs. The specific
location of each gene instance in the string is not fixed by the IRR. Instead, each
gene instance is allowed to drift within the length of the string.

Gene Locator (GL) Pattern
Encoded Design Variable
Redundant Segment

(a) IRR GA (b) SGA

Figure 9.3 Comparison of generic IRR GA and SGA genotype
representations. (From Raich & Ghaboussi, in press.)

The IRR GA genotype representation is distinct from the SGA representation. In
a SGA, the design variables are also encoded as n-bit binary numbers, but the
encoded design variables are concatenated together. The locations of SGA design
variables remain fixed and the SGA genotype does not contain any redundant
segments, as shown in Figure 9.3(b).

Design variables are decoded from the IRR GA genotype by parsing the string
from left to right and locating each distinct occurrence of the GL pattern. Every
time a GL pattern is located, a design variable is decoded from the following n-

bits of the string. Then, the parsing of the string continues until the next GL
pattern is found. No overlap of the GL patterns and design variables is allowed.

SGA IRR GA

Figure 9.4 Dynamic redundancy provided by the IRR GA compared to the
SGA

9.4.1 Provision of Dynamic Redundancy

One benefit of the IRR GA is that the designer does not need to specify the
number of design variables to be represented. The IRR GA allows the number of
variables encoded to change dynamically from generation to generation and
between the individuals in the population. Figure 9.4 shows the expanded range
of potential design variable encodings using the dynamic redundancy provided in
the IRR GA genotype compared to the SGA genotype (Raich & Ghaboussi,
1997). In the SGA, there is only one way of encoding the design variables for all
individuals in the population. The randomly initialized population of IRR GA
strings, in comparison, is composed of dissimilar strings that vary in the number
and location of the encoded design variables and redundant segments. Providing
dynamic redundancy allows the IRR GA to search for solutions effectively in
unstructured problems by encoding a variable number of location-independent
design variables and allowing self-organization of the linkage of the encoded
design variables. A severe reduction in the number of variables represented in the
IRR GA genotype often occurs during evolution. This type of dynamic behavior
cannot be captured by SGAs.

The use of non-coding (redundant) segments has been previously researched
(Levenick 1991; Wu & Lindsay, 1996). The non-coding segments were used to
separate the encoded design variables in the string, but were assigned a fixed

Gene Locator (GL) Pattern

Encoded Design Variable

Redundant Segment

location and length in all individuals. In addition, these non-coding segments
remained redundant. The dynamic redudancy permits the locations and length of
redundant segements to change during evolution. The redundant segments protect
existing gene instances from the disruption of crossover and mutation, while
providing a mechanism for forming new gene instances in the previously
redundant segements in future generations by the actions of crossover and
mutation. More details concerning the development and application of the IRR
GA are found in Raich & Ghaboussi (1997).

9.4.2 Controlling the Level of Redundancy in the IRR GA Initial Population

The selection of an appropriate level of redundancy is an important design
consideration in the IRR GA. The level of redundancy in the IRR GA
representation determines whether population individuals can evolve the number
of design variables required to represent the optimal solution. The average initial
redundancy ratio of the individuals in the population is calculated by first
evaluating the probability of an occurrence of a GL pattern consisting of n bits all
having the same allele value, such as [0 0 0] or [1 1 1 1]:

ρ β β
β

β= −
−

 =

−

∑n
n

j

j

n1

1 0

1

where ρ is the probability of a single occurrence of a specific GL pattern; β is the
probability of a single occurrence of the specified bit value; and n is the number
of bits specified in the GL pattern. For the GL pattern of [1 1 1] used in the
examples presented, β = 0.5 and Equation (1) sets ρ = 0.07142857.

The initial redundancy ratio of individuals in the randomly initialized population
is defined as the ratio between the number of redundant bits and the total string
length, lS:

Initial Redundancy Ratio
l

l l n
l l

ls
s g

s g

g

 = − +
− +
+

1 1

1
()

()

()

ρ
ρ

where lg is the length of the encoded design variable(s). The average initial
redundancy ratio used in the frame synthesis examples presented in this chapter
was approximately 0.35 for the GL pattern [1 1 1], a string length of 600 bits, and
a 19-bit encoded gene consisting of the encoded design variables. Therefore, an
average of 17 gene instances were initialized in the 600-bit strings encoding the
individual in the population. After the evolutionary process starts, the level of
redundancy will change within the individuals in the population as the number of
encoded gene instance dynamically changes.

(1)

(2)

The level of redundancy required is a problem-dependent control parameter, and
therefore must be selected by the user. If the level of redundancy is set too low,
the IRR GA has difficulty adding and maintaining a desirable number of gene
instances, which is very detrimental to performance. Although the impact on
performance is not as significant, a high level of redundancy forces the IRR GA
to spend more effort in removing excess gene instances than in optimizing
existing gene instances.

9.5 Applying the IRR GA to Frame Design Synthesis in an
Unstructured Domain
This section presents the IRR GA genotype/phenotype representation for the
unstructured frame synthesis design problem. Moment-resistant plane frames are
common structural elements in buildings. The exterior walls of steel frame
buildings are constructed using frames with open, rectangular bay areas in
between the columns at each story to allow for windows. In order to calculate
how well the solution encoded in each individual satisfies the problem objectives
and constraints, the design variables encoded in the IRR GA genotype must be
decoded into the IRR GA phenotype representation. The design variables
represented by the IRR GA are defined during the problem domain formulation.
The implementation details concerning applying repair strategies, assembling
design alternatives, generating horizontal members, and calculating the loading
carried by the structures are also discussed. In each section, the program elements
and descriptive code segments required for the IRR GA C++ program
development are discussed.

9.5.1 Unstructured Design Problem Formulation

The design problem selected is the synthesis of a plane frame structure with a
maximum total width of 60′0′′ and a maximum structure height of 42′0′′ (three
floor levels). The magnitudes of the dead load, live load, and wind load are set
and the frames have pinned support nodes. The corresponding structured and
unstructured frame problem domains are shown in Figures 9.5(a) and (b),
respectively, to compare the two approaches (Raich & Ghaboussi, 1999). The
structured frame problem domain defines the location and connectivity of all 15
members using a fixed topology and geometry. The bay widths and floor heights
for the two-bay, three-story structure are defined and the loading configurations
are fixed. The only remaining design variables to optimize are the individual
member properties (i.e., shape optimization). The unstructured frame problem
domain, in comparison, is defined only by dimensional bounds placed on the
maximum width and height and the statement of the location of plane(s) of
possible loading and support placement. The structural loading applied is a

function of the structural topology and geometry and varies for each design
synthesis alternative. All other design information required, including the number
and location of joints and members, member properties, support location, member
connectivity, number of stories, and size and number of bays, is determined by
optimizing the design variables.

2 Bays @ 30 -0

3
F

lo
or

s
@

 1
4

-0

DL + LL

WL WL

60 -0 Maximum
42

-0
 M

ax
im

um

DL + LL

(a) Structured Problem Domain (b) Unstructured Problem Domain

Figure 9.5 Models of structured and unstructured frame design problem
formulations. (From Raich & Ghaboussi, in press.)

9.5.2 IRR GA Genotype/Phenotype Representation for Frame Design Synthesis

Formulating the frame design problem to take advantage of the unstructured
domain and the flexible IRR GA representation requires defining a formal
grammar for the design variables. Defining the design grammar is simplified
since the grammar is explicit in the genotype/phenotype representation defined by
the IRR GA itself.

9.5.2.1 Encoding Frame Members as Design Variables

Assembling frame design solutions within the unstructured problem domain
shown in Figure 9.5(b) requires knowledge about the number of members, the
member depths, and the member locations, which are defined by the nodal
coordinates, in the structure. All of the design information needed to model a
single frame member is encoded in a single IRR gene instance identified by the
GL pattern [1 1 1] in the order shown in Figure 9.6(a): the y-coordinate of node 1
(Y1); the y-coordinate of node 2 (Y2); the x-coordinate of node 1 (X1); the x-
coordinate of node 2 (X2); the depth of the non-horizontal member (Depth 1); the
depth of any horizontal member connected to the right of node 1 (Depth2); and

the depth of any horizontal member connected to the right of node 2 (Depth 3).
These design variables define the non-horizontal member coordinates, nodal
incidences, and member depth as shown in Figure 9.6(b).

The nodal x-coordinates (X1,X2) are encoded as three-bit binary numbers
(BITS_X 3) and are mapped to discrete values in the range (–360.0,360.0). The y-
coordinates (Y1,Y2) are encoded as two-bit binary numbers (BITS_Y 2). Each of
the four binary values corresponds to a discrete floor level (0,1,2,3). The three
member depths are three-bit binary numbers (BITS_DEPTH 3) that encode eight
discrete member depths {5,10,15,20,25,30,40,50}. All members have steel tube
cross-sections of fixed width and thickness with a variable depth.

Y2GL Y1 X1 X2 Depth 1 Depth 2 Depth 3

(a)

Node 1
(X1, Y1)

Member
Depth 1

Member Depth 2

Member Depth 3

Node 2
(X2, Y2)

(b)

Figure 9.6 Definition of design variables encoded in the IRR GA genotype.

9.5.2.2 Definition of Member Data Structures

The decoded member information is stored using an array of pointers to data
structures organized in ordered linked lists. The SNodeData structure stores the
node locations and corresponding horizontal member depths. A linked list is
created for each floor level of the structure and initialized with two pointers that
identify the start (m_pStart[NUM_LEVEL]) and end (m_pLast[NUM_LEVEL])
of the list. Two SNodeData structures, as defined in Figure 9.7, are created for
each decoded member (one for each defined node). The SNodeData structures are
inserted into the linked list for the floor levels identified by the Y-coordinate.
Each node that is decoded from the IRR GA string is inserted into the correct
floor level linked list and ordered by increasing value of the x-coordinates.

The IRR GA allows individuals in the population to have a different number of
design variables that define diverse nodal locations and member positions. The
maintenance of the linked lists is useful in assembling the complete structure from
the design variables encoded in the IRR GA individuals, including the following
functions discussed in this chapter:

(From Raich & Ghaboussi, in press.)

2) Grouping support nodes at the ground level

3) Grouping nodes at each floor level

4) Generating the horizontal members for the entire structure

5) Applying the alternating span live loading and the wind loading

6) Calculating the maximum floor area objective (fitness function)

• Calculating the vertical and horizontal deflection penalties

• Calculating the nodal symmetry penalty

// Structure used to construct the ordered linked lists of nodes
for each floor level

struct SNodeData{

int m_iNodeNum; // Assigned Node Number

float m_fXCoord; // X-coord. of node

float m_fHorzDepth; // Decoded Horz. depth

struct SNodeData* m_pNextNode; // Pointer to next node in
linked list

};

// Pointers to maintain the start and end of each linked list for
each floor level

struct SNodeData *m_pStart[NUM_LEVELS], *m_pLast[NUM_LEVELS];

// Array that tracks the number of nodes in each level’s linked
list

int m_iTallyNodes[NUM_LEVELS];

Figure 9.7 SNodeData structure for storing design variables

9.5.2.3 Creation of Linked Lists of Pointers Using SaveNodes()

The first function that EvaluateBinary() calls is SaveNodes(). The SaveNodes()
function parses the binary bit strings in the population to locate the encoded GL
patterns identifying the encoded design variables. The function SaveNodes() listed
in Figure 9.8 is called for each individual, j. When a GL pattern is found,
SaveNodes() performs the genotype to phenotype mapping of the design variable
values and then creates two new SNodeStructs using the function
CreateNodeForList(iCurrentNode) to store the decoded member and nodal
information. The new SNodeStructs are inserted into their proper location in the
linked lists using the function slsStore(l). The functions CreateNodeForList() and
slsStore() are defined in Figure 9.9.

int SaveNodes(j)

{

 m_iMemberNum = 0; // Current member number
being decoded from IRR GA string

 iCurrentNode = 1; // Current node number

 i = 0; //… Start parsing IRR GA string
to locate encoded gene instances

 while (i <= STR_LENGTH - (3 + 2*BITS_X + 2*BITS_Y +
3*BITS_DEPTH)){

 iTemp = 0;

 for (k = 0; k < 3; k++){ // … Looking for GL
Pattern [1 1 1] …

if (Pool[j].m_iString[i+k] == 1) iTemp++;

 }

 if (iTemp == 3){ // … Found GL
Pattern …

 i = i + 3;

 //… Decode Y Nodal Coordinate using mapping to integer values
directly …

 Solutions[j].NodeXY[iCurrentNode].m_fY =
GetParameter(BITS_Y,i,j) *STORY_HEIGHT;

 i = i + BITS_Y;

 Solutions[j].NodeXY[iCurrentNode+1].m_fY =
GetParameter(BITS_Y,i,j) *STORY_HEIGHT;

 i = i + BITS_Y;

 //… Check if nodes on same level (horizontal member) -
keeplook for next GL pattern …

 if (Solutions[j].NodeXY[iCurrentNode+1].m_fY !=

Solutions[j].NodeXY[iCurrentNode].m_fY){

//… Decode X Nodal Coordinates using mapping to discrete
values …

Solutions[j].NodeXY[iCurrentNode].m_fX =
StoreXCoord();

i = i + BITS_X;

Solutions[j].NodeXY[iCurrentNode+1].m_fX = StoreXCoord();

i = i + BITS_X;

// Decode current member’s nodal incidences -
connections

Solutions[j].m_iMemConnect[m_iMemberNum*nne] =
iCurrentNode;

Solutions[j].m_iMemConnect[m_iMemberNum*nne+1] =
iCurrentNode+1;

// Decode current member’s depth using mapping to
discrete values

S o l u t i o n s [j] . m _ f D e p t h [m _ i M e m b e r N u m] =
StoreMemberDepth();

i = i + BITS_DEPTH;

// Create new node structure for starting node
including decoded horizontal depth

int error = CreateNodeInsertList(iCurrentNode);

if (error == 1) return 1;

i = i + BITS_DEPTH;

// Store first node in linked list

sls_store((int)Solutions[j].NodeXY[iCurrentNode].m_fY/STORY_
HEIGHT);

m_iTallyNode[(int)Solutions[j].NodeXY[iCurrentNode].m_fY/STO
RY_HEIGHT]++;

// Create new node structure for ending node

error = CreateNodeForList(iCurrentNode+1);

if (error == 1) return 1;

i = i + BITS_DEPTH;

// Store second node in linked list

sls_store((int)Solutions[j].NodeXY[iCurrentNode+1].Y/STORY_H
EIGHT);

m_iTallyNode[(int)Solutions[j].NodeXY[iCurrentNode+1].Y/STOR
Y_HEIGHT]++;

iCurrentNode += 2; // Added two nodes to structure

m_iMemberNum++; // Added one member to structure

 }

 else i = i - (2+2*BITS_Y);

 }

 else i++; // Continue parsing IRR GA string for GL
pattern

 }

 return 0; // No memory errors

}

Figure 9.8 Definition of SaveNodes() function called by EvaluateBinary()

int CreateNodeForList(iCurrentNode)

{

m_pNewNode = new SNodeData;

if (!m_pNewNode){

 printf("\nOut of memory");

 return 1;

}

 m_pNewNode->m_fNodeNum = iCurrentNode;

m_pNewNode->m_fX = Solutions[j].NodeXY[iCurrentNode].m_fX;

m_pNewNode->m_fHorzDepth = StoreHorzDepth();

}

void slsStore(iLevel)

{

 pTempNode = m_pStart[iLevel];

 if (!m_pLast[iLevel]){ // Insert first element in the list

 m_pNewNode->m_pNextNode = NULL;

 m_pLast[iLevel] = m_pNewNode;

 m_pStart[iLevel] = m_pNewNode;

 return;

 }

 pOld = NULL;

 while (pTempNode){

 if (pTempNode->m_fX < m_pNewNode->m_fX){

 pOld = pTempNode;

 pTempNode = pTempNode->m_pNextNode;

 }

 else{

if (pOld){ // …Insert in middle of list …

pOld->m_pNextNode = m_pNewNode;

m_pNewNode->m_pNextNode = pTempNode;

return;

 }

m_pNewNode->m_pNextNode = pTempNode; // … Insert
as new first element ..

m_pStart[iLevel] = m_pNewNode;

 return;

 }

}

 m_pNewNode->m_pNextNode = NULL; // Insert as last element

 m_pLast[iLevel]->m_pNextNode = m_pNewNode;

 m_pLast[iLevel] = m_pNewNode;

}

Figure 9.9 Definition of CreateNodeForList() and slsStore() called by
SaveNodes()

9.5.2.4 Construction of Complete Design Synthesis Alternatives

Assembling a complete frame synthesis alternative consists of defining: the non-
horizontal member locations using the nodal coordinates decoded from the IRR
genotype and generating the horizontal members based on the locations of the
decoded nodal coordinates. The two horizontal member depths decoded from
each gene instance are used to generate horizontal members. Figure 9.10 shows
the frame structure decoded from an IRR GA genotype having four encoded gene
instances. At this point, the structure is defined by the four non-horizontal
members. Using the member and nodal information decoded, the complete frame
structure is assembled by generating three horizontal members.

 3

Decoded Members
Generated Members

1 Member Number
Node Number

2
1

1

4
3

Horz. Depth 4

Horz. Depth 1

Horz. Depth 3

1

2

3

4

5

6

7

8

1
2
1

3
4

7
1

1

6
1

5
1

Decoded Design Variables Generated Horizontal Members

Figure 9.10 Assembly of complete structure from design variables

Figure 9.11 shows an example of the arrays of linked lists created by SaveNodes()
to represent the four-member frame structure shown in Figure 9.10. There are
three floor levels in this example. SaveNodes() creates an ordered linked list of
SNodeData structures for each of the three floor levels with m_pStart[] and
m_pLast[] aiding the manipulation of the linked lists. The number of nodes at
each floor level is maintained by m_iTallyNode as shown.

The necessary design information that describes each design alternative is stored
using data structure, SStructure. The entire population of solutions is stored in
the program variable Solutions[], which consists of an array of SStructures.
Figure 9.12 defines the SStructure data structure that contains the number of
members and nodes in the structure, the depths of all members, the member
connectivity, and the nodal coordinates.

int
m_iTallyNodes[]

NULL

NULL

SNodeData*
m_pStart[] SNodeData*

m_pLast[]
1

NULL

7
5

8
6

3

2
4

3

3

2

Figure 9.11 Linked lists of SNodeData structures for frame structure defined
in Figure 9.10

struct SStructure{

int m_iNumMem; // Total number of members in current structure

int m_iNumNodes; // Total number of nodes in current structure

float m_fDepth[MAX_MEM]; // Array of member lengths in
current structure

int m_iMemCon[MAX_MEM_2]; // Array of nodal connections for
members

struct SNode NodeXY[MAX_NODES]; // Array of nodal
coordinates for members

};

// Array of current structures that make up the current solutions
in the population

struct SStructure Solutions[POP_SIZE];

// To save the nodal coordinates of each node

struct SNode{

float m_fX;

float m_fY;

};

Figure 9.12 Definition of SStructure and SNode data structure for frame
alternatives

9.5.3 Use of Repair Strategies on Frame Design Alternatives

Repair strategies can be applied to candidate solutions to transform infeasible
frame solutions into feasible solutions. During the IRR GA synthesis and
optimization of the unstructured design solutions, however, no attempt is made to
correct the deficiencies of an infeasible solution. The solutions compete as is. In
some cases, the flexibility of the unstructured formulation allows the

configuration of structures having features that impair the finite-element
structural analysis. An analysis is required for each individual in the population in
order to calculate fitness and penalty values. Therefore, repair strategies are
applied to pre-processing the design data for the finite-element analysis.

9.5.3.1 Ensuring a Minimum Number of Support Nodes

The easiest problem to detect is not having enough support nodes for the frame
structure. For two-dimensional frames, the minimum number of pinned support
nodes required for structural analysis is two. Otherwise, unstable structures are
analyzed. Within the unstructured formulation, there is no explicit constraint
stating the number of supports. If an evolved structure has fewer than two
supports, the structure is assigned a minimum fitness as shown in Figure 9.13 and
no analysis is performed. The low fitness designates this individual of the
population as a lethal, and lethal individuals are typically removed from the IRR
GA population within a few generations by selection pressure.

//… Checking for at least two supports in the frame structure…
if (m_iTallyNode[0] < 2){ // … Set lethal penalties to the penalty
and fitness terms

for (i = 0; i < NUM_PENALTY; i++){
Pool[j].m_fPenalty[i] = 0.001;

 }
 for (i = 0; i < NUM_FITNESS; i++){

Pool[j].m_fFitness[i] = 0.001;
 }
}

Figure 9.13 EvaluateBinary() code segment for structures with less than two
supports

9.5.3.2 Deletion of Single Nodes on Floor Levels

Another pre-processing step is the modification of structures having only a single
node defined on a specific floor level. This repair strategy removes the single
node from the structure, along with its connecting member and the node
connected to the other end of the member. The occurrence of a single node is not
common since the population individuals are initialized with an excess number of
encoded members and the number of encoded members is reduced during
evolution.

The function that performs the single node deletion, DeleteSingleNode(), is called
by E v a l u a t e B i n a r y () . The program code required to implement
DeleteSingleNode() is shown in Figure 9.14. Removing a node from the structure
requires removing the corresponding node from the linked lists and reassigning

the node numbers and member incidences currently stored. In addition, the
connecting member must be found and deleted. Since the support level has
already been checked for less than two supports, the support node level is not
included in this function.

// … Looking for single nodes on any level to delete in
EvaluateBinary()

while (iLevel < NUM_LEVELS){

if (m_iTallyNode[iLevel] == 1){ // Found single node

DeleteSingleNode(m_pStart[iLevel]->m_iNodeNum, j);

m_iMemberNum--; // Removed one member

nn = nn - 2; // Removed two nodes

iLevel = 1; // Reset search to lowest
level

 }

 else iLevel++;

}

void DeleteSingleNode(iDelNode, j)

{

 // … Search for member number and node numbers (either end
of member)…

for (int i = 0; i < m_iMemberNum; i++){

if (Solutions[j].m_iMemCon[i*nne] == iDelNode

|| Solutions[j].m_iMemberCon[i*nne+1] ==
iDelNode){

 iDelMem = i;
// … Found member to delete …

 iNode_1 = Solutions[j].m_iMemCon[i*nne];

 iNode_2 = Solutions[j].m_iMemCon[i*nne+1];

 if (iNode_1 < iNode_2){ // … Delete lower
node first …

swap = iNode_2;

iNode_2 = iNode_1;

iNode_1 = swap;

 }

 }

 }

//… Change nodal coordinates …

ChangeNodalCoordinates(iNode_1,nn); //nn is global value of
number nodes

ChangeNodalCoordinates(iNode_2,nn-1);

// … Change member incidences …

ChangeMemberIncidences(iNode_1);

ChangeMemberIncidences(iNode_2);

//… Delete Member iDelMem…

 for (i = iDelMem; i < m_iMemberNum-1; i++){

 S o l u t i o n s [j] . m _ i M e m C o n [i * n n e] =
Solutions[j].m_iMemCon[(i+1)*nne];

 Solutions[j].m_iMemCon[i*nne+1] =
Solutions[j].m_iMemCon[(i+1)*nne+1];

 Solutions[j].m_fDepth[i] = Solutions[j].m_fDepth[i+1];

}

// … Delete Nodes From Linked List …

for (iLevel = 0; iLevel < NUM_LEVELS; iLevel++){

DeleteNodeList(iNode_1,iLevel);

DeleteNodeList(iNode_2,iLevel);

}

//… Change Node Numbers in linked list …

ChangeNodeList(iNode_1);

ChangeNodeList(iNode_2);

}

Figure 9.14 Code segment for E v a l u a t e B i n a r y () and function
DeleteSingleNode()

In some cases, the process of combining two nodes into one node will result in a
single node with at least two connecting members being defined. This triangular
configuration of structural members is allowed to remain since it may be
beneficial to structural stiffness and therefore increase the fitness of the
individual.

9.5.3.3 Replacement of Geometrically Similar Nodes with a Single Node

Occasionally, structures decoded from the IRR GA genotype have nodes defined
in close proximity to each other on a single floor level. To prevent the extra
analysis time created by short members, a repair strategy is applied using the
function MakeSameNode(), which combines the two nodes into a single node.
MakeSameNode() is called by EvaluateBinary() when two nodes in the structure
are within a 60′′ set tolerance, as shown in the listing in Figure 9.15.

// … Check for similar nodes in EvaluateBinary() …

for (iLevel = 0; iLevel < NUM_LEVELS; iLevel++){

ptr_2 = m_pStart[iLevel];

k = m_iTallyNode[iLevel]-1;

 for (i = 0; i < k; i++){

ptr_1 = ptr_2; // … Look at two nodes at a
time

ptr_2 = ptr_1->m_pNextNode;

if (ptr_2 != NULL){

 if (fabs(NodeXY[ptr_2->m_iNodeNum].X - NodeXY[ptr_1->m_iNodeNum]
.X)< 60.0){

MakeSameNode(ptr_1->m_iNodeNum,ptr_2->m_iNodeNum ,iLevel);

 ptr_2 = ptr_1; // … Reset with same node again
…

 nn--; // … Deleted one node …

 }

}

 }

}

void MakeSameNode(iFirst,iOld,iLevel)

{

// … Change member incidences …

for (int i = 0; i < m_iMemberNum; i++){

 if (Solutions[j].m_iMemCon[i*nne] == iOld){

Solutions[j].m_iMemCon[i*nne] = iFirst;

 }

 if (Solutions[j].m_iMemCon[i*nne+1] == iOld){

 Solutions[j].m_iMemCon[i*nne+1] = iFirst;

 }

}

ChangeMemberIncidences(iOld);

//… Change nodal coordinates …

ChangeNodalCoordinates(iOld,nn);

// Delete nodes from linked list

DeleteNodeList(iLevel);

//… Change Node Numbers in linked list …

ChangeNodeList(iOld);

}

Figure 9.15 EvaluateBinary() code segment and function MakeSameNodes()

Both the EvaluateBinary() code segment that calls the MakeSameNode() function
and the code for the MakeSameNode() function are shown.

The common functions called by DeleteNodes() and MakeSameNodes()
concerning the deletion of nodes from the linked lists (DeleteNodeList() and
slDelete()), and the modification of node coordinates (C h a n g e N o d a l
Coordinates()), node numbers in the linked list (ChangeNodeList()), and member
incidences (ChangeMemberIncidences()), are listed in Figure 9.16. All of these
functions use the linked lists of pointers to the SNodeData structures extensively.
void DeleteNodeList(iOld, iLevel)

{

prevPtr = 0; // … Global pointer used by slDelete() …

tempPtr = m_pStart[iLevel];

count = m_iTallyNode[iLevel];

for (k = 0; k < count; k++){

if (tempPtr->m_iNodeNum == iOld){

delPtr = tempPtr;

sldelete(iLevel); // Remove delPtr
structure on iLevel

m_iTallyNode[iLevel] -=1; // Removed one node
on iLevel

 k = 100;

}

else{

prevPtr = tempPtr;

tempPtr = tempPtr->m_pNextNode;

 }

}

}

void slDelete(iLevel)

{

if(prevPtr) prevPtr->m_pNextNode = delPtr->m_pNextNode;

 else m_pStart[iLevel] = delPtr->m_pNextNode;

 if (delPtr == m_pLast[iLevel] && prevPtr) m_pLast[iLevel] =
prevPtr;

 free(delPtr);

}

void ChangeNodalCoordinates(iNode, iNumNodes)

{

for (i = iNode; i < iNumNodes; i++){

 S o l u t i o n s [j] . N o d e X Y [i] . m _ f X =
Solutions[j].NodeXY[i+1].m_fX;

 S o l u t i o n s [j] . N o d e X Y [i] . m _ f Y =
Solutions[j].NodeXY[i+1].m_fY;

 }

 }

void ChangeNodeList(iOld)

{

 for (iLevel = 0; iLevel < NUM_LEVELS; iLevel++){

 if (m_iTallyNode[i] > 0){

 tempPtr = m_pStart[iLevel];

 for (k = 0; k < m_iTallyNode[iLevel]; k++){

if (tempPtr->m_iNodeNum > iOld)
//…Decrement node numbers …

tempPtr->m_iNodeNum = tempPtr->m_iNodeNum - 1;

tempPtr = tempPtr->m_pNextNode;

 }

 }

 }

}

void ChangeMemberIncidence(iNode)

{

 for (i = 0; i < m_iMemberNum; i++){

 if (Solutions[j].m_iMemCon[i*nne] > iNode){ //… Decrement
con. node numbers …

S o l u t i o n s [j] . m _ i M e m C o n [i * n n e] =
Solutions[j].m_iMemCon [i*nne] - 1;

 }

 if (Solutions[j].m_iMemCon[i*nne+1] > iNode){

 S o l u t i o n s [j] . m _ i M e m C o n [i * n n e + 1] =
Solutions[j].m_iMemCon [i*nne+1]-1;

 }

 }

}

Figure 9.16 Common list functions called by DeleteSingleNode() and
MakeSameNodes()

9.5.4 Generation of Horizontal Members in Design Synthesis Alternatives

After the design variables are decoded and the repair strategies are applied, the
IRR GA program function calls the CreateHorzMembers() function. The function
code is listed in Figure 9.17. This function uses the nodal information contained
in the linked lists to generate all of the horizontal members at each floor level.

These horizontal members are the structural beams in the frame and carry the
dead and live uniform loading. The beam length is modeled as three separate
beam elements to aid in calculating the deflection penalties at the nodes.
Therefore, two new SNodeData structures are created and inserted into the linked
lists at the third points of the horizontal member’s length.

void CreateHorzMembers(int j)

{

 for (int iLevel = 1; iLevel < NUM_LEVELS; iLevel++){

 int iHorzNodes = 0;

 ptr_2 = m_pStart[iLevel]; // … Start with first node
in list

 for (i = 0; i < m_iTallyNode[iLevel]-1; i++){

 ptr_1 = ptr_2;

 ptr_2 = ptr_1->m_pNextNode;

 Solutions[j].m_iMemCon[Solutions[j].m_iNumMem*nne] = ptr_1-
>m_iNodeNum;

 Solutions[j].m_iMemCon[Solutions[j].m_iNumMem*nne+1] =
ptr_2->m_iNodeNum;

 increment = ((Solutions[j].NodeXY[Solutions[j].m_iMemCon
[Solutions[j].m _iNumMem*nne+1]].m_fX) -

(Solutions[j].NodeXY[Solutions[j].m_iMemCon[Solutions[j].m_
iNumMem*nne]].m_fX))/3.0;

 startDist =

Solutions[j].NodeXY[Solutions[j].m_iMemCon[Solutions[j].m_i
NumMem*nne]].m_fX;

p r e v i o u s =
Solutions[j].m_iMemCon[Solutions[j].m_iNumMem*nne];

f i n i s h =
Solutions[j].m_iMemCon[Solutions[j].m_iNumMem*nne+1];

for (k = 0; k < 3; k++){

 if (k != 2){ // Create new node

 m_pNewNode = new SNodeData;

 m_pNewNode->m_iNodeNum = Solutions[j].m_iNumNodes + 1;
//Increment node num

 m_pNewNode->m_fXCoord = startDist + increment*(k+1);

 slsStore(iLevel); // Store in linked list

 Solutions[j].NodeXY[Solutions[j].m_iNumNodes+1].m_fX =
m_pNewNode->m_fXCoord;

 Solutions[j].NodeXY[Solutions[j].m_iNumNodes+1].m_fY =

(double)iLevel*STORY_HEIGHT;

 Solutions[j].m_iNumNodes++;

 iHorzNodes++;

 }// Add node to level }

 Solutions[j].m_iMemCon[Solutions[j].m_iNumMem*nne] =
previous;

 i f (k = = 2)
Solutions[j].m_iMemCon[Solutions[j].m_iNumMem*nne+1] = finish;

 else Solutions[j].m_iMemCon[Solutions[j].m_iNumMem*nne+1]
=

Solutions[j].m_iNumNodes; // New Node

 previous = Solutions[j].m_iNumNodes;

 Solutions[j].m_fDepth[Solutions[j].m_iNumMem] = ptr_1-
>m_fHorzDepth;

 Solutions[j].m_iNumMem++; // Add new member

}

 }

 m_iTallyNode[iLevel] = m_iTallyNode[iLevel] + iHorzNodes;
// Add up nodes

 }

}

Figure 9.17 Implementation of CreateHorzMembers()

9.5.5 Specification of Loads on Unstructured Frame Design Alternatives

The loading carried by each design alternatives must be specified before finite-
element analysis is performed. Using the unstructured formulation for the plane
frame design problem requires a solution to the newly created problem of how to
apply the gravity and wind loading to the diverse structures evolved. The loading
cannot be applied to a fixed set of member or nodes, as is the case for structured
design problems, since the same members and nodes are not always present in
different unstructured design alternatives. The loading is independently
determined based on the distinct topology and geometry of each IRR GA
individual in the population. Evaluating diverse individuals with different loading
conditions increases the design complexity of the search space, because some
design alternatives will not be required to carry as much load as others.

The SLoadVector data structure stores the vector of loads applied to the structure,
m_dAlVec[], and the vector of forces, m_fForce[], returned by the finite-element
analysis as defined in Figure 9.18. A finite element analysis is performed using
the load vectors defined for all of the load cases defined in the vector
P[NUM_LOAD_CASES] of SLoadVector structures.

struct SLoadVector{

 double m_dAlVec[MAX_ROWS]; // Vector of Calc. Loads for a
Load Case

 float m_fForce[MAX_ROWS*2]; // Vector of Calc. Forces
After Analysis

};

struct SLoadVector P[NUM_LOAD_CASES];

Figure 9.18 SLoadVector data structure for structural loads and forces

Applying the required LRFD code load combinations to potentially non-
symmetric frame structures requires a total of four load cases: two load cases for
1.2*Dead Load + 1.6*Live Load on alternating spans and two load cases for
0.9*Dead Load ± 1.0*Wind Load in each horizontal direction.

9.5.5.1 Specification of Gravity Loads

For two load cases, live load is applied to alternating spans defined by the
location of nodes along each floor level as shown in Figure 9.19. The topology-
and geometry-dependent live loading has a significant impact on the definition of
the live loading the design alternative carries.

EvaluateBinary() calls the function SetGravityLoad() to assign the dead and live
uniform loading for each of the four load cases defined. Figure 9.20 lists the code
implementing SetGravityLoad(). This function relies on using the nodal data
contained by the arrays of linked lists of SNodeData structures created previously.
The members that carry gravity loading are identified by traversing the linked
lists at each floor level. Each horizontal member span consists of the three sub-
members created by CreateHorzMembers() in Section 5.4. The functions SetDL()
and SetLL() calculate the equivalent nodal loads for the uniform member loading
applied and store the nodal loads in m_fAlVec[] in the SLoadVector structure.

Figure 9.19 Application of alternating span live loading to an example
structure

void SetGravityLoad()

{

 LEVEL_FLAG = 1; // … Flag for designating
alternate levels

 counter = 0; // … Used to set uniform fixed-end
forces

 for (iLevel = 1; iLevel < NUM_LEVELS; iLevel++){

FLAG = LEVEL_FLAG;

ptr_1 = m_pStart[iLevel]; // … Begin traversing
linked lists

loop = 0;

for (i = 0; i < m_iTallyNode[iLevel]-1; i++){

 if (loop == 3){ // … Number of divisions is 3
currently

 loop = 0;

 if (FLAG == 0) FLAG = 1; // Switch
alternating spans for LL

 else FLAG = 0;

 }

 ptr_2 = ptr_1->m_pNextNode;

 SetDL(ptr_1->m_iNodeNum, ptr_2->m_iNodeNum);
// Assign Dead Load

 SetLL(ptr_1->m_iNodeNum, ptr_2->m_iNodeNum, FLAG,
counter); // Assign Live

 counter++;

 ptr_1 = ptr_1->m_pNextNode;

 loop++;

}

if (m_pTallyNode[iLevel] > 1){ // … Switch for
alternating levels

 if (LEVEL_FLAG == 1) LEVEL_FLAG = 0;

 else LEVEL_FLAG = 1;

}

}

}

Figure 9.20 Implementation of SetGravityLoad()

9.5.5.2 Specification of Wind Loads

Wind load is applied at the locations of the exterior nodes on each floor level,
depending upon the direction of the wind. Figure 9.21 shows two examples of

applying wind loading to the left exterior nodes of the structures. The exterior
nodes at each floor level are stored by the m_pStart[] and m_pLast[] pointers
created when the linked lists of nodes were created in the function SaveNodes().
The wind loading is calculated by the SetWL() function that assigns the wind load
to the nodes at the exterior of the structure as listed in Figure 9.22.

Figure 9.21 Application of wind loading to the exterior nodes of two example
structures

void Set_WL()
{

float fWindFront = 30.0/(12.0*12.0); //… Magnitude of
wind loading

 CalcMultLoad(); // … Determine wind load factors
for floors

 for (iLevel = 1; iLevel < NUM_LEVELS; iLevel++){

if (m_pTallyNode[iLevel] > 3){

 // … Wind From Left Side - Load Case 2 …

 P[2].m_dAlVec[((m_pStart[iLevel]->m_iNodeNum)-
1)*3] = 1.0*(144.0)*(BAY_WIDTH)*1.3*fWindFront*multLoad[iLevel];

 // … Wind From Right Side - Load Case 3 …

 P[3].m_dAlVec[((m_pLast[iLevel]->m_iNodeNum)-
1)*3] = -1.0*(144.0)*(BAY_WIDTH)*1.3*fWindFront*multLoad[iLevel];

}

 }

}

Figure 9.22 SetWL() applies wind loading in each direction to frame
structures

9.5.6 Finite-Element Analysis of Frame Structures

In order to calculate the level of penalty violation and the fitness of each
individual in the population for the frame problem domain, a separate finite-
element analysis must be performed. The analysis is required to determine
whether the forces in each member are within allowable limits and to ensure that
the horizontal and vertical deflections of the structure are within serviceability
limits. EvaluateBinary() handles the calls to the following functions for finite-
element analysis prior to the calculation of fitness and penalty functions:

CalcProp(int j); // Calculate member properties for current
solution SetGravityLoad(); // Create P load vector for load
cases 1-4

SetWL(); // Create P load vector for load cases 1
and 2

Assem(); // Assembly stiffness matrix K

Bound(); // Apply boundary conditions

error = SolveMatrixEq(); // Solve Ku = P by inverting
stiffness matrix K

Force(); // Calculate member forces

9.5.7 Deletion of Dynamically Allocated Nodal Linked Lists

Managing the memory allocated by the program to create the arrays of linked lists
of pointer to SNodeData structures requires cleaning up after the fitness
evaluation of each individual in the population is completed. Figure 9.23 shows
the EvaluateBinary() code segment that frees all of the memory allocated
dynamically.

9.6 IRR GA Fitness Evaluation of Frame Design Synthesis
Alternatives
The frame synthesis problem is multi-objective and requires the careful selection
of the form and weighting of the fitness and penalty functions to effectively
search the complex problem domain. This section defines the required multi-
objective fitness functions and penalty functions used by the IRR GA to evaluate
the fitness of individuals in the population.

9.6.1 Statement of Frame Design Objectives Used as Fitness Functions

In the structured formulation, only a single objective is required: minimize the
volume of material. However, optimizing using only this single objective in the
unstructured formulation results in the evolution of minimal structures (two
member frames). Therefore, a second objective is required: maximize the total

floor space in the frame. The two design objectives of minimum structural weight
and maximum floor area compete against each other and trade-offs between the
two objectives will occur.

// Delete Structure Information in linked list

for (iLevel = 0; iLevel < NUM_LEVELS; iLevel++){

 ptrDel = m_pStart[iLevel];

 for (i = 0; i < m_iTallyNode[iLevel]; i++){

tempPtr = ptrDel;

ptrDel = ptrDel->m_pNextNode;

free(tempPtr);

 }

}

Figure 9.23 Deletion of arrays of linked lists created dynamically by the IRR
GA program

The non-penalized IRR GA fitness functions that correspond to the volume
objective, Fv, and the floor area objective, FF, are stated:

Fv

C Al

C

v i i
i

m

v

v

=
−

=
∑ρ

α

1 1

∑
= =

H

j

F
L

l
F

mh

j

Fα

where m is the total number of members, mh is the number of horizontal
members, Cv is a selected scalar value that is larger than the maximum expected
volume, LH is the maximum floor space defined by the dimensional bounds of the
problem domain, and αV and αF are selected exponential terms.

Figure 9.24 lists the functions CalcVolumeFitness() and CalcFloorFitness()
called by EvaluateBinary() to calculate the fitness measures defined in Equation
(3). CalcFloorFitness() uses the start and end pointers to linked list of SNodeData
structures to quickly sum the length of all the floor in the structure. The fitness
values calculated for each individual in the population are stored in the
SPopulation structure by the variables m_Fitness[0] and m_fFitness[1], which
correspond to the volume and floor fitness functions, respectively.

float CalcVolumeFitness(j)
{

 float fVolume = 0.0;

(3)

for (i = 0; i < Solutions[j].m_fNumMem; i++){ // … Sum
volumes of all members …

 fVolume += m_fProp[i*nne]*m_fLength[i]/pow(12.0,3.0);

}

fVolume = (600.0 - fVolume)/600.0; // Calc. value of
fitness function

if (fVolume < 0.0) fVolume = 0.0001;

return fVolume;

}

float CalcFloorFitness(int j)

{

float fFloorArea = 0.0;

 for (iLevel = 1; iLevel < NUM_LEVELS; iLevel++){

if(m_pStart[iLevel]){

 fFloorArea +=
fabs(Solutions[j].NodeXY[m_pStart[iLevel]->m_iNodeNum].m_fX

— Solutions[j].NodeXY[m_pLast[iLeve]-
>m_iNodeNum].m_fX);

}

}

return fFloorArea/MAX_FL_AREA; // Calc. value of fitness
function

}

Figure 9.24 Implementation of CalcVolumeFitness() and CalcFloorFitness()

9.6.2 Application of Penalty Terms in IRR GA Fitness Evaluation

9.6.2.1 Stress Penalty Function

A stress penalty function, PS, reduces the fitness of frame design alternatives that
violate the code specified maximum stress criteria:

P

C Int M M P P

C
S

s

s j jall j jall
j

m

S
=

− ()

=
∏

α
, , ,

1
(4)

where Int() is the interaction ratio defined by the code, Mj is the design moment in
member j, Mjall is the allowable moment in member j, Pj is the design axial force
in member j, and Pjall is the allowable axial force in member j.

EvaluateBinary() calls the function CalcStressPenalty() for each individual in the
population after finite-element analysis is performed. Using the member forces
determined by the analysis, CalcStressPenalty() calculates the actual axial, shear,
and bending stresses in each member. These stress values are compared with the
maximum allowable stresses that each member may carry, which is determined
using the member properties according to the LRFD code requirements. If the
actual stresses in the member are less than the allowable, no penalty is applied. If
the actual stresses exceed the allowable stresses, then Equation (4) is used to
calculate the penalty. The values of the stress penalites are stored in the variables
m_fPenalty[0] through m _ f P e n a l t y [3] in the SPopulation structure,which
correspond to the load cases 0 to 3 applied to the structure and analyzed,
respectively.

9.6.2.2 Deflection Penalty Functions

The frame design solutions must also satisfy serviceability limits. The horizontal
deflection, PHD, of the structure must satisfy the allowable interstory drift limits
and the vertical deflection, PVD, is limited to a deflection of less than l/360 along
the member length:

P

C 1.0
l

n

C
D

D

D
l

D
=

− +

=

∏

α
∆
∆ max1 (5)

where n is the number of nodes considered for horizontal or vertical deflection, ∆l

is the horizontal or vertical deflection of node l exceeding the limit, and ∆max is the
maximum deflection limit allowed.

EvaluateBinary() calls CalcHorzDeflPenalty() to calculate the penalty for
excessive horziontal deflections caused by interstory drift between the floor
levels. CalcHorzDeflPenaty() uses the SNodeData linked lists to identify the
exterior nodes at each floor level as shown in the partial function code listing in
Figure 9.25. The deflection at the exterior nodes identified by m_pStart[] and
m_pLast[] are used to calculate the interstory drifts. The relative displacement is
compared at each floor level. If the relative displacement (interstory drift) exceeds
the code specified limits, a penalty is applied. Excessive horizontal deflection is
checked for load cases 2 and 3, which combine gravity and wind loading. The

values of the horizontal deflection penalites are stored in the variables
m_fPenalty[4] and m_fPenalty[5] in the SPopulation structure for the load cases
2 and 3, respectively.

