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Preface

Computational aspects of geometry of numbers have been revolutionized by the
Lenstra–Lenstra–Lovász lattice reduction algorithm (LLL), which has led to break-
throughs in fields as diverse as computer algebra, cryptology, and algorithmic
number theory. After its publication in 1982, LLL was immediately recognized
as one of the most important algorithmic achievements of the twentieth century,
because of its broad applicability and apparent simplicity. Its popularity has kept
growing since, as testified by the hundreds of citations of the original article, and
the ever more frequent use of LLL as a synonym to lattice reduction.

As an unfortunate consequence of the pervasiveness of the LLL algorithm,
researchers studying and applying it belong to diverse scientific communities, and
seldom meet. While discussing that particular issue with Damien Stehlé at the 7th
Algorithmic Number Theory Symposium (ANTS VII) held in Berlin in July 2006,
John Cremona accurately remarked that 2007 would be the 25th anniversary of LLL
and this deserved a meeting to celebrate that event. The year 2007 was also involved
in another arithmetical story. In 2003 and 2005, Ali Akhavi, Fabien Laguillaumie,
and Brigitte Vallée with other colleagues organized two workshops on cryptology
and algorithms with a strong emphasis on lattice reduction: CAEN ’03 and CAEN
’05, CAEN denoting both the location and the content (Cryptologie et Algorith-
mique En Normandie). Very quickly after the ANTS conference, Ali Akhavi, Fabien
Laguillaumie, and Brigitte Vallée were thus readily contacted and reacted very
enthusiastically about organizing the LLL birthday conference. The organization
committee was formed.

Within a couple of months, the three L’s, Arjen and Hendrik Lenstra, and László
Lovász, kindly accepted to participate, which provided confidence to the organizing
team. At the same time, a program committee was created. Its members – Karen
Aardal, Shafi Goldwasser, Phong Nguyen, Claus Schnorr, Denis Simon, and Brigitte
Vallée – come from diverse fields, so as to represent as many LLL-practitioners as
possible. They invited speakers to give overview talks at the conference.

The anniversary conference eventually took place between 29th June and 1st
July 2007, at the University of Caen. During these three days, 14 invited talks were
given on topics closely related to the LLL algorithm. A poster session gathered 12
presentations on ongoing research projects. Overall, 120 researchers from 16 coun-
tries and very diverse scientific backgrounds attended the event. And naturally,
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vi Preface

a birthday party was set and the three L’s blew out the candles of their algorithm’s
birthday cake!

Unlike many other domains, the community misses a reference book dealing with
almost all aspects of lattice reduction. One important goal of the conference was to
provide such material, which may be used by both junior and senior researchers, and
hopefully even useful for undergraduate students. The contributors were selected to
make such a collective book possible. This book is a brief (and inevitably incom-
plete) snapshot of the research, which was sparked by the publication of the LLL
algorithm in 1982. The survey articles were written to be accessible by a large audi-
ence, with detailed motivations, explanations, and examples. We hope they will help
pursuing further research on this very rich topic. Each article of the present book can
be read independently and provides an introductory overview of the results obtained
in each particular area in the past 25 years.

The first contribution of this book, by Ionica Smeets and in collaboration with
Arjen Lenstra, Hendrik Lenstra, László Lovász, and Peter van Emde Boas, describes
the genesis of the LLL algorithm. The rest of the book may be informally divided
into five chapters, each one essentially matching a session of the anniversary
conference.

The first chapter deals with algorithmic aspects of lattice reduction, indepen-
dently of applications. The first article of that chapter, by Phong Nguyen, introduces
lattices, and surveys the main provable algorithms for finding the shortest vector
in a lattice, either exactly or approximately. It emphasizes a somewhat overlooked
connection between lattice algorithms and Hermite’s constant, that is, between com-
putational and mathematical aspects of the geometry of numbers. For instance,
LLL is presented as an (efficient) algorithmic version of Hermite’s inequality on
Hermite’s constant. The second article, by Brigitte Vallée and Antonio Vera, surveys
the probabilistic analysis of several lattice reduction algorithms, in particular LLL
and Gauss’ algorithm. Different random models for the input bases are considered
and the result introduces sophisticated analytic tools as complex and functional anal-
ysis. The third article, by Claus Schnorr, surveys provable and heuristic algorithmic
variations around LLL, to make the algorithm more efficient or with better outputs.
For example, the fruitful notion of blockwise reduction is a natural generalization
of LLL. The fourth article, by Damien Stehlé, surveys all aspects of floating-point
lattice reduction. The different analyses exhibit the parameters that play an impor-
tant role when relating the execution time of the floating-point versions of LLL to
the quality of the output. Both provable and heuristic versions of the algorithm are
considered.

The second chapter is concerned with the applications of lattice reduction in
the vast field of algorithmic number theory. Guillaume Hanrot’s article describes
several efficient algorithms to solve diverse Diophantine approximation problems.
For example, these algorithms relying on lattice reduction tackle the problems
of approximating real numbers by rational and algebraic numbers, of disclosing
linear relations and of solving several Diophantine equations. Denis Simon’s paper
contains a collection of examples of problems in number theory that are solved
efficiently via lattice reduction. Among others, it introduces a generalization of the
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LLL algorithm to reduce indefinite quadratic forms. Finally, the article by Jürgen
Klüners surveys the original application of the LLL, namely factoring polynomials
with rational coefficients. It compares the original LLL factoring method and the
recent one developed by Mark von Hoeij, which relies on the knapsack problem.

The third chapter contains a single article, by Karen Aardal and Friedrich
Eisenbrand. It surveys the application of the LLL algorithm to integer program-
ming, recalling Hendrik Lenstra’s method – an ancestor of the LLL algorithm, and
describing recent advances.

The fourth chapter is devoted to an important area where lattices have been
applied with much success, both in theory and practice: cryptology. Historically,
LLL and lattices were first used in cryptology for “destructive” purposes: one of
the very first applications of LLL was a practical attack on the Merkle–Hellman
knapsack public-key cryptosystem. The success of reduction algorithms at break-
ing various cryptographic schemes since the discovery of LLL have arguably
established lattice reduction techniques as the most popular tool in public-key crypt-
analysis. Alexander May’s article surveys one of the major applications of lattices
to cryptanalysis: lattice attacks on the RSA cryptosystem, which started in the
late eighties with Håstad’s work, and has attracted much interest since the mid-
nineties with Coppersmith’s method to find small roots of polynomials. The other
two articles of the chapter deal instead with “positive” applications of lattices to
cryptography. The NTRU paper by Jeff Hoffstein, Nick Howgrave-Graham, Jill
Pipher, and William Whyte gives an excellent example of an efficient cryptosys-
tem whose security relies on the concrete hardness of lattice problems. The paper
by Craig Gentry surveys security proofs of non-lattice cryptographic schemes in
which lattices make a surprising appearance. It is perhaps worth noting that lattices
are used both to attack RSA in certain settings, and to prove the security of industrial
uses of RSA.

The final chapter of the book focuses on the complexity of lattice problems. This
area has attracted much interest since 1996, when Miklós Ajtai discovered a fasci-
nating connection between the worst-case and average-case complexity of certain
lattice problems. The contribution of Daniele Micciancio deals with (lattice-based)
cryptography from worst-case complexity assumptions. It presents recent crypto-
graphic primitives whose security can be proven under worst-case assumptions: any
instance of some well-known hard problem can be solved efficiently with access
to an oracle breaking random instances of the cryptosystem. Daniele Micciancio’s
article contains an insightful discussion on the concrete security of lattice-based
cryptography. The last two articles of the book, by respectively Subhash Khot and
Oded Regev, are complementary. The article by Subhash Khot surveys inapprox-
imability results for lattice problems. And the article by Oded Regev surveys the
so-called limits to inapproximability results for lattice problems, such as the proofs
that some approximation lattice problems belong to the complexity class coNP.
It also shows how one can deduce zero-knowledge proof systems from the previous
proofs.
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Foreword

I have been asked by my two co-L’s to write a few words by way of introduction,
and consented on the condition of being allowed to offer a personal perspective.

On 1 September 2006, the three of us received an e-mail from Brigitte Vallée.
John Cremona, she wrote, had suggested the idea of celebrating the 25th anniver-
sary of the publication of “the LLL paper,” and together with Ali Akhavi, Fabien
Laguillaumie, and Damien Stehlé, she had decided to follow up on his suggestion.
As it was “not possible to celebrate this anniversary without (. . . ) the three L’s of
LLL,” she was consulting us about suitable dates. I was one of the two L’s who were
sufficiently flattered to respond immediately, and the dates chosen turned out to be
convenient for number three as well.

In her very first e-mail, Brigitte had announced the intention of including a histor-
ical session in the meeting, so that we would have something to do other than cutting
cakes and posing for photographers. Hints that some of my own current work relates
to lattices were first politely disregarded, and next, when I showed some insistence,
I was referred to the Program Committee, consisting of Karen Aardal, Shafi Gold-
wasser, Phong Nguyen, Claus Schnorr, Denis Simon, and Brigitte herself. This made
me realize which role I was expected to play, and I resolved to wait another 25 years
with the new material.

As the meeting came nearer, it transpired that historical expertise was not repre-
sented on the Program Committee, and with a quick maneuver I seized unrestricted
responsibility for organizing the historical session. I did have the wisdom of first
securing the full cooperation of LLL’s court archivist Peter van Emde Boas. How
successful the historical session was, reported on by Ionica Smeets in the present
volume, is not for me to say. I did myself learn a few things I was not aware of, and
do not feel ashamed of the way I played my role.

All three L’s extended their stay beyond the historical session. Because of the
exemplary way in which the Program Committee had acquitted themselves in this
job, we can now continue to regard ourselves as universal experts on all aspects of
lattice basis reduction and its applications.
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John Cremona, apparently mortified at the way his practical joke had run out of
hand, did not show up, and he was wrong. John, it is my pleasure to thank you most
cordially on behalf of all three L’s. Likewise, our thanks are extended not only to
everybody mentioned above, but also to all others who contributed to the success of
the meeting, as speakers, as participants, as sponsors, or invisibly behind the scenes.

Leiden,
August 2008 Hendrik Lenstra
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Chapter 1
The History of the LLL-Algorithm

Ionica Smeets
In collaboration with Arjen Lenstra, Hendrik Lenstra, László Lovász,
and Peter van Emde Boas

Abstract The 25th birthday of the LLL-algorithm was celebrated in Caen from
29th June to 1st July 2007. The three day conference kicked off with a historical
session of four talks about the origins of the algorithm. The speakers were the three
L’s and close bystander Peter van Emde Boas. These were the titles of their talks.

� A tale of two papers – Peter van Emde Boas.
� The early history of LLL – Hendrik Lenstra.
� The ellipsoid method and basis reduction – László Lovász.
� Polynomial factorization and lattices in the very early 1980s – Arjen Lenstra.

This chapter is based on those talks, conversations with these four historic charac-
ters, the notes that Peter van Emde Boas and Arjen Lenstra wrote for the prepro-
ceedings, and many artifacts from the phenomenal archive of Van Emde Boas.

Fig. 1.1 On both pictures you see from left to right Peter van Emde Boas, László Lovász, Hendrik
Lenstra, and Arjen Lenstra. Alexander Schrijver took the first picture in Bonn on 27th February
1982. For the poster of the conference, Van Emde Boas was digitally removed from this picture.
The second picture was taken by Ghica van Emde Boas at Le moulin de Bully on 29th June 2007

I. Smeets (B)
Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands,
e-mail: ionica.smeets@gmail.com

P.Q. Nguyen and B. Vallée (eds.), The LLL Algorithm, Information Security
and Cryptography, DOI 10.1007/978-3-642-02295-1 1,
c� Springer-Verlag Berlin Heidelberg 2010
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2 I. Smeets

Skinny Triangles and Lattice Reduction

One possible starting point for the LLL-algorithm is May 1980. At that time, Peter
van Emde Boas was visiting Rome. While he was there he discussed the following
problem with Alberto Marchetti-Spaccamela.

Question 1 Given three points with rational coordinates in the plane, is it possible
to decide in polynomial time whether there exists a point with integral coefficients
lying within the triangle defined by these points?

This question seemed easy to answer: for big triangles the answer will be “yes”
and for small triangles there should be only a small number of integer points close
to it that need checking. But for extremely long and incredibly thin triangles this
does not work; see Fig. 1.2.

It is easy to transform such a skinny triangle into a “rounder” one, but this
transformation changes the lattice too; see Fig. 1.3. Van Emde Boas and Marchetti-
Spaccamela did not know how to handle these skewed lattices. Back in Amsterdam,
Van Emde Boas went to Hendrik Lenstra with their question. Lenstra immediately
replied that this problem could be solved with lattice reduction as developed by
Gauss almost two hundred years ago. The method is briefly explained below.

Fig. 1.2 The problematic triangles almost look like a line: they are incredibly thin and very, very
long. This picture should give you an idea; in truly interesting cases the triangle is much thinner
and longer. In the lower left corner you see the standard basis for the integer lattice



1 The History of the LLL-Algorithm 3

A

B C

Fig. 1.3 The triangle from Fig. 1.2 transformed into a right-angled isosceles triangle, the skewed
lattice and the transformed standard basis. Now the transformed basis looks thin and long

Method for Answering Question 1.
First apply a linear transformation that changes the triangle into a right-angled
isosceles triangle. This transforms the integer lattice into a lattice with some
given basis of two rational vectors.
Find a reduced basis .b1; b2/ for this new lattice: b1 is a shortest nonzero vector
in the lattice and b2 is a shortest vector in the lattice that is linearly independent
of b1. Compute b�2 D b2 � hb1;b2ihb1;b1ib1.
If the triangle is sufficiently large compared to jjb�2 jj, then there is a lattice point
in the triangle.
Otherwise, check if lines parallel to b1 (with successive distances jjb�2 jj) con-
tain points in the triangle. Remember that in this case the size of the triangle is
small compared to jjb�2 jj, so the number of lines to be checked is small.

Van Emde Boas wrote to Marchetti in the summer of 1980: “Solution: the
answer is yes.” In his letter he explained how the method worked. When Marchetti-
Spaccamela was visiting Amsterdam in October of the same year, he paid Hendrik
Lenstra a visit to talk about the solution. Together with Van Emde Boas, he went to
Lenstra’s office. Hendrik Lenstra vividly remembers his initial feelings about this
visit: “I felt a bit like a dentist. I had dealt with this problem before, so why were
they asking the same question again? I told them the solution and they apparently
understood it, but then they refused to walk out of my office. I had work to do and I
felt that they were imposing upon my time. I was too naive to realize that this was
my real work.”



4 I. Smeets

A

CB

b1

b2
b2

∗

Fig. 1.4 The skewed lattice, its reduced basis .b1; b2/ and the orthogonal projection b�

2 .

Lenstra opened his mouth about to say “Go away,” but he phrased this in a slightly
more polite manner as: “Why is this question about the triangle interesting in the first
place?” His visitors answered that it was just a special case of integer programming
with a fixed number of variables. “And then I stared at it and asked, can you not
do that in the same way?” Van Emde Boas recalls: “At this point I had to leave
the meeting to teach a class. When I came back three quarters of an hour later,
Hendrik had given the answer that it really works for any dimension.” This resulted
in Lenstra’s integer linear programming algorithm.

Linear programming, sometimes known as linear optimization, is the problem
of maximizing or minimizing a linear function over a convex polyhedron specified
by linear nonnegativity constraints. Integer linear programming is a special case of
linear programming in which all variables are required to take on integer values
only.

Integer Programming

In the early eighties, Hendrik Lenstra was not doing integer programming at all. He
was among other things working on primality testing and Euclidean number fields.
“I would probably not have found the integer linear programming algorithm if I had
not been asked this question about a triangle in a integer lattice.” The generalized
question can be stated as follows.

Question 2 Let n and m be positive integers, A an m � n-matrix with integral
entries, and b 2 Z

m. Is there a vector x 2 Z
n satisfying the system ofm inequalities

Ax � b? So if K D fx 2 R
n W Ax � bg, then the question is whether Z

n \ K is
nonempty.

The integer linear programming algorithm essentially consists of three stages.
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Integer Linear Programming.
We may assume the problem is reduced to the case 0 < vol K <1, thus K is
bounded and has positive volume.

1. Find a linear transformation � such that �K is round. If we put

B.p; z/ D fx 2 R
n W jx � pj � zg for p 2 R

n; z 2 R>0;

then the formal definition of round is that there are spheres B.p; r/ and
B.p;R/ with B.p; r/ � �K � B.p;R/ and R

r
� c1, where c1 is a constant

depending only on n.
2. Find a reduced basis for �Zn.
3. Either find a point in �Zn\ �K or reduce the problem to a bounded number

of problems in n � 1 dimensions.

There are three versions of this algorithm: the first preprint appeared in April
1981 [3], to be followed by an improved version in November of the same year [4].
The final version was published in 1983 in Mathematics of Operations Research [5],
the year after the LLL-algorithm appeared [8]. Lenstra:

The reason that there are so many versions is that Lovász kept improving parts of the algo-
rithm. He started with the first step. I had a very naive and straightforward way of finding

Fig. 1.5 Hendrik Lenstra using his hands to explain the algorithm to Alberto Marchetti-
Spaccamela, Amsterdam on 21st October 1980
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Fig. 1.6 The beginning of the letter from Lovász in which he explains the basis reduction
algorithm

the needed transformation, and this method was polynomial only for fixed n. Lovász found
an algorithm to do this in polynomial time even for varying n.

Lovász later improved the second step, the basis reduction algorithm. In the intro-
duction to the first preprint of his paper, Lenstra expressed some dissatisfaction with
his complexity analysis of this step.

It is not easy to bound the running time of this algorithm in a satisfactory way. We give
an argument which shows that it is polynomially bounded, for fixed n. But the degree of
this polynomial is an exponential function of n, and we feel that there is still room for
improvement.

At the time Lenstra believed this problem was caused by his analysis, not by the
algorithm. But Lovász improved the algorithm instead of the analysis.

In a letter dated 12th December 1981, Lovász explains the basis reduction algo-
rithm. He defines two concepts that are at the core of the LLL-algorithm. Let
.b1; : : : ; bn/ be an ordered basis for R

n. We say that it is straightened if for every
1 � i < k � n and

bk D
iX

jD1

�i
jkbj C b.i/

k
; where bT

j b
.i/

k
D 0 for j D 1; : : : ; i;

one has ˇ̌
�i

ik

ˇ̌ � 1

2
(only the last coefficient!):

We say that .b1; : : : ; bn/ is weakly greedy if

.b1 ^ b2 ^ � � � ^ bi ^ biC2/
2 � 3

4
.b1 ^ b2 ^ � � � ^ bi ^ biC1/

2 (1.1)

holds for every 0 � i � n � 2, where

.b1 ^ � � � ^ bk/
2 D det

�
.bT

i bj /
k
i;jD1

�
:
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Fig. 1.7 The postcard that Hendrik Lenstra sent to László Lovász on 18th December 1981. Notice
that the shortest vector problem he mentions is still open after 25 years

Lovász wrote:

Thus the basis algorithm is the following: start with a basis of the lattice. Look for an i ,
0 � i � n � 2 violating (1.1). If such an i exists, interchange biC1 and biC2, and look
for another i . If no such i exists, straighten out the basis and start all over again. Stop if no
exchange has been made after straightening.

A few days after Lenstra got the letter from Lovász, he sent an excited postcard to
Hungary, see Fig. 1.7: “Dear László, Congratulations with your beautiful algorithm!
[. . . ] Your result may have implications (theoretical & practical) on polynomial
factorization (over Q). My younger brother (A.K.) is working on that.” More on
this polynomial factorization is in section “Polynomial Factorization”. First Lovász
explains why he was working on lattice basis reduction.

The Ellipsoid Method

László Lovász started his talk in Caen by declaring that he was not really inter-
ested in trying to improve Lenstra’s algorithm. In fact, he was interested in a
tiny little detail in the ellipsoid method. It all started around 1978 with the paper
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Fig. 1.8 Hendrik Lenstra, László Lovász, and their host Bernhard Korte in Bonn (February 1982)

A polynomial algorithm in linear programming from Leonid Khachiyan (sometimes
spelled Hačijan) [2]. Lovász: “The ellipsoid method was developed by Soviet scien-
tists in the second half of the seventies. Khachiyan noticed that this algorithm can be
applied to solve linear programming in polynomial time, which was a big unsolved
problem. All of a sudden there was a big interest in these things.”

Peter van Emde Boas remembers how the ellipsoid method first arrived in the
west as a rumor and how “Khachiyan conquered the world and everyone became
crazy.” In those days, there was no email or internet and the iron curtain made things
even more difficult.

Lovász:

I was living in Hungary, but I had the possibility to travel every now and then. In 1978–
1979, I spent a year in Canada and in the summer I was in Stanford. There I met Peter
Gács and someone sent us Khachiyan’s paper. We read and understood it. On the way back
to Hungary, I took the opportunity to visit Amsterdam and Bonn. You tried to minimize
the number of times you passed the iron curtain, because that was somehow limited. In
Amsterdam I met Lex Schrijver and in Bonn Martin Grötschel. I told them both about the
ellipsoid method and they became very enthusiastic about it and we started working on it.

Lovász and Gács wrote a report [7] about Khachiyan’s paper that explained the
ideas and convinced the operations research and computer science communities that
the algorithm was correct.
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Fig. 1.9 An illustration of
one step of the ellipsoid
method

Ek

Ek + 1

K
xk + 1

xk

y

H

The Ellipsoid Method (As Described in [1]).
There is a simple geometric idea behind the ellipsoid method. We start with
a convex body K in Rn, included in a big ellipsoid E0, and a linear objec-
tive function cT x. In the kth step, there is an ellipsoid Ek , which includes the
set Kk of those points x of K for which cT x is at least as large as the best
found so far. We look at the center xk of Ek .
If xk is not an element of K , then we take a hyperplane through xk which
avoids K . This hyperplaneH cuts Ek into two halves; we pick that one which
includes Kk and include it in a new ellipsoid EkC1, which is essentially the
ellipsoid of least volume containing this half ofEk , except for an allowance for
rounding errors. The ellipsoidEkC1 can be geometrically described as follows.
Let F D Ek \ H , and let y be the point where a hyperplane parallel to H
touches our half of Ek . Then the center of this smallest ellipsoid divides the
segment xky in ratio 1:n, the ellipsoid intersectsH in F , and touchesEk in y.
The ellipsoid EkC1 then arises by blowing up and rounding; see Fig. 1.9.
If xk 2 K , then we cut with the hyperplane cT x D cT xk similarly.
The volumes of the ellipsoidsEk will tend to 0 exponentially fast and this guar-
antees that those centers xk which are in K will tend to an optimum solution
exponentially fast.

Consider the following problems forK , a nonempty convex compact set in R
n.

1. Strong optimization problem: given a vector c 2 R
n, find a vector x in K which

maximizes cT x onK .
2. Strong separation problem: given a vector y 2 R

n, decide if y 2 K , and if not,
find a hyperplane that separates y from K; more exactly find a vector c 2 R

n

such that cT y > maxfcT xjx 2 Kg.
In 1980, Grötschel, Lovász, and Schrijver proved the following theorem [1].

Theorem 1 Let K be a class of convex bodies. There is a polynomial algorithm
to solve the separation problem for the members of K if and only if there is a
polynomial algorithm to solve the optimization problem for the members of K :
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The proof uses the ellipsoid method. Lovász:

Other people also noticed that the main interest of the ellipsoid method is not in practical
applications for linear programming, but in theoretical applications for combinatorial opti-
mization problems. We decided to write a book about this. For this book we wanted to make
everything as nice as possible, but there was one annoying little gap.

In combinatorial applications,K is typically given by a system of linear inequal-
ities, with rational coefficients, such that each defining inequality can be written
down using a polynomial number of digits. We want to know whether the ellip-
soid method terminates. If the solution set K is full-dimensional, then vol.K/>0
and one can prove that log.1=vol.K// is bounded by a polynomial in the dimen-
sion n and the length of the rest of input for K . So the ellipsoid method terminates
after a polynomial number of steps in this case. If K is not full-dimensional (so
vol.K/ D 0), the ellipsoid method may go on forever. In many interesting applica-
tions, it is impossible to tell from the input of K whether vol.K/ D 0, but luckily
we can determine that this must be the case if the ellipsoids become smaller than the
computable lower bound for vol.K/. In this case we can use diophantine rounding
as follows.

If vol.K/ D 0, thenK lies in a hyperplane, and one would like to do the ellipsoid
algorithm in dimension n � 1. For this, one needs to find a hyperplane contain-
ing K . If we do the ellipsoid algorithm in dimension n, we get smaller and smaller
ellipsoids that may never have their center in K . After some steps, we do find a
hyperplane that approximates K , see Fig. 1.10. All vertices of K are close to this
hyperplane given by the equality

˛1x1 C � � � C ˛nxn D ˛0:

We want to round this to a hyperplane containing all the vertices of K

p1

q
x1 C � � � C pn

q
xn D p0

q
:

Fig. 1.10 Some of the
(nonconsecutive) ellipsoids
found in the ellipsoid method.
The hyperplane returned by
the ellipsoid method
approximates K

K
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To make this rounding work, we need the following condition

ˇ̌
ˇ̌˛i � pi

q

ˇ̌
ˇ̌ � "

q

for some " that can be computed from the problem. This is classic simultane-
ous Diophantine approximation. The question for Lovász was how to do this
algorithmically.

I started to play around with 1;
p
2, and

p
3 on my TI59 calculator. It was very easy to

come up with ideas, it was clear that you wanted to subtract integer multiples of these num-
bers from each other. Whatever rule I chose, things started nicely, but after some point the
process slowed down. I played around for a fairly long time until I found a way that did not
slow down and seemed to make steady progress. This was of course just experimentation.

I recalled that Diophantine approximation is discussed in the context of lattices and I
realized that the real issue is trying to find short vectors in lattices. I remembered that when
I was in Bonn six months earlier, Hendrik Lenstra gave a lecture about integer programming
in which he also talked about finding short vectors in lattices. So this was really the way
to go.

It took Lovász quite some time to generalize his rule for 1;
p
2, and

p
3 to

higher dimensions.“It seemed that the less greedy you were, the better it worked.
So I swapped only neighboring vectors and swapped only when you really made
progress by a constant factor. And then I sent my letter to Hendrik.”

Hendrik Lenstra emphasized in his talk why these rules make LLL fast:

Consider the sublattices Lj spanned by the first j basisvectors, Lj D Zb1 C � � � C Zbj .
It is really through these sublattices that you see the progress that you are making in your
algorithm. In the LLL-algorithm, you only swap neighboring vectors bi and biC1, so only
Li changes and all Lj with j ¤ i remain the same. Throughout the entire process, none of
the determinants d.Lj / ever gets larger.

In my original algorithm I was too greedy. If there was at some stage a very short vector
at the end of the basis, I would immediately swap it up front. This makes L1 better, but all
the intermediate Lj with 1 < j < n may become worse and you lose all control.

Polynomial Factorization

Arjen Lenstra’s connection with the LLL-algorithm began while he still was a stu-
dent. He opened his talk in Caen with: “My perspective is more or less that of a
surprised bystander while all this violence was going on around me.” It started with
a report from Hendrik Lenstra on Euclidean number fields of large degree [6]. This
report from 1976 contained a large number of tables of irreducible monic polyno-
mials over the integers. The algebraic number fields generated by the roots of these
polynomials were not isomorphic. The question was if other polynomials generated
the same number fields as the polynomials in the table. In those days, to answer such
a question, you had to factor polynomials over number fields. For the course Pro-
gramming Methods, Arjen Lenstra and fellow students Henk Bos and Rudolf Mak
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ı ıC 1; 1; 1 5

0

�
1; 0; 0; 0; 1; �3; 3; �2; 1
1 �2 2 1 �4 3 1 �2 1

5

" 1; "; 1 5

(1.2)

Fig. 1.11 In the tables of Arjen Lenstra’s copy of the report on Euclidean number fields [6] there
were polynomials pencilled in. The question was if these pencilled-in polynomials generated the
same number fields as the ones above them

set out to study and implement methods to factor univariate polynomials over alge-
braic number fields. This was usually done using the Berlekamp-Hensel approach
suggested by Zassenhaus [10].

Polynomial Factorization for f 2 QŒX� with Berlekamp-Hensel.
We may assume that f is square-free, as it is easy to remove repeated factors
of f .

1. Take a prime p such that f modulo p remains square-free and use
Berlekamp’s algorithm to factor f modulo p.

2. Apply the Hensel-lemma to lift these factors to factors modulo pk for a
sufficiently large k.

3. Try products of the modular factors to find the “true” factorization.

The big problem with this Berlekamp-Hensel approach was that the last step
could be exponential in the degree of f , as there are irreducible polynomials that
split into many factors modulo any prime. Arjen Lenstra: “No one tried to do any-
thing about this exponential step, all people tried to do was convince themselves that
it was indeed very, very much exponential. They were busy generating polynomials
that were extremely bad cases for this Berlekamp-Hensel approach.”

Generalizing this approach from the rationals to algebraic number fields was
according to Arjen Lenstra: “sticking your head in the sand and hoping that it would
work.”

Polynomial Factorization for f 2Q.˛/ŒX� with the Zassenhaus Approach
as Described in [9].
Let g be a monic irreducible polynomial of degree d over the integers, let
g.˛/ D 0, and let f be a square-free polynomial to be factored over Q.˛/.

1. If there is a prime p such that g modulo p is irreducible and f modulo p is
square-free
(a) Factor f over the finite field .Z=pZ/ŒX�=.g.X//; the resulting fac-

torization modulo g and p corresponds to the factorization of f over
Q.˛/.

(b) Follow the usual Berlekamp-Hensel method.
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2. If there is no prime p such that g modulo p is irreducible, then take a
prime p with gcd.p;�.f // D 1 and gcd.p;�.g// D 1.

(a) Factor f over several finite fields, one for each irreducible factor of g
modulo p.

(b) Lift the factors of g modulo p to factors of g modulo pk for a sufficiently
large k.

(c) Working modulo pk , lift the factors of f from step 2a to factors modulo the
lifted factors of g from step 2b.

(d) Use Chinese remaindering to combine the resulting modular factorizations
of f to factors of f modulo a high power of p.

(e) Try combinations of these factors.

Notice that this algorithm is exponential in the product of the degrees of g and f .
The students got around halfway implementing this approach in their project. Peter
van Emde Boas was one of the supervisors of this project, and when he later became
Arjen’s master thesis advisor, he decided that completing this project would be the
perfect task for Arjen.

There were many problems. One of them was that they had to use the fairly
newly developed programming language ALGOL68. Lenstra: “It was developed in

Fig. 1.12 Arjen Lenstra defending his master thesis on 10th December 1980 – 1 year and 2 days
before Lóvász posted the letter with his basis reduction algorithm. The committee was formed by
Th. J. Dekker, Peter van Emde Boas, and Hendrik Lenstra (behind the desk). Also visible is Pia
Pfluger from the Numerical Mathematics group
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Amsterdam and if we did not use it, no-one would use it. It worked great, but it had
a rather impossible two-level grammar and a seven-pass compiler. The ALGOL68
punch-card jobs had very long turnaround times, rebooting took hours, and we were
only allowed limited time on the computers.” Another obvious problem was that the
algorithms could be exponential, but in practice they often worked. Arjen Lenstra:
“I managed to answer the isomorphism questions and thus to complete my master
thesis, but it was a rather unsatisfactory method.

When I discussed this with Hendrik, he asked why we used this silly Chinese
remaindering and why we combined all those primes in the number field. He sug-
gested that it might be possible to replace the Chinese remaindering by a lattice
step.” To explain how this lattice step works we assume without loss of generality
that the minimum polynomial g has a monic linear factor hk modulo some power
pk of p. Furthermore, let c in ZŒ˛� be a coefficient of a factor of f over Q.˛/.
There is an integer ` and a polynomial t of degree at most d � 1 in ZŒ˛� such that

c D ck C ` � pk C t � hk; (1.3)

where ck is an integer value that will appear as one of the coefficients of the
(combinations of) factors of f modulo hk and pk .

From (1.3) it follows that we should consider the d -dimensional lattice spanned
by the vectors

.pk; 0; 0; : : : 0; 0/;

.hk0; 1; 0; : : : 0; 0/;

.0; hk0; 1; 0; : : : 0/;
:::

.0; 0; : : : 0; hk0; 1/;

where hkD ˛C hk0. One may expect that for large enough k, the coefficient c will
be the unique shortest vector that is congruent to ck modulo the lattice as gener-
ated above. If we reduce the lattice basis, we find a fundamental domain and when
k tends to infinity this domain should spread in all directions to make sure c is
contained in it.

Arjen: “I used the lattice basis reduction from Hendrik’s paper on integer linear
programming [5]. This reduction algorithm did not run in polynomial time, but who
cares about such petty issues when dealing with an algorithm that runs in exponen-
tial time anyhow? So, the lattice approach was implemented, and it turned out to
work beautifully.”

The next goal was to prove that the lattice approach always works as expected,
including an estimate what value of k one should use to be able to derive valid
irreducibility results. Arjen Lenstra:

I started to think about this and I was not very good at these things. My lack of understanding
of the situation reached its zenith when, in my confusion, I added an extra vector and used
a dC1–dimensional lattice instead of the normal d–dimensional one. I was trying to prove
that every vector in my lattice was very long, but this d C 1–dimensional lattice always
contained a short vector: g itself. This observation baffled me for a while, but then quickly
led to the desired result: apparently the property I needed was coprimality with g over the
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Fig. 1.13 The basis reduction algorithm as published in the LLL-article. The figure containing
pseudocode for the algorithm was added after a suggestion by the referee

integers, yet a factor hk in common with g modulo pk . This property I could then indeed
use to derive the lower bound proof – a very inelegant proof that is now happily lost in
oblivion. In any case, I now knew for sure that we could factor polynomials over algebraic
number fields faster than before. How much faster precisely no one seemed to care, as the
overall algorithm was still exponential in the degree of f .

The initially disturbing observation had an interesting side-result, namely that if we do
the entire method for a polynomial g that is not irreducible and use the d -dimensional
lattice, we find a factor of g. This implied that if one lifts far enough, the combinatorial
search in Berlekamp-Hensel can be avoided at the cost of shortest vector computations in
various lattices. Furthermore, by pushing k even further, the shortest vector computations
can be replaced by lattice basis reductions. Cute, but useless, as neither the shortest vector
nor lattice basis reduction methods ran in polynomial time.

When Lovász sent his letter that lattice basis reduction could be done in poly-
nomial time, Hendrik Lenstra started to look for an error in the proof that the
factorization algorithm ran in polynomial time. A few days after he mailed his
postcard to Lovász (see Fig. 1.7), Hendrik Lenstra sent a much longer letter, start-
ing: “Ever since I got your letter I have been in a state of surprise, since it seems
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that your basis reduction algorithm implies that there is a polynomial algorithm for
factorization in QŒX�. For several days I have been looking for an error, and not
having found one I am writing for your opinion.” At that time, factoring polynomi-
als over the rationals was so firmly established as something that could not be done
in polynomial time, that something else must be spoiling their factorization algo-
rithm. For a moment Hendrik Lenstra believed he found the wrongdoer in the prime
p you needed to maintain square-freeness. However, he proved that this p can be
bounded in such a way that Berlekamp runs in polynomial time, deterministically.
And so, as Arjen Lenstra put it: “We were suddenly looking at this weird result that
polynomials could be factored in polynomial time.”

The LLL-Article

On 12th May 1982, after five months of polishing the algorithm, refining the analysis
and many letters to-and-fro, Hendrik Lenstra wrote to Lovász: “Perhaps we should
start thinking about where to send our paper. I am personally inclined to send it to
a pure mathematics journal rather than a computer science journal. This maximizes
the probability of getting sensible comments from the referee. [. . . ] What do you
think of Mathematische Annalen?” Lenstra admitted in Caen that there was another
reason he wanted to send the article to a pure mathematics journal: “In those days
pure mathematicians were not used to doing complexity analyses of algorithms, it
was considered the domain of computer scientists. I felt this was a beautiful area
that – in this case – gave rise to fantastical problems in number theory and that
mathematicians should be more aware of this field. This seemed a good opportunity,
as we had a pretty amazing result that nobody had expected.”

The unexpected result of polynomial factorization became the title of the paper.
Peter van Emde Boas asked the audience in Caen what they thought of when
they heard LLL-algorithm: was it “basis reduction” or “factoring polynomials”? All
hands rose for “basis reduction.” So in hindsight maybe the title should have been
something like “A new basis reduction algorithm.”

On 2nd July 1982, Hendrik Lenstra submitted the article to Mathematische
Annalen. The article went rather swiftly through the refereeing process and appeared
later that year [8]. The algorithm has made a great impact. In September 2007, the
article has 486 citations on ISI Web of Knowledge. As you can see in the rest of this
book, research on the LLL-algorithm and its applications are very much alive.
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Chapter 2
Hermite’s Constant and Lattice Algorithms

Phong Q. Nguyen

Abstract We introduce lattices and survey the main provable algorithms for solving
the shortest vector problem, either exactly or approximately. In doing so, we empha-
size a surprising connection between lattice algorithms and the historical problem
of bounding a well-known constant introduced by Hermite in 1850, which is related
to sphere packings. For instance, we present the Lenstra–Lenstra–Lovász algorithm
(LLL) as an (efficient) algorithmic version of Hermite’s inequality on Hermite’s
constant. Similarly, we present blockwise generalizations of LLL as (more or less
tight) algorithmic versions of Mordell’s inequality.

Introduction

Informally, a lattice is an infinite arrangement of points in R
n spaced with sufficient

regularity that one can shift any point onto any other point by some symmetry of the
arrangement. The simplest example of a lattice is the hypercubic lattice Z

n formed
by all points with integral coordinates. Geometry of numbers [1–4] is the branch
of number theory dealing with lattices (and especially their connection with convex
sets), and its origins go back to two historical problems:

1. Higher-dimensional generalizations of Euclid’s algorithm. The elegance and sim-
plicity of Euclid’s greatest common divisor algorithm motivate the search for
generalizations enjoying similar properties. By trying to generalize previous work
of Fermat and Euler, Lagrange [5] studied numbers that can be represented by
quadratic forms at the end of the eighteenth century: given a triplet .a; b; c/ 2 Z

3,
identify which integers are of the form ax2CbxyCcy2, where .x; y/ 2 Z

2. Fer-
mat had for instance characterized numbers that are sums of two squares: x2Cy2,
where .x; y/ 2 Z

2. To answer such questions, Lagrange invented a generaliza-
tion [5, pages 698–700] of Euclid’s algorithm to binary quadratic forms. This
algorithm is often attributed (incorrectly) to Gauss [6], and was generalized in
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the nineteenth century by Hermite [7] to positive definite quadratic forms of arbi-
trary dimension. Let q.x1; : : : ; xn/ D P

1�i;j�n qi;jxixj be a positive definite
quadratic form over R

n, and denote by �.q/ D det1�i;j�n qi;j 2 R
C its discrim-

inant. Hermite [7] used his algorithm to prove that there exist x1; : : : ; xn 2 Z such
that

0 < q.x1; : : : ; xn/ � .4=3/.n�1/=2�.q/1=n: (2.1)

If we denote by kqk the minimum of q.x1; : : : ; xn/ over Z
n nf0g, (2.1) shows that

kqk=�.q/1=n can be upper bounded independently of q. This proves the existence
of Hermite’s constant �n defined as the supremum of this ratio over all positive
definite quadratic forms:

�n D max
q positive definite over Rn

kqk
�.q/1=n

; (2.2)

because it turns out that the supremum is actually reached. The inequality (2.1) is
equivalent to Hermite’s inequality on Hermite’s constant:

�n � .4=3/.n�1/=2; n � 1; (2.3)

which can be rewritten as

�n � �n�1
2 ; n � 1; (2.4)

because Lagrange [5] showed that �2 D
p
4=3. Though Hermite’s constant

was historically defined in terms of positive definite quadratic forms, it can be
defined equivalently using lattices, due to the classical connection between lat-
tices and positive definite quadratic forms, which we will recall precisely in
section “Quadratic Forms.”

2. Sphere packings. This famous problem [8] asks what fraction of R
n can be cove-

red by equal balls that do not intersect except along their boundaries. The prob-
lem is open as soon as n � 4 (see Fig. 2.1 for the densest packing for n D 2),
which suggests to study simpler problems.

Fig. 2.1 The densest packing
in dimension two: the
hexagonal lattice packing
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Of particular interest is the lattice packing problem, which asks what is the
densest packing derived from lattices (such as the packing of Fig. 2.1): any full-
rank lattice L induces a packing of R

n whose centers are the lattice points,
and the diameter of the balls is the minimal distance �1.L/ between two lat-
tice points. The density ı.L/ of the lattice packing is equal to the ratio between
the volume of the n-dimensional ball of diameter �1.L/ and the volume of any
fundamental domain of L (i.e., the volume of the compact set R

n=L). There is
the following simple relationship between Hermite’s constant �n and the supre-
mum ın D maxL ı.L/ over all full-rank lattices L of R

n, due to the alternative
lattice-based definition of �n previously mentioned:

�n D 4
�
ın

vn

�2=n

; (2.5)

where vn denotes the volume of the n-dimensional unit ball. Thus, the problem of
finding the maximal density of lattice packings is equivalent to finding the exact
value of Hermite’s constant �n, which is currently open for n � 9, n ¤ 24.

Lattice algorithms deal with integral lattices, which are usually represented by
a matrix with integer coefficients. This means that the lattice L is formed by all
integral linear combinations of the row vectors of a given integral matrix B:

L D fa1b1 C � � � C anbn; ai 2 Zg;

where b1;b2; : : : ;bn 2 Z
m denote the row vectors of B . The most famous lattice

problem is the so-called shortest vector problem (SVP), which asks to find a short-
est nonzero vector in L, that is, a nonzero vector of the form a1b1 C � � � C anbn

(where ai 2 Z) and of minimal Euclidean norm �1.L/. SVP can be viewed as
a geometric generalization of gcd computations: Euclid’s algorithm actually com-
putes the smallest (in absolute value) nonzero linear combination of two integers, as
gcd.a; b/Z D aZC bZ, which means that we are replacing the integers a and b by
an arbitrary number of vectors b1; : : : ;bn with integer coordinates.

When the vectors bi ’s span a low-dimensional space, one can solve SVP as
efficiently as Euclid’s algorithm. But when the dimension increases, NP-hardness
looms (see [9]), which gives rise to two types of algorithms:

(a) Exact algorithms. These algorithms provably find a shortest vector, but they are
expensive, with a running time at least exponential in the dimension. Intuitively,
these algorithms perform an exhaustive search of all extremely short lattice vec-
tors, whose number is exponential in the dimension (in the worst case): in fact,
there are lattices for which the number of shortest lattice vectors is already expo-
nential. The best deterministic algorithm is Kannan’s enumeration [10,11], with
super-exponential worst-case complexity, namely nn=.2e/Co.n/ polynomial-time
operations (see [12, 13]), where n denotes the lattice dimension. The best ran-
domized algorithm is the sieve of Ajtai, Kumar, and Sivakumar (AKS) [14,15],
with exponential worst-case complexity of 2O.n/ polynomial-time operations
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(whereO./ can be taken to be 5.9 [15]): this algorithm also requires exponential
space, whereas enumeration requires only negligible space.

(b) Approximation algorithms. The Lenstra–Lenstra–Lovász algorithm (LLL) and
other efficient lattice reduction algorithms known provide only an approxima-
tion of SVP, in the sense that the norm of the nonzero output vector can be upper
bounded using some function of the dimension, either absolutely or relatively to
the minimal norm �1.L/. We will see that all polynomial-time approximation
algorithms known [16–19] can be viewed as (more or less tight) algorithmic ver-
sions of upper bounds on Hermite’s constant. For instance, LLL can be viewed
as an algorithmic version of Hermite’s inequality (2.3): it can be used to find
efficiently x1; : : : ; xn 2 Z satisfying essentially (2.1), which corresponds to
short lattice vectors within Hermite’s inequality. Similarly, the recent block-
wise algorithm of Gama and Nguyen [19] can be viewed as an algorithmic
version of Mordell’s inequality, which itself is a generalization of Hermite’s
inequality (2.3).

In high dimension (say, higher than 150), only approximation algorithms are prac-
tical, but both categories are in fact complementary: all exact algorithms known
first apply an approximation algorithm (typically at least LLL) as a preprocessing,
while all approximation algorithms known call many times an exact algorithm in
low dimension as a subroutine.

In this article, we will survey the main provable algorithms for solving the short-
est vector problem, either exactly or approximately. This is related to Hermite’s
constant as follows:

� The analysis of exact algorithms involves counting the number of lattice points
inside balls, for which good estimates are related to Hermite’s constant.

� All approximation algorithms known are rather designed to find short nonzero
lattice vectors in an absolute sense: the fact that the norm of the output is also
relatively close to the first minimum can be viewed as a by-product. This means
that any proof of correctness of the algorithm will have to include a proof that
the output lattice vector is short in an absolute sense, which gives rise to an
upper bound on Hermite’s constant. In fact, it turns out that all approximation
algorithms known are related (in a more or less tight manner) to a classical upper
bound on Hermite’s constant.

The rest of the article is organized as follows. Section “Background and Lattices”
introduces lattices and their mathematical background. Section “Lattice Reduc-
tion” introduces lattice reduction and the main computational problems. Subsequent
sections present the main lattice algorithms. Section “Two-Dimensional Case”
deals with the two-dimensional case: Lagrange’s algorithm. Section “Hermite’s
Inequality and the Lenstra–Lenstra–Lovász Algorithm” deals with the first efficient
approximation algorithm in high dimension: the LLL algorithm. Section “Solving
Exact SVP” deals with exact algorithms for SVP, which all use the LLL algo-
rithm. Finally, section “Mordell’s Inequality and Blockwise Algorithms” deals with
polynomial-time generalizations of LLL that have a better approximation factor.
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Background on Lattices

Notation

We consider R
n with its usual topology of an Euclidean vector space. We use bold

letters to denote vectors, usually in row notation. The Euclidean inner product of
two vectors x D .xi /

n
iD1 and y D .yi /

n
iD1 is denoted by

hx; yi D
nX

iD1

xiyi :

The corresponding Euclidean norm is denoted by

kxk D
q
x2

1 C � � � C x2
n:

Denote by B.x; r/ the open ball of radius r centered at x:

B.x; r/ D fy 2 R
n W kx � yk < rg:

Definition 1. A subsetD of R
n is called discrete when it has no limit point, that is,

for all x 2 D, there exists � > 0 such that B.x; �/ \D D fxg.
As an example, Z

n is discrete (because � D 1=2 clearly works), while Q
n and R

n

are not. The set f1=n W n 2 N
�g is discrete, but the set f0g [ f1=n W n 2 N

�g is not.
Any subset of a discrete set is discrete.

For any ring R, we denote by Mn;m.R/ (resp. Mn.R/) the set of n � m (resp.
n � n) matrices with coefficients in R. GLn.R/ denotes the group of invertible
matrices in the ring Mn.R/. For any subset S of R

n, we define the linear span of S ,
denoted by span.S/, as the minimal vector subspace (of R

n) containing S .

Definition 2. Let b1; : : : ;bm be in R
n. The vectors bi ’s are said to be linearly

dependent if there exist x1; : : : ; xm 2 R, which are not all zero and such that

mX

iD1

xi bi D 0:

Otherwise, they are said to be linearly independent.

Definition 3. The Gram determinant of b1; : : : ;bm 2 R
n, denoted by �

.b1; : : : ;bm/, is the determinant of the m �m Gram matrix
�hbi ;bj i

�
1�i;j�m

.

We list basic properties of the Gram determinant:

� The Gram determinant �.b1; : : : ;bm/ is always � 0. It is equal to zero if and
only if the bi ’s are linearly dependent.
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� The Gram determinant is invariant by any permutation of the m vectors, and by
any integral linear transformation of determinant ˙1, such as adding to one of
the vectors a linear combination of the others.

� The Gram determinant has a very important geometric interpretation: when the
bi ’s are linearly independent,

p
�.b1; : : : ;bm/ is the m-dimensional volume

vol.b1; : : : ;bm/ of the parallelepiped fPm
iD1 xi bi W 0 � xi � 1; 1 � i � mg

spanned by the bi ’s.

Denote by vn the volume of the n-dimensional unit ball B.0; 1/. Then

vn D 	n=2


 .1C n=2/ �
�
2e	

n

�n=2
1p
	n

; (2.6)

where 
 .x/ D R1
0
tx�1e�t dt .

Lattices

Definition 4. A lattice of R
n is a discrete subgroup of .Rn;C/; that is any subgroup

of .Rn;C/ which has the discreteness property.

Notice that an additive group is discrete if and only if 0 is not a limit point,
which implies that a lattice is any nonempty set L 	 R

n stable by subtraction (in
other words: for all x and y inL, x�y belongs toL), and such thatL\B.0; �/ D f0g
for some � > 0.

With this definition, the first examples of lattices that come to mind are the zero
lattice f0g and the lattice of integers Z

n. Our definition implies that any subgroup of
a lattice is a lattice, and therefore, any subgroup of .Zn;C/ is a lattice. Such lattices
are called integral lattices. As an example, consider two integers a and b 2 Z: the
set aZC bZ of all integral linear combinations of a and b is a subgroup of Z, and
therefore a lattice; it is actually the set gcd.a; b/Z of all multiples of the gcd of a
and b. For another example, consider n integers a1; : : : ; an, together with a modulus
M . Then the set of all .x1; : : : ; xn/ 2 Z

n such that
Pn

iD1 aixi 
 0 .mod M/ is a
lattice in Z

n because it is clearly a subgroup of Z
n.

We give a few basic properties of lattices:

Lemma 1. Let L be a lattice in R
n.

1. There exists � > 0 such that for all x 2 L:

L\ B.x; �/ D fxg:

2. L is closed.
3. For all bounded subsets S of R

n, L \ S is finite.
4. L is countable.
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Notice that a set that satisfies either property 1 or 3 is necessarily discrete, but an
arbitrary discrete subset of R

n does not necessarily satisfy property 1 nor 3. It is the
group structure of lattices that allows such additional properties.

Bases

Let b1; : : : ;bm be arbitrary vectors in R
n. Denote by L.b1; : : : ;bm/ the set of all

integral linear combinations of the bi ’s:

L.b1; : : : ;bm/ D
(

mX

iD1

ni bi W n1; : : : ; nm 2 Z

)
: (2.7)

This set is a subgroup of R
n, but it is not necessarily discrete. For instance, one

can show that L..1/; .
p
2// is not discrete because

p
2 62 Q. However, the following

elementary result gives sufficient conditions for this set to be discrete:

Theorem 1. The subgroup L.b1; : : : ;bm/ is a lattice in either of the following two
cases:

1. b1; : : : ;bm 2 Q
n.

2. b1; : : : ;bm 2 R
n are linearly independent.

Proof. Case 1 is trivial. Now consider Case 2, and let L D L.b1; : : : ;bm/. It
suffices to show that 0 is not a limit point of L. Consider the parallelepiped P
defined by

P D
(

mX

iD1

xi bi W jxi j < 1
)
:

As the bi ’s are linearly independent, L \ P D f0g. Besides, there exists � > 0

such that B.0; �/ 	 P , which shows that 0 cannot be a limit point of L. ut
Definition 5. WhenL D L.b1; : : : ;bm/ is a lattice, we say thatL is spanned by the
bi ’s, and that the bi ’s are generators. When the bi ’s are further linearly independent,
we say that .b1; : : : ;bm/ is a basis of the lattice L, in which case each lattice vector
decomposes itself uniquely as an integral linear combination of the bi ’s:

8v 2 L; 9Šv1; : : : ; vm 2 Z s.t. v D
mX

iD1

vi bi :

Bases and sets of generators are useful to represent lattices and to perform com-
putations. One will typically represent a lattice on a computer by some lattice basis,
which can itself be represented by a matrix with real coefficients. In practice, one
will usually restrict to integral lattices, so that the underlying matrices are integral
matrices.
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Definition 6. We define the dimension or rank of a lattice L in R
n, denoted by

dim.L/, as the dimension d of its linear span denoted by span.L/. The lattice is
said to be full-rank when d D n: in the remaining, we usually denote the dimension
by n when the lattice is full-rank, and by d otherwise.

The dimension is the maximal number of linearly independent lattice vectors. Any
lattice basis of L must have exactly d elements. There always exist d linearly inde-
pendent lattice vectors; however, such vectors do not necessarily form a basis, as
opposed to the case of vector spaces. But the following theorem shows that one can
always derive a lattice basis from such vectors:

Theorem 2. Let L be a d -dimensional lattice of R
n. Let c1; : : : ; cd 2 L be linearly

independent vectors. There exists a lower triangular matrix .ui;j / 2Md .R/ such
that the vectors b1; : : : ;bd defined as bi D Pi

jD1 ui;j cj are linearly independent
and such that L D L.b1; : : : ;bd /.

This proves the unconditional existence of lattice bases:

Corollary 1. Any lattice of R
n has at least one basis.

Thus, even if sets of the form L.b1; : : : ;bm/ may or may not be lattices, all
lattices can be written as L.b1; : : : ;bm/ for some linearly independent bi ’s. Corol-
lary 1 together with Theorem 1 give an alternative definition of a lattice: a nonempty
subset L of R

n is a lattice if only if there exist linearly independent vectors
b1;b2; : : : ;bd in R

n such that

L D L.b1; : : : ;bd /:

This characterization suggests that lattices are discrete analogues of vector spaces.
The following elementary result shows the relationship between two bases:

Theorem 3. Let .b1; : : : ;bd / be a basis of a lattice L in R
n. Let c1; : : : ; cd be

vectors of L. Then there exists a unique d � d integral matrix U D .ui;j /1�i;j�d 2
Md .Z/ such that ci DPd

jD1 ui;j bj for all 1 � i � d . And .c1; : : : ; cd / is a basis
of L if and only if the matrix U has determinant˙1.

As a result, as soon as the lattice dimension is � 2, there are infinitely many lattice
bases.

Quadratic Forms

Historically, lattices were first studied in the language of positive definite quadratic
forms. Let .b1; : : : ;bd / be a basis of a lattice L in R

n. Then the function

q.x1; : : : ; xd / D k
dX

iD1

xi bik2; (2.8)

defines a positive definite quadratic form over R
d .
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Reciprocally, let q be a positive definite quadratic form over R
d . Then Cholesky

factorization shows the existence of linearly independent vectors b1; : : : ;bd of R
d

such that (2.8) holds for all .x1; : : : ; xd / 2 R
d .

Volume and the Gaussian Heuristic

Let .b1; : : : ;bd / and .c1; : : : ; cd / be two bases of a lattice L in R
n. By Theorem 3,

there exists a d�d integral matrixU D .ui;j /1�i;j�d 2Md .Z/ of determinant˙1
such that ci DPd

jD1 ui;j bj for all 1 � i � d . It follows that the Gram determinant
of those two bases are equal:

�.b1; : : : ;bd / D �.c1; : : : ; cd / > 0;

which gives rise to the following definition:

Definition 7. The volume (or determinant) of the lattice L is defined as

vol.L/ D �.b1; : : : ;bd /
1=2;

which is independent of the choice of the basis .b1; : : : ;bd / of the lattice L.

We prefer the name volume to the name determinant because of its geometric inter-
pretation: it corresponds to the d -dimensional volume of the parallelepiped spanned
by any basis. In the mathematical literature, the lattice volume we have just defined
is sometimes alternatively called co-volume, because it is also the volume of the
torus span.L/=L. For full-rank lattices, the volume has the following elementary
properties:

Lemma 2. Let L be a full-rank lattice in R
n. Then:

1. For any basis .b1; : : : ;bn/ of L, vol.L/ D j det.b1; : : : ;bn/j.
2. For any r > 0, denote by sL.r/ the number of x 2 L such that kxk � r . Then

lim
r!1

sL.r/

rnvn

D 1=vol.L/:

The second statement of Lemma 2 says that, as the radius r grows to infinity, the
number of lattice vectors inside the ball (centered at zero) of radius r is asymptoti-
cally equivalent to the ratio between the volume rnvn of the n-dimensional ball of
radius r and the volume of the lattice. This suggests the following heuristic, known
as the Gaussian Heuristic:

Definition 8. Let L be a full-rank lattice in R
n, and C be a measurable subset of

R
n. The Gaussian Heuristic “predicts” that the number of points ofL\C is roughly

vol.C /=vol.L/.
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We stress that this is only a heuristic: there are cases where the heuristic is proved
to hold, but there are also cases where the heuristic is proved to be incorrect.

Given a lattice L, how does one compute the volume of L? If an explicit basis of
L is known, this amounts to computing a determinant: for instance, the volume of
the hypercubic lattice Z

n is clearly equal to one. But if no explicit basis is known,
one can sometimes use full-rank sublattices, as we will see in the next subsection.

Sublattices

Definition 9. Let L be a lattice in R
n. A sublattice of L is a lattice M included in

L: clearly, the sublattices of L are the subgroups of L. If the rank of M is equal to
the rank of L, we say that M is a full-rank sublattice of L.

Lemma 3. Let L be a lattice in R
n. A sublattice M of L is full-rank if and only if

the group index ŒL WM� is finite, in which case we have

vol.M/ D vol.L/ � ŒL WM�:

As an illustration, consider n integers a1; : : : ; an, together with a modulus M .
We have seen in section “Lattices” that the set L of all .x1; : : : ; xn/ 2 Z

n such thatPn
iD1 aixi 
 0 .mod M/ is a lattice in Z

n because it is a subgroup of Z
n. But

there seems to be no trivial basis of L. However, note that L 	 Z
n and that the

dimension of L is n because L contains all the vectors of the canonical basis of R
n

multiplied by M . It follows that

vol.L/ D ŒZn W L�:

Furthermore, the definition of L clearly implies that

ŒZn W L� D M= gcd.M; a1; a2; : : : ; an/:

Hence,

vol.L/ D M

gcd.M; a1; a2; : : : ; an/
:

Definition 10. A sublatticeM of L is said to be primitive if there exists a subspace
E of R

n such that M D L \E.

It follows from Theorem 2 that:

Lemma 4. A sublattice M of L is primitive if and only if every basis of M can
be completed to a basis of L, that is, for any basis .b1; : : : ;br / of M , there exist
brC1; : : : ;bd 2 L such that .b1; : : : ;bd / is a basis of L.
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Definition 11. Let b1; : : : ;bk 2 L. They are primitive vectors of L if and only if
L.b1; : : : ;bk/ is a primitive sublattice of L.

In particular, any nonzero shortest vector of L is primitive.

Projected Lattices

LetL be a lattice in R
n. The (orthogonal) projection of L over a subspace of R

n is a
subgroup of R

n, but it is not necessarily discrete. However, with suitable choices of
the subspace, one can ensure discreteness, in which case the projection is a lattice:

Lemma 5. Let L be a d -rank lattice in R
n, andM be a r-rank primitive sublattice

of L: 1 � r � d . Let 	M denote the orthogonal projection over the orthogonal
supplement of the linear span of M . Then 	M .L/ is a lattice of R

n, of rank d � r ,
and of volume vol.L/=vol.M/.

Proof. Let .b1; : : : ;br/ be a basis ofM . AsM is primitive sublattice ofL, this basis
can be extended to a basis ofL: there exist brC1; : : : ;bd 2 L such that .b1; : : : ;bd /

is a basis of L. Clearly, the set 	M .L/ is equal to L.	M .brC1/; : : : ; 	M .bd //.
As 	M .brC1/; : : : ; 	M .brC1/ are linearly independent, the subgroupL.	M .brC1/;

: : : ; 	M .bd // is a lattice, and so is 	M .L/. ut
The following corollary will be used many times in lattice reduction:

Corollary 2. Let .b1; : : : ;bd / be a basis of a lattice L in R
n. For 1 � i � d , let 	i

denote the orthogonal projection over the orthogonal supplement of the linear span
of b1; : : : ;bi�1; in particular, 	1 is the identity. Then 	i .L/ is a lattice of R

n, of
rank d � i C 1, and of volume vol.L/=vol.L.b1; : : : ;bi�1//.

We will often use the notation 	i .
It is classical to prove statements by induction on the lattice rank using projected

lattices, such as in the classical proof of Hermite’s inequality: see Theorem 8 of
section “Hermite’s Inequality and the Lenstra–Lenstra–Lovász Algorithm.” More
precisely, for any basis .b1; : : : ;bd / of L, we have dim.	2.L// D dim.L/� 1, and
any nonzero vector v 2 	2.L/ can be lifted into a nonzero vector u 2 L such that
v D 	2.u/ and kuk2 � kvk2 C kb1k2=4. This means that if one can find a short
vector in 	2.L/, then one can also find a reasonably short vector in L.

Duality

Let L be a lattice in R
n. The dual lattice of L is defined as

L	 D fy 2 span.L/ such thathx; yi 2 Z for all x 2 Lg:
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Lemma 6. If L is a d -rank lattice of R
n, then L	 is a d -rank lattice of R

n such
that

vol.L/ � vol.L	/ D 1:
Duality also allows to consider sublattices of lower dimension, which can be used
in proofs by induction, such as the classical proof of Mordell’s inequality (see sec-
tion “Classical Proofs of Mordell’s Inequality”). For instance, ifL is a d -rank lattice
and v is a nonzero vector of L	, then L\H is a .d �1/-rank sublattice ofL, where
H D v? denotes the hyperplane orthogonal to v.

Gram–Schmidt and Triangularization

Definition 12. Let b1; : : : ;bd be linearly independent vectors in R
n. Their Gram–

Schmidt orthogonalization (GSO) is the orthogonal family .b?
1 ; : : : ;b

?
d
/ defined as

follows: b?
1 D b1 and more generally b?

i D 	i .bi / for 1 � i � d , where 	i denotes
(as in Corollary 2) the orthogonal projection over the orthogonal supplement of the
linear span of b1; : : : ;bi�1.

We have the recursive formula

b?
i D bi �

i�1X

jD1

�i;j b?
j ; where �i;j D

hbi ;b?
j i			b?

j

			
2

for all 1 � j < i � d (2.9)

The main reason why the Gram–Schmidt orthogonalization is widely used in lat-
tice reduction is because it allows to triangularize the basis. More precisely, the fam-
ily .b?

1=kb?
1k; : : : ;b?

d
=kb?

d
k/ is an orthonormal basis of R

n. And if we express the
vectors b1; : : : ;bd with respect to the orthonormal basis .b?

1=kb?
1k; : : : ;b?

d
=kb?

d
k/

(rather than the canonical basis), we obtain the following lower-triangular matrix,
with diagonal coefficients kb?

1k; : : : ; kb?
d
k:

0
BBBBBBB@

kb?
1k 0 : : : 0

�2;1kb?
1k kb?

2k
: : :

: : :
: : :

:::
:::

: : :
: : : 0

�d;1kb?
1k : : : �d;d�1kb?

d�1
k kb?

d
k

1
CCCCCCCA

(2.10)

This can be summarized by the matrix equality B D �B?, where B is the
d � n matrix whose rows are b1; : : : ;bd , B? is the d � n matrix whose rows are
b?

1 ; : : : ;b
?
d

, and � is the d � d lower-triangular matrix whose diagonal coefficients
are all equal to 1, and whose off-diagonal coefficients are the �i;j ’s. It follows that
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the lattice L spanned by the bi ’s satisfies

vol.L/ D
dY

iD1

		b?
i

		 (2.11)

Notice that the GSO family depends on the order of the vectors. If bi 2 Q
n,

then b?
i 2 Q

n and �i;j 2 Q. The GSO of .b1; : : : ;bd / is .�i;j /1�j <i�d together
with .kb?

i k/1�i�d . Geometrically, kb?
i k is the distance of bi to spanb1; : : : ;bi�1.

The basis triangularization could have been obtained with other factorizations.
For instance, if we had used Iwasa’s decomposition of the row matrix B corre-
sponding to .b1; : : : ;bd /, we would have obtained B D UDO , where U is a
lower-triangular matrix with unit diagonal, D is diagonal, and O is an orthogonal
matrix. In other words, U would be the matrix defined by the �i;j ’s (lower-
triangular with unit diagonal, where the remaining coefficients are the �i;j ’s), D
would be the diagonal matrix defined by the kb?

i k’s, and O would be the row
representation of .b?

1=kb?
1k; : : : ;b?

d
=kb?

d
k/.

Finally, it is worth noting that Gram–Schmidt orthogonalization is related to
duality as follows. For any i 2 f2; : : : ; d g, the vector b?

i =kb?
i k2 is orthogonal to

b1; : : : ;bi�1 and we have hb?
i =kb?

i k2;bi i D 1, which implies that

b?
i =kb?

i k2 2 	j .L.b1; : : : ;bi //
	;8j 2 f1; : : : ; ig:

Lattice Reduction

A fundamental result of linear algebra states that any finite-dimensional vector space
has a basis. We earlier established the analogue result for lattices: any lattice has a
basis. In the same vein, a fundamental result of bilinear algebra states that any finite-
dimensional Euclidean space has an orthonormal basis, that is, a basis consisting
of unit vectors that are pairwise orthogonal. A natural question is to ask whether
lattices also have orthonormal bases, or at least, orthogonal bases. Unfortunately, it
is not difficult to see that even in dimension two, a lattice may not have an orthogonal
basis, and this is in fact a typical situation. Informally, the goal of lattice reduction is
to circumvent this problem: more precisely, the theory of lattice reduction shows that
in any lattice, there is always a basis, which is not that far from being orthogonal.
Defining precisely what is meant exactly by not being far from being orthogonal is
tricky, so for now, let us just say that such a basis should consist of reasonably short
lattice vectors, which implies that geometrically such vectors are not far from being
orthogonal to each other.

Minkowski’s Minima

To explain what is a reduced basis, we need to define what is meant by short lattice
vectors. Let L be a lattice of dimension � 1 in R

n. There exists a nonzero vector
u 2 L. Consider the closed hyperball B of radius kuk centered at zero. By Lemma
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1, L \ B is finite and contains u, so it must have a shortest nonzero vector. The
Euclidean norm of that shortest nonzero vector is called the first minimum of L,
and is denoted by �1.L/ > 0 or kLk. By definition, any nonzero vector v of L
satisfies kvk � �1.L/, and �1.L/ is the minimal distance between two distinct
lattice vectors. And there exists w 2 L such that kwk D �1.L/: any such w is
called a shortest vector of L, and it is not unique as �w would also be a shortest
vector. The kissing number of L is the number of shortest vectors in L: it is upper
bounded by some exponential function of the lattice dimension (see [8]).

We noticed that if w is a shortest vector of L, then so is �w. Thus, one must be
careful when defining the second-to-shortest vector of a lattice. To circumvent this
problem, Minkowski [1] defined the other minima as follows.

Definition 13. Let L be a lattice of R
n. For all 1 � i � dim.L/, the i th minimum

�i .L/ is defined as the minimum of max1�j�i kvj k over all i linearly independent
lattice vectors v1; : : : ; vi 2 L.

Clearly, the minima are increasing: �1.L/ � �2.L/ � � � � � �d .L/. And the
Gram–Schmidt triangularization implies:

Lemma 7. If .b1; : : : ;bd / is a basis of a lattice L, then its GSO satisfies for all
1 � i � d

�i .L/ � min
i�j�d

kb?
j k:

It is not difficult to see that there always exist linearly independent lattice vectors
v1; : : : ; vd reaching simultaneously the minima, that is, kvik D �i .L/ for all i .
However, surprisingly, as soon as dim.L/ � 4, such vectors do not necessarily form
a lattice basis. The canonical example is the four-dimensional lattice L defined as
the set of all .x1; x2; x3; x4/ 2 Z

4 such that
P4

iD1 xi is even. It is not difficult to
see that dim.L/ D 4 and that all the minima of L are equal to

p
2. Furthermore, it

can be checked that the following row vectors form a basis of L:

0

BB@

1 �1 0 0
1 1 0 0

1 0 1 0

1 0 0 1

1

CCA :

The basis proves in particular that vol.L/ D 2. However, the following row
vectors are linearly independent lattice vectors, which also reach all the minima:

0

BB@

1 �1 0 0

1 1 0 0

0 0 1 1

0 0 1 �1

1

CCA :

But they do not form a basis, as their determinant is equal to 4: another reason
is that for all such vectors, the sum of the first two coordinates is even, and that
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property also holds for any integral linear combination of those vectors, but clearly
not for all vectors of the lattice L. More precisely, the sublattice spanned by those
four row vectors has index two in the lattice L.

Nevertheless, in the lattice L, there still exists at least one basis that reaches all
the minima simultaneously, and we already gave one such basis. This also holds
for any lattice of dimension � 4, but it is no longer true in dimension � 5, as was
first noticed by Korkine and Zolotarev in the nineteenth century, in the language of
quadratic forms. More precisely, it can easily be checked that the lattice spanned by
the rows of the following matrix

0

BBBBB@

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

1 1 1 1 1

1

CCCCCA

has no basis reaching all the minima (which are all equal to two).

Hermite’s Constant and Minkowski’s Theorems

Now that successive minima have been defined, it is natural to ask how large those
minima can be. Hermite [7] was the first to prove that the quantity �1.L/=vol.L/1=d

could be upper bounded over all d -rank lattices L.

Definition 14. The supremum of �1.L/
2=vol.L/2=d over all d -rank lattices L is

denoted by �d , and called Hermite’s constant of dimension d .

The use of quadratic forms in [7] explains why Hermite’s constant refers to
maxL �1.L/

2=vol.L/2=d and not to maxL �1.L/=vol.L/1=d . It can be noted that
�d could also be equivalently defined as the supremum of �1.L/

2 over all d -rank
lattices L of unit volume.

It is known that �d is reached, that is, for all d � 1, there is a d -rank lattice
L such that �d D �1.L/

2=vol.L/2=d , and any such lattice is called critical. But
finding the exact value of �d is a very difficult problem, which has been central
in Minkowski’s geometry of numbers. The exact value of �d is known only for
1 � d � 8 (see the book [20] for proofs) and very recently also for d D 24

(see [21]): the values are summarized in the following table.

d 2 3 4 5 6 7 8 24
�d 2=

p
3 21=3

p
2 81=5 .64=3/1=6 641=7 2 4

Approximation 1.1547 1.2599 1.4142 1.5157 1.6654 1.8114 2 4

Furthermore, the list of all critical lattices (up to scaling and isometry) is known for
each of those dimensions.
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However, rather tight asymptotical bounds are known for Hermite’s constant.
More precisely, we have

d

2	e
C log.	d/

2	e
C o.1/ � �d � 1:744d

2	e
.1C o.1//:

For more information on the proof of those bounds: see [22, Chap. 2] for the
lower bound (which comes from the Minkowski–Hlawka theorem), and [8, Chap. 9]
for the upper bound. Thus, �d is essentially linear in d . It is known that �d

d
2 Q

(because there is always an integral critical lattice), but it is unknown if .�d /d
1 is
an increasing sequence.

Hermite’s historical upper bound [7] on his constant was exponential in the
dimension:

�d � .4=3/.d�1/=2:

The first linear upper bound on Hermite’s constant is due to Minkowski, who viewed
it as a consequence of his Convex Body Theorem:

Theorem 4 (Minkowski’s Convex Body Theorem). Let L be a full-rank lattice of
R

n. Let C be a measurable subset of R
n, convex, symmetric with respect to 0, and

of measure > 2nvol.L/: Then C contains at least a nonzero point of L.

This theorem is a direct application of the following elementary lemma (see [2]),
which can be viewed as a generalization of the pigeon-hole principle:

Lemma 8 (Blichfeldt). Let L be a full-rank lattice in R
n, and F be a measurable

subset of R
n with measure > vol.L/. Then F contains at least two distinct vectors

whose difference belongs to L.

Indeed, we may consider F D 1
2
C , and the assumption in Theorem 4 implies

that the measure of F is > vol.L/. From Blichfeldt’s lemma, it follows that there
exist x and y in F such that x � y 2 L n f0g. But

x � y D 1

2
.2x � 2y/;

which belongs to C by convexity and symmetry with respect to 0. Hence, x � y 2
C \ .L n f0g/, which completes the proof of Theorem 4.

One notices that the bound on the volumes in Theorem 4 is the best possible, by
considering

C D
(

nX

iD1

xi bi W jxi j < 1
)
;

where the bi ’s form an arbitrary basis of the lattice. Indeed, the measure of this C
is exactly 2nvol.L/, but by definition of C , no nonzero vector of L belongs to C .

In Theorem 4, the condition on the measure of C is a strict inequality, but it is not
difficult to show that the strict inequality can be relaxed to an inequality� 2nvol.L/
if C is further assumed to be compact. By choosing for C a closed hyperball of
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sufficiently large radius (so that the volume inequality is satisfied), one obtains the
following corollary:

Corollary 3. Any d -dimensional lattice L of R
n contains a nonzero x such that

kxk � 2
�

vol.L/

vd

� 1
d

;

where vd denotes the volume of the closed unitary hyperball of R
d . In other words,

�d �
�
4

vd

�2=d

; d � 1:

Note that if the Gaussian heuristic (see Definition 8 of section “Volume and the
Gaussian Heuristic”) held for all hyperballs, we would expect �1.L/ to be close to
.vol.L/=vd /

1=d � pd=.2	e/vol.L/1=d by (2.6). This means that the proved upper
bound is only twice as large as the heuristic estimate from the Gaussian heuristic.

Using well-known formulas for vd , one can derive a linear bound on Hermite’s
constant, for instance

8d; �d � 1C d

4
:

Notice that this bound is reached by L D Z
d .

Now that we know how to bound the first minimum, it is natural to ask if a
similar bound can be obtained for the other minima. Unfortunately, one cannot hope
to upper bound separately the other minima, because the successive minima could
be unbalanced. For instance, consider the rectangular two-rank lattice L spanned by
the following row matrix: �

" 0

0 1="

�
;

where " > 0 is small. The volume of L is one, and by definition of L, it is clear
that �1.L/ D " and �2.L/ D 1=" if " � 1. Here, �2.L/ can be arbitrarily large
compared to the lattice volume, while �1.L/ can be arbitrarily small compared to
the upper bound given by Hermite’s constant.

However, it is always possible to upper bound the geometric mean of the first
consecutive minima, as summarized by the following theorem (for an elementary
proof, see [2? ]):

Theorem 5 (Minkowski’s Second Theorem). Let L be a d -rank lattice of R
n.

Then for any integer r such that 1 � r � d ,

 
rY

iD1

�i .L/

!1=r

� p�d vol.L/1=d :



36 P.Q. Nguyen

Rankin’s Constant

In 1953, Rankin [24] introduced the following generalization of Hermite’s constant.
For any n-rank lattice L and 1 � m � n, the Rankin invariant �n;m.L/ is defined as

�n;m.L/ D min
x1; : : : ; xm 2 L

vol.x1; : : : ; xm/ ¤ 0

�
vol.x1; : : : ; xm/

vol.L/m=n

�2

D min
S sublattice of L

dimS D m

�
vol.M/

vol.L/m=n

�2

(2.12)

Using a family of linearly independent lattice vectors simultaneously reaching
all the minima and Theorem 5, one obtains

�n;m.L/ �
�Qm

iD1 �i .L/

vol.L/m=n

�2

� �m
n :

It follows that Rankin’s constant �n;m D max �n;m.L/ over all n-rank lattices
L is well-defined, and we have �n;m � �m

n . This upper bound is not tight: using
HKZ reduction (which we will define later) as in [17, 18], it can be shown that for
1 � m � n=2,

�n;m � O.n/.n�m/	.1=.n�1/C1=.n�2/C���C1=.n�m// (2.13)

Rankin’s constants satisfy the following three relations, which are proved in [20,
24]:

8n 2 N; �n;n D 1; �n;1 D �n (2.14)

8n;m with m < n �n;m D �n;n�m (2.15)

8r 2 ŒmC 1; n � 1�; �n;m � �r;m.�n;r/
m=r (2.16)

The only known values of Rankin’s constants are �4;2 D 3
2

, which is reached
for the D4 lattice, and those corresponding to the nine Hermite constants known. In
the definition of �n;m.L/, the minimum is taken over sets ofm linearly independent
vectors of L, but we may restrict the definition to primitive sets of L or pure sublat-
tices of L, as for any sublattice S of L, there exists a pure sublattice S1 of L with
span.S/ D span.S1/ and vol.S/=vol.S1/ D ŒS W S1�. If vol.S/ is minimal, then
ŒS W S1� D 1 so S D S1 is pure.

Thunder [25] and Bogulavsky [26] proved the following lower bound on Rankin’s
constant, as a generalization of Minkowski–Hlawka’s theorem:
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�n;m �
 
n

Qn
jDn�mC1Z.j /Qm

jD2Z.j /

! 2
n

(2.17)

where Z.j / D �.j /
 . j
2
/=	

j
2 and � is Riemann’s zeta function: �.j / D P1

pD1

p�j . This shows that for 1 � m � n=2,

�n;m � ˝.n/m.n�mC1/=n (2.18)

Hermite–Korkine–Zolotarev (HKZ) Reduction

Hermite [7] introduced the following weak reduction notion in the language of
quadratic forms:

Definition 15. A basis .b1; : : : ;bd / of a lattice is size-reduced if its Gram–Schmidt
orthogonalization satisfies, for all 1 � j < i � d ,

j�i;j j � 1

2
: (2.19)

Geometrically, this means that the projection bi �b?
i of bi over the linear span of

b1; : : : ;bi�1 is inside the parallelepiped P D fPi�1
jD1 xi bi ; jxj j � 1=2g spanned

by b?
1 ; : : : ;b

?
i�1 with coefficients � 1=2 in absolute value, one tries to reduce the

component of bi over the linear span of b1; : : : ;bi�1. Then (2.19) implies for all
1 � i � d :

kb?
i k2 � kbik2 � kb?

i k2 C
1

4

i�1X

jD1

kb?
j k2: (2.20)

Korkine and Zolotarev [27, 28] strengthened Hermite’s size-reduction as follows:

Definition 16. A basis .b1; : : : ;bd / of a lattice is Hermite–Korkine–Zolotarev-
reduced (HKZ-reduced) if it is size-reduced and such that for all 1 � i � d ,
kb?

i k D �1.	i .L//.

Note that b?
i 2 	i .L/ and b?

i ¤ 0, so it is natural to ask that kb?
i k D �1.	i .L//.

Note also that the condition kb?
d
k D �1.	d .L// is necessarily satisfied.

HKZ-reduced bases have two interesting properties. The first is that an HKZ-
reduced basis provides a very good approximation to the successive minima:

Theorem 6. Let .b1; : : : ;bd / be an HKZ-reduced basis of a lattice L, then for all
index i such that 1 � i � d ,

4

i C 3 �
� kbik
�i .L/

�2

� i C 3
4
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The upper bound is easy to prove and can be attributed to Mahler [29]: it suffices
to notice that kb?

i k D �1.	i .L// � �i .L/ (where the right-hand inequality can be
proved by considering a set of linearly independent vectors reaching all the minima
simultaneously), and to use the right-hand inequality of (2.20). The lower bound
is proved in [30]: first, notice that HKZ-reduction implies that for all 1 � j � i ,
kb?

j k � kbik, therefore kbj k2=kbik2 � .jC3/=4 by (2.20). It should be noted that
it is not necessarily true that kbik � �i .L/ because it does not necessarily hold that
kb2k � kb3k � � � � � kbdk. Thus, the gap between an HKZ-reduced basis and the
successive minima of a lattice is at most polynomial, namely less than

p
.i C 3/=4.

The article [30] shows that the bounds of Theorem 6 are not far from being tight in
the worst case.

The second interesting property of HKZ-reduced bases is that they have local
properties. Indeed, if .b1; : : : ;bd / is HKZ-reduced, then .	i .bi /; 	i .biC1/; : : : ;

	i .bj // is HKZ-reduced for all 1 � i � j � d . Thus, by studying low-dimensional
HKZ-reduced bases, one can deduce properties holding for any dimension. For
instance, any two-dimensional HKZ-reduced basis .c1; c2/ satisfies kc1k=kc?

2k �p
4=3, which implies that ay HKZ-reduced basis .b1; : : : ;bd / satisfies kb?

i k=
kb?

iC1k �
p
4=3 for all 1 � i � d . It is by using such reasonings that Korkine

and Zolotarev found better upper bounds on Hermite’s constant than Hermite’s
inequality.

Algorithmic Lattice Problems

In the previous section, we presented lattice reduction from a mathematical point of
view. In this section, we introduce the main algorithmic problems for lattices.

Representation

In practice, one deals only with rational lattices, that is, lattices included in Q
n. In

this case, by a suitable multiplication, one needs only to be able to deal with integral
lattices, those which are included in Z

n. Such lattices are usually represented by
a basis, that is, a matrix with integral coefficients. When we explicitly give such a
matrix, we will adopt a row representation: the row vectors of the matrix will be the
basis vectors. The size of the lattice is measured by the dimensions of the matrix
(the number d of rows, which correspond to the lattice dimension, and the number
n of columns), and the maximal bit-length logB of the matrix coefficients; thus, the
whole matrix can be stored using dn logB bits.

Lattice problems are often relative to norms: here, we will only be concerned
with the Euclidean norm. Before describing hard problems, let us recall two easy
problems that can be solved in deterministic polynomial time:
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� Given a generating set of an integral lattice L, find a basis of the lattice L.
� Given a basis of an integral lattice L 	 Z

n and a target vector v 2 Z
n, decide if

v 2 L, and if so, find the decomposition of v with respect to the basis.

The Shortest Vector Problem (SVP)

The most famous lattice problem is the following:

Problem 1 (Shortest Vector Problem (SVP)). Given a basis of a d -rank integral
lattice L, find u 2 L such that kuk D �1.L/.

In its exact form, this problem is known to be NP-hard under randomized reduc-
tions (see the survey [9]), which suggests to relax the problem. There are two
approximation versions of SVP: approx-SVP (ASVP) and Hermite-SVP (HSVP),
which are defined below.

Problem 2 (Approximate Shortest Vector Problem (ASVP)). Given a basis of a
d -rank integral lattice L and an approximation factor f � 1, find a nonzero u 2 L
such that kuk � f �1.L/.

Problem 3 (Hermite Shortest Vector Problem (HSVP) [31]). Given a basis of a
d -rank integral lattice L and an approximation factor f > 0, find a nonzero u 2 L
such that kuk � f vol.L/1=d .

When f D 1, ASVP is exactly SVP. As opposed to SVP and ASVP, it is possible
to easily check a solution to HSVP: indeed, given u, L and f , one can check in
polynomial time whether or not u 2 L and kuk � f vol.L/1=d . By definition of
Hermite’s constant, if one can solve ASVP with an approximation factor f , then
one can solve HSVP with a factor f

p
�d . Reciprocally, it was shown in [32] that if

one has access to an oracle solving HSVP with a factor f , then one can solve ASVP
with a factor f 2 in polynomial time using a number of oracle queries linear in the
dimension d . Hence, solving ASVP with an approximation factor polynomial in the
dimension is equivalent to solving HSP with an approximation factor polynomial in
the dimension.

Hardness results for SVP are surveyed in [9, 33], so let us just briefly summa-
rize. SVP was conjectured NP-hard as early as 1981 [34] (see also [32]). Ajtai
showed NP-hardness under randomized reductions in 1998 [35], but the historical
conjecture with deterministic reductions remains open. The best result so far [12]
suggests that it is unlikely that one can efficiently approximate SVP to within
quasi-polynomial factors. But NP-hardness results have limits: essentially, approx-
imating SVP within a factor

p
d= logd is unlikely to be NP-hard. More precisely,

Aharonov and Regev [37] showed that there exists a constant c such that approxi-
mating SVP with a factor c

p
d is in the l0 intersection NP\coNP, while Goldreich

and Goldwasser [38] showed that each constant c approximating SVP with a factor
c
p
d= logd is in NP\coAM.
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We will present the main algorithms for solving SVP, either exactly or approx-
imately, but we can already summarize the situation. The LLL algorithm [16]
(section “The LLL Algorithm”) solves ASVP with factor .4=3 C "/.d�1/=2, and
HSVP with factor .4=3C "/.d�1/=4, in time polynomial in 1=" and the size of the
lattice basis. This algorithm is used in the best exact-SVP algorithms:

� Kannan’s deterministic algorithm [10] has super-exponential complexity
2O.d log d/ polynomial-time operations (see [12] for a tight analysis of the con-
stant).

� The randomized algorithm of Ajtai et al. [14] has exponential complexity 2O.d/

polynomial-time operations.

The best polynomial-time algorithms known to approximate SVP (better than LLL)
are blockwise algorithms that use such exact-SVP algorithms in low dimension:
indeed, in dimension d , one can use a subroutine an exact-SVP algorithm in dimen-
sion k D f .d/, if the function f .d/ is sufficiently small that the cost of the
subroutine remains polynomial in d . For instance, the super-exponential running-
time 2O.k log k/ of Kannan’s algorithm [10] remains polynomial in d if we select
k D logd= log logd .

With a number of calls to the SVP-oracle in dimension � k, Schnorr [17]
showed one could approximate SVP with a factor .2k/2d=k and HSVP with a fac-
tor .2k/d=k. Gama et al. [18] proved that Schnorr’s analysis [17] was not optimal:
one can raise to the power ln 2 � 0:69 < 1 both approximation factors. Gama
et al. [18] also presented a slightly better variant: it can approximate SVP with a
factor O.k/d=k and HSVP with a factor O.k/d=.2k/, still with a polynomial num-
ber of calls to the SVP-oracle in dimension � k. The best blockwise algorithm
known is Gama–Nguyen’s slide algorithm [19], which approximates SVP with a

factor ..1C"/�d /
.d�k/=.k�1/ and HSVP with a factor

p
.1C "/�d

.d�1/=.k�1/
, with

a polynomial (in 1=" and the size of the lattice basis) number of calls to a SVP-oracle
in dimension� k. When k is fixed, the approximation factors of all these blockwise
algorithms remain exponential in d , like for LLL. But if one takes k D logd and use
the AKS algorithm [14] as a SVP-subroutine, one obtains a randomized polynomial-
time algorithm approximating SVP and HSP with slightly sub-exponential factors:
2O.d log log d= log d/.

The Closest Vector Problem

The closest vector problem can be viewed as a homogeneous problem: one is look-
ing for the radius of the smallest hyperball (centered at zero) intersecting the lattice
nontrivially. One obtains a nonhomogeneous version by considering hyperballs cen-
tered at any point of the space, rather than zero. For any point x of R

n, and a lattice
L of R

n, we will thus denote by dist.x; L/ the minimal distance between x and a
lattice vector of L. The corresponding computational problem is the following:
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Problem 4 ( Closest Vector Problem (CVP)). Given a basis of a d -rank integer
lattice L 	 Z

n, and a point x 2 Z
n, find y 2 L such that kx � yk D dist.x; L/.

Similarly to SVP/ASVP, one can define the following approximate version:

Problem 5 (Approximate Closest Vector Problem (ACVP)). Given a basis of a
d -rank integer lattice L 	 Z

n, a point x 2 Z
n, and an approximation factor f � 1,

find y 2 L such that kx � yk � f � dist.x; L/.

In this article, we will not further discuss CVP: we only survey SVP algorithms.

The Two-Dimensional Case

Lagrange’s Reduction and Hermite’s Constant in Dimension Two

Lagrange [5] formalized for the first time a reduction notion for rank-two lattices,
in the language of quadratic forms. This reduction notion is so natural that all other
reduction notions usually match in dimension two.

Definition 17. Let L be a two-rank lattice of R
n. A basis .b1;b2/ of L is said

to be Lagrange-reduced (or simply L-reduced) if and only if kb1k � kb2k and
jhb1;b2ij � kb1k2=2.

Geometrically, this means that b2 is inside the disc of radius kb1k centered at the
origin, and that the angle .b1;b2/ modulo 	 is between 	=3 and 2	=3. Note that
the second condition jhb1;b2ij � kb1k2=2 is equivalent to size-reduction.

The definition implies that it is trivial to check whether a given basis is L-reduced
or not. The following result shows that this reduction notion is optimal in a natural
sense:

Theorem 7. Let .b1;b2/ be a basis of a two-rank latticeL of R
n. The basis .b1;b2/

is Lagrange-reduced if and only if kb1k D �1.L/ and kb2k D �2.L/.

Assuming this result, it is clear that there always exist L-reduced bases. And by
definition, the first vector of any such basis satisfies

kb1k � .4=3/1=4vol.L/1=2:

In particular, one can deduce the inequality �2 �
p
4=3. But one also knows

that �2 �
p
4=3, by considering the hexagonal lattice spanned by .b1;b2/ such that

kb1k D kb2k and hb1;b2i D kb1k2=2, which is the equality case of Lagrange’s
reduction.

In other words, one can arguably summarize Lagrange’s reduction by a single
equality

�2 D
p
4=3:
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Lagrange’s Algorithm

Lagrange’s algorithm [5] solves the two-rank lattice reduction problem: it finds a
basis achieving the first two minima, in a running time similar to Euclid’s algorithm.
It is often incorrectly attributed to Gauss [6]. Lagrange’s algorithm can be viewed
as a two-dimensional generalization of the centered variant of Euclid’s algorithm
(Algorithm 1).

Input: .n;m/ 2 Z
2.

Output: gcd.n;m/.
1:
2: if jnj � jmj then
3: swap n and m.
4: end if
5:
6: whilem ¤ 0 do
7: r  � n� qm where q D 


n
m

�
.

8: n � m
9: m � r

10: end while
11: Output jnj.

Algorithm 1: Euclid’s centered algorithm

This algorithm corresponds to a reduction in dimension one. Indeed, the gcd is
simply the first minimum of the lattice nZ C mZ spanned by n and m. The only
difference with the classical Euclidean algorithm is in Step 7, where one takes for q
the closest integer to n

m
, rather than its integral part. This amounts to selecting the

integer q to minimize jn � qmj, which guarantees jn � qmj � jmj
2
: It is easy to

show that Euclid’s centered algorithm has quadratic complexity without fast integer
arithmetic.

Lagrange’s algorithm (Algorithm 2) is a natural generalization in dimension two.

Input: a basis .u; v/ of a two-rank lattice L.
Output: an L-reduced basis of L, reaching �1.L/ and �2.L/.
1: if kuk < kvk then
2: swap u and v
3: end if
4: repeat

5: r � u� qv where q D
j

hu;vi

kvk
2

m
.

6: u � v
7: v � r
8: until kuk � kvk
9: Output .u; v/.

Algorithm 2: Lagrange’s reduction algorithm
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The analogy is clear: Step 5 selects the integer q such that r D u� qv is as short
as possible. This is precisely the case when the orthogonal projection of r over v is
as short as possible, and this projection can have length less than� kvk=2. This can

be viewed geometrically, and an elementary computation shows that q D
j hu;vi
kvk2

m

works.
One can show that Lagrange’s algorithm has quadratic complexity (in the maxi-

mal bit-length of the coefficients of the input basis) without fast integer arithmetic,
see [39]. For further generalizations of Lagrange’s algorithm, see [39, 40].

Gram–Schmidt Orthogonalization and Size-Reduction

If b1; : : : ;bd 2 Z
n have norms bounded by B , the computation of all Gram–

Schmidt coefficients (i.e., of the rational numbers �i;j and kb?
i k2) can be done in

time O.d 5 log2 B/ without fast arithmetic.
From the triangular representation of the basis, it is very easy to see how to

size-reduce a basis (See Algorithm 3): the vectors bi ’s are modified, but not their
projections b?

i .

Input: A basis .b1; : : : ; bd / of a lattice L.
Output: A size-reduced basis .b1; : : : ; bd /.
1: Compute all the Gram–Schmidt coefficients �i;j .
2: for i D 2 to d do
3: for j D i � 1 downto 1 do
4: bi  � bi � d�i;j cbj
5: for k D 1 to j do
6: �i;k  � �i;k � d�i;j c�j;k
7: end for
8: end for
9: end for

Algorithm 3: A size-reduction algorithm

Hermite’s Inequality and the Lenstra–Lenstra–Lovász
Algorithm

All the algorithms of this section can be viewed as algorithmic versions of the
following elementary result:

Theorem 8 (Hermite’s inequality [7]). For all integer d � 2,

�d � �d�1
2 : (2.21)
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Proof. We give a proof by induction, slightly different from the historical proof of
Hermite. As the inequality is trivial for d D 2, assume that it holds for d � 1.
Consider a shortest nonzero vector b1 of a d -rank lattice L. Denote by L0 D 	2.L/

the .d � 1/-rank lattice obtained by projecting L over b?1 . Its volume is vol.L0/ D
vol.L/=kb1k. Let b02 be a shortest nonzero vector of L0. The induction assumption
ensures that

kb02k � .4=3/.d�2/=4vol.L0/1=.d�1/:

We can lift b02 (by size-reduction) into a nonzero vector b2 2 L such that kb2k2 �
kb02k2 C kb1k2=4. As b1 cannot be longer than b2, we deduce

kb1k �
p
4=3kb02k � .4=3/d=4vol.L0/1=.d�1/;

which can be rewritten as

kb1k � .4=3/.d�1/=4vol.L/1=d ;

which completes the proof. In retrospect, one notices that with the inequality kb1k �p
4=3kb?

2k, one has in fact proved the inequality

�d � .4�d�1=3/
.d�1/=d :

By composing all these inequalities, one indeed obtains Hermite’s inequality

�d � .4=3/.d�1/=dC.d�2/=dC���C1=d D .4=3/.d�1/=2:

The historical proof given by Hermite in his first letter [7] to Jacobi also pro-
ceeded by induction, but in a slightly different way. Hermite considered an arbitrary
primitive vector b1 of the lattice L. If b1 satisfies Hermite’s inequality, that is, if
kb1k � .4=3/.d�1/=4vol.L/1=d , there is nothing to prove. Otherwise, one applies
the induction assumption to the projected lattice L0 D 	2.L/: one knows that
there exists a primitive vector b?

2 2 L0 satisfying Hermite’s inequality: kb?
2k �

.4=3/.d�2/=4vol.L0/1=.d�1/. One can lift this vector b?
2 2 L0 into a primitive vector

b2 2 L such that kb2k2 � kb?
2k2 C kb1k2=4. As b1 does not satisfy Hermite’s

inequality, one notices that kb2k < kb1k: one can therefore replace b1 by b2 and
start again. But this process cannot go on indefinitely: indeed, there are only finitely
many vectors ofL that have norm� kb1k. Hence, there must exist a nonzero vector
b1 2 L satisfying Hermite’s inequality. ut

The inequality (2.21) suggests to use two-dimensional reduction to find in any
d -rank lattice a nonzero vector of norm less than

q
�d�1

2 vol.L/1=d D .4=3/.d�1/=4vol.L/1=d :

This is somewhat the underlying idea behind all the algorithms of this section:
Hermite’s algorithms and the LLL algorithm. In fact, the proof of (2.21) that we gave
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provides such an algorithm, implicitly. This algorithm makes sure that the basis is
size-reduced and that all the local bases .	i .bi /; 	i .biC1// D .b?

i ;b
?
iC1C�iC1;i b?

i /

are L-reduced: these local bases correspond to the 2 � 2 matrices on the diagonal,
when we represent the basis in triangular form. In other words, the reduced bases
obtained are size-reduced and such that for all 1 � i � d :

kb?
iC1k2 �

3

4
kb?

i k2; (2.22)

that is, the decrease of the norms of the Gram–Schmidt vectors (which are the diag-
onal coefficients in the triangular representation) is at most geometric, which is
sometimes called Siegel’s condition [2]. It is then easy to see that the first vector
of such a basis satisfies

kb1k � .4=3/.d�1/=4vol.L/1=d ;

as announced. But it is unknown if this algorithm and those of Hermite are poly-
nomial time: the LLL algorithm guarantees a polynomial running-time by relaxing
inequalities (2.22).

Hermite’s Algorithms

We now describe the first reduction algorithms in arbitrary dimension, described
by Hermite in his famous letters [7] to Jacobi, in the language of quadratic forms.
They are very close to the algorithm underlying the proof of (2.21), but they do
not explicitly rely on Lagrange’s algorithm, although they try to generalize it. They
were historically presented in a recursive way, but they can easily be made iterative,
just like LLL.

Input: A basis .b1; : : : ; bd / of a d -rank lattice L.
Output:
1: if d D 1 then
2: output b1
3: end if
4: Apply recursively the algorithm to the basis .	2.b2/; : : : ; 	2.bd // of the projected lattice
	2.L/.

5: Lift the vectors .	2.b2/; : : : ; 	2.bd // into b2; : : : ; bd 2 L in such a way that they are size-
reduced with respect to b1.

6: if b1 satisfies Hermite’s inequality, that is kb1k � .4=3/.d�1/=4vol.L/1=d then
7: Output .b1; : : : ; bd /
8: end if
9: Swap b1 and b2 since kb2k < kb1k, and restart from the beginning.

Algorithm 4: A simplified version of Hermite’s first reduction algorithm, described
in the first letter to Jacobi [7]
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Hermite’s first algorithm was described in the first letter [7] to Jacobi:
Algorithm 4 is a simplified version of this algorithm; Hermite’s historical algo-
rithm actually uses duality, which we ignore for simplicity. It is easy to see that
Algorithm 4 terminates, and that the output basis .b1; : : : ;bd / satisfies the following
reduction notion (which we call H1):

� The basis is size-reduced.
� For all i , b?

i verifies Hermite’s inequality in the projected lattice 	i .L/:

kb?
i k � .4=3/.d�i/=4vol.	i .L//

1=.d�iC1/

Notice that this reduction notion is rather weak: for instance, the orthogonal-
ity defect of a H1-reduced basis can be arbitrarily large, as soon as the dimension
is greater than 3, as shown by the following triangular basis (where " > 0 tends
to 0): 0

@
1 0 0

1=2 " 0

1=2 "=2 1="

1

A :

By the way, Hermite notices himself that his first algorithm does not match with
Lagrange’s algorithm in dimension two. It seems to be one of the reasons why he
presents a second algorithm (Algorithm 5) in his second letter [7] to Jacobi.

Input: a basis .b1; : : : ; bd / of a lattice L.
Output: a size-reduced basis .b1; : : : ; bd / such that for all i , kb?i k=kb?iC1k � �2 D p4=3. In

particular, each b?i satisfies Hermite’s inequality in the projected lattice 	i .L/.
1: if d D 1 then
2: output b1
3: end if
4: By making swaps if necessary, ensure that kb1k � kbik for all i 
 2.
5: Apply recursively the algorithm to the basis .	2.b2/; : : : ; 	2.bd // of the projected lattice
	2.L/.

6: Lift the vectors .	2.b2/; : : : ; 	2.bd // to b2; : : : ; bd 2 L in such a way that they are size-
reduced with respect to b1.

7: if kb1k � kbik for all i 
 2 then
8: output .b1; : : : ; bd /
9: else

10: restart from the beginning.
11: end if

Algorithm 5: Hermite’s second reduction algorithm, described in his second letter
to Jacobi [7]

It is easy to see that this algorithm terminates and that the output basis
.b1; : : : ;bd / satisfies the following reduction notion (which we call H2):

� The basis is size-reduced.
� For all i , b?

i has minimal norm among all the vectors of the basis .	i .bi /; 	i

.biC1/ : : : ; 	i .bd // of the projected lattice 	i .L/, that is kb?
i k � k	i .bj /k for

all 1 � i � j � d .



2 Hermite’s Constant and Lattice Algorithms 47

Notice that an H2-reduced basis necessarily satisfies (2.22), that is, for all i

kb?
i k=kb?

iC1k � �2 D
p
4=3:

This implies that its orthogonality defect is bounded:

dY

iD1

kb?
i k � .4=3/d.d�1/=4vol.L.b1; : : : ;bd //:

And this also shows that an H2-reduced basis is necessarily H1-reduced.
Hermite’s second algorithm is very close to the so-called deep insertion variant

of LLL by Schnorr and Euchner [41]: both algorithms want to achieve the same
reduction notion.

The LLL Algorithm

Surprisingly, it is unknown if Hermite’s algorithms are polynomial time for vary-
ing dimension. It is also the case for Lenstra’s algorithm [42], which is a relaxed
variant of Hermite’s second algorithm, where the inequalities kb?

i k � k	i .bj /k
are replaced by ckb?

i k � k	i .bj /k, where c is a constant such that 1=4 <

c < 1. However, Lenstra proved that his algorithm was polynomial time for
any fixed dimension, which was sufficient for his celebrated result on integer
programming [42].

It is Lenstra et al. [16] who invented in 1982 the first polynomial-time reduction
algorithm outputting basis nearly as reduced as Hermite’s. This algorithm, known
as LLL or L3, is essentially a relaxed variant of Hermite’s second algorithm: László
Lovász discovered that a crucial modification guaranteed a polynomial running-
time; more precisely, compared to the H2 reduction notion, one replaces for each i
all the inequalities kb?

i k � k	i .bj /k by a single inequality ckb?
i k � k	i .biC1/k,

where c is a constant such that 1=4 < c < 1. The final algorithm was published
in [16].

Let ı be a real in Œ1
4
; 1�. A numbered basis .b1; : : : ;bd / of L is said to be LLL-

reduced with factor ı if it is size-reduced, and if it satisfies Lovász’ condition: for
all 1 < i � d , 		b?

iC1 C �iC1;i b?
i

		2 � ıkb?
i k2:

Let us explain this mysterious condition. As Gram–Schmidt orthogonalization
depends on the order of the vectors, its vectors change if bi and biC1 are swapped;
in fact, only b?

i and b?
iC1 can possibly change. And the new b?

i is simply b?
iC1 C

�iC1;i b?
i ; therefore, Lovász’ condition means that by swapping bi and biC1, the

norm of b?
i does not decrease too much, where the loss is quantified by ı: one

cannot gain much on kb?
i k by swap. In other words,
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ıkb?
i k2 � k	i .biC1/k2;

which illustrates the link with the H2 reduction notion. The most natural value for
the constant ı is therefore ı D 1 (in dimension 2, this matches with Lagrange’s
reduction), but then, it is unknown if such a reduced basis can be computed in poly-
nomial time. The LLL-reduction was initially1 presented in [16] with the factor
ı D 3

4
, so that in the literature, LLL-reduction usually means LLL-reduction with

the factor ı D 3
4

.
Lovász’ condition can also be rewritten equivalently: for all i ,

kb?
iC1k2 �

�
ı � �2

iC1;i

� kb?
i k2;

which is a relaxation of (2.22). Thus, LLL reduction guarantees that each b?
iC1 can-

not be much shorter than b?
i : the decrease is at most geometric. This proves the

following result:

Theorem 9. Assume that 1
4
< ı � 1, and let ˛ D 1=.ı � 1

4
/. Let .b1; : : : ;bd / be

an LLL-reduced basis with factor ı of a lattice L in R
n. Then

1. kb1k � ˛.d�1/=4.volL/1=d .
2. For all i 2 f1; : : : ; d g, kbik � ˛.d�1/=2�i .L/:

3. kb1k � � � � � kbdk � ˛d.d�1/=4 detL:

Thus, an LLL-reduced basis provides an approximation of the lattice reduction
problem. By taking ı very close to 1, one falls back on Hermite’s inequality in
an approximate way, where the constant 4=3 is replaced by 4=3C ".

The other interest of this reduction notion is that there exists a simple algo-
rithm to compute such reduced bases, and which is rather close to Hermite’s second
algorithm (Algorithm 5). In its simplest form, the LLL algorithm corresponds to
Algorithm 6.

Input: a basis .b1; : : : ; bd / of a lattice L.
Output: the basis .b1; : : : ; bd / is LLL-reduced with factor ı.
1: Size-reduce .b1; : : : ; bd / (using Algorithm 3).
2: if there exists an index j which does not satisfy Lovász’ condition then
3: swap bj and bjC1 , then return to Step 1.
4: end if

Algorithm 6: The basic LLL algorithm

Compared to this simple version, the so-called iterative versions of the LLL algo-
rithm consider instead the smallest index j not satisfying Lovász’ condition: in
contrast, Hermite’s second algorithm considered the greatest index j refuting H2.

1 This simplifies the exposition.
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Theorem 10. Assume that 1
4
< ı < 1. If each bi 2 Q

n, Algorithm 6 computes an
LLL-reduced basis in time polynomial in the maximal bit-length of the coefficients
of the bi ’s, the lattice rank d , and the space dimension n.

Let us sketch a proof of this fundamental result, assuming to simplify that bi 2 Z
n.

First of all, it is clear that if the algorithm terminates, then the output basis is LLL-
reduced with factor ı. To see why the algorithm terminates, let us analyze each
swap (Step 3). When bj and bjC1 are swapped, only b?

j and b?
jC1 can be modified

among all the Gram–Schmidt vectors. Let us therefore denote by c?
j and c?

jC1 the
new Gram–Schmidt vectors after swapping. As the product of all the Gram–Schmidt
vector norms is equal to vol.L/, we have

kc?
j k � kc?

jC1k D kb?
j k � kb?

jC1k:

As Lovász’ condition is not satisfied, kc?
j k2 < ıkb?

j k2: Hence,

kc?
j k2.d�jC1/kc?

jC1k2.d�j / < ıkb?
j k2.d�jC1/kb?

jC1k2.d�j /:

This suggests to consider the following quantity:

D D kb?
1k2dkb?

2k2.d�1/ � � � � � kb?
dk2:

At each swap, D decreases by a factor ı < 1. Notice that D can be decomposed as
a product of d Gram determinants Di D �.b1; : : : ;bi / for i going through 1 to d .
Therefore,D is in fact an integer, as bi 2 Z

n. It follows that the number of swaps is
at most logarithmic in the initial value of D, which can be upper bounded by B2d ,
where B is the maximum of the initial norms kbik. To bound the complexity of the
algorithm, one also needs to upper bound the size of the rational coefficients �i;j

and kb?
i k2 during the reduction. A careful analysis based on the Di ’s shows that all

the �i;j ’s always have polynomial size (see [16, 32, 43, 44]).
By coupling Theorem 9 with Theorem 10, we can summarize the LLL result as

follows:

Corollary 4. There exists an algorithm which, given as input a basis of a
d -dimensional integer lattice L 	 Z

n and a reduction factor " > 0, outputs a
basis .b1; : : : ;bd / of L, in time polynomial in 1=" and the size of the basis, such
that

kb1k=vol.L/1=d �
�
.1C "/

p
4=3

�.d�1/=2

;

kbik=�i .L/ �
�
.1C "/

p
4=3

�d�1

; 1 � i � d;
 

dY

iD1

kbik
!
=vol.L/ �

�
.1C "/p4=3

�d.d�1/=2

:
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Solving Exact SVP

In this section, we survey the two main algorithms for finding the shortest vector in a
lattice: enumeration [10,45,46] and sieving [14], which both use the LLL algorithm
in their first stage. In section “Mordell’s Inequality and Blockwise Algorithms”,
we use such algorithms in low dimension as subroutines to obtain polynomial-time
algorithms with better approximation factors than LLL.

Enumeration Algorithms

The simplest method consists in enumerating the coordinates of a shortest lattice
vector, and this idea goes back to the early 1980s with Pohst [45], Kannan [10], and
Fincke-Pohst [46]. More precisely, by using LLL-reduced bases or other reduced
bases not far from being orthogonal, it is possible to exhaustive search the projec-
tions of any shortest vector in the projected lattices 	i .L/.

Consider a basis .b1; : : : ;bd / of a lattice L. Let x 2 L be a (nonzero) shortest
vector of L: x D x1b1 C � � � C xd bd , where the xi ’s are integers. We have

x D
dX

iD1

xi bi D
dX

iD1

xi

0

@b?
i C

i�1X

jD1

�i;j b?
j

1

A D
dX

jD1

0

@xj C
dX

iDjC1

�i;jxi

1

A b?
j :

It follows that the projections of x, together with their norms, are given by

	k.x/ D
dX

jDk

0

@xj C
dX

iDjC1

�i;jxi

1

A b?
j ; 1 � k � d; (2.23)

k	k.x/k2 D
dX

jDk

0

@xj C
dX

iDjC1

�i;jxi

1

A
2

kb?
j k2; 1 � k � d: (2.24)

Now, let B be an upper bound on �1.L/ D kxk, we take B D p�d vol.L/1=d ,
but we could also have taken B D kb1k; if ever one knows a better upper bound
B , which might be the case for special lattices, then this will decrease the running
time of enumeration. Using (2.24), the d inequalities k	k.x/k � B enable us to
exhaustive search of the coordinates xd ; xd�1; : : : ; x1 of x:

dX

jDk

0

@xj C
dX

iDjC1

�i;jxi

1

A
2

kb?
j k2 � B2; 1 � k � d;
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which can be rewritten as

ˇ̌
ˇ̌
ˇ̌xk C

dX

iDkC1

�i;jxi

ˇ̌
ˇ̌
ˇ̌ �

r
B2 �Pd

jDkC1

�
xj CPd

iDjC1�i;jxi

�2 kb?
j k2

kb?
k
k ;

1 � k � d: (2.25)

We start with (2.25), with k D d , that is, jxd j � B=kb?
d
k. This allows to exhaus-

tive search of the integer xd . Now assume that the projection 	kC1.x/ has been
guessed for some k: the integers xkC1; : : : ; xd are known. Then (2.25) enables to
compute an interval Ik such that xk 2 Ik , and therefore to exhaustive search xk .
For a full description of an exact algorithm implementing this exhaustive search, we
refer to [41].

Rigorous Upper Bounds

We start with an elementary result:

Lemma 9. Let .b1; : : : ;bd / be an LLL-reduced basis and B D kb1k. Then for
each .xkC1; : : : ; xd / 2 Z

d�k , the number of xk 2 Z satisfying (2.25) is at most

b2kb1k=kb?
kkc C 1 D 2O.k/:

This implies that if .b1; : : : ;bd / is an LLL-reduced basis and B D kb1k, then
the cost of enumeration is, up to a polynomial-time multiplicative factor,

dY

kD1

2O.k/ D 2O.d 2/:

Kannan [10–12] showed how to decrease 2O.d 2/ to 2O.d log d/ using a stronger
reduction notion than LLL, close to HKZ-reduction. More precisely, Kannan used
quasi-HKZ-reduction, which means that .	2.b2/; : : : ; 	2.bd // is HKZ-reduced,
and that kb1k is not much longer than kb?

2k. And Kannan [10] noticed that by apply-
ing recursively the enumeration algorithm, one could transform an LLL-reduced
basis into a quasi-HKZ-reduced basis in 2O.d log d/ polynomial-time operations.
Kannan [10]’s recursive enumeration algorithm has therefore a total complexity
of 2O.d log d/ polynomial-time operations. Recently, Hanrot and Stehlé [12, 13]
showed that the worst-case complexity of Kannan’s algorithm is dd=.2e/Co.d/

polynomial-time operations.
Unfortunately, the practical interest of Kannan’s algorithm is unclear. More pre-

cisely, Nguyen and Vidick [15] provides experimental evidence that for dimensions
of practical interest, the 2O.d log d/ polynomial-time operations of Kannan [10] are
much slower than the 2O.d 2/ polynomial-time operations of basic enumeration
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from an LLL-reduced basis. This can be explained as follows: in both cases, the
polynomial-time operations and the O./ constants are not the same.

Heuristic Estimates

The previous analysis gave only upper bounds. To provide an intuition on the exact
cost of enumeration, we now give a heuristic analysis. The cost of enumeration
is
Pd

kD1Nk up to a multiplicative polynomial-time factor, where Nk is the num-
ber of .xk ; : : : ; xd / 2 Z

d�kC1 satisfying (2.25). Thus, Nk is exactly the number
of vectors in 	k.L/ of norm � B . By the Gaussian heuristic (see Definition 8 of
section “Volume and the Gaussian Heuristic”), we hope that Nk � Hk defined by

Hk D Bd�kC1vd�kC1

vol.	k.L//
D Bd�kC1vd�kC1vol.b1; : : : ;bk�1/

vol.L/
(2.26)

Let us try to estimate (2.26) for typical reduced bases. It has been reported
(see [31,47]) that for most practical reduction algorithms in high dimension, except
when the lattice has a very special structure, applying the reduction algorithm
to a sufficiently randomized input basis gives rise to a reduced basis such that
kb?

i k=kb?
iC1k � q, where q depends on the algorithm:

� for LLL, q � 1:022 � 1:04 in high dimension.
� for BKZ-20 [41], q � 1:025.

It follows that kb1k � q.d�1/=2vol.L/1=d and

vol.b1; : : : ;bk�1/

vol.L/
� kb1kk�1

q1C2C���Ck�2vol.L/
D kb1kk�1

q.k�2/.k�1/=2vol.L/
:

Then (2.26) becomes

Hk � Bd�kC1vd�kC1kb1kk�1

q.k�2/.k�1/=2vol.L/
: (2.27)

The complexity will depend on the choice of the upper bound B:

� If one takes B D kb1k, then (2.27) becomes

Hk � kb1kd vd�kC1

q.k�2/.k�1/=2vol.L/
D qd.d�1/=2vd�kC1

q.k�2/.k�1/=2

D qŒd.d�1/�.k�2/.k�1/�=2vd�kC1

Thus,
Hk � qd 2=2Co.d 2/:
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� If one takes B D p�d vol.L/1=d , then
p
�d D �.

p
d/ implies that (2.27)

becomes

Hk � kb1kk�12O.d/

q.k�2/.k�1/=2vol.L/.k�1/=d
D q.k�1/.d�1/=22O.d/

q.k�2/.k�1/=2

D q.k�1/.d�kC1/=22O.d/;

where the right-hand term is always less than qd 2=8�1=22O.d/, because
.k � 1/.d � k C 1/ is maximized for k D d=2. Hence,

Hk � qd 2=82O.d/:

In both cases, maxk Hk is super-exponential in d , but the exponentiation base
(q1=2 or q1=8) is very close to 1.