// Calculating Horizontal Penalty in the function
CalcHorzDeflPenalty(a)

number = 1.0;

for (iLevel = 2; iLevel < NUM_LEVELS; iLevel++){

if (m_iTallyNode[iLevel] > 1){ // … Check for more than a
single node

iUpper = m_pStart[iLevel]->m_iNodeNum-1*ndf;

iLower = m_pStart[iLevel-number]->m_iNodeNum-1*ndf;

// … Floors moving in opposite directions …

 if ((P[a].m_fAlVec[iUpper] < 0.0 &&
P[a].m_fAlVec[iLower] >= 0.0)

|| (P[a].al[iUpper] >= 0.0 && P[a].m_fAlVec[iLower]
< 0.0)){

i f ((f a b s (P [a] . m _ f A l V e c [i U p p e r]) +
fabs(P[a].m_fAlVec[iLower]))

> max_story_drift*number){

fHorzDefl = fHorzDefl*(pen_H_defl)*(1.0 +
fabs(P[a].m_fAl Vec[iUpper]) +
fabs(P[a].m_fAlVec[iLower])/10.0);

 }

}

// … Floors moving in same direction …

else{

if (fabs(P[a].m_fAlVec[iUpper] - P[a].m_fAlVec[iLower])

> max_story_drift*number){

 fHorzDefl = fHorzDefl*(pen_H_defl)*(1.0
+ fabs(P[a].m_fAl

Vec[iUpper])+
fabs(P[a].m_fAlVec[iLower])/10.0);

 }

}

}

else number += 1.0; // … Skip to next floor
level …

}

Figure 9.25 Code segment of CalcHorzDeflPenalty()

EvaluateBinary() calls CalcVertDeflPenalty() to calculate the penalty for
excessive vertical deflections caused by gravity loading applied along the
horizontal members. CalcVertDeflPenaty() uses the linked lists to identify the
nodes along each floor as shown in the C++ code listed in Figure 9.25. The
vertical displacement at each node is compared to the serviceability limit of 0.25
inches. If the nodal deflection exceeds the code-specified limits, a penalty is
applied relative to the actual vertical deflection. Excessive vertical deflection is
checked for load cases 0 and 1, which apply gravity loading. The values of the
vertical defleciton penalites are stored in the variables m_fPenalty[6] and
m_fPenalty[7] in the SPopulation structure for load cases 0 and 1, respectively.

float CalcVertDeflPenalty(a)

{

float fVertPenalty;

for (iLevel = 1; iLevel < NUM_LEVELS; iLevel++){

if (m_iTallyNode[iLevel] > 1){

ptr_p = m_pStart[iLevel];

for (i = 0; i < m_iTallyNode[iLevel]; i++){

if (fabs(P[a].m_fAlVec[(ptr_p->m_iNodeNum-
1)*ndf+1]) > .25){

 f V e r t P e n a l t y =
fVertPenalty*(pen_V_defl)*(1.0 +

fabs(P[a].m_fAlVec[(ptr_p->m_iNodeNum-
1)*ndf+1])/10.0);

 }

 ptr_p = ptr_p->m_pNextNode;

}

 }

}

fVertPenalty = (2000.0 – fVertPenalty)/2000.0;

if (fVertPenalty < 0.0) fVertPenalty = 0.0001;

return fVertPenalty;

}

Figure 9.26 Implementation of CalcVertDeflPenalty()

9.6.2.3 Symmetry Penalty Functions

Aesthetics are introduced into the frame synthesis search process by promoting
the symmtric placement of structural members, PSM, and nodes, P S N. The
symmetry penalties apply selection pressure to the IRR GA search process that

encourages the convergence to symmetrical frame design solutions, while still
allowing the consideration of nonsymmetrical member and node placements.

P
SymNodes

C
SN

SN

SN
= []α P

SymMembers

NumMember NumCenter
SM

SM

=
−[]α (6)

where SymNodes is the number of symmetrical nodes, SymMembers is the
number of symmetrical members, NumMember is the number of total decoded
(non-horizontal) members, and NumCenter is the number of members located at
the center line of the structure.

CalcNodeSymPenalty() and CalcMemSymPenalty() functions are called by
EvaluateBinary() to calculate the symmetry penalties stated in Equation (6)
before the horizontal members are generated by CreateHorzMembers().
Therefore, only the non-horizontal members decoded from the IRR GA genotype
are constrained by the member symmetry penalty. CalcNodeSymPenalty() uses
the SNodeData linked lists to identify the nodes along each floor as shown in
Figure 9.27. Nodes located symmetrically within 48 inches are counted as
symmetric nodes. In comparison, CalcMemSymPenalty() uses the member
incidences stored in the array m_iMemConnect[] in the SStructure structure
Individual directly to determine symmetric placement of members. The number
of symmetric nodes and members is counted for the structure and the penalties are
calculated. The calculated value of the node symmetric penalty is stored in
m_fPenalty[8] and the member symmetry penalty is stored in m_fPenalty[9] in
the SPopulation structure Pool.

float CalcNodeSymPenalty()

{

 fNodeSym = 0.0; // … Number of symmetric nodes

 for (iLevel = 0; iLevel < NUM_LEVELS; iLevel++){

 if (m_iTallyNode[iLevel] > 1){

ptr_2 = m_pStart[iLevel]; // … Traverse linked list

ptr_1 = ptr_2->m_pNextNode;

// … Compare members left of center with all members in the
structure

while (ptr_2 && Solutions[j].NodeXY[ptr_2->m_iNodeNum].m_fX
< -30.0){

 while(ptr_1){

 if (Solutions[j].NodeXY[ptr_1->m_iNodeNum].m_fX >
30.0){

 if (fabs(Solutions[j].NodeXY[ptr_2->m_iNodeNum].m_fX
+

Solutions[j].NodeXY[ptr_1->m_iNodeNum].m_fX) <
48.0){

fNodeSym += 1.0; // … Symmetric node
located

 }

 }

 ptr_1 = ptr_1->m_pNextNode;

 }

 ptr_2 = ptr_2-> m_pNextNode;

 if (ptr_2) ptr_1 = ptr_2-> m_pNextNode;

}

 }

}

 if (fNodeSym <= 30.0) fNodeSym = fNodeSym/30.0;

else fNodeSym = 1.0;

return fNodeSym;

}

Figure 9.27 Implementation of CalcNodeSymPenalty()

9.6.2.4 Composite Fitness Function

A product composite penalty term, PTOT, that magnifies the differences existing
between the individual penalty terms defined in Equations (4) to (6) was defined:

P P
k

l
P

k

h
P

k

j
P PTOT S

k
HD
k

VD
k

SN SM=
=
∑

=
∑

=
∑

1 1 1
* * * * (7)

where l is the number of load cases analyzed, h is the number of horizontal load
cases, and j is the number of vertical load cases.

The product composite fitness function is composed of the two fitness function
terms defined in Equation (3) and the ten penalty function terms defined by PTOT

in Equation (7):

max F x F F PV F TOT[] * *= (8)

For each individual in the population, the fitness function stated by Equation (8)
is evaluated. This evaluation takes place in the IRR GA function SelectString(),
which also contains the tournament selection operations that will be discussed in
Section 9.7.1. Table 9.1 presents a summary of the scalar values used for the
fitness and penalty functions stated in Equations (3) to (6).

Table 9.1 Values of scalar constants for calculating the fitness and penalty
function. (From Raich & Ghaboussi, in press.)

Scalar Term Scalar Value
Cv 600.0
CS 2000.0

CVD 2000.0

CHD 2000.0

CSN 30.0

αV 1.0

αF 1.0

αVD 4.0

αHD 4.1

αSN 0.1

αSM 0.1

LH 2268.0

9.7 Discussion of the Genetic Control Operators Used by the IRR GA

9.7.1 Fitness Sharing among Individuals in the Population

The search space for frame designs includes multiple, equally optimal solutions.
To prevent the population from converging to a single optimum, fitness sharing
was applied. Fitness sharing distributes the population among multiple solutions
so that only a few individuals are maintained in the vicinity of each solution in the
search space (Goldberg & Richardson, 1987). The fitness of each individual in the
current population is reduced based on the number of similar individuals in the
population. A modified fitness value is calculated for each population individual
by dividing the fitness, F, calculated by the niche count of the individual, mi,
which is defined by:

m sh di ij
j pop

= ∑
∈

() (9)

where dij is the Euclidean distance measure between individuals i and j.

The sharing function applied was the same as defined by Goldberg (1989) with a
similarity measure, σs, of 0.05 to control the size of the niche. The sharing
function is defined using the similarity measure:

sh d
d

if d

if d
ij

ij

s
ij s

ij s

() = −

 <

≥

1

0
σ

σ

σ

α

(10)

// Tournament Selection in SelectString()

for (j = 0; j < POP_SIZE; j++){

fCurrentWinFit = -1.0;

 for (k = 0; k < TOURN_SIZE; k++){

// Randomly select individuals for tournament group

 iTournMem = (int)
(float)rand()/(float)RAND_MAX*(float)POP_SIZE;

 fNumNeighbor = 0.0;

 for (i = 0; i < POP_SIZE; i++){

 // Calculate niche count for fitness sharing

 if (iTournMem < i){

 if (dist[loc][i] < 0.10) fNumNeighbor += (1.0 -
dist[loc][i]/0.10)/2.0;

}

else{

 if (dist[i][loc] < 0.10) fNumNeighbor += (1.0 -
dist[i][loc]/0.10)/2.0;

}

 }

 if (fNumNeighbor < 1.0) count1 = 1.0;

 // Using modified fitness value determine winner of
tournament

 if (Pool[iTournMem].m_fTotalFitness/fNumNeighbor >
fCurrentWinFit){

selected[j] = iTournWin;

fCurrentWinFit = Pool[iTournMem].m_fTotalFitness/fNumNeighbor;

 }

 }

Figure 9.28 Code segment from SelectString() implementing tournament
selection

9.7.2 Tournament Selection of New Population Individuals

Tournament selection is used to select the next-generation population in the IRR
GA examples presented. The modified fitness values determined using fitness
sharing provide the basis of competition for the tournament. The individual with
the highest fitness in the tournament group is selected as the winner of the
tournament and the selection process continues by selecting a new tournament
group randomly. The use of tournament selection reduces the occurrence of
premature convergence during early generations. The high selection pressure
created by large fitness differences among population individuals, which are the

result of large penalties, can result in premature convergence. In later generations,
tournament selection helps maintain a higher level of selection after the
population fitness has become similar. Tournament selection for the design
synthesis problem used a tournament size of five competing individuals. In the
IRR GA program, tournament selection is performed in SelectString(). A code
segment from SelectString() that implements tournament selection with fitness
sharing is shown in Figure 9.28.

To prevent the loss of the fittest individual from the current population due to low
selection pressure or the disruption or crossover or mutation, an elitist strategy
was used. The fittest individual in the current population was copied to the next
generation bypassing genetic manipulation.

9.7.3 Multiple Point Crossover of Binary Strings

Multi-point crossover was used to increase the number of string segments
recombined and to reduce the size of each segment exchanged. A random, normal
distribution, with a mean of ten crossovers and a standard deviation of two, was
used to set the number of crossover sites along the strings. Two individuals were
randomly paired from the set of tournament-selected individuals; the string was
cut virtually at multiple, random location; and the portions of the string between
the cuts were exchanged. Eshelman (1991) cited the benefits of using a higher
number of crossovers, with even-numbered crossovers providing more benefit
than odd-numbered crossovers. The IRR GA protects the individuals from
disruption due to crossover through the use of redundancy and also the inclusion
of an elitist individual. Therefore, the high rate of crossover of 1.0 used in the
frame design synthesis problem may be beneficial to explore the search space.

Figure 9.29 details the implementation of multiple crossover in
CrossOverBinary(). The locations of the crossover sites are randomly generated
and are stored initially in an ordered linked list of SCrossList structures.
CrossoverStore() inserts new crossover sites into the linked lists and is the same
function as slsStore(), which was defined in Section 5.2.3 in this chapter, except
that it stores different data structures. The linked list allows the ordering of the
crossover locations sequentially and the ability to easily change the number of
defined crossover sites. Crossover is performed on two selected individuals by
swapping string segments at the site[] bit.

// … Perform multiple point crossover in CrossOverBinary() …

iNumSites = floor(norm_dist()); // … Determine number of
sites

if (iNumSites < 1) iNumSites = 1;

// … Create linked list of randomly generated crossover sites …

for (i = 0; i < iNumSites; i++){

m_pNewCross = new SCrossList; // … Create new cross site

m_pNewCross->m_iSite = floor((float)rand()/(float)
(RAND_MAX*STR_LENGTH));

CrossoverStore(); // … Store in ordered linked list

}

// … Store ordered linked list of sites in site[] array …

for(i = 0; i < iNumSites; i++){

site[i] = m_pFirst->m_iSite;

temp_ptr = m_pFirst;

m_pFirst = m_pFirst->m_pNextSite;

free(temp_ptr); // … Delete current site
from list

}

if (iNumSites > 0){ // … Add final site at end

site[iNumSites] = STR_LENGTH-1;

iNumSites++;

}

Figure 9.29 CrossoverBinary() code to set the number and location of
multiple crossover sites

9.7.4 Single-Bit Mutation of Binary Strings

Mutation was applied to the individuals in the population using single bit
mutation with a mutation rate of 0.0033. Single-bit mutation flips the randomly
selected encoded bit value from zero to one, or vice versa.

9.8 Results of the Implicit Redundant Representation Frame Synthesis
Trials
The unstructured frame synthesis problem defined in this chapter qualifies for
Goldberg’s (1989) definition of a sufficiently difficult problem: “The problem
must be epistatic and misleading.” The search for solutions using the IRR GA
requires determining the highly fit building blocks of the best design alternative.
The fit building blocks for a structure with 13 members, however, will not be the
same as the fit building blocks for a structure with 16 members. The fitness
landscape searched by the IRR GA changes dynamically during optimization.
Each distinct topology and geometry will have a fitness landscape defined in a
distinct dimensional search space. If the topology or geometry changes, then a
new fitness landscape will be searched. The dynamic changing of fitness
landscapes can be viewed as taking different cuts of the unstructured search

space. Once a good cut is found, the IRR GA should exploit the information in
the search for synthesis design alternatives.

9.8.1 Evolved Design Solutions for the Frame Synthesis Unstructured Domain

Multiple, randomly initialized IRR GA trials were performed using the product
composite fitness function stated in Equation (8) (Raich & Ghaboussi, 1999). All
trials used a population size of either 100 or 200, a string length of 600, and
tournament size of 5. Each IRR GA trail was started with a different random
initial seed. The synthesis design solutions obtained after 500 generations for four
IRR GA synthesis trials are shown in Figure 9.30.

Figure 9.30 Frame design solutions for four trials represented by the fittest
population individual of each IRR GA trial. (From Raich & Ghaboussi, in press.)

The frame design synthesis solutions evolved by the IRR GA define structural
elements that incorporate tension members, inclined column members, and stiff,
triangular subsystems within the frame structural system. The IRR GA also
evolves structural load-carrying systems that use separate systems for the first
floor loading and for the second and third floor loading. For example, the design
solution shown in the bottom, right-hand corner of Figure 9.31 carries the second
and third floor loading to the foundation using an arch structural system.

The synthesis design solutions evolved by the IRR GA cover a diverse range of
good frame design solutions with varying topology and geometry without
requiring a separate problem statement for each topology and geometry
considered or the definition of heuristics for member addition and removal. The
IRR GA search method was able to generate novel frame designs that compared
favorably with solutions obtained using a trial-and-error design process (Raich &
Ghaboussi, 1999).

9.8.2 Synthesis versus Optimization of Frame Design Solutions Using IRR GA

The process of evolving frame synthesis design solutions is investigated by
examining the features of the fitter individual in the IRR GA population at

specific generations. During each generation, a new population is selected based
on fitness, and crossover and mutation are applied to the selected individuals to
create new individuals that retain the beneficial characteristics of their parents.
The number of supports, connections, and members evolved by the IRR GA
design solutions are constrained implicitly in the trials presented.

Figure 9.31 Individuals in top 25% of the population ranked by fitness after
one generation.

The IRR GA evolutionary process starts with a population of randomly initialized
individuals as shown in Figure 9.31 (Raich & Ghaboussi, 1999). This figure
shows a sub-set of the population as defined by 16 individuals that are among the
fittest in the current population. The fittest solution in the current population is
shown enclosed by the box in the lower left corner. The IRR GA frame design
solutions represented by individuals are diverse. None of the design solutions
maximize the floor space and no design features have propagated throughout the
population, as is expected.

Figure 9.32 shows a group of 16 individuals representing highly fit design
solutions for the same IRR GA trial after 50 generations were completed. The
population individuals are still diverse. However, several common features are
identified in the fittest individuals in the population: cross-bracing at the third
story; symmetric inclined columns; and the extension of the floor area bounds to

the maximum domain dimensions. After 200 generations, the fittest individuals
have fully incorporated these design features into the population as shown in
Figure 9.33. Although the fittest individual in the population has converged to
fixed topology and geometry, the remaining individuals have different topology
and geometry due to the effects of crossover and mutation on the IRR GA
representation.

Figure 9.32 Individuals in top 25% of the population after 50 generations.

Figure 9.33 Individuals in top 25% of the population after 200 generations.

The evolutionary process of synthesis and optimization is examined by viewing a
graph of the maximum fitness for a single IRR GA trial as shown in Figure 9.34
(Raich & Ghaboussi, 1999). During early generations, the IRR GA is synthesizing
the topology and geometry of the design solutions as shown in Figures 9.31 to
9.33. During this stage, the topology and geometry of the fittest individual in the
population may change between generations. The IRR GA stops synthesizing
design solutions when the population converges on a highly fit topology and
geometry. For the remaining generations, the IRR GA performs shape
optimization. Shape optimization uses the topology and geometry of the fittest
design alternative that was evolved during the synthesis process, as shown in
Figure 9.34.

Figure 9.34 Maximum fitness and average fitness of the IRR GA population
over 500 generations for a single trial.

9.9 Concluding Remarks
This chapter discussed the application of the implicit redundant representation
genetic algorithm to the unstructured problem of frame design synthesis. The
results obtained for the IRR GA synthesis method reinforce the benefits of
providing topology and geometry optimization. The IRR GA provides significant
benefits for representing unstructured problems by using dynamic redundancy
and implicit constraints on the number of design variables optimized.

References
Camp,C., Pezeshk, S. & Cao, G. (1998). Optimized design of two-dimensional

structures using genetic algorithm. ASCE Journal of Structural Engineering,
124(5), 551-559.

Eshelman, L.J. & Schaffer, J.D. (1991). Preventing premature convergence in
genetic algorithms by preventing incest. In R.K. Belew and L.B. Booker
(Eds.), Proceedings of the Fourth International Conference on Genetic
Algorithms (pp. 115-122). San Mateo, CA: Morgan Kaufmann.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: Addison-Wesley.

Goldberg, D.E. & Richardson, J.T. (1987). Genetic algorithms with sharing for
multimodal function optimization. In J.J. Grefenstette (Ed.), Proceedings of
the Second International Conference on Genetic Algorithms (pp. 41-49).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Grierson, D.E. & Park, K.W. (1996). Optimal conceptual topological design. In
D.M. Frangopol and F.Y. Cheng (Eds.), Advances in Structural Optimization,
Proceedings of the First US-Japan Joint Seminar on Structural Optimization,
Structures Congress “96 (pp. 91-96). New York, NY: ASCE.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: The University of Michigan Press.

Levenick, J.R. (1991). Inserting introns improves genetic algorithm success rate:
taking a cue from biology. In R.K. Belew and L.B. Booker (Eds.),
Proceedings of the Fourth International Conference on Genetic Algorithms
(pp. 123-127). San Mateo, CA: Morgan Kaufmann.

Raich, A.M. & Ghaboussi, J. (1999). Evolving structural design solutions using
an implicit redundant genetic algorithm. In Banzhaf, W., et.al. (eds.), GECCO-
99: Proceedings of the Genetic and Evolutionary Computation Conference
(pp. 1691-1698). San Franciso, CA: Morgan Kaufman.

Raich, A.M. & Ghaboussi, J. (1997). Implicit redundant representation in genetic
algorithms. Evolutionary Computation, 5(3), 277-302.

Reich, Y. & Fenves, S.J. (1995). System that learns to design cable-stayed
bridges. ASCE Journal of Structural Engineering, 121(7), 1090-1100.

Roston, G.P. & Sturges, R.H. (1996). Using the genetic design methodology for
structure configuration. Microcomputers in Civil Engineering, 11, 175-183.

Saka, M.P. (1997). Optimum design of steel frames with tapered members.
Computers & Structures, 63(4), 797-811.

Simoes, L.M.C. (1996). Optimization of frames with semi-rigid connections.
Computers & Structures, 60(4), 531-539.

Sugimoto, H. & Bianli, L. (1996). Fully-stressed design of framed structures with
discrete variables and application of genetic algorithm. In D.M. Frangopol and
F.Y. Cheng (Eds.), Advances in Structural Optimization, Proceedings of the
First US-Japan Joint Seminar on Structural Optimization, Structures
Congress “96 (pp. 180-191). New York, NY: ASCE.

Wu, A.S. & Lindsay, R.K. (1996). A comparison of the fixed and floating
building block representation in the genetic algorithm. Evolutionary
Computation, 4(2).

Raich, & Ghaboussi, J. (in press). Evolving the topology and geometry
of frame structures during optimization. Structural Optimization, Heidelberg:
Springer-Verlag, in press.

A.M.

Chapter 10 How to Handle Constraints with
Evolutionary Algorithms

B.G.W. Craenen, A.E. Eiben and E. Marchiori

Vrije Universiteit Amsterdam (VU Amsterdam)
De Boelelaan 1081a
1081 HV Amsterdam

Gusz Eiben is also affiliated with:
Leiden Institute for Advanced Computer Science (LIACS)
Niels Bohrweg 1
2333 CA Leiden

http://www.cs.vu.nl/~gusz
http://www.cs.vu.nl/~elena
http://www.cs.vu.nl/~bcraenen

gusz@cs.vu.nl
elena@cs.vu.nl
bcraenen@cs.vu.nl

Abstract

In this chapter we describe evolutionary algorithms (EAs) for constraint handling.
Constraint handling is not straightforward in an EA because the search operators
mutation and recombination are “blind” to constraints. Hence, there is no
guarantee that if the parents satisfy some constraints the offspring will satisfy
them as well. This suggests that the presence of constraints in a problem makes
EAs intrinsically unsuited to solve this problem. This should especially hold when
the problem does not contain an objective function to be optimized, but only
constraints – the category of constraint satisfaction problems. A survey of related
literature, however, indicates that there are quite a few successful attempts to
evolutionary constraint satisfaction. Based on this survey, we identify a number
of common features in these approaches and arrive at the conclusion that EAs can
be effective constraint solvers when knowledge about the constraints is
incorporated either into the genetic operators, in the fitness function, or in repair
mechanisms. We conclude by considering a number of key questions on research
methodology.

http://www.cs.vu.nl/~bcraenen
http://www.cs.vu.nl/~elena
http://www.cs.vu.nl/~gusz

10.1 Introduction
Many practical problems can be formalized as constrained (optimization)
problems. These problems are in general tough (NP-hard); hence, they need
heuristic algorithms in order to be (approximately) solved in a short time.

EAs show a good ratio of (implementation) effort to performance, and are
acknowledged as good solvers for tough problems. However, no standard EA
takes constraints into account. That is, the regular search operators, mutation and
recombination, in evolutionary programming, evolution strategies, genetic
algorithms, and genetic programming, are “blind” to constraints. Hence, even if
the parents are satisfying some constraints, they might very well get offspring
violating them. Technically, this means that EAs perform unconstrained search.
This observation suggests that EAs are intrinsically unsuited to handle
constrained problems.

In this chapter we will have a closer look at this phenomenon. We start with
describing approaches for handling constraints in evolutionary computation. Next
we present an overview of EAs for constraint satisfaction problems, pointing out
the key features that have been added to the standard EA machinery in order to
handle constraints. In Section 10.4 we summarize the main lessons learned from
the overview and indicate where constraints provide extra information on the
problem and how this information can be utilized by an evolutionary algorithm.
Thereafter, Section 10.5 handles a number of methodological considerations
regarding research on solving constraint satisfaction problems (CSPs) by means
of EAs. The final section concludes this chapter by reiterating that EAs are suited
to treat constrained problems and touches on a couple of promising research
directions.

10.2 Constraint Handling in EAs
There are many ways to handle constraints in an EA. At a high conceptual level
we can distinguish two cases, depending on whether they are handled indirectly
or directly. Indirect constraint handling means that we circumvent the problem of
satisfying constraints by incorporating them in the fitness function f such that f
optimal implies that the constraints are satisfied, and use the optimization power
of the EA to find a solution. By direct constraint handling we mean that we leave
the constraints as they are and “adapt” the EA to enforce them. We will return
later to the differences between these two cases. Let us note that direct and
indirect constraint handling can be applied in combination, i.e., in one application
we can: handle all constraints indirectly; handle all constraints directly; or, handle
some constraints directly and others indirectly. Formally, indirect constraint
handling means transforming constraints into optimization objectives. The
resulting problem transformation imposes the requirement that the (eliminated)

constraints are satisfied if the (new) optimization objectives are at their optima.
This implies that the given problem is transformed into an equivalent problem
meaning that the two problems share the same solutions.1 For a given constrained
problem, several equivalent problems can be defined by choosing the subset of
the constraints to be eliminated and/or defining the objective function measuring
their satisfaction differently. So, there are two important questions to be
answered.

• Which constraints should be handled directly (kept as constraints) and
which should be handled indirectly (replaced by optimization objectives)?

• How to define the optimization objectives corresponding to indirectly
handled constraints?

Treating constraints directly implies that violating them is not reflected in the
fitness function, thus there is no bias towards chromosomes satisfying them.
Therefore, the population will not become less and less infeasible w.r.t. these
constraints.2

This means that we have to create and maintain feasible chromosomes in the
population. The basic problem in this case is that the regular genetic operators are
blind to constraints, mutating one or crossing over two feasible chromosomes can
result in infeasible offspring. Typical approaches to handle constraints directly are
the following:

• Eliminating infeasible candidates

• Repairing infeasible candidates

• Preserving feasibility by special operators

• Decoding, i.e., transforming the search space

Eliminating infeasible candidates is very inefficient, and therefore hardly
applicable. Repairing infeasible candidates requires a repair procedure that
modifies a given chromosome such that it will not violate constraints. This
technique is thus problem dependent; but if a good repair procedure can be
developed, then it works well in practice, see for instance Section 4.5 in [34] for a
comparative case study. The preserving approach amounts to designing and
applying problem specific operators that do preserve the feasibility of parent
chromosomes. Using such operators, the search becomes quasi-free because the
offspring remains in the feasible search space, if the parents were feasible. This is
the case in sequencing applications, where a feasible chromosome contains each
label (allele) exactly once. The well-known order-based crossovers [20,47] are
designed to preserve this property. Note that the preserving approach requires the

creation of a feasible initial population, which can be NP-hard, e.g., for the
traveling salesman problem with time windows. Finally, decoding can simplify
the problem and allow an efficient EA. Formally, decoding can be seen as shifting
to a search space that is different from the cartesian product of the domains of the
variables in the original problem formulation. Elements of the new search space
S′ serve as inputs for a decoding procedure that creates feasible solutions, and it is
assumed that a free (modulo preserving operators) search can be performed in S′
by an EA. For a nice illustration we refer again to Section 4.5 in [34].

In case of indirect constraint handling, the optimization objectives replacing the
constraints are traditionally viewed as penalties for constraint violation, hence to
be minimized. In general, penalties are given for violated constraints although
some (problem specific) EAs allocate penalties for wrongly instantiated variables
or, when different from the other options, as the distance to a feasible solution.

Advantages of indirect constraint handling are:

• Generality

• Reduction of the problem to `simple' optimization

• Possibility of embedding user preferences by means of weights

Disadvantages of indirect constraint handling are:

• Loss of information by packing everything in a single number

• Does not work well for sparse problems

• How to merge original objective function with penalties

There are other classification schemes of constraint handling techniques in EC.
For instance, the categorization in [33] distinguishes pro-choice and pro-life
techniques, where pro-choice encompasses eliminating, decoding, and preserving,
while pro-life covers penalty based and repairing approaches. Overviews and
comparisons published on evolutionary computation techniques for constraint
handling so far mainly concern continuous domains, [30,31,32,35]. Constraint
handling in continuous and discrete domains relies to a certain extent on the same
ideas. There are, however, also differences; for instance, in continuous domains
constraints can be characterized as linear, nonlinear, etc., and in case of linear
constraints, special averaging recombination operators can guarantee that
offspring of feasible parents are feasible. In discrete domains, this is impossible.

The rest of this chapter is concerned with a comparative analysis of a number of
methods based on EAs for solving CSPs that have been so far introduced. Our
comparison is mainly based on the way constraints are handled, either directly or

indirectly. Therefore, our discussion will not take into account the particular
parameters setting of a GA, like the role of mutation and crossover rates, or the
role of the selection mechanism and the size of the population. This survey does
not pretend to be a comprehensive account of all the works on solving CSP using
EAs. It is rather meant to emphasize the main ideas on constraint handling (over
finite domains) which have been employed in evolutionary algorithms.

10.3 Evolutionary CSP Solvers
Usually a CSP is stated as a problem of finding an instantiation of variables v1, ...,
vn within the finite domains D1, ..., Dn such that constraints (relations) c1, ..., cm

prescribed for (some of) the variables hold. One may be interested in one, some or
all solutions, or only in the existence of a solution.

In recent years there have been reports on quite a few EAs for solving CSPs (for
finding one solution) having a satisfactory performance. The majority of these
EAs perform indirect constraint handling by means of a penalty-based fitness
function, and possibly incorporate knowledge about the CSP into the genetic
operators, the fitness function, or as a part module in the form of local search.
First, we describe four approaches for solving CSPs using GAs that exploit
information on the constraint network. Next, we discuss three other methods for
solving CSPs which make use of an adaptive fitness function in order to enhance
the search for a good (approximate) solution.

10.3.1 Heuristic Genetic Operators

In [15,16], Eiben et al. propose to incorporate existing CSP heuristics into genetic
operators. Two heuristic-based genetic operators are specified: an asexual
operator that transforms one individual into a new one and a multi-parent operator
that generates one offspring using two or more parents. The asexual heuristic-
based genetic operator selects a number of variables in a given individual, and
then chooses new values for these variables. Both steps are guided by a heuristic:
for instance, the selected variables are those involved in the largest number of
violated constraints, and the new values for those variables are the values which
maximize the number of constraints that become satisfied. The basic mechanism
of the multi-parent heuristic crossover operator is scanning: for each position, the
values of the variables of the parents in that position are used to determine the
value of the variable in that position in the child. The selection of the value is
done using the heuristic employed in the asexual operator. The difference with the
asexual heuristic operator is that the heuristic does not evaluate all possible values
but only those of the variables in the parents. The multi-parent crossover is
applied to more parents (typical value 5) and produces one child.

The main features of three EAs based on this approach, called H-GA.1, H-GA.2,
and H-GA.3, are illustrated in Table 10.1. In the H-GA.1 version, the heuristic-
based genetic operator serves as the main search operator assisted by (random)
mutation. In H-GA.3, it accompanies the multi-parent crossover in a role which is
normally filled in by mutation.

Table 10.1 Specific features of three implemented versions of H-GA

Version 1 Version 2 Version 3

Main operator
Asexual heurist ic
operator

Multi-parent heuristic
crossover

Multi-parent heuristic
crossover

Secondary operator Random mutation Random mutation
Asexual heurist ic
operator

Fitness function Number of violated constraints
Extra None

10.3.2 Knowledge-Based Fitness and Genetic Operators

In [45,44], M.C. Riff Rojas introduces an EA for solving CSPs which uses
information about the constraint network in the fitness function and in the genetic
operators (crossover and mutation). The fitness function is based on the notion of
error evaluation of a constraint. The error evaluation of a constraint is the sum of
the number of variables of the constraint and the number of variables that are
connected to these variables in the CSP network. The fitness function of an
individual, called arc-fitness, is the sum of error evaluations of all the violated
constraints in the individual. The mutation operator, called arc-mutation, selects
randomly a variable of an individual and assigns to that variable the value that
minimizes the sum of the error-evaluations of the constraints involving that
variable. The crossover operator, called arc-crossover, selects randomly two
parents and builds an offspring by means of the following iterative procedure over
all the constraints of the considered CSP. Constraints are ordered according to
their error-evaluation with respect to instantiations of the variables that violate the
constraints. For the two variables of a selected (binary) constraint c, say vi,vj, the
following cases are distinguished.

If none of the two variables are instantiated in the offspring under
construction, then:

• If none of the parents satisfies c, then a pair of values for vi,vj

from the parents is selected which minimizes the sum of the error
evaluations of the constraints containing vi or vj whose other
variables are already instantiated in the offspring

• If there is one parent which satisfies c, then that parent supplies
the values for the child

• If both parents satisfy c, then the parent which has the higher
fitness provides its values for vi,vj

If only one variable, say vi, is not instantiated in the offspring under
construction, then the value for vi is selected from the parent minimizing the
sum of the error-evaluations of the constraints involving vi.

If both variables are instantiated in the offspring under construction, then the
next constraint (in the ordering described above) is selected.

The main features of a GA based on this approach are summarized in Table 10.2.

Table 10.2 Specific features of Arc-GA

Crossover operator Arc-crossover operator
Mutation operator Arc-mutation operator
Fitness function Arc-fitness
Extra None

10.3.3 Glass-Box Approach

In [28], E. Marchiori introduces an EA for solving CSPs which transforms
constraints into a canonical form in such a way that there is only one single (type
of) primitive constraint. This approach, called glass-box approach, is used in
constraint programming [49], where CSPs are given in implicit form by means of
formulas of a given specification language. For instance, for the N-Queens
Problem, we have the well-known formulation in terms of the following
constraints, where abs denotes absolute value:

• vi ≠ vj for all i ≠ j (two queens cannot be on the same row)
• abs(vI - vj) ≠ abs(I - j) for all i ≠ j (two queens cannot be on the same

diagonal)

By decomposing complex constraints into primitive ones, the resulting constraints
have the same granularity and therefore the same intrinsic difficulty. This
rewriting of constraints, called constraint processing, is done in two steps:
elimination of functional constraints (as in GENOCOP [34]) and decomposition
of the CSP into primitive constraints. The choice of primitive constraints depends
on the specification language. The primitive constraints chosen in the examples
considered in [28], the N-Queens Problem and the Five Houses Puzzle, are linear
inequalities of the form: α·vi - β ·vj ≠ γ . When all constraints are reduced to the

same form, a single probabilistic repair rule is applied, called dependency
propagation. The repair rule used in the examples is of the form if α·pi - β ·pj =
γ then change pi or pj. The violated constraints are processed in random order.
Repairing a violated constraint can result in the production of new violated
constraints, which will not be repaired. Thus, at the end of the repairing process,
the chromosome will not in general be a solution. Note that this kind of EA is
designed under the assumption that CSPs are given in implicit form by means of
formulas in some specification language.

A simple heuristic can be used in the repair rule by selecting the variable whose
value has to be changed as the one which occurs in the largest number of
constraints, and by setting its value to a different value in the variable domain.
The main features of this EA are summarized in Table 10.3.

Table 10.3 Main features of Glass-Box GA

Crossover operator One-point crossover
Mutation operator Random mutation
Fitness function Number of violated constraints
Extra Repair rule

10.3.4 Genetic Local Search

In [29], Marchiori and Steenbeek introduced a genetic local search (GLS)
algorithm for random binary CSPs, called RIGA (Repair Improve GA). In this
approach, heuristic information is not incorporated into the GA operators or
fitness function, but is included into the GA as a separate module in the form of a
local search procedure. The idea is to combine a simple GA with a local search
procedure, where the GA is used to explore the search space, while the local
search procedure is mainly responsible for the exploitation.

In RIGA, the local search applied to a chromosome produces a consistent partial
instantiation, that is, only some of the variables of the CSP have a value, and each
constraint of the CSP whose variables are all instantiated is satisfied. Moreover,
this partial instantiation is maximal, that is, it cannot be extended by binding
some non-instantiated variable to a value without violating consistency. A
chromosome is a sequence of actual domains (a actual domain is a subset of the
domain), one for each variable of the CSP.

RIGA consists of two main phases:

• Repair: a chromosome is transformed into a consistent partial
instantiation by removing values from the actual domains of the variables

• Improve: the consistent partial instantiation is optimized and maximized

The main features of the GLS algorithm are summarized in Table 10.4.

Table 10.4 Main features of the GLS algorithm

Crossover operator Uniform
Mutation operator Random mutation
Fitness function Number of instantiated variables
Extra Local search

10.3.5 Co-evolutionary Approach

This approach has been tested by Paredis on different problems, such as neural
net learning [40], constraint satisfaction [39,40] and searching for cellular
automata that solve the density classification task [41].

In the co-evolutionary approach for CSPs two populations evolve according to a
predator-prey model: a population of (candidate) solutions and a population of
constraints. The selection pressure on individuals of one population depends on
the fitness of the members of the other population. The fitness of an individual in
either of these populations is based on a history of encounters. An encounter
means that a constraint from the constraint population is matched with a
chromosome from the solutions population. If the constraint is not violated by the
chromosome, the individual from the solutions population gets a point.
Otherwise, the constraint gets a point. The fitness of an individual is the number
of points it has obtained in the last 25 encounters. In this way, individuals in the
constraint population which have been often violated by members of the solutions
population have higher fitness. This forces the solutions to concentrate on more
difficult constraints. At every generation of the EA, 20 encounters are executed
by repeatedly selecting pairs of individuals from the populations, biasing the
selection towards fitter individuals. Clearly, mutation and crossover are only
applied to the solutions population. Parents for crossover are selected using linear
ranked selection [50]. The main features of this EA are summarized in Table 10.5.

Table 10.5 Main features of the co-evolutionary algorithm

Crossover operator Two-point crossover
Random mutation
Fitness function Number of points in last 25 encounters
Extra Co-evolution

Another noteworthy example of using a co-evolutionary approach to solving
satisfaction problems was done by Hisashi Handa et al. in [23,24]. Here, the host
population of solutions competes with a parasite population of useful schemata.

These and successive papers explore the use of different operators as well as
demonstrate the effectiveness of this kind of co-evolutionary approach.

10.3.6 Heuristic-Based Microgenetic Method

In the approach proposed by Dozier et al. in [7], and further refined in [4,8],
information about the constraints is incorporated both in the genetic operators and
in the fitness function. In the Microgenetic Iterative Descent algorithm, the fitness
function is adaptive and employs Morris' Breakout Creating Mechanism to escape
from local optima. At each generation, an offspring is created by mutating a
specific gene of the selected chromosome, called the pivot gene, and that
offspring replaces the worst individual of the actual population. The new value
for that gene as well as the pivot gene are heuristically selected. Roughly, the
fitness function of a chromosome is determined by adding a suitable penalty term
to the number of constraint violations the chromosome is involved in. The penalty
term is the sum of the weights of all the breakouts3 whose values occur in the
chromosome. The set of breakouts is initially empty and it is modified during the
execution by increasing the weights of breakouts and by adding new breakouts
according to the technique used in the Iterative Descent Method [38].

Table 10.6 Main features of heuristic-based microgenetic algorithm

Crossover operator None
Mutation operator Single-point heuristic mutation
Fitness function Heuristic based
Extra None

In [4,8], this algorithm is improved by introducing a number of novel features,
like a mechanism for reducing the number of redundant evaluations, a novel
crossover operator, and a technique for detecting inconsistency.

10.3.7 Stepwise Adaptation of Weights

The Stepwise Adaptation of Weights (SAW) mechanism has been introduced by
Eiben and van der Hauw [11] as an improved version of the weight adaptation
mechanism of Eiben, Raué and Ruttkay [17,18]. In several comparisons the
SAW-ing EA proved to be a superior technique for solving specific CSPs
[2,12,14]. The basic idea behind the SAW-ing mechanism is that constraints that
are not satisfied after a certain number of steps must be hard, and thus must be
given a high weight (penalty). The realization of this idea constitutes initializing
the weights at 1 and re-setting them by adding a value δw after a certain period.
Re-setting is only applied to those constraints that are violated by the best
individual of the given population. Earlier studies indicated the good performance

of a simple (1+1) scheme, using a singleton population and exclusively mutation
to create offspring. The representation is based on a permutation of the problem
variables; a permutation is transformed to a partial instantiation by a simple
decoder that considers the variables in the order they occur in the chromosome
and assigns the first possible domain value to that variable. If no value is possible
without introducing a constraint violation, the variable is left uninstantiated.
Uninstantiated variables are then penalized and the fitness of the chromosome (a
permutation) is the total of these penalties. Let us note that penalizing
uninstantiated variables is a much rougher estimation of solution quality than
penalizing violated constraints. This option worked well for graph coloring.

Table 10.7 Main features of the SAW-ing algorithm

Crossover operator Uniform
Mutation operator Random mutation
Fitness function Based on the hardness of constraints
Extra A decoder to obtain a consistent partial instantiation

10.4 Discussion
The amount and quality of work in the area of evolutionary CSP solving certainly
refutes the initial intuitive hypothesis that EAs are intrinsically unsuited for
constrained problems. This raises the question: what makes EAs able to solve
CSPs? Looking at the specific features of EAs for CSPs, one can distinguish two
categories. In the first category we find heuristics that can be incorporated in
almost any EA component, the fitness function, the variation operators mutation
and recombination, the selection mechanism, or used in a repair procedure. The
second category is formed by adaptive features, in particular a fitness function
that is being modified during a run. All reported algorithms fall into one of these
categories and that of Dozier et al. belongs to both.

A careful look at the above features discloses that they are all based on
information related to the constraints themselves. The very fact that the (global)
problem to be solved is defined in terms of (local) constraints to be satisfied
facilitates the design and usage of “tricks.” The scope of applicability of these
tricks is limited to constrained problems,4 but not necessarily to a particular CSP,
like SAT or graph coloring. The first category of tricks is based on the fact that
the presence of constraints facilitates measures on sub-individual structures. For
instance, one gene (variable) can be evaluated by the number of conflicts its
present value is involved in. Such sub-individual measures are not possible, for
example, in a pure function optimization problem, where only a whole individual
can be evaluated. These measures are typically used as evaluation heuristics
giving hints on how to proceed in constructing an offspring, or in repairing a

given individual. The second category is based on the fact that the composite
nature of the problem leads to a composite evaluation function. Such a composite
function can be tuned during a run by adding new nogoods (Dozier), modifying
weights (SAW-ing), or changing the reference set of constraints used to calculate
it (co-evolution).

Browsing through the literature, there are other aspects that (some of) the papers
share. Apparently, indirect constraint handling is more common practice than
direct constraint handling. On the other hand, in almost all applications, some
heuristics are used even if the transformed problem is a free optimization
problem, and these heuristics are meant to increase the chance of satisfying
constraints. In other words, constraints are handled directly by these heuristics.

Another noteworthy property that occurs repeatedly in EAs for CSPs is the small
size of the population. Common EA wisdom suggests that big populations are
better than small ones for they can keep genetic diversity easier, respectively
longer. From personal communications with authors and personal experience, it
turns out that using small populations is always justified by experiments. Exactly
because small populations contradict one’s intuition, such setups are only taken
after substantial experimental justification. Such an experimental comparison
sometimes leads to surprising outcomes, for instance, that the optimal setup is to
use a population of size 1 and only mutation as search operator [2,10]. In this
case, it is legitimate to ask whether the resulting algorithm is still evolutionary or
is it only just a hill-climber. Clearly, this is a judgment call, but as most people in
evolutionary computation accept the (1+1) and the (1,1) evolution strategy as
members of the family, it is legitimate to say that one still has an EA in this case.

Summarizing, it seems possible to extract some guidelines from existing literature
on how to tackle a CSP by evolutionary algorithms. A short list of promising
options is:

Use, possibly existing, heuristics to estimate the quality of sub-individual
entities (like one variable assignment) in the components of the EA: fitness
function, mutation and recombination operators, selection, repair mechanism

Exploit the composite nature of the fitness function and change its
composition over time. During the search, information is collected (e.g., on
which constraints are hard); this information can be very well utilized

Try small populations and mutation-only schemes

10.5 Assessment of EAs for CSPs
The foregoing sections have indicated that evolutionary algorithms can solve
constrained problems, in particular CSPs. But are these evolutionary CSP solvers
competitive with traditional techniques? Some papers draw a comparison between

an EA and another technique, for instance, on 3-SAT and graph 3-coloring. In
general, however, this question is still open.

Performing an experimental comparison between algorithms, in particular,
between evolutionary and other type of problem solvers, implies a number of
methodological questions:

Which benchmark problems and problem instances should be used?

Which competitor algorithms should be used?

Which comparative measures should be used?

As for the problems and problem instances, one can distinguish two main
approaches: the repository and the generator approach. The first one amounts to
obtaining prepared problem instances that are freely available from (Web-based)
repositories; for instance, the Constraints Archive at http://www.cs.unh.edu/ccc/
archive. The advantage of this approach is that the problem instances are
“interesting” in the sense that other researchers have already investigated and
evaluated them. Besides, an archive often contains performance reports of other
techniques, thereby providing direct feedback on one's own achievements. Using
a problem instance generator (which of course could be coming from an archive)
means that problem instances are produced on-the-spot. Such a generator usually
has some problem-specific parameters, for instance, the number of clauses and
the number of variables for 3-SAT, or the constraint density and constraint
tightness for binary CSPs. The advantage of this approach is that the hardness of
the problem instances can be tuned by the parameters of the generator. Recent
research has shed light on the location of really hard problem instances, the so-
called phase transition, for different classes of problems [5,21,22,25,36,42,43,46].
A generator makes it possible to perform a systematic investigation in and around
the hardest parameter range. The currently available EA literature mostly follows
the repository approach tackling commonly studied problems, like N-queens,5 3-
SAT, graph coloring, or the Zebra puzzle. Dozier et al. use a random problem
instance generator for binary CSPs6 which creates instances for different
constraint tightness and density values [7]. Later on this generator was adopted
and reimplemented by Eiben et al. [13].

Advice on the choice for a competitor algorithm boils down to the same
suggestion: choose the best one available to represent a real challenge.
Implementing this principle is, of course, not always simple. It could be hard to
find out which specific algorithm shows the best performance on a given (type of)
problem. This is not only due to the difficulties of finding information.
Sometimes, it is not clear which criteria to use for basing the choice upon.

http://www.cs.unh.edu/ccc/archive
http://www.cs.unh.edu/ccc/archive

This problem leads us to the third aspect of comparative experimental research:
that of the comparative measures. The performance of a problem-solving
algorithm can be measured in different ways. Speed and solution quality are
widely used, and for stochastic algorithms, as EAs are, the probability of finding a
solution (of certain quality) is also a common measure.

Speed is often measured in elapsed computer time, CPU time, or user time.
However, this measure is dependent on the specific hardware, operating system,
compiler, network load, etc. and therefore is ill-suited for reproducible research.
In other words, repeating the same experiments, possibly elsewhere, may lead to
different results. For generate-and-test style algorithms, as EAs are, a common
way around this problem is to count the number of points visited in the search
space. Since EAs immediately evaluate each newly generated candidate solution,
this measure is usually expressed as the number of fitness evaluations. Forced by
the stochastic nature of Eas, this is always measured over a number of
independent runs and the Average number of Evaluations to a Solution (AES) is
used. It is important to note that the average is only taken over the successful runs
(“to a Solution”), otherwise, the actually used maximum number of evaluations
would distort the statistics. Fair as this measure seems, there are two possible
problems with it. First, it could be misleading if an EA uses “hidden labor,” for
instance some heuristics incorporated in the genetic operators, in the fitness
function, or in a local search module (like in GLS). The extra computational
effort due to hidden labor can increase performance, but is invisible to the AES
measure.7 Second, it can be difficult to apply AES for comparing an EA with
search algorithms that do not work in the same search space. An EA is iteratively
improving complete candidate solutions, so one elementary search step is the
creation of one new candidate solution. However, a constructive search algorithm
would work in the space of partial solutions (including the complete ones that an
EA is searching through) and one elementary search step is extending the current
solution. Counting the number of elementary search steps is misleading if the
search steps are different. A common treatment for both of these problems with
AES (hidden labor, different search steps) is to compare the scale-up behavior of
the algorithms. To this end, a problem is needed that is scalable, that is, its size
can be changed. The number of variables is a natural scale-up parameter for many
problems. Two different types of methods can then be compared by plotting their
own speed measure figures against the problem size. Even though the measures
used in each curve are different, the steepness information is a fair basis for
comparison: the curve that grows at a higher rate indicates an inferior algorithm.

Solution quality of approximate algorithms for optimization is most commonly
defined as the distance to an optimum at termination, e.g., |fbest – fopt|, where f is
the function to be optimized, fbest is the f value of best candidate solution found in

the given run, and fopt is the optimal f value. For stochastic algorithms, this is
averaged over a number of independent runs and in evolutionary computing the
Mean Best Fitness (MBF) is a commonly used name for this measure. As we
have seen in this chapter, for constraint satisfaction problems, it is not
straightforward what f to use – there are more sensible options. For comparing the
solution quality of algorithms, this means that there are more sensible quality
measures. The problem is then, that most probably one would use the function f
that has been used to find a solution and this can be different for another
algorithm. For instance, algorithm A could use the number of unsatisfied
constraints as fitness function and algorithm B could use the number of wrong
variable instantiations. It is then not clear what measure to use for comparing the
two algorithms. Moreover, in constraint satisfaction, it is often not good enough
to be close to a solution. A candidate is either good (satisfies all constraints) or
bad (violates some constraints). In this case, it makes no sense to look at the
distance to a solution as a quality measure, hence the MBF measure is not
appropriate.

The third measure which is often used to judge stochastic algorithms, and thus
EAs, is the probability of finding a solution (of certain quality). This probability
can be estimated by performing a number of independent runs under the same
setup on the same type of problems and keep a record on the percentage of runs
that did find a solution. This Success Rate (SR) completes the picture obtained by
AES and MBF. Note that SR and MBF are related but do provide different
information, and all different combinations of good/bad SR/MBF are possible.
For instance, bad (low) SR and good (high) MBF indicate a good approximator
algorithm: it gets close, but misses the last step to hit the solution. Likewise, a
good (high) SR and a bad (low) MBF combination is also possible. Such a
combination shows that the algorithm mostly performs perfectly, but sometimes it
does a very bad job.

10.6 Conclusion
This survey of related work disclosed how EAs can be made successful in solving
CSPs. Roughly classifying the options we encountered, the key features are the
utilization of heuristics and/or the adaptation of the fitness function during a run.
Both features are based on the structure of the problems in question, so in a way
the problem of how to treat CSPs carries its own solution.

In particular, constraints facilitate the use of sub-individual measures to evaluate
parts of candidate solutions. Such sub-individual measures are not possible, for
example, in a pure function optimization problem, where only a whole individual
can be evaluated. These measures lead to heuristics that can be incorporated in
practically any component of an EA, the fitness function, mutation and

recombination operators, selection, or used in a repair (or local search)
mechanism.

Likewise, it is the presence of constraints that leads to a fitness function
composed from separate pieces. This composition or the relative importance of
the components can be changed over time. During the search, information is
collected (e.g., on which constraints are hard) and this information can be very
well utilized.

The field of evolutionary constraint satisfaction is relatively new. Intensive
investigations started approximately in the mid-1990s, while evolutionary
computing itself has it roots in the 1960s. Because of the short history, coherence
is lacking and the findings of individual experimental studies cannot be
generalized (yet). There are a number of research directions that should be
pursued in the future for further development. These include:

• Study of the problem area. A lot can be learned from the traditional
constrained literature about such problems. Existing knowledge should be
imported into core EC research

• Cross-fertilization between the insights concerning EAs for (continuous)
COPs and (discrete) CSPs. At present, these two sub-areas are practically
unrelated

• Sound methodology: how to set up fair experimental research, how to
obtain good benchmarks, how to compare EAs with other techniques.

• Theory: better analysis of the specific features of constrained problems,
and the influence of these features on EA behavior

References
[1] Genetic Algorithms, San Francisco, CA, 1997. Morgan Kaufmann.

[2] Th. Bäck, A.E. Eiben, and M.E. Vink. A superior evolutionary algorithm for
3-SAT. In V.W. Porto, N. Saravanan, D. Waagen, and A.E. Eiben, editors,
Proceedings of the 7th Annual Conference on Evolutionary Programming,
number 1477 in Lecture Notes in Computer Science, pages 125-136, Berlin,
1998. Springer-Verlag.

[3] R.K. Belew and L.B. Booker, editors. Proceedings of the 4th International
Conference on Genetic Algorithms. Morgan Kaufmann, 1991.

[4] J. Bowen and G. Dozier. Solving constraint satisfaction problems using a
genetic/systematic search hybride that realizes when to quit. In Eshelman [19],
pages 122-129.

[5] P. Cheeseman, B. Kenefsky, and W.M. Taylor. Where the really hard
problems are. In J. Mylopoulos and R. Reiter, editors, Proceedings of the 12th
IJCAI, pages 331-337. Morgan Kaufmann, 1991.

[6] A.G. Cohn, editor. Proceedings of the 11th European Conference on Artificial
Intelligence, New York, NY, 1994. John Wiley & Sons.

[7] G. Dozier, J. Bowen, and D. Bahler. Solving small and large constraint
satisfaction problems using a heuristic-based microgenetic algorithm. In IEEE
[26], pages 306-311.

[8] G. Dozier, J. Bowen, and D. Bahler. Solving randomly generated constraint
satisfaction problems using a micro-evolutionary hybrid that evolves a
population of hill-climbers. In Proceedings of the 2nd IEEE Conference on
Evolutionary Computation, pages 614-619. IEEE Computer Society Press,
1995.

[9] J. Eggermont, A.E. Eiben, and J.I. van Hemert. Adapting the fitness function
in GP for data mining. In R. Poli, P. Nordin, W.B. Langdon, and T.C. Fogarty,
editors, Genetic Programming, Proceedings of EuroGP'99, volume 1598 of
Lecture Notes in Computer Science, pages 195-204. Springer-Verlag, 1999.

[10] A.E. Eiben and J.K. van der Hauw. Solving 3-SAT with adaptive genetic
algorithms. In IEEE [27], pages 81-86.

[11] A.E. Eiben and J.K. van der Hauw. Adaptive penalties for evolutionary
graph-coloring. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and
D. Snyers, editors, Artificial Evolution '97, number 1363 in Lecture Notes in
Computer Science, pages 95-106, Berlin, 1998. Springer-Verlag.

[12] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring with
adaptive evolutionary algorithms. Journal of Heuristics, 4(1):25-46, 1998.

[13] A.E. Eiben, J.I. van Hemert, E. Marchiori, and A.G. Steenbeek. Solving
binary constraint satisfaction problems using evolutionary algorithms with an
adaptive fitness function. In A.E. Eiben, Th. Bäck, M. Schoenauer, and H.-P.
Schwefel, editors, Proceedings of the 5th Conference on Parallel Problem
Solving from Nature, number 1498 in Lecture Notes in Computer Science,
pages 196-205, Berlin, 1998. Springer-Verlag.

[14] A.E. Eiben and J.I. van Hemert. SAW-ing EAs: Adapting the fitness function
for solving constrainted problems. In D. Corne, M. Dorigo, and F. Glover,
editors, New Ideas in Optimization, pages 389-402. McGraw-Hill, 1999.

[15] A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. Heuristic genetic algorithms for
constrained problems, part i: Principles. Technical Report IR-337, Vrije
Universiteit Amsterdam, 1993.

[16] A.E. Eiben, P-E. Raué, and Zs. Ruttkay. Solving constraint satisfaction
problems using genetic algorithms. In IEEE [26], pages 542-547.

[17] A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. Constrained problems. In
L. Chambers, editor, Practical Handbook of Genetic Algorithms, pages 307-
365. CRC Press, 1995.

[18] A.E. Eiben and Zs. Ruttkay. Self-adaptivity for constraint satisfaction:
Learning penalty functions. In Proceedings of the 3rd IEEE Conference on
Evolutionary Computation, pages 258-261. IEEE Computer Society Press,
1996.

[19] L.J. Eshelman, editor. Proceedings of the 6th International Conference on
Genetic Algorithms. Morgan Kaufmann Publishers, Inc., 1995.

[20] B.R. Fox and M.B. McMahon. Genetic operators for sequencing problems.
In G. Rawlins, editor, Foundations of Genetic Algorithms, pages 284-300.
Morgan Kaufmann Publishers, 1991.

[21] I. Gent, E. MacIntyre, P. Prosser, and T. Walsh. Scaling effects in the CSP
phase transition. In U. Monanari and F. Rossi, editors, Principles and Practice
of Constraint Programming - CP95, Berlin, 1995. Springer-Verlag.

[22] I. Gent and T. Walsh. Unsatisfied variables in local search. In J. Hallam,
editor, Hybrid Problems, Hybrid Solutions. IOS Press, 1995.

[23] H. Handa, N. Baba, O. Katai, T. Sawaragi, and T. Horiuchi. Genetic
algorithm involving coevolution mechanism to search for effective genetic
information. In IEEE [27].

[24] H. Handa, C. O. Katai, N. Baba, and T. Sawaragi. Solving constraint
satisfaction problems by using coevolutionary genetic algorithms. In
Proceedings of the 5th IEEE Conference on Evolutionary Computation, pages
21-26. IEEE Computer Society Press, 1998.

[25] T. Hogg and C. Williams. The hardest constraint problems: A double phase
transition. Artificial Intelligence, 69:359-377, 1994.

[26] Proceedings of the 1st IEEE Conference on Evolutionary Computation.
IEEE Computer Society Press, 1994.

[27] Proceedings of the 4th IEEE Conference on Evolutionary Computation.
IEEE Computer Society Press, 1997.

[28] E. Marchiori. Combining constraint processing and genetic algorithms for
constraint satisfaction problems. In Bäck [1], pages 330-337.

[29] E. Marchiori and A. Steenbeek. Genetic local search algorithm for random
binary constraint satisfaction problems. In Proceedings of the ACM
Symposium on Applied Computing, 2000, pages 454-462.

[30] Z. Michalewicz. Genetic algorithms, numerical optimization, and constraints.
In Eshelman [19], pages 151-158.

[31] Z. Michalewicz. A survey of constraint handling techniques in evolutionary
computation methods. In J.R. McDonnell, R.G. Reynolds, and D.B. Fogel,
editors, Proceedings of the 4th Annual Conference on Evolutionary
Programming, pages 135-155, Cambridge, MA, 1995. MIT Press.

[32] Z. Michalewicz and N. Attia. Evolutionary optimization of constrained
problems. In A.V. Sebald and L.J. Fogel, editors, Proceedings of the 3rd
Annual Conference on Evolutionary Programming, pages 98-108. World
Scientific, 1994.

[33] Z. Michalewicz and M. Michalewicz. Pro-life versus pro-choice strategies in
evolutionary computation techniques. In M. Palaniswami, Y. Attikiouzel, R.J.
Marks, D. Fogel, and T. Fukuda, editors, Computational Intelligence: A
Dynamic System Perspective, pages 137-151. IEEE Computer Society Press,
1995.

[34] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained
parameter optimization problems. Evolutionary Computation, 4(1):1-32, 1996.

[35] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained
parameter optimization problems. Journal of Evolutionary Computation,
4(1):1-32, 1996.

[36] D. Mitchell, B. Selman, and H.J. Levesque. Hard and easy distributions of
SAT problems. In Proceedings of the 10th National Conference on Artificial
Intelligence, AAAI-92, pages 459-465. AAAI Press/The MIT Press, 1992.

[37] P. Morris. On the density of solutions in equilibrium points for the n-queens
problem. In Proceedings of the 9th International Conference on Artificial
Intelligence (AAAI-92), pages 428-433, 1992.

[38] P. Morris. The breakout method for escaping from local minima. In
Proceedings of the 11th National Conference on Artificial Intelligence, AAAI-
93, pages 40-45. AAAI Press/The MIT Press, 1993.

[39] J. Paredis. Coevolutionary constraint satisfaction. In Y. Davidor, H.-P.
Schwefel, and R. Männer, editors, Proceedings of the 3rd Conference on
Parallel Problem Solving from Nature, number 866 in Lecture Notes in
Computer Science, pages 46-55, Berlin, 1994. Springer-Verlag.

[40] J. Paredis. Co-evolutionary computation. Artificial Life, 2(4):355-375, 1995.

[41] J. Paredis. Coevolving cellular automata: Be aware of the red queen. In Bäck
[1].

[42] P. Prosser. Binary constraint satisfaction problems: Some are harder than
others. In Cohn [6], pages 95-99.

[43] P. Prosser. An empirical study of phase transitions in binary constraint
satisfaction problems. Journal of Artificial Intelligence, 81:81-109, 1996.

[44] M.C. Riff-Rojas. Evolutionary search guided by the constraint network to
solve CSP. In Belew and Booker [3], pages 337-348.

[45] M.C. Riff-Rojas. Using the knowledge of the constraint network to design an
evolutionary algorithm that solves CSP. In Belew and Booker [3], pages 279-
284.

[46] B.M. Smith. Phase transition and the mushy region in constraint satisfaction
problems. In Cohn [6], pages 100-104.

[47] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and C. Whitley. A
comparison of genetic sequenceing operators. In Belew and Booker [3], pages
69-76.

[48] E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press,
1993.

[49] P. van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in
cc(fd). In A. Podelski, editor, Constraint Programming: Basics and Trends.
Springer-Verlag, Berlin, 1995.

[50] D. Whitley. The GENITOR algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. In J.D. Schaffer, editor,
Proceedings of the 3rd International Conference on Genetic Algorithms, pages
116-123, San Mateo, CA, 1989. Morgan Kaufmann Publishers.

Notes:
1 Actually, it is sufficient to require that the solutions of the transformed problem
are also solutions of the original problem but this nuance is not relevant for this
discussion.
2 At this point, we should make a distinction between feasibility in the original
problem context and (relaxed) feasibility in the context of the transformed
problem. For example, we could introduce the name allowability for the
conjunction of those constraints that are handled directly. However, to keep the
discussion simple, we will use the term feasibility for both cases.
3 A breakout consists of two parts: 1) a pair of values that violates a constraint; 2)
a weight associated to that pair.
4 Actually, this is not entirely true. For instance, the SAW-ing technique can be
easily imported into GP for machine learning applications, cf. [9].

5 This problem has a rather exceptional feature: if its size (the number of queens)
is increased, it gets easier [37]. This makes it somewhat uninteresting as the
traditional “scale-up competition” won't work with it.
6 Binary CSPs (where each constraint concerns exactly two variables) form a nice
problem class. While they have a transparent structure, it holds that every CSP is
equivalent to a binary CSP [48].
7 In the CSP literature, the number of constraint checks is used commonly as
speed measure. It seems an interesting option to use this to measure in
combination with or as an alternative to the AES measure in evolutionary
computing.

Chapter 11 An Optimized Fuzzy Logic Controller for
Active Power Factor Corrector Using Genetic Algorithm

Henry S.H. Chung*†, Eugene P.W. Tam†, S.Y.R. Hui†, and W. L. Lo#

Abstract
This chapter presents the design of a fuzzy logic controller (FLC) for boost-type
power factor corrector. A systematic off-line design approach using the genetic
algorithm to optimize the input and output fuzzy subsets in the FLC is proposed.
Apart from avoiding complexities associated with nonlinear mathematical modeling
of switching converters, circuit designers do not have to perform time-consuming
procedures of fine-tuning the fuzzy rules, which require sophisticated experience
and intuitive reasoning as in many classical fuzzy-logic-controlled applications.
Optimized by a multi-objective fitness function, the proposed control scheme
integrates the FLC into the feedback path and a linear programming rule on
controlling the duty time of the switch for shaping the input current waveform,
making it unnecessary to sense the rectified input voltage. A 200-W experimental
prototype has been built. The steady-state and transient responses of the converter
under a large-signal change in the supply voltage and in the output load are
investigated.

11.1 Introduction
Since the early 1970s, many small-signal modeling, analysis, and control techniques
[1]-[4] for pulse-width-modulated (PWM) switching converters have been
proposed. Among various approaches, the most common ones are the averaging
technique and its variants. Starting from the state-space descriptions of each
converter topology and using small-ripple approximation, an averaged linear time-
invariant model is derived to replace the time-varying circuit. The averaged signals
are perturbed and then the derived equations are linearized by neglecting the
second- and higher-order terms. After separating the ac and dc parts, s-domain
transfer functions can be formulated. The methodology is simple and elegant, and

*Corresponding author.
† The authors are with the Department of Electronic Engineering, City University of Hong Kong, Tat

Chee Avenue, Kowloon Tong, Hong Kong.
The author is with the Department of Electrical Engineering, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong.

allows for the derivation of various closed-form transfer functions. However, the
small-signal model becomes inapplicable when the operating point of the converter
is shifted, such as a large-signal change in the input voltage and output load. Thus,
the validity of these methods is restricted to small-signal analysis, and a major
drawback would be the very limited range of fluctuation of system variables around
the nominal operating point. In order to retrieve more useful information about the
system, it is crucial that the model retains as many of the nonlinear properties of the
physical system as possible. Recent research has been directed towards the use of
applying nonlinear control principles to the dynamic control of converters. The
fuzzy logic controller (FLC) has gained practical success in industrial process
control and has become popular among engineers. It deals with problems that have
vagueness or uncertainty, and uses membership functions with values between zero
and one to solve problems. It can give robust adaptive response of a drive with
nonlinearity, parameter variation and load disturbance effect [5]. Many articles [5]-
[8] for motor drives, dc-dc, and dc-ac converters address performance and design
issues of using fuzzy logic to perform nonlinear control of the switching action. No
exact models of converters are required. The system is controlled by the fuzzy
control algorithm, in which a set of linguistic rules is embedded in accordance with
the designer’s experience and intuitive reasoning. However, as in many expert
systems, the rule base quality is difficult to investigate analytically. Thus,
optimization of such an FLC is not easy. Moreover, the development of an FLC for
the power factor corrector (PFC) [9] is still in slow pace.

This chapter presents an optimized fuzzy logic control scheme for a boost-type
PFC. The two key features of the methodology include (1) the integration of a fuzzy
logic control technique into the feedback path and (2) the use of linear
programming rules on the PWM ramp voltage to control the duty cycle of the
switch for shaping the input current waveform. The latter feature makes it
unnecessary to sense the input voltage. Apart from avoiding complexities associated
with nonlinear mathematical modeling of switching converters, the fuzzy sets used
in the FLC are determined by an off-line optimization approach using the genetic
algorithm (GA). Circuit designers become unnecessary to perform time-consuming
procedures of fine-tuning the fuzzy rules, which require sophisticated experience
and intuitive reasoning as in many classical fuzzy-logic-controlled applications. The
GA emulates the natural genetic evolution processes, having the advantages that the
search is executed at multiple searching points concurrently and statistically, and is
free from terminating at local minimum points. In this chapter, the GA is used to
optimize the membership functions of the input and output fuzzy subsets in the
FLC, in order to ensure satisfactory closed-loop transient responses.

Recent research developed at City University of Hong Kong shows that the FLC
can be optimized for minimal fuzzy memberships and rules by using hierarchical
genetic algorithms (HGA) [10]. The HGA is a general approach for optimization of
the number of input, output fuzzy subsets, parameters of membership functions and
rule table. However, both simulation and practical experience show that reasonable
performance can also be achieved with a fixed number of optimized input and
output fuzzy subsets. In order to give a compromise between the training time and
the quality of the optimization results, the number of the fuzzy memberships is
fixed and only the membership functions are optimized in this chapter. It will be
shown that satisfactory optimization results can be obtained with this approach.
Section 11.2 includes the linear programming rule for the boost rectifier and for the
operations of the FLC. Section 11.3 shows the GA optimization procedures of the
fuzzy rules. Section 11.4 gives the experimental results of a 200-W PFC prototype.
The steady-state and transient responses under a large-signal change in the supply
voltage and the output load are investigated. Section 11.5 gives the conclusions.

L

SW

D

C1 C2 RL

-

+

vramp

vc(n) = vc(n-1) + δ vc(n)

Defuzzification

Decision-Making

Fuzzification

vref
+-

e(n)ce(n)

e(n-1)
+ -

FLC

vout

iin

Figure 11.1 Block diagram of the boost rectifier with APFC and FLC

11.2 FLC for the Boost Rectifier
Figure 11.1 shows the block diagram of the proposed boost rectifier with PFC. The
input and output of the fuzzy logic system implemented in a digital signal processor
(DSP). It is only necessary to sense the slow-varying output voltage vout. The fast

varying input current iin is compared to the product of the FLC output and a
standard ramp function. The DSP is not required to generate a fast PWM signal at
the switching frequency fS.

11.2.1. Switching Rule for the Switch SW

Figure 11.2 shows the behavioral model of the boost converter [11]. vin is the supply
voltage of the converter. Don represents the duty cycle of SW. If the waveform of iin

varies in accordance with vin, it must make the converter look resistive at the input
terminal. When the converter is operating in continuous conduction mode (CCM),

outonin vDv)1(−= [11],

in

outon
in

in

in

i

vD
R

i

v)1(−== (1)

where Rin is the fictitious input resistance. If vin and vout are fixed, iin and the output
power can be adjusted by controlling Rin. The average switch current is can be
related with iin by

inons iDi = ⇒
on

s
in

D

i
i = (2)

If the operation of the rectifier is in CCM and the current ripple of the input current
is small, the on-state switch current Is,on can be approximated by

ins iI =on, (3)

By substituting Equation (2) into Equation (1),

)
1

1()1(on, on
sin

out
on

in

out
s t

TR

v
D

R

v
I −=−= (4)

ton = Don Ts is the on-time of SW and Ts (= 1 / fs) is the switching period. Equation
(4) gives the required relationship between Is,on and ton, in order to keep the input
side resistive. For practical implementation, a current reference function)(tiref that

gives a similar expression to Equation (4) is used, in order to follow the condition in
Equation (4). That is,

)()()
1

1()(tvtvt
TR

v
ti rampc

sin

out
ref =−= (5)

The waveform of)(tiref is similar to a ramp function in classical a PWM switching

converter, but the amplitude is adjustable and is controlled by)(tvc . Thus, the

switch current can compare with)(tiref , so that ton will be in accordance with the

above relationship. As shown in Equation (5),)(tiref is derived from the product of

the FLC output)(tvc , which gives the control action of inout Rv / in steady state,

and a standard ramp function)(tvramp that generates a function of)/1(STt− .

)(tvc is a slow-varying function. Compared with the classical current mode
controller [9], the proposed system eliminates the requirement for sensing the input
voltage for input current synchronization. This approach gives a similar effect like
the nonlinear carrier control in [12], but presents simpler methodology as in [13]
and [14].

L

vin

iin

(1 - Don) vout is = (1 - Don) iin

voutRLC2

iC2

Figure 11.2 Behavioral model of the APFC

11.2.2 Fuzzy Logic Controller (FLC)

One of the advantages of FLC is that it does not require an accurate mathematical
model of the whole system. The control action in the FLC is determined by a set of
fuzzy rules. Figure 11.1 shows the configuration of the FLC. The output voltage of
the PFC is sampled. At the nth sampling instant, two quantities are supplying to the
FLC, including an output voltage error e and an output voltage error change ce.
They are defined as

)()(nvvne outref −= and)1()()(−−= nenence (6)

where vref is the reference voltage. The FLC consists of three major components
[15], including fuzzification, decision-making, and defuzzification. They are
described as below.

11.2.2.1 Fuzzification

Fuzzification is to map e and ce into suitable linguistic values. In this chapter seven
fuzzy subsets are defined for e and ce, including negative big (NB), negative
medium (NM), negative small (NS), zero (ZE), positive small (PS), positive medium
(PM), and positive big (PB). Each input variable (i.e., e and ce) is assigned to a
membership value µ corresponding to an individual fuzzy subset. The number of

fuzzy subsets is not fixed and depends on the input resolution required. In general,
the larger the number of fuzzy subsets, the higher is the input resolution. Figure
11.3(a) shows the membership functions that are in triangular shape. Typically, the
functions are evenly distributed [5]-[8], [15]. That is, xi,j1 = xi,(j-1)2 , xi,j2 = xi,(j-1)3 , and
xi,j3 = x i,(j+1)2 for j = 1,…,6. It must be noted that such an evenly distributed
membership approach has no practical justification. In this chapter, the distribution
of the membership functions is not limited to such an arrangement, but is optimized
by applying the GA. In practice, mapping of e and c e into the fuzzy subsets is
achieved by scaling their magnitude linearly. That is,

ee β=′ and ceec γ=′ (7)

where β and γ are constant scaling factors. e′ and ce′ are variables that lie along the
input range of the respective fuzzy subset. A method, which is based on the steady-
state output of the PFC, is used to decide the values of β and γ. Consider the PFC
output circuit in Figure 11.2, is(t) is assumed to be a rectified sinusoidal waveform
at the line frequency fL. Thus,

|sin|)(tIti Lms ω= , LL fπ=ω 2 . (8)

The output capacitor current iC2(t) can be expressed as

L

out
sC

R
V

titi −=)()(2 (9)

where Vout is the average output voltage.

As the average value of iC2(t) equals zero,

L

out
m

L

out
s

L

R
V

I
R

V
dtti

L

2
)(

/

0

π=⇒=
π

ω
∫

ωπ
(10)

The output ripple voltage ∆vout can be approximated by

)
2

sin24()(
1 12

2
2

2

2

1 π
+π−−π

ω
==∆ −∫

LL

outt

t
Cout

RC

V
dtti

C
v ,

L

t
ω

π=
−)/2(sin 1

1 ,
L

L t
t

ω
ω−π= 1

2 . (11)

where t1 and t2 are the times at which 0)(2 =tiC in one half cycle.

vout contains a ripple voltage vripple with peak-to-peak value of ∆vout in the steady
state. e′ varies between [–∆vout β / 2 , ∆vout β / 2]. In this investigation, the ripple is
assigned to vary within one-third of the fuzzy subset input extremes at heavy load
condition. Thus,

)’’(
3
11

minmax ee
vout

−⋅
∆

=β (12)

where max’e and min’e are the maximum and minimum values of the e′ fuzzy subset
input shown in Figure 11.3. If vripple is assumed to be sinusoidal, the frequency will be at 2 fL

tvtvt
v

tv LLoutrippleL
out

ripple ωω∆≅⇒ω∆≅ 2cos)(2sin
2

)(& (13)

As ripplev& varies between -∆vout ωL and ∆vout ωL, ce′ will vary between -∆vout ωL / fsamp

and ∆vout ωL / fsamp in each sample, where fsamp is the sampling frequency of vout. In
this chapter, this variation is mapped to vary between two-thirds of the fuzzy subset
input extremes,

)’’(
3
2

2
minmax cece

v

f

Lout

samp −⋅
ω∆

=γ (14)

where max’ce and min’ce are the maximum and minimum values of the ce′ fuzzy
subset input.

The selection of the mapping range of e′ and ce′ at steady state in Equations (12)
and (14) are based on a compromise between the sensitivity of the FLC and the
regulation speed. The effects of using different β and γ on the transient responses
will be demonstrated with the practical example in Section 11.4.

 xi,11 xi,12 xi,21 xi,13 xi,22 xi,23 xi,71 xi,72 xi,73

NB

.

NM PBµe’i

e’min e’max

(a) Fuzzy subsets.

 xi,11 xi,12 xi,13 xi,21 xi,22 xi,23 xi,71 xi,72 xi,73

 xi,11 xi,12 xi,13 ... xi,71 x i,72 xi,73 y i,11 yi,12 yi,13 . . . y i,71 yi,72 yi,73 zi,11 zi,12 zi,13 . . . zi,71 zi,72 zi,73

µej(NB to PB) µcej(NB to PB) µuj(NB to PB)

NB NM PB

Si

Xi

(b) Chromosomes.

Figure 11.3 Structure of the fuzzy subsets and chromosomes

11.2.2.2 Decision-Making

Decision-making infers fuzzy control action from knowledge of the fuzzy rules and
the linguistic variable definition. The control rules that determine the output of the
FLC are based on the knowledge of the system behavior being controlled. The
fuzzy inference method is illustrated in Figure 11.4. As every e′ and ce′ belong to at
most two fuzzy subsets (Figure 11.3), a maximum of four rules have to be
considered in every sample. For example, if e′ = a and c e′ = b, a has non-zero
membership values for NB and NM and b has non-zero membership values for NM
and NS. Four rules including (NB, NM), (NB, NS), (NM, NM), and (NM, NS) have to
be considered. Consider the rule (NB, NM); a value m is determined by applying the
Mandani’s min fuzzy implication, where

)](),(min[)(’)(’ bam NMceNBe µµ= (15)

The fuzzy set µu1(u) is derived as shown in Figure 11.4. The same operation is
applied for other rules. The union of all the fuzzy sets µu1(u), µu2(u), µu3(u), and
µu4(u) is formed as shown in Figure 11.4. The actual output of the FLC is then
obtained by defuzzification.

11.2.3 Defuzzification

Defuzzification is the process to convert the inferred fuzzy control action to a crisp
value. The output of the FLC is the change of vc(n) in Equation (5). The actual value
is determined by adding vc(n-1) to the calculated change,

)()1()(nvnvnv ccc δ+−= (16)

During this operation, a crisp value for u = δvc(n) is calculated by using the “center
of sum method.” Let Aq be the area of the trapezoidal fuzzy set inferred by the qth
control rule and uq be the horizontal distance between the centroid of Aq and the
vertical axis. The defuzzified output is calculated by the following formula

∑

∑

=

==
N

q
q

N

q
qq

A

Au

u

1

1
(17)

where N is the total number of control rules. Equation (16) gives an integrating
effect, which can remove steady-state error. The calculated control voltage is then
sent to the output of the FLC and then to multiply the ramp voltage vramp in Equation
(5).

11.3 Optimization of FLC by the Genetic Algorithm

11.3.1 Structure of the Chromosome

By applying the GA, the membership functions of the fuzzy subsets in the
fuzzification are optimized. It is illustrated with a flowchart in Figure 11.5(a). For a
generic chromosome Si in a population UD having Ns members (where i∈[1, Ns]),
the parameters are arranged as shown in Figure 11.3(b). It consists of 63 integer
numbers and can be divided into three components. Each component corresponds to
the fuzzy subsets for e′ , ce′ , and u and contains the parameters of the seven
membership functions. As shown in Figure 11.3(a), three points including the two
ending points and one peak point, define each membership function.
Mathematically,

Si = [Xi Yi Zi] (18)

where Xi = [xi,11 xi,12 xi,13 … xi,71 xi,72 xi,73],

Yi = [yi,11 yi,12 yi,13 … yi,71 yi,72 yi,73],

Zi = [zi,11 zi,12 zi,13 … zi,71 zi,72 zi,73]

11.3.2 Initialization of Si

First, the size of the population (Ns), the maximum number of generations (Gmax),
the probability of crossover (px), and the probability of mutation (pm) are initialized.
Second, the chromosome is initialized with a random selection process. As the
parameters in µe′i, µ ce′i, and µui are initialized similarly, initialization of µe′i is
illustrated in the following.

11.3.2.1 The peak point

Seven random integers that are in the range of [e′min e′max] are generated for the
initialization of all peak points (i.e., xi,12, xi,22…xi,72) of the membership functions
µe”i(e′) in Figure 11.3(a). The generated random integers are checked with the
condition that

8
’’ minmax

2,2)1(,
ee

xx jiji

−≥−+ , j = 1 ... 6 (19)

This is to ensure sufficient separation between the peak points of the initial fuzzy
subsets. If the above conditions cannot be satisfied, another set of random integers
will be generated.

Figure 11.4 Inference method

START

Select Ns and Gmax,
Select px and pm, gen = 0

Initialization of chromosomes Si
in UD={Si , i=1...Ns}

Calculation of F(Si) ∀ i=1..Ns

Store the best member in the current population as reference
Find SB in UD such that F(SB) = Max{F(Si)} ∀ i = 1...Ns

gen > Gmax

gen = gen + 1

Use Roulete Wheel rule to select
Ns members from UD to form UD’

Apply Crossover operation on UD
with random propability px

Apply Mutation operation on UD
with random propability pm

Calculate F(Si) {∀ i = 1..Ns } in UD
Find the best member SB in UD such that

F(SB) = Max{F(Si) ∀ i = 1...Ns
Store the best member as reference

F(SB(gen)) <F(SB(gen-1))

STOP
YES

NO

YES

NO

UD = UD’

Validation of Si ∀ i=1..Ns

Replace worst member Sw by SB(gen-1),
F(Sw) = Min{F(Si)} ∀ i = 1...Ns

Sw = SB(gen-1)

(a) GA optimization.

START

Setpoint = 220V
Load resistance RL =110Ω
Input voltage vin = 110V

Using [16] to simulate the closed-loop
response of the APFC with the FLC(Si)

t > Tmax/5

RL = 220Ω

t > 2Tmax/5

RL = 110Ω

t > Tmax

t= t+dt
Store output vout

Find Mpi,Mvi,Tsi for i=1..5

 Calculate
 IAE1 from Tmax/10 to Tmax/5, IAE2 from 3Tmax/10 to 2Tmax/5
 IAE3 from Tmax/2 to 3Tmax/5, IAE4 from 7Tmax/10 to 4Tmax/5
 IAE5 from 9Tmax/10 to Tmax

 Calculate the fitness value
 F(Si)= Σ(ai Mpi+bi Mvi+ci Tsi)
 +5/(∆VTmax)(IAE1+IAE2+IAE3 +IAE4 +IAE5)

STOP

t >3 Tmax/5

vin = 80V

t > 4Tmax/5

vin = 110V

NO

NO

NO

NO

YES

YES

YES

YES

(b) Calculation of fitness function.

Figure 11.5 Flowcharts

11.3.2.2 The Two End Points

The two end points of each membership function are governed by the following
constraints. Apart from xi,11 and xi,73, xi,j1 and xi,j3 are randomly chosen so that xi,j1 ε
[xi,(j-1)2 xi,(j-1)3] and xi,j3 ε [xi,j2 xi,(j+1)2] for the jth membership function. For example,
xi,13 is selected randomly within the interval of [xi,12 xi,22] a n d xi,21 is selected
randomly within the interval of [xi,12 xi,13]. This is to ensure the existence of an
overlapping region between the adjacent fuzzy subsets. The above membership
function initialization procedure is repeated for the other input and output
membership functions µce′i(e′) and µui(u).

11.3.3 Formulation of Multi-objective Fitness Function

After the initializations, the GA goes into the evaluation procedures. Fitness values
that measure the degree of attainment of the optimization objectives of all Si in the
current population are calculated. The multi-objective fitness function F[Si(k)] in
the kth generation is defined in terms of the time-domain performance index,
including the maximum overshoot, undershoot, and settling time in a performance
test. The procedure is illustrated with the flowchart in Figure 11.5(b). The test
involves a step change of the set point at start up, a load change at Tmax/5 and at
2Tmax/5, a supply voltage change at 3Tmax/5 and at 4Tmax/5, where Tmax is the
maximum time of the performance test. A typical output response is shown in
Figure 11.6. The output response of the boost rectifier with the FLC using the
parameters in Si is studied by a performance test, which is simulated with the
method in [16]. F[Si(k)] is defined as

1)]}([)]([{)]([−+= kSPkSOkSF iii (20)

O[Si(k)] and P[Si(k)] are defined as

][)]([
5

1
siiviipii

i

i TcMbMakSO ++= ∑
=

(21)

P S k
V T

e t dt e t dt e t dt

e t dt e t dt

i T

T

T

T

T

T

T

T

T

T

[()] { | () | | () | | () |

| () | | () | }

max
/

/

/

/

/

/

/

/

/

max

max

max

max

max

max

max

max

max

max

= + +

+ +

∫ ∫ ∫

∫ ∫

5
10

5

3 10

2 5

2

3 5

7 10

4 5

9 10

∆
(22)

where ai, bi, and ci are constant weighting factors, Mpi, Mvi and Tsi are the maximum
overshoot, undershoot and settling time of the filtered output response within a
tolerance band of ±2% (The cutoff frequency of the filter is at fL / 3.); and e(t) is the
error between the simulated output voltage (i.e., vout) and the reference voltage (vref).
O[Si(k)] measures the sum of maximum overshoot, undershoot, and settling time for
the transient response in different sections of the performance test. P[Si(k)]

considers the steady-state ripple as a penalty factor in the overall fitness function. It
calculates the steady-state integral absolute error (IAE) in different sections of the
performance test. All the IAE values are normalized with the area within the ±∆V
tolerance band of (2 ∆V Tmax / 10).

11.3.4 Selection of Chromosomes

According to the roulette wheel rule, chromosomes with larger fitness value will
have higher probability to survive. The selection process starts with the calculation
of the fitness value F[Si(k)], the relative fitness value Fr[Si(k)] and the cumulative
fitness value Fc[Si(k)] for all Si in the current generation. Fr[Si(k)] and Fc[Si(k)] are
defined as

∑
=

=
SN

v

viir kSFkSFkSF
1

)]([/)]([)]([and ∑
=

=
i

v

vric kSFkSF
1

)]([)]([(23)

A random probability variable p ∈ [0,1] is generated and is used to decide the
selection of Si. If Fc[Si-1(k)] < p < Fc[Si(k)], Si will be chosen to be a member of the
new population. This selection process is repeated until Ns members have been
selected into the new population.

vout

Tmax
2Tmax/5Tmax/50

- V∆
+ V∆

Ts2Ts1

Mv1

3Tmax/5 4Tmax/5

Mp1 Mp2

Mv2

Ts3

Mp3

Mv3

Ts4

Mv4

Mp4

Ts5

Mv5

Mp5

Actual output
Filtered output

Figure 11.6 Typical output response of the boost rectifier

11.3.5 Crossover and Mutation Operations

A random selection test considers each chromosome in the current population
sequentially. Crossover will be carried out whenever two chromosomes are
selected. A probability of crossover px ∈ [0,1] is predefined. In order to decide
whether Si will perform crossover, a random number p ∈ [0,1] is generated for Si. If
p < px, Si is selected for crossover. Otherwise, the next member is considered. In

this chapter, a single point crossover is used. The operation is illustrated in Figure
11.7. Consider the crossover operation for two chromosomes S1 = [X1 Y1 Z1] and S2

= [X2 Y2 Z2], the crossover point is first selected randomly of equal probability for X1

and X2. The genes after the selected crossover point will be exchanged between the
two parents X1 and X2, forming two children. Similar operations will be performed
for Y1 and Y2 and Z1 and Z2.

The mutation operation is carried out by random selection of Si with a predefined
probability pm. Each membership function in Xi : (xi,j1, xi,j2, xi,j3) for j = 1 to 7 is
selected for mutation when a generated random number p ∈ [0,1] is smaller than pm.
Any one of the following operations will be performed with equal probability.

1) Operation 1: xi,j1 is replaced by a random number with the constraint that it is in
the interval of [xi,(j-1)1, xi,(j-1)3].

2) Operation 2: xi,j2 is replaced by a random number with the constraint that it is in
the interval of [xi,j1, xi,j3].

3) Operation 3: xi,j3 is replaced by a random number with the constraint that it is in
the interval of [xi,(j+1)1, xi,(j+1)3].