A Heuristic Lower Bound

One might wonder if Kannan’s worst-case complexity of dd=.2e/Co.d/ polynomial-
time operations can be improved using a different reduction notion. By definition of
Rankin’s constant, we have:

Hk � Bd�kC1vd�kC1

p
�d;k�1.L/vol.L/.k�1/=d

vol.L/
D Bd�kC1vd�kC1

p
�d;k�1.L/

vol.L/d�kC1
:

If we take B D p�d vol.L/1=d , we obtain

Hk � p�d
d�kC1vd�kC1

q
�d;k�1.L/:

Now recall that
p
�d D �.

p
d/; which implies that

Hk � vd�kC1�.
p
d/d�kC1

q
�d;k�1.L/:

An elementary (but tedious) computation shows that as d grows to infinity, for all
1 � k � d ,

vd�kC1�.
p
d/d�kC1 D 2�.d/:

Hence:
Hk � 2�.d/

q
�d;k�1.L/:

But using (2.18) with m D bn=2e, we know that

d
max
kD2

�d;k�1 � ˝.d/d=4Co.d/:



54 P.Q. Nguyen

Therefore,
Hbd=2e � 2�.d/dd=8Co.d/:

This suggests that, independently of the quality of the reduced basis, the com-
plexity of enumeration will be at least dd=8 polynomial-time operations for many
lattices.

Sieve Algorithms

In 2001, Ajtai et al. [14] discovered a randomized algorithm, which is asymptot-
ically much better than Kannan’s deterministic super-exponential algorithm [10].
Indeed, the AKS algorithm outputs with overwhelming probability a shortest vec-
tor of a lattice L in 2O.d/ polynomial-time operations. Running time apart, the
algorithm is interesting because it is based on totally different principle: sieving.

We just give the main idea, making significant simplifications: for more details,
see [14] or [15], which presents the most practical variant known of AKS. This
heuristic variant [15] has complexity .4=3/d polynomial-time operations, but the
output is not guaranteed to be a shortest vector.

Consider a ball S centered at the origin and of radius r such that �1.L/� r �O
.�1.L//. Then jL \ S j D 2O.d/. If we could exhaustive search L \ S , we could
output the shortest vector within 2O.d/ polynomial-time operations. Enumeration
algorithms do perform an exhaustive search of L\S , but to do so, they also require
to go through all the points of [1�k�d	k.L/ \ S . Because

Pd
kD1 j	k.L/ \ S j D

2O.d log d/ in the worst case for HKZ-reduced bases, and the worst-case complexity
of Kannan’s algorithm is 2O.d log d/, rather than 2O.d/, up to some polynomial-time
factor .

The main idea of sieve algorithms is to do a randomized sampling of L \ S ,
without going through the much larger set [1�k�d	k.L/ \ S . If sampling was
such that each point of L \ S was output with probability roughly jL \ S j�1,
and if N � jL \ S j, then one of N samples would be a shortest vector with
probability close to 1. Unfortunately, it is unclear if this property is satisfied by the
AKS sampling. However, it can be shown that there exists w 2 L\S such that both
w and w C s, where s is a shortest vector, can be output with nonzero probability.
Thus, by computing the shortest difference between theN sampled vectors inL\S ,
where N � jL\ S j, one obtains a shortest vector of L with probability close to 1.

However, sampling directly in a ball centered at 0 and of radius r such that
�1.L/ � r � O.�1.L// is difficult. But, starting with an LLL-reduced basis, it
is easy to sample with a radius 2O.d/�1.L/. To decrease the factor 2O.d/ to O.1/,
one uses a sieve, which is the most expensive stage of the algorithm.

Sieving iteratively shortens the vectors of S by a geometric factor of at least �
(such that 0 < � < 1) at each iteration; thus, a linear number of sieve iterations
suffices to decrease the multiplicative factor 2O.d/ to O.1/. At each iteration, each
vector output by the sieve is a subtraction of two input vectors. In other words, the
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sieve will select a subset C of the initial set S , and the output set will be obtained
by subtracting a vector of C to each vector of S n C . By volume arguments, one
can choose a set C , which is never too large, so that the number of samples does not
decrease too much. Intuitively, one uses the fact that for any 0 < � < 1, a ball of
radius R can be recovered by at most an exponential number of balls of radius �R.

We just described the principles of the AKS algorithm [14], but the proved
algorithm is a bit more complex, and its analysis is nontrivial.

HKZ Reduction

It is easy to see that any exact SVP algorithm allows to find an HKZ-reduced basis,
within the same asymptotic running time, by calling the algorithm a linear number
of times. For instance, one can do as follows:

� Call the SVP algorithm on L to obtain a shortest vector b1 of the lattice L.
� Extend b1 into a basis .b1; c2; : : : ; cd / of L and compute a basis of the projected

lattice 	2.L/.
� Call the SVP algorithm on 	2.L/ to obtain a shortest vector b02 of the projected

lattice 	2.L/.
� Lift b02 into a vector b2 of L by adding an appropriate multiple of b1 so that
.b1;b2/ is size-reduced.

� Extend .b1;b2/ into a basis .b1; ;b2; c3; : : : ; cd / of L and use this basis to
compute a basis of the projected lattice 	3.L/. And so on.

Mordell’s Inequality and Blockwise Algorithms

We saw in section “Hermite’s Inequality and the Lenstra–Lenstra–Lovász
Algorithm” the LLL algorithm [16] (see Corollary 4): given a basis of an d -
dimensional integer lattice L 	 Z

n and a reduction factor " > 0, LLL outputs
(in time polynomial in 1=" and the size of the basis) a reduced basis .b1; : : : ;bd /

whose first vector is provably short, namely,

kb1k=vol.L/1=d �
�
.1C "/p4=3

�.d�1/=2

; (2.28)

kb1k=�1.L/ �
�
.1C "/p4=3

�d�1

: (2.29)

We noted that the first inequality (2.28) was reminiscent of Hermite’s inequality [7]
on �d :

�d �
�p

4=3
�d�1 D �d�1

2 ; (Hermite’s inequality) (2.30)
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which means that L has a nonzero vector of norm � .
p
4=3/.d�1/=2vol.L/1=d .

Thus, we viewed LLL as an algorithmic version of Hermite’s inequality (2.21), and
this connection was strengthened by the fact that LLL is a variant of an algorithm
introduced by Hermite [7] to prove (2.21), based on Lagrange’s two-dimensional
algorithm [5].

The second inequality (2.29) means that LLL approximates the shortest vector
problem (SVP) within an exponential factor. On the other hand, we saw in sec-
tion “Solving Exact SVP” the best algorithms for exact-SVP, which are exponential:
Kannan’s deterministic algorithm [10] requires 2O.d log d/ polynomial-time oper-
ations, and the AKS probabilistic algorithm [14] requires 2O.d/ polynomial-time
operations.

A natural question is whether the upper bounds of (2.28) or (2.29) can be
decreased in polynomial time. The only polynomial-time algorithms achieving bet-
ter inequalities than (2.28) or (2.29) are blockwise generalizations of LLL: Schnorr’s
algorithm [17], the transference algorithm by Gama et al. [18], and Gama–Nguyen’s
slide algorithm [19], the latter one offering better theoretical guarantees than the first
two. Blockwise algorithms rely on a SVP-subroutine [10, 14] (see section “Solv-
ing Exact SVP”) computing shortest vectors in smaller lattices of dimension � k,
where k is an additional input parameter referred to as the blocksize. Note that
the exponential cost of the SVP-subroutine can be kept polynomial in the size of
the basis if the blocksize k is sufficiently small: namely, k D O.logd/ (resp.
k D O.logd= log logd/) suffices with AKS [14] (respectively [10]) as the SVP
subroutine. As the cost of the SVP-subroutine is exponential in the blocksize, it is
important to use the SVP-subroutine as efficiently as possible for a given output
quality.

In this section, we will describe Gama–Nguyen’s slide algorithm [19], which
improves [17, 18], and is simpler in several respects. For instance, it might be
argued that the inequalities achieved by [17, 18] are not very natural: more pre-
cisely, in Schnorr’s algorithm [17], k must be even, d must be a multiple of k=2,
and the upper bound of (2.29) is replaced by

p
2�k=2˛k=2..1C"/ˇk=2/

d=k�1, where
˛k=2 and ˇk=2 are technical constants bounded in [13, 17, 18]; and in the GHKN

algorithm [18], the upper bound of (2.28) is replaced by � .dCk�1/=.4.k�1//

k�1
..1 C

"/�k/
k.d�kC1/=.4.k�1/2/, while the upper bound of (2.29) is replaced by the square

of the previous expression. The new algorithm [19] is a blockwise algorithm
achieving better and more “natural” upper bounds, corresponding to the follow-
ing classical generalization of Hermite’s inequality (2.21), known as Mordell’s
inequality [20, 48]:

Theorem 11 (Mordell’s Inequality [48]). For all integers d and k such that 2 �
k � d :

�d � � .d�1/=.k�1/

k
(2.31)

This implies that any d -rank lattice L has a nonzero vector of norm:
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� p�k
.d�1/=.k�1/vol.L/1=d :

By analogy with the LLL case, Mordell’s inequality (2.31) suggests that there might
exist a blockwise reduction algorithm calling polynomially many times a SVP-
subroutine in dimension � k, and which outputs a basis whose first vector b1 2 L
would satisfy

kb1k=vol.L/1=d �
p
.1C "/�k

.d�1/=.k�1/
(2.32)

Such an algorithm would be a polynomial-time version of Mordell’s inequality,
just as LLL is a polynomial-time version of Hermite’s inequality. And an old result
of Lovász [32] shows that by calling d times such an algorithm, we would also
obtain a nonzero lattice vector b1 2 L satisfying

kb1k=�1.L/ � ..1C "/�k/
.d�1/=.k�1/ (2.33)

Note that (2.28) and (2.29) are exactly the k D 2 case of (2.32) and (2.33).
Unfortunately, the classical proof [20] of Mordell’s inequality (2.31) does not give
such an algorithm. And the blockwise algorithms [17, 18] turn out to be loose
algorithmic versions of Mordell’s inequality: for any k, the best upper bounds
known on kb1k for [17, 18] are worse than (2.32) and (2.33). For instance, the
best upper bound known on kb1k=�1.L/ for Schnorr’s algorithm is essentially�
.1C "/.k=2/2 ln 2

�d=k�1
.

Slide reduction [19] is an algorithmic version of Mordell’s inequality in the fol-
lowing sense: given a basis of an d -dimensional integer lattice L 	 Z

n, a blocksize
k dividing d , a reduction factor " > 0, and a SVP-subroutine computing shortest
vectors in any lattice of dimension� k, slide reduction outputs (in time polynomial
in the size of the basis and 1=") a basis whose first vector b1 satisfies (2.32) and the
following inequality:

kb1k=�1.L/ � ..1C "/�k/
.d�k/=.k�1/ ; (2.34)

and the number of calls to the SVP-subroutine is polynomial in the size of the basis
and 1=". Surprisingly, (2.34) is slightly better than the speculated inequality (2.33),
by a multiplicative factor close to �k . Hence, slide reduction is theoretically better
than Schnorr’s algorithm [17] and Gama et al.’s transference algorithm [18] for any
fixed k, but does not improve the asymptotical sub-exponential approximation factor
when k D O.logd/.

Like all known proofs of Mordell’s inequality, slide reduction is based on dual-
ity. Furthermore, it was proved in [19] that in the worst case, (2.32) and (2.34)
are essentially tight: namely, there exist slide reduced bases such that these upper
bounds become lower bounds if we replace �k by a slightly smaller linear function
of k, namely �k=2 or even .1 � "0/k=.2	e/ for all "0 > 0. Ajtai proved [49] an
analogue result for Schnorr’s algorithm [17], without effective constants.



58 P.Q. Nguyen

Classical Proofs of Mordell’s Inequality

We give here the classical argument showing Mordell’s inequality (2.31), such as the
one given in [20, Theorem 2.3.1]: this argument can actually be found earlier than
Mordell’s article [48], for instance when Korkine and Zolotarev [28] determined
the value of �4 by showing first that �4 � �

3=2
3 , and also somewhat implicitly in

Hermite’s first letter [7].
We first notice that it suffices to show the inequality for k D d � 1: indeed,

if (2.31) holds for k D d � 1, then by applying recursively the inequality, we
obtain (2.31) for all k. In fact, Mordell’s inequality is equivalent to showing that the
sequence .�1=.d�1/

d
/d
2 decreases.

LetL be a d -rank lattice. Let x be a shortest nonzero vector of the dual lattice L	
and letH be the hyperplane x?. Denote byM the .d �1/-rank lattice L\H . Then
vol.M/ D vol.L/kxk and kxk � p�d vol.L	/1=d D p�d vol.L/�1=d ; therefore,

vol.M/ � p�d vol.L/1�1=d :

In particular,

�1.M/ � p�d�1

�p
�d vol.L/1�1=d

�1=.d�1/ D p�d�1

p
�d

1=.d�1/vol.L/1=d :

Furthermore, we have �1.L/ � �1.M/. Hence, by definition of �d ,

p
�d � p�d�1

p
�d

1=.d�1/
:

The proof of (2.31) is now over, since we can rewrite the previous inequality as

�d � � .d�1/=.d�2/

d�1
:

This classical proof of Mordell’s inequality cannot be directly translated into a recur-
sive algorithm: indeed, it considers shortest vectors in the .d � 1/-rank lattice M ,
and also in the d -rank lattice L	. In the next subsection, we slightly modify the
argument so that only .d � 1/-rank lattices are considered, which naturally gives
rise to algorithms.

Mordell’s Inequality by Reduction

We introduce the following reduction notion, which we dub Mordell’s reduction
because it is inspired by Mordell’s inequality or rather its proof:

Definition 18. Let d � 2. A basis .b1; : : : ;bd / of a lattice L is Mordell-reduced
with factor " � 0 if and only if the following two conditions hold:
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kb1k D �1.L.b1; : : : ;bd�1// (2.35)

and

1=kb?
dk � .1C "/�1.	2.L/

	/; (2.36)

where 	2.L/ denotes the orthogonal projection of L over the hyperplane b?1 , and
b?

d
denotes as usual the component of bd which is orthogonal to the hyperplane

spanned by b1; : : : ;bd�1.

The inequality (2.36) is motivated by the fact that b?
d
=kb?

d
k2 2 	2.L/

	 (which we
previously mentioned at the end of section “Gram–Schmidt and Triangularization”
giving a link between duality and Gram–Schmidt orthogonalization), because the
vector is orthogonal with b1; : : : ;bd�1, and its dot product with bd is equal to 1.

Note that there always exist Mordell-reduced bases for all " � 0. Indeed, con-
sider an HKZ-reduced basis .b1; : : : ;bd / of L. Then (2.35) holds. Next, consider a
shortest vector c in 	2.L/

	 and modify b2; : : : ;bd in such a way that b?
d
=kb?

d
k D c

and .b1; : : : ;bd / remains a basis of L: then both (2.36) and (2.35) hold.
Mordell’s reduction has the following properties:

Lemma 10. Let .b1; : : : ;bd / be a Mordell-reduced basis of L with factor " � 0

and d � 3. Then

1. Primal inequality:

kb1k � p�d�1
.d�1/=.d�2/

 
d�1Y

iD2

kb?
i k
!1=.d�2/

: (2.37)

2. Dual inequality:

 
d�1Y

iD2

kb?
i k
!1=.d�2/

� �.1C "/p�d�1

�.d�1/=.d�2/ kb?
dk: (2.38)

3. Primal–dual inequality:

kb?
1k=kb?

dk � ..1C "/�d�1/
.d�1/=.d�2/: (2.39)

4. Relaxed Mordell’s inequality:

kb1k �
�
.1C "/1=dp�d�1

�.d�1/=.d�2/

vol.L/1=d : (2.40)

Proof. Equation (2.37) follows from kb1k D �1.L.b1; : : : ;bd // and the definition
of �d . Indeed, we have
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kb1k � p�d�1

 
d�1Y

iD1

kb?
i k
!1=.d�1/

:

Therefore,

kb1kd�1 � p�d�1
d�1

d�1Y

iD1

kb?
i k;

which can be rewritten as (2.37). Similarly, 1=kb?
d
k � .1C "/�1.	2.L/

	/ implies
that

1=kb?
dk � .1C "/

p
�d�1

 
dY

iD2

1=kb?
i k
!1=.d�1/

I

therefore,
dY

iD2

kb?
i k �

�
.1C "/p�d�1=kb?

dk
�d�1

;

which implies (2.38). And (2.39) follows from multiplying (2.37) and (2.38).
Furthermore, we have

vol.L/ D
dY

iD1

kb?
i k

D kb?
dk � kb?

1k �
d�1Y

iD2

kb?
i k

�
�Qd�1

iD2 kb?
i k
�1=.d�2/

..1C "/p�d�1/.d�1/=.d�2/
� kb?

1k �
d�1Y

iD2

kb?
i k by (2.38)

D kb?
1k

..1C "/p�d�1/.d�1/=.d�2/
�
 

d�1Y

iD2

kb?
i k
!1C1=.d�2/

� kb?
1k

..1C "/p�d�1/.d�1/=.d�2/
�
 

kb?
1kp

�d�1
.d�1/=.d�2/

!.d�2/C1

by (2.37)

D kb?
1kd

.1C "/.d�1/=.d�2/
p
�d�1

.1C.d�2/C1/.d�1/=.d�2/

D kb?
1kd

.1C "/.d�1/=.d�2/
p
�d�1

d.d�1/=.d�2/
;

which proves (2.40). ut
Theorem 12. Let k � 2. Let .b1; : : : ;b2k/ be a basis of a lattice L such that
.b1; : : : ;bkC1/ is Mordell-reduced and b?

kC1
is a shortest vector in the projected
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lattice 	kC1.L/. Then

Qk
iD1 kb?

i kQ2k
iDkC1 kb?

i k
� ..1C "/�k/

k2=.k�1/ : (2.41)

Proof. As b?
kC1

is a shortest vector of the projected lattice 	kC1.L/, we can apply
(2.37) to obtain

kb?
kC1k �

p
�k

k=.k�1/

0

@
2kY

iDkC2

kb?
i k
1

A
1=.k�1/

I

therefore, we can lower bound the denominator of (2.41) as

2kY

iDkC1

kb?
i k � kb?

kC1k �
 kb?

kC1
k

p
�k

k=.k�1/

!k�1

D kb?
kC1kk=

p
�k

k
: (2.42)

On the other hand, .b1; : : : ;bkC1/ is Mordell-reduced, so (2.38) implies that

kY

iD2

kb?
i k �

�
.1C "/p�k

�k kb?
kC1kk�1;

and (2.39) implies that

kb?
1k � ..1C "/�k/

k=.k�1/ � kb?
kC1k:

By multiplying the previous two inequalities, we can upper bound the numerator of
(2.41) as

kY

iD1

kb?
ik � kb?

kC1kk � ..1C "/�k/
k=.k�1/ � �.1C "/p�k

�k
: (2.43)

Hence, (2.43) and (2.42) imply that

Qk
iD1 kb?

i kQ2k
iDkC1 kb?

i k
� ..1C "/�k/

k=.k�1/ � �.1C "/p�k

�k �p�k
k

D ..1C "/�k/
kCk=.k�1/

D ..1C "/�k/
k2=.k�1/ ;

which proves (2.41). ut
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We later show (and it is not difficult to see) that there exist bases satisfying the
assumptions of Theorem 12 for any " � 0: by taking " D 0, this proves that for all
k � 2

�2k;k � �k2=.k�1/

k
:

Blockwise Reduction

For any basis B D Œb1; : : : ; bd �, we use the notation BŒi;j � for the pro-
jected block Œ	i .bi /; : : : ; 	i .bj /�, where 	i is the orthogonal projection over
span.b1; : : : ;bi�1/

?. When looking at the lower-triangular representation of B ,
BŒi;j � corresponds to the (lower-triangular) submatrix of the lower-triangular matrix
within row i to row j . Note that BŒi;j � always represents a linearly independent
family of j � i C 1 vectors, whose first vector is b?

i . For example, BŒi;i � D Œb?
i �

and BŒ1;i � D Œb1; : : : ;bi � for all i 2 Œ1; d �. If B has integer coefficients, then BŒi;j �

has rational coefficients if i > 1 and integer coefficients if i D 1. As an important
particular case, if T is a lower triangular matrix (such as the � matrix of the Gram–
Schmidt orthogonalization), then TŒi;j � is simply the inner triangular matrix within
the indices Œi; j �.

In the LLL algorithm, vectors are considered two by two. At each loop iteration,
the two-dimensional lattice Li D Œ	i .bi /; 	i .biC1/� is partially reduced (through a
swap) to decrease kb?

i k by at least some geometric factor. When all such lattices are

almost reduced, every ratio kb?
i k=kb?

iC1k is roughly less than �2 D
q

4
3

.

In blockwise generalizations of LLL, we select an integer k � 2 dividing d ,
called the blocksize. Then, the vectors b?

i are “replaced” by k-dimensional blocks
Si D BŒik�kC1;ik�, where 1 � i � d

k
. The analogue of the two-dimensional

Li in LLL are the 2k-dimensional large blocks Li D BŒik�kC1;ikCk�, where
1 � i � d

k
� 1. The link between the small blocks S1; : : : ; Sd=k and the large

blocks L1; : : : ; Ld=k�1 is that Si consists of the first k vectors of Li , while
SiC1 is the projection of the last k vectors of Li over span.Si /

?. As a result,
vol.Li / D vol.Si / � vol.SiC1/. By analogy with LLL, the blockwise algorithm
will perform operations on each large block Li so that vol.Si /=vol.SiC1/ can be
upper bounded.

Gama and Nguyen [19] introduced the following blockwise version of Mordell’s
reduction (in fact, the reduction in [19] is a bit stronger, but the difference is minor
and not relevant):

Definition 19. Let d � 2 and k � 2 dividing d . A basis .b1; : : : ;bd / of a lattice
L is block-Mordell-reduced with factor " � 0 and blocksize k if and only if it is
size-reduced and the following two conditions hold:

� For each i 2 f1; : : : ; d=k � 1g, the block BŒik�kC1;ikC1� is Mordell-reduced.
� We have, kb?

d�kC1
k D �1.L.BŒd�kC1;d�//.

This is equivalent to asking that the basis is size-reduced and the following two
conditions hold:
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1. Primal conditions: for each j 2 f1; : : : ; d g such that j 
 1 .mod k/,

kb?
j k D �1.L.BŒj;jCk�1�//: (2.44)

Note that BŒj;jCk�1� is one of the small blocks Si , namely S1C.j�1/=k .
2. Dual conditions: for each j 2 f1; : : : ; d � kg such that j 
 1 .mod k/,

1=kb?
jCkk � .1C "/�1.L.BŒjC1;jCk�/

	/: (2.45)

Note that BŒjC1;jCk� is not one of the small blocks Si , because there is a shift of
index: the block starts at index j C 1 rather than j .

Let us explain the intuition behind block-Mordell reduction. Conditions (2.44)
and (2.45) imply that each vector b?

j such that j 2 fk; : : : ; d g and j 
 1 .mod k/
is neither too large, nor too short:

� Not too large because kb?
j k D �1.L.BŒj;jCk�1�//;

� Not too short because 1=kb?
j k � .1C "/�1.L.BŒj�kC1;j �/

	/.
These conditions are inspired by the fact that b?

j is connected to two natural k-rank
lattices:

� b?
j belongs to the projected lattice L.BŒj;jCk�1�/: it is in fact the first vector of
BŒj;jCk�1�.

� b?
j =kb?

j k2 belongs to the dual-projected lattice L.BŒj�kC1;j �/
	: see the end of

section “Gram–Schmidt and Triangularization” for links between duality and
Gram–Schmidt orthogonalization.

We now give elementary properties of block-Mordell-reduced bases, which
follow from Mordell reduction:

Lemma 11. Let .b1; : : : ;bd / be a block-Mordell-reduced basis of a lattice L with
factor " � 0 and blocksize k � 2 dividing d . Then,

1. Primal inequality: for each j 2 f1; : : : ; d g such that j 
 1 .mod k/;

kb?
j k �

p
�k

k=.k�1/

0

@
jCk�1Y

iDjC1

kb?
i k
1

A
1=.k�1/

: (2.46)

2. Dual inequality: for each j 2 f1; : : : ; d � kg such that j 
 1 .mod k/;

0

@
jCk�1Y

iDjC1

kb?
i k
1

A
1=.k�1/

� �.1C "/p�k

�k=.k�1/ kb?
jCkk: (2.47)

3. Primal-dual inequality: for each j 2 f1; : : : ; d � kg such that j 
 1 .mod k/;

kb?
j k=kb?

jCkk � ..1C "/�k/
k=.k�1/: (2.48)
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4. Half-volume inequality: for each j 2 f1; : : : ; d � kg such that j 
 1 .mod k/;

QjCk�1
iDj kb?

i k
QjC2k�1

iDjCk
kb?

i k
� ..1C "/�k/

k2=.k�1/ : (2.49)

Proof. Equation (2.46) follows from (2.37), (2.47) follows from (2.38), (2.48) fol-
lows from (2.39), and (2.49) follows from (2.41). ut
Theorem 13. Let .b1; : : : ;bd / be a block-Mordell-reduced basis of a lattice L with
factor " � 0 and blocksize k � 2 dividing d . Then,

kb1k=vol.L/1=d � p�k
.d�1/=.k�1/ �p1C ".d�k/=.k�1/

: (2.50)

kb1k=�1.L/ � ..1C "/�k/
.d�k/=.k�1/ ; (2.51)

Proof. We have,

vol.L/ D
d=kY

iD1

vol.Si /;

where, by (2.49), for each i 2 f1; : : : ; d=k � 1g:

vol.Si /=vol.SiC1/ � ..1C "/�k/
k2=.k�1/ :

This implies that, similar to LLL,

vol.S1/ � ..1C "/�k/
k2=.k�1/	.d=k�1/=2 vol.L/1=.d=k/:

And (2.44) implies that kb?
1k D �1.L.BŒ1;k�// D �1.S1/; therefore,

kb?
1k �

p
�kvol.S1/

1=k

� p�k ..1C "/�k/
k=.k�1/	.d=k�1/=2 vol.L/1=d

D p�k
1C.d�k/=.k�1/

.1C "/.d�k/=.2.k�1//vol.L/1=d

D p�k
.d�1/=.k�1/

.1C "/.d�k/=.2.k�1//vol.L/1=d ;

which implies (2.50). Now, consider a shortest vector u of L. Then kuk D �1.L/

and u can be written as u D Pm
iD1 ˛i bi , where each ˛i 2 Z and ˛m ¤ 0. If

we let q D b.m � 1/=kc, then 	qkC1.u/ is a nonzero vector of L.BŒqkC1;qkCk�/.
But by definition of block-Mordell reduction, b?

qkC1
is a shortest vector of

L.BŒqkC1;qkCk�/; therefore,

kb?
qkC1k � k	qkC1.u/k � kuk D �1.L/;
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which implies that
kb1k=�1.L/ � kb1k=kb?

qkC1k:
However, note that

kb1k
kb?

qkC1
k D

q�1Y

iD0

kb?
ikC1
k

kb?
.iC1/kC1

k ;

which, by (2.48), is

�
�
..1C "/�k/

k=.k�1/
�q D ..1C "/�k/

qk=.k�1/;

where qk � d � k. Hence,

kb1k=�1.L/ � ..1C "/�k/
.d�k/=.k�1/ ;

which proves (2.51). ut

The Slide Algorithm

Gama and Nguyen [19] presented a polynomial-time algorithm to block-Mordell-
reduce a basis, using an SVP-oracle in dimension � k: Algorithm 7 is a simplified
version, to make exposition easier. By an SVP-oracle, [19] means any algorithm
which, given as input the Gram matrix of a basis .b1; : : : ;bk/ of an integer latticeL,
outputs .u1; : : : ; uk/ 2 Z

k such that kPk
iD1 ui bik D �1.L/.

Input: a basis .b1; : : : ; bd / of a lattice L, together with a reduction factor " 
 0 and a blocksize
k 
 2 dividing d .

Output: the basis .b1; : : : ; bd / is block-Mordell-reduced with factor " and blocksize k 
 2.
1: LLL-reduce .b1; : : : ; bd / using Algorithm 6.
2: if there exists j 2 f1; : : : ; dg such that j � 1 .mod k/ and j does not satisfy (2.44) then
3: Use an SVP-oracle in dimension � k to locally HKZ-reduce the block BŒj;jCk�1� //, which

implies that (2.44) holds; then return to Step 1. Basis vectors outside the block BŒj;jCk�1�//

are not modified.
4: end if
5: if there exists j 2 f1; : : : ; d � kg such that j � 1 .mod k/ and j does not satisfy (2.45)

then
6: Use an SVP-oracle in dimension � k to reduce the block BŒjC1;jCk� in such a way that

1=kb?jCkk D �1.L.BŒjC1;jCk� /
�/, which implies that (2.45) holds; then return to Step 1.

Basis vectors outside the block BŒjC1;jCk� are not modified.
7: end if

Algorithm 7: The basic slide algorithm [19]

Tests in Steps 2 and 5 are performed using an SVP-oracle in dimension k. We
will not describe the local reductions performed in Steps 3 and 6: they are natural
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and are presented in [19]. Their cost is a linear number of calls to an SVP-oracle in
dimension � k, together with polynomial-time operations, like an HKZ-reduction
of a k-dimensional basis.

What is clear is that if the slide algorithm of Fig. 7 terminates, then the final basis
is block-Mordell-reduced with factor " and blocksize k. What is less clear is why the
algorithm terminates, and what is its complexity. By analogy with the complexity
analysis of LLL, one considers the following integral potential:

D0 D
d=kY

iD1

vol.L.BŒ1;ik�//
2 2 Z

C:

ThenD can be rewritten as

D0 D
d=kY

iD1

iY

jD1

vol.Sj /
2 D

d=kY

jD1

vol.Sj /
2.d=kC1�j /; (2.52)

which is the blockwise analogue of D D kb?
1k2dkb?

2k2.d�1/ � � � � � kb?
d
k2, which

was used for analyzing LLL. Clearly, logD0 is initially polynomial in the size of the
basis.

We use D0 to show that the number of times that the slide algorithm
(Algorithm 7) goes through Step 1 is polynomially bounded, just as D was used
to show that number of swaps in LLL was polynomially bounded. Let us look at the
operations of Algorithm 7, which could possibly modify the integerD0: it turns out
that only Steps 1 and 6 can modify D0, because Step 3 only modifies one block Si

(for some i ), but the volume of this block cannot change, as the volume of the whole
lattice remains the same. We discuss Steps 1 and 6 separately:

� Step 1 is an LLL reduction, which performs only size-reductions and swaps.
Size-reductions do not modify any of the b?

i , and therefore cannot modify D0.
And we note that swaps of vectors bi�1 and bi can modify D0 only if i 
 1

.mod k/. When this is the case, i D 1 C k` for some integer ` � 1, and we
see that the last vector of the block S`�1 is the projection of bi�1, while the first
vector of the block S` is the projection of bi . This means that in (2.52) of D0,
only vol.S`�1/ and vol.S`/may change. On the other hand, vol.S`�1/� vol.S`/

remains the same because vol.L/ D Qd=k
jD1 vol.Sj / cannot change. But if LLL

swapped bi�1 and bi , this means that Lovász’ condition failed for .i � 1; i/,
which implies that kb?

i�1k will decrease strictly (in fact, by some multiplicative
factor < 1): in this case, vol.S`�1/ will decrease, and therefore D0. Hence, only
two situations can occur:

Case 1: Step 1 never swaps vectors bi�1 and bi such that i 
 1 .mod k/, in which
case D0 does not change. Here, the swaps are always within a block S`,
never between two consecutive blocks S`�1 and S`.
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Case 2: Step 1 swaps at least once a pair of vectors bi�1 and bi such that i 
 1

.mod k/, in which case D0 decreases by some multiplicative factor < 1

depending on ". This means that this situation occurs at most polynomially
many times.

� Step 6 modifies the block BŒjC1;jCk� so that 1=kb?
jCk
k D �1.L.BŒjC1;jCk�/

	/,
which implies (2.45). As j 
 1 .mod k/, we may write j D 1 C k` for
some integer ` � 0. We see that in (2.52) of D0, only vol.S`C1/ and vol.S`C2/

change. On the other hand, vol.S`C1/ � vol.S`C2/ remains the same because
vol.L/ D Qd=k

jD1 vol.Sj / cannot change. Before Step 6, (2.45) did not hold,
which means that 1=kb?

jCk
k > .1C"/�1.L.BŒjC1;jCk�/

	/. But after Step 6, we
have 1=kb?

jCk
k D �1.L.BŒjC1;jCk�/

	/, which implies that 1=kb?
jCk
k decreases

by a multiplicative factor � 1=.1C "/ < 1. As b?
jCk

is the first vector of S`C2,
this means that vol.S`C2/ increases by a multiplicative factor� 1C", and there-
fore vol.S`C1/ decreases by a multiplicative factor � 1=.1C "/ < 1. Hence,D0
also decreases by a multiplicative factor � 1=.1C "/2 < 1. Thus, the number of
times Step 6 is performed is at most polynomial in 1=" and the size of the basis.

We showed that the steps of the slide algorithm (Algorithm 7) either preserve or
decrease the integer D0 by a mulplicative factor < 1 depending on ". As D0 � 1

and logD0 is initially polynomial in the size of the basis, this means that number of
steps for which there is a strict decrease is at most polynomial in 1=" and the size of
the basis. On the other hand, it is not difficult to see that the number of consecutive
steps for which D0 is preserved is also polynomially bounded: for instance, once
Steps 6 are all performed, then all the blocks Si are HKZ-reduced, which implies
that during Step 1, Case 1 cannot occur.

We have seen the main argument why the slide algorithm is polynomial: the
number of steps is polynomial. Like in LLL, it would remain to check that all
the numbers remain polynomially bounded, which is done in [19]. We only have
sketched a proof of the following result:

Theorem 14 ([19]). There exists an algorithm which, given as input a basis of a
d -dimensional integer lattice L 	 Z

n, a reduction factor " > 0, a blocksize k � 2
dividing d , and access to an SVP-oracle in dimension� k, outputs a block-Mordell-
reduced basis of L with factor " and blocksize k, such that

1. The number of calls to the SVP-oracle is polynomial in the size of the input basis
and 1=".

2. The size of the coefficients given as input to the SVP-oracle is polynomial in the
size of the input basis.

3. Apart from the calls to the SVP-oracle, the algorithm only performs arithmetic
operations on rational numbers of size polynomial in the size of the input basis,
and the number of arithmetic operations is polynomial in 1=" and the size of the
basis.

Acknowledgements We thank Nicolas Gama and Damien Stehlé for helpful comments.
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Chapter 3
Probabilistic Analyses of Lattice
Reduction Algorithms

Brigitte Vallée and Antonio Vera

Abstract The general behavior of lattice reduction algorithms is far from being
well understood. Indeed, many experimental observations, regarding the execution
of the algorithms and the geometry of their outputs, pose challenging questions,
which remain unanswered and lead to natural conjectures yet to be settled. This sur-
vey describes complementary approaches which can be adopted for analyzing these
algorithms, namely, dedicated modeling, probabilistic methods, and a dynamical
systems approach. We explain how a mixed methodology has already proved fruit-
ful for small dimensions p, corresponding to the variety of Euclidean algorithms
(p D 1) and to the Gauss algorithm (p D 2). Such small dimensions constitute an
important step in the analysis of lattice reduction in any (high) dimension, since the
celebrated LLL algorithm, due to Lenstra, Lenstra, and Lovász, precisely involves a
sequence of Gauss reduction steps on sublattices of a large lattice.

General Context

The present study surveys the main works aimed at understanding, both from a the-
oretical and an experimental viewpoint, how the celebrated LLL algorithm designed
by Lenstra, Lenstra, and Lovász performs in practice. The goal is to precisely quan-
tify the probabilistic behavior of lattice reduction and attain a justification of many
of the experimental facts observed. Beyond its intrinsic theoretical interest, such a
justification is important as a fine understanding of the lattice reduction process con-
ditions algorithmic improvements in major application areas, most of them being
described in this book: cryptography (see [28, 31]), computational number theory
(see [21, 22, 35]), integer programming (see [1]), etc. The results obtained in this
perspective may then be applied for developing a general algorithmic strategy for
lattice reduction.
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Varied Approaches

We briefly describe now three different points of view: dedicated modeling, proba-
bilistic methods, and dynamical systems approach.
Dedicated Modeling. Probabilistic models are problem-specific in the various appli-
cations of lattice reduction. For each particular area, special types of lattice bases are
used as input models, which induce rather different quantitative behaviors. An anal-
ysis of the lattice reduction algorithms under such probabilistic models aims at
characterizing the behavior of the main parameters – principally, the number of
iterations, the geometry of reduced bases, and the evolution of densities during an
execution.

Probabilistic Methods. The probabilistic line of investigation has already led to tan-
gible results under the (somewhat unrealistic) models where vectors of the input
basis are independently chosen according to a distribution that is rotationally invari-
ant. In particular, the following question has been answered: what is the probability
for an input basis to be already reduced? A possible extension of this study to realis-
tic models and to the complete algorithm (not just its input distribution) is discussed
here.

Dynamical Systems Approach. Thanks to earlier results, the dynamics of Euclid’s
algorithm is now well-understood – many results describe the probabilistic behav-
ior of that algorithm, based on dynamical systems theory as well as related tools,
like transfer operators. These techniques are then extended to dimension p D 2

(Gauss’ algorithm). We examine here the possible extensions of the “dynamical
analysis methodology” to higher dimensions. The first step in such an endeavor
should describe the dynamical system for the LLL algorithm, which is probably a
complex object, for p > 2.

Historical and Bibliographic Notes

Over the past 20 years, there have been several parallel studies dedicated to the
probabilistic behavior of lattice reduction algorithms, in the two-dimensional case
as well as in the general case.

The Two-Dimensional Case. The history of the analysis of lattice reduction algo-
rithms starts before 1982, when Lagarias [23] performs in 1980 a first (worst–case)
analysis of the Gauss algorithms in two and three dimensions. In 1990, Vallée [38]
exhibits the exact worst–case complexity of the Gauss algorithm. In the same year,
Flajolet and Vallée [16] perform the first probabilistic analysis of the Gauss algo-
rithm: they study the mean value of the number of iterations in the uniform model.
Then, in 1994, Daudé et al. [14] obtain a complete probabilistic analysis of the
Gauss algorithm, with a “dynamical approach,” but still under the uniform model.
The same year, Laville and Vallée [24] study the main output parameters of the algo-
rithm (the first minimum, Hermite’s defect), under the uniform model, still. In 1997,
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Vallée [39] introduces the model “with valuation” for the Sign Algorithm: this is an
algorithm for comparing rationals, whose behavior is similar to the Gauss algorithm.
In 2000, Flajolet and Vallée [17] precisely study all the constants that appear in the
analysis of the Sign Algorithm. Finally, in 2007, Vallée and Vera [45, 47] study
all the main parameters of the Gauss algorithm (execution parameters and output
parameters) in the general model “with valuation.”

The Dynamical Analysis Methodology. From 1995, Vallée has built a general method
for analyzing a whole class of gcd algorithms. These algorithms are all based on the
same principles as the Euclid algorithms (divisions and exchanges), but they differ
on the kind of division performed. This method, summarized for instance in [37],
views an algorithm as a dynamical system and uses a variety of tools, some of them
coming from analysis of algorithms (generating functions, singularity analysis, etc.)
and other ones being central in dynamical systems, like transfer operators. The inter-
est of such an analysis becomes apparent in the work about the Gauss Algorithm
[14], previously described, which is in fact the first beginning of dynamical anal-
ysis. The dynamical systems underlying the Gauss algorithms are just extensions
of systems associated to the (centered) Euclid algorithms, which first need a sharp
understanding. This is why Vallée returns to the one-dimensional case, first performs
average-case analysis for a large variety of Euclidean algorithms and related param-
eters of interest: number of iterations [41], bit-complexity (with Akhavi) [5], and
bit-complexity of the fast variants of the Euclid algorithms (with the CAEN group)
[10]. From 2003, Baladi et al. [6, 27] also obtain distributional results on the main
parameters of the Euclid algorithms – number of iterations, size of the remainder
at a fraction of the execution, and bit-complexity – and show that they all follow
asymptotic normal laws.

It is now natural to expect that most of the principles of dynamical analysis can
be applied to the Gauss algorithm. The first work in this direction is actually done
by Vallée and Vera, quite recently (2007), and completes the first work [14].

The General Case. The first probabilistic analysis of the LLL algorithm is performed
by Daudé and Vallée on 1994 [15] under the “random ball model.” These authors
obtain an upper bound for the mean number of iterations of the algorithm. Then,
in 2002, Akhavi [3] studies the probabilistic behavior of a random basis (again,
under the random ball model) and he detects two different regimes, according to
the dimension of the basis relative to the dimension of the ambient space. In 2006,
Akhavi et al. [4] improve on the previous study, while generalizing it to other ran-
domness models (the so-called spherical models): they exhibit a limit model when
the ambient dimension becomes large. These studies illustrate the importance of the
model “with valuation” for the local bases associated to the input.

In 2003, Ajtai [2] exhibits a randomness model of input bases (which is called
the Ajtai model in this paper), under which the probabilistic behavior of the LLL
algorithm is close to the worst-case behavior. In 2006, Nguyen et al. [30] study
random lattices together with their parameters relevant to lattice reduction algo-
rithms. In 2006, Nguyen and Stehlé [30] conduct many experiments for the LLL
algorithms under several randomness models. They exhibit interesting experimental
phenomena and provide conjectures that would explain them.

Probabilistic Analyses of Lattice Reduction Algorithms
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The Two-Dimensional Case as a Main Tool for the General Case. This paper
describes a first attempt to apply the dynamical analysis methodology to the LLL
algorithm: the LLL algorithm is now viewed as a whole dynamical system that runs
in parallel many two-dimensional dynamical systems and “gathers” all the dynam-
ics of these small systems. This (perhaps) makes possible to use the precise results
obtained on the Gauss algorithm – probabilistic and dynamic – as a main tool for
describing the probabilistic behavior of the LLL algorithm and its whole dynamics.

Plan of the Survey

Section “The Lattice Reduction Algorithm in the Two-Dimensional Case” explains
why the two-dimensional case is central, introduces the lattice reduction in this par-
ticular case, and presents the Gauss algorithm, which is our main object of study.
Section “The LLL Algorithm” is devoted to a precise description of the LLL algo-
rithm in general dimension; it introduces the main parameters of interest: the output
parameters, which describe the geometry of the output bases, and the execution
parameters, which describe the behavior of the algorithm itself. The results of the
main experiments conducted regarding these parameters on “useful” classes of lat-
tices are also reported there. Finally, we introduce variants of the LLL algorithm,
where the role of the Gauss algorithm becomes more apparent than in standard
versions. Section “What is a Random (Basis of a) Lattice?” describes the main prob-
abilistic models of interest that appear in “real life” applications – some of them are
given because of their naturalness, while other ones are related to actual applications
of the LLL algorithm. Section “Probabilistic Analyses of the LLL Algorithm in the
Spherical Model” is devoted to a particular class of models, the so-called spherical
models, which are the most natural models (even though they do not often surface
in actual applications). We describe the main results obtained under this model: the
distribution of the “local bases,” the probability of an initial reduction, and mean
value estimates of the number of iterations and of the first minimum.

The first step towards a precise study of other, more “useful,” models is a
fine understanding of the two-dimensional case, where the mixed methodology is
employed. In Section “Returning to the Gauss Algorithm”, we describe the dynam-
ical systems that underlie the (two) versions of the Gauss algorithms, together with
two (realistic) input probabilistic models of use: the model “with valuation” and the
model “with fixed determinant.” Sections “Analysis of Lattice Reduction in Two-
Dimensions: The Output Parameters” and “Analysis of the Execution Parameters
of the Gauss Algorithm” on the precise study of the main parameters of inter-
est – either output parameters or execution parameters – under the model “with
valuation.” Finally, Section “First Steps in the Probabilistic Analysis of the LLL
Algorithm” returns to the LLL algorithm and explains how the results of Sections
“Returning to the Gauss Algorithm – Analysis of the Execution Parameters of the
Gauss Algorithm” could (should?) be used and/or extended to higher dimensions.
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The Lattice Reduction Algorithm
in the Two-Dimensional Case

A lattice L � R
n of dimension p is a discrete additive subgroup of R

n. Such
a lattice is generated by integral linear combinations of vectors from a family
B WD .b1; b2; : : : bp/ of p � n linearly independent vectors of R

n, which is called a
basis of the lattice L. A lattice is generated by infinitely many bases that are related
to each other by integer matrices of determinant ˙1. Lattice reduction algorithms
consider a Euclidean lattice of dimension p in the ambient space R

n and aim at
finding a “reduced” basis of this lattice, formed with vectors almost orthogonal and
short enough. The LLL algorithm designed in [25] uses as a sub-algorithm the lat-
tice reduction algorithm for two dimensions (which is called the Gauss algorithm):1

it performs a succession of steps of the Gauss algorithm on the “local bases,” and
it stops when all the local bases are reduced (in the Gauss sense). This is why it is
important to precisely describe and study the two-dimensional case. This is the pur-
pose of this section: it describes the particularities of the lattices in two dimensions,
provides two versions of the two-dimensional lattice reduction algorithm, namely
the Gauss algorithm, and introduces its main parameters of interest.

We also see in this article that the Gauss algorithm solves the reduction problem
in an optimal sense: it returns a minimal basis, after a number of iterations, which is
at most linear with respect to the input size. This type of algorithms can be general-
ized in small dimensions. For instance, in the three-dimensional case, Vallée in 1987
[42] or Semaev more recently [33] provide optimal algorithms, which directly find a
minimal basis, after a linear number of iterations. However, algorithms of this qual-
ity no longer exist in higher dimensions, and the LLL algorithm can be viewed as
an approximation algorithm that finds a good basis (not optimal generally speaking)
after a polynomial number of iterations (not linear generally speaking).

Lattices in Two-Dimensions

Up to a possible isometry, a two-dimensional lattice may always be considered
as a subset of R

2. With a small abuse of language, we use the same notation for
denoting a complex number z 2 C and the vector of R

2 whose components are
.<z;=z/. For a complex z, we denote by jzj both the modulus of the complex z and
the Euclidean norm of the vector z; for two complex numbers u; v, we denote by
.u � v/ the scalar product between the two vectors u and v. The following relation
between two complex numbers u; v will be very useful in the sequel

v

u
D .u � v/
juj2 C i

det.u; v/

juj2 : (3.1)

1 It seems that the Gauss algorithm, as it is described here, is not actually due to Gauss, but due to
Lagrange.

Probabilistic Analyses of Lattice Reduction Algorithms
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Fig. 3.1 A lattice and three of its bases represented by the parallelogram they span. The basis on
the left is minimal (reduced), while the two other ones are skew

A lattice of two-dimensions in the complex plane C is the set L of elements of C

(also called vectors) defined by

L D Zu˚ Zv D fauC bvI a; b 2 Zg;

where .u; v/, called a basis, is a pair of R-linearly independent elements of C.
Remark that in this case, due to (3.1), one has =.v=u/ 6D 0.

Amongst all the bases of a lattice L, some that are called reduced enjoy the prop-
erty of being formed with “short” vectors. In dimension 2, the best reduced bases
are minimal bases that satisfy optimality properties: define u to be a first minimum
of a lattice L if it is a nonzero vector of L that has smallest Euclidean norm; the
length of a first minimum of L is denoted by �1.L/. A second minimum v is any
shortest vector amongst the vectors of the lattice that are linearly independent of
one of the first minimum u; the Euclidean length of a second minimum is denoted
by �2.L/. Then a basis is minimal if it comprises a first and a second minimum
(See Fig. 3.1). In the sequel, we focus on particular bases that satisfy one of the two
following properties:

.P / It has a positive determinant [i.e., det.u; v/ > 0 or =.v=u/ > 0]. Such a basis
is called positive.

.A/ It has a positive scalar product [i.e., .u � v/ � 0 or <.v=u/ � 0]. Such a basis is
called acute.

Without loss of generality, we may always suppose that a basis is acute (resp.
positive), as one of .u; v/ and .u;�v/ is.
The following result gives characterizations of minimal bases. Its proof is omitted.

Proposition 1. [Characterizations of minimal bases.]

.P / [Positive bases.] Let .u; v/ be a positive basis. Then the following two condi-
tions .a/ and .b/ are equivalent:

.a/ The basis .u; v/ is minimal

.b/ The pair .u; v/ satisfies the three simultaneous inequalities:
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.P1/ W
ˇ̌
ˇ
v

u

ˇ̌
ˇ � 1; .P2/ W

ˇ̌
ˇ<
� v

u

�ˇ̌
ˇ � 1

2
; and .P3/ W =

� v

u

�
> 0:

.A/ [Acute bases.] Let .u; v/ be an acute basis. Then the following two conditions
.a/ and .b/ are equivalent:

PGAUSS.u; v/

Input. A positive basis .u; v/ of C with jvj � juj; j�.v; u/j � .1=2/.
Output. A positive minimal basis .u; v/ of L.u; v/ with jvj 
 juj.
While jvj < juj do

.u; v/ WD .v;�u/;
q WD b�.v; u/e;
v WD v� qu;

.a/ The basis .u; v/ is minimal

.b/ The pair .u; v/ satisfies the two simultaneous inequalities:

.A1/ W
ˇ̌
ˇ
v

u

ˇ̌
ˇ � 1 and .A2/ W 0 � <

� v

u

�
� 1

2
:

The Gaussian Reduction Schemes

There are two reduction processes, according as one focuses on positive bases or
acute bases. Accordingly, as we study the behavior of the algorithm itself, or the
geometric characteristics of the output, it will be easier to deal with one version
than with the other one: for the first case, we will choose the acute framework, and
for the second case, the positive framework.

The Positive Gauss Algorithm

The positive lattice reduction algorithm takes as input a positive arbitrary basis and
produces as output a positive minimal basis. The positive Gauss algorithm aims at
satisfying simultaneously the conditions .P / of Proposition 1. The conditions .P1/

and .P3/ are simply satisfied by an exchange between vectors followed by a sign
change v WD �v. The condition .P2/ is met by an integer translation of the type

v WD v � qu with q WD b�.v; u/e ; �.v; u/ WD <
� v

u

�
D .u � v/
juj2 ; (3.2)

where bxe represents the integer nearest2 to the real x. After this translation, the
new coefficient �.v; u/ satisfies 0 � j�.v; u/j � .1=2/.

2 The function bxe is extended to the negative numbers with the relation bxe D �b�xe.

Probabilistic Analyses of Lattice Reduction Algorithms
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On the input pair .u; v/ D .v0; v1/, the positive Gauss Algorithm computes a
sequence of vectors vi defined by the relations

viC1 D �vi�1 C qi vi with qi WD b�.vi�1; vi /e : (3.3)

Here, each quotient qi is an integer of Z, the final pair .vp; vpC1/ satisfies the
conditions .P / of Proposition 1, and P.u; v/ WD p denotes the number of iterations.
Each step defines a unimodular matrix Mi with detMi D 1,

Mi D
�
qi �1
1 0

�
; with

�
viC1

vi

�
DMi

�
vi

vi�1

�
;

so that the algorithm produces a matrix M for which

�
vpC1

vp

�
DM

�
v1

v0

�
with M WDMp �Mp�1 � : : : �M1: (3.4)

The Acute Gauss Algorithm

The acute reduction algorithm takes as input an arbitrary acute basis and produces as
output an acute minimal basis. This AGAUSS algorithm aims at satisfying simulta-
neously the conditions .A/ of Proposition 1. The condition .A1/ is simply satisfied
by an exchange, and the condition .A2/ is met by an integer translation of the type

v WD ".v � qu/ with q WD b�.v; u/e ; " D sign .�.v; u/� b�.v; u/e/ ;

where �.v; u/ is defined as in (3.2). After this transformation, the new coefficient
�.v; u/ satisfies 0 � �.v; u/ � .1=2/.

AGAUSS.u; v/

Input. An acute basis .u; v/ of C with jvj � juj; 0 � �.v; u/ � .1=2/.
Output. An acute minimal basis .u; v/ of L.u; v/ with jvj 
 juj.
While jvj < juj do

.u; v/ WD .v; u/;
q WD b�.v; u/e I " WD sign .�.v; u/� b�.v; u/e/;
v WD ".v� qu/;

On the input pair .u; v/ D .w0;w1/, the Gauss Algorithm computes a sequence
of vectors wi defined by the relations wiC1 D "i .wi�1 �eqi wi / with

eqi WD b�.wi�1;wi /e ; "i D sign .�.wi�1;wi / � b�.wi�1;wi /e/ : (3.5)

Here, each quotient eqi is a positive integer, p 
 P.u; v/ denotes the number
of iterations [this equals the previous one], and the final pair .wp ;wpC1/ satisfies
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the conditions .A/ of Proposition 1. Each step defines a unimodular matrix Ni with
detNi D �"i D ˙1,

Ni D
��"ieqi "i

1 0

�
; with

�
wiC1

wi

�
D Ni

�
wi

wi�1

�
;

so that the algorithm produces a matrix N for which

�
wpC1

wp

�
D N

�
w1

w0

�
with N WD Np �Np�1 � : : : �N1:

Comparison Between the Two Algorithms

These algorithms are closely related, but different. The AGAUSS Algorithm can
be viewed as a folded version of the PGAUSS Algorithm, in the sense defined in
[7]. We shall come back to this fact in Section “Relation with the Centered Euclid
Algorithm”, and the following is true.

Consider two bases: a positive basis .v0; v1/ and an acute basis .w0;w1/, which
satisfy w0 D v0 and w1 D 1 v1 with 1 D ˙1. Then the sequences of vectors .vi /

and .wi / computed by the two versions of the Gauss algorithm (defined in (3.3) and
(3.5)) satisfy wi D i vi for some i D ˙1 and the quotienteqi is the absolute value
of quotient qi .

Then, when studying the two kinds of parameters – execution parameters or
output parameters – the two algorithms are essentially the same. As already said,
we shall use the PGAUSS Algorithm for studying the output parameters, and the
AGAUSS Algorithm for the execution parameters.

Main Parameters of Interest

The size of a pair .u; v/ 2 ZŒi � � ZŒi � is

`.u; v/ WD maxf`.juj2/; `.jvj2/g � 2maxf`.juj/; `.jvj/g;

where `.x/ is the binary length of the integer x. The Gram matrix G.u; v/ is
defined as

G.u; v/ D
� juj2 .u � v/
.u � v/ jvj2

�
:

In the following, we consider subsets ˝M , which gather all the (valid) inputs of
size M relative to each version of the algorithm. They will be endowed with some
discrete probability PM , and the main parameters become random variables defined
on these sets.

All the computations of the Gauss algorithm are done on the Gram matrices
G.vi ; viC1/ of the pair .vi ; viC1/. The initialization of the Gauss algorithm computes

Probabilistic Analyses of Lattice Reduction Algorithms
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the Gram Matrix of the initial basis: it computes three scalar products, which takes
a quadratic time3 with respect to the length of the input `.u; v/. After this, all the
computations of the central part of the algorithm are directly done on these matri-
ces; more precisely, each step of the process is an Euclidean division between the
two coefficients of the first line of the Gram matrixG.vi ; vi�1/ of the pair .vi ; vi�1/

for obtaining the quotient qi , followed with the computation of the new coefficients
of the Gram matrix G.viC1; vi /, namely

jviC1j2 WD jvi�1j2�2qi .vi �vi�1/Cq2
i jvi j2; .viC1 �vi / WD qi jvi j2�.vi�1 �vi/:

Then the cost of the i th step is proportional to `.jqi j/ � `.jvi�1j2/, and the bit-
complexity of the central part of the Gauss Algorithm is expressed as a function
of

B.u; v/ D
P.u;v/X

iD1

`.jqi j/ � `.jvi�1j2/; (3.6)

where P.u; v/ is the number of iterations of the Gauss Algorithm. In the sequel, B
will be called the bit-complexity.

The bit-complexity B.u; v/ is one of our main parameters of interest, and we
compare it to other simpler costs. Define three new costs, the quotient bit-cost
Q.u; v/, the difference cost D.u; v/, and the approximate difference cost D:

Q.u; v/ D
P.u;v/X

iD1

`.jqi j/; D.u; v/ D
P.u;v/X

iD1

`.jqi j/
�
`.jvi�1j2/ � `.jv0j2/


;

(3.7)

D.u; v/ WD
P.u;v/X

iD1

`.jqi j/ lg
ˇ̌
ˇ
vi�1

v

ˇ̌
ˇ
2

;

which satisfy D.u; v/ �D.u; v/ D �.Q.u; v// and

B.u; v/ D Q.u; v/ `.juj2/CD.u; v/C ŒD.u; v/�D.u; v/� : (3.8)

We are then led to study two main parameters related to the bit-cost, which may be
of independent interest:

(a) The additive costs, which provide a generalization of costs P and Q. They are
defined as the sum of elementary costs, which depend only on the quotients qi .
More precisely, from a positive elementary cost c defined on N, we consider the
total cost on the input .u; v/ defined as

C.c/.u; v/ D
P.u;v/X

iD1

c.jqi j/ : (3.9)

3 We consider the naive multiplication between integers of size M , whose bit-complexity is
O.M2/.
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When the elementary cost c satisfies c.m/ D O.logm/, the cost C is said to be
of moderate growth.

(b) The sequence of the i th length decreases di for i 2 Œ1::p� (with p WD P.u; v/�)
and the total length decrease d WD dp, defined as

di WD
ˇ̌
ˇ̌ vi

v0

ˇ̌
ˇ̌
2

; d WD
ˇ̌
ˇ̌vp

v0

ˇ̌
ˇ̌
2

: (3.10)

Finally, the configuration of the output basis .bu;bv/ is described via its Gram–
Schmidt orthogonalized basis, that is, the system .bu?;bv?/, wherebu? WDbu andbv? is
the orthogonal projection ofbv onto the orthogonal of <bu>. There are three main
output parameters closely related to the minima of the lattice L.u; v/,

�.u; v/ WD �1.L.u; v// D jbuj; �.u; v/ WD j det.u; v/j
�.u; v/

D jbv?j; (3.11)

�.u; v/ WD �2.u; v/

j det.u; v/j D
�.u; v/

�.u; v/
D jbujjbv?j : (3.12)

We return later to these output parameters and shall explain in Section “A Varia-
tion for the LLL Algorithm: The Odd-Even Algorithm” why they are so important
in the study of the LLL algorithm. We now return to the general case of lattice
reduction.

The LLL Algorithm

We provide a description of the LLL algorithm, introduce the parameters of interest,
and explain the bounds obtained in the worst-case analysis. Then, we describe the
results of the main experiments conducted for classes of “useful” lattices. Finally,
this section presents a variant of the LLL algorithm, where the Gauss algorithm
plays a more apparent rôle: it appears to be well-adapted to (further) analyses.

Description of the Algorithm

We recall that the LLL algorithm considers a Euclidean lattice given by a system B

formed of p linearly independent vectors in the ambient space R
n. It aims at find-

ing a reduced basis, denoted by bB formed with vectors almost orthogonal and short
enough. The algorithm (see Figure 3.2) deals with the matrix P , which expresses the
system B as a function of the Gram–Schmidt orthogonalized system B�; the coef-
ficient mi;j of matrix P is equal to �.bi ; b

?
j /, with � defined in (3.2). The algorithm

performs two main types of operations (see Figure 3.2):

Probabilistic Analyses of Lattice Reduction Algorithms
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P WD

0

BBBBBBBBBB@

b?1 b?2 : : : b?i b?iC1 : : : b?p
b1 1 0 : : : 0 0 0 0

b2 m2;1 1 : : : 0 0 0 0

:
:
:

:
:
:

:
:
:

: : :
:
:
:

:
:
:

:
:
:

:
:
:

bi mi;1 mi;2 : : : 1 0 0 0

biC1 miC1;1 miC1;2 : : : miC1;i 1 0 0

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

: : :
:
:
:

bp mp;1 mp;2 : : : mp;i mp;iC1 : : : 1

1

CCCCCCCCCCA

Uk WD
� b?k b?kC1

uk 1 0

vk mkC1;k 1

�

LLL .t/ [t > 1]

Input. A basis B of a lattice L of dimension p.
Output. A reduced basis bB of L.
Gram computes the basis B? and the matrix P .
i WD 1;
While i < p do

1– Diagonal-Size-Reduction .biC1/

2– Test if local basis Ui is reduced : Is jvi j > .1=t/jui j?
if yes : Other-size-reduction .biC1/

i WD i C 1I
if not: Exchange bi and biC1

Recompute .B?;P/;
If i 6D 1 then i WD i � 1;

Fig. 3.2 The LLL algorithm: the matrix P , the local bases Uk , and the algorithm itself

1. Size-reduction of vectors. The vector bi is size-reduced if all the coefficientsmi;j

of the i th row of matrix P satisfy jmi;j j � .1=2/ for all j 2 Œ1::i � 1�. Size-
reduction of vector bi is performed by integer translations of bi with respect to
vectors bj for all j 2 Œ1::i � 1�:
As subdiagonal coefficients play a particular rôle (as we shall see later), the
operation Size-reduction .bi / is subdivided into two main operations:

Diagonal-size-reduction .bi /;
bi WD bi � bmi;i�1ebi�1I

followed with
Other-size-reduction .bi /;

For j WD i � 2 downto 1 do bi WD bi � bmi;jebj .
2. Gauss-reduction of the local bases. The i th local basis Ui is formed with the two

vectors ui ; vi , defined as the orthogonal projections of bi ; biC1 on the orthogonal
of the subspace hb1; b2; : : : ; bi�1i. The LLL algorithm performs the PGAUSS
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algorithm [integer translations and exchanges] on local bases Ui , but there are
three differences with the PGAUSS algorithm previously described:

.a/ The output test is weaker and depends on a parameter t > 1: the classical
Gauss output test jvi j > jui j is replaced by the output test jvi j > .1=t/jui j.

.b/ The operations that are performed during the PGAUSS algorithm on the
local basis Ui are then reflected on the system .bi ; biC1/: if M is the matrix
built by the PGAUSS algorithm on .ui ; vi /, then it is applied to the system
.bi ; biC1/ in order to find the new system .bi ; biC1/.

.c/ The PGAUSS algorithm is performed on the local basis Ui step by step. The
index i of the local basis visited begins at i D 1, ends at i D p, and is
incremented (when the test in Step 2 is positive) or decremented (when the
test in Step 2 is negative and the index i does not equal 1) at each step. This
defines a random walk. The length K of the random walk is the number of
iterations, and the number of steps K� where the test in step 2 is negative
satisfies

K � .p � 1/C 2K�: (3.13)

The LLL algorithm considers the sequence `i formed with the lengths of the
vectors of the Gram orthogonalized basis B? and deals with the Siegel ratios ri ’s
between successive Gram orthogonalized vectors, namely

ri WD `iC1

`i

; with `i WD jb?
i j: (3.14)

The steps of Gauss reduction aim at obtaining lower bounds on these ratios. In
this way, the interval Œa; A� with

a WD minf`i I 1 � i � pg; A WD maxf`i I 1 � i � pg; (3.15)

tends to be narrowed as, all along the algorithm, the minimum a is increasing and
the maximumA is decreasing. This interval Œa; A� plays an important rôle because it
provides an approximation for the first minimum �.L/ of the lattice (i.e., the length
of a shortest nonzero vector of the lattice), namely

�.L/ � App; �.L/ � a: (3.16)

At the end of the algorithm, the basis bB satisfies the following:4 each local bases
is reduced in the t-Gauss meaning. It satisfies conditions that involve the subdiag-
onal matrix coefficients bmiC1;i together with the sequence b̀i , namely the t-Lovász
conditions, for any i; 1 � i � p � 1,

4 All the parameters relative to the output basis bB are denoted with a hat.

Probabilistic Analyses of Lattice Reduction Algorithms
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jbmiC1;i j � 1

2
; t2 .bm2

iC1;i
b̀2

i C b̀2
iC1/ � b̀2

i ; (3.17)

which imply the s-Siegel conditions, for any i; 1 � i � p � 1,

jbmiC1;i j � 1

2
; bri WD

b̀
iC1

b̀
i

� 1

s
; with s2 D 4t2

4 � t2 and s D 2p
3

for t D 1.

(3.18)
A basis fulfilling conditions (3.18) is called s-Siegel reduced .

Main Parameters of Interest

There are two kinds of parameters of interest for describing the behavior of the
algorithm: the output parameters and the execution parameters.

Output Parameters

The geometry of the output basis is described with three main parameters – the
Hermite defect �.B/, the length defect �.B/, or the orthogonality defect �.B/. They
satisfy the following (worst-case) bounds that are functions of parameter s, namely

�.B/ WD jbb1j2
.detL/2=p

� sp�1; �.B/ WD j
bb1j
�.L/ � s

p�1; (3.19)

�.B/ WD
Qd

iD1 jbbi j
detL � sp.p�1/=2:

This proves that the output satisfies good Euclidean properties. In particular, the
length of the first vector of bB is an approximation of the first minimum �.L/ – up
to a factor that exponentially depends on dimension p.

Execution Parameters

The execution parameters are related to the execution of the algorithm itself : the
length of the random walk (equal to the number of iterations K), the size of the
integer translations, the size of the rationalsmi;j along the execution.

The product D of the determinants Dj of beginning lattices Lj WD
hb1; b2; : : : ; bj i, defined as

Dj WD
jY

iD1

`i ; D D
p�1Y

jD1

Dj D
p�1Y

jD1

jY

iD1

`i ;
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is never increasing all along the algorithm and is strictly decreasing, with a factor
of .1=t/, for each step of the algorithm when the test in 2 is negative. In this case,
the exchange modifies the length of `i and `iC1 – without modifying their product,
equal to the determinant of the basis Ui . The new `i , denoted by L̀i , is the old jvi j,
which is at most .1=t/jui j D .1=t/`i . Then the ratio between the new determinant
LDi and the old one satisfies LDi=Di � .1=t/, while the otherDj are not modified.

Then, the ratio between the final bD and the initialD satisfies .bD=D/ � .1=t/K�

,
where K� denotes the number of indices of the random walk when the test in 2 is
negative (see Section “Description of the Algorithm”). With the following bounds
on the initial D and the final bD, as a function of variables a;A, defined in (3.15),

D � Ap.p�1/=2; bD � ap.p�1/=2;

together with the expression ofK as a function ofK� given in (3.13), the following
bound on K is derived,

K � .p � 1/C p.p � 1/ logt

A

a
: (3.20)

In the same vein, another kind of bound involves N WD max jbi j2 and the first
minimum �.L/, (see [15]),

K � p2

2
logt

N
p
p

�.L/ :

In the case when the lattice is integer (namely L � Z
n), this bound is slightly

better and becomes

K � .p � 1/C p.p � 1/ M
lg t

:

It involves lg t WD log2 t and the binary size M of B , defined as M WD
max `.jbi j2/, where `.x/ is the binary size of integer x.

All the previous bounds are proven upper bounds on the main parameters. It is
interesting to compare these bounds to experimental mean values obtained on a
variety of lattice bases that actually occur in applications of lattice reduction.

Experiments for the LLL Algorithm

In [30], Nguyen and Stehlé have made a great use of their efficient version of the
LLL algorithm [29] and conducted for the first time extensive experiments on the
two major types of useful lattice bases: the Ajtai bases, and the knapsack-shape
bases, which will be defined in the next section. Figures 3.3 and 3.4 show some of
the main experimental results. These experimental results are also described in the
survey written by D. Stehlé in these proceedings [36].

Probabilistic Analyses of Lattice Reduction Algorithms
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Main parameters. bri � � � K

Worst-case 1=s sp�1 sp�1 sp.p�1/=2 �.Mp2/

(Proven upper bounds)

Random Ajtai bases 1=˛ ˛p�1 ˛.p�1/=2 ˛p.p�1/=2 �.Mp2/

(Experimental mean values)

Random knapsack–shape bases 1=˛ ˛p�1 ˛.p�1/=2 ˛p.p�1/=2 �.Mp/

(Experimental mean values)

Fig. 3.3 Comparison between proven upper bounds and experimental mean values for the main
parameters of interest. Here p is the dimension of the input (integer) basis and M is the binary size
of the input (integer) basis: M WD �.logN/, where N WD max jbi j2
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Fig. 3.4 Left: experimental results for log2 � . The experimental value of parameter
Œ1=.2p/�EŒlog2 �� is close to 0.03, so that ˛ is close to 1:04. Right: the output distribution of
“local bases”

Output geometry. The geometry of the output local basis bUk seems to depend neither
on the class of lattice bases nor on index k of the local basis (along the diagonal of
P), except for very extreme values of k. We consider the complex numberbzk that is
related to the output local basis bUk WD .buk;bvk/ via the equality bzk WD bmk;kC1Cibrk .
Because of the t-Lovász conditions on bUk , described in (3.17), the complex number
bzk belongs to the domain

Ft WD fz 2 CI jzj � 1=t; j<.z/j � 1=2g;

and the geometry of the output local basis bUk is characterized by a distribution,
which much “weights” the “corners” of Ft defined by Ft \ fzI =z � 1=tg [see
Fig. 3.4 (right)]. The (experimental) mean values of the output Siegel ratiosbrk WD
=.bzk/ appear to be of the same form as the (proven) upper bounds, with a ratio ˛
(close to 1.04), which replaces the ratio s0 close to 1:15 when t0 is close to 1. As a
consequence, the (experimental) mean values of parameters �.B/ and �.B/ appear
to be of the same form as the (proven) upper bounds, with a ratio ˛ (close to 1.04)
that replaces the ratio s0 close to 1:15.
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For parameter �.B/, the situation is slightly different. Remark that the estimates
on parameter � are not only a consequence of the estimates on the Siegel ratios,
but they also depend on estimates that relate the first minimum and the determinant.
Most of the lattices are (probably) regular: this means that the average value of the
ratio between the first minimum �.L/ and det.L/1=p is of polynomial order with
respect to dimension p. This regularity property should imply that the experimental
mean value of parameter � is of the same form as the (proven) upper bound, but
now with a ratio ˛1=2 (close to 1.02), which replaces the ratio s0 close to 1:15.

Open Question. Does this constant ˛ admit a mathematical definition, related for
instance to the underlying dynamical system [see Sections “Returning to the Gauss
Algorithm and First Steps in the Probabilistic Analysis of the LLL Algorithm”?

Execution parameters. Regarding the number of iterations, the situation differs
according to the types of bases considered. For the Ajtai bases, the number of itera-
tionsK exhibits experimentally a mean value of the same order as the proven upper
bound, whereas, in the case of the knapsack-shape bases, the number of iterations
K has an experimental mean value of smaller order than the proven upper bound.

Open question. Is it true for the “actual” knapsack bases that come from crypto-
graphic applications? [See Section “Probabilistic Models: Continuous or Discrete”]

All the remainder of this survey is devoted to presenting a variety of methods
that could (should?) lead to explaining these experiments. One of our main ideas is
to use the Gauss algorithm as a central tool for this purpose. This is why we now
present a variant of the LLL algorithm, where the Gauss algorithm plays a more
apparent rôle.

A Variation for the LLL Algorithm:
The Odd-Even Algorithm

The original LLL algorithm performs the Gauss Algorithm step by step, but does not
perform the whole Gauss algorithm on local bases. This is due to the definition of
the random walk of the indices on the local bases (See Section “Description of the
Algorithm”). However, this is not the only strategy for reducing all the local bases.
There exists for instance a variant of the LLL algorithm, introduced by Villard [48],
which performs a succession of phases of two types, the odd ones and the even
ones. We adapt this variant and choose to perform the AGAUSS algorithm, because
we shall explain in Section “Returning to the Gauss Algorithm” that it has a better
“dynamical” structure.

During one even (respectively, odd) phase (see Figure 3.5), the whole AGAUSS

algorithm is performed on all local bases Ui with even (respectively, odd) indices.
Since local bases with odd (respectively, even) indices are “disjoint,” it is possible
to perform these Gauss algorithms in parallel. This is why Villard has introduced
this algorithm. Here, we will use this algorithm in Section “First Steps in the Proba-
bilistic Analysis of the LLL Algorithm”, when we shall explain the main principles
for a dynamical study of the LLL algorithm.

Probabilistic Analyses of Lattice Reduction Algorithms
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Odd–Even LLL .t/ [t > 1]

Input. A basis B of a lattice L of dimension p.
Output. A reduced basis bB of L.
Gram computes the basis B? and the matrix P .
While B is not reduced do

Odd Phase .B/:
For i D 1 to bn=2c do

Diagonal-size-reduction .b2i /;
Mi := t–AGAUSS .U2i�1/;
.b2i�1; b2i / WD .b2i�1; b2i /

tMi ;
For i D 1 to n do Other-size-reduction .bi /;
Recompute B?;P;

Even Phase .B/:
For i D 1 to b.n� 1/=2c do

Diagonal-size-reduction .b2iC1/;
Mi := t–AGAUSS .U2i /;
.b2i ; b2iC1/ WD .b2i ; b2iC1/

tMi ;
For i D 1 to n do Other-size-reduction .bi /;
Recompute B?;P;

Fig. 3.5 Description of the Odd–Even variant of the LLL algorithm, with its two phases, the Odd
Phase and the Even Phase

Consider, for an odd index k, two successive bases Uk WD .uk; vk/ and UkC2 WD
.ukC2; vkC2/. Then, the Odd Phase of the Odd–Even LLL algorithm (completely)
reduces these two local bases (in the t-Gauss meaning) and computes two reduced
local bases denoted by .buk;bvk/ and .bukC2;bvkC2/, which satisfy in particular

jbv?
kj D �.uk; vk/; jbukC2j D �.ukC2; vkC2/;

where parameters �;� are defined in (3.11). During the Even phase, the LLL algo-
rithm considers (in parallel) all the local bases with an even index. Now, at the
beginning of the following Even Phase, the (input) basis UkC1 is formed (up to a
similarity) from the two previous output bases, as ukC1 Dbv?

k
; vkC1 D �bv?

k
CbukC2;

where � is a real number of the interval Œ�1=2;C1=2�. Then, the initial Siegel
ratio rkC1 of the Even Phase can be expressed with the output lengths of the Odd
Phase, as

rkC1 D �.ukC2; vkC2/

�.uk; vk/
:

This explains the important rôle that is played by these parameters�;�. We study
these parameters in Section “Analysis of Lattice Reduction in Two-Dimensions:
The Output Parameters”.
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What is a Random (Basis of a) Lattice?

We now describe the main probabilistic models, addressing the various applications
of lattice reduction. For each particular area, there are special types of input lattice
bases that are used and this leads to different probabilistic models dependent upon
the specific application area considered. Cryptology is a main application area, and
it is crucial to describe the major “cryptographic” lattices, but there also exist other
important applications.

There are various types of “interesting” lattice bases. Some of them are also
described in the survey of Stehlé in this book [36].

Spherical Models

The most natural way is to choose independently p vectors in the n-dimensional
unit ball, under a distribution that is invariant by rotation. This is the spherical model
introduced for the first time in [15], then studied in [3,4] (See Section “Probabilistic
Analyses of the LLL Algorithm in the Spherical Model”). This model does not seem
to have surfaced in practical applications (except perhaps in integer linear program-
ming), but it constitutes a reference model, to which it is interesting to compare the
realistic models of use.

We consider distributions �.n/ on R
n that are invariant by rotation, and satisfy

�.n/.0/ D 0, which we call “simple spherical distributions.” For a simple spherical
distribution, the angular part �.n/ WD b.n/=jb.n/j is uniformly distributed on the unit
sphere �.n/ WD fx 2 R

n W kxk D 1g. Moreover, the radial part jb.n/j2 and the angu-
lar part are independent. Then, a spherical distribution is completely determined by
the distribution of its radial part, denoted by �.n/.

Here, the beta and gamma distribution play an important rôle. Let us recall that,
for strictly positive real numbers a; b 2 R

C?, the beta distribution of parameters
.a; b/ denoted by ˇ.a; b/ and the gamma distribution of parameter a denoted by
�.a/ admit densities of the form

ˇa;b.x/ D 
 .aC b/

 .a/
 .b/

xa�1.1 � x/b�1 1.0;1/.x/; �a.x/ D e�xxa�1


 .a/
1Œ0;1/.x/:

(3.21)

We now describe three natural instances of simple spherical distributions.

1. The first instance of a simple spherical distribution is the uniform distribution in
the unit ball B.n/ WD fx 2 R

n W kxk � 1g. In this case, the radial distribution
�.n/ equals the beta distribution ˇ.n=2; 1/.

2. A second instance is the uniform distribution on the unit sphere S.n/, where the
radial distribution �.n/ is the Dirac measure at x D 1.

3. A third instance occurs when all the n coordinates of the vector b.n/ are indepen-
dent and distributed with the standard normal law N .0; 1/. In this case, the radial
distribution �.n/ has a density equal to 2�n=2.2t/.

Probabilistic Analyses of Lattice Reduction Algorithms



90 B. Vallée and A. Vera

When the system Bp;.n/ is formed with p vectors (with p � n), which are
picked up randomly from R

n, independently, and with the same simple spherical
distribution �.n/, we say that the system Bp;.n/ is distributed under a “spherical
model.” Under this model, the system Bp;.n/ (for p � n) is almost surely linearly
independent.

Ajtai Bases

Consider an integer sequence ai;p defined for 1� i �p, which satisfies the condi-
tions

For any i ,
aiC1;p

ai;p

! 0 when p !1:

A sequence of Ajtai bases B WD .Bp/ relative to the sequence a D .ai;p/ is
defined as follows: the basis Bp is of dimension p and is formed by vectors bi;p 2
Z

p of the form

bi;p D ai;p ei C
i�1X

jD1

ai;j;p ej ; with ai;j;p D rand
�
�aj;p

2
;
aj;p

2

�
for j < i:

[Here, .ej / (with 1� j �p) is the canonical basis of R
p]. Remark that these

bases are already size-reduced, as the coefficientmi;j equals ai;j;p=aj;p. However,
all the input Siegel ratios ri , defined in (3.14) and here equal to aiC1;p=ai;p, tend to
0 when p tends to 1. Then, such bases are not reduced “at all,” and this explains
why similar bases have been used by Ajtai in [2] to show the tightness of worst-case
bounds of [32].

Variations Around Knapsack Bases and Their Transposes

This last type gathers various shapes of bases, which are all formed by “bordered
identity matrices”; see Fig. 3.6.

1. The knapsack bases themselves are the rows of the p � .p C 1/ matrices of
the form of Fig. 3.6a, where Ip is the identity matrix of order p and the com-
ponents .a1; a2; : : : ap/ of vector A are sampled independently and uniformly
in Œ�N;N � for some given boundN . Such bases often occur in cryptanalyses of
knapsack-based cryptosystems or in number theory (reconstructions of minimal
polynomials and detections of integer relations between real numbers).

2. The bases relative to the transposes of matrices described in Fig. 3.6b arise in
searching for simultaneous Diophantine approximations (with q 2 Z) or in
discrete geometry (with q D 1).
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�
A Ip

�
 
y 0

x qIp

!  
Ip Hp

0p qIp

!  
q 0

x In�1

!

.a/ .b/ .c/ .d/

Fig. 3.6 Different kinds of lattice bases useful in applications. Type (a) Knapsack bases; Type
(b) bases used for factoring polynomials, for solving Diophantine equations; Type (c) Bases for
NTRU; Type (d) bases related to random lattices

3. The NTRU cryptosystem was first described in terms of polynomials over finite
fields, but the public-key can be seen [12] as the lattice basis given by the rows
of the matrix .2p � 2p/ described in Fig. 3.6c, where q is a small power of 2
and Hp is a circulant matrix whose line coefficients are integers of the interval
� � q=2; q=2�.

Random Lattices

There is a natural notion of random lattice, introduced by Siegel [34] in 1945.
The space of (full-rank) lattices in R

n modulo scale can be identified with the quo-
tient Xn D SLn.R/=SLn.Z/. The group Gn D SLn.R/ possesses a unique (up to
scale) bi-invariant Haar measure, which projects to a finite measure on the space Xn.
This measure �n (which can be normalized to have total volume 1) is by definition
the unique probability on Xn, which is invariant under the action of Gn: if A 	 Xn

is measurable and g 2 Gn, then �n.A/ D �n.gA/. This gives rise to a natural notion
of random lattices. We come back to this notion in the two-dimensional case in
Section “Relation with Eisenstein Series”.

Probabilistic Models: Continuous or Discrete

Except two models – the spherical model or the model of random lattices – that
are continuous models, all the other ones (the Ajtai model or the various knapsack-
shape models) are discrete models. In these cases, it is natural to build probabilistic
models that preserve the “shape” of matrices and replace discrete coefficients by
continuous ones. This allows to use in the probabilistic studies all the continuous
tools of (real and complex) analysis.

1. A first instance is the Ajtai model relative to sequence a WD .ai;p/, for which the
continuous version of dimension p is as follows:

bi;p D ai;p ei C
i�1X

jD1

xi;j;p aj;p ej ; with xi;j;p D rand .�1=2; 1=2/

for all j < i � p:

Probabilistic Analyses of Lattice Reduction Algorithms
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2. We may also replace the discrete model associated to knapsack bases of Fig. 3.6a
by the continuous model, whereA is replaced by a real vector x uniformly chosen
in the ball kxk1 � 1 and Ip is replaced by �Ip, with a small positive constant
0 < � < 1. Generally speaking, choosing continuous random matrices indepen-
dently and uniformly in their “shape” class leads to a class of “knapsack-shape”
lattices.

Remark 1. It is very unlikely that such knapsack-shape lattices share all the same
properties as the knapsack lattices that come from the actual applications – for
instance, the existence of an unusually short vector (significantly shorter than
expected from Minkowski’s theorem).

Conversely, we can associate to any continuous model a discrete one: consider a
domain X � R

n with a “smooth” frontier. For any integer N , we can “replace” a
(continuous) distribution in the domain X relative to some density f of class C1 by
the distribution in the discrete domain

XN WD X \ Z
n

N
;

defined by the restriction fN of f to XN . WhenN !1, the distribution relative to
density fN tends to the distribution relative to f , due to the Gauss principle, which
relates the volume of a domain A � X (with a smooth frontier @A) and the number
of points in the domain AN WD A\ XN ,

1

N n
card.AN / D Vol.A/CO

�
1

N

�
Area.@A/:

We can apply this framework to any (simple) spherical model and also to the models
that are introduced for the two-dimensional case.

In the same vein, we can consider a discrete version of the notion of a random
lattice: consider the set L.n;N / of the n-dimensional integer lattices of determi-
nant N . Any lattice of L.n;N / can be transformed into a lattice of Xn (defined in
4.4) by the homothecy �N of ratio N�1=n. Goldstein and Mayer [20] show that for
largeN , the following is true: given any measurable subset An 	 Xn whose bound-
ary has zero measure with respect to �n, the proportion of lattices of L.n;N / whose
image by �N lies in An tends to �n.A/ as N tends to infinity. In other words, the
image by �N of the uniform probability on L.n;N / tends to the measure �n.

Thus, to generate lattices that are random in a natural sense, it suffices to gener-
ate uniformly at random a lattice in L.n;N / for large N . This is particularly easy
when N D q is prime. Indeed, when q is a large prime, the vast majority of lattices
in L.n; q/ are lattices spanned by rows of the matrices described in Fig. 3.6d, where
the components xi (with i 2 Œ1::n � 1�) of the vector x are chosen independently
and uniformly in f0; : : : ; q � 1g.
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Probabilistic Analyses of the LLL Algorithm
in the Spherical Model

In this section, the dimension of the ambient space is denoted by n, and the dimen-
sion of the lattice is denoted by p, and a basis of dimension p in R

n is denoted by
Bp;.n/. The codimension g, equal by definition to n � p, plays a fundamental rôle
here. We consider the case where n tends to1 while g WD g.n/ is a fixed function
of n (with g.n/ � n). We are interested in the following questions:

1. Consider a real s > 1. What is the probability 	p;.n/;s that a random basisBp;.n/

was already s-reduced in the Siegel sense [i.e., satisfy the relations (3.18)]?
2. Consider a real t > 1. What is the average number of iterations of the LLL.t/

algorithm on a random basis Bp;.n/?
3. What is the mean value of the first minimum of the lattice generated by a random

basis Bp;.n/?

This section answers these questions in the case when Bp;.n/ is randomly chosen
under a spherical model, and shows that there are two main cases according to the
codimension g WD n� p.

Main Parameters of Interest

Let Bp;.n/ be a linearly independent system of vectors of R
n whose codimension

is g D n � p. Let B?
p;.n/

be the associated Gram–Schmidt orthogonalized system.
We are interested by comparing the lengths of two successive vectors of the orthog-
onalized system, and we introduce several parameters related to the Siegel reduction
of the system Bp;.n/.

Definition 1. To a system Bp;.n/ of p vectors in R
n, we associate the Gram–

Schmidt orthogonalized system B?
p;.n/

and the sequence rj;.n/ of Siegel ratios,
defined as

rj;.n/ WD
`n�jC1;.n/

`n�j;.n/

; for gC 1 � j � n � 1;

together with two other parameters

Mg;.n/ WD minfr2
j;.n/I gC 1 � j � n� 1g Ig;.n/ WD min

n
j W r2

j;.n/ DMg;.n/

o
:

The parameter Mg;.n/ is the reduction level, and the parameter Ig;.n/ is the index
of worst local reduction.

Remark 2. The ratio rj;.n/ is closely related to the ratio ri defined in Section
“Description of the Algorithm” [see (3.14)]. There are two differences: the rôle of
the ambient dimension n is made apparent, and the indices i and j are related via

Probabilistic Analyses of Lattice Reduction Algorithms
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rj WD rn�j . The rôle of this “time inversion” will be explained later. The variable
Mg;.n/ is the supremum of the set of those 1=s2 for which the basis Bn�g;.n/ is
s-reduced in the Siegel sense. In other words, 1=Mg;.n/ denotes the infimum of val-
ues of s2 for which the basis Bn�g;.n/ is s-reduced in the Siegel sense. This variable
is related to our initial problem due to the equality

	n�g;.n/;s WD PŒBn�g;.n/is s–reduced� D P

�
Mg;.n/ � 1

s2

�
;

and we wish to evaluate the limit distribution (if it exists) of Mg;.n/ when n!1.
The second variable Ig;.n/ denotes the smallest index j for which the Siegel condi-
tion relative to the index n � j is the weakest. Then n � Ig;.n/ denotes the largest
index i for which the Siegel condition relative to index i is the weakest. This index
indicates where the limitation of the reduction comes from.

When the system Bp;.n/ is chosen at random, the Siegel ratios, the reduction
level, and the index of worst local reduction are random variables, well-defined
whenever Bp;.n/ is a linearly independent system. We wish to study the asymptotic
behavior of these random variables (with respect to the dimension n of the ambient
space) when the system Bp;.n/ is distributed under a so-called (concentrated) spher-
ical model, where the radial distribution �.n/ fulfills the following Concentration
Property C.
Concentration Property C. There exist a sequence .an/n and constants d1; d2;

˛>0, �0 2 .0; 1/ such that, for every n and � 2 .0; �0/, the distribution function
�.n/ satisfies

�.n/ .an.1C �// � �.n/ .an.1 � �// � 1 � d1 e�nd2�˛

: (3.22)

In this case, it is possible to transfer results concerning the uniform distribu-
tion on S.n/ [where the radial distribution is Dirac] to more general spherical
distributions, provided that the radial distribution be concentrated enough. This
Concentration Property C holds in the three main instances previously described
of simple spherical distributions.

We first recall some definitions of probability theory, and define some notations:
A sequence .Xn/ of real random variables converges in distribution towards the

real random variable X iff the distribution function Fn of Xn is pointwise con-
vergent to the distribution function F of X on the set of continuity points of F .
A sequence .Xn/ of real random variables converges in probability to a constant a
if, for any " > 0, the sequence PŒjXn � aj > "� tends to 0. The two situations are
respectively denoted as

Xn

.d/��!
n
X; Xn

proba:����!
n

a:

We now state the main results of this section, and provide some hints for the proof.
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Theorem 1. (Akhavi et al. [4] 2005)
Let Bp;.n/ be a random basis with codimension g WD n � p under a concentrated
spherical model. Let s > 1 be a real parameter, and suppose that the dimension n
of the ambient space tends to1.

i. If g WD n� p tends to infinity, then the probability 	p;.n/;s that Bp;.n/ is already
s–reduced tends to 1.

ii. If g WD n � p is constant, then the probability 	p;.n/;s that Bp;.n/ is already s-
reduced converges to a constant in .0; 1/ (depending on s and g). Furthermore,
the index of worst local reduction Ig;.n/ converges in distribution.

The Irruption of ˇ and � Laws

When dealing with the Gram–Schmidt orthogonalization process, beta and gamma
distributions are encountered in an extensive way. We begin to study the variables
Yj;.n/ defined as

Yj;.n/ WD
`2

j;.n/

jbj;.n/j2 for j 2 Œ2::n�;

and we show that they admit beta distributions.

Proposition 2. (Akhavi et al. [4] 2005)

1. Under any spherical model, the variables `2
j;.n/

are independent.
Moreover, the variable Yj;.n/ follows the beta distribution ˇ..n� j C1/=2; .j �
1/=2/ for j 2 Œ2::n�, and the set fYj;.n/; jbk;.n/j2I .j; k/ 2 Œ2::n� � Œ1::n�g is
formed with independent variables.

2. Under the random ball model Un, the variable `2
j;.n/

follows the beta distribution
ˇ..n� j C 1/=2; .j C 1/=2/.

Proposition 2 is now used for showing that, under a concentrated spherical model,
the beta and gamma distributions will play a central rôle in the analysis of the main
parameters of interest introduced in Definition 1.

Denote by .i /i
1 a sequence of independent random variables where i fol-
lows a Gamma distribution �.i=2/ and consider, for k � 1, the following random
variables

Rk D k=kC1; Mk D minfRj I j � kC1g; IkD minfj � kC1I Rj DMkg:

We will show in the sequel that they intervene as the limits of variables (of the same
name) defined in Definition 1. There are different arguments in the proof of this fact.

(a) Remark first that, for the indices of the form n � i with i fixed, the variable
r2

n�i;.n/
tends to 1when n!1. It is then convenient to extend the tuple .rj;.n//

(only defined for j � n � 1) into an infinite sequence by setting rk;.n/ WD 1 for
any k � n.

Probabilistic Analyses of Lattice Reduction Algorithms
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(b) Second, the convergence

Rj
a:s:��!
j

1;
p
k.Rk � 1/ .d/���!

k
N .0; 4/;

leads to consider the sequence .Rk � 1/k
1 as an element of the space Lq , for
q > 2. We recall that

Lq WD fx; kxkq < C1g; with kxkq WD
0

@
X

i
1

jxi jq
1

A
1=q

; for x D .xi /i
1:

(c) Finally, classical results about independent gamma and beta distributed ran-
dom variables, together with the weak law of large numbers and previous
Proposition 2, prove that

For each j � 1; r2
j;.n/

.d/���!
n

Rj : (3.23)

This suggests that the minimum Mg;.n/ is reached by the r2
j;.n/

corresponding
to smallest indices j and motivates the “time inversion” done in Definition 1.

The Limit Process

It is then possible to prove that the processes R.n/ WD .rk;.n/ � 1/k
1 converge
(in distribution) to the process R WD .Rk � 1/k
1 inside the space Lq when the
dimension n of the ambient space tends to1. As Mg;.n/ and Ig;.n/ are continuous
functionals of the process R.n/, they also converge in distribution, respectively, to
Mg and Ig .

Theorem 2. (Akhavi et al. [4] 2005) For any concentrated spherical distribution,
the following holds:

1. The convergence .r2
k;.n/
� 1/k
1

.d/��!
n

.Rk � 1/k
1 holds in any space Lq , with

q > 2.

2. For any fixed k, one has Mk;.n/

.d/���!
n

Mk; Ik;.n/

.d/���!
n

Ik .

3. For any sequence n 7! g.n/ with g.n/ � n and g.n/ ! 1, the convergence

Mg.n/;.n/

proba:����!
n

1 holds.

This result solves our problem and proves Theorem 1. We now give some pre-
cisions on the limit processes

p
Rk;
p
Mk , and describe some properties of the

distribution function Fk of
p
Mk , which is of particular interest due to the equality

limn!1 	n�k;.n/;s D 1 � Fk.1=s/.
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Proposition 3. (Akhavi et al. [4] 2005) The limit processes
p
Rk;
p
Mk admit

densities that satisfy the following:

1. For each k, the density 'k of
p
Rk is

'k.x/ D 2B
�
k

2
;
k C 1
2

�
xk�11Œ0;1Œ.x/

.1C x2/kC.1=2/
; with B.a; b/ WD 
 .a/
 .b/


 .aC b/ :
(3.24)

2. For each k, the random variables
p
Mk;Mk have densities, which are positive

on .0; 1/ and zero outside. The distribution functions Fk; Gk satisfy for x near 0,
and for each k,




�
k C 2
2

�
Fk.x/ � xkC1; Gk.x/ D Fk.

p
x/:

There exists � such that, for each k and for x 2 Œ0; 1� satisfying jx2 � 1j �
.1=
p
k/;

0 � 1 � Fk.x/ � exp

�
�
� �

1 � x2

�2
�
:

3. For each k, the cardinality of the set fj � kC 1I Rj DMkg is almost surely
equal to 1.

In particular, for a full-dimensional lattice,

lim
n!1	n;.n/;s �s!1 1 � 1

s
; lim

n!1	n;.n/;s � exp

"
�
�
�s2

s2 � 1
�2
#

when s ! 1:

Figure 3.7 shows some experiments in the case of a full-dimensional lattice
(g D 0). In this case, the density g0 of M0 is proven to be �.1=

p
x/ when

x ! 0 and tends rapidly to 0 when x ! 1. Moreover, the same figure shows
that the worst reduction level for a full-dimensional lattice is almost always very
small: that means that the first index i where the test in step 2 of the LLL algorithm
(see Section “Description of the Algorithm”) is negative is very close to n.

These (probabilistic) methods do not provide any information about the speed
of convergence of 	n�g;.n/ towards 1 when n and g tend to 1. In the case of the
random ball model, Akhavi directly deals with the beta law of the variables `i and
observes that

1 � 	p;.n/;s �
p�1X

iD1

P

�
`iC1 � 1

s
`i

�
�

p�1X

iD1

P

�
`iC1 � 1

s

�

�
p�1X

iD1

exp

�
n

2
H

�
i

n

�� �
1

s

�n�i

;
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Fig. 3.7 Left: simulation of the density of M0 with 108 experiments. Right: the histogram of
I0 provided by 104 simulations. For any g, the sequence k 7! ‘ŒIg D k� seems to be rapidly
decreasing

whereH is the entropy function defined as H.x/ D �x logx � .1� x/ log.1� x/,
for x 2 Œ0; 1�, which satisfies 0 � H.x/ � log 2. This proves :

Proposition 4. (Akhavi [3] 2000) Under the random ball model, the probability
that a basis Bp;.n/ be reduced satisfies, for any n, for any p � n, for any s > 1,

1 � 	p;.n/;s � 1

s � 1 .
p
2/n

�
1

s

�n�p

:

In particular, for any s >
p
2, the probability that Bcn;.n/ be s-reduced tends

exponentially to 1, provided 1 � c is larger than 1=.2 lg s/.

A First Probabilistic Analysis of the LLL Algorithm

In the case of the random ball model, Daudé and Vallée directly deal with the beta
law of the variables `i and obtain estimates for the average number of iterations K
and the first minimum �.L/. They consider the case of the full-dimensional lattices,
namely the case when p D n. However, their proof can be extended to the case of a
basis Bp;.n/ in the random ball model with p � n.

Using properties of the beta function, they first obtain a simple estimate for the
distribution for the parameter `i ,

PŒ`i � u� � .upn/n�iC1

and deduce that the random variable a WD min `i satisfies



3 99

PŒa � u� �
pX

iD1

PŒ`i � u� � .2pn/un�pC1; E

�
log

�
1

a

��

� 1

n� p C 1
�
1

2
lognC 2

�
:

The result then follows from (3.16) and (3.20). It shows that, as previously, there are
two regimes according to the dimension p of the basis relative to the dimension n
of the ambient space.

Theorem 3. (Daudé and Vallée [15] 1994) Under the random ball model, the
number of iterationsK of the LLL algorithm on Bp;.n/ has a mean value satisfying

Ep;.n/ŒK� � p � 1C p.p � 1/
n � p C 1

�
1

log t

��
1

2
lognC 2

�
:

Furthermore, the first minimum of the lattice generated by Bp;.n/ satisfies

Ep;.n/Œ�.L/� � n � p C 1
n � p C 2

�
1

2
p
n

�1=.n�pC1/

:

In the case when p D cn, with c < 1,

Ecn;.n/ŒK� � cn

1 � c
�

1

log t

��
1

2
lognC 2

�
;

Ecn;.n/Œ�.L/� � exp

�
1

2.1� c/n log
1

4n

�
:

Conclusion of the Probabilistic Study
in the Spherical Model

In the spherical model, and when the ambient dimension n tends to1, all the local
bases (except perhaps the “last” ones) are s-Siegel reduced. For the last ones, at
indices i WD n � k, for fixed k, the distribution of the ratio ri admits a density
'k , which is given by Proposition 5.5. Both when x ! 0 and when x ! 1,
the density 'k has a behavior of power type 'k.x/ D �.xk�1/ for x ! 0, and
'k.x/ D �.x�k�2/ for x ! 1. It is clear that the potential degree of reduction
of the local basis of index k is decreasing when k is decreasing. It will be interest-
ing in the sequel to consider local bases with an initial density of this power type.
However, the exponent of the density and the index of the local basis may be chosen
independent, and the exponent is no longer integer. This type of choice provides a
class of input local bases with different potential degree of reduction and leads to the
so-called model “with valuation,” which will be introduced in the two-dimensional

Probabilistic Analyses of Lattice Reduction Algorithms
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case in Section “Probabilistic Models for Two-Dimensions” and studied in Sec-
tions “Analysis of Lattice Reduction in Two-Dimensions: The Output Parameters”
and “Analysis of the Execution Parameters of the Gauss Algorithm”.

Returning to the Gauss Algorithm

We return to the two-dimensional case, and describe a complex version for each of
the two versions of the Gauss algorithm. This leads to consider each algorithm as a
dynamical system, which can be seen as a (complex) extension of a (real) dynamical
system relative to a centered Euclidean algorithm. We provide a precise description
of the linear fractional transformations (LFTs) used by each algorithm. We finally
describe the (two) classes of probabilistic models of interest.

The complex Framework

Many structural characteristics of lattices and bases are invariant under linear trans-
formations – similarity transformations in geometric terms – of the form S� W u 7!
�u with � 2 C n f0g.
.a/ A first instance is the execution of the Gauss algorithm itself: it should be

observed that translations performed by the Gauss algorithms depend only
on the quantity �.v; u/ defined in (3.2), which equals <.v=u/. Furthermore,
exchanges depend on jv=uj. Then, if vi (or wi ) is the sequence computed by the
algorithm on the input .u; v/, defined in (3.3) and (3.5), the sequence of vec-
tors computed on an input pair S�.u; v/ coincides with the sequence S�.vi / (or
S�.wi /). This makes it possible to give a formulation of the Gauss algorithm
entirely in terms of complex numbers.

.b/ A second instance is the characterization of minimal bases given in Proposi-
tion 2.1 that only depends on the ratio z D v=u.

.c/ A third instance are the main parameters of interest: the execution parameters
D;C; d defined in (3.7), (3.9), and (3.10) and the output parameters �;�; �
defined in (3.11) and (3.12). All these parameters admit also complex versions:
for X 2 f�;�; �;D;C; d g, we denote by X.z/ the value of X on basis .1; z/.
Then, there are close relations between X.u; v/ and X.z/ for z D v=u:

X.z/ D X.u; v/

juj ; for X 2 f�;�g; X.z/ D X.u; v/; for X 2 fD;C; d; �g:

It is thus natural to consider lattice bases taken up to equivalence under similarity,
and it is sufficient to restrict attention to lattice bases of the form .1; z/. We denote
by L.z/ the lattice L.1; z/. In the complex framework, the geometric transformation
effected by each step of the algorithm consists of an inversion-symmetry S W z



3 101

7! 1=z, followed by a translation z 7! T �qz with T .z/ D zC 1, and a possible sign
change J W z 7! �z.

The upper half plane H WD fz 2 CI =.z/ > 0g plays a central rôle for the
PGAUSS Algorithm, while the right half plane fz 2 CI <.z/ � 0; =.z/ 6D 0g
plays a central rôle in the AGAUSS algorithm. Remark just that the right half plane
is the union HC [ JH�, where J W z 7! �z is the sign change and

HC WD fz 2 CI =.z/ > 0; <.z/ � 0g; H� WD fz 2 CI =.z/ > 0; <.z/ � 0g:

The Complex Versions for the GAUSS Algorithms

In this complex context, the PGAUSS algorithm brings z into the vertical strip B D
BC [ B�, with

B D
�

z 2 HI j<.z/j � 1

2

�
; BC WD B \HC; B� WD B \H�;

reduces to the iteration of the mapping

U.z/ D �1
z
C
�
<
�
1

z

��
D �

�
1

z
�
�
<
�
1

z

���
; (3.25)

and stops as soon as z belongs to the domain F D FC [ F�, with

F D
�

z 2 HI jzj � 1; j<zj � 1

2

�
; FC WD F \HC; F� WD F \H�: (3.26)

Such a domain, represented in Fig. 3.8, is closely related to the classical funda-
mental domain bF of the upper half plane H under the action of the group

PSL2.Z/ WD fh W z 7! h.z/I h.z/ D azC b
czC d ; a; b; c; d 2 Z; ad � bc D 1g:

More precisely, the difference F n bF is contained in the frontier of F .
Consider the pair .B; U /, where the map U W B ! B is defined in (3.25)

for z 2 B n F and extended to F with U.z/ D z for z 2 F . This pair .B; U /
defines a dynamical system,5 and F can be seen as a “hole”: as the PGAUSS algo-
rithm terminates, there exists an index p � 0, which is the first index for which
U p.z/ belongs to F . Then, any complex number of B gives rise to a trajectory
z; U.z/; U 2.z/; : : : ; U p.z/, which “falls” in the hole F , and stays inside F as soon
as it attains F . Moreover, as F is, up to its frontier, a fundamental domain of the

5 We will see a formal definition of a dynamical system in Section “Analysis of the Execution
Parameters of the Gauss Algorithm”.

Probabilistic Analyses of Lattice Reduction Algorithms
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Fig. 3.8 The fundamental domains F ; eF and the strips B; eB defined in Section “The Complex
Versions for the GAUSS Algorithms”

upper half plane H under the action of PSL2.Z/, there exists a topological tessel-
lation of H with transforms of F of the form h.F/ with h 2 PSL2.Z/. We will
see later in Section “The LFTs Used by the AGAUSS Algorithm. The COREGAUSS

Algorithm” that the geometry of B nF is compatible with this tessellation.
In the same vein (see Figure 3.8), the AGAUSS algorithm brings z into the vertical

strip

B WD
�

z 2 CI =.z/ 6D 0; 0 � <.z/ � 1

2

�
D BC [ JB�;

reduces to the iteration of the mapping

eU .z/ D "
�
1

z

� �
1

z
�
�
<
�
1

z

���
; with ".z/ WD sign.<.z/ � b<.z/e/;

(3.27)
and stops as soon as z belongs to the domain eF

eF D
�

z 2 CI jzj � 1; 0 � <.z/ � 1

2

�
D FC [ JF�: (3.28)

Consider the pair .eB; eU /, where the map eU W eB ! eB is defined in (3.27) for
z 2 eB n eF and extended to eF with eU .z/ D z for z 2 eF . This pair .eB; eU / also defines
a dynamical system, and eF can also be seen as a “hole.”
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Relation with the Centered Euclid Algorithm

It is clear (at least in an informal way) that each version of Gauss algorithm is an
extension of the (centered) Euclid algorithm:

– For the PGAUSS algorithm, it is related to a Euclidean division of the form
v D quC r with jr j 2 Œ0;Cu=2�

– For the AGAUSS algorithm, it is based on a Euclidean division of the form
v D quC "r with " WD ˙1; r 2 Œ0;Cu=2�

If, instead of pairs, that are the old pair .u; v/ and the new pair .r; u/, one con-
siders rationals, namely the old rational x D u=v or the new rational y D r=u, each
Euclidean division can be written with a map that expresses the new rational y as a
function of the old rational x, as y D V.x/ (in the first case) or y D eV .x/ (in the
second case). With I WD Œ�1=2;C1=2� andeI WD Œ0; 1=2�, the maps V W I ! I or
eV W eI ! eI are defined as follows

V.x/ WD 1

x
�
�
1

x

�
; for x 6D 0; V .0/ D 0; (3.29)

eV .x/ D "
�
1

x

� �
1

x
�
�
1

x

��
; for x 6D 0; eV .0/ D 0: (3.30)

[Here, ".x/ WD sign.x � bxe/].
This leads to two (real) dynamical systems .I; V / and .eI; eV / whose graphs are

represented in Fig. 3.9. Remark that the tilded system is obtained by a folding of the
untilded one (or unfolded one), first along the x axis, then along the y axis, as it
is explained in [7]. The first system is called the F-EUCLID system (or algorithm),
while the second one is called the U-EUCLID system (or algorithm).

Of course, there are close connections between U and �V , on the one hand, and
eU and eV , on the other hand: even if the complex systems .B; U / and .eB; eU / are

Fig. 3.9 The two dynamical systems underlying the centered Euclidean algorithms
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defined on strips formed with complex numbers z that are not real (i.e., =z 6D 0),
they can be extended to real inputs “by continuity”: This defines two new dynamical
systems .B; U / and (eB; eU /, and the real systems .I;�V / and .eI; eV / are just the
restriction of the extended complex systems to real inputs. Remark now that the
fundamental domains F ; eF are no longer “holes” as any real irrational input stays
inside the real interval and never “falls” in them. On the contrary, the trajectories of
rational numbers end at 0, and finally each rational is mapped to i1.

The LFTs Used by the PGAUSS Algorithm

The complex numbers that intervene in the PGAUSS algorithm on the input z0 D
v1=v0 are related to the vectors .vi / defined in (3.3) via the relation zi D viC1=vi .
They are directly computed by the relation ziC1 WD U.zi /, so that the old zi�1 is
expressed with the new one zi as

zi�1 D hŒmi �.zi /; with hŒm�.z/ WD 1

m � z
:

This creates a continued fraction expansion for the initial complex z0, of the form

z0 D 1

m1 � 1

m2 � 1

:::
mp � zp

D h.zp/; with h WD hŒm1� ı hŒm2� ı : : : hŒmp �;

which expresses the input z D z0 as a function of the outputbz D zp . More generally,
the i th complex number zi satisfies

z0 D hi .zi /; with hi WD hŒm1� ı hŒm2� ı : : : hŒmi �:

Proposition 5. (Folklore) The set G of LFTs h W z 7! .az C b/=.czC d/ defined
with the relation z D h.bz/, which sends the output domain F into the input domain
B nF , is characterized by the set Q of possible quadruples .a; b; c; d /. A quadruple
.a; b; c; d / 2 Z

4 with ad � bc D 1 belongs to Q if and only if one of the three
conditions is fulfilled

1. (c D 1 or c � 3) and (jaj � c=2)
2. c D 2; a D 1; b � 0; d � 0
3. c D 2; a D �1; b � 0; d < 0
There exists a bijection between Q and the set P D f.c; d / 2 Z

2I c � 1;

gcd.c; d / D 1g : On the other hand, for each pair .a; c/ in the set

C WD f.a; c/I a

c
2 Œ�1=2;C1=2�; c � 1I gcd.a; c/ D 1g; (3.31)
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Fig. 3.10 Left: the “central” festoon F.0;1/. Right: three festoons of the strip B, relative to
.0; 1/; .1; 3/; .�1; 3/ and the two half-festoons at .�1; 2/ and .1; 2/

each LFT of G, which admits .a; c/ as coefficients can be written as h D h.a;c/ıT q ,
with q 2 Z and h.a;c/.z/ D .azC b0/=.czC d0/, with jb0j � ja=2j; jd0j � jc=2j:
Definition 2. [Festoons] If G.a;c/ denotes the set of LFTs of G, which admit .a; c/
as coefficients, the domain

F.a;c/ D
[

h2G.a;c/

h.F/ D h.a;c/

0

@
[

q2Z

T qF

1

A (3.32)

gathers all the transforms of h.F/ which belong to B nF for which h.i1/ D a=c.
It is called the festoon of a=c.

Remark that, in the case when c D 2, there are two half-festoons at 1=2 and
�1=2 (See Fig. 3.10).

The LFTs Used by the AGAUSS Algorithm. The COREGAUSS

Algorithm

In the same vein, the complex numbers that intervene in the AGAUSS algorithm on
the input z0 D w1=w0 are related to the vectors .wi / defined in (3.5) via the relation
zi D wiC1=wi . They are computed by the relation ziC1 WD eU .zi /, so that the old
zi�1 is expressed with the new one zi as

zi�1 D hhmi ;"i i.zi /; with hhm;"i.z/ WD 1

mC "z :

Probabilistic Analyses of Lattice Reduction Algorithms
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D

ST2J F +

STF −

STJ F +

SF −

F +

ST2J SF –

Fig. 3.11 Left: the six domains which constitute the domain BC n DC. Right: the disk D is not
compatible with the geometry of transforms of the fundamental domains F

This creates a continued fraction expansion for the initial complex z0, of the form

z0 D 1

m1 C �1

m2 C �2

: : :
mp C �pzp

D eh.zp/ with eh WD hhm1;�1iıhhm2;�2iı: : : hhmp ;�pi:

More generally, the i th complex number zi satisfies

z0 D ehi .zi / with ehi WD hhm1;"1i ı hhm2;"2i ı : : : hhmi ;"i i: (3.33)

We now explain the particular rôle that is played by the disk D of diametereI D
Œ0; 1=2�. Figure 3.11 shows that the domain eB n D decomposes as the union of six
transforms of the fundamental domain eF , namely

eB nD D
[

h2K
h.eF/; with K WD fI; S; STJ; ST; ST 2J; ST 2JSg: (3.34)

This shows that the disk D itself is also a union of transforms of the fundamental
domain eF . Remark that the situation is different for the PGAUSS algorithm, as the
frontier of D lies “in the middle” of transforms of the fundamental domain F (see
Fig. 3.11).

As Fig. 3.12 shows it, there are two main parts in the execution of the AGAUSS

Algorithm, according to the position of the current complex zi with respect to the
disk D of diameter Œ0; 1=2� whose alternative equation is
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COREGAUSS.z/

Input. A complex number in D.

Output. A complex number in eB nD.
While z 2 D do z WD eU .z/;

FINALGAUSS.z/

Input. A complex number in eB nD.

Output. A complex number in eF .
While z 62 eF do z WD eU .z/;

AGAUSS.z/

Input. A complex number in eB n eF .

Output. A complex number in eF .

COREGAUSS .z/;
FINALGAUSS .z/;

Fig. 3.12 The decomposition of the AGAUSS Algorithm into two parts: its core part (the
COREGAUSS Algorithm) and its final part (the FINALGAUSS Algorithm)

D WD
�

zI <
�
1

z

�
� 2

�
:

While zi belongs to D, the quotient .mi ; "i / satisfies .mi ; "i / � .2;C1/ (wrt the
lexicographic order), and the algorithm uses at each step the set

H WD fhhm;"iI .m; "/ � .2;C1/g

so that D can be written as

D D
[

h2HC

h.eB nD/ with HC WD
X

k
1

Hk: (3.35)

The part of the AGAUSS algorithm performed when zi belongs to D is called the
COREGAUSS algorithm. The total set of LFTs used by the COREGAUSS algorithm
is then the set HC D [k
1Hk . As soon as zi does not any longer belong to D, there
are two cases. If zi belongs to eF , then the algorithm ends. If zi belongs to eBn.eF[D/,
there remains at most two iterations (due to (3.34) and Fig. 3.11), that constitutes
the FINALGAUSS algorithm, which uses the set K of LFTs, called the final set of
LFTs and described in (3.34). Finally, we have proven the decomposition of the
AGAUSS Algorithm, as is described in Fig. 3.12, and summarized in the following
proposition:

Proposition 6. (Daudé et al. [14] (1994), Flajolet and Vallée [16,17] (1990–1999))
The set eG formed by the LFTs that map the fundamental domain eF into the set eBn eF
decomposes as eG D .H? �K/ n fI g , where

H? WD
X

k
0

Hk ; H WD fhhm;"iI .m; "/ � .2;C1/g;

K WD fI; S; STJ; ST; ST 2J; ST 2JSg:

Probabilistic Analyses of Lattice Reduction Algorithms
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Here, if D denotes the disk of diameter Œ0; 1=2�, then HC is the set formed by the
LFTs that map eB nD into D and K is the final set formed by the LFTs that map eF
into eB n D. Furthermore, there is a characterization of HC due to Hurwitz, which
involves the golden ratio � D .1Cp5/=2:

HC WD
�
h.z/ D azC b

czC d I .a; b; c; d / 2 Z
4; b; d � 1; ac � 0;

jad � bcj D 1; jaj � jcj
2
; b � d

2
;� 1

�2
� c

d
� 1

�

�
:

Comparing the COREGAUSS Algorithm and the F-EUCLID

Algorithm

The COREGAUSS algorithm has a nice structure as it uses ateach step the same set
H. This set is exactly the set of LFTs that are used by the F-EUCLID Algorithm,
closely related to the dynamical system defined in (3.30). Then, the COREGAUSS

algorithm is just a lifting of this F-EUCLID Algorithm, while the final steps of
the AGAUSS algorithm use different LFT’s, and are not similar to a lifting of
a Euclidean Algorithm. This is why the COREGAUSS algorithm is interesting
to study: we will see in Section “Analysis of the Execution Parameters of the
Gauss Algorithm” why it can be seen as an exact generalization of the F-EUCLID

algorithm.
For instance, ifR denotes the number of iterations of the COREGAUSS algorithm,

the domain ŒR � k C 1� gathers the complex numbers z for which eU k.z/ are in D.
Such a domain admits a nice characterization, as a union of disjoint disks, namely

ŒR � k C 1� D
[

h2Hk

h.D/; (3.36)

which is represented in Figure 3.13. The disk h.D/ for h 2 HC is the disk whose
diameter is the interval Œh.0/; h.1=2/� D h.eI/. Inside the F-EUCLID dynamical
system, the interval h.eI/ (relative to a LFT h 2 Hk) is called a fundamental interval
(or a cylinder) of depth k: it gathers all the real numbers of the intervaleI that have
the same continued fraction expansion of depth k. This is why the disk h.D/ is
called a fundamental disk.