The above steps are repeated for Yi and Zi until the whole string of Si is considered.

x1,11 x1,12 x1,13 . . . x1,71 x1,72 x1,73 y1,11 y1,12 y1,13 . . . y1,71 y1,72 y1,73 z1,11 z1,21 z1,13 . . . z1,71 z1,72 z1,73

 x2,11 x2,12 x2,13 . . . x2,71 x2,72 x2,73 y2,11 y2,12 y2,13 . . . y2,71 y2,72 y2,73 z2,11 z2,12 z2,13 . . . z2,71 z2,72 z2,73

crossover

 x1,11 x1,12 x1,13 . . . x2,71 x2,72 x2,73 y1,11 y1,12 y1,13 . . . y2,71 y2,72 y2,73 z1,11 z1,21 z1,13 . . . z2,71 z2,72 z2,73

 x2,11 x2,12 x2,13 . . . x1,71 x1,72 x1,73 y2,11 y2,12 y2,13 . . . y1,71 y1,72 y1,73 z2,11 z2,12 z2,13 . . . z1,71 z1,72 z1,73

(a) Crossover.

 xi,j1 xi,j2 xi,j3

xi,11 xi,12 xi,13 ... xi,j1 xi,j2 xi,j3 yi,11 yi,12 yi,13 ... yi,71 yi,72 yi,73 zi,11 zi,12 zi,13 ... zi,71 zi,72 zi,73

Xi Yi Zi

random
MUTATIONxi,j1

 xi,71 xi,72 xi,73...

xi,11 xi,12 xi,13 ... yi,11 yi,12 yi,13 ... yi,71 yi,72 yi,73 zi,11 zi,12 zi,13 ... zi,71 zi,72 zi,73 xi,71 xi,72 xi,73...xi,j1

(b) Mutation

Figure 11.7 Crossover and mutation operations

11.3.6 Validation of SI: Recovery of Valid Fuzzy Subsets

The new population of Si will go through a validation procedure, in order to ensure
that no undefined region exists. The validation procedure checks with the existence
of xi,j3 < xi,(j+1)1 for j = 1...7. If a particular j appears, there is an undefined region in
the interval of [xi,j3 xi,(j+1)1]. A corrective procedure for the continuity of fuzzy subset
is required. Consider the example in Figure 11.8, it can be seen that no membership
function is defined for the interval of [xi,33 xi,41]. The correction method is to
interchange the entries xi,33 and xi,41, so that the fuzzy subsets become overlap in the
undefined region.

After the above processes, the best member SB(k) in the current population with the
highest fitness value will be compared with the best one in the last generation of
SB(k–1). If the fitness value F[SB(k)] is larger than F[SB(k–1)], next GA training
cycle will be performed. Otherwise, the worst member Sw(k) (i.e., F[Sw(k)] =
min{F[Si(k)]} for i = 1... NS) in the current population will be replaced by SB(k-1).
Next GA training will be continued. The GA training will be terminated when the
number of generation exceeds Gmax. The best member S* of the latest generation is
assigned as the optimal solution to the FLC design problem and the entry of S* =
[X* Y* Z*] becomes the optimal membership function for the input and output
fuzzy subsets for the FLC.

VALIDATION

 xi,11 xi,12 xi,13 xi,71 xi,72 xi,72

NB

 xi,21 xi,22 xi,23 xi,31 xi,32 xi,33 . . . α β

 xi,11 xi,12 xi,13 . . . αβ

Xi
. . . .

. . . .

. . . .

. . . .

 xi,21 xi,22 xi,23 xi,31 xi,32 xi,33 xi,71 xi,72 xi,72Xi

NM NS PBPM

NB NM NS PBPM

Figure 11.8 Validation of Si

11.4 Illustrative Example
Static and dynamic behaviors of a practical boost rectifier are investigated. The
specifications of the rectifier are as follows:

1) Input ac voltage, 110 V ± 20 V, 50 Hz

2) Regulated output dc voltage, 220 V

3) Output load resistance range, 110 Ω - 220 Ω
The values of β and γ are chosen to be 3 and 60, respectively, which are based on
the selection criteria in Sec. 11.2.2.1. In the performance test using GA training, the
following simulations have been performed:

1) Step change in the set point of 220 V at start-up

2) Load resistance change from 110 Ω to 220 Ω at 300 ms

3) Load resistance change from 220 Ω to 110 Ω at 600 ms

4) Supply voltage change from 110 V to 90 V at 900 ms

5) Supply voltage change from 90 V to 110 V at 1.2 s

The fitness function F[Si(k)] in Equation (20) with ai = bi = ci = 1 is used. After 50
generations of GA optimization, the results of the optimal input, output fuzzy
subsets and the fuzzy rule table are shown in Figure 11.9. It takes 2 hours in the
optimization process in Section 11.3 on a 300-MHz 586-based PC. The GA-trained
FLC is then applied to the prototype. The steady-state and the large-signal transient
responses are investigated. Figure 11.10 shows the steady-state waveforms for RL =
110 Ω. It can be seen that the input current is in phase with the input voltage,
showing unity power factor. It can be also observed that the output voltage varies at
a frequency of 100 Hz and the peak-to-peak ripple voltage of 16 V. These are
consistent with the assumption made in Section 11.2.2.1. When the system has been
entered into steady state, there is a step change in the load resistance from 110 Ω to
220 Ω with constant input voltage of 110 V. The transient waveforms are shown in
Figure 11.11. The output has an overshoot of 10% and the settling time is less than
20 ms (about one line-frequency cycle) within the 5% band. Afterwards, the load
resistance is switched back into 110 Ω. The transients are shown in Figure 11.12.
The output has an undershoot of less than 10% and the settling time is also less than
20 ms.

Figure 11.9 GA-trained membership functions

(a) Input voltage and input current waveforms.
[Ch 1: Input voltage (100V/div), Ch3: Input current (4A/div), Timebase: 10ms/div]

(b) Output and control voltages.
[Ch 1: Output voltage (100V/div), Ch2: Control voltage (2V/div), Timebase:

2ms/div]

Figure 11.10 Steady-state experimental waveforms when RL = 110 Ω.

(a) Input voltage and input current waveforms.
[Ch 1: Input voltage (100V/div), Ch3: Input current (4A/div), Timebase: 50ms/div]

(b) Output and control voltages.
[Ch 1: Output voltage (100V/div), Ch2: Control voltage (2V/div), Timebase:

20ms/div]

Figure 11.11 Transient responses when RL is changed from 110 Ω to 220 Ω.

(a) Input voltage and input current waveforms.
[Ch 1: Input voltage (100V/div), Ch3: Input current (4A/div), Timebase: 50ms/div]

(b) Output and control voltages.
[Ch 1: Output voltage (100V/div), Ch2: Control voltage (2V/div), Timebase:

20ms/div]

Figure 11.12 Transient responses when RL is changed from 220 Ω to 110 Ω.

(a) Input voltage and input current waveforms.
[Ch 1: Input voltage (100V/div), Ch3: Input current (4A/div), Timebase: 50ms/div]

(b) Output and control voltages.
[Ch 1: Output voltage (100V/div), Ch2: Control voltage (2V/div), Timebase:

20ms/div]

Figure 11.13 Transient responses when vin is changed from 110 V to 90 V

Another test on large-signal change in vin has been performed. vin is changed from
110 V to 90 V with the load resistance unchanged. The transient responses are
shown in Figure 11.13. The output voltage is almost unchanged within the 5%
band. Moreover, the input current waveform is still sinusoidal during the transient
period.

When the system becomes stable, vin is switched into 130 V, which is outside the
designed operating range. The transient waveforms are shown in Figure 11.14.
There is an overshoot of about 10% in the output voltage and the settling time is
less than 20 ms again. It can be seen from the above that the system is stable during
the large-signal change in the input voltage and the output load.

(a) Input voltage and input current waveforms.
[Ch 1: Input voltage (100V/div), Ch3: Input current (4A/div), Timebase: 50ms/div]

(b) Output and control voltages.
[Ch 1: Output voltage (100V/div), Ch2: Control voltage (2V/div), Timebase:

20ms/div]

Figure 11.14 Transient responses when vin is changed from 90 V to 130 V

Finally, the effects of using different values of β and γ on the transient responses are
studied. Figure 11.15a shows the transient control and output voltages when the
input voltage is changed from 90 V to 130 V with β = 1 and γ = 20, which are
smaller than the previously assigned values. It can be observed that the control
voltage is less sensitive to the output ripple voltage and the settling time is longer
than the original one in Figure 11.14b. Figure 11.15b shows the transient responses
when the scaling factors are increased into β = 6 and γ = 120, which are larger than
the previously assigned values. The control voltage becomes more sensitive to the
output ripple voltage. In addition, the transient control voltage is relatively more
oscillatory than the original one and also exhibits a momentarily zero control action.

 (a) β = 1 and γ = 20

(a) β = 6 and γ = 120

Figure 11.15 Transient output and control voltages when vin is changed from 90
V to 130 V (Ch 1: output voltage (100 V/div); Ch2: control voltage (2 V/div);
Timebase: 20 ms/div)

11.5 Conclusions
A GA-optimized FLC for ac-dc boost rectifier with PFC is described. It integrates a
fuzzy logic control technique into the feedback path and a linear programming rule
into the control of the magnitude of the ramp voltage, in order to adjust the duty
cycle of the switch for the input current shaping. The proposed approach avoids
complexities associated with nonlinear mathematical modeling of switching
converters and circuit designers become unnecessary to perform time-consuming
procedures of fine-tuning the fuzzy rules, which require sophisticated experience
and intuitive reasoning as in many classical fuzzy-logic-controlled applications.
Instead of generating a fast-changing PWM signal, the digital signal processor is
required to generate a slow-varying dc signal only for determining the PWM ramp
function. The FLC is optimized by a multi-objective fitness function. Moreover, it
is unnecessary to sense the supply voltage for shaping the input current.
Experimental measurements have confirmed that the system, under large-signal
variation in the supply voltage and the output load, is still stable.

References
[1] R.D. Middlebrook and S. Cuk, “A general unified approach to modeling

switching converter power stages,” in Proc. IEEE Power Electron. Spec.
Conf. Rec., 1976, pp. 18-34.

[2] F.C. Lee, R.A. Carter, “Investigations of stability and dynamic performances
of switching regulators employing current injected control,” IEEE Trans.
Aerospace and Electronic Systems, 19, 274-287, Mar. 1983.

[3] D. Czarkowski and M.K. Kazimierczuk, “Linear circuit models of PWM
flyback and buck/boost converters,” IEEE Trans. Circuits Syst. - Part I, 39,
688-693, Aug. 1992.

[4] R.D. Middlebrook, “Modeling of current-programmed buck and boost
regulators,” IEEE Trans. Power Electronics, 4, 36-52, Jan. 1989.

[5] B. Bose, “High performance control of induction motor drives,” IEEE
Industrial Electronics Society Newsletter, 45, 7-11, Sept. 1998.

[6] F. Ueno, T. Inoue, I. Oota, and M. Sasaki, “Regulation of Cuk converters
using fuzzy controllers,” in INTELEC “91 Record, 261-267, 1991

[7] T. Gupta, R.R. Boudreaux, R.M. Nelms, and J.Y. Hung, “Implementation of
a fuzzy controller for dc-dc controllers using an inexpensive 8-b
microcontroller,” IEEE Trans. Ind. Electron., 44, 661-669, Oct. 1997.

[8] S. Saetieo and D.A. Torrey, “Fuzzy logic control of a space-vector PWM
current regulator for three-phase power converters,” IEEE Trans. Power
Electron., 13, 419-426, May 1998.

[9] M. Rashid, Power Electronics, Circuits, Devices, and Applications, 2nd

edition. Prentice Hall.

[10] K.S. Tang, K. Man, Z. Liu, and S. Kwong, “Minimal fuzzy memberships and
rules using hierarchical genetic algorithms,” IEEE Trans. Ind. Electron., 45,
162-169, Feb. 1998.

[11] Y.S. Lee, Computer-Aided Analysis and Design of Switch-Mode Power
Supplies, Marcel Dekker, 1993.

[12] D. Maksimovic, Y. Jang, and R.W. Erickson, “Nonlinear-carrier control for
high-power-factor boost rectifier,” IEEE Trans. Power Electron., 11, 578-
584, Jul. 1996.

[13] S. Ben-Yaakov, “PWM converters with resistive input,” IEEE Trans. Ind.
Electron., 45, 519-520, Jun. 1998.

[14] J. Hwang and C. Hsu, “A new 8 pin power factor correction and pulse width
modulator controller for off-line power supplies,” in Proc. IEEE Applied
Power Electronics Conference and Exposition, APEC “99, Dallas, 1999,
1143-1149.

[15] B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[16] B.K.H. Wong and H. Chung, “An efficient technique for the time-domain
simulation of power electronic circuits,” IEEE Trans. Circuits Systs. – Part I,
45, 364-376, Apr. 1998

Chapter 12 Multilevel Fuzzy Process Control
Optimized by Genetic Algorithm

Darko Grundler

Faculty of Textile Technology

University of Zagreb

Pierottieva 6

10000 Zagreb, Croatia

darko.grundler@sk.tel.he

http://public.srce.hr/~dgrund

Abstract

A new method is described for complex process control with the coordinating
control unit based upon a genetic algorithm. The algorithm for the control of
complex processes controlled by PID and fuzzy regulators at the first level and a
coordinating unit at the second level has been theoretically laid out. A genetic
algorithm and its application to the proposed control method have been described
in detail. The idea has been verified experimentally and by simulation in a two-
stage laboratory plant. Minimal energy consumption criteria limited by given
process response constraints have been applied, and improvements in relation to
other known optimizing methods have been made. Independent and non-
coordinating PID and fuzzy regulator parameter tuning has been performed using
a genetic algorithm and the results achieved are the same or better than using
traditional optimizing methods and at the same time the method proposed can be
easily automated. Multilevel coordinated control using a genetic algorithm
applied to a PID and a fuzzy regulator has been researched. The results of various
traditional optimizing methods have been compared with an independent non-
coordinating control and multilevel coordinating control using a genetic
algorithm. The best results have been achieved with the multilevel coordinating
fuzzy control optimized by a genetic algorithm.

12.1 Introduction
The research presented here has been spurred by the possibility of applying the
methods of intelligent control in two-level cascaded nonlinear plants, where
operating conditions change and where they significantly impact the control
conditions. It is supposed that two cascaded processes should be under
coordinated and adaptive control, so that in case of disturbances, optimal
functioning is retained under given plant conditions and environment conditions.

http://public.srce.hr/~dgrund

One possible solution is the implementation of fuzzy logic control. In this way, it
is possible to control a process heuristically. An evolutionary optimizing
procedure has been selected in this chapter as a supplement to fuzzy logic control,
with the basic idea of finding a global extreme, from the point of view of a
particular criterion regarding the system as a whole. Genetic algorithms are the
method selected here because they are characterized by a number of properties
appropriate for the application described. It is independent of the nature of the
task to be optimized; it does not ask for a mathematical model, nor for a detailed
experience of the process. Genetic algorithms can be linked to fuzzy and PID
regulators and can be applied on computers. The method is theoretically sound
and has been experimentally verified through solving various tasks [Goldberg,
1986].

The concept of the research and the results obtained are presented in three parts.
The first part presents the concept of multilevel fuzzy process control optimized
by a genetic algorithm. The second describes cascaded laboratory plant used in
simulation and experimental verification of the concept. The third and final part
gives the results obtained, discussion and conclusion.

12.2 Intelligent Control
The concept of intelligent control is a relatively new one and lacks a clear
definition. One of the reasons is the ambiguity of the concept of “intelligence”
and different approaches to its understanding. Within the confines of the research
described here, intelligent control is control which imitates the problem-solving
processes of people, animals and biological systems, or simply solves the tasks in
the same ways. An intelligent controller is defined in the same way [Passino
1993]:

The physical device called a controller is an intelligent controller if it is
developed and/or implemented with a) an intelligent control methodology or b)
conventional systems/control techniques to emulate/perform control functions
that are normally performed by humans/animals/biological systems.

Optimizing the behavior of the process in most cases means simply tuning of
controller parameters [Bramlette, 1989; Oliveira, 1991; Bäck, 1993]. For the
controllers built upon a comprehensive and well-founded theory, such as, for
example, PID regulators, in most cases tuning could be done analytically on a
mathematical model. Problems occur when a PID or fuzzy regulator is applied to
a process, the mathematical model of which was, for some reason, not known
(complexity of the process, insufficient familiarity with it, etc.), or when the
model was nonlinear, which made it impossible to apply a known theoretical
base. In these types of cases, tuning is done based on experience, often with quite

satisfactory results and speed of solution and often more acceptable than
analytical processes.

The introduction of fuzzy controllers [Braae, 1979; Baldwin, 1980; Dubois, 1980;
Sugeno, 1985; Guilamo, 1987; Stipanicev, 1987; Buckley, 1992; Chen, 1993;
Chen, 1993a] introduced completely new problems regarding the tuning of
controller parameters. The basic assumption for the application of a fuzzy
controller is that it is impossible to construct a satisfactory mathematical model of
the process in question; thus, the controller is built up on the basis of a linguistic
description of process behavior. Fuzzy controller parameters are a representation
of a linguistic description of the process, and are directly dependent on the
isomorphism of the description and real behavior of the process. Controller tuning
can be done so that the linguistic description of the process is improved, which is
in itself limited by perceptive and cognitive abilities of the person describing the
process. This is why fuzzy controller parameters cannot be tuned employing
analytical methods, but only on the basis of experience or some of the
evolutionary processes of optimizing.

Tuning of controller parameters applied to complex plants, consisting of a number
of processes linked together, is not an easy task [Mesarovi, 1970; Zadeh, 1973;
Findeisen, 1978; Bahnasavi, 1990; Hall, 1991; Lin, 1991; Sugeno, 1991]. The
procedures of evolutionary optimizing have proved to be quite applicable in the
area [Freeman, 1990; Karr, 1991; Pham, 1991; Linkens, 1992; Cooper, 1993; Lee,
1993].

Research described here has concentrated on finding the possibilities of applying
genetic algorithms in optimizing controller parameters applied to complex plants
consisting of a number of sub-processes, linked together. The nature of genetic
algorithms and contemporary research make an analytical analysis of a complex
coordinated control possible [Vose, 1993]. Besides principal and general
suppositions and conclusions, the only methods to be used in the research are
simulation and experiment.

12.3 Multilevel Control

12.3.1 Optimal Control Concept

The key task was to investigate the possibility of maintaining the best operating
conditions of the class of cascaded processes with coordinate control in an
unsteady environment. Cascaded processes are here understood as the processes
consisting of a number of stages, where the output (or outputs) of one of the
processes represents a disturbance input for the next one, as shown in Figure 12.1.
The links within the process are such that a particular process can impact only the
next stage, from which the name cascaded processes comes. The first stage is not

impacted by any of the following stages, while the final one has no further stage
to exert influence upon.

Key properties of cascaded processes, as shown in Figure 12.1, are:

• Control is performed through local controllers and a coordinating unit.
Control is divided into two levels: local and coordinating. The existence of a
single coordinating unit is supposed.

• Only local controllers can have direct impact on the plant. The coordinating
unit can act only on local controller parameters and not directly on the plant.

CO-ORDINA TE UNIT
(GA)

Proc ess 1 Proc ess 2 Proc ess n

Cnt rl. 1 Cnt rl. 2 Cnt rl. n

u u u

y
y

y

y y y
pn

n

rn

p1

1 2

p2

r1
r2

Figure 12.1 Block diagram of a coordinate control concept

• The input of a particular controller is the output of the adequate local process.

• The inputs to coordinating unit are the outputs of all the local processes. The
number of inputs of a coordinating unit Nco can also be smaller: Np ≥ Nco ≥ 1,
where Np is the number of local processes.

• If we exclude the impact of the coordinating unit on local controller
parameters, each of local controllers acts independently and in accordance
with well-known principles of feedback control.

• Each local controller is limited to a single local process and has no
information on the state of the other local processes. There is no
communication between local controllers; i.e., there is no data exchange.
Individual local processes have different characteristics and mutually
independent parameters. Each of the local processes can be controlled
independently.

• Local process controllers can be PID controllers or fuzzy controllers.

• The criterion of process optimality as a whole is not contained in any single
controller, neither as a part nor as a whole.

This chapter suggests tuning of PID and fuzzy controller parameters. There are
two reasons for choosing these two regulators. On one hand, such a choice makes
possible the usage of optimizing procedures in existing plants equipped with PID
and fuzzy controllers. On the other, conventional methods of control by PID and
fuzzy controller can be used for comparison with the results obtained in research.

The reasons to apply multilevel coordinated control are:

• It is possible to introduce the criterion of optimizing for the whole of the
cascaded process, i.e., the best operating conditions, from the point of view of
the process as a whole and the criterion concerning the system as a whole

• The coordination unit makes possible indirect communication among local
controllers

• Reliability of the system as a whole increases (there is certain possibility of
control even in the case of faulty operation of a particular local controller)

• Lower sensitivity of the system to disturbances, as the impact of disturbances
can be compensated for by simultaneous action by a number of local
controllers and the local activities of each of the controllers

The parameters of each of the processes are limited (regarding energy, space,
etc.). The system programmer can select some of the constraints. The following
important characteristics have been taken for granted in the course of research:

• There are two levels of control: direct and coordinating

• A single coordinating unit is used at the level of coordination, while different
ones (PID, fuzzy) are used at the level of direct control of local processes

• A genetic algorithm is used as a coordination procedure

• The input of a local controller is the output of local process and the inputs of
a coordinating unit are available outputs of local processes

• Process stability is maintained by limiting local controller parameters within
the known range of stability (defined during the constructing of the system or
through direct experience)

• In case of the faulty operation of a local controller, the coordinating unit will
continue the procedure of optimizing, based on data available, influencing
available local controllers. In modern microprocessor-based controllers, it is
relatively easy to include a certain degree of ability to detect faulty operation

12.3.2 Process Stability during Genetic Algorithm Optimizing

The problem of system stability has been comprehensively investigated and
reported. A number of theories have been developed which help in process
analysis and synthesis from the point of view of stability [Hahn, 1963].

If we regard the matter from the point of view of stability, we should suppose that
individual process phases are controlled locally, before a coordinating level is
applied. The supposition implies that, before applying a coordinating level of
control, there is a known set of parameters belonging to local controllers, for
which the whole system is stable.

The following procedure was used in simulations:

• A step disturbance input of known amplitude is applied to the input of a local
process (with controller parameters unchanged)

• The output of each stage of the process is monitored. If any of the outputs,
within a given period of monitoring, exceeds given limits, the local process in
question was considered unstable for the set of parameters. Simulation is
stopped in such a case and the set of parameters causing unstable functioning
of the system recorded. Such a set of parameters was further on in the research
considered inadmissible

• Repetition of the procedure allowed the definition of the controller parameter
range for which the system is stable. The procedure was made a part of a
genetic algorithm and was performed simultaneously with it

In a real system, where it is impossible to organize a simulation, an experimental
approach could be used, which can be described as follows:

• A step disturbance input of known amplitude is applied to the input of a local
process (with controller parameters unchanged)

• Monitor system output and, in case of instability, return the controller
parameters into the stability area (i.e., to the values recorded before the
application of coordinating level). If it is an existing system, we can suppose
that before the trial the system was stable, meaning that this set of parameters
can at least be used as a set for which the system is stable. If we suppose that
controller parameters were also tuned before, using experience, it means that
there must be a person who can tune the controller parameters in such a way as
to bring the process into an area of stability. Furthermore, there must be a
range of parameter values for which the system is stable; i.e., there must exist
a possibility of tuning the parameters in the area of stability. The set of
parameters that causes unstable functioning of the system should be recorded

• Repetition of the trial will allow the definition of the controller parameter
range for which the system is stable. If it is possible, on the basis of previous

tuning of the parameters, define the stability range on the basis of experience,
it is not necessary to organize an experiment, and the data can be used to
determine the set of values of controller parameter in the stable area

The procedure described can be built into the procedure of tuning by genetic
algorithm and, besides fitness, stability can be established for each parameter
population. If we have in mind the fact that, in a genetic algorithm, it is necessary
to assess process response to be able to grade the quality of each individual,
defining stability does not prolong calculation time – it only changes the
procedure by introducing variations of input value.

12.3.3 Optimizing Criteria

Each optimizing procedure includes optimizing criterion, i.e., the criterion that
should ensure optimal behavior of the system. Various optimizing criteria can be
set for one and the same process, such as rise time, overshoot, energy
consumption, etc. It is necessary, sometimes, to include a few goals that are
controversial into the criterion, such as, for example, minimal energy
consumption and short response time.

Genetic algorithms have an advantage over other optimizing methods in that
optimizing is independent of the optimizing criterion selected (provided adequate
parameter representation is selected for the application of the genetic algorithm).
The level of optimality of the solution in a genetic algorithm equals its fitness;
i.e., its performance index becomes the measure of success of the individual in a
genetic algorithm population. There is, as can be seen, a direct link between the
optimal solution and genetic algorithm fitness.

The fitness of each individual in a genetic algorithm is the measure the individual
has been adapted to the problem that is solved employing this individual. It means
that fitness is the measure of optimality of the solution offered, as represented by
an individual from the genetic algorithm. The basis of genetic algorithms is the
selection of individuals in accordance with their fitness; thus, fitness is obviously
a critical criterion for optimization.

The following procedure was used throughout the simulation and experimental
research:

1) Step disturbance input is imposed onto the input of the i-th local process.

We must suppose that the i-th system is in a steady state. This condition, which
can prolong the procedure of optimizing by genetic algorithm, is necessary for
assessing the impact of step input.

As the process is a complex one, where there are links of input and output of two
or more local processes, we can suppose that only on some inputs (those not

linked with the outputs of other local processes) is it possible to step input to
process. If there are more possibilities, then the choice of the input where step
input will be imposed depends upon the process and local controller
characteristics. In such a case it is possible to impose step input successively to a
number (or all) of the available inputs, as well as to assess optimality based on the
response obtained.

2) The change of controller parameter should result in such a control that can
achieve minimal energy consumption, satisfying at the same time given
constraints.

The following is important to stress for the research described here:

• Constraints that should be obeyed are concerned with keeping the response
within given limits

• Optimizing is done, respecting the above constraints, within the known and
finite time period tp

• Stability of the system within the range of controller parameter change is
supposed, in accordance with the above-described way of ensuring stability

• Optimizing criterion J is energy consumption, with the optimum being
minimal energy consumption (min J):

, dt P A
n

1
 min = Jmin j

t

t

j

n

1=j

2

1

∫∑ (1)

under conditions:

|εj| ≤ εjm for Tr , (t1 ≤ tp ≤ t2) , (2)

where:

j local process index (j = 1,2,...,n)

n total number of local processes (n ≥ 1)
Aj weight factor of the j-th local process (0 ≤ Aj ≤ 1)
Pj heater power of the j-th local process
εjm control quality factor (allowed deviation of output)
εj error (difference between output and set point)
Tr set point of the output
t1,t2 beginning (t1) and end (t2) moment of observing period (t1 ≤ t2)
tp optimizing (observing) period (tp = t2–t1)

Optimizing criterion selected, in its general form, takes into account the responses
of all the n local processes. The weight factors, Aj, enables the selection of all, or

just some of the outputs of local controllers in optimizing, i.e., makes possible
attributing various shares to particular local processes.

In the course of simulations, it became obvious that it is not enough to optimize
employing single step disturbance input (with one amplitude value of step input
only), thus in employing multi-step input the expression (1) gets the form:

, dt P A
n

1
 min = J min j

t

t

j

n

1=j

s

1=p
m

2

1

∫∑∑

 (3)

where s is number of different step inputs. The need to introduce more step inputs
is explained in detail in the chapter on tuning fuzzy controller parameters.

12.4 Optimizing Aided by Genetic Algorithm
The application of genetic algorithms in optimizing controlled plants can be
found in the literature [Michalewicz, 1990; Michalewicz, 1992]. Known
applications include the usage of genetic algorithms in designing lateral autopilots
[Krishnakumar, 1992], in optimizing controller of plane wing bending
[Krishnakumar, 1992], in controlling pH [Karr, 1993] etc. [Karr, 1991; Pham,
1991; Castro, 1993; Cooper, 1993; Linkens, 1992; Nomura, 1992; Lee, 1993].
Taking into account the literature and characteristics of genetic algorithms, we
can say that the main areas of applying genetic algorithms in optimizing are
optimizing adaptive controllers, optimizing fuzzy controllers and optimizing
systems with more optimizing criteria.

12.4.1 Genetic Algorithm Parameters

The basic aim of the research described here was to show, in principle and
practice, the applicability of the genetic algorithm in optimizing the behavior of
complex systems. This is why a canonical genetic algorithm was selected to
check the basic idea. A genetic algorithm with the characteristics given below
was selected to perform the optimization.

Solution representation. A fixed-length and parameter-position binary string
representation was selected. The binary string consists of segments, representing
parameters. Any particular parameter within the string has a fixed and
unchangeable position throughout optimizing (it is position dependent). The
length of the string depends upon the resolution selected for each of the
parameters, as well as upon the number of parameters. Once selected, the length
of a binary string is not changed throughout optimization.

Population size. The population size was selected on the basis of
recommendations found in the literature and upon practical experience [Grundler,
1997] and is in the range 30 < µ < 90.

Recombination. Two basic genetic algorithm operators were applied: crossover
and mutation.

Crossover. One point crossover operator was used. Crossover probability pc = 0.7
was selected on the basis of literature and previous experience. The choice
followed recommendations [DeJong, 1975] and experimental researches
[Grundler, 1992; Grundler, 1992a; Grundler, 1997].

Mutation. A canonical mutation operator was selected, i.e. change of a bit at a
randomly selected spot in the binary string, with the probability of pm = 0.025.
The value selected is based on the literature [Grefenstette 1986], as well as on the
author’s experiments [Grundler 1992; 1992a; 1997].

Algorithm termination conditions. Genetic algorithms are stochastic
algorithms, which lead to “as good a solution as possible.” Genetic algorithms
contain no mechanisms that would make possible identification of a particular
solution as absolutely the best; there is only the mechanism defining whether a
particular solution is better or worse than the others tested. This is why there is
need for a constraint on the number of iterations in a genetic algorithm; the
constraints should be imposed by the user. Selection of this constraint can have a
significant impact on the quality of optimizing and duration of calculation, so it
should be carefully considered. Unfortunately, the stochastic nature of genetic
algorithms makes analytical analysis of optimal constraints impossible [Holland,
1975; Bethke, 1980; Ackley, 1987; Goldberg, 1989)], and practical experience
constitutes the only available guideline.

An algorithm can be shorter than determined by the constraint regarding the
number of iterations, provided additional condition is selected for algorithm
termination. For example, if the theoretical maximal fitness value of the algorithm
is known, it is possible to select a constraint regarding maximal fitness. An
algorithm is terminated when the following condition is fulfilled:

ft ≥ lp·fmax (4)

where

ft maximal fitness of current generation (iteration)

lp quality factor (0 < lp < 1)

fmax maximal theoretical fitness

Due to the stochastic nature of genetic algorithms, with the algorithm termination
criterion selected, as above, it is impossible to determine in advance the duration
of the algorithm. Theoretically, it is possible that for the selected lp the condition
(4) is never fulfilled, meaning the algorithm would never end. It is thus necessary
almost always to introduce an additional constraint on the number of iterations,
which ensures termination of the computation.

The maximum fitness value is seldom known in practice. This is why a more
favorable constraint is one regarding increment of maximal fitness. Minimal
increment of maximal fitness can be heuristically chosen, at which the algorithm
should be terminated. Using the criterion of increment of maximal fitness, the
calculation is terminated when the following condition is fulfilled:

f(i)
max – f(i-1)

max ≤ ∆mp (5)

where

∆mp selected increment of maximal fitness (this is genetic algorithm parameter,
and has to be defined in advance)

f(i)
max maximal fitness of current generation (iteration)

f(i-1)
max maximal fitness of previous generation (iteration)

There are certain problems with the above constraint. The first is the danger of
premature algorithm termination if the same value of maximal fitness is obtained
in two succeeding generations. The probability of this is reversal proportional to
the number of individuals and the size of the search space. The other problem is
the danger of maximal fitness variation between generations, which can lead to
the situation where the difference of maximal fitness between neighboring
generations is higher than between those that are farther apart.

The problems described can be significantly reduced by selection of termination
criteria, in which the termination of the calculation is determined by the
difference between maximal fitness of the current generation and the mean value
fmax of certain numbers of past generations:

, p
k

1
 - p mp

)i(
max

k

1=j

i
max ∆≤−∑ 1

 (6)

where k is the number of previous generations that will be used for calculation.

12.5 Laboratory Cascaded Plant
Checking the idea of multilevel coordinated control was done on a laboratory
plant (process), shown in Figures 12.2 and 12.3. A mathematical model of the
plant was made, and matched with the experiment through comprehensive and
numerous experiments [Bozicevic, 1988b; Ferber, 1990]. Optimizing the system

with regard to the criterion of minimal energy consumption, with the given
constraints of response, was done using a computer simulation, employing the
mathematical model mentioned. This approach was chosen because it makes the
iterative procedure of a genetic algorithm considerably faster, when compared to
direct optimizing on the plant itself.

Thy ris tor co nve rte r Thy ris tor co nve rte r

Con tro lle r 1 Con tro lle r 2

GA base d
CO-ORDINA TING UNIT

T T

q

q

q

q

T
T T

T T

T

T

T

T

Tan k 1

Tank 2
T

T

Hea te r 1

k1u

o

z2i

g2

k2

r2

z2u

c

g1

k1i

k1u

z1

z1

k1u

z1u

d

z1i

Figure 12.2 Block diagram of laboratory plant

The laboratory cascaded plant consists of a cascade of two heat exchangers
(boiler 1 and boiler 2). In the first heat exchanger, heat is exchanged among the
heater (heater 1), coil tube, boiler content and environment. The coil tube
incorporated makes cooling possible. It is possible to control heater power, and
thus control the first heat exchanger. The liquid level within the first boiler is kept
constant (not shown in the drawing), and the mixer ensures constant temperature
of the liquid at all points. The liquid flowrate through the first heat exchanger
depends on the consumption and its disturbance input, i.e., the flowrate qk1u is a
disturbance. Using the connecting tube, the liquid overflows into the coil tube of
the second boiler. The liquid level inside the second boiler is also kept constant
(not shown in the drawing), while mixing ensures an even temperature at all
points. The liquid flowrate through the second exchanger is the same as the
flowrate through the first one and connecting tube, and is a disturbance. Varying
the power of boiler heater 2 can control the process.

The process described is a cascade of two independently controlled processes,
with common disturbance inputs: flowrate qk1u. The basic task of control is to

keep the given temperature Tz2i constant at the outlet from the coil tube of the
second boiler, regardless of the variations in the flowrate through the system
caused by liquid consumption.

Figure 12.3 Photo of laboratory plant

In creating a mathematical model of the system, it is necessary to introduce
simplifications, which makes the model simpler, while not significantly
influencing its credibility. In creating the model described here, the following was
supposed:

• Physical characteristics of the liquid (density and specific heat coefficient) are
constant within the temperature range observed

• Coefficients of heat transfer are constant within the temperature range
observed

• Liquid mixing in the boiler is ideal; i.e., the temperature of the liquid in the
boiler is the same at all spots (achieved by intensive mixing and relatively
small boiler volume).

• Liquid level in the boiler is constant (inlet flowrate is equal to outlet flowrate)

Heat accumulation in the boiler walls and coil tube walls can be neglected.

Heat exchange between the coil tube and environment is described as the
temperature difference and logarithm dependence of the average temperature of
the liquid in the coil tube.

CO-OR DI NATE UN IT
(G A)

Heat
exch ang er

1

Heat
exch ang er

2

Conn ecting
tube

Con tro lle r
1

Con tro lle r
2

Heate r
1

Heate r
2

Temp. sen s.
1

Temp. sen s.
2

Thyrist or
convert er.

1

Thyrist or
convert er.

2

Sign al
cond ition.

1

Sign al
cond ition.

2

T TT

P P

T TT
T
T

q q

q

u u
(T)

r

(T)
rr1 r2

o o o

tr1

k1i

k1i

1

z1u

k1u
k1u

k1i

2

z2i

tr2

Figure 12.4 Block diagram of laboratory plant

Figure 12.4 shows the mutual dependence and connections between heat
exchangers. Control inputs are the powers of the heaters P1 and P2 (indirectly, via
control voltage and thyristor converter), while set points of the temperature are Tr1

and Tr2. Outputs of the heat exchangers 1 and 2 are liquid temperature at the outlet
of boiler number 1 (Tk1i) and liquid temperature at the outlet of coil tube number
2(Tz2i). Disturbance inputs are: environment temperature (To), liquid temperature

at the inlet of boiler number 1 (Tk1u), liquid temperature at the inlet of coil tube
number 1 (Tz1u), input flowrate to boiler number 1 (qk1u), output flowrate from the
boiler number 1 (qk1i), as well as the flowrate through the coil tube of boiler
number 2 (qz2). The flowrate through the coil tube of boiler number 1 (qz1) is
constant, while qk1u = qk1I = qz2. Throughout the research the values To, Tk1u, Tz1u

and qz1 are constant, and disturbance input is qk1u.

Mathematical model of the system is based on heat balance equation, with a
general form as follows:

,
dt

dQ
 -

dt

dQ
 =

dt

dQ od

(7)

i.e. heat change is equal to input heat change, reduced by the change of output
heat (Q is heat, Qd is input heat, Qo is output heat, t is time). Thus, heat balance of
the liquid in the first boiler is as follows:

,
dt

dT
cV =

dt

dQ k1i
pk1

k1 ⋅⋅ρ⋅
(8)

,) T - T (AU + Tcq =
dt

dQ
k1ig1g1g1k1upk1u

dk1 ⋅⋅⋅⋅ρ⋅
(9)

,) T - T (AU +) T - T (AU + Tcq =
dt

dQ
z1k1iz1z1ok1ik1k1k1ipk1i

ok1 ⋅⋅⋅⋅⋅⋅ρ⋅
(10)

where:

Qk1 boiler number 1 accumulated liquid heat, J

Qdk1 boiler number 1 input liquid heat, J

Qok1 boiler number 1 output liquid heat, J

To environment temperature, °C

Tk1i liquid temperature on the output from boiler number 1, °C

Tk1u liquid temperature on the input to boiler number 1, °C

Tg1 heater temperature in the boiler number 1, °C

1zT average temperature of the liquid of coil tube number 1, °C

Uk1 coefficient of heat transfer from boiler number 1 to environment, W/m2K

Ug1 coefficient of heat transfer for heater number 1, W/m2K

Uz1 coefficient of heat transfer for coil tube number 1, W/m2K

Ak1 outside area of boiler number 1 (area which exchanges heat with the
environment), m2

Ag1 area of heater number 1 (area which exchanges heat with the liquid in the
boiler), m2

A z1 area of coil tube number 1 (area which exchanges heat with the liquid in
the boiler), m2

Vk1 boiler number 1 volume, m3

qk1u boiler number 1 input flowrate, l/min

qk1i boiler number 1 output flowrate, l/min

ρ liquid density for water, ρ = 1000 kg/m3

cp liquid specific thermal capacity for water, cp = 4200 J/kg K

If Equations (8) to (10) are substituted into Equation (7), the following expression
is obtained for the first boiler:

() () -T - T
c V

AU
 +T - T

V

q
 =

dt
dT

1ik1g
p1k

1g1g
1ik1uk

k

k1uk1i ⋅
⋅ρ⋅

⋅
⋅

1 (11)

() (). T - T
cV

AU
 - T - T

cV

AU
 - o1ik

p1k

1k1k
1z1ik

p1k

1z1z ⋅
⋅ρ⋅

⋅
⋅

⋅ρ⋅
⋅

(12)

Boiler number 1 heat balance equations are:

,
dt
Td

cV =
dt

dQ z1
pz1

z1 ⋅⋅ρ⋅ (13)

,) T - T (AU + Tcq =
dt

dQ
z1k1iz1z1z1upz1u

dz1 ⋅⋅⋅⋅ρ⋅
(14)

, Tcq =
dt

dQ
k1ipk1i

oz1 ⋅⋅ρ⋅
(15)

where

Qz1 coil tube number 1 liquid heat, J

Qdz1 coil tube number 1 input liquid heat, J

Qoz1 coil tube number 1 output liquid heat, J

Tz1u liquid temperature on the input of coil tube number 1, °C

Vz1 coil tube number 1 volume, m3

qz1u coil tube number 1 input flowrate (qz1u = qz1I = qz1), l/min

If the Equations (13) to (15) are substituted into Equation (7) the following
expression is obtained for the first boiler coil tube:

() (),TT
cV

AU
TT

V

q

dt

dT
zik

pz

zz
izuz

z

zz
11

1

11
11

1

11 −⋅
⋅ρ⋅

⋅
+−⋅=

(16)

where Tz1i is the liquid temperature at the outlet from the coil tube number 1, in
°C. Additional equation, yielding T z1 as a function of Tz1u and Tz1i is as follows:

.

) T - T (

) T- T (
 ln

) T - T(
- T = T

1iz1ik

1uz1ik

1uz1iz
1ik1z (17)

Heater number 1 heat balance equations are:

,
dt

Td
cm =

dt

dQ g1
pg1g1

g1 ⋅⋅
(18)

, P =
dt

dQ
1

dg1

(19)

,) T - T (AU =
dt

dQ
k1ig1g1g1

og1 ⋅⋅
(20)

where

Qg1 boiler number 1 heater heat, J

Qdg1 boiler number 1 heater input heat, J

Qog1 boiler number 1 heater output heat, J

P1 heater number 1 power, W

mg1 heater number 1 mass, kg

cpg1 heater number 1 specific thermal capacity, J/kgK

If the Equations (18) to (20) are substituted into Equation (7) the following
expression is obtained for the first boiler heater:

().TT
cm

AU

cm

P

dt

dT
kg

pgg

gg

pgg

g
11

11

11

11

11 −⋅
⋅

⋅
−

⋅
=

(21)

Connection tube heat balance equations are:

,
dt
Td

cV =
dt

dQ c
pc

c ⋅⋅ρ⋅
(22)

, Tcq =
dt

dQ
k1ipk1i

dc ⋅⋅ρ⋅
(23)

, Tcq +) T - T (AU =
dt

dQ
z2upk1ioccc

oc ⋅⋅ρ⋅⋅⋅
(24)

where

Qc connection tube liquid heat, J

Qdc connection tube liquid input heat, J

Qoc connection tube liquid output heat, J

Tz2u liquid temperature on the input of coil tube number 2, °C

T c average temperature of the connection tube, °C

Uc coefficient of heat transfer from connection tube to environment, W/m2K

Ac area of connection tube (area which exchanges heat with environment),
m2

Vc connection tube volume, m3

If the Equations (22) to (24) are substituted into Equation (7) the following
expression is obtained for the connecting tube:

.) T - T (
cV

AU -) T- T (
V

q
 =

dt
Td

oc
pc

cc
2uz1ik

c

ikc ⋅
⋅ρ⋅

⋅
⋅1

(25)

Additional equation, yielding ≈ as a function of Tz2u and Tk1i is as follows:

.

) T - T (

)T- T (
 ln

) T - T(
- T = T

2uzo

 1iko

1ik2uz
oc (26)

Accordingly, the expressions for the second phase of the process can be obtained:

,) T - T (
cV

AU
 -) T - T (

cV

AU
 -) T - T (

cV

AU
 =

dt
dT

2z2k
p2k

2z2z
o2k

p2k

2k2k
2k2g

p2k

2g2gk2 ⋅
⋅ρ⋅

⋅
⋅

⋅ρ⋅
⋅

⋅
⋅ρ⋅

⋅
(27)

,) T - T (
cV

AU
 +) T- T (

V

q
 =

dt

Td
2z2k

p2z

2z2z
2iz2uz

z

1ik2z ⋅
⋅ρ⋅

⋅
⋅

2
(28)

,

) T - T (

) T- T (
 ln

) T - T(
- T = T

2iz2k

2uz2k

2uz2iz
2k2z

(29)

,) T - T (
c m

A U
 -

c m

P =
dt

dT
2k2g

2pg2g

2g2g

2pg2g

22g
⋅

⋅

⋅

⋅ (30)

where

Tk2 boiler number 2 liquid temperature, °C

Tg2 heater temperature in boiler number 2, °C

Tz2u liquid temperature on the input of coil tube number 2, °C

Tz2i liquid temperature on the output of coil tube number 2, °C

2zT
average temperature of the liquid of coil tube number 2, °C

Ug2, coefficient of heat transfer for heater number 2, W/m2K

Uk2 coefficient of heat transfer from boiler number 2 to environment, W/m2K

Uz2 coefficient of heat transfer for coil tube number 2, W/m2K

Ag2 area of heater number 2 (area which exchanges heat with the liquid in the
boiler), m2

Ak2 outside area of boiler number 2 (area which exchanges heat with
environment), m2

Az2 area of coil tube number 2 (area which exchanges heat with liquid in the
boiler), m2

Vk2 boiler number 2 volume, m3

Vz2 coil tube number 2 volume, m3

P2 heater number 2 power, W

mg2 heater number 2 mass, kg

cpg2 heater number 2 specific thermal capacity, J/kgK

Simulations were done under assumption of linear dependence of heater power to
control voltage, i.e. controller output. At the end of simulations, the results are
given with the model of thyristor converter of non-linear dependence of power on
the heater upon controller output (output from the controller). Bridge thyristor
converter model is:

,)(2sin
2

1
 + -

u
 = u

ef
ref

 α⋅απ⋅

π (31)

where:

α thyristor conducting angle (0≤ α ≤π)

uef thyristor input effective voltage value (220 V)

uref heater effective voltage value

Heater power depends on thyristor conducting angle:

,)(2sin
2

1
 + -

 R

u
 = P

g

2
ef

g

 α⋅απ⋅

π⋅ (32)

where Pg is heater power and Rg is heater resistance.