This figure shows in a striking way the efficiency of the algorithm, and asks nat-
ural questions: Is it possible to estimate the probability of the event ŒR � k C 1�?
Is it true that it is geometrically decreasing? With which ratio? We return to
these questions in Section “Analysis of the Execution Parameters of the Gauss
Algorithm”.
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Fig. 3.13 The domains ŒR D k� alternatively in black and white. The figure suggests that
reduction of almost-collinear bases is likely to require a large number of iterations

Worst-Case Analysis of the Gauss Algorithm

Before beginning our probabilistic studies, we recall the worst-case behavior of
execution parameters and give a proof in the complex framework.

Theorem 4. (Vallée [38] 1991) Consider the AGAUSS Algorithm, with an input
.u; v/ of length max.juj; jvj/ at most equal to N . Then, the maximum number of iter-
ations PN , and the maximum value CN of any additive cost C of moderate growth6

are �.logN/, while the maximal value BN of the bit-complexity B is �.log2N/.
More precisely, the maximal value PN of the number of iterations P satisfies

PN �N!1
1

log.1Cp2/ logN:

Proof. We here use the complex framework of the AGAUSS algorithm, and the
study of the maximum number of iterations is the complex version of Vallée’s result,
initially performed in the vectorial framework [38].

Number of iterations. It is sufficient to study the number R of iterations of the
COREGAUSS Algorithm as it is related to the total number of iterations P via the
inequality P � RC 2. The inclusion

ŒR � k C 1� �
(

zI j=.z/j � 1

2

�
1

1Cp2
�2k�1

)
(3.37)

6 This means that the elementary cost c satisfies c.q/ D O.log q/ (see Section “Main Parameters
of Interest”).

Probabilistic Analyses of Lattice Reduction Algorithms
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will lead to the result: as any nonreal complex z D v=u relative to an integer pair
.u; v/ has an imaginary part at least equal to 1=juj2, then z belongs to the domain
ŒR � k� as soon as juj2 � 2.1Cp2/2k�1.

We now prove Relation (3.37): Indeed, we know from (3.36) that the domain
ŒR � kC1� is the union of transforms h.D/ for h 2 Hk , where D and H are defined
in Proposition 6. The largest such disk h.D/ is obtained when all the quotients .m; "/
are the smallest ones, that is, when all .m; "/ D .2;C1/. In this case, the coefficients
.c; d / of h are the terms Ak ; AkC1 of the sequence defined by

A0 D 0; A1 D 1; and AkC1 D 2Ak C Ak�1 for k � 1;

which satisfy Ak � .1C
p
2/k�2. Then, the largest such disk has a radius at most

equal to .1=2/.1Cp2/1�2k .

Additive costs. As we restrict ourselves to costs c of moderate growth, it is sufficient
to study the cost C relative to the step cost c.q/ WD log q.

Consider the sequence of vectors w0 D u;w1 D v; : : : ;wkC1 computed by the
AGAUSS algorithm on the input .u; v/ withM WD `.juj2/. We consider the last step
as a special case, and we use for it the (trivial) upper bound jmkC1j � juj2; for
the other steps, we consider the associated complex numbers zi defined by zi�1 D
hi .zi / [where the LFT hi has a digit qi at least equal to 2] and the complex Lz WD zk

before the last iteration that belongs to eB n eF . Then the expression z D z0 D h.Lz/
involves the LFT h WD h1ıh2 : : :ıhk , which corresponds to the algorithm except its
last step. As any complex z D v=u relative to an integer pair .u; v/ has an imaginary
part at least equal to 1=juj2, one has

1

juj2 � j=h.Lz/j D j=.Lz/j � jh
0.Lz/j �

kY

iD1

jh0i .zi /j �
kY

iD1

1

jqi � .1=2/j2 � 2
k

kY

iD1

1

q2
i

:

This proves that the cost C.u; v/ relative to c.q/ D log q satisfies C.u; v/ D O.M/.
Bit-complexity. The result is obtained, thanks to (3.8).

Probabilistic Models for Two-Dimensions

We now return to our initial motivation, and begin our probabilistic studies. As we
focus on the invariance of algorithm executions under similarity transformations, we
assume that the two random variables juj and z D v=u are independent and consider
densities F on pairs of vectors .u; v/, which only depend on the ratio z D v=u, of
the form F.u; v/ D f .v=u/. Moreover, it is sufficient to consider pairs .u; v/ with a
first vector u of the form u D .N; 0/. Finally, we define in a generic way the discrete
model˝N as

˝N WD
n
z D v

u
I u D .N; 0/; v D .a; b/; .a; b;N / 2 Z

3; z 2 X
o
;
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and there are three main cases, according to the algorithm of interest, namely X D
B nF for PGAUSS, X D eB n eF for AGAUSS, or X D D for COREGAUSS.

In each case, the complex z D v=u belongs to QŒi �\X and is of the form .a=N /C
i.b=N /. Our discrete probabilistic models are defined as the restrictions to ˝N of a
continuous model defined on X . More precisely, we choose a density f on X , and
consider its restriction on ˝N . Normalized by the cardinality j˝N j, this gives rise
to a density fN on ˝N , which we extend on X as follows: fN .x/ WD fN .!/ as
soon as x belongs to the square of center ! 2 ˝N and edge 1=N . We obtain, in
such a way, a family of functions fN defined on X . When the integer N tends to
1, this discrete model “tends” to the continuous model relative to the density f (as
we already explained in Section “Probabilistic Models: Continuous or Discrete”).

It is sometimes more convenient to view these densities as functions defined on
R

2, and we will denote by the same symbol the function f viewed as a function of
two real variables x; y. It is clear that the rôles of two variables x; y are not of the
same importance. In our asymptotic framework, where the size M becomes large,
the variable y D =.z/ plays the crucial rôle, while the variable x D <.z/ plays
an auxiliary rôle. This is why the two main models that are now presented involve
densities f .x; y/, which depend only on y.

The Model with “Valuation”

In Section “Probabilistic Analyses of the LLL Algorithm in the Spherical Model”,
it is shown that each input local basis Un�k in the spherical model with ambient
dimension n admits (for n!1) a distribution with a density 'k defined in (3.24).
We are then led to consider the two-dimensional bases .u; v/, which follow the so-
called model of valuation r (with r > �1), for which

P

�
.u; v/I j det.u; v/j

max.juj; jvj/2 � y
�
D �.yrC1/; when y ! 0:

We note that, when the valuation r tends to �1, this model tends to the “one-
dimensional model,” where u and v are collinear. In this case, the Gauss Algorithm
“tends” to the Euclidean Algorithm, and it is important to precisely describe the
transition. This model “with valuation” was already presented in [39] in a slightly
different context, but not actually studied there.

The model with valuation defines a scale of densities for which the weight of
skew bases may vary. When r tends to �1, almost all the input bases are formed of
vectors which form a very small angle, and with a high probability, they represent
hard instances for reducing the lattice.

In the complex framework, a density f on the set S � C n R is of valuation r
(with r > �1) if it is of the form

f .z/ D j=.z/jr � g.z/; where g.z/ 6D 0 for =.z/ D 0: (3.38)

Probabilistic Analyses of Lattice Reduction Algorithms
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Such a density is called of type .r; g/. We often deal with the standard density of
valuation r , denoted by fr ,

fr.z/ D 1

A.r/
j=.z/jr ; with A.r/ D

“

BnF
yr dxdy: (3.39)

Of course, when r D 0, we recover the uniform distribution on B n F with
A.0/ D .1=12/.2	 C 3

p
3/. When r ! �1, then A.r/ is �Œ.r C 1/�1�. More

precisely

A.r/ � 1

r C 1 ; r ! �1:
The (continuous) model relative to a density f is denoted with an index of the

form hf i, and when the valuation is the standard density of valuation r , the model
is denoted with an index of the form .r/. The discrete models are denoted by two
indices, the integer sizeM and the index that describes the functionf , as previously.

The Ajtai Model in Two-Dimensions

This model (described in the general case in Section “Ajtai Bases”) corresponds to
bases .u; v/ for which the determinant det.u; v/ satisfies

j det.u; v/j
max.juj; jvj/2 D y0 for some y0 2�0; 1�:

In the complex framework, this leads to densities f .z/ on B n F (or on the tilde
corresponding domain) of the form f .z/ D Dirac.y0/ for some y0 2�0; 1�. When
y0 tends to 0, then the model also tends to the “one-dimensional model” (where u
and v are collinear) and the Gauss Algorithm also “tends” to the Euclidean Algo-
rithm. As in the model “with valuation,” it is important to precisely describe this
transition and compare to the result of Goldstein and Mayer [20].

Analysis of Lattice Reduction in Two-Dimensions: The Output
Parameters

This section describes the probabilistic behavior of output parameters: we first
analyze the output densities, then we focus on the geometry of our three main
parameters defined in (3.11) and (3.12). We shall use the PGAUSS Algorithm for
studying the output parameters.
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Output Densities

For studying the evolution of distributions (on complex numbers), we are led to
study the LFTs h used in the Gauss algorithm [Section “Returning to the Gauss
Algorithm”], whose set is G for the PGAUSS Algorithm [Section “The LFTs Used
by the PGAUSS Algorithm”]. We consider the two-variables function h that cor-
responds to the complex mapping z 7! h.z/. More precisely, we consider the
function h, which is conjugated to .h; h/ W .u; v/ 7! .h.u/; h.v// with respect to
map ˚ , namely h D ˚�1 ı .h; h/ı˚ , where mappings˚;˚�1 are linear mappings
C

2 ! C
2 defined as

˚.x; y/ D .z D x C iy; Nz D x � iy/; ˚�1.z; Nz/ D
�

zC Nz
2
;

zC Nz
2i

�
:

As ˚ and ˚�1 are linear mappings, the Jacobian Jh of the mapping h satisfies

Jh.x; y/ D jh0.z/ � h0.Nz/j D jh0.z/j2; (3.40)

as h has real coefficients. Let us consider any measurable set A � F , and study the
final density bf on A. It is brought by all the antecedents h.A/ for h 2 G, which
form disjoints subsets of B n F . Then,

“

A
bf .bx;by/ dbxdby D

X

h2G

“

h.A/

f .x; y/ dxdy:

Using the expression of the Jacobian (3.40), and interchanging integral and sum
lead to the equality

“

A
bf .bx;by/dbx dby D

“

A

0

@
X

h2G
jh0.bz/j2f ı h.bx;by/

1

A dbxdby:

Finally, we have proven:

Theorem 5. (Vallée and Vera [45, 47] 2007) The output density bf of each of the
three algorithms satisfies the following:

i. The output density bf of the PGAUSS Algorithm on the fundamental domain F
is expressed as a function of the input density f on B nF as

bf .z/ D
X

h2G
jh0.z/j2 f ı h.z/;

where G is the set of LFTs used by the PGAUSS algorithm described in Proposi-
tion 5.

Probabilistic Analyses of Lattice Reduction Algorithms
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ii. The output density bf of the AGAUSS Algorithm on the fundamental domain eF
is expressed as a function of the input density f on eB n eF as

bf .z/ D
X

h2eG
jh0.z/j2 f ı h.z/;

where eG is the set of LFTs used by the AGAUSS algorithm defined in Proposi-
tion 6.

iii. The output density bf of the COREGAUSS Algorithm on the domain eB n D can
be expressed as a function of the input density f on D as

bf .z/ D
X

h2HC

jh0.z/j2 f ı h.z/;

where H is the set of LFTs used by each step of the COREGAUSS algorithm
defined in Proposition 6. and HC WD [k
1Hk .

Relation with Eisenstein Series

We now analyze an important particular case, where the initial density is the stan-
dard density of valuation r defined in (3.39). As each element of G gives rise to a
unique pair .c; d / with c � 1; gcd.c; d / D 1 [see Section “The LFTs Used by the
PGAUSS Algorithm”] for which

jh0.bz/j D 1

jcbzC d j4 ; fr ı h.bx;by/ D 1

A.r/

byr

jcbzC d j2r
; (3.41)

the output density on F is bfr .bx;by/ D 1

A.r/

X

.c;d/D1
c
1

byr

jcbzC d j4C2r
: (3.42)

It is natural to compare this density with the density relative to the measure rel-
ative to “random lattices” defined in Section “Random Lattices”. In the particular
case of two-dimensions, the fundamental domain for the action of PSL2.Z/ on H

equals F up to its frontier. Moreover, the measure of density f .z/ D =.z/�2 is
invariant under the action of PSL2.Z/: indeed, for any LFT h with det h D ˙1,
one has j=.h.z//j D j=.z/j � jh0.z/j; so that

“

h.A/

1

y2
dxdy D

“

A
jh0.z/j2 1

=.h.z//2 dxdy D
“

A

1

y2
dxdy:

Then, the probability �2 defined in Section “Random Lattices” is exactly the
measure on F of density
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.x; y/ WD 3

	

1

y2
as

“

F

1

y2
dxdy D 	

3
: (3.43)

If we make apparent this density  inside the expression of bfr provided in (3.42),
we obtain:

Theorem 6. (Vallée and Vera [45, 47] 2007) When the initial density on B n F is
the standard density of valuation r , denoted by fr and defined in (3.39), the output
density of the PGAUSS algorithm on F involves the Eisenstein series Es of weight
s D 2C r: With respect to the Haar measure �2 on F , whose density  is defined in
(3.43), the output density bfr is expressed as

bfr .x; y/ dxdy D 	

3A.r/
F2Cr .x; y/ .x; y/ dxdy;

where Fs.x; y/ D
X

.c;d/D1
c
1

ys

jczC d j2s

is closely related to the classical Eisenstein series Es of weight s, defined as

Es.x; y/ WD 1

2

X

.c;d/2Z2

.c;d/ 6D.0;0/

ys

jczC d j2s
D �.2s/ � ŒFs.x; y/C ys � :

When r ! �1, classical results about Eisenstein series prove that

Es.x; y/ �s!1

	

2.s � 1/ so that lim
r!�1

	

3A.r/
F2Cr .x; y/ D 1:

Then, when r tends to �1, the output distribution relative to an input distribution,
which is standard and of valuation r , tends to the distribution �2 relative to random
lattices.

The series Es are Mass forms (see for instance the book [8]): they play an impor-
tant rôle in the theory of modular forms, because Es is an eigenfunction for the
Laplacian, relative to the eigenvalue s.1 � s/. The irruption of Eisenstein series in
the lattice reduction framework is unexpected, and at the moment, it is not clear
how to use the (other) classical well-known properties of the Eisenstein series Es

for studying the output densities.

Geometry of the Output Parameters

The main output parameters are defined in (3.11,3.12). For X 2 f�;�; �g, we
denote by X.z/ the value of X on basis .1; z/, and there are close relations between

Probabilistic Analyses of Lattice Reduction Algorithms
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X.u; v/ and X.z/ for z D v=u:

�.u; v/ D juj � �.z/; �.u; v/ D juj � �.z/; �.u; v/ D �.z/:

Moreover, the complex versions of parameters �;�; � can be expressed with the
input–output pair .z;bz/.

Proposition 7. If z D x C iy is an initial complex number of B n F leading to a
final complexbz D bx C iby of F , then the three main output parameters defined in
(3.11) and (3.12) admit the following expressions:

detL.z/ D y; �2.z/ D y

by
; �2.z/ D yby; �.z/ D 1

by
:

The following inclusions hold:

Œ�.z/ D t � �
"
=.z/ �

p
3

2
t2

#
; Œ�.z/ D u� �

�
=.z/ � 2p

3
u2

�
: (3.44)

If z leads tobz by using the LFT h 2 G with z D h.bz/ D .abzC b/=.cbzC d/, then

�.z/ D jcz � aj; �.z/ D jcz � aj2
y

; �.z/ D y

jcz � aj :

Proof. If the initial pair .v1; v0/ is written as in (3.4) as

�
v1

v0

�
DM�1

�
vpC1

vp

�
; with M�1 WD

�
a b

c d

�
and z D h.bz/ D abzC b

cbzC d ;

then the total length decrease satisfies

jvpj2
jv0j2 D

jvpj2
jcvpC1 C dvpj2 D

1

jcbzC d j2 D jh
0.bz/; (3.45)

[we have used the fact that detM D 1.] This proves that �2.z/ equals jh0.bz/j as
soon as z D h.bz/. Now, for z D h.bz/, the relations

y D by
jcbzC d j2 ; by D y

jcz � aj2

easily lead to the result.
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Domains Relative to the Output Parameters

We now consider the following well-known domains defined in Fig. 3.14. The Ford
disk Fo.a; c; �/ is a disk of center .a=c; �=.2c2// and radius �=.2c2/: it is tangent
to y D 0 at point .a=c; 0/. The Farey disk Fa.a; c; t/ is a disk of center .a=c; 0/
and radius t=c. Finally, the angular sector Se.a; c; u/ is delimited by two lines that
intersect at a=c, and form with the line y D 0 angles equal to˙ arcsin.cu/.
These domains intervene for defining the three main domains of interest.

Theorem 7. (Laville and Vallée [24] (1990), Vallée and Vera [45] (2007)) The
domains relative to the main output parameters, defined as


 .�/ WD fz 2 B nF I �.z/ � �g; �.t/ WD fz 2 B n F I �.z/ � tg;

M.u/ WD fz 2 B n F I �.z/ � ug;
are described with Ford disks Fo.a; c; �/, Farey disks Fa.a; c; t/, and angular sec-
tors Se.a; c; u/. More precisely, if F.a;c/ denotes the Festoon relative to pair .a; c/
defined in (3.32) and if the set C is defined as in (3.31), one has:


 .�/ D
[

.a;c/2C
Fo.a; c; �/ \ F.a;c/; �.t/ D

[

.a;c/2C
Fa.a; c; t/ \ F.a;c/;

M.u/ D
[

.a;c/2C
Se.a; c; u/ \F.a;c/:

Fo.a; c; �/ WD
�
.x; y/I y > 0;

�
x � a

c

�2 C
�
y � �

2c2

�2 �
� �

2c2

�2 �

Fa.a; c; t / WD
�
.x; y/I y > 0;

�
x � a

c

�2 C y2 �
� t
c

�2 �

Se.a; c; u/ WD
�
.x; y/I y > 0; y � jcjup

1� c2u2
ˇ̌
ˇx � a

c

ˇ̌
ˇ
�

for jcju < 1

Se.a; c; u/ WD f.x; y/I y > 0; g for jcju 
 1

Fig. 3.14 The three main domains of interest: the Ford disks Fo.a; c; �/, the Farey disks
Fa.a; c; t /, and the angular sectors Se.a; c; u/

Probabilistic Analyses of Lattice Reduction Algorithms
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Each of these descriptions of �;
;M can be transformed in a description that no
more involves the festoons. It involves, for instance, a subfamily of Farey disks (for
�), or a subfamily of angular sectors (forM ) [see Fig. 3.15].

Consider the set P WD f.c; d /I c; d � 1; .c; d / D 1g, already used in Sec-
tion “The LFTs Used by the PGAUSS Algorithm”, and its subset P.t/ defined
as

P.t/ WD f.c; d /I c; d � 1; ct � 1; dt � 1; .c C d/t > 1; .c; d / D 1g:

Consider a pair .c; d / 2 P.t/. There exists a unique pair .a; b/ for which the ratio-
nals a=c and b=d belong to Œ�1=2;C1=2� and satisfy ad � bc D 1. We then
associate to the pair .c; d / the intersection of the vertical strip f.x; y/I .a=c/ �
x � .b=d/g with B n F , and we denote it by S.c; d /. Remark that the definition of
P.t/ implies that the only rationals of the strip S.c; d / with a denominator at most
.1=t/ are a=c and b=d .
Domain�.t/. For any t > 0 and any pair .c; d / 2 P.t/, there exists a characteriza-
tion of the intersection of the domain �.t/ with the vertical strip S.c; d /, provided
in [24], which does not depend any longer on the festoons, namely

�.t/ \ S.c; d / D Fa.a; c; t/ [ Fa.b; d; t/ [ Fa.aC b; c C d; t/: (3.46)

Here, the pair .a; b/ is the pair associated to .c; d /, the domains
Fa.a; c; t/; Fa.b; d; t/ are the intersections of Farey disks Fa.a; c; t/, Fa.b; d; t/
with the strip S.c; d /. The domain in (3.46) is exactly the union of the two disks
Fa.a; c; t/ and Fa.b; d; t/ if and only if the condition .c2Cd 2C cd/t2 � 1 holds,
but the Farey disk relative to the median .aCb/=.cCd/ plays a rôle otherwise. The
proportion of pairs .c; d / 2 P.t/ for which the condition .c2 C d 2 C cd/t2 � 1
holds tends to 2 � .2	/=.3p3/ � 0:7908 when t ! 0.
Then, the following inclusions hold (where the “left” union is a disjoint union)

[

.a;c/2C
c�1=.2t/

Fa.a; c; t/ � �.t/ �
[

.a;c/2C
c�2=.

p

3t/

Fa.a; c; t/: (3.47)

Domain M.u/. For any u > 0 and any pair .c; d / 2 P.u/, there exists a char-
acterization of the intersection of the domain M.u/ with the vertical strip S.c; d /,
provided in [47], which does not depend any longer on the festoons, namely

M.u/\ S.c; d / D Se.a; c; u/ \ Se.b; d; u/\ Se.b � a; d � c; u/: (3.48)

Here, the pair .a; b/ is the pair associated to .c; d /, the domains Se.a; c; u/;
Se.b; d; u/ are the intersections of Se.a; c; u/, Se.b; d; u/ with the strip S.c; d /.
The domain in (3.48) is exactly the triangle Se.a; c; u/ \ Se.b; d; u/ if and only if
one of the two conditions .c2 C d 2 � cd/u2 � .3=4/ or cd u2 � .1=2/ holds, but
this is a “true” quadrilateral otherwise. The proportion of pairs .c; d / 2 P.u/ for
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which the condition Œ.c2 C d 2 � cd/u2 � .3=4/ or cd u2 � .1=2/� holds tends to
.1=2/C .	p3=12/ � 0:9534 when u! 0.

Distribution Functions of Output Parameters:
Case of Densities with Valuations

Computing the measure of disks and angular sectors with respect to a standard den-
sity of valuation r leads to the estimates of the main output distributions. We first
present the main constants that will intervene in our results.

Constants of the Analysis

The measure of a disk of radius � centered on the real axis equals 2A2.r/ �
rC2.

The measure of a disk of radius � tangent to the real axis equals A1.r/ .2�/
rC2.

Such measures involve constants A1.r/; A2.r/, which are expressed with the ˇ
law, already defined in (3.21) as

A1.r/ WD
p
	

A.r/


 .r C 3=2/

 .r C 3/ ; A2.r/ WD

p
	

2A.r/


 ..r C 1/=2/

 .r=2C 2/ : (3.49)

For a triangle with basis a on the real axis and height h, this measure equals
A3.r/ a h

rC1, and involves the constant

A3.r/ WD 1

A.r/

1

.r C 2/.r C 1/ : (3.50)

For .˛; ˇ/ that belongs to the triangle T WD f.˛; ˇ/I 0 < ˛; ˇ < 1; ˛ C ˇ > 1g,
we consider the continuous analogs of the configurations previously described:

Disks. We consider the figure obtained with three disks D˛;Dˇ ;D˛Cˇ when these
disks satisfy the following: For any ı;  2 f˛; ˇ; ˛ C ˇg, the center xı is on the
real axis, the distance between xı and x� equals 1=.ı/ and the radius ofDı equals
1=ı. We can suppose x˛ < x˛Cˇ < xˇ . Then, the configurationD.˛; ˇ/ is defined
by the intersection of the union [ıDı with the vertical strip hx˛; xˇ i. The constant
A4.r/ is defined as the integral

A4.r/ D 1

A.r/

“

T
d˛dˇ

 “

D.˛;ˇ/

yr dxdy

!
: (3.51)
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Sectors. In the same vein, we consider the figure obtained with three sectors
S˛; Sˇ ; Sˇ�˛ when these sectors satisfy the following:7 for any ı 2 f˛; ˇ; ˇ � ˛g,
the sector Sı is delimited by two half lines, the real axis (with a positive orienta-
tion) and another half-line, that intersect at the point xı of the real axis. For any
ı;  2 f˛; ˇ; ˇ � ˛g, the distance between xı and x� equals 1=.ı/. We can sup-
pose xˇ�˛ < x˛ < xˇ ; in this case, the angle of the sector Sı equals arcsin ı for
ı 2 fˇ � ˛; ˛g and equals 	 � arcsin ı for ı D ˇ. The configuration S.˛; ˇ/ is
defined by the intersection of the intersection \ıSı with the vertical strip hx˛ ; xˇ i.
The constant A5.r/ is defined as the integral

A5.r/ D 1

A.r/

“

T
d˛dˇ

 “

S.˛;ˇ/

yr dxdy

!
: (3.52)

Theorem 8. (Vallée and Vera [45,47] 2007) When the initial density on BnF is the
standard density of valuation r , the distribution of the three main output parameters
involves the constantsAi .r/ defined in (3.49), (3.50), (3.51), and (3.52) and satisfies
the following:

1. For parameter � , there is an exact formula for any valuation r and any � � 1,

P.r/Œ�.z/ � �� D A1.r/ � �.2r C 3/
�.2r C 4/ � �

rC2 for � � 1

2. For parameter �, there are precise estimates for any fixed valuation r > �1,
when t ! 0,

P.r/Œ�.z/ � t � �t!0

�.r C 1/
�.r C 2/ A2.r/ � trC2 for r > 0;

P.r/Œ�.z/ � t � �t!0

1

�.2/
A2.0/ � t2j log t j for r D 0,

P.r/Œ�.z/ � t � �t!0

1

�.2/
A4.r/ � t2rC2 for r < 0.

Moreover, for any fixed valuation r > �1 and any t > 0, the following inequality
holds

P.r/Œ�.z/ � t � � 1

A.r/

1

r C 1

 p
3

2

!rC1

t2rC2: (3.53)

3. For parameter �, there is a precise estimate for any fixed valuation r > �1,
when u! 0,

7 The description is given in the case when ˇ > ˛.
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P.r/Œ�.z/ � u� �u!0

1

�.2/
A5.r/ � u2rC2:

Moreover, for any fixed valuation r > �1 and any u > 0, the following
inequalities hold:

A3.r/

 p
3

2

!rC1

� u2rC2 � P.r/Œ�.z/ � u� � A3.r/ � u2rC2: (3.54)

Proof. [Sketch] If ' denotes the Euler quotient function, there are exactly '.c/
coprime pairs .a; c/ with a=c 2� � 1=2;C1=2�. Then, the identity

X

c
1

'.c/

cs
D �.s � 1/

�.s/
; for <s > 2;

explains the occurrence of the function �.s�1/=�.s/ in our estimates. Consider two
examples:

.a/ For � � 1, the domain 
 .�/ is made with disjoint Ford disks of radius �=.2c2/.
An easy application of previous principles leads to the result.

.b/ For�.t/, these same principles together with relation (3.47) entail the following
inequalities

trC2

0

@
X

c�1=.2t/

'.c/

crC2

1

A � 1

A2.r/
P.r/Œ�.z/ � t � � trC2

0

@
X

c�2=.
p

3t/

'.c/

crC2

1

A ;

and there are several cases when t ! 0 according to the sign of r . For r > 0,
the Dirichlet series involved are convergent. For r � 0, we consider the series

X

c
1/

'.c/

crC2Cs
D �.s C r C 1/
�.s C r C 2/ ;

(which has a pôle at s D �r), and classical estimates entail an estimate for

X

c�N

'.c/

crC2
�N!1

1

�.2/

N�r

jr j ; (for r < 0/, and
X

c�N

'.c/

c2
�N!1

1

�.2/
logN:

For domainM.u/, the study of quadrilaterals can be performed in a similar way.
Furthermore, the height of each quadrilateral of M.u/ is �.u2/, and the sum of
the bases a equal 1. Then P.r/Œ�.z/ � u� D �.u2rC2/. Furthermore, using the
inclusions of (3.44) leads to the inequality.

Probabilistic Analyses of Lattice Reduction Algorithms
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Interpretation of the Results

We provide a first interpretation of the main results described in Theorem 8.

1. For any y0 � 1, the probability of the event Œby � y0� is

P.r/Œby � y0� D P.r/

�
�.z/ � 1

y0

�
D A1.r/

�.2r C 3/
�.2r C 4/

1

yrC2
0

:

This defines a function of the variable y0 7!  r .y0/, whose derivative is a power
function of variable y0, of the form �.y�r�3

0 /. This derivative is closely related

to the output density bfr of Theorem 6 via the equality

 0r .y0/ WD
Z C1=2

�1=2

bfr.x; y0/ dx:

Now, when r ! �1, the function  0r .y/ has a limit, which is exactly the den-
sity , defined in (3.43), which is associated to the Haar measure �2 defined in
Sections “Random Lattices and Relation with Eisenstein Series”.

2. The regime of the distribution function of parameter � changes when the sign
of valuation r changes. There are two parts in the domain �.t/: the lower part,
which is the horizontal strip Œ0 � =.z/ � .2=p3/t2�, and the upper part defined
as the intersection of �.t/ with the horizontal strip Œ.2=

p
3/t2 � =.z/ � t �. For

negative values of r , the measure of the lower part is dominant, while for positive
values of r , it is the upper part that has a dominant measure. For r D 0, there is
a phase transition between the two regimes: this occurs in particular in the usual
case of a uniform density.

3. In contrast, the distribution function of parameter� has always the same regime.
In particular, for negative values of valuation r , the distribution functions of the
two parameters, � and �, are of the same form.

4. The bounds (3.53, 3.54) prove that for any u; t 2 Œ0; 1�, the probabilities PŒ�.z/ �
t �, PŒ�.z/ � u� tend to 1, when the valuation r tends to �1. This shows that the
limit distributions of � and � are associated to the Dirac measure at 0.

5. It is also possible to conduct these studies in the discrete model defined in Sec-
tion “Probabilistic Models for Two-Dimensions”. It is not done here, but this type
of analysis will be performed in the following section.

Open question. Is it possible to describe the distribution function of parameter �
for � > 1? Figure 3.15 [top] shows that its regime changes at � D 1. This will be
important for obtaining a precise estimate of the mean value E.r/Œ�� as a function of
r and comparing this value to experiments reported in Section “A Variation for the
LLL Algorithm: The Odd-Even Algorithm”.

The corners of the fundamental domain. With Theorem 8, it is possible to com-
pute the probability that an output basis lies in the corners of the fundamental
domain, and to observe its evolution as a function of valuation r . This is a first
step for a sharp understanding of Fig. 3.4 [right].
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Fig. 3.15 Above: the domain 
 .�/ WD fzI �.z/ � �g. On the left, � D 1 (in white). On
the right, the domain F.0;1/ \ Fo.0; 1; �/ for � D 1; �0 D 2=

p
3; �1 D .1 C �0/=2. – In the

middle: the domain �.t/ \ BC, with �.t/ WD fzI �.z/ � tg and the domain M.u/ \ BC with
M.u/ WD fzI �.z/ � ug for u D t D 0:193.– Below: the same domains for u D t D 0:12
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Proposition 8. When the initial density on BnF is the standard density of valuation
r , the probability for an output basis to lie on the corners of the fundamental domain
is equal to

C.r/ WD 1 � A1.r/ � �.2r C 3/
�.2r C 4/ ;

where A1.r/ is defined in Section “Distribution Functions of Output Parameters:
Case of Densities with Valuations”. There are three main cases of interest for
1 � C.r/, namely

Œr ! �1� W 3
	
; Œr D 0� W 3	

2	 C 3p3
�.3/

�.4/
; Œr !1� W

r
	

r
e�3=2:

Distribution Functions of Output Parameters:
Case of Fixed Determinant

Computing the measure of disks and angular sectors with respect to the mea-
sure concentrated on the line y D y0 leads to the estimates of the main output
distributions. We here focus on the parameter � .

The intersection of the disk Fo.a; c; �/ with the line y D y0 is nonempty as soon
as y0 is less than �=c2. The intersection 
 .�/ \ Œy D y0� is just “brought” by the
Ford disks for which the integer c is less than x0 D

p
�=y0. Then, for � < 1, the

Ford disks Fo.a; c; �/ are disjoint and

PŒy0�Œ�.z/ � �� D 2� Sg.x0/ with Sg.x0/ D 1

x0

X

c�x0

'.c/

c
g

�
c

x0

�
;

and g.t/ D p1 � t2. For any function g smooth enough, one has

lim
x!1Sg.x/ D 1

�.2/

Z 1

0

g.t/ dt:

This proves that when y0 tends to 0, the probability PŒy0�Œ�.z/ � �� tends to .3=	/�.
We recover the result of [20] in the two-dimensional case.

A Related Result which also Deals with Farey Disks

For analyzing integer factoring algorithms, Vallée was led in 1988 to study the set
of “small quadratic residues” defined as

B D B.N; h; h0/ WD fx 2 Œ1::N �I x2 modN 2 Œh; h0�g; for h0�h D 8N 2=3;
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and its distribution in Œ1::N �. She described in [43,44] a polynomial–time algorithm,
called the Two-Thirds Algorithm, which draws elements from B in a quasi-uniform
way.8 This was (for her) a main tool for obtaining a provable complexity bound for
integer factoring algorithms based on congruences of squares. Fifteen years later,
Coron in [13], then Gentry in [19], discovered that such an algorithm also plays
a central rôle in cryptography, more precisely in security proofs (see the survey
of Gentry [18] in these proceedings). Furthermore, Gentry in [19] modified Vallée’s
algorithm and obtained an algorithm that draws elements fromB in an exact uniform
way. This constitutes a main step in the security proof of Rabin partial-domain-hash
signatures.

The main idea of Vallée, which has been later adapted and made more precise
by Gentry, is to perform a local study of the set B. In this way, she refines ideas of
the work done in [46]. This last work was one of the first works that relates general
small modular equations to lattices, and was further generalized ten years later by
Coppersmith [11]. Consider an integer x0, for which the rational 2x0=N is close to a
rational a=c with a small denominator c. Then, the set of elements of B near x0 can
be easily described with the help of the latticeL.x0/ generated by the pair of vectors
.2x0; 1/; .N; 0/. More precisely, the following two conditions are equivalent:

1. x D x0 C u belongs to B
2. There exists w such that the point .w; u/ belongs to L.x0/ and lies between two

parabolas with respective equations

wC u2 C x2
0 D h; wC u2 C x2

0 D h0:

This equivalence is easy to obtain (just expand x2 as .x0Cu/2 D x2
0C2x0uCu2)

and gives rise to an efficient drawing algorithm ofB near x0, provided that the lattice
L.x0/ has a sufficiently short vector in comparison to the gap h0�h between the two
parabolas. Vallée proved that this happens when the complex z0 D 2x0=N C i=N
relative to the input basis ofL.x0/ belongs to a Farey disk Fa.a; c; t/, with t D .h0�
h/=N D 4N�1=3. In 1988, the rôle played by Farey disks (or Farey intervals) was
surprising, but now, from previous studies performed in Section “Domains Relative
to the Output Parameters”, we know that these objects are central in such a result.

Analysis of the Execution Parameters of the Gauss Algorithm

We finally focus on parameters that describe the execution of the algorithm: we are
mainly interested in the bit-complexity, but we also study additive costs that may be
of independent interest. We here use an approach based on tools that come both from
dynamical system theory and analysis of algorithms. We shall deal here with the

8 We use the term quasi-uniform to mean that the probability that x 2 B is drawn in between
`1=jBj and `2=jBj, for constants independent on x and N .

Probabilistic Analyses of Lattice Reduction Algorithms
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COREGAUSS algorithm, using the decomposition provided in Section “Returning
to the Gauss Algorithm” Proposition 6.

Dynamical Systems

A dynamical system is a pair formed by a set X and a mapping W W X ! X

for which there exists a (finite or denumerable) set Q (whose elements are called
digits) and a topological partition fXqgq2Q of the set X in subsets Xq such that the
restriction of W to each element Xq of the partition is of class C2 and invertible.
Here, we deal with the so-called complete dynamical systems, where the restriction
of W jXq

W Xq ! X is surjective. A special rôle is played by the set H of branches
of the inverse functionW �1 of W that are also naturally numbered by the index set
Q: we denote by hhqi the inverse of the restriction W jXq

, so that Xq is exactly the
image hhqi.X/. The set Hk is the set of the inverse branches of the iterate W k ; its
elements are of the form hhq1i ıhhq2i ı � � �ıhhqki and are called the inverse branches
of depth k. The set H? WD [k
0Hk is the semi-group generated by H.

Given an initial point x in X , the sequence W.x/ WD .x;Wx;W 2x; : : :/ of
iterates of x under the action ofW forms the trajectory of the initial point x. We say
that the system has a hole Y if any point of X eventually falls in Y : for any x, there
exists p 2 N such that W p.x/ 2 Y .

We will study here two dynamical systems, respectively, related to the F-EUCLID

algorithm and to the COREGAUSS algorithm, previously defined (in an informal
way) in Section “Returning to the Gauss Algorithm”.

Case of the F-EUCLID Algorithm. Here, X is the interval eI D Œ0; 1=2�. The map
W is the map eV defined in Section “Relation with the Centered Euclid Algorithm”.
The set Q of digits is the set of pairs q D .m; "/ with the condition .m; "/ �
.2;C1/ (with respect to the lexicographic order). The inverse branch hhm;"i is a
LFT, defined as hhm;"i.z/ D 1=.m C "z/. The topological partition is defined by
X.m;"/ D hhm;"i.eI/.
Case of the COREGAUSS Algorithm. Here,X is the vertical strip eB. The mapW is
equal to the identity on eBnD and coincides with the map eU defined in Section “The
Complex Versions for the GAUSS Algorithms” otherwise. The set Q of digits is
the set of pairs q D .m; "/ with the condition .m; "/ � .2;C1/ (with respect to
the lexicographic order). The inverse branch hhm;"i is a LFT defined as hhm;"i.z/ D
1=.mC "z/. The topological partition is defined by X.m;"/ D hhm;"i.eB/ and drawn
in Fig. 16. The system has a hole, namely eB nD.

Transfer Operators

The main study in dynamical systems concerns itself with the interplay between
properties of the transformation W and properties of trajectories under iteration
of the transformation. The behavior of typical trajectories of dynamical systems



3 127

Fig. 3.16 The topological partitions of the COREGAUSS dynamical system. The intersection of
this partition with the real axis gives rise to the topological partition of the F-EUCLID dynamical
system

is more easily explained by examining the flow of densities. The time evolu-
tion governed by the map W modifies the density, and the successive densities
f0; f1; f2; : : : ; fn; : : : describe the global evolution of the system at discrete times
t D 0; t D 1; t D 2; : : :.

Consider the (elementary) operator Xs;Œh�, relative to an inverse branch h 2 H,
which acts on functions f W X ! R, depends on some parameter s, and is formally
defined as

Xs;Œh�Œf �.x/ D J.h/.x/s � f ı h.x/; where J.h/ is the Jacobian of branch h.
(3.55)

The operator X1;Œh� expresses the part of the new density f1, which is brought
when the algorithm uses the branch h, and the operator that takes into account all
the inverse branches of the set H, defined as

Hs WD
X

h2H
Xs;Œh�; (3.56)

is called the transfer operator. For s D 1, the operator H1 D H is the density
transformer, (or the Perron–Frobenius operator) which expresses the new density
f1 as a function of the old density f0 via the relation f1 D HŒf0�. The operators
defined in (3.56) are called transfer operators. For s D 1, they coincide with density
transformers, and for other values of s, they can be viewed as extensions of density
transformers. They play a central rôle in studies of dynamical systems.

We will explain how transfer operators are a convenient tool for studying the
evolution of the densities, in the two systems of interest.

Probabilistic Analyses of Lattice Reduction Algorithms
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Case of the F-EUCLID system. This system is defined on an interval, and the
Jacobian J.h/.x/ is just equal to jh0.x/j. Moreover, because of the precise expres-
sion of the set H, one has, for any x 2 eI D Œ0; 1=2�,

HsŒf �.x/ D
X

.m;"/
.2;1/

�
1

mC "x
�2s

� f
�

1

mC "x
�
: (3.57)

The main properties of the F-EUCLID algorithm are closely related to spectral
properties of the transfer operator Hs when it acts on a convenient functional space.
We return to this fact in Section “Functional Analysis”.

Case of the COREGAUSS algorithm. We have seen in Section “Output Densities”
that the Jacobian of the transformation .x; y/ 7! h.x; y/ D .<h.x C iy/;=h.x C
iy// equals jh0.x C iy/j2. It would be natural to consider an (elementary) transfer
operator Ys;Œh�, of the form

Ys;Œh�Œf �.z/ D jh0.z/js � f ı h.z/:

In this case, the sum of such operators, taken over all the LFTs that intervene in
one step of the COREGAUSS algorithm, and viewed at s D 2, describes the new
density that is brought at each point z 2 eB nD during this step, when the density on
D is f .
However, such an operator does not possess “good” properties, because the map
z 7! jh0.z/j is not analytic. It is more convenient to introduce another elementary
operator Xs;Œh�, which acts on functions F of two variables, and is defined as

X2s;Œh�ŒF �.z; u/ D Lh.z/s � Lh.u/s � F.h.z/; h.u//;

where Lh is the analytic extension of jh0j to a complex neighborhood ofeI WD Œ0; 1=2�.
Such an operator acts on analytic functions, and the equalities, which relate F.z; u/
and its diagonal f defined by f .z/ WD F.z; Nz/,

Xs;Œh�ŒF �.z; Nz/ D Ys;Œh�Œf �.z/; Xs;Œh�ŒF �.x; x/ D Xs;Œh�Œf �.x/ (3.58)

prove that the elementary operators Xs;Œh� are extensions of the operators Xs;Œh� that
are well-adapted to our purpose. Furthermore, they are also well-adapted to deal
with densities with valuation. Indeed, when applied to a density f of valuation r ,
of the form f .z/ D F.z; Nz/, where F.z; u/ D jz � ujrL.z; u/ involves an analytic
function L, which is nonzero on the diagonal z D u, one has

X2s;Œh�ŒF �.z; Nz/ D jyjr X2sCr;Œh�ŒL�.z; Nz/:

Finally, for the COREGAUSS Algorithm, we shall deal with the operator Hs

defined as Hs D
P

h2H Xs;Œh�; which, in this case, admits a nice expression
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HsŒF �.z; u/ D
X

.m;"/
.2;1/

�
1

mC "z
�s �

1

mC "u
�s

� F
�

1

mC "z ;
1

mC "u
�
:

(3.59)
Because of (3.58), this is an extension of the operator Hs, defined in (3.57), which

satisfies the equality

Hs ŒF �.x; x/ D HsŒf �.x/; when f is the diagonal map of F .

The operators Xs;Œh�, underlined or not, satisfy a crucial relation of composition
due to multiplicative properties of the derivative of g ı h. We easily remark that

Xs;Œh� ı Xs;Œg� D Xs;Œgıh�; Xs;Œh� ı Xs;Œg� D Xs;Œgıh�:

We recall that the set HC D [k>0Hk is the set of the transformations describing
the whole executions of our two algorithms of interest. Then, the transfer oper-
ator relative to HC, denoted by Gs (for the EUCLID Algorithm) or Gs (for the
COREGAUSS Algorithm), satisfies

Gs D Hs ı .I �Hs/
�1 or Gs D Hs ı .I �Hs/

�1; (3.60)

and the assertion .3/ of Theorem 6 can be re-written as

Theorem 9. [Dynamical version of Theorem 6]. Consider the COREGAUSS algo-
rithm, with its input density f on D and its output density bf on eB n D, viewed
as functions of two complex variables z; Nz, namely f .x; y/ D F.z; Nz/; bf .x; y/ D
bF .z; Nz/.
Then, one has bF D G2ŒF �, where the operator G2 is the “total” density trans-
former of the COREGAUSS algorithm, which is related to the density transformer
H2 via the equality G2 D H2 ı .I � H2/

�1: When the input density F is of type
.r; L/, then the equality bF .z; Nz/ D yrG2Cr ŒL� holds.

Consider the COREGAUSS algorithm with an initial density, standard of valua-
tion r . Such a density is defined on the input disk D and involves constant A0.r/

[related with constant A2.r/ defined in (3.49)] under the form

yr

A0.r/
with A0.r/ D 1

4rC2
A2.r/ D

p
	

4rC2


 ..r C 1/=2/

 .r=2C 2/ : (3.61)

Remark that A0.r/ � 1=.r C 1/ when r ! �1. Then, the Hurwitz characterization
provided in Proposition 6 gives rise to a nice expression for the output density bF in
the case of a standard input density of valuation r , namely

bFr .z; Nz/ D 1

A0.r/

1

�.2r C 4/
X

c;d�1

d�<c<d�2

yr

jczC d j2rC4
:
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Execution Parameters in the Complex Framework

We are now interested in the study of the following costs:

1. Any additive cost C.c/, defined in (3.9), relative to a cost c of moderate growth.
There are two particular cases of interest: the number of iterations P , relative to
c D 1, and the length Q of the continued fraction, relative to the case when c is
the binary length `,

Q.u; v/ D
P.u;v/X

iD1

`.jqi j/:

2. The bit-complexity B defined in Section “Main Parameters of Interest”. It is
explained (see 3.8) that the cost B decomposes as

B.u; v/ D Q.u; v/ `.juj2/CD.u; v/C� .Q.u; v// ; (3.62)

where Q is the length of the continued fraction, already studied in .1/, and cost
D is defined by

D.u; v/ D 2
P.u;v/X

iD1

`.jqi j/ lg
ˇ̌
ˇ
vi�1

v

ˇ̌
ˇ :

It is then sufficient to study costs Q and D.

All these costs are invariant by similarity, that is, X.�u; �v/ D X.u; v/ for X 2
fQ;D;P g and � 2 C

?. If, with a small abuse of notation, we let X.z/ WD X.1; z/,
we are led to study the main costs of interest in the complex framework. We first
provide precise expressions for all these costs in the complex framework.

An additive cost C.c/, defined more precisely in (3.9), is related to an elementary
cost c defined on quotients q. Such a cost can be defined on H via the equality
c.h/ D c.q/ for h D hhqi, and is extended to the total set of LFTs in a linear way:
for h D h1ıh2ı: : :ıhp, we define c.h/ as c.h/ WD c.h1/Cc.h2/C: : :Cc.hp/. This
gives rise to another definition for the complex version of cost defined by C.z/ WD
C.1; z/. If an input z 2 D leads to an outputbz 2 eB nD by using the LFT h 2 G with
z D h.bz/, then C.z/ equals c.h/.

In the same vein as in (3.45), the i th length decrease can be expressed with the
derivative of the LFT gi WD h�1

i (with hi defined in (3.33)) as

jvi j2
jv0j2 D

1

jg0i .z/j
D jci z � ai j2 so that 2 lg

�jvi j
jv0j

�
D � lg jg0i .z/j D � lg jci z � ai j2;

where ai ; ci are coefficients of the LFT hi . Finally, the complex versions of costD is

D.z/ D
P.z/X

iD1

`.jqi j/ lg jh0i�1.zi�1/j D �2
P.z/X

iD1

`.jqi j/ lg jci�1z � ai�1j: (3.63)
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The main idea of the dynamical analysis methodology is to use the transfer oper-
ators (introduced for studying dynamical systems) in the analysis of algorithms;
for this aim, we modify the operators Xs;Œh� defined in Section “Transfer Opera-
tors” in such a way that they become “generating operators” that play the same role
as generating functions in analytic combinatorics. In fact, these operators generate
themselves... generating functions of the main costs of interest.

Generating Operators for Additive Costs C and Cost D

We now explain how to modify transfer operator in the two main cases: additive
cost C and cost D.

Case of additive costs. It is natural to add a new parameter w inside the transfer
operator Xs;Œh� for “marking” the cost: we consider the two-parameters operator
Xs;w;.c/;Œh� defined as

X2s;w;.c/;Œh�ŒF �.z; u/ D expŒwc.h/� � Lh.z/s � Lh.u/s � F.h.z/; h.u//:

Of course, when w D 0 or c D 0, we recover the operator X2s;Œh�. When the cost c
is additive, that is, c.g ı h/ D c.g/C c.h/, the composition relation

Xs;w;.c/;Œh� ı Xs;w;.c/;Œg� D Xs;w;.c/;Œgıh�

entails, an extension of (3.60) as

Gs;w;.c/ D Hs;w;.c/ ı .I �Hs;w;.c//
�1; (3.64)

where the operators Gs;w;.c/;Hs;w;.c/ are defined in the same vein as in (3.56). In
particular,

Hs;w;.c/ŒF �.z; u/ D
X

.m;"/
.2;1/

expŒwc.m; "/�

�
1

mC "z
�s �

1

mC "u
�s

(3.65)

� F
�

1

mC "z ;
1

mC "u
�
: (3.66)

The operator Gs;w;.c/ generates the moment generating function of the cost C.c/,
as we will see now. The moment generating function Ehf i.expŒwC.c/�/ is defined as

Ehf i.expŒwC.c/�/ WD
X

h2HC

expŒwc.h/� � Phf iŒC D c.h/�

D
X

h2HC

expŒwc.h/�
“

h.eBnD/

f .x; y/ dxdy:

Probabilistic Analyses of Lattice Reduction Algorithms
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Using a change of variables and the expression of the Jacobian leads to

Ehf i.expŒwC.c/�/ D
X

h2HC

expŒwc.h/�
“

eBnD
jh0.z/j2f .h.z/; h.Nz// dxdy

D
“

eBnD
G2;w;.c/Œf �.z; Nz/ dxdy:

Now, when the density F is of type .r; L/, using relation (3.41) leads to

Ehf i.expŒwC.c/�/ D
“

eBnD
yr G2Cr;w;.c/ŒL�.z; Nz/ dxdy: (3.67)

The expectation Ehf iŒC.c/� is just obtained by taking the derivative with respect
to w (at w D 0). This is why we introduce the functional W.c/, which takes the
derivative with respect to w, at w D 0. It then “weights” the operator Xs;Œh� with the
cost c.h/, as

W.c/Xs;Œh� WD @

@w
Xs;w;.c/;Œh�jwD0 D c.h/Xs;Œh�:

When extended via linearity, it defines the generating operator of cost C as

Gs;C WD W.c/ŒGs � D W.c/

�
Hs ı .I �Hs/

�1

: (3.68)

This provides an alternative expression for the expectation of any additive cost:

Ehf iŒC.c/� D
“

eBnD
G2;C ŒF �.z; Nz/ dxdy D

“

eBnD
yr G2Cr;C ŒL�.z; Nz/ dxdy;

(3.69)

the last equality holding for a density F of type .r; L/.

Case of CostD. Remark that, in (3.63), the quantity lg jh0i .zi /j�jh0i .z/js is just the
derivative of .1= log2/jh0i.z/js with respect to s. This is why we introduce another
functional �, in the same vein as previously, where the functional W relative to
the cost was introduced. To an operator Xs;Œh�, we associate an operator �Xs;Œh�

defined as

�Xs;Œh� D
1

log 2

@

@s
Xs;Œh�:

The functional� weights the operator Xs;Œh� with the weight � lg jh0j.
Now, with the help of these two functionalsW WD W.`/ and �, we can build the

generating operator forD. The decomposition of the set HC as HC WD H? �H �H?

gives rise to the parallel decomposition of the operators (in the reverse order). If we
weight the second factor with the help of W WD W.`/, we obtain the operator

.I �Hs/
�1 ıW ŒHs� ı .I �Hs/

�1 D W Œ.I �Hs/
�1�;
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which is the “generating operator” of the cost Q.z/. If, in addition of weighting the
second factor with the help ofW , we take the derivative� of the third one, then we
obtain the operator

Gs;D WD .I �Hs/
�1 ıW ŒHs � ı�

�
.I �Hs/

�1

;

Gs;D D .I �Hs/
�1 ıW ŒHs� ı .I �Hs/

�1 ı� ŒHs � ı .I �Hs/
�1; (3.70)

which is the “generating operator” of the cost D.z/, as the equalities hold,

Ehf iŒD� WD
“

D
D.z/ F.z; Nz/ dxdy;

D
“

eBnD
G2;D ŒF �.z; Nz/ dxdy D

“

eBnD
yr G2Cr;D ŒL�.z; Nz/ dxdy; (3.71)

the last equality holding for a density F of type .r; L/.

Case of costs C;B in the Euclid Algorithm. These functionalsW;� are also cen-
tral in the analysis of the bit-complexity of the Euclid Algorithm [5,27]. One deals in
this case with the Dirichlet series relative to costX , forX 2 fId; C.c/; Bg, defined as

FX .s/ WD
X

.u;v/2Z2

v=u2eI;gcd.u;v/D1

X.u; v/

v2s
:

These series admit alternative expressions that involve the quasi-inverse .I �
Hs/
�1 of the plain operator Hs, together with functionals W.c/ and �. Finally, the

following equalities

FId.s/ D GsŒ1�.0/; FC .s/ D Gs;C Œ1�.0/; FB .s/ D �Gs;DŒ1�.0/: (3.72)

hold, and involve the non-underlined9 versions Gs;Gs;C ;Gs;D of the generating
operators Gs , Gs;C , Gs;D defined in (3.68, 3.70).

Functional Analysis

We need precise information on the quasi-inverse .I �Hs/
�1, which is omnipresent

in the expressions of our probabilistic studies (see 3.67, 3.69, 3), as the quasi-inverse
.I �Hs/

�1 was already omnipresent in the probabilistic analyses of the F-EUCLID

Algorithm.

9 These operators are defined in the same vein as underlined versions, replacing each occurrence
of the underlined operator Hs by the plain operator Hs .

Probabilistic Analyses of Lattice Reduction Algorithms
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It is first needed to find convenient functional spaces where the operators Hs;Hs

and its variants Hs;w;.c/ will possess good spectral properties. Consider the open disk
V of diameter Œ�1=2; 1� and the functional spacesA1.V/; B1.V/ of all functions f
(of one variable) or F (of two variables) that are holomorphic and continuous on the
frontier: A1.V/ is the space of functions f holomorphic in the domain V and con-
tinuous on the closure NV, while B1.V/ is the space of functions F holomorphic in
the domain V�V and continuous on the closure NV� NV . Endowed with the sup-norm,
these are Banach spaces; for<.s/ > .1=2/, the transfer operator Hs acts onA1.V/,
the transfer operator Hs acts on B1.V/, and these are compact operators. Further-
more, when weighted by a cost of moderate growth [i.e., c.hhqi/ D O.log q/], for
w close enough to 0, and<s > .1=2/, the operator Hs;w;.c/ also acts onB1.V/, and
is also compact.

In the case of the F-EUCLID Algorithm, the spectral properties of the transfer
operator defined in (3.57) play a central rôle in the analysis of the algorithm. For
real s, the transfer operator Hs has a unique dominant eigenvalue �.s/, which is real
and separated from the remainder of the spectrum by a spectral gap. For s D 1,
the dominant eigenvalue of the density transformer H satisfies �.1/ D 1, and the
dominant eigenfunction .x/ (which is then invariant under the action of H) admits
a closed form that involves the golden ratio � D .1Cp5/=2,

 .x/ D 1

log�

�
1

� C x C
1

�2 � x
�
:

This is the analog (for the F-EUCLID algorithm) of the celebrated Gauss density
associated with the standard Euclid algorithm and equal to .1= log2/1=.1C x/.

Moreover, the quasi-inverse .I �Hs/
�1 has a pôle at s D 1, and satisfies

.I �Hs/
�1Œf �.z/ �s!1

1

s � 1
1

h.E/  . z/
Z

eI
f .x/ dx; (3.73)

where the constant h.E/ is the entropy of the F-EUCLID dynamical system, and
satisfies

h.E/ D j�0.1/j D 	2

6 log�
� 3:41831: (3.74)

The operator Hs;w;.c/ also possesses nice spectral properties (see [40], [9]): for a
complex number s close enough to the real axis, with <s > .1=2/, it has a unique
dominant eigenvalue, denoted by �.c/.s;w/, which is separated from the remainder
of the spectrum by a spectral gap. This implies the following: for any fixed s close
enough to the real axis, the quasi-inverse w 7! .I � Hs;w;.c//

�1 has a dominant
pôle located at w D w.c/.s/ defined by the implicit equation �.c/.s;w.c/.s// D 1.
More precisely, when w D 0, one recovers the plain operator Hs , which has the
same dominant eigenvalue �.s/ as the operator Hs. For s D 1, it has a dominant
eigenvalue �.1/ D 1 with a dominant eigenfunction  , which is an extension of
the invariant density  of the F-EUCLID Algorithm, and satisfies  .x; x/ D  .x/.
An exact expression for  is provided in [40],
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 .z; u/ D 1

log�

1

u � z

�
log

� C u

� C z
C log

�2 � u

�2 � z

�
for z 6D u, and  .z; z/ D  .z/:

(3.75)

Near s D 1, the quasi-inverse satisfies

.I �Hs/
�1ŒF �.z; u/ �s!1

1

s � 1
1

h.E/ I ŒF � .z; u/; with I ŒF � WD
Z

eI
F.x; x/ dx:

(3.76)

We consider, in the sequel of this section, the COREGAUSS algorithm with an
initial density, standard of valuation r . Such a density is defined as yr=A0.r/, with
A0.r/ defined in (3.61). In this case, there are nice expressions for the moment gen-
erating functions E.r/Œexp.wC/�, for the expectations E.r/ŒC �;E.r/ŒD�, described
in (3.67, 3.69, 3), where we let L D 1.

Probabilistic Analysis of the F-EUCLID Algorithm

We wish to compare the behavior of the two algorithms, the COREGAUSS Algo-
rithm and the F-EUCLID Algorithm, and we first recall here the main facts about
the probabilistic behavior of the F-EUCLID Algorithm.

Theorem 10. (Akhavi and Vallée [5] (1998), Vallée [37, 41] (2003-2007)) On the
set !N formed with input pairs .u; v/ for which u=v 2 eI and jvj � N , the mean
number of iterations P , the mean value of a cost C of moderate growth, the mean
value of the bit-complexity B satisfy, when M !1,

EN ŒP �� 2 log 2

h.E/ lgN; EM ŒC.c/�� 2 log 2

h.E/ EŒc� lgN; EM ŒB�� log 2

h.E/ EŒ`� lg2N:

Here, h.E/ denotes the entropy of the F-EUCLID dynamical system, described in
(3.74), and EŒc� denotes the mean value of the step-cost c with respect to the
invariant density  . This is a constant of Khinchin’s type, of the form

EŒc� WD
X

h2H

Z

h.eI/

`.h/ .x/ dx:

In particular, when c is the binary length `, there is a nice formula for EŒ`�, namely

EŒ`� D 1

log�
log

Y

k
1

2k�2 C �
2k�2 � 1 � 2:02197:

Probabilistic Analyses of Lattice Reduction Algorithms
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Proof (Sketch). One deals with the Dirichlet series FX .s/ relative to costX , defined
in (3.72). Using the spectral relation (3.73) together with Tauberian Theorems leads
to the asymptotic study of the coefficients of the series and provides the result.

Moreover, there exist also more precise distributional results [6, 27] which
show that all these costs P;C.c/, together with a regularized version of B , admit
asymptotic Gaussian laws for M !1.

What can be expected about the probabilistic behavior of the COREGAUSS

Algorithm? On the one hand, there is a strong formal similarity between the
two algorithms, as the COREGAUSS Algorithm can be viewed as a lifting of the
F-EUCLID Algorithm. On the other hand, important differences appear when we
consider algorithms: the F-EUCLID algorithm never terminates, except on rational
inputs that fall in the hole f0g, while the COREGAUSS Algorithm always terminates,
except for irrational real inputs. However, it is clear that these differences disappear
when we restrict to rational inputs, real or complex ones. In this case, both algo-
rithms terminate, and it is quite interesting to determine if there exists a precise
transition between these two (discrete) algorithms.

Distribution of Additive Costs

We wish to prove that k 7! P.r/ŒC.c/ D k� has a geometrical decreasing, with a
precise estimate for the ratio. For this purpose, we use the moment generating func-
tion E.r/.expŒwC.c/�/ of the cost C.c/, for which we have provided an alternative
expression in (3.67). We first study any additive cost, then we focus on the number
of iterations.
General additive cost. The asymptotic behavior of the probability P.r/ŒC.c/ D k�

(for k ! 1) is obtained by extracting the coefficient of expŒkw� in the moment
generating function. Then the asymptotic behavior of P.r/ŒC.c/ D k� is related to
singularities of E.r/.expŒwC.c/�/. This series has a pôle at ew.c/.rC2/, where w D
w.c/.s/ is defined by the spectral equation �.c/.s;w/ D 1 that involves the dominant
eigenvalue �.c/.s;w/ of the operator Hs;w;.c/, which is described in (3.65). Then,
with classical methods of analytic combinatorics, we obtain:

Theorem 11. (Daudé et al. [14] (1994), Vallée and Vera [45] (2007)) Consider the
COREGAUSS algorithm, when its inputs are distributed inside the disk D with the
continuous standard density of valuation r . Then, any additive cost C.c/ defined
in (3.9), associated to a step-cost c of moderate growth asymptotically, follows a
geometric law.

The ratio of this law, equal to expŒ�w.c/.rC2/�, is related to the solution w.c/.s/

of the spectral relation �.c/.s;w/ D 1, which involves the dominant eigenvalue
of the transfer operator Hs;w;.c/. It satisfies, for any cost c of moderate growth,
w.c/.r C 2/ D �.r C 1/ when r ! �1. More precisely, one has

P.r/ŒC.c/ D k�� k!1a.r/ expŒ�kw.c/.r C 2/�; for k !1; (3.77)

where a.r/ is a strictly positive constant that depends on cost c and valuation r .
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Number of iterations. In the particular case of a constant step-cost c D 1, the cost
C.c/ is just the number R of iterations and the operator Hs;w;.1/ reduces to ew �
Hs. In this case, there exists a nice alternative expression for the mean number of
iterations of the COREGAUSS algorithm which uses the characterization of Hurwitz
(recalled in Proposition 6.2). Furthermore, the probability of the event ŒR � k C 1�
can be expressed in an easier way using (3.36), as

P.r/ŒR � kC1� D 1

A0.r/

X

h2Hk

“

h.D/

yrdxdy D 1

A0.r/

“

D
yr Hk

2Cr Œ1�.z/ dxdy;

where A0.r/ is defined in (3.61). This leads to the following result:

Theorem 12. (Daudé et al. [14] (1994), Vallée [40] (1996)) Consider the CORE-
GAUSS algorithm, when its inputs are distributed inside the disk D with the
continuous standard density of valuation r . Then, the expectation of the number
R of iterations admits the following expression:

E.r/ŒR� D 22rC4

�.2r C 4/
X

c;d�1

d�<c<d�2

1

.cd/2Cr
:

Furthermore, for any fixed valuation r > �1, the number R of iterations asymptot-
ically follows a geometric law

P.r/ŒR � k C 1� �k!1 ea.r/ �.2C r/k ;

where �.s/ is the dominant eigenvalue of the transfer operator Hs and ea.r/ is a
strictly positive constant that depends on the valuation r .

It seems that there does not exist any close expression for the dominant eigenvalue
�.s/. However, this dominant eigenvalue is polynomial-time computable, as it is
proven by Lhote [26]. In [17], numerical values are computed in the case of the
uniform density, that is, for �.2/ and E.0/ŒR�,

E.0/ŒR� � 1:08922; �.2/ � 0:0773853773:
For r ! �1, the dominant eigenvalue�.2Cr/ tends to �.1/ D 1 and �.2Cr/�1 �
�0.1/.1 C r/. This explains the evolution of the behavior of the Gauss Algorithm
when the data become more and more concentrated near the real axis.

Mean Bit-Complexity

We are now interested in the study of the bit-complexity B ,10 and we focus on a
standard density of valuation r . We start with the relation betweenB , and costsC;D

10 We study the central part of the bit-complexity, and do not consider the initialization process,
where the Gram matrix is computed; see Section “Main Parameters of Interest”.

Probabilistic Analyses of Lattice Reduction Algorithms
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recalled in Section “Execution Parameters in the Complex Framework”, together
with the expressions of the mean values of parameters C;D obtained in (3.69, 3).
We state three main results: the first one describes the evolution in the continuous
model when the valuation r tends to �1; the second one describes the evolution of
the discrete model when the integer size M tends to1, the valuation being fixed;
finally, the third one describes the evolution of the discrete model when the valuation
r tends to �1 and the integer size M tends to1.

Theorem 13. (Vallée and Vera [45, 47], 2007) Consider the COREGAUSS Algo-
rithm, where its inputs are distributed inside the input disk D with the standard
density of valuation r > �1. Then, the mean value E.r/ŒC � of any additive cost
C of moderate growth, and the mean value E.r/ŒD� of cost D are well-defined and
satisfy when r ! �1,

E.r/ŒC � � 1

r C 1
EŒc�

h.E/ ; E.r/ŒD� � � 1

.r C 1/2
1

log2

EŒ`�

h.E/ :

When r tends to �1, the output density, associated with an initial density of

valuation r , tends to
1

h.E/
1

y
 , where  is the invariant density for H1 described in

(3.75).

Remark that the constants that appear here are closely related to those which
appear in the analysis of the Euclid algorithm (Theorem 10). More precisely, the
asymptotics are almost the same when we replace 1=.r C 1/ (in Theorem 13) by
logN (in Theorem 10). Later, Theorem 15 will make precise this observation.

Proof. For any valuation r , the variables C;D are integrable on the disk D: this is
due to the fact that, for X 2 fId; C;Dg, the integrals taken over the horizontal strip
HN WD D \ fzI j=zj � .1=N /g satisfy, with M D logN ,

1

A0.r/

“

HN

yr X.z/ dxdy D M e.X/

N rC1
O .1C .r C 1/M/ ;

where the exponent e.X/ depends on costX ; one has e.Id/ D 0; e.C / D 1; e.D/ D
2. This proves that costX is integrable on D. Furthermore, when r ! �1, relations
(3.76, 3.73) prove the following behaviors:

G2Cr;IdŒF � �
1

r C 1
1

h.E/ I ŒF � ;

G2Cr;C.c/
ŒF �� 1

.r C 1/2
EŒc�

h.E/2 I ŒF � ; G2Cr;DŒF �� �
1

.r C 1/3
EŒ`�

h.E/2 I ŒF � ;

where the integral I ŒF � is defined in (3.76) and  is described in (3.75). The first
equality, together with the definition of A0.r/ and the fact that A0.r/ � .r C 1/�1
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for r ! �1, implies the equality

“

eBnD
1

y
�.z; Nz/ dxdy D h.E/:

Using a nice relation between I Œ�� and h.E/ finally leads to the result.

It is now possible to transfer this analysis to the discrete model defined in Sec-
tion “Probabilistic Models for Two-Dimensions”, with the Gauss principle recalled
in Section “Probabilistic Models: Continuous or Discrete”.

Theorem 14. (Vallée and Vera [45, 47], 2007) Consider the COREGAUSS Algo-
rithm, where its integer inputs .u; v/ of length M WD maxf`.juj2; `.jvj2g are
distributed inside the input disk D with the standard density of valuation r > �1.
Then, the mean value E.r;M/ŒX� of cost X – where X is any additive cost C of
moderate growth, or cost D – tends to the mean value E.r/ŒX� of cost X , when
M !1. More precisely,

E.r;M/ŒX� D E.r/ŒX�C M e.X/

N rC1
O .maxf1; .r C 1/M g/ ;

where the exponent e.X/ depends on cost X and satisfies e.C / D 1; e.D/ D 2.
The mean value E.r;M/ŒB� of the bit-complexity B satisfies, for any fixed r > �1,
when M !1,

E.r;M/ŒB� � E.r/ŒQ� �M:
In particular, the mean bit-complexity is linear with respect to M .

Finally, the last result describes the transition between the COREGAUSS algorithm
and the F-EUCLID Algorithm, obtained when the valuation r tends to �1, and the
integer size M tends toD 1:

Theorem 15. (Vallée and Vera [45, 47], 2007) Consider the COREGAUSS Algo-
rithm, where its integer inputs .u; v/ of length M WD maxf`.juj2; `.jvj2g are
distributed inside the input disk D with the standard density of valuation r > �1.
When the integer size M tends to 1 and the valuation r tends to �1, with
.r C 1/M D ˝.1/, the mean value E.r;M/ŒX� of cost X , where X can be any
additive cost C of moderate growth, or cost D, satisfies

E.r;M/ŒX� D E.r/ŒX�

"
1CO

 
.M.r C 1//e.X/C1

N rC1

!#�
1

1 �N�.rC1/

�
;

where the exponent e.X/ depends on cost X and satisfies e.C / D 1; e.D/ D 2.
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Then, if we let .r C 1/M DW M ˛ ! 1 (with 0 < ˛ < 1), then the mean values
satisfy

E.r;M/ŒC � � EŒc�

h.E/M
1�˛; E.r;M/ŒD� � � EŒ`�

h.E/
1

log 2
M 2�2˛

E.r;M/ŒB� � EŒ`�

h.E/M
2�˛:

If now .r C 1/M is �.1/, then

E.r;M/ŒC � D �.M/; E.r;M/ŒD� D �.M 2/; E.r;M/ŒB� D �.M 2/:

Open question. Provide a precise description of the phase transition for the behavior
of the bit-complexity between the Gauss algorithm for a valuation r ! �1 and the
Euclid algorithm: determine the constant hidden in the � term as a function of
.r C 1/M .

First Steps in the Probabilistic Analysis
of the LLL Algorithm

We return now to the LLL algorithm and explain how the previous approaches can
be applied for analyzing the algorithm.

Evolution of Densities of the Local Bases

The LLL algorithm aims at reducing all the local bases Uk (defined in Sec-
tion “Description of the Algorithm”) in the Gauss meaning. For obtaining the output
density at the end of the algorithm, it is interesting to describe the evolution of
the distribution of the local bases along the execution of the algorithm. The variant
ODDEVEN described in Section “A Variation for the LLL Algorithm: The Odd-Even
Algorithm” is well-adapted to this purpose.

In the first Odd Phase, the LLL algorithm first deals with local bases with odd
indices. Consider two successive bases Uk and UkC2, respectively, endowed with
some initial densities Fk and FkC2. Denote by zk and zkC2 the complex numbers
associated with local bases .uk; vk/ and .ukC2; vkC2/ via relation (3.1). Then, the
LLL algorithm reduces these two local bases (in the Gauss meaning) and computes
two reduced local bases denoted by .buk;bvk/ and .bukC2;bvkC2/, which satisfy11 in
particular

jbv?
kj D jukj � �.zk/; jbukC2j D jukC2j � �.zkC2/:

11 The notation ? refers to the Gram–Schmidt process as in Sections “The Lattice Reduction
Algorithm in the Two-Dimensional Case and The LLL Algorithm”.
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Then, Theorem 8 provides insights on the distribution of �.zk/; �.zkC2/. As, in
our model, the random variables jukj and zk (respectively, jukC2j and zkC2) are
independent (see Section “Probabilistic Models for Two-Dimensions”), we obtain a
precise information on the distribution of the norms jbv?

k
j; jbukC2j.

In the first Even Phase, the LLL algorithm considers the local bases with an even
index. Now, the basis UkC1 is formed (up to a similarity) from the two previous
output bases, as

ukC1 D jbv?
kj; vkC1 D �jbv?

kj C i jbukC2j;

where � can be assumed to follow a (quasi-)uniform law on Œ�1=2;C1=2�. More-
over, at least at the beginning of the algorithm, the two variables jbv?

k
j; jbukC2j are

independent. All this allows to obtain precise information on the new input density
FkC1 of the local basis UkC1. We then hope to “follow” the evolution of densities
of local bases along the whole execution of the LLL algorithm.
Open question: Is this approach robust enough to “follow” the evolution of densi-
ties of local bases along the whole execution of the LLL algorithm? Of course, in
the “middle” of the algorithm, the two variablesbv?

k
;bukC2 are no longer independent.

Are they independent enough, so that we can apply the previous method? Is it true
that the variables � at the beginning of the phase are almost uniformly distributed
on Œ�1=2;C1=2�? Here, some experiments will be of great use.

The Dynamical System Underlying the ODD–EVEN–LLL
Algorithm

We consider two dynamical systems, the Odd dynamical system (relative to the
Odd phases) and the Even dynamical system (relative to the Even phases). The Odd
(respectively, Even) dynamical system performs (in parallel) the same operations as
the AGAUSS dynamical system, on each complex number zi of odd (respectively,
even) indices. Between the end of one phase and the beginning of the following
phase, computations in the vein of Section “Evolution of Densities of the Local
Bases” take place.

The dynamics of each system, Odd or Even, is easily deduced from the dynamics
of the AGAUSS system. In particular, there is an Even Hole and an Odd Hole, which
can be described as a function of the hole of the AGAUSS system. But the main
difficulty for analyzing the ODD–EVEN Algorithm will come from the difference
on the geometry of the two holes – the Odd one and the Even one. This is a work in
progress!
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Chapter 4
Progress on LLL and Lattice Reduction

Claus Peter Schnorr

Abstract We review variants and extensions of the LLL-algorithm of Lenstra,
Lenstra Lovász, extensions to quadratic indefinite forms and to faster and stronger
reduction algorithms. The LLL-algorithm with Householder orthogonalisation in
floating-point arithmetic is very efficient and highly accurate. We review approxi-
mations of the shortest lattice vector by feasible lattice reduction, in particular by
block reduction, primal–dual reduction and random sampling reduction. Segment
reduction performs LLL-reduction in high dimension, mostly working with a few
local coordinates.

Introduction

A lattice basis of dimension n consists of n linearly independent real vectors
b1; : : : ;bn 2 R

m. The basis B D Œb1; : : : ;bn� generates the lattice L consisting
of all integer linear combinations of the basis vectors. Lattice reduction transforms
a given basis of L into a basis with short and nearly orthogonal vectors.

Unifying two traditions. The LLL-algorithm of Lenstra, Lenstra Lovász [47] pro-
vides a reduced basis of proven quality in polynomial time. Its inventors focused on
Gram–Schmidt orthogonalisation (GSO) in exact integer arithmetic, which is only
affordable for small dimension n. With floating-point arithmetic (fpa) available, it is
faster to orthogonalise in fpa. In numerical mathematics, the orthogonalisation of a
lattice basis B is usually done by QR-factorization B D QR using Householder
reflections [76]. The LLL-community has neglected this approach as it requires
square roots and does not allow exact integer arithmetic. We are going to unify
these two separate traditions.

Practical experience with the GSO in fpa led to the LLL-algorithm of [66] imple-
mented by Euchner that tackles the most obvious problems in limiting fpa-errors by
heuristic methods. It is easy to see that the heuristics works and short lattice vectors
are found. The LLL of [66] with some additional accuracy measures performs well

C.P. Schnorr
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in double fpa up to dimension 250. But how does one proceed in higher dimen-
sions Schnorr [65] gives a proven LLL in approximate rational arithmetic. It uses
an iterative method by Schulz to recover accuracy and is not adapted to fpa. Its
time bound in bit operations is a polynomial of degree 7, respectively, 6C " using
school-, respectively FFT-multiplication while the degree is 9, respectively, 7 C "
for the original LLL.

In 1996, Rössner implemented in his thesis a continued fraction algorithm apply-
ing [31] and Householder orthogonalization (HO) instead of GSO. This algorithm
turned out to be very stable in high dimension [63]. Our experience has well con-
firmed the higher accuracy obtained with HO, e.g., by attacks of May and Koy in
1999 on NTRU- and GGH-cryptosystems. The accuracy and stability of the QR-
factorization of a basis B with HO has been well analysed for backwards accuracy
[26,34]. These results do not directly provide bounds for worst case forward errors.
As fully proven fpa-error bounds are in practice far to pessimistic, we will use strong
heuristics.
Outline. Section “LLL-Reduction and Deep Insertions” presents the LLL in ideal
arithmetic and discusses various extensions of the LLL by deep insertions that
are more powerful than LLL swaps. Section “LLL-Reduction of Quadratic and
Indefinite Forms” extends the LLL to arbitrary quadratic forms, indefinite forms
included.

Section “LLL Using Householder Orthogonalization” presents LLLH , an LLL
with HO together with an analysis of forward errors. Our heuristics assumes that
small error vectors have a negligible impact on the vector length as correct and
error vectors are very unlikely to be near parallel in high dimension. It is important
to weaken size-reduction under fpa such that the reduction becomes independent
of fpa-errors. This also prevents infinite cycling of the algorithm. Fortunately, the
weakened size-reduction has a negligible impact on the quality of the reduced basis.
LLLH of [70] and the L2 of [56] are adapted to fpa, they improve the time bounds
of the theoretical LLL of [65], and are well analysed.L2 provides provable correct-
ness; it is quadratic in the bit length of the basis. However, it loses about half of the
accuracy compared to LLLH , and it takes more time.

Sections “Semi Block 2k-Reduction Revisited” end the next two sections survey
the practical improvements of the LLL that strengthen LLL-reduction to find shorter
lattice vectors and better approximations of the shortest lattice vector. We revisit
block reduction from [64], extend it to Koy’s primal–dual reduction, and combine it
with random sampling reduction of [69].

The last two sections survey recent results of [70]. They speed up LLLH for large
dimension n to LLL-type segment reduction that goes back to an idea of Schönhage
[71]. This reduces the time bound of LLLH to a polynomial of degree 6, respec-
tively, 5 C ", and preserves the quality of the reduced bases. Iterating this method
by iterated subsegments performs LLL-reduction inO.n3C"/ arithmetic steps using
large integers and fpa-numbers. How this can be turned into a practical algorithm is
still an open question.

For general background on lattices and lattice reduction see [13, 16, 52, 54,
59]. Here is a small selection of applications in number theory [8, 14, 47, 72]
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computational theory [11, 27, 31, 45, 49, 53] cryptography [1, 9, 10, 17, 54, 58, 61]
and complexity theory [2,12,20,25,36,54]. Standard program packages are LIDIA,
Magma and NTL.
Notation, GSO and GNF. Let R

m denote the real vector space of dimension m
with inner product hx; yi D xt y. A vector b 2 R

m has length kbk D hb;bi1=2.
A sequence of linearly independent vectors b1; : : : ;bn 2 R

m is a basis, written
as matrix B D Œb1; : : : ;bn� 2 R

m	n with columns bi . The basis B generates
the lattice L D L.B/ D fBx j x 2 Z

ng D Pn
iD1 bi Z � R

m. It has dimension
dimL D n. Let qi denote the orthogonal projection of bi in span.b1; : : : ;bi�1/

?,
q1 D b1. The orthogonal vectors q1; : : : ;qn 2 R

m and the Gram–Schmidt coeffi-
cients �j;i ; 1 � i; j � n of the basis b1; : : : ;bn satisfy for j D 1; : : : ; n: bj DPj

iD1�j;i qi ; �j;j D 1; �j;i D 0 for i > j , �j;i D hbj ;qii=hqi ;qii; hqj ;qii D
0 for j ¤ i: The basis B 2 R

m	n has a uniqueQR-decompositionB D QR, where
Q 2 R

m	n is isometric (i.e., Q preserves the inner product, hx; yi D hQx;Qyi, Q
can be extended to an orthogonal matrix Q0 2 R

m	m) and R D Œri;j � 2 R
n	n is

upper-triangular (ri;j D 0 for i > j ) with positive diagonal entries r1;1; : : : ; rn;n >

0. Hence Q D Œq1=kq1k; : : : ;qn=kqnk �, �j;i D ri;j=ri;i , kqik D ri;i and
kbik2 D Pi

jD1 r
2
j;i . Two bases B D QR; B 0 D Q0R0 are isometric iff R D R0,

or equivalently iff B tB D B 0tB 0. We call R the geometric normal form (GNF) of
the basis, GNF.B/ WD R. The GNF is preserved under isometric transformsQ, i.e.,
GNF.QB/ D GNF.B/.
The Successive Minima. The j th successive minimum �j .L/ of a lattice L, 1 � j �
dimL, is the minimal real number � for which there exist j linearly independent
lattice vectors of length � � ; �1 is the length of the shortest nonzero lattice vector.
Further Notation. GLn.Z/ D fT 2 Z

n	n j detT D ˙1g,
R�t D .R�1/t D .Rt /�1 is the inverse transpose of R 2 R

n	n,
di D det.Œb1; : : : ;bi �

t Œb1; : : : ;bi �/, d0 D 1, detL.B/ D det.B tB/1=2 D d 1=2
n ,

	i W Rm ! span.b1; : : : ;bi�1/
? is the orthogonal projection, qi D 	i .bi /,

�n D maxL �2
1.L/= detL2=n over all lattices L of dimL D n is the Hermite

constant,

Uk D
2

4
1

�
1

3

5 2 Z
k	k ;B WD BUn/B WD UmB reverses the order of columns/rows

of B 2 R
m	n, we write matrices A D Œai;j � with capital letter A, and small letter

entries ai;j , In 2 Z
n	n denotes the unit matrix, let " 2 R, 0 � " � 0.

Details of Floating Point Arithmetic. We use the fpa model of Wilkinson [76].
An fpa number with t D 2t 0 C 1 precision bits is of the form ˙2e

Pt 0

iD�t 0 bi2
i ,

where bi 2 f0; 1g and e 2 Z. It has bit length t C s C 2 for jej < 2s, two signs
included. We denote the set of these numbers by FLt . Standard double length fpa
has t D 53 precision bits, t C s C 2 D 64. Let f l W R  Œ�22s

; 22s
� 3 r 7! FLt

approximate real numbers by fpa numbers. A step c WD a ı b for a; b; c 2 R

and a binary operation ı 2 fC;�; �; =g translates under fpa into Na WD f l.a/,
Nb WD f l.b/, Nc WD f l. Na ı Nb/, respectively into Na WD f l.ı. Na// for unary
operations ı 2 fd c;p g. Each fpa operation induces a normalized relative error
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bounded in magnitude by 2�t : jf l. Na ı Nb/ � Na ı Nbj=j Na ı Nbj � 2�t . If j Na ı Nbj >
22s

or j Na ı Nbj < 2�2s
, then f l. Na ı Nb/ is undefined due to an overflow respectively

underflow.
Usually, one requires that 2s � t2 and thus, s � 2 log2 t , for brevity, we iden-

tify the bit length of fpa-numbers with t , neglecting the minor .s C 2/-part. We
use approximate vectors Nhl , Nrl 2 FL

m
t for HO under fpa and exact basis vectors

bl 2 Z
m.

LLL-Reduction and Deep Insertions

We describe reduction of the basis B D QR in terms of the GNF R D Œri;j � 2
R

n	n.
Standard reductions. A lattice basis B D QR 2 R

m	n is size-reduced (for ") if

jri;j j=ri;i � 1

2
C " for all j > i: (occasionally we neglect ")

B D QR is LLL-reduced (or an LLL-basis) for ı 2 .2; 1�,  D 1
2
C ", if B is

size-reduced and

ır2
i;i � r2

i;iC1C r2
iC1;iC1 for i D 1; : : : ; n � 1:

A basis B D QR is HKZ-reduced (or an HKZ-basis) if B is size-reduced, and
each diagonal coefficient ri;i of the GNF R D Œri;j � 2 R

n	n is minimal under all
transforms in GLn.Z/ that preserve b1; : : : ;bi�1.

LLL-bases satisfy r2
i;i � ˛ r2

iC1;iC1 for ˛ WD 1=.ı� 2/. This yields Theorem 1.
Lenstra, Lenstra, and Lovász [47] introduced LLL-bases focusing on ı D 3=4,
� D 0 and ˛ D 2.

HKZ-bases are due to Hermite [33] and Korkine-Zolotareff [38]. LLL/HKZ-
bases B D QR are preserved under isometry. LLL/HKZ-reducedness is a property
of the GNF R.

Theorem 1. [47] An LLL-basis B 2 R
m	n of lattice L satisfies for ˛ D 1=.ı� 2/

1. kb1k2 � ˛ n�1
2 .detL/2=n, 2. kb1k2 � ˛n�1�2

1

3. kbik2 � ˛i�1r2
i;i , 4. ˛�iC1 � kbik2��2

i � ˛n�1 for i D 1; : : : ; n.

If an LLL-basis satisfies the stronger inequalities r2
i;i � N̨r2

iC1;iC1 for all i and
some 1 < N̨ < ˛, then the inequalities 1–4 hold with ˛n�1 replaced by N̨n�1 and
with ˛i�1 in 3, 4 replaced by N̨ i�1=.4 N̨ � 4/.

The last five sections survey variants of LLL- and HKZ-bases that either allow
faster reduction for large dimension n or provide a rather short vector b1. For these
bases we either modify clause 1 or clause 2 of Theorem 1. Either clause is sufficient
on account of an observation of Lovász [49] pp.24 ff, that the following problems



4 Progress on LLL and Lattice Reduction 149

are polynomial time equivalent for all lattices L.B/ given B:

1. Find b 2 L, b ¤ 0 with kbk � nO.1/�1.L/.
2. Find b 2 L, b ¤ 0 with kbk � nO.1/.detL/1=n.

Theorem 2. [48] An HKZ-basis B 2 R
m	n of lattice L satisfies

4=.i C 3/ � kbik2��2
i � .i C 3/=4 for i D 1; : : : ; n:

The algorithms for HKZ-reduction [21, 35], exhaustively enumerate, for vari-
ous l , all lattice vectors b such that k	l .b/k � k	l .bl/k for the current bl . Their
theoretical analysis has been stepwise improved [32, 35] to a proven mn

n
2e
Co.n/

time bound for HKZ-reduction [28]. The enumeration ENUM of [66,67] is particu-
larly fast in practice, see [1] for a survey and [28,60] for heuristic and experimental
results.

Algorithm 1: LLL in ideal arithmetic

INPUT b1; : : : ; bn 2 Z
m a basis withM0 D maxfkb1k; : : : ; kbnk g, ı with 1

4
< ı < 1

1. l WD 1, # at stage l b1; : : : ; bmax.l�1;1/ is an LLL-basis with given GNF.

2. WHILE l � n DO

2.1 #compute rl D col.l; R/:

FOR i D 1; : : : ; l � 1 DO [ ri;l WD .hbi ;bli �
Pi�1

kD1 rk;irk;l/=ri;i ],

rl;l WD j kblk2 �
Pl�1

kD1 r
2
k;l
j1=2, rl WD .r1;l ; : : : ; rl;l ; 0; : : : 0/

t 2 R
n.

2.2 #size-reduce bl and rl , drc D dr � 1
2
e denotes the nearest integer to r 2 R:

FOR i D l � 1; : : : ; 1 DO bl WD bl �dri;l=ri;icbi , rl WD rl �dri;l=ri;icri .

2.3 IF l > 1 and ı r2
l�1;l�1

> r2
l�1;l
C r2

l;l

THEN swap bl�1;bl , l WD l � 1 ELSE l WD l C 1.
3. OUTPUT LLL-basis B D Œb1; : : : ;bn�, R D Œr1; : : : ; rn� for ı.

Comments. LLL performs simultaneous column operations on R and B; it
swaps columns rl�1; rl and bl�1;bl if this shortens the length of the first col-

umn of the submatrix

�
rl�1;l�1 rl�1;l

0 rl;l

�
of R by the factor

p
ı. To enable a swap,

the entry rl�1;l is first reduced to jrl�1;l j � 1
2
jrl�1;l�1j by transforming rl WD

rl � drl�1;l=rl�1;l�1crl�1. At stage l , we get rl D col.l; R/ of R D GNF.B/, and
we have rl�1 from a previous stage. The equation GNF.Œb1; : : : bl �/ D Œr1; : : : rl � is
preserved during simultaneous size-reduction of rl and bl .

Each swap in step 2.3 decreases D.1/ WD Qn�1
iD1 di by the factor ı. As initially

D.1/ � M n2

0 and D.1/ remains, integer LLL performs � n2 log1=ı M0 rounds,
denoting M0 D maxfkb1k; : : : ; kbnkg for the input basis. Each round performs
O.nm/ arithmetic steps; LLL runs in O.n3m log1=ı M0/ arithmetic steps.

Time bound in exact rational/integer arithmetic. The rationals r2
l;l

, �l;i D
ri;l=ri;i can easily be obtained within LLL in exact rational/integer arithmetic.
Moreover, the integer �j;idi has bit length O.n log2M0/ throughout LLL-
computations. This yields
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Theorem 3. LLL runs in O.n5m.log1=ı M0/
3/, respectively O.n4C"m

.log1=ı M0/
2C"/ bit operations, under school-, respectively FFT-multiplication.

The degree of this polynomial time bound (in n;m; logM0) is 9 = 7 C " under
school-/FFT-multiplication. The degree reduces to 7 = 6C " by computing the GNF,
respectively, the GSO in floating-point arithmetic (fpa). This is done by LLLH [70]
of section “What is a Random (Basic of a) Lattice?” and theL2 of [56]; both use fpa
numbers of bit length O.nC log2M0/. LLL-type segment reduction SLLL of [70,
Section 9] further decreases the time bound degree to 6/5C ". The factor m in the
time bounds can be reduced to m by performing the reduction under random pro-
jections [6]. The theoretical, less practical algorithms of [65, 73] approach the time
bound of LLLH by approximate rational, respectively very long integer arithmetic.

A canonical order of the input basis vectors. While the LLL depends heavily on
the order of the basis vectors, this order can be made nearly canonical by swapping
before step 2.3 bl and bj for some j � l that minimizes the value r2

l�1;l
C r2

l;l

resulting from the swap. This facilitates a subsequent swap of bl�1;bl by step 2.3.
Moreover, this tends to decrease the number of rounds of the LLL and anticipates
subsequent deep insertions into the LLL-basis b1; : : : ;bl�1 via the following new
step 2.3.

New step 2.3, deep insertion at .j; l/ [SE91], (the old step 2.3 is restricted to depth l�j D 1):

IF 9j; 0 < j < l such that ır2j;j >
Pl

iDj r
2
i;l

THEN for the smallest such j do .bj ; : : : ; bl / WD .bl ; bj ; bjC1; : : : ; bl�1/, l WD j

THEN ELSE l WD l C 1.

LLL with deep insertions is efficient in practice, and runs with some restrictions
in polynomial time. Deep insertion at .j; l/ decreases rj;j and dj D r2

j;j � � � r2
n;n

and provides rnew
jCk;jCk

close to rjCk�1;jCk�1 for j C k < l . This is because
Pl

iDj r
2
i;l
< ır2

j;j and the h	j .bl/;bjCk�1i are quite small.
Deep insertion at .j; l/ can be strengthened by decreasing k	j .bl /k through

additional, more elaborate size-reduction. Before testing, ır2
j;j >

Pl
iDj r

2
i;l
D

k	j .rl/k2 shorten 	j .bl / as follows

2.2.b additional size-reduction of 	j .bl/ :

WHILE 9h : j � h < l such that �0

j;h WD
Ph

iDj ri;l ri;h=
Ph

iDj r
2
i;h satisfies ıj�0

j;hj 
 1
2

DO bl WD bl � d�0

j;hcbh, rl WD rl � d�0

j;hcrh.
Obviously, deep insertion with additional size-reduction remains polynomial

time per round. This makes the improved deep insertion quite attractive and more
efficient than the algorithms of Sections “Semi Block 2k-Reduction Revisited”
FF. In addition, one can perform deep insertion of bl and of several combi-
nations of bl with other lattice vectors. This leads to random sampling reduc-
tion of [69] to be studied in Section “Analysis of the Lattice Reduction in two
Dimensions”.

Decreasing ˛ by deep insertion of depth � 2. The bound kb1k � ˛ n�1
2 .detL/ 2

n

of Theorem 1 is sharp for the LLL-GNF R D Œri;j � 2 R
n	n: ri;i D ˛.�iC1/=2,

ri;iC1 D 1
2
ri;i , ri;j D 0 for j � i C 2. (Note that deep insertion at .1; n/ results in
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r1;1 D �1 right-away.) While this GNF satisfies r2
i;i=r

2
iC1;iC1 D ˛, the maximum

of r2
i;i=r

2
iC2;iC2 under LLL-reduction with deep insertion of depth � 2 for ı D 1 is

3
2

, 3
2
< ˛2 D 16

9
, since the HKZ-reduced GNF of the critical lattice of dimension 3

satisfies r2
1;1=r

2
3;3 D 3

2
. This shows that deep insertion of depth � 2 decreases ˛ in

clauses 1, 2 of Theorem 1 from 4
3

to .3
2
/1=2.

LLL-reduction of bases B with large entries. Similar to Lehmer’s version of
Euclid’s algorithm for large numbers [37] Sect. 4.5.2, p. 342, most of the LLL-work
can be done in single precision arithmetic:

Pick a random integer �0 2R Œ1; 243� and truncate B D Œbi;j � into the matrix B 0
with entries b0i;j WD dbi;j�

0=2�c such that jbi;j�
0=2� � b0i;j j � 1=2 and jb0i;j j �

�0 C 1=2, where � WD maxi;j dlog2 jbi;j je � 53.
LLL-reduceB 0 into B 0T 0 working mostly in single precision, e.g. with 53 preci-

sion bits, and transform B into BT 0. Iterate this process as long as it shortens B .
Note that .2�=�0/B 0 and .2�=�0/n detB 0 well approximate B and detB . In par-

ticular, j detBj � .2�=�0/n implies that detB 0 D 0, and thus LLL-reduction of B 0
produces zero vectors of B 0T 0 and highly shortened vectors of BT 0.

LLL-Reduction of Quadratic and Indefinite Forms

We present extensions of the LLL-algorithm to domains other than Z and general
quadratic forms.

Rational, algebraic and real numbers. It is essential for the LLL-algorithm that
the input basisB 2 Rm	n has entries in an euclidean domain R with efficient, exact
arithmetic such as R D Z. Using rational arithmetic the LLL-algorithm directly
extends from Z to the field of rational numbers Q and to rings R of algebraic num-
bers. However, the bit length of the numbers occuring within the reduction requires
further care. If the rational basis matrixB has an integer multiple dB 2 Z

m	n, d 2 Z

of moderate size, then the LLL-algorithm applied to the integer matrix dB 2 Z
m	n

yields an LLL-basis of L.dB/ 2 Z
m which is the d-multiple of an LLL-basis of the

lattice L.B/.
Gram-matrices, symmetric matrices, quadratic forms. The LLL-algorithm

directly extends to real bases B 2 R
m	n of rank n that have an integer Gram-

matrix B tB 2 Z
n	n. It transforms A WD B tB into A0 D T tAT such that the GNF

R0 of A0 D R0tR0 is LLL-reduced.
We identify symmetric matrices A D At D Œai;j �1�i;j�n 2 R

n	n with n-ary
quadratic forms xtAx 2 RŒx1; : : : ; xn�. The forms A;A0 are equivalent if A0 D
T tAT holds for some T 2 GLn.Z/.

The form A 2 R
n	n with det.A/ ¤ 0 is indefinite if xtAx takes positive and

negative values; otherwise, A is either positive or negative (definite). The form
A is regular if det.A/ ¤ 0. We call A D At D Œai;j � strongly regular (s.r.) if
det.Œai;j �1�i;j�`/ ¤ 0 for ` D 1; : : : ; n. Let D� 2 f0;˙1gn	n denote the diagonal
matrix with diagonal � D .�1; : : : ; �n/ 2 f˙1gn. An easy proof shows
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Proposition 1. Every s.r. form A D At 2 R
n	n has a unique decomposition A D

RtD�R 2 R
n	n with a GNF R 2 R

n	n and a diagonal matrix D� with diagonal
� 2 f˙1gn.

We call R the geometric normal form (GNF) of A, R D GNF.A/. The signature
#fi j �i D 1g is invariant under equivalence. The form A D RtD�R is positive,
respectively, negative if all entries �i of � are C1, respectively, �1. The form is
indefinite if � has �1 andC1 entries.

Definition 1. A s.r. formA D RD�R is an LLL-form if its GNFR is LLL-reduced.

The LLL-form A D Œai;j � D B tB of an LLL-basis B D .b1; : : : ;bn/ satisfies

the classical bound a2
1;1 D kb1k2 � ˛ n�1

2 j det.A/j 2n of Theorem 1.
IfB 2 R

m	n generates a lattice L D fBx j x 2 Zg of dimension n0 � n, the LLL-
algorithm transforms the input basis B into an output basis Œ0; : : : ; 0;b01; : : : ;b0n0 � 2
R

m	n such that Œb01; : : : ;b0n0 � is an LLL-basis. This generalizes to

Corollary 1. An adjusted LLL transforms an input form A 2 Z
n	n of rank n0 into

an equivalent regular form A0 2 Z
n0	n0

with det.A0/ ¤ 0.

LLL-reduction easily extends to s.r. forms A 2 Z
n	n: compute R D GNF.A/;

LLL-reduce R into RT and transform A into the equivalent form A0 D T tAT . By
Lemma 1, the LLL-reduction of non s.r. indefinite forms reduces to LLL-reduction
in dimension n � 2, see also Simon [72].

Lemma 1. An adjusted LLL-algorithm transforms a non s.r. input form A 2 Z
n	n

in polynomial time into an equivalent A0 D Œa0i;j � such that a01;i D a02;j D 0 for

all i ¤ 2; j � 3 and 0 � a02;2 � 2a01;2. Such A0 is a direct sum

"
0 a01;2

a01;2 a
0
2;2

#
˚

Œa0i;j �3�i;j�n. Moreover a01;2 D 1 if det.A/ ¤ 0 is square-free.

Proof. If det.Œai;j �1�i;j�`/ D 0 for some ` � n, then the LLL-algorithm achieves
in polynomial time that a1;1 D 0. The corresponding A can be transformed into A0
such that a01;2 D gcd.a1;2; : : : ; a1;n/, a01;3 D � � � D a01;n D 0 D a02;3 D � � � D a02;n.
Moreover a02;2 can be reduced modulo 2a01;2. Doing all transforms symmetrically
on rows and columns, the transformed A0 D T tAT is symmetric a01;2 D a02;1, and
thus .a01;2/

2 divides det.A/. If det.A/ is square-free, then ja01;2j D 1 and a01;2 D 1

is easy to achieve. �

Lemma 1 shows that the LLL-algorithm can be adjusted to satisfy

Theorem 4. An adjusted LLL-algorithm transforms a given form A 2 Z
n	n in

polynomial time into a direct sum ˚k
iD1A

.i/ of an LLL-form A.k/ and binary forms

A.i/ D
�
0 ai

ai bi

�
for i D 1; : : : ; k�1, where 0 � bi < 2ai and ai D 1 if det.A/ ¤ 0

is square-free. If A is positive definite and detA ¤ 0, then k D 1.
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LLL-reduction of indefinite forms is used in cryptographic schemes based hard
problems of indefinite forms. In particular, the equivalence problem is NP-hard
for ternary indefinite forms [29]. Hartung and Schnorr [30] presents public key
identification and signatures based on the equivalence problem of quadratic forms.

LLL Using Householder Orthogonalization

In practice GNF.B/ D R is computed in fpa within LLL whereas B is trans-
formed in exact integer arithmetic. For better accuracy, we replace steps 2.1, 2.2 of
LLL by the procedure TriColl below, denoting the resulting LLL-algorithm by
LLLH . TriColl performs HO via reflections; these isometric transforms preserve
the length of vectors and of error vectors. LLLH improves the accuracy of the LLL
of [66]. All subsequent reduction algorithms are based on LLLH . We streamline
the LLLH -analysis of [70].

Computing the GNF of B . Numerical algorithms for computing the GNF R D
Œri;j � 2 R

n	n of B D QR have been well analyzed, see [34] Chap. 19. It has
been known for quite some time that HO is very stable. Wilkinson showed that
the computation of a Householder vector and the transform of a given matrix by
a reflection are both normwise stable in the sense that the computed Householder
vector is very close to the exact one, and the computed transform is the update of
a tiny normwise perturbation of the original matrix. Wilkinson also showed that
the QR factorization algorithmn is normwise backwards stable [76] pp.153–162,
p. 236. For a componentwise and normwise error analysis see [34] Chap. 19.3.

To simplify the analysis, let all basis vectors bj start with n zero entries bj D
.0n;b0j / 2 0n

Z
m�n. The bases b01; : : : ;b0n and b1; : : : ;bn have the same GNF. The

padding with initial zeros increases TriCol’s number of steps by the factor 4
3

; it is
not required in practice. We compute an orthogonal matrixQ0 2 R

m	m that extends
Q 2 R

m	n by m � n columns and a matrix R0 2 R
m	n that extends R 2 R

n	n

by final zero rows. In ideal arithmetic, we get R0 by a sequence of Householder
reflectionsQj 2 R

m	m as

R00 W D B; R0j WD QjR
0
j�1 for j D 1; : : : ; n;

R0 W D R0n; Q0 WD Q1 � � �Qn D Qt
1 � � �Qt

n;

where Qj WD Im � 2khj k�2hj ht
j is orthogonal and symmetric, and hj 2 R

m.
The transform R0j 7! QjR

0
j�1 zeroes the entries in positions j C 1 through m

of col.j; R0j�1/, it triangulates r WD .r1; : : : ; rm/
t WD col.j; R0j�1/ so that R0j 2

R
m	n is upper-triangular for the first j columns. The reflection Qj reflects about

the hyperplane span.hj /
?:

Qj hj D �hj ; Qj x D x for hhj ; xi D 0:



154 C.P. Schnorr

Note that .rj ; : : : ; rn/t D 0n�jC1 due to b1; : : : ;bj 2 0n
Z

m�n.
We set rj;j WD .Pm

iDj r
2
i /

1=2, hj WD .0j�1;�rj;j ; 0
n�j ; rnC1; : : : ; rm/

t .
Correctness of hj . We have 2hhj ; rikhj k�2 D 1 and khj k2 D 2r2

j;j and thus

Qj r D r � hj D .r1; : : : ; rj�1; rj;j ; 0
m�j /t 2 R

m:

Hence Qj r is correctly triangulated and the Householder vector hj is well chosen.

TriCol .b1; : : : ; bl ; h1; : : : ; hl�1; r1; : : : ; rl�1/ (TriColl for short)

# TriColl computes hl and rl WD col.l; R/ and size-reduces bl ; rl .
1. r0;l WD bl , FOR j D 1; : : : ; l�1 DO rj;l WD rj�1;l �hhj ; rj�1;l ihj =r2j;j .

2. .r1; : : : ; rm/
t WD rl�1;l , � WD maxi jri j, rl;l WD �.

Pm
iDnC1.ri =�/

2/1=2,

# � prevents under/overflow; ri D 0 holds for i D l; : : : ; n

3. hl WD .0l�1;�rl;l ; 0n�l ; rnC1; : : : ; rm/
t , # note that khlk2 D 2r2l;l .

4. rl WD .r1; : : : ; rl�1; rl;l ; 0
m�l /t 2 R

m.

5. # size-reduce bl and rl : FOR i D l � 1; : : : ; 1 DO

IF jri;l =ri;i j � 1
2
C "

THEN �i WD 0 ELSE �i WD dri;l=ri;ic, bl WD bl � �ibi , rl WD
rl � �iri .

6. IF
Pl�1

iD1 j�i j ¤ 0 THEN GO TO 1 ELSE output bl ; rl ; hl .

TriColl under fpa with t precision bits. Zeroing �i in case jri;l=ri;i j <� 1
2
C

" in step 5 cancels a size-reduction step and prevents cycling through steps 1–6.
In TriColl ’s last round size-reduction is void. Zeroing �i , the use of � and the
loop through steps 1–6 are designed for fpa. The �i in steps 5, 6 consist of the
leading �.t/ bits of the �l;i . TriColl replaces in the Schnorr-Euchner-LLL [66]
classical Gram–Schmidt by an economic, modified Gram–Schmidt, where col.l; R/
gets merely transformed by the l � 1 actual reflections.

Accurate floating point summation. Compute the scalar product hhj ; rj�1;li D
hx; yi in step 1 by summing up positive and negative terms xiyi separately, both
in increasing order to

P
>0 and

P
<0. The increasing order minimizes the apriori

forward error [34] chapter 4, see also [19]. If both
P

>0 and �P<0 are larger than

2�t=2 and nearly opposite, jP>0C
P

<0 j < 2�t=2.
P

>0�
P

<0/, then compute
hx; yi exactly. This provision is far more economic than that of [66] to compute
hx; yi exactly if jhx; yij < 2t=2kxkkyk. Proposition 2 and Theorem 5 do not require
occasional exact computations of hx; yi.

Efficiency. TriColl performs 4ml C 3
2
l2 CO.l/ arithmetic steps and one sqrt

per round, the 3
2
l2 steps cover step 1. TriColl is more economic than the fully

modified GSO of [34] as only the reflections of the current Householder vectors
h1; : : : ;hl�1 are applied to bl . The contribution of step 1 to the overall costs is
negligible for reasonably long input bases since on average l � n=2, and there
are no long integer steps. TriColl performs at most log2.2kblk=2t/ rounds; each
round shortens bl by a factor � 1=2t�1.

fpa-Heuristics. There is room for heuristics in speeding up the LLL as the cor-
rectness of the output can most likely be efficiently verified [75]. We want to catch
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the typical behaviour of fpa-errors knowing that worst case error bounds are to
pessimistic. Note that error vectors x� Nx are rarely near parallel to x in high dimen-
sion. Small errors kx � Nxk � "kxk with expected value EŒhx; Nx � xi� D 0 satisfy
EŒ kNxk2� D EŒ kxC . Nx � x/k2� D EŒ kxk2 C kNx� xk2� � .1C "2/EŒ kxk2�. Hence,
the relative error j kNxk� kxk j=kxk is for "� 1, on average smaller than "2 and can
be neglected.

We let the projection 	 0n W R
m ! R

m�n remove the first n coordinates so that
	 0n.bj / D b0j for bj D .0n;b0j /. Recall that TriColl computes in step 2 rl�1;l DQl�1

jD1Qj bl , as Nr0;l WD bl , Nrj;l WD f l. NQj Nrj�1;l/ for 1 � j < l and NQj D
Im � kNhj k�2 Nhj

Nht

j .

Proposition 2. [fpa-Heur.] TriColl applied to an LLL-basis b1; : : : ;bl 2 0n

Z
m�n approximates the GNF R D Œri;j � D Œr1; : : : ; rl � such that for j D
0; : : : ; l � 1

1. j NrjC1;l � rjC1;l j � k	 0n.Nrj;l � rj;l/k � 10m .3
2
/j�1 max1�i�l ri;i 2

�t ,

2. EŒk	 0n.Nrj;l � rj;l/k� � 10m.5
4
/.j�1/=2 max1�i�l ri;i 2

�t holds for
random fpa-error vectors.

LLL-bases b1; : : : ;bl satisfy r2
i;i � ˛l�i r2

l;l
and kblk � ˛

l�1
2 rl;l .Clause 1. of

Proposition 2 shows for j D i � 1 that TriColl achieves for i D 1; : : : ; l

j N�l;i � �l;i j � jNri;l � ri;l j=ri;i � 10m˛ l�1
2

�
3

2

�i�2
rl;l

ri;i
2�t : (4.1)

This bound can easily be adjusted to the case that merely b1; : : : ;bl�1 is LLL-
reduced. Thus, it covers for i D l � 1 the critical situation of swapping bl�1;bl

within LLLH . It guarantees correct swapping of bl�1;bl if 2t � 100mp3l�1
, as

3
2

p
˛ � p3 holds for ˛ � 4

3
. On average the error bounds are much smaller for

random fpa-error vectors. Clause 2. of Proposition 2 reduces 3
2

in (4.1) on aver-
age to .5

4
/1=2 � 1:12. Moreover, the constant ˛ in (1) reduces considerably by

stronger lattice reduction. Sections “The LLL algorithm–Analysis of Lattice Reduc-
tion in Two-Dimensions” show that ˛ can be decreased by feasible lattice reduction

to about 1.025. This reduces our correctness condition 2t � 100m
p
3

l�1
, for

LLL-swapping of bl�1;bl to 2t � 100m 1:132l�1.

Proof of Proposition 2. Induction on j I j D 0: Consider the last round of TriColl

where size-reduction in step 5 is void. So let bl and rl be size-reduced. We have that
r0;l D bl , r1;l D bl � hh1;blih1=r

2
1;1, h1 D .�r1;1; 0

n�1;b01/, r1;1 D kb1k. A

lengthy proof shows kNr1;l � r1;lk=kr1;lk � .d
2
C 3/2�t C O.2�2t /, see [44] pp.

84, 85, (15.21). We disregard all O.2�2t /-terms. The claim holds for j D 0 and
arbitrary l since the size-reduced bl satisfies kblk D kr1;lk � .

P
1�i�l r

2
i;i/

1=2.
The constant factor 10 in the claim is a crude upper bound.

Induction step j �1! j : Clearly rj;l DQj rj�1;l , khj k2D 2r2
j;j , k	 0n.rj�1;j /k

D rj;j , 	 0n.hj / D 	 0n.rj�1;j /, the j th entries of hj ; rj;l are �rj;j ; rj;l . Hence,
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rj;l D hhj ; 	
0
n.rj�1;l /i=rj;j ; (4.2)

rj;l � rj�1;l D �hhj ; 	n.rj�1;l /i hj =r
2
j;j D �rj;lhj =rj;j ;

	 0n.rj;l/ D 	 0n
�

rj�1;l � rj;l

rj;j

rj�1;j

�
: (4.3)

Consider the part of k	 0n.Nrj;l�rj;l/k induced via (5) from j Nrj;l�rj;l j. We neglect
fpa-errors from Nrj�1;l 7! f l. NQj Nrj�1;l/ D Nrj;l as they are minor. (4.2) shows that

Nrj;l � rj;lrj;j D hNhj ; 	
0
n.Nrj�1;l /i � hhj ; 	

0
n.rj�1;l /i D hNhj � hj ; 	

0
n.rj�1;l /i

C hNhj ; 	
0
n.Nrj�1;l � rj�1;l/i:

The contribution of h Nhj ; 	
0
n.Nrj�1;l � rj�1;l/i via Nrj;l � rj;l to k	 0n.Nrj;l � rj;l/k

is part of NQj	
0
n.rj�1;l � Nrj�1;l/. As the orthogonal NQj preserves the length of

error vectors, that contribution is covered by k	 0n.Nrj�1;l � rj�1;l /k. We neglect the
contribution of h Nhj � hj ; 	

0
n.rj�1;l/i to k	 0n.Nrj;l � rj;l/k assuming that the error

Nhj � hj is random. Therefore, (4.3) shows up to minor errors that

	 0n.Nrj;l � rj;l/ � 	 0n.Nrj�1;l � rj�1;l /C rj;l

rj;j

	 0n.Nrj�1;j � rj�1;j /: (4.4)

Applying the induction hypothesis for j � 1 and size-reducedness, jrj;l=rj;j j �
1
2

, we get the second part of the induction claim:

k	 0n.Nrj;l � rj;l/k � 10m
�
3

2

�j�2 �
3

2

�
max

1�i�l
ri;i 2

�t :

The first part j NrjC1;l�rjC1;l j � k	 0n.Nrj;l�rj;lk holds since rjC1;l is an entry of
rjC1;l D Qj rj;l . On average, the error bounds are much smaller since independent
random error vectors are nearly orthogonal with high probability. Thus (4.4) shows

EŒk	 0n.Nrj;l � rj;l/k2� � EŒk	 0n.Nrj�1;l � rj�1;l/k2�
CE

�
j rj;l

rj;j

j2k	 0n.Nrj�1;j � rj�1;j /k2
�
:

This proves by induction on j clause 2 of Proposition 2.

We set ı WD 0:98, ı
�
WD 0:97; ı

C
WD 0:99, ˛ WD 1=0:73 < 1:37, � WD 3

2

p
˛ �p

3, " WD 0:01 and ˛" WD .1C "2˛/=
�

3
4
� 4" � "2=4� .1C 2"/"˛1=2

�
< 1:44.

Recall that LLLH is obtained by replacing steps 2.1, .2.2 of LLL by TriColl ;
let M D max.d1; : : : ; dn; 2

n/ for the input basis andM0 D max.kb1k; : : : ; kbnk/.
Theorem 5. [Theorem 2 of [70] using fpa-Heur.] LLLH transforms with fpa of
precision 2t � 210m�n a basis b1; : : : ;bn 2 Z

m into an approximate LLL-basis
satisfying
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1. j�j;i j < 1
2
C "˛"

j �i
2 rj;j=ri;i C " for 1 � i < j � n;

2. ı
�
r2

i;i � �2
iC1;i r

2
i;i C r2

iC1;iC1 for i D 1; : : : ; n � 1:
3. Clauses 1.-3. of Theorem 1 hold with ˛ replaced by ˛".

LLLH runs in O.n2m log1=ı M/ arithmetic steps using n C log2M0 bit integers
and fpa numbers.

We call a basis size-reduced under fpa if it satisfies clause 1 of Theorem 5. The

term "˛"

j �i
2 rj;j=ri;i � " covers the error j N�j;i � �j;i j from (1).

In particular, LLLH runs for M0 D 2O.n/, m D O.n/ in O.n5/ arithmetic steps
and in O.n6//O.n5C"/ bit operations under school-/FFT-multiplication.

Similar toL2 of [56], LLLH should be quadratic in log2M0 since size-reduction
in step 5 of TriColl is done in fpa using the t most significant bits of ri;l , rl;l , �l;i .
Thus, at least one argument of multiplication/division has bit length t . The maximal
bit length of the �l;i decreases in practice by �.t/ per round of TriColl , e.g. by
about 30 for t D 53, see Fig. 1 [41]. In our experience, LLLH is most likely correct
up to dimension n D 350 under fpa with t D 53 precision bits for arbitrary M0,
and not just for t � ˝.n C log2M0/ as shown in Theorem 5. LLLH computes
minimal, near zero errors for the LLL-bases given in [56], where the fpa-LLL-code
of NTL fails in dim. 55, and NTL orthogonalizes the Gram-matrix by classical GSO
and LLLH by HO.