The thyristor conducting angle linearly depends on control voltage, i.e. α = ks·uu,
where ks is constant and uu is the control voltage (controller output). The thyristor
temperature sensor has time constant Tt < 2 seconds and it does not influence the
results of simulation, as the sampling period is 10 seconds.

Figures 12.5 to 12.7 show a block scheme of the laboratory cascaded process. The
mathematical model is nonlinear, which is quite obvious on block schemes
(multiplication of the flowrate by temperatures, division and logarithmic
computation in additional equation).

Figure 12.5 Block diagram of the first stage of plant

Heat exchanger 1. Calculated based upon measured physical plant
characteristics: Vk1 = 1.25 10-2 m3, Ak1 = 3.05 10-1 m2, Vz1 = 3.5 10-4 m3, Az1 = 1.65
10-1 m2. Measured data: Uk1 = 17.1 W/m2 K, Uz1 = 899 W/m2 K, Ug1Ag1 = 22 W/K,
mg1cpg1 = 992 J/K.

Connecting tube. Calculated based upon measured physical plant characteristics:
Vc = 1.2 10-4 m3, Ac = 0.3 10-1 m2. Measured data: Uc = 5.2 W/m2 K.

Heat exchanger 2. Calculated based upon measured physical plant
characteristics: Vk2 = 1.31 10-2 m3, Ak2 = 3.44 10-1 m2, Vz2 = 4.7 10-4 m3, Az2 = 2.22
10-1 m2. Measured data: Uk2 = 17.8 W/m2 K, Uz2 = 987 W/m2 K, Ug2Ag2 = 30 W/K,
mg2cpg2 = 1023 J/K.

Figure 12.6 Block diagram of the second stage of plant

Figure 12.7 Block diagram of the connecting tube

Liquid (water): ρ = 1000 kg/m3, cp = 4200 J/kg K.

The procedure of defining system parameter by measuring was described by
[Ferber, 1990]. System parameter limitations are caused by physical
characteristics of the plant, liquid and environment:

Power of heater 1: 0 W < P1 < 2400 W

Power of heater 2: 0 W < P2 < 2400 W

Flowrate: 0 l/min < qk1u < 1 l/min

Environment temperature: 0 °C < To < 50 °C

The following working conditions were set up: To = 25 °C, qk1u = 0.5 l/min (qk1u =
qk1 i= qz2). Heat exchanger 1: P1 = 1000 W, Tk1u = 10.0 °C, Tk1I = 32.8 °C, Tg1 = 78.3
°C, qz1 = 0.1 l/min, Tz1u = 10.0 °C, Tsz1 = 31.7 °C, Tz1I = 32.8 °C. Heat exchanger 2:
P2 = 1000 W, Tk2 = 56.0 °C, Tg2 = 89.3 °C, Tz2u = 32.8 °C, Tsz2 = 52.3 °C, Tz2I = 55.9
°C. Connection tube: Tcu = 32.8 °C, T cs = 32.8 °C, T ci = 32.8 °C. Detailed
experimental checking was done of matching the mathematical model to
laboratory plant [Ferber, 1990], and a satisfying degree of agreement was found.

12.6 Multilevel Control Using Genetic Algorithm
The conventional optimizing procedure for a complex process consists of locally
controlled processes, and are performed separately optimizing each local process
behavior. Parameters of each controller applied at each local process are
separately tuned. Optimizing criterion is a local one and refers only to the local
process in question.

12.6.1 Non-coordinated Multilevel Control Using a PID Controller

PID controllers have become standard elements of controlled systems, thanks to
their adequate characteristics, properly developed theoretical basis, relatively

simple use and low price. PID controller behavior is well known and theoretically
explained [Bozicevic, 1988; Desphande, 1981; Shinskey, 1979]. In non-linear
processes and processes of higher complexity, where it is not easy to perform an
analytical analysis, PID controllers are tuned heuristically. A comprehensive
representation of various conventional procedures for tuning PID controller
parameters can be found in the literature [McMillan, 1983; Astroem &
Haegglund, 1988].

Non-coordinated PID control was done by applying a genetic algorithm
independently to each local process, tuning the three parameters: Kr, Ti, Td. A PID
controller was selected for the first stage of the process, as controller no. 1,
described by the following mathematical model:

() () () () ,
dt

td
Tdtt

T
t K =tP d

i
r1

 ε⋅+⋅ε+ε⋅ ∫ 1
11

1
11

1
(33)

where

P1 controller output, W (indirect, by controller voltage and thyristor
converter)

Kr1 controller gain

Ti1 controller integral time constant, s

Td1 controller derivate time constant, s

ε1(t) feedback error, controller input, °C (indirect, by temperature sensor and
resulting voltage)

() () (),tTtTt ikr 111 −=ε (34)

where Tr1 is set point (reference), oC (indirect, by voltage Ur1, Tr1 = cs·Ur1, cs is
constant). For discrete system difference equation of PID1 controller is:

,
i

k

)i(
d)k(

i
)i(r)i(d

T
T

T

T
KP

 ε∆
⋅+ε+ε= ∑

=0

1
11

1
111 (35)

where

i sampling period index,

T = tI – t(i-1) sampling period, s

∆ε1=ε1(i) – ε1(i-1) change of error within sampling period.

The adequate model of PID2 controller for the second stage of the process is
described analogously.

In process simulation and differential equation involving solving, a fourth-order
Runge-Kutta method was used. System optimizing is done by independently
tuning the PID controller parameters Kr, Ti and Td for each stage.

PID controller parameters are represented as a binary strings: Kp ∈ I, I = {0,1}m ,
Ti ∈ J, J = {0,1}n , Td ∈ K, K = {0,1}p , where

Kp, Ti, Td PID controller parameters

m binary string length for the parameter Kp

n binary string length for the parameter Ti

p binary string length for the parameter Td

Resolution of a particular parameter depends upon parameter precision asked for,
expressed as a percentage:

,r
dii 100

2

1 ⋅=
(36)

where

ri i-th parameter resolution

di i-th parameter binary string length

Equation (37) gives the overall binary string length for all the three parameters,
related to the resolution asked for:

() ()
()

() ()
()

() ()
() ,

ln

rlnln

ln

rlnln

ln

rlnln
 d TdTikp

PID

 −
+

 −
+

 −
=

2

100

2

100

2

100

(37)

where

dPID binary string length

rkp resolution for the parameter Kp, %

rTi resolution for the parameter Ti, %

rTd resolution for the parameter Td, %

 operator “nearest greater integer.”

With the selected rkp = rTi = rTd = 0.1%, dPID = 30 bit. As the higher number of bits
had no significant impact on the duration of the simulation calculation, a dPID = 48
bit was selected (3 parameters for each string of 16 bits), which yielded the
resolution of rkp = rTi = rTd = 0.00153%.

From the point of view of system stability, the most important elements in PID
controller tuning are parameter constraints. The analysis should be performed in
the process design phase, i.e. the stability range of the PID controller is known, or
is implied in theexecution of the genetic algorithm.

The optimizing procedure is carried out separately for each plant stage under the
following conditions (system is at rest): To = 25.0 °C, P1 = 1000 W, qk1u = 0.5
l/min, Tk1u = 10 °C, Tk1I = 32.8 °C, qz1 = 0.1 l/min, Tz1u = 10 °C, Tz1I = 32.8 °C, Tz2u =

32.8 °C, P2 = 1000 W, Tk2 = 55.9 °C, Tz2I = 55.9 °C. Disturbance input was a step
change in the flowrate qk1u.

Tuning of PID controller parameters was done for both the first and second stage,
with optimizing criterion being minimal energy consumption. Normalized fitness
for the first stage was:

,
tP

dtPtP

f
wu

t

wu

p1

w

⋅

⋅−⋅

=
∫

1

0
11 (38)

where

tw = 3000 s, with constraints: |ε1| ≤ 0.05·Tr1, for (1000 ≤ tp ≤ 3000), and

fp1 = 0 for |ε1| > 0.05·Tr1, for (1000 s ≤ tp ≤ 3000 s). (39)

The fitness selected fp1 is maximal (fp1max = 1) when energy consumption is
minimal in the observed period (0 < t < tw). Normalization is achieved with the
term Pu1·tw, which is the maximum possible energy consumption in the observed
time (Pu1 is maximum heater power). The fitness selected fp1 is minimal (fp1min = 0)
when maximum energy consumption is possible (Pu1·tw) in the observed period (0
< t < tw). The energy consumption measurement period was selected in view of
the nature of the chemical process, where it is essential to keep the temperature
from 0 s to a maximum of 3000 s.

Together with the energy criterion in Equation (38), the expression (39)
introduced a constraint, which should not be exceeded by the plant output. The
constraint was the allowed deviation of the plant output, within 5% of the set
point after 1000 s, and was indirectly, through the expression (39) included as a
penalty function into the criterion. There were no output constraints within 0 s < t
< 1000 s. Accordingly, from the point of view of the genetic algorithm, all the
outputs used within the limits set were equally valid, regardless of their response
shape. The criterion selected did not optimize the response shape from the points
of view of rise time, overshoot, etc., but from the point of view of minimal energy
consumption, which should be taken into account in assessing the results. The
constraint described was selected for two reasons. First, process behavior
requirements were to be met, from the point of view of plant function. Second, we
wanted to show the possibilities of optimizing using complex optimizing criteria,
with no need to change the basic genetic algorithm.

The genetic algorithm was set in action sequentially for six different step
disturbance inputs, so as to ensure the search of the whole solutions space, thus
making total fitness as follows:

,
6

f + f + f + f + f + f
 = f

pq6pq5pq4pq3pq2pq1
pu

 (40)

where

fpu total fitness

fpqi i-th step disturbance input fitness

The following step inputs were used in simulation:

1. step input (fitness fpq1): qk1u step from 0.5 l/min to 1.0 l/min

2. step input (fitness fpq2): qk1u step from 0.5 l/min to 0.8 l/min

3. step input (fitness fpq3): qk1u step from 0.5 l/min to 0.6 l/min

4. step input (fitness fpq4): qk1u step from 0.5 l/min to 0.4 l/min

5. step input (fitness fpq5): qk1u step from 0.5 l/min to 0.2 l/min

6. step input (fitness fpq6): qk1u step from 0.5 l/min to 0.0 l/min

The following genetic algorithm parameters were used:

Population size = 30

Number of generations Ng = 50

Number of parameters within the chromosome Np = 3

Chromosome representation: binary

Length of binary coded chromosome/resolution dpid/rp = 48/1.53*10-5 (all three
parameters are of equal size)

Crossover: one point

Crossover probability pc = 0.7

Mutation probability pm = 0.025

Genetic algorithm parameters were selected following recommendations from
literature, and based on numerous experiments [Grundler, 1997].

PID1 controller parameters of the first stage of laboratory cascaded process,
obtained by genetic algorithm, are: Krg1 = 9.3, Tig1 = 890 s, Tdg1 = 0.44 s. An
example of the response of the first stage of the laboratory process controlled by
PID1 controller, the parameters of which were tuned using the genetic algorithm
described, can be seen in Figure 12.8. Parameter optimizing is not reflected in
view of minimal energy consumption (see Tab. 12.1), but it can be clearly seen
that, due to the output constraints, a set of PID controller parameters is obtained
which is satisfactory from the point of view of response shape quality. It should
be noted that it is a side effect, and not a result of the primary task of optimizing.
As a comparison by the end of the chapter we will show that PID controller
parameter optimizing by a genetic algorithm does not yield any better results from

the point of view of minimal energy consumption than other conventional
procedures of parameter tuning.

Time, s

T
em

pe
ra

tu
re

 T
k1

i,
0

C

32.5

32.6

32.7

32.8

32.9

33.0

0 500 1000 1500 2000 2500 3000

Ziegler-
Nichols

Genetic
algorithm

Figure 12.8 First process stage response for Zeigler-Nichols and GA tuned
PID, controller for step input qk1u from qk1u = 0.5 l/min to qk1u = 1.0 l/min

For the purpose of comparison of the results obtained by tuning PID1 controller
parameters for the first stage by genetic algorithm, they were also tuned
employing the Ziegler-Nicholos method. It is used to enhance controller gain Kr

until the process is brought into the oscillating state. On the basis of the gain
obtained in the above way Krk = 70, as well as the frequency of oscillations fosc =
1/40 Hz, PID controller parameters are defined using the following expressions
(Åsröm, 1988): Kr = 0.6Krk, TI = 0.5 1/fosc, Td = 0.12 1/fosc

Table 12.1 Comparison of optimizing results of PID controllers

Step Input

qk1u

Ziegler-Nichols Genetic

Algorithm

Ziegler-Nichols Genetic

Algorithm

(l/min) (E1, Wh) (E1, Wh) (E2, Wh) (E2, Wh)

1.0 1509 1509 1546 1544

0.8 1237 1237 1256 1256

0.6 964 964 973 973

0.4 691 692 782 783

0.2 419 419 466 466

0.0 146 146 148 148

Total 4966 4967 5171 5170

The following PID1 controller parameters for the first stage process are defined
using this method: Krz1 = 42, Tiz1 = 20 s, Tdz1 = 4.8 s.

The comparison of the response shape of the two methods for parameter tuning is
not adequate, as the genetic algorithm does not optimize response shape, but
energy consumption. Still, matching of response shapes is quite obvious, which
can be attributed to output constraints of ±5%, introduced in optimizing by
genetic algorithm.

Although the Ziegler-Nicholos method does not include the energy criterion,
while the genetic algorithm does, the result obtained, from the point of view of
energy consumption is approximately the same (see Table 12.1). It comes from
the nature of the PID controller, the parameters of which are defined by the
selection of output constraints (5% of the allowed deviation of the output from the
value set in the period of 1000 s < t < 3000 s). It is impossible to tune the
parameters further, from the point of view of minimal energy consumption.

It is impossible to tune the PID2 controller parameters for the second stage by step
disturbance input to the second stage, because of the cascade connection with the
previous process. Therefore, the following procedure was implemented instead.
PID1 controller parameters for the first stage were set to reflect optimal values
obtained by independent tuning using a genetic algorithm for the first stage of the
process (Krg1 = 9.3, Tig1 = 890 s, Tdg1 = 0.44 s). Step input was then forced onto the
first stage, and independent tuning of PID2 controller parameters for the second
phase of the process performed. The same parameters for the genetic algorithm
were applied as for the first stage. Fitness was fpu, following the expression (40)
and the same steady state and same step disturbance input were selected.

PID2 controller parameters for the second stage, obtained by tuning with the
genetic algorithm, were as follows: Krg2 = 1.8, Tig2 = 721 s, Tdg2 = 0.45 s.

For the purpose of comparison of the results obtained by tuning PID2 controller
parameters for the second stage by genetic algorithm, they were also tuned
employing the Ziegler-Nicholos method (under the same conditions and the same
input, in the same way as for the first stage of the process). On the basis of Krk=5
defined in this way, and fosc = 1/155 Hz, the following PID2 controller parameters
were defined for the second stage: Krz2 = 3, Tiz2 = 77.5 s, Tdz2 = 18.6 s. Response
example of the first stage laboratory process by PID2 controller, the parameters of
which were tuned employing the genetic algorithm described, is shown in Figure
12.9.

Table 12.1 shows energy consumption in controlling a laboratory plant by PID
controllers, the parameters of which were tuned by a genetic algorithm and
Ziegler-Nichols method.

It can be concluded, on the basis of the results of tuning PID controller
parameters as presented, that the method of optimizing proposed here is not
adequate, as it does not offer better results than those obtained by traditional
methods, at least from the point of view of minimal energy consumption.

Time, s

54.0

55.0

56.0

57.0

58.0

0 500 1000 1500 2000 2500 3000

Ziegler-Nichols

Genetic algorithm

T
em

pe
ra

tu
re

 T
z2

1,
0

C

Figure 12.9 Second process stage response for Ziegler-Nicholos and GA
tuned PID2 controller for step input qk1u from qk1u = 0.5 l/min to qk1u = 1.0
l/min

Although a satisfactory result, from the point of view of the optimizing criterion
given, was not obtained, the research described here indirectly points out a useful
fact: that it is possible to tune PID controller parameters from the point of view of
response minimal deviation from the set point. If the output constraint given is
taken as a criterion for optimizing, then parameter tuning is successful and the
result obtained satisfies the criterion completely. This fact can be used in PID
controller parameter tuning in cases when it is important to optimize the behavior
of regulated processes in view of response deviation from the set point.

12.7 Fuzzy Multilevel Coordinated Control
A multilevel control, aided by a genetic algorithm, gives the best results when
applied to fuzzy controllers. In coordinated control, decision tables are
simultaneously tuned with both fuzzy controllers, while satisfying optimizing
criteria regarding the system as a whole.

Fuzzy controller parameter tuning is a key issue of the quality and efficiency of
fuzzy logic control [Stipanicev, 1987; Karr, 1991]. Investigations have mostly
been heuristic by nature, and there has been no accurate measure from the point
of view of fitness achieved. Only recently, investigators have tried to tune
controller parameters employing evolutionary procedures, but they were quite
demanding regarding the resources used and thus questionable for use with
adaptable controllers [Freeman, 1990; Karr, 1991; Pham, 1991; Linkens, 1992;
Cooper, 1993].

Analytical procedures for optimizing fuzzy controllers are of little use, as the
function of membership and the control rules are subjective in nature. Besides
experience, the only method applicable is the method of trial and error, which can
take a lot of time and be quite unsatisfactory. Some results have been obtained by
using adaptable fuzzy controllers [Shhao, 1988; Stipanicev, 1991; Zhang, 1992],
but all these procedures suppose certain process properties, or include some
additional experience.

Two central and mutually dependent fuzzy controller parameters are control rules
and membership functions of primary terms. Fuzzy controller synthesis is usually
done so that one of these parameters is kept constant, while the other one is tuned
[Karr, 1991].

Characteristics of genetic algorithms are almost ideal for optimizing fuzzy
controller parameters, as confirmed by the examples of usage in recent literature
[Androulakis, 1991; Pham, 1991; Krishnakumar, 1992; Kristinsson, 1992;
Michalewitz, 1992; Nomura, 1992; Castro, 1993; Cooper, 1993].

Defining membership functions of primary terms is in principle a much simpler
procedure than defining control rules. The reason is the fact that primary terms
are not connected to the nature of the process in question, but are rather general
terms, which can be equally generally defined, thus being valid for any process. It
is, consequently, quite common to define seven primary terms and attribute them
a triangular shape [Stipanicev, 1989]. Seven terms are selected as the uppermost
border of the operative’s perceptive abilities on the one hand, and as a minimum
of acceptable control quality on the other. Although initial investigations in
employing genetic algorithms in tuning the fuzzy controller membership
functions yielded some promising results [Karr, 1991], and indicated possibilities
of certain adaptability on the part of fuzzy controller, the fact remains that
primary terms are not directly connected to the process. Tuning the primary
terms, which is a typical procedure for most of the methods found in the
literature, the meaning of the primary term tuned is changed, which can easily
result in severing the semantic link of the primary term and the experience of the
operator.

Control rules are directly connected with the nature of the process and are
significantly dependent upon its properties. Control rules are a direct image of
subjective knowledge of the process, and are thus the foundations of a fuzzy
controller. Optimizing control rules is the most important part of the process of
fuzzy controller optimizing, and it is consequently performed in this chapter. For
each set of inputs, controller output is calculated employing control rules. The
basic disadvantage of such an approach is the duration of the calculation. In the
processes with a number of inputs, calculation time can be so long as to either
require too expensive hardware or a time too long for practical application in
view of plant dynamics. From the very beginnings of the application of fuzzy
controllers, the problem has been solved by simplifying the calculation or by
creating a decision table. The first method results in only a partial reduction of the
time needed for the calculation, while the second one reduces the necessary time
considerably, but at the expense of control accuracy.

The reasons for selecting a decision table as a parameter for fuzzy controller
tuning are as follows:

1) Processing the decision table and not the control rules, ensures that the
process is made considerably faster, as it is not necessary to calculate the
value of controller output. A decision table can be made by using fast, simple
and inexpensive hardware (e.g. RAM or EEROM). The alteration of a
decision table in such cases is simple and fast.

2) The number of primary terms, which is, due to subjective assessment, limited
to around ten (most often seven), can be, when a decision control table is
used in processing with a genetic algorithm, enlarged.

3) A decision table is easy to represent in a form adequate for processing with a
genetic algorithm.

12.7.1 Decision Control Table

The structure of decision control table selected (used in most of the literature
consulted) is a multidimensional vector, the elements of which are real numbers
in the range from 0 to Vmax. Each decision table element is binary coded with b1

bits. The decision control table has the size bn (expressed in number of bits) from:

,S b = b
um

i
i1n ∏

=
⋅

1 (41)

where

bn total number of bits of decision table

b1 number of bits of one element of decision table

Si number of primary terms

mu number of controller inputs

Total search space sp is sp = 2bn. Even in a simple case with two inputs, each with
seven primary terms and binary coded output with 16 bits total, search space size
exceeds 10236!

Table 12.2 49-element control decision table

Error

nv ns nm p0 pm ps pv

dpv m11 m12 m13 m14 m15 m16 m17

dps m21 m22 m23 m24 m25 m26 m27

Change in dpm m31 m32 m33 m34 m35 m36 m37

Error d0 m41 m42 m43 m44 m45 m46 m47

dnm m51 m52 m53 m54 m55 m56 m57

dns m61 m62 m63 m64 m65 m66 m67

dnv m71 m72 m73 m74 m75 m76 m77

In simulations described below, the number of primary terms selected was Si = 7.
A 49-member control decision table (49 elements are tuned) was selected as a
tuning parameter for fuzzy controllers. The structure can be seen in Table 12.2.

Figure 12.10 First stage response to step disturbance qk1u (from qk1u = 0.5
l/min to qk1u = 1.0 l/min) controlled with genetic algorithm tuned decision
tables

Figures 12.10 to 12.13 show the response of a laboratory cascaded plant
controlled by a fuzzy controller, with a decision control table being tuned by a
genetic algorithm (coordinated tuning). Responses for various steps inputs qk1u are
shown, under working conditions described, and given set point and constraints.

Figure 12.11 First stage response to step disturbance qk1u (from qk1u = 0.5
l/min to qk1u = 0.2 l/min) controlled with genetic algorithm tuned decision
tables

Figure 12.12 Second stage response to step disturbance qk1u (from qk1u = 0.5
l/min to qk1u = 1.0 l/min) controlled with genetic algorithm tuned decision
tables

Table 12.3 shows parallel total energy consumption of both stages of the
laboratory plant controlled by decision tables tuned heuristically and GA tuned, in
a non-coordinated and coordinated way.

Figure 12.13 Second stage response to step disturbance qk1u (from qk1u = 0.5
l/min to qk1u = 0.2 l/min) controlled with genetic algorithm-tuned decision
tables

Table 12.3 Comparison of energy consumption for fuzzy controllers

Step
Input qk1u

Heuristically
Tuned Controller

GA Tuned in a Non-
coordinated Way

GA Tuned in a
Coordinated Way

(l/min) (E1+E2, Wh) (E1+E2, Wh) (E1+E2, Wh)

1.0 3063 2997 2853

0.8 2511 2447 2372

0.6 1960 1926 1913

0.4 1396 1407 1402

0.2 852 883 852

0.0 301 342 311

Total 10083 10002 9703

Figure 12.14 shows a comparison of energy consumption for both stages, at
different input step disturbances. It can be seen that better results are obtained
with fuzzy controllers tuned in a coordinated way by a genetic algorithm than

with other methods of controller parameter tuning, particularly for inputs where
higher energy consumption is required.

Step disturbance qk1u, l/min

T
ot

al
 e

ne
rg

y
co

ns
um

pi
to

n,
 W

h

0

500

1000

1500

2000

2500

3000

3500

1 0.8 0.6 0.4 0.2 0

PID A

PID B

Fuzzy A

Fuzzy B

Fuzzy C

Figure 12.14 Comparison of energy consumption for both stages, at different
input step disturbances

Figures 12.14 and 12.15 legend:

PID A Ziegler-Nichols tuned PID controllers

PID B GA tuned PID controllers

Fuzzy A Heuristically tuned fuzzy controller

Fuzzy B GA tuned fuzzy controller without coordinating unit

Fuzzy C GA tuned fuzzy controller with coordinating unit

T
ot

al
 e

ne
rg

y
co

ns
um

pt
io

n,
 W

h

9400

9600

9800

10000

10200

PID A PID B Fuzzy A Fuzzy B Fuzzy C

Figure 12.15 Comparison of cumulative energy consumption for both stages
of the laboratory plant for total of six steps input disturbances

Figure 12.15 shows a comparison of total energy consumption for both stages of
the laboratory plant for six input step disturbances (qk1u = 0.0 l/min, qk1u = 0.2
l/min, qk1u = 0.4 l/min, qk1u = 0.6 l/min, qk1u = 0.8 l/min, qk1u = 1.0 l/min). It can be
seen that the best results, from the point of view of energy consumption, are
obtained in using fuzzy controllers tuned in a coordinated way by a genetic
algorithm. Savings are realized at the expense of negative deviation of the
temperature from the set point. This is why special attention should be paid to all
the system behavior characteristics in the selection of optimizing criteria, so as to
prevent unfavorable results through neglecting some of the important
characteristics of tuning.

Figures 12.16 to 12.19 show responses of the laboratory process when using
different controllers and different methods of controller parameter tuning. Step
disturbance input acts upon the input of the first stage of the laboratory process in
intervals of 3000 s, this being the time in which response was monitored in tuning
using a genetic algorithm. This time period is part of the optimizing criterion and
the procedure of tuning does not guarantee fulfillment of the criterion for any
period longer than 3000 s. If the criterion is to be fulfilled for a longer period, it is
necessary to perform the procedure for an adequate time. The procedure described
does not guarantee permanent fulfillment of optimizing criterion (infinite time).
Criterion of energy should be kept in mind again.

Time, s

T
em

pe
ra

tu
re

 T
k1

i,
0

C

30

32

34

36

38

40

0 10000 20000
0

0.4

0.8

1.2

F
lo

w
ra

te
 q

k1
u,

l/m
in

Temperature (response)

Flowrate (disturbance)

5000 15000

Figure 12.16 Response of the first stage of a plant controlled by fuzzy
controllers (decision tables are GA-tuned) for set point Tr = 37°C

Time, s

T
em

pe
ra

tu
re

 T
z2

i,
0

C

0 10000 20000
0

0.4

0.8

1.2

F
lo

w
ra

te
 q

k1
u,

l/m
in

Temperature (response)

Flowrate (disturbance)

5000 15000
56

58

60

62

64

66

Figure 12.17 Response of the second stage of a plant controlled by fuzzy
controllers (decision tables are GA tuned) for set point Tr = 64.4°C

Time, s

T
em

pe
ra

tu
re

 T
k1

i,
0

C

20

22

24

26

28

30

0 10000 20000
0

0.4

0.8

1.2

F
lo

w
ra

te
 q

k1
u,

l/m
in

Temperature (response)

Flowrate (disturbance)

5000 15000

Figure 12.18 Behavior of the first stage of a plant controlled by fuzzy
controllers (decision tables are GA tuned) for set point Tr = 28.6°C

All the simulations described were done for one and the same set point: To = 25.0
°C, P1 = 1000 W, qk1u = 0.5 l/min, Tk1u = 10 °C, Tk1I = 32.8 °C, qz1 = 0.1 l/min, Tz1u =
10 °C, Tz1I = 32.8 °C, Tz2u = 32.8 °C, P2 = 1000 W, Tk2 = 55.9 °C, Tz2I = 55.9 °C and
with the same decision control tables (Tables 12.4 and 12.5). It should be checked
whether the decision table obtained in the above way can also be applied to
process control in other set points, or will it be necessary to re-tune the fuzzy
controller parameters. For this purpose, a simulation of the system behavior was
organized for various set points, and shown in Figures 12.16 to 12.19.

Time, s

T
em

pe
ra

tu
re

 T
z2

i,
0

C

0 10000 20000
0

0.4

0.8

1.2

F
lo

w
ra

te
 q

k1
u,

l/m
in

Temperature (response)

Flowrate (disturbance)

5000 15000
40’

42

44

46

48

50

Figure 12.19 Behavior of the second stage of a plant controlled by fuzzy
controllers (decision tables are GA tuned) for set point Tr = 47.5°C

Figure 12.16 and 12.17 show behavior of a plant controlled by fuzzy controllers
(decision tables are GA tuned) for the following working conditions: To = 25.0 °C,
P1 = 1200 W, qk1u = 0.5 l/min, Tk1u = 10 °C, Tk1I = 37 °C, qz1 = 0.1 l/min, Tz1u = 10 °C,
Tz1I = 37 °C, Tz2u = 37 °C, P2 = 1200 W, Tk2 = 64.4 °C, Tz2I = 64.4 °C. Set point for
the first stage is: Tr = 37 °C. Set point for the second stage is: Tr = 64.4 °C.

Table 12.4 Decision control table tuned by genetic algorithm for the first
process

0.24 0.29 0.65 0.48 0.48 0.62 0.06

0.13 0.92 0.16 0.03 0.94 0.81 0.84

0.52 0.17 0.51 0.06 0.52 0.56 0.22

0.76 0.19 0.68 0.27 0.92 0.51 1.00

0.21 0.71 0.27 0.68 0.71 0.40 0.92

0.54 0.06 0.05 0.84 0.97 0.03 0.25

0.27 0.44 0.41 0.98 0.54 0.76 0.84

Table 12.5 Decision control table tuned by genetic algorithm for the second
process

0.24 0.03 0.56 0.08 0.32 0.78 0.24

0.10 0.13 0.78 0.52 0.08 0.40 0.75

0.49 0.25 0.03 0.81 0.27 0.60 0.02

0.71 0.75 0.13 0.41 0.52 0.83 0.37

0.65 0.89 0.05 0.06 0.35 0.73 0.37

0.24 0.17 0.10 0.86 0.59 0.17 0.98

0.30 0.44 0.89 0.00 0.83 0.83 0.95

Figure 12.18 and 12.19 show behavior of a plant controlled by fuzzy controllers
(decision tables are GA tuned) for the following working conditions: To = 25.0 °C,
P1 = 800 W, qk1u = 0.5 l/min, Tk1u = 10 °C, Tk1I = 28.6 °C, qz1 = 0.1 l/min, Tz1u = 10

°C, Tz1I = 28.6 0C, Tz2u = 28.6 °C, P2 = 800 W, Tk2 = 47.5 °C, Tz2I = 47.5 °C. Set point
for the first stage is: Tr = 28.6 °C. Set point for the second stage is: Tr = 47.5 °C.

Up to now it has been assumed that heater power is linearly dependant on control
voltage, i.e., controller output. By introducing a nonlinear thyristor converter, the
results are somewhat altered. Figures 12.20 and 12.21 show examples of response
with nonlinear characteristic of a thyristor converter.

32

33

34

Time, s

T
em

pe
ra

tu
re

 T
k1

i,
0

C

0 1000 2000 3000

With thyristor Without thyristor

Figure 12.20 First stage response with nonlinear characteristic of thyristor
converter

Time, s
0 1000 2000 3000

T
em

pe
ra

tu
re

 T z
2

i ,
0
C

56

55

55

With thyristorWithout thyristor

Figure 12.21 Second stage response with nonlinear characteristic of thyristor
converter

Figure 12.20 shows the response of the laboratory plants first stage for a relatively
big negative step disturbance (reduction of flowrate from 0.5 to 0.2 l/min). Figure

12.21 shows the response of the laboratory plant second stage for a relatively big
negative step disturbance (reduction of flowrate from 0.5 to 0.2 l/min).

In principle, we can conclude that the non-linear characteristic thyristor converter
impacts a few of the factors:

• Response oscillations for both stages are somewhat reduced, as can be seen in
all the examples presented. Oscillations are not eliminated in any of the cases,
and the reduction depends upon the step input disturbance and set point

• Absolutely maximum response deviation from the set point is reduced in both
stages, especially so for a relative big positive step input disturbance
(relatively high increase in flowrate)

• Total energy consumption is higher, but not significantly so; the overall
difference of energy consumption between linear and non-linear characteristic
for the six inputs used in simulation was –0.6% (higher energy consumption
for nonlinearity)

The procedure of tuning decision table parameters as proposed is independent of
optimizing criterion, which is one of its biggest advantages. Besides criteria
which concern only energy, or those related only to error, some combinat,ions can
also be used. For example, one can use combined criteria in the form:

pi

u1 w

0

t

p e

0

t

2p e

u1 w

f =

2 P t - T P T e - T P T e

2 P t
 ,

w w

⋅ ⋅ + ⋅() ⋅ + ⋅()
⋅

∫ ∫1 1
2

2
2

(44)

where

P1, P2 power of the heaters

e1, e2 error (difference between set point and output)

t time

tw optimizing interval

Tp weight term of energy consumption

Te weight term of error

Selecting adequate weight terms, a combined criterion can yield process behavior,
which is a compromise between energy savings and response deviation from set
point. For example, Figures 12.22 and 12.23 show process response for various
criteria: ITSE criteria, minimal energy consumption criteria and combined criteria
in Equation (44) when equal weight terms (Tp = Te) are selected.

Time, s

T
em

pe
ra

tu
re

 T
k1

i,
0

C

29

0 1000 2000 3000

30

31

32

33

34

Minimal energy consumption criteria

ITSE criteria

Combined criteria

Figure 12.22 First stage process response for various optimizing criteria

In the first two cases, considerably lower response deviation from set point can be
seen, especially when response monitoring time is longer. Nevertheless, contrary
to expectations, the criterion of minimum of integral of time times the square of
the error does not yield much better results (lower oscillations through longer
time) from the combined criterion, although certain improvement is quite obvious
for t > 1500 s. The main reason for this is the discrete decision table, which makes
total elimination of oscillations impossible. Prolonged oscillations are considered
an inherent disadvantage of the proposed method for tuning decision control table
parameters. Further reduction of oscillations is possible, but only using some
other control algorithm.

Time, s

T
em

pe
ra

tu
re

 T
z2

i,
0

C

52

0 1000 2000 3000

53

54

55

56

57

Minimal energy consumption criteria

ITSE criteria

Combined criteria

Figure 12.23 Second stage process response for various optimizing criteria

There are two basic methods of realizing fuzzy multilevel control optimized by a
genetic algorithm: offline and online.

The application on a mathematical model matches the simulation research
described. Realization on a computer is rather simple, presenting no practical
problem. The main disadvantage of applying the process on a model is the need to
develop a mathematical model in a form that enables a solution to be reached, i.e.,
that enables response calculation within a time domain. As fuzzy controllers are
applied primarily in situations where it is impossible to perform control by some
conventional procedure, as formal analysis and synthesis of the system are
impossible, it is obviously restricted in application. One of the uses of fuzzy
multilevel control optimized by a genetic algorithm on a mathematical model is in
the case of tuning a number of parameters, which is a characteristic of fuzzy
controllers. Conventional optimizing methods are not applicable for optimizing a
large number of parameters (for example, 98 parameters as was done in this
research), as calculation time is unacceptable. The efficiency of a genetic
algorithm is independent of the number of parameters (up to the limits of the
computer used, i.e., memory available and software used for processing), which is
another important reason for choosing to apply a genetic algorithm. A crucial
advantage of applying the optimizing procedure on a system model is its rather
short duration, compared to implementing it on a real process.

Fuzzy multilevel control optimized by a genetic algorithm can also be applied to
an online system. A prerequisite is, of course, that the system is controlled by
fuzzy controllers, decision control tables which are tuned heuristically and that
there is no mathematical model of the system.

Control and optimizing using a PC is adequate for simulation optimizing, or when
critical time parameters of the system are such that control and optimizing
algorithms can be implemented fast enough. If this is not the case, special
controllers should be designed and optimizing applied that will be able to
implement the algorithms in a spcified time. Regarding calculation time, two
parts of calculating should be distinguished: control and optimizing.

 System control is done on the basis of actually available decision control tables
and is separated from the procedure of optimizing. The control algorithm is
implemented in a considerably shorter time than the optimizing algorithm. It is
thus quite feasible to design a control unit separately from an optimizing
(coordination) unit. Communication between the units should be ensured, so as to
make it possible to send the decision control table, obtained by an optimizing
algorithm, to the control unit.

The control unit should implement the whole of the control algorithm in a time
shorter than the sampling interval. Control using a decision control table is a

simple variant, as the total calculation consists of acquiring the values stored from
the memory and passing them to a D/A converter. Implementation time depends
on the hardware and software configuration used.

The main advantages of applying the procedure in a real system are its simple
implementation and the possibility of automated optimizing, with no need to
know the mathematical model of the process. Heuristic knowledge of system
behavior is all that is necessary and the decision control table represents it for
fuzzy controllers. Alteration of the optimizing criterion requires no change in the
system (except, of course, a change in the genetic algorithm fitness function,
which contains the criterion). In applying the optimizing procedure to some other
process, it is necessary to change the heuristic decision control table (or tables),
while the rest of the system can remain unchanged. Universal applicability of the
procedure proposed is ensured in this way.

The main disadvantage of the proposed application of fuzzy multilevel control
optimized by a genetic algorithm to a real system is the time necessary to
implement the genetic algorithm. With the population of 90 individuals, and
implementation of 70 generations (as selected in the simulation research
presented), the time necessary to implement the algorithm is 90·70·tw, where tw is
response monitoring time in the course of the genetic algorithm implementation.
The procedure is much more applicable for optimizing when the response should
be monitored in shorter intervals, i.e., when tw is relatively small.

12.8 Conclusions
The principal aim of the research performed was to determine a control procedure
that can sustain cascaded processes within given limits, fulfilling a particular
criterion relating to the system as a whole (e.g., minimal energy consumption) in
an unsteady environment. Various conventional methods were investigated, and
evolutionary optimizing selected as the most favorable approach. Fuzzy logic
control was investigated as a basis for unification of heuristic knowledge with the
evolutionary procedure. A practical algorithm for system behavior optimizing was
developed by tuning the decision control table for fuzzy controllers using a
genetic algorithm.

A laboratory cascaded plant was used as a basis for simulation research.
Experimental comparison of mathematical model and real process behavior was
done. The process was investigated from the points of view of control by
conventional procedures and evolutionary optimized control. The criterion of
energy, i.e., minimal energy consumption in controlling a cascaded process, was
used as the optimizing criterion in the course of the simulation research described.
A precondition was fulfilling given constraints of response deviation from the set
point.

From the point of view of the minimal energy consumption criterion, the best
simulation results were obtained by two-level coordinated control by a fuzzy
controller employing decision control tables which were tuned using a genetic
algorithm. Assuming that the first level of control uses a fuzzy logic controller,
the task of the second level is to coordinate and obtain optimal system behavior in
a changing environment. Comparison of results obtained by evolutionary and
heuristically tuned PID and fuzzy controllers was done. Coordinated multilevel
control aided by a genetic algorithm was better regarding the fulfillment of the
minimal energy consumption criterion preset, while response was also kept within
the given limits (±5% temperature deviation from the set point). Despite the
relative complexity and nonlinearity of the system process-controller, the
efficiency of the genetic algorithm is relatively high. Algorithm convergence,
depending upon the process and controller parameters, is within the range of 30 to
70 generations. Genetic algorithms imply the adaptation to various conditions of
(sampling interval, control inputs values span, etc.). The procedure described
leads to a global extreme and no broadening of algorithm adaptation is necessary
in searching the solutions space with more than one local extreme.

The decision control table, once tuned, yields satisfactory results in the
environment of a working point for which optimizing was done (temperature
deviation ±15% around the working point). For the working points which deviate
considerably from the tuning point, it is necessary to re-tune the decision control
table.

Easy implementation and inherent adaptability characterize the evolutionary
procedure of multilevel coordinated control proposed. Furthermore, there are no
problems in practical application. It is quite easy to automate the proposed fuzzy
multilevel process control optimized by a genetic algorithm using existing
equipment and contemporary technology. A coordinating unit and genetic
algorithm can be used on general-purpose computers, or a special microprocessor
unit can be constructed for the purpose of coordination. In both cases, there
should be no hardware or software problems in executing the idea in practice.

The main disadvantage of the procedure proposed is the need to assess the quality
of a relatively large number of system responses. As each response is monitored
for a period of time, total time necessary to implement the procedure is the
product of multiplying the number of individuals in the population, the number of
iterations and monitoring time (disregarding the time necessary for algorithm
implementation on a computer, which is in principle considerably shorter than the
monitoring time). This is no problem in simulation research, but applying it to
real systems optimizing time can be beyond acceptable limits. The applicability of
the procedure should thus be assessed in view of the time needed for monitoring.

Fuzzy multilevel process control optimized by a genetic algorithm is not a
substitute for conventional optimizing procedures. It is a useful addition to the
heuristic methods of control, especially fuzzy logic control.

References
[Ackley, 1987] Ackley, D.H., An empirical study of bit vector function

optimization, in Genetic Algorithms and Simulated
Anealing, Morgan Kaufmann, 1987, 170 - 204.

[Androulakis, 1991] Androulakis, I.P., Venkatasubramanian, V., A genetic
algorithm framework for proces design and
optimization, Computers Chem. Eng., 15(4), 1991, 217 -
228.

[Aström, 1984] Aström, K.J., Haegglund, T., Automatic tuning of
simple regulators with specifications on phase and
amplitude margins, Automatica, 20, 1984, 645 - 651.

[Bäck, 1993] Bäck, T., Schwefel, H.P., An overview of evolutionary
algorithms for parameter optimization, Evolutionary
Computation GA, 1(1), 1993, 1 - 23.

[Bahnasawi, 1990] Bahnasawi, A.A., Alfuhaid A.S., and Mahmoud M.S.,
Decentralized and hierarchical control of interconnected
uncertain systems, IEE Proc. Control Theory and
Applications, 137(5), 1990, 311 - 321.

[Baldwin, 1980] Baldwin, J.F., Guild, N.C.F., Modelling controllers
using fuzzy relations, Kybernetes, 9, 1980, 223 - 229.

[Bethke, 1981] Bethke, A.D., Genetic Algorithms as function
optimizes, Disertation Abstracts International, 41(9)
3505B, 9, 1981.

[Bozicevic, 1988] Bozicevic, J., Temelji automatike, Sustavno glediste i
automatika, automatsko reguliranje, (in Croatian),
Skolska knjiga, Zagreb, 7. Izdanje, UDK 007.5:62-5
(035), 1988.

[Bozicevic, 1988a] Bozicevic, J., Stipanicev, D., Development of a fuzzy
transducer, IMEKO, 1988, 139-142.

[Bozicevic, 1988b] Bozicevic, J., Stipanicev, D., Teaching and training of
the fuzzy process control, Proc. ISA88, 1988, 1577 -
1582.

[Braae, 1979] Braae, M., Rutherford, D.A., Theoretical and linguistic
aspects of the fuzzy logic controller, Automatica, 15,
1979, 553 - 577.

[Bramlette, 1989] Bramlette, M.F., Cusin, R., A comparative evaluation of
search methods applied to parametric design, genetic
algorithms and their applications, Proc. of the Third
Intl. Conf. on Genetic Algorithms, San Mateo, CA,
1989, 213 - 218.

[Buckley, 1992] Buckley, J.J., Nonlinear fuzzy controller, Information
Sciences, 60(3), 1992, 261 - 274.

[Castro, 1993] Castro, J.L., Delgado, M., Herrera, F., A learning
method of fuzzy reasoning by genetic algorithms, Proc.
of First European Congress on Fuzzy and Intelligent
Technologies, EUFIF 93, Aachen, Germany, Sept. 7-10,
1993. II, 1993, 804-809.

[Chen, 1993] Chen, C.L., Chen P.C., Chen C.K., Analysis and design
of fuzzy control-system, Fuzzy Sets and Control
Systems, 57(2), 1993, 125 - 140.

[Chen, 1993a] Chen, J.Q., Chen L.J., Study on stability of fuzzy
closed-loop control-systems, Fuzzy Sets and Control
Systems, 57(2), 1993, 159 - 168.

[Cooper, 1993] Cooper, M.G., Vidal, J.J., Genetic design of fuzzy
controllers, Second Int. Conf. On Fuzzy Theory and
Technology, Durham, NC, USA, 1993.

[De Jong, 1975] De Jong, K.A., Analysis of the Behavior of a Class of
Genetic Adaptive Systems, Ph.D. thesis, Dept. of
Computer and Communication Sciences, Univ. of
Mich., 1975.

[Desphande, 1981] Desphande, P.B., Ash, R.H., Elements of Computer
Process Control with Advanced Control Applications,
Research Triangle Park, NC: ISA, 1981.

[Dubois, 1980] Dubois, D., Fuzzy Sets and Systems, Academic Press,
New York, ISBN 0-12-222750-6, 1980.

[Ferber, 1990] Ferber, T., Lingvisticko modeliranje i vodenje
stupnjevitog procesa izmjene topline, (in Croatian),
Diplomski rad, Tehnoloski fakultet sveucilista u
Zagrebu, Kemijsko tehnoloski studij, Zagreb, 1990.

[Findeisen, 1978] Findeisen, W., Hierarchical Control Systems - An
Introduction, Intern. Institute for Applied Systems
Analysis, 1978.

[Freeman, 1990] Freeman, L.M., Krishnakumar, K., Karr, C.L., I
Meredith, D., Tuning Fuzzy Logic Controllers Using
Genetic Algorithms – Aerospace Applications,
Aerospace Applications of Artificial Intelligence
Conference, Dayton, OH, USA, 1990.

[Goldberg, 1986] Goldberg, D.E., Thomas, A.L., Genetic Algorithms: A
bibliography 1962-1986, TCGA Report No 86001,
Tuscaloosa: Univ. of Alabama, USA, 1986.

[Goldberg, 1989] Goldberg, D.E., Genetic Algorithm in Search,
Optimization, and Machine Learning, Addison-Wesley,
Reading MA, 1989.

[Grefenstette, 1986] Grefenstette, J.J., Optimisation of control parameters for
genetic algorithms, IEEE Trans. on Systems, Man and
Cybernetics, 16(1), 1986, 122 - 128.

[Grundler, 1992] Grundler, D., Ugadanje parametara funkcije pripadnosti
neizrazitog regulatora upotrebom genetickog algoritma,
(in Croatian), 15. Strucno znanstveni skup MIPRO 92,
1992.

[Grundler, 1992a] Grundler, D., Bozicevic, J., Sinteza neizrazitog
regulatora primjenom genetickog algoritma, (in
Croatian), Prvi simpozij Umjetna inteligencija pri
mjerenju i vodenju, 1992.

[Grundler, 1997] Grundler, D., Multilevel Fuzzy Process Control
Optimized by Genetic Algorithm, Doctoral dissertation,
Fakultet elektrotehnike i ra_unalstva, Zagreb, Croatia,
(on Croatian language), 1997.

[Guilamo, 1987] Guilamo, P.J., Fuzzy logic allows creation of precise
process controllers, EDN, April1987, 201 - 204.

[Hahn, 1963] Hahn, W., Theory and application of Lyapunovs direct
method, Englewood Cliffs, NJ Prentice-Hall Inc., USA,
1963.

[Hall, 1991] Hall, S.R., Crawley E.F., How J.P., Ward B.,
Hierarchical control architecture for intelligent
structures, Journal of Guidance Control and Dynamics,
14(3), 1991, 503 - 512.

[Holland, 1975] Holland, J.H., Adoption in Natural and Artificial
Systems, The University of Michigan Press, Ann Arbor,
USA, 1975.

[Karr, 1991] Karr, C., Genetic algorithms for fuzzy controllers, AI
Expert, 2, 1991, 26-33.

[Krishnakumar, 1992] Krishnakumar, K., Goldberg, D.E., Control system
optimization using genetic algorithms, Journal of
Guidance, Control and Dynamics, 15(3), 1992, 735 -
740.

[Kristinsson, 1992] Kristinsson, K., Dumont, G.A., System identification
and control using genetic algorithms, IEEE Trans. on
System, Man and Cybernetics, 22(5), 1992, 1033 - 1046.

[Lee, 1993] Lee, M.A., Takagi, H., Integrating design stages of
fuzzy systems using genetic algorithms, Proc. of the
Second IEEE Int. Conf. on Fuzzy Systems, New York,
USA, 1993, 612 - 617.

[Lin, 1991] Lin, J.A., Roberts P.D., New coordination strategy for
online hierarchical optimizing control of large-scale
industrial-processes, Internatioal Journal of Control,
54(5), 1991, 1075 - 1096.

[Linkens, 1992] Linkens, D.A., Nyongesa, H.O., A real-time genetic
algorithm for fuzzy control, in IEE Colloquium on
Genetic Algorithms for Control Systems Engineering,
Digest 1992/106, 1 - 4.

[McMillan, 1983] McMillan, G.K., Tuning and Control Loop
Performance, Instrument Society of America, Research
Tirangle Park, NC, USA, 1983.

[Mesarovic, 1970] Mesarovic, M.D., Macko, D., Takahara, Y., Theory of
Hierarchical, Multilevel Systems, Academic Press, New
York, USA, 1970.

[Michalewicz, 1990] Michalewicz, Z., Krawczyk, J., Kazemi, M., Janikow,
C., Genetic algorithm and optimal control problems, in
proc. of the 29th IEEE Conf on Decision and Control,
Honolulu, Hawaii, USA, December 5-7, 1990, 1664 -
1666.

[Michalewicz, 1992] Michalewicz, Z., Genetic Algorithms + Data Structures
= Evolution Programs, Springer-Verlag, 1992.

[Nomura, 1992] Nomura, H., Hayashi, I., Wakami, N., A learning
method of simplified fuzzy reasoning by genetic
algorithm, Proc. of the Int. Fuzzy Systems and
Intelligent Control, Conference, Lousville, KY, USA,
1992, 236 - 245.

[Oliveira, 1991] Oliveira, P., Sequeira, J., Sentieiro, J., Selection of
controller parameters using genetic algorithms, in S.G.
Tzafestas, ed., Engineering Systems with Intelligence,
Kluwer Academic, The Netherlands, 1991, 431 - 438.

[Passino, 1993] Passino, K.M., Bridging the gap between conventional
and intelligent control, IEEE Control Systems, 6, 1993,
12-18.

[Pham, 1991] Pham, D.T., Karaboga, D., Optimum design of fuzzy
logic controllers using genetic algorithms, Journal of
Systems Engineering, 1(2), 1991, 114 - 118.

[Rechenberg, 1973] Rechenberg, I., Evolutionsstrategie: optimierung
technischer Systeme nach Prinzipien der biologischen
Evolution, Fommann-Holzboog Verlag, Stuttgart, 1973.

[Shao, 1988] Shao, S., Fuzzy self-organizing controller and its
application for dynamic processes, Fuzzy Sets and
Systems, 26, 1988, 151 - 164.

[Shinskey, 1979] Shinskey, F.G., Process Control Sytems Application
Design Adjustment, McGraw-Hill, New York, USA,
1979.

[Stipanicev, 1987] Stipanicev, D., Neizraziti Regulatori za Vodenje
Slozenih Procesa, (in Croatian), Doktorska disertacija,
Elektrotehni_ki fakultet u Zagrebu, 1987.

[Stipanicev, 1989] Stipanicev, D., Teorija i primjena neizrazitog povratnog
vodenja, (in Croatian), Automatika, 30, 1989, 179 - 188.

[Stipanicev, 1991] Stipanicev, D., De Neyer M., Gorez, R., Self-tuning
self-organising fuzzy robot control, IFAC Symp. on
Robot Control SYROCO '91, 16-18 Sept. 1991. Vienna,
1991.

[Sugeno, 1985] Sugeno, M., Industrial Application of Fuzzy Control,
North Holland, New York, USA, 1985.

[Sugeno, 1991] Sugeno, M., Tanaka, K., Successive identification of
fuzzy model and its applications to prediction of

complex systems, Fuzzy Sets and Systems, 42, 1991,
315 - 344.

[Vose, 1993] Vose, M., (D. Whitley, Ed.), Modeling Simple Genetic
Algorithms, Foundations of Genetic Algorithms 2,
Morgan Kaufmann, 1993, 63 - 73.

[Whitley, 1993] Whitley, D., A Genetic Algorithm Tutorial, Colorado
State University, Dept. of CS, TR CS-93-103, ftp from
beethoven.cs.colostate.edu, 1993.

[Zadeh, 1973] Zadeh, L.A., Outline of a new approach to the analysis
of complex systems and decision processes, IEEE
Trans. Syst. Man Cybern., SMC-1, 1973, 28 - 44.

[Zhang, 1992] Zhang, B.S., Edmunds, J.M., Self-organizing
fuzzy-logic controller, IEE Proceedings-D Control
Theory and Applications, 139(5), 1992, 460 - 464

ftp://beethoven.cs.colostate.edu

Chapter 13 Evolving Neural Networks for Cancer
Radiotherapy

Joshua D. Knowles and David W. Corne

School of Computer Science, Cybernetics and Electronic Engineering

University of Reading

Whiteknights

Reading RG6 6AY, UK

[J.D.Knowles, D.W.Corne]@reading.ac.uk

13.1. Introduction and Chapter Overview
The aim of radiation therapy is to cure the patient of malignant disease by
irradiating tumours and infected tissue, whilst minimising the risk of
complications by avoiding irradiation of normal tissue. To achieve this, a
treatment plan, specifying a number of variables including beam directions,
energies and other factors, must be devised. At present, plans are developed by
radiotherapy physicists, employing a time-consuming iterative approach.
However, with advances in treatment technology which will make higher
demands on planning soon to be available in clinical centres, computer
optimisation of treatment plan parameters is being actively researched. These
optimisation systems can provide treatment solutions that better approach the
aims of therapy. However, direct optimisation of treatment goals by computer
remains a time-consuming and computationally expensive process. With the
increases in the demand for patient throughput, a more efficient means of
planning treatments would be beneficial. Previous work by Knowles (1997)
described a system which employs artificial neural networks to devise treatment
plans for abdominal cancers. Plan parameters are produced instantly upon input of
seven simple values, easily measured from the CT-scan of the patient. The neural
network used in Knowles (1997) was trained with fairly standard backpropagation
(Rumelhart et al., 1986) coupled with an adaptive momentum scheme. In this
chapter, we focus on later work in which the neural network is trained using
evolutionary algorithms. Results show that the neural network employing
evolutionary training exhibits significantly better generalisation performance than
the original system developed. Testing of the evolutionary neural network on
clinical planning tasks at Royal Berkshire Hospital in Reading, UK, has been
carried out. It has been found that the system can readily produce clinically useful
treatment plans, considerably quicker than the human-based iterative method.

Finally, a new neural network system for breast cancer treatment planning was
developed. As plans for breast cancer treatments differ greatly from plans for
abdominal cancer treatments, a new network architecture was required. The
system developed has again been tested on clinical planning tasks at Royal
Berkshire Hospital and results show that, in some cases, plans which improve on
those produced by the hospital are generated.

The remainder of this chapter is set out as follows. Section 13.2 provides
background in the domain of radiation therapy. This is necessary to set the
context in which the evolutionary neural network operates, and to gain an
appreciation of the choices of input and output coding and other parameters.
Section 13.3 reviews and discusses evolutionary algorithm training of neural
networks. Section 13.4 then describes our application of evolutionary neural
networks to the radiotherapy of abdominal cancer and breast cancer. Section 13.5
concludes and summarises the chapter, and discusses future work.

13.2 An Introduction to Radiotherapy
13.2.1 Radiation Therapy Treatment Planning (RTP)

The aim of curative radiation therapy is to deliver a lethal dose to the macroscopic
disease (the tumour) and also to the estimated extent of microscopic disease
(infected cells expected to be close to the tumour site) without causing unwanted
and unnecessary side effects for the patient. In order to meet this aim, a large,
homogeneous radiation dose should be shaped to accurately cover the desired
target volume while the dose to healthy tissue, especially the critical organs,
should be minimised.

The treatment of a patient can be broken down into several stages. At each stage,
decisions and choices must be made which may affect later stages. A general
outline is given by the following eight-stage process:

(i) Identify the disease, its stage and extent

(ii) Collect 3-D medical imaging information on the patient’s disease

(iii) Describe the location of the disease to be treated by using medical images

(iv) Transfer the images to a 3-D treatment planning system

(v) Determine the radiation beam orientations, field-sizes and intensities to be
employed

(vi) Predict the response

(vii) Treat the patient

(viii) Verify the treatment

Stages (i), (ii) and (iii) above, could be lumped together under the heading
“diagnosis” and stages (iv), (v) and (vi), similarly, form what is termed
“treatment planning.” In recent years, significant advances have been made in all
of the above stages, especially in imaging techniques, treatment planning facilities
and treatment methods themselves. Some of these advances are discussed later in
this section.

In a conventional, modern hospital, X-ray computed tomomgraphy (CT) imaging
is the most common method for recovering the detailed information needed to
begin treatment planning. The images resulting from CT scans each show a
section through the patient, indicating the outline of the body as well as the
electron density of internal tissues, from which critical organs, bones and the
tumour itself can all be identified. The images are initially used to determine the
part of the patient that should undergo exposure to a high radiation dose. This is
known as the planning target volume (PTV). After the PTV has been established,
the images are scanned into a treatment planning computer. The computer enables
a treatment plan to be devised and predicts the distribution of radiation dose that
will result from the plan. By iteratively adjusting the plan, an acceptable
distribution of dose (that meets the aim of the treatment) should be obtained.
Treatment is then carried out according to the plan.

13.2.2 Volumes

Treatment planning centres on so-called volumes, which are 3-D chunks of the
patient identified and delineated early in the planning process. The Planning
Target Volume (PTV) described above is made up of two sub-volumes; the Gross
Tumour Volume and the Clinical Target Volume. The Gross Tumor Volume is
defined as the demonstrable macroscopic extent of tumour either palpable,
visible, or detectable by conventional radiography, ultrasound, radio-isotope
scans, CT or magnetic resonance scanning. The Clinical Target Volume is
defined as a tissue volume containing a demonstrable GTV and a “biological”
margin. The margin is an estimate of the subclinical, microscopic, malignant
disease adjacent to, or surrounding, the GTV. It is based on knowledge from
surgical and post-mortem specimens and patterns of tumour recurrence, as well as
clinical experience. It is a subjective but important estimate of the biological
volume which must receive tumoricidal dose.

The Planning Target Volume is a geometrical concept, and it is defined to select
appropriate beam sizes and beam arrangements in order to ensure that the
prescribed dose is actually absorbed in the CTV. Because of patient movement,
the movement of internal organs due to respiration and to the variation in size and
shape of organs (e.g., different filllings of the bladder) it is necessary to add a
further geometric margin when determining the volume that is planned to receive

tumoricidal dose. The Planning Target Volume includes this margin in addition to
the CTV itself.

A further important volume concerns nearby organs at risk. These are normal
tissues whose radiation sensitivity may significantly influence treatment planning
and/or prescribed dose. Depending on the sensitivity and position of the organs at
risk, it may be necessary to compromise the dose to the PTV in order to avoid
fatal or severely damaging doses to the patient.

13.2.3 Treatment Planning

Treatment planning is the stage in radiotherapy in which the aims of the treatment
are transformed into a detailed plan describing exactly how radiation will be
delivered to the patient. By this stage, images of the patient will have been
collected and the target volumes and organs at risk will have been determined. In
a modern hospital, the images and volumes are scanned into a treatment planning
computer where the images can be viewed. The planning computer contains data
and algorithms for calculating radiation dose, taking account of tissue electron
density, beam intensity, duration of treatment and a number of other factors.

The physicist planning the treatment views the images, and using experience
formulates an initial plan. The centre of the PTV is marked on the CT scans; it is
known as the isocentre and is the point at which the X-ray beams are directed.
With abdominal cancers, a co-planar, three-beam setup is usually employed. (see
Figure 13.1) The gantry angles of each beam are determined first. This is carried
out with the aim of producing homogeneous coverage of the target volume and of
avoiding the organs at risk. With the angles selected, the widths of the beams are
chosen next so that the PTV is covered by the beams. The duration that each
beam will remain active during treatment is selected next. These parameters are
known as beam weights.

In addition to the angles, widths and weights of the beams to be used, the
physicist may also employ methods of shaping the beams or attenuating them
across their width. To shape a beam, a metal block may be placed in its path. If
necessary, blocks can be manufactured to give a particular beam shape. To
attenuate a beam across its width, a wedge-shaped piece of metal can be placed in
its path. Motorised wedges which move in and out of the path of the beam during
treatment, can be employed to give a range of possible degrees of attenuation.

For the treatment of abdominal cancers, blocks are rarely employed but wedges to
attenuate the beams are used to ensure a homogeneous dose in the planning target
volume. With the use of motorised wedges, the physicist must select the relative
amount of time that a 60° wedge will remain in the path of the beam, normalised

to 1.00 for the whole treatment. These parameters are known as the wedge
weights.

Figure 13.1 A schematic showing a typical beam setup for treatment of a
prostate cancer

With all the treatment parameters selected and keyed into the planning computer,
the physicist can now view the predicted distribution of radiation dose that will
result from his plan. The computer produces an isodose plot, showing the dose
contours and the position and value of the maximum dose (the hotspot). By
looking at the isodose contours, the physicist can estimate which parameters in
his plan to change in order to produce a better dose distribution than resulted from
his first attempt. The plan is then changed and the isodose contours are
recalculated. By iteratively adjusting beam weights, angles and wedge weights
and continually checking the predicted dose distribution, a satisfactory plan can
be produced. This process can be quite time-consuming, especially when a non-
standard beam setup is required. With abdominal cancers, the setup usually
follows a standard arrangement but adjusting the beam and wedge weights can
still take approximately 15 minutes. Once a satisfactory plan has been developed,
a printout of all the parameters is produced. This is then passed to the
radiotherapist to set up the treatment machines and deliver the treatment.

13.2.4 Recent Developments and Areas of Active Research

Radiation therapy has, in the last decade, undergone development of almost all
the different techniques and processes that it comprises. Key developments are in
imaging techniques, treatment modalities, prediction of treatment outcome, and
treatment planning. In this section we will focus on recent developments in
treatment planning. However, we will start by noting some developments in
treatment modalities and methods for the prediction of treatment outcomes since

these impinge on the way treatments are planned. The role of this section in the
chapter is mainly to support consideration of further and extended research
directions for the use of evolutionary neural networks or other emerging software
technologies in radiotherapy cancer treatment.

13.2.4.1 Treatment Modalities

An overall theme of developments in radiotherapy treatment is new methods for
shaping the X-ray beams and for modulating their spatial intensity. Such new
treatment modalities, in turn, require new and more complex methods of
treatment planning as well as models for the prediction of the outcome of
treatment. Traditionally, radiation therapy employs a few (three or four) co-planar
X-ray fields directed at the target volume from various angles. The beams may be
shaped using metal blocks so that organs at risk, which are laterally close to the
target volume, are spared. However, because manufacturing blocks for each
treatment is both time-consuming and expensive, they are not employed as
frequently as they might be. Non-uniform or intensity-modulated beams may be
achieved by the use of compensators or wedges. These are used in order to save
organs at risk longitudinal to the target volume from the point of view of the
beam. As with blocks, manufacturing compensators for each treatment is too
time-consuming in practice and so their use is diminished. Motorised wedges, on
the other hand, are easy to use but do not provide the possibility of modulating
beams to give a complex intensity profile, required for optimal conformance to
the target volume.

Multi-leaf collimators (MLCs, see Figure 13.2) provide the most promising
solution to shaping beam profiles and they can also be made to dynamically
modulate beam intensities. MLCs are made up of a set of retractable metal leaves;
each leaf being able to move independently of the others. The position of the
leaves is computer controlled in the most modern systems, allowing beam shapes
to be set at the planning computer with the other treatment plan parameters.

Modulating the intensities of X-ray fields in such a way that dose distributions
conform to even the most demanding of target volume shapes, is the state-of-the-
art in radiotherapy. Several different methods for achieving intensity modulation
have been developed and their theoretical performances have been calculated, but
few have been tested extensively. Dynamic multi-leaf collimators, tomotherapy
and scanned elementary beams all allow arbitrarily non-uniform doses to be
administered.

These new treatment modalities put much higher demands on the physicist
planning the treatment. In order to take full advantage of them, some efficient
method of obtaining a good plan must be employed: it is not feasible that a
physicist can, by trial and error, plan the modulation and shaping of beams as well

as their angles. With the availability of these new treatment modalities on the
horizon, there has been much work in finding good methods for planning
treatments which use them. Some of these are described later in this section.

Figure 13.2 The Elekta multi-leaf collimator

13.2.4.2 Prediction of Treatment Outcome

In order to effectively plan and administer radiation therapy, it would be ideal to
be able to objectively establish the quality of a plan. As it is the aim of curative
therapy to cure the patient of cancer without reducing their quality of life through
damage to healthy tissue. The best method for establishing the quality of a
treatment plan would be to have an objective measure of the predicted treatment
outcome. This should be based on statistical studies of the outcomes of treatments
and should correlate cure rates and complication rates with the dose administered
to the various organs of the patients. This ideal is fraught with problems and
controversies but methods for predicting treatment outcome are being developed.
These objective metrics have recently been used in some state-of-the-art,
developmental planning systems for optimising the treatment plans.

At present, in a conventional, modern hospital, the physicist assesses the quality
of a plan by observing the distribution of dose calculated by the planning
computer. Guidelines produced by the International Commission on Radiation

Units and Measurements (ICRU, 1993) instruct physicists as to the maximum and
minimum acceptable doses in the target volume and organs at risk. By using his
experience, the physicist is able to reach a compromise deemed to be an effective
treatment plan. However, several problems present themselves with this approach.
First, physicists disagree as to the quality of a plan and may even make different
choices from one day to the next (Willoughby et al, 1996). Second, with the
advent of new treatment modalities which offer the possibility of greater
conformance of dose to the target volume, computers which can find optimal
beam parameters must be employed and hence there is a need for an objective
measure of plan quality to drive the optimisation. Third, if there is no measure
(except an isodose distribution diagram) of the treatment administered, it is very
difficult to build up a reliable statistical database from which to make future
predictions.

Some hospitals have the facility of producing dose-volume histograms (DVH, see
Figure 13.3), which show the dose delivered to partial volumes that have been
identified on the CT data. Sometimes, these are viewed in conjunction with the
isodose distribution to assess the quality of a plan. However, even dose-volume
histograms are open to interpretation and can be subject to error or can give
misleading information. Thus, many researchers have been seeking a way of
objectively evaluating the quality of dose-volume histograms (histogram
reduction) or of finding a different measure altogether.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

% Prescribed dose

 Volume

Figure 13.3 A typical plot of the dose to a target volume plotted on a dose-
volume histogram

Two metrics are usually employed, reflecting the aims of therapy. The first metric
is the Tumour Control Probability (TCP) and the second is the Normal Tissue
Complication Probability (NTCP). Webb (1997) reviews the different methods

that have been developed for calculating TCP and NTCP and highlights the
controversies that surround them. He also describes a method by Jain et al.
(1994), which ranks treatment plans using proxy attributes: A single figure of
merit is calculated by combining different proxy attributes, i.e., the percentage of
the target volume receiving at least the prescription dose. Each attribute is
weighted depending on its perceived importance. This method is useful because it
avoids the controversy of predicting clinical outcome but still provides an
objective measure which can be recorded and/or used for computer optimisation.
It also allows clinicians the freedom they have at present in making decisions
about plan quality but does not allow them to be blindly inconsistent. In the
future, as these approaches are used by more and more hospitals, statistical data
will become available for refining the models so that they better approximate the
true quality of a treatment plan.

One other method for assessing plan quality is described in a paper by
Willoughby et al. (1996). An artificial neural network is employed to evaluate the
plan quality, utilising 3-D dose distribution information from a dose-volume
histogram. To begin with, a physicist was shown 135 treatment plans on three
separate occasions and asked to score them. The consistency the physicist
achieved (defined to be within one point on the five point scale) was 88%. The
neural network was then trained on the plans under a supervised learning
paradigm using the physicist’s evaluations as target outputs. Upon testing, it was
found that the neural network was able to score plans within one point of the
physicist’s score 82 to 84% of the time – comparable with the consistency of the
physicist. Further research is expected to improve upon this performance. This
method appears promising as another method for use in optimising treatment
plans although a finer scale of assessment may be necessary.

13.2.5 Treatment Planning

Improvements in treatment planning can come about from developments in a
number of different areas. These include new methods of computing dose to a
point, improvements in the graphical representation of the patient’s internal
structure (including the use of virtual reality), new methods of predicting
treatment outcome or evaluating plan quality (described above) and the advent of
inverse planning. The latter refers to the technology now under development,
whereby the physicist is merely required to give information about the required
dose distribution and the planning computer actually computes the treatment plan
parameters. This is the most important development in treatment planning. It has
the potential to speed up the planning process (important in busy and under-
resourced hospitals) and, more importantly, to improve plan quality and
consistency. In fact, with the new treatment modalities of collimated and

intensity-modulated beams, it is essential to have some efficient method for
calculating treatment plans. Inverse planning is that method. In this section, recent
research in inverse planning will be described and evaluated.

Inverse treatment planning techniques fall into two broad classes.

(i) Analytic techniques. For intensity-modulated beams, these involve
deconvolving a dose-kernel from a desired dose distribution to obtain the
distribution of desired photon fluence with attenuation factors to create
profiles of beam intensity.

(ii) Iterative techniques. Linear programming techniques, simulated annealing
and genetic algorithms have all been used to optimise the treatment plan.

There are problems with (i) above, however. In order to find a solution it is
necessary to employ negative beam intensities, which have no physical meaning.
In fact, some of the work in analytic techniques cite a paper by Birkhoff (1940) in
which it was shown that an arbitrary 2-D drawing could be described by the
superposition of a series of straight lines from different directions each with
different uniform darkness. The lines, however, were allowed to have negative
darkness (i.e., to act like an eraser) in order to obtain a solution.

Sherouse (1993) has developed an elegant method of finding the best way to
combine wedged fields for maximising the uniformity of dose to the PTV.
However, with the advent of fully intensity-modulated beams, much more work
has concentrated on finding methods of planning treatments using these.

Much research has taken the approach of (ii) above. As long ago as 1970, Newton
(1970) published a paper, “What Next in Radiation Treatment Optimisation?,” but
it has only been in recent years that the availability of powerful computers has
allowed optimisation of treatment plans to be realised in practice. Attempts have
been made to optimise all of the following, either in isolation or in combination:
number of fields, orientation of fields, intensity profiles of IMBs, beam weights
and wedge weights, and collimation or shaping of beams.

There are controversies over the number of fields that are strictly necessary;
Mackie et al. (1994) argues it is better to use a large number of beams because
dose can then be spread out more in the organs at risk, a more uniform dose can
be achieved in the PTV and that machines which can deliver many fields can also
deliver few, where the converse is not true. Brahme (1994) argues for the use of
few beams, claiming that tumours can be induced if whole organs at risk are
irradiated, especially in children. He also points out that machines capable of
delivering large numbers of fields may only be available in a few large centres,
even well into the next century. Thus, there is value in both those optimisations
which consider few beams and those which consider many, at least until the
controversy is settled. With few beams, it is more necessary to optimise beam

orientation effectively, a problem considered to be one of the most demanding in
inverse planning (see Webb, 1997).

13.2.4.4 Optimisation of Beam Orientation

Rowbottom et al. (1997) have shown the advantage of optimising beam
orientation in the simple case of prostate treatments with three co-planar fields.
They used a ray tracing technique to calculate a cost function based on the
number of voxels (volume elements) irradiated by a beam at each possible
orientation. This gives a plot of cost against gantry angle from which the best
beam orientations can be selected. Figure 13.4 shows one of the plots that has
been produced. Using this technique, they found an average increase in TCP of
5.6% for a fixed rectal NTCP of 1%. The report states that in prostate cancers, the
use of a few beams is essential because of the number and proximity of the OARs
and thus improvements in setting beam orientations, although giving only
relatively small benefits, are nonetheless important. The technique developed
could be extended to non-coplanar beams for head and neck treatments where the
gains may be more significant. At present, the optimisation employs a global
search and is thus restrictively time-consuming. Techniques for more intelligent
searching are currently being investigated (personal communication).

Figure 13.4 A cost function vs. gantry angle plot with the allowed gantry-
angle-windows also displayed. The arrows show the optimal beam positions
selected for the patient. (From Rowbottom et al., 1997)

13.2.4.5 Optimisation Using Simulated Annealing

Webb (1991; 1992) has favoured the use of simulated annealing (SA) in much of
the work he has carried out in optimising treatment plans. In his 1991 paper he
reports a technique for finding beam weights for fields defined by a multi-leaf
collimator. Model problems simulating the overlap that exists between the
prostate (PTV) and the rectum (OAR) were considered. The technique described
relied on dividing each field into two, one “seeing” just the PTV and the other
“seeing” both the PTV and the OAR. The optimisation then calculates two
different sets of weights for each orientation of the MLC, one for the part
“seeing” the PTV, the other for the part also “seeing” the OAR. Results on the
three model problems described in the paper show significant advantage in using
the optimisation of so-called part fields over conventional open-field treatment
planning. However, the optimisation is computationally expensive, taking 1.7
hours of processor time on a DEC VAX 3900 for 40,000 iterations. The cost
function (objective function) employed relies on setting target relative doses for
each volume considered and minimising the difference between the prescribed
and actual doses. This method has advantages and disadvantages. The controversy
with cost functions based on TCP and NTCP are avoided and the prescription of
desired dose is left to the operator. However, the choice of dose distribution
affects the performance of the optimisation so that some experience inusing the
system is required in order to gain the maximum benefit from it, and to prevent it
from converging too slowly. In part II of his work (Webb, 1992), Webb considers
2-D modulation of the intensity of the fields. This time, each beam is considered
as being made up of pixels each having uniform intensity but varying from one
pixel to the next. The optimisation problem now becomes finding the optimum set
of intensities for the all the pixels. Results showed improvements over the partial
field technique described in part I, verifying the theoretical advantages of using
intensity modulated beams. Computation time was slightly longer, approximately
3 hours on a DEC VAX 3900.

Oldham and Webb (1995) reported on a more clinically relevant system and
compared its performance with that of human planners. The new system
employed fast simulated annealing, modifications to the cost function and the
beam model, resulting in a significantly faster system running on an IBM RISC
6000. The optimisation was limited to finding a set of uniform beam weights, the
orientations having been selected a priori “by eye.” With three fields the
performance of the optimisation algorithm was similar to the human planners.
With seven fields (equally spaced), the human planner experienced difficulty in
finding a good solution but the optimisation algorithm was able to find better
solutions than with the three-field plan although only four of the seven fields were
effectively used. This latter result shows the advantage of using optimisation

techniques over traditional forward planning even in the case where only simple,
open fields are available. The authors report that the optimisation takes
approximately 15 minutes to perform 40,000 iterations.

Mageras and Mohan (1993) also employ fast simulated annealing to search for an
optimum set of beam weights from a search space of 54 non-coplanar beams.
Their approach uses biological cost functions based on TCP and NTCP and is
thus slower than the later paper of Webb, described above. Their results, like
those of Webb, show that with a larger number of beams, it is possible to increase
the prostate TCP without increasing the rectum NTCP.

13.4.2.6 Optimisation Using Other Techniques

Langer et al. (1996) compare the performance of fast simulated annealing with
that of mixed integer programming (MIP) on the same optimisation tasks. The
goal was to maximize the minimum tumour dose while keeping the dose in
required fractions of normal organ volumes below a threshold for damage. Over
19 trials on six archived cases of abdominal tumours with varying numbers of
beams, orientations and widths, the mixed integer approach was never found to be
worse than that of simulated annealing. The mixed integer algorithm produced a
minimum tumour dose that was at least 1.8 Gy higher than that produced by
simulated annealing on seven of the trials. On average, MIP required 3.5 minutes
to find a solution, compared with 145 minutes for simulated annealing. With the
number of iterations reduced by a factor of 10 for simulated annealing, its
performance deteriorated and it remained more than four times slower than mixed
integer programming.

Genetic algorithms have also been employed for optimisation of treatment plans.
Langer et al. (1996a) compare the solutions obtained by a genetic algorithm with
those obtained by simulated annealing. They optimise up to 36 uniformly spaced
co-planar beams with the objective of maximising the minimum tumour dose.
They report that the genetic algorithm found solutions in an average of 49
minutes over 19 trials using a DEC station 5000/200 ULTRIX. They do not
describe the degree to which the GA performed better than SA at meeting the
objective for all the trials. Only one result is quoted in which the GA returned a
minimum tumour dose 7 Gy higher than SA achieved.

13.3 Evolutionary Artificial Neural Networks
It has been recognised that by employing evolutionary strategies for finding
optimal (or near-optimal) neural networks, better learning and generalisation can
be achieved. A good recent review of evolutionary artificial neural networks
(EANNs) is provided by Yao (1997). Yao states that evolution in this context can

be performed at three different levels (or combinations of them). The first level is
the evolution of the network weights (and thresholds), i.e., replacing a traditional
learning algorithm such as backpropagation with an evolutionary algorithm. The
second level is to evolve the network architecture or topology, possibly including
the transfer functions of the nodes. The third level is to evolve the learning rule
used to train the network. The latter could mean simply evolving the best set of
parameter settings for the backpropagation algorithm or, more ambitiously, to
evolve a whole new training method. While it is true that these three levels
describe nearly all the work in EANNs, a paper by Cho and Cha (1996) reports a
further level at which evolution can be employed in training neural networks, in
which virtual training data is evolved. In the following, we briefly describe each
of these techniques.

13.3.1 Evolving Network Weights

When training a feedforward neural network such as a multilayer perceptron,
backpropagation is often employed. As stated previously, backpropagation is a
local search method which performs approximate steepest gradient descent in the
error space. It is thus susceptible to two inherent problems: it can get stuck in
local minima – a problem which becomes heightened when the search space is
particularly complex and multimodal, and it requires a differentiable error space
to work efficiently. In addition, it has been found that backpropagation does not
perform well with networks with more than two or three hidden layers (Bartlett &
Downs, 1990). These problems and others have prompted research into
employing evolutionary techniques to find the best set of network weights.
EANNs have several obvious advantages over BP: genetic algorithms and
evolutionary approaches are able to find global minima in complex, multimodal
spaces, they do not require a differentiable error function and they are more
flexible, allowing the fitness evaluation to be changed to take into account extra
factors that are not easy to incorporate in the backpropagation algorithm.

Figure 13.5 A typical routine for evolution of connection weights. (From X.
Yao, 1996.)

A typical evolutionary scheme for evolving connection weights is given in Figure
13.5. In order to evolve network weights in an EANN, some encoding method
must be employed. There are two possibilities: binary encoding or real valued
encoding. The former is problematic because either the bit strings become
excessively long or very discrete values for each weight must be used. However,
if a binary encoding does give sufficient resolution on a particular problem, it is
relatively simple to implement the genetic algorithm because standard (canonical)
operators can be used. With real-valued encodings, the strings are much more
compact and allow almost continuous weights to be generated. With real-number
chromosomes, however, non-standard operators must be developed. This can be
an advantage because the operators used can be tailored to the problem of finding
weights in a neural network or, even more specifically, to the particular problem
at hand.

Montana and Davis (1989) used a neural network to perform texture
characterization. The complexity of the search space caused backpropagation to
continually get stuck in local minima far from the optimum solution. Thus, an
EANN was developed, employing a real-valued encoding and several heuristic

1. Decode each individual (chromosome) in the current generation into a set of
connection weights and construct a corresponding EANN with the set (EANN's
architecture and learning rule are pre-defined and fixed).

2. Calculate the total mean square error between actual outputs and target outputs for
each EANN by feeding training patterns to the EANN, and define Ñ(error) as fitness
of the individual from which the EANN is constructed (other fitness definitions can
also be used, depending on what kind of EANNs is needed).

3. Reproduce a number of children for each individual in the current generation with
probability according to its fitness or rank, i.e., using the roulette wheel parent
selection algorithm (Goldberg & Deb, 1991) or Whitley's rank based selection
algorithm (Whitley & Kauth, 1988; Whitley, 1989).

4. Apply genetic operators, such as crossover, mutation and/or inversion, with
probability to child individuals produced above, and obtain the new generation.

genetic operators, to solve the problem. The weights and thresholds in the
network were encoded on the chromosome in a particular order to allow efficient
use of the heuristic operators. To begin with, the weights on the chromosomes
were initialised to random values taken from a two-sided exponential distribution

function with a mean of 0.0 and an absolute value of 1.0, given by e x−|| || . This is
different from the usual initialisation employed in backpropagation – taking
random numbers from a normal distribution. The double exponential reflects the
observation that optimal solutions tend to contain predominantly weights with
small absolute values but that they can have some weights with arbitrarily large
absolute values. The different heuristic operators were then developed and tested.
The operators fell into three categories: mutations, crossovers and hill-climbs.
The authors compared the different operators with each other and then selected
the best combination. The best combination was then compared with
backpropagation: it continues to learn long after the BP algorithm has become
trapped in a local minimum.

In other situations, EANNs are outperformed by backpropagation, especially fast
variations of it such as simple adaptive momentum (Swanston et al., 1994) or
conjugate gradient descent (Moller, 1993). However, it is possible to hybridise the
search process in order to further accelerate learning or to increase the chances of
finding a global minimum. This can be done by initially employing a genetic
algorithm in order to sample the search space. Once a promising region has been
found, fast backpropagation can take over to quickly converge to a solution. In
theory, this method should be superior to random initialisation of the weights for
backpropagation, but little work has been carried out to verify this hypothesis.

13.3.2 Evolving Network Architectures

Normally, when designing and training a neural network, different architectures
must be tried before one that seems effective is found. Of course, there is no
guarantee that the final architecture selected is the best possible one and for large
problems this method becomes impractical. In addition, changes in other network
parameters such as the learning algorithm or the number of epochs affect the best
choice of architecture. This interdependence makes it extremely difficult to find
optimal architectures for a given problem. EANNs which evolve network
architectures can (partially) solve these problems.

1. Decode each individual in the current generation into an architecture with necessary
details, in the case of the indirect encoding scheme, supplied by either some
developmental rules or the training process.

2. Train each EANN with the decoded architecture by a pre-defined and fixed learning
rule (but some parameters of the learning rule may be adaptive and learned during
training), starting from different sets of random initial values of connection weights and, if
any, learning rule parameters.

3. Calculate the fitness of each individual (encoded architecture) based on the above
training results; e.g., based on the smallest total mean square error of training, or testing if
more emphasis is laid on generalisation, the shortest training time, the architecture
complexity (fewest nodes and connections and the like), etc.

4. Reproduce a number of children for each individual in the current generation with
probability according to its fitness or rank.

5. Apply genetic operators, such as crossover, mutation and/or in-version, with probability
to child individuals produced above, and obtain the new generation.

Figure 13.6 A typical cycle of the evolution of architectures. (From X. Yao,
1996.)

Most EANNs for evolving architectures use either a constructive method in which
nodes are added to an initially small network or a destructive method where an
initially large network is pruned. A typical cycle for either method is given in
Figure 13.6. Yao and Liu (1995; 1996; 1996a; 1996b) use a combination of both
techniques in their EPNET algorithm which also evolves network weights. As
with all genetic algorithms, the first stage in implementation is to decide upon a
method for encoding the different possible members of the population, in this
case network architectures. Direct encoding is the most obvious method; each link
between nodes is encoded by either a 0 or a 1, depending on whether that link is
part of the current network architecture or not. This method is obviously
problematic for large networks because the chromosomes become increasingly
cumbersome and always limit the size of the network. However, for small
networks, encoding each connection can lead to interesting and unexpected
architectures that would not normally be tried. For larger problems, an indirect
method of encoding architectures is more suitable. Only important features are
encoded such as the number of hidden layers, number of nodes in each layer and
some information about connectedness. This method is much more compact than
direct encoding but it does place some constraints on the patterns of connection
that the EANN can investigte. Yip and Yu (1996) have used an indirect coding

technique to evolve architectures for an EANN used to classify coffee by odour.
An even more promising technique in evolving architectures is to encode
developmental rules. Rather than evolving the architecture directly, the aim is to
find the best set of rules for developing a good architecture. These rules are
encoded, selected, combined and mutated in the normal way. This method is the
most promising for large networks because the developmental rules do not need
to grow with the size of the network. To find optimal architectures, some method
of evaluating their fitness must be employed. The usual technique is to train each
candidate network for a given number of epochs using BP or some other training
algorithm and then calculate its mean training set error (or validation error).
However, because there is great interdependence between architectures, training
methods and number of epochs, it may be more profitable to only partially train
each network before assigning fitness and making selections for reproduction.
This is the method developed by Yao and Liu (1995; 1996a; 1996b).

13.3.3 Evolving Learning Rules

The rules used to train an EANN can also be evolved (see Figure 13.7). This can
amount to adaptively adjusting BP parameters, or more ambitiously, to optimising
the learning rule (weight update rule) itself. Hancock et al. (1991) have shown
that another learning rule based on a thresholding function developed by Artola et
al. performs better than the Hebbian learning rule which is commonly employed.
However, little work has been carried out on evolving the learning rule itself due
to the difficulty in encoding rules onto a chromosome. Some authors (Harp and
Samad, 1991) have combined evolution of the BP parameters with the evolution
of architectures by encoding them both on the same chromosome. An effect of
such an encoding strategy is the further exploration of interactions between
learning algorithms and architectures, so that an optimal combination of a BP
algorithm and an architecture can be evolved.

l. Decode each individual in the current generation into a learning rule which will be used
to train EANNs.

2. Construct a set of EANNs with randomly generated architectures and initial connection
weights, and evaluate them by training with the decoded learning rule, in terms of training
or testing accuracy, training time, architecture complexity, etc.

3. Calculate the fitness of each individual (encoded learning rule) based on the above
evaluation of each EANN, e.g., by some kind of weighted averaging.

4. Reproduce a number of children for each individual in the current generation with
probability according to its fitness or rank.

5. Apply genetic operators, such as crossover, mutation and/or inversion, with probability
to child individuals produced above, and obtain the new generation.

Figure 13.7 A typical cycle of the evolution of learning rules. (From X. Yao,
1996.)

13.3.4 EPNet

Yao and Liu (1995; 1996a; 1996b) stress the difference between optimisation and
learning in neural networks. Although optimisation techniques are usually
employed to train neural networks, the real goal is not to find an optimal
architecture and set of weights for producing an output with the least training set
error. Real learning occurs only when the neural network has been trained so that
it can generalise to new patterns taken from the same population as the training
set but that were not contained in it. As was stated in Section 13.1, correct
architecture has an important effect on the ability of a neural network to
generalise. However, in an evolutionary strategy (EANN), further emphasis can
be placed on the goal of generalisation. To do this, training of the members of a
population on the training set is augmented by selection rules which take into
account the ability of the networks to generalise. Yao and Liu also believe that
architectures and weights should be evolved simultaneously if good
generalisation is to result. Yao (1997) has developed a model for an EANN in
which the three different levels of evolution all occur but at different timescales.