Givens rotations zero out a single entry of col.j; Rj�1/ and provide a slightly
better fpa-error bound than HO [34] Chap. 18.5. Givens rotations have been used in
parallel LLL-algorithms of Heckler, Thiele and Joux.

The L2 of Nguyen, Stehlé [56] uses GSO in fpa for the Gram matrix B tB .

Theorem 2 of [56] essentially replaces
p
3 by 3 in our condition 2t � 100mp3l�1

for correct LLL-swapping. LLLH performs correct LLL-swaps in about twice the
dimension compared to the L2 of [56]. This is because replacing the basis B by
the Gram matrix B tB squares the matrix condition number K.B/ D kBkkB�1k
which characterizes the sensitivity of Q;R to small perturbations of B , see [34]
Chap. 18.8. As fpa-errors during the QR-factorization act in the same way as per-
turbations of B , the squaring K.B tB/ D O.K.B/2/ essentially halves the accurate
bits for R;Q and the dimension for which L2 is correct. The squaring also doubles
the bit length of B and more than doubles the running time. While [74] reports that
L2 is most likely correct with 53 precision bits up to dimension 170, LLLH is most
likely correct up to dimension 350. The strength of L2 is its proven accuracy; more-
over, L2 is quadratic in the bit length log2M0. While the proven accuracy bound
of [56] is rather modest for 53 precision bits, the Magma-code of L2 uses inter-
mediary heuristics and provides proven accuracy of the output via multiprecision
fpa [74].

Scaled LLL-reduction. Scaling is a useful concept of numerical analysis for
reducing fpa-errors. Scaled LLL-reduction of [41] associates with a given lattice
basis a scaled basis of a sublattice of the given lattice. The scaled basis satisfies
1
2
� jr2

1;1=r
2
j;j j � 2 for all j . Scaled LLL-reduction performs a relaxed size-

reduction, reducing relative to an associated scaled basis. The relaxed size-reduction
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is very accurate, independent of fpa-errors, and its relaxation is negligible. Scaled
LLL-reduction is useful in dimension n > 350 where LLLH becomes inaccu-
rate. This way, we reduced in 2002 a lattice bases of dimension 1,000 consisting
of integers of bit length 400, in 10 h on a 800 MHz PC.

Comparison with [65] and the modular LLL of [73]. Theorem 7 improves
the time bound and the accuracy of the theoretic method of [S88], which uses
approximate rational arithmetic.

The modular LLL [73] performs O.nm log1=ı M/ arithmetic steps on integers
of bit length log2.M0M/ using standard matrix multiplication, where M denotes
max.d1; : : : ; dn; 2

n/. If M0 D 2˝.n/, the LLL’s of [65, 73] match asymptotically
the bound for the number of bit operations of LLLH . Neither of these LLL’s is
quadratic inM0. The practicability of LLLH rests on the use of small integers of bit
length 1:11 nClog2M0 whereas [73] uses long integers of bit length log2.M0M/ D
O.n logM0/.

Semi Block 2k-Reduction Revisited

Survey, background and perspectives this and the next two sections. We survey feasi-
ble basis reduction algorithms that decrease ˛ in clauses 1, 2 of Theorem 1 to N̨ < ˛
for n� 2. The factors ˛

n�1
2 , ˛n�1 of Theorem 1 decrease within polynomial time

reduction to 2O..n log log n/2= log n/ [64] and combined with [4] to 2O.n log log n= log n/. In
this survey, we focus on reductions of ˛ achievable in feasible lattice reduction time.
Some reductions are proven by heuristics to be feasible on the average.

For the rest of the paper, let ı � 1 so that ˛ � 4=3. LLL-bases approximate �1

up to a factor ˛
n�1

2 � 1:155n. They approximate �1 much better for lattices of high

density where �2
1 � �n.detL/2=n, namely up to a factor � ˛

n�1
4 =
p
�n � 1:075n as

a result of part 1 of Theorem 1. Moreover, [57] reports that ˛ decreases on average
to about 1:024 � 1:08 for the random lattices of [57].

The constant ˛ can be further decreased within polynomial reduction time
by blockwise basis reduction. We compare Schnorr’s algorithm for semi block
2k-reduction [64] and Koy’s primal–dual reduction [39] with blocksize 2k. Both
algorithms perform HKZ-reductions in dimension 2k and have similar polynomial
time bounds. They are feasible for 2k � 50. Koy’s algorithm guarantees within
the same time bound under known proofs better approximations of the shortest
lattice vector within the same time bound, under known proofs. Under reason-
able heuristics, both algorithms are equally strong and much better than proven in
worst-case. We combine primal–dual reduction with Schnorr’s random sampling
reduction (RSR) with a highly parallel reduction algorithm, which is on the aver-
age more efficient than previous algorithms. It reduces the approximation factor�

4
3

�n=2
guaranteed by the LLL-algorithm on average to 1:025n=2 using feasible

lattice reduction.
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Semi block 2k-reduced bases of [64] satisfy by Theorem 6 the inequalities
of Theorem 1, with ˛ replaced by .ˇk=ı/

1=k , for a lattice constant ˇk such
that limk!1 ˇ1=k

k
D 1. The best known bounds on ˇk are k=12 < ˇk <

�
1C k

2

�2 ln 2C1=k

[23]. Primal–dual reduction (Algorithm 3) replaces ˛ by

.˛�2
2k
/1=2k (Theorem 7). The second bound outperforms the first, unless ˇk is close

to its lower bound k=12. Primal–dual reduction for blocks of length 48 replaces
˛ in Theorem 1 within feasible reduction time by .˛�2

48/
1=48 � 1:084. The algo-

rithms Algorithms 2 and 3 for semi block 2k reduction and primal–dual reduction
are equally powerful in approximating �1 under the GSA-heuristic of [69]. Under
GSA, they perform much better than proven in a worst case.

Section “Primal-Dual Random Sampling Reduction” surveys some basis reduc-
tion algorithms that are effcient on average but not proven in polynomial time.
BKZ-reduction of [66] runs in practice for blocksize 10 in less than twice the LLL-
time. The LLL with the deep insertion step of [66] seems to be in polynomial time
on average and greatly improves the approximational power of the LLL. Based on
experiments, [57] reports that LLL with deep insertions decreases ˛ for random
lattices on average to 1:0124 � 1:05 � ˛1=6.

In Section “Primal-Dual Random Sampling Reduction”, we replace HKZ-reduc-
tion within primal–dual reduction by random sampling reduction (RSR) of [69], a
parallel extension of the deep insertion step of [66]. RSR is nearly feasible up to
blocksize k D 80. The new algorithm, primal–dual RSR (Algorithm 4) replaces
under the worst-case GSA-heuristics ˛ in Theorem 1 by .80=11/1=80 � 1:025.
Algorithm 4 is highly parallel and polynomial time on the average but not proven
polynomial time.

For Table 1, we assume that the densest known lattice packings P48p; P48q in
dimension 48 [16] Table 1.3, have nearly maximal density; then �48 � 6:01. For
the assumptions GSA, RA see Section “Returning to the Gauss Algorithm”. GSA
is a worst case heuristics in the sense that bases B D QR having a large spread of
the values r2

iC1;iC1=r
2
i;i , are in general, easier to reduce.

Table 4.1 Reductions N̨ of ˛ � 4
3

in Theorem 1 under feasible lattice basis reduction for n 2

1. Semi block 2k-reduction [64], k D 24 N̨
proven [23] .ˇ24=ı/

1=24 < 1:165

by heuristic, GSA �
1=47
47 � 1:039

2. Primal–dual reduction, Koy 2004, k D 48

proven .˛�248/
1=48 � 1:084

by heuristic, GSA �
1=47
48 � 1:039

3. Primal–dual RSR, k D 80, under GSA, RA 1:025

4. LLL on the average for random lattices,
experimental [57]: 1:08

5. LLL with deep insertion [66] on the average
for random lattices, experimental [7, 57]: 1:0124 � 1:05
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Notation. For a basis B D QR 2 R
m	n, R D Œri;j �1�i;j�n with n D hk, let

R` WD Œri;j �k`�k<i;j�k` 2 R
k	k for ` � h

R`;`C1 D Œri;j �k`�k<i;j�k`Ck D
�
R` R0

`

O R`C1

�
2 R

2k	2k for ` < h

denote the principal submatrices of the GNFR corresponding to the segmentsB` D
Œbk`�kC1; : : : ;bk`� and ŒB`; B`C1� of B . We denote

D` D def .detR`/
2 D dk`=dk`�k;

D.1/

k
D D Ddef

h�1Y

`D1

dk` D
h�1Y

`D1

Dh�`
` :

The lattice constant ˇk . Let ˇk Ddef max.detR1= detR2/
1=k maximized over all

HKZ-reduced GNF’s R D R1;2 D
"
R1 R

0
1

O R2

#
2 R

2k	2k .

Note that ˇ1 D max r2
1;1=r

2
2;2 over all GNF’s R D

"
r1;1 r1;2

0 r2;2

#
2 R

2	2 satis-

fying jr1;2j � r1;1=2, r2
1;1 � r2

1;2 C r2
2;2 and thus ˇ1 D 4

3
D ˛ holds for ı D 1,

 D 1
2

. Note that ˇk � .1C k
2
/2 ln 2C1=k [23].

Definition 2. [64] A basis B D QR 2 R
m	n, n D hk, is semi block 2k-reduced

for ı 2 .2; 1� and ˛ D 1=.ı � 2/ if the GNF R D Œri;j � satisfies

1. R1; : : : ; Rh � R are HKZ-reduced,

2. r2
k`;k`

� ˛ r2
k`C1;k`C1

for ` D 1; : : : ; h � 1,

3. ık D` � ˇk
k
D`C1 for ` D 1; : : : ; h� 1.

In [64], ˛ in clause 2 has been set to 2 and ık in clause 3 has been set to 3
4

.
For k D 1, clause 3 means that r2

`;`
� ˛r2

`C1;`C1
. LLL-bases for ı are semi block

2k-reduced for k D 1.

Theorem 6. [64]. A semi block 2k-reduced basis B D QR 2 R
m	n, n D hk,

satisfies

kb1k2 � �k.ˇk=ı/
n=k�1

2 .detL.B//2=n:

Proof. We have that kb1k2 � �kD1=k
1 D �k.detR1/

2=k since R1 is HKZ-reduced.

Clause 3 of Definition 3 shows D1=k

`
� .ˇk=ı/D1=k

`C1
and yields

kb1k2 � �kD1=k
1 � �k.ˇk=ı/

`�1D1=k

`
for ` D 1; : : : ; h D n=k:

Multiplying these inequalities and taking hth roots yields the claim. �
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Moreover, kb1k2��2
1 � kln kC2 .ˇk=ı/

n=k�2 holds for k � 3 [64] Theorem 3.1,
Corollary 3.5. Ajtai [3] proved these bounds to be optimal up to a constant factor
in the exponent. There exist semi block 2k-reduced bases of arbitrary dimension n
satisfying kb1k2 � �k.ˇk=ı/

˝.n=k/.detL.B//2=n.
Algorithm 2 rephrases the algorithm of [64] without using the unknown constant

ˇk . For k D 1, Algorithm 2 essentially coincides with LLL-reduction.
The transforms T of R`;`C1 that perform LLL-, respectively HKZ-reduction are

only transported to the basisB if this decreases D` by the factor ı, respectively ık=2.

Algorithm 2: Semi block 2k-reduction
INPUT basis B D Œb1; : : : ; bn� 2 Z

m�n; ı 2 Œ2; 1/;  D 1
2
C "; n D hk.

OUTPUT semi block 2k-reduced basis B .

1. LLL-reduce B , HKZ-reduce ŒB1; B2�D Œb1; : : : ; b2k�, compute R D Œri;j � 2 R
n�n, ` WD 2.

2. HKZ-reduce R`C1 into R`C1 T
0 for some T 0 2 GLk.Z/, B`C1 WD B`C1 T

0,

LLL-reduce R`;`C1 into R`;`C1T .

If an LLL-swap bridging R` and R`C1 occured THEN

ŒB`; B`C1� WD ŒB`; B`C1� T , ` WD max.`� 1; 1/ GO TO 2

HKZ-reduce R`;`C1 into R`;`C1T for some T 2 GL2k.Z/.

3. Compute D new
` WD .detRnew

` /2 for

"
Rnew
` R

0 new
`

O Rnew
`C1

#
WD GNF.R`;`C1T /,

IF D new
` � ık=2D` THEN ŒB`; B`C1� WD ŒB`; B`C1� T , recomputrR`; R`C1, ` WD `�1

ELSE ` WD `C 1.

4. IF `D 1 THEN GO TO 1, IF 1 < ` < h THEN GO TO 2

ELSE terminate.

Correctness. Induction over the rounds of the algorithm shows that the basis
b1; : : : ;bk` is always semi block 2k-reduced for the current `. We show that clauses
2, 3 of Definition 2 hold; clause 1 obviously holds.

Clause 2: LLL-reduction of R`;`C1 in step 2 guarantees clause 2. In particular, if
an LLL-swap bridging R`, R`C1 occured the blocks B`, B`C1 get transformed.

Clause 3: After HKZ-reduction of R`;`C1, we have Dnew
`
� ˇk

k
Dnew

`C1
. Before

increasing `, we have Dnew
`

> ık=2 D` and thus, Dnew
`C1

< ı�k=2 D`C1 resulting

in ık=2 D` < Dnew
`
� ˇk

k
Dnew

`C1
< ı�k=2ˇk

k
D`C1, and therefore, ık D` < ˇk

k

D`C1. �

Lemma 2. Semi block 2k-reduction performs at most h� 1C 2n.h� 1/ log1=ı M0

rounds, i.e., passes of step 2.

Proof. Let k � 2. Semi block 2k-reduction iteratively decreases D` either by LLL-
reduction or by HKZ-reduction ofR`;`C1 Each pass of steps 2, 3 either decreases D`

and D D Qh�1
`D1 Dh�`

`
by the factor ı, respectively ık=2, or else increments `. Since

initially D D Qh�1
`D1 dk` � M 2k.h2/

0 D M
n.h�1/
0 , the integer D can be decreased at

most 2n.h � 1/ log1=ı M0 times by the factor ı. Hence, there are at most n.h � 1/
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log1=ı M0 passes of steps 2, 3 that decrease D by the factor ı, respectively ık=2,
and at most h � 1C n.h � 1/ log1=ı M0 passes of step 2 that do not change D but
increment ` in step 3. �

The proof of [64] Theorem 3.2 shows that an HKZ-reduction of R`;`C1 per-
forms O.n2k C k4 logM0/ C .2k/kCo.k/ arithmetic steps using integers of bit
length O.n logM0/. Following [S87], semi block 2k-reduction performs O..n4 C
n2.2k/kCo.k// log1=ı M0/ arithmetic steps.

Primal–Dual Reduction

Koy’s primal–dual reduction [39] decreases D` D .detR`/
2 as follows. It maxi-

mizes rk`;k` over the GNF’s of R` T` and minimizes rk`C1;k`C1 over the GNF’s of
R`C1 T`C1 for all T`, T`C1 2 GLk.Z/, and then swaps bk`;bk`C1 if this decreases
rk`;k` and D`. Primal–dual reduction with double blocksize 2k replaces the con-
stant ˇk=ı in Theorem 6 by

p
˛ �2k , which is better understood than ˇk=ı since

�k D �.k/.
Dual lattice and dual basis. The dual of lattice L D L.QR/ is the lattice

L� D fz 2 span.L/ j zt y 2 Z for all y 2 Lg:

L� D L.QR�t/ holds because .QR�t /tQR D R�1QtQR D R�1R D In.
QR�t D B�t holds for m D n.
R�t is a lower triangular matrix and UnR

�tUn isupper-triangular with posi-
tive diagonal entries. Clearly, L� D L.QR�tUn/, the basis QR�tUn has QR-
decomposition QR�tUn D .QUn/.UnR

�tUn/ because QUn is isometric and
UnR

�tUn is upper-triangular. B� WD QR�tUn is the (reversed) dual basis of
B D QR. Note that .B�/� D B . B� has the dual GNF R� WD UnR

�tUn. The
(reversed) dual basis B� D Œb�1; : : : ;b�n� of B D Œb1; : : : ;bn� is characterized by

hb�i ;bn�jC1i D ıi;j D hbi ;b�n�jC1i;

where ıi;j 2 f0; 1g is 1 iff i D j . The dual basis B� satisfies B� D Œb�1; : : : ;b�n� D
B�t form D n. (The b�i denote the dual basis vectors and not the orthogonal vectors
qi D 	i .bi / as in [47]. The diagonal entries of R D Œri;j � and R� D Œr�i;j � satisfy

ri;i D 1=r�n�iC1;n�iC1 for i D 1; : : : ; n: (4.5)

HKZ-reduction of R� minimizes r�1;1 D kb�1k and maximizes rn;n D 1=r�1;1.
Notation. For a basis B D QR 2 R

m	n, we let Nrk`;k` for k` � n denote the
maximum of erk`;k` over the GNF’s Œeri;j �k`�k<i;j�k` D GNF.R`T / for all T 2
GLk.Z/. Shortly, Nrk`;k` is the maximum of rk`;k` over the transforms of R` � R.
If R�

`
D UkR

�t
`
Uk is HKZ-reduced, then rk`;k` D Nrk`;k`. We compute Nrk`;k` by
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HKZ-reducing R�
`

into R�
`
T , then Œeri;j � WD GNF.R`UkT

�t / satisfies Nrk`;k` D
erk`;k`.

Definition 3. A basis B D QR 2 R
m	n, n D hk is a primal–dual basis for k and

ı 2 .2; 1�, ˛ D 1=.ı � 1
4
/ if its GNF R D Œri;j � satisfies

1. R1; : : : ; Rh � R are HKZ-reduced,

2. Nr2
k`;k`

� ˛ r2
k`C1;k`C1

for ` D 1; : : : ; h � 1.

We see from (4.5) that clause 2 of Definition 3 also holds for the dual B� of
a primal–dual basis B . Therefore, such B� can be transformed into a primal–dual
basis by HKZ-reducing B�

`
D Œb�

k`C1
; : : : ;b�

k`Ck
� into B�

`
T` for ` D 1; : : : ; h.

Moreover, clauses 2 and 3 of Definition 1 are preserved under duality, they hold for
the dual of a semi block 2k-reduced basis. Theorem 7 replaces ˛ in Theorem 1 by
.˛�2

k
/1=k .

Theorem 7. [23,39]. A primal–dual basis B D QR 2 R
m	n, n D hk of the lattice

L satisfies 1. kb1k2 � �k.˛�
2
k
/

h�1
2 .detL/2=n, 2. kb1k2 � .˛�2

k
/h�1�2

1.

Proof. 1. The maximum Nr2
k`;k`

of r2
k`;k`

over the R`T satisfies by clause 2 of

Definition 3 Nr2
k`;k`

� ˛ r2
k`C1;k`C1

.

Moreover, we have D1=k

`
� �k Nr2

k`;k`
D �k=�

2
1.L.R�` //

since Nr2
k`;k`

is computed by HKZ-reduction of R�
`

, and

�2
1.L.R`C1// D r2

k`C1;k`C1 � �kD1=k

`C1

since R`C1 is HKZ-reduced. Combining these inequalities, we get

D1=k

`
� �k Nr2

k`;k` � ˛�kr
2
k`C1;k`C1 � ˛�2

kD
1=k

`C1
: (4.6)

Since R1 is HKZ-reduced this yields

kb1k2 � �kD1=k
1 � �k.˛�

2
k /

`�1D1=k

`
for ` D 1; : : : ; h:

Multiplying these h inequalities and taking hth roots yields the claim.
2. Note that the inequality (4.6) also holds for the dual basis B�, i.e., .D�

`
/1=k �

˛�2
k
.D�

`C1
/1=k holds for D�

`
D .detR�

`
/2 D D�1

h�`C1
. Hence, the dual 1�. of part 1.

of Theorem 7 also holds:

1 � : Nr2
n;n � ��1

k .˛�2
k /

�hC1
2 .detL/2=n:

1. and 1:� yield kb1k2 � �2
k
.˛�2

k
/h�1 Nr2

n;n. By clause 2 of Definition 3, we get

kb1k2 � �2
k .˛�

2
k /

`�1 Nr2
k`;k` � .˛�2

k /
`r2

k`C1;k`C1 for ` D 0; : : : ; h� 1:
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Therefore, rk`C1;k`C1 � �1 yields the claim. In fact rk`C1;k`C1 � k	k`C1.b/k �
�1 holds if the shortest lattice vector b D Pn

jD1 rj bj ¤ 0 satisfies k` < � �
k`C k for � WD maxfj j rj ¤ 0g, because R`C1 is HKZ-reduced. �

Algorithm 3: Koy’s algorithm for primal–dual reduction
INPUT basis Œb1; : : : ;bn� D B D QR 2 Z

m	n; ı 2 ..1
2
C "/2; 1/; n D hk.

OUTPUT primal–dual reduced basis B for k; ı.

1. LLL-reduce B , HKZ-reduce B1 D Œb1; : : : ; bk� and compute R D GNF.B/, ` WD 1.
2. #reduce R`;`C1 by primal and dual HKZ-reduction of blocksize k:

HKZ-reduce R`C1 into R`C1T
0, B`C1 WD B`C1T

0.

HKZ-reduce R�

` D UkR
�t
` Uk into R�

` T`, set NT WD
�
UkT

�t
` O

O Ik

�
.

LLL-reduce R`;`C1
NT into R`;`C1T with ı.

3. IF an LLL-swap bridging R` and R`C1 occured THEN
ŒB`; B`C1� WD ŒB`; B`C1� T , ` WD max.`� 1; 1/ ELSE ` WD `C 1.

4. IF ` < h THEN GO TO 2 ELSE output B and terminate.

Correctness. Induction over the rounds of the algorithm shows that the basis
b1; : : : ;bk` is always a primal–dual basis for the current `.

The algorithm deviates from semi block 2k-reduction in the steps 2, 3. Step 2
maximizes rk`;k` within R` by HKZ-reduction of R�

`
and minimizes rk`C1;k`C1

within R`C1 by HKZ-reduction of R`C1, and then LLL-reducesR`;`C1. If no LLL-
swap bridging R` and R`C1 occured in step 2, then clause 2 of Definition 2 was
previously satisfied for `.

Lemma 3. Primal–dual reduction performs at most h � 1C 2n.h � 1/ log1=ı M0

passes of step 2.

Proof. Initially, we have D D Qh�1
`D1 d`k � M n.h�1/

0 . Steps 2, 3 either decrease D`

by a factor ı or else increment `. Thus the proof of Lemma 2 applies. �

The number of passes of step 2 are in the worst case h�1C2n.h�1/ log1=ı M0.
The actual number of passes may be smaller, but on average, it should be propor-
tional to h � 1C 2n.h � 1/ log1=ı M0.

The dual clause 2 of Definition 3 has been strengthened in [24] for arbitrary small
" > 0 to

2C: NrklC1;klC1 � .1C "/rklC1;klC1 for l D 1; : : : ; h � 1

denoting NrklC1;klC1 WD maxT r
0
klC1;klC1

of Œr 0i;j � WDGNF.Œri;j �kl�kC2�i;j�klC1T /

over all T 2 GLk.Z/.
This improves the inequalities of Theorem 7 to hold with ˛�2

k
replaced by

�
.1C "/�k

� 2k
k�1 [24]:

1. kb1k2 � �k

�
.1C "/�k

�n�k
k�1 .detL/2=n, 2. kb1k �

�
.1C "/�k

�n�k
k�1 �1.
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In adjusting Algorithm 3 to the new clause 2C, it is crucial that increasing
rklC1;klC1 by a factor 1 C " to satisfy clause 2C decreases Dl D detR2

l
by

the factor .1 C "/�2 and preserves DlDlC1 and all Di for i ¤ l; l C 1. The
adjusted Algorithm 3 performs at most h C 2nh log1C"M0 HKZ-reductions in
dimension k.

Algorithms 2 and 3 (for blocksize 2k) have by Lemma 2 and 3 the same time
bound, and both algorithms do HKZ-reductions in dimension 2k.

For double blocksize 2k Theorem 7 shows

1. kb1k2 � �2k.˛�
2
2k
/n=4k�1=2.detL/2=n, 2. kb1k2 � .˛�2

2k
/n=2k�1�2

1.

These bounds are better than the bounds of Theorem 6 unless ˇk is close to the
lower bound ˇk > k=12 of [23] so that ˇk=ı � p˛ �2k . Because of the unknown
values ˇk semi block 2k-reduction can still be competitive.

Theorems 6 and 7 under the GSA-heuristics. We associate the quotients qi WD
r2

iC1;iC1=r
2
i;i with the GNF R D Œri;j � 2 R

n	n. In practice, the qi are all very close
for typical reduced bases. For simplicity, we assume the geometric series assumption
(GSA) of [69]:

GSA q Ddef q1 D q2 D � � � D qn�1.

GSA is a worst-case property. Bases that do not satisfy GSA are easier to reduce,
see [69]. The worst case bases of Ajtai [3] also satisfy GSA.

We next show that the bounds of Theorem 6 improve under GSA to those of
Theorem 7 while the bounds of Theorem 7 are mainly preserved under GSA.

Under GSA, Theorem 1 holds with ˛ replaced by 1=q. Note that .detL/2=n=

r2
1;1 D q.

n
2/

1
n D q

n�1
2 holds under GSA and thus, r2

1;1 D q
1�n

2 .detL/2=n. Hence,
part 1. of Theorem 1 holds with ˛ replaced by 1=q. Part 2. also holds because of the
duality argument used in the proof of Theorem 7.

HKZ-bases R` satisfy, under GSA,

kb1k2 D �2
1.L.R`// � �k detL.R`/

2
k D �kkb1k2q.k

2/
1
k D �kkb1k2q k�1

2 :

This shows that 1=q � �
2

k�1

k
holds, under GSA. Replacing in Theorem 1 ˛ by

1=q � � 2
k�1

k
we get

Corollary 2. Primal–dual bases of blocksize k and n D hk satisfy, under GSA,

the bounds of Theorem 1 with ˛ replaced by �
2

k�1 , in particular kb1k2 � �
n�1
k�1

k

.detL/2=n, kb1k2 � �2 n�1
k�1

k
�2

1.

The bounds of Corollary 2 and those of Theorem 7 nearly coincide. Corollary 2
eliminates ˛ from Theorem 7 and replaces h D n

k
by the slightly larger value n�1

k�1
.

Interestingly , the bounds of Corollary 2 coincide for k D 2 with clauses 1, 2 of
Theorem 1 for LLL-bases with ı D 1; ˛ D 4

3
because �2

2 D 4
3

.
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Similarly, 1=q � �
2

2k�1

2k
holds, under GSA, for any HKZ-reduced GNF R D

R1;2 2 R
2k	2k . Hence,

Corollary 3. Semi block 2k-reduced bases with n D hk satisfy under GSA the

inequalities of Theorem 1 with ˛ replaced by �
2

2k�1

2k
, in particular kb1k2 �

�
n�1

2k�1

2k
.detL/2=n, kb1k2 � �2 n�1

2k�1

2k
�2

1.

Primal–dual bases of blocksize 2k and semi block 2k-reduced bases are by
Corollarys 2 and 3 almost equally strong under GSA. This suggests that Algo-
rithm 2 for semi block 2k-reduction can be strengthened by working towards
GSA (similar to Algorithm 4) so that GSA holds approximately for the output
basis.

Practical bounds for kb1k2��2
1 . We compare the bounds of Theorem 6 for 2k D

48 to those of Theorem 7 for double blocksize 48. Note that �24 D 4 [15]. Assuming
that the densest known lattice packings P48p; P48q in dimension 48 [16] Table 1.3,
is nearly maximal, we have �48 � 6:01. HKZ-reduction in dimension 48 is nearly
feasible. Let ı D 0:99.

Semi block 2k-reduction for k D 24. Using ˇ24 � 132 ln 2C1=24 Theorem 6
proves kb1k2=.detL/2=n � �24.ˇ24=ı/

n=48�1=2 < �24 1:165
n=2. Moreover

kb1k2=.detL/2=n � � 1
47

n�1
2

48

holds, under GSA. This replaces ˛ in Theorem 1 by �1=47
48 < 1:039.

Primal–dual bases of blocksize 48 satisfy, by Theorem 7,

kb1k2=.detL/2=n < �48.˛�
2
48/

n=48�1
2 � 1:075n=2=

p
˛:

This replaces ˛ in Theorem 1 by .˛�2
48/

1=48 � 1:084. Moreover,

kb1k2=.detL/2=n � � 1
47

n�1
2

48

holds under GSA, which replaces ˛ in Theorem 1 by �1=47
48 < 1:039.

While �48 is relatively large, Algorithms 2 and 3 perform better when �k is rel-
atively small. This suggests the choice of k in practice, clearly apart from multiples
of 24, since �k is relatively large for k D 0 mod 24.

Primal–Dual Random Sampling Reduction

We replace HKZ-reduction in primal–dual reduction by random sampling reduction
(RSR) of [69], a method that shortens the first basis vector. RSR extends the deep
insertion step of [66] to a highly parallel algorithm. We use local RSR to approx-
imate the GSA-property, which has been used in the analysis of [69]. Moreover,
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global RSR breaks the worst-case bases of [Aj03] against semi-block k-reduction
and those of [24] against primal–dual reduction. These worst-case bases B D QR

satisfy ri;j D 0 for j � i C k, which results in a very short last vector bn. Primal–
dual RSR (ALG. 4) runs for k D 80 in expected feasible time under reasonable
heuristics. It reduces ˛ in Theorem 1 to less than .80=11/1=80 � 1:025, which so
far is the smallest feasible reduction of ˛ proven under heuristics.

Notation.We associate with a basis B D QR D Œb1; : : : ;bn� 2 R
m	n, R D

Œri;j �1�i;j�n the submatrix R	;k WD Œri;j �	<i;j�	Ck � R corresponding to

B	;k WD Œb	C1; : : : ;b	Ck� � B . Let Ta;k D

2

666664

a1 1
::: 0

: : :

ak�1

: : : 1

1 0 � � � 0

3

777775
.

We replace in Algorithm 4. the HKZ-reductions of R`; R
�
`

occuring in Algo-
rithm 3 by RSR of suitable R	;k; R

�
	;k

.

RSR of R	;k. Let R	;k D Œri;j �	<i;j�	Ck � R D Œr1; : : : ; rn�. Enumerate

in parallel all vectors r WD Pk
jDk=2C1 aj r	Cj 2 L.R/ for .ak=2C1; : : : ; ak/ 2

Z
k=2; ak D 1 that satisfy k		Ck=2C1.r/k �  for some  having about .k=11/k=4

such vectors r. Extend each sum to a short vector
Pk

jD1 aj r	Cj using n2ko.k/

bit operations for minimization of kPk
jD1 aj r	Cj k. We can use the additional

size-reduction step 2.3 b of Section “The Lattice Reduction Algorithm in the Two-
Dimensional Case” and the Schnorr-Hörner heuristics [68]; full exhaustive search
minimization, requiring kk=4Co.k/ log2M0 bit operations, is too expensive. RSR
extends the Schnorr-Euchner deep insertion step [66] of depth k. This step coin-
cides with RSR for a1; : : : ; ak�1 set to zero. RSR tries the zero choice and about
.k=11/k=4 more instances .a1; : : : ; ak�1/ 2 Z

k�1.

Analysis of RSR on R	;k. Under the assumptions

RA r	Cj;	Cj 0 2R Œ�1
2
; 1

2
� is random for j 0 > j ,

GSA riC1;iC1=ri;i D q	 for all i , � < i < � C k,

[S03, Theorem 1, Remark 2] shows that RSR of R	;k and R�
	;k

succeeds in steps 3,

4 as long as q	 < .11=k/
1=k . Primal–dual RSR uses all indices � D 1; : : : ; n� k in

a uniform way; this helps to approximate the GSA-property.

Theorem 8. [69] RA, GSA. Primal–dual RSR transforms a basis B 2 R
m	n of

L D L.B/ such that

1. kb1k2 � .k=11/n�1
2k .detL/2=n, 2. kb1k2 � .k=11/n�1

k �2
1.

Theorem 8 replaces ˛ in Theorem 1 by .k=11/1=k with .80=11/1=80 � 1:025 for
k D 80.
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Algorithm 4. Primal–dual RSR
INPUT basis B D QR 2 Z

m�n, ı 2 Œ2; 1/,  D 1
2
C ", k

OUTPUT reduced basis B .

1. LLL-reduce B with ı and compute the GNF R of B, ` WD 0.
2. IF ` D 0 mod bn=kc THEN [ BKZ-reduce B into BT with ı and blocksize 20,

compute the new GNF R, ` WD `C 1. ] # this approximates the GSA-property.
3. Primal RSR-step. Randomly select 0 � � � n�k that nearly maximizes r�C1;�C1=j detR�;k j1=k .

Try to decrease r�C1;�C1 by the factor ı through RSR of R�;k � R, i.e., compute some Ta;k in
GLk.Z/ such that the GNF eR�;k D Œeri;j � of R�;kTa;k satisfieser�C1;�C1 � ı r�C1;�C1. Transform
B�;k WD B�;kTa;k . Recompute R�;k .

4. Dual RSR-step. Randomly select 0 � � � n� k that nearly minimizes r�Ck;�Ck=j detR�;k j1=k .
Try to increase r�Ck;�Ck by the factor 1=ı through RSR of the dual GNF R�

�;k D UkR
�t
�;kUk ,

i.e., compute by RSR of R�

�;k D Œr�

i;j � some Ta;k 2 GLk.Z/ such that the GNF eR�

�;k D Œer�

i;j � of

R�

�;kTa;k satisfies er�

�C1;�C1 � ır�C1;�C1. # Hence the GNF eR�;k D Œeri;j � ofR�;kUkT�t
a;k satisfies

er�Ck;�Ck 
 r�Ck;�Ck=ı. Transform B�;k WD B�;kUkT
�t
a;k and recompute R�;k .

5. Global RSR-step. Try to decrease r1;1 by the factor1=ı through RSR of R, i.e., compute
some Ta;n in GLn.Z/ such that the GNF eR D Œeri;j � of RTa;n satisfieser1;1 � ı r1;1.
Transform B WD BTa;n and recompute R.

6. IF either of steps 3,4,5 succeeds, or `¤ 0 mod bn=kc THEN GOTO 2

ELSE output B and terminate.

Primal–dual RSR time bound. RSR succeeds under RA, GSA in steps 3 and 4
using .k=11/k=4Co.k/ arithm. steps, provided that q	 < .11=k/

1=k [69] Theorem 1,
ff]. For RA, see [57] Figs. 4 and 5 (Randomness of ri;iC1 is irrelevant; ri;iC1 is in
practice, nearly random in Œ�1

2
; 1

2
�, under the condition that r2

i;i � r2
i;iC1Cr2

iC1;iC1;
and this improves by deep insertion.) GSA is a worst-case assumption; in practice,
GSA is approximately satisfied. Ludwig [51] analyses an approximate version of
GSA.

On average, one round of Algorithm 4 decreases the integer D.1/ WD Qn�1
iD1 di

by the factor ı2. This bounds the average number of rounds by about 1
2
n2 log1=ı M0

since initially D.1/ � M n.n�1/
0 . In worst case, however, D.1/ can even increase per

round, and Algorithm 4 must not terminate.
Comparing Algorithms 3 and 4 for k D 80. We assume that �80 � 4 �

240:14=40 � 8:02, i.e., that the Mordell-Weil lattice MWn in dimension n D 80

has near maximal density, [16] Table 1.3; similarly, we assume �400 � 24.
Algorithm 3 would under GSA reduce ˛ in Theorem 1 for k D 80 to �1=79

80 �
1:027, but Algorithm 3 does not work towards GSA. Moreover, primal–dual reduc-
tion with full HKZ-reduction is infeasible in dimension k D 80 requiring 8040Co.1/

steps, whereas RSR is nearly feasible.
Algorithm 4 for primal–dual RSR reduces ˛ in Theorem 1 to .80=11/1=80 �

1:025 (by Theorem 8), and thus achieves kb1k=.detL/1=n � 1:025
n�1

4 .

For lattices of high density, �1 � �n det.L/2=n, and n D 400, k D 80, this yields

kb1k=�1 � 1:02599:75=
p
�400 � 2:4:
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If this bound further decreases on the average case, this might endanger the
NTRU schemes for parameters N � 200. The secret key is a sufficiently short
lattice vector of a lattice of dimension 2N . Ludwig [51] reports on attacks to NTRU
via RSR.

HKZ-reduction via the sieve algorithm of [4] reduces all asymptotic time bounds
at the expense of superpolynomial space. Regev [62] and Nguyen and Vidick
[60] improve the AKS-algorithm and its analysis. The experimental comparison
of AKS in [60] with the Schnorr, Euchner version [66] of [64] shows that the SE-
algorithm with BKZ for block size 20 outperforms the improved AKS for dimension
n � 50.

Basic Segment LLL

Segment LLL uses an idea of Schönhage [71] to do most of the LLL-reduction
locally in segments of low dimension k using k local coordinates. It guarantees that
the determinants of the segments do not decrease too fast, see Definition 5. Here,
we present the basic algorithm SLLL0. Theorem 12 bounds the number of local
LLL-reductions within SLLL0. Lemma 4 and Corollary 5 bound the norm of and
the fpa-errors induced by local LLL-transforms. The algorithm SLLL0 is faster by
a factor n in the number of arithmetic steps compared to LLLH , but uses longer
integers and fpa numbers, a drawback that will be repaired by SLLL.

Segments and local coordinates. Let the basis B D Œb1; : : : ;bn� 2 Z
m	n

have dimension n D k h and GNF R 2 R
n	n. We partition B into m seg-

ments Bl;k D Œblk�kC1; : : : ;blk� for l D 1; : : : ; h. Local LLL-reduction of two
consecutive segments Bl;k; BlC1;k is done in local coordinates of the principal
submatrix

Rl;k WD ŒrlkCi;lkCj ��k<i;j�k 2 R
2k	2k

of R. Let H D Œh1; : : : ;hn� D Œhi;j � 2 R
m	n be the lower triangular matrix of

Householder vectors and Hl;k D ŒhlkCi;lkCj ��k<i;j�k � H , the submatrix for
Rl;k . We control the calls, and minimize the number of local LLL-reductions of the
Rl;k by means of the local squared determinant of Bl;k

Dl;k Ddef kqlk�kC1k2 � � � kqlkk2:

We have dlk D kq1k2 � � � kqlkk2 D D1;k � � �Dl;k . Moreover, we will use

D.k/ Ddef

h�1Y

lD1

dlk D
h�1Y

lD1

Dh�l
l;k ;

Ml;k Ddef max
lk�k<i�j�lkCk

kqik=kqj k:
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For the input basis B D QR, we denoteM1 WD max1�i�j�n kqik=kqj k.Ml;k is
the M1-value of Rl;k when calling locLLL.Rl;k/; obviously Ml;k � M1. Recall
that M D max.d1; : : : ; dn; 2

n/.

Definition 4. A basis b1; : : : ;bn 2 Z
m, n D kh, is an SLLL0-basis (or SLLL0-

reduced) for given k, ı � 2, ˛ D 1=.ı � 3
4
/ if it is size-reduced and

1. ı kqik2 � �2
iC1;ikqik2 C kqiC1k2 for i 2 Œ1; n � 1� n kZ,

2. Dl;k � .˛=ı/k2
DlC1;k for l D 1; : : : ; h � 1.

Size-reducedness under fpa is defined by clause 1 of Theorem 5. Segment
Bl;k of an SLLL0-basis is LLL-reduced in the sense that the k � k-submatrix
ŒrlkCi;lkCj ��k<i;j�0 � R is LLL-reduced. Clause 1 does not bridge distinct seg-
ments since the i 2 kZ are excepted. Clause 2 relaxes the inequality Dl;k �
˛k2

DlC1;k of LLL-bases, and this makes it possible to bound the number of local
LLL-reductions, see Theorem 12.

We could have used two independent ı-values for the two clauses of Definition 4.
Theorem 9 shows that the first vector of an SLLL0-basis of lattice L is almost as
short relative to .detL/1=n as for LLL-bases.

Theorem 9. Theorem 3 of [70]. kb1k � .˛=ı/
n�1

4 .detL/ 1
n holds for all SLLL0-

bases b1; : : : ;bn .

The dual of Theorem 9. Clause 2 of Definition 4 is preserved under duality. If it
holds for a basis b1; : : : ;bn, it also holds for the dual basis b�1; : : : ;b�n of the lattice
L�. We have kb�1k D kqnk�1 and det.L�/ D .detL/�1. Hence, Theorem 9 implies

that every SLLL0-basis satisfies kqnk � .ı=˛/n�1
4 .detL/ 1

n .
Local LLL-reduction. The procedure locLLL.Rl;k/of [S06] locally LLL-

reduces Rl;k � R given Hl;k � H . Initially, it produces a copy Œb01; : : : ;b02k
�

of Rl;k . It LLL-reduces the local basis Œb01; : : : ;b02k
� consisting of fpa-vectors. It

updates and stores the local transform Tl;k 2 Z
2k	2k so that Œb01; : : : ;b02k

� D
Rl;kTl;k always holds for the current local basis Œb01; : : : ;b02k

� and the initial Rl;k ,
e.g., it does col.l 0; Tl;k/ WD col.l 0; Tl;k/�� col.i; Tl;k/ along with b0

l 0
WD b0

l 0
��b0i

within TriColl . It freshly computes b0
l 0

from the updated Tl;k . Using a correct Tl;k

this correction of b0
l 0

limits fpa-errors of the local basis, see Corollary 5. Local LLL-
reduction of Rl;k is done in local coordinates of dimension 2k. A local LLL-swap
merely requires O.k2/ arithmetic steps and update of Rl;k , local triangulation and
size-reduction via TriColl included, compared to O.nm/ arithmetic steps for an
LLL-swap in global coordinates.

SLLL0-algorithm. SLLL0 transforms a given basis into an SLLL0-basis. It iter-
ates locLLL.Rl;k/ for submatrices Rl;k � R, followed by a global update that
transports Tl;k to B and triangulates Bl;k ; Bl;kC1 via TriSegl;k. Transporting
Tl;k to B;R; T1;n=2 and so on means multiplying the submatrix consisting of 2k
columns of B;R; T1;n=2 corresponding to Rl;k from the right by Tl;k .
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SLLL0

INPUT b1; : : : ; bn 2 Z
d (a basis withM0;M1;M ), k; m; ı

OUTPUT b1; : : : ;bn SLLL0-basis for k, ı

WHILE 9 l; 1 � l < m such that either Dl;k > .˛=ı/
k2
DlC1;k

or TriSegl;k has not yet been executed
DO for the minimal such l : TriSegl;k, locLLL.Rl;k/

# global update: ŒBl;k ; BlC1;k� WD ŒBl;k; BlC1;k � Tl;k , TriSegl;k.

The procedure TriSegl;k triangulates and size-reduces two adjacent segments
Bl;k; BlC1;k . Given that Bl;k; BlC1;k and h1; : : : ;hlk�k , it computes Œrlk�kC1; : : : ;

rlkCk� � R and Œhlk�kC1; : : : ;hlkCk� � H .

TriSegl;k

1. FOR l 0 D lk � k C 1; : : : ; lkC k DO TriColl0 (including updates of Tl;k)

2. Dj;k WDQk�1
iD0 r

2
kj�i;kj�i for j D l; l C 1.

Correctness in ideal arithmetic. All inequalities Dl;k � .˛=ı/k
2
DlC1;k hold

upon termination of SLLL0. All segments Bl;k are locally LLL-reduced and glob-
ally size-reduced, and thus, the terminal basis is SLLL0-reduced.

The number of rounds of SLLL0. Let #k denote the number of loclll.Rl;k/-

executions as a result of Dl;k > .˛=ı/
k2

DlC1;k for all l . The first loclll.Rl;k/-
executions for each l are possibly not counted in #k; this yields at most n=k � 1
additional rounds.

#k can be bounded by the Lovász volume argument.

Theorem 10. Theorem 4 of [70]. #k � 2 n k�3 log1=ı M .

All intermediate Ml;k-values within SLLL0 are bounded by the M1-value of
the input basis of SLLL0. Consider the local transform Tl;k 2 Z

2k	2k within
locLLL.Rl;k/. Let kTl;kk1 denote the maximal k k1-norm of the columns of Tl;k .

Lemma 4. [70] Within locLLL.Rl;k/ we have kTl;kk1 � 6k.3
2
/2kMl;k.

Next consider locLLL.Rl;k/ under fpa, based on the iterative fpa-version of
TriColl . Let kŒri;j �kF D .Pi;j r

2
i;j /

1=2 denote the Frobenius norm. [S06] shows

Corollary 4. [fpa-Heur.]

1. Within locLLL.Rl;k/ the current R0
l;k
WD Rl;kTl;k and its approximation NR0

l;k

satisfy k NR0
l;k
� R0

l;k
kF � k NRl;k � Rl;kkF 22kMl;k C 7nkRl;kkF 2�t .

2. Let TriSegl;k and locLLL use fpa with precision 2t � 210d �nM 2
1 . If NRl;k

is computed by TriSegl;k then locLLL. NRl;k/ computes a correct Tl;k so that
Rl;kTl;k is LLL-reduced with ı

�
.
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Theorem 11. Theorem 5 of [70] using fpa-Heur. Let k D �.
p
n/. Given a basis

with M0;M1;M , SLLL0 computes under fpa with precision 2t � 210m�nM 2
1

an SLLL0-basis for ı
�

. It runs in O.nm log1=ı M/ arithmetic steps using 2n C
log2.M0M

2
1 /-bit integers.

SLLL0 saves a factor n in the number of arithmetic steps compared to LLLH

but uses longer integers and fpa numbers. SLLL0 runs for M0 D 2O.n/, and thus
for M D 2O.n2/, in O.n3m/ arithmetic steps using O.n2/ bit integers. Algorithm
SLLL of Section “First steps in the Probabilistic Analysis of the LLL Algorithm”
reduces the bit lengthO.n2/ to O.n/.

Gradual SLLL Using Short fpa-Numbers

SLLL reduces the required precision and the bit length of integers and fpa numbers
compared to SLLL0. This results from limiting the norm of local transforms to
O.2n/. Theorem 14 shows that SLLL-bases are as strong as LLL-bases. For input
bases of length 2O.n/ and d D O.n/, SLLL performs O.n5Co.1// bit operations
compared toO.n6Co.1// bit operations for LLLH , SLLL0, and the LLL-algorithms
of [65, 73]. The advantage of SLLL is the use of small integers, which is crucial in
practice.

The use of small integers and short intermediate bases within SLLL rests on a
gradual LLL-type reduction so that all local LLL-transforms Tl;2� of Rl;2� have
norm O.2n/. For this, we work with segments of all sizes 2
 and also to perform
LLL-reduction on Rl;2� with a measured strength, i.e., SLLL-reduction according
to Definition 6. If the submatricesR2l;2��1 ; R2lC1;2��1 � Rl;2� are already SLLL-
reduced, then locLLL.Rl;k/ performs a transform Tl;2� bounded as kTl;2�kF D
O.2n/. This is the core of fpa-correctness of SLLL.

Comparison with Schönhage’s semi-reduction [71]. Semi-reduction also uses
segments but proceeds without adjusting LLL-reduction according to Definition 5
and does not satisfy Theorems 11 and 12. While SLLL achieves length defect
kb1k=�1 � .4

3
C "/n=2, semi-reduction achieves merely kb1k=�1 � 2n. SLLL

is practical even for small n, where all O-constants and n0-values are small.
We let n be a power of 2. We set s WD d1

2
log2 ne so that

p
n � 2s < 2

p
n.

Definition 5. A basis b1; : : : ;bn 2 R
m is an SLLL-basis (or SLLL-reduced) for

ı � 1
2

if it satisfies for � D 0; : : : ; s D d1
2

log2 ne and all l , 1 � l < n=2
 :

Dl;2� � ˛4�

ı�nDlC1;2� :

If the inequalities of Definition 6 hold for a basis, they also hold for the dual
basis. Thus, the dual of an SLLL-basis is again an SLLL-basis. To preserve SLLL-
reducedness by duality, we do not require SLLL-bases to be size-reduced.
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The inequalities of Definition 6 for � D 0 mean that kqlk2 � ˛ı�nkqlC1k2
holds for all l . The inequalities of Definition 6 are merely required for 2
 �
2
p
n. Therefore, SLLL locally LLL-reduces Rl;2� via locLLL.Rl;2� / merely for

segment sizes 2
 < 2
p
n, where size-reduction of a vector requiresO.22
 / D O.n/

arithmetic steps.
The inequalities of Definition 6 andDl;k � .˛=ı/k2

DlC1;k of Definition 5 coin-
cide for k D 2
 when setting ı WD ı
 in Definition 6, and ı
 WD ın4��

for the
ı of Definition 6. Note that ı
 can be arbitrarily small, e.g. ı
 � 1

4
, ı
 decreases

with � . In particular, for 2
 D k � pn we have ˛4�
ı�n � .˛=ı/k2

and thus, the
inequalities of Definition 6 are stronger than the ones of Definition 5. Theorem 12
shows that the vectors of SLLL-bases approximate the successive minima in nearly
the same way as for LLL-bases.

Theorem 12. Theorem 6 of [70]. Every size-reduced SLLL-basis satisfies

1. �2
j � ˛j�1ı�7nr2

j;j for j D 1; : : : ; n,

2. kblk2 � ˛j�1ı�7nr2
j;j for l � j ,

3. kbj k2 � ˛n�1ı�7n�2
j for j D 1; : : : ; n.

LLLSegl;1

# Given Rl;1;b1; : : : ;blC1;h1; : : : ;hl ; r1; : : : ; rl , LLLSegl;1 LLL-reduces
Rl;1.

1. IF rl;l=rlC1;lC1 > 2
nC1 THEN [ R0

l;1
WD Rl;1,

row.2;R0
l;1
/ := row.2;R0

l;1
/ 2�n�1 rl;l=rlC1;lC1 locLLL.R0

l;1
/,

# global update: Œbl ;blC1� WD Œbl ;blC1� Tl;1, TriColl , TriCollC1 ]

2. locLLL.Rl;1/.

SLLL uses the procedure LLLSegl;1 that breaks locLLL.Rl;1/ up into parts,
each with a bounded transform kTl;1k1 � 9 � 2nC1. This keeps intermediate bases
of length O.4nM0/ and limits fpa-errors within LLLSegl;1. LLLSegl;1 LLL-

reduces the basis Rl;1 D
"
rl;l rl;lC1

0 rlC1;lC1

#
� R after dilating row.2;Rl;1/ so that

rl;l=rlC1;lC1 � 2nC1. After the LLL-reduction of the dilated Rl;1, we undo the
dilation by transporting the local transform Tl;1 2 Z

2	2 to B . LLLSegl;1 includes
global updates between local rounds.

LLLSegl;1 performsO.nm/ arithmetic steps [70] Lemma 3. An effectual step 1
decreases D.1/ by a factor 2�n=2 via a transform Tl;1 satisfying kTl;1k1 � 9 � 2nC1.
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SLLL
INPUT b1; : : : ; bn 2 Z

m (a basis withM0;M1;M ), ı; ˛; "

OUTPUT b1; : : : ; bn size-reduced SLLL-basis for ı, "

1. TriCol1 , TriCol2 , l 0 WD 2, s WD d 1
2

log2 ne
# TriColl0 has always been executed for the current l 0

2. WHILE 9 � � s; l; 2� .l C 1/ � l 0 such that Dl;2� > ˛
4� ı�n DlC1;2�

# Note that r1;1; : : : ; rl0 ;l0 and thus Dl;2� , DlC1;2� are given

DO for the minimal such � and the minimal l :

IF � D 0 THEN LLLSegl;1 ELSE locLLL.Rl;2� /

#global update: transport Tl;2� to B , TriSegl;2�

3. IF l 0 < n THEN [ l 0 WD l 0 C 1, TriColl0 , GOTO 2. ]

Correctness in ideal arithmetic. All inequalities Dl;2� � ˛4�
ı�nDlC1;2� hold

upon termination of SLLL. As TriSegl;2� results in size-reduced segments Bl;2� ,
BlC1;2� the terminal basis is size-reduced.

Theorem 13. Theorem 7 of [70] using fpa-Heur. Given a basis with M0;M ,
SLLL finds an SLLL-basis for ı

�
under fpa of precision t D 3n C O.logm/.

It runs in O.nm log2 n log1=ı M/ arithmetic steps using integers of bit length
2 nC log2M0.

ForM0 D 2O.n/ andm D O.n/ SLLL runs inO.n4 logn/ arithmetic steps, and
in O.n6C"//O.n5C"/ bit operations under school-/FFT-multiplication.

SLLL-bases versus LLL-bases. LLL-bases with ı satisfy the inequalities of The-
orem 14 with ı replaced by 1. Thus, kbj k approximates �j to within a factor

˛
n�1

2 for LLL-bases, respectively, within a factor .˛=ı7/
n�1

2 for SLLL-bases. But
SLLL-bases for ı0 D ı1=8 are ”better” than LLL-bases for ı, in the sense that
they guarantee a smaller length defect, because ˛0=ı07 D 1

ı08�ı07=4
D 1

ı�ı07=4
<

1
ı�1=4

D ˛:
Dependence of time bounds on ı. The time bounds contain a factor log1=ı 2,

log1=ı 2 D log2.e/= ln.1=ı/ � log2.e/
ı

1 � ı ;

since ln.1=ı/ � 1=ı� 1. We see that replacing ı by
p
ı essentially halves 1� ı and

doubles the SLLL-time bound. Hence, replacing ı by ı1=8 increases the SLLL-time
bound at most by a factor 3. In practice, the LLL-time may increase slower than by
the factor ı

1�ı
as ı approaches 1, see [41] Fig. 3.

Reducing a generator system. There is an algorithm that, given a generator matrix
B 2 Z

m	n of arbitrary rank� n, transformsB with the performance of SLLL, into
an SLLL-basis for ı

�
of the lattice generated by the columns of B .

SLLL-Reduction via iterated subsegments. SLLLC of [70] is a variant of
SLLL that extends LLL-operations stepwise to increasingly larger submatrices
Rl;2� � R by transporting local transforms from level � � 1 to level � recursively
for � D 1; : : : ; s D log2 n. Local LLL-reduction and the transport of local LLL-
transforms is done by a local procedure locSLLL.Rl;2� / that recursively executes
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locSLLL.Rl 0;2��1/ for l 0 D 2l � 1; 2l; 2l C 1. SLLLC does not iterate the global
procedure TriSeg but a faster local one.

Definition 6. A basis b1; : : : ;bn 2 Z
m with n D 2s is an SLLLC-basis (or SLLLC-

reduced) for ı if it satisfies for � D 0; : : : ; s D log2 n

Dl;2� � .˛=ı/4�

DlC1;2� for odd l 2 Œ1; n=2
 �: (4.7)

Unlike in Definitions 5 and 6, the inequalities (4.7) are not required for even
l ; this opens new efficiencies for SLLLC-reduction. The inequalities (7) hold for
each � and odd l locally in double segments ŒBl;2� ; BlC1;2� �; they do not bridge
these pairwise disjoint double segments. For � D 0, the inequalities (7) mean that
kqlk2 � ˛=ı kqlC1k2 holds for odd l .

The inequalities (7) are preserved under duality. If b1; : : : ;bn is an SLLLC-basis,
then so is the dual basis b�1; : : : ;b�n. Theorem 16 extends Theorem 11 and shows

that the first vector of an SLLLC-basis is almost as short relative to .detL/ 2
n as for

LLL-bases.

Theorem 14. Theorem 8 of [70]. Every SLLLC-basis b1; : : : ;bn, where n is a
power of 2 satisfies

1. kb1k � .˛=ı/n�1
4 .detL/ 1

n 2. kqnk � .ı=˛/n�1
4 .detL/ 1

n .

Theorem 15. Theorem 9 of [70]. In ideal arithmetic, algorithm SLLLC of [S06]
computes a size-reduced SLLLC-basis for ı and runs inO.n2mCn log2 n log1=ı M/

arithmetic steps.

SLLLC requires t D O.log.M0M1// D O.n logM0/ precision bits to cover the
fpa-errors that get accumulated by the initial TriSeg and by iterating locTri.
For M0 D 2O.n/ and m D O.n/, SLLLC saves a factor n in the number of arith-
metic steps compared to SLLL but requires n-times longer fpa-numbers.

Acknowledgements I would thank P. Nguyen and D. Stehlé for their useful comments.
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56. P.Q. Nguyen and D. Stehlé, Floating-Point LLL Revisited. In Proc. Eurocrypt’05, LNCS 3494,

Springer, Berlin, pp. 215–233, 2005.
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63. C. Rössner and C.P. Schnorr, An Optimal, Stable Continued Fraction Algorithm for Arbitrary
Dimension. In Proc. 5-th IPCO 1996, LNCS 1084, Springer, Berlin, pp. 31–43, 1996.

64. C.P. Schnorr, A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms. Theoret.
Comput. Sci., 53, pp. 201–224, 1987.

65. C.P. Schnorr, A More Efficient Algorithm for Lattice Reduction. J. Algorithm 9, 47–62, 1988.
66. C.P. Schnorr and M. Euchner, Lattice Basis Reduction and Solving Subset Sum Problems.

In Proc. Fundamentals of Comput. Theory, LNCS 591, Springer, Berlin, pp. 68–85, 1991.
Complete paper in Math. Program. Stud., 66A, 2, pp. 181–199, 1994.

67. C.P. Schnorr, Block Reduced Lattice Bases and Successive Minima. Combin. Probab. and
Comput., 3, pp. 507–522, 1994.

68. C.P. Schnorr and H.H. Hörner, Attacking the Chor-Rivest cryptosystem by improved lattice
reduction. In Proc. Eurocrypt 1995, LNCS 921, Springer, Berlin, pp. 1–12, 1995.

69. C.P. Schnorr, Lattice Reduction by Random Sampling and Birthday Methods. In Proc. STACS
2003, H. Alt and M. Habib (Eds.), LNCS 2607, Springer, Berlin, pp. 145–156, 2003.

70. C.P. Schnorr, Fast LLL-type lattice reduction. Information and Computation, 204, pp. 1–25,
2006. //www.mi.informatik.uni-frankfurt.de

71. A. Schönhage, Factorization of Univariate Integer Polynomials by Diophantine Approximation
and Improved Lattice Basis Reduction Algorithm. In Proc. ICALP 1984, LNCS 172, Springer,
Berlin, pp. 436–447, 1984.

72. D.Simon, Solving Quadratic Equations Using Reduced Unimodular Quadratic Forms. Math.
Comp. 74 (251), pp. 1531–1543, 2005.

73. A. Storjohann, Faster Algorithms for Integer Lattice Basis Reduction. TR 249, Swiss Federal
Institute of Technology, ETH-Zurich, July 1996. //www.inf.ethz.ch/research/publications/html.
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Chapter 5
Floating-Point LLL: Theoretical
and Practical Aspects

Damien Stehlé

Abstract The text-book LLL algorithm can be sped up considerably by replacing
the underlying rational arithmetic used for the Gram–Schmidt orthogonalisation by
floating-point approximations. We review how this modification has been and is
currently implemented, both in theory and in practice. Using floating-point approx-
imations seems to be natural for LLL even from the theoretical point of view: it
is the key to reach a bit-complexity which is quadratic with respect to the bit-
length of the input vectors entries, without fast integer multiplication. The latter
bit-complexity strengthens the connection between LLL and Euclid’s gcd algorithm.
On the practical side, the LLL implementer may weaken the provable variants in
order to further improve their efficiency: we emphasise on these techniques. We
also consider the practical behaviour of the floating-point LLL algorithms, in par-
ticular their output distribution, their running-time and their numerical behaviour.
After 25 years of implementation, many questions motivated by the practical side
of LLL remain open.

Introduction

The LLL lattice reduction algorithm was published in 1982 [35], and was imme-
diately heartily welcome in the algorithmic community because of the numerous
barriers it broke. Thanks to promising applications, the algorithm was promptly
implemented. For example, as soon as the Summer 1982, Erich Kaltofen imple-
mented LLL in the Macsyma computer algebra software to factor polynomials.
This implementation followed very closely the original description of the algo-
rithm. Andrew Odlyzko tried to use it to attack knapsack-based cryptosystems, but
the costly rational arithmetic and limited power of computers available at that time
limited him to working with lattices of small dimensions. This led him to replace
the rationals by floating-point approximations, which he was one of the very first
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persons to do, at the end of 1982. This enabled him to reduce lattices of dimensions
higher than 20.

The reachable dimension was then significantly increased by the use of a Cray-1,
which helped solving low-density knapsacks [34] and disproving the famous
Mertens conjecture [46]. The use of the floating-point arithmetic in those imple-
mentations was heuristic, as no precautions were taken (and no theoretical meth-
ods were available) to assure correctness of the computation when dealing with
approximations to the numbers used within the LLL algorithm.

In the 1990’s, it progressively became important to reduce lattice bases of higher
dimensions. Lattice reduction gained tremendous popularity in the field of public-
key cryptography, thanks to the birth of lattice-based cryptosystems [5, 21, 27],
and to the methods of Coppersmith to find small roots of polynomials [14–16], a
very powerful tool in public-key cryptanalysis (see the survey [38] contained in
this book). Lattice-based cryptography involves lattice bases of huge dimensions
(502 for the first NTRU challenge and several hundreds in the case of the GGH chal-
lenges), and in Coppersmith’s method lattices of dimensions between 40 and 100
are quite frequent [10,39]. Nowadays, very large dimensional lattices are also being
reduced in computational group theory or for factoring univariate polynomials.

All competitive implementations of the LLL algorithm rely on floating-point
arithmetic. Sometimes, however, one wants to be sure of the quality of the output,
to obtain mathematical results, e.g., to prove there is no small linear integer relation
between given numbers. More often, one wants to be sure that the started execution
will terminate. This motivates the study of the reliability of floating-point operations
within LLL, which is the line of research we are going to survey below. In 1988,
Schnorr described the first provable floating-point variant of the LLL algorithm [50].
This was followed by a series of heuristic and provable variants [33, 42, 51, 53].
Apart from these references, most of the practical issues we are to describe are
derived from the codes of today’s fastest floating-point LLL routines: LiDIa’s [1],
Magma’s [11], NTL’s [59], as well as in fplll-2.0 [12].

The practical behaviour of the LLL algorithm is often considered as mysterious.
Though many natural questions concerning the average behaviour of LLL remain
open in growing dimensions (see the survey [62]), a few important properties can
be obtained by experimentation. It appears then that there is a general shape for
bases output by LLL, that the running-time behaves predictively for some families
of inputs, and that there exists a generic numerical behaviour. We explain these phe-
nomena and describe how some of the observed properties may be used to improve
the code: for example, guessing accurately the causes of an undesirable behaviour
that occurs during the execution of a heuristic variant helps selecting another variant
which is more likely to work.

Road-Map of the Survey

In Section “Background Definitions and Results”, we give some necessary back-
ground on LLL and floating-point arithmetic. We then describe the provable
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floating-point algorithms in Section “The Provable Floating-Point LLL Algorithms”,
as well as the heuristic practice-oriented ones in Section “Heuristic Variants and
Implementations of the Floating-Point LLL”. In Section “Practical Observations on
LLL”, we report observations on the practical behaviour of LLL, and finally, in Sec-
tion “Open Problems”, we draw a list of open problems and ongoing research topics
related to floating-point arithmetic within the LLL algorithm.

Model of Computation

In the paper, we consider the usual bit-complexity model. For the integer and arbi-
trary precision floating-point arithmetics, unless stated otherwise, we restrict our-
selves to naive algorithms, i.e., we do not use any fast multiplication algorithm [20].
This choice is motivated by two main reasons. First, the integer arithmetic opera-
tions dominating the overall cost of the described floating-point LLL algorithms are
multiplications of large integers by small integers (most of the time, linear in the lat-
tice dimension): using fast multiplication algorithms here is meaningless in practice,
since the lattice dimensions remain far below the efficiency threshold between naive
and fast integer multiplications. Second, we probably do not know, yet, how to fully
exploit fast multiplication algorithms in LLL-type algorithms: having a quadratic
cost with naive integer arithmetic suggests that a quasi-linear cost with fast integer
arithmetic may be reachable (see Section “Open Problems” for more details).

Other LLL-Reduction Algorithms

Some LLL-type algorithms have lower complexity upper bounds than the ones
described below, with respect to the lattice dimension [32, 33, 51, 55, 60]. However,
their complexity upper bounds are worse than the ones below with respect to the
bit-sizes of the input matrix entries. Improving the linear algebra cost and the arith-
metic cost can be thought of as independent strategies to speed up lattice reduction
algorithms. Ideally, one would like to be able to combine these improvements into
one single algorithm. Improving the linear algebra cost of LLL is not the scope of
the present survey, and for this topic, we refer to [48].

Notation

During the survey, vectors will be denoted in bold. If b is an n-dimensional vector,

we denote its i -th coordinate by bŒi �, for i � n. Its length
qPn

iD1 bŒi �2 is denoted

by kbk. If b1 and b2 are two n-dimensional vectors, their scalar product
Pn

iD1 b1Œi ��
b2Œi � is denoted by hb1;b2i. If x is a real number, we define bxe as the closest
integer to x (the even one if x is equally distant from two consecutive integers).
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We use bars to denote approximations: for example N�i;j is an approximation to �i;j .
By default, the function log will be the base-2 logarithm.

Background Definitions and Results

An introduction to the geometry of numbers can be found in [37]. The algorithmic
aspects of lattices are described in the present book, in particular, in the survey [48],
and therefore, we only give the definitions and results that are specific to the use of
floating-point arithmetic within LLL. In particular, we briefly describe floating-point
arithmetic. We refer to the first chapters of [26] and [40] for more details.

Floating-Point Arithmetic

Floating-point arithmetic is the most frequent way to simulate real numbers in a
computer. Contrary to a common belief, floating-point numbers and arithmetic oper-
ations on floating-point numbers are rigorously specified, and mathematical proofs,
most often in the shape of error analysis, can be built upon these specifications.

The most common floating-point numbers are the binary double precision
floating-point numbers (doubles for short). They are formally defined in the IEEE-
754 standard [2]. The following definition is incomplete with respect to the IEEE-
754 standard, but will suffice for our needs.

Definition 1. A double consists of 53 bits of mantissa m which are interpreted as a
number in f1; 1C 2�52; 1C 2 � 2�52; : : : ; 2 � 2�52g; a bit of sign s; and 11 bits of
exponent e which are interpreted as an integer in Œ�1022; 1023�. The real number
represented that way is .�1/s �m � 2e.

If x is a real number, we define ˘.x/ as the closest double to x, choosing the one
with an even mantissa in case there are two possibilities. Other rounding modes are
defined in the standard, but here we will only use the rounding to nearest. We will
implicitly extend the notation ˘.�/ to extensions of the double precision. The IEEE-
754 standard also dictates how arithmetic operations must be performed on doubles.
If op 2 fC;�;�;�g, the result of .a op b/ where a and b are doubles is the double
corresponding to the rounding of the real number .a op b/, i.e., ˘.a op b/. Similarly,
the result of

p
a is ˘.pa/.

Doubles are very convenient because they are widely available, they are nor-
malised, they are extremely efficient since most often implemented at the processor
level, and they suffice in many applications. They nevertheless have two major
limitations: the exponent is limited (only 11 bits) and the precision is limited
(only 53 bits).

A classical way to work around the exponent limitation is to batch an integer
(most often a 32-bit integer suffices) to each double, in order to extend the exponent.
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For example, the pair .x; e/, where x is a double and e is an integer, could encode
the number x � 2e. One must be careful that a given number may have several rep-
resentations, because of the presence of two exponents (the one of the double and
the additional one), and it may thus prove useful to restrict the range of the double
to Œ1; 2/ or to any other binade. An implementation of such a double plus exponent
arithmetic is the dpe1 library written by Patrick Pélissier and Paul Zimmermann,
which satisfies specifications similar to the IEEE-754 standard. We will use the term
dpe to denote this extension of the standard doubles.

If for some application a larger precision is needed, one may use arbitrary pre-
cision real numbers. In this case, a number comes along with its precision, which
may vary. It is usually implemented from an arbitrary precision integer package. An
example is MPFR [47], which is based on GNU MP [23]. It is a smooth extension
of the IEEE-754 standardised doubles. Another such implementation is the RR-class
of Shoup’s Number Theory Library [59], which can be based, at compilation time,
either on GNU MP or on NTL’s arbitrary precision integers. Arbitrary precision
floating-point numbers are semantically very convenient, but one should try to limit
their use in practice, since they are significantly slower than the processor-based
doubles: even if the precision is chosen to be 53 bits, the speed ratio for the basic
arithmetic operations can be larger than 15.

Lattices

A lattice L is a discrete subgroup of some R
n. Such an object can always be rep-

resented as the set of integer linear combinations of some vectors b1; : : : ;bd 2R
n

with d � n. If these vectors are linearly independent, we say that they form a
basis of the lattice L. A given lattice may have an infinity of bases, related to
one another by unimodular transforms, i.e., by multiplying on the right the col-
umn expressions of the basis vectors by a square integral matrix of determinant˙1.
The cardinalities d of the bases of a given lattice match and are called the lattice
dimension, whereas n is called the embedding dimension. Both are lattice invari-
ants: they depend on the lattice but not on the chosen basis of the lattice. There are
two other important lattice invariants: the volume vol.L/WDpdet.B t � B/ where B
is the matrix whose columns are any basis of L, and the minimum �.L/ which is
the length of a shortest nonzero lattice vector.

Gram–Schmidt Orthogonalisation

Let b1; : : : ;bd be linearly independent vectors. Their Gram–Schmidt orthogonali-
sation (GSO for short) b�1; : : : ;b�d is the orthogonal family defined recursively as
follows: the vector b�i is the component of the vector bi which is orthogonal to

1 http://www.loria.fr/�zimmerma/free/dpe-1.4.tar.gz

http://www.loria.fr/~zimmerma/free/dpe-1.4.tar.gz
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the linear span of the vectors b1; : : : ;bi�1. We have b�i D bi � Pi�1
jD1 �i;j b�j

where�i;j D hbi ;b�

j
i

			b�

j

			
2 . For i � d we let�i;i D 1. The quantity�i;j is the component

of the vector bi on the vector b�j when written as a linear combination of the b�
k

’s.
The Gram–Schmidt orthogonalisation is widely used in lattice reduction because a
reduced basis is somehow close to being orthogonal, which can be rephrased conve-
niently in terms of the GSO coefficients: the kb�i k’s must not decrease too fast, and
the �i;j ’s must be relatively small. Another interesting property of the GSO is that
the volume of the lattice L spanned by the bi ’s satisfies vol.L/ D Qi�d

		b�i
		.

Notice that the GSO family depends on the order of the vectors. Furthermore, if
the bi ’s are integer vectors, the b�i ’s and the �i;j ’s are rational numbers. We also

define the variables ri;j for i � j as follows: for any i 2 Œ1; d �, we let ri;i D
		b�i

		2
,

and for any i � j , we let ri;j D �i;j rj;j D hbi ;b�j i. We have the rela-
tion ri;j D hbi ;bj i�Pk<j ri;k�j;k , for any i � j . In what follows, the GSO family
denotes the ri;j ’s and �i;j ’s. Some information is redundant in rational arithmetic,
but in the context of our floating-point calculations, it is useful to have all these
variables.

QR and Cholesky Factorisations

The GSO coefficients are closely related to the Q and R factors of the QR-
factorisation of the basis matrix. Suppose that the linearly independent vectors
b1; : : : ;bd are given by the columns of an n� d matrix B , then one can write B D
Q �

�
R

0

�
, whereQ is an n� n orthogonal matrix and R is a d � d upper triangular

matrix with positive diagonal entries. The first d columns of Q and the matrix R
are unique and one has the following relations with the GSO family:

� For i � d , the i -th columnQi of the matrix Q is the vector 1
kb�

i
kb
�
i .

� The diagonal coefficient Ri;i is kb�i k.
� If i < j , the coefficientRi;j is

hbj ;b�

i
i

kb�

i
k D

rj;ip
ri;i

.

In the rest of the survey, in order to avoid any confusion between the matri-
ces .Ri;j /i
j and .ri;j /i�j , we will only use the ri;j ’s.

The Cholesky factorisation applies to a symmetric definite positive matrix. IfA is
such a matrix, its Cholesky factorisation is A D Rt �R, where R is upper triangular
with positive diagonal entries. Suppose now that A is the Gram matrix B t � B of
a basis matrix B , then the R-matrix of the Cholesky factorisation of A is exactly
the R-factor of the QR-factorisation of B . The QR and Cholesky factorisations have
been extensively studied in numerical analysis, and we refer to [26] for a general
overview.
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Size-reduction

A basis .b1; : : : ;bd / is called size-reduced with factor  � 1=2 if its GSO family
satisfies j�i;j j �  for all 1 � j < i � d . The i -th vector bi is size-reduced
if j�i;j j �  for all j 2 Œ1; i � 1�. Size-reduction usually refers to  D 1=2, but it
is essential for the floating-point LLLs to allow one to take at least slightly larger
factors , since the �i;j ’s will be known only approximately.

The Lenstra-Lenstra-Lovász Reduction

A basis .b1; : : : ;bd / is called LLL-reduced with factor .ı; /, where ı 2 .1=4; 1�
and 2 Œ1=2;pı/, if the basis is size-reduced with factor  and if its GSO satisfies
the .d � 1/ following conditions, often called Lovász conditions:

ı � kb���1k2 � kb�� C ��;��1b���1k2 ;

or equivalently
�
ı � �2

�;��1

� � r��1;��1 � r�;� . This implies that the norms of the
GSO vectors b�1; : : : ;b�d never drop too much: intuitively, the vectors are not far
from being orthogonal. Such bases have useful properties. In particular, their first
vector is relatively short. Theorem 1 is an adaptation of [35, (1.8) and (1.9)].

Theorem 1. Let ı 2 .1=4; 1� and 2 Œ1=2;pı/. Let .b1; : : : ;bd / be a .ı; /-LLL-
reduced basis of a lattice L. Then:

kb1k �
�

1

ı � 2

�d�1
4

� vol.L/
1
d ;

dY

iD1

kbik �
�

1

ı � 2

�d.d�1/
4

� vol.L/:

LLL-reduction classically refers to the factor pair .3=4; 1=2/ initially chosen
in [35], in which case the quantity 1

ı��2 is conveniently equal to 2. But the closer ı
and , respectively, to 1 and 1=2, the smaller the upper bounds in Theorem 1.
In practice, one often selects ı� 1 and � 1=2, so that we almost have kb1k �
.4=3/

d�1
4 �vol.L/

1
d . It also happens that one selects weaker factors in order to speed

up the execution of the algorithm (we discuss this strategy in Section “A Thoughtful
Wrapper”).

The LLL Algorithm

We give in Fig. 5.1 a description of LLL that we will use to explain its floating-point
variants. The LLL algorithm obtains, in polynomial time, a .ı; /-reduced basis,
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Input: A basis .b1; : : : ; bd / and a valid pair of factors .ı; /.
Output: A .ı; /-LLL-reduced basis of LŒb1; : : : ; bd �.

1. r1;1WDkb1k2 , �WD2. While � � d do
2. -size-reduce b� :
3. Compute ��;1; : : : ; ��;��1 and r�;� , using the previous GSO coefficients.
4. For i D � � 1 down to 1 do, if j��;i j > :
5. b� WDb� � b��;iebi , update ��;1; : : : ; ��;i accordingly.
6. If

�
ı � �2�;��1

� � r��1;��1 � r�;� then �WD� C 1.
7. Else swap b� and b��1 and set �WDmax.2; � � 1/.
8. Return .b1; : : : ; bd /.

Fig. 5.1 The LLL algorithm

even if one chooses  D 1=2. The factor ı < 1 can be chosen arbitrarily close to 1.
It is unknown whether polynomial time complexity can be achieved or not for ı D 1
(partial results can be found in [6] and [36]).

The floating-point LLL algorithms do not achieve  D 1=2, because the GSO
coefficients are known only approximately. Choosing  D 1=2 in these algorithms
may make them loop forever. Similarly, one has to relax the LLL factor ı, but this
relaxation only adds up with the already necessary relaxation of ı in the classi-
cal LLL algorithm. The LLL factor  can be chosen arbitrarily close to 1=2 in the
provable floating-point L2 algorithm of Nguyen and Stehlé [42] (to be described
in Section “The Provable Floating-Point LLL Algorithms”) which terminates in
quadratic time (without fast integer multiplication) with respect to the bit-size of
the matrix entries. Finally,  D 1=2 can also be achieved within the same complex-
ity: first, run the L2 algorithm on the given input basis with ı0 D ıC2.�1=2/ and
a factor  > 1=2; and second, run the LLL algorithm on the output basis. One can
notice that the second reduction is simply a size-reduction and can be performed in
the prescribed time.

Remarkable Variables in the LLL Algorithm

The LLL index �.t/ denotes the vector under investigation at the t-th loop iteration
of the algorithm. Its initial value is 2 and at the end of the execution, one has �.� C
1/ D d C 1, where � is the number of loop iterations and �.� C 1/ is the value
of � at the end of the last loop iteration. We will also use the index ˛.t/ (introduced
in [42]), which we define below and illustrate in Fig. 5.2. It is essentially the smallest
swapping index since the last time the index � was at least �.t/ (this last time is
rigorously defined below as �.t/).

Definition 2. Let t be a loop iteration. Let �.t/ D max .t 0 < t; �.t 0/ � �.t// if it
exists and 1 otherwise, and let ˛.t/ D min .�.t 0/; t 0 2 Œ�.t/; t � 1�/� 1.
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1

2

t t

K
d+1

Fig. 5.2 A possible curve for �.t/ (thin continuous line), with the corresponding curve for ˛.t/
(thick line when � increases, and same as � otherwise)

The index ˛.t/ has the remarkable property that between the loop iterations �.t/
and t , the vectors b1; : : : ;b˛.t/ remain unchanged: because � remains larger than
˛.t/, these first vectors are not swapped nor size-reduced between these iterations.

The Provable Floating-Point LLL Algorithms

When floating-point calculations are mentioned in the context of the LLL algo-
rithm, this systematically refers to the underlying Gram–Schmidt orthogonalisation.
The transformations on the basis and the basis itself remain exact, because one
wants to preserve the lattice while reducing it. The LLL algorithm heavily relies
on the GSO. For example, the LLL output conditions involve all the quantities �i;j

for j < i � d and kb�i k2 for i � d . The floating-point arithmetic is used on these
GSO quantities �i;j and kb�i k2.

In this section, we are to describe three ways of implementing this idea: the first
way is the most natural solution, but fails for different reasons, that we emphasise
because they give some intuition about the provable variants; the second one, due to
Schnorr [50], is provable but suffers from a number of practical drawbacks; and the
last one, due to Nguyen and Stehlé [42], was introduced recently and seems more
tractable in practice.

The following table summarises the complexities of two rational LLL algorithms
and the two provable floating-point LLLs described in this section. The second
line contains the required precisions, whereas the last line consists of the best
known complexity upper bounds. The variant of Kaltofen [28] differs only slightly
from LLL. The main improvement of the latter is to analyse more tightly the cost of
the size-reductions, providing a complexity bound of total degree 8 instead of 9. This
bound also holds for the LLL algorithm. On the floating-point side, both Schnorr’s
algorithm and L2 have complexities of total degree 7, but the complexity bound
of L2 is always better and is quadratic with respect to logB , the bit-size of the input
matrix entries.
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LLL [35] Kaltofen [28] Schnorr [50] L2 [42]

O.d logB/ O.d logB/ 
 12d C 7 log2 B d log2 3� 1:58d
O.d5n log3 B/ O.d4n.d C logB/ log2 B/ O.d3n.d C logB/2 logB/ O.d4n logB.d C logB//

Fig. 5.3 Complexity bounds of the original LLL and the provable floating-point LLL algorithms

A First Attempt

A natural attempt to define a floating-point LLL algorithm is as follows: one keeps
the general structure of LLL as described in Fig. 5.1, and computes approximations
to the GSO quantities, by converting into floating-point arithmetic the formulas
that define them (as given in Section “Lattices”). The scalar product hbi ;bj i is
approximated by the quantity Ngi;j , computed as follows:

Ngi;j WD0. For k from 1 to n, do
Ngi;j WD ˘

� Ngi;j C˘
�˘.bi Œk�/ � ˘.bj Œk�/

��
.

Similarly, the quantities ri;j and �i;j are approximated respectively by the Nri;j ’s
and N�i;j ’s, computed as follows:

Nri;j WD Ngi;j. For k from 1 to j � 1, do Nri;j WD ˘
� Nri;j � ˘

� Nri;k � N�j;k

��
.

N�i;j WD ˘
� Nri;j= Nrj;j

�
.

As a first consequence, since the �i;j ’s are known only approximately, one can-
not ensure ideal size-reduction anymore. One has to relax the condition j�i;j j � 1=2
into the condition j�i;j j �  for some  > 1=2 that takes into account the
inaccuracy of the N�i;j ’s.

This first attempt suffers from three major drawbacks. First, the scalar products
can be miscalculated. More precisely, the quantity Ngi;j is a sum of floating-point
numbers and the classical phenomena of cancellation and loss of precision can
occur. We do not have better than the following error bound:

ˇ̌ Ngi;j � hbi ;bj i
ˇ̌ � f .n; `/ �

X

k�n

jbi Œk�j �
ˇ̌
bj Œk�

ˇ̌
;

where the function f depends on the precision ` and the number n of elements
to sum. Unfortunately, such a summation prevents us from getting absolute error

bounds on the �i;j ’s. In order to obtain an absolute error bound on �i;j D hbi ;bj i
ri;i

,

one would like an error on hbi ;bj i which is no more than proportional to ri;i D
kb�i k2. We illustrate this with an example in dimension 2 and double precision.
Consider the columns of the following matrix:

�
1 2100 C 240

�1 2100 � 240

�
:
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Here, r1;1 D 2 and we would like the error on hb2;b1i to be small compared to
that quantity. If the scalar product of the two vectors is computed by first rounding
the matrix entries to double precision, then it is estimated to 0. This implies that
the computed N�2;1 is 0, and the basis is deemed LLL-reduced. But it is not, since,
in fact, �2;1 D 240, which contradicts the size-reduction condition. If one changes
the values 240 by any values below 2100, one sees that the less significant bits are
simply ignored though they may still be contributing significantly to �2;1. In order
to test the size-reduction conditions from the basis matrix, it seems necessary to use
a precision which is at least as large as the bit-length of the input matrix entries,
which may be very expensive.

Second, the precision may not be sufficient to perform the size-reductions com-
pletely. It can easily be illustrated by an example. Consider the following lattice
basis: �

1 254 C 1
0 1

�
:

The algorithm will compute N�2;1 D 254: the bit-length of the true quantity is too
large to be stored in a double precision floating-point number. Then it will try to size-
reduce the second vector by performing the operation b2WDb2 � 254b1 D .1; 1/t .
It will then check that Lovász’s condition is satisfied, and terminate. Unfortunately,
the output basis is still not size-reduced, because �2;1 D 1. One can change the
example to make �2;1 as large as desired. The trouble here is that the mantissa
size is too small to handle the size-reduction. Either more precision or a reparation
routine seems necessary. Such a reparation process will be described in Section “The
L2 Algorithm”.

The third weakness of the first attempt is the degradation of precision while
computing the GSO coefficients. Indeed, a given Nri;j is computed from previously
computed and already erroneous quantities Nri;k and N�j;k , for k � j . The floating-
point errors not only add up, but also get amplified. No method to prevent this
amplification is known, but it is known how to bound and work around the phe-
nomenon: such techniques come from the field of numerical analysis. In particular,
it seems essential for the good numerical behaviour of the LLL algorithm to always
consider a vector bk , such that all previous vectors bi for i < k are LLL-reduced:
this means that when one is computing the orthogonalisation of a vector with respect
to previous vectors, the latter are always LLL-reduced and therefore fairly orthogo-
nal, which is good for the numerical behaviour. The structure of the LLL algorithm
as described in Fig. 5.1 guarantees this property.

Schnorr’s Algorithm

Schnorr [50] described the first provable variant of the LLL algorithm relying on
floating-point arithmetic. Instead of using GSO coefficients represented as ratio-
nal numbers of bit-lengths O.d logB/, Schnorr’s algorithm approximates them by
arbitrary precision floating-point numbers, of mantissa size ` D O.d C logB/.
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Input: A basis .b1; : : : ; bd /, a precision `.
Output: A .0:95; 0:55/-reduced basis of the lattice spanned by the bi ’s.

1. �WD2; b�

1 WDb1.
2. rWDbhb� ; Nb�

��1i=kNb�

��1k2e, b� WDb� � rb��1.
3. If .kb�k2 �Pj<��1hb� ; Nb�

j i=kNb�

j k2/ � 1:025 
 kNb�

��1k2, go to Step 5. Otherwise:

4. Exchange b� and b��1, �WDmax.2; � � 1/. Update G�1
� and go to Step 2.

5. For j from � � 2 down to 1, do rWDbhb� ; Nb�

j i=kNb�

j k2e, b� WDb� � rbj .
6. Compute a first approximation of ��;1; : : : ; ��;��1; b�

� ; G
�1
� , from the bi ’s

and the matrix G�1
��1.

7. Use a finite number of iterations of Schulz’s method on G�1
k using Gk .

This helps improving the approximations of ��;1; : : : ; ��;��1; b�

� and G�1
� .

8. Truncate the N��;i ’s to ` bits after the point. Compute the corresponding
vectors Nb�

� and G�1
� .

9. �WD� C 1. If � � n, go to Step 2.

Fig. 5.4 Schnorr’s algorithm

This provides a gain of 2 in the total degree of the polynomial complexity of LLL:
fromO.d 5n log3 B/ to O.d 3n.d C logB/2 logB/.

In Fig. 5.4, we give a description of this algorithm. It uses exact integer operations
on the basis vectors (Steps 2 and 5), and approximate operations on the inverses
of the partial Gram matrices Gk D .hbi ;bj i/i;j�k and the inverse .�i;j /i;j�d

of the lower triangular matrix made of the �i;j ’s. These operations are not stan-
dard floating-point operations, since most of them are, in fact, exact operations
on approximate values: in floating-point arithmetic, the result of a basic arithmetic
operation is a floating-point number closest to the true result, whereas here the true
result is kept, without any rounding. This is the case everywhere, except at Step 8,
where the quantities are truncated in order to avoid a length blow-up. The trunca-
tion itself is similar to fixed-point arithmetic since it keeps a given number of bits
after the point instead of keeping a given number of most significant bits. It can be
checked that all quantities computed never have more than c � ` bits after the point,
for some small constant c depending on the chosen number of iterations at Step 7.
At Step 7, a few steps of Schulz’s iteration are performed. Schulz’s iteration [57] is
a classical way to improve the accuracy of an approximate inverse (here G�1

k
) of a

known matrix (here Gk). This is a matrix generalisation of Newton’s iteration for
computing the inverse of a real number.

Schnorr proved that by taking a precision ` D c1 �dCc2 �logB for some explicitly
computable constants c1 and c2, the algorithm terminates and returns a .0:95; 0:55/-
LLL-reduced basis. The constants 0:95 and 0:55 can be chosen arbitrarily close, but
different to respectively 1 and 0:5, by changing the constants c1 and c2 as well as
the constant 1:025 from Step 3. Finally, it can be checked that the bit-cost of the
algorithm is O

�
d3n.d C logB/2 logB

�
.

This algorithm prevents the three problems of the naive floating-point LLL from
occurring: the inaccuracy of the scalar products is avoided because they are always
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computed exactly; the incomplete size-reductions cannot occur because the preci-
sion is set large enough to guarantee that any size-reduction is performed correctly
and fully at once; the accumulation of inaccuracies is restrained because most of
the operations performed on approximations are done exactly, so that few errors
may add up, and the amplification of the errors (due to a bad conditioning of the
problem) is compensated by the large precision.

Schnorr’s algorithm gives the first answer to the question of using approximate
GSO quantities within the LLL algorithm, but:

� The constants c1 and c2, on which the precision depends, may be large. What is
most annoying is that the precision actually depends on logB . This means that
the approximate operations on the GSO still dominate the integer operations on
the basis matrix.

� As explained above, it is not using standard floating-point arithmetic, but rather a
mix between exact computations on approximate values and arbitrary precision
fixed-point arithmetic.

The L2 Algorithm

The L2 algorithm was introduced by Nguyen and Stehlé [42] in 2005. It is described
in Fig. 5.5. L2 is a variant of the LLL algorithm relying on arbitrary precision
floating-point arithmetic for the underlying Gram–Schmidt orthogonalisation, in
a provable way. Apart from giving a sound basis for floating-point calculations
within LLL, it is also the sole variant of LLL that has been proven to admit a
quadratic bit-complexity with respect to the bit-size of the input matrix entries. This
latter property is very convenient since LLL can be seen as a multi-dimensional
generalisation of Euclid’s gcd algorithm, Gauss’ two-dimensional lattice reduc-
tion algorithm and the three and four dimensional greedy algorithm of Semaev et
al. [41, 58], all of which admit quadratic complexity bounds. This property, from
which the name of the algorithm comes, arguably makes it a natural variant of LLL.

In L2, the problem of scalar product cancellations is handled very simply, since
all the scalar products are known exactly during the whole execution of the algo-
rithm. Indeed, the Gram matrix of the initial basis matrix is computed at the
beginning of the algorithm and updated for each change of the basis vectors. In
fact, the algorithm operates on the Gram matrix and the computed transformations
are forwarded to the basis matrix. It can be seen that this can be done with only
a constant factor overhead in the overall complexity. Second, the size-reduction
procedure is modified into a lazy size-reduction. One size-reduces as much as pos-
sible, given the current knowledge of the Gram–Schmidt orthogonalisation, then
recomputes the corresponding Gram–Schmidt coefficients from the exact Gram
matrix, and restarts the lazy size-reduction until the vector under question stays the
same. When this happens, the vector is size-reduced and the corresponding Gram–
Schmidt coefficients are well approximated. This lazy size-reduction was already
contained inside NTL’s LLL, and described in [33], in the context of a heuristic
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Input: A valid pair .ı; / with  > 1=2, a basis .b1; : : : ; bd / and a precision `.
Output: A .ı; /-LLL-reduced basis.

1. Compute exactly G D G.b1; : : : ; bd /, �WD C1=2

2
, ıCWD ıC1

2
.

2. Nr1;1WD ˘ .hb1; b1i/, �WD2. While � � d , do
3. -size-reduce b� :
4. Compute the Nr�;j ’s and N��;j ’s from G and the previous Nri;j ’s and N�i;j ’s.
5. If maxi<� j N��;i j > �, then, for i D � � 1 down to 1, do:
6. X WDb N��;ie, b� WDb� �X � bi and update G.b1; : : : ; bd / accordingly.
7. For j D 1 to i � 1, N��;j WD ˘

� N��;j � ˘.X � N�i;j /
�
.

8. Go to Step 4.
9. If ıC � Nr��1;��1 < Nr�;� C N�2�;��1 Nr��1;��1, �WD� C 1.
10. Else, swap b��1 and b� , update G; N� and Nr accordingly, �WDmax.2; � � 1/.
11. Return .b1; : : : ; bd /.

Fig. 5.5 The L2 algorithm

floating-point LLL algorithm based on Householder transformations. In this context,
fixing  D 1=2 can have dramatic consequences: apart from asking for something
which is not reachable with floating-point computations, the lazy size-reduction
(i.e., the inner loop between Steps 4 and 8 in Fig. 5.5) may loop forever. Finally,
an a priori error analysis provides a bound on the loss of accuracy, which provides
the provably sufficient precision.

Theorem 2 ([42, Theorem 1]). Let .ı; / such that 1=4 < ı < 1 and 1=2 <  <p
ı. Let c D log .1C�/2C"

ı��2 C C , for some arbitrary "2 .0; 1=2/ and C > 0. Given

as input a d -dimensional lattice basis .b1; : : : ;bd / in Z
n with maxi kbik � B ,

the L2 algorithm of Fig. 5.5 with precision ` D cd C o.d/ outputs a .ı; /-LLL-
reduced basis in time O

�
d 4n.d C logB/ logB

�
. More precisely, if � denotes the

number of iterations of the loop between Steps 3 and 10, then the running time
is O

�
d2n.� C d log.dB//.d C logB/

�
.

The precision ` D cd C o.d/ can be made explicit from the correctness proof
of [42]. It suffices that the following inequality holds, for some arbitrary C > 0:

d 2

�
.1C /2 C "
ı � 2

�d

2�`C10CCd � min

�
"; � 1

2
; 1 � ı

�
:

Notice that with double precision (i.e., ` D 53), the dimension up to which the
above bound guarantees that L2 will work correctly is very small. Nevertheless, the
bound is likely to be loose: in the proof of [42], the asymptotically negligible com-
ponents are chosen to simplify the error analysis. Obtaining tighter bounds for the
particular case of the double precision would be interesting in practice for small
dimensions. For larger dimensions, the non-dominating components become mean-
ingless. Asymptotically, in the case of LLL-factors .ı; / that are close to .1; 1=2/,
a floating-point precision ` D 1:6 � d suffices.
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Here is a sketch of the complexity analysis of the L2 algorithm. We refer to [44]
for more details.

1. There are � D O.d 2 logB/ loop iterations.

2. In a given loop iteration, there can be up to O
�
1C log B

d

�
iterations within the

lazy size-reduction. However, most of the time there are only O.1/ such loop
iterations. The lengthy size-reductions cannot occur often during a given execu-
tion of L2, and are compensated by the other ones. In the rigorous complexity
analysis, this is formalised by an amortised analysis (see below for more details).
In practice, one can observe that there are usually two iterations within the lazy
size-reduction: the first one makes the j��;i j’s smaller than  and the second one
recomputes the ��;i ’s and r�;i ’s with better accuracy. This is incorrect in full
generality, especially when the initial ��;i ’s are very large.

3. In each iteration of the lazy size-reduction, there are O.dn/ arithmetic opera-
tions.

4. Among these arithmetic operations, the most expensive ones are those related to
the coefficients of the basis and Gram matrices: these are essentially multiplica-
tions between integers of lengths O.logB/ and the computedX ’s, which can be
represented on O.d/ bits.

The proof of the quadratic complexity bound generalises the complexity analysis
of Euclid’s gcd algorithm. In Euclid’s algorithm, one computes the gcd of two inte-
gers r0 > r1 > 0, by performing successive euclidean divisions: riC1 D ri�1�qi ri ,
with jriC1j < jri j, until one gets 0. Standard arguments show that the number of
divisions is O.log r0/. To obtain a quadratic complexity bound for Euclid’s algo-
rithm, one has to compute qi by using only some (essentially log qi � log jri�1j �
log jri j) of the most significant bits of ri�1 and ri , to get riC1 with a bit-complexity
O.log r0 � .1 C log jri�1j � log jri j//. It is crucial to consider this bound, instead
of the weaker O

�
log2 jri�1j

�
, to be able to use an amortised cost analysis: the

worst-case cost of a sequence of steps can be much lower than the sum of the
worst cases of each step of the sequence. In the quadratic complexity bound of
the L2 algorithm, the Euclidean division becomes the lazy size-reduction and the
term O .log r0 � .1C log jri�1j � log jri j// is replaced by the new term O.logB �
.d C log kb�.t/k � log kb˛.t/k// for the t-th loop iteration: intuitively, the cost of
the size-reduction does not depend on the ˛.t/ � 1 first vectors, since the vec-
tor b�.t/ is already size-reduced with respect to them. In the analysis of Euclid’s
algorithm, terms cancel out as soon as two consecutive steps are considered, but in
the case of L2, one may need significantly more than two steps to observe a possible
cancellation. The following lemma handles this difficulty.

Lemma 1 ([42, Lemma 2]). Let k 2 Œ2; d � and t1 < : : : < tk be loop iterations
of the L2 algorithm such that for any j � k, we have �.tj / D k. For any loop

iteration t and any i � d , we define b.t/
i as the i -th basis vector at the beginning of

the t-th loop iteration. Then there exists j < k such that:

d.ı � 2/�d �
			b

.tj /

˛.tj /

			 �
			b.tk/

k

			 :
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This result means that when summing all the bounds of the costs of the succes-
sive loop iterations, i.e., O

�
logB � .d C log kb�.t/k � log kb˛.t/k/

�
, some quasi-

cancellations of the following form occur: a term log kb�.t/k can be cancelled out
with a term log kb˛.t 0/k, where the relationship between t 0 and t is described in the
lemma. This is not exactly a cancellation, since the difference of the two terms is
replaced by O.d/ (which does not involve the size of the entries).

The proof of correctness of the L2 algorithm relies on a forward error analysis
of the Cholesky factorisation algorithm while applied to a Gram matrix of a basis
whose first vectors are already LLL-reduced. We give here a sketch of the error
analysis in the context of a fully LLL-reduced basis (i.e., the whole basis is LLL-

reduced). This shows the origin of the term .1C�/2

ı��2 in Theorem 2.

We define errj D maxi 2 Œj;d �
j Nri;j�ri;j j

rj;j
, i.e., the approximation error on the ri;j ’s

relatively to rj;j , and we bound its growth as j increases. We have:

err1 D max
i�d

j ˘ hbi ;b1i � hbi ;b1ij
kb1k2 � 2�`�max

i�d

jhbi ;b1ij
kb1k2 D 2�`�max

i�d
j�i;1j � 2�`;

because of the size-reduction condition. We now choose j 2 Œ2; d �. We have, for
any i � d and any k < j :

j N�i;k � �i;kj <�
ˇ̌
ˇ̌rk;k

Nrk;k

ˇ̌
ˇ̌ errk C jri;kj

ˇ̌
ˇ̌ 1
Nrk;k

� 1

rk;k

ˇ̌
ˇ̌ <� .C 1/ � errk;

where we neglected low-order terms and used the fact that jri;kj �  � rk;k , which
comes from the size-reduction condition. This implies that:

j ˘ . N�j;k � Nri;k/� �j;kri;kj <� j N�j;k � �j;k j � j Nri;kj C j�j;kj � j Nri;k � ri;kj
<� .C 2/ � errk � kb�kk2;

where we also neglected low-order terms and used the size-reduction condition
twice. Thus,

errj
<� .C 2/

X

k<j

kb�
k
k2

kb�j k2
errk

<� .C 2/
X

k<j

.ı � 2/k�j � errk;

by using the fact that Lovász’s conditions are satisfied. This finally gives

errj
<�
�
.1C /2
ı � 2

�j

� err1:
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Heuristic Variants and Implementations
of the Floating-Point LLL

Floating-point arithmetic has been used in the LLL implementations since the
early 1980’s, but only very few articles describe how this should be done in order
to balance efficiency and correctness. The reference for LLL implementers is the
article by Schnorr and Euchner on practical lattice reduction [52, 53]. Until very
recently, all the fastest LLL implementations were relying on it, including the one
in Victor Shoup’s NTL, Allan Steel’s LLL in Magma, and LiDIA’s LLL (writ-
ten by Werner Backes, Thorsten Lauer, Oliver van Sprang and Susanne Wetzel).
Magma’s LLL is now relying on the L2 algorithm. In this section, we describe
the Schnorr-Euchner heuristic floating-point LLL, and explain how to turn the
L2 algorithm into an efficient and reliable code.

The Schnorr-Euchner Heuristic LLL

Schnorr-Euchner’s floating-point LLL follows very closely the classical description
of LLL. It mimics the rational LLL while trying to work around the three pitfalls
of the naive strategy (see Section “The Provable Floating-Point LLL Algorithms”).
Let us consider these three difficulties separately.

It detects cancellations occurring during the computation of scalar products (at
Step 3 of the algorithm of Fig. 5.1), by comparing their computed approximations
with the (approximate) product of the norms of the corresponding vectors. Since
norms consist in summing positive values, no cancellation occurs while comput-
ing them approximately, and the computed values are, therefore, very reliable. If
more than half the precision within the scalar product is likely to be lost (i.e., the
ratio between the magnitude of the computed value and the product of the norms is
smaller than 2�`=2 where ` is the precision), the scalar product is computed exactly
(with the integer vectors and integer arithmetic) and then rounded to a closest dou-
ble. As a consequence, not significantly more than half the precision can be lost
while computing a scalar product. In NTL’s LLL (which implements the Schnorr-
Euchner variant), Victor Shoup replaced the 50% loss of precision test by a stronger
requirement of not losing more than 15% of the precision.

Second, if some coefficient�i;j is detected to be large (between Steps 3 and 4 of
the algorithm of Fig. 5.1), i.e., more than 2`=2 where ` is the precision, then another
size-reduction will be executed after the current one. This prevents incomplete size-
reductions from occurring.

Finally, the algorithm does not tackle the error amplification due to the Gram–
Schmidt orthogonalisation process: one selects the double precision and hopes for
the best.

Let us now discuss these heuristics. If the scalar products are detected to be
cancelling frequently, they will often be computed exactly with integer arithmetic.
In that situation, one should rather keep the Gram matrix and update it. On the
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Number of unknown bits of p 220 230 240 245

Dimension of the lattice 17 22 34 50

NTL’s LLL XD 13:1 78:6 1180 13800

Time to compute the scalar products exactly 8:05 51:6 914 11000

Magma’s LLL 8:47 44:5 710 10000

Fig. 5.6 Comparison between NTL’s LLL XD and Magma’s LLL for lattice bases arising in
Coppersmith’s method applied to the problem of factoring with high bits known

theoretical side, the Schnorr-Euchner strategy for scalar products prevents one from
getting a quadratic bit complexity. In practice, it may slow down the computation
significantly. In particular, this occurs when two vectors have much different lengths
and are nearly orthogonal. This may happen quite frequently in some applications
of LLL, one of them being Coppersmith’s method [14]. In the table of Fig. 5.6, we
compare NTL’s LLL XD with Magma’s LLL for input lattice bases that correspond
to the use of Coppersmith’s method for the problem of factoring with high bits
known, such as described in [39], for a 1024 bit RSA modulus p �q and for different
numbers of most significant bits of p known. The experiments were performed with
NTL-5.4 and Magma-2.13, both using GNU MP for the integer arithmetic, on a
Pentium double-core 3.00 GHz. In both cases, the chosen parameters were ı D
0:75 and  very close to 1=2, and the transformation matrix was not computed. The
timings are given in seconds. Here Magma’s LLL uses the Gram matrix, whereas
NTL’s LLL XD recomputes the scalar products from the basis vectors if a large
cancellation is detected. In these examples, NTL spends more than 60% of the time
recomputing the scalar products from the basis vectors.

Second, when the �i;j ’s are small enough, they are never recomputed after
the size-reduction. This means that they are known with a possibly worse accu-
racy. NTL’s LLL is very close to Schnorr-Euchner’s heuristic variant but differs on
this point: a routine similar to the lazy size-reduction of the L2 algorithm is used.
Shoup’s strategy consists in recomputing the �k;i ’s as long as one of them seems
(we know them only approximately) larger than , where  is extremely close to 1=2
(the actual initial value being 1=2C 2�26), and call the size-reduction again. When
unexpectedly long lazy size-reductions are encountered (the precise condition being
more than ten iterations), the accuracy of the GSO coefficients is deemed very poor,
and  is increased slightly to take into account larger errors. This is a good strategy
on the short term, since it may accept a larger but manageable error. However, on
the long term, weakening the size-reduction condition may worsen the numerical
behaviour (see Theorem 2 and Section “Practical Observations on LLL”), and thus
even larger errors, and, therefore, stronger misbehaviours are likely to occur.

The fact that the error amplification is not dealt with would not be a problem
if there was a way to detect misbehaviours and to handle them. This amplification
may cause meaningless calculations: if the current GSO coefficients are very badly
approximated, then the performed Lovász tests are meaningless with respect to the
basis; it implies that the performed operations may be irrelevant, and not reducing
the basis at all; nothing ensures then that the execution will terminate, since it is
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too different from the execution of the rational LLL. In NTL’s LLL, one tries a
given precision. If the execution seems too long, the user has to stop it, and restart
with some higher precision or some more reliable variant, without knowing if the
algorithm was misbehaving (in which case increasing the precision may help), or
just long to finish (in which case increasing the precision will slow down the process
even more). The lack of error detection and interpretation can be quite annoying
from the user point of view: in NTL and LiDia, one may have to try several variants
before succeeding.

Implementing the L2 Algorithm

We now consider the task of implementing the L2 algorithm (described in Fig. 5.5).
In practice, one should obviously try to use heuristic variants before falling down to
the guaranteed L2 algorithm. To do this, we allow ourselves to weaken the L2 algo-
rithm in two ways: we may try not to use the Gram matrix but the basis matrix
only, and we may try to use a floating-point precision which is much lower than the
provably sufficient one. We describe here such a possible implementation.

We consider four layers for the underlying floating-point arithmetic:

� Double precision: it is extremely fast, but has a limited exponent (11 bits) and
a limited precision (53 bits). The exponent limit allows one to convert integers
that have less than 1022 bits (approximately half if one wants to convert the
Gram matrix as well). The limited precision is less annoying, but prevents from
considering high dimensions.

� Doubles with additional exponents (dpes): it is still quite fast, but the precision
limit remains.

� Heuristic extended precision: if more precision seems to be needed, then one will
have to use arbitrary precision floating-point numbers. According to the analysis

of the L2 algorithm, a precision `� log .1C�/2

ı��2 � d always suffices. Nevertheless,
one is allowed to try a heuristic lower precision first.

� Provable extended precision: use arbitrary precision floating-point numbers with

a provably sufficient mantissa size of `� log .1C�/2

ı��2 � d bits.

In [33], Koy and Schnorr suggest to extend the 53 bit long double precision to
a precision of 106 bits. This is an interesting additional layer between the double
precision and the arbitrary precision, since it can be implemented in an efficient
way with a pair of doubles (see [31, Chap. 4.2.2, Exercise 21]).

One can also perform the computations with or without the Gram matrix. If it
is decided not to consider the Gram matrix, then the scalar products are computed
from floating-point approximations of the basis matrix entries. As mentioned previ-
ously, cancellations may occur and the computed scalar products may be completely
incorrect. Such misbehaviours will have to be detected and handled. If it is decided
to consider the Gram matrix, then there are more operations involving possibly long
integers, since both the Gram and basis matrices have to be updated. One may,
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however, forget about the basis matrix during the execution of the algorithm, by
computing the transformation instead, and applying the overall transformation to
the initial basis: it then has to be determined from the input which would be cheaper
between computing with the transformation matrix and computing with the basis
matrix.

So far, we have eight possibilities. A very frequent one is dpes without the
Gram matrix, which corresponds to NTL’s LLL XD routine. This choice can be
sped up by factoring the exponents of the dpes: the idea is to have one com-
mon exponent per vector, instead of n exponents. To do this, we consider ei D
b1C log maxj�n jbi Œj �jc together with the vector 2�`bbi � 2`�ei e. More summing
cancellations are likely to occur than without factoring the exponents (since we may
lose some information by doing so), but we obtain a variant which is essentially as
fast as using the processor double precision only, while remaining usable for large
matrix inputs.

A Thoughtful Wrapper

In a complete implementation of LLL, the choice of the variant and the transitions
between variants should be oblivious to the user. When calling the LLL routine, the
user expects the execution to terminate and to return a guaranteed answer. At the
time of the publishing of this survey, such a routine is available only in Magma and
fplll: using the LLL routines in the other libraries requires, to some extent, some
understanding of the algorithms used. To obtain an LLL routine which is guaranteed,
but also makes use of heuristics, misbehaviours should be detected and interpreted in
such a way that the cheapest variant that is likely to work is chosen. In the Schnorr-
Euchner algorithm, two such detections already exist: scalar product cancellations
and too large GSO coefficients.

When considering floating-point LLL algorithms, the main source of infinite
looping is the lazy size-reduction (Steps 4–8 in Fig. 5.5). It is detected by watching
if the �i;j ’s appearing are indeed decreasing at each loop iteration of the size-
reduction. If this stops being the case, then something incorrect is happening. The
other source of infinite looping is the succession of incorrect Lovász tests. Fortu-
nately, the proof of the LLL algorithm provides an upper bound to the number of
Lovász tests performed during the execution, as a function of the input basis. One
can test whether the current number of Lovász tests is higher than this upper bound.
This is a crude upper bound, but this malfunction seems to be much less frequent
than the incomplete size-reduction.

In Fig. 5.7, we give an overview of the reduction strategy in the LLL routine of
Magma. Each box corresponds to a floating-point LLL using the Gram matrix or
not, and using one of the aforementioned floating-point arithmetics. When a variant
fails, another is tried, following one of the arrows. In addition to this graph, one
should rerun a provable variant at the end of the execution if it succeeded with a
heuristic one, since the output might then be incorrect. Other boxes and arrows than
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Large matrix entries Small matrix entries

Without Gram
Factored exponents

Without Gram
DPE

Without Gram
Heuristic arbitrary

precision

Without Gram
Doubles

Small κ Small κLarge κLarge κ

With Gram
Doubles

With Gram
Guaranteed arbitrary precision

With Gram
DPE

Fig. 5.7 Overview of the LLL reduction strategy in Magma

the ones displayed may be added. For example, one may stop using the factored
exponents variants if the entries of the basis matrix start being small: in this case,
the doubles without the Gram matrix will be more efficient.

When a malfunction is detected (by a non-decrease of the GSO coefficients dur-
ing a size-reduction or by a too large number of Lovász tests), another variant must
be selected. Essentially, two problems can occur: cancellations of scalar products
and lack of precision for the GSO calculations. The first trouble may occur in any
dimension, while the second one can only occur when the dimension increases:
around d D 30 in the worst case and around d D 180 on the average, for close
to optimal LLL parameters ı and  (for a heuristic explanation of the last figure,
see Section “Practical Observations on LLL”). As a consequence, if a misbehaviour
is detected in a low dimension or for a small LLL index � (the magnitude of the
floating-point errors essentially depends on �, see the first-order analysis of the
end of Section “The Provable Floating-Point LLL Algorithms”), cancellations in
scalar products are likely to be the cause of the problem, and one should start using
the Gram matrix. Otherwise, it is likely that the mantissa size is not sufficient. In
Fig. 5.7, this choice is represented by the arrows with the labels “Small �” and
“Large �”.

The labels “Large matrix entries” and “Small matrix entries” denote the possi-
bility of converting the Gram matrix coefficients to double precision floating-point
numbers: the top boxes do not involve the Gram matrices, but those matrices may
be needed later on if misbehaviours occur.

As mentioned earlier, in order to guarantee the correctness of the output, one has
to run the most reliable (and thus slower) variant on the output. This can dominate
the overall cost, especially if we are given an already reduced basis. Villard [63]
recently introduced a method to certify that a given basis is reduced. It will not
always work, but if it does the result is guaranteed. It can be made very efficient (for
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example by using double precision floating-point numbers), and indeed much faster
than using the provable precision in the L2 algorithm. The general principle is as
follows:

1. Compute an approximation NR of the R-factor R of the QR-factorisation of the
basis matrix.

2. Certify that the approximation NR is indeed close to R, by using a result of [61],
showing that it suffices to bound the spectral radius of some related matrix.

3. Check the LLL conditions in a certified way from the certified approximation NR
of R.

Another drawback of the general strategy is that it always goes towards a more
reliable reduction. It may be that such a reliable variant is needed at some moment
and becomes superfluous after some time within an execution: generally speaking,
the reduction of the basis improves the accuracy of the computations and therefore
some precautions may become superfluous. One would thus have to devise heuristic
tests to decide if one should change for a more heuristic but faster variant. For exam-
ple, suppose we did start using the Gram matrix before scalar product cancellations
were detected. The most annoying scalar product cancellations occur when some
vectors have very unbalanced lengths and are at the same time fairly orthogonal. One
can check with the Gram matrix if it remains the case during the execution of the
chosen variant. Suppose now that we did increase the floating-point precision. This
was done in particular because the basis was not orthogonal enough. It may happen
that it becomes significantly more orthogonal, later within the LLL-reduction: this
can be detected by looking at the decrease of the kb�i k’s.

Finally, one may try to adapt the  and ı parameters in order to speed up the
LLL reduction. If one is only interested in a reduced basis without paying atten-
tion to the LLL factors ı and , then one should try the fastest pair, while still
requiring only double precision. The first requirement usually implies a weaken-
ing of the pair (ı further away from 1 and  further away from 1=2), whereas the
second one involves a strengthening, so that there is a trade-off to be determined.
Furthermore, one may also try to change the LLL factors during the LLL reduction
itself, for example starting with weak LLL factors to perform most of the reduc-
tion efficiently and strengthen the factors afterwards to provide a basis of a better
quality.

Adapting the Algorithm to Particular Inputs

It is possible to adapt the algorithm to particular lattice basis inputs that occur fre-
quently. We give here an example of a dedicated strategy called early size-reduction,
which was initially introduced by Allan Steel. The computational saving of this
method can easily be explained for input lattice bases of the following shape (they
arise for example for detecting small integer relations between numbers):
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0

BBBBB@

a1 a2 a3 : : : ad

0 1 0 : : : 0

0 0 1 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : 1

1

CCCCCA
;

where the ai ’s have large magnitudes. LetA D maxi jai j. The idea of the early size-
reduction is as follows: when the LLL index � reaches a new value for the first time,
instead of only size-reducing the vector b� with respect to the vectors b1; : : : ;b��1,
reduce the bi ’s with respect to the vectors b1; : : : ;b��1 for all i � �. The speed-
up is higher for the longest bi ’s, so that it may be worth restricting the strategy to
these ones.