The evolution of weights occurs at the fastest timescale with the evolution of
architectures on an intermediate timescale and learning rule evolution on the
slowest timescale. This model has not yet been implemented. However, Yao and
Liu (1995; 1996a; 1996b) have developed an algorithm called EPNet which
combines the first two levels, weight evolution and architecture evolution.
Networks with random initial architectures are partially trained using BP and
evaluated. Evaluation and selection then occur based on the improvement in the
error in generalization. Depending on the network which is selected for
reproduction, simulated annealing may be used to update the weights in place of
BP or the architecture may be pruned or grown. The partial training method
removes, to some extent, the noise inherent in evaluating network architectures
which have been trained from random initial weights. Yao and Liu do not use

crossover in their evolution of architectures because of the difficulty in encoding
them so that crossover samples the hyperplane in a meaningful way so that
offspring have a good chance of being better than their parents. Instead, they
employ reproduction from a single parent with the architecture being either
pruned or grown. Pruning is always tried first so that a parsimonious network
results. They report encouraging results on four different test problems with
architectures which are smaller than usually needed to solve these problems.

With optimisation, we are only interested in the best or optimal solution and the
rest of the population can be disregarded. However, with learning and
generalisation as a goal, it is profitable to combine the information stored in the
population as a whole. To combine the networks, Yao and Liu use several
different mathematical techniques, including the recursive least squares
algorithm. Their results show that an ensemble network made from combining a
range of population members after training has been completed always
outperforms the best member of the population on generalisation.

13.3.5 Addition of Virtual Samples

An interesting and unique piece of work by Cho and Cha (1996) describes a
fourth method of employing evolutionary techniques to increasing the learning
capabilities of a neural network. It relates to the information contained in the
training set and how this affects the generalisation ability of the network. In many
real-world applications, the training set available to train the network is
prohibitively small and this adversely affects the generalisation performance of
the network. Cho and Cha have developed a method for adding virtual training set
examples to the initial training set. A population of networks is trained on the
problem but at each generation, a fixed number of virtual samples are added to
the training set. First, an area of the input space where training set examples are
not present or sparse is chosen. Then the nearest neighbouring training set vectors
to the centre of this area are computed. One of the nearest neighbours is then
chosen at random and the network which learned this vector best is selected. If it
learned well enough a new vitual input vector some fixed distance from the
training set example is generated and the best network is then presented with the
new input vector. The output of the network becomes the new target value for the
virtual input vector. The virtual input and target are added to the rest of the
training set. If the best network had not learned well enough on the nearest
neighbouring training vector to the part of the input space chosen, then a new part
of the space is selected. This is to avoid generating unreliable training examples.
The authors report that their method is a first attempt at generating new sample
points and that further investigation is necessary to improve the algorithm,
specifically to further safeguard against generating unreliable examples.

However, this idea is an interesting one because in some applications (including
my own), the collection of data with which to train the network is very time-
consuming, and at times not possible.

13.3.6 Summary

Each of the methods described above is of interest as regards evolving neural
networks for the radiotherapy treatment planning problem. In this study, since
generalisation is of the greatest importance in producing reliable treatment plans
for patients that are different to those cases contained in the training set, those
methods which produce better generalisation performance are particularly
important. However, a further important factor is the platform requirements of
such a system, since live applications in radiotherapy treatment clinics are likely
to have little more available than an old PC. Taking such considerations into
account, the work reported on here followed the seminal work of Montana and
Davis for evolving weights and thresholds using heuristic operators on a real-
valued encoding. As we will see, this proved to be efficient, and very fruitful at
increasing the generalisation performance of the neural network.

13.4 Radiotherapy Treatment Planning with EANNs
13.4.1 The Backpropogation ANN for Treatment Planning

The use of artificial neural networks (ANNs) for radiotherapy planning (RTP)
was first described in Knowles (1997), using a modified backpropogation training
algorithm. Here we provide an overview of that work, before going on to describe
the subsequent work on evolutionary algoirthm-based training.

In cooperation with Jane Lord (principal physicist at the Radiation Physics
Department of Royal Berkshire Hospital, Reading, UK), suitable input data and
target treatment plan parameters for a neural network were decided as follows.
We considered a common treatment setup for abdominal and prostate cancers in
which treatment is performed by a machine which has three radiation beams.
These are the three indicated previously in Figure 13.1, and also indicated in
figure 13.8. Planning treatment in this scenario involves first aiming each beam
directly at the centre of the tumour. Beam 1, the anterior beam, is fixed in
position; but beams 2 and 3 are free to be repositioned within certain constraints,
as long as their aim remains directly at the centre of the tumour. Once positions
have thus been chosen for beams 2 and 3 (see Figure 13.8), it remains to decide
the so-called beam weights for each of the three beams, and the wedge positions
(see Figure 13.1). Beam weight is simply the length of time for which a particular
beam is switched on. The wedge positions, as mentioned previously, affect the
degree of attenuation of the dose across the beam's width.

Beam 1

Beam 2

Beam 3

input 1

input 2

input 3

input 4

input 5
input 6

Figure 13.8 Input measurements taken from a patient's CT-scan for input to
the neural network. Inputs 1, 2, and 3 are lengths and inputs 4, 5, and 6 are
angles

It was decided that an ideal role for the neural network would be to produce
suitable beam weights and wedge positions, following the manual positioning of
beams 1 and 2. The inputs to the neural network were measurements taken from
the patient's CT-scan with beam positions imposed, as illustrated in Figure 13.8.
Each input is a measurement simply obtained from the CT-scan. The key
coordinates involved are the so-called “axis,” which is the centre of the tumour
region (shaded in figure 13.8), and the entry points into the patient of the three
radiation beams. Inputs 1, 2, and 3 are respectively the skin-to-axis distances for
beams 1, 2 and 3. Inputs 4 and 5 are respectively the angles between the beam and
skin normal for beams 2 and 3, and input 6 is the angle between beams 2 and 3
themselves. The seventh, and last, input simply indicated whether the cancer type
was prostate, rectum, or bladder.

A neural network was set up with the architecture shown in Figure 13.9. It was
trained using 20 treatment plans collected from the Royal Berkshire Hospital for
several patients and its generalisation performance was monitored during training
by observing the error on the validation set (5 of the 20 plans).

Figure 13.9 Neural network architecture showing inputs and outputs (some
connection lines are not shown)

The resulting trained network was of the system was tested on a separate set of
ten patients, and the plans (beam weights and wedge positions) produced by the
neural network were compared with plans independently produced by trained
clinicians and evaluated by the head radiotherapist. Evaluation of the resulting
treatment plans was done by generating the resultant dose distribution using the
hospital's treatment planning software, and each dose distribution produced by the
neural network on the test set was qualitatively graded by the head radiotherapist.
In this way, 77% of the plans produced by the neural network were given grade
A, meaning that they needed no adjustment to be clinically used. 100% of the
plans gave treatment plans which were within the guidelines set out by the
International Commission on Radiation Therapy Units and Measurements (ICRU,
1993) for acceptable treatment plans. Following this work, we also experimented
with a technique for accelerating the learning called called Simple Adaptive
Momentum (SAM) (Swanston et al., 1994). This was found to halve the network's
training time without compromising the results.

The techniques used and results obtained by this system were encouraging;
however, several areas for development were identified. In particular,
generalisation performance was considered the key factor, and we therefore
explored the use of evolutionary algorithm trained neural networks to see if this
resulted in improved generalisation.

13.4.2 Development of an EANN

Several Evolutionary Artificial Neural Networks (EANNs) were developed with
the aim of comparing the performance of genetic algorithms at finding neural
network connection weights with that of backpropagation. Using the same
architecture that was used in the original MLP and the MLP incorporating SAM,
genetic algorithms for optimising the network weights were developed.

The 195 weights and thresholds of the neural network were encoded as a
chromosome in the way illustrated by Figure 13.10. A real-valued encoding was
used for simplicity and because it allows easier implementation of heurisitic
genetic operators.

A typical cycle of the evolution of connection weights has been given in Figure
13.5. As a first attempt, an algorithm with the following features was written:

• Chromosome encoding: 195 floating point genes, each representing a network
weight or threshold

• Population size: 50 chromosomes

• Weight initialisation: Random values taken from a Normal Probability
Distribution with a mean of 0.0 and standard deviation of 1.0 (as for the
backprop algorithm).

• Creation of new generation: Generational Replacement

• Fitness assignment: (Worst summed squared error on training set - summed
squared error on training set)

• Selection operator: Tournament Selection (Goldberg, 1990; Goldberg and
Deb, 1991)

• Crossover rate: 100%

• Crossover operator: Two point crossover generating one child

• Mutation rate: 1% of genes in all new chromosomes

• Mutation operator: Current value changed by random value in the range -0.5 to
+0.5

Figure 13.10 Encoding of the connection weights on a chromosome

This algorithm resulted in very slow training and converged to a poor training set
error. The suspected reason for the poor performance was the method of updating
each generation used, i.e., generational replacement. This required the calculation
of the error and the assignment of fitness for a whole generation of (50)
chromosomes, many of which were worse than in the previous generation or were
duplicates thereof. Because calculating the summed error is by far the most
computationally intensive part of the algorithm, the generational replacement
scheme is inefficient in this application.

In order to overcome this problem, a "steady-state without duplicates, replace
worst” GA was investigated next (Davis, 1991; Syswerda, 1991). With the same
operators as in the previous algorithm, the steady-state GA was far faster because
only the error produced by the new gene required calculation, the errors relating
to the rest of the population being already known. However, this algorithm still
converged to a very poor training set error.

Montana and Davis (Montana and Davis, 1989) have developed seminal genetic
algorithm methods and operators specifically for the evolution of neural network

weights. These methods and operators were employed next. The weight
initialisation was changed from the normal probability distribution to the two-
sided exponential distribution favoured by Davis. The two point crossover
operator was replaced by the Crossover Nodes operator. Crossover Nodes works
by selecting one or more neural network nodes in one of the two parent
chromosomes undergoing reproduction. All the weights and the threshold ingoing
to that node are then replaced by the corresponding weights and threshold in the
corresponding node in the other parent chromosome. This operator is thought to
work well because it preserves the synergism between various weights in the
network, never breaking the logical subgroup of weights ingoing to a node.
Finally, the Random Mutate operator was replaced by the Mutate Nodes operator.
Mutate Nodes, like Crossover Nodes, preserves logical subgroups. It does this by
mutating only the weights ingoing to a particular node, leaving other weights
alone. The mutation itself adds a value taken from the initial double exponential
distribution to the weight’s current value. In both, the Crossover Nodes and
Mutate Nodes operators, the number of nodes that are selected for change is
variable. Experimentation with the parameter choices for these and for the
crossover and mutate rates was undertaken to find the best settings.

It was found that the EANN employing the initialisation and operators described
above could reach a much lower training set error than the previous algorithm
tried. However, at this stage, a means of assessing its ability to generalise had not
been included. To remedy this, implementation of a means of calculating the
validation set error was included. As with the backpropagation algorithm, the
validation set error could then be monitored during training to determine the best
time to stop the EANN.

Once the means of calculating the validation error was included in the EANN, it
was observed that on some occasions this error did not seem to increase (unlike
the backprop-trained ANN) as it was trained for more and more generations. This
led to a hypothesis that the EANN could have the potential to improve upon the
generalisation ability shown by the MLP employing either standard
backpropagation or SAM.

At this stage, however, the EANN was not able to match the low training set error
achieved using SAM. In order to compare their generalisation performance, it was
necessary to make further improvements to the EANN. It was found that by
reducing the magnitude of the mutations generated by the mutate operator to
approximately one fifth of their original size, faster learning and lower errors
were achievced. A further discovery was that greater diversity in the early stages
of learning, which effectively slows down the reduction in training set error, leads
to a lower validation error and therefore better generalisation. To take advantage
of this, the tournament selection criterion was changed so that the better of two

genes competing to be parents only has a slightly higher probability of being
selected than its rival. Further methods of ensuring diversity were also devised.
These included the following: (1) increasing the mutate rate over time; (2)
randomly selecting a simple two point crossover operator to be used in place of
the Montana and Davis crossover nodes operator described above; (3) increasing
the probability of selecting the less fit of two potential parents over time. To
ensure that these methods were kept under control, a further technique was
employed. After a number of new generations, the mutation rate is cut to zero and
the selection criteria reverts to a normal, strict selection of the best gene from a
tournament of three or more genes. This set of parameters remains for a small
number of generations and has the effect of “weeding out” the bad genes that
have remained in the population under the less competitive regime. Following this
period, the parameters return to their original values to allow diversity again. This
cycle is repeated several times during training. The periods of weeding out bad
genes has been dubbed “killer periods.” Inclusion of these techniques led to
training set errors as low as those achieved using SAM. The final GA parameter
choices were as follows:

• Chromosome encoding: 195 floating point genes, each representing a network
weight or threshold

• Population size: 50

• Replacement method: Steady state, 1 child per generation, replace worst

• Chromosome initialisation: Random values from a probability distribution of
the form e-||x||, a two-sided exponential distribution with a mean of 0.0 and a
mean absolute value of 1.0

• Selection method: Tournament between two chromosomes with a probability
of 0.6 of the fitter chromosome being selected. During “killer periods,” this
changes to a tournament between three or more genes with a probability of 1.0
of the fittest gene being selected

• Mutate rate: 70%, increasing to 95% during training run; no mutations occur
during “killer periods”

• Mutate operator: Mutate nodes (Montana and Davis 1989); all genes relating
to two neural net nodes changed by random amounts generated from
initialisation distribution but scaled by 1/(4.5).

• Crossover rate: 30%, reducing to 5% during training run; 100% during “killer
periods.”

• Crossover operator: Crossover nodes (Montana and Davis 1989); all genes
relating to two neural network nodes crossed over, interspersed with 20% use

of standard two point crossover operator; during “killer periods,” no two point
crossover is used

In all of the EANNs developed, the means of evaluating each chromosome was
the same. The summed squared error of all the outputs on all the plans in the
training set was calculated for each new chromosome generated. Because
tournament selection was being employed, an explicit fitness did not need to be
calculated: the chromosome with the smallest summed error was simply judged
to be the “winner” in each tournament. However, this method of evaluating
chromosomes is not ideal. Several observations made while training and testing
the EANNs indicate that summed squared error on the neural network outputs is
not a good means of judging what the neural network performance on the
treatment planning task will actually be like. These observations are listed below:

1. Many of the neural networks developed and tested produced treatment plan
parameter values that differed greatly from the values employed by the
hospital in their treatment plans. Despite this, when the parameter values
produced by these neural networks were keyed into the hospital’s planning
computer, a good treatment plan resulted.

2. Sets of parameter values which turned out to be good usually exhibited a
similar relationship to those determined by the hospital. That is, if one
parameter value was higher than that determined by the hospital, then the
values of the other parameters were also higher.

3. According to neural network theory, training of the network should be
terminated when the minimum validation error is reached. However, it was
observed that better performance resulted when the training set error was
reduced to below 0.08, even if this caused a slight increase in validation
error. This, it is hypothesised, is because with further training the neural
network seems to learn to copy the relationship between the output parameter
values. Learning this does not, however, show up when the individual errors
on each output are being used as the sole measure of performance.

From these observations, it was clear that a better method of evaluating
chromosomes would have been to use an error function which incorporated some
means of judging relationships between parameter values. To do this effectively,
however, would have required more data and access to the RBH planning
computers, in order that the error function could be made to correlate actual
EANN performance on planning tasks with the error being assigned to the
chromosomes. In the case of the breast cancer treatment planning system (see
Section 13.4.4), a simple means of incorporating the relationship between output
parameter values was developed and this resulted in better performance.

13.4.3 EANN Results

The final version of the EANN is significantly slower than the SAM algorithm.
The mean time to train the EANN to a summed training set error of 0.09 on 20
plans with five as validation data only, is about 24 seconds, averaged over ten
runs, as illustrated in table 13.1.

Table 13.1 Summary of EANN training times

EANN

Number of Runs 10

Size of Training Set 20 plans

Final Training Set Error 0.09

Mean Time for Training 23.95s ± 7.458s (at 95% confidence level)

Standard Deviation in Training Time 12.03s

However, the EANN exhibits significantly better generalisation performance
than the SAM algorithm. Figure 13.11 depicts one run of the EANN, and shows
how the summed training set error and summed validation set error change as the
network is trained. Figure 13.12 depicts the same information for a run of the
SAM algorithm. These two graphs are both typical and characteristic of the
repective training methods. In the graph depicting a run of the EANN, all the
values of the summed training set error and of the summed validation set error
are plotted for all chromosomes which have a summed training set error within
10% of the best chromosome evolved so far. This method of plotting points was
chosen to ensure that a true representation of the EANN’s generalisation
performance was presented. (If only the chromosomes with low validation set
error are plotted, the graphs do not represent the true ability of the EANN to
generalise. This is because the network weights which happen to be good on the
particular data in the validation set are being selected, giving a falsely optimistic
view of the generalisation performance of the network on any unseen data. The
method used here avoids this by plotting all chromosomes of a particular training
set error, regardless of their quality on the validation set.

ga1-crossover nodes
killer periods - population 50

0.01

0.1

1

10

0 10000 20000 30000 40000 50000 60000

Epoch

Er
ro

r training set

validation set

Figure 13.11 A plot of training set error and validation set error against
generation for the EANN

SAM1

0.01

0.1

1

10

0 500 1000 1500 2000 2500 3000 3500 4000

Epoch

Er
ro

r training set

validation set

Figure 13.12 A plot of training set error and validation set error against
epoch for SAM

These graphs show that with the SAM algorithm, the summed validation set error
increases monotonically as the summed training set error falls below about 0.1,

whereas with the EANN the summed validation set error does not show such a
tendency to rise as training continues to reduce the summed training set error. The
result is that at low training set errors of below 0.05, the validation set error of the
EANN has not increased greatly and hence the network’s ability to generalise has
not been compromised by the further training. In contrast, training the SAM
algorithm down to a summed training set error of 0.05 results in a large increase
in the summed validation set error, thereby compromising generalisation
performance. Training the EANN for 60,000 generations is usually sufficient for
the summed training set error to have levelled off. The time to train the EANN for
60,000 generations with a training set of 30 prostate plans, using ten as validation
data only, is approximately 300 seconds. This is about one order of magnitude
longer than is required to train the neural net to the optimimum point using the
SAM algorithm. However, the optimum point with the SAM algorithm is just
after the summed validation set error has begun to rise, when the summed training
set error is at about 0.08. With the EANN, training can continue indefinitely
without much detriment to the generalisation performance and hence summed
training set errors of as low as 0.02 can be achieved.

In order to present a statisitical comparison of the EANN with the SAM
algorithm, data from 20 runs of each program were recorded. In the following
statistical analysis, the quoted validation error for the EANN at any particular
training set error is the approximate mean at that training set error, as judged from
the graph. This is to avoid biasing the results towards the EA trained network,
whose validation error fluctuates at any given training set error. The quoted
training set errors are approximate. The closest point to each value, from the data
gathered, has been used. This does not affect the outcome of the results and the
difference between any training set error quoted and the actual value is never
more than 0.003. The sample mean validation set error (over the 20 runs) and
confidence thereof were calculated for training set errors of 0.09, 0.08, 0.07, 0.06
and 0.05, for both training methods (see Table 13.2). The change in validation set
error over the period when the training set error fell from 0.09 to 0.05 was then
calculated for all the runs. From this data, the sample mean change in validation
set error and confidence thereof was calculated for both training methods (see
Table 13.3). The results given below show that the sample mean increase in
validation set error over this period is between 1.84 and 18.0 times lower for the
evolutionary trained network as for the backpropagation trained network (at a
confidence level of 95%).

Table 13.2 Comparison of SAM and EANN generalisation performance

EANN SAM

Mean validation error at training set error of 0.09 0.1419 0.08974

SD 0.06344 0.004651

95% Confidence Level 0.02780 0.002038

Mean validation error at training set error of 0.08 0.1533 0.1013

SD 0.1072 0.005652

95% Confidence Level 0.04696 0.002477

Mean validation error at training set error of 0.07 0.1810 0.1257

SD 0.1049 0.01830

95% Confidence Level 0.04597 0.008453

Mean validation error at training set error of 0.06 0.1834 0.1678

SD 0.1201 0.03092

95% Confidence Level 0.05262 0.01429

Mean validation error at training set error of 0.05 0.1818 0.2432

SD 0.1175 0.05833

95% Confidence Level 0.05151 0.02694

Table 13.3 Summary of EANN and SAM generalisation performance

EANN SAM

Mean change in validation set error as training set
error decreases from 0.09 to 0.05

+0.03988 +0.1537

SD 0.06825 0.05477

95% Confidence Level 0.02991 0.02530

A t-test was performed on the above data. The t-value obtained was 5.628,
indicating that the increase in validation set error as training set error is reduced,
is significantly less – at the 99% confidence level – in the EANN than in SAM.
(For 99% confidence, t ≥ 2.326)

It can be seen that the neural network trained using SAM has a lower mean
validation error for training set errors of 0.06 and above. However, as can be seen
from the standard deviation from each mean, the EANN’s validation errors vary
far more than those of the backpropagation trained network. This means that the
best results of the EANN are better than the best results of the SAM trained
networks, even at this level of training set error (see Table 13.4).

Table 13.4 Best validation set errors at various training set errors for EANN
and SAM

EANN SAM

Best validation set error for training set error of 0.09 0.08696 0.8461

Best validation set error for training set error of 0.08 0.09163 0.09321

Best validation set error for training set error of 0.07 0.08172 0.1071

Best validation set error for training set error of 0.06 0.08383 0.1321

Since it is common practice to choose the best network from a number of runs,
these results again underline the better performance that can be obtained from the
EANN.

Table 13.5 Best validation set errors at various low training set errors for
EANN and SAM

EANN SAM

Best validation set error for training set error of 0.05 0.08742 0.2124

Best validation set error for training set error of 0.04 0.1425 0.2673

Best validation set error for training set error of 0.03 0.1167 0.3237

Best validation set error for training set error of 0.02 0.09819 0.5024

At training set errors of 0.05 and below, the EANN has a far lower mean
validation set error, as highlighted by Table 13.5. On the best runs of the EANN,
the validation error is of the order of five times as small as the validation errors
achieved by the best SAM trained network at a training set error of 0.02.

It was not deemed necessary or useful to calculate mean values for the above data
since neither network reaches training errors this low very frequently. When they
do, the SAM trained network’s validation error is consistently high whereas the
EANN’s validation error varies considerably from run to run. It is sufficient here
to show that the EANN’s best validation error is far lower than that of the SAM

trained network from the five or six runs which happened to reach this low level
of training set error.

We can imagine two explanations as to why the evolutionary method of training
the neural network leads to better generalisation performance than the method
based on backpropagation of errors. First, the EANN starts with a population of
points in the search space, and through sampling these it finds areas of the space
which are promising. In the early stages of the run, many hyperplanes are
sampled and so those areas which are likely to give a close approximation the
general desired mapping have a good chance of being found. The more slowly the
population converges in the early stages of the run, the more likely the algorithm
is to find these generally good areas because it has more chance to sample more
of the space. This is why it was found that slowing down the algorithm in the
early stages by reducing the selection pressure leads to better generalisation
performance. With the backpropagation algorithm, optimisation begins from a
single random point in the search space. This point is highly unlikely (given the
search space has 195 dimensions) to be one which is in a generally good area of
the search space. From this point, however, it is usually possible, by performing
gradient descent, to reduce the error for the particular examples in the training set.
In fact, training for a long time on the training set can actually induce the neural
network to learn the particular training examples and their target outputs so that a
very good mapping is achieved on the training set (Haykin, 1994, pp.176-179).
But, because the starting point was probably not in a good part of the search space
for performing the general mapping which is desired and because any learning
from the start point is achieved through gradient descent, it is unlikely that a very
good general mapping will be found. Second, when the evolutionary algorithm is
running, it is possible for it to evolve almost any possible combination of network
weights and thresholds because of the randomised nature with which it generates
new candidate chromosomes. This is not the case with the backpropagation
algorithm which is completely deterministic after the random initialisation. Every
time the patterns have been passed through the network and the summed training
error has been calculated, all the weights in the network are updated. This means
that from any given point in the search space, only one point (differing in every
neural network weight) can possibly be tried next. Thus, many points which lie
nearby the current point and which may offer better generalisation performance
can never be found.

The results and discussion presented above indicate the performance advantages
achieved by using an EANN when judged by the summed errors on the training
and validation sets. However, the performance of the system at producing
accurate treatment plans is of greater importance than the above statistical

analysis. To test the EANN’s ability to produce treatment plans, the following
method was employed:

1. Measurements from an unseen CT-scan of a prostate cancer case were taken

2. These measurements were then placed on the inputs of the EANN

3. The resultant output parameters generated by the EANN were keyed into the
hospital’s forward planning computer

4. The dose distribution was observed and compared with the dose distribution of
the hospital’s original treatment plan

5. Two dose-volume histograms comparing the hospital’s plan and the EANN’s
plan were produced

Ten plans were produced. In all cases, the dose distribution fell within the
guidelines of the ICRU. The dose-volume histograms produced showed that the
EANN learnt to emulate human planners in their choice of treatment plan
parameters with high precision.

13.4.4 Breast Cancer Treatment Planning

Treatment plans for breast cancer differ from those of abdominal cancers in a
number of different ways. In abdominal cancers, the target volume is restricted to
the gross tumour volume plus a margin, whereas in breast treatments the target is
the breast as a whole. Two beams only are used and the arrangement is such that
the two beams are tangential to the chest wall. The major problem to overcome in
planning breast treatments is to obtain a homogeneous distribution of dose over
the volume of the breast, in contrast to abdominal cancers where the major
problem is avoiding irradiation of organs at risk which lie near the target volume.
The shape and position of the target volume in abdominal cancers such as the
prostate does not differ greatly from patient to patient. In breast cancer, the shape
and size of the target differs greatly from patient to patient, for obvious reasons.
In breast treatments there are only four parameters to determine the values of: the
weight of each beam and the weight of the wedge on each beam. In the vast
majority of cases, the former are both set to one and the problem becomes one of
adjusting the two wedges so that a uniform distribution of dose in the breast tissue
results. If too little wedge is employed, dose will be concentrated at the top of the
breast. With too much wedge, the concentration of dose falls to the lower edges of
the breast.

In order to develop a neural network system for determining the values of the two
wedge weights in the treatment plan, it was first necessary to decide upon features
of the patient that the system could correlate with the wedge weights to be
employed. By observing several treatment plans and through discussion with Jane

Lord, it was decided that the angle between the skin normal and the beam, for
each beam, would be used as inputs to the neural network, together with the skin
to isocentre distance for each beam. They are easy to measure from the CT-scan
of the patient and could be measured by a computer program in a commercial
system. Although these four parameters do give some information about the size
and shape of the breast to be treated, it was expected that further features, such as
the calculation of moments, may need to be added in order for the neural network
to correlate the features with the wedge angles to be employed. However, just
data on these four features from 20 breast plans was collected to begin with.

The EANN which had been developed for prostate cancer treatment planning was
used as a basis to begin developing the breast cancer planning system. The
number of neural network inputs was changed to four, one for each of the features
described above. The number of outputs was changed to two, one output for the
value of each wedge weight. The remainder of the architecture was left
unchanged from that used in the prostate planning system. As before, the data set
was split into a training set and a validation set. The network was then trained
using the same operators as for the final EANN described in Section 13.4.2.

As had been expected, the EANN had great difficulty in learning to map the input
vector of the data onto the target values of the output vector (representing the two
wedge weights). The mean squared errors on both the training set and the
validation set remained at an unacceptably high level. This was confirmed by
observing the actual output values that the neural network was generating and
comparing these with the wedge weights that had been selected by the human
planner. Initially, it was suspected that there was insufficient information in the
input vector for the neural network to learn to generate wedge angles that agreed
with those determined by the human planner. However, before adding more
features to the input vector, which would have meant devising new metrics for
measuring breast shape and size, two methods for improving the EANN’s
performance on the current task were investigated.

First, it was noted that the EANN was having difficulty in learning to produce
two wedge weights that were of different values. The two outputs it produced
were usually very close in magnitude. This was in contrast to the target values on
some of the training set plans, where significantly different degrees of wedge had
been employed on the two beams. To overcome this problem, a third target value
– the scaled difference between target one and target two – was calculated for
each of the training set plans. Then, a third output neuron was added to the neural
network and this neuron was trained to match the third target value. By explicitly
training the neural network to match the difference between the two target values,
it was hoped that it would generate wedge weights that were closer to those
produced by the human planner. Testing of the new EANN resulted in some

encouraging results: it began to match the difference between the two target
values and hence the wedge weights it generated seemed to be more like those
produced by the human planner. However, the summed squared errors remained
too high, indicating that it was still having trouble matching the target values
closely. It was suspected that the mapping from the feature vector to the output
vector which the neural network was being trained to perform for breast cancer
plans was more complicated than the mapping it had learned for prostate plans. If
this was the case, a larger number of nodes in the hidden layers would be
necessary. This was the next strategy tried. Two extra nodes were added to both
hidden layers of neurons and the EANN was retrained on the data set. The
performance improved dramatically, reaching a lower mean squared error on both
the training and validation sets. When the actual output values were observed and
compared with the target values, it was evident the EANN could now map most
of the input vectors in the data set onto wedge weights which were close to the
weights arrived at by the human planner.

Testing of the system at the hospital was carried out in the same way as for the
EANN which generated prostate treatment plans. New, unseen CT-scans were
used from which the relevant features were measured. Each feature vector was
then placed on the EANN’s inputs and the resultant wedge angles were keyed into
the hospital’s planning computer. The dose distributions resulting from these
wedge weights were then observed and compared with those arrived at by human
planners. Ten such plans were produced and qualitative results of these are shown
in Table 13.6. It is evident from these results that an EANN could be a useful tool
for generating breast cancer treatment plans, as was the case for prostate
treatment plans. Table 13.6 qualitatively summarises all of the ten plans produced
by the EANN. The qualitative grade given to each plan is based on the following
grading system:

Grade A – The plan would be acceptable for use by the hospital and it is as good
or better than the human developed plan with which it was compared.

Grade B – The plan was within documented guidelines for an acceptable plan but
it was not judged to be as good as the human developed plan with which it was
compared.

Grade C – The plan was unacceptable, resulting in a poor dose distribution.

The plans were judged by Jane Lord, principal physicist at RBH. Although the
results are good and the system could be used in its current configuration, extra
features from the CT-scans may enhance the performance further. At present, the
system generates the wedge angles from just four simple CT-scan features. More
information about the shape of the target volume may lead to more accurate and
consistent treatment plans.

Table 13.6 Summary of breast cancer treatment plans produced by the
EANN

Plan
Number

Grade Comments

1 A Better than hospital’s plan

2 B Insufficient wedge employed

3 A

4 A

5 C Too much wedge. The target volume was beyond that which the
EANN had trained on.

6 A

7 B Insufficient wedge employed

8 A

9 A

10 A Better than hospital’s plan

13.5 Summary
A neural network system for generating radiation therapy treatment plans was
developed which employed the standard backpropagation learning rule and was
trained on 42 cases of abdominal cancers. The system was tested on 22 unseen
CT-scans of patients suffering from abdominal cancers. The treatment plans it
generated matched the quality of human-generated treatment plans in 77% of the
test cases. The system required seven numbers to be entered, easily identified
from the CT data, and produced the treatment plan parameters instantly. This is in
contrast to the optimisation techniques developed by other researchers, where
more information must be given to the system and the time to generate a
treatment plan is measured in minutes. As a great deal of research is being carried
out at present with the aim of developing the next generation of Radiation
Therapy Treatment Planning systems, novel methods such as the use of ANNs,
which can improve on current techniques, do have commercial potential.

Research into the use of evolutionary techniques was then carried out and an
EANN, based on the system above, was developed. By employing a genetic
algorithm to optimise the network weights and thresholds, it was hoped that the
accuracy of the system could be improved. After the development of several
versions, a method based upon the work of Montana and Davis (1989) was
implemented. This EANN exhibited better generalisation capabilities than the
SAM system. With further alterations, based on observing the EANN’s

characterisitics during the learning process, the overall performance was further
enhanced. Graphs showing the mean squared error on the training set and on the
validation set were produced for 20 runs of both the EANN and the SAM
network. Statisitical techniques were used to show that the EANN exhibited
significantly greater generalization performance than the SAM system. The
EANN was then tested at Royal Berkshire Hospital. Ten unseen CT-scans of
patients suffering from abdominal cancer were used for testing. The treatment
plans produced for these cases were stored in the hospital’s planning computer.
Dose-volume histograms of these plans and of the plan originally generated by
human planners were produced. The histograms show that the plans produced by
the EANN system lead to treatments that are nearly equivalent to human planned
treatments.

A system for developing breast cancer treatment plans was developed in order to
investigate whether the approach taken for abdominal cancers could be
transported to cancers in other parts of the body. Although there was initial
skepticism about the chances of the system producing good treatment plans for
breast cancer cases, using only simple features from the CT-scan of the target
volumes, with changes to the EANN developed for prostate cancer planning,
acceptable plans were produced. A larger neural network with an additional
redundant output was employed to solve the more complex mapping of input to
output that was necessary. The limited test results for the breast cancer treatment
planning system were encouraging, suggesting that with more work it may be
possible that systems could be developed for planning treatments for cancers at
other sites in the body.

Another method for evaluating the quality of the chromosomes (neural networks)
in the population would have been to develop a heuristic error function. Because
the quality of plans produced by the neural network was observed to depend more
on the relationship between the output parameters rather than the value of the
parameters themselves, this could have been incorporated into the assignment of
fitness. This technique was partially employed in the breast cancer planning
system where an extra, redundant output was added to the network but it was not
investigated in the prostate treatment planning system at all. In order to do this,
the output values produced and their relationship to one another would have had
to have been correlated with the perceived quality of the plan produced. To do
this, far more access to the Royal Berkshire Hospital’s planning computers would
have been necessary.

The network architecture used was developed by trial and error. With the breast
cancer treatments, this architecture was enlarged to allow learning to occur.
However, in both the prostate and breast treatment planning systems, it is unlikely
that an optimal network architecture was employed. Evolutionary methods for

finding optimal architectures were not investigated due to the difficulty of
encoding the different architectures on the chromosomes, and due to the time
constraints of the project. This omission may have affected the performance of
the neural network system, especially its ability to generalise.

Some researchers have found that evolving network weights and thresholds by the
use of a genetic algorithm is not as efficient as using a fast variant of
backpropagation such as SAM (Kitano, 1990). Some of them have developed
systems in which a genetic algorithm is employed to find the best partition of the
search space to begin optimisation from and then employ a gradient descent
algorithm from there (Belew et al., 1991). This method may have been
worthwhile investigating as it holds the possibility of combining the speed of the
SAM network with the generalisation ability exhibited by the EANN. The results
presented here show that the genetic algorithm requires of the order of ten times
as long as SAM to optimise the neural network weights. However, because of the
increased generalisation performance, the EANN was considered superior to the
SAM system. Combining the two approaches as described above has not yet been
investigated. In fact, the converse method in which SAM was used to generate
partial solutions then used as initial chromosomes in the EANN was tried. This
technique did not lead to any advantages in performance, however.

13.6 Discussion and Future Work
As the next generation of radiation therapy treatment machines are being
developed, methods of planning the treatments to be administered are being
researched. Many of these methods employ optimisation techniques to find the
best combination of beam parameters to treat the patient, given the aims of
radiation therapy and information about the position and size of the target volume
and organs at risk. These techniques have been shown to produce more accurate
treatment plans than can be generated by human physicists, especially when large
numbers of beams are available or the beams can be intensity modulated.
However, optimisation is very computationally expensive, and with the ever-
increasing patient numbers seen in hospitals and the limited financial resources
available in the health service, this approach may not be viable. Methods for
producing treatment plans quickly and cheaply are needed. The use of ANNs for
planning treatments was explored in this work for only fairly simple treatments,
but the results obtained show that adequately trained ANNs can generate
treatment plan parameters accurately and quickly, using relatively inexpensive
computers. Ongoing work, in conjunction with Steve Webb and Sarah Gulliford
at the Institute for Cancer Research, Royal Marsden Hospital, is exploring the use
of ANNs for more complicated treatments involving refined shaping of the beam
intensities for breast cancer treatments.

This chapter has described planning systems developed for two different cancer
sites: the abdomen and the breast. In both cases, an EANN was developed which
was trained using treatment plans developed by humans. The EANN was then
tested to examine whether it could generate the necessary treatment plan
parameters, given CT-data from real cancer cases. In both the sites investigated,
the treatment plans produced by the EANN were within guidelines for safe and
effective treatment for the vast majority of cases. However, because the EANN
was trained from human example plans, its performance was limited. A
hypothesis can be stated regarding the further development of the EANN method
of generating treatment plans: a neural network trained from examples produced
by a computer optimisation of treatment plan parameters would have the potential
to generate treatment plans which were in advance of the capabilities of human
planners, and in a much reduced time than can be achieved using optimisation
techniques directly. The investigation of the truth of this hypothesis constitutes
the most important and exciting area in which further work could be carried out.

Several approaches to investigating the truth of the hypothesis stated above could
be taken. The first of these would be to take a sample set of data from an
optimisation algorithm that had already been developed. This data would need to
describe the information given to the optimisation algorithm and the final
treatment plan parameter values that it arrived at. The data could then be used to
train the neural network with the aim of learning to map the input information
directly onto the treatment plan parameters.

However, this method may not be very realistic because there may exist no
repeatable mapping from the inputs to the outputs. In addition, plans generated by
the EANN which fell short of being exactly the same as those produced by the
optimisation algorithm could be very poor or could be very good. The EANN
would not have any means of measuring the actual quality of the plan and so the
training could turn out to be a futile exercise. A more viable approach would be
to connect the EANN directly to a system which can calculate dose distributions
(and preferably evaluate their quality). Then the EANN could be trained to find a
set of network weights (and an architecture if necessary) that maximised the
summed quality score for the set of input training patterns that were being used to
train it. Even if such a method was developed, it still remains unlikely that
optimal plans would result from the use of a neural network in isolation. A more
realistic goal would be to develop a system that could very quickly produce a
near-optimal solution. This partial solution would then be subject to direct
optimisation. For this kind of hybrid approach to be useful, the solution developed
by the EANN needs to be very close to the optimal solution for all cases,
otherwise, the optimisation may take a long time or result in a sub-optimal
solution. For such an accurate mapping to be achieved, it would probably be

necessary to divide up the space of possible input vectors and then to train a
separate neural network for each division of the space. Then when a new plan was
needed, the neural network relating to the area of the input space that the new
patient fell into would be employed. Another approach would be to train large
numbers of neural networks, each with a different training set so that their
performance, while all good, differed slightly from one another. Then when a new
plan was needed, all the neural networks could produce a plan and the best one
could be selected using a plan evaluation method. This latter technique would be
extremely fast as the EANN’s described in this chapter calculate their outputs in
less than one hundredth of a second. So, even if they generated their solutions in
series, the speed of such an ensemble of EANNs would be far faster than an
iterative optimisation technique, assuming one of the plans was acceptable
without adjustment. This latter technique seems to hold great potential as it is our
experience that even identical EANNs trained on the same set of training data
learn differently (due to the randomised nature of the training method) and will
produce markedly different plans, all of a high quality.

The treatment parameters that the neural network is trained to generate could, of
course, be changed from the simple parameters that have been considered in this
chapter. Beam angles and settings for a MLC or for IMBs could be generated.
The latter is probably the most demanding parameter set to generate and it is quite
possible that generating IMB settings may be beyond the scope of what neural
networks can learn to do.

Development of the EANN itself is another avenue of research that could be the
focus of future work in this area. As was described in Section 13.3, learning rules,
architectures and network weights can all be optimised in an EANN. In addition,
the method of Cho and Cha (1996) for generating virtual sample points may be
useful when limited data is available for training an EANN. However, Cho and
Cha’s method is always susceptible to generating misleading training examples
and would need further development if it was to be applied to training EANNs for
RTP.

Acknowledgments
We would like to acknowledge the assistance and support of the following
people: Andrew Wheatley for discussing the original idea for a neural net RTP
system with the first author; Jane Lord of RBH for her expertise, time and
willingness to help; David Bloomfield for sorting out many coding errors and
help with file handling; Steve Webb for inviting the first author to the Royal
Marsden and convincing him to buy his book; Mark Bishop for his course on
neural networks and Rachel McCrindle for running the M.Sc. course during
which much of this work was undertaken.

References
Bartlett, P. and Downs, T. (1990) “Training a neural network with a genetic

algorithm.” Technical Report, Dept. of Electrical Engineering., University of
Queensland.

Belew, R.K., McInerney, J. and Schraudolph, N.N. (1991) “Evolving networks:
using genetic algorithm with connectionist learning.” Technical Report #CS90-
174, Computer Science and Engineering Dept., University of California at San
Diego.

Birkhoff, G.D. “On drawings composed of uniform straight lines.” J. Math.
Pures. Appl, 19, 221-236.

Brahme, A. (1994) “Inverse radiation therapy planning: principles and
possiblities.” Proceedings of the 11th International Conference on The Use of
Computers in Radiation Therapy, pp 6-7.

Cho, S and Cha, K. (1996) “Evolution of neural network training set through
addition of virtual samples.” IEEE Transactions on Evolutionary Computation.

Davis, L. (ed.) (1991) Handbook of Genetic Algorithms, Van Nostrand Reinhold.

ICRU Report 50 (1993) “Prescribing Recording and Reporting Photon Beam
Therapy.” International Commission on Radiation Units and Measurements.

 Goldberg, D. (1990) “A Note on Boltzmann Tournament Selection for Genetic
Algorithms and Population-oriented Simulated Annealing.” TCGA 90003,
Engineering Mechanics, Univ. Alabama.

Goldberg, D. and Deb, K. (1991) “A comparative analysis of selection schemes
used in genetic algorithms.” Foundations of Genetic Algorithms, G. Rawlins, ed.
Morgan-Kaufmann, pp 69-93.

Hancock, P.J.B., Smith, L.S. and Phillips, W.A. (1991) “A biologically supported
error-correcting learning rule.” Proceedings of the International Conference on
Artificial Neural Networks, Vol.1, pp. 531-536.

Harp, S.A. and Samad, T. (1991) “Genetic synthesis of neural network
architecture.” In Handbook of Genetic Algorithms, pp. 203-221, Van Nostrand
Reinhold.

Haykin, S. (1994) Neural Networks: A Comprehensive Foundation, Prentice-
Hall, Inc.

Jain, N.L., Kahn, M.G., Graham, M.V. and Purdy, J.A. (1994) “3D conformal
radiation therapy V. Decision-theoretic evaluation of radiation treatment plans.”
Proceedings of the 11th Conference on the Use of Computers in Radiation
Therapy, pp. 8-9.

Kitano, H. (1990) “Empirical studies on the speed of convergence of neural
network’s training using genetic algorithms.” Proc. of the 8th National
Conference of AI, pp. 789-795, MIT Press.

 Knowles, J.D. (1997) “The Determination of Treatment Plan Parameters for the
Radiotherapy Treatment of Patients Suffering from Abdominal Cancers.” RUCS
Technical Report No: RUCS\97\TR\034\A, University of Reading.

Langer, M., Brown, R., Morrill, R., Lane, R. and Lee, O. (1996) “A comparison
of mixed integer linear programming and fast simulated annealing for
optimizing beam weights in radiation therapy.” Med. Phys. 23 (6), pp 957-964.

Langer, M., Brown, R., Morrill, R., Lane, R. and Lee, O. (1996a) “A generic
genetic algorithm for calculating beam weights.” Med. Phys., 23, (6), pp. 965-
971.

Mageras, G.S. and Mohan, R. (1993) “Application of fast simulated annealing to
optimization of conformal radiation treatments.” Med.Phys., 20, (3).

Mackie, T.R., Holmes, T.W., Deasy, J.O. and Reckwerdt, P.J. (1994) “New
trends in treatment planning.” Proceedings of the World Conference on edical
Physics and Biomedical Engineering, Rio de Janeiro.

Moller, M.F. (1993) “A scaled conjugate gradient algorithm for fast supervised
learning.” Neural Networks, 6, pp. 525-533.

Montana, D. and Davis, L. (1989) “Training feedforward neural networks using
genetic algorithms.” Proceedings of the Eleventh International Conference on
Artificial Intelligence, pp. 762-767.

Newton, C.M. (1970) “What next in radiation treatment optimisation? Computers
in radiotherapy.” Proceedings of the 3rd International Conference on Computers
in Radiotherapy.

Oldham, M. and Webb, S. (1995) “The optimisation and inherent limitations of
3D conformal radiotherapy of the prostate.” The British Journal of Radiology,
68, 882-893.

Rowbottom, C.G., Webb, S., and Oldham, M. (1997) “Determination of The
Optimum Beam Configurations in Radiotherapy Treatmant Planning.” The
Royal Marsden NHS Trust and The Institute of Cancer Research.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) “Learning
representations by back-propagation of errors.” In Parallel Distributed
Processing: Exploration in the Microstructure of Cognition (D.E. Rumelhart
and J.L. McClelland, Eds.), Vol. 1, Chapter 8, MIT Press.

Sherouse, G.W. (1993) “A mathematical basis for selection of wedge angle and
orientation.” Med. Phys., 20, pp. 1211-1218.

Swanston, D.J., Bishop, J.M. and Mitchell, R.J. (1994) “Simple adaptive
momentum: new algorithm for training multilayer perceptrons.” Electronics
Letters, Vol. 30, No.18.

Syswerda, G. (1991) “A study of reproduction in generational and steady-state
genetic algorithms.” Foundations of Genetic Algorithms, G. Rawlins, Ed.
Morgan-Kaufmann, pp. 94-101.

Webb, S. (1991) “Optimization by simulated annealing of three-dimensional
conformal treatment planning for radiation fields defined by a multileaf
collimator.” Phys. Med. Biol., Vol. 36, No. 9, 1201-1226.

Webb, S. (1992) “Optimization by simulated annealing of three-dimensional
conformal treatment planning for radiation fields defined by a multileaf
collimator II. Inclusion of two-dimensional modulation of the X-ray intensity.”
Phys. Med. Biol., Vol. 37, No. 8, 1689-1704.

Webb, S. (1997) “The Physics of Conformal Radiotherapy: Advances in
Technology.” IOP Publishing Ltd.

Whitley, D. and Kauth, J. (1988) “GENITOR: a different genetic algorithm.”
Proceedings of the Rocky Mountain Conference on Artificial Intelligence,
pp.118-130.

Whitley, D. (1989) “The GENITOR algorithm and selective pressure.”
Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 116-
121.

Willoughby, T.W., Starkschall, G. Janjan, N.A. and Rosen, I.I. (1996)
“Evaluation and scoring of radiotherapy treatment plans using an artificial
neural network.” Int. J. Radiation Oncology Biol. Phys., Vol 34, No. 4, pp. 923-
930.

Yao, X. and Liu, Y. (1995) “A new evolutionary system for evolving artificial
neural networks.” IEEE Transactions on Neural Networks, Vol. 8, No. 3.

Yao, X. and Liu, Y. (1996) “Making Use of Population Information in
Evolutionary Artificial Neural Networks,” IEEE Transactions on Systems, Man
and Cybernetics.

Yao, X. and Liu, Y. (1996a) “Ensemble structure of evolutionary artificial neural
networks.” Proceedings of the 1996 IEEE International Conference on
Evolutionary Computation.

Yao, X and Liu, Y. (1996b) “A population-based learning algorithm which learns
both architectures and weights of neural networks.” Chinese Journal of
Advanced Software Research, Vol. 3, No. 1.

Yao, X (1997) “A review of evolutionary artificial neural networks.”
International Journal of Intelligent Systems, 8, 539-567.

Yip, D.H.F and Yu, W.H.W. (1996) “Classification of coffee using artificial
neural network.” Proceedings of the 1996 IEEE International Conference on
Evolutionary Computation.

Chapter 1 4

Saman K. Halgamuge and Manfred Glesner
Darmstadt University of Technology
Institute of Microelectronic Systems
Karlstr. 15, D-64283 Darmstadt, Germany

saman@microelectronic.e-technik.th-darmstadt.de

Input Space Segmentation with a Genetic Algori thm for
Generation of Rule Based Classifier Systems

14.1 Introduction
14.2 A heuristic Method
14.3 Genetic Algorithm Based Method

14.3.1 Encoding
14.3.2 Genetic Operators
14.3.3 Fitness Evaluation

14.4 Results
14.4.1 Heuristic Method
14.4.2 Genetic Algorithm based Solutions

Abstract
The rule based transparent classifiers can be generated by partitioning the input
space into a number of subspaces. These systems can be considered as fuzzy
classifiers assigning membership functions to the partitions in each dimension. A
flexible genetic algorithm based method is applied for generation of rule based
classifiers. It is shown that for complex real world types of applications, a
preprocessing step with neural clustering methods reduces the running time of the
genetic algorithm based method drastically. A heuristic method is compared to
show the strength of genetic algorithm based method.

14.1 Introduction
The task of a classifier is to attribute a class to a given pattern which can be
represented by measurements of some of its features. Thus a pattern can be seen
as a vector in the pattern space of which dimensions are the measured features.
Some of those dimensions are more relevant to distinguish between the classes
while others are less useful. It would be interesting to remove unnecessary
dimensions in order to simplify the pattern space and require less measurements.
But the usefulness of a dimension is not always independent from the choice of
the other dimensions.

In automatic generation of fuzzy rule based classifiers from data, the grade of
importance of the inputs to the final classification result can be obtained, which
leads to more compact classifier systems. The most important part of a fuzzy
classifier is the knowledge base containing different parameters for fuzzification,
for defuzzification and the fuzzy rules which contribute to the transparency. Those
IF-THEN fuzzy rules contain terms like Low, Medium, High to describe the
different features expressed as linguistic variables.

A rule based classifier can be seen as a group of hyper cuboids in the pattern
space. Those hyper cuboids should represent parts of the space that belong to the
same class. The elements used for the partition of the space can be either input
data vectors or compressed clusters generated by artificial neural nets such as
Radial Basis Function Networks (RBFN) [PHS+94] or Dynamic Vector
Quantisation (DVQ) [PF91]. When learning vectors — or learning patterns — are
concerned, they are seen as the limit case of clusters generated by neural networks
with the forms of hyper cuboids or hyper spheres.

14.2 A Heuristic Method
This method is based on the analysis of variations of proportions of input vectors
or clusters belonging to different classes in each dimension. Even though some
information is lost due to the projection of the pattern space on the input
dimensions this simplification makes the algorithm very fast. Since variations
are to be calculated, a discrete approach has to be taken. The dimensions are to be
cut into segments and the proportions of classes are to be computed for each
segment. In this method, the lengths between two segmentation lines are initially
equal. They begin to adjust when the heuristic method proceeds.

Both Figures 14.l(a) and 14.l(b) have in common that the slope of the border
separating the classes 1 and 2 is close to 45°. Suppose that both dimensions are
normalized to unity. These 2 figures are among the most difficult cases of
partition and the ideal solution would involve first a change of both axes so that
the slope would be about 0° or 90° steep. But in such a case the meaning of the
input variables x and y would be lost. Since a transparent classifier has to be
generated, rules must be easily understandable, therefore transformation of input
variables must be avoided.

The slopes in Figure 14.1 indicate that one of the dimensions is slightly more
important than the other. The steeper the slope, the more important the
dimension. Since a decision has to be taken for the limit case (when none of the

dimension is more important than the other, that is for a 45° slope), this will
give a threshold. Suppose that the limit case was divided into ns segments and
that a decision has to be made. Since in this case the variation of proportions
between two segments is always the same it is not possible to cut depending on
the variations.

class 1 class 1

y y

x x

class 0class 0

(a) y more important (b) x more important

Figure 14.1: Defining a threshold.

A 45° slope corresponds to 100% of variation, if a very large number of
partitions ns are allowed. At one end 100% of class 1 and at the other 0% of the
class 1 are on the left of the cut. If the number of segments is ns, the threshold
between 2 segments is 100%/ns.

The heuristic algorithm can be described as follows:

1. take the next dimension of the pattern space

2. divide this normalized dimension into ns equal segments

3. in each subspace generated by each segment, calculate the proportions of each
class

4. if the variation of proportion between two neighboring subspaces for at least
one class is greater than a given threshold, it is decided to cut this dimension
between the two neighboring segments

5. go back to step 1 until last dimension is reached

In Figure 14.2(a), dimension x is divided into 4 segments and is cut between
segments 2 and 3, and between segments 3 and 4. Proportions for class 1 varies
from 100% in segment 1, over 80% in step 2 and 13% in segment 3 to 40% in
segment 4. The variation in dimension x is higher than 100%/ns = 25% between
segment 2 and 3 and between segment 3 and 4. In Figure 14.2(b), step 1 contains

70% of class 1, step 2, 76% step 3, 16% and step 4, 33%, hence the decision to
cut between step 2 and 3. Segmentation and cuts of dimension y are independent
from what has been with dimension x.

class 1 class 1

y y

x x

class 0class 0

(a) segmentation of dimension x (b) segmentation of dimension y

don't care don't care

1 2 3 4

1

2

3

4

Figure 14.2: Segmentation of a two-dimensional pattern space.

This threshold value may vary according to the problem. If the threshold is too
low, too many — sometimes irrelevant — cuts will be made and if the threshold
is too high, some needed cuts could have been neglected, increasing the
classification error. The range of empirical values is typically from 80%/ns to
180%/ns.

In order to evaluate the speed of this algorithm, it must be known that centers of
subspaces have to be ordered in every dimension. Assuming that an ordering
algorithm of order s.log(s) is used, the order of this method is: d.s.log(s), with s
the number of subspaces and d the number of dimensions.

It is easy to see that this algorithm is fast but loses information because
dimensions are treated independently, and that the accuracy of the partition cannot
be better than the length of the segments.

14.3 Genetic Algorithm Based Method
Genetic Algorithms are solution search methods that can avoid local minima and
that are very flexible due to their encoding and evaluation phases [Hol75, Gol89,
BS93]. Indeed the form of a desired solution has to be encoded into a binary string
so that a whole population of encoded possible solutions can be initialized at
random. Evaluation is realized by a fitness function that attributes a value of
effectiveness to every possible solution of the population. The best ones are
allowed to exchange information through genetic operations on their respective
strings. With this process, the population evolves toward better regions of the
search space.

14.3.1 Encoding

In the partitioning problem, a solution is a set of cuts in some dimensions. It
means that some dimensions can be cut many times while some are not at all.
Therefore, strings are divided into blocs, each of them representing a cut in a
dimension. The number of blocs in the strings is not limited so that the
complexity of the partition can be dynamically evolved. Two strings with
different lengths are shown in Figure 14.3.

bloc 1 bloc 2 bloc 3

bloc 1 bloc 2

string 1

string 2

nb bits for the dimension 8 bits for the position

Figure 14.3: Strings and blocs.

In this figure, the nb first bits of a bloc encode the dimension that cuts and the 8
following bits encode the position of the cut in the dimension. The position of a
bloc in a string is not important.

14.3.2 Genetic Operators
In addition to the widely used genetic operators mutation, crossover and deletion,
authors also introduce "delete from one and insert in another" or theft. mutation
— each bit in a string has a probability to be flipped crossover each bloc of a
string has a probability to undergo a crossover. If so, a bloc of the same
dimension has to be found in the second string chosen for reproduction, and a
substring is exchanged. deletion — each bloc has a probability to be deleted.
insertion — probability to insert a new bloc created at random. theft —
probability for string 1 to steal a bloc at random from string 2 if both strings
belong to a pair chosen for reproduction.

14.3.3 Fitness Evaluation
Defining the fitness function is the most important part of the method. Neither
many cuts nor many rules are desirable. Both are interrelated but not the same.
The number of subspaces must be as small as possible. For a given number of
cuts, less subspaces will be generated if few dimensions are used. The upper limit
for the number of subspaces (ns) is 2nc, with nc the total number of cuts.
Therefore, following terms are to be integrated in the fitness function:

1

1+ e ns−nsth()

and

1

1+ e nc−ncth()

The fitness falls when the number of subspaces or the number of cuts is above its
thresholds nsth and ncth respectively.

Assuming clustered data with DVQ3 [HGG] and considering gp as the partition
percentage, the percentage of points that are correctly separated to the hyper
cuboids of appropriate classes:

gp = 100.
maxx p Nj ,

r
Ix() ⋅VN j ,x

s / VN j

t()
p Nj ,

r
Ix() ⋅VN j ,x

s / VN j

t
x=1

l∑j=1

v

∑
i=1

s

∑ (1)

p(Nj,
r
Ix) is the density of probability that neuron Nj belongs to the class x of

I
r
Ix , s is the number of subspaces, v is the number of neurons (clusters), VN j ,x

s is

the volume of neuron j belonging to class x, contained in subspace s and VN j

s is

the total volume of neuron Nj.

Considering the fact that probability density function (PDF) supplied by DVQ3

can be used to get the conditional probability p(Nj|
r
Ix): given a data vector

r
Ix of

class x, it will activate neuron Nj:

p Nj ,

r
Ix() = p Nj

r
Ix() ⋅ p

r
Ix() (2)

where p(
r
Ix) is the density of probability that the input vector

r
Ix is of class x. If

all classes have the same probability, p(
r
Ix) = 1/l, where l is the total number of

different classes.

The class that has the maximum of probability in one subspace determines its
class. This maximum is divided by the total probability of this subspace (that is,
the probability that a learning pattern happens to be found in this subspace,
whatever its class) to calculate the ratio.

This ratio represents the "clarity of classification" for subspaces or the importance
of subspaces for the corresponding classes. The goal is of course to get a high
clarity of classification in all subspaces to prevent errors.

Since this procedure has to be made for all subspaces, it is the major time
consuming part of the algorithm. The processing of every subspace is difficult
due to the fact that the partition can be anything since none of its parameters are
pre-determined. Therefore, a recursive procedure with pointers is used in
simulation software. p(Nj,

r
Ix) can be considered as a weight. Suppose 2 classes

with the same probability, one of them occupying a much smaller volume than
the other, which happens quite often when many dimensions are used.

One may wish to give their true probabilities to the different classes, with the
risk that some classes could be neglected and considered as not important enough

if their probability is too low compared to the cost of making new
segmentations. On the other hand, one can artificially increase the importance of
one class, even if its probability is rather low, when, for instance, a particular
class (e.g., meltdown in a nuclear plant) is more dangerous than the opposite.
This method was implemented to solve a difficult case in section • There are
many possibilities to define the fitness function which makes the method very
flexible.

If input data are used instead of clusters generated by DVQ3, equation 1 is reduced
to:

gp = 100.
maxx p

r
Ix() ⋅Vx

s / V t()
p

r
Ix() ⋅Vx

s / V t
x=1

l∑i=1

s

∑ (3)

where Vx
s is volume of the part belonging to class x in subspace s, and Vt is the

total volume. One more term was still added to fight back the strength of the two
previous exponentials, setting another threshold for partition:

1

1+ e gpth −gp()/10

with gpth a desired percentage of good partitioning. Note that gpth can be set to
values higher than 100%, even if gp will never get bigger than that. This can be
done to move the equilibrium state to a higher number of partitioning without
changing the goals regarding the number of cuts. It does not mean that a better
quality can be achieved with the same amount of cuts since the number of
segmentations increases, whenever the clarity of classification increases. It will
just move the equilibrium toward more cuts while keeping a sharp cut in the
fitness when reaching ncth. If the desired clarity of classification cannot be
achieved in this manner, ncth is also to be increased. Of course, if a high
percentage of neurons are overlapping, this percentage will never be taken back
by more segmentation.

The complete fitness function is:

gp

1+ e gpth −gp()/10() 1+ e ns−nsth()() 1+ e nc−ncth()() (4)

14.4 Results

14.4.1 Heuristic Method
Since the heuristic method is much faster, it is more interesting to use it for a
large number of data, i.e., input/output learning vectors (even if its performance
is at least as good when preprocessed hyper spheres or hyper cuboids are used).
Two benchmarks are presented. The first one is an artificially created two-
dimensional problem, where two classes made of 300 vectors with two input are

separated by a sinusoidal border. The second one is the well-known Iris data set
[And35], containing 75 vectors in each training and test (recall) file, with 4 input
divided into 3 classes. The result for the first benchmark is shown on Figure
14.4. With 5 cuts in dimension x and 3 cuts in dimension y, the partition
percentage reaches 96%, which is quite good since the sinus has to be
approximated by rectangles.

For the second benchmark, a 99% of partition was achieved for the normalized
data set:

 Dimension 1 0.33
 Dimension 3 0.167 0.33 0.667
 Dimension 4 0.33 0.667

For this problem, dimension 2 has been left out. Actually, dimension 1 and
maybe dimension 4 could be removed from the partition and the separation of the
different classes would still be satisfactory. It shows that the algorithm finds the
relevant dimensions without removing from them the dimensions that are not
strictly necessary.

Figure 14.4: Sinusoidal boundary with heuristic method.

14.4.2 Genetic Algorithm Based Solutions
Since this algorithm is much slower — its order is exponential with the number
of cuts — it can be interesting to use some data compression before the
partitioning. Nevertheless, results shown here for comparison have been produced
with 3 different types of input: the patterns themselves in all cases, clusters
generated by RBFNs (RBF neurons) [PHS+94] for the benchmark Artificial data
and the clusters generated by DVQ3 (DVQ3 neurons) for all the other problems.

The first benchmark is an artificial two dimensional case with 1097 training
vectors where two classes are separated by one straight border at xdimension1 =
0.4 [PHS+94]. The difference is that class 0 is separated in two disjoint areas by
class 1 (see Figure 14.5).

This is a difficult case since the small class 0 area contains only about 2% of the
1097 points. If a cut is made at xdimension1 = 0.4, a 98% of classification is
already achieved with only one cut in one dimension. The heuristic method
described will not recognize the smaller portion due to its approximation
capability.

With usual parameters, the genetic algorithm will find the same approximation
with one obvious cut. In a case where the class 0 can be of extreme importance,
the genetic algorithm based solution allows the increase of importance in
calculating the objective function as described in (section). So the probability of
class 0 can be artificially increased, considering that the cost of not recognizing
class 0 was higher than the cost of not recognizing class 1. With this safety
measure two more cuts are made.

1

0

2

0 1

1

2%

class 0 class 1

Figure 14.5: Benchmark Artificial data.

Figure 14.6 shows the different generations before and after making the correct 4
cuts partition for unclustered data.

 Dimension 1 0.402 0.816
 Dimension 2 0.707 0.872

Even if the number of data vectors is fairly large, 60 generations are produced in
30 minutes on a Sparc 10 station and 99% correct classification for both learning
and recall sets was reached. The important parameters are: population = 21, gpth
= 140%, initial number of cuts = 7, limit for the number of cuts = 4 per
dimension, probability of class 0 is twice higher than class 1's.

A high percentage could be already reached in the initial population. It is firstly
due to the special strategy followed: the population starts with very "fat strings"
(strings with many blocks) that are going to slim and lose their superfluous
blocs. Secondly, this problem can easily be solved with one cut and the
initialized population contains 147 cuts.

Making more generations would have finally made a 100% of classification, since
it is possible to separate both classes totally and because the 4 cuts are already
close to the optimum.

The next data for this problem were RBF nearest prototype neurons generated
from the training data set [PHS+ 94]. With a population of 25 and a limit
number of cuts by dimension set to 4, 99.5% for both learning and recall sets
was made in 60 generations (30 seconds on a Sparc 10 station) (see Figure 14.7)

The first real world application is the Solder data file described in [HPG93]
containing 184 data to be classified either as good or bad solder joints. There are 2
classes, and 23 dimensions (or features) extracted by a laser scanner. Clustered
data with DVQ3 neurons are used first. The parameters are usual ones in the sense
that it was not intended to find after many trials what values they should take in
order to produce the best results.

Figure 14.6: Performance using unclustered Artificial data.

The threshold gpth = 120% is set with a maximum of around 6 cuts (0.26
cuts/dimension * 23 dimensions). The population was set to 15. The number of
cuts is only 3 with the highest percentage of classification for the recall set too
(96%) as shown in Figure 14.8. Ideally the program should have converged to
this result instead of the (97%, 95%, 4 cuts) reached at the 151st generation. This
is due to the fact that partition and classification don't exactly match. The fitness
will improve if the number of cuts is increased from 3 to 4 in order to gain few
percents in partition. This could have been probably avoided if the allowed
number of cuts had been lower.

Figure 14.7: Performance using Artificial data clustered with RBFs.

Figure 14.8: Performance with Solder data clustered by DVQ3.

If the patterns are used instead of neurons with the same parameters and a smaller
(13) population, one may expect slightly better results since there is no loss of
information due to the data compression and the partition almost reflects the real
distribution of the patterns. It is to be seen in Figure 14.9 that classification
results follow the partitions curve. The small difference is due to the small "noisy
hyper volumes" that have been given around each data for generalization and
calculation reasons. As a consequence the algorithm converges to the desired
solution (98%, 98%, 3 cuts).

Figure 14.9: Performance with unclustered Solder data.

The second real world type application is more difficult: 10 different handwritten
characters are to be distinguished in a 36-dimensional pattern space [HG94]. An
initial unsuccessful effort is shown in Figure 14.10. The input data are DVQ
neurons. All their radii are scaled by 1.3 to make a bit more certain that the
patterns are contained by their hyper volumes. The different parameters were set
in the normal range.

A good guess for the total number of cuts would be around 9 because there are 10
classes to separate. This parameter was set to 0.24 cuts/dimension*36 dimensions
= 8.64 cuts. Since a high percentage is desired, gpth = 120% is set as a goal.

The percentage of partitioning seems to settle to 90% and the number of cuts to
7. It seems to be harder to get higher than 90%, most probably because of
overlappings. Those overlappings can be great either because of the use of many
unnecessary dimensions or the inadequate scaling of neurons. The data themselves
can be mixed too but more dimensions may result in less overlapping. Of course
these reasons can all be there at the same time.

If few dimensions have to be used by setting the number of cuts allowed by
dimension to 0.18 (for 36 dimensions, the fall in the fitness function is at 6.5
cuts) it takes about 10 minutes to obtain 110 generations. The radii have been

multiplied by 1.25 and the population size is 29. An offset between classification
results and partitioning cannot be avoided due to the form of the neurons. The fact
that the generalizing ability is very good for test set (99%) could show that
neurons are adequately scaled.

Figure 14.10: Unsuccessful trial with 9 cuts as a limit.

Figure 14.11: Performance with Digit data clustered by DVQ3.

The final solution needs only 5 dimensions and 5 cuts to achieve 99% and 94%
of classification for training and recall sets, respectively. It must be said that if

the 1005 learning vectors are used instead of the few DVQ3 neurons, it took 9
hours on the same machine to achieve the same result.

If the data set with 1005 vectors are used, the program needs 9 hours on a Sparc
10 station to make 60 generations, with a population of 15. With the same
parameters, the results shown in Figure 14.12 are obtained.

Figure 14.12: Performance with unclustered Digit data.

Discussion
In this paper, the importance of the partition of the pattern space has been
stressed because it leads to efficient and compact classifiers at a very low cost if
the number of cuts and of dimensions can be somehow reduced.

At this stage, the genetic algorithm, which is much slower than the heuristic
method, could achieve the best partitions. Because the heuristic method uses
projections of the space and has a discrete approach: it suffers from losses of
information, lack of precision and is quite sensible to noisy variations of the
vectors distribution in the space. However, its speed allows many iterations and
some search strategy to get better results. Of course it cannot find the necessary
dimensions among all the relevant dimensions and this problem has not been
solved yet. Nevertheless, the heuristic method can be applied to a number of
problems before moving to more global time consuming genetic algorithm based
methods.

References
[And35] E. Anderson. The Irises of the Gaspe Peninsula. Bull. Amer. Iris Soc.,
59:2-5, 1935.

[BS93] Th. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms
for pargreeter optimization. Evolutionary Computation, 1(1):1-23, 1993.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[HG94] S.K. Halgamuge and M. Glesner. Neural Networks in Designing Fuzzy
Systems for Real World Applications. International Journal for Fuzzy Sets and
Systems (in press) (Editor: H.-J. Zimmermann), 1994.

[HGG] S.K. Halgamuge, C. Grimm, and M. Glesner. Functional Equivalence
Between Fuzzy Classifiers and Dynamic Vector Quantisation Neural Networks. In
ACM Symposium on Applied Computing (SAC'95) (Submitted), Nashville,
USA.

[Ho175] J.H. Holland. Adaptation in Natural and Artifiical Systems. The
University of Michigan Press, 1975.

[HPG93] S. K. Halgamuge, W. Poechmueller, and M. Glesner. A Rule based
Prototype System for Automatic Classification in Industrial Quality Control. In
IEEE International Conference on Neural Networks' 93, pages 238 243, San
Francisco, U.S.A., March 1993. IEEE Service Center; Piscataway. ISBN 0-7803-
0999-5.

[PF91] F. Poirier and A. Ferrieux. DVQ: Dynamic Vector Quantization — An
Incremental LVQ. In International Conference on Artificial Neural Networks'91,
pages 1333-1336. North Holland, 1991.

[PHS+ 94] W. Poechmueller, S.K. Halgamuge, P. Schweikeft, A. Pfeffermann,
and M. Glesner. RBF and CBF Neural Network Learning Procedures. In IEEE
International Conference on Neural Networks' 94, Orlando, U.S.A., June 1994.

	C2409_PDF_INDEX.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Preface
	Contents
	Figures
	Tables

	C2409_PDF_C00.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 0: Model Building, Model Testing and Model Fitting
	Abstract
	0.1 Uses of Genetic Algorithms
	0.1.1 Optimizing or Improving the Performance of Operating Systems
	0.1.2 Testing and Fitting Quantitative Models
	0.1.3 Maximizing vs.Minimizing
	0.1.4 Purpose of this Chapter

	0.2 Quantitative Models
	0.2.1 Parameters
	0.2.2 Revising the Model or Revising the Data?
	0.2.3 Hierarchic or Stepwise Model Building:The Role of Theory
	0.2.4 Significance and Meaningfulness

	0.3 Analytical Optimization
	0.3.1 An Example:Linear Regression

	0.4 Iterative Hill-Climbing Techniques
	0.4.1 Iterative Incremental Stepping Method
	0.4.2 An Example:Fitting the Continents Together
	0.4.3 Other Hill-Climbing Methods
	0.4.4 The Danger of Entrapment on Local Optima and Saddle Points
	0.4.5 The Application of Genetic Algorithms to Model Fitting

	0.5 Assay Continuity in a Gold Prospect
	0.5.1 Description of the Problem
	0.5.2 A Model of Data Continuity
	0.5.2.1 A Model Hierarchy

	0.5.3 Fitting the Data to the Model
	0.5.4 The Appropriate Misfit Function
	0.5.5 Fitting Models of One or Two Parameters
	0.5.5.1 Model 0
	0.5.5.2 Model 1
	0.5.5.3 Model 2
	0.5.5.4 Comparison of Model 0, Model 1 and Model 2
	0.5.5.5 Interpretation of the Parameters

	0.5.6 Fitting the Non-homogeneous Model 3
	0.5.6.1 The Genetic Algorithm Program
	0.5.6.2 Results Using Systematic Projection
	0.5.6.3 Results Using the Genetic Algorithm
	0.5.6.4 Interpretation of the Results

	0.6 Conclusion
	Reference

	C2409_PDF_C01.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 1: Compact Fuzzy Models and Classifiers through Model Reduction and Evolutionary Optimization
	Abstract
	1.1 Introduction
	1.2 Fuzzy Modeling
	1.2.1 The Takagi-Sugeno Fuzzy Model
	1.2.2 Data-Driven Identification by Clustering
	1.2.3 Estimating the Consequent Parameters

	1.3 Transparency and Accuracy of Fuzzy Models
	1.3.1 Rule Base Simplification
	1.3.2 Genetic Multi-objective Optimization

	1.4 Genetic Algorithms
	1.4.1 Fuzzy Model Representation
	1.4.2 Selection Function
	1.4.3 Genetic Operators
	1.4.4 Crossover Operators
	1.4.5 Mutation Operators
	1.4.5.1 Constraints
	1.4.5.2 Proposed algorithm

	1.5 Examples
	1.5.1 Nonlinear Plant
	1.5.2 Proposed approach

	1.6 TS Singleton Model
	1.7 TS Linear Model
	1.7.1 Iris Classification Problem
	1.7.2 Solutions in the literature
	1.7.3 Proposed Approach

	1.8 Conclusion
	Acknowledgments
	References

	C2409_PDF_C02.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 2: On the App ication of Reorganization Operators for Solving a Language Recognition Problem
	Abstract
	2.1 Introduction
	2.1.1 Performance across a New Problem Set
	2.1.2 Previous Work

	2.2 Reorganization Operators
	2.2.1 The Jefferson Benchmark
	2.2.2 MTF
	2.2.3 SFS
	2.2.4 Competition

	2.3 The Experimentation
	2.3.1 The Languages
	2.3.2 Specific Considerations for the Language Recognition Problem

	2.4 Data Obtained from the Experimentation
	2.5 General Evaluation Criteria
	2.6 Evaluation
	2.6.1 Machine Size
	2.6.2 Convergence Rates
	2.6.3 Performance of MTF

	2.7 Conclusions and Further Directions
	References
	Appendix: Worksheets for L2, L2c and L8c.

	C2409_PDF_C03.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 3: Using GA to Optimise the Selection and Scheduling of Road Projects
	3.1 Introduction
	3.2 Formulation of the Genetic Algorithm
	3.2. I The Objective
	3.2.2 The Elements oftlie Project Schedule
	3.2.3 The Genetic Algorithm
	3.2.3.1 Genetic Algorithm Parameters
	3.2.3.2 Summary of the Genetic Algorithm Procedure

	3.3 Mapping the GA String into a Project Schedule and Computing the Fitness
	3.3.1 Data Required
	3.3.2 Imposing Constraints
	3.3.3 Calculation of Project Benefits
	3.3.3.1 Calculation of User Benefits from Projects
	3.3.3.2 Information Required
	3.3.3.3 Divisibility of User Benefits and Relationship to Travel Times
	3.3.3.4 Maintenance Saving Benefits

	3.3.4 Calculating Trip Generation, Route Choice and Link Loads

	3.4 Results
	3.4.1 Convergence of Solutions to the Problem
	3.4.2 The Solutions
	3.4.2.1 The Ten Best Project Sequences
	3.4.2.2 Project Sequence Converted to Annual Investment
	3.4.2.3 Full Statement of the Best Project Schedule

	3.4.3 Similarity and Dissimilarity of Solutions: Euclidean Distance
	3.4.3.1 Similar Solutions with Close Objective Function Values
	3.4.3.2 Different Solutions with Similar Objective Function Values
	3.4.3.3 Similar Solutions with Dissimilar Payoffs: The Shape of the Search Space

	3.5 Conclusions: Scheduling Interactive Road Projects by GA
	3.5.1 Dissimilar Construction Schedules with High and Almost Equal Payoffs
	3.5.2 Similar Construction Schedules with Dissimilar Payoffs

	References

	C2409_PDF_C04.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 4: Decoupled Optimization of Power Electronics Circuits Using Genetic Algorithms
	Abstract
	4.1 Introduction
	4.2 Decoupled Regulator Configuration
	4.2.1 Optimization Mechanism of GA
	4.2.2 Chromosome and Population Structures
	4.2.3 Fitness Functions

	4.3 Fitness Function for PCS
	4.3.1 OF 1 for Objective (1)
	4.3.2 OF 2 for Objective (2)
	4.3.3 OF 3 for Objective (3)
	4.3.4 OF 4 for Objective (4)

	4.4 Fitness function for FN
	4.4.1 OF 5 for Objective (1)
	4.4.2 OF 6 and OF 8 for Objective (2)and Objective (4)
	4.4.3 OF 8 of Objective (3)

	4.5 Steps of Optimization
	4.6 Design Example
	4.7 Conclusions
	References

	C2409_PDF_C05.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 5: Feature Selection and Classification in the Diagnosis of Cervical Cancer
	5.1 Introduction
	5.2 Feature Selection
	5.3 Feature Selection by Genetic Algorithm
	5.3.1 GA Encoding Schemes
	5.3.2 GAs and Neural Networks
	5.3.3 GA Feature Selection Performance
	5.3.4 Conclusions

	5.4 Developing a Neural Genetic Classifier
	5.4.1 Algorithm Design Issues
	5.4.2 Problem Representation
	5.4.3 Objective Function
	5.4.4 Selection Strategy
	5.4.5 Parameterization

	5.5 Validation of the Algorithm
	5.5.1 The Dataset
	5.5.2 Experiments on Two-Dimensional Data
	5.5.3 Results of Two-Dimensional Data Experiments
	5.5.4 Lessons from Artificial Data
	5.5.5 Experiments on a Cell Image Dataset

	5.6 Parameterization of the GA
	5.6.1 Parameterization Experiments
	5.6.2 Results of Parameterization Experiments
	5.6.3 Selecting the Neural Network Architecture

	5.7 Experiments with the Cell Image Dataset
	5.7.1 Slide-Based vs.Cell-Based Features
	5.7.2 Comparison with the Standard Approach
	5.7.3 Discussion

	References

	C2409_PDF_C06.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 6: Algorithms for Multidimensional Scaling
	Abstract
	6.1 Introduction
	6.1.1 Scope of This Chapter
	6.1.2 What is Multidimensional Scaling?
	6.1.2.1 Metric and Non-metric Multidimensional Scaling
	6.1.2.2 Choice of the Misfit or Stress Function
	6.1.2.3 Choice of the Number of Dimensions
	6.1.2.4 Replicated Data Matrices
	6.1.2.5 Arbitrary Choice of Axes

	6.1.3 Standard Multidimensional Scaling Techniques
	6.1.3.1 Limitations of the Standard Techniques

	6.2 Multidimensional Scaling Examined in More Detail
	6.2.1 A Simple One-Dimensional Example
	6.2.2 More than One Dimension
	6.2.3 Using Standard Multidimensional Scaling Methods

	6.3 A Genetic Algorithm for Multidimensional Scaling
	6.3.1 Random Mutation Operators
	6.3.1.1 Binary and Real Parameter Representations
	6.3.1.2 Projected Mutation:A Hybrid Operator

	6.3.2 Crossover Operators
	6.3.2.1 Inter-object Crossover

	6.3.3 Selection Operators
	6.3.4 Design and Use of a Genetic Algorithm for Multidimensional Scaling

	6.4 Experimental Results
	6.4.1 Systematic Projection
	6.4.2 Using the Genetic Algorithm
	6.4.3 A Hybrid Approach

	6.5 The Computer Program
	6.5.1 The Extend Model
	6.5.2 Definition of Parameters and Variables
	6.5.2.1 Within the Control Panel (Dialog Box)
	6.5.2.2 To the Library Plotter
	6.5.2.3 Variables and Constants Set Within the Program Listing

	6.5.3 The Main Program
	6.5.4 Procedures and Functions
	6.5.4.1 CHECKVALIDATA()
	6.5.4.2 INITIALISE()
	6.5.4.3 EVALUATE()
	6.5.4.4 DESCEND()
	6.5.4.5 TOURNELITE()
	6.5.4.6 RANDPROJ()
	6.5.4.7 CROSSOVER()
	6.5.4.8 CROSSOBJ()
	6.5.4.9 MUTATE()
	6.5.4.10 XY optGET()

	6.5.5 Adapting the Program for C or C++
	6.5.5.1 Substitution for the Control Panel Input and Output
	6.5.5.2 Substitution for the Library Plotter
	6.5.5.3 Changes to the Main Program

	6.6 Using the Extend Program
	References

	C2409_PDF_C07.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 7: Genetic Algorithm-Based Approach for Transportation Optimization Problems
	Abstract
	7.1 GA-Based Solution Approach for Transport Models
	7.1.1 Introduction
	7.1.2 GAB Approach for Single-Objective Bilevel Programming Models
	7.1.2.1 Bilevel Programming Problems
	7.1.2.2 GAB Approach
	7.1.2.3 Numerical Example

	7.1.3 GAB Approach for Multi-Objective Bilevel Programming Models
	7.1.3.1 Multi-Objective Bilevel Models
	7.1.3.2 The Solution Procedure
	7.1.3.3 Numerical Example

	7.1.4 Summary

	7.2 GAB Calibration Approach for Transport Models
	7.2.1 Introduction
	7.2.2 Review of TFS
	7.2.3 Calibration Measures
	7.2.4 GAB Calibration Procedure
	7.2.5 Calibration of TFS
	7.2.6 Case Study
	7.2.6.1 Path Choice Entropy and NCV:the Best Measures for Calibration
	7.2.6.2 Calibration Results

	7.2.7 Summary

	7.3 Concluding Remarks
	References
	Appendix I: Notation

	C2409_PDF_C08.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 8: Solving Job-Shop Scheduling Problems by Means of Genetic Algorithms
	8.1 Introduction
	8.2 The Job-Shop Scheduling Constraint Satisfaction Problem
	8.3 The Genetic Algorithm
	8.4 Fitness Refinement
	8.4.1 Variable and Value Ordering Heuristics

	8.5 Heuristic Initial Population
	8.6 Experimental Results
	8.7 Conclusions
	References

	C2409_PDF_C09.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 9: Applying the Implicit Redundant Representation Genetic Algorithm in an Unstructured Problem Domain
	9.1 Introduction
	9.2 Motivation for Frame Synthesis Research
	9.2.1 Modeling the Conceptual Design Process
	9.2.2 Research in Frame Optimization

	9.3 The Implicit Redundant Representation Genetic Algorithm
	9.3.1 Implementation of the IRR GA Algorithm
	9.3.2 Suitability of the IRR GA in Conceptual Design

	9.4 The IRR Genotype/Phenotype Representation
	9.4.1 Provision of Dynamic Redundancy
	9.4.2 Controlling the Level of Redundancy in the IRR GA Initial Population

	9.5 Applying the IRR GA to Frame Design Synthesis in an Unstructured Domain
	9.5.1 Unstructured Design Problem Formulation
	9.5.2 IRR GA Genotype/Phenotype Representation for Frame Design Synthesis
	9.5.2.1 Encoding Frame Members as Design Variables
	9.5.2.2 Definition of Member Data Structures
	9.5.2.3 Creation of Linked Lists of Pointers Using SaveNodes()
	9.5.2.4 Construction of Complete Design Synthesis Alternatives

	9.5.3 Use of Repair Strategies on Frame Design Alternatives
	9.5.3.1 Ensuring a Minimum Number of Support Nodes
	9.5.3.2 Deletion of Single Nodes on Floor Levels
	9.5.3.3 Replacement of Geometrically Similar Nodes with a Single Node

	9.5.4 Generation of Horizontal Members in Design Synthesis Alternatives
	9.5.5 Specification of Loads on Unstructured Frame Design Alternatives
	9.5.5.1 Specification of Gravity Loads
	9.5.5.2 Specification of Wind Loads

	9.5.6 Finite-Element Analysis of Frame Structures
	9.5.7 Deletion of Dynamically Allocated Nodal Linked Lists

	9.6 IRR GA Fitness Evaluation of Frame Design Synthesis Alternatives
	9.6.1 Statement of Frame Design Objectives Used as Fitness Functions
	9.6.2 Application of Penalty Terms in IRR GA Fitness Evaluation
	9.6.2.1 Stress Penalty Function
	9.6.2.2 Deflection Penalty Functions
	9.6.2.3 Symmetry Penalty Functions
	9.6.2.4 Composite Fitness Function

	9.7 Discussion of the Genetic Control Operators Used by the IRR GA
	9.7.1 Fitness Sharing among Individuals in the Population
	9.7.2 Tournament Selection of New Population Individuals
	9.7.3 Multiple Point Crossover of Binary Strings
	9.7.4 Single-Bit Mutation of Binary Strings

	9.8 Results of the Implicit Redundant Representation Frame Synthesis Trials
	9.8.1 Evolved Design Solutions for the Frame Synthesis Unstructured Domain
	9.8.2 Synthesis versus Optimization of Frame Design Solutions Using IRR GA

	9.9 Concluding Remarks
	References

	C2409_PDF_C10.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 10: How to Handle Constraints with Evolutionary Algorithms
	Abstract
	10.1 Introduction
	10.2 Constraint Handling in EAs
	10.3 Evolutionary CSP Solvers
	10.3.1 Heuristic Genetic Operators
	10.3.2 Knowledge-Based Fitness and Genetic Operators
	10.3.3 Glass-Box Approach
	10.3.4 Genetic Local Search
	10.3.5 Co-evolutionary Approach
	10.3.6 Heuristic-Based Microgenetic Method
	10.3.7 Stepwise Adaptation of Weights

	10.4 Discussion
	10.5 Assessment of EAs for CSPs
	10.6 Conclusion
	References

	C2409_PDF_C11.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 11: An Optimized Fuzzy Logic Controller forActive Power Factor Corrector Using Genetic Algorithm
	Abstract
	11.1 Introduction
	11.2 FLC for the Boost Rectifier
	11.2.1.Switching Rule for the Switch SW
	11.2.2 Fuzzy Logic Controller (FLC)
	11.2.2.1 Fuzzification
	11.2.2.2 Decision-Making

	11.2.3 Defuzzification

	11.3 Optimization of FLC by the Genetic Algorithm
	11.3.1 Structure of the Chromosome
	11.3.2 Initialization of Si
	11.3.2.1 The peak point
	11.3.2.2 The Two End Points

	11.3.3 Formulation of Multi-objective Fitness Function
	11.3.4 Selection of Chromosomes
	11.3.5 Crossover and Mutation Operations
	11.3.6 Validation of SI :Recovery of Valid Fuzzy Subsets

	11.4 Illustrative Example
	11.5 Conclusions
	References

	C2409_PDF_C12.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of contents
	Chapter 12: Multilevel Fuzzy Process Control Optimized by Genetic Algorithm
	Abstract
	12.1 Introduction
	12.2 Intelligent Control
	12.3 Multilevel Control
	12.3.1 Optimal Control Concept
	12.3.2 Process Stability during Genetic Algorithm Optimizing
	12.3.3 Optimizing Criteria

	12.4 Optimizing Aided by Genetic Algorithm
	12.4.1 Genetic Algorithm Parameters
	Solution representation.
	Population size.
	Recombination.
	Crossover.
	Mutation.
	Algorithm termination conditions.

	12.5 Laboratory Cascaded Plant
	Heat exchanger 1.
	Connecting tube.
	Heat exchanger 2.

	12.6 Multilevel Control Using Genetic Algorithm
	12.6.1 Non-coordinated Multilevel Control Using a PID Controller

	12.7 Fuzzy Multilevel Coordinated Control
	12.7.1 Decision Control Table

	12.8 Conclusions
	References

	C2409_PDF_C13.pdf
	The Practical Handbook of GENETIC ALGORITHMS Applications
	Table of Contents
	Chapter 13: Evolving Neural Networks for CancerRadiotherapy
	13.1.Introduction and Chapter Overview
	13.2 An Introduction to Radiotherapy
	13.2.1 Radiation Therapy Treatment Planning (RTP)
	13.2.2 Volumes
	13.2.3 Treatment Planning
	13.2.4 Recent Developments and Areas of Active Research
	13.2.4.1 Treatment Modalities
	13.2.4.2 Prediction of Treatment Outcome

	13.2.5 Treatment Planning
	13.2.4.4 Optimisation of Beam Orientation
	13.2.4.5 Optimisation Using Simulated Annealing
	13.4.2.6 Optimisation Using Other Techniques

	13.3 Evolutionary Artificial Neural Networks
	13.3.1 Evolving Network Weights
	13.3.2 Evolving Network Architectures
	13.3.3 Evolving Learning Rules
	13.3.4 EPNet
	13.3.5 Addition of Virtual Samples
	13.3.6 Summary

	13.4 Radiotherapy Treatment Planning with EANNs
	13.4.1 The Backpropogation ANN for Treatment Planning
	13.4.2 Development of an EANN
	13.4.3 EANN Results
	13.4.4 Breast Cancer Treatment Planning

	13.5 Summary
	13.6 Discussion and Future Work
	Acknowledgments
	References

	C2409_PDF_C14.pdf
	Practical Handbook of GENETIC ALGORITHMS: New Frontiers, Volume II
	Table of Contents
	Chapter 14: Input Space Segmentation with a Genetic Algorithm for Generation of Rule Based Classifier Systems
	Abstract
	14.1 Introduction
	14.2 A Heuristic Method
	14.3 Genetic Algorithm Based Method
	14.3.1 Encoding
	14.3.2 Genetic Operators
	14.3.3 Fitness Evaluation

	14.4 Results
	14.4.1 Heuristic Method
	14.4.2 Genetic Algorithm Based Solutions

	Discussion
	References

	© 2001 by Chapman & Hall/CRC: © 2001 by Chapman & Hall/CRC
	© 1995 by CRC Press, Inc: © 1995 by CRC Press, Inc.