One may think, at first sight, that this variant is going to be more expensive: in
fact, the overall size-reduction of any input vector bi will be much cheaper. In the
first situation, if the first i � 1 vectors behave fairly randomly, we will reduce in
dimension i a vector of length �A with respect to i � 1 vectors of length �A 1

i�1 :
if the first i � 1 vectors behave randomly, the lengths of the reduced vectors are all
approximately the .i � 1/-th root of the determinant of the lattice they span, which
is itself approximatelyA. In the second situation, we will:

� Reduce in dimension 3 a vector of length �A with respect to 2 vectors of
length �A 1

2 , when � reaches 3 for the first time.
� Reduce in dimension 4 a vector of length �A 1

2 with respect to 3 vectors of
length �A 1

3 , when � reaches 4 for the first time.
� . . .
� Reduce in dimension i a vector of length �A 1

i�2 with respect to i � 1 vectors
of length �A 1

i�1 , when � reaches i for the first time.

We gain much because most of the time the number of nonzero coordinates is less
than i .

We now describe a very simple dedicated strategy for lattice bases occurring
in Coppersmith’s method for finding the small roots of a polynomial modulo an
integer [16]. We consider the univariate case for the sake of simplicity. In this appli-
cation of LLL, the input basis vectors are made of the weighted coefficients of
polynomials .Pi .x//i : the i -th basis vector is made of the coordinates of Pi .xX/,
where X is the weight. This implies that the .j C 1/-th coordinates of all vectors
are multiples of Xj . Rather than reducing a basis where the coordinates share large
factors, one may consider the coordinates of the Pi .x/’s themselves and modify the
scalar product by giving a weight Xj to the .j C 1/-th coordinate. This decreases
the size of the input basis with a negligible overhead on the computation of the
scalar products. If X is a power of 2, then this overhead can be made extremely
small.
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Practical Observations on LLL

The LLL algorithm has been widely reported to perform much better in practice
than in theory. In this section, we describe some experiments whose purpose is to
measure this statement. These systematic observations were made more tractable
thanks to the faster and more reliable floating-point LLLs based on L2. Conversely,
they also help improving the codes:

� They provide heuristics on what to expect from the bases output by LLL. For
example, when LLL is needed for an application, these heuristic bounds may
be used rather than the provable ones, which may decrease the overall cost. For
example, in the cases of Coppersmith’s method (see [38]) and the reconstruction
of algebraic numbers (see [24]), the bases to be reduced will have smaller bit-
lengths.

� They explain precisely which steps are expensive during the execution, so that
the coder may be performing relevant code optimisations.

� They also help guessing which precision is likely to work in practice if no scalar
product cancellation occurs, which helps choosing a stronger variant in case a
malfunction is detected (see Section “A Thoughtful Wrapper”).

Overall, LLL performs quite well compared to the worst-case bounds with
respect to the quality of the output: the practical approximation factor between
the first basis vector and a shortest lattice vector remains exponential, but the
involved constant is significantly smaller. Moreover, the floating-point LLLs also
seem to outperform the worst-case bounds with respect to their running-time and
the floating-point precision they require. We refer to [43] for more details about the
content of this section. Further and more rigorous explanations of the observations
can be found in [62].

The Lattice Bases Under Study

The behaviour of LLL can vary much with the type of lattice and the type of input
basis considered. For instance, if the lattice minimum is extremely small compared
to the other lattice minima (the k-th minimum being the smallest R such that there
are � k linearly independent lattice vectors of length � R), the LLL algorithm will
find a vector whose length reaches it (which is of course not the case in general).
If the basis is to be reduced or is close to being LLL-reduced, the LLL algorithm
will not behave generically. For instance, if one selects vectors uniformly and inde-
pendently in the d -dimensional hypersphere, they are close to be reduced with high
probability (see [6, 7] and the survey [62] describing these results in a more general
probabilistic setup). We must, therefore, define precisely what we will consider as
input.

First of all, there exists a natural notion of random lattice. A full-rank lattice
(up to scaling) can be seen as an element of SLd .R/=SLd .Z/. The space SLd .R/
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inherits a Haar measure from R
d 2

, which projects to a finite measure when taking
the quotient by SLd .Z/ (see [3]). One can, therefore, define a probability measure
on real-valued lattices. There are ways to generate integer valued lattices so that they
converge to the uniform distribution (with respect to the Haar measure) when the
integer parameters grow to infinity. For example, Goldstein and Mayer [22] consider
the following random family of lattices: take a large prime p, choose d � 1 inte-
gers x2; : : : ; xd randomly, independently and uniformly in Œ0; p � 1�, and consider
the lattice spanned by the columns of the following d � d matrix:

0

BBBBB@

p x2 x3 : : : xd

0 1 0 : : : 0

0 0 1 : : : 0
:::
:::
:::
: : :

:::

0 0 : : : 0 1

1

CCCCCA
:

Amazingly, these lattice bases resemble those arising from knapsack-type prob-
lems, the algebraic reconstruction problem (finding the minimal polynomial of an
algebraic number given a complex approximation to it), and the problem of detect-
ing integer relations between real numbers [24]. We define knapsack-type lattice
bases as follows: take a bound B , choose d integers x1; : : : ; xd randomly, indepen-
dently and uniformly in Œ0; B � 1� and consider the lattice spanned by the columns
of the following .d C 1/ � d matrix:

0

BBBBBBBB@

x1 x2 x3 : : : xd

1 0 0 : : : 0

0 1 0 : : : 0

0 0 1 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : 1

1

CCCCCCCCA

:

In our experiments, we did not notice any difference of behaviour between these
random bases and the random bases of Goldstein and Mayer. Similarly, removing
the second row or adding another row of random numbers do not seem to change
the observations either.

We will also describe experiments based on what we call Ajtai-type bases. Sim-
ilar bases were introduced by Ajtai [4] to prove a lower-bound on the quality of
Schnorr’s block-type algorithms [49]. Select a parameter a. The basis is given by
the columns of the d � d upper-triangular matrix B such that Bi;i D b2.2d�iC1/ae
and the Bj;i ’s (for i > j ) are randomly, independently and uniformly chosen
in Z \ Œ�Bj;j =2; : : : ; Bj;j =2/. The choice of the function 2.2d�iC1/a

is arbitrary:
one may generalise this family by considering a real-valued function f .i; d / and by
taking Bi;i D bf .i; d /e. One advantage of choosing f .i; d / D 2.2d�iC1/a

is that
the kb�i k’s are decreasing very quickly, so that the basis is far from being reduced.
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The Output Quality

In low dimensions, it has been observed for quite a while that the LLL algorithm
computes vectors whose lengths are close (if not equal) to the lattice minimum [45].
Hopefully for lattice-based cryptosystems, this does not remain the case when the
dimension increases.

By experimenting, one can observe that the quality of the output of LLL is similar
for all input lattice bases generated from the different families mentioned above. For
example, in Fig. 5.8, each point corresponds to the following experiment: generate a
random knapsack-type basis with B D 2100�d and reduce it with the L2 algorithm,
with .ı; / D .0:999; 0:501/; a point corresponds to the value of 1

d
log2

kb1k
vol.L/1=d

for the corresponding returned basis. We conclude that experimentally, it seems that
for a growing dimension d , the first output vector is such that:

kb1k� cd � vol.L/1=d ;

where c� 20:03� 1:02. The exponential factor 1:02d remains tiny even in moderate
dimensions: e.g., .1:02/50� 2:7 and .1:02/100� 7:2.

One may explain this global phenomenon on the basis, by looking at the local
two-dimensional bases, i.e., the pairs .b�i�1;b

�
i C�i;i�1b�i�1/. If we disregard some

first and last local pairs, then all the others seem to behave quite similarly. In Fig. 5.9,
each point corresponds to a local pair (its coordinates being

�
�i;i�1; kb�i k=kb�i�1k

�
)

of a basis that was reduced with fplll with parameters ı D 0:999 and  D 0:501,
starting from a knapsack-type basis with B D 2100�d . These observations seem to
stabilise between the dimensions 40 and 50: the behaviour differs in low dimensions
(in particular, the quantity 1

d
log2

kb1k
vol.L/1=d is lower), but converges to a limit when

the dimension increases. The mean value of the j�i;i�1j’s is close to 0:38, and the

mean value of
kb�

i�1
k

kb�

i
k is close to 1:04, which matches the above constant 1:02. One

may wonder if the geometry of “average” LLL-reduced bases is due to the fact that
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Fig. 5.9 Distribution of the local bases after LLL (left) and deep-LLL (right)

most LLL-reduced bases are indeed of this shape, or if the LLL algorithm biases
the distribution. It is hard to decide between both possibilities: one would like to
generate randomly and uniformly LLL-reduced bases of a given lattice, but it is
unknown how to do it efficiently; for example, the number of LLL-reduced bases of
a given lattice grows far too quickly when the dimension increases.

On the right hand-side of Fig. 5.9, we did the same experiment except that we
replaced LLL by the Schnorr-Euchner deep insertion algorithm [53] (see also [48]),
which is a variant of the LLL algorithm where the Lovász condition is changed into
the stronger requirement:

8� � d;8i < �; ı � kb�i k2 �
						

b�� C
��1X

jDi

��;j b�j

						

2

:

The quality of the local bases improves by considering the deep insertion algo-
rithm, the constant 1:04 becoming � 1:025, for close to optimal parameters ı
and . These data match the observations of [9] on the output quality improvement
obtained by considering the deep insertion algorithm.

Practical Running-Time

The floating-point LLL algorithms seem to run much faster in practice than the
worst-case theoretical bounds. We argue below that these bounds should be reached
asymptotically for some families of inputs. We also heuristically explain why the
algorithms terminate significantly faster in practice. We will consider bases for
which n D �.d/ D O.logB/, so that the worst-case bound given in Theorem 2 is
simplified to O.d 5 log2 B/.

The worst-case analysis of the L2 algorithm given in Section “The Provable
Floating-Point LLL Algorithms” seems to be tight for Ajtai-type random bases.
More precisely: if a > 1 is fixed and d grows to infinity, the average bit-complexity
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Fig. 5.10 Number of loop iterations of L2 for Ajtai-type random bases

of the L2 algorithm given as input a randomly and uniformly chosen d -dimensional
Ajtai-type basis with parameter a seems to be �.d 5C2a/ (in this context, we
have logB� da).

When L2 is run on these input bases, all the bounds of the heuristic analysis but
one seem tight, the exception being the O.d/ bound on the size of the X ’s (com-
puted at Step 6 of the L2 algorithm, as described in Fig. 5.5). First, theO.d 2 logB/
bound on the loop iterations seems to be tight in practice, as suggested by Fig. 5.10.
The left side of the figure corresponds to Ajtai-type random bases with a D 1:2: the
points are the experimental data and the continuous line is the gnuplot interpo-
lation of the form f .d/ D c1 � d 3:2. The right side of the figure has been obtained
similarly, for a D 1:5, and g.d/ D c2 � d 3:5. With Ajtai-type bases, size-reductions
rarely contain more than two iterations. For example, for d � 75 and a D 1:5, less
than 0:01% of the size-reductions involve more than two iterations. The third bound
of the heuristic worst-case analysis, i.e., the number of arithmetic operations within
each loop iteration of the lazy size-reduction, is also reached.

These similarities between the worst and average cases do not go on for the size
of the integers involved in the arithmetic operations. The X ’s computed during the
size-reductions are most often shorter than a machine word, which makes it difficult
to observe the O.d/ factor in the complexity bound coming from their sizes. For
an Ajtai-type basis with d � 75 and a D 1:5, less than 0:2% of the nonzero X ’s
are longer than 64 bits. In the worst case [42] and for close to optimal parame-
ters ı and , we have jX j <� .3=2/�M , where M is the maximum of the j��;j j’s
before the lazy size-reduction starts, and � is the current LLL index. In practice,
M happens to be small most of the time. It is essentially the length ratio between b�

and the smallest of the bi ’s for i � �: it is very rare that the lengths of the basis
vectors differ significantly in a nonnegligible number of loop iterations during an
execution of the LLL algorithm. It can be argued (see [43] for more details), using
the generic geometry of LLL-reduced bases described previously, that the aver-
age situation is jX j � .1:04/��iM , if X is derived from ��;i . This bound remains
exponential, but for a small M , the integer X becomes larger than a machine word
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only in dimensions higher than several hundreds. We thus expect the jX j’s to be of
length <� .log2 1:04/ � d � 0:057 � d . For example, the quantity .1:04/d becomes
larger than 264 for d � 1100. Since it is not known how to reduce lattice bases
which simultaneously have such huge dimensions and reach the other bounds of the
heuristic worst-case complexity analysis, it is, at the moment, impossible to observe
the asymptotic behaviour. The practical running time is rather O.d4 log2 B/.

One can take advantage of the fact that most X ’s are small by optimising
the operation b� WDb� C Xbi for small X ’s. For example, one may consider the
cases X 2 f�2;�1; 1; 2g separately. One may also use fast multiply-and-add opera-
tions, as available in Pierrick Gaudry’s GNU MP patch for AMD 64 processors2.

Furthermore, in many situations, a much better running-time can be observed. Of
course, it highly depends on the input basis: if it is already reduced, it will terminate
very quickly since there will be no more than d loop iterations. But this can also
happen for bases that are very far from being reduced, such as knapsack-type bases.
In this case, two facts improve the running-time of LLL. First, the number of loop
iterations is onlyO.d logB/ instead ofO.d 2 logB/ in the worst-case: this provably
provides a O.d 4 log2 B/ worst-case complexity bound for these lattice bases (from
Theorem 2). Second, the basis matrix entries become very short much sooner than
usual: if the maximum value of the index � so far is some j , one can heuristically

expect the entries of the vectors bi for i < j to be of lengthO
�

1
j�1

logB
�

(see [43]

for more details). It is not known, yet, how to use this second remark to decrease the
complexity bound in a rigorous way, but one can heuristically expect the following
worst-case bound:

O

�
d logB � d2 � d � logB

d

�
D O.d 3 log2 B/:

Finally, by also considering the �.d/ gain due to the fact that the size-reduction
X ’s do not blow up sufficiently for dimensions that can be handled with today’s
LLL codes, we obtain a O.d 2 log2 B/ bound in practice (for a very large logB).

Numerical Behaviour

We now describe the practical error amplification of the GSO coefficients in the
L2 algorithm. To build the wrapper described in Section “A Thoughtful Wrapper”,
it is important to be able to guess up to which dimension a given precision will work,
for example the double precision, which is much faster than arbitrary precision. Is it
possible to predict the chance of success when using double precision? We suppose
here that we work with close to optimal parameters, i.e., ı close to 1 and  close
to 1=2, and with some precision ` lower than the provably sufficient � log2.3/ � d

2 http://www.loria.fr/�gaudry/mpn AMD64/

http://www.loria.fr/~gaudry/mpn_AMD64/
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precision. We do not consider the cancellations that may arise in the scalar product
computations. Two problems may occur: some lazy size-reduction or some consec-
utive Lovász tests may be looping forever. In both situations, the misbehaviour is
due to the incorrectness of the involved approximate Gram–Schmidt coefficients.
The output basis may also be incorrect, but most often if something goes wrong, the
execution loops within a size-reduction.

In practice, the algorithm seems to work correctly with a given precision for
much larger dimensions than guaranteed by the worst-case analysis: for example,
double precision seems sufficient most of the time up to dimension 170. This fig-
ure depends on the number of loop iterations performed: if there are fewer loop
iterations, one can expect fewer large floating-point errors since there are fewer
floating-point calculations. It can be argued that the average required precision
grows linearly with the dimension, but with a constant factor significantly smaller
than the worst-case one: for close to optimal LLL parameters and for most input
lattice bases, L2 behaves correctly with a precision of � 0:25 � d bits. The heuris-
tic argument, like in the previous subsection, relies on the generic geometry of
LLL-reduced bases.

Open Problems

Though studied and used extensively since 25 years, many questions remain open
about how to implement the LLL algorithm as efficiently as possible and about its
practical behaviour. Some open problems have been suggested along this survey. For
example, Section “Practical Observations on LLL” is essentially descriptive (though
some relations between the diverse observations are conjectured), and obtaining
proven precise results would help to understand more clearly what happens in prac-
tice and how to take advantage of it: the survey [62] formalises more precisely these
questions and answers some of them. We suggest here a few other lines of research
related to the topics that have been presented.

Decreasing the Required Precision in Floating-Point LLLs

Since processor double precision floating-point numbers are drastically faster than
other floating-point arithmetics (in particular arbitrary precision), it is tempting to
extend the family of inputs for which double precision will suffice. One way to do
this, undertaken by Schnorr [33,48,51], is to use other orthogonalisation techniques
like the Givens and Householder algorithms. These algorithms compute the Q (as
a product of matrices) and R factors of the QR-factorisation of the basis matrix.
The L2 algorithm relies on the Cholesky factorisation (computing the R factor from
the Gram matrix). Unfortunately, the condition number of the Cholesky factorisation
is essentially the square of the condition number of the QR-factorisation (see [26]
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for more details). With fully general input matrices, this heuristically means that one
needs approximately twice the precision with Cholesky’s factorisation than with the
QR-factorisation. Another significant advantage of relying on the QR-factorisation
rather than Cholesky’s is that the Gram matrix becomes superfluous: a large ratio of
the integer operations can thus be avoided, which should provide better running-
times, at least for input matrices having dimensions that are small compared to
the bit-sizes of their entries. Nevertheless, the Householder and Givens algorithms
have at least two drawbacks. First, they require more floating-point operations:
for d �d matrices, the Householder algorithm requires 4

3
d 3C o.d 3/ floating-point

operations whereas the Cholesky algorithm requires only 1
3
d 3 C o.d 3/ floating-

point operations (see [26]). And second, they suffer from potential cancellations
while computing scalar products (the first of the three drawbacks of the naive
floating-point LLL of Section “The Provable Floating-Point LLL Algorithms”). A
reduction satisfying our definition of LLL-reduction seems unreachable with these
orthogonalisation techniques. In [51], Schnorr suggests to replace the size-reduction

condition j�i;j j �  by j�i;j j �  C " kb
�

i
k

kb�

j
k for some small " > 0. So far, the best

results in this direction remain heuristic [48,51]: making them fully provable would
be a significant achievement. It would prove that one can double the dimension up
to which the double precision rigorously suffices, and provide a sounder insight on
the possibilities of such orthogonalisation techniques in practice.

To decrease the precision even further, one could strengthen the orthogonality
of the bases that we are reducing. To do this, deep insertions [53] (see also Sec-
tion “Practical Observations on LLL”) may be used, but this may become slow
when the dimension increases. Another alternative would be to perform a block-
type reduction (such as described in [19, 49]), for some small size of block: one
performs strong reductions such as Hermite-Korkine-Zolotarev (HKZ for short)
or dual-HKZ to make these small blocks extremely reduced and thus extremely
orthogonal. Indeed, a small size of block is sufficient to strengthen the overall
orthogonality of the basis, and if the block-size is small enough, the actual cost
of HKZ-reducing for this block-size remains dominated by the size-reduction step.

Asymptotically, a block-size k D �
�

log d
log log d

�
would satisfy these requirements.

In practice, a block-size below 15 does not seem to create a large running-time
overhead.

Using Floating-point Arithmetic in Other Lattice Algorithms

Replacing the text-book rational arithmetic by an approximate floating-point arith-
metic can lead to drastic theoretical and practical speed-ups. The counterpart is that
the correctness proofs become more intricate. One may extend the error analysis
strategy of the L2 algorithm to derive complete (without neglected error terms)
explicit error bounds for modifications of the LLL algorithm such as the algorithm
of Schönhage [55] and the Strong Segment-LLL of Koy and Schnorr [32]. Adapting
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these algorithms to floating-point arithmetic has already been considered [33, 51],
but often the provably sufficient precision is quite large in the worst case (linear
in the bit-size of the matrix entries), though better heuristic bounds outperform
those of L2 (see [51] and the survey [48] in this book). Developing high-level
techniques to prove such bounds would be helpful. Second, some lattice reduction
algorithms such as short lattice point enumeration, HKZ reduction and block-type
reductions [18,19,25,29,53] are usually implemented with floating-point numbers,
though no analysis at all has been made. This simply means that the outputs of these
codes come with no correctness guarantee. This fact is particularly annoying, since
checking the solutions of these problems is often very hard. Amazingly, devising
strong reduction algorithms based on floating-point arithmetic may help decreasing
the precision required for the LLL-reduction, as mentioned above.

Decreasing the Linear Algebra Cost

In all known LLL algorithms, the embedding dimension n is a factor of the overall
cost. This comes from the fact that operations are performed on the basis vectors,
which are made of n coordinates. This may not seem natural, since one could reduce
the underlying quadratic form (i.e., LLL-reduce by using only the Gram matrix),
store the transformation matrix, and finally apply it to the initial basis. Then the cost
would be a smaller function of n. We describe here a possible way to reduce a lattice
basis whose embedding dimension n is much larger than its rank d . It consists in
applying a random projection (multiplying the embedding space by a random d �n
matrix), reducing the projected lattice, and applying the obtained transformation to
the initial basis: one then hopes that the obtained lattice basis is somehow close to
being reduced, with high probability. Results in that direction are proved in [8]. This
strategy can be seen as a dual of the probabilistic technique recently introduced by
Chen and Storjohann [13] to decrease the number of input vectors, when they are
linearly dependent: their technique decreases the number of input vectors while the
one above decreases the number of coordinates of the input vectors.

Decreasing the Integer Arithmetic Cost

Finally, when the size of the matrix entries is huge and the dimension is small, one
would like to have an algorithm with a sub-quadratic bit-complexity (with respect
to the size of the entries). Both Euclid’s and Gauss’ algorithms have quasi-linear
variants (see [30, 54, 56, 64]): is it possible to devise an LLL algorithm which is
quasi-linear in any fixed dimension? Eisenbrand and Rote [17] answered the ques-
tion positively, but the cost of their algorithm is more than exponential with respect
to d . So we may restate the question as follows: is it possible to devise an LLL
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algorithm whose bit-complexity grows quasi-linearly with the size of the entries
and polynomially with the dimension?
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41. P. Nguyen and D. Stehlé. Low-dimensional lattice basis reduction revisited (extended abstract).

In Proceedings of the 6th Algorithmic Number Theory Symposium (ANTS VI), volume 3076 of
Lecture Notes in Computer Science, pages 338–357. Springer, 2004.

http://gmplib.org/


5 Floating-Point LLL: Theoretical and Practical Aspects 213
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44. P. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM Journal on
Computing, 39(3):874–903, 2009.

45. A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In Proceedings of Cryptol-
ogy and Computational Number Theory, volume 42 of Proceedings of Symposia in Applied
Mathematics, pages 75–88. American Mathematical Society, 1989.

46. A. M. Odlyzko and H. J. J. te Riele. Disproof of Mertens conjecture. Journal für die reine und
angewandte Mathematik, 357:138–160, 1985.

47. The SPACES Project. MPFR, a LGPL-library for multiple-precision floating-point computa-
tions with exact rounding. Available at http://www.mpfr.org/.

48. C. P. Schnorr. Hot topics of LLL and lattice reduction. This book.
49. C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theoretical

Computer Science, 53:201–224, 1987.
50. C. P. Schnorr. A more efficient algorithm for lattice basis reduction. Journal of Algorithms,

9(1):47–62, 1988.
51. C. P. Schnorr. Fast LLL-type lattice reduction. Information and Computation, 204:1–25, 2006.
52. C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and

solving subset sum problems. In Proceedings of the 1991 Symposium on the Fundamentals
of Computation Theory (FCT’91), volume 529 of Lecture Notes in Computer Science, pages
68–85. Springer, 1991.

53. C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and
solving subset sum problems. Mathematics of Programming, 66:181–199, 1994.

54. A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica, 1:
139–144, 1971.

55. A. Schönhage. Factorization of univariate integer polynomials by Diophantine approximation
and improved basis reduction algorithm. In Proceedings of the 1984 International Colloquium
on Automata, Languages and Programming (ICALP 1984), volume 172 of Lecture Notes in
Computer Science, pages 436–447. Springer, 1984.

56. A. Schönhage. Fast reduction and composition of binary quadratic forms. In Proceedings of
the 1991 International Symposium on Symbolic and Algebraic Computation (ISSAC’91), pages
128–133. ACM, 1991.

57. G. Schulz. Iterative Berechnung der reziproken Matrix. Zeitschrift für Angewandte Mathematik
und Mechanik, 13:57–59, 1933.

58. I. Semaev. A 3-dimensional lattice reduction algorithm. In Proceedings of the 2001 Cryptogra-
phy and Lattices Conference (CALC’01), volume 2146 of Lecture Notes in Computer Science,
pages 181–193. Springer, 2001.

59. V. Shoup. NTL, Number Theory CCC Library. Available at http://www.shoup.net/ntl/.
60. A. Storjohann. Faster algorithms for integer lattice basis reduction. Technical report, ETH
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Chapter 6
LLL: A Tool for Effective Diophantine
Approximation

Guillaume Hanrot

Abstract The purpose of this paper is to survey in a unified setting some of the
results in diophantine approximation that the LLL algorithm can make effective in
an efficient way. We mostly study the problems of finding good rational approxi-
mations to vectors of real and p-adic numbers, and of finding approximate linear
relations between vectors of real numbers. We also discuss classical applications of
those effective versions, among which Mertens’ conjecture and the effective solution
of diophantine equations.

Introduction

The invention of the LLL lattice basis reduction algorithm in 1982 [1] was a key
advancement in the development of fast algorithms in number theory. Its main fea-
ture was to provide the first notion of lattice basis reduction which was at the same
time sufficiently sharp and could be computed efficiently. Since then, it has been
used in a variety of situations for algorithmic purposes. Its constructive facet is the
fact that it can be used to “make things small.” We shall mostly use its ability to find
“small” linear combinations of integers or real numbers, or good rational approxi-
mations to real or p-adic numbers. Its negative facet is the fact that it makes things
“almost smallest possible,” which means that nothing much smaller can exist, in a
precise and quantitative way.

In this survey, we will stress out the links of LLL with the theory of diophan-
tine approximation. Many results in number theory, especially (but not only) in the
field of diophantine approximation and diophantine equations are proved through
the use of some kind of a pigeonhole principle, and especially through the use of
Minkowski’s first theorem. It thus comes as no surprise that the LLL algorithm can
be used to provide one with “effective” versions of those theorems. We review some
of those results and their LLL-based effective versions in the present survey.
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Most of the results presented in this survey belong to algorithmic number theory
community folklore, but they might not always be written in a precise form. It is a
widely known fact that LLL finds small linear relations, good simultaneous approx-
imations, and can be used to get lower bounds for (in)homogeneous linear forms
with bounded coefficients. As such, we do not claim any original result in this sur-
vey. Our goal is just to present all those results in a somewhat unified setting, and
to discuss some striking applications in number theory. We might have forgotten to
give due credit for some of the results described above; in that case, it is simply due
to ignorance.

We have tried to give precise results whenever possible for the “building blocks”
of all our applications. The fact that these building blocks can be stated in simple
terms and that the proofs are short and simple appeals for completeness. On the other
hand, the applications that we discuss usually involve deep and technical number
theory. For those aspects, hence, we decided to rather adopt a more informal style,
trying to emphasize upon the link with LLL, and giving only sufficient hints about
the theory to allow the reader to understand where and how LLL comes into play.

In a nutshell, the results we discuss split into two parts, the constructive results,
and the negative ones. This comes from the fact that the main result about LLL can
be seen under two different viewpoints: LLL builds a small vector or LLL builds an
almost smallest vector. In other words, LLL shall be used either to construct a small
object (relation, approximation) or to prove that no very small object exists.

In the present survey, we focus on two types of results, simultaneous diophantine
approximation and small values of linear forms, and on some of their applications.

(Simultaneous) approximation. A classical theorem by Dirichlet asserts that for
x1; : : : ; xn real numbers, and for Q a parameter, one can find q < Qn such that
jqxi � pi j � 1=Q for some integers pi . In the case n D 1, the very classical theory
of continued fractions provides one with an effective version of this result, i.e., a
simple way to construct the integer q.

In an higher dimensional setting, however, the effective side is much poorer.
We shall show how Dirichlet’s theorem can be made effective, though we shall lose
some factors with respect to the (optimal) result stated above.

We shall discuss two applications of this technique. The first one is the striking
application to the study of the Mertens’ conjecture initiated by Odlyzko and te Riele
in the mid-80s. The second one is a negative result (see below for discussion on
constructive and negative aspects of the applications of LLL) on inhomogeneous
approximation.

Small values of linear forms. The dual problem of the simultaneous approxima-
tion problem is, given one linear form

Pn
iD1 �ixi , where the xi are fixed real (or

p-adic) numbers, to find integers �i such that
Pn

iD1 �ixi is as small as possible.
Exact linear relations. In the case where the xi are linearly dependent over Z, or

for instance when the xi are integers, one can find exact linear relations. The size of
those relations is controlled by a result called Siegel’s lemma, which is at the core
of the construction of many “small” auxiliary objects; for instance, constructing a
polynomial of small height with roots at some given points. If one sees the set of
the relations between the xi as a Z-module, then, one can use LLL on the basis of
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this (discrete) module to build small relations between xi . This is at the core of a
recent approach of Dokchitser to build extremal cases for Masser–Oesterlé’s ABC
conjecture.

Approximate linear relations. In the case where the xi are linearly independent
over Z, we can no longer hope for an exact linear relation; we shall thus con-
tent ourselves with approximate relations, ie n-uples of “not too large” integers
.�1; : : : ; �n/ such that

Pn
iD1 �ixi is as small as possible. We shall also discuss

the inhomogeneous case
Pn

iD1 �ixi C xnC1.
In that case, both constructive results and negative ones have important appli-

cations. On the constructive side, let us quote the ability to find the minimal
polynomial of an algebraic number. On the negative side, those results are at the
core of algorithms based on Baker’s method for solving certain families of Dio-
phantine equations, since in that setting solutions correspond to extremely small
values of linear forms; those values must be so small that LLL can be used to prove
that they do not exist.

Roadmap of the paper. Section “Facts and Notations About the LLL Algorithm”
reviews the basic definitions and the main results about LLL-reduced bases. The
next two sections are the most technical of this survey, and develop our building
blocks. Section “Approximation by Rationals” studies approximation of real num-
bers by rationals and its applications, whereas Section “Linear Relations” studies
small values of homogeneous and inhomogeneous linear forms. Then, we apply
the material of these two technical sections to the solution of Diophantine equa-
tions in Section “Applications to Diophantine Equations”, to the approximation by
algebraic numbers in Section “Approximation by Algebraic Numbers”. Finally, we
briefly discuss what we might call solving diophantine inequalities, i.e., algorithms
to find integer or rational points close to a variety.

Notations and conventions. If x; y are two real numbers, we define x cmody as
being the element of x C Zy lying in the interval .�y=2; y=2�, and bxe as x �
.x cmod 1/ 2 Z. Finally, we note d.x;Z/ D jx cmod1j. Similarly, if x is a p-adic
integer, we define x cmodp` as being the element of .�p`=2; : : : ; p`=2� congruent
to x modulo p`.

We use boldface letters to denote vectors. We use the notations f D O.g/ or
f � g with their classical meaning, i.e., jf .x/j � cjg.x/j for some constant c and
x large enough.

Finally, when describing an algorithm, we assume that each real, complex or
p-adic number is an oracle which returns one bit of the corresponding number at
each call.

Facts and Notations About the LLL Algorithm

In order to make this survey as self-contained as possible, we review some basic
facts about the LLL algorithm. We refer to other texts in this volume for fine
algorithmic and complexity details concerning LLL.
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Lattices

In all the sequel, R
n is endowed with its canonical euclidian structure, i.e., if x D

.xi /1�i�n 2 R
n and y D .yi /1�i�n 2 R

n, we note .xjy/ DPn
iD1 xiyi , and we put

kxk D .xjx/1=2.
A d -dimensional lattice L of R

n is a discrete subgroup of R
n of rank d , which

means that there exists vectors b1, : : : , bd 2 R
n, linearly independent over R, such

that
L D ˚d

iD1Zbi :

In practice, we shall always consider rational, and almost always integral lattices,
i.e., assume that L � Q

d or Z
d , or equivalently that bi 2 Q

d or Z
d for all i . This

is critical for computational purposes, since this allows one to avoid the difficult
problem of numerical stability of lattice basis reduction and of the corresponding
algorithms.

The volume, or discriminant of L is the quantity vol.L/ D pdet..bi jbj //. In the
case d D n, this volume can also be written as vol.L/ D j det.bi /j.

We start by recalling Minkowski’s first theorem:

Theorem 1. Let L be a d -dimensional lattice, and C a compact, convex set,
symmetric with respect to 0, with vol.C / � 2d vol.L/. Then C \ L ¤ f0g.

Applied to the d -dimensional sphere, this yields the following corollary:

Corollary 1. There exists a constant �d such that

min
x2L�f0g

kxk � p�d .vol.L//1=d :

The optimal value of the constant �d is known for d � 8 and d D 24, and one
has �d � .d C 4/=4 for all d .

Proof. See e.g., Martinet [2] and Cohn and Kumar [3]. ut

LLL Reduced Bases

Let b1; : : : ;bd 2 R
n be linearly independent vectors. The Gram–Schmidt orthogo-

nalization procedure constructs orthogonal vectors b�i defined by the fact that b�i is
the orthogonal projection of bi on .Rb1 ˚ � � � ˚Rbi�1/

?.
More explicitly, one has

b�i D bi �
i�1X

kD1

�ikb�k;

with �ik D .bi jb�k/=.b�kjb�k/ for k < i .
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We say that a basis .b1; : : : ;bd / is LLL-reduced if

– For all k < i , j�ikj � 1=2;
– For all i , 3

4
kb�i k � k�iC1;i b�i C b�iC1k.

From a practical viewpoint, the second condition (often called Lovasz’ condition)
implies, using the first, that kb�iC1k � kb�i k=2. Good bases are almost orthogonal,
i.e., that the sequence kb�i k should not decrease too quickly is one of the ideas of
lattice basis reduction.

Remark 1. One can define the notion of t-LLL reduction, where the factor 3=4 of
the second (Lovász’s) condition is replaced by 1 > t > 1=4.

SVP and CVP

One of the main features of the LLL algorithm is to be a polynomial-time approx-
imation algorithm for the shortest vector problem (henceforth SVP), and to yield
a polynomial-time approximation algorithm for the closest vector problem (hence-
forth CVP). We shall review this in Theorems 2 and 3.

The SVP and the CVP problems, especially their computational versions, are at
the core of the questions studied in this survey. The computational version of the
SVP problem is defined as follows:

Given a basis b1; : : : ; bd 2 Z
n of a lattice L, compute an x such that

kxk D min
y2L�f0g

kyk:

The computational version of the CVP problem is defined by:

Given a basis b1; : : : ; bd 2 Z
n of a lattice L and a vector t 2 Z

n, compute an
x such that

kx � tk D min
y2L
ky � tk:

Both of these problems are considered to be hard ones, and precise hardness
results exist on both problems, even if one allows rather large approximation factors
(e.g., 2.log d/1�"

for SVP [4]). We shall not discuss this subject at length, and rather
refer to Regev’s survey in this volume. We refer to [5,6] for algorithms for SVP and
CVP.

From our point of view, LLL (together with Babai’s nearest plane algorithm in
the case of CVP) is an approximation algorithm, with an approximation factor expo-
nential in the dimension only. Stronger notions of reduction improve very slightly
on this in polynomial time [7], but one is still very far away from a polynomial
approximation factor.
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LLL as an Approximation to SVP

The main properties of LLL-reduced bases that we shall use in the sequel are
summed up in the following theorem.

Theorem 2. Let u1; : : : ;ud 2 Q
n be R-linearly independent vectors. One can

compute in polynomial time in d , n, and log maxi kuik an LLL-reduced basis
.b1; : : : ;bd /. Further, in that case,

kb1k � 2.d�1/=4vol.L/; (6.1)

min
x2L�f0g

kxk � 2.1�d/=2kb1k: (6.2)

More generally, for any x1; : : : ; xt linearly independent vectors in L, we have

max.kx1k; kx2k; : : : ; kxtk/ � 2.1�d/=2kbj k; 1 � j � t: (6.3)

For detailed proofs, we refer to the original paper [1] or Cohen’s book [8]. The
first part of the result shall be used on the constructive side, where we want to
compute a short vector in a lattice, the volume of which is known. The second part
shall be used on the negative side, where we compute an LLL-reduced basis of a
lattice L and want a lower bound on minx2L�f0g kxk.

For the subjects discussed in this paper, stronger notions of reduction might
actually yield better results than LLL algorithm.

Remark 2. The assumption that the vectors are linearly independent is not neces-
sary, as was shown by Pohst [9].

Remark 3. In the case of a t-LLL reduced basis (see Remark 1), the approx-
imation factor 2.d�1/=2 is replaced by .2=

p
4t � 1/d�1, and 2.d�1/=4 becomes

.2=
p
4t � 1/.d�1/=2. In the sequel, we shall state our results for LLL-reduced basis,

i.e., t D 3=4, but one can obtain the same results in polynomial time for any t < 1.
In practice, some “black-box” implementations use t D 0:99 or 0:999.

Remark 4. The bound minx2L�f0g kxk � 2.1�d/=2kb1k can often be somewhat
improved in a specific example by using the bound

min
x2L�f0g

kxk � min
1�i�d

kb�i k:

Babai’s Algorithm: LLL as an Approximation to CVP

Babai’s Algorithm

In the Euclidean setting, one finds the coordinates of a given vector x 2 R
n

over a basis M D .b1; : : : ;bd /, for example, by computing the vector M�1x.
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Alternatively, the last coefficient xd can be computed as .b�d jx/=kb�dk2, where
.b�1; : : : ;b�d / is the Gram–Schmidt basis associated to .b1; : : : ;bd /.

A natural idea (sometimes called Babai’s first algorithm) when dealing with the
CVP problem is to round the exact solutionM�1x. Babai’s nearest plane algorithm
[10] is also based on this, but refines the idea neatly. Indeed, rounding for each coor-
dinate introduces an error. This error should definitely not be ignored, but instead
be reinjected into x at each step, so that it is taken into account when computing the
next coordinates. This gives Algorithm 2.5.1.

Algorithm:ApproximatedCVP

Data: An LLL-reduced basis B ; a vector v
Result: An approximation to the factor 2d=2 of the CVP of v
begin

t D v
for (j D d ; j 
 1 ; j - -) do

t D t�
j

ht;b�

j i

hb�

j ;b
�

j i

m
bj

end
return v� t

end
Algorithm 1: Babai nearest Plane algorithm

This algorithm is independent of the basis .bi / irrespective of the fact that it is
reduced or not. However, as pointed out, it performs much better when the .b�i / are
not too small, for instance when the basis is LLL-reduced.

Theorem 3. Let b1; : : : ;bd be an LLL-reduced basis of a lattice. For any t 2
˚d

iD1Rbi , Babai’s algorithm outputs a vector x of the lattice such that

kx � tk � 1

2

 
dX

iD1

kb�i k2
!1=2

� 2d=2 min
y2L
ky � tk:

For a proof, one can for instance consult Lovasz’ book [11].

Remark 5. We can give an analog of Remark 4:

Proposition 1. Let b1; : : : ; bd be d vectors in R
n, and write t DPd

iD1 ti b
�
i . Then,

Babai’s algorithm outputs a vector x D Pd
iD1 xi b�i of the lattice such that, for all

y 2 L,

ky � tk � min
1�j�d

0

@1
4
kb�j k2 C

dX

iDjC1

.xj � tj /2kb�j k2
1

A
1=2

:

Proof. If x is the output of Babai’s algorithm, write x D Pd
iD1 xi b�i , and for any

vector y 2 L, write y DPd
iD1 yi b�i . Let j be the largest index such that yj ¤ xj .
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Then,

ky � tk2 D
jX

iD1

.yj � tj /2kb�j k2 C
dX

iDjC1

.xj � tj /2kb�j k2:

The construction of x in Babai’s algorithms shows that jyj � tj j � 1=2; hence,
we have

ky � tk2 � 1

4
kb�j k2 C

dX

iDjC1

.xj � tj /2kb�j k2:
ut

In the literature, Babai’s nearest plane algorithm is often replaced by the concep-
tually simpler Babai’s first algorithm, i.e., rounding M�1v. In that case, de Weger
[12] proved the lower bound

min
y2L
ky � tk � d.xi0 ;Z/kb�i0k

where i0 D maxf1 � i � d I xi 62 Zg. If i0 D �1, the lower bound should be
understood as 0.

Overall Strategy

Since many results in diophantine approximation make use of Minkowski’s theo-
rem, LLL has a natural role to play as an (approximate) effective counterpart. We
shall obtain two types of results. The “constructive” type is the existence of certain
small linear relations with not too large coefficients. It follows from inequality. The
“negative” results rest only on the optimality of LLL, and are used to get lower
bounds on linear forms with bounded coefficients.

General Comments on the Positive Side

On the positive side, there is usually a double loss of quality with respect to the clas-
sical, more or less optimal results known in the field of diophantine approximation.

First, we are doomed to lose an exponential factor in the dimension due to the
fact that LLL only yields an approximation to SVP/CVP (via Babai’s algorithm
described in Section “Babai’s Algorithm”. This approximation factor involves only
the dimension, not the size of the defining matrix. For lattices of fixed dimension
and size of the matrix tending to infinity, LLL thus often performs quite well; when
the dimension varies, a detailed heuristic analysis was undertaken by Nguyen and
Stehlé [13], who proved that one should indeed expect to lose a small exponential
factor.

This factor can be removed if one is ready to pay the (exponential time at least,
see [5, 14]) computing price of an exact CVP/SVP. In that case, one will still lose
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a factor
p
�k �

p
k, which corresponds to going from an L2-type result to an

L1-type result.

Second, in the archimedean case, the restriction that we are bound to work with
integers will often make us replace a real number x by the integer round bCxe for a
large constantC . We then have to go back to the original problem. This accounts for
the loss of a small constant factor, which can go up to

p
n in the case of the search

for linear relations. In the non-archimedean case, this problem does not occur.

General Comments on the Negative Side

On the negative side, we are trying to prove that certain linear relations cannot exist
with small coefficients. However, whereas in the positive side we have guarantees
that the object we are looking for exists, on the negative side, no such guarantee
exists. Indeed, in general, we are trying to prove that relations of a certain kind
between real numbers do not exist. But it may happen that such a relation exists in
some situations, and in those situations, a direct application of the theorems stated
there is bound to fail.

In that case, what one can do and should try to do is assume that the very small
relation found is a true relation, and modify the theorems stated there so as to prove
that the only approximate linear relations that exist are those colinear to the true
relation. This is done by replacing the Inequality (6.2) by Inequality (6.3) in the
proofs.

Approximation by Rationals

An old problem in number theory is to find good rational approximations to given
real numbers, and the classical case of one real number is addressed by the theory of
continued fractions. Apart from its own interest, being able to get good simultaneous
approximation is a very useful building block for other algorithms. This application
of LLL was already discussed in the original paper [1], in [15] and in [11].

The Archimedean Case

In this section, we are given n real numbers x1; : : : ; xn, and we are looking for
approximations to the xi with a common denominator q, i.e., such that jqxi�bqxiej
is small for all i . We first review the theory of the problem and then discuss how the
LLL algorithm can be used to make it constructive.

Theoretical Results

These results go back to Dirichlet, and are based on the pigeonhole principle, which
is in some sense constructive but yields algorithms inherently exhaustive; though
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one can find similarities between this approach and randomized algorithms for the
SVP and CVP problems due to Ajtai et al. [5].

Theorem 4 (Dirichlet). Let .xi /1�i�n be real numbers. For any integer number
Q, there exists 0 < q � Qn such that for all i ,

max
1�i�n

jqxi � bqxiej < 1

Q
:

Proof. Consider the set S WD f.qxi cmod1/1�i�n; q 2 Œ0;Qn�g � U WD
.�1=2; 1=2�n. If one splits U into the followingQn parts, for v 2 f0; : : : ;Q � 1gn,

Uv D
nY

iD1

�
�1
2
C vi

Q
;�1
2
C vi C 1

Q

�
;

then there exists a v such that two points of S are in the same Uv. This means that
there exists q1 ¤ q2 such that for all i ,

j.q1xi cmod1/� .q2xi cmod1/j < 1=Q;

which proves our claim by taking q D jq1 � q2j. ut
Recall that the exponent 1=n is best possible for almost all n-uples .x1; : : : ; xn/ 2

Œ0; 1/n (i.e., for all, except maybe a set of Lebesgue measure 0). The following
weighted version is a straightforward generalization.

Theorem 5. Let x1; : : : ; xn be real numbers, and w1; : : : ;wn be positive real
numbers such that

Qn
iD1 wi D 1.

For any integerQ, there exists 0 < q � Qn such that

max
1�i�n

wi jqxi � bqxiej < 1

Q
:

We now study the very classical case n D 1, which is based on the theory of
continued fractions; we shall see how part of the results of this theory can be recov-
ered using lattice basis reduction. Then, we shall generalize the LLL approach to
the general case.

Algorithms – Univariate Case

In the univariate case, we are simply trying to get good approximations of a real
number x. This case is settled by the classical continued fraction theory, but we shall
see that it can also be dealt with using lattice basis reduction, the main advantage
being that the latter approach generalizes to higher dimensions.

For completeness, review shortly the theory of continued fractions. A complete
account can be found in [16–18].
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Recall that if � D �0 is a real number, we can define a sequence ai of integers by

ai D b�ic; �iC1 D .�i � ai /
�1;

where the process stops if �i is an integer, which happens for some i iff. � is a
rational number.

Using the sequence ai , we can build sequences pi ; qi of integers by p�1 D
q0 D 0, p0 D q�1 D 1, �

piC1 D aipi C pi�1

qiC1 D aiqi C qi�1:
(6.4)

The sequences .pi=qi /i�1 define a sequence of best approximations to � in a
very precise sense, which we describe in the following theorem.

Theorem 6. Let � be a real number, and .pi /; .qi / be the integer sequences defined
above. Then, for all i , one has

ˇ̌
ˇ̌� � pi

qi

ˇ̌
ˇ̌ � 1

qiqiC1

;

and for all q < qiC1,
jqix � pi j � jqx cmod 1j:

The strength of continued fractions is to give an optimal answer to an important
problem, and to do it in a very efficient way. One can compute the largest qi � Q in
time O.M.logQ/ log logQ/, where M.n/ is the complexity of the multiplication
of two numbers of size n, i.e., M.n/ D O.n.logn/2log�.n// [19], at the time this
survey is written. The corresponding algorithm is described e.g., in [20].

The generalizations of this theory are far from being satisfactory. Either they
give a more or less satisfactory theoretical answer, but do not give any practical
algorithm; or we have an efficient algorithm, but the result is not satisfactory from a
theoretical point of view.

The Two-Dimensional LLL Algorithm

An often better way to understand the continued fraction algorithm is to write it
down in matrix form. The iteration (6.4) can be rewritten as:

M.i/ WD
�
qi qiC1

pi piC1

�
D M.i � 1/ �

�
0 1

1 ai

�
;

with M.�1/ D I2.
In this form, we see that the matrix M.i/ is in GLn.Z/, and also that

�
1 0

�C� C
�
M.i/ D

�
qi qiC1

C.pi � qi�/ C.piC1 � qiC1�/

�
:
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If C is chosen so that qi � C.pi � qi�/, the right hand side matrix looks very
much like an LLL-reduced matrix. We can thus try to proceed in the reverse way,
and recover good approximations of � by reducing the lattice LC .�/ generated by
the columns of the matrix �

1 0

�C� C
�
:

Theorem 7. Let � be a real number, and C a positive real number. If .u; v/ is the
shortest vector ofLC .�/, then u is the denominator of a convergent of the continued
fraction expansion of �, with juj � 2p

3

p
C .

Proof. Assume that this is not the case, and let .pn; qn/ be the largest convergent
with pn < u. Then, it is known that jpn�qn�j � ju��bu�e j � ju�� vj, and hence

p2
n C C jpn � qn�j2 < u2 C C ju� � vj2;

contradicting the fact that .u; v/ is minimal.
The remaining part comes from Minkowski’s first theorem applied to LC , and

the fact that the Hermite constant in dimension 2 is 4=3. ut
Note that in dimension 2, we have an efficient algorithm (Gauß’ algorithm [21])

to solve the SVP. Unfortunately, we have little control on the convergent which is
returned; in particular, this is not the largest convergent with denominator less than
2
p
C=3.

Example 1. The very good approximation 355/113 of 	 is obtained by this pro-
cess for C up to 1:19 � 109. In contrast, the denominator of the next convergent is
33102 < 2=

p
3
p
1:19 � 109. In the same spirit, one can build examples where the

second vector of a (Gauß-)reduced basis is not a convergent, for example, for � D 	
and C D 103.

As a final remark, if one wants to apply this method, in practice one will replace
C� by bC�e to deal with an integral lattice. In that case, the first vector is a con-
vergent of the continued fraction expansion of bC�e =C , which we can expect to
coincide with the continued fraction expansion of � up to denominators of the order
of
p
C . Heuristically, thus, we still should get a convergent of �, or something quite

close. Formally, if .q; p�q bC�e/ is the first vector of a Gauss-reduced basis of the
lattice generated by the columns of

L0C .�/ D
�

1 0

�bC�e C
�
;

we have, for q0 < q,

jq0 bC�e � Cp0j � jq bC�e � C bq�e j;
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from which we deduce

jq0� � p0j � jq� � bq�e j � q

C
� jq� � bq�e j � 2p

3C
;

so that bq�e =q is almost a best approximation of � itself. Note that we still have
q � 2

p
C=3 in that case.

Algorithms: Multivariate Case

Having somehow reformulated the problem in terms of lattices in the univariate
case, we can generalize the results to the multivariate case. Since the general the-
ory of simultaneous approximation is much poorer than the univariate case, the
optimality assertion below is by far not as good as previously. Further, in higher
dimension, we shall need to replace SVP by the LLL algorithm in order to get
efficient algorithms, thus losing an exponential factor.

Theorem 8. Let Q be a positive integer; let .x1; : : : ; xn/ be n real numbers. There
is a deterministic polynomial time algorithm which finds an integer q � 2n=4Qn

such that
max

1�i�n
jqxi � .qxi cmod 1/j � p5 � 2.n�4/=4Q�1:

Proof. Let C1; : : : ; Cn be positive integers to be chosen in the course of the proof,
and consider the lattice generated by the columns of the matrix

0

BBBBB@

1 0 0 : : : 0

bC1x1e C1 0 : : : 0

bC2x2e 0 C2 : : : 0
::: 0 0

: : :
:::

bCnxne 0 0 : : : Cn

1

CCCCCA
:

The dimension of this lattice is nC 1; its volume is C1 : : : Cn. Thus, in view of
Inequality (6.1), the LLL algorithm finds a vector .q; r1; : : : ; rn/t of L of size at
most

� WD 2n=4.C1 : : : Cn/
1=.nC1/:

Define pi D bqxie. We have jCiri � q bCixie j � jCipi � q bCixie j, so that

q2 C
nX

iD1

.Cipi � q bCixie/2 � q2 C
nX

iD1

.Ciri � q bCixie/2 � �2:

In particular, q � �; and max1�i�n jCipi � q bCixie j � �: Since jCipi �
q bCixie j � Ci jpi � qxi j � q=2, we see that
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jpi � qxi j � C�1
i .jCipi � q bCixie j C q=2/ :

Furthermore, when u2C v2 � A, one has uC v=2 �
p
5A=2, so that q � � and,

for all i , jpi � qxi j �
p

5
2Ci

�.

Taking Ci D C for i � 1, we see that it suffices to choose C D QnC1 to get q
as claimed and

jpi � qxi j �
p
5

2
2n=4Q�1:

ut
We can also somehow prove some kind of semi-optimality assertion on the result.

By Inequality (6.2), for all q0, the corresponding vector .q0; bq0x1e ; : : : ; bq0xne/ has
length

q02 C
nX

iD1

.Cp0i � q0 bCxie/2 � 2�n

 
q2 C

nX

iD1

.Cpi � q bCxie/2
!
:

Assume that q0 � q. If one wants a more tractable bound, for instance in the L1
form, this can be rewritten as

max
1�i�n

�
C jp0i � q0xi j C

�
1

2
C 1p

n

�
q0
�2

� 2�1�n

n
max

1�i�n
.C jpi � qxi j C 1

2
q/2;

or, finally

max
1�i�n

jp0i � q0xi j � 2.�1�n/=2

p
n

max
1�i�n

jpi � qxi j � q

C

p
nC 2 � 2.�3�n/=2

2
p
n

Lagarias [15] has obtained a similar result in a stronger sense of optimality, i.e.,
comparing q with the best q0 smaller than Qn. In order to achieve this, however,
he has to reduce O.n logQ/ to different matrices, replacing the 1 in the upper left
corner by powers of 2 less thanQn.

The previous theorem extends, by modifying the choice of theCi , to the weighted
case:

Theorem 9. Let Q be a positive integer, and wi be positive rational numbers
normalized so that

nY

iD1

wi D 1:

One can find in deterministic polynomial time in the bitsizes ofQ, wi , an integer
q � 2n=4Qn such that

max
1�i�n

wi d.qxi ;Z/ �
p
5 � 2.n�4/=4Q�1:
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Proof. Let z be the least common multiple of the denominators of the wi . Then, use
the same matrix as above but take Ci D zwiQ

nC1 and replace the top coefficient 1
by z. ut

In this last statement, one should be careful that the complexity also depends on
the bitsize of the wi . Usually, this problem occurs with real weights wi ; what this
means is that one should replace the wi by good rational approximations with not
too large denominators.

Remark 6. In the last two theorems, we have chosen to lose a factor of 2n=4 on both
sides, i.e., on the size of q and on the quality of the approximation, in order to get
a “symmetric” result. Of course, by varying C , one can get a factor of that type on
one side only, as in [1].

The p-Adic Case

Usually, in diophantine approximation, any result valid on approximation of a real
or complex number extends to the p-adic case. Here, the above discussion general-
izes mutatis mutandis to the p-adic case as indicated briefly in this subsection. The
corresponding question is sometimes (especially in the univariate case) called ratio-
nal reconstruction. One can find a complete discussion of this problem for example
in [20].

Good Rational Approximations

Finding a good rational approximation of small height of a given p-adic number x
is finding two small integers ` and q such that the p-adic valuation of qx � ` is as
large as possible, or equivalently that

qx � ` D 0 mod pk

for k as large as possible. From an algorithmic point of view, we shall fix k and try
to find a pair .q; `/ as small as possible.

We shall assume that x is a p-adic integer, i.e., vp.x/ � 0; otherwise, one
replaces x by xp�vp.x/, and there is a one-to-one correspondence between rational
approximations of x and of xp�vp.x/.

In the sequel, we fix a prime number p and p-adic numbers x1; : : : ; xn. The
analog of Dirichlet’s theorem is as follows.

Theorem 10. Let x1; : : : ; xn be p-adic integers and k a positive integer. For all
integerQ, there is a 0 < q � Qn such that jqx cmodpk j < pk=Q.

As in the archimedean case, the univariate case has been settled by using the
continued fraction algorithm. In that case, this is equivalent to using the extended
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Euclidean algorithm on x mod pk and pk , and stopping as soon as the coefficients
of Bézout’s relation get larger than the size we want to achieve. The following
theorem is sometimes described as “rational reconstruction.”

Theorem 11. Let Q be a positive integer and x be a p-adic number. Let q be the
largest denominator of a convergent of .x cmodpk/=pk smaller than Q. Then,
jqx cmodpk j � pk=Q.

Proof. Let ` be the numerator of the corresponding convergent. By Theorem 6, we
have ˇ̌

ˇ̌
ˇ
qx cmodpk

pk

ˇ̌
ˇ̌
ˇ �

ˇ̌
ˇ̌q x
pk
� `

ˇ̌
ˇ̌ < 1

Q
;

which gives the result after multiplication by pk . ut
The multivariate case is settled by a method very close to the real case:

Theorem 12. Given a prime p, an integer k, n p-adic integers .x1; : : : ; xn/, and a
positive integer Q, there is a deterministic polynomial time algorithm which finds
an integer q � 2n=4Qn such that

max
1�i�n

jqxi cmodpkj � 2n=4Q�1:

Proof. Consider the lattice L generated by the columns of the matrix

0

BBBBB@

pk 0 0 : : : 0

QnC1.x1 cmodpk/ QnC1pk 0 : : : 0

QnC1.x2 cmodpk/ 0 QnC1pk : : : 0

QnC1.x3 cmodpk/ 0 0
: : :

:::

QnC1.xk cmodpk/ 0 0 : : : QnC1pk

1

CCCCCA
:

The volume of this lattice is .Qnpk/nC1. Thus, the LLL algorithm finds a vector
.q; l1; : : : ; lk/

t of L of size at most

� WD 2n=4pkQn:

As such, we have

q � �

pk
; jqxi cmodpkj � �

QnC1
:

Thus, we get q � 2n=4Qn, and

jqxi � lipk j � 2n=4p
k

Q
: ut
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As a final remark, note that we have been working with p-adic numbers, which
are the right objects for the applications we shall discuss. However, in practice, with
fixed finite precision, a p-adic number is simply a number modulo pn for some n,
and all results stated here remain valid modulo a general integer modulusN , or even
a different modulusNi for each xi .

Application: The Mertens Conjecture

One of the most striking applications of LLL in number theory was the disproof by
Odlyzko and te Riele [22] of long-standing Mertens’ conjecture [23].

Let � W Z�0 ! R be the Möbius function defined by

�.n/ D
�

0; n is not squarefree
.�1/!.n/ otherwise;

where !.n/ is the number of prime factors of n.
Heuristically, one can consider that, on a set of integers of positive density (the

squarefree numbers), � is a random variable which takes the values 1 and �1
with equal probabilities. Thus, if we take the heuristics to its limits, a very crude
application of the central limit theorem might suggest that

M.N/ WD
X

n�N

�.n/�pN: (6.5)

A stronger form of this heuristic, namely

jM.N/j � pN; (6.6)

is called Mertens’ conjecture. It has been checked numerically that this inequality
holds up to very large values of N , and the estimates for the smallest counterexam-
ple for that inequality seem beyond reach, unless one comes up with an algorithm
having complexity polynomial in logN to computeM.N/.

Conjecture (6.5), and a fortiori Conjecture (6.6) would imply Riemann’s hypoth-
esis; this is even the case for the weaker conjecture (actually equivalent to RH)

M.N/�" N
1=2C"; 8" > 0: (6.7)

Indeed, any of those forms implies, by partial summation, that the Dirichlet series

�.s/�1 D
X

n�1

�.n/

ns
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defines a holomorphic function on the open set Re.s/ > 1=2, which is exactly the
Riemann hypothesis.

Conjecture (6.5) is expected to be false. However, it was some kind of a surprise
when Odlyzko and te Riele, in 1985 [22], were able to use computational arguments
based on the LLL algorithm to disprove the Conjecture (6.6).

Nowadays, it is common belief that LLL can be used to prove that
lim supM.N/=

p
N � c for any c > 0, at least in principle. Understanding what

the limits of this LLL-based approach are might even suggest reasonable orders of
magnitude for the N " term in (6.7).

Explicit Formula

In order to explain the link between Mertens’ conjecture and the LLL algorithm, the
best starting point is the classical “explicit formula.” Assume that all the zeros of �
are simple (which we can do, since it is implied by Mertens’ conjecture). This for-
mula is obtained by applying Perron’s formula to the function �.s/�1, and pushing
the integration line to the left to get the contribution corresponding to the poles of
�.s/�1:

M.x/ D 1

2i	

Z 2Ci1

2�i1
xs

s�.s/
ds CO.1/;

D
X

�

x�

�� 0.�/
CO.1/:

The series is over the nontrivial zeros of �, and each zero should be paired with
its conjugate in order to guarantee the convergence of the series.

Then, under the Riemann hypothesis,

M.x/x�1=2 D
X

�

xi Im.�/

�� 0.�/
CO.x�1=2/:

An important point there is that the series
P
1=j�� 0.�/j diverges; this means,

in particular, that for M.x/x�1=2 to remain bounded, there must be compensations
coming from the oscillating terms

exp
�
i Im� logx � iArg.�� 0.�//

�
;

for all positive real number x. Let y D logx, write a zero � D 1=2C i� , and write
Arg.�� 0.�// D � .

The assumption about the oscillating terms means that the terms y ��� cmod2	
cannot be all close to each other. This heuristics, which involves in that form
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infinitely many terms, can be made precise and practical, via the following theorem
(an explicit formula with a kernel, proved in [22]):

Theorem 13. Assume the Riemann hypothesis and that all zeros of � are simple,
and let us denote by � D 1=2C i� the zeros of �.s/. Then,

h.y; T / WD 2
X

0<<T

..1 � �=T / cos.	�=T /C sin.	�=T /=	/
cos.�y � �/

j�� 0.�/j :

Then, for all y; T ,

lim inf
x

M.x/x�1=2 � h.y; T / � lim sup
x

M.x/x�1=2:

In fact, it can be shown that the theorem is optimal, i.e., fh.y; T /g is exactly the
set of accumulation points of the sequenceM.n/n�1=2.

Disproof of Mertens’ Conjecture

We are, thus, left with the problem of finding y and T such that jh.y; T /j is large.
As previously, this amounts to finding a real y such that all the values �y���2k	

are simultaneously small, or simultaneously close to 	 . If we restrict y to be an
integer, this is exactly a weighted (to take into account the coefficient in front of
each cosine) simultaneous inhomogeneous approximation problem.

Theorem 9 allows us to compute a good value of y, and even with a modest
number of zeros, this is sufficient to prove that Mertens’ conjecture is false.

This approach was introduced by Odlyzko and te Riele in a spectacular paper in
1984, where they disproved Mertens’ conjecture by using 70 zeros of the � function.
Since then, there have been progresses, and the last paper on the subject, due to
Kotnick and te Riele [24], shows that

lim inf
x

M.x/x�1=2 � �1:229 � 1:218 � lim sup
x

M.x/x�1=2;

using lattice basis reduction on up to 200 zeros of �, and using then local opti-
mization techniques to take into account the next 9800 zeros. Some unpublished
computations by Stehlé and the author, using faster lattice basis reduction algo-
rithms [25] and a more careful analysis of the precision needed, on a dimension 230
lattice, allowed them to prove that lim supM.x/x�1=2 � 1:4812; a similar result
had also been obtained (but not published) by te Riele (private communication) at
the same time.

Let us finish by mentioning that the LLL algorithm may also be used to give an
upper bound on the smallest x such that M.x/x�1=2 � A for given A. We refer to
[24] for the details.



234 G. Hanrot

Baker–Davenport Lemma

LLL-based algorithms for finding simultaneous Diophantine approximation also
have an application to inhomogeneous linear approximation, the so-called Gener-
alized Baker–Davenport lemma [26]. This duality is not surprising, since, as we
shall see shortly, there is a strong relationship between small values of linear forms
and simultaneous approximation. This Lemma gives a result of negative type for
inhomogeneous linear approximation.

Let .xi /1�i�nC1 be real numbers, and .�i /1�i�n be integers. Consider the
inhomogeneous linear form

� WD
nX

iD1

�ixi C xnC1:

We want to find a lower bound for j�j under the assumption that j�i j � B . The
idea is the following: if Q is an integer such that d.Qxi ;Z/ is small for 1 � i � n

andQ large enough, then the numbers .xi /1�i�n and hence, when the j�i j are much
smaller than B , the linear combination

Pn
iD1 �ixi behave almost as rationals with

denominatorQ. This means that

ˇ̌
ˇ̌
ˇ

nX

iD1

�ixi C xnC1

ˇ̌
ˇ̌
ˇ � d

 
nX

iD1

�ixi C xnC1;Z

!
� d.xnC1;

1

Q
Z/:

More precisely, we have the following:

Lemma 1. Let .x1; : : : ; xn/ be real numbers, " a positive real number and letQ be
an integer such that d.Qxi ;Z/ � " for i D 1; : : : ; n. Then, for any �1; : : : ; �n 2
Œ�B;B�n, one hasˇ̌

ˇ̌
ˇ

nX

iD1

�ixi C xnC1

ˇ̌
ˇ̌
ˇ � Q�1 .d.QxnC1;Z/ � nB"/ :

Proof. Follows from the chain of inequalities:

Q

ˇ̌
ˇ̌
ˇ

nX

iD1

�ixi C xnC1

ˇ̌
ˇ̌
ˇ � d

 
nX

iD1

Q�ixi CQxnC1;Z

!

� d.QxnC1;Z/ �
�

max
1�i�n

j�i j
� nX

iD1

d.Qxi ;Z/

� d.QxnC1;Z/ � nB": ut
In practice, Q is found by solving a simultaneous diophantine approximation

problem, by using LLL. In practice, we expect that " � Q�1=n, and if xnC1 is
linearly independent from the .xi /1�i�n, then d.QxnC1;Z/ is “on average” 1=4.
Thus, Q should be chosen to be slightly larger than .nB/n, and the corresponding
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lower bound is of the order of .nB/�n, which is the expected order of magnitude,
up to the factor nn.

Linear Relations

In this section, we survey applications of the LLL algorithm to the situation that is
dual to the previous section. Indeed, in practice, the matrix defining the underly-
ing lattice is the transpose of the kind of matrices we encountered in the previous
part. It is also a well-known fact that goes back to Khinchin that results on simul-
taneous approximation are closely related to small values of linear forms through
transference arguments [27], i.e., relating the minima of a lattice and of its dual
lattice.

In the sequel, we are given n real numbers x1; : : : ; xn and want to find n real
numbers �1; : : : ; �n such that

Pn
iD1 �ixi is small. We shall again derive

– Constructive results: We are really looking for small values of the linear form,
with a bound on maxi j�i j;

– Negative results: We expect that a very small relation does not exist, and want to
prove that it is indeed the case for all .�i / such that maxi j�i j � B .

For completeness, we mention that the popular algorithm PSLQ can also be used
for those two tasks. See [28, 29] for details.

Effective Siegel’s Lemma

We start with the easiest case of an underdetermined system of linear equations
over the integers, where an exact relation is searched. This is what is called Siegel’s
Lemma [30, Ges. Abh. I, p. 213, Hilfssatz] in diophantine approximation, and is
a basic construction used in many places. The typical application is to build an
auxiliary polynomial of given degree in several variables, with roots of given order
at given points, and with small coefficients. One writes the linear system that the
coefficients of such a polynomial must verify in order to get roots at the right points
with the right order, and can apply Siegel’s lemma if the degree was chosen large
enough.

Theorem 14 (Siegel’s Lemma). Let r < n two integers and .xij /1�i�r;1�j�n 2
Z

r	n be a rank r matrix. Let X D maxij jxij j. If .�1; : : : ; �n/ is the first vector of
an LLL-reduced basis of the integral kernel of the matrix .xij /, then one has

rX

iD1

�2
i � 2.n�r�1/=2

rY

iD1

0

@
nX

jD1

x2
ij

1

A
1=.n�r/

� 2.n�r�1/=2
�
nX2

�1=.n�r/
:
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Proof. [31, Lemma 4C] shows that the volume of the kernel of the matrix .xij /i;j ,
seen as a lattice, is .det.xij //

1=.n�r/. We then apply Hadamard’s inequality and
Inequality (6.1). ut

Approximate Linear Relations

In the previous paragraph, we insisted on finding an exact relation between inte-
gers. In practice, we shall be interested by finding relations between real numbers.
In order to do this, we shall use an approximation, namely bCxe, where C is a large
integer constant, as we did for simultaneous rational approximation. By doing this,
we introduce a perturbation to the initial problem, which means that looking for an
exact relation is usually no longer relevant: the fact that the problem is approximate
means that we need to balance the order of magnitude of the relation and the order
of magnitude of the coefficients in some way.

This is at the core of many applications of the LLL algorithm. Among those that
we shall not discuss, we mention solving knapsack-type problems in cryptology
[32] or in computer algebra, such as the beautiful algorithm by van Hoeij [33] for
polynomial factoring over Q, see Kluners’ survey in this volume.

If 1 � r � n and C are integers, and x1; : : : ; xr are vectors in R
n, we define

M.C; x1; : : : ; xr/ WD

0

BBBBBBBBBBB@

1 0 : : : 0

0 1 : : : 0
:::

:::
: : :

:::

0 0 : : : 1

bCx11e bCx12e : : : bCx1ne
:::

:::
:::

:::

bCxr1e bCxr2e : : : bCxrne

1

CCCCCCCCCCCA

;

Lemma 2. Let x1; : : : ; xr be vectors in R
n. One has

det
�
M.C; x1; : : : ; xr /

tM.C; x1; : : : ; xr/
�

�

0

@1C 1

r

X

i;j



Cxij

�2

1

A
r

;

with equality for r D 1.

Proof. For simplicity, we write M instead of M.C; x1; : : : ; xr / in this proof. First
notice that 1 is an eigenvalue of M tM with multiplicity at least n � r . Indeed, if
u D .u1; : : : ; un/

t 2 K WD Ker .


Cxij

�
1�i�r;1�j�n

/, we have

M tMu D M t.u1; : : : ; un; 0; : : : ; 0/
t D u:

Since K has dimension at least n � r , this proves our claim.
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Now, if ˛1; : : : ; ˛r are the other eigenvalues of M tM , we have

Tr .M tM/ D nC
X

i;j



Cxij

�2 D .n � r/C
rX

lD1

˛l ; (6.8)

or equivalently
Pr

lD1 ˛l D r C P
i;j



Cxij

�2
. By the arithmetico-geometrical

inequality, we deduce

detM tM D
rY

lD1

˛l �
�Pr

lD1 ˛l

r

�r

�

0

@1C 1

r

X

i;j



Cxij

�2

1

A
r

:

The fact that this is an equality for r D 1 comes from the fact that (6.8) gives in
that case the exact value of ˛1. ut

We start with a constructive result: one can always find linear relations with
coefficients� B such that r simultaneous linear forms are of size � Br=n�1.

Theorem 15. With the same notations as Lemma 2, the first vector .�1; : : : ; �n; �1;

: : : ; �r /
t of an LLL-reduced basis of the lattice generated by the columns of

M.C; x1; : : : ; xr / verifies

max
1�i�n

j�i j � 2.n�1/=4

0

@1C 1

r

X

i;j



Cxij

�2

1

A
r=2n

and

max
1�j�r

ˇ̌
ˇ̌
ˇ

nX

iD1

�ixj i

ˇ̌
ˇ̌
ˇ � 2.n�5/=4

p
nC 4
C

0

@1C 1

r

X

i;j



Cxij

�2

1

A
r=2n

:

Proof. Inequality 6.1 implies that the first vector of an LLL-reduced basis of L has
length at most

� WD 2.n�1/=4

0

@1
r

X

i;j



Cxij

�2

1

A
r=2n

and coordinates .�1; : : : ; �n�1; �n;
Pn

iD1 �i bCx1ie ; : : : ;Pn
iD1 �i bCxrie/. In par-

ticular, for all j ,
nX

iD1

�2
i C

rX

jD1

 
nX

iD1

�i



Cxj i

�
!2

� �2
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Hence,

max
1�j�r

ˇ̌
ˇ̌
ˇ

nX

iD1

�i



Cxj i

�
ˇ̌
ˇ̌
ˇ �

 
�2 �

nX

iD1

�2
i

!1=2

:

Since ˇ̌
ˇ̌
ˇ

nX

iD1

�i



Cxj i

� � C
nX

iD1

�ixj i

ˇ̌
ˇ̌
ˇ �

nX

iD1

j�i j
2
; (6.9)

this can be rewritten as

C max
1�j�r

ˇ̌
ˇ̌
ˇ

nX

iD1

�ixj i

ˇ̌
ˇ̌
ˇ �

 
�2 �

nX

iD1

�2
i

!1=2

C 1

2

nX

iD1

j�i j:

Finally, the right hand side is maximal when �i D �=
p
nC 4 for all i , and we

get, for all j ,

max
1�j�r

ˇ̌
ˇ̌
ˇ

nX

iD1

�ixj i

ˇ̌
ˇ̌
ˇ �
p
nC 4
2C

�;

as claimed. ut
To sum up, putting B D C r=n � �, we get a relation with coefficients of size

roughly B , the relation itself being of size B1�n=r , as predicted by the pigeonhole
principle.

The following theorem is the translation of the fact that LLL solves the SVP in
an almost optimal way, i.e., the corresponding negative type result.

Theorem 16. Let QM.C; x1; : : : ; xr/ be the matrix obtained by removing rows
n � r C 1 to n from M.C; x1; : : : ; xr/. Let v be the first vector of an LLL-reduced
basis of the lattice L0C generated by the columns of this matrix. Then, for all positive
real number B we have, as soon as kvk � 2.n�1/=2

p
n � rB ,

min
.�i /2Œ�B;B�n�f0g

max
1�j�r

ˇ̌
ˇ̌
ˇ

nX

iD1

�ixj i

ˇ̌
ˇ̌
ˇ�C

�1

8
<

:

 
2.1�n/kvk2 � .n � r/B2

r

!1=2

� nB
2

9
=

;

Proof. By Theorem 2, we have

min
.�i /¤0

�2
1 C � � � C �2

n�r C
rX

jD1

 
nX

iD1

�i



Cxj i

�
!2

� 2.1�n/kvk2:

This implies

min
.�i /2Œ�B;B�n�f0g

max
1�j�r

ˇ̌
ˇ̌
ˇ

nX

iD1

�i



Cxj i

�
ˇ̌
ˇ̌
ˇ �

 
2.1�n/kvk2 � .n � r/B2

r

!1=2

;
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or, using (6.9),

min
.�i /2Œ�B;B�n�f0g

max
1�j�r

ˇ̌
ˇ̌
ˇ

n�1X

iD1

�ixj i

ˇ̌
ˇ̌
ˇ � 1

C

 
2.1�n/kvk2 � .n� r/B2

r

!1=2

� nB
2C

:

ut
When applying this theorem, the main difficulty is to ensure that the lower bound

is meaningful and positive, which means that kvk2 is at least .rn2=4Cn�r/2n�1B2.
In practice, unless an exact linear relation exists, we expect that for C large enough,
the shortest vector of L0C attains the order of magnitude of Minkowski’s bound.
This means that we expect kvk � C r=n, and that C should be chosen somewhat
larger than Bn in practice. If this heuristic does not work, one should increase C .
Otherwise, we will find a lower bound of the order of B=C � B1�n=r .

Remark 7. There is a second way to see this problem, which has proved to be
quite useful when n � r is small. Assume that the matrix X D .xj i / has maximal
rank r , and without loss of generality that the minor QX D .xj i /1�j�r;n�rC1�i�n

is invertible. Put .yj i / D QX�1.xj i /1�j�r;1�i�n�r . Then, from any simultaneous
approximate linear relation ˇ̌

ˇ̌
ˇ

nX

iD1

�ixj i

ˇ̌
ˇ̌
ˇ � ";

we can deduce a simultaneous approximate relation

ˇ̌
ˇ̌
ˇ

n�rX

iD1

�iyj i C �n�rCj

ˇ̌
ˇ̌
ˇ � nk QX�1k1":

As far as finding linear relations is concerned, this is not much of a progress:
what we did just amounts to making the initial matrix sparser, which is not really
useful. But, if one wants to get a lower bound on any linear relation, then this is a
quite different story: finding a lower bound on one single

ˇ̌Pn�r
iD1 �iyj i C �n�rCj

ˇ̌

yields a lower bound for simultaneous approximate relations on the xj i .
We are thus reduced to a one relation problem in dimension n � r C 1, which

is algorithmically much easier if n, r are huge but n � r is small. This trick is
described in [34], and is especially well suited to Baker’s method for some types
of Diophantine equations, mostly the absolute Thue equation; it gives worse lower
bounds (since it finally takes into account only one linear constraint), but at a lower
computational cost: an LLL reduction in dimension n is replaced by an inversion in
dimension r and an LLL reduction in dimension n � r .
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p-Adic Version

In that case again, we have an almost direct analog of the archimedean case with
p-adic numbers. Let x1; : : : ; xn be in Z

r
p . If the xi are in Q

r
p instead, one should first

remove denominators before applying what follows. We also fix an integer `, and for
x 2 Zp , denote by �`.x/ the representative of x mod p` which is in f0; : : : ; p`�1g.

We define the .nC r/ � .nC r/ matrix

M`;C1;C2
.x1; : : : ; xn/ WD

0

BBBBBBBBBBB@

C1 0 : : : 0 0 : : : 0

0 C1 : : : 0 0 : : : 0
:::

:::
: : :

:::
:::

:::
:::

0 0 : : : C1 0 : : : 0

C2�`.x11/ C2�`.x12/ : : : C2�`.x1n/ C2p
` : : : 0

:::
:::

:::
::: 0

: : : 0

C2�.xr1/ C2�.xr2/ : : : C2�.xrn/ 0 : : : C2p
`

1

CCCCCCCCCCCA

:

Applying the same techniques as in the previous section (with the difference that
we no longer have to control rounding errors) yield

Theorem 17. Let x1; : : : ; xn be vectors of p-adic integers, ` an integer and C1; C2

two integer parameters. Let .�1; : : : ; �n; �1; : : : ; �r / the first vector of an LLL-
reduced basis, of the lattice generated by the columns of the matrix M`;C1;C2

.x1; : : : ; xn/. Then, one has

j�i j � 2.nCr�1/=4p
r`

nCr

�
C2

C1

� r
nCr

and, for all 1 � j � r ,

ˇ̌
ˇ̌
ˇ

rX

iD1

�ixj i cmodp`

ˇ̌
ˇ̌
ˇ � 2.nCr�1/=4p

r`
nCr

�
C1

C2

� n
nCr

:

Proof. Follows from the fact that the determinant of the lattice generated by the
columns of M`;C1;C2

.x1; : : : ; xn/ is pr`C n
1 C

r
2 . ut

As a negative counterpart of this result, we have

Theorem 18. Let v the first vector of an LLL-reduced basis the lattice generated by
the columns of M`;1;1.x1; : : : ; xn/. Then, for all �1; : : : ; �n 2 Œ�B;B�n � f0g, one
has

max
1�j�r

ˇ̌
ˇ̌
ˇ

 
nX

iD1

�ixj i

!
cmodp`

ˇ̌
ˇ̌
ˇ �

 
2.1�n�r/

r
kvk2 � nB2

!1=2

:
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In practice, this negative counterpart is often used for proving that there is no
small linear combination of the xij with large p-adic valuation. Indeed, if the lower
bound is positive, the statement of the theorem implies that

min
1�j�r

vp

 
nX

iD1

�ixj i

!
< `

for all �1; : : : ; �n 2 Œ�B;B�n � f0g. Thus, the goal is to choose the smallest ` such
that the lower bound of the theorem is positive. If one assumes that the right order
of magnitude for kvk is that of Minkowski’s theorem, we see that one should choose
` such that

r`

nC r logp � logB;

or equivalently

` � .nC r/
r

logB

logp
;

or, in practice, slightly larger.

Remark 8. Though we have treated in this part only the case where xj i live in Zp ,
we can also use the same technique to treat the case where xj i are integral elements
in some degree d algebraic extension of Qp, say xj i 2 Zp Œ��, for some � inte-

gral over Zp . To do this, if xj i D Pd�1
kD0 xkji�

k , we associate to each linear formPn
iD1 �ixj i over Zp Œ�� the d linear forms

Pn
iD1 �ixkji over Zp .

The Inhomogeneous Case

It is sometimes also useful to find an approximation of a given real number by
a linear combination of other real numbers. This amounts to searching for a linear
combination with one of the coefficients equal to 1. When one is looking for negative
results, this can be done in a similar way to the previous section, by looking for a
general relation. If no relation of small enough size exists, then a fortiori no relation
exists with xnC1 D 1, and this is often sufficient. When one is interested in a lower
bound, Inequality (6.2) applies.

However, a more refined tactic is possible. The main remark is the fact that,
as the homogeneous case is closely approximated by SVP, itself closely approx-
imated by the first vector of an LLL-reduced basis, the inhomogeneous case is
closely approximated by CVP, itself closely approximated by Babai’s nearest plane
algorithm.

Applications to Inhomogeneous Diophantine Approximation

The question of inhomogeneous diophantine approximation is a much more com-
plicated question than the homogeneous case. Affirmative results (i.e., existence
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of small values of
Pn

jD1 �jxj � x0) of effective type lie much deeper than the
homogeneous case.

Indeed, even in the one-dimensional case, understanding what happens is closely
related with the theory of uniform distribution. For instance, for ˛; � real numbers,
the inhomogeneous form ˛xCyC� can only be arbitrarily small for .x; y/ integers,

– Either if ˛ is irrational, where it follows from the fact that ˛ZC Z is dense;
– Or if denom.˛/� 2 Z if ˛ is rational.

More generally, Kronecker’s theorem shows that for ˛ 2 R
n, the set fPn

iD1 �i˛i

mod 1g is dense iff. 1; ˛1; : : : ; ˛n are Q-linearly independent.
From a quantitative viewpoint then, measuring the distance between the set

˛x C y for x; y � X and an arbitrary � 2 Œ0; 1� is related with the discrepancy
of the sequence ˛x mod 1, itself related to the quality of the convergents of the
continued fraction of ˛.

Example 2. For instance, if ˛ D 1=2C 10�100, � D 1=3, for x � 1099, one has
j˛x�yC� j � 1=15. This means that it is quite difficult to guarantee anything from
what we called the positive point of view on the quality of the approximation.

Example 3. We can also argue on the lattice side that it is difficult to get con-
structive results. Let L be a .2d C 1/-dimensional lattice with an orthogonal basis
.bi /0�i�2d , with kbik D C d�i for some real constant C . Then vol.L/ D 1. Still,
if we take t D P

bi=2, we see that d.t; L/ � C d=2. Hence, it is not possible to
bound d.t; L/ in terms of the volume of the lattice only.

However, we can still try to construct good (though we cannot control their
quality in a quantitative manner) approximations by using Babai’s nearest plane
algorithm, and also obtain negative results. Indeed, according to Theorem 3, using
Babai’s nearest plane algorithm gives us an almost optimal result.

Theorem 19. Let x1; : : : ; xn; xnC1 2 R
r be vectors of real numbers. Let

QMC .x1; : : : ; xr / be the matrix defined in Theorem 16, and vC be the vector .0; : : : ;
b�Cx1;nC1e ; b�Cxr;nC1e/t . Let v be the output of Babai’s nearest plane algorithm
applied to the lattice generated by the columns of MC and the vector vC . Then, if
kvk � 2n=2

p
n � rB , one has, for .�i /1�i�n 2 Œ�B;B�n,

ˇ̌
ˇ̌
ˇ

nX

iD1

�ixj i C xj;nC1

ˇ̌
ˇ̌
ˇ � 1

C

 r
2�nkvk2 � .n � r/B2

r
� nB C 1

2

!

Proof. Similar to the proof of Theorem 16, replacing Theorem 2 by Theorem 3. ut
Note that this result has important applications when solving Diophantine equa-

tions by Baker’s method. In practice, one should rather use Proposition 1 than
Theorem 3.

Remark 9. Another way to find lower bounds for that kind of quantities is to use the
generalized Baker–Davenport Lemma 1.
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In the p-adic case, we have very similar results:

Theorem 20. Let x1; : : : ; xn 2 Z
r
p be vectors of p-adic integers. Let v be the output

of Babai’s algorithm applied to an LLL-reduced basis of the lattice generated by the
columns of the matrix M`;1;1.x1; : : : ; xn/ and

v` WD .0; : : : ; 0; x1;nC1 cmodp`; : : : xr;nC1 cmodp`/t :

Then, for all �1; : : : ; �n 2 Œ�B;B�n � f0g, one has

max

ˇ̌
ˇ̌
ˇ

 
nX

iD1

�ixj i C xj;nC1

!
cmodp`

ˇ̌
ˇ̌
ˇ �

 
2.�n�r/kvk2 � nB2

r

!1=2

:

Schnorr’s Factoring and Discrete Logarithm Algorithm

Though the behavior of the constructive variant of the inhomogeneous case
described above is difficult to estimate precisely, there is still a beautiful applica-
tion of it, described by Schnorr [35]. This application concerns both factoring and
discrete logarithm, but we shall only describe the “factoring” part.

As many modern discrete log and factoring algorithms, Schnorr’s method is
based on constructing relations and recombining them. Let us point that our descrip-
tion and analysis are highly heuristic. We refer the interested reader to Schnorr’s
original paper [35] or Adleman’s follow-up [36] for more details.

Building Relations

Let p1 < p2 � � � < pt be the first t prime numbers. Numbers of the form p
e1

1 : : : p
et
t

are said to be pt -smooth, or sometimes pt -friable. Our goal is to produce many
non-trivial (i.e., ui ¤ vi ) relations of the form

tY

iD1

p
ui

i D ˙
tY

iD1

p
wi

i mod N:

In order to obtain a relation, we shall try to find u of the form
Qt

iD1 p
ui

i such that
u cmodN is very small. If ju cmodN j is smaller than p˛

t , a theorem by Dickman
[37] shows that the “probability” that ju cmodN j is pt -smooth is �.1=˛/, where �
is the Dickman–de Bruijn function defined to be the continuous solution of

�.x/ D 1; 0 � x � 1; x�0.x/ � x�.x � 1/ D 0; x � 1:
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As a consequence, the problem of producing approximately t relations is reduced
to the problem of computing� t=�.1=˛/ different values of u such that ju cmodN j
is smaller than p˛

t .
Write u cmodN as u�vN . The fact that u�vN is very small means that u

vN
� 1,

that

log
u

vN
� u � vN

vN
:

Thus, we want log u
vN

to be very small. If we also request for v to be pt -smooth,
we find that this means that

tX

iD1

ui logpi �
tX

iD1

vi logpi � logN

is very small. In other words, such relations correspond to small values of inhomo-
geneous linear forms!

Consider the t-dimensional lattice L generated by the columns of the matrix

0

BB@

logp1 0 : : : 0

0 logp2 : : : 0

0 0 : : : logpt

C logp1 C logp2 : : : C logpt

1

CCA

and the vector vN D .0; : : : ; 0;�C logN/t . The matrix above has real coefficients;
in practice, one should replace the terms logpi by bC 0 logpie and replace C by
CC 0. This variant is analyzed in [36]. We stick to the matrix above in order to
simplify the analysis.

For e 2 Z
n, we shall define�.e/ WDPn

iD1 ei logpi � logN .
A vector of L is of the form

v D .e1 logp1; : : : ; et logpt ;

tX

iD1

eiC logpi /;

and we can associate to it two integers u D Q
ei >0 p

ei

i , v D Q
ei <0 p

�ei

i such that
�.e/ D log u � log vN .

Let us evaluate kv � vN k.

kv � vN k2 D
tX

iD1

.ei logpi /
2 C

 
tX

iD1

eiC logpi � C logN

!2

;

D
tX

iD1

.ei logpi /
2 C C 2�.e/2

� 1

t
.

tX

iD1

jei j logpi /
2 C C 2�.e/2:
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Thus

log uC log v � ptkv � vN k; j log u � log v � logN j � kv � vN k
C

:

Since C is large, for v close to vN this means that u � vN , as expected, and that

log v � log u � logN C kv � vN k
C

� � logN � log vC kv � vN k.
p
t C C�1/:

so that

log v � � logN

2
C kv � vN k

p
t C C�1

2
;

which yields

ju� vN j � vN log
u

vN
� pN kv � vN k

C
exp

 
.
p
t C C�1/kv � vN k

2

!
:

In order to get ju � vN j of the order of p˛Co.1/
t , and assuming C�1 D o.1/ as

N !1, we should thus have

kv � vN k � 2 logC � logN C 2˛p
t

logpt C o.logN/: (6.10)

Schnorr then argues that under reasonable equirepartition assumptions on
pt -smooth numbers, there are sufficiently many vectors in L verifying (6.10). In
order to give a feeling of the argument, let us mention that the determinant of our
lattice is of the order of C2O.t/, so that the number of vectors in a ball of radius
R is of the order of Rt t t=2C�12O.t/; in order to find sufficiently many vectors at
distance roughly logC 2=N , we thus need to have C 1=t � logC 2=N , which means
t � logC= log log.C 2=N/; for C D N c a power of N , this gives a polynomial
dimension t , and thus applying Babai’s algorithm to this lattice has a polynomial
complexity in N .

However, asking for a fast algorithm finding many vectors verifying (6.10) is far
too optimistic in general, which explains why this nice idea has only encountered a
very modest success.

Combining Relations

For the sake of completeness, we review shortly how one factors N by combining
the relations built in the previous section, in the form
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nY

iD1

u"i

i D
nY

iD1

w"i

i mod N;

choosing "i 2 f0; 1g so that both sides are square, say U 2 D V 2 mod N . With such
a recombination, one computes gcd.U � V;N /, and unless one is unlucky or one
has built the relations in a unsuitable way, after possibly some failures one ends up
with a factor of N .

Recall that we have

ui D
Y

pb2B

p
˛ib

b
;wi D

Y

pb2B

p
ˇib

b
:

The recombination above then rewrites, re-arranging terms,

Y

pb2B

p
Pn

iD1.˛ib�ˇib/"i

b
D 1 mod N

In order that this is of the form square = square, it is thus sufficient that

nX

iD1

.˛ib � ˇib/"i D 0 mod 2

for all b, and similarly with ˇib. This means that "i are found as a vector of the
kernel modulo 2 of an integral matrix.

An important remark at that point is the fact that for this method to have a chance
of success, one should have at least as many relations as elements in the factor base,
so that the system one is trying to solve has more unknowns than equations, and has
generically a nontrivial kernel.

Analysis

A good feature of this algorithm is the fact that one seemingly only has to reduce
a lattice which depends on N in a rather weak way; once this reduction step per-
formed, one just needs to perform “close vector search,” by Babai’s algorithm (plus
some randomized rounding, say). However, note that in order to get an homoge-
neous problem – and thus a better control in their analyzes – Schnorr and Adleman
replace our lattice with the t C 1-dimensional lattice L˚ ZvN .

However, the fact that both LLL and LLL associated with Babai’s nearest plane
algorithm loses an exponential factor in the dimension means that the vectors
returned by LLL/LLL plus Babai are often too large/far away (by a factor 2O.t/,
whereas the actual expected size is t log t : : :) to give integers with a significant
probability of smoothness.
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In order to get very small vectors, one has to reduce the lattice in a stronger
sense. In any case, the large dimension of the underlying lattice makes the method
somewhat unpractical. Schnorr’s estimates show that to factor a 500-bit number, one
should reduce a dimension 6300 lattice with 1500-bit integer coefficients.

Remark 10. We must mention two other applications of lattice basis reduction to
factoring.

The first is the “2/3 algorithm” by Vallée [38], one of the only subexponential
algorithms to actually have proven complexity, while most of the complexities rest
on some unproven assumptions on the good repartition of smooth numbers in some
sparse sequences.

The second one lies at the core of the number field sieve algorithm, the most
efficient factoring algorithm (at least for numbers of the form pq) at the time this
survey is written. At the end, one has to compute a huge (exact) square root ofˇ 2 K
in an algebraic number field; Montgomery [39] and then Nguyen [40] showed how
to use lattice basis reduction algorithms in order to ease this computation. Indeed,
in that setting, LLL can be used to produce many ˛i such that

Qn
iD1 ˛

2
i jˇ, and

ˇ=
Qn

iD1 ˛
2
i is much smaller than ˇ; hence the final square root is in fact much

easier to compute after this “reduction” step.

Remark 11. As is often the case, a slight adaptation of this algorithm gives an
algorithm of the same complexity to compute discrete logarithms in .Z=pZ/�.

Applications to Diophantine Equations

Some of the effective methods of Section “Linear Relations” have been at the core
of the applications of LLL to the effective solution of Diophantine equations. The
technique involved is rather heavy, and we refer to [41] for an exhaustive account,
including detailed bibliography.

We shall thus content ourselves of a rather sketchy account, concentrating on
the link with lattice basis reduction algorithms and the machinery developed in the
previous sections.

The case of interest is Diophantine equations which can be treated by Baker’s
method. We first recall Baker’s theorem, which is a generic name for a large number
of lower bounds obtained by Baker and others from the mid 1960s [42] to nowadays.

Theorem 21 (Baker et al.). Let ˛1; : : : ; ˛n be algebraic numbers, and �i integers,
and put � WD Pn

iD1 �i Log˛i . Then, there exists a constant C.˛1; : : : ; ˛n/ such
that

– Either� D 0;
– Or j�j � exp.�C.˛1; : : : ; ˛n/ log maxi j�i j/.

See [43] for the best result currently available.
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The key of the success of Baker’s method is the dependence on the �i , but the
price to pay is the huge size of the constant C.˛1; : : : ; ˛n/, which usually yields
huge bounds, and makes it almost impossible to completely solve an equation
without any further ingredient.

This theorem is at the core of many finiteness results for families of Diophantine
equations, by what is called Baker’s method. The overall strategy of Baker’s method
is the following:

– By algebraic number theoretic arguments, reduce the initial equation to the
problem of finding very small values of linear forms

� WD
nX

iD1

�i Log˛i C Log˛nC1;

where the ˛i 2 C are algebraic over Q, and the Log function is the principal
determination of the complex logarithm.
By very small value, we mean that to every solution of the initial equation
corresponds an n-uple �1; : : : ; �n such that

j�j � exp.�c.˛1; : : : ; ˛nC1/max
i
j�i j� /;

for some positive real � (often equals to 1);
– Apply one form or another of Baker’s theorem, to get a lower bound on �, the

case � D 0 being usually discarded as irrelevant or impossible.

Comparing these two bounds yields an explicit upper bound on maxi j�i j. How-
ever, this bound is usually much too large to allow enumeration. The reason why
this bound is too large is the fact that Baker’s constant C.˛1; : : : ; ˛nC1/ is often
extremely pessimistic.

In some applications – those who are interested in this survey – of Baker’s
method, are in the favorable situation where only the �i are unknown in �. In that
case, once the process above is finished and one has an initial bound on the �i , the
bound obtained by Baker’s method can be greatly refined using techniques from
Sect. Linear Relations.

Indeed, since the linear form is explicit, once the �i are bounded, one can replace
Baker’s theorem by the estimate of Theorem 19, to get a new lower bound on�, and
thus a new upper bound on maxi j�i j. We can start again the process using this new
upper bound, etc. In practice, since the upper bound is exponential in �i , and since
the heuristics developed in Sect. 15 show that the lower bounds we get for � with
�i � L will be of the order of L1�n=r , we should have, for some small constant �,

� � L1�n=r � � � exp.�c.˛1; : : : ; ˛nC1/max
i
j�i j�/;

so that the new bound on maxi j�i j is of the order of .logL/1=� .
We shall give an example of this reduction process in Section “LLL and ABC”
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Baker and Davenport’s Approach

The idea of this reduction process goes back to the paper by Baker and Davenport
[26] about the solution of a system of simultaneous Pell equations, where they use
a special case of Lemma 1. Let us write this system as

�
x2 � vy2 D a

x2 � v0z2 D a0 (6.11)

Given a Pell equation x2 � vy2 D a, one can determine a unit  2 Q.
p

v/ and
a finite set of elements S of Q.

p
v/ such that the x-value of any solution of the

equation is of the form

xd D �d C a

�d
;

where � 2 S and d is an integer.
Denote by 0; S 0 similar objects for the equation x2 � wz2 D a0. By equating

the two different expressions for x, we thus end up with one equation in unknowns
d; d 0 2 Z for each pair .�; � 0/ 2 S � S 0:

�d C a

�d
D � 00d 0 C a0

� 00d 0
;

We can assume ; 0 > 1; otherwise, replace  by˙1= and similarly for 0. This
means that

�d � � 00d 0 � C�max.d;d 0/;

for some C > 1, or,

Log
�

� 0
C d Log  � d 0 Log 0 � C

�max.d;d 0/
2 : (6.12)

Baker and Davenport then proceed to use Baker’s Theorem 21 to show that the

left hand side is� C
� log max.d;d 0/
3 , which allows to obtain max.d; d 0/ � �.

Knowing that d; d 0 � �, one can apply either Theorem 19 (using CVP on a
two-dimensional lattice) or Lemma 1 (using continued fractions) to compute a new,
greatly improved, lower bound on

Log
�

� 0
C d Log � d 0 Log 0;

which in turn yields a new upper bound, etc. until exhaustive enumeration of all
xd ; d � �, is possible.
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LLL and ABC

The first occurrence of LLL for this reduction task for diophantine equations is
probably encountered in the paper by de Weger [44], with, among other applications,
the study of the ABC conjecture. This had important consequences on the practical
applications of Baker’s method for diophantine equations. The idea is the same as
in Baker and Davenport, except that instead of having a term with one power �d ,
we now have a term with arbitrarily many powers; this means that we shall end up
with a linear form with many variables, and then LLL.

We shall illustrate this approach with de Weger’s application to the ABC con-
jecture, since this is probably the one that uses the smallest amount of algebraic
number theory and hence the easier to describe.

The ABC Conjecture

A very important conjecture in diophantine approximation is the so-called ABC
conjecture. Its importance stems mostly from the fact that it implies many classical
theorems and conjectures and results in diophantine approximation, but also in other
areas of number theory. It is concerned with the very simple diophantine equation

AC B D C;

and the overall meaning is that A, B , and C cannot be simultaneously large and be
divisible by large powers of small primes.

More precisely, define the radical of an integer to be its squarefree part:

radN D
Y

pjN
p

Then the conjecture can be written as:

Conjecture 1 (Masser-Oesterlé’s ABC conjecture). [45] For all " > 0, there exists
a ı" 2 R

C such that if A;B; and C are three integers with .A;B/ D 1 and A C
B D C , one has

max.jAj; jBj; jC j/ � ı"rad .ABC/1C":

The best results known [46] on the subject are quite far from this. See Nitaj’s
ABC page (http://www.math.unicaen.fr/�nitaj/abc.html) for extensive information
on the subject.

Rather than trying to prove the conjecture, another approach is to try to build
extremal examples for it. It can be families, or single examples. In the latter case, a
reasonable measure of extremality is given by the quantity

log max.jaj; jbj; jcj/= log rad .abc/;

as large as possible.

http://www.math.unicaen.fr/~nitaj/abc.html
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A first approach for finding extremal examples is due to de Weger [44], and
amounts to find the solutions of A C B D C where A;C have their prime factors
in a prescribed set, with B small. This last assumption can be replaced by the fact
that B also has its prime factors in the same set (see the same paper), but then since
we have no longer any precise control on the sizes of A, B , and C it requires to use
linear forms in p-adic logarithms, and we prefer to stick to the simpler case in this
survey.

We shall also discuss an elegant and elementary approach due to Dokchitser [47],
where one fixes products of powers of small primes a; b; and c and searches for
relations of the form �aC �b D �c, for small �;�; and �.

De Weger’s Approach

The idea is to search for “large” solutions of AC B D C , where the prime factors
ofA andC are in a small set S D fpi ; i 2 Œ1; s�g andB is small. More precisely, we
fix 1 > ı > 0 and we are looking for solutions of the inequality 0 < C � A � C ı .

This inequality can be rewritten as

ˇ̌
ˇ̌1 � A

C

ˇ̌
ˇ̌ � C ı�1:

Unless C � 2
1

1�ı , for which the solutions can be found by enumeration, the left
hand side is � 1=2. Write C DQs

iD1 p
ci

i , A DQs
iD1 p

ai

i .
We can thus use the inequality jz � 1j log4 � jLog zj, valid for jz � 1j � 1=2.

We get:

ˇ̌
ˇ̌
ˇ

sX

iD1

.ci � ai / logpi

ˇ̌
ˇ̌
ˇ � C ı�1 log 4 � .min

i
pi /

.ı�1/ maxi ci log 4

DW g.S; ı/maxi ci log 4; (6.13)

for some g.S; ı/ < 1.
Since .mini pi /

maxi ai � A � C � .
Qs

iD1 pi /
maxi ci , we can replace the upper

bound above by

ˇ̌
ˇ̌
ˇ

sX

iD1

.ci � ai / logpi

ˇ̌
ˇ̌
ˇ � g�.S; ı/maxi ci ;ai ; (6.14)

Baker’s theorem implies, unless C D A, that for some constant f .S/,

ˇ̌
ˇ̌
ˇ

sX

iD1

.ci � ai / logpi

ˇ̌
ˇ̌
ˇ � exp.�f .S/ log max

i
.ci ; ai //:

In typical examples, this lower bound is very large. However, notice that once
ci � ai � C are bounded, we can substitute to Baker’s theorem (6.14) by the bound
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of Theorem 15 to the real numbers .logpi /i2S . The heuristic analysis which follows
the theorem shows that the new lower bound is of the order of C1=s�1. Comparing it
to (6.13) again, we obtain a new bound which is of the order of logC .

In order to give the reader the “feeling” of what happens in this reduction process,
we treat the case where S D f2; 3; 5g, and ı D 1=2. In that case, we have either
C D 1, or rewriting (6.13) in that case,

j.c1 � a1/ log 2C .c2 � a2/ log 3C .c3 � a3/ log 5j � 2�maxi ci =2 log 4:

Now, 2maxi ai � 30maxi ci , which shows that

2�maxi ci =2 log 4 � exp

�
� log 2

log 30
max

i
.ai ; ci /

�
log 4:

Matveev’s version of Baker’s theorem implies that this linear form is either 0
(which implies A D C ) or

j.c1 � a1/ log 2C .c2 � a2/ log 3C .c3 � a3/ log5j
� exp.�2:2 � 107 log.emax

i
.ai ; ci ///:

Comparing those two bounds, we find that maxi ci � 2:45 � 109 DW B. Now,
take � D 200 � .2:45 � 109/3, and consider the matrix

0

@
1 0 0

0 1 0

b� log 2e b� log 3e b� log 5e

1

A :

The first vector v of an LLL-reduced basis of this lattice has length� 1:03�1010,
and hence the lower bound is

1

�

p
21�3kvk2 � 2B2 � 3B=2� 2:04 � 10�21;

which implies, in view of 6.13,

max
i
.ai ; ci / �

�
� log.2:04 � 10�21= log4/

log30

log 2

�
D 235:

Repeating the reduction step with C D 20 � 2353, we obtain a lower bound
of 9:49 � 10�7, so that maxi .ai ; ci / � 69. The next bounds are 58 and 56, after
which the process more or less stops. We now have to enumerate all triples ai � 56,
ci � 56, with the information that for all i , aici D 0, since we assumed .A; C / D 1.
We find the solutions
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1C 1 D 2 2C 1 D 3 3C 1 D 4
5C 1 D 6 8C 1 D 9 9C 1 D 10
25C 2 D 27 27C 5 D 32 80C 1 D 81
243C 7 D 250 243C 13 D 256 625C 23 D 648

15552C 73 D 15625

3C 2 D 5 4C 1 D 5
15C 1 D 16 24C 1 D 25
125C 3 D 128 128C 7 D 135

2025C 23 D 2048 3072C 53 D 3125
32768C 37 D 32805

Note that if bounds were somewhat larger, one should probably, at least for the large
values of ci , continue to use (6.13) and enumerate the very few vectors in the lattice
with sufficiently small norm.

Dokchitser’s Approach

To be complete on the subject of the relations between the LLL algorithm and the
ABC conjecture, we would like to discuss a recent, good and simple approach due
to Dokchitser [47]. The point is to fix integers of small radical and look for a small
relation �a C �b D �c, which is a linear relation as studied in Section “Linear
Relations”.

What can we expect? If we fix C and reduce the lattice generated by the columns
of MC .a; b; c/, we expect to find integers

�;�; � � .C max.jaj; jbj; jcj//1=3

such that
�aC �b C �c � C�2=3 max.jaj; jbj; jcj/1=3:

This means that as soon as C > max.jaj; jbj; jcj/1=2, we can expect to find a true
relation (not an approximate one) a�C b�C c� D 0.

In practice, rather than picking C larger than this at random, a better strategy is
to proceed as in Theorem 14:

– Compute a basis of the free Z-module Ker ..x; y; z/ 7! ax C by C cz/;
– LLL-reduce, so that the first vector gives a short relation.

Theorem 14 shows that we shall find �;�; � � max.jaj; jbj; jcj/1=2. If a, b, c
are large powers of fixed primes, we thus have

rad .���abc/� max.jaj; jbj; jcj/3=2
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which is the order of max.j�aj; j�bj; j�cj/ if a; b; c have the same size. We thus
construct that way a family of example with the “right order of magnitude” in ABC-
conjecture.

Note that the multiplicative structure of �;�; � has a strong influence on the
“quality” of the example in view of the measure we chose. This means that one
should not always take the smallest possible �;�; � (i.e., the first vector of an LLL-
reduced basis), but also try small linear combinations of vectors of an LLL-reduced
basis.

This strategy generalizes to the case where a; b; c live in a given number field; we
leave it to the reader. The best abc-example (with respect to the classical measure
of quality given above) found so far by Dokchitser using this strategy is

.A;B; C / D .1310372; 37195714223; 2265121873/:

Other Diophantine Equations

We discuss shortly the application of Baker’s method and LLL to other families of
Diophantine equations.

The Thue Equation

The Thue Equation [48] is the natural generalization of Pell’s equation, i.e., the
equation P.X; Y / D a, for P a homogeneous irreducible polynomial of degree
d � 3, except that Thue’s theorem asserts that this equation has only finitely many
solutions. Thue’s proof was ineffective, but we shall use Baker’s method to sketch
an effective proof based on linear forms in logarithms. The first to give such an
effective proof was Baker [49], and the seminal paper on algorithms for solution of
a general Thue equation is the work by Tzanakis and de Weger [50].

Assume that P is monic (which can be obtained by a suitable change of
variables), and let ˛ D ˛1 be such that P.1; ˛/ D 0, with ˛2, : : : , ˛d its conjugates.

From an algebraic point of view, Thue equation means that for any solution
.x; y/, the algebraic integer x � ˛y has norm a in the number field Q.˛/. Hence,

x � ˛y D u�1

1 : : : u�r
r ; (6.15)

for ui a system of fundamental units of Q.˛/, and where  lives in a finite set S .
Both S and ui can be explicitly determined, see [8].

From the fact that the product
Qd

iD1.x � ˛iy/ is bounded, one can deduce that
exactly one term, e.g., the one with i D 1 in the product, is very small. In fact, one
can prove that min1�i�d jx � ˛1yj � jxj1�d , and the other terms are then very
close to .˛i � ˛1/y � x.
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In particular, if one picks i; j > 1, one has

.˛i �˛1/.x�˛jy/� .˛j �˛1/.x�˛iy/ D .˛j �˛i /.x�˛1y/� jxj1�d : (6.16)

Using the decomposition (6.15), we obtain

.˛j � ˛1/i u
�1

1i : : : u
�r

ri � .˛i � ˛1/j u�1

1j : : : u
�r

rj � jxj1�d ;

which implies

Log
.˛j � ˛1/i

.˛i � ˛1/j

C
rX

kD1

�k Log
uki

ukj

C �rC12i	 � jxj1�d ; (6.17)

for some integer �rC1. In this inequality, only the �k are unknown. It, thus, has
exactly the same form as (6.12) or again as (6.13), once one notices that x �
log maxi j�i j.

In a similar way as for ABC, Baker’s bound will yield a bound on the left hand
side of (6.17), which gives in turn a bound on the bk . In view of (6.17), we are
thus left with finding small values of a inhomogeneous linear form with bounded
coefficients, or rather, in practice, proving that no small value exists, which is done
by means of Theorem 19, and yields a new upper bound on max jbkj, and so on.

In that setting, notice that we can vary i; j among r � 1 pairs giving inhomoge-
neous independent linear forms, which must be simultaneously small. Doing this,
one can use the technique described in Remark 7 to reduce the problem to an inho-
mogeneous approximation problem in two variables. This is a crucial idea in order
to be able to deal with very high degree equations.

There is a wealth of literature on the Thue equation, describing other important
algorithmic improvements, as well as the somewhat more difficult relative case. We
refer the interested reader to [41] for a more precise description, and for an extensive
bibliography.

Remark 12. Notice that (6.16) is, after dividing by the right hand side, a special
case of unit equation, i.e., �1u1 C �2u2 D 1, where u1 and u2 are units in some
number field. What we actually do in Thue’s equation is reducing to a unit equation,
and solving the latter, except that we have a more precise control on the size of the
various conjugates in the case of Thue’s equation. For instance, the trick of Remark 7
is useless in the case of a general unit equation, since we have control on the size of
one single conjugate, and hence one single “small linear form.”

Remark 13. Combining the archimedean arguments above with p-adic ones, one
can extend the techniques above to the case of the Thue–Mahler equation [51], i.e.,
replace the fixed right hand side a by apn1

1 : : : p
nr
r for fixed a; pi and unknowns ni .

Or, in the setting of unit equations, dealing with S -unit equations. At that point, one
has to use lower bounds for linear forms in p-adic logarithms, and the reduction
involves the p-adic techniques that we have developed.
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Elliptic Equations

We call elliptic equation an equation F.x; y/ D 0 such that the curve defined by
this equation is an elliptic curve.

In the elliptic logarithm method, we replace the logarithm by the elliptic log-
arithm, namely a morphism � W Ec.R/ ! R, associated to each unbounded
componentEc.R/ of E.R/.

An important property of this morphism must be that “large integral solutions”
have small logarithms, i.e.,

�..X; Y //� jX j�˛; (6.18)

for some ˛. This depends on the model chosen, since the fact for a point to be
integral depends on the model. In practice, when one studies a specific model, one
starts by proving a general inequality of the kind (6.18) for that model, where the
implied constant depends on the curve.

Afterwards, the strategy is very similar to any application of Baker’s method:

– The set of rational solutions of F.x; y/ D 0 has a group structure, for which one
first determines a generating set P0; : : : ; Pr (this is not an easy task, see e.g.,
[52]);

– One looks for a general solution as a linear combination
P
niPi ;

– A large integral solution has �..X; Y // DP ni�.Pi /� jX j�˛

– One relates X and the ni using heights, getting
P
ni�.Pi /� exp.�cn2

i /.

We are left in a similar situation as previously, where we are looking for very
small values of a linear form in (elliptic) logarithms: apply a Baker type theorem to
get a lower bound on the linear form, compare with the upper bound, get a bound on
max jni j, reduce it using LLL. The technicalities are even tougher than in the case
of the Thue equation.

This method was simultaneously introduced by Gebel, Pethő, and Zimmer [53]
and by Stroeker and Tzanakis [54]. The former authors used it in their large com-
putation [55] about Mordell’s equation y2 D x3 C k, which they solved for all
jkj � 10;000. The case of a general plane model is described in [56].

Let us conclude by mentioning that Bilu [57] proposed a technique based on unit
equations to treat superelliptic equations yp D f .x/, which were previously solved
via reduction to the Thue equations. The algorithmic aspects are very similar to the
Thue case, and were studied by Bilu and the author [58].

Again, the methods described and mentioned above can be adapted to find S -
integral solutions of elliptic and hyperelliptic equations, see [59, 60].

Approximation by Algebraic Numbers

From the algorithmic results concerning linear relations, we can deduce some
applications to approximations of a given real number by an algebraic number.
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Finding Polynomial with Small Values at �

We give a result about finding a polynomial with a small value in �, which is a
straightforward application of Theorem 15 about linear relations. We also give a
general Lemma which allows one to relate polynomials with small values at x and
algebraic approximations of x.

Theorem 22. Let � be real, complex, or integral or in Zp Œ��. In the latter case, we
assume that � is integral over Zp , and write ŒQp.�/ W Qp� D ı. Given d , and for
any integers C and `, one can find in polynomial time a polynomial P with integer
coefficients such that degP � d and

H.P/ �

8
ˆ̂̂
<̂

ˆ̂̂
:̂

2d=4
�
1CPd

iD0



C�i

�2
� 1

2.dC1/
if � 2 R

2d=4
�
1C 1

2

Pd
iD0.



CRe �i

�2 C 
C Im�i
�2
/
� 1

.dC1/
if � 2 C

2
dCı

4 p
ı`

dCıC1 if � 2 Zp Œ��

and

jP.�/j �

8
ˆ̂<

ˆ̂:

2.d�4/=4

C

p
d C 5

�
1CPd

iD0



C�i

�2� 1
2.dC1/

if � 2 R

2.d�4/=4

C

p
d C 5

�
1C 1

2

Pd
iD0.



CRe �i

�2 C 
C Im�i
�2
/
� 1
dC1

if � 2 C

p�` if � 2 ZpŒ��

;

where j � j is the p-adic valuation in the case of p-adic arguments, the ordinary
absolute value otherwise.

Proof. Apply Theorem 15 to the linear form
Pd

iD0 �i�
i if � is real; to the linear

forms
dX

iD0

�i Re .�i /;

dX

iD0

�i Im.�
i /

if � is in C � R; apply Theorem 17 to the linear forms corresponding to the coeffi-
cients of the powers of � in

Pd
iD0 �i�

i in the p-adic case. ut
In a less technical form, the polynomial obtained has height H.P/ � C 1=.dC1/

and P.�/ � C 1�1=.dC1/, in the real case. In the complex cases, since we have to
treat simultaneously the real and imaginary part, one should replace 1=.d C 1/ by
2=.d C 1/.
Remark 14. One can similarly look for an approximation of � by an algebraic inte-
ger of degree � d by using the inhomogeneous approach, i.e., by trying to write
�d as a linear combination

Pd�1
jD0 �j �

j . As pointed, since we are in the inhomoge-
neous approach, nothing is guaranteed. For instance, for any monic polynomial P
of degree � d , one has P.1=2/ � 2�d , whatever the height of P .
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Link with Approximation by Algebraic Numbers

A natural question is whether those results on polynomials with small value at � can
be translated into results on approximation by algebraic numbers of not too large
degree and height. In practice, they can, via one of a variety of theorems which relate
min j� �˛j and jP.˛/j, where the minimum is taken over the roots of P . Of course,
we expect that if � is close enough to a root ˛ ofP , we have j��˛jjP 0.�/j � jP.�/j.

We quote for instance the simplest result of that type:

Theorem 23. Let P.X/ be a nonconstant complex polynomial, and assume
P 0.�/ ¤ 0. Then

min
˛
j� � ˛j � n

ˇ̌
ˇ̌ P.�/
P 0.�/

ˇ̌
ˇ̌ ;

where the minimum is over the roots of P .

Proof. Follows from taking the logarithmic derivative of P ,

P 0.�/
P.�/

D
X

˛

1

� � ˛ : ut
In practice, if � is chosen at random and P constructed by the techniques of

Sect. 15, we expect that P 0 behaves “randomly” at �, i.e., jP 0.�/j � H.P/j�jd , and
we obtain a lower bound of the order of jP.�/j=.H.P /j�jd /.

For more general statements suitable for dealing with the case where jP 0.�/j is
also small, we refer to Appendix A.3 of Bugeaud’s book [61].

Rational Points Close to Varieties

The results of Section “Linear Relations” can be seen as finding integral points close
to a projective or affine linear variety. On the other hand, solving a diophantine
equation is finding integral or rational points on an algebraic variety. In this section,
we study the problem of finding all, or some points close to a sufficiently smooth
variety.

This is an extremely technical subject, and the optimizations are still at quite a
preliminary stage of development. We will simply sketch a few ideas on this subject.

Elkies–Lefèvre–Muller Method

This method has been introduced by Lefèvre and Muller [62] in a very specialized
setting. Looking closely, one notices that their method in fact involves a contin-
ued fraction computation, used to deal with one inhomogeneous linear form in two
variables.
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The problem they were studying, which is of intrinsic interest, is the table
maker’s dilemma. In a nutshell, one has to evaluate a function f at a point of
the form x=2p (i.e., a floating-point number), 2p�1 � x < 2p a given integer.
One wants to find the integers x such that this evaluation is “hard to round,” i.e.,
f .x=2p/ is very close from a number of the same form y=2p, or equivalently, that
j2pf .x=2p/ � yj is very small for integers x; y. Typically one looks for extremal
cases, i.e., heuristically

j2pf .x=2p/� yj � 2�p:

The strategy is to notice that, though the problem seems somewhat untraceable
in this form, it becomes an inhomogeneous linear form problem if f is a degree 1
polynomial. Thus, one should split the domain into pieces, on which one replaces the
function by a degree 1 polynomial (notice that replacing by a degree 0 polynomial
would essentially be the exhaustive approach). The analysis of what can be expected
is as follows:

We split the interval Œ2p�1; 2pŒ into N pieces of size 2p=N . Over each interval,
we shall obtain a lower bound for a linear form j˛x C ˇ � yj, which we can expect
to be of the order of .2p=N/�2. Indeed, we have .2p=N/2 different terms which we
expect to be uniformly spaced into Œ0; 1�.

On the other hand, we need this lower bound to be larger than the error made
when estimating 2pf .x=2p/ by ˛x C ˇ, which is of the order of 1=.2pN/. This
constraint means that we should choose N � 2p=3, which gives a total of 22p=3

intervals, over which we mainly have to compute a continued fraction (unless we
happen to find a solution to our inequality). Thus, up to polynomial factors, the
heuristic complexity of the algorithm is QO.22p=3/.

Elkies’ Version

At more or less the same time, Elkies [63] developed a very similar method, though
presented in a much more natural way, in the setting of finding rational points close
to a curve. This led him to describe what is more or less an homogeneous version of
Lefèvre–Muller’s method.

Indeed, in that case, one wants to approximate the plane curve .x; y/ D 0, with
 regular enough, by the tangent at a smooth point .x0; y0/

@ 

@y
.x0; y0/.x � x0/ � @ 

@x
.x0; y0/.y � y0/ D 0:

Finding a rational point close to the curve in the vicinity of .x0; y0/ then reduces
to finding small values of the homogeneous linear form

@ 

@y
.x0; y0/x C @ 

@x
.x0; y0/y C

�
@ 

@x
.x0; y0/y0 � @ 

@y
.x0; y0/x0

�
z:
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This problem can be studied from the positive side (finding points close) as
well as from the negative side (there is no point very close) by means of the
three-dimensional LLL algorithm, and the methods developed in Section “Linear
Relations”.

Elkies used this method to compute extremal examples for the Hall conjecture

jx3 � y2j �" x
1=2�";

which is related to Mordell’s equation already encountered in Section “Elliptic
Equations”.

Of course, one can trivially extend the Elkies–Lefèvre–Muller to varieties of
dimension d embedded in an affine space of dimension n, in a very natural way,
simply by cutting the variety in small enough pieces, and replacing each piece by
the tangent space at some point .x01; : : : ; x0d /. From the lattice point of view, one
will simply end up with (possibly) more linear forms in more variables.

Coppersmith’s Method

Another natural extension of what we have done in the previous paragraph is to try to
make the method perform better by using a sharper approximation (i.e., polynomial
of larger degree, in practice) of our curve or surface, if the latter is smooth enough.
Indeed, that would allow to use a decomposition of our curve or variety in much
larger pieces, and hence to have less “small degree subproblems” to solve. This
extension is by far more difficult than the previous one, and the limits of it still seem
unclear.

The key ingredient to do this is a general method, due to Coppersmith [64], to
find small solutions to polynomial equations, which has probably not yet reached its
final state of development. We refer to May’s paper in this volume for a survey and
extensive bibliography on the subject. For the application of Coppersmith’s method
to the table maker’s dilemma, we refer to [65].

Acknowledgements Many thanks to Damien Stehlé for numerous discussions over the last few
years about lattices, especially about fine behavior and advanced usage of LLL, and for many
corrections, suggestions, and improvements to this survey; thanks also to Nicolas Brisebarre for
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13. Nguyen, P., Stehlé, D.: LLL on the average. In: Proceedings of the 7th Algorithmic Number

Theory Symposium (ANTS VII), Lecture Notes in Computer Science, vol. 4076, pp. 238–256.
Springer (2006)
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30. Siegel, C.: Über einige Anwendungen diophantischer Approximationen. Abh. der Preuß Akad.

der Wissenschaften. Phys-math. kl. 1 (1929) = Gesammelte Abhandlungen, I, 209–266
31. Schmidt, W.: Diophantine Approximation, Lecture Notes in Mathematics, vol. 785. Springer

(1980)



262 G. Hanrot

32. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: Proceedings of Cryptology
and Computational Number Theory, Proceedings of Symposia in Applied Mathematics, vol. 42,
pp. 75–88. Am. Math. Soc. (1989)

33. van Hoeij, M.: Factoring polynomials and the knapsack problem. J. Number Th. 95, 167–189
(2002)

34. Bilu, Y., Hanrot, G.: Solving Thue Equations of Large Degree. J. Number Th. 60, 373–392
(1996)

35. Schnorr, C.P.: Factoring Integers and computing discrete logarithms via Diophantine approxi-
mation. Adv. Comput. Complex. 13, 171–182 (1993)

36. Adleman, L.: Factoring and lattice reduction (1995). Manuscript
37. Dickman, K.: On the frequency of numbers containing primes of a certain relative magnitude.

Ark. Math. Astr. Fys. 22, 1–14 (1930)
38. Vallée, B.: Provably fast integer factoring with quasi-uniform small quadratic residues. In: Pro-

ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, 15–17 May
1989, Seattle, Washington, USA, pp. 98–106 (1989)

39. Montgomery, P.: Square roots of products of algebraic numbers. In: W. Gautschi (ed.)
Mathematics of Computation 1943–1993: a Half-Century of Computational Mathematics,
Proceedings of Symposia in Applied Mathematics, pp. 567–571. Am. Math. Soc. (1994)

40. Nguyen, P.: A Montgomery-like square root for the number field sieve. In: J. Buhler (ed.)
Algorithmic Number Theory, Third International Symposium, ANTS-III Portland, Oregon,
USA, June 21, 1998 Proceedings, Lecture Notes in Computer Science, vol. 1423, pp. 151–168.
Springer (1998)

41. Smart, N.: The algorithmic solution of Diophantine equations, London Mathematical Society
Students Texts, vol. 41. Cambridge University Press (1998)

42. Baker, A.: Linear forms in the logarithms of algebraic numbers, I. Mathematika 13, 204–216
(1966)

43. Matveev, E.: An explicit lower bound for a homogeneous rational linear form in logarithms of
algebraic numbers, ii. Izv. Ross. Akad. Nauk, Ser. Math. 64, 125–180 (2000)

44. de Weger, B.: Solving exponential diophantine equations using lattice basis reduction algo-
rithms. J. Number Th. 26, 325–367 (1987)
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46. Stewart, C., Yu, K.: On the abc conjecture. II. Duke Math. J. 108, 169–181 (2001)
47. Dokchitser, T.: LLL & ABC. J. Number Th. 107, 161–167 (2004)
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Mathématiques stochastiques, université Bordeaux 2
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Chapter 7
Selected Applications of LLL in Number Theory

Denis Simon

Abstract In this survey, I describe some applications of LLL in number theory.
I show in particular how it can be used to solve many different linear problems and
quadratic equations and to compute efficiently in number fields.

Introduction

The LLL algorithm has really many applications (on MathSciNet, it is cited in the
references of at least 118 papers and in at least 50 reviews !!).

Among the most famous ones are of course those in lattice theory (the short-
est vector problem: [22] and [17, 23, 32]; the closest vector problem: [1, 3] ...) and
also those for factoring polynomials (for example, in [35]), since this was precisely
the application Lenstra, Lenstra, and Lovász presented in their original paper [41].
At least as famous is the application to the knapsack problem: [22, 38, 47] or [51,
Sect. VI.2].

In this survey, I would like to present other selected applications in number
theory, all of which lead to revolutionary results.

1. For linear problems: computing gcd’s, kernels, Hermite normal forms, Smith
normal forms, integral relations, linear dependence, algebraic dependence : : :

2. Solving quadratic equations: Gauss reduction in dimension 3, Shanks’ algo-
rithm for the 2-primary part of the class group C l.

p
D/, reduction of indefinite

quadratic forms, quadratic equations in dimension 4 and more: : :
3. Number fields: polynomial reduction, ideal reduction, computing the class group

and the unit group, solving the principal ideal problem : : :

4. Testing conjectures (Hall, abc, Mertens, : : :)

D. Simon
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Warnings

In most of the applications described in this paper, we only use two properties of
the LLL algorithm. The first is that, when it is given a lattice L of dimension n and
determinant d.L/, then LLL outputs a short vector b1 bounded by

jb1j � 2.n�1/=4 det.L/1=n:

The geometry of numbers would give better bounds. The second one is that LLL
finds this vector in polynomial time; hence it gives a very efficient algorithm to
solve the different problems.

As noticed in [12, Algorithm 2.6.3, Remark 2], LLL only needs to know the
Gram matrix of the lattice. This remark implies that it is equivalent to describe
the lattice as embedded in R

n with the euclidean norm or as Z
n equipped with a

positive definite quadratic form q. The result of LLL is then an integral unimodular
transformation matrix, or just an n-tuple .x1; : : : ; xn/ ¤ .0; : : : ; 0/ of integers such
that

q.x1; : : : ; xn/ � 2.n�1/=2 det.q/1=n:

In this paper, LLL will be used mainly in small dimension: almost always n � 30

and very often n � 6. However, the coefficients may have hundreds or thousands of
digits.

Reducing Linear Forms

A significant part of the material of this section comes from [12, Sect. 2.7] and
[51, Sect. IV.3 and IV.4].

� The best approximations of a real number ˛ by rational numbers are usually
obtained by the continued fraction algorithm. As suggested in [41], another way
to obtain good approximations is to reduce the quadratic form

q.x; y/ D M.˛x � y/2 C 1

M
x2;

where ˛ is usually a decimal approximation of ˛ to precision 1
M

. Indeed,
when M is large and .x; y/ is a short vector for the quadratic form q, then

q.x; y/ D O.1/, which implies xDO.pM/ and ˛x�yDO
�

1p
M

�
. Typically,

this implies jxj � jyj � pM and j˛ � y
x
j � 1

M
.

More explicitly, it consists of reducing the lattice Z
2 equipped with the quadratic

form q.x; y/DM.˛x � y/2 C 1
M
x2, or of applying the LLL algorithm with the

2-dimensional Gram matrix
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�
˛2M C 1

M
�˛M

�˛M M

�

This Gram matrix has determinant equal to 1, hence corresponds to a lattice of
determinant 1. The underlying lattice in the euclidean plane R

2 is given by the
matrix  

1p
M

0

˛
p
M �pM

!
:

The result of LLL is then a unimodular integral transformation matrix

0

@a b

c d

1

A, and

the desired short vector .x; y/ is just .a; c/. Indeed, the bound given by LLL asserts
that q.x; y/ �

p
2. This inequality implies two others, namely

8
<

:
j˛x � yj � 21=4p

M

jxj � 21=4
p
M:

Now, using the inequality j˛ � ˛j � 1
M

, we find

j˛x � yj � 25=4

p
M
:

Example: Assume that we want to find a good rational approximation of ˛D	 ,
using the decimal approximation ˛ D 3:1415926536. We have ten correct decimals,
so we choose M D 1010. The shortest vector found by LLL is then .x; y/ D
.99532; 312689/. We indeed see that jxj � jyj � 105�pM and

ˇ̌
	 � y

x

ˇ̌ � 0:3 �
10�10 � 1

M
. This rational approximation is exactly the same as the one given by

the continued fraction expansion of 	 , corresponding to the eight first coefficients
Œ3; 7; 15; 1; 292; 1; 1; 1�.

When we use the approximation 	 � 31415926536� 10�10, all the information
is contained in the 10 digits of the numerator, and almost nothing in the denominator.
In the other approximation 	 � 312689

99532
, the information is equally distributed into

the numerator and the denominator, but a total of 10 digits is still necessary. There
is no gain of storage to use either representation.

If ˛ is close to 1, it might also be interesting to consider the more symmetrical
quadratic form

q.x; y/ DM.˛x � y/2 C 1

M
.x2 C y2/:

� There is an analog of this algorithm for p-adic approximation (for example, in
[51, Sect. VI.4]). If p is a prime number and ˛ is a p-adic unit, approximated
modulo pm by a rational integer ˛, then we can look for a short vector for the
quadratic form
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q.x; y; z/ DM 2.˛x � y � pmz/2 C 1

M
.x2 C y2/:

The Gram matrix of q is

0

@
˛2M 2 C 1

M
�˛M 2 �˛M 2pm

�˛M 2 M 2 C 1
M

M 2pm

�˛M 2pm M 2pm M 2p2m

1

A

and its determinant is p2m. It corresponds to the lattice in R
3 generated by

0

B@

1p
M

0 0

0 1p
M

0

˛M �M �pmM

1

CA

of determinant pm. Applied to this 3-dimensional Gram matrix, LLL returns a short
integral vector .x; y; z/ satisfying the inequality

q.x; y; z/ � 23=2p2m=3;

from which we deduce in particular

j˛x � y � pmzj � 23=4pm=3M�1:

If we choose M such that 23=4pm=3<M <2pm=3, we have j˛x � y � pmzj < 1

which implies that ˛x � y � pmz D 0, since this is an integer. It now remains

x2 C y2 � 25=2pm;

whence (
jxj � 25=4pm=2

jyj � 25=4pm=2:

In summary, we have found rational integers x and y such that jxj and jyj
are both O.pm=2/. Furthermore, when ˛ is a p-adic unit, x is also a p-adic unit,
and we have a p-adic approximation j˛ � y

x
jp � p�m with the real bounds

jxj � jyj � pm=2.
When m D 1, this result proves that any element in F

�
p can be represented by a

fraction y
x

with jxj D O.p1=2/ and jyj D O.p1=2/. The corresponding algorithm
is just an application of LLL in dimension 3.

In this application, we have used a lattice of dimension 3, but a careful reading
reveals that because of the relation ˛x � y � pmz D 0, the constructed short vector
lies in a dimension 2 sublattice. De Weger [52] describes an algorithm wherein this
idea is used and wherein LLL is only applied in dimension 2.
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Example: Consider the prime number p D 1010 C 19 and the p-adic number
˛ D 16

17
. Its p-adic expansion is ˛ D 7647058839C9411764723pC2352941180p2

C : : : . Using the described algorithm, withmD 3, ˛D 7647058839C 9411764723
pC2352941180p2 D 235294118988235296665882354556, LLL quickly finds the
short vector .x; y; z/ D .17; 16; 4/, hence recovers the original fraction.

� The previous approach (either real or p-adic) easily generalizes to obtain small

values of a linear formL.x1; : : : ; xn/ D xnC
n�1X

iD1

˛ixi in dimension n, evaluated

at small integers x1; : : : ; xn. In the real case, we just have to reduce the quadratic
form

M n�1L.x1; : : : ; xn/
2 C 1

M

n�1X

iD1

x2
i

(this also appears in [41]).

Even more generally, if we are given n linear formsL1; : : : Ln in nCm variables
x1; : : : ; xnCm, then we will have a simultaneous approximation if we reduce the
single quadratic form

W1L1.x1; : : : ; xnCm/
2 C � � � CWnLn.x1; : : : ; xnCm/

2 CWnC1x
2
nC1

C � � � CWnCmx
2
nCm;

where the Wi are weights that are to be chosen depending on how much the linear
forms and the coefficients have to be reduced compared to each other. This appli-
cation to Diophantine approximation is described, for example, in [39]. Many other
applications of LLL applied to linear forms in logarithms are given in [51, part 2] or
in [26].

� For example, if the coefficients of the Li are integers and if we want to insist
on having exactly Li .x1; : : : ; xnCm/ D 0 for all i D 1; : : : ; n, we will choose
very large weights Wi , i D 1; : : : ; n and the other weights very small. This
approach is used by [44] to compute the kernel of an integral matrix and to
give a modified version of LLL, called MLLL, applicable not only on a basis
of a lattice, but also on a generating set of vectors b1; : : : ;bnCm of a lattice
of dimension n. The result of this algorithm is then a reduced basis of the lattice
together with a matrix containingm independent relations among the bi . See also
[12, Sect. 2.7.1].

Example: Consider the matrix

M D
0

@
2491 5293 1032 5357 9956

6891 4280 3637 3768 4370

5007 4660 5712 7743 4715

1

A ;

which has been chosen randomly with coefficients less than 104. Its kernel has
dimension 2, and using gaussian elimination, we find that this kernel is generated by
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0

BBBBBB@

59229512635
82248101629

33495205035
82248101629

�94247651922
82248101629

�180166533113
82248101629

�86522262381
82248101629

49731399425
82248101629

1 0

0 1

1

CCCCCCA
:

Now, consider the quadratic formA4.2491vC5293wC1032xC5357yC9956z/2C
A4.6891vC4280wC3637xC3768yC4370z/2CA4.5007vC4660wC5712xC
7743y C 4715z/2 CA�6y2 C A�6z2 or equivalently the lattice

0

BBBBB@

2491A2 5293A2 1032A2 5357A2 9956A2

6891A2 4280A2 3637A2 3768A2 4370A2

5007A2 4660A2 5712A2 7743A2 4715A2

0 0 0 A�3 0

0 0 0 0 A�3

1

CCCCCA
:

This lattice has determinant c, with cD 82248101629. We now apply LLL to
this quadratic form. If A is large enough (here A>13 works), then the values
of the quadratic form are so small that the first two columns of the unimodular
transformation matrix

U D

0

BBBBB@

6845 �300730 �53974 121395 �138794
285983 782775 114176 �446636 387087

�240869 202704 56844 19781 73475

118346 �306061 �64578 75646 �131789
�192463 �197241 �18341 164323 �107769

1

CCCCCA

are the coordinates of kernel. We can see that the coefficients are much smaller
(6 digits) than with the other method (11 digits). Here, we have

MU D
0

@
0 0 0 �1 0

0 0 0 0 �1
0 0 1 0 0

1

A :

In [28], this idea is used to solve the extended gcd problem: given integers
s1; : : : ; sm, find a vector x D .x1; : : : ; xm/ with integral coefficients and small
euclidean norm such that x1s1 C � � � C xmsm D gcd.s1; : : : ; sm/. The method is
generalized to the problem of producing small unimodular transformation matrices
for computing the Hermite Normal Form of an integer matrix (in [28]) and for
computing the Smith Normal Form (in [42] and [30]).

� We can also find Z-linear relations among real numbers. In a computer, an
integer relation between real numbers can not of course be tested to be exactly
0, but only if it is small. This means that if an integer relation really exists, then
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LLL will probably find it. But LLL can also find other Z-linear combinations
that are not 0 but just small. In fact, if the relation is not exactly 0, it is usually
possible to prove it just by computing it with enough precision. However, it is
the responsibility of the mathematician to prove that a relation found by LLL is
exactly 0.

Example: We are aware of Machin’s formula

a arctan.1/C b arctan

�
1

5

�
C c arctan

�
1

239

�
D 0;

where a, b, and c are small integers, but we do not know their values. We apply LLL
to the quadratic form

A2

�
a arctan.1/C b arctan

�
1

5

�
C c arctan

�
1

239

��2

C .b2 C c2/

or to the lattice

0

B@
arctan.1/A arctan

�
1
5

�
A arctan

�
1

239

�
A

0 1 0

0 0 1

1

CA

with a large value ofA. IfA is not large enough, LLL suggests that arctan
�

1
239

� � 0.
Is is clearly true, but not exactly 0. If A > 1; 000, LLL suggests the relation

arctan.1/� 4 arctan

�
1

5

�
C arctan

�
1

239

�
� 0:

Now, a rigorous proof that this is exactly 0 comes with the observation that through
the transformation exp.2i arctan t/ D 1Ci t

1�i t
, the relation is equivalent to

.1C i/.1C 5i/�4.1C 239i/
.1 � i/.1 � 5i/�4.1 � 239i/ D 1:

Other algorithms for detecting integer relations between reals are given in the
papers [21] and [20] (without LLL) and [27] (with LLL). See also the lindep
function in GP/PARI, described in [12, Sect. 2.7.2].

Using these algorithms, Borwein and Bradley [5] have for example tried to
generalize Apéry’s formula

�.3/ D 5

2

1X

kD1

.�1/kC1

k3
�

2k
k

� :
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After an extensive search, they suggested that there is no formula of the type

�.5/ D a

b

1X

kD1

.�1/kC1

k5
�

2k
k

�

at least as long as a and b are not astronomically large. However, they found

�.7/ D 5

2

1X

kD1

.�1/kC1

k7
�

2k
k

� C 25

2

1X

kD1

.�1/kC1

k3
�

2k
k

�
k�1X

jD1

1

j 4
;

and similar expressions for �.9/, �.11/, and proposed the following conjecture

1X

sD0

�.4sC 3/x4s D 1

2

1X

kD1

.�1/kC1

�
2k
k

�
k3

5k

k4 � x4

k�1Y

nD1

�
n4 C 4x4

n4 � x4

�
:

This was later proved to be true by [2]. Similar methods and results are also obtained
about �.2s C 2/ in [6].

� A special case of integer relations between real (or complex) numbers is the case
when the real numbers are powers of the same real number. In this case, a linear
relation

Pn
iD0 xi˛

i D 0 proves that ˛ is an algebraic number of degree at most
n, and the given polynomial

Pn
iD0 xiX

i 2 ZŒX� is a multiple of its minimal
polynomial. In some sense, LLL is able to recover the minimal polynomial
of an algebraic number. It is important to remark that in this algorithm, the
degree n is fixed, so that it can only find a polynomial if we have a bound on its
degree. See for example the algdep function in GP/PARI, described in [12,
Sect. 2.7.2].

In practice, since we only work with real approximations of ˛, the polynomials
found are only candidates. However, it is quite common that checking the vanishing
of a polynomial at ˛ is easy. Hence, the algorithm can be used in both ways: either
to give evidence that ˛ is a transcendental number, or to build a polynomial taking
such a small value at ˛; there is a high chance that it, in fact, vanishes exactly at ˛.
This method has been used in [34] to give evidence that the numbers e˙	 and some
other numbers are transcendental. It is described in more details in [33], where a sur-
prising application is given for the factorization of polynomials in ZŒX�: Start with
a polynomial P 2 ZŒX� of degree n, and compute sufficiently many digits of the
real and imaginary parts of a root ˛ (using your preferred method, for example by
Newton’s method); then, use the algorithm to look for an integral polynomialQ van-
ishing at ˛; ifQ dividesP , we are done; otherwise, P has no proper factor. See also
[40]. Other polynomial factorization algorithms using LLL are given in [45] or [35].

Example: Imagine that we would like to prove that ˛ D eC	 is an algebraic number
of degree 4. This would mean that there are integers a4, a3, a2, a1, and a0, not all 0,
such that a0˛

4 C a1˛
3 C a2˛

2 C a1˛ C a0 D 0. Using an approximation of ˛ to
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20 decimals, LLL suggests the relation

127˛4 � 399˛3 � 2268˛2 C 1849˛ � 2417 � 0:

In order to verify this relation, we increase the precision of ˛ to 40 decimals and
observe that the expression is not 0, but close to �4:6 10�13. Using this new
precision, LLL now suggests a new relation

3498343˛4 � 940388˛3 � 116624179˛2C 761230˛C 64496487� 0:

Repeating this procedure always gives a tentative polynomial with growing coef-
ficients, but never vanishing exactly at ˛. Of course, this does not prove that ˛ is
transcendental, and it does even not prove that is not algebraic of degree 4. However,
it proves that there is no quartic polynomial with small coefficients vanishing at ˛.

Another illustration of this application of LLL is given in [31]. See also [13,
Sect. 6.3.2]. For an imaginary quadratic field K of discriminant d , the Hilbert class
field ofK is of relative degree h D #C l.K/ overK . If .˛k/1�k�h are the roots of h
inequivalent binary quadratic forms of discriminant d , then jk D j.˛k/ (where
the function j is the modular function) are the roots of a degree h polynomial
Hd 2 ZŒX� defining exactly the Hilbert class field of K . Instead of computing
each of the h values jk , it is possible to compute just one such value and to recover
the whole polynomial using the previous algorithm. However, since the coefficients
ofHd are usually quite large, it is preferable to use the Weber function f .z/ instead
of the modular function j.z/. The corresponding polynomial hd still defines the
Hilbert class field, but the coefficients can be 12 times smaller.

Example: For the discriminant d D � 32, the class number is 3, and the class group
is cyclic of order 3, generated by P D 2x2C xC 3. Its roots in the upper half plane
is

˛1 D �1C i
p
23

4
� �0:25C 1:19895788082817988539935951604i:

We can now compute

j.˛1/ � 737:849984966684102752369273665
C1764:01893861274614164378642717i:

This should be an algebraic integer of degree 6 (and in fact of degree 3). Now,
LLL suggests that the minimal polynomial of j could be P D x3 C 3491750x2 �
5151296875x C 12771880859375. It only remains to prove that this polynomial,
indeed, defines an unramified extension of Q.

p�23/, but this is a different story ! A
good test is that the norm of j should be a cube. Here, we have 12771880859375D
233753.
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Solving Quadratic Equations Over the Rationals

In this section, we consider the problem of solving quadratic equations over Q. Since
testing the solvability of these equations is usually easy, we can always assume that
they are indeed solvable.

The first nontrivial family of quadratic equations that are interesting to solve
are the ternary quadratic equations q.x; y; z/ D 0, with rational coefficients and
unknowns. Among them is the diagonal equation, also called Legendre’s equation:
ax2 C by2 C cz2 D 0. Usually, the general nondiagonal equation q.x; y; z/ D 0 is
transformed into a diagonal one of Legendre type. For Legendre’s equation, a great
deal of algorithms exist.

For example, in [46, Chap. IV Sect. 3] or [51, Chap. IV Sect. 3.3], the solution of
ax2Cby2Ccz2 D 0 is deduced from the solution of a0x2Cb0y2Cc0z2 D 0 where
the new coefficients are smaller than the old ones. However, this reduction depends
on the possibility of extracting square roots modulo a, b, or c, which is only possible
if we know the factorization of abc. During the whole algorithm, the total number
of factorizations is quite large. The worst drawback is certainly that the numbers
that have to be factored may also be quite large. Solving quadratic equations with
these algorithms uses only a few lines in theory, but is extremely slow in practice.

Fortunately, a couple of algorithms exist, which do not factor any other integers
than a, b, and c. It seems impossible, in general, to avoid these three factorizations.
Such an algorithm is given in [16]. In practice, it indeed runs fast.

Other algorithms exist, which use the reduction theory of lattices. They all share
the same property of using no other factorization than that of abc. Since the LLL
algorithm can reduce quadratic forms, it is not surprising that it can be used to
solve quadratic equations over the rationals. However, if a quadratic equation has a
solution, it is certainly not positive definite. The problem is that LLL can a priori
only handle positive definite quadratic forms. There are two ways to go around this
problem :

� Either build a new quadratic form, which is positive definite and the reduction of
which can help us in solving the initial quadratic equation

� Or adapt LLL to indefinite quadratic forms.

A positive definite quadratic form attached to the problem is of course
q D jajx2 C jbjy2 C jcjz2. However, reducing Z

3 with this quadratic form
will not give anything, since it is already orthogonal hence reduced. According
to [11], if a, b, and c are coprime squarefree integers, some integral solutions of
ax2 C by2 C cz2 D 0 lie in a sublattice of Z

3 of index 2jabcj defined by the
congruences

by � �1z 
 0 .mod a/
ax � �2z 
 0 .mod b/
ax � �3z 
 0 .mod c/

plus another condition modulo a power of 2, where �1, �2, and �3 are any choice of
square roots of�bc,�ac,�ab modulo a, b, and c respectively. A smallest vector of



7 Selected Applications of LLL in Number Theory 275

this lattice (equipped with the positive definite quadratic form jajx2Cjbjy2Cjcjz2)
will give a solution. Using this algorithm, we see that LLL (in dimension 3) can be
used to solve Legendre’s equation.

The method of Gauss himself in [24, sects. 272, 274, 294] in 1801, was already
similar, since he builds the same lattice, using the same congruences. But Gauss
reduces directly the corresponding indefinite quadratic form. We can summarize
his method in two steps: (1) compute square roots modulo a, b, and c, and build
another quadratic form with determinant �1 and (2) Reduce and solve this new
quadratic form. The reduction of the indefinite quadratic form suggested by Gauss
works simultaneously on the quadratic form and its dual. It is quite different from
any version of LLL. This reduction algorithm is analyzed in [37] and proved to run
in polynomial time. It is interesting to note that the algorithm is used in [48] and [7]
to compute in polynomial time the 2-Sylow subgroup of the class group C l.

p
D/.

The algorithms described up to now are quite specific to solve Legendre equa-
tions, that is, diagonal ternary quadratic equations over Q. Some of them can also
solve semi-diagonal equations (of the form ax2CbxyCcy2 D d z2, but are not able
to solve general ternary quadratic equations. Of course, it is always possible to diag-
onalize any quadratic equation, but if we do so, the integers that are to be factored
may be huge (hence, impossible to factor in a reasonable amount of time) compared
to the determinant of the original equation. An example is given in [49] of an equa-
tion with determinant equal to �1 and coefficients having more than 1; 300 decimal
digits: reducing the equation to a diagonal one would require the factorization of
integers of that size !

In [49], an algorithm is given to solve general ternary quadratic equations, with-
out requiring other factorizations than that of the determinant. The main strategy
follows Gauss:

� Compute first an integral quadratic form, equivalent to the initial one, which has
determinant �1 (this is the minimization step)

� Then, reduce this indefinite quadratic form (this is the reduction step).

The minimization step only uses linear algebra modulo the prime divisors of the
determinant. The reduction step could certainly use the reduction of Gauss, but
another reduction algorithm is proposed. In fact, when we apply LLL to a quadratic
form which is indefinite, without changing LLL, the algorithm may enter into infi-
nite loops. Indeed, the swap condition in the algorithm (also called the Lovász
condition) is just

jb�i C �i;i�1b�i�1j2 < cjb�i�1j2;
which tests whether the norm of the vector b�

k�1
decreases when we interchange

bk�1 and bk . In terms of the underlying quadratic form q, this test is equivalent to

q.b�i C �i;i�1b�i�1/ < cq.b
�
i�1/:

In the case where q is not positive definite, these quantities may be negative, and a
swap may increase their absolute values. If we just add absolute values in this test



276 D. Simon

j q.b�i C �i;i�1b�i�1/ j< c j q.b�i�1/ j;

the new algorithm, which we call the Indefinite LLL, has the following properties:

Theorem 1 (IndefiniteLLL). Let q be a quadratic form over Z
n defined by q.x/ D

xtQx with a symmetric matrix Q 2 Mn.Z/ such that det.Q/ ¤ 0. The output of
the IndefiniteLLL Algorithm applied with a parameter 1

4
< c < 1 to a basis b1, . . . ,

bn of Z
n is

� Either some x 2 Z
n such that q.x/ D 0

� Or a reduced basis b1,. . . ,bn such that

j.b�k�1/
2j � � j.b�k/2j for 1 < k � n;

and
1 � j.b1/

2jn � �n.n�1/=2j det.Q/j;
where � D �c � 1

4

��1
> 4

3
.

If furthermore q is indefinite, we have

1 � j.b1/
2jn � 3

4
�n.n�1/=2j det.Q/j:

For a better comparison with the standard properties of LLL-reduced bases, we
have used the notation .b/2 for q.b/, which need not be positive in this situation.
In both cases, the algorithm finishes after a polynomial number of steps. Now, we
have an efficient way to solve general ternary quadratic equations. Combining
the algorithm of [48] and [7] with this indefinite LLL, we can now claim that LLL

can also compute the 2-Sylow subgroup of the class group C l
�p

D
�

.

One of the key points of this algorithm is to reduce indefinite quadratic forms.
Up to now, we have seen two algorithms for this : one by Gauss, which only works
in dimension 3, and the other in [49], which also works in higher dimensions. In
fact, other algorithms exist. For example, in [29] an algorithm very similar to [49] is
given. The main difference is in the way it handles isotropic vectors. In one case, the
algorithm simply stops, whereas in the other case, it applies a complicated subrou-
tine. Because of this small difference, the quality of the reduction proved in [49] is
slightly better than LLL, whereas it is worse than LLL in [29]. I would like to men-
tion a last algorithm used for the reduction of indefinite quadratic forms. Assume
that the indefinite quadratic form q is diagonal in some basis (typically obtained
by a Gram-Schmidt procedure). Then, we can bound jqj by the quadratic form q0
obtained just by taking the absolute values of the coefficients of q in this basis! Since
these quadratic forms have the same determinant (up to sign), a reduced basis for q0
will also be a reduced basis for q, and the quality of the reduction will be exactly
the same as in LLL. This is precisely what is suggested in [11], where the diagonal
form ax2 C by2 C cz2 is bounded by jajx2 C jbjy2C jcjz2. The only drawback of
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this method is that during the diagonalization step, we may introduce large denom-
inators, a fact that can slow down the algorithm. No serious comparison has been
done between these different algorithms.

A generalization of the previous algorithms has been recently proposed in [50] to
solve quadratic equations in higher dimensions. The main strategy of minimiza-
tion/reduction still works, but in a different way. A quadratic form q in dimension
n is minimizable if we can find an integral quadratic form q0 with determinant ˙1
and equivalent to q over Q. For an indefinite ternary quadratic form, minimizability
is equivalent to solvability. In higher dimension n � 4, this property is not true any
more.

When n D 4, we can use a trick of Cassels [10]: there exists a binary quadratic
form q2 such that q ˚ q2 is minimizable and is equivalent to H ˚H ˚H , where
H is an hyperbolic plane (the ˚ notation denotes the direct sum of quadratic mod-
ules; in terms of matrices, it just corresponds to taking the larger matrix, which is
diagonal by blocks, and the blocks are q and q2). This binary quadratic form q2 can
be computed explicitly from the local invariants of q and from the 2-Sylow of the
class group C l.

p
D/ (D being the determinant of q). Hence, using LLL and [7],

we can build this q2 as soon as we know the factorization ofD ! Now, the indefinite
LLL algorithm rapidly gives the equivalence between q˚q2 andH ˚H ˚H (this
is the reduction step). The remaining part of the algorithm is just linear algebra : a
vector in the intersection of a 3-dimensional isotropic subspace forH˚H˚H with
another 4-dimensional subspace (in the ambient space of dimension 6) will give a
solution for q.x/ D 0.

When n � 5, a similar trick applies, except that the minimization works either in
dimension n, nC 1, nC 2 or nC 3.

Number Fields

I see two main reasons why the computation of class groups in imaginary quadratic
fields are feasible. The first one is that, thanks to the correspondence between ideals
and quadratic forms (see [12, Sect. 5.2]), we can use Gauss reduction. The sec-
ond one is McCurley’s sub-exponential algorithm described in [25]. This algorithm
assumes the validity of the Generalized Riemann Hypothesis. It is also described in
[9] or [12, Sect. 5.5]. It relies on the notion of relations, that is expressions of ideals
a in the form

a D ˛
Y

f
ei

i ;

where ˛ is an element of K�, and fi are the ideals of the factor basis.
McCurley’s algorithm has been extended to general number fields. In [8] and

[15] (see also [12, Sect. 6.5] and [4]), it is explained how one can compute simul-
taneously the class group and the units from the relations between ideals. It is also
explained how one can perform the ideal reduction. The idea is the following.
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� LetK be a number field of degreen over Q with signature .r1; r2/. Let �1; : : :; �r1

be the real embeddings ofK and �r1C1; : : : ; �n the complex embeddings. For an
element x 2 K , we define the T2-norm of x to be kxk DpT2.x/ where

T2.x/ D
nX

iD1

j�i .x/j2:

This T2-norm can immediately be extended to R
n ' K˝Q R and defines a positive

definite quadratic form. Equipped with this quadratic form, the ring of integers ZK

of K is a lattice of determinant det.ZK/ D j discKj1=2. Choosing an LLL-reduced
basis .wi / of ZK (for the T2-norm) will give ZK the property that elements with
small coefficients will also have a small (algebraic-)norm. This is just an application
of the arithmetic-geometric mean:

njNK=Q.x/j2=n � T2

 
nX

iD1

xi wi

!
�
 

nX

iD1

x2
i

! 
nX

iD1

T2.wi /

!
:

Of course the converse is not true since, in general, there are infinitely many units,
that is elements of ZK such that NK=Q.x/ D ˙1, but there are only finitely many
elements with bounded T2-norm or bounded coefficients. As indicated in [4], choos-
ing an LLL-reduced basis for the T2-norm usually gives a faster arithmetic in the
number field.

� The polynomial reduction algorithm described in [14] and [12, Sect. 4.4.2] is
a byproduct of this reduction. Indeed, if we have an irreducible polynomial, with
splitting fieldK , one can compute an LLL-reduced integral basis of ZK , and look
for a primitive element with small coefficients. Its minimal polynomial usually
has small coefficients. For example, if we look for a defining polynomial for the
field Q.i;

p
2;
p
3;
p
5/, the function polcompositum of PARI/GP (which

implements the standard idea of the proof of the primitive element theorem) gives

x16 � 72x14 C 1932x12 � 22552x10 C154038x8 � 582456x6

C1440748x4 � 1486824x2C 3721041

with discriminant 231235058746432. The function polredabs of PARI/GP
implements this polynomial reduction algorithm and just finds the polynomial

x16 � 7x12 C 48x8 � 7x4 C 1

having discriminant 26433258.
� From my point of view, the most important application of this is the notion of

LLL-reduction of ideals introduced in [8] and [15], [12, Sect. 6.5.1]. Any inte-
gral ideal a of ZK of norm NK=Q.a/ is a sublattice of ZK of index NK=Q.a/.
Hence, we can apply LLL to this sublattice. A short vector for this T2-norm
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is certainly an element of a, that is, an element a 2 ZK satisfying aD ab for
some integral ideal b such that NK=Q.b/ is bounded independently of a (notice
that this claim gives a proof of the finiteness of the class group). If bD 1, we
have found a generator of the principal ideal a. If the ideal b can be factored in
the factor basis, we have a relation. This is exactly the way relations are found in
McCurley’s algorithm. Hence, we see that combined with McCurley’s algorithm,
LLL gives a way to compute class groups and solve the principal ideal prob-
lem. Furthermore, relations among principal ideals give units. More precisely, a
relation of the type ˛ZK D ˇZK is equivalent to the fact that ˛ˇ�1 is a unit.
Hence, the algorithm is also able to compute the unit group.

Conclusion: Breaking Records

It is a popular belief that when one wants to break records in number theory, one
has to use LLL. The applications of LLL given in this section are therefore more
isolated, but all serve the same goal: testing conjectures with numerical evidences.

� A revolutionary application was given in 1985 by Odlyzko and te Riele in [43],
wherein they give a disproof of the very old conjecture of Mertens. This
conjecture says that if we consider the Möbius function �.n/ and its counting
function M.x/D P

n�x �.n/, then we should have jM.x/j<px. After hav-
ing computed the 200 first zeros of the Riemann zeta function and used LLL
in dimension 200, they were able to prove that lim supM.x/x�1=2 >1:06 and
lim infM.x/x�1=2 < � 1:009. It has been improved in [36] using the same
technics to lim supM.x/x�1=2>1:218 and lim infM.x/x�1=2 < � 1:229.

� In a very surprising paper, [19], Elkies applies LLL, not to compute points on
curves, but to compute points near curves with small height. The naive idea
to list points of small height on a curve defined by an homogeneous equation
F.x; y; z/ D 0 is to loop on all possible values for x and y with jxj<N and
jyj<N , compute the corresponding values of z and test for their height. If we
also want points near the curve, a loop on z is also needed. If we are looking for
points at distance at most ı to the curve, the idea of Elkies is to cut the curve into
small pieces, each of length D O.ı1=2/. For each piece, the curve is approxi-
mated by a segment, and the search region is approximated by a boxB of height,
length, and width proportional to N , ı1=2N , ıN . Hence, as soon as ı � N�2,
we can expect that the box B of volume N 3ı3=2 will contain O.N 3ı3=2/ inte-
gral points. Now, finding all integral points in a box is a standard application
of LLL: find a reduced basis of B and loop over all points with small coefficients
in this basis. Using this approach, he is able to find the following surprising
relations:

3866927C 4114137 � 4418497;

2063� C 8093� � 8128� :
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This last example raises the question whether there are infinitely many integral
solutions to jx� C y� � z� j < 1. Using some more tricks leads to the relation

58538865167812233� 4478849284284020423079182 D 1641843

which is related to Hall’s conjecture, telling that if k D x3 � y2, then jkj �"

x1=2�". This example satisfies x1=2=jx3 � y2j > 46:6, improving the previous
record by a factor of almost 10.

� See also [18] for examples related the the abc conjecture and the Szpiro
conjecture.
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Chapter 8
The van Hoeij Algorithm for Factoring
Polynomials

Jürgen Klüners

Abstract In this survey, we report about a new algorithm for factoring polynomials
due to Mark van Hoeij. The main idea is that the combinatorial problem that occurs
in the Zassenhaus algorithm is reduced to a very special knapsack problem. In case
of rational polynomials, this knapsack problem can be very efficiently solved by the
LLL algorithm. This gives a polynomial time algorithm, which also works very well
in practice.

Introduction

Let f 2 ZŒx� be a polynomial of degree nwith integral coefficients. One of the clas-
sical questions in computer algebra is how to factorize f in an efficient way. About
40 years, ago Hans Zassenhaus [1] developed an algorithm, which was implemented
in almost all computer algebra systems until 2002. This algorithm worked very well
for many examples, but his worst case complexity was exponential. In the famous
LLL–paper [2], it was proved that it is possible to factor polynomials in polynomial
time in the degree and the (logarithmic) size of the coefficients. Despite the fact
that the new lattice reduction algorithm was very good in theory and in practice,
the new polynomial factorization was not used in implementations. For most practi-
cal examples, the Zassenhaus algorithm was more efficient than the new algorithm
based on LLL.

In 2002, Mark van Hoeij [3] developed a new algorithm, which, for practical
examples, was much more efficient than the Zassenhaus algorithm. This new algo-
rithm is also based on the LLL reduction, but it uses a different type of lattices
compared to the ones in the original LLL paper [2]. Unfortunately, Mark van Hoeij
gave no running time estimates in his original paper. He was only able to show that
his algorithm terminates, but he gave very impressive practical examples of fac-
torizations, which have not been possible to compute before. Together with Karim
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Belabas, Mark van Hoeij, and Allan Steel [4], the author of this survey simplified
the presentation of this algorithm and introduced a variant for factoring bivariate
polynomials over finite fields. Furthermore, we have been able to show that the new
factoring algorithm runs in polynomial time. The worst case estimate is better than
the one given in the original LLL paper. Let us remark that we believe that this
estimate is still pessimistic.

In this survey, we will study the cases f 2ZŒx� and f 2FpŒt �Œx� in parallel,
where Fp denotes the finite field with p elements. We study the second case because
the presentation is easier. In the bivariate case, it is not necessary to use LLL reduc-
tion. The corresponding step can be solved by computing kernels of systems of
linear equations.

The Zassenhaus Algorithm

Before we are able to explain the van Hoeij algorithm, we need to understand the
Zassenhaus algorithm. We can assume that our given polynomial is squarefree. Note
that multiple factors of f divide the greatest common divisor of f and the derivative
f 0, which can be computed efficiently using the Euclidean algorithm. We remark
that we have to be careful in characteristic p since the derivative of f may be 0,
e.g., f .x/ D xp � t . In this case, all monomials are p-th powers, and we can take
the p-th root or we switch the role of t and x.

Let f 2 ZŒx� be a squarefree and monic polynomial, i.e., a polynomial with
integer coefficients and leading coefficient one. In the Zassenhaus algorithm, we
choose a prime number p such that f modulo p has no multiple factors. It is possi-
ble to choose every prime that does not divide the discriminant of f . We denote by
Nf 2 Fp Œx� the polynomial that can be derived out of f by reducing each coefficient

modulo p. Using well known algorithms, e.g., see [5, Chap. 14], we can compute
the following factorization:

Nf .x/ D Nf1.x/ � � � Nfr .x/ 2 FpŒx�:

Using the so-called Hensel lifting (by solving linear systems of equations), we can
efficiently compute for all k 2 N a factorization of the following form: (e.g., see [5,
Chap. 15])

f .x/ 
 Qf1.x/ � � � Qfr.x/ mod pk;

where (using a suitable embedding) Qfi 
 Nfi mod p. Let us explain the Zassenhaus
algorithm using the example f .x/ D x4�11. Using p D 13, we get that Nf 2 F13Œx�

is irreducible. Certainly, this implies that f 2 ZŒx� is irreducible. When we choose
(a little bit unlucky) p D 5, then we only get linear factors modulo p, which will be
lifted using Hensel lifting:

f .x/ 
 .x C 41/.x � 38/.x C 38/.x � 41/ mod 125:
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To proceed, we need a bound for the size of the coefficients of a factor of f . The
following theorem can be found in [5, p.155ff].

Theorem 1 (Landau-Mignotte). Let g be a factor of a monic polynomialf 2 ZŒx�

with

f .x/ D
nX

iD0

aix
i and g.x/ D

mX

iD0

bix
i :

Then: jbi j �
�

m
i

�jjf jj2, where jjf jj2 WD
qPn

iD0 a
2
i denotes the 2–norm.

In our example, this means that all coefficients of a factor g of f must be less than or
equal to 33 in absolute value. Therefore, we see that f has no linear factor, because
modulo 125 all linear factors contain a coefficient in the symmetric residue system
f�62; : : : ; 62g, which is bigger than 33 in absolute value. In the next step, we try
if the product of two modulo 125 factors corresponds to a true factor of f in ZŒx�.
We get:

.x C 41/.x � 38/ 
 x2 C 3x � 58 mod125;

.x C 41/.x C 38/ 
 x2 � 46x C 58 mod125;

.x C 41/.x � 41/ 
 x2 � 56 mod125:

All these quadratic polynomials contain a coefficient that is bigger than 33 in abso-
lute value. This means that the “modular factor” .x C 41/ is no divisor of a linear
or quadratic factor g 2 ZŒx� of f . This implies that the polynomial f 2 ZŒx� is
irreducible. In case that our given polynomial is reducible, we find modular fac-
tors of f such that all coefficients in the symmetric residue system are smaller
than the Landau–Mignotte bound. Now, we can use trial division in ZŒx� to check
if we have found a factor or not. Since trial divisions are expensive, it is a good
idea in actual implementations to choose pk much bigger than twice the Landau–
Mignotte to increase the probability that wrong candidates will be found without a
trial division.

The choice of p D 5 in the above example was very artificial. We remark that
it is easy to construct irreducible polynomials such that for all primes p, we have
many modular factors. For example, we can take a polynomial f of degree n D 2`

such that the Galois group is isomorphic to the elementary abelian group .Z=2Z/n.
In this case, f is irreducible, but for every prime p, we have at least 2`�1 D n=2

modular factors.
If we analyze the Zassenhaus algorithm, we figure out that most parts of the

algorithm are very efficient. Since we are able to choose a small prime p, it is not
difficult to factor Nf 2 Fp Œx�. The Hensel lifting can be solved using linear systems
of equations, and the Landau-Mignotte bound is sufficiently small. The drawback
of the algorithm is the number of tests that have to be performed when the number
r of modular factors is big. In this case, we have to perform more or less 2r tests.
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The Knapsack Lattice

This is the place where the new van Hoeij algorithm starts. It reduces the combi-
natorial problem to a so-called knapsack problem. The resulting knapsack problem
can be efficiently solved using lattices and the LLL algorithm. We remark that we
use different type of lattices compared to the original LLL paper.

We fix the following notation:

f D g1 � � �gs 2 ZŒx� and f D Qf1 � � � Qfr 2 ZpŒx�:

The factorization over the p-adic numbers Zp can only be determined modulo pk .
For the understanding of the following, it is possible to interpret the p-adic numbers
as modulo pk approximations. We write:

gv WD
rY

iD1

f
vi

i for v D .v1; : : : ; vr/ 2 f0; 1gr

and get a new

Problem 1. For which v 2 f0; 1gr , do we have: gv 2 ZŒx�?
To linearize our problem, we consider (more or less) the logarithmic derivative,

where Qp.x/ WD fa.x/
b.x/
j a; b 2 QpŒx�g:

˚ W Qp.x/
�=Q�p ! Qp.x/; g 7! fg0

g
:

It is immediately clear that ˚ is additive, i.e., ˚.gv1
/C ˚.gv2

/ D ˚.gv1Cv2
/. Fur-

thermore, we have for v 2 Z
r that ˚.gv/ is a polynomial and therefore an element

of Zp Œx�.
The next step is to translate everything into a lattice problem. Let us define

vectors w1; : : : ;ws 2 f0; 1gr such that for the true factors g1; : : : ; gs 2 ZŒx�, we
have

gi D
Y

1�j�r

Qf wij

j :

These vectors generate a lattice (the knapsack lattice)W D hw1; : : : ;wsi 	 Z
r . The

lattice Z
r is generated by the standard basis vectors, which correspond to the local

factors Qfi . An important fact for the new method is the property that v 2 Z
r is an

element ofW only if˚.gv/ 2 ZŒx� (even in the case that v has negative coefficients).
We remark that it is easy to construct the canonical basis vectors w1; : : : ;ws of W
if we know some generating system of W . As soon as we know the wi and pk is at
least twice larger than the Landau-Mignotte bound, we are able to reconstruct the
corresponding factors gi like in the Zassenhaus algorithm.
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The idea of the algorithm is as follows. We start with the lattice L D Z
r and

know that W 	 L. Then, we construct a sublattice L0 � L still containingW . The
hope is that after finitely many steps, we will reach L0 D W .

At this place, we change to the situation f 2 Fp Œt �Œx�, because the following
part of the algorithm is easier here. The Landau-Mignotte bound simplifies to

g j f 2 FpŒt �Œx�) degt .g/ � degt .f /;

where degt .f / is the t–degree of the polynomial f . In order to simplify the situa-
tion, we assume that Nf .x/ WD f .0; x/2FpŒx� is squarefree. This is a real restriction
because it might be the case that f .a; x/ has multiple factors for all a2Fp . For the
solution of this problem, we refer the reader to [4]. Using Hensel lifting, we get
from the factorization Nf D Nf1 � � � Nfr 2 FpŒx� a factorization f .t; x/ D Qf1 � � � Qfr in
the power series ring FpŒŒt ��Œx�. In practice, we can approximate the power series in
t modulo tk . Now, we define the function ˚ in the following way:

˚ W FpŒŒt ��.x/
�=FpŒŒt ��.x

p/� ! FpŒŒt ��.x/; g 7! fg0

g
:

The lattices L and W are defined analogously as in the situation for ZŒx�. Assume
that we have an element v 2 L nW . Then, we have:

Pol.v/ WD ˚.gv/.x/ D
rX

iD1

vi˚.fi /

D
n�1X

iD0

bix
i 2 FpŒŒt ��Œx� n FpŒt �Œx�:

Additionally, we have for gv 2 Fp Œt �Œx� the estimate degt .bi / � degt .f /. Now, we
choose a k > degt .f /, and we compute for v 2 L the corresponding polynomial

gv 

n�1X

iD0

bi .t/x
i mod tk :

Here, modulo tk means that all bi .t/ are reduced modulo tk , i.e., degt .bi / < k. In
case that one of the polynomials bi has a t-degree that is bigger than degt .f /, we
know that the corresponding v is not an element of W . In the following, we avoid
the combinatorial approach.

Denote by e1; : : : ; er 2 F
r
p the standard basis of F

r
p, and identify the elements of

Fp with f0; : : : ; p � 1g 	 Z. We define m WD degt .f / and
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Ai WD

0

BBB@

bi;m;1 � � � bi;m;r

bi;mC1;1 � � � bi;mC1;r

:::
: : :

:::

bi;k�1;1 � � � bi;k�1;r

1

CCCA 2 F
.k�m/	r
p ;

where the bi;j;` are given by

Pol.e`/ 

n�1X

iD0

k�1X

jD0

bi;j;`t
j xi mod tk .1 � ` � r/:

All v 2 W have the property that Ai vtr D 0. Using iterative kernel computation, we
are able to determine lattices L0 � W , which (hopefully) become smaller.

The Polynomial Complexity Bound

In a slightly improved version of this algorithm, we show in [4] that we finally get
L0 D W :

Theorem 2. Let f 2 FpŒt �Œx� be a polynomial of x-degree n and assume k >

.2n � 1/ degt .f /. Then, W is the kernel of A1; : : : ; An�1.

In the following, we give a sketch of the proof of this theorem. Let v 2 L n W
be chosen such that gv is not a p-th power. Then, it is possible to change v using
w1; : : : ;ws such that the following holds:

1. fi j Pol.v/ for some 1 � i � r .
2. gj =j Pol.v/ for all 1 � j � s.
Take this new v and define H WD Pol.v/ mod tk interpreted as a polynomial in
FpŒt �Œx�. Using well known properties of the resultant, we immediately get:

Res.f;Pol.v// D 0 and Res.f;H/ ¤ 0:

This implies that tk j Res.f;H/. Choosing k large enough is a contradiction to the
definition of the resultant via the Sylvester matrix.

Let us come back to our original problem over Z. We cannot apply the same
algorithm because we have overflows when we add, e.g., .3C1 �51/C.3C1 �51/ D
.1 C 3 � 51/ ¤ 1 C 2 � 51 in Z5. Fortunately, we can show that the errors coming
from overflows are small. Instead of solving linear systems of equations, we define
a suitable lattice and look for vectors of small length in that lattice. Since finding
shortest vectors in lattices is an NP-complete problem, it is important to choose the
lattices in a very clever way. For those lattices, we apply LLL reduction and can
guarantee that the first basis vectors of the LLL reduced basis will be sufficient to
derive a basis ofW . We use the analogous definitions as in the bivariate case and get:
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Pol.e`/ 

n�1X

iD0

bi;`x
i mod pk .1 � ` � r/:

Now, we define a lattice�, which is defined by the columns of the following matrix:

A WD
�
Ir 0
QA pkIn

�
with QA WD

0

B@
b0;1 � � � b0;r

:::
: : :

:::

bn�1;1 � � � bn�1;r

1

CA :

If we project a vector from� to the first r rows, we get a vector in L. Assuming that
we choose the precision pk large enough, we are able to prove that all vectors in �,
such that the last n entries are smaller than the Landau-Mignotte bound, correspond
to a vector in W . We compute an LLL reduced basis of the above lattice and are
able to prove that the first s vectors correspond to a basis of W . It is easy to give an
upper bound B for the norm for the vectors in �, which correspond to w1; : : : ;ws .
For the LLL approach and practical implementations, the following lemma is very
useful, since it allows to have some progress, i.e., a new lattice W 	 L0 	 L, if the
precision pk was not large enough to derive L0 D W .

Lemma 1. Let � be a lattice with basis b1; : : : ; bm and Gram–Schmidt–basis
b�1 ; : : : ; b�m. Define t WD minfi j 8i < j � m W jjb�j jj2 > Bg. Then, all vectors b,
such that jjbjj2 � B , are contained in Zb1 C � � � C Zbt .

We remark that this lemma is already contained in the original LLL paper [2]. Anal-
ogous to the bivariate case, we need an estimate for the precision, which guarantees
that the algorithm terminates, i.e., that finally we have L0 D W . If we use this
precision, our algorithm terminates in one (LLL reduction) step and we get the
polynomial running time. We remark that, in practice, we do not need this (explicit)
estimate, because we start with some precision and increase it until the algorithm
terminates.

Theorem 3. Let f 2 ZŒX� of degree n. Then, the above described algorithm
terminates if

pk > cn � 4n2jjf jj2n�1
2 (8.1)

holds, where c is an explicit computable constant.

If we determine the running time for this algorithm, we get the same running
time as the one in the original LLL paper.

The Original LLL Factoring Method

In order to understand the difference between those two algorithms, we need to
understand the original LLL factoring method, at least roughly. As before, let f 2
ZŒx� of degree n be the monic polynomial; we would like to factor and assume that
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we have chosen a prime p such that f mod p has no multiple factors. As before,
using Hensel lifting, we get the factorization of the form:

f .x/ 
 Qf1.x/ � � � Qfr .x/ mod pk :

The idea of the original LLL factorization algorithm is to compute an irreducible
factor g 2 ZŒx� such that f1 j g 2 Zp Œx�. To compute such a g, they write down
a tricky lattice that allows to check if there exists such a g of degree m < n. After
an LLL reduction of this lattice, the first basis vector corresponds to such a g if
it exists. If no such g exists, we have to use the theoretical lifting bound (similar
to the one we have given in the van Hoeij algorithm) to get a proof that such a g
does not exist. This is the practical drawback of the original algorithm. In case that
our polynomial is reducible, we might be lucky to find g using a small precision.
In case that f is irreducible, we have to use the full theoretical precision in order
to get a proof that no nontrivial factor exists. We remark that after some recursive
application of this algorithm (we find at most one factor at each LLL-step), we run
into this situation. By taking irreducible polynomials, which have many modular
factors, we get examples that really need the worst case running time we computed
before.

Usually, in the van Hoeij algorithm, such a polynomial will be detected using
a very low precision. What we say here is just heuristics and practical experience.
We expect that the worst case running time we have given before is just a very bad
upper estimate and will never be attained. We remark that we cannot prove such a
statement.

One important fact for practical implementations of the van Hoeij algorithm is
the fact that it is possible to make partial progress. If we choose a precision that was
too small to derive the full factorization, it is very often the case that we are able
to compute a smaller lattice L’, which means that this “try” was not worthless. If
in the original LLL factorization algorithm we use a too small precision and do not
succeed, we have nothing.

There is another advantage of the new van Hoeij algorithm compared to the orig-
inal one. In the original algorithm, we try to compute a factor directly. This means
if the coefficients of the given polynomial are big, we need to compute a factor
that has big coefficients as well. Therefore, we want to find a short(est) vector in a
lattice, which is already huge. In the knapsack approach of van Hoeij, we are look-
ing to find a zero-one combination. The shortest vector we are looking for is really
very short (only zeroes and ones and some small errors coming from overflows). In
some sense, those lattices are independent on the size of the coefficients of the given
polynomial.

In the meantime, the van Hoeij algorithm is implemented in all big computer
algebra systems. As already remarked, it is possible to factor polynomials in a few
minutes, for which it was impossible to factor those in month before.
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Chapter 9
The LLL Algorithm and Integer Programming

Karen Aardal and Friedrich Eisenbrand

Abstract The LLL algorithm has proven to be a powerful theoretical and practical
tool in many areas of discrete mathematics. In this chapter, we review some struc-
tural and algorithmic results involving basis reduction and integer programming.

Introduction

Let P D fx 2 IRn j Ax � dg, where the m � n matrix A and the m-vector d are
given by integer input. Assume P is bounded and full-dimensional. The Integer
programming feasibility problem is defined as:

Does there exist a vector x 2 P \ ZZn‹ (9.1)

This problem is NP-complete [1, 2] and is related to the Integer programming
optimization problem,

maxfcT x j x 2 P \ ZZng ; (9.2)

where c is an n-dimensional vector. We call the problem maxfcT x j x 2 P g the
linear programming relaxation of (9.2). A combinatorial optimization problem is
typically an integer optimization problem in which the integer variables take values
0 or 1 only. Well-known examples of combinatorial optimization problems are the
subset sum problem, the matching problem and the traveling salesman problem.

In 1981, Lenstra, [3, 4] proved that the integer programming feasibility problem
(9.1) can be solved in polynomial time if the dimension n is fixed. The proof was
algorithmic, and the main auxiliary algorithm was lattice basis reduction. In the
research report [3], a reduction algorithm with polynomial running time for fixed
n was used, but in the published version [4], Lenstra used the LLL basis reduction
algorithm [5] that had been developed in the meantime.
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Not only was Lenstra’s result important in that it answered a prominent open
complexity question, but it also introduced geometry of numbers to the field of
optimization. Many results, inspired by this paper, have since then been obtained.

The purpose of this paper is to provide a glimpse of some of the important theo-
retical and computational consequences of the LLL algorithm in relation to integer
programming, rather than giving a complete overview of all such results. The inter-
ested reader can consult the following references for a thorough treatment of the
topic. A good undergraduate level introduction to integer programming is given
by Wolsey [6]. Graduate textbooks on integer and combinatorial optimization are
Grötschel, Lovász, and Schrijver [7], Nemhauser and Wolsey [8], and Schrijver
[9,10]. Cassels [11] is a classical book on the geometry of numbers, while the recent
books by Barvinok [12] and by Micciancio and Goldwasser [13] focus on algorith-
mic aspects. Lattices, representations of lattices, and several problems on lattices
wherein basis reduction plays a prominent role are presented in the introductory
chapter by Lenstra [14]. Lovász [15] treats basis reduction, integer programming,
and classical lattice problems such as the shortest vector problem. Kannan [16] pro-
vides a nice overview of topics related to lattices and convex bodies, and Aardal and
Eisenbrand [17] review results on integer programming in fixed dimension.

Notation

Vectors and matrices are written in boldface. By xj , we mean the j th vector in a
sequence of vectors. The i th element of a vector x is denoted by xi . Element .i; j /
of the matrix A is denoted by Aij . The Euclidean length of a vector x 2 IRn is
denoted by kxk and is computed as kxk D pxT x, where xT is the transpose of the
vector x.
Let b1; : : : ;bl be linearly independent vectors in IRn. The set

L D
n
x 2 IRn j x D

lX

jD1

�j bj ; �j 2 ZZ; 1 � j � l
o

(9.3)

is called a lattice. The set of vectors fb1; : : : ;blg is called a lattice basis. If we
want to emphasize that we are referring to a lattice L that is generated by the basis
B D .b1; : : : ;bl /, then we use the notation L.B/.

The rank of L, rk L, is equal to the dimension of the Euclidean vector space
generated by a basis of L. The determinant of L can be computed as d.L/ Dp

det.BT B/, where BT is the transpose of the matrix B that is formed by taking
the basis vectors as columns. Notice that if l D n, i.e., L is full-dimensional, then
d.L/ D j det.B/j.

Let L.B/ be a full-dimensional lattice in IRn generated by B. Its dual lattice
L�.B/ is defined as
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L�.B/ D
n
x 2 IRn j xT y 2 IR for all y 2 L

o
:

The columns of the matrix .BT /�1 form a basis for the dual lattice L�.B/. For a
lattice L and its dual, we have d.L/ D d.L�/�1.

Integer Programming: A Brief Background Sketch

Cutting Planes

The history of integer programming is, compared to many other mathematical sub-
jects, quite brief. The first papers on determining optimal solutions to general integer
linear optimization problems were published by Ralph E. Gomory; see, for instance,
[18,19]. It is also interesting to read Gomory’s [20] own remarks on how he entered
the field and viewed the topic. Gomory, while at Princeton, worked as a consultant
for the US Navy, and there he was presented with a problem from the Navy Task
Force. It was a linear programming problem with the additional important feature
that the answer should be given in integer numbers. After having a thorough look
at the problem at hand, Gomory made the following observation: all objective func-
tion coefficients are integer, so the optimal value should also be integer. One could
solve the linear programming relaxation of the problem first, and if the variable val-
ues come out integer, then of course the integer optimum has been found. If not, it is
valid to add the restriction that the objective value should be less than or equal to the
linear programming objective value rounded down. Gomory describes this as “push-
ing in” the objective function. After some more thinking, Gomory realized that the
same thing can be done with other integer forms as well, and the theory of cutting
planes was born. Gomory proved the important result that, under certain technical
conditions, the integer optimum will be obtained after adding a finite number of
the so-called Gomory cutting planes. It is important to notice that an algorithm for
solving linear optimization problems had been developed in the 1950s by Dantzig
[21], so it was natural to use the linear relaxation as a starting point for solving the
integer optimization problem.

In a more problem-specific setting, the idea of cutting planes was introduced by
Dantzig, Fulkerson, and Johnson [22,23], who used this approach to solve a 49-city
traveling salesman instance by the combination of linear programming and cutting
planes. This approach grew increasingly popular with, for instance, the work on the
matching problem by Edmonds [24], the traveling salesman problem by Grötschel
[25], and Grötschel and Padberg [26–28], and on the knapsack problem by Balas
[29], Hammer et al. [30], and Wolsey [31]. The problem of finding good partial
descriptions of the convex hull of feasible solutions to various problems has played
a prominent role in the research on integer and combinatorial optimization up to
this day.
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Branch-and-Bound and Branch-and-Cut

In 1960, Land and Doig [32] introduced branch-and-bound. This is an algorithm for
integer optimization that implicitly enumerates solutions. Solving linear program-
ming relaxations is the main engine of the algorithm, and information from these
relaxations is used to prune the search, with the aim of avoiding complete enumer-
ation. The algorithm can be illustrated by a search tree as follows. In each node of
the tree, the linear relaxation of the problem corresponding to that node is solved.
When we start out, we are at the root node, where we solve the linear relaxation of
the original problem. Let z be the value of the best known integer feasible solution.
We can stop investigating further at a certain node k, called pruning at node k, if
one of the following things happens:

1. The solution of the linear programming relaxation of the subproblem corre-
sponding to node k is integer (prune by optimality). If the solution value is
better than z, then update z.

2. The linear relaxation at node k is infeasible (prune by infeasibility).
3. The objective function value of the linear relaxation at node k is less than or

equal to z (prune by bound).

If we cannot prune at node k, we need to branch, which simply means that we
create two subproblems as follows. Choose a variable that has a fractional value in
the optimal linear programming solution. Assume this is variable xi with current
fractional value f . One subproblem is created by adding the constraint xi � bf c
to the linear relaxation of node k, and the other subproblem is created by adding
the constraint xi � df e. In this way, we do not cut off any integer solution. The
algorithm continues as long as there are unpruned leaves of the tree. Notice that we
can also solve the feasibility problem (9.1) by branch-and-bound by just introducing
an arbitrary objective function and terminate the search as soon as a feasible integer
solution has been found or when integer infeasibility has been established.

Modern integer programming algorithms use a combination of branch-and-
bound and cutting planes, both general and problem-specific, where the cutting
planes are used to strengthen the linear relaxation in a selection of the nodes of
the search tree. We refer to such algorithms as branch-and-cut. Branch-and-cut is
not only used in academic research codes, but also in commercial software such as
CPLEX [33] and Xpress [34].

Complexity Issues

The early work on integer programming took place before there was a formaliza-
tion of computational complexity, but it was clear from the very beginning that the
number of cutting planes needed in a cutting plane algorithm could grow expo-
nentially, and if we consider branch-and-bound, a 2-dimensional example similar
to the one given in Example 1 below, illustrates that a branch-and-bound tree can
become arbitrarily deep. With the language of computational complexity at hand,
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these phenomena could be described more formally. From the cutting plane point-
of-view, Karp and Papdimitriou [35] proved that it is not possible to find a concise
linear description of the convex hull of feasible solutions for an NP-hard optimiza-
tion problem unless NPDco-NP. This means that we cannot, a priori, write down
such a linear description even if we allow for exponentially sized classes of linear
inequalities, such as the subtour elimination constraints for the traveling salesman
problem.

Example 1. Consider the integer programming feasibility problem (9.1) with the
polytope P , illustrated in Fig. 9.1, as input:

If we solve this feasibility problem by branch-and-bound, we first need to
introduce an objective function. Let us choose

max z D x1 C x2 :

If we solve the linear relaxation of our problem, we obtain the vector .x1; x2/
T D

.6 4
5
; 5/. We illustrate P and some of the constraints (dashed lines) added

during branch-and-bound in Fig. 9.1, and the search tree corresponding to the

P

x1

x2
x1 ³ 7

x2  ³ 5

x1 £ 6

x2  £ 4

Fig. 9.1 The polytope P of Example 1, and some constraints added in branch-and-bound
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P1
x1 = 
x2 = 

x1 ³ 7  

x2  ³ 5  

x1 £ 6

P2 P3
x1 = 6
x2 =

21
5

P4 P5

P28 P29

P26

x2  £ 4

x1 =
29
5

x2 = 4

x2 =
x1 = 0

− 6
5

x2 £ −2
x2 ³ −1

34 
5
5

Fig. 9.2 The branch-and-bound search tree

branch-and-bound procedure in Fig. 9.2. Since .6 4
5
; 5/ is not an integer vector, we

create two branches at the root node of our search tree: one corresponding to x1 � 6
(subproblem P2) and the other corresponding to x1� 7 (subproblem P3). Again,
solving the linear relaxation corresponding to subproblem P2 gives the solution
.x1; x2/

T D .6; 4 1
5
/, whereas subproblem P3 is infeasible. Branch-and-bound con-

tinues in a similar fashion until subproblems P28 and P29, in which all nodes of the
search tree are pruned and it is finally verified that P does not contain any integer
vector. �

By “stretching” the polytope given in Example 1 arbitrarily far in both directions,
we see that even in dimension n D 2, we can obtain a search tree that is arbitrarily
deep.

The Integer Linear Feasibility Problem

The above example indicates that branching on variables xi � ˇ and xi � ˇ � 1,
for ˇ 2 ZZ can result in an algorithm for integer programming that is exponential
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P

x1

x2

Fig. 9.3 None of the hyperplanes �x1 C x2 D ˇ; ˇ 2 ZZ intersect P

in the binary input encoding of the problem, even in dimension 2. If we allow for
hyperplanes that are more general than the single-variable hyperplanes, then we can
observe that, for instance, the hyperplanes �x1 C x2 D ˇ; ˇ 2 ZZ do not even
intersect with the polytope. Yet, the hyperplanes do contain all points in ZZ2. This
observation yields a certificate of integer infeasibility of our example; see Fig. 9.3.

The idea of enumerating parallel hyperplanes that cover all lattice points is called
branching on hyperplanes, and can be described as follows. Let d 2 ZZn � f0g be a
nonzero integer vector. An integer point x 2 P \ ZZn satisfies

dT x D ˇ; where ˇ 2 ZZ and min
x2P

dT x � ˇ � max
x2P

dT x:

This implies that we can continue to search for an integer point in the lower-
dimensional polytopes P \ .dT x D ˇ/ for each integer ˇ 2 ZZ satisfying

min
x2P

dT x � ˇ � max
x2P

dT x: (9.4)
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The question is which direction d to choose such that the number of integers ˇ
satisfying (9.4) is small. Clearly, such an integer direction does not need to exist.
Simply consider a ball of sufficiently large radius. The flatness theorem, attributed to
Khinchin 1948, however, ensures that there exists a nonzero integer vector d 2 ZZn

such that the number of integers in the interval 9.4 is bounded by a constant if the
polytope does not contain an integer point. A convex body is a convex and compact
set K 	 IRn with a nonempty interior. If we define the width of K along d as
w.K;d/ D maxfdT x j x 2 Kg�minfdT x j x 2 Kg, the theorem reads as follows.

Theorem 1 (Khinchin’s flatness theorem [36]). Let K 	 IRn be a closed convex
set; then, eitherK contains an integer point, or there exists a nonzero integer vector
d such that w.K;d/ � f .n/, where f .n/ is a constant depending on the dimension
only.

In the following subsection, we will present Lenstra’s algorithm as an algorith-
mic version of the flatness theorem. This is different from the way the algorithm was
presented originally, but our presentation below not only links the algorithm explic-
itly to the flatness theorem, but also highlights the relationship to other traditional
lattice problems such as the closest and the shortest vector problems.

Lenstra’s Algorithm

Here, whenever we consider a polytope P , we assume it is full-dimensional, and we
use the notation d for a nonzero integer vector of appropriate dimension.

Lenstra’s algorithm finds either an integer point in the polytope P 	 IRn, or an
integer direction d such that P is flat in this direction, i.e., a direction d such that
w.P;d/ is bounded by a constant in fixed dimension. Thus, Lenstra’s algorithm
solves the following problem, which we call the Integer feasibility problem (IP)

Given a polytope P 	 IRn, compute an integer point x 2 P \ ZZn or a nonzero

integer vector d with w.P;d/ � f .n/; (9.5)

where f .n/ is a constant depending on the dimension only.
If problem IP is solvable in polynomial time in fixed dimension, then the integer

programming feasibility problem (9.1) is also solvable in polynomial time in fixed
dimension. This follows by induction, since in the case in which the algorithm solv-
ing IP returns a direction d, one continues the search for an integer point in P in the
constantly many lower-dimensional polytopes

P \ .dT x D ˇ/; ˇ 2 ZZ; min
n
dT x j x 2 P

o
� ˇ � max

n
dT x j x 2 P

o
:

In the remainder of this section, we describe Lenstra’s result by a series of reductions
that ends up with a problem on a lattice L of finding either a lattice vector close to a
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given vector u, or a short vector in the dual lattice L�. We call this problem CSVP.
In addition, we highlight the role that the LLL algorithm [5] plays in solving the
integer programming feasibility problem.

Problem Reductions

An ellipsoid is a set E.C; c/ D fx 2 IRn j kC.x � c/ k� 1g, where C 2 IRn	n

is a nonsingular matrix. In a first step, Lenstra computes an ellipsoid E.C; c/ with
C 2 Qn	n and c 2 Qn such that E.C; c/ is contained in the polytope P 	 Qn and
such that if E.C; c/ is scaled from its center by 2 � n3=2, then it contains P .

Since the width of the scaled ellipsoid is the width of the original ellipsoid scaled
by the same factor, we have

w.E.C; c/;d/ � w.P;d/ � 2 � n3=2 � w.E.C; c/;d/:

This shows that we can solve the problem IP in polynomial time in fixed dimen-
sion, if we can solve the following analogous problem for ellipsoids, which we call
Integer feasibility of an ellipsoid (EIP), in polynomial time in fixed dimension.

Given a nonsingular rational matrix C 2 Qn	n and a rational point c 2 Qn,
compute an integer point x 2 E.C; c/\ ZZn or determine an integer nonzero vector
d such that w.E.C; c/;d/ � f2.n/,
where f2.n/ is a constant depending on the dimension n only. Following this
approach yields f .n/ D 2 � n3=2 � f2.n/ in (9.5).

In problem EIP, we have to compute a lattice point v 2 L.C/, such that its
Euclidean distance from the point Cc is at most 1, or find an integer direction d such
that the ellipsoid is flat along this direction. Since the width along d of an ellipsoid is
invariant under translation of the ellipsoid, one has w.E.C; c/;d/ D w.E.C; 0/;d/.

In other words, if we are not able to find an integer vector x in E.C; c/ we have
to compute an integer direction d such that

max
n
dT x j x 2 IRn; kCxk � 1

o
�min

n
dT x j x 2 IRn; kCxk � 1

o
� f2.n/

holds. Now, we have

max
˚
dT x j x 2 IRn; kCxk � 1� D max

˚
dT C�1Cx j x 2 IRn; kCxk � 1�

D max
˚
dT C�1y j y 2 IRn; kyk � 1� (9.6)

D k.CT /�1dk: (9.7)

In (9.6) we have used the variable substitution y D Cx, and in (9.7), we have used
the fact that a linear function fT y with f ¤ 0 achieves its maximum over the unit
ball B D fy j y 2 IRn; kyk � 1g at the point y D f=kfk. Similarly, we obtain

min
n
dT x j x 2 IRn; kCxk � 1

o
D �k.CT /�1dk:
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From this, we can deduce that the width of E.C; c/ along an integer direction d is
twice the length of the vector .CT /�1d

w.E.C; c/;d/ D 2 � k.CT /�1dk: (9.8)

Next, we observe that the vector v D .CT /�1d is a lattice vector in the dual lattice

L�.C/ D ˚.CT /�1x j x 2 ZZn
�

of the lattice L.C/. Hence, problem EIP has been reduced to the following problem,
which we call problem CSVP:

Given a nonsingular rational matrix B 2 Qn	n and a rational vector u 2 Qn,
compute a lattice vector x 2 L.B/ with kx � uk � 1 or determine a nonzero vector
w 2 L�.B/ with kwk � f3.n/.

In other words, we either have to find a lattice vector close to a given vector u, or
compute a short nonzero vector in the dual lattice. We set f2.n/ D 2 � f3.n/, where
the factor of 2 comes from expression (9.8). Tracing back, we have now obtained
f .n/ D 2 � n3=2 � f2.n/ D 4 � n3=2 � f3.n/. Notice that finding a short vector in
the dual lattice L�.B/ in the Euclidean vector space E is equivalent to finding a
hyperplane H in E such that L.B/ is contained in widely spaced translates of H ;
see Lenstra [14].

Using Lenstra’s Algorithm to Solve CSVP

Suppose that B D .b1; : : : ;bn/ 2 Qn	n is a basis of the full-dimensional rational
lattice L.B/. The orthogonality defect of B is the number � 2 IR such that

kb1k � � � � � kbnk D � � d.L.B// D � � j det.B/j:

Notice that � D 1 if and only if the basis vectors are pairwise orthogo-
nal. Hermite showed that every lattice in IRn has a basis b1; : : : ;bn such that
� � .4=3/n.n�1/=4, but no polynomial time algorithm is known that can determine
a basis with this orthogonality defect guarantee.

Assume further that the longest basis vector is bn, that is, kbnk � kbj k for
1 � j � n � 1. Let B� be the matrix such that

B D B� � R;

where R 2 Qn	n is an upper-triangular matrix with Ri i D 1 for each 1 � i � n.
The matrix B� D .b�1; : : : ;b�n/ is the Gram-Schmidt orthogonalization of B. Since
we have kbj k � kb�j k for each 1 � j � n and since

d.L/ D j det.B/j D j det.B�/j D kb�1k � � � � � kb�nk ;
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it follows that � � 1, which implies the so-called Hadamard inequality

kb1k � � � � � kbnk � j det.B/j:

Our first goal is to find a vector in the lattice L.B/ that is close to the given vector
u 2 Qn. Since B is a basis of IRn, we can write

u D
nX

jD1

�j bj ;

with �j 2 IR. The vector

v D
nX

jD1

b�j ebj

belongs to the lattice L.B/, where b�j e denotes the closest integer to �j . We have

kv � uk D k
nX

iD1

.b�ie � �i /bik �
nX

iD1

k.b�ie � �i /bik � 1

2

nX

iD1

kbik

� n

2
kbnk ; (9.9)

where inequality (9.9) holds as the last basis vector bn is the longest one in the basis.
If kv � uk � 1, we have solved problem CSVP as stated at the end of Section

“Problem Reductions”. Suppose, therefore, that kv � uk > 1. We now need to find
a short vector in the dual lattice L�.B/: From inequality (9.9), we obtain

kbnk � 2=n : (9.10)

If we combine
kb1k � � � � � kbnk D � � kb�1k � � � � � kb�nk

and
kbj k � kb�j k; 1 � j � n ;

we obtain kbnk � � � kb�nk, which together with 9.10 implies

kb�nk � 2=.n � �/:

The vector b�n is orthogonal to the vectors b�j , 1 � j � n � 1, and since R is

an upper triangular matrix with only 1’s on its diagonal, it follows that .b�n/T B� �
R D .0; : : : ; 0; kb�nk2/. Next, let v D Bx; x 2 ZZ. Notice that v 2 L.B/. We now
show that the vector .1=kb�nk2/b�n belongs to the dual lattice L�.B/ by showing that
.1=kb�nk2/b�nT v 2 ZZ:

.1=kb�nk2/b�nT v D .1=kb�nk2/b�nT B�Rx
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D .0; : : : ; 0; 1/ x

D xn 2 ZZ;

Hence,
w D .1=kb�nk2/ b�n 2 L�.B/ ; (9.11)

and the norm of w satisfies
kwk � .n � �/=2 : (9.12)

The length of w can be bounded by a constant depending only on n if the orthogo-
nality defect � can be bounded by such a constant.

The Role of the LLL Algorithm for Solving IP

As described above, Lenstra [4] has shown that any basis reduction algorithm that
runs in polynomial time in fixed dimension and returns a basis, such that its orthog-
onality defect is bounded by a constant in fixed dimension suffices to solve CSVP in
polynomial time in fixed dimension, and consequently the integer feasibility prob-
lem for a rational polytope. If the LLL algorithm is applied to reduce the basis B,
then � � 2n.n�1/=4. Our discussion above shows now that IP can be solved in
polynomial time with f .n/ D 4 � n3=2 � f3.n/ D 2 � n5=2 � 2n.n�1/=4. In fact, this
constant can be slightly improved by a better bound for 9.9. More precisely, for a
given u 2 Qn, one can compute, using the Gram-Schmidt orthogonalization of B,
a lattice vector v 2 L.B/ with

kv � uk � .pn=2/ � kbnk:

By propagating this improvement through the constants, we obtain the bound
f .n/ � 2 � n2 � 2n.n�1/=4, yielding Lenstra’s main result.

Theorem 2 ([3, 4]). Given a rational polytope P D fx 2 ZZn j Ax � bg, one can
compute either an integer point x 2 P \ ZZn or a nonzero integer vector d 2 ZZn

with w.P;d/ � 2 � n2 � 2n.n�1/=4 in polynomial time. The integer linear feasibility
problem can be solved in polynomial time, if the dimension is fixed.

Related Results

Lovász [15] obtained the following result by combining basis reduction and a differ-
ent way of obtaining an inscribed ellipsoid. His result is more general in the sense
that it applies to convex bodies. Let K be a convex body. The unique maximum-
volume ellipsoid that is contained in K is called Löwner-John ellipsoid. If this
ellipsoid is scaled from its center by a factor of n, then it contains the body K . The
Löwner-John ellipsoid can be found with the ellipsoid method [7] in polynomial
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time, provided one can solve the weak separation problem [7] for K in polynomial
time.

This, together with the LLL algorithm, yields the following result.

Theorem 3 ([15]). LetK 	 IRn be a convex body for which one can solve the weak
separation problem in polynomial time. We can achieve, in polynomial time, one of
the following:

(i) find an integer vector in X , or
(ii) find an integer vector c 2 ZZn with

max
n
cT x j x 2 X

o
�max

n
cT x j x 2 X

o
� 2 � n2 � 9n:

The polynomial running time in the above theorem depends on the binary encod-
ing length of the radii of a ball, which is inscribed in K and a ball containing K
respectively, see [7].

Lovász and Scarf [37] developed a basis reduction algorithm, called general-
ized basis reduction, based on a polyhedral norm, and used it to solve the integer
programming feasibility problem. No polynomial algorithm is known to find a gen-
eralized reduced basis in the sense of Lovász and Scarf. Such a basis can, however,
be derived in polynomial time if the dimension is fixed. Since a reduced basis can be
found by solving a sequence of linear programs, this algorithms is still interesting
from the implementation point of view. See also the comments at the end of this
section.

The packing radius �.L/ of a lattice L 	 IRn is half the length of the short-
est nonzero vector of L. It is the largest number ˛ such that the interior of balls
centered at lattice points of radius ˛ does not intersect. The covering radius �.L/
is the smallest number ˇ such that the balls of radius ˇ centered at lattice points
cover the whole space IRn. The number �.L/ is the largest distance of a point
in IRn to the lattice L. The flatness theorem implies that �.L/ � �.L�/ � c.n/,
where c.n/ is a constant depending on the dimension n only. Lagarias, Lenstra,
and Schnorr [38] have shown that c.n/ � n3=2=4. Banaszczyk [39] proved that
c.n/ D O.n/. This shows that a closest vector in L to a vector u can be computed
with O ..c � n/Š/ shortest vector queries, where c is some constant. The dependence
on the dimension n in Lenstra’s algorithm is O.2n3

/. Kannan [40], see also [16],
presented an algorithm for integer programming with running time nO.n/. Kannan
and Lovász [41] have shown that the constant in Kinchines flatness theorem is
O.n2/ ifK is a rational polytope. The fastest algorithm to compute a shortest vector
is by Ajtai [42] is randomized and has an expected running time of 2O.n/ times a
polynomial in the input encoding of the basis. Blömer [43] presented a deterministic
algorithm that computes the closest vector in time nŠ times a polynomial in the input
encoding length of the basis.

Barvinok [44] considered the problem of counting integer points in a polytope,
which is a generalization of the integer feasibility problem. He used an approach
based on an identity of Brion for exponential sums over polytopes. Lenstra’s
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algorithm was used as a subroutine, but later Dyer and Kannan [45] showed, in
a modification of Barvinok’s algorithm, that this subroutine was in fact not needed.

A topic related to the integer feasibility problem (9.1), is the problem of find-
ing the Hermite normal form of a matrix A. The Hermite normal form of a matrix
A2ZZm	n of full row rank, HNF.A/, is obtained by multiplying A by an n� n uni-
modular matrix U to obtain the form .D; 0/, where D 2 ZZm	m is a nonsingular,
nonnegative lower triangular matrix with the unique row maximum along the diag-
onal. An integer nonsingular matrix U is unimodular if det.U/ D ˙1. If the matrix
A is rational, then it has a unique Hermite normal form.

Given is a system of rational equations Ax D d. The question is whether this sys-
tem has a solution in integers. Frumkin [46, 47] and von zur Gathen and Sieveking
[48] showed that solving such a system of linear Diophantine equations can be done
in polynomial time. Von zur Gathen and Sieveking, and Votyakov and Frumkin [49]
showed that it is possible to find a basis for the lattice L D fx 2 ZZn j Ax D 0g
is polynomial time. From this result, Frumkin [50] deduced that it is possible to
find HNF.A/ in polynomial time. Kannan and Bachem [51] developed a direct
polynomial time algorithm for finding HNF.A/.

Theorem 4 ([48,49]). Given a feasible system Ax D d of rational linear equations,
one can find, in polynomial time, integer vectors x0; x1; : : : ; xt such that

n
x 2 ZZn j Ax D d

o
D
n
x0 C

tX

jD1

�j xj j � 2 ZZt
o

(9.13)

Let AU D .D; 0/ be the Hermite normal form of A. Then, we can choose

x0 D U
�

D�1d
0

�
; xj D U

�
0
ej

�
; 1 � j � t :

Notice that Ax0 D d and that Axj D 0; 1 � j � t .
Schrijver [9], p. 74, discusses how one can use the LLL algorithm to find the

Hermite normal form of a matrix; see also [52].
Aardal, Hurkens and Lenstra [53] used the representation (9.13) in which the

vectors xj ; 1 � j � t are LLL-reduced basis vectors of the lattice L0 D fy 2 ZZn j
Ay D 0g, i.e., they use the reformulation

x D x0 C B0�; � 2 ZZt ; (9.14)

where x0 satisfies Ax0 D d, and B0 is a reduced basis for the lattice L0. If A is an
m� n matrix of full row rank, we have t D n�m. Aardal et al. obtain the basis B0

and the vector x0 by a single application of the LLL algorithm as follows. Consider
the system of linear Diophantine equations: Ax D d and let N1; N2 2 IN. Without
loss of generality, we assume that gcd.ai1; ai2; : : : ; ain/ D 1 for 1 � i � m, and
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that A has full row rank. Furthermore, let

B D
0

@
I 0
0 N1

N2A �N2d

1

A ; (9.15)

and let OB be the basis resulting from applying the LLL algorithm to B in 9.15. The
lattice L.B/ 2 IRnCmC1 is a lattice of rank nC 1.

Theorem 5 ([53]). Assume that there exists an integer vector x satisfying the ratio-
nal system Ax D d. There exist numbersN01 andN02 such that ifN1 > N01, and if
N2 > 2

nCmN 2
1 CN02, then the vectors Obj 2 ZZnCmC1 of the reduced basis OB have

the following properties:

1. ObnC1;j D 0 for 1 � j � n �m,
2. Obij D 0 for nC 2 � i � nCmC 1 and 1 � j � n �mC 1,
3. j ObnC1;n�mC1j D N1.

Moreover, the sizes of N01 and N02 are polynomially bounded by the sizes of A
and d.

Theorem 5 implies that if N1 and N2 are chosen appropriately, then the first
n �mC 1 columns of the reduced basis OB are of the following form:

0

@
B0 x0

0 ˙N1

0 0

1

A ;

Aardal and Lenstra [54], and Aardal and Wolsey [55] study the lattice reformulation
9.14 for integer equality knapsack problems in more detail.

To conclude this section, we mention some computational results using LLL-
inspired techniques to solve integer programming problems. Gao and Zhang [56]
have implemented Lenstra’s algorithm. Cook et al. [57] implemented the Lovász-
Scarf integer programming algorithm based on generalized basis reduction and
reported on computational results of solving several, up to then, unsolved telecom-
munication network design problems. Aardal, Hurkens, Lenstra [53], Aardal et al.
[58], and Aardal and Lenstra [54] report on using the LLL-reduced lattice basis for-
mulation 9.14 and a enumerative algorithm inspired by Lenstra [4] to solve several
hard integer feasibility problems.

The Integer Linear Optimization Problem

In this section, we want to consider the integer optimization problem in fixed
dimension

max
n
cT x j Ax � b; x 2 ZZn

o
: (9.16)
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In the analysis of the algorithms that follow, we use the parameters m and s, where
m is the number of inequalities of the system Ax � b, and s is an upper bound on
the binary encoding length of a coefficient of A;b, and c.

The greatest common divisor of two integers a and b can be computed with the
Euclidean algorithm withO.s/ arithmetic operations, where s is an upper bound on
the binary encoding length of the integers a and b. On the other hand, we have the
following well-known formula

gcd.a; b/ D minfa x1 C b x2 j a x1 C b x2 � 1; x1; x2 2 ZZg:

This implies that the greatest common divisor can be computed with an algorithm
for the integer optimization problem in dimension 2 with one constraint.

The integer optimization problem can be reduced to the integer feasibility prob-
lem with binary search. The integer feasibility problem in fixed dimension has
complexityO.mC s/. This follows from an analysis of Lenstra’s algorithm in com-
bination with efficient algorithm to compute a Löwner-John ellipsoid; see [59, 60].
With binary search for an optimal point, one obtains a running time ofO.m �sCs2/.
If, in addition to the dimension, also the number of constraints is fixed, this results
in an O.s2/ algorithm for the integer optimization problem, which is in contrast to
the linear running time of the Euclidean algorithm.

Clarkson [61] has shown that the integer optimization problem withm constraints
can be solved with an expected number ofO.m/ arithmetic operations andO.logm/
calls to an oracle solving the integer optimization problem on a constant size subset
of the input constraints. Therefore, we concentrate now on the integer optimization
problem with a fixed number of constraints. In this section, we outline an algorithm
that solves the integer optimization problem in fixed dimension with a fixed number
of constraints with O.s/ arithmetic operations on rational numbers of size O.s/.
The algorithm relies on the LLL algorithm.

The first step is to reduce the integer optimization problem over a full-dimensional
polytope with a fixed number of facets to a disjunction of integer optimization
problems over a constant number of two-layer simplices. A two layer simplex is
a full-dimensional simplex, whose vertices can be partitioned into two sets V and
W , such that the objective function values of the elements in each of the sets V and
W agree, i.e., for all v1; v2 2 V , one has cT v1 D cT v2, and for all w1;w2 2 W ,
one has cT w1 D cT w2.

How can one reduce the integer optimization problem over a polytope P to a
sequence of integer optimization problems over two-layer simplices? Simply con-
sider the hyperplanes cT x D cT v for each vertex v ofP . If the number of constraints
defining P is fixed, then these hyperplanes partition P into a constant number
of polytopes, whose vertices can be grouped into two groups, according to the
value of their first component. Thus, we can assume that the vertices of P itself
can be partitioned into two sets V and W , such that the objective function values
of the elements in each of the sets V and W agree. Carathéodory’s theorem, see
Schrijver [9, p. 94], implies that P is covered by the simplices that are spanned by
the vertices of P . These simplices are two-layer simplices. Therefore, the integer
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optimization problem in fixed dimension with a fixed number of constraints can be
reduced in constant time to a constant number of integer optimization problems over
a two-layer simplex.

The key idea is then to let the objective function slide into the two-layer simplex,
until the width of the truncated simplex exceeds the flatness bound. In this way,
one can be sure that the optimum of the integer optimization problem lies in the
truncation, which is still flat. Thus, one has reduced the integer optimization problem
in dimension n to a constant number of integer optimization problems in dimension
n � 1, and binary search can be avoided.

How do we determine a parameter 	 such that the truncated two-layer simplex
˙ \ .cT x � 	/ just exceeds the flatness bound? We explain the idea with the help
of the 3-dimensional example in Fig. 9.4.

Here, we have a two-layer simplex ˙ in dimension three. The set V consists of
the points 0 and v1 andW consists of w1, and w2. The objective is to find a highest
point in the vertical direction. The picture on the left describes a particular point
in time, where the objective function slid into ˙ . So we consider the truncation
˙ \ .cT x � 	/ for some 	 � cT w1. This truncation is the convex hull of the points

0; v1; �w1; �w2; .1 � �/v1 C �w1; .1 � �/v1 C �w2;

where � D 	=cT w1. Now consider the simplex ˙V;�W , which is spanned by the
points 0; v1; �w1; �w2. This simplex is depicted on the right in Fig. 9.4. If this sim-
plex is scaled by 2, then it contains the truncation ˙ \ .cT x � 	/. This is easy to
see, since the scaled simplex contains the points 2.1��/ v1; 2 �w1 and 2�w2. So
we have the condition ˙V;�W 	 ˙ \ .cT x � 	/ 	 2˙V;�W . From this, we can
infer the important observation

w.˙V;�W / � w.˙ \ .cT x � 	// � 2w.˙V;�W /:

0

v1

w1

w2

(1–m)v1+ m w1

(1–m)v1+ m w2

m w1
m w2

0

v1

w1

w2

m w2m w1

(1–m)v1+ m w1

(1–m)v1+ m w2

Fig. 9.4 Solving the parametric lattice width problem
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This means that we essentially determine the correct 	 by determining a � � 0,
such that the width of the simplex˙V;�W just exceeds the flatness bound. The width
of˙V;�W is roughly (up to a constant factor) the length of the shortest vector of the
lattice L.A�/ , where A� is the matrix

A� D
0

@
�wT

1

�wT
2

v1

1

A :

Thus, we have to find a parameter �, such that the shortest vector of L.A�/ is
sandwiched between f .n/C1 and � � .f .n/C1/ for some constant � . This problem
can be understood as a parametric shortest vector problem.

To describe this problem, let us introduce some notation. We define for an n �
n-matrix A D .aij /8i;j , the matrix A�;k D .aij /

�;k
8i;j , as

a
�;k
ij D

(
� � aij ; if i � k;
aij ; otherwise:

In other words, the matrix A�;k results from A by scaling the first k rows with �.
The parametric shortest vector problem is now defined as follows.
Given a nonsingular matrix A 2 ZZn	n and some U 2 IN, find a parameter p 2 IN
such that U � SV.L.Ap;k// � 2nC1=2 � U or assert that SV.L/ > U .
It turns out that the parametric shortest vector problem can be solved in linear time
when the dimension is fixed with a cascaded LLL algorithm. From this, it follows
that the integer optimization problem in fixed dimension with a fixed number of
constraints can be solved in linear time. Together with Clarkson’s result, we obtain
the following result.

Theorem 6 ([62]). The integer optimization problem (9.16) can be solved with an
expected number ofO.mCs logm/ arithmetic operations on rationals of sizeO.s/.

Open Problems and Discussion

In the above section, we have sketched a result showing that the integer linear opti-
mization problem can be solved with a linear number of arithmetic operations, if the
number of constraints is fixed. The binary encoding length of the numbers in the
course of the algorithm remains linear in the input encoding size. Therefore, this
result matches the complexity of the Euclidean algorithm if we count arithmetic
operations only. When the number m of constraints is arbitrary, Clarkson’s algo-
rithm provides a running time of O.m C s logm/, where s is the largest binary
encoding length of a coefficient in the input. Clarkson’s algorithm is a randomized
algorithm. The first question is, whether a deterministic algorithm with running time
O.mC s logm/ exists.
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In the case of two variables, Eisenbrand and Laue [63] have shown that there
exists an algorithm that requires only O.m C s/ arithmetic operations. Another
question is, whether this result can be extended to any fixed dimension.

The complexity model that reflects the fact that arithmetic operations on large
numbers do not come for free is the bit-complexity model. Addition and subtraction
of s-bit integers take O.s/ time. The current state of the art method for multipli-
cation [64] shows that the bit complexity M.s/ of multiplication and division is
O.s log s log log s/.

Recently, Nguyen and Stehlé [65] have presented an LLL-variant that computes
an LLL-reduced basis in time O.n5.n C logB/ logB/ bit-operations, where B is
an upper bound on the norm of the vectors in the input. This holds even if the multi-
plications and divisions are carried out with the straightforward quadratic methods.
This means that if the naive algorithms for multiplication and division with remain-
der are used, the dependence of the running time on the encoding length of the
largest binary encoding of a basis-vector component matches exactly the running
time of the Euclidean algorithm. In addition, the dependence on the dimension is
polynomial. This raises the question, whether these results carry over to the bit-
complexity of the integer optimization problem in fixed dimension. In particular, is
it possible that this problem can be solved with O.ms2/ bit operations. This would
match the complexity of checking whether an integer point is feasible, if the naive
methods for multiplication are used.
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Chapter 10
Using LLL-Reduction for Solving RSA
and Factorization Problems

Alexander May

Abstract Twenty five years ago, Lenstra, Lenstra and Lovász presented their cel-
ebrated LLL lattice reduction algorithm. Among the various applications of the
LLL algorithm is a method due to Coppersmith for finding small roots of poly-
nomial equations. We give a survey of the applications of this root finding method
to the problem of inverting the RSA function and the factorization problem. As we
will see, most of the results are of a dual nature, they can either be interpreted as
cryptanalytic results or as hardness/security results.

Introduction

The RSA cryptosystem invented by Rivest, Shamir, and Adleman in 1977 [1] is
today’s most important public-key cryptosystem. Let us denote by N D pq an
RSA-modulus which is the product of two primes p; q of the same bit-size. Let e
be an integer co-prime to Euler’s totient function �.N / D .p � 1/.q � 1/. The
RSA encryption function takes a message m to the eth power in the ring ZN . The
security of RSA relies on the difficulty of inverting the RSA encryption function on
the average, i.e., extracting eth roots in the ring ZN . We call this problem the RSA
inversion problem or the RSA problem for short.

Let d be the inverse of e modulo �.N /. Computing d th powers in ZN inverts
the RSA encryption function. Since d can be easily computed when the prime fac-
torization ofN is known, the RSA cryptosystem is at most as secure as the problem
of computing d and the problem of factoring N . Indeed, we will see that the last
two problems are polynomial time equivalent. However, it is one of the most chal-
lenging problems to prove or disprove the polynomial time equivalence of the RSA
problem and the problem of factoring N . There are results that these problems are
not equivalent under restricted reductions [2]. On the other hand, one can show that
in restricted generic attack models both problems appear to be equivalent [3, 4].
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Despite considerable efforts to attack RSA (see [5, 6] for surveys), currently, the
best way is still to factor the RSA modulus. Consequently, researchers focussed
for a long time on the construction of factorization algorithms for attacking RSA.
In this factorization line of research, the goal is to minimize the computational
complexity in the common Turing machine model. The most important milestones
in the construction of factorization algorithms in the 80s and 90s are the inven-
tion of the Quadratic Sieve [7], the Elliptic Curve Method [8] and the Number
Field Sieve (NFS) [9,83]. The NFS is currently the best algorithm for factoring RSA
moduli. It factorsN in subexponential time and spaceLN Œ

1
3
; c�DO.exp.c.logN/

1
3

.log logN/
2
3 // for c � 1:9.

Of course, ultimately, the cryptanalyst’s ultimate goal is the construction of a
polynomial time algorithm for either the RSA problem or the factorization problem.
Since it is unknown whether there exist algorithms for these problems with Turing
complexity LN Œ˛; c� for ˛ < 1

3
, one might ask for polynomial time algorithms in

other machine models or for interesting relaxations of the RSA and factorization
problem.

In 1994, Shor [10] presented an algorithm for solving the factorization prob-
lem in time and space polynomial in the bit-length of N , provided that the model
of Turing machines is replaced by the model of quantum Turing machines. This
ground-breaking theoretical result led to intensive engineering efforts for building
quantum computers in practice. However, today, it is still unclear whether quantum
computers with a large number of quantum bits can ever be constructed.

In the 90s, another interesting line of research evolved, which uses polynomial
time algorithms in the Turing machine model. However, in order to achieve polyno-
mial complexity, one has to relax the RSA and factorization problem. So instead of
changing the model of computation, one relaxes the problems themselves by look-
ing at restricted instances. The most natural restriction is realized by limiting the
parameter set of the instances to an interval which is smaller than in the general
setting, but still of exponential size.

A variation of this limiting approach addresses full parameter sets but allows
additional access to an oracle for parts of the solution, e.g., for some of the bits.
Notice that the oracle queries have the effect of cutting down the search space
for the solution. The so-called oracle complexity measures the number of oracle
queries that is required in order to solve the underlying problem in polynomial
time. Of course, one is interested in minimizing the number of oracle queries and
in restricting the oracle’s power, i.e., the type of queries that an oracle replies to.
Oracles are motivated by other cryptographical mechanisms, so-called side-channel
attacks, that often leak partial information of the secrets and therefore behave in
practice like an oracle.

In the following, we will call both approaches, limiting the parameter sets and
allowing for an oracle, relaxations of the problem instances. In order to solve these
relaxed instances, one models them as a polynomial equation and tries to find the
integer solutions.

Let us illustrate this approach by a simple example. The RSA factorization prob-
lem is the problem of finding p; q on inputN . This can be modeled by a polynomial
equation f .x; y/ D N � xy. The positive integer roots of this polynomial equation
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are .1;N /; .p; q/; .q; p/; .N; 1/. Since we assume that p; q are of the same bit-size,
finding all integer solutions which are in absolute value smaller than roughly

p
N

suffices to solve the factorization problem. Thus, one only has to find small solu-
tions, where small means that the size of the root is small compared to the size of
the coefficients of the polynomial. Naturally, one can define upper bounds X; Y for
the size of the roots in x; y, respectively. The ultimate goal is to find a polynomial
time algorithm which succeeds whenever XY � N . Since we do not know how to
achieve this bound, we relax the factorization problem.

A natural relaxation of this problem is to narrow down the search space for the
prime factors. Assume that we are given oracle access to the most significant bits
of p. This allows us to compute an approximation Qp of p such that jp� Qp j is signif-
icantly smaller than

p
N . Then, Qq D N

Qp defines an approximation of q. Therefore,
we obtain the polynomial equation f .x; y/ D N �. QpCx/. QqCy/ with a small root
.p � Qp; q � Qq/, where the size of the root depends on the quality of the approxima-
tion. It was shown by Coppersmith in 1996 [11], that the solution of this problem
can be found in polynomial time if XY � N 1

2 .
Building on works in the late 80s [12, 13], Coppersmith [11, 14–16] derived a

general algorithm for finding small roots of polynomial equations. This root finding
algorithm in turn is essentially based on the famous LLL-reduction algorithm by
Lenstra, Lenstra and Lovász [17]. The key idea is to encode polynomial equations
with small solutions as coefficient vectors that have a small Euclidean norm. These
coefficient vectors can efficiently be found by an application of the LLL-reduction
algorithm.

We will survey several applications of Coppersmith’s algorithm to relaxations of
the RSA problem and the factorization problem. Many of these applications natu-
rally allow for a dual interpretation, both as a cryptanalytic result and as a security
result. Let us give an example for this duality. In 1996, Coppersmith [14] showed
that for RSA with e D 3, an attacker who knows 2=3 of an RSA-encrypted mes-
sage m can recover the remaining third from the ciphertext in polynomial time. The
cryptanalytic interpretation is that knowing only a 2=3-fraction of the plaintext is
already enough to recover the whole. The security interpretation is that recovering a
2=3-fraction must be hard, provided that solving the RSA problem for e D 3 is hard.
Thus, this result establishes the security of a 2=3-fraction of the underlying plaintext
under the RSA assumption. This security interpretation was used by Shoup [18] to
show the security of RSA-OAEP for e D 3 under chosen ciphertext attacks. We will
elaborate a bit more on this duality effect in the paper.

This survey is organized as follows. We start in Section “How to Find Small
Roots: The Univariate Case” by giving a high-level description of Coppersmith’s
algorithm for finding small roots of univariate modular polynomials. We state a the-
orem which provides us with an upper bound for the size of the roots of a univariate
polynomial that can efficiently be found.

The details of the theorem’s proof are given in Section “Proof of Theorem 1
and Algorithmic Considerations”. This section is devoted to people who are inter-
ested in the technical details of the method, and those who want to implement
a Coppersmith-type univariate root finding algorithm. It is the only section that
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requires some basic knowledge of lattice theory from the reader. People who are
mainly interested in the applications of Coppersmith’s method can proceed to the
subsequent section.

In Section “Modeling RSA Problems as Univariate Root Finding Problems”,
we will extensively use our theorem for finding small roots. We will model cer-
tain relaxed RSA and factorization problems as univariate polynomial equations.
For instance, we present Coppersmith’s attack on RSA with stereotyped mes-
sages [14] and show its dual use in Shoup’s security proof [18] and for the
construction of an RSA-based pseudorandom number generator proposed by Ste-
infeld, Pieprzyk, and Wang [19]. Moreover, we will show a generalization of
Håstad’s broadcast attack [12] on RSA-encrypted, polynomially related messages
that provides a natural link to Coppersmith’s attack on stereotyped RSA mes-
sages.

We then describe the factoring with high bits known results from Copper-
smith [11] and Boneh, Durfee, and Howgrave-Graham [20]. Furthermore, we show
a deterministic polynomial time reduction of factoring to computing d [21, 22],
which establishes the hardness of the so-called RSA secret key recovery problem
under the factorization assumption. We conclude this section by stating Boneh’s
algorithm [23] for finding smooth integers in short intervals. The problem of finding
smooth integers is related to classical factorization algorithms such as the Number
Field Sieve.

In Section “Applications of Finding Roots of Multivariate Equations”, we will
turn our focus to multivariate extensions of Coppersmith’s LLL-based method. We
present Wiener’s attack [24] on RSA with d � N 1

4 as a bivariate linear equation,
which was originally phrased in terms of the continued fraction algorithm. We then
present the bivariate polynomial equation of Boneh and Durfee [25,26] that led to a
heuristic improvement of the bound to d � N 0:292. As an example of an application
with more variables, we present a heuristic polynomial time attack of Jochemsz and
May [27] for RSA with so-called CRT-exponents d mod p�1; d mod q�1 smaller
than N 0:073. Dually to these attacks, the server-based RSA signature generation
proposals of Boneh, Durfee, Frankel [28] and Steinfeld, Zheng [29] are constructive
security applications.

Since the number of applications of Coppersmith’s LLL-based method for the
RSA/factorization problem is already far too large to capture all the different results
in this survey, we try to provide a more comprehensive list of references in Section
“Survey and References for LLL-Based RSA and Factoring Results”. We are aware
of the fact that it is impossible to achieve completeness of such a list, but our
references will serve the purpose of a good starting point for further reading.

In Section “Open Problems and Speculations”, we give some open problems
in this area and try to speculate in which direction this line of research will go.
Especially, we discuss to which extent we can go from relaxed instances toward
general problem instances, and where the limits of the method are. This discussion
naturally leads to speculations whether any small root finding algorithm based on
LLL-reduction will eventually have the potential to solve general instances of the
RSA problem or the factorization problem in polynomial time.
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How to Find Small Roots: The Univariate Case

We first introduce the problem of finding solutions of a modular univariate poly-
nomial equation. Then, we argue that this approach extends to polynomials in more
variables in a heuristic manner.

Let N be a positive integer of unknown factorization with divisor b � N ˇ ,
0 < ˇ � 1.1 Let f .x/ be a monic univariate polynomial of degree ı. We are looking
for all small roots of the polynomial f modulo b. That is, we want to efficiently find
all solutions x0 satisfying

f .x0/ D 0 mod b with jx0j � X;

where X is an upper bound on the size of the solutions. Our goal is to maximize
the bound X , with the restriction that the running time of our method should be
polynomial in the input size, i.e., polynomial in the parameters .logN; ı/.

We would like to stress that N is an integer of unknown factorization, which
makes the above root finding problem hard to solve. If the prime factors of N are
given, efficient algorithms with finite field arithmetic are known for the problem.

In 1996, Coppersmith [15] proposed an elegant LLL-based method for finding
small solutions of univariate polynomial equations. Here, we describe his approach
using the notion of Howgrave-Graham’s reformulation [30] of the method. Copper-
smith’s approach is basically a reduction of solving modular polynomial equations
to solving univariate polynomials over the integers. That is, one constructs from
f .x/ another univariate polynomial g.x/ that contains all the small modular roots
of f .x/ over the integers:

f .x0/ D 0 mod b ) g.x0/ D 0 over Z for all jx0j � X:

The algorithmic idea for the construction of g.x/ from f .x/ can be described via
the following two steps:

1. Fix an integerm. Construct a collectionC of polynomialsf1.x/; f2.x/; : : : ; fn.x/

that all have the small roots x0 modulo bm. As an example, take the collection

fi .x/ D Nm�if i .x/ for i D 1; : : : ; m
fmCi .x/ D xif m.x/ for i D 1; : : : ; m:

2. Construct an integer linear combination g.x/ DPn
iD1 aifi .x/, ai 2 Z such that

the condition

jg.x0/j < bm

1 An important special case is b D N , i.e., ˇ D 1.
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holds. Notice that bm divides all fi .x0/ by construction. Therefore, bm also
divides g.x0/. But then g.x0/ D 0 mod bm and jg.x0/j < bm, which implies
that g.x0/ D 0 over the integers.

The construction in step (2) is realized by an LLL-based approach. Namely,
one can easily show that every polynomial g whose coefficient vector of g.xX/
has sufficiently small norm fulfills the condition jg.x0/j < bm. The integer lin-
ear combinations of the coefficient vectors of fi .xX/, i D 1 : : : n, form a lattice L.
Applying a lattice basis reduction algorithm to a basis ofL yields a small norm coef-
ficient vector g.xX/. One can show that in our case the LLL-reduction algorithm
of Lenstra, Lenstra and Lovász [17] outputs a sufficiently small vector. Therefore,
g.x/ can be computed in polynomial time via LLL-reduction.

Eventually, one has to find the roots of g.x/ over the integers. This can be done
by standard polynomial factorization methods such as the Berlekamp–Zassenhaus
algorithm. Interestingly, the initial application of the LLL algorithm was a determin-
istic polynomial time algorithm [17] for factoring polynomials in QŒX�. In 2001,
van Hoeij [31, 32] proposed an improved, highly efficient LLL-based factorization
algorithm (see [33] for an introduction). Thus, we cannot only use LLL to construct
g but also to find its integer roots.

The details of the proof of the following result can be found in Section “Proof of
Theorem 1 and Algorithmic Considerations”.

Theorem 1. Let N be an integer of unknown factorization, which has a divisor
b � N ˇ , 0 < ˇ � 1. Let f .x/ be a univariate monic polynomial of degree ı and
let c � 1. Then we can find all solutions x0 of the equation

f .x/ D 0 mod b with jx0j � cN ˇ2

ı

in time O.cı5 log9N/:

Although LLL reduction only approximates a shortest vector up to some factor
that is exponential in the lattice dimension, it is important to point out that lat-
tice reduction techniques which give better approximations do not help improve the
bound given in Theorem 1.

Coppersmith proved this result for the special case ˇ D 1, i.e., b D N . The term
ˇ2 first appeared in Howgrave-Graham’s work [34] for the special case ı D 1, i.e.,
for a linear polynomial. A proof of Theorem 1 first appeared in [35].

Coppersmith’s method generalizes in a natural way to modular multivariate
polynomials f .x1; : : : ; x`/. The idea is to construct ` algebraically independent
polynomials g.1/; : : : ; g.`/ that all share the desired small roots over the integers.
The roots are then computed by resultant computations. For ` � 2, this is a
heuristic method because although the LLL-algorithm guarantees linear indepen-
dence of the coefficient vectors, it does not guarantee algebraic independence of the
corresponding polynomials.

The case of solving multivariate polynomial equations over the integers – not
modular – uses similar techniques. In the integer case, the method of finding small
roots of bivariate polynomials f .x; y/ is rigorous, whereas the extension to more
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than two variables is again a heuristic. Coron showed in [36, 37], that the case of
solving integer polynomials can, in principle, be reduced to the case of solving
modular polynomials.

Proof of Theorem 1 and Algorithmic Considerations

In this section, we will give a complete proof of Theorem 1. Readers who are
mainly interested in the method’s applications can skip this section and proceed
to Section “Modeling RSA Problems as Univariate Root Finding Problems”.

We provide an algorithm that on input

� An integer N of unknown factorization
� A monic, univariate polynomial f .x/ of degree ı
� A bound ˇ 2 .0; 1�, such that b � N ˇ for some divisor b of N

outputs in time polynomial in logN and ı all solutions x0 such that

� f .x0/ D 0 mod b and

� jx0j � N ˇ2

ı .

Normally, the property that f .x/ is monic is no restriction in practice. Assume
that f .x/ has a leading coefficient aı 6D 1. Then, we can either make f .x/monic by
multiplying with the inverse of aı modulo N , or we find a non-trivial factorization
of N . In the latter case, we can work modulo the factors of N .

The following theorem of Howgrave-Graham [30] gives us two criteria under
which we can find a polynomial g.x/ that evaluates to zero over the integers at
small roots.

Theorem 2 (Howgrave-Graham). Let g.x/ be a univariate polynomial with n
monomials. Further, let m be a positive integer. Suppose that

1. g.x0/ D 0 mod bm where jx0j � X
2. jjg.xX/jj < bmp

n

Then g.x0/ D 0 holds over the integers.

Proof. We have

jg.x0/j D
X

i

cix
i
0 �

X

i

jcix
i
0j

�
X

i

jci jX i � pnjjg.xX/jj < bm:

But g.x0/ is a multiple of bm, and, therefore, it must be zero.
Using powers of f , we construct a collection f1.x/; : : : ; fn.x/ of polynomi-

als that all have the desired roots x0 modulo bm. Thus, for every integer linear
combination g, we have
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g.x0/ D
nX

iD1

aifi .x0/ D 0 mod bm; ai 2 Z:

Hence, every integer linear combination satisfies condition (1) of Lemma 2.
Among all integer linear combinations, we search for one that also satisfies con-
dition (2). In other words, we have to search among all integer linear combinations
of the coefficient vectors fi .xX/ for a vector with Euclidean norm smaller than
bmp

n
. This can be achieved by finding a short vector in the lattice L spanned by the

coefficient vectors of fi .xX/.
Our goal is to ensure that the LLL algorithm finds a vector v with jjvjj < bmp

n
in L.

By a theorem of Lenstra, Lenstra and Lovász [17], the norm of a shortest vector
v in an LLL-reduced lattice basis can by related to the determinant det.L/ of the
corresponding lattice L with dimension n via

jjvjj � 2 n�1
4 det.L/

1
n :

The determinant det.L/ can be easily computed from the coefficient vectors of
fi .xX/. If we could satisfy the condition

2
n�1

4 det.L/
1
n <

N ˇm

p
n
; (10.1)

then we obtain the desired inequality jjvjj < N ˇmp
n
� bmp

n
.

Neglecting low-order terms in (10.1), i.e., terms that do not depend on N , we
obtain the simplified condition

det.L/ < N ˇmn:

Let L be a lattice of dimension n with basis B satisfying this condition. Then
on average, a basis vector v 2 B contributes to the determinant with a factor less
than N ˇm. We call such a basis vector a helpful vector. Helpful vectors will play a
central role for the construction of an optimized lattice basis.

The following theorem of Coppersmith states that for a monic polynomial f .x/

of degree ı, all roots x0 with jx0j � 1
2
N

ˇ2

ı
�� can be found in polynomial time.

We will later show that the error term � and the factor 1
2

can be easily eliminated,
which will lead to a proof of Theorem 1.

Theorem 3 (Coppersmith). Let N be an integer of unknown factorization, which
has a divisor b � N ˇ , 0 < ˇ � 1. Let 0 < � � 1

7
ˇ. Furthermore, let f .x/ be a

univariate monic polynomial of degree ı. Then, we can find all solutions x0 for the
equation

f .x/ D 0 mod b with jx0j � 1

2
N

ˇ2

ı
�� :
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The running time is dominated by the time to LLL-reduce a lattice basis of dimen-
sion O.��1ı/ with entries of bit-size O.��1 logN/. This can be achieved in time
O.��7ı5 log2N/:

Proof. Define X WD 1
2
N

ˇ2

ı
�� . Let us apply the two steps of Coppersmith’s method

as described in Section “How to Find Small Roots: The Univariate Case”. In the
first step, we fix

m D
�
ˇ2

ı"

�
: (10.2)

Next, we choose a collectionC of polynomials, where each polynomial has a root
x0 modulo bm whenever f .x/ has the root x0 modulo b. In our case, we include in
C the polynomials

Nm; xNm; x2Nm; : : : xı�1Nm;

Nm�1f; xNm�1f; x2Nm�1f; : : : xı�1Nm�1f;

Nm�2f 2; xNm�2f 2; x2Nm�2f 2; : : : xı�1Nm�2f 2;
:::

:::
:::

:::

Nf m�1; xNf m�1; x2Nf m�1; : : : xı�1Nf m�1:

Additionally, we take the polynomials

f m; xf m; x2f m; : : : ; xt�1f m

for some t that has to be optimized as a function of m.
Note that by our ordering the kth polynomial of C is a polynomial of degree

k. Thus, it introduces the new monomial xk . We could also write the choice of our
polynomials inC in a more compact form. Namely, we have chosen the polynomials

gi;j .x/ D xjN if m�i .x/ for i D 0; : : : ; m � 1; j D 0; : : : ; ı � 1 and
hi .x/ D xif m.x/ for i D 0; : : : ; t � 1:

In Step 2 of Coppersmith’s method, we construct the lattice L that is spanned by the
coefficient vectors of gi;j .xX/ and hi .xX/. As we noticed before, we can order the
polynomials gi;j and hi in strictly increasing order of their degree k. Therefore,
the basis B of L, that has as row vectors the coefficient vectors of gi;j .xX/ and
hi .xX/, can be written as a lower triangular matrix. Let n WD ımC t , then we write
B as the .n � n/-matrix given in Table 10.

Since B is in lower triangular form, det.L/ is simply the product of all entries on
the diagonal:

det.L/ D N 1
2

ım.mC1/X
1
2

n.n�1/: (10.3)
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Table 10.1 Basis B of the lattice L. We use the following notation: Every nonspecified entry is
zero. The entries marked with “–” may be nonzero, but the determinant of the lattice does not
depend on these values

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Nm

NmX

:: :

NmXı�1

: : :
: : :

: : :
: : :

� � : : : � : : : NXım�ı

� : : : � : : : � NXım�ıC1

: : :
: : :

: : :
: : :

: : :
: : :

� : : : � � : : : NXım�1

� � : : : � : : : � � � � Xım

� : : : � : : : � � � � � XımC1

: : :
: : :

: : :
: : :

: : :
: : :

: : :
: : :

� � � � � � : : : XımCt�1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Now, we want to optimize the parameter t , which is equivalent to the optimization of
n D ımCt . Remember that we argued before that every vector which contributes to
the determinant by a factor less than N ˇm is helpful. In our setting, this means that
we have to ensure that the entries of the coefficient vectors hi .xX/ on the diagonal
are all less than N ˇm, i.e., we have the condition

Xn�1 < N ˇm:

Since Xn�1 < N .
ˇ2

ı
��/.n�1/ < N

ˇ2

ı
n this condition is satisfied for the choice

n � ı

ˇ
m: (10.4)

According to (10.2), we know thatm � ˇ2

ı�
C1. Then, we immediately have a bound

for the lattice dimension

n � ˇ

�
C ı

ˇ
:

Using 7ˇ�1 � ��1, we obtain n D O.��1ı/. We choose n as the maximal integer
that satisfies inequality (10.4). This yields a lower bound of

n >
ı

ˇ
m � 1 � ˇ

�
� 1 � 6:
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In order to prove the running time, we also need to upper-bound the bit-size of
the entries in B . Notice that for every power f m�i in the definition of gi;j and
hi , we can reduce the coefficients modulo Nm�i , since x0 must be a root modulo
Nm�i . Thus, the largest coefficient in a product N if m�i has a bit-size of at most

m log.N / D O.��1 logN/. Powers ofX D 1
2
N

ˇ2

ı
�� occur with exponents smaller

than n. Thus, the bit-size of powers of X can also be upperbounded by

n � ˇ
2

ı
logN D O

�
ı

�
� ˇ

2

ı

�
logN D O

�
��1 logN

�
:

Nguyen and Stehlé [38, 39] recently proposed a modified version of the LLL-
algorithm called L2-algorithm. The L2-algorithm achieves the same approximation
quality for a shortest vector as the LLL algorithm, but has an improved worst case
running time analysis. It takes time O.n5.nC log bm/ log bm/, where log bm is the
maximal bit-size of an entry in B . Thus, we obtain for our method a running time of

O
 �

ı

�

�5 �
ı

�
C logN

�

�
logN

�

!
:

Notice that we can assume ı � logN , since otherwise our bound jx0j � N ˇ2

ı
��

is vacuous. Therefore, we obtain a running time of O.��7ı5 log2N/.
It remains to show that LLL’s approximation quality is sufficient for our pur-

pose. In order to apply the theorem of Howgrave-Graham (Theorem 2), we have
to ensure that the LLL algorithm finds a vector in L with norm smaller than
bmp

n
. Since the LLL algorithm finds a vector v in an n-dimensional lattice with

jjvjj � 2 n�1
4 det.L/

1
n , we have to satisfy the condition

2
n�1

4 det.L/
1
n <

bm

p
n
:

Using the term for det.L/ in (10.3) and the fact b � N ˇ , we obtain the new
condition

N
ım.mC1/

2n X
n�1

2 � 2�n�1
4 n� 1

2N ˇm:

This gives us a condition on the size of X :

X � 2�1
2 n�

1
n�1N

2ˇm
n�1 � ım.mC1/

n.n�1/ :

Notice that n� 1
n�1 D 2�

log n
n�1 � 2� 1

2 for n > 6. Therefore, our condition
simplifies to

X � 1

2
N

2ˇm
n�1
� ım.mC1/

n.n�1/ :
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Remember that we made the choice X D 1
2
N

ˇ2

ı
�� . Hence, in order to finish the

proof of the theorem, it suffices to show that

2ˇm

n � 1 �
ım2.1C 1

m
/

n.n � 1/ � ˇ2

ı
� �:

We obtain a lower bound for the left-hand side by multiplying with n�1
n

. Then,
we use n � ı

ˇ
m which gives us

2
ˇ2

ı
� ˇ

2

ı

�
1C 1

m

�
� ˇ2

ı
� �:

This simplifies to

�ˇ
2

ı
� 1
m
� ��:

This in turn gives us the conditionm � ˇ2

ı�
, which holds by the choice of m that

we made in (10.2).
Let us briefly summarize the whole algorithm which finds all roots of f .x/

modulo b that are in absolute value smaller than X .�

�

�

�

Coppersmith’s method in the univariate case
INPUT: Polynomial f .x/ of degree ı, modulus N of unknown factorization
that is a multiple of b, a lower bound b � N ˇ , � � 1

7
ˇ

Step 1: Choose m D dˇ2

ı�
e and t D bım. 1

ˇ
� 1/c.

Compute the polynomials

gi;j .x/ D xjN if m�i .x/ for i D 0; : : : ; m � 1; j D 0; : : : ; ı � 1 and
hi .x/ D xif m.x/ for i D 0; : : : ; t � 1:

Step 2: Compute the bound X D 1
2
dN ˇ2

ı
��e. Construct the lattice basis B ,

where the basis vectors of B are the coefficient vectors of gi;j .xX/ and
hi .xX/.

Step 3: Apply the LLL algorithm to the lattice basis B . Let v be the shortest
vector in the LLL reduced basis. The vector v is the coefficient vector of
some polynomial g.xX/. Construct g.x/ from v.

Step 4: Find the set R of all roots of g.x/ over the integers using standard meth-
ods. For every root x0 2 R check whether gcd.N; f .x0// � N ˇ . If this
condition is not satisfied then remove x0 from R.

OUTPUT: Set R, where x0 2 R whenever f .x0/ D 0 mod b for an jx0j � X .
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As we noticed before, all steps of the algorithm can be done in time
O.��7ı5 log2N/; which concludes the proof of the theorem.

One should remark that the polynomial g.x/ that we construct in Coppersmith’s
method may contain integer roots that are not roots of f .x/ modulo b. Therefore,
we use in Step 4 of the above algorithm a simple test whether f .x0/ contains a
divisor of N of size at least N ˇ .

It is also worth noticing the following point: The LLL approximation factor of
2

n�1
4 for the shortest vector is exponentially in the lattice dimension n, but this

factor essentially translates in the analysis of Theorem 3 to the term 1
2

for the upper
bound of the size of the roots x0. Thus, computing a shortest vector instead of an
LLL approximate version would only improve the bound by a factor of roughly 2
(i.e., only one bit).

Moreover, Theorem 1 is a direct implication of Theorem 3 and shows that we
can avoid the terms 1

2
and � from the upper bound on x0. The proof uses a simple

brute-force search.

Theorem 1. Let N be an integer of unknown factorization, which has a divisor
b � N ˇ , 0 < ˇ � 1. Furthermore, let f .x/ be a univariate monic polynomial of
degree ı. Then we can find all solutions x0 for the equation

f .x/ D 0 mod b with jx0j � cN ˇ2

ı :

in time O.cı5 log9N/:

Proof. An application of Theorem 3 with the parameter choice � D 1
log N

shows
that we can find all roots x0 with

jx0j � 1

4
N

ˇ2

ı

in time O.ı5 log9N/.

In order to find all roots that are of size at most cN
ˇ2

ı in absolute value, we

divide the interval Œ�cN ˇ2

ı ; cN
ˇ2

ı � into 4c subintervals of size 1
2
N

ˇ2

ı centered at
some xi . For each subinterval with center xi , we apply the algorithm of Theorem 3
to the polynomial f .x � xi / and output the roots in this subinterval.

For completeness reasons and since it is one of the most interesting cases of
Coppersmith’s method, we explicitly state the special case b D N and c D 1, which
is given in the work of Coppersmith [15].

Theorem 4 (Coppersmith). Let N be an integer of unknown factorization. Fur-
thermore, let fN .x/ be a univariate monic polynomial of degree ı. Then we can
find all solutions x0 for the equation

fN .x/ D 0 mod N with jx0j � N 1
ı

in time O.ı5 log9N/.
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Modeling RSA Problems as Univariate Root Finding Problems

We address several RSA related problems that can be solved by finding small
roots of univariate modular polynomial equations. Throughout this section, we will
assume that N D pq is a product of two primes, and that e 2 Z

�
�.N /

. Both N and e
are publically known.

Relaxed RSA Problem: Stereotyped Messages

The RSA problem is the problem of inverting the RSA function. Givenme mod N ,
one has to find the unique eth root m 2 ZN . The RSA assumption states that the
RSA problem is difficult to solve for randomly chosenm 2 ZN .

Notice that the RSA problem is trivial to solve for small m and small e. Namely,
if m < N

1
e then me mod N D me over Z. Therefore, computation of the eth roots

over the integers yields the desired root.
�

�

�

�

RSA problem

Given: me mod N
Find : m 2 ZN

Relaxed RSA problem: Small e, High Bits Known

Given: me; Qm with jm � Qm j � N 1
e

Find : m 2 ZN

Coppersmith extended this result to the case where m is not small, but we know
m up to a small part. Namely, we assume the knowledge of an approximation Qm
such that m D QmC x0 for some unknown part jx0j � N 1

e . This can be modeled as
the polynomial equation

f .x/ D . QmC x/e �me mod N:

Let us apply Theorem 1. We set ˇ D 1, ı D e and c D 1. Therefore, we can
recover x0 as long as jx0j � N 1

e : This extends the trivial attack where m is small
to the inhomogenous case: The most significant bits of m are not zero, but they are
known to an attacker.

Clearly, one can interpret this as a cryptanalytic result. For example, if e D 3,
then an attacker who can guess the first 2=3-fraction of the message m is able to
reconstruct the last 1=3-fraction of m in polynomial time. This might happen in
situations were the plaintext has a stereotype form like “The password for today is:
xxxx.” Therefore, this is often called an attack on stereotyped messages. Loosely
speaking, the cryptanalytic meaning is that an attacker gets an 1

e
-fraction of the

RSA message efficiently. We will see in Section “Related RSA Messages: Extending
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Håstad’s Attack” that this cryptanalytic interpretation can be generalized to the case
where the same message m is sent several times.

On the other hand, one can interpret this result in a dual sense as a security result
for a 2=3-fraction of the plaintext bits in an RSA ciphertext. It is as difficult to
compute a 2=3-fraction of m as inverting the RSA problem for e D 3. In general,
there is a tight reduction from the RSA problem to the problem of finding an e�1

e
-

fraction of the most significant bits. Under the RSA assumption, this shows that the
most significant bits of an RSA plaintext are hard to find. Even stronger results on
the security of RSA bits were given by Håstad and Näslund [40].

Constructive Applications of the Relaxed RSA Problem:
RSA-OAEP and RSA Pseudorandom Generator

The dual security interpretation of the Relaxed RSA problem was used by Shoup
[18] in 2001. He gave a security proof of the padding scheme OAEP [41] when
instantiated with the RSA trapdoor function. Here, we only sketch Shoup’s proof.
More details on the proof and on cryptographic security notations can be found in
Gentry’s survey [42].

In RSA-OAEP, the plaintext is split into two parts s and t . The first part s depends
on the message m, a fixed padding and some randomization parameter r of length
k bits. The fixed padding ensures that s fulfills a well-defined format that can be
checked. The second part t is simply h.s/ ˚ r for some hash function h, which is
modeled as a random oracle. One encrypts the padded message s � 2k C t . Let c be
the corresponding ciphertext.

Bellare and Rogaway [41] showed that RSA-OAEP is CCA1-secure, i.e., secure
against so-called lunch-time attacks. It was widely believed that RSA-OAEP is
also CCA2-secure, i.e., that it provides security against adaptive chosen ciphertext
attacks. In 2001, Shoup [18] showed that the original proof of Bellare and Rogaway
does not offer this level of security. However, using an analogous reasoning as in the
stereotyped message attack, he could easily derive CCA2-security for RSA-OAEP
with exponent 3.

In order to prove CCA2-security, we assume the existence of an adversary that
successfully attacks RSA-OAEP under chosen ciphertext attacks. This adversary is
then used to invert the RSA function. One defines a simulator in order to answer
the adversary’s decryption and hash queries. Shoup showed that any adversary that
never explicitly queries h on s has a negligible probability to pass the format check
for the s-part. Thus, one can assume that the first part s has to appear among the
attacker’s queries. This in turn is already sufficient to extract t as a root of

f .t/ D .s � 2k C t/e � c mod N;

provided that jt j < N 1
e which is fulfilled whenever k < logN=e. This condition is

satisfied for e D 3 by the RSA-OAEP parameters. One should notice the correspon-
dence to the Relaxed RSA problem: s plays the role of the known message part Qm,
whereas t is the small unknown part.
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We have reduced the RSA problem to an algorithm for attacking RSA-OAEP.
The reduction is tight up to a factor of qh, the number of hash queries an adversary
is allowed to ask. Namely, the running time is qh times the time to run the LLL-based
algorithm for finding small eth roots. The success probability of the RSA inverter
is roughly the same as the success probability of the adversary. This reduction is
tighter than the original reduction by Bellare-Rogaway for CCA1-security.

RSA-OAEP was shown to be CCA2-secure for arbitrary e by Fujisaki et al [43]
in 2001, using a 2-dimensional lattice technique. However, their reduction is also
less tight than Shoup’s: If the RSA attacker has success probability �, then the RSA
inversion algorithm of [43] has success probability only �2.

Another constructive application of Coppersmith’s attack on stereotyped mes-
sages is used for the definition of an efficient RSA-based pseudorandom number
generator (PRNG) in a recent paper by Steinfeld, Pieprzyk, and Wang [19], which
in turn builds on a work of Fischlin and Schnorr [44]. In the Fischlin-Schnorr RSA-
PRNG, one starts with a random seed x0 and generates a sequence x1; x2; : : : by
successively applying the RSA function, i.e., xi D xe

i�1 mod N . In each iteration,
one outputs the r least significant bits of xi .

In the security proof, Fischlin and Schnorr show that any efficient algorithm that
distinguishes the generator’s output from the uniform distribution can be used to
invert the RSA function, i.e., to solve the RSA problem. However, the reduction
is not tight. Namely, if TD is the running time of the distinguisher, then the inver-
sion algorithm’s running time is roughly 22rTD . Therefore, one can only output
r DO.log logN/ in each iteration in order to preserve a polynomial reduction.

In 2006, Steinfeld, Pieprzyk, and Wang showed that one can securely output
�.logN/ bits if one replaces the RSA assumption in the Fischlin-Schnorr proof
by a relaxed RSA inversion assumption. Namely, we already know that one can
recover an 1

e
-fraction of the message from an RSA ciphertext given the rest of the

plaintext. Steinfeld et al. make the assumption that this bound is essentially tight.
More precisely, they assume that any algorithm that recovers an 1

e
C �-fraction for

some constant � already requires at least the same running time as the best factoring
algorithm for N .

In fact, one replaces the RSA assumption by a stronger assumption which states
that the bound 1

e
for the Coppersmith attack on stereotyped messages cannot be

significantly improved. This stronger assumption is sufficient to increase the gen-
erator’s output rate from r DO.log logN/ to the full-size of r D�.logN/ bits.
The efficiency of the Steinfeld, Piepryzk, Wang construction is comparable to
the efficiency of the Micali-Schnorr generator [45] from 1988, but uses a weaker
assumption than in [45].

Another construction of an efficient PRNG and a MAC based on small root
problems was proposed by Boneh, Halevi, and Howgrave-Graham [46]. Its secu-
rity is proved under the hardness of the so-called modular inversion hidden number
problem. The best algorithmic bound for attacking this problem is based on an LLL-
approach. The security proofs for the PRNG and the MAC again assume that one
cannot go significantly beyond this bound.
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Affine Padding: Franklin-Reiter’s Attack

The following attack was presented by Franklin and Reiter [47] in 1995. The attack
was 1 year later extended by Coppersmith, Franklin, Patarin, and Reiter [48].

Assume that two RSA plaintexts m, m0 satisfy an affine relation m0 D m C r .
Let c D m3 mod N and c0 D .mC r/3 mod N their RSA ciphertexts, respectively.
Franklin and Reiter showed that any attacker with knowledge of c; c0; r , and N can
efficiently recoverm by carrying out the simple computation

c0r C 2cr � r4

c0 � c C 2r3
D 3m3r C 3m2r2 C 3mr3

3m2r C 3mr2 C 3r3
D m mod N:

What happens in the case where r is unknown but small?�

�

�

	

Affine related messages

Given: cDme mod N; c0D .mC r/e mod N with jr j � N 1

e2

Find : m

If one is able to determine r from the ciphertexts, then m can be computed
efficiently. The resultant computation

Resm.c �m3; c0 � .mC r/3/ D r9 C 3.c � c0/r6 C 3.c2 C c02 C 7cc0/r3

C .c � c0/3 mod N

yields a monic univariate polynomial f .r/ of degree 9. An application of Theorem 1
shows that r can be recovered as long as jr j � N

1
9 . For arbitrary e, the bound

generalizes to jr j � N 1

e2 .

Related RSA Messages: Extending Håstad’s Attack

Assume that we want to broadcast a plain RSA encrypted message to a group of k
receivers all having public exponent e and co-prime moduliN1; : : : ; Nk . That is, we
send the messagesme mod N1; : : : ; m

e mod Nk . From this information, an attacker
can computeme mod

Qk
iD1Ni . Ifme is smaller than the product of the moduli, he

can compute m by eth root computation over the integers. If all Ni are of the same
bit-size, we need k � e RSA encrypted messages in order to recoverm.

So naturally, an attacker gains more and more information by receiving differ-
ent encryptions of the same message. Notice that this observation nicely links with
the attack on stereotyped RSA messages from Section “Relaxed RSA Problem:
Stereotyped Messages”. Recall that the cryptanalytic interpretation of the attack
in Section “Relaxed RSA Problem: Stereotyped Messages” was that one gets an
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1
e

-fraction of the plaintext efficiently. The above broadcast attack can thus be inter-
preted as an accumulation of this result. If one gets k � e times an 1

e
-fraction of m

efficiently, then one eventually obtains the whole m.
The question is whether this is still true when the public exponents are differ-

ent and when the messages are preprocessed by simple padding techniques, e.g., an
affine transformation with a fixed known padding pattern. We show that whenever
the messages are polynomially related, then the underlying plaintext can still be dis-
covered given sufficiently many encryptions. This result is an extension of Håstad’s
original result [12] due to May, Ritzenhofen [49].

Assume that the message m is smaller than minj fNj g. We preprocess the
message by known polynomial relations g1; : : : ; gk with degrees ı1; : : : ; ık , respec-
tively.�

�

�

	

Polynomially related RSA messages

Given: ci Dgi .m/
ei mod Ni for i D 1; : : : ; k with

Pk
iD1

1
ıi ei
� 1.

Find : m

Assume that gi .x/ has leading coefficient ai 6D 1. Compute a�1
i mod Ni . If this

computation fails, we obtain the factorization of Ni , which enables us to compute
m. Otherwise, we replace ci and gi .x/ by a�ei

i ci and a�1
i gi .x/, respectively. This

makes all gi .x/ monic.
Let ı D lcmifıieig be the least common multiple of all ıiei . Define

N D Qk
iD1N

ı
ıi ei

i . We know that for all i D 1; : : : ; k we have

.gi .m/
ei � ci /

ı
ıi ei D 0 mod N

ı
ıi ei

i :

Let us compute by Chinese Remaindering a polynomial

f .x/ D
kX

iD1

bi .gi .x/
ei � ci /

ı
ıi ei mod N;

where the bi are the Chinese remainder coefficients satisfying bi mod

Nj D
�
1 for i D j
0 else

:

Notice that f .m/ D 0 mod N and that f .x/ is by construction a univariate
monic polynomial of degree ı. Let us now upper-bound the size of our desired
root m. Using the condition 1 �Pk

iD1
1

ıi ei
, we obtain

m < min
j
fNj g �

�
min

j
fNj g

�Pk
iD1

1
ıi ei �

kY

iD1

N
1

ıi ei

i :
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By applying Theorem 1 with the parameters ˇ; c D 1, we can find all rootsm up
to the same bound

m � N 1
ı D

kY

iD1

N
1

ıi ei

i ;

which completes the description of the attack.
Let us look at our condition

Pk
iD1

1
ıi ei
� 1 when we encrypt the plain message

m without any further transformation. Then gi .x/ D x is the identity with degree
ıi D 1, i.e., we obtain the simplified condition

kX

iD1

1

ei

� 1:

Again this can be interpreted as an accumulation of the results for stereotyped
RSA messages in Section “Relaxed RSA Problem: Stereotyped Messages”. Recall
that for each encryption of m under exponent ei , we can compute an 1

ei
-fraction of

m efficiently. This information accumulates such that whenever the sum
P

i
1
ei

of
all the fractions exceeds 1, we eventually obtain the whole plaintextm.

Factoring with High Bits Known

Let N D pq, w.l.o.g. p > q. Assume that we are given an oracle for the most
significant bits of p. Our task is to find the factorization of N in time polynomial
in the bit-size of N with a minimal number of queries to the oracle, i.e., we want to
minimize the oracle complexity.

One can view this problem as a natural relaxation of the factorization problem.
Without knowing any bits of the prime factor p, i.e., without using the oracle, we
have to solve the general factorization problem. For the general problem, it is unclear
whether there exists a polynomial time algorithm in the Turing machine model.
So, we provide the attacker with an additional sufficiently strong hint given by the
oracle answers that allows him to find the factorization in polynomial time.

In 1985, Rivest and Shamir [50] published an algorithm that factors N given a
2
3

-fraction of the bits of p. Coppersmith [51] improved this bound to 3
5

in 1995. One
year later, Coppersmith [11, 15] gave an algorithm using only half of the bits of p.

The factoring with high bits known problem can again be reduced to the problem
of solving modular univariate polynomial equations with the LLL algorithm. Let us
assume that we are given half of the high-order bits of p. Omitting constants, we
know an approximation Qp of p that satisfies jp � Qp j � N 1

4 .



334 A. May

�

�

�

�

Factorization problem

Given: N D pq
Find : p

Relaxed Factorization: High Bits Known

Given: N D pq; Qp with jp � Qp j � N 1
4

Find : p

Our goal is to recover the least-significant bits of p, i.e., we want to find the root
of the univariate, linear modular polynomial

f .x/ D Qp C x mod p:

Observe that p � Qp is a root of f .x/ with absolute value smaller than N
1
4 .

We apply Theorem 1 with f .x/ D Qp C x, i.e., we have degree ı D 1, ˇ D 1
2

and c D 1. Therefore, we can find all roots x0 with size

jx0j � N ˇ2

ı D N 1
4 :

This enables us to recover the low-order bits of p in polynomial time with the
LLL algorithm, which yields the factorization.

The factorization with high bits known approach can be extended to moduli
N D prq, where p and q have the same bit-size. This extension was proposed by
Boneh, Durfee, and Howgrave-Graham [20]. For simplicity, we assume that p and
q are of the same bit size. For fixed bit-size of N and growing r , these moduli
should be – from an information theoretical point of view – easier to factor than
usual RSA moduli. Moreover, an attacker should learn from an approximation of p
more information than in the standard RSA case. This intuition turns out to be true.

We model this variant of the factorization problem as the univariate polynomial

f .x/ D . Qp C x/r mod pr :

Set ˇ D r
rC1

, ı D r and c D 1. An application of Theorem 1 shows that the
LLL algorithm recovers all roots x0 with

jx0j �M ˇ2

ı D N r

.rC1/2 :

Since N is roughly of the size prC1, this means that we need an approximation
Qp with jp� Qp j � p r

rC1 . Or in other words, we need a 1
rC1

-fraction of the most sig-
nificant bits in order to factorN in polynomial time. That is, for the RSA case r D 1,
we need half of the bits, whereas, e.g., for r D 2, we only need a third of the most
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significant bits of p. For r D˝.
q

log N
log log N

/, one only has to guess O.log logN/ bits
of p, which can be done in polynomial time.

Computing d � Factoring

Our next application of the LLL algorithm addresses the difficulty of computing
the RSA secret exponent from the public information .N; e/. We show that any
algorithm that computes d in deterministic polynomial time can be transformed into
an algorithm that factors N in deterministic polynomial time.

Let N D pq be an RSA-modulus. Let e; d 2 Z�.N / be the public/secret
exponents, satisfying the equation ed D 1 mod �.N /. If we are given the public
information .N; e/ and the factorization of N , then d can be computed in poly-
nomial time using the Euclidean algorithm. Rivest, Shamir, and Adleman showed
that the converse is also true: Given .N; e; d/, one can factor N in probabilistic
polynomial time by an algorithm due to Miller [52].

In 2004, it was shown in [21, 22] that there is also a deterministic reduction
of factoring to computing d using Coppersmith’s method. This establishes the
deterministic polynomial time equivalence of both problems.

It is not hard to see that the knowledge of �.N / D N � .p C q � 1/ yields the
factorization ofN in polynomial-time. Our goal is to compute �.N /. Since p; q are
of the same bit-size, the term N is an approximation of �.N / up to roughly N

1
2 .

Therefore, the polynomial

f .x/ D N � x mod �.N /

has a root x0 D p C q � 1 of size N
1
2 . Let M D ed � 1 D N ˛ for some ˛ � 2.

We know that M is a multiple of �.N /.
Now, we can apply the LLL algorithm via Theorem 1 with the parameter setting

ı; c D 1, b D �.N /, M D N ˛ the integer of unknown factorization and ˇ D 1
˛

.
We conclude that we can find all roots x0 within the bound

jx0j �M ˇ2

ı D .N ˛/
1

˛2 D N 1
˛ :

Since ˛ � 2, we can find all roots within the boundN
1
2 , as desired.

Finding Smooth Numbers and Factoring

The following link between finding smooth integers with Coppersmith’s LLL-based
algorithm and factoring composite integers N was introduced by Boneh [23] in
2001.
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Many classical factorization algorithms such as the Quadratic Sieve and the
Number Field Sieve have to find values slightly larger than

p
N such that their

square modulo N is B-smooth. A number is called B-smooth if it splits into prime
factorsp1; p2; : : : ; pn smaller thanB . We can model this by a univariate polynomial
equation

fc.x/ D .x C
p
cN /2 � cN;

for small values of c. Given an interval size X , the task is to find all solutions
jx0j � X such that fc.x0/ has a large B-smooth factor. Whenever this factor
is as large as fc.x0/ itself, then fc.x0/ factors completely over the factor base
p1; : : : ; pn.�

�

�

	

Finding Integers with Large Smooth Factor

Given: fc.x/; B;X

Find : jx0j � X such that fc.x0/ has a large B-smooth factor.

Let us defineP D Qn
iD1 p

ei

i . For simplicity reasons, we will assume here ei D 1
for all exponents, although we could handle arbitrary multiplicities as well. We are
interested in integers x0 such that many pi divide fc.x0/, i.e., fc.x0/ D 0 mod b
for a modulus b DQi2I pi , where I 	 f1; : : : ; ng is a large index set.

Applying Theorem 1, it is easy to see that b � P
q

2 log X
log P is sufficient to find all

jx0j � P ˇ2

ı D P 2 log X

2 log P D 2log X D X:

Boneh [23] illustrates his result by giving numerical examples where just one
application of LLL on a 50-dimensional lattice yields all numbers in an interval of
size X D 2500 that have a sufficiently large smooth factor.

At the moment, however, the technique does not lead to improvements to clas-
sical factorization algorithms, since it is unlikely that randomly chosen intervals of
the given size contain sufficiently many smooth numbers. Moreover, classical algo-
rithms usually need fully smooth numbers, whereas with the present method one
only finds numbers with a large smooth factor.

Applications of Finding Roots of Multivariate Equations

In this section, we study applications of the LLL algorithm for solving multi-
variate polynomial equations. We start by presenting the two most famous RSA
applications for solving bivariate modular polynomial equations: The attacks of
Wiener [24] and Boneh-Durfee [25] on RSA with small secret exponent d .
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�

�

�

�

RSA Key Recovery Problem

Given: N; e

Find : d with ed D 1 mod �.N /
Relaxed RSA Key Recovery Problem: Small key

Given: N; e with ed D 1 mod �.N / for some d � N ı

Find : d

Let us briefly describe Wiener’s polynomial time attack on RSA for secret keys
d � N

1
4 . Although this attack was originally presented using continued frac-

tions, we will describe it within the framework of small solutions to linear bivariate
equations.

We can write the RSA key equation ed D 1 mod �.N / in the form

ed C k.p C q � 1/� 1 D kN; (10.5)

for some k 2 N. This leads to a linear bivariate polynomial f .x; y/ D ex C y that
has the root .x0; y0/ D .d; k.p C q � 1/ � 1/ modulo N . It is not hard to see that
k < d . In the case of balanced prime factors, we have pC q � pN . For d � N 1

4 ,
the product x0y0 of the desired roots can therefore be upper-bounded by N .

It is well-known that linear modular polynomial equations can be heuristically
solved by lattice reduction whenever the product of the unknowns is smaller than
the modulus. For the bivariate case, this lattice technique can be made rigorous.
In our case, one has to find a shortest vector in the lattice L spanned by the row
vectors of the following lattice basis

B D
 
NX 0

eX Y

!
; where X D N 1

4 and Y D N 3
4 .

Using an argumentation similar to the one in Section “How to Find Small Roots:
The Univariate Case”, one can see that a shortest vector v D .c0; c1/ � B yields a
polynomial c0Nx C c1f .x; y/ that evaluates to zero over the integers at the point
.x0; y0/ D .d; k.p C q � 1/� 1/. Since f .x0; y0/ D kN , we have

c0Nd D �c1Nk:

Because v is a shortest vector, the coefficients c0 and c1 must be co-prime. There-
fore, we conclude that jc0j D k and jc1j D d . From this information, we can derive
via (10.5) the term p C q which in turn yields the factorization of N in polynomial
time.

Instead of using a two-dimensional lattice, one could compute the tuple .k; d/
by looking at all convergents of the continued fraction expansion of e and N . This
approach was taken in Wiener’s original work.
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In 1999, Boneh and Durfee improved Wiener’s bound to d � N 1�
q

1
2 � N 0:292.

This result was achieved by writing the RSA equation as

k.N C 1 � .p C q//C 1 D ed:

This in turn yields a bivariate polynomial f .x; y/ D x.N C 1� y/C 1 with the
root .x0; y0/ D .k; p C q/ modulo e. Notice that f has the monomials x; xy, and
1. As in Wiener’s attack, the product x0 � x0y0 can be bounded by N whenever d �
N

1
4 . Thus, for e of size roughlyN , we obtain the same bound as in the Wiener attack

if we linearize the polynomial. However, Boneh and Durfee used the polynomial
structure of f .x; y/ in order to improve the bound toN 0:292 by a Coppersmith-type
approach.

Wiener as well as Boneh and Durfee posed the question whether there is also
a polynomial time attack for RSA with small secret CRT-exponent d . We call d a
small CRT-exponent if the values dp D d mod p � 1 and dq D d mod q � 1 are
small. This enables a receiver to efficiently decrypt modulo p and q and combine
the results using the Chinese remainder theorem (CRT) [53].�

�

�

�

RSA Key Recovery Problem

Given: N; e

Find : d with ed D 1 mod �.N /
Relaxed RSA Key Recovery Problem: Small CRT-key

Given: N; e with edp D 1 mod p � 1 and edq D 1 mod q � 1 for dp; dq �
N ı

Find : d with d D dp mod p � 1 and d D dq mod q � 1

Recently, Jochemsz and May [27] presented a polynomial time attack for RSA
with dp; dq � N 0:073, building on an attack of Bleichenbacher and May [54]. The
basic idea is to write the RSA key equation in the form

ˇ̌
ˇ̌ edp C kp � 1 D kpp

edq C kq � 1 D kqq

ˇ̌
ˇ̌ ;

with the unknowns dp; dq; kp ; kq; p, and q. We eliminate the unknowns p; q by
multiplying both equations. Rearranging terms yields

e2dpdq C e.dp.kq � 1/C dq.kp � 1//C kpkq.1 �N/C .kp C kq C 1/ D 0:

In [54], the authors linearize this equation and derive attacks for variants of the
RSA cryptosystem where e is significantly smaller than N . In [27], the full poly-
nomial structure is exploited using a Coppersmith technique in order to extend the
linearization attack to full size e.
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Fig. 10.1 Partial key exposure attack

By assigning the variables x1; x2; x3; x4 to the unknowns dp; dq ; kp; kq , respec-
tively, one obtains a 4-variate polynomial equation which evaluates to zero over the
integers. A Coppersmith-type analysis results in a heuristic polynomial time attack
that works for dp; dq � N 0:073.

Several results in the literature also address the inhomogenous case of small
RSA secret key relaxations, where d is not small but parts of d ’s bits are known
to an attacker. Boneh, Durfee, and Frankel introduced several of these so-called
Partial Key Exposure attacks, which were later extended in Blömer, May [55] and
EJMW [56]. In the latter work, the authors showed that the Boneh-Durfee attack
naturally extends to the inhomogenous case for all d smaller than �.N /. The larger
d is, the more bits of d an attacker has to know (see Fig. 10.1).

Again, the former cryptanalytic results have a dual interpretation as security
results. They establish the security of certain parts of the bits of the RSA secret key.
More precisely, the results state that recovering these bits is as hard as factoring the
RSA modulus given only the public information .N; e/. This opens the possibility
to publish the remaining bits of the secret key, which can be used, e.g., in server-
aided RSA systems, where parts of an RSA signature computation are outsourced to
an untrusted server. This dual application was first proposed by Boneh, Durfee, and
Frankel [20]. Later, Steinfeld and Zheng [29] proposed another server-based RSA
system, which provides provable security against Partial Key Exposure attacks.

Survey and References for LLL-Based RSA
and Factoring Results

The following table gives an overview and references of various applications of
Coppersmith’s LLL-based methods for finding small roots when applied to relaxed
RSA or factorization problems. Although not all of these results are originally
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described in terms of small root problems, they all more or less fit in this framework
and might serve as useful pointers for further reading.

Method
Method/variants Håstad 88 [12], Girault,Toffin,Vallée 88 [13]

Coppersmith 96,97,01 [11, 14–16], Howgrave-
Graham 98,01 [30, 57], Jutla 98 [58], May 03 [35],
Bernstein 04 [59], Coron 05,07 [36, 37], Bauer, Joux 07 [60]

Optimize bounds Blömer,May [61] , Jochemsz, May [27]

RSA
Inverting RSA Håstad 89 [12], Coppersmith 96 [14, 15],

May, Ritzenhofen 08 [49]
Small d Wiener 90 [24], Boneh, Durfee 98 [25, 26],

Durfee, Nguyen 00 [62], Blömer, May 01 [63],
de Weger 02 [64], Hinek 02 [65], May 01, 04 [63, 81]

Known bits of d Boneh, Durfee, Frankel 96 [28, 82], Blömer, May 03 [55],
Ernst, Jochemsz, May, de Weger 05 [56]

Key recovery May 04 [21], Coron, May 07 [22],
Kunihiro, Kurosawa 07 [67]

Small CRT-d May 02 [68], Hinek, Sun, Wu 05[69],
Galbraith, Heneghan, McKee 05 [71, 72],
Bleichenbacher, May 06 [54], Jochemsz, May 06 [27, 73]

Proving Security Shoup 01 [18], Boneh 01 [74], Steinfeld, Zheng 04 [29]
PRNG, MAC Boneh, Halevi, Howgrave-Graham 99 [46],

Steinfeld, Pieprzyk, Wang 06 [19]

Factoring
High Bits known Rivest, Shamir 86 [50], Coppersmith 95,96 [14, 51],

Boneh, Durfee, Howgrave-Graham 99 [20],
Crépeau, Slakmon 03 [75],
Santoso, Kunihiro, Kanayama, Ohta 06 [76],
Herrmann, May 08 [77]

Finding relations Schnorr 01 [78], Boneh 00 [23]

Open Problems and Speculations

Optimizing Bounds: On Newton Polytopes and Error Terms

In this section, we will explain how to optimize the upper bounds up to which small
roots can be found. Here, a polynomial’s Newton polytope will play a central role.
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We will also see that the upper bounds usually incorporate some error term, which
in many cases can be eliminated by splitting the search interval into smaller pieces
and treating each subinterval separately (see, e.g., the proof of Theorem 1).

In all applications of Coppersmith’s method, one starts with either a polyno-
mial modular equation f .x1; : : : ; xm/ D 0 mod b or a polynomial integer equation
f .x1; : : : ; xm/ D 0. Using this equation, one defines algebraic multiples f1; : : : ; fn

of f which contain the same small roots. For instance, if f is a univariate polyno-
mial equation in x as in Section “How to Find Small Roots: The Univariate Case”,
this is done by multiplying f with powers of x and by taking powers of f itself. In
the univariate case, it is clear which set of algebraic multiples maximizes the size of
the roots x0 that we can efficiently recover. Indeed, we will argue, in Section “What

are the Limitations of the Method?”, that the bound jx0j � N ˇ2

ı from Section “How
to Find Small Roots: The Univariate Case” cannot be improved in general, since
beyond this bound f may have too many roots to output them in polynomial time.

For univariate modular polynomial equations f .x/, one looks for an integer
linear combination g.x/ D P

i aifi .x/, ai 2 Z, such that g.x0/ D 0 over the
integers for all sufficiently small roots. These roots can then be found by standard
root finding methods.

For irreducible bivariate polynomials f .x; y/, one similarly defines algebraic
multiples f1.x; y/; : : : ; fn.x; y/. The goal is to find a polynomial g.x; y/ DP

i aifi .x; y/ by LLL-reduction such that gi .x; y/ is not a multiple of f .x; y/.
Then the roots can be found by resultant computations.

Whereas the choice of the algebraic multiples is quite straightforward for univari-
ate polynomials, for multivariate polynomials, the choice of the algebraic multiples
appears to be a complex optimization problem. The bounds for the roots that one
computes mainly depend on the largest coefficient of the polynomial and the poly-
nomial’s Newton polytope – i.e., the convex hull of the monomials’ exponents when
regarded as points in the Euclidean space.

Let us give an example for this. As explained in Section “Modeling RSA Prob-
lems as Univariate Root Finding Problems”, we can factor N D pq with known
high bits of p by using the univariate polynomial equation f .x/ D Qp C x mod p,
where Qp is an approximation of p up to N 1=4. The same result can be achieved
by computing Qq D N

Qp and solving the bivariate integer polynomial f .x; y/ D
. Qp C x/. Qq C y/ � N . The largest coefficient in this equation is Qp Qq � N , which is
roughly of the size W D N 3=4. The monomials of f .x; y/ are 1; x; y, and xy, i.e.,
the Newton polytope is a square defined by the points .0; 0/; .0; 1/; .1; 0/, and .1; 1/.
Optimizing the upper bounds X; Y for the size of the roots in x; y, respectively,
yields the conditionXY � W 2=3. This is equivalent toXY � N 1

2 orX; Y � N 1=4.
Thus, we achieve the same result as in the univariate modular case.

We could however also look at the bivariate polynomial f .x; y/ D . Qp C x/

y � N . The largest coefficient is W D N and the Newton polytope defined by
.0; 0/; .0; 1/; .1; 1/ is a triangle. Optimizing the bounds for this shape of the Newton
polytope yields the condition .XY /4 � W 3. Setting Y D N 1=2 andW D N yields
X4 � N which leads again to X � N 1=4.

Interestingly, we do not need the approximation of q for achieving the same
result. Since we do not need the bits of q, one should ask whether he or she indeed
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needs to know the bits of p. Let us look at the polynomial equation f .x; y/ D
xy � N , where W D N and the Newton polytope is a line formed by .0; 0/ and
.1; 1/. Applying a Coppersmith-type analysis to this polynomial yields the bound
XY � W 1�� D N 1��, for some error term �. Notice that a bound of XY � 2N
would easily allow to factor N D pq if p; q have equal bit-size, since p � pN D
X and q � 2pN D Y .

What does the bound XY � N 1�� imply? Can we remove the error term � and
derive the desired bound by running the algorithm on 2N � copies, where we search
in each copy for the roots in an interval of size N 1��? That is, can we factor in time
QO.N �/? And provided that the error term � satisfies � D O. 1

log N
/, can we factor in

polynomial time?
(Un)fortunately, the answer is NO, at least with this approach. The reason is

that as opposed to other polynomials, we cannot simply guess a few bits of the
desired small root .x0; y0/ D .p; q/, since this would either change the structure
of the Newton polytope or the size of W . If we guess bits of x0, we introduce the
monomial y, and symmetrically for y0, we introduce the x-monomial. But as shown
above, this changes our bound to an inferior XY � N 3

4 . On the other hand, if we
guess bits of x0y0, our largest coefficient decreases accordingly.

Notice that, e.g., for the polynomial . QpC x/y �N guessing bits of x0 is doable
since the guessing does not introduce new monomials. Thus, in this case a small
error term in the bound can be easily eliminated by a brute-force search technique.

Applying the Method to Multivariate
Polynomial Equations

Another challenging problem is to obtain provability of the algorithm in the mul-
tivariate setting. This problem is not only of theoretical interest. There have been
cases reported, where the heuristic method – which computes the roots by resultant
computations – for multivariate polynomials systematically fails [63].

Let us see why the method provably works for the bivariate integer case and
what causes problems when extending it to a third variable. Coppersmith’s original
method for bivariate integer polynomials constructs on input f .x; y/ a polynomial
g.x; y/, such that g.x; y/ cannot be a polynomial multiple of f .x; y/. In other
words, g.x; y/ does not lie in the ideal hf i generated by f , and, therefore, the
resultant of f and g cannot be the zero polynomial.

Heuristically, one extends this approach to three variables by constructing two
polynomials g1; g2 with LLL-reduction. The resultants r1 D Res.f; g1/ and r2 D
Res.f; g2/ are bivariate polynomials. The resultant Res.r1; r2/ is then univariate
and yields one coordinate of the roots, provided that the resultant does not vanish.
The other coordinates of the roots can be found by back-substitution. The resultant
is non-vanishing iff g1 and g2 are algebraically independent.

Recently, Bauer and Joux [60] proposed a twist in the above construction which
in some cases enables to guarantee algebraic independence also for polynomials
in three or more variables. Basically, their approach is an iterative application of
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Coppersmith’s original technique for bivariate polynomials. Given a trivariate poly-
nomial f .x; y; z/, one constructs a polynomial g.x; y; z/ such that g does not lie in
hf i. Afterward, one uses a Gröbner Basis approach and another iteration of the LLL
procedure to construct a third polynomial h.x; y; z/, which does not lie in hf; gi.

Unfortunately, Bauer and Joux’s approach still incorporates a heuristic assump-
tion. For trivariate polynomials of a special shape, however, the approach can be
made fully rigorous.

What are the Limitations of the Method?

Coppersmith’s method outputs all sufficiently small solutions of a polynomial equa-
tion. Since the method runs in polynomial time, it can only output a polynomial
number of solutions. Thus, the method proves in a constructive way a limit for the
number of roots within a certain interval. This limit matches for univariate modular
polynomials the bounds by Konyagin and Steeger [79]. The number of roots of each
polynomial equation thus limits the size of the interval that we are able to search
through in polynomial time. Let us demonstrate this effect for univariate modular
polynomial equations.

Let N D pr . Assume that we want to solve the equation f .x/ D xr mod N .
Clearly, all x0 D kp; k 2 N, are solutions. Hence, solving this equation for solu-
tions jx0j � p1C� would imply that one has to output p� solutions, an exponential
number.

This argument serves as an explanation why the bound jx0j D N
1
ı from Sec-

tion “How to Find Small Roots: The Univariate Case” cannot be improved in
general. On the other hand, for the following two reasons, this argument does not
fundamentally rule out improvements for any of the applications’ current bounds
mentioned in this survey.

First, the factorization of N Dpr can be easily determined. Hence, there might
be an improved method which exploits this additional information. Indeed,
Bleichenbacher and Nguyen [80] describe a lattice-based method for Chinese Rem-
aindering with errors that goes beyond the Coppersmith-type bound in cases where
the factorization of the modulus is known.

Second, in all the applications we studied so far, an improvement of the bound
would not immediately imply an exponential number of solutions. Look for instance
at the factoring with high bits problem and let us take the polynomial f .x/ D QpCx
mod p. The solution of this polynomial is unique up to the bound jx0j � p. So
although we have no clue how to solve the factorization problem with the help of
lattice reduction techniques, there is also no limiting argument which tells us that it
is impossible to extend our bounds to the general case.

As a second example, look at the Boneh-Durfee attack on RSA with d � N 0:292

which introduces the bivariate polynomial equations f .x; y/ D x.N C 1 � y/C 1
mod e. Assume that e is roughly of sizeN . Since y is the variable for pCq, its size
can be roughly bounded by

p
N . Assume that for a fixed candidate y the mapping
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g W x 7! x.N C 1 � y/ C 1 mod e takes on random values in Ze . If we map
p
N

candidates for x for every of the
p
N choices of y, we expect to map to zero at most

a constant number of times.
This counting argument let Boneh and Durfee conjecture that one can achieve a

bound of d � pN in polynomial time attacks on RSA with small secret d . More-
over, if one used the fact that y represents p C q, which implies that y0 is already
fully determined by N , then the counting argument would not rule out a bound
beyond

p
N . If we could make use of this information about y0, then there would

be a unique candidate for x0 in Z�.N /, and recovering this candidate would solve
the RSA problem as well as the factorization problem. However, despite consider-
able research efforts, the bound d � N 0:292 is still the best bound known today.
It remains an open problem to further push it.

Summary

The invention of the LLL algorithm in 1982 was the basis for the construction of
an efficient algorithm due to Coppersmith for finding small solutions of polynomial
equations in 1996. This in turn opened a whole new line of research and enabled
new directions for tackling challenging problems such as the RSA problem or the
factorization problem from a completely different angle. As opposed to traditional
approaches such as the Elliptic Curve Method and the Number Field Sieve, the LLL-
based approach is polynomial time but solves only relaxed versions of the RSA and
the factorization problem.

Today, the relaxed versions are still pretty far away from the general instances.
But, there appears to be a steady progress in finding new interesting applications,
and the existing bounds are continuously pushed. From a research point of view, it
is likely that the young field of LLL-based root finding still hides many fascinating
results that await their discovery.
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33. J. Klüners, The van Hoeij algorithm for factoring polynomials, LLL+25 Conference in honour
of the 25th birthday of the LLL algorithm, 2007

34. N. Howgrave-Graham, Approximate Integer Common Divisors, Cryptography and Lattice
Conference (CaLC 2001), Lecture Notes in Computer Science Vol. 2146, Springer, pp. 51–66,
2001

35. A. May, New RSA Vulnerabilities Using Lattice Reduction Methods, PhD thesis, University
of Paderborn, 2003

36. J.-S. Coron, Finding Small Roots of Bivariate Integer Polynomial Equations Revisited,
Advances in Cryptology – Eurocrypt 2005, Lecture Notes in Computer Science Vol. 3027,
Springer, 2005

37. J.-S. Coron, Finding Small Roots of Bivariate Integer Polynomial Equations: A Direct
Approach, Advances in Cryptology – Crypto 2007, Lecture Notes in Computer Science,
Springer, 2007
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Chapter 11
Practical Lattice-Based Cryptography:
NTRUEncrypt and NTRUSign

Jeff Hoffstein, Nick Howgrave-Graham, Jill Pipher, and William Whyte

Abstract We provide a brief history and overview of lattice based cryptography
and cryptanalysis: shortest vector problems, closest vector problems, subset sum
problem and knapsack systems, GGH, Ajtai-Dwork and NTRU. A detailed discus-
sion of the algorithms NTRUEncrypt and NTRUSign follows. These algorithms
have attractive operating speed and keysize and are based on hard problems that are
seemingly intractable. We discuss the state of current knowledge about the security
of both algorithms and identify areas for further research.

Introduction and Overview

In this introduction, we will try to give a brief survey of the uses of lattices in
cryptography. Although it is rather a dry way to begin a survey, we should start with
some basic definitions related to the subject of lattices. Those with some familiarity
with lattices can skip the following section.

Some Lattice Background Material

A lattice L is a discrete additive subgroup of R
m. By discrete, we mean that there

exists an � > 0 such that for any v 2 L, and all w 2 R
m, if kv � wk < �, then w

does not belong to the lattice L. This abstract sounding definition transforms into a
relatively straightforward reality, and lattices can be described in the following way:
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Definition of a lattice

� Let v1; v2; : : : ; vk be a set of vectors in R
m. The set of all linear combi-

nations a1v1 C a2v2 C � � � C akvk , such that each ai 2 Z, is a lattice.
We refer to this as the lattice generated by v1; v2; : : : ; vk .
Bases and the dimension of a lattice

� If L D fa1v1 C a2v2 C : : : C anvnjai 2 Z; i D 1; : : : ng and
v1; v2; : : : ; vn are n independent vectors, then we say that v1; v2; : : : ; vn

is a basis for L and that L has dimension n. For any other basis
w1;w2; : : : ;wk , we must have k D n.

Two different bases for a lattice L are related to each other in almost the same
way that two different bases for a vector space V are related to each other. That is,
if v1; v2; : : : ; vn is a basis for a lattice L then w1;w2; : : : ;wn is another basis for L
if and only if there exist ai;j 2 Z such that

a1;1v1 C a1;2v2 C � � � C ˛1;nvn D w1

a2;1v1 C a2;2v2 C � � � C a2;nvn D w2

:::

an;1v1 C an;2v2 C � � � C an;nvn D wn

and the determinant of the matrix
0
BBB@

a1;1 a1;2 � � � a1;n

a2;1 a2;2 � � � a2;n

:::

an;1 an;2 � � � an;n

1
CCCA

is equal to 1 or �1. The only difference is that the coefficients of the matrix must
be integers. The condition that the determinant is nonzero in the vector space
case means that the matrix is invertible. This translates in the lattice case to the
requirement that the determinant be 1 or �1, the only invertible integers.

A lattice is just like a vector space, except that it is generated by all linear combi-
nations of its basis vectors with integer coefficients, rather than real coefficients. An
important object associated to a lattice is the fundamental domain or fundamental
parallelepiped. A precise definition is given by:

Let L be a lattice of dimension n with basis v1; v2; : : : ; vn. A fundamental
domain for L corresponding to this basis is

F.v1; : : : ; vn/ D ft1v1 C t2v2 C � � � C tnvn W 0 � ti < 1g:

The volume of the fundamental domain is an important invariant associated to a
lattice. If L is a lattice of dimension n with basis v1; v2; : : : ; vn, the volume of the
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fundamental domain associated to this basis is called the determinant of L and is
denoted det.L/.

It is natural to ask if the volume of the fundamental domain for a lattice L
depends on the choice of basis. In fact, as was mentioned previously, two differ-
ent bases for L must be related by an integer matrix W of determinant ˙1. As a
result, the integrals measuring the volume of a fundamental domain will be related
by a Jacobian of absolute value 1 and will be equal. Thus, the determinant of a lattice
is independent of the choice of basis.

Suppose, we are given a lattice L of dimension n. Then, we may formulate the
following questions.

1. Shortest vector problem (SVP): Find the shortest non-zero vector in L, i.e., find
0 ¤ v 2 L such that kvk is minimized.

2. Closest vector problem (CVP): Given a vector w which is not inL, find the vector
v 2 L closest to w, i.e., find v 2 L such that kv �wk is minimized.

Both of these problems appear to be profound and very difficult as the dimension
n becomes large. Solutions, or even partial solutions to these problems also turn
out to have surprisingly many applications in a number of different fields. In full
generality, the CVP is known to be NP-hard and SVP is NP-hard under a certain
“randomized reduction” hypothesis.1 Also, SVP is NP-hard when the norm or dis-
tance used is the l1 norm. In practice, a CVP can often be reduced to a SVP and
is thought of as being “a little bit harder” than SVP. Reduction of CVP to SVP is
used by in [2] to prove that SVP is hard in Ajtai’s probabilistic sense. The interested
reader can consult Micciancio’s book [3] for a more compete treatment of the com-
plexity of lattice problems. In practice it is very hard to achieve “full generality.” In
a real world scenario, a cryptosystem based on an NP-hard or NP-complete problem
may use a particular subclass of that problem to achieve efficiency. It is then possible
that this subclass of problems could be easier to solve than the general problem.

Secondary problems, that are also very important, arise from SVP and CVP. For
example, one could look for a basis v1; : : : ; vn of L consisting of all “short” vec-
tors (e.g., minimize max kvik). This is known as the Short Basis Problem or SBP.
Alternatively, one might search for a nonzero vector v 2 L satisfying

kvk �  .n/kvshortestk;

where  is some slowly growing function of n, the dimension of L. For example,
for a fixed constant �, one could try to find v 2 L satisfying

kvk � �pnkvshortestk;

and similarly for CVP. These generalizations are known as approximate shortest and
closest vector problems, or ASVP, ACVP.

1 Under this hypothesis, the class of polynomial time algorithms is enlarged to include those that
are not deterministic but will with high probability terminate in polynomial time. See Ajtai [1]

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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How big, in fact, is the shortest vector in terms of the determinant and the dimen-
sion of L? A theorem of Hermite from the nineteenth century says that for a fixed
dimension n there exists a constant �n so that in every lattice L of dimension n, the
shortest vector satisfies

kvshortestk2 � �n det.L/2=n:

Hermite showed that �n � .4=3/.n�1/=2. The smallest possible value one can
take for �n is called Hermite’s constant. Its exact value is known only for 1 � n � 8
and for n D 24 [4]. For example, �2 D

p
4=3: We now explain why, for large n,

Hermite’s constant should be no larger than O.n/.
Although exact bounds for the size of the shortest vector of a lattice are unknown

for large n, one can make probabilistic arguments using the Gaussian heuristic. One
variant of the Gaussian heuristic states that for a fixed lattice L and a sphere of
radius r centered at 0, as r tends to infinity, the ratio of the volume of the sphere
divided by detL will approach the number of points of L inside the sphere. In two
dimensions, if L is simply Z

2, the question of how precisely the area of a circle
approximates the number of integer points inside the circle is a classical problem in
number theory. In higher dimensions, the problem becomes far more difficult. This
is because as n increases the error created by lattice points near the surface of the
sphere can be quite large. This becomes particularly problematic for small values
of r . Still, one can ask the question: For what value of r does the ratio

Vol.S/

detL

approach 1. This gives us in some sense an expected value for r , the smallest radius
at which the expected number of points of L with length less than r equals 1. Per-
forming this computation and using Stirling’s formula to approximate factorials, we
find that for large n this value is approximately

r D
r

n

2	e
.det.L//1=n :

For this reason, we make the following definition:
If L is a lattice of dimension n, we define the Gaussian expected shortest length

to be

�.L/ D
r

n

2	e
.det.L//1=n :

We will find this value �.L/ to be useful in quantifying the difficulty of locating
short vectors in lattices. It can be thought of as the probable length of the shortest
vector of a “random” lattice of given determinant and dimension. It seems to be the
case that if the actual shortest vector of a lattice L is significantly shorter than �.L/,
then LLL and related algorithms have an easier time locating the shortest vector.
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A heuristic argument identical to the above can be used to analyze the CVP.
Given a vector w which is not in L, we again expect a sphere of radius r centered
about w to contain one point of L after the radius is such that the volume of the
sphere equals det.L/. In this case also, the CVP becomes easier to solve as the ratio
of actual distance to the closest vector of L over “expected distance” decreases.

Knapsacks

The problems of factoring integers and finding discrete logarithms are believed to
be difficult since no one has yet found a polynomial time algorithm for producing a
solution. One can formulate the decision form of the factoring problem as follows:
does there exist a factor of N less than p? This problem belongs to NP and another
complexity class, co-NP. Because it is widely believed that NP is not the same as
co-NP, it is also believed that factoring is not an NP-complete problem. Naturally,
a cryptosystem whose underlying problem is known to be NP-hard would inspire
greater confidence in its security. Therefore, there has been a great deal of interest
in building efficient public key cryptosystems based on such problems. Of course,
the fact that a certain problem is NP-hard does not mean that every instance of it is
NP-hard, and this is one source of difficulty in carrying out such a program.

The first such attempt was made by Merkle and Hellman in the late 70s [5], using
a particular NP-complete problem called the subset sum problem. This is stated as
follows:

The subset sum problem

Suppose one is given a list of positive integers
fM1;M2; : : : ;Mng. An unknown subset of the list is
selected and summed to give an integer S . Given S , recover
the subset that summed to S , or find another subset with the
same property.

Here, there is another way of describing this problem. A list of positive integers
M D fM1;M2; : : : ;Mng is public knowledge. Choose a secret binary vector x D
fx1; x2; : : : ; xng, where each xi can take on the value 1 or 0. If

S D
nX

iD1

xiMi

then how can one recover the original vector x in an efficient way? (Of course, there
might also be another vector x0 which also gives S when dotted with M.)

The difficulty in translating the subset sum problem into a cryptosystem is
that of building in a trapdoor. Merkle and Hellman’s system took advantage of the
fact that there are certain subset sum problems that are extremely easy to solve.
Suppose that one takes a sequence of positive integers r D fr1; r2; : : : ; rng with
the property that riC1 � 2ri for each 1 � i � n. Such a sequence is called super
increasing. Given an integer S , with S D x � r for a binary vector x, it is easy to
recover x from S .

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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The basic idea that Merkle and Hellman proposed was this: begin with a secret
super increasing sequence r and choose two large secret integers A, B , with B >

2rn and .A;B/ D 1. Here, rn is the last and largest element of r, and the lower
bound condition ensures that B must be larger than any possible sum of a subset
of the ri . Multiply the entries of r by A and reduce modulo B to obtain a new
sequence M, with each Mi 
 Ari .mod B/. This new sequence M is the public
key. Encryption then works as follows. The message is a secret binary vector x
which is encrypted to S D x �M. To decrypt S , multiply by A�1 .mod B/ to obtain
S 0 
 x � r .mod B/. If S 0 is chosen in the range 0 � S 0 � B � 1, one obtains an
exact inequality S 0 D x � r, as any subset of the integers ri must sum to an integer
smaller than B . The sequence r is super increasing and x may be recovered.

A cryptosystem of this type is known as a knapsack system. The general idea
is to start with a secret super increasing sequence, disguise it by some collection
of modular linear operations, then reveal the transformed sequence as the public
key. The original Merkle and Hellman system suggested applying a secret permuta-
tion to the entries of Ar .mod B/ as an additional layer of security. Later versions
were proposed by a number of people, involving multiple multiplications and reduc-
tions with respect to various moduli. For an excellent survey, see the article by
Odlyzko [6].

The first question one must ask about a knapsack system is concerns what mini-
mal properties must r; A, and B have to obtain a given level of security? Some very
easy attacks are possible if r1 is too small, so one generally takes 2n < r1. But, what
is the minimal value of n that we require? Because of the super increasing nature of
the sequence, one has

rn D O.S/ D O.22n/:

The space of all binary vectors x of dimension n has size 2n , and thus an exhaus-
tive search for a solution would require effort on the order of 2n. In fact, a meet in
the middle attack is possible, thus the security of a knapsack system with a list of
length n is O.2n=2/.

While the message consists of n bits of information, the public key is a list of n
integers, each approximately 2n bits long and there requires about 2n2 bits. There-
fore, taking n D 160 leads to a public key size of about 51200 bits. Compare this to
RSA or Diffie-Hellman, where, for security on the order of 280, the public key size
is about 1000 bits.

The temptation to use a knapsack system rather than RSA or Diffie-Hellman
was very great. There was a mild disadvantage in the size of the public key, but
decryption required only one (or several) modular multiplications and none were
required to encrypt. This was far more efficient than the modular exponentiations in
RSA and Diffie-Hellman.

Unfortunately, although a meet in the middle attack is still the best known attack
on the general subset sum problem, there proved to be other, far more effective,
attacks on knapsacks with trapdoors. At first, some very specific attacks were
announced by Shamir, Odlyzko, Lagarias, and others. Eventually, however, after
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the publication of the famous LLL paper [7] in 1985, it became clear that a secure
knapsack-based system would require the use of an n that was too large to be
practical.

A public knapsack can be associated to a certain lattice L as follows. Given a
public list M and encrypted message S , one constructs the matrix

0

BBBBBBB@

1 0 0 � � � 0 m1

0 1 0 � � � 0 m2

0 0 1 � � � 0 m3

:::
:::

:::
: : :

:::
:::

0 0 0 � � � 1 mn

0 0 0 � � � 0 S

1

CCCCCCCA

with row vectors v1 D .1; 0; 0; : : : ; 0;m1/; v2 D .0; 1; 0; : : : ; 0;m2/; : : : ; vn D
.0; 0; 0; : : : ; 1;mn/ and vnC1 D .0; 0; 0; : : : ; 0; S/. The collection of all linear com-
binations of the vi with integer coefficients is the relevant lattice L. The determinant
of L equals S . The statement that the sum of some subset of the mi equals S
translates into the statement that there exists a vector t 2 L,

t D
nX

iD1

xi vi � vnC1 D .x1; x2; : : : ; xn; 0/;

where each xi is chosen from the set f0; 1g. Note that the last entry in t is 0 because
the subset sum problem is solved and the sum of a subset of the mi is canceled by
the S .

The crux of the matter

As the xi are binary, ktk � pn. In fact, as roughly half of the xi will be
equal to 0, it is very likely that ktk �pn=2. On the other hand, the size
of each kvik varies between roughly 2n and 22n. The key observation
is that it seems rather improbable that a linear combination of vectors
that are so large should have a norm that is so small.

The larger the weights mi were, the harder the subset sum problem was to solve
by combinatorial means. Such a knapsack was referred to as a low density knapsack.
However, for low density knapsacks, S was larger and thus the ratio of the actual
smallest vector to the expected smallest vector was smaller. Because of this, the LLL
lattice reduction method was more more effective on a low density knapsack than
on a generic subset sum problem.

It developed that, using LLL, if n is less than around 300, a secret message x can
be recovered from an encrypted message S in a fairly short time. This meant that in
order to have even a hope of being secure, a knapsack would need to have n > 300,
and a corresponding public key length that was greater than 180000 bits. This was
sufficiently impractical that knapsacks were abandoned for some years.

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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Expanding the Use of LLL in Cryptanalysis

Attacks on the discrete logarithm problem and factorization were carefully analyzed
and optimized by many researchers, and their effectiveness was quantified. Curi-
ously, this did not happen with LLL, and improvements in lattice reduction methods
such as BKZ that followed it. Although quite a bit of work was done on improving
lattice reduction techniques, the precise effectiveness of these techniques on lattices
of various characteristics remained obscure. Of particular interest was the question
of how the running times of LLL and BKZ required to solve SVP or CVP varied
with the dimension of the lattice, the determinant, and the ratio of the actual shortest
vector’s length to the expected shortest length.

In 1996–1997, several cryptosystems were introduced whose underlying hard
problem was SVP or CVP in a lattice L of dimension n. These were, in alphabetical
order:

� Ajtai-Dwork, ECCC report 1997 [8]
� GGH, presented at Crypto ’97 [9]
� NTRU, presented at the rump session of Crypto ’96 [10]

The public key sizes associated to these cryptosystems wereO.n4/ for Ajtai-Dwork,
O.n2/ for GGH, and O.n log n/ for NTRU.

The system proposed by Ajtai and Dwork was particularly interesting in that
they showed that it was provably secure unless a worst case lattice problem could
be solved in polynomial time. Offsetting this, however, was the large key size. Sub-
sequently, Nguyen and Stern showed, in fact, that any efficient implementation of
the Ajtai-Dwork system was insecure [11].

The GGH system can be explained very simply. The owner of the private key
has the knowledge of a special small, reduced basis R for L. A person wishing to
encrypt a message has access to the public key B , which is a generic basis for L.
The basis B is obtained by multiplying R by several random unimodular matrices,
or by putting R into Hermite normal form, as suggested by Micciancio.

We associate toB andR, corresponding matrices whose rows are the n vectors in
the respective basis. A plaintext is a row vector of n integers, x, and the encryption
of x is obtained by computing e D xB C r, where r is a random perturbation vector
consisting of small integers. Thus, xB is contained in the lattice L while e is not.
Nevertheless, if r is short enough, then with high probability, xB is the unique point
in L which is closest to e.

A person with knowledge of the private basis R can compute xB using Babai’s
technique [12], from which x is then obtained. More precisely, using the matrix R,
one can compute eR�1 and then round each coefficient of the result to the near-
est integer. If r is sufficiently small, and R is sufficiently short and close to being
orthogonal, then the result of this rounding process will most likely recover the
point xB .

Without the knowledge of any reduced basis for L, it would appear that breaking
GGH was equivalent to solving a general CVP. Goldreich, Goldwasser, and Halevi
conjectured that for n > 300 this general CVP would be intractable. However, the
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effectiveness of LLL (and later variants of LLL) on lattices of high dimension had
not been closely studied. In [13], Nguyen showed that some information leakage in
GGH encryption allowed a reduction to an easier CVP problem, namely one where
the ratio of actual distance to the closest vector to expected length of the shortest
vector of L was smaller. Thus, he was able to solve GGH challenge problems in
dimensions 200, 250, 300, and 350. He did not solve their final problem in dimen-
sion 400, but at that point the key size began to be too large for this system to
be practical. It also was not clear at this point how to quantify the security of the
n D 400 case.

The NTRU system was described at the rump session of Crypto ’96 as a ring
based public key system that could be translated into an SVP problem in a special
class of lattices.2 Specifically, the NTRU lattice L consists of all integer row vectors
of the form .x; y/ such that

y 
 xH .mod q/:

Here, q is a public positive integer, on the order of 8 to 16 bits, andH is a public
circulant matrix. Congruence of vectors modulo q is interpreted component-wise.
Because of its circulant nature, H can be described by a single vector, explaining
the shorter public keys.

An NTRU private key is a single short vector .f; g/ in L. This vector is used,
rather than Babai’s technique, to solve a CVP for decryption. Together with its rota-
tions, .f; g/ yields half of a reduced basis. The vector .f; g/ is likely to be the shortest
vector in the public lattice, and thus NTRU is vulnerable to efficient lattice reduction
techniques.

At Eurocrypt ’97, Coppersmith and Shamir pointed out that any sufficiently
short vector in L, not necessarily .f; g/ or one of its rotations, could be used as a
decryption key. However, they remarked that this really did not matter as:

“We believe that for recommended parameters of the NTRU cryptosystem, the
LLL algorithm will be able to find the original secret key f...”

However, no evidence to support this belief was provided, and the very interest-
ing question of quantifying the effectiveness of LLL and its variants against lattices
of NTRU type remained.

At the rump session of Crypto ’97, Lieman presented a report on some prelimi-
nary work by himself and the developers of NTRU on this question. This report, and
many other experiments supported the assertion that the time required for LLL-BKZ
to find the smallest vector in a lattice of dimension n was at least exponential in n.
See [14] for a summary of part of this investigation.

The original algorithm of LLL corresponds to block size 2 of BKZ and provably
returns a reasonably short vector of the lattice L. The curious thing is that in low
dimensions this vector tends to be the actual shortest vector of L. Experiments have
led us to the belief that the BKZ block size required to find the actual shortest vector

2 NTRU was published in ANTS ’98. Its appearance in print was delayed by its rejection by the
Crypto ’97 program committee.
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in a lattice is linear in the dimension of the lattice, with an implied constant depend-
ing upon the ratio of the actual shortest vector length over the Gaussian expected
shortest length. This constant is sufficiently small that in low dimensions the rele-
vant block size is 2. It seems possible that it is the smallness of this constant that
accounts for the early successes of LLL against knapsacks. The exponential nature
of the problem overcomes the constant as n passes 300.

Digital Signatures Based on Lattice Problems

In general, it is very straight forward to associate a digital signature process to a
lattice where the signer possess a secret highly reduced basis and the verifier has
only a public basis for the same lattice. A message to be signed is sent by some
public hashing process to a random point m in Z

n. The signer, using the method
of Babai and the private basis, solves the CVP and finds a lattice point s which is
reasonably close to m. This is the signature on the message m. Anyone can verify,
using the public basis, that s 2 L and s is close to m. However, presumably someone
without the knowledge of the reduced basis would have a hard time finding a lattice
point s0 sufficiently close to m to count as a valid signature.

However, any such scheme has a fundamental problem to overcome: every valid
signature corresponds to a vector difference s�m. A transcript of many such s�m
will be randomly and uniformly distributed inside a fundamental parallelepiped
of the lattice. This counts as a leakage of information and as Nguyen and Regev
recently showed, this vulnerability makes any such scheme subject to effective
attacks based on independent component analysis [15].

In GGH, the private key is a full reduced basis for the lattice, and such a digital
signature scheme is straightforward to both set up and attack. In NTRU, the pri-
vate key only reveals half of a reduced basis, making the process of setting up an
associated digital signature scheme considerably less straightforward.

The first attempt to base a digital signature scheme upon the same principles
as “NTRU encryption” was NSS [16]. Its main advantage, (and also disadvantage)
was that it relied only on the information immediately available from the private key,
namely half of a reduced basis. The incomplete linkage of the NSS signing process
to the CVP problem in a full lattice required a variety of ad hoc methods to bind
signatures and messages, which were subsequently exploited to break the scheme.
An account of the discovery of the fatal weaknesses in NSS can be found in Sect. 7
of the extended version of [17], available at [18].

This paper contains the second attempt to base a signature scheme on the NTRU
lattice (NTRUSign) and also addresses two issues. First, it provides an algorithm
for generating the full short basis of an NTRU lattice from the knowledge of the
private key (half the basis) and the public key (the large basis). Second, it described
a method of perturbing messages before signing to reduce the efficiency of tran-
script leakage (see Section “NTRUSign Signature Schemes: Perturbations”). The
learning theory approach of Nguyen and Regev in [15] shows that about 90,000
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signatures compromises the security of basic NTRUSign without perturbations.
W. Whyte pointed out at the rump session of Crypto ’06 that by applying rotations
to effectively increase the number of signatures, the number of signatures required
to theoretically determine a private key was only about 1000. Nguyen added this
approach to his and Regev’s technique and was able to, in fact, recover the private
key with roughly this number of signatures.

The NTRUEncrypt and NTRUSign Algorithms

The rest of this article is devoted to a description of the NTRUEncrypt and
NTRUSign algorithms, which at present seem to be the most efficient embodiments
of public key algorithms whose security rests on lattice reduction.

NTRUEncrypt

NTRUEncrypt is typically described as a polynomial based cryptosystem involving
convolution products. It can naturally be viewed as a lattice cryptosystem too, for a
certain restricted class of lattices.

The cryptosystem has several natural parameters and, as with all practical cryp-
tosystems, the hope is to optimize these parameters for efficiency while at the same
time avoiding all known cryptanalytic attacks.

One of the more interesting cryptanalytic techniques to date concerning NTRU-
Encrypt exploits the property that, under certain parameter choices, the cryp-
tosystem can fail to properly decrypt valid ciphertexts. The functionality of the
cryptosystem is not adversely affected when these, so-called, “decryption failures”
occur with only a very small probability on random messages, but an attacker can
choose messages to induce failure, and assuming he knows when messages have
failed to decrypt (which is a typical security model in cryptography) there are effi-
cient ways to extract the private key from knowledge of the failed ciphertexts (i.e.,
the decryption failures are highly key-dependent). This was first noticed in [19, 20]
and is an important consideration in choosing parameters for NTRUEncrypt.

Other security considerations for NTRUEncrypt parameters involve assessing
the security of the cryptosystem against lattice reduction, meet-in-the-middle attacks
based on the structure of the NTRU private key, and hybrid attacks that combine both
of these techniques.

NTRUSign

The search for a “zero-knowledge” lattice-based signature scheme is a fascinat-
ing open problem in cryptography. It is worth commenting that most cryptog-
raphers would assume that anything purporting to be a signature scheme would

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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automatically have the property of “zero-knowledge,” i.e., the definition of a sig-
nature scheme implies the problems of determining the private key or creating
forgeries should become not easier after having seen a polynomial number of
valid signatures. However, in the theory of lattices, signature schemes with reduc-
tion arguments are just emerging and their computational effectiveness is currently
being examined. For most lattice-based signature schemes, there are explicit attacks
known which use the knowledge gained from a transcript of signatures.

When considering practical signature schemes, the “zero-knowledge” property
is not essential for the scheme to be useful. For example, smart cards typically burn
out before signing a million times, so if the private key in infeasible to obtain (and
a forgery is impossible to create) with a transcript of less than a million signatures,
then the signature scheme would be sufficient in this environment. It, therefore,
seems that there is value in developing efficient, non-zero-knowledge, lattice-based
signature schemes.

The early attempts [16, 21] at creating such practical signature schemes from
NTRU-based concepts succumbed to attacks which required transcripts of far too
small a size [22, 23]. However, the known attacks on NTRUSign, the currently
recommended, signature scheme, require transcript lengths of impractical length,
i.e., the signatures scheme does appear to be of practical significance at present.

NTRUSign was invented between 2001 and 2003 by the inventors of NTRUEn-
crypt together with N. Howgrave-Graham and W. Whyte [17]. Like NTRUEncrypt
it is highly parametrizable and, in particular, has a parameter involving the num-
ber of perturbations. The most interesting cryptanalytic progress on NTRUSign has
been showing that it must be used with at least one perturbation, i.e., there is an
efficient and elegant attack [15, 24] requiring a small transcript of signatures in the
case of zero perturbations.

Contents and Motivation

This paper presents an overview of operations, performance, and security consid-
erations for NTRUEncrypt and NTRUSign. The most up-to-date descriptions of
NTRUEncrypt and NTRUSign are included in [25] and [26], respectively. This
paper summarizes, and draws heavily on, the material presented in those papers.

This paper is structured as follows. First, we introduce and describe the algo-
rithms NTRUEncrypt and NTRUSign. We then survey known results about the
security of these algorithms, and then present performance characteristics of the
algorithms.

As mentioned above, the motivation for this work is to produce viable crypto-
graphic primitives based on the theory of lattices. The benefits of this are twofold:
the new schemes may have operating characteristics that fit certain environments
particularly well. Also, the new schemes are based on different hard problems from
the current mainstream choices of RSA and ECC.
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The second point is particularly relevant in a post-quantum world. Lattice reduc-
tion is a reasonably well-studied hard problem that is currently not known to
be solved by any polynomial time, or even subexponential time, quantum algo-
rithms [27, 28]. While the algorithms are definitely of interest even in the classical
computing world, they are clearly prime candidates for widespread adoption should
quantum computers ever be invented.

NTRUEncrypt: Overview

Parameters and Definitions

An implementation of the NTRUEncrypt encryption primitive is specified by the
following parameters:

N Degree Parameter. A positive integer. The associated NTRU lattice has
dimension 2N .

q Large Modulus. A positive integer. The associated NTRU lattice is a
convolution modular lattice of modulus q.

p Small Modulus. An integer or a polynomial.
Df ;Dg Private Key Spaces. Sets of small polynomials from which the private

keys are selected.
Dm Plaintext Space. Set of polynomials that represent encryptable mes-

sages. It is the responsibility of the encryption scheme to provide a
method for encoding the message that one wishes to encrypt into a
polynomial in this space.

Dr Blinding Value Space. Set of polynomials from which the temporary
blinding value used during encryption is selected.

center Centering Method. A means of performing mod q reduction on decryp-
tion.

Definition 1. The Ring of Convolution Polynomials is

R D ZŒX�

.XN � 1/ :

Multiplication of polynomials in this ring corresponds to the convolution product of
their associated vectors, defined by

.f � g/.X/ D
N�1X

kD0

� X

iCj�k .mod N /

fi � gj

�
Xk :

We also use the notationRq D .Z=qZ/ŒX�

.XN�1/
: Convolution operations in the ring Rq are

referred to as modular convolutions.
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Definition 2. A polynomial a.X/ D a0 C a1X C � � � C aN�1X
N�1 is identified

with its vector of coefficients a D Œa0; a1; : : : ; aN�1�. The mean Na of a polynomial
a is defined by Na D 1

N

PN�1
iD0 ai . The centered norm kak of a is defined by

kak2 D
N�1X

iD0

a2
i �

1

N

 
N�1X

iD0

ai

!2

: (11.1)

Definition 3. The width Width.a/ of a polynomial or vector is defined by

Width.a/ D Max.a0; : : : ; aN�1/ �Min.a0; : : : ; aN�1/ :

Definition 4. A binary polynomial is one whose coefficients are all in the set f0; 1g.
A trinary polynomial is one whose coefficients are all in the set f0;˙1g. If one of
the inputs to a convolution is a binary polynomial, the operation is referred to as a
binary convolution. If one of the inputs to a convolution is a trinary polynomial, the
operation is referred to as a trinary convolution.

Definition 5. Define the polynomial spaces BN .d/; TN .d/; TN .d1; d2/ as follows.
Polynomials in BN .d/ have d coefficients equal to 1, and the other coefficients
are 0. Polynomials in TN .d/ have d C 1 coefficients equal to 1, have d coefficients
equal to �1, and the other coefficients are 0. Polynomials in TN .d1; d2/ have d1

coefficients equal to 1, have d2 coefficients equal to �1, and the other coefficients
are 0.

“Raw” NTRUEncrypt

Key Generation

NTRUEncrypt key generation consists of the following operations:

1. Randomly generate polynomials f and g in Df , Dg , respectively.
2. Invert f in Rq to obtain fq , invert f inRp to obtain fp , and check that g is invertible

in Rq [29].
3. The public key h D p � g � fq .mod q/. The private key is the pair .f; fp/.

Encryption

NTRUEncrypt encryption consists of the following operations:

1. Randomly select a “small”polynomial r 2 Dr .
2. Calculate the ciphertext e as e 
 r � hCm .mod q/.
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Decryption

NTRUEncrypt decryption consists of the following operations:

1. Calculate a 
 center.f � e/, where the centering operation center reduces
its input into the interval ŒA;AC q � 1�.

2. Recover m by calculating m 
 fp � a .mod p/.

To see why decryption works, use h 
 p � g � fq and e 
 r � hCm to obtain

a 
 p � r � gC f �m .mod q/ : (11.2)

For appropriate choices of parameters and center, this is an equality over Z, rather
than just over Zq . Therefore, step 2 recovers m: the p � r � g term vanishes, and
fp � f �m D m .mod p/.

Encryption Schemes: NAEP

To protect against adaptive chosen ciphertext attacks, we must use an appropriately
defined encryption scheme. The scheme described in [30] gives provable security
in the random oracle model [31, 32] with a tight (i.e., linear) reduction. We briefly
outline it here.

NAEP uses two hash functions:

G W f0; 1gN�l � f0; 1gl ! Dr H W f0; 1gN ! f0; 1gN

To encrypt a message M 2 f0; 1gN�l using NAEP one uses the functions

compress.x/ D .x .mod q// .mod 2/;

B2P W f0; 1gN ! Dm [ “error”; P2B W Dm ! f0; 1gN

The function compress puts the coefficients of the modular quantity x .mod q/
in to the interval Œ0; q/, and then this quantity is reduced modulo 2. The role of
compress is simply to reduce the size of the input to the hash function H for
gains in practical efficiency.The function B2P converts a bit string into a binary
polynomial, or returns “error” if the bit string does not fulfil the appropriate criteria –
for example, if it does not have the appropriate level of combinatorial security. The
function P2B converts a binary polynomial to a bit string.

The encryption algorithm is then specified by:

1. Pick b
R f0; 1gl .

2. Let r D G.M; b/, m D B2P. .M jjb/˚H.compress.r � h// /.
3. If B2P returns “error”, go to step 1.
4. Let e D r � hCm 2 Rq .

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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Step 3 ensures that only messages of the appropriate form will be encrypted.
To decrypt a message e 2 Rq , one does the following:

1. Let a D center.f � e .mod q//.
2. Let m D f�1

p � a .mod p/.
3. Let s D e �m.
4. Let M jjb D P2B.m/˚H.compress.P2B.s///.
5. Let r D G.M; b/.
6. If r � h D s .mod q/, and m 2 Dm, then return the message M , else return the

string “invalid ciphertext.”

The use of the scheme NAEP introduces a single additional parameter:

l Random Padding Length. The length of the random padding b concatenated
with M in step 1.

Instantiating NAEP: SVES-3

The EESS#1 v2 standard [21] specifies an instantiation of NAEP known as SVES-
3. In SVES-3, the following specific design choices are made:

� To allow variable-length messages, a one-byte encoding of the message length in
bytes is prepended to the message. The message is padded with zeroes to fill out
the message block.

� The hash function G which is used to produce r takes as input M ; b; an OID
identifying the encryption scheme and parameter set; and a string htrunc derived
by truncating the public key to length lh bits.

SVES-3 includes htrunc in G so that r depends on the specific public key. Even
if an attacker was to find an .M; b/ that gave an r with an increased chance of a
decryption failure, that .M; b/ would apply only to a single public key and could not
be used to attack other public keys. However, the current recommended parameter
sets do not have decryption failures and so there is no need to input htrunc to G. We
will therefore use SVES-3but set lh D 0.

NTRUEncrypt Coins!

It is both amusing and informative to view the NTRUEncrypt operations as working
with “coins.” By coins, we really mean N -sided coins, like the British 50 pence
piece.

An element of R maps naturally to anN -sided coin: one simply write the integer
entries of a 2 R on the side-faces of the coin (with “heads” facing up, say). Mul-
tiplication by X in R is analagous to simply rotating the coin, and addition of two
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elements in R is analagous to placing the coins on top of each other and summing
the faces. A generic multiplication by an element in R is thus analagous to multiple
copies of the same coin being rotated by different amonuts, placed on top of each
other, and summed.

The NTRUEncrypt key recovery problem is a binary multiplication problem,
i.e., given df copies of the h-coin the problem is to pile them on top of eachother
(with distinct rotations) so that the faces sum to zero or one modulo q.

The raw NTRUEncrypt encryption function has a similar coin analogy: one
piles dr copies of the h-coin on top of one another with random (but distinct) rota-
tions, then one sums the faces modulo q, and adds a small f0; 1g perturbation to
faces modulo q (corresponding to the message). The resulting coin, c, is a valid
NTRUEncrypt ciphertext.

The NTRUEncrypt decryption function also has a similar coin analogy: one
piles df copies of a c-coin (corresponding to the ciphertext) on top of each other
with rotations corresponding to f . After summing the faces modulo q, centering,
and then a reduction modulo p, one should recover the original message m.

These NTRUEncrypt operations are so easy, it seems strong encryption could
have been used centuries ago, had public-key encryption been known about. From
a number theoretic point of view, the only nontrivial operation is the creation of the
h coin (which involves Euclid’s algorithm over polynomials).

NTRUSign: Overview

Parameters

An implementation of the NTRUSign primitive uses the following parameters:

N Polynomials have degree < N
q Coefficients of polynomials are reduced modulo q

Df ;Dg Polynomials in T .d/ have d C 1 coefficients equal to 1, have d coeffi-
cients equal to �1, and the other coefficients are 0.

N The norm bound used to verify a signature.
ˇ The balancing factor for the norm k � kˇ . Has the property 0 < ˇ � 1.

“Raw” NTRUSign

Key Generation

NTRUSign key generation consists of the following operations:

1. Randomly generate “small” polynomials f and g in Df , Dg , respectively, such
that f and g are invertible modulo q.
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2. Find polynomials F and G such that

f �G � g � F D q ; (11.3)

and F and G have size

kFk � kGk � kfkpN=12 : (11.4)

This can be done using the methods of [17]
3. Denote the inverse of f in Rq by fq , and the inverse of g in Rq by gq . The public

key h D F � fq .mod q/ D G � gq .mod q/. The private key is the pair .f;g/.

Signing

The signing operation involves rounding polynomials. For any a 2 Q, let bae denote
the integer closest to a, and define fag D a � bae. (For numbers a that are midway
between two integers, we specify that fag D C1

2
, rather than �1

2
.) If A is a poly-

nomial with rational (or real) coefficients, let bAe and fAg be A with the indicated
operation applied to each coefficient.

“Raw” NTRUSign signing consists of the following operations:

1. Map the digital documentD to be signed to a vector m 2 Œ0; q/N using an agreed
hash function.

2. Set

.x; y/ D .0;m/
�

G �F
�g f

�
=q D

��m � g
q

;
m � f
q

�
:

3. Set
� D �fxg and �0 D �fyg : (11.5)

4. Calculate s, the signature, as

s D �fC �0g : (11.6)

Verification

Verification involves the use of a balancing factor ˇ and a norm bound N . To verify,
the recipient does the following:

1. Map the digital document D to be verified to a vector m 2 Œ0; q/N using the
agreed hash function.

2. Calculate t D s � h mod q, where s is the signature, and h is the signer’s public
key.
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3. Calculate the norm

� D min
k1;k22R

�ksC k1qk2 C ˇ2k.t �m/C k2qk2
�1=2

: (11.7)

4. If � � N , the verification succeeds, otherwise, it fails.

Why NTRUSign Works

Given any positive integers N and q and any polynomial h 2 R, we can construct a
lattice Lh contained in R2 Š Z

2N as follows:

Lh D Lh.N; q/ D
˚
.r; r 0/ 2 R � R ˇ̌

r 0 
 r � h .mod q/
�
:

This sublattice of Z
2N is called a convolution modular lattice. It has dimension

equal to 2N and determinant equal to qN .
Since

det

�
f F
g G

�
D q

and we have defined h D F=f D G=g mod q, we know that

�
f F
g G

�
and

�
1 h
0 q

�

are bases for the same lattice. Here, as in [17], a 2-by-2 matrix of polynomials is
converted to a 2N -by-2N integer matrix matrix by converting each polynomial in
the polynomial matrix to its representation as an N -by-N circulant matrix, and the
two representations are regarded as equivalent.

Signing consists of finding a close lattice point to the message point .0;m/ using
Babai’s method: express the target point as a real-valued combination of the basis
vectors, and find a close lattice point by rounding off the fractional parts of the real
coefficients to obtain integer combinations of the basis vectors. The error introduced
by this process will be the sum of the rounding errors on each of the basis vectors,
and the rounding error by definition will be between �1

2
and 1

2
. In NTRUSign, the

basis vectors are all of the same length, so the expected error introduced by 2N
roundings of this type will be

p
N=6 times this length.

In NTRUSign, the private basis is chosen such that kfk D kgk and kFk � kGk �p
N=12kfk. The expected error in signing will therefore be

p
N=6kfk C ˇ.N=6p2/kfk: (11.8)

In contrast, an attacker who uses only the public key will likely produce a
signature with N incorrect coefficients, and those coefficients will be distributed
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randomly mod q. The expected error in generating a signature with a public key is
therefore

ˇ
p
N=12q : (11.9)

(We discuss security considerations in more detail in Section “NTRUSign Security
Considerations” and onwards; the purpose of this section is to argue that it is plau-
sible that the private key allows the production of smaller signatures than the public
key).

It is therefore clear that it is possible to choose kfk and q such that the knowledge
of the private basis allows the creation of smaller signing errors than knowledge of
the public basis alone. Therefore, by ensuring that the signing error is less than that
could be expected to be produced by the public basis, a recipient can verify that the
signature was produced by the owner of the private basis and is therefore valid.

NTRUSign Signature Schemes: Chosen Message Attacks,
Hashing, and Message Preprocessing

To prevent chosen message attacks, the message representative m must be gener-
ated in some pseudo-random fashion from the input document D. The currently
recommended hash function for NTRUSign is a simple Full Domain Hash. First
the message is hashed to a “seed” hash value Hm. Hm is then hashed in counter
mode to produce the appropriate number of bits of random output, which are treated
as N numbers mod q. Since q is a power of 2, there are no concerns with bias.

The above mechanism is deterministic. If parameter sets were chosen that gave a
significant chance of signature failure, the mechanism can be randomized as follows.
The additional input to the process is rlen, the length of the randomizer in bits.

On signing:

1. Hash the message as before to generateHm.
2. Select a randomizer r consisting of rlen random bits.
3. Hash Hmkr in counter mode to obtain enough output for the message represen-

tative m.
4. On signing, check that the signature will verify correctly.

a. If the signature does not verify, repeat the process with a different r .
b. If the signature verifies, send the tuple .r; s/ as the signature.

On verification, the verifier uses the received r and the calculatedHm as input to
the hash in counter mode to generate the same message representative as the signer
used.

The size of r should be related to the probability of signature failure. An attacker
who is able to determine through timing information that a givenHm required mul-
tiple rs knows that at least one of those rs resulted in a signature that was too big,
but does not know which message it was or what the resulting signature was. It is
an open research question to quantify the appropriate size of r for a given signature
failure probability, but in most cases, rlen D 8 or 32 should be sufficient.
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NTRUSign Signature Schemes: Perturbations

To protect against transcript attacks, the raw NTRUSign signing algorithm defined
above is modified as follows.

On key generation, the signer generates a secret perturbation distribution
function.

On signing, the signer uses the agreed hash function to map the document D to
the message representative m. However, before using his or her private key, he or
she chooses an error vector e drawn from the perturbation distribution function that
was defined as part of key generation. He or she then signs m C e, rather than m
alone.

The verifier calculates m, t, and the norms of s and t�m and compares the norms
to a specified bound N as before. Since signatures with perturbations will be larger
than unperturbed signatures, N and, in fact, all of the parameters will in general be
different for the perturbed and unpertubed cases.

NTRU currently recommends the following mechanism for generating perturba-
tions.

Key Generation

At key generation time, the signer generates B lattices L1 : : : LB . These lattices are
generated with the same parameters as the private and public key lattice, L0, but are
otherwise independent of L0 and of each other. For each Li , the signer stores fi ,
gi , hi .

Signing

When signing m, for each Li starting with LB , the signer does the following:

1. Set .x; y/ D
��m�gi

q
;

m�fi
q

�
:

2. Set � D �fxg and �0 D �fyg :
3. Set si D �fi C �0gi .
4. Set s D sC si .
5. If i = 0 stop and output s; otherwise, continute
6. Set ti D si � hi mod q
7. Set m D ti � .si � hi�1/ mod q.

The final step translates back to a point of the form .0;m/ so that all the signing
operations can use only the f and g components, allowing for greater efficiency. Note
that steps 6 and 7 can be combined into the single step of setting m D si�.hi�hi�1/

to improve performance.
The parameter sets defined in [26] take B D 1.
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NTRUEncrypt Performance

NTRUEncrypt Parameter Sets

There are many different ways of choosing “small” polynomials. This section
reviews NTRU’s current recommendations for choosing the form of these polynomi-
als for the best efficiency. We focus here on choices that improve efficiency; security
considerations are looked at in Section “NTRUEncrypt Security Considerations”.

Form of f

Published NTRUEncrypt parameter sets [25] take f to be of the form f D 1C pF.
This guarantees that fp D 1, eliminating one convolution on decryption.

Form of F, g, r

NTRU currently recommends several different forms for F and r. If F and r take
binary and trinary form, respectively, they are drawn from BN .d/, the set of binary
polynomials with d 1s and N � d 0s or TN .d/, the set of trinary polynomials with
dC1 1s, d -1s andN �2d�1 0s. If F and r take product form, then F D f1� f2Cf3,

with f1; f2; f3
R BN .d/; TN .d/, and similarly for r. (The value d is considerably

lower in the product-form case than in the binary or trinary case).
A binary or trinary convolution requires on the order of dN adds mod q. The

best efficiency is therefore obtained when d is as low as possible consistent with the
security requirements.

Plaintext Size

For k-bit security, we want to transport 2k bits of message and we require l �
k, l the random padding length. SVES-3 uses 8 bits to encode the length of the
transported message.N must therefore be at least 3kC8. SmallerN will in general
lead to lower bandwidth and faster operations.

Form of p, q

The parameters p and q must be relatively prime. This admits of various combi-
nations, such as .p D 2; q D prime/, .p D 3; q D 2m/, and .p D 2 C X; q D
2m/.
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The B2P Function

The polynomial m produced by the B2P function will be a random trinary poly-
nomial. As the number of 1s, (in the binary case), or 1s and �1s (in the trinary
case), decreases, the strength of the ciphertext against both lattice and combinatorial
attacks will decrease. The B2P function therefore contains a check that the number
of 1s in m is not less than a value dm0

. This value is chosen to be equal to df . If,
during encryption, the encrypter generatesm that does not satisfy this criterion, they
must generate a different value of b and re-encrypt.

NTRUEncrypt Performance

Table 11.1 and Table 11.2 give parameter sets and running times (in terms of opera-
tions per second) for size optimized and speed optimized performance, respectively,
at different security levels corresponding to k bits of security. “Size” is the size of
the public key in bits. In the case of NTRUEncrypt and RSA, this is also the size
of the ciphertext; in the case of some ECC encryption schemes, such as ECIES,
the ciphertext may be a multiple of this size. Times given are for unoptimized C
implementations on a 1.7 GHz Pentium and include time for all encryption scheme
operations, including hashing, random number generation, as well as the primitive
operation. dm0

is the same in both the binary and product-form case and is omitted
from the product-form table.

For comparison, we provide the times given in [33] for raw elliptic curve point
multiplication (not including hashing or random number generation times) over the

Table 11.1 Size-optimized NTRUEncrypt parameter sets with trinary polynomials

k N d dm0 q size RSA ECC enc/s dec/s ECC Enc ECC Dec ECC
size size mult/s ratio ratio

112 401 113 113 2,048 4;411 2;048 224 2,640 1;466 1;075 4.91 1.36
128 449 134 134 2,048 4;939 3;072 256 2,001 1;154 661 6.05 1.75
160 547 175 175 2,048 6;017 4;096 320 1,268 718 n/a n/a n/a
192 677 157 157 2,048 7;447 7;680 384 1,188 674 196 12.12 3.44
256 1;087 120 120 2,048 11;957 15; 360 512 1,087 598 115 18.9 5.2

Table 11.2 Speed-optimized NTRUEncrypt parameter sets with trinary polynomials

k N d dm0 q size RSA ECC enc/s dec/s ECC Enc ECC Dec ECC
size size mult/s ratio ratio

112 659 38 38 2,048 7; 249 2,048 224 4,778 2,654 1,075 8.89 2.47
128 761 42 42 2,048 8; 371 3,072 256 3,767 2,173 661 11.4 3.29
160 991 49 49 2048 10; 901 4,096 320 2,501 1,416 n/a n/a n/a
192 1; 087 63 63 2,048 11; 957 7,680 384 1,844 1,047 196 18.82 5.34
256 1; 499 79 79 2,048 16; 489 15,360 512 1,197 658 115 20.82 5.72
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NIST prime curves. These times were obtained on a 400 MHz SPARC and have been
converted to operations per second by simply scaling by 400=1700. Times given are
for point multiplication without precomputation, as this corresponds to common
usage in encryption and decryption. Precomputation improves the point multipli-
cation times by a factor of 3.5–4. We also give the speedup for NTRUEncrypt
decryption vs. a single ECC point multiplication.

NTRUSign Performance

NTRUSign Parameter Sets

Form of f, g

The current recommended parameter sets take f and g to be trinary, i.e., drawn from
TN .d/. Trinary polynomials allow for higher combinatorial security than binary
polynomials at a given value of N and admit efficient implementations. A trinary
convolution requires .2d C 1/N adds and one subtract mod q. The best efficiency
is therefore obtained when d is as low as possible consistent with the security
requirements.

Form of p, q

The parameters q and N must be relatively prime. For efficiency, we take q to be a
power of 2.

Signing Failures

A low value of N , the norm bound, gives the possibility that a validly generated sig-
nature will fail. This affects efficiency, as if the chance of failure is non-negligible,
the signer must randomize the message before signing and check for failure on sig-
nature generation. For efficiency, we want to set N sufficiently high to make the
chance of failure negligible. To do this, we denote the expected size of a signature
by E and define the signing tolerance � by the formula

N D �E :

As � increases beyond 1, the chance of a signing failure appears to drop off expo-
nentially. In particular, experimental evidence indicates that the probability that a
validly generated signature will fail the normbound test with parameter � is smaller
than e�C.N /.��1/, where C.N/ > 0 increases with N . In fact, under the assumption
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that each coefficient of a signature can be treated as a sum of independent identi-
cally distributed random variables, a theoretical analysis indicates that C.N/ grows
quadratically in N . The parameter sets below were generated with � D 1:1, which
appears to give a vanishingly small probability of valid signature failure forN in the
ranges that we consider. It is an open research question to determine precise signa-
ture failure probabilities for specific parameter sets, i.e., to determine the constants
in C.N/.

NTRUSign Performance

With one perturbation, signing takes time equivalent to two “raw” signing operations
(as defined in Section “Signing”) and one verification. Research is ongoing into
alternative forms for the perturbations that could reduce this time.

Table 11.3 gives the parameter sets for a range of security levels, correspond-
ing to k-bit security, and the performance (in terms of signatures and verifications
per second) for each of the recommended parameter sets. We compare signature
times to a single ECC point multiplication with precomputation from [33]; with-
out precomputation, the number of ECC signatures/second goes down by a factor of
3.5–4. We compare verification times to ECDSA verification times without memory
constraints from [33]. As in Tables 11.1 and 11.2, NTRUSign times given are for
the entire scheme (including hashing, etc.), not just the primitive operation, while
ECDSA times are for the primitive operation alone.

Above the 80-bit security level, NTRUSign signatures are smaller than the
corresponding RSA signatures. They are larger than the corresponding ECDSA sig-
natures by a factor of about 4. An NTRUSign private key consists of sufficient space
to store f and g for the private key, plus sufficient space to store fi , gi , and hi for
each of the B perturbation bases. Each f and g can be stored in 2N bits, and each h
can be stored inN log2.q/ bits, so the total storage required for the one-perturbation

Table 11.3 Performance measures for different NTRUSign parameter sets. (Note: parameter sets
have not been assessed against the hybrid attack of Section “The Hybrid Attack” and may give less
than k bits of security)

Parameters Public key and sign/s vfy/s

k N d q NTRU ECDSA ECDSA RSA NTRU ECDSA Ratio NTRU ECDSA Ratio
key sig

80 157 29 256 1,256 192 384 1,024 4,560 5,140 0.89 15,955 1,349 11.83
112 197 28 256 1,576 224 448 �2,048 3,466 3,327 1.04 10,133 883 11.48
128 223 32 256 1,784 256 512 3,072 2,691 2,093 1.28 7,908 547 14.46
160 263 45 512 2,367 320 640 4,096 1,722 – – 5,686 – –
192 313 50 512 2,817 384 768 7,680 1,276 752 1.69 4,014 170 23.61
256 349 75 512 3,141 512 1024 15,360 833 436 1.91 3,229 100 32.29
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case is 16N bits for the 80- to 128-bit parameter sets below and 17N bits for the
160- to 256-bit parameter sets, or approximately twice the size of the public key.

Security: Overview

We quantify security in terms of bit strength k, evaluating how much effort an
attacker has to put in to break a scheme. All the attacks we consider here have vari-
able running times, so we describe the strength of a parameter set using the notion
of cost. For an algorithm A with running time t and probability of success ", the
cost is defined as

CA D t=" :

This definition of cost is not the only one that could be used. For example, in the
case of indistinguishability against adaptive chosen-ciphertext attack, the attacker
outputs a single bit i 2 f0; 1g, and obviously has a chance of success of at least
1
2

. Here, the probability of success is less important than the attacker’s advantage,
defined as

adv.A.ind// D 2:.PŒSuccŒA�� � 1=2/ :

However, in this paper, the cost-based measure of security is appropriate.
Our notion of cost is derived from [34] and related work. An alternate notion

of cost, which is the definition above multiplied by the amount of memory used, is
proposed in [35]. The use of this measure would allow significantly more efficient
parameter sets, as the meet-in-the-middle attack described in Section “Combinato-
rial Security” is essentially a time-memory tradeoff that keeps the product of time
and memory constant. However, current practice is to use the measure of cost above.

We also acknowledge that the notion of comparing public-key security levels
with symmetric security levels, or of reducing security to a single headline measure,
is inherently problematic – see an attempt to do so in [36], and useful comments on
this in [37]. In particular, extrapolation of breaking times is an inexact science, the
behavior of breaking algorithms at high security levels is by definition untested, and
one can never disprove the existence of an algorithm that attacks NTRUEncrypt (or
any other system) more efficiently than the best currently known method.

Common Security Considerations

This section deals with security considerations that are common to NTRUEncrypt
and NTRUSign.

Most public key cryptosystems, such as RSA [38] or ECC [39, 40], are based on
a one-way function for which there is one best-known method of attack: factoring



11 375

in the case of RSA, Pollard-rho in the case of ECC. In the case of NTRU, there are
two primary methods of approaching the one-way function, both of which must be
considered when selecting a parameter set.

Combinatorial Security

Polynomials are drawn from a known space S. This space can best be searched by
using a combinatorial technique originally due to Odlyzko [41], which can be used
to recover f or g from h or r and m from e. We denote the combinatorial security of
polynomials drawn from S by CombŒS�

CombŒBN .d/� �
�

N=2
d=2

�
p
N

: (11.10)

For trinary polynomials in TN .d/, we find

CombŒT .d/� >
 

N

d C 1

!
=
p
N: (11.11)

For product-form polynomials in PN .d/, defined as polynomials of the form
a D a1 �a2Ca3, where a1;a2;a3 are all binary with da1

; da2
; da3

1s respectively,
da1 D da2 D da3 D da, and there are no further constraints on a, we find [25]:

CombŒPN .d/� � min

0

@
 
N � dN=de
d � 1

!2

;

max

  
N � dN

d
e

d � 1

! 
N � d N

d�/
e

d � 2

!
;

 
N

2d

!!
;

max

  
N

d

! 
N

d � 1

!
;

 
N � d N

2d
e

2d � 1

!!!

Lattice Security

An NTRU public key h describes a 2N -dimensional NTRU lattice containing the
private key (f, g) or (f, F). When f is of the form f D 1CpF, the best lattice attack on
the private key involves solving a Close Vector Problem (CVP).3 When f is not of the

3 Coppersmith and Shamir [42] propose related approaches which turn out not to materially affect
security.
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form f D 1C pF, the best lattice attack involves solving an Approximate Shortest
Vector Problem (apprSVP). Experimentally, it has been found that an NTRU lattice
of this form can usefully be characterized by two quantities

a D N=q;
c D

p
4	ekFkkgk=q (NTRUEncrypt);

D
p
4	ekfkkFk=q (NTRUSign):

(For product-form keys the norm kFk is variable but always obeys jFj
� p

D.N �D/=N , D D d 2 C d . We use this value in calculating the lattice
security of product-form keys, knowing that in practice the value of c will typically
be higher.)

This is to say that for constant .a; c/, the experimentally observed running times
for lattice reduction behave roughly as

log.T / D AN CB ;

for some experimentally-determined constants A and B .
Table 11.4 summarizes experimental results for breaking times for NTRU lattices

with different .a; c/ values. We represent the security by the constantsA andB . The
breaking time in terms of bit security is AN C B . It may be converted to time in
MIPS-years using the equality 80 bits� 1012 MIPS-years.

For constant .a; c/, increasing N increases the breaking time exponentially. For
constant .a;N /, increasing c increases the breaking time. For constant .c;N /,
increasing a decreases the breaking time, although the effect is slight. More details
on this table are given in [14].

Note that the effect of moving from the “standard” NTRUEncrypt lattice to the
“transpose” NTRUSign lattice is to increase c by a factor of .N=12/1=4. This allows
for a given level of lattice security at lower dimensions for the transpose lattice than
for the standard lattice. Since NTRUEncrypt uses the standard lattice, NTRUEn-
crypt key sizes given in [25] are greater than the equivalent NTRUSign key sizes at
the same level of security.

The technique known as zero-forcing [14,43] can be used to reduce the dimension
of an NTRU lattice problem. The precise amount of the expected performance gain
is heavily dependent on the details of the parameter set; we refer the reader to [14,
43] for more details. In practice, this reduces security by about 6–10 bits.

Table 11.4 Extrapolated bit security constants depending on .c; a/

c a A B

1.73 0.53 0:3563 �2:263
2.6 0.8 0:4245 �3:440
3.7 2.7 0:4512 C0:218
5.3 1.4 0:6492 �5:436
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The Hybrid Attack

In this section, we will review the method of [44]. The structure of the argument
is simpler for the less efficient version of NTRU where the public key has the
form h 
 f �1 � g .mod q/. The rough idea is as follows. Suppose one is given
N; q; d; e; h and hence implicitly an NTRUEncrypt public lattice L of dimension
2N . The problem is to locate the short vector corresponding to the secret key .f; g/.
One first chooses N1 < N and removes a 2N1 by 2N1 lattice L1 from the center
of L. Thus, the original matrix corresponding to L has the form

 
qIN 0

H IN

!
D

0

B@
qIN�N1

0 0

� L1 0

� � IN�N1

1

CA (11.12)

and L1 has the form  
qIN1

0

H1 IN1

!
: (11.13)

Here, H1 is a truncated piece of the circulant matrix H corresponding to h
appearing in (11.12). For increased flexibility, the upper left and lower right blocks
of L1 can be of different sizes, but for ease of exposition, we will consider only the
case where they are equal.

Let us suppose that an attacker must use a minimum of k1 bits of effort to
reduce L1 until all N1 of the q-vectors are removed. When this is done and
L1 is put in lower triangular form, the entries on the diagonal will have values
fq˛1 ; q˛2 ; : : : ; q˛2N1 g, where ˛1 C � � � C ˛2N1

D N1, and the ˛i will come very
close to decreasing linearly, with

1 � ˛1 > � � � > ˛2N1
� 0:

That is to say, L1 will roughly obey the geometric series assumption or GSA.
This reduction will translate back to a corresponding reduction of L, which when
reduced to lower triangular form will have a diagonal of the form

fq; q; : : : ; q; q˛1 ; q˛2 ; : : : ; q˛2N1 ; 1; 1; : : : ; 1g:

The key point here is that it requires k1 bits of effort to achieve this reduction,
with ˛2N1

� 0. If k2 > k1 bits are used, then the situation can be improved to
achieve ˛2N1

D ˛ > 0. As k2 increases the value of ˛ is increased.
In the previous work, the following method was used to launch the meet in the

middle attack. It was assumed that the coefficients of f are partitioned into two
blocks. These are of sizeN1 andK D N �N1. The attacker guesses the coefficients
of f that fall into the K block and then uses the reduced basis for L to check if his
or her guess is correct. The main observation of [44] is that a list of guesses can
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be made about half the coefficients in the K block and can be compared to a list of
guesses about the other half of the coefficients in the K block. With a probability
ps.˛/, a correct matching of two half guesses can be confirmed, where ps.0/ D 0

and ps.˛/ increases monotonically with ˛. In [44], a value of ˛ D 0:182 was used
with a corresponding probability ps.0:182/ D 2�13. The probability ps.0:182/ was
computed by sampling and the bit requirement, k2 was less than 60:3. In general,
if one used k2 bits of lattice reduction work to obtain a given ps.˛/ (as large as
possible), then the number of bits required for a meet in the middle search through
the K block decreases as K decreases and as ps.˛/ increases.

A very subtle point in [44] was the question of how to optimally choose N1 and
k2. The objective of an attacker was to choose these parameters so that k2 equalled
the bit strength of a meet in the middle attack on K , given the ps.˛/ corresponding
to N1. It is quite hard to make an optimal choice, and for details we refer the reader
to [44] and [45].

One Further Remark

For both NTRUEncrypt and NTRUSign the degree parameter N must be prime.
This is because, as Gentry observed in [46], if N is the composite, the related lat-
tice problem can be reduced to a similar problem in a far smaller dimension. This
reduced problem is then comparatively easy to solve.

NTRUEncrypt Security Considerations

Parameter sets for NTRUEncrypt at a k-bit security level are selected subject to the
following constraints:

� The work to recover the private key or the message through lattice reduction
must be at least k bits, where bits are converted to MIPS-years using the equality
80 bits� 1012 MIPS-years.

� The work to recover the private key or the message through combinatorial search
must be at least 2k binary convolutions.

� The chance of a decryption failure must be less than 2�k .

Decryption Failure Security

NTRU decryption can fail on validly encrypted messages if the center method
returns the wrong value of A, or if the coefficients of prg C fm do not lie in an
interval of width q. Decryption failures leak information about the decrypter’s pri-
vate key [19, 20]. The recommended parameter sets ensure that decryption failures
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will not happen by setting q to be greater than the maximum possible width of
prg Cm C pFm. q should be as small as possible while respecting this bound, as
lowering q increases the lattice constant c and hence the lattice security. Centering
then becomes simply a matter of reducing into the interval Œ0; q � 1�.

It would be possible to improve performance by relaxing the final condition
to require only that the probability of a decryption failure was less than 2�K .
However, this would require improved techniques for estimating decryption failure
probabilities.

N , q, and p

The small and large moduli p and q must be relatively prime in the ring R.
Equivalently, the three quantities

p; q; XN � 1

must generate the unit ideal in the ring ZŒX�. (As an example of why this is nec-
essary, in the extreme case that p divides q, the plaintext is equal to the ciphertext
reduced modulo p.)

Factorization of XN � 1 .mod q/

If F.X/ is a factor of XN � 1 .mod q/, and if h.X/ is a multiple of F.X/, i.e., if
h.X/ is zero in the field K D .Z=qZ/ŒX�=F.X/, then an attacker can recover the
value of m.X/ in the field K .

If q is prime and has order t .mod N/, then

XN � 1 
 .X � 1/F1.X/F2.X/ � � �F.N�1/=t .X/ in .Z=qZ/ŒX�;

where each Fi .X/ has degree t and is irreducible mod q. (If q is composite, there
are corresponding factorizations.) If Fi .X/ has degree t , the probability that h.X/
or r.X/ is divisible by Fi .X/ is presumably 1=qt . To avoid attacks based on the
factorization of h or r, we will require that for each prime divisorP of q, the order of
P .mod N/must beN �1 or .N �1/=2. This requirement has the useful side-effect
of increasing the probability that randomly chosen f will be invertible in Rq [47].

Information Leakage from Encrypted Messages

The transformation a! a.1/ is a ring homomorphism, and so the ciphertext e has
the property that

e.1/ D r.1/h.1/Cm.1/ :

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign



380 J. Hoffstein et al.

An attacker will know h.1/, and for many choices of parameter set r.1/ will also
be known. Therefore, the attacker can calculate m.1/. The larger jm.1/ � N=2j is,
the easier it is to mount a combinatorial or lattice attack to recover the msssage, so
the sender should always ensure that kmk is sufficiently large. In these parameter
sets, we set a value dm0

such that there is a probability of less than 2�40 that the
number of 1s or 0s in a randomly generated m is less than dm0

. We then calculate
the security of the ciphertext against lattice and combinatorial attacks in the case
where m has exactly this many 1s and require this to be greater than 2k for k bits of
security.

NTRUEncrypt Security: Summary

In this section, we present a summary of the security measures for the parameter
sets under consideration. Table 11.5 gives security measures optimized for size.
Table 11.6 gives security measures optimized for speed. The parameter sets for
NTRUEncrypt have been calculated based on particular conservative assumptions
about the effectiveness of certain attacks. In particular, these assumptions assume
the attacks will be improved in certain ways over the current best known attacks,
although we do not know yet exactly how these improvements will be implemented.
The tables below show the strength of the current recommended parameter sets
against the best attacks that are currently known. As attacks improve, it will be
instructive to watch the “known hybrid strength” reduce to the recommended secu-
rity level. The “basic lattice strength” column measures the strength against a pure
lattice-based (nonhybrid) attack.

NTRUSign Security Considerations

This section considers security considerations that are specific to NTRUSign.

Table 11.5 NTRUEncrypt security measures for size-optimized parameters using trinary poly-
nomials

Recommended N q df Known hybrid c Basic lattice
security level strength strength

112 401 2,048 113 154:88 2:02 139:5

128 449 2,048 134 179:899 2:17 156:6

160 547 2,048 175 222:41 2:44 192:6

192 677 2,048 157 269:93 2:5 239

256 1,087 2,048 120 334:85 2:64 459:2
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Table 11.6 NTRUEncrypt security measures for speed-optimized parameters using trinary
polynomials

Recommended N q df Known hybrid c Basic lattice
security level strength strength

112 659 2,048 38 137:861 1.74 231:5

128 761 2,048 42 157:191 1.85 267:8

160 991 2,048 49 167:31 2.06 350:8

192 1; 087 2,048 63 236:586 2.24 384

256 1; 499 2,048 79 312:949 2.57 530:8

Security Against Forgery

We quantify the probability that an adversary, without the knowledge of f; g, can
compute a signature s on a given documentD. The constants N; q; ı; ˇ;N must be
chosen to ensure that this probability is less than 2�k , where k is the desired bit
level of security. To investigate this, some additional notation will be useful:

1. Expected length of s: Es

2. Expected length of t �m: Et

By Es, Et , we mean, respectively, the expected values of ksk and kt � mk
(appropriately reduced modq) when generated by the signing procedure described
in Section “Signing”. These will be independent of m but dependent on N; q; ı. A
genuine signature will then have expected length

E D
q
E2

s C ˇ2E2
t

and we will set

N D �
q
E2

s C ˇ2E2
t : (11.14)

As in the case of recovering the private key, an attack can be made by com-
binatorial means, by lattice reduction methods or by some mixing of the two. By
balancing these approaches, we will determine the optimal choice of ˇ, the public
scaling factor for the second coordinate.

Combinatorial Forgery

Let us suppose thatN; q; ı; ˇ;N ; h are fixed. An adversary is givenm, the image of
a digital documentD under the hash functionH . His or her problem is to locate an
s such that

k.s mod q; ˇ.h � s �m/ mod q/k < N :

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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In particular, this means that for an appropriate choice of k1; k2 2 R

.k.s C k1qk2 C ˇ2kh � s �mC k2q/k2/1=2 < N :

A purely combinatorial attack that the adversary can take is to choose s at random
to be quite small, and then to hope that the point h � s �m lies inside of a sphere of
radius N=ˇ about the origin after its coordinates are reduced modq. The attacker
can also attempt to combine guesses. Here, the attacker would calculate a series of
random si and the corresponding ti and ti � m, and file the ti and the ti � m for
future reference. If a future sj produces a tj that is sufficiently close to ti �m, then
.si C sj / will be a valid signature on m. As with the previous meet-in-the-middle
attack, the core insight is that filing the ti and looking for collisions allow us to
check l2 t-values while generating only l s-values.

An important element in the running time of attacks of this type is the time that
it takes to file a t value. We are interested not in exact collisions, but in two ti that
lie close enough to allow forgery. In a sense, we are looking for a way to file the
ti in a spherical box, rather than in a cube as is the case for the similar attacks on
private keys. It is not clear that this can be done efficiently. However, for safety, we
will assume that the process of filing and looking up can be done in constant time,
and that the running time of the algorithm is dominated by the process of searching
the s-space. Under this assumption, the attacker’s expected work before being able
to forge a signature is:

p.N; q; ˇ;N / <

s
	N=2


 .1CN=2/ �
�N
qˇ

�N

: (11.15)

If k is the desired bit security level it will suffice to choose parameters so that the
right hand side of (11.15) is less than 2�k .

Signature Forgery Through Lattice Attacks

On the other hand, the adversary can also launch a lattice attack by attempting to
solve a closest vector problem. In particular, he can attempt to use lattice reduc-
tion methods to locate a point .s; ˇt/ 2 Lh.ˇ/ sufficiently close to .0; ˇm/ that
k.s; ˇ.t �m//k < N . We will refer to k.s; ˇ.t �m//k as the norm of the intended
forgery.

The difficulty of using lattice reduction methods to accomplish this can be tied
to another important lattice constant:

�.N; q; ˇ/ D N
�.N; q; ı; ˇ/

p
2N

: (11.16)
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Table 11.7 Bit security against lattice forgery attacks, !lf, based on experimental evidence for
different values of .�; N=q/

Bound for � and N=q !lf.N /

� < 0:1774 and N=q < 1:305 0:995113N � 82:6612
� < 0:1413 and N=q < 0:707 1:16536N � 78:4659
� < 0:1400 and N=q < 0:824 1:14133N � 76:9158

This is the ratio of the required norm of the intended forgery over the norm of the
expected smallest vector of Lh.ˇ/, scaled by

p
2N . For usual NTRUSign param-

eters, the ratio, �.N; q; ˇ/
p
2N ; will be larger than 1. Thus, with high probability,

there will exist many points of Lh.ˇ/ that will work as forgeries. The task of an
adversary is to find one of these without the advantage that knowledge of the pri-
vate key gives. As �.N; q; ˇ/ decreases and the ratio approaches 1, this becomes
measurably harder.

Experiments have shown that for fixed �.N; q; ˇ/ and fixed N=q the running
times for lattice reduction to find a point .s; t/ 2 Lh.ˇ/ satisfying

k.s; t �m/k < �.N; q; ˇ/p2N�.N; q; ı; ˇ/

behave roughly as

log.T / D AN CB

as N increases. Here, A is fixed when �.N; q; ˇ/;N=q are fixed, increases as
�.N; q; ˇ/ decreases and increases as N=q decreases. Experimental results are
summarized in Table 11.7.

Our analysis shows that lattice strength against forgery is maximized, for a fixed
N=q, when �.N; q; ˇ/ is as small as possible. We have

�.N; q; ˇ/ D �
r

	e

2N 2q
� .E2

s =ˇ C ˇE2
t / (11.17)

and so clearly the value for ˇ which minimizes � is ˇ D Es=Et . This optimal choice
yields

�.N; q; ˇ/ D �
s
	eEsEt

N 2q
: (11.18)

Referring to (11.15), we see that increasing ˇ has the effect of improving com-
binatorial forgery security. Thus, the optimal choice will be the minimal ˇ � Es=Et

such that p.N; q; ˇ;N / defined by (11.15) is sufficiently small.
An adversary could attempt a mixture of combinatorial and lattice techniques,

fixing some coefficients and locating the others via lattice reduction. However, as
explained in [17], the lattice dimension can only be reduced a small amount before
a solution becomes very unlikely. Also, as the dimension is reduced, � decreases,
which sharply increases the lattice strength at a given dimension.

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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Transcript Security

NTRUSign is not zero-knowledge. This means that, while NTRUEncrypt can have
provable security (in the sense of a reduction from an online attack method to
a purely offline attack method), there is no known method for establishing such
a reduction with NTRUSign. NTRUSign is different in this respect from estab-
lished signature schemes such as ECDSA and RSA-PSS, which have reductions
from online to offline attacks. Research is ongoing into quantifying what informa-
tion is leaked from a transcript of signatures and how many signatures an attacker
needs to observe to recover the private key or other information that would allow
the creation of forgeries. This section summarizes existing knowledge about this
information leakage.

Transcript Security for Raw NTRUSign

First, consider raw NTRUSign. In this case, an attacker studying a long transcript
of valid signatures will have a list of pairs of polynomials of the form

s D �fC �0g; t �m D �FC �0G
where the coefficients of �, �0 lie in the range Œ�1=2; 1=2�. In other words, the signa-
tures lie inside a parallopiped whose sides are the good basis vectors. The attacker’s
challenge is to discover one edge of this parallelopiped.

Since the �s are random, they will average to 0. To base an attack on averaging s
and t�m, the attacker must find something that does not average to zero. To do this,
he uses the reversal of s and t�m. The reversal of a polynomial a is the polynomial

Na.X/ D a.X�1/ D a0 C
N�1X

iD1

aN�iX
i :

We then set

Oa D a � Na:
Notice that Oa has the form

Oa D
N�1X

kD0

�N�1X

iD0

ai aiCk

�
Xk :

In particular, Oa0 D P
i a2. This means that as the attacker averages over a

transcript of Os; t̂ �m, the cross-terms will essentially vanish and the attacker will
recover

hO�0i.OfC Og/ D N

12
.OfC Og/

for s and similarly for t �m, where h:i denotes the average of : over the transcript.
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We refer to the product of a measurable with its reverse as its second moment. In
the case of raw NTRUSign, recovering the second moment of a transcript reveals
the Gram Matrix of the private basis. Experimentally, it appears that significant
information about the Gram Matrix is leaked after 10,000 signatures for all of the
parameter sets in this paper. Nguyen and Regev [15] demonstrated an attack on
parameter sets without perturbations that combines Gram matrix recovery with cre-
ative use of averaging moments over the signature transcript to recover the private
key after seeing a transcript of approximately 70,000 signatures. This result has been
improved to just 400 signatures in [24], and so the use of unperturbed NTRUSign
is strongly discouraged.

Obviously, something must be done to reduce information leakage from tran-
scripts, and this is the role played by perturbations.

Transcript Security for NTRUSign with Perturbations

In the case with B perturbations, the expectation of Os and Ot� Om is (up to lower order
terms)

E.Os/ D .N=12/.Of0 C Og0 C � � � C OfB C OgB /

and
E.Ot� Om/ D .N=12/.Of0C Og0 C � � � C OfB C OgB/:

Note that this second moment is no longer a Gram matrix but the sum of .B C 1/
Gram matrices. Likewise, the signatures in a transcript do not lie within a paral-
lelopiped but within the sum of .B C 1/ parallelopipeds.

This complicates matters for an attacker. The best currently known technique for
B D 1 is to calculate

the second moment hOsi
the fourth moment hOs2i
the sixth moment hOs3i :

Since, for example, hOsi2 ¤ hOs2i, the attacker can use linear algebra to eliminate
f1 and g1 and recover the Gram matrix, whereupon the attack of [15] can be used
to recover the private key. It is an interesting open research question to determine
whether there is any method open to the attacker that enables them to eliminate
the perturbation bases without recovering the sixth moment (or, in the case of B
perturbation bases, the .4B C 2/-th moment). For now, the best known attack is
this algebraic attack, which requires the recovery of the sixth moment. It is an open
research problem to discover analytic attacks based on signature transcripts that
improve on this algebraic attack.

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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We now turn to estimate � , the length of transcript necessary to recover the sixth
moment. Consider an attacker who attempts to recover the sixth moment by averag-
ing over � signatures and rounding to the nearest integer. This will give a reasonably
correct answer when the error in many coefficients (say at least half) is less than
1=2. To compute the probability that an individual coefficient has an error less than
1=2, write .12=N /Os as a main term plus an error, where the main term converges
to Of0 C Og0 C Of1 C Og1. The error will converge to 0 at about the same rate as the
main term converges to its expected value. If the probability that a given coefficient
is further than 1=2 from its expected value is less than 1=.2N /, then we can expect
at least half of the coefficients to round to their correct values (Note that this con-
vergence cannot be speeded up using lattice reduction in, for example, the lattice Oh,
because the terms Of , Og are unknown and are larger than the expected shortest vector
in that lattice).

The rate of convergence of the error and its dependence on � can be estimated
by an application of Chernoff-Hoeffding techniques [48], using an assumption of a
reasonable amount of independence and uniform distribution of random variables
within the signature transcript. This assumption appears to be justified by experi-
mental evidence and, in fact, benefits the attacker by ensuring that the cross-terms
converge to zero.

Using this technique, we estimate that, to have a single coefficient in the 2k-th
moment with error less than 1

2
, the attacker must analyze a signature transcript of

length � > 22kC4d 2k=N . Here, d is the number of 1s in the trinary key. Experimen-
tal evidence for the second moment indicates that the required transcript length will
in fact be much longer than this. For one perturbation, the attacker needs to recover
the sixth moment accurately, leading to required transcript lengths � > 230 for all
the recommended parameter sets in this paper.

NTRUSign Security: Summary

The parameter sets in Table 11.8 were generated with � D 1:1 and selected to
give the shortest possible signing time �S . These security estimates do not take the
hybrid attack of [44] into account and are presented only to give a rough idea of the
parameters required to obtain a given level of security.

The security measures have the following meanings:

!lk The security against key recovery by lattice reduction
c The lattice characteristic c that governs key recovery times

!cmb The security against key recovery by combinatorial means
!frg The security against forgery by combinatorial means
� The lattice characteristic � that governs forgery times
!lf The security against forgery by lattice reduction
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Table 11.8 Parameters and relevant security measures for trinary keys, one perturbation, � D 1:1,
q = power of 2

Parameters Security measures

k N d q ˇ N !cmb c !lk !frg � !lf log2.�/
80 157 29 256 0.38407 150.02 104:43 5.34 93.319 80 0.139 102.27 31.9

112 197 28 256 0.51492 206.91 112:71 5.55 117.71 112 0.142 113.38 31.2
128 223 32 256 0.65515 277.52 128:63 6.11 134.5 128 0.164 139.25 32.2
160 263 45 512 0.31583 276.53 169:2 5.33 161.31 160 0.108 228.02 34.9
192 313 50 512 0.40600 384.41 193:87 5.86 193.22 192 0.119 280.32 35.6
256 349 75 512 0.18543 368.62 256:48 7.37 426.19 744 0.125 328.24 38.9

Quantum Computers

All cryptographic systems based on the problems of integer factorization, discrete
log, and elliptic curve discrete log are potentially vulnerable to the development of
an appropriately sized quantum computer, as algorithms for such a computer are
known that can solve these problems in time polynomial in the size of the inputs. At
the moment, it is unclear what effect quantum computers may have on the security
of the NTRU algorithms.

The paper [28] describes a quantum algorithm that square-roots asymptotic lat-
tice reduction running times for a specific lattice reduction algorithm. However,
since, in practice, lattice reduction algorithms perform much better than they are
theoretically predicted to, it is not clear what effect this improvement in asymp-
totic running times has on practical security. On the combinatorial side, Grover’s
algorithm [49] provides a means for square-rooting the time for a brute-force
search. However, the combinatorial security of NTRU keys depends on a meet-
in-the-middle attack, and we are not currently aware of any quantum algorithms
to speed this up. The papers [50–54] consider potential sub-exponential algorithms
for certain lattice problems. However, these algorithms depend on a subexponen-
tial number of coset samples to obtain a polynomial approximation to the shortest
vector, and no method is currently known to produce a subexponential number of
samples in subexponential time.

At the moment, it seems reasonable to speculate that quantum algorithms will
be discovered that will square-root times for both lattice reduction and meet-in-the-
middle searches. If this is the case, NTRU key sizes will have to approximately
double, and running times will increase by a factor of approximately 4 to give the
same security levels. As demonstrated in the performance tables in this paper, this
still results in performance that is competitive with public key algorithms that are
in use today. As quantum computers are seen to become more and more feasible,
NTRUEncrypt and NTRUSign should be seriously studied with a view to wide
deployment.

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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Chapter 12
The Geometry of Provable Security: Some
Proofs of Security in Which Lattices Make
a Surprise Appearance

Craig Gentry

Abstract We highlight some uses of lattice reduction in security proofs of
nonlattice-based cryptosystems. In particular, we focus on RSA-OAEP, the Rabin
partial-domain hash signature scheme, techniques to compress Rabin signatures and
ciphertexts, the relationship between the RSA and Paillier problems and Hensel
lifting, and the hardness of the most significant bits of a Diffie–Hellman secret.

Introduction

In modern cryptography, we try to design and use cryptosystems that are “provably
secure.” That is, we try to prove (via reductio ad absurdum) that if an adversary can
efficiently attack a cryptosystem within the framework of a specified security model,
then the attacker can be used to help efficiently solve a specified hard problem (or,
more properly, a problem that is assumed to be hard). In short, a “proof of security”
is a reduction of putative hard problem to a cryptosystem. A provably secure cryp-
tosystem might not actually be secure in the real world. Even if the security proof
is correct, the hardness assumption might turn out to be false, the security model
might not account for all feasible real-world attacks, or the cryptosystem might not
be used in the real world as envisioned in the security model. Still, an approach
based on provable security has tangible value. Typically (or at least preferably), a
security proof uses hardness assumptions and security models that have been honed
and analyzed by researchers for years. In this case, one can be reasonably confident
that the system is secure in the real world, if the security proof is correct and the
system is not misused.

This survey focuses on some “surprising” uses of lattices in proofs of security. Of
course, there are a number of “lattice-based cryptosystems” that directly use a prob-
lem over lattices, such as the unique shortest vector problem, as the assumed hard
problem; this is not what we will be discussing here. Rather, we will focus primarily
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on cryptosystems based on more “conventional” assumptions, such as the hardness
of factoring, the RSA problem, and the Diffie–Hellman problem. For most of the
cryptosystems we consider, the actual implementation of the cryptosystem does not
involve lattices either. Instead, lattices only appear in the security reduction, which
is somewhat surprising, at least to someone less familiar with the role of lattices in
attacking the Diophantine problems that often underlie “classical” cryptosystems.

In Section “Preliminaries: Basic Notions in Provable Security”, we review some
basic cryptographic concepts, such as standard hardness assumptions (like factoring
and RSA), security models for signature and encryption schemes, and the random
oracle model. To illustrate the concepts, we give the reduction, in the random oracle
model, of factoring large numbers to the problem of forging a Rabin signature.

We describe the flawed security proof of RSA-OAEP in Section “The Security
of RSA-OAEP and Rabin-OAEP”, as well as several lattice-based approaches for
patching the proof. A couple of these approaches use Coppersmith’s method to
get efficient security reductions for Rabin and low-exponent RSA encryption. For
general-exponent RSA, the reduction is also lattice-based, but far less efficient, since
it solves RSA only after running the RSA-OAEP-breaking algorithm twice.

In Section “Compressing Rabin Signatures and Ciphertexts”, we describe
how to compress Rabin signatures or ciphertexts down to c logN bits, c 2
f1=2; 2=3g, while retaining provable security based on the hardness of factoring
N . Interestingly, one can define an efficiently computable trapdoor one-way “quasi-
permutation” over a subinterval Œ0; c0N ˛ � of Œ0; N � for ˛ D 2=3 based on modular
squaring. Evaluating this quasi-permutation involves finding lattice points that lie in
the region between two parabolas.

Section “The Relationship Among the RSA, Paillier, and RSA-Paillier Problems”
describes how the hardness of the RSA, Paillier and RSA-Paillier problems can
all be solved by Hensel lifting (to an appropriate power of the modulus N ), and
then applying lattice reduction to the result. Curiously, the Hensel power needed to
break Paillier encryption is smaller than that needed to break RSA with encryption
exponentN , suggesting a separation.

Finally, in Section “The Bit Security of Diffie–Hellman”, we review a result
that suggests that the most significant bits of a Diffie–Hellman secret are hard
to compute, since otherwise lattice reductions could be used to recover the entire
secret.

Preliminaries: Basic Notions in Provable Security

Here, we review some basic notions in provable security – namely, the security mod-
els for signature and encryption schemes; standard complexity assumptions such as
factoring, RSA, and Diffie–Hellman; and an idealization of hash functions called
the “random oracle model.” To illustrate how these notions are used in security
proofs and to illustrate the importance of “concrete security” (as opposed to asymp-
totic security), we review the rather simple reduction of factoring to the security of
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full-domain-hash Rabin signatures in the random oracle model. This reduction
will also help understand the lattice-based security proof for partial-domain Rabin
signatures in the random oracle model, discussed in Section “The Security of
Rabin-PDH”.

Security Models

Clearly, no cryptographic algorithm can be secure against an adversary with
unbounded resources, that can access all cryptographic secrets in the system. Con-
sequently, in modelling the adversary, one must limit its capabilities before one can
hope to prove the security of the cryptographic algorithm. However, the adversar-
ial model should include only those limitations that one can justifiably claim that a
real-world adversary will have in practice.

First, let us consider how to model security for digital signature schemes. Recall
the definition of a signature scheme.

Definition 1 (Signature Scheme). A signature scheme has three algorithms (Gen,
Sign, Verify), defined as follows:

� Gen is a probabilistic key generation algorithm, which given 1� for security
parameter �, outputs secret signing key SK and public verification key PK .

� Sign takes .SK;m/ as input, wherem is the message to be signed, and outputs a
signature � D SignSK.m/.

� Verify takes .m; � 0; PK/ as input. It outputs VerifyPK.m; �
0/ 2 f0; 1g, where

“1” means the signature is accepted, and “0” rejected. It is required that if �  
SignSK.m/, then VerifyPK.m; �/ D 1.

For concreteness, one may think of � as related to the bit-length of PK .
A protocol’s security is typically defined in terms of an interactive “game” played

between a challenger and the adversary. Here is the commonly accepted notion of
security for a digital signature scheme.

Definition 2 (Security against existential forgery under an adaptive chosen-
message attack). A signature scheme (Gen,Sign,Verify) is .t; q; "/-secure against
existential forgery under an adaptive chosen-message attack if an adversary limited
to computation time t has probability, at most ", of winning the following game.

1. The challenger runs Gen and gives PK to the adversary.
2. For 1 � i � q:

The adversary adaptively picks mi and requests a signature onmi .
The challenger returns �i D SignSK.mi /.

3. Finally, the adversary outputs a signature � for .PK;m/.

The adversary wins if � is a valid signature for .PK;m/ – i.e., VerifyPK.m; �/ D 1 –
and the adversary did not ask the challenger to sign m during the interactive phase.
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If the scheme is not .t; q; "/-secure, we say that there is an adversary that .t; q; "/-
breaks the scheme – i.e., there is an adversary limited to t computation and q queries
that wins the above game with probability greater than ".

Of course, a .t; q; "/-secure scheme is not actually “secure” unless " is very small for
reasonable values of t and q. Since one would at least to defend against polynomial-
time adversaries, one would like " to be negligible (i.e., asymptotically smaller than
the inverse of any polynomial) in the security parameter � whenever t and q are
polynomial in �.

This “game” may seem rather abstract, but it actually models reality quite well.
To use a weaker security model, one would have to justify why a real-world adver-
sary would be unable – for all settings in which the signature scheme is used – to
collect a long transcript of its target’s signatures on messages of its choice. On the
other hand, using a stronger security model would be overkill for most settings,
and would make it difficult or impossible to prove the security of a given signature
scheme. Nonetheless, there are stronger security models that account for even more
powerful adversaries. For example, an adversary may be able to learn significant
information – even an entire secret key – simply by measuring the amount of time
the device takes to perform a cryptographic operation or by measuring the amount
of power that the device consumes [1, 2]. (See [3] and [4] for a description of how
such “side-channel” attacks may be included in the adversarial model.)

Now, let us consider encryption schemes. Recall the definition of an encryption
scheme.

Definition 3 (Public-Key Encryption Scheme). A public-key encryption scheme
has three algorithms (Gen, Encrypt, Decrypt), defined as follows:

� Gen is a probabilistic key generation algorithm, which given 1� for security
parameter �, outputs secret decryption key SK and public encryption key PK .

� Encrypt takes .PK;m/ as input, wherem 2M is the plaintext message message
space M, and outputs a ciphertext C D EncryptPK.m/.

� Decrypt takes .C 0; SK/ as input. It outputs DecryptSK .C
0/, which may be

either a candidate plaintext or an error symbol ?. It is required that if C  
EncryptPK.m/, then DecryptSK.C / D m.

Defining the “right” security model for encryption schemes is more difficult.
Here is a weak notion of security.

Definition 4 (One-wayness). A public-key encryption scheme (Gen, Encrypt,
Decrypt) is .t; "/-one-way, if an adversary limited to computation time t has
probability, at most ", of winning the following game.

1. The challenger runs Gen and gives PK to the adversary.
2. The challenger picks random message m 2M and sends C D EncryptPK.m/

to the adversary.
3. The adversary outputs a candidate plaintextm0.

The adversary wins if m0 D m.
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One-wayness is too weak for most applications for several reasons. It does not
account for an adversary that can obtain decryptions from the challenger of cipher-
texts other than C . It also does not account for the fact that the adversary might
obtain significant information about m from C , even if it cannot recover m com-
pletely. Finally, one-wayness leaves open the possibility that ciphertexts are “mal-
leable” – i.e., an adversary can, without knowing m, modify C to construct a
ciphertext C 0 that encrypts f .m/ for some nontrivial function f .

Here is the preferred notion of security for a public-key encryption scheme,
defined in [5].

Definition 5 (Semantic security against adaptive chosen-ciphertext attack).
A public-key encryption scheme (Gen, Encrypt, Decrypt) is .t; q; "/ semantically
secure against adaptive chosen-ciphertext attack if, when limited to computation
time t , the adversary wins the following game with probability at least 1=2� " and
at most 1=2C ".
1. The challenger runs Gen and gives PK to the adversary.
2. Phase 1: For i D 1 to q0 � q:

The adversary chooses a ciphertext Ci .
The challenger returns DecryptSK .Ci / to the adversary.

3. Challenge: The adversary chooses two messages m0; m1 2 M and sends them
to the challenger. The challenger randomly sets b 2 f0; 1g. It sends C � D
EncryptPK.mb/ to the adversary.

4. Phase 2: Similar to Phase 1 for i 2 Œq0 C 1; q�, subject to the constraint that
Ci ¤ C �.

5. Guess: The adversary outputs b0 2 f0; 1g.
The adversary wins if b0 D b.

Chosen-ciphertext security turns out to be equivalent to “non-malleability,” as
defined in [6,7]. Sometimes, the following intermediate notion of security is useful.

Definition 6 (Semantic security against chosen-plaintext attack). A public-key
encryption scheme (Gen, Encrypt, Decrypt) is .t; "/-semantically secure against
chosen-plaintext attack if it is .t; 0; "/-semantically secure against adaptive chosen-
ciphertext attack.

Note that (Gen, Encrypt, Decrypt) cannot be semantically-secure, in either
sense, for a reasonable choice t and ", unless Encrypt is probabilistic.

Complexity Assumptions

Here, we review some “hard problems” frequently used in cryptography, beginning
with the “Diffie–Hellman” problem that initiated public-key cryptography [8].

Definition 7 (Diffie–Hellman Problem). LetG be a cyclic group of prime order q,
and let g 2 G be a generator. Given g; ga; gb for random a; b 2 Z

2
q , compute gab .
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The Diffie–Hellman assumption (for G) is that the Diffie–Hellman problem is
intractible – i.e., there is no efficient (polynomial in log q) algorithm for solving
it. This assumption underlies the security of the Diffie–Hellman key agreement
scheme, in which one party (typically called “Alice”) picks random a and trans-
mits ga, the other party (typically called “Bob”) picks random b and transmits gb ,
and their shared secret is .gb/a D .ga/b D gab . This assumption also implies
the one-wayness of the ElGamal encryption scheme [9], in which the recipient’s
secret/public key pair is .a; ga/ and the sender encrypts m 2 G by picking b and
sending C D .gb; m � .ga/b/ 2 G2. If the Diffie–Hellman problem is hard, then so
is the following problem.

Definition 8 (Discrete Logarithm Problem). Let G be a cyclic group of prime
order q and let g 2 G be a generator. Given g; ga for random a 2 Zq , compute a.

The first public-key signature and encryption schemes used the following prob-
lem [10].

Definition 9 (RSA Problem). LetN be a composite integer, and let e be an integer
coprime to �.N /. Given s 2 Z

�
N , compute r 2 Z

�
N such that re D s mod N .

(Note: ZN is often used in cryptography as shorthand for Z=NZ.) The RSA func-
tion f .x/ D re mod N is the classic example of a one-way (i.e., hard to invert)
trapdoor permutation. With the trapdoor information – i.e., the factorization of N –
the RSA function becomes easy to invert. In the RSA cryptosystem, the recipient
picks two random large primes p and q and sets N D pq; its secret/public key
pair is ..p; q/;N /. The sender encrypts m 2 Z

�
N as C D me mod N . The RSA

assumption implies the one-wayness of the RSA cryptosystem.
When N is chosen as the product of two primes (which is normally the case in

cryptography), the RSA problem obviously can be reduced efficiently the following
problem.

Definition 10 (Factoring). Given a composite integerN , output a nontrivial factor
of N .

By the abovementioned reduction, the factoring assumption is weaker than the RSA
assumption. The security of Rabin signing and encryption [11], discussed later, is
based on factoring.

Random Oracle Model

Many natural cryptographic constructions, including some discussed below, use
cryptographic hash functions. Roughly speaking, a cryptographic hash function is
a deterministic and efficiently computable function whose output distribution is as
“random-looking” as possible. A cryptographic hash function is typically used, for
example, to create a short “digest” of a message before applying the signing opera-
tion in a signature scheme, rather than (inefficiently) applying the signing operation
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directly to a long message. For this to be secure, it is obviously necessary that the
hash function H be “collision-resistant”; for, if it is easy to find distinct messages
m1 and m2 such that H.m1/ D H.m2/, then clearly the adversary can break the
signature scheme by requesting a signature � on m1 and offering � as a forgery on
m2. However, mere collision resistance is often not sufficient to achieve security.

The random oracle model, introduced by Bellare and Rogaway [12], is a heuris-
tic that often simplifies the analysis of constructions that use cryptographic hash
functions. In the random oracle model, one proves the security of a scheme in an
idealized world in which one pretends that hash functions behave like truly ran-
dom functions. This entails modifications to the definition of security and the attack
game. Instead of each hash function Hi W f0; 1gmi ! f0; 1gni that would normally
be given to the adversary as part of the public key, the adversary is given oracle
access to a function fi W f0; 1gmi ! f0; 1gni , controlled by the challenger, that
is chosen randomly from the set of all functions from f0; 1gmi ! f0; 1gni . (Since
the description of such a function requires space exponential in mi , the challenger
assigns the function incrementally as the adversary queries the oracle.) The intuition
motivating this heuristic is that, if the hash function’s output “looks random” to the
adversary, why should the adversary be better able to break a scheme that uses the
hash function than one that uses a truly random function?

It turns out that this intuition is not entirely correct; security in the random ora-
cle model does not necessarily imply security in the real world [13]. However,
known counterexamples to the heuristic are somewhat unnatural. So, security proofs
in the random oracle model still seem useful for validating natural cryptographic
constructions.

Reduction and Concrete Security

We illustrate how the notions that we have discussed so far – the security model,
complexity assumptions, and the random oracle model – come together by review-
ing the rather simple reduction of factoring to the security of the Rabin full-domain-
hash signature (Rabin-FDH) scheme in the random oracle model. This reduction is
also directly relevant to the lattice-based reduction of factoring to the security of
the Rabin partial-domain-hash (Rabin-PDH) signature scheme in the random oracle
model, described in Section “The Security of Rabin-PDH”.

A Rabin Full-Domain-Hash (Rabin-FDH) Signature Scheme:
Gen: Generate suitably large random primes p; q with p D 3 mod 8 and q D
7 mod 8. Set N D pq. Let H W f0; 1g� ! Z

�
N be a hash function. The secret

signing key is .p; q/. The public key is .N;H/.

Sign: Uniformly (but deterministically) pick � s.t. �2 D c �H.m/ mod N for c 2
f˙1;˙2g.
Verify: Confirm that �2 D c �H.m/ mod N for c 2 f˙1;˙2g.
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Remark 0.1. Since p D 3 mod 8 and q D 7 mod 8, c �H.m/ is a quadratic residue
for exactly one c 2 f˙1;˙2g for anyH.m/ 2 Z

�
N . For any quadratic residue in Z

�
N ,

there are four square roots. For reasons that will become clear shortly, the scheme
is secure only if, in the signing algorithm, the signer picks the same square root of
c �H.m/ each time it signsm. (Actually, it is fine if the signer sends �� instead, but
it cannot send one of the other two square roots.) The scheme is “full-domain-hash,”
since H ’s output range is all of Z

�
N .

Now, suppose that there is an adversary A that .t; q; "/-breaks the Rabin-FDH
signature scheme in the random oracle model. Then, we can construct an algo-
rithm B that .t 0; "0/-solves the factoring problem, where "0 > ." � 4=�.N //=2 and
t 0 D t C q � tmult C tgcd (where tmult is essentially the time needed to multiply two
numbers moduloN and tgcd the time needed to perform a certain gcd computation),
by interacting with A as follows.

The adversary A can make signature queries and queries to the random oracle
H . When A makes either a signature query or an H -query on mi and if A has not
queried mi before, B picks uniformly random values ri 2 Z

�
N and ci 2 f˙1;˙2g

and sets H.mi / D r2
i =ci mod N . It returns H.mi / as a response to A’s H -query

onmi . If A requests a signature onmi , B returns ri . Finally, at the end of this game,
A gives B a pair .m�; �/.

The interaction between B and A is called a simulation. Note that B is not a
“real signer,” since it does not know the factorization ofN , like a real signer would.
Despite this handicap, B tries to provide a perfect simulation for A of what would
happen if A interacted with a real signer. For this simulation to be perfect, the dis-
tribution of H -outputs and signatures in B’s simulation should be indistinguishable
from the real-world distribution; it is easy to verify that this is in fact the case in the
above simulation for Rabin-FDH, in the random oracle model. Since the simulation
is indistinguishable from the real world, A must win the simulated game in time t
with probability greater than ".

So, with probability greater than ", we have that �2 D c� � H.m�/ for some
c� 2 f˙1;˙2g, where A did not query a signature on m�. If A made no H -query
on m�, then A knows nothing about the value of H.m�/; in this case, � can be a
valid signature on m� only with probability 4=�.N /. If A did make an H -query
on m�, then B knows a value r� such that r�2 D c� �H.m�/ D �2 mod N . Since
A did not make a signature query on m�, A does not know which modular square
root of c� �H.m�/ is known by B. Thus, with probability 1=2, gcd.N; � � r�/ is a
nontrivial factor ofN . So, we obtain our desired result: B factorsN with probability
"0 > ." � 4=�.N //=2 in time t 0 D t C q � tmult C tgcd.

Notice that this reduction is quite tight. That is, B can .t 0; "0/-factor for values of
.t 0; "0/ that are quite close to the values .t; "/ for which A can .t; q; "/-break Rabin-
FDH. (A’s q queries are implicitly included in its time t .) Often in security proofs,
either t 0 or "0 degrades by a multiplicative factor of q or q2 from t or ". In a security
proof that we will see later, B solves its hard problem only with probability "0 � "2.
Obviously, all other things being equal, a tight reduction is preferable to a loose
one, because the former gives a better security guarantee. If a reduction is loose, one
should adjust the security parameter of the system upward to ensure that the system
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has sufficient “concrete security”; this makes the system less efficient. For example,
see [14] for a description of how, in the context of Schnorr signature schemes (like
DSA), one must use security parameters much larger than those used in practice
before the security proof becomes meaningful, since the security reduction is so
loose. See [15] for a survey on the concrete security approach.

We note that there are other ways of instantiating Rabin signatures. For example,
one can turn the signing operation into a permutation over Z

�
N , for N generated

as above, as follows. Let u be a modular square root of 1 with Jacobi symbol �1.
Then, f .x/ D abr2 is a one-way permutation over Z

�
N , where .a; b; r/ are the

unique values satisfying x D aubr 2 Z
�
N with a 2 f˙1g, b 2 f1; 2g, and r 2

Œ1; N=2� having Jacobi symbol 1. The signature for m is simply f �1.H.m//. The
disadvantage of this approach is that, for technical reasons, the reduction to factoring
is loose; if A succeeds with probability " and is permitted to make q signature
queries, B’s success probability is only about "=q.

Preliminaries: Coppersmith’s Algorithm

Several proofs of security discussed here are based on the following important result
due to Coppersmith [16].

Theorem 1 (Coppersmith). LetN be an integer and let f .x/ 2 ZN Œx� be a monic
polynomial of degree d . Then, there is an efficient algorithm to find all x0 2 Z such
that f .x0/ D 0 mod N and jx0j < N 1=d .

We will not discuss how Coppersmith’s algorithm works in this survey; instead,
we will use it as a black box. We denote the running time of Coppersmith’s
algorithm by TC .N; d/ when finding roots of polynomial f 2 ZŒx� of degree d .

Caveat Emptor

In this survey, we will provide informal “explanations of security.” Please do not
mistake these for genuine proofs of security, or infer that these explanations reveal
anything about the style or rigor of cryptographic proofs. Our explanations are
merely intended to be mostly convincing and to illustrate how some security proofs
use lattices.

The Security of RSA-OAEP and Rabin-OAEP

RSA is the most widely used public-key encryption scheme, and OAEP (optimal
asymmetric encryption padding) [17] is the most widely used method of “padding”
the plaintext message before applying the RSA permutation. Padding is necessary
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to prevent malleability attacks on RSA. Ifm were encrypted simply as c D me mod
N , an adversary could, for any a 2 Z

�
N and without knowing m, easily change the

ciphertext to c0 D ae � me mod N , which encrypts a � m mod N . This is an attack
we would like to prevent.

Bellare and Rogaway introduced OAEP and provided a proof that if f is a one-
way permutation, then f -OAEP is a chosen-ciphertext-secure encryption scheme
(in the random oracle model). Shoup [18] found an irreparable gap in their proof.
He proposed a new padding scheme, OAEPC, with a valid proof. However, it turns
out that one can prove (in the random oracle model) that f -OAEP is chosen-
ciphertext secure assuming the set partial-domain one-wayness of f – i.e., the
stronger assumption that, given f .skt/, it is hard to output a list (of reasonable
length) that contains s. For the RSA permutation, one can show that one-wayness
implies partial-domain one-wayness in two different ways, each of which uses lat-
tices. For low-exponent RSA (e.g., e D 3) and Rabin, one can use Coppersmith’s
method to recover skt from s very efficiently [18, 19]. For general-exponent RSA,
the reduction is much looser, since one must recover two partial pre-images (namely,
s1 and s2 of .s1kt1/e mod N and .s2kt2/e mod N , where s2kt2 D a.s1kt1/ mod N
for randomly chosen a) to recover one full pre-image by using lattices [20]. (Hence,
the probability of recovering a full pre-image is only about "2, if the probability of
recovering a partial pre-image is ".)

We review these results in more detail below.

Shoup Reconsiders OAEP

Let f be a one-way permutation on k-bit strings and f �1 its inverse. From any
such permutation f , the OAEP padding scheme, introduced in [17], induces an
encryption scheme as follows.
f -OAEP Encryption Scheme: The message space is f0; 1gn for n D k�k0�k1,

where k0 and k1 satisfy k0 C k1 < k and where 2�k0 and 2�k1 are very small.
The scheme uses two cryptographic hash functions G W f0; 1gk0 ! f0; 1gnCk1 and
H W f0; 1gnCk1 ! f0; 1gk0 , modeled as random oracles in the security analysis.

Gen: Run the key generation algorithm to obtain f and f �1, where .f;G;H/ is
the public key and f �1 is the private key.

Encrypt: Given the plaintextm 2 f0; 1gn, pick a random r 2 f0; 1gk0 and compute:

s 2 f0; 1gnCk1; t 2 f0; 1gk0 ; w 2 f0; 1gk; y 2 f0; 1gk

as follows

s D G.r/˚ .mk0k1/;

t D H.s/˚ r;
w D skt;
y D f .w/ :
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The ciphertext is y.

Decrypt: Given a ciphertext y, the decryption algorithm sets w D f �1.y/, splits w
appropriately into s and t , sets r D H.s/˚ t , and setsmkc D G.r/˚ s. If c D 0k1 ,
then the algorithm outputs m as the plaintext; otherwise, the algorithm rejects the
ciphertext, outputting only the error symbol ?.

In [17], Bellare and Rogaway claim that if f is a one-way permutation, then
f -OAEP is secure against adaptive chosen-ciphertext attack in the random oracle.
Shoup [18] demonstrates that the proof is flawed. Let us try to prove Bellare and
Rogaway’s claim ourselves to see where the flaw arises.

Let A be an algorithm that breaks the chosen-ciphertext security of f -OAEP;
from A, we would like to construct an algorithm B that inverts f – i.e., an algo-
rithm that, given random y� 2 f0; 1gk, returns w� D f �1.y�/ with non-negligible
probability. In the simulation, B’s responses to A’s queries to the G-oracle or H -
oracle are trivial. Specifically, B checks its log to see whether A has made the given
query before. If so, B responds as it did before; if not, it simply generates a random
string of the appropriate length, returns it to A as the result, and adds an entry in its
log recording A’s query and the response.

The difficult part of the proof is to show that B can respond appropriately to
A’s decryption queries and can gain information from A’s final output. Borrow-
ing Shoup’s notation, we observe that each ciphertext yi queried by A corresponds
implicitly to a unique value wi D sikti D f �1.yi /, which in turn induces values
for ri D H.si /˚ ti andmikci D G.ri /˚si . Similarly, if y� is the ciphertext that B
gives to A in the “Challenge” phase, it also induces values for w� D s�kt�, r�,m�,
and c�. Now, we can complete the proof if the following two related claims were
true.

� (Claim 1): The adversary A has an extremely small chance (specifically, a 2�k1

probability) of constructing a valid ciphertext yi – i.e., one for which ci D 0k1 –
unless it queries si to the H -oracle and ri to the G-oracle.

� (Claim 2): The adversary A cannot have any advantage in distinguishing which
message mb is encrypted by the challenge ciphertext y� unless it queries s� to
the H -oracle and r� to the G-oracle.

If these claims were true, then B could give a valid response to A’s decryption query
on yi with high probability as follows. By Claim 1, if the ciphertext is valid, A must
have (with high probability) queried si to H and ri to G. B searches in its log for
.ri ; si / by computing, for each pair .rj ; s`/ queried to the G and H oracles respec-
tively, the values tj` D H.s`/˚ rj , wj` D s`ktj`, and yj` D f .wj`/. If yj` D yi ,
then B concludes that .rj ; s`/ D .ri ; si /, and therefore the correct decryption of
yi is mikci D G.rj / ˚ s`; if ci D 0k1 , it returns mi to A. Otherwise, or if no
yj` D yi , B outputs ?, because it is overwhelmingly likely that A’s ciphertext yi

is invalid. B uses a similar strategy to compute f �1.y�/ from its interaction with
A. By Claim 2, if A wins with non-negligible advantage, A must have queried s� to
H and r� to G with non-negligible probability; B finds these values in its log and
outputs w� D f �1.y�/ D s�kt�, where t� D H.s�/˚ r�.
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These claims seem to make sense intuitively: even if A knows the f -inverse
w D skt of its query yi or the challenge y�, how can it know r unless it queries s
to H (to compute r D H.s/ ˚ t), and how can it know anything about the value
of G.r/˚ s – i.e., either that its last k1 bits are 0 (as needed for a valid ciphertext)
or whether its first n bits correspond to m0 or m1 (as needed to “win” the game) –
unless it knows r and queries r to G?

Unfortunately, though, the claims are false. While it is true, for example, that A
cannot (except with extremely small probability) generate a valid ciphertext yi from
scratch without querying the implicit values si to H and ri to G, it might be able to
do so without querying ri to G by modifying the ciphertext y� that B gives to A in
the Challenge phase. Specifically, suppose that A can compute w� D f �1.y�/ D
s�kt�, and that it sets:

si D s� ˚ .�k0k1/;

ti D t� ˚H.s�/˚H.si /;
wi D sikti ;
yi D f .wi /;

where � is any n-bit string. A can make these computations without querying G,
and yet yi is a valid ciphertext if y� is. In particular, if y� encrypts m�, then yi

encrypts m� ˚ �, since ti D t� ˚H.s�/˚H.si / D H.si /˚ r� and si D s� ˚
.�k0k1/ D G.r�/ ˚ ..m� ˚ �/k0k1/. Basically, A borrows the r�-value from
B’s ciphertext. The reason that A can do this is that, in contrast to the “intuition”
behind the OAEP proof, A does know something about the value ri implicit in
its chosen ciphertext yi – namely, that ri D r�. It also knows something about
si ˚ G.ri / despite not knowing ri – namely, that the last k1 bits of si ˚ G.ri / are
0k1 , assuming y� is a valid ciphertext. Since we cannot upper-bound the probability
that A can construct a valid ciphertext yi without querying ri to G, B’s strategy
for answering decryption queries – i.e., searching its log for .ri ; si / – no longer
works. Similarly, one can no longer claim that A has negligible advantage in the
game unless it queries r� to G with non-negligible probability, since A can gain
information aboutmb by querying the ciphertext described above, which ostensibly
encryptsmb˚�. Shoup [18] proves that this gap in the proof cannot be filled; there
exists an oracle relative to which the OAEP scheme is actually insecure.

OAEPC: A Way to Fix OAEP

Shoup [18] proposed a way to fix OAEP, called OAEPC. The f -OAEPC encryption
scheme is the same as the f -OAEP encryption scheme, except that in f -OAEPC
one sets

s D .G.r/˚m/kH 0.rkm/ ;
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where H 0 W f0; 1gnCk0 ! f0; 1gk1 is an additional hash function, and the output
range ofG is changed to f0; 1gn. In the decryption algorithm, one checks that the last
k1 bits of s equalH 0.rkm/; if not, the output is ?. Shoup provides a rigorous proof
that f -OAEPC is secure (in the random oracle model) against chosen-ciphertext
attack if f is a one-way permutation. The proof is lengthy and does not use lattices,
but for completeness, we provide an informal argument for its security here.

Roughly speaking, the reason f -OAEPC is secure is that Claims 1 and 2 are
true for f -OAEPC (except that r is queried to either G or H 0 and the definition of
a valid ciphertext is different), which allows B to compute w by searching its logs for
.r; s/, as in the OAEP proof. We have already shown that the claims are true, even
for f -OAEP, for the s term; it remains to show that the claims are true for the r term.
Consider how B responds to A’s decryption query yi in the f -OAEPC simulation.
Notice that there is a bijection between pairs .ri ; mi / and valid ciphertexts yi . When
A queries rikmi toH 0, B logs the corresponding ciphertext yi . When A queries yi ,
B responds with mi , if yi is in the log; otherwise, it outputs ?. The reason that
this response is valid with overwhelming probability is that, to ensure that its query
yi has better than a 2�k1 probability of being a valid ciphertext, A must query H 0
at .rikmi /, since the values of H 0.rj kmj / for .rj ; mj / ¤ .ri ; mi / (including the
value ofH 0.r�km�/) give A no information about the value ofH 0.rikmi /.

Now, consider how B computes w� from A’s queries. If A queries r� to G, then
B can find .r�; s�/, and we are done. Suppose A does not query r� to G. Querying
a ciphertext yi , where ri ¤ r�, gives A no information about m�, since G.r�/
remains completely random from A’s perspective; thus, A must query yi ¤ y�
such that ri D r� to have non-negligible advantage. But, as we saw above, A must
queryH 0 at rikmi D r�kmi for yi to have a non-negligible chance of being valid.

OAEP is Still Secure When Applied to Low-Exponent RSA

Shoup uses a lattice-based approach to show that RSA-OAEP is nonetheless secure
when the encryption exponent e is very small (e.g., 3) and k0 � .logN/=3. The
proof basically relies on the following weaker claims.

� (Claim 1b): The adversary A has an extremely small chance (specifically, a 2�k1

probability) of constructing a valid ciphertext yi – i.e., one for which ci D 0k1 –
unless it queries si to the H -oracle.

� (Claim 2b): The adversary A cannot have any advantage in distinguishing which
message mb is encrypted by the challenge ciphertext y�, unless it queries s� to
the H -oracle.

To see that they are true, note that if A does not query si toH prior to offering yi

as a ciphertext, then the value of ri is random and independent from A’s perspective,
even if A knows wi . Thus, G.ri / is random and independent from A’s perspective,
and A can expect that the last k1 bits ofH.si /˚ ti are 0 only with probability 2�k1 .
Similarly, if A does not query s�,G.r�/ appears random and independent to A, and
A has no information aboutmb .
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Here is the simulation. B responds to A’s decryption query yi as follows. By
Claim 1b, if yi is a valid ciphertext, A must have (with high probability) queried si
to H . The pair .si ; yi / satisfies the equation .2k0si C ti /e D yi mod N for some
k0-bit integer ti . To find si in its log, and to compute ti , B applies Coppersmith’s
algorithm to the equation .2k0sj C x/e D yi mod N for each sj in its H -log.
When sj D si , Coppersmith’s algorithm returns x D ti , since .2k0/e � N . If
no invocation of Coppersmith’s algorithm returns a suitable ti , B returns ?, since
si is not in its H -log, and therefore yi is an invalid ciphertext with overwhelm-
ing probability. Otherwise, having recovered the pair .si ; ti / corresponding to yi , B
computes ri D H.si /˚ ti andmikci D G.ri /˚ si and returnsmi or?, depending
on whether or not ci D 0k1 . (If ri was not previously queried to G, B assigns a
value to G.ri / and makes an entry in its log.) By Claim 2b, if A has non-negligible
advantage in the game, s� is in B’s H -log with non-negligible probability, and B
can similarly recover w� D s�kt� using Coppersmith’s algorithm. The simulation
might be imperfect if B assigns a value toG.ri / for ri D r� that is inconsistent with
the implicit value of G.r�/ in y� (this is precisely the “attack” on OAEP described
above); then, A might abort. But, this can happen only with negligible probability,
if A does not query s� to H , since in this case the value r� is independent of A’s
view.

Notice that the reduction here is tighter than for general-exponent OAEPC, since
B can respond to decryption queries by stepping through just its H -log, rather than
testing pairs of queries from two different logs. The reduction is similarly tight for
low-exponent RSA-OAEPC.

RSA-OAEP is Secure for General Exponent

Fujisaki et al. provide two significant results in [20]. First, they prove that f -OAEP
is chosen-ciphertext secure in the random oracle model, if f has a “set partial-
domain one-wayness” property. Next, using lattices, they show that one-wayness
implies set partial-domain one-wayness in the case of RSA. Combining these
results, we have that RSA-OAEP is chosen-ciphertext secure in the random oracle
assuming the RSA problem is hard.

Basically, f is partial-domain one-way if, given f .s; t/, it is hard to recover s.
More formally, the .`; t; "/-set partial-domain one-wayness of f , means that for
any adversary A that outputs a set S of ` elements in time t , the success probabil-
ity Succs�pd�ow.A/ is upper-bounded by ", where Succs�pd�ow.A/ D Prs;t Œs 2
A.f .s; t//�.

Their first result is as follows:

Theorem 2. Let A be an adaptive chosen-ciphertext adversary against f -OAEP
that runs in time t , has advantage ", and makes qD , qG and qH queries to the
decryption oracle and the hash functions G and H respectively. Then one can can
construct an algorithm B such that Succs�pd�pw.B/ is greater than
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"

2
� 2qDqG C qD C qG

2k0
� 2qD

2k1
;

that runs in time t 0 � tCqGqH .Tf CO.1//, where Tf denotes the time complexity
of f .

The simulation requires a stronger first claim than that for RSA-OAEP with low
exponent.

� (Claim 1c): Until the adversary A queries H at s�, A has an extremely small
chance (specifically, a 2�k1 probability) of constructing a valid ciphertext yi –
i.e., one for which ci D 0k1 – unless it queries si to the H -oracle and ri to the
G-oracle.

� (Claim 2c): The adversary A cannot have any advantage in distinguishing which
message mb is encrypted by the challenge ciphertext y�, unless it queries s� to
the H -oracle.

Using these stronger claims, the simulation works as follows. To respond to A’s
decryption query yi before A has queried H at s�, B responds as in the proof of
f -OAEPC; it searches its logs for .ri ; si / and responds appropriately. By Claim 1c,
.ri ; si / will be in B’s logs with high probability, if yi is valid. B need not respond
appropriately to A’s decryption queries after A has queried s� to H , for by that
point B will already know s�. At the send of the simulation, B outputs its list of A’s
H -queries; if A’s advantage is non-negligible, then by Claim 2c, s� will be in this
list with non-negligible probability.

Here is an informal description of why Claim 1c is true. Unless A queries G
at ri or unless ri D r�, the value of G.ri / is completely random and independent
from A’s perspective. If A does not query G at ri and if ri ¤ r�, there is therefore
only a 2�k1 chance that the last k1 bits of G.ri / ˚ si are 0k1 , as required for a
valid ciphertext. To query ri , A must compute ri D H.si /˚ ti – i.e., queryH at si ;
otherwise, it has only a negligible chance of guessing ri , even if it knows wi D sikti .
Thus, either A queries si to H and ri to G, as claimed, or ri D r�. However, r� is
random and independent of A’s view until A queries H at s�; thus, there is only a
negligible probability that ri happens to equal r�.

So far, we have shown that f -OAEP is secure against adaptive chosen cipher-
text attack in the random oracle model assuming that f is set-partial-domain
one-way. Now, suppose A is an algorithm that .t; "/-breaks the set-partial-domain
one-wayness of f ; how do we construct an algorithm B from A that .t 0; "0/-inverts
f , where .t 0; "0/ are polynomially related to .t; "/?

We already know how to construct B when f is the low-exponent RSA permu-
tation: B simply runs A once, obtains from A a list that contains s� with probability
", and applies Coppersmith’s algorithm sequentially to the items in the list until it
computes s�kt�. But, when the encryption exponent is large, Coppersmith’s algo-
rithm no longer works. How do we compute s�kt� from a list containing s�, when
the encryption exponent is large?

We don’t. As described in [20], B runsA twice (or perhaps more times if needed).
Specifically, to compute w such that we D y, it runs A first on y and then on aey
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for random a 2 ZN . A returns two lists – the first containing s1 such that w D
2k0s1C t1 mod N and the second containing s2 such that aw D 2k0s2C t2 mod N ,
where t1; t2 2 Œ0; 2k0 � 1�. This gives us the equations:

.2k0s2 C t2/ D a.2k0s1 C t1/ mod N

) at1 � t2 D 2k0.s2 � as1/ mod N ;

which is a linear modular equation in the unknowns t1 and t2, which are known
to have solutions smaller than 2k0 . If 2k0 is small enough in comparison to N and
if there are not “too many” candidate solutions, we can find .t1; t2/ using lattices.
Unfortunately, the reduction is quite loose; since A is run twice, B’s success prob-
ability is quadratic in A’s success probability, and B’s computation is potentially
much higher than A’s, since it must reduce lattices for pairs of items on the two
lists. Nonetheless, it completes the first proof of security for RSA-OAEP. We give
the details below.

For the above equation, let us call a solution .t 01; t 02/ “small” if .t1; t2/ 2 Œ0; 2k0 �
1�2. The following lemma [20] bounds the probability that .t1; t2/ is not a unique
small solution to the above equation.

Lemma 1. Let t1 and t2 be smaller than 2k0 . Let a be randomly chosen from Z
�
N ,

and let c D at1 � t2. Then, the probability (over the choice of a) that .t1; t2/ is not
a unique small solution to the equation ax � y D c mod N is at most 22k0C6=N .
If unique, the solution can be found in time O.log2 N/.

To see that this lemma is true, consider the lattice La D f.x; y/ 2 Z
2 W ax�y D

0 mod N g. Let P D f.0; 0/ ¤ .x; y/ 2 Z
2 W x2Cy2 � 22k0C4g. Clearly, if La has

no vector in P , then if a small solution to at1 � t2 D c mod N exists, it is unique.
Moreover, roughly speaking, each P -vector .x0; y0/ is associated to a lattice La for
only one value a 2 ZN – namely a D y0=x0 mod N . (We have oversimplified a bit
here; this fails in the rare case that gcd.x0; N / > 1.) Thus, the number of lattices
La with a P -vector is at most the number of P -vectors, which is approximately
	22k0C4 < 22k0C6, the desired result.

If La has no P -vector, finding T D .t1; t2/ amounts to a closest vector problem.
Specifically, let T 0 be some solution to ax � y D c mod N , and let v be the La-
vector closest to T 0. Then, T D T 0 � v, since T is the only vector in T C La

shorter than 2k0C1=2 (since La has no P -vector). Solving the closest lattice vector
problem for a two dimensional lattice is not difficult, but Fujisaki et al. show that it is
particularly easy for the lattice La and point T 0. First, apply the Gaussian algorithm
to La to obtain a reduced basis .b1; b2/. Then, compute v simply by computing the
coefficients .c01; c02/ such that T 0 D c01b1 C c02b2 and then setting v D bc01eb1 C
bc02eb2, where bc0ie is the integer closest to c0i . This works because if one expresses
T as c1b1C c2b2, then �1=2 < c1; c2 < 1=2. To see this, note that since hb1; b2i �
kb1k2=2, we get:

kT k2 D c2
1kb1k2 C c2

2kb2k2 C 2c1c2hb1; b2i � .c2
1 C c2

2 � c1c2/kb1k2
D ..c1 � c2=2/

2 C 3c2
2=4/kb1k2 � .3c2

2=4/kb1k2 :
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Since kT k2 < 22k0C1 and kb1k2 � 22k0C4, we get .3c2
2=4/ < 1=8 ) jc2j <p

1=6. By switching c1 and c2 in the inequalities above, we also conclude that
jc1j <

p
1=6.

Lemma 1, combined with the abovementioned approach for reducing the one-
wayness to the set partial-domain one-wayness of RSA, leads to their main theorem:

Theorem 3. Let A be an adaptive chosen-ciphertext adversary for RSA-OAEP, with
a k-bit modulus with k > 2k0, that runs in time t , has advantage ", and makes
qD , qG and qH queries to the decryption oracle and the hash functions G and H
respectively. Then one can can construct an algorithm B such that solves the RSA
problem with probability at least

"2

4
� " �

�
2qDqG C qD C qG

2k0
C 2qD

2k1
C 32

2k�2k0

�
;

that runs in time t 0 � 2t C qH � .qH C 2qG/ �O.k3/.

SAEP: A Simplification of OAEP

Boneh [19] noticed that OAEP, which can be viewed as a two-round Feistel cipher,
can actually be simplified to a one-round Feistel cipher. He proposed simplified
padding schemes, SAEP and SAEP+, as follows. Let G W f0; 1gk0 ! f0; 1gnCk1

andH W f0; 1gnCk0 ! f0; 1gk1 be hash functions. Let the message space be f0; 1gn.
Then:

SAEP.m; r/ D skr; where s D G.r/˚ .mk0k1/ ;

SAEP+.m; r/ D skr; where s D G.r/˚ .mkH.m; r// :

Here, we will focus on SAEP, and particularly on Rabin-SAEP.
In Rabin-SAEP, the sender encrypts a message m by choosing random

r 2 f0; 1gk0 , computing w D SAEP.m; r/, and sending the ciphertext y D w2 mod
N . To decrypt, the recipient uses its knowledge of N ’s factorization to compute all
of the modular square roots w of y. (IfN is the product of two primes, there are four
of them.) For each w D skr , it sets mkc D G.r/˚ s and tests whether c D 0k1 . If
all tests fail, it outputs ?. If a test succeeds, it outputsm. (If k1 is reasonably large,
it is unlikely that more than one test will succeed.)

Boneh provides a very efficient reduction of factoring to the security of Rabin-
SAEP. His main theorem is as follows:

Theorem 4. Let A be an adaptive chosen-ciphertext adversary for Rabin-SAEP a
k-bit modulusN with k > 2k0, n < k=4, and nCk1 < k=2 that runs in time t , has
advantage ", and makes qD and qG queries to the decryption oracle and the hash
function G respectively. Then one can can construct an algorithm B that factors N
with probability at least
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1

6
� "
�
1� 2qD

2k1
� 2qD

2k0

�
;

that runs in time t 0 D t CO.qDqHTC C qDT
0
C /. Here TC D TC .N; 2/ and T 0C D

TC .N; 4/.

Recall that TC .N; d/ denotes the time complexity of Coppersmith’s algorithm for
finding small roots of a d -degree polynomial moduloN . Notice that the requirement
n < k=4 severely constrains the message space. However, this is fine for the typical
setting of using 1024-bit modulus to encrypt a 128-bit session key.

From here onward, assume N is the product of two primes. The proof of this
theorem relies on the following (slightly numerically inaccurate) claims:

� (Claim 1d): A has an extremely small chance (specifically, a 2�k1C2 probability)
of constructing a valid ciphertext yi – i.e., one for which ci D 0k1 – unless it
queries some ri to the G-oracle or some ri equals some r�.

� (Claim 2d): The adversary A cannot have any advantage in distinguishing which
message mb is encrypted by the challenge ciphertext y�, unless it queries some
r� to the G-oracle or makes a decryption query yi such that some ri equals
some r�.

Since Rabin encryption – i.e., modular squaring – is not a permutation, we use
the phrase “some wi ” to refer to any one of the several modular square roots of yi .
(There are four possible values of wi when N is the product of 2 primes.) Once we
have fixed a value for wi , it induces values for si and ri . By “some r�,” we mean
one of the (four) r�-values induced by the challenge ciphertext y�.

Informally, the first claim is true, since unless A queries G at some ri or unless
some ri equals some r�, the values of G.ri / for all ri are completely random and
independent of what A knows. So, if A does not query G at some ri and if no
ri equals no r�, there is therefore only a 2�k1C2 chance that the last k1 bits of
G.ri /˚ si are 0k1 for any ri , as required for a valid ciphertext. The second claim is
true basically for the same reason: unless A queries G at some r� or gains indirect
information about some G.r�/ by querying a ciphertext yi , where some ri equals
some r�, the value of G.r�/ for all r� is completely random and independent of
what A knows, and thereforemb as well.

Assuming the claims are true, here is how the simulation works.B picks a random
w 2 Z

�
N and sets y� D w2 mod N . When A queries the ciphertext yi , B searches its

logs for an ri by applying Coppersmith’s algorithm to the equation .2k0xC rj /2 D
yi mod N for every value rj that A has queried to the G-oracle. B concludes that
rj D ri when Coppersmith’s algorithm outputs a solution x satisfying 0 � x <

2k�k0 D 2nCk1 <
p
N ; it sets wi D rjkx and then finishes decryption in the usual

way. If B fails to find ri , it concludes (by Claim 1d) that ri D r�, or yi is almost
certainly invalid. Dealing with the first possibility is the tricky, and interesting, part
of this simulation. If ri D r� (we are supressing the term “some”), we have that
wi D w� C 2k0Ck1� for j�j < 2n < N 1=4. In other words, if we define the
polynomials
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f .x/ D x2 � y� and g.x; z/ D .x C 2k0Ck1 z/2 � yi ;

then we have that f .w�/ D g.w�; �/ D 0 mod N . Unfortunately, w� is not neces-
sarily small, which seems to block Coppersmith’s algorithm. We would like to find
a univariate polynomial h.z/ such that � is a (small) root of h.z/ mod N .

Fortunately, we can do exactly that by setting h.z/ to be Resx.f; gz/, the resultant
of f .x/ and gz.x/ D g.x; z/ (eliminating the variable x). Recall that the resultant h
of polynomials f .x/ D fdf

xdf C � � � C f0 and gz.x/ D gz;dg
xdg C � � � C gz;0 is

defined as:

Resx.f; gz/ D f dg

df
g

df

dg

dfY

iD1

dgY

jD1

.˛i � ˇj / ;

where f˛ig and fˇj g are the roots of f and gz, respectively. Of course, B does not
know the roots of f and gz. Fortunately, the resultant can be computed without
knowing the roots. In particular, the resultant is the determinant of the following
Sylvester matrix (for df D dg D 2), which uses only the coefficients of f and gz:

Sf;gz D

2

664

f2 f1 f0 0

0 f2 f1 f0

gz;2 gz;1 gz;0 0

0 gz;2 gz;1 gz;0

3

775 :

Since each gz;i is a polynomial of degree at most 2 in z, the resultant h.z/ has
degree at most 4. We know that Resx.f; g�/ D 0, since f and g� have the com-
mon root w�; thus, h.�/ D 0. Since� < N 1=4, B can use Coppersmith’s algorithm
on h.z/ to recover �, after which it is easy to recover w�. If Coppersmith’s algo-
rithm fails to return a satisfactory �, B concludes that yi is an invalid ciphertext
and returns ?. At last, we have finished describing how B responds to decryption
queries.

By Claim 2d, if A has non-negligible advantage in the game, A must query some
r� to G, in which case, B can recover some w� using Coppersmith’s algorithm for
degree 2, as described above, or A must query a ciphertext yi for which some ri
equals some r�, in which case, B recovers some w� using Coppersmith’s algorithm
for degree 4. But, notice that B reveals nothing (even information-theoretically) in
the simulation about which square root w of y� that it used to generate y�, and it
does not use its knowledge of w to compute w�. Thus, it is likely that w� ¤ w, and in
fact (ignoring some messiness caused by the fact that Œ0; N � 1� ¤ Œ0; 2k � 1�) there
is basically a 1/2 probability that B obtains a nontrivial factor of N by computing
gcd.w� w�; N /.
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Compressing Rabin Signatures and Ciphertexts

Simple Techniques to Get Short Rabin Signatures

Recall that the signature � of a message m in a Rabin full-domain-hash (Rabin-
FDH) signature scheme is essentially a modular square root of H.m/, up to some
“fudge factor.” For example, in the scheme described in Section “Reduction and
Concrete Security”, � must satisfy �2 D c � H.m/ mod N for fudge factor c 2
f˙1;˙2g. Here, the hash functionH W f0; 1g� ! Z

�
N maps messages to essentially

the “full domain” moduloN .
Bernstein [21] mentions that one can simply remove the 1

e
logN , least significant

bits of a Rabin (i.e., e D 2) or RSA signature, and the verifier can use Coppersmith’s
algorithm to recover those bits. The verifier then completes signature verification
in the usual way. This technique cuts down the number of bits in a Rabin-FDH
signature down to .logN/=2.

Bleichenbacher [22] describes a different technique that achieves the same space-
efficiency. In his scheme, the signer uses continued fractions to express the signature
� as a=b.modN/, where a is about e�1

e
logN bits and b is at most 1

e
logN bits;

the signer sends a as the signature. The advantage of Bleichenbacher’s approach
over Bernstein’s is that it preserves an advantage of Rabin signatures: fast sig-
nature verification. The verifier simply checks that, for some c 2 f˙1;˙2g,
B D ae=cH.m/.modN/ is an eth power (namely be) in Z.

The security of both schemes follows immediately from the security of the under-
lying Rabin-FDH scheme, since anyone, without knowing any secrets, can express
a Rabin-FDH signature compactly (whether by truncation or continued fractions)
and obtain the original Rabin-FDH signature from its compact expression (as part
of the verification process).

Disadvantages of the Simple Techniques

Bernstein’s and Bleichenbacher’s simple techniques, while allowing short Rabin
signatures, are not really lossless “compression” algorithms in the usual sense.
The verifier cannot recover the Rabin-FDH signature solely from the compact
Rabin signature; it also needs the value of H.m/. This requirement has some
disadvantages.

First, it is incompatible with a different technique for constructing space-efficient
signature schemes, called message recovery. In a signature scheme with message
recovery, the signer does not need to send the message m along with its signature
� , because the verifier can recover m from � during verification. The motiva-
tion for message recovery is that it reduces the total bit-length of the information
needed to verify the signature, which includes not only the signature itself, but also
the message being signed. For the simple techniques above, the total verification
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information is at least .logN/=2 bits longer than the message. On the other hand,
suppose that m 2 f0; 1gn is signed by setting � to be a modular square root (up
to the fudge factor) of G.m/k.m˚H.G.m///, where G and H are hash functions
modeled as random oracles, and G’s output is 160 bits. In this case, the total verifi-
cation information can be as little as 160 bits longer than m. (However, we remark
that Bernstein’s and Bleichenbacher’s simple techniques certainly perform better
than basic Rabin-FDH, as outlined in Section “Reduction and Concrete Security”,
which does not allow message recovery.)

Second, and perhaps more importantly, the simple techniques above are not
very versatile; e.g., they do not lead to “compressed versions” of encryption,
signcryption, ring signature, or aggregate signature schemes (the last being a scheme
that allows multiple signatures to be aggregated into a single short signature).
The reason, essentially, is that the techniques above ruin an important property
of the Rabin and RSA operations – that they are permutations (well, almost, in
the case of some Rabin instantiations). Trapdoor one-way permutations are a very
versatile cryptographic tool that can be used to construct many different types of
cryptosystems.

The rest of this section will be directed toward describing a more versatile com-
pression technique. In particular, we will describe a trapdoor “quasi-bijection” that
remains one-way, assuming factoring N is hard, even though the domain and range
are small subsets of Z=NZ (e.g., Œ0; cN 2=3� for constant c). This enables com-
pressed versions of a variety of cryptographic schemes that use modular squaring
as a one-way function. For example, one can reduce the length of Rabin ciphertexts
by about 33% without reducing security. Along the way, we review Vallée’s elegant
analysis of the distribution of numbers with small modular squares and the proof
of security for the Rabin partial-domain-hash (Rabin-PDH) signature scheme (in
which H hashes to a small subset of Z=NZ).

The Distribution of Numbers with Small Modular Squares

In the process of constructing a factoring algorithm with low provable runtime,
Vallée [23, 24] constructed a polynomial-time lattice-based algorithm for sampling
elements “quasi-uniformly” fromBN;h;h0 D fx 2 Œ0; N=2/ W h � x2.modN/ < h0g
for h0 � h D 8N 2=3. By sampling “quasi-uniformly,” we mean that, for each x 2
BN;h;h0 , the probability that x is sampled is between `1=jBN;h;h0j and `2=jBN;h;h0j
for constants `1 and `2 independent of N . In the rest of this section, we will use
“quasi-” to mean “up to a multiplicative constant.”

The first step in Vallée’s quasi-uniform algorithm for sampling elements of
BN;h;h0 is to reduce it to a set of local problems by using Farey sequences.

Definition 11 (Farey Sequence). The Farey sequence Fk of order k is the ascend-
ing sequence .0

1
; 1

k
; : : : ; 1

1
/ of fractions ai

bi
with 1 � ai � bi � k and gcd

.ai ; bi / D 1.
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The characteristic property of Farey sequences is the following [25]:

Fact: If ai

bi
and aiC1

biC1
are consecutive in Fk , then biaiC1 � aibiC1 D 1.

Farey sequences lead naturally to the notion of a Farey partition, in which the set of
mediants partition the interval Œ0; N=2/ into subintervals.

Definition 12 (Farey Partition). The Farey partition of order k of the interval
Œ0; N=2/ is the set of Farey partition intervals

J.ai ; bi / D
�
.ai�1 C ai /N

2.bi�1 C bi /
;
.ai C aiC1/N

2.bi C biC1/

�

where ai

bi
is the i -th term in Fk , together with an interval at each end covering the

uncovered portion of Œ0; N=2/.

Vallée found it convenient to use another set of intervals I.ai ; bi /, called “Farey
intervals,” that are related to Farey partition intervals.

Definition 13 (Farey Interval). The Farey interval I.ai ; bi / of order k is the open
interval with center ai N

2bi
and radius N

2kbi
, where ai

bi
is the i -th term in Fk .

One can easily prove that I.ai ; bi / contains J.ai ; bi /, and that the interval I.ai ; bi /

is no more than twice as wide as the interval J.ai ; bi /. One can also prove that every
number in Œ0; N=2/ is covered by at least one and at most two Farey intervals. Vallée
probably favored using the Farey intervals rather than the J.ai ; bi / in her analysis,
because (roughly speaking) I.ai ; bi /’s symmetry about aiN=2bi permits cleaner
computations. A “Farey covering” is then defined in the expected way.

Definition 14 (Farey Covering). The Farey covering of order k of the interval
Œ0; N=2/ is the set Farey intervals I.ai ; bi / of order k.

Although Vallée’s analysis and her sampling algorithm focus on Farey intervals,
we will state her algorithm here with respect to Farey partition intervals, since it is
slightly simpler to state this way (and it works equally well).

Vallée’s Sampling Algorithm (High Level):

1. Set k D N 1=3=4 and set h and h0, so that h0 � h � 8N 2=3.
2. Sample an interval J.ai ; bi / from the Farey partition of order k with probability

quasi-proportional to jJ.ai ; bi /\ BN;h;h0j.
3. Sample an element from J.ai ; bi / \ BN;h;h0 , quasi-uniformly.

Vallée demonstrates two facts regarding Farey intervals (for suitable k, h and h0 as
above), which also apply to Farey partition intervals:

� Fact 1: jJ.ai ; bi / \ BN;h;h0 j is quasi-proportional to jJ.ai ; bi /j.
� Fact 2: There is an efficient algorithm to sample from J.ai ; bi / \ BN;h;h0

quasi-uniformly.
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By Fact 1, the second step of Vallée’s algorithm is easy: select x uniformly from
Œ0; N=2/ and use continued fractions to compute 0 � ai � bi � k, such that
x 2 J.ai ; bi /. Fact 2 is nontrivial. Together, these facts imply that Vallée’s algorithm
samples quasi-uniformly from BN;h;h0 . Both facts stem from Vallée’s analysis of
how BN;h;h0-elements are distributed in I.ai ; bi /, which we now describe.

Consider the problem of sampling a BN;h;h0-element quasi-uniformly from
I.ai ; bi /. Let x0 be the integer closest to ai

2bi
and let u0 D x0 � ai

2bi
. Let L.x0/

be the lattice generated by the vectors .1; 2x0/ and .0;N /. Let x 2 I.ai ; bi /

and let x D x0 C u. Then, x is in BN;h;h0 \ I.ai ; bi / precisely when h �
x2

0 C 2x0u C u2.modN/ < h0. But, this is true precisely when there is a w such
that .u;w/ 2 L.x0/ and h � x2

0 C w C u2 < h0. The latter requirement implies
that .u;w/ is in between the two parabolas defined, in variables u0 and w0, by the
formulas x2

0 C w0 C u02 D h and x2
0 C w0 C u02 D h0. Thus, we have reduced the

problem of sampling BN;h;h0-elements from I.ai ; bi / to the problem of sampling
L.x0/-points that lie the region bounded by two parabolas and the vertical lines
marking the beginning and end of I.ai ; bi /. Denote this region by R.ai ; bi /, and
denote the set of L.x0/-points in R.ai ; bi / by P.ai ; bi /.

How do we sample quasi-uniformly from P.ai ; bi /? Indeed, this seems like a
difficult task, since finding all of the L.x0/-points on a single parabola is equivalent
to finding all of a number’s modular square roots, which is equivalent to factoring.
However, since h0 � h > 0, the region R.ai ; bi / has some “thickness.” How thick
does R.ai ; bi / need to be before we can efficiently sample P.ai ; bi /-points quasi-
uniformly? It depends in part on how short our basis .r; s/ of L.x0/ is. Vallée gives
the following short basis of L.x0/, with one basis vector being “quasi-horizontal”
(since j2bi u0j � jbi j) and the other being “quasi-vertical”:

r D bi .1; 2x0/ � ai .0;N / D .bi ; 2bi u0/ ;

s D bi�1.1; 2x0/� ai�1.0;N / D .bi�1;
N

bi

C 2bi�1u0/ :

Now, the intuition is that if we set h0�h to be large enough,R.ai ; bi / eventually
becomes so thick that most quasi-horizontal lines – by which we mean lines paral-
lel to r that contain P.ai ; bi /-points – will intersect R.ai ; bi / in (at least) one line
segment of length � krk. Clearly, any line intersects R.ai ; bi / in at most two seg-
ments. If we know that a quasi-horizontal line ` intersects R.ai ; bi / in segments of
lengths s1; s2 with some si � krk, we obtain fairly tight lower and upper bounds on
the number of P.ai ; bi /-points on ` without needing to count those points directly –
namely, the bounds bs1=krkc C bs2=krkc and ds1=krke C ds2=krke, respectively,
which differ by at most a factor of 3. These quasi-tight bounds on the number of
P.ai ; bi /-points on most of the quasi-horizontal lines will help us sample from
P.ai ; bi / quasi-uniformly.

But, is there a single small value of h0�h that works for all .ai ; bi /? To convince
ourselves there is, let us consider the shape of R.ai ; bi / in more detail. Like Vallée,
we can view R.ai ; bi / as being composed of three subregions: the “chest” (the top
part), the “legs” (the two subregions extending downward and outward), and the
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“feet” (the left foot basically begins where the vertical line marking the beginning
of I.ai ; bi / intersects the left leg). Notice that, for a fixed value of h0 � h, a smaller
value of bi means that I.ai ; bi / has a larger radius and thus the legs extend further
and are narrower (in the quasi-horizontal direction) toward the feet. At first, it may
seem that a large value of h0�h is necessary for the quasi-tight bounds above to hold
forR.ai ; bi /’s long tapered legs when bi is small. But, fortunately, r is shorter when
bi is smaller, in exactly the right proportion so that the same value of h0 � h will
work for all .ai ; bi /. So, in retrospect, it becomes clear why using Farey intervals
was a good choice.

For suitable k, h, and h0 as above, Vallée shows that the quasi-tight bounds hold
for quasi-horizontal lines intersecting the legs. She then shows that only a con-
stant number of quasi-horizontal lines intersect the chest or feet. Since there are
so few quasi-horizontal lines in the chest and feet, Vallée obtains quasi-tight bounds
on the total number of P.ai ; bi /-points (via integration), despite having no lower
bounds on the number of P.ai ; bi /-points in the chest and feet. These quasi-tight
bounds show that the number of P.ai ; bi /-points is quasi-proportional to the width
of I.ai ; bi /. (See [23,24] for the computations.) Moreover, they allow us to complete
Step 3 of her algorithm, as follows. (A similar algorithm pertains to J.ai ; bi /.)

Algorithm to Sample Quasi-Uniformly from I.ai ; bi /\ BN;h;h0:

1. Approximate the number of points in P.ai ; bi /: Compute x0 D bai N
bi
e, count

exactly the number ncCf of points in the chest and feet, and obtain a lower
bound nl on the number of points in the legs using Vallée’s lower bounds.

2. Pick a point from P.ai ; bi /: Randomly select an integer in t 2 Œ1; ncCf C nl �

with uniform distribution. If t � ncCf , output the appropriate point from the
chest or feet. Else, determine which quasi-horizontal line would contain the
.t�ncCf /

th point in the legs if each line met Vallée’s lower bounds and randomly
choose a point in P.ai ; bi / on that line with uniform distribution.

3. Output element associated to chosen P.ai ; bi /-point: Let .u;w/ be the lattice
point output by the previous step. Set x D x0 C u.

The Security of Rabin-PDH

Building on Vallée’s work, Coron proved the security of the Rabin partial-domain
hash (Rabin-PDH) signature scheme in the random oracle model, which, despite the
absence of a security proof, had already been included in the IS0 9796-2 standard.
In ISO 9796-2, a signature on m is a modular square root (up to a fudge factor)
of �.m/ D 4A16kmkH.m/kBC16, where the right side represents an element of
Z=NZ in hexadecimal. This is a “partial-domain-hash” scheme, since H does not
hash onto all of Z=NZ. An advantage of Rabin-PDH over Rabin-FDH is that it
allows some message recovery.

To see how Vallée’s algorithm is relevant to Rabin-PDH, reconsider the secu-
rity proof for Rabin-FDH given in Section “Reduction and Concrete Security”. Let
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S DZ=NZ and TS D f.r; c/ W .r2=c mod N/ 2 S; r 2 Z=NZ; c 2 f˙1;˙2gg.
In the simulation for Rabin-FDH, B responds to A’s H -query on message mi

by picking an element .ri ; ci / 2 TS uniformly at random and setting H.mi / D
r2

i =ci mod N 2S . The distribution of B’sH -query responses is identical to the dis-
tribution of H outputs in the “real world,” when H is modeled as a full-domain
hash function. Eventually, A presents a forgery � on somemi . Since, from A’s per-
spective, the modular square root ri of ci �H.mi / known by B is uniformly random,
there is a 1/2 probability that gcd.� � ri ; N / is a nontrivial factor of N , allowing B
to factor. Notice that the above security proof works even if S is a proper subset of
Z=NZ, if B can sample uniformly from TS and H is modeled as a random oracle
hashing onto S .

It is not hard to see that Vallée’s algorithm can be used to sample quasi-
uniformly from TS for S D Œh; h0� when h0 � h D 8N 2=3, and similarly to sample
quasi-uniformly from TS for S D f4A16kmkxkBC16 W x 2 Œ0; 8N 2=3�g. However,
this is not sufficient to prove the security of Rabin-PDH, since the sampling does
not necessarily give a perfectly uniform distribution of H -outputs or even a distri-
bution that is statistically indistinguishable from uniform. The distribution must be
very close to uniform, so that an adversary cannot distinguish a real attack from a
simulated attack.

Coron [26] addresses this problem and thereby proves the security of Rabin-
PDH, essentially by showing that Vallée’s quasi-uniform algorithm for sampling
elements from BN;h;h0 for h0 � h D 8N 2=3 can be transformed into an algorithm
that samples elements from BN;h;h0 for h0 � h D N 2=3C" with a distribution whose

distance from uniform is at most 16N
�3"
13 . Intuitively, a larger value of h0�h makes

R.ai ; bi / thicker, making Vallée’s lower and upper bounds for the legs extremely
tight and permitting an almost uniform sampling algorithm. For the statistical dis-
tance to be at most 2�k , we must have that 4 � 3"

13
logN � �k, which implies that

" � 13.kC4/
3 log N

. When k D 80, for example, h0�hmust be at least 2
3

logN C364 bits,
which becomes less than logN bits when logN > 1092.

Gentry [27] addresses the problem in a different way, showing that Vallée’s algo-
rithm can be made perfectly uniform (for h0 � h D 8N 2=3) with a simple rejection
sampling technique. The technique relies on the fact that anyone – e.g., the simu-
lator in the security proof – can efficiently compute the exact probability Px that
Vallée’s quasi-uniform sampling algorithm will output x. If x is in J.ai ; bi / on
quasi-horizontal line `j (the j -th line passing through R.ai ; bi /), the probability
that x is chosen is simply .2 � jJ.ai ; bi /j=N/ � ‘Œ`j jJ.ai ; bi /� � .1=n.`j //, where
n.`j / is the number of P.ai ; bi /-points on `j , and the probability term is dictated
by Vallée’s lower bounds. Then, letting Pmin be a lower bound on such probabilities
over all x 2 BN;h;h0 , the perfectly uniform algorithm is as follows:

1. Use Vallée’s method to pick an x 2 BN;h;h0 quasi-uniformly.
2. Compute Px .
3. Goto Step 1 with probability .Px � Pmin/=Px .
4. Otherwise, output x.
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Since Vallée’s sampling algorithm is quasi-uniform, the expected number of “Goto”
loops per sample is a (small) constant; thus, the simulator’s estimated time complex-
ity increases only by a constant factor. The probability that x is chosen in Step 1 and
that it “survives” Step 3 is the same for all x – namely, Px � .1 � Px�Pmin

Px
/ D Pmin;

for this reason, and since each run of Vallée’s algorithm is independent, the algo-
rithm is perfectly uniform. This shows that Rabin-PDH is secure when H ’s output
is 3C .2=3/ log2N bits.

A Trapdoor Quasi-Bijection Over a Small Interval Modulo N

We showed that H ’s output can be “compressed,” but the Rabin-PDH signature
itself – i.e., the modular square root of H.mi / (possibly concatenated with other
material) – is still logN bits. Since the “entropy” of the hash output is just over
.2=3/ logN bits, however, it is theoretically possible that the signature could be
similarly short.

For example, suppose we have injective function �N;h W BN;�h;h ! Œ�˛h; ˛h�
for some constant ˛ � 1 and h � 4N 2=3. Furthermore, suppose that both �N;h.x/

and ��1
N;h
.x0/ (when defined) are both efficiently computable without knowledge of

N ’s factorization. Then, the following scheme allows short Rabin signatures:

� Signing: To sign m, uniformly (but deterministically) pick � 0 s.t. � 02 D c �
H.m/ mod N for c 2 f˙1;˙2g, where H W f0; 1g� ! Œ�h; h�. Output
� D �N;2h.�

0/.
� Verification: Set � 0 D ��1

N;2h
.�/. Confirm that � 02 D c � H.m/ mod N for c 2

f˙1;˙2g.
In this scheme, we let H ’s range be Œ�h; h� and used �N;2h because this is a simple
way of handling the fudge factor c; this is not meant to be limiting. The security of
this scheme follows easily from the security of the underlying Rabin-PDH scheme
(that does not use �).

Signatures in the above scheme are .2=3/.logN/ C 2 C log˛ bits when
h D 4N 2=3. This is longer than the signatures obtained using Bernstein’s or Ble-
ichenbacher’s techniques. However, the above approach is compatible with message
recovery. Ifm is encoded with a reversible padding scheme allowing message recov-
ery, the total number of bits needed to verify is about maxfjmjC 160; .2=3/ logN g.
This is less than jmj C .1=2/ logN when logN > 320 and jmj > .1=6/ logN .

More interestingly, the compression function � allows compression of more than
just basic signatures. For example, consider the following “compressed” Rabin vari-
ant of Lysyanskaya et al. [28] sequential aggregate signature scheme for trapdoor
homomorphic permutations. Below, we let Ni be the i th signer’s public key, f �1

i

be the Rabin permutation over Z
�
Ni

mentioned at the end of Section “Reduction and
Concrete Security”, Hi W f0; 1g� ! Œ�hi ; hi � be the partial domain hash used by
the i th signer, �Ni ;hi

W BNi ;�hi ;hi
! Œ�˛hi ; ˛hi � be the i th compression function,
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and mi be the message signed by the i th signer; �0 is initialized to 0. Assume that
hi D 2ki � 1 for integer ki .

� Signing: To sign mi , the i th signer sets � 0i D f �1
i .�i�1 ˚ Hi .mi ; : : : ; m1//. It

is required that �i�1 2 Œ�hi ; hi �. It outputs �i D �Ni ;2hi
.� 0i /.

� Verification: To verify that �n shows that the signer with key Ni signed message
mi for all i 2 Œ1; n�, confirm that �0 D 0, where �0 is computed via the recursion
�i�1 D fi .�

�1
Ni ;2hi

.�i //˚Hi .mi ; : : : ; m1/.

The compression functions �Ni ;2hi
allow the aggregate signature �n to be about 33%

shorter than the RSA-based aggregate signature proposed in [28]. Note: we omitted
some technical details here – e.g., the i th signer must provide a proof, as part of its
public key, that Ni is a product of two primes to ensure that fi is a permutation.

Now, we describe Gentry’s approach for constructing the compression function
�N;h;h0 W BN;h;h0 ! Œ0; ˛.h0 � h/�. (For other domains and ranges, the construction
is similar.) Roughly speaking, the intuition is to express x 2 BN;h;h0 according
to its Farey partition interval and its “address” (using Vallée’s lattice) within the
interval. The naive way of doing this – expressing x as .ai ; bi ; j; k/, where x is
in J.ai ; bi / in the kth position on the quasi-horizontal line with index j – does
not work well, since the number of BN;h;h0-elements associated to an interval or a
line varies widely. Gentry provides the following more efficient alternative (h00 is a
parameter whose value will be calibrated later).

Computing �.x/:

1. Determine .ai ; bi / for which x is in J.ai ; bi /.
2. Compute xleft, the smallest integer in Œ0; h00� with .xleftC 1/ � N

h00
in J.ai ; bi /, and

xright, the largest integer in Œ0; h00� with xright � N
h00

in J.ai ; bi /.
3. Compute ncCf , the number of lattice points in the chest and feet, and nl , an

upper bound for the number of points in the legs.
4. Using Vallée’s upper bounds, select one integer in xright � xleft (there may be

several) that corresponds to the lattice point .u;w/ that is associated to x. More
specifically:

(a) If .u;w/ is the l th point in the chest or feet, set c D l .
(b) Otherwise, let sv be Vallée’s upper bound for the number of leg lattice points

on quasi-horizontal lines with index at most v. Compute the index v of the
line containing .u;w/. Let nv be the actual number of lattice points on the line
with index v and let n0v D sv�sv�1 be Vallée’s upper-bound estimate. Suppose
that x is the kth lattice point on the line. Pick an integer c 2 .ncCf C sv�1 C
n0v k�1

nv
; ncCf C sv�1 C n0v k

nv
�.

(c) Pick an integer c0 2 ..xright �xlef t /
c�1

ncCfCnl
; .xright �xlef t /

c
ncCfCnl

�. Set

x D xlef t C c0.
Although not mentioned explicitly above, the algorithm depends on the values of
h and h0 (which we assume to be publicly available). Given x0 D �.x/, one can
recover the value of x as follows:
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Computing ��1.x0/:

1. Determine .ai ; bi / for which x0 � N
h00

is in J.ai ; bi /.
2. Compute xleft, the smallest integer in Œ0; h00� with .xleftC 1/ � N

h00
in J.ai ; bi /, and

xright, the largest integer in Œ0; h00� with xright � N
h00

in J.ai ; bi /.
3. Compute ncCf , the number of lattice points in the chest and feet of P.ai ; bi /,

and nl , an upper bound for the number of points in the legs.
4. Compute c0 D x0 � xleft. From c0 and ncCf C nl , compute the value of c. If
c � ncCf , let .u;w/ be the cth point in the chest or feet. Otherwise, compute
the index v such that c 2 .ncCf C sv�1; ncCf C sv�, as well as the value of k
(defined as above), and let .u;w/ be the kth point on the quasi-horizontal line
with index v.

5. Set x D ��1.x0/ D bai N
bi
e C u.

The value h00 is set to be as small as possible, subject to the constraint that xright �
xleft is larger than ncCf C nl , which is necessary for injectivity. Using Vallée’s
bounds, one finds that h00 D 8.h0 � h/ suffices. For this value of h00, the � mapping
compresses BN;h;h0-elements to within 3 bits of the theoretical minimum.

Gentry uses similar techniques to construct a Rabin encryption scheme with
short ciphertexts. In particular, the scheme uses an efficiently computable function
	N;h W Œ�h; h��D ! BN;�˛h;˛h for constant ˛ � 1 and h � 4N 2=3 and some space
D, such that 	N;h.x; d/ is quasi-uniform in BN;�˛h;˛h, if x and d are sampled uni-
formly, and such that x can be recovered efficiently and uniquely from 	N;h.x; d/.
Encryption and decryption then proceed as follows:

� Encryption: To encrypt a message m, first compute a reversible encoding x0 2
Œ�h; h� of m – e.g., OAEPC. Pick random d 2 D, and set x D 	N;h.x

0; d /.
Output the ciphertext c D x2 mod N .

� Decryption: To decrypt c, compute each of the four values of x satisfying c D
x2 mod N . For each x, set x0 D 	�1

N;h
.x/, undo the encoding, and confirm that

the resulting message m is encoded correctly. If it is, outputm.

We refer the reader to [27] for additional details. We note that it remains an open
problem to prove the security of partial-domain hash for low-exponent RSA signa-
tures or to construct a compression algorithm for low-exponent RSA analogous to
Gentry’s, for Rabin.

The Relationship Among the RSA, Paillier,
and RSA-Paillier Problems

Hensel Lifting

In the RSA problem, one is asked to compute r 2 Œ0; N � 1� from re mod N ,
where N is an integer that is hard to factor and e is an integer coprime to �.N /.
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One way to approach this problem is to attempt to Hensel lift – i.e., to somehow
compute re mod N `. Obviously, if ` � e, the Hensel lift completely solves the
RSA problem. But, what can we say about the relationship between Hensel lifting
and the RSA problem when ` < e?

Catalano et al. [29] define the Hensel-RSA.N; e; `/ problem as follows (similarly
defined in [30]).

Definition 15 (Hensel-RSA.N; e; `/). Given re mod N , r 2 Œ0; N � 1�, compute
re mod N `.

They have the following result.

Theorem 5. LetN and e be integers, where e D fN ` with f is co-prime to �.N 2/

and ` � 0. Then, Hensel-RSA.N; e; `C2/ is hard iff the RSA.N; e/ problem is hard.

In Section “Security Implications of Catalano et al. Result on Hensel-RSA”, we
will describe how they apply this result to characterize the relationship among the
RSA, Paillier, and RSA-Paillier problems. First, let us get to the proof of Theorem 5.

It is obvious that if Hensel-RSA.N; e; ` C 2/ is hard, then RSA.N; e/ is hard.
Now, given an algorithm A that solves Hensel-RSA.N; e; ` C 2/, we construct an
algorithm B that solves RSA.N; e/, as follows. As in Fujisaki et al.’s security proof
for RSA-OAEP [20] given in Section “RSA-OAEP is Secure for General Exponent”,
B runs A twice – once on re mod N and once on ue mod N , where u D .ra mod
N/ 2 Œ0; N �1� for random a 2 Œ0; N � 1�. If A .t; "/-breaks Hensel-RSA.N; e; `C
2/, then A returns re mod N `C2 and ue mod N `C2 in time 2t with probability "2.

From A’s output, B recovers r as follows. Let z be such that

ra D u.1C zN/ mod N `C2

Then, it is the case that

reae D ue.1C zN/fN ` D ue.1C f zN `C1/ mod N `C2

Knowing f , B can thus recover z0 D .z mod N/ 2 Œ0; N � 1�. Next, B reduces
the lattice L D f.x; y/ W ra D u.1 C z0N/ mod N 2g to obtain a vector .r 0; u0/ 2
Œ0; N � 1�2 in time polynomial in logN . Since r , u, r 0, and u0 are all in Œ0; N � 1�,
and since ru0 D r 0u mod N 2, we get that ru0 D r 0u (over Z), and thus r D r 0 �

c
gcd.r 0;u0/

and u D u0 � c
gcd.r 0;u0/

for some integer c. Catalano et al. show that, with
high probability, B can find .r; u/ after a short exhaustive search.

Note that, like the security proof for RSA-OAEP, the reduction is quite loose.
Although the reduction implies that Hensel-RSA.N; e; ` C 2/ and RSA.N; e/ are
polynomially equivalent, it gives an RSA-breaking algorithm whose success prob-
ability may be much lower than the success probability of the Hensel lifting
algorithm.
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Security Implications of Catalano et al. Result
on Hensel-RSA

While Theorem 5 has direct implications for RSA, it also has interesting implica-
tions for other cryptosystems – specifically, the Paillier and RSA-Paillier (RSAP)
encryption schemes, which we now review.

In 1999, Paillier [31] proposed an encryption scheme based on the (new and
unstudied) “composite residuosity class problem,” defined as follows:

Definition 16 (Composite Residuosity Class Problem). Let N D pq be an RSA
modulus and let g be an element whose order is a multiple of N in Z

�
N 2 . Given

c 2 Z
�
N 2 , find m such that cg�m mod N 2 is an N -residue. We say that h 2 Z

�
N 2 is

an N -residue, if there exists r 2 Z
�
N 2 , such that rN D h mod N 2, and we say that

m D C lassg;N .c/.

There is a decisional variant of this problem: given c and m, decide whether m D
C lassg;N .c/.

In Paillier’s encryption scheme, one encrypts m 2 ZN by generating ran-
dom r 2 Z

�
N and setting cD rNgm mod N 2 to be the ciphertext. To decrypt,

one sets sD c�.N /D rN�.N /gm�.N /Dgm�.N / mod N 2. Then, one computesmD
.s�1/=N

.g�.N /�1/=N
mod N . The final step works, since g�.N /D kNC1 mod N 2 for some

k, and thus gm�.N /D .kN C 1/mD 1C kmN mod N 2.
Paillier’s encryption scheme is one-way, if the composite residuousity class prob-

lem is hard. It is semantically secure against chosen plaintext attack, if the decisional
variant is hard. An advantage of Paillier’s cryptosystem is that it is additively
homomorphic – i.e., if c1 and c2 encrypt m1 and m2 respectively, then c1c2 mod
N 2 encrypts m1m2 mod N ; this is useful, for example, in e-voting applications.
A disadvantage is that the scheme is computationally slow, since encryption and
decryption both require exponentiation with respect to a large modulus.

Catalano et al. [32] proposed a mix of Paillier’s scheme and the RSA scheme,
called RSA-Paillier (RSAP), that is nearly as efficient as plain RSA, but remains
semantically secure assuming the hardness of a certain decision problem. Unfortu-
nately, the scheme loses Paillier’s homomorphic property.

In the RSAP encryption scheme, one encrypts m 2 ZN by generating random
r 2 Z

�
N and setting c D re.1 C mN/ mod N 2 to be the ciphertext, where the

encryption exponent e satisfies gcd.e; �.N 2// D 1. To decrypt, one first solves
an RSA problem: find r 2 Z

�
N such that re D c mod N . Then, one computes

m D .c=re/�1 mod N 2

N
. Note that Paillier’s scheme with g D 1CN looks like RSAP

with e D N .
Since it is easy to show RSAP is one-way iff Hensel-RSA.N; e; 2/ is hard

(since decryption in RSAP is basically just Hensel lifting), Theorem 5 implies that
RSAP.N; e/ is one-way iff RSA.N; e/ is, assuming gcd.e; �.N 2// D 1.

The connection between Paillier’s scheme and RSA is less straightforward.
Theorem 5 implies that Hensel-RSA.N;N; 3/ is equivalent to RSA.N;N /. On the
other hand, Catalano et al. show that Paillier’s scheme is equivalent to Hensel
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.N;N; 2/, which might be an easier problem. This separation leads Catalano et al. to
conjecture that the one-wayness of the Paillier scheme is not equivalent to the RSA
assumption with exponentN .

Theorem 6. LetN be an integer. Hensel-RSA.N;N; 2/ is hard iff Classg;N is hard.

The proof of Theorem 6 is straightforward. Assume g D 1CN , since all instances
of C lassg are computationally equivalent. Given a Hensel-RSA.N;N; 2/ oracle
and c D rNgm D rN .1 C mN/ mod N 2, one first recovers rN mod N 2 using
the oracle, and then recovers 1C mN and then m. Given a Classg oracle and d D
.rN mod N/ 2 Œ0; N �1�, one uses the oracle to recover a valuem 2 ZN , such that
d D rN .1CmN/ mod N 2, after which one recovers rN mod N 2 easily.

Hensel Lifting Results for the Discrete Logarithm Problem

Although it does not say much about the security of any particular cryptosys-
tem, Catalano et al. also describe an interesting relationship between the discrete
logarithm problem and the following Hensel lifting problem.

Definition 17 (Hensel-Dlog.p; g; `/). Let g have prime order ! modulo p. Let
` be such that g! D 1 mod p`�1, but g! ¤ 1 mod p`. Given gx mod p, x 2
Œ0; ! � 1�, compute gx mod p`.

In particular, they prove:

Theorem 7. Hensel-Dlog.p; g; `/ is hard iff the discrete logarithm problem in Z
�
p

is hard for generator g, where ` is defined as above.

The “only if” implication is obvious.
Now, suppose we are given gx mod p and access to a Hensel-Dlog.p; g; `/ ora-

cle that outputs gx mod p` with probability ". To recover x, we generate random
a 2 Œ0;w � 1�, set u D xa mod w 2 Œ0;w � 1�, and send gx mod p and gu mod p
to the oracle. With probability "2, we get back gx mod p` and gu mod p`.

Since u D xa � zw for some integer z, we can compute gzw mod p`. From
gzw D .gw/z D .1Cmp`�1/z D 1Cmzp`�1 mod p`, we can recover z mod p. It
turns out that z mod p reveals z completely, since the fact that u, x, and a are all in
Œ0;w� 1� implies that z is also in Œ0;w� 1� and since w < p. Finally, we use lattices
on the equation u D xa C zw to recover u and x. (The lattice reduction may return
multiple possible pairs .u; x/ 2 Œ0;w � 1�2, but they show that, with non-negligible
probability, the possibilities can be searched exhaustively in polynomial time.)

The Bit Security of Diffie–Hellman

Many cryptographic schemes are based on the Diffie–Hellman problem over F
�
p for

prime p. Apart from the Diffie–Hellman protocol itself [8], we mention ElGamal’s
encryption scheme [9], Shamir’s message passing scheme [33], and Okamoto’s



422 C. Gentry

conference key sharing scheme [34]. In practice, these schemes are used to establish
a short (e.g., 128-bit) session key for a symmetric cryptosystem. Since p, and hence
the shared secret gab mod p, must be quite long (e.g., 1024 bits) to defend against
subexponential attacks, it is natural to ask whether it is secure to use a subsequence
of bits from the shared secret as the session key.

For prime p and x ¤ 0 mod p, let Œx�p denote the value x0, such that x � x0 D
0 mod p and jx0j is minimal, and let MSBk;p.x/ denote any integer u, such that
jŒx�p � uj � .p � 1/=2kC1 – i.e., informally, the k most significant bits (MSBs) of
Œx�p . In this section, we review the following result by Boneh and Venkatesan [35]:

Theorem 8. Let c > 0 be a constant. Set k D dcp.logp/=.log logp/ log log log
pe. Given an efficient algorithm to compute MSBk;p.g

ab/ from input .g; ga; gb/,
there is an efficient algorithm to compute Œgab �p itself with probability at least 1=2.

We have stated their result with a slightly smaller value of k than they provided in
the original paper. There are analogous results for extension fields [36] and bilinear
maps (e.g., the Weil pairing) [37], elliptic curve bits [38], and the XTR and LUC
cryptosystems [39].

Theorem 8 follows from the following more abstract statement.

Theorem 9. Let c > 0 be a constant. Set k D dcp.logp/=.log logp/ log log log
pe and d D 2d.logp/=ke. Let ˛ be an integer not divisible by p. Let O be an oracle
defined by O˛.t/ D MSBk;p.˛t/. Then, there exists a deterministic polynomial time
algorithm A (the polynomial’s degree depends on c) such that

P

�
.t1; : : : ; td /

R Œ1; p � 1�d ; A.t1; : : : ; td ;O˛.t1/; : : : ;O˛.td // D Œ˛�p
�
� 1

2
:

The problem of determining Œ˛�p from the MSBs of Œ˛ti �p for multiple random
ti is called the “hidden number problem.” Theorem 8 follows from Theorem 9,
since an algorithm that outputs MSBk;p.g

a.bCxi // given .g; ga; gbCxi / can serve
as the oracle O˛ in Theorem 9, where ˛ D gab and ti D gaxi and the xi ’s are
selected randomly. (Actually, this statement is true only if gcd.a; p � 1/ D 1, since
otherwise the ti ’s all come from a subgroup of F

�
p. González Vasco and Shparlinski

[40] extended the result to general case.)
The reduction in Theorem 9 involves a closest vector problem over a .d C 1/-

dimensional lattice. To show that the reduction is efficient, we use Theorem 10
below, which follows from Schnorr’s modification [41] to LLL [42] and Kannan’s
[43] reduction of approximate CVP to approximate SVP. (This is also Theorem 1 in
[44].)

Theorem 10. There is a polynomial time algorithm which, given a s-dimensional
full rank lattice L and a vector u 2 R

s , finds a lattice vector v satisfying the
inequality

kv � uk � 2O.s log2 log s= log s/ minfkz � uk; z 2 Lg :
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Given ti and ui D MSBk;p.˛ti / for i D 1; : : : ; d , set u D .u1; : : : ; ud ; 0/ and let L
be the lattice generated by the rows of the following matrix

2
666664

p 0 : : : 0 0

0 p : : : 0 0
:::
:::
:::
:::

:::

0 0 : : : p 0

t1 t2 : : : td 1=2
k

3
777775

(12.1)

Now, we use Theorem 10’s algorithm to recover w D .Œ˛t1�p ; : : : ; Œ˛td �p ; Œ˛�p=2k/,

which is a vector in L whose distance from u is at most .
p
d C 1/.p�1/=2kC1 and

from which we can recover the hidden number Œ˛�p .
To show w is in fact recoverable, Boneh and Venkatesan’s approach is essentially

to show that if L-vector v satisfies

kv � uk � 2O.d log2 log d= log d/kw � uk D 2O.d log2 log d= log d/.p � 1/=2kC1 ;

which must be satisfied by the output of the CVP algorithm indicated in Theorem
10, then it is overwhelmingly likely that vi D wi mod p for i D 1; : : : ; d , in which
case we can recover w from v. If we assume the contrary – i.e., that there is a close
L-vector v that does not satisfy the congruence – then there must exist � ¤ 0 mod p
such that

y D .Œ� t1�p ; : : : ; Œ� td �p ; Œ��p=2k/

is a nonzero L-vector whose length is at most h D 2O.d log2 log d= log d/.p � 1/=2k.
This implies that each coefficient yi 2 Œ�h; h�. The probability (over the choices
of .t1; : : : ; td /) that there exists � ¤ 0 mod p for which Œ� ti �p 2 Œ�h; h� for all
i D 1; : : : ; d is at most

.p � 1/.2h/d=.p � 1/d < p2O.d 2 log2 log d= log d/=2dk :

For some constant c > 0, this probability is negligible when

k D
&
c

s
logp

log logp
log log logp

'
and d D 2

�
logp

k

�
;

from which Theorem 9 follows.
Boneh and Venkatesan observe that the reduction also holds when O’s responses

are correct with probability only 1 � 1=.logp/. In this case, all of O’s d responses
are correct with high probability.

What does the result say about the security of using the MSBs of a Diffie-
Hellman value as a session key? Certainly, an adversary that can compute a session
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key with non-negligible probability " < 1 � 1=.logp/ “breaks” a system’s secu-
rity, though it may not be clear that such an adversary can be used to recover an
entire Diffie–Hellman value. However, if we run such an adversary an appropriate
polynomial number of times, then at least one of the adversary’s outputs is correct
with probability 1 � 1=.logp/. (The trials can be made independent, thanks to the
random self-reducibility property of Diffie–Hellman.) But, how do we remove the
adversary’s incorrect outputs? One can often verify that a session key is correct
simply by trying to use that session key in the protocol with the other party; if the
session key is incorrect, the other party will typically indicate an error and abort. In
such a setting, an adversary that guesses the MSBs with non-negligible probability
can be used to break the entire Diffie–Hellman secret. However, this still does not
imply that it is secure to use the MSBs as a key. This remains an open problem.

Another way of viewing Boneh and Venkatesan’s result is as (nondispositive) evi-
dence of the hardness of the decision Diffie–Hellman (DDH) problem – i.e., given
.g; ga; gb; h/, decide whether h equals gab or is a random element of the group.
DDH is a strong, but very useful, assumption. Notably, DDH was used by Cramer
and Shoup [45] to prove, without random oracles, the security of their encryption
scheme against adaptive chosen ciphertext attack.

Acknowledgements We thank Phong Nguyen and the reviewers for their helpful suggestions and
comments.
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Chapter 13
Cryptographic Functions from Worst-Case
Complexity Assumptions

Daniele Micciancio

Abstract Lattice problems have been suggested as a potential source of
computational hardness to be used in the construction of cryptographic functions
that are provably hard to break. A remarkable feature of lattice-based cryptographic
functions is that they can be proved secure (that is, hard to break on the average)
based on the assumption that the underlying lattice problems are computationally
hard in the worst-case. In this paper we give a survey of the constructions and proof
techniques used in this area, explain the importance of basing cryptographic func-
tions on the worst-case complexity of lattice problems, and discuss how this affects
the traditional approach to cryptanalysis based on random challenges.

Introduction

A lattice is the set of integer linear combinations of n linearly independent vectors
b1; : : : ;bn, and can be pictorially described as the set of intersection points of an
infinite regular (but not necessarily orthogonal) grid (see Fig. 13.1). A typical algo-
rithmic problem on lattices is the following: given a lattice (represented by a basis
fb1; : : : ;bng), find a nonzero lattice vector that is as short as possible, or (in case
approximate solutions are allowed) not much longer than the shortest.

Traditionally, in cryptography, lattices have been used mostly as an algorithmic
tool for cryptanalysis. Since the development of the LLL basis reduction algorithm
of Lenstra, Lenstra and Lovász [1] in the early 80s, lattices have been used to attack
a wide range of public-key cryptosystems (see survey papers [2–4] and references
therein). Moreover, much work on improving lattice basis reduction algorithms
and heuristics (e.g., [5–11]) has been directly motivated by cryptanalysis applica-
tions. Quoting [4], the success of basis reduction algorithms at breaking various
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Fig. 13.1 The 2-dimensional
lattice generated by the basis
Œb1; b2�. The lattice vectors
are the intersection points of
the grid generated by b1
and b2

b1

b2

cryptographic schemes over the past 20 years has arguably established lattice
reduction techniques as the most popular tool in public-key cryptanalysis.

In this survey we are not concerned with the many applications of the LLL
algorithm in cryptanalysis. Rather, based on the fact that after 25 years from its
discovery, the LLL algorithm is still essentially unsurpassed, we consider the use
of lattices as a source of computational hardness to be used in cryptography. More
specifically, we consider the design of cryptographic schemes that are provably hard
to break based on the conjecture that no efficient algorithm solves various lattice
problems substantially better than LLL. We remark that while the LLL algorithm
has been substantially improved in terms of running time, progress on improving
the approximation factor achieved by LLL (while maintaining polynomial running
time) has been fairly limited so far: the approximation factor achieved by the cur-
rently best polynomial time (randomized) lattice approximation algorithms [6,9,12]
is 2O.n log log n= log n/, only a modest improvement over the exponential approximation
factor 2O.n/ achieved by LLL. So, it is reasonable to conjecture that no polyno-
mial time algorithm can approximate lattice problems within factors nO.1/ that are
polynomial in the rank of the lattice.

In the late 90s, the computational complexity of lattice problems attracted
renewed attention, largely stimulated by Ajtai’s surprising discovery [13] of a
connection between the worst-case and average-case complexity of certain lattice
approximation problems. The importance of such connection relies on the potential
applicability of lattices to the design of secure cryptosystems. It is a well estab-
lished fact that cryptography requires problems that are hard to solve on the average,
so that when a cryptographic key is chosen at random, the corresponding func-
tion is hard to break with high probability. So, it is not surprising that, till recently,
all known cryptographic functions relied on average-case complexity assumptions.
Ajtai’s connection showed, for the first time, that hard-on-average problems (and
therefore, secure cryptographic functions), could be obtained from the qualitatively
weaker assumption that lattice problems are intractable in the worst case. This
discovery attracted a lot of interest both within the theoretical cryptography and
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computational complexity communities, and stimulated substantial research efforts
in the area. Following Ajtai’s initial discovery, research has progressed on several
fronts:

� Determining weaker and weaker worst-case assumptions on the complexity of
lattice problems that still allow to distill average-case hardness [14–16].

� Improving the efficiency of lattice based functions both in terms of key size and
computation time [17–21].

� Building more complex cryptographic primitives than simple one-way functions,
like pubic key encryption schemes [22–25], identification protocols [26, 27],
digital signatures [28, 29] and more [30, 31].

These various lines of research, besides being individually interesting from both
a theoretical and practical point of view, have a lot in common at a technical level.
Ideas and techniques originally introduced in one setting have often found appli-
cations in the other contexts (e.g., the Gaussian perturbation techniques originally
introduced by Regev [23] to improve the analysis of public-key encryption schemes
have been further developed and used by Micciancio and Regev [16, 17] to study
other cryptographic functions). In this paper, we give a self contained introduction to
this general area, review the current state of the art and describe the main open prob-
lems related to the construction of cryptographic functions based on the worst-case
hardness of lattice problems. In particular, we highlight two important issues that
have not received much attention so far in the traditional algorithms/complexity and
cryptanalysis literature: the study of lattices with special properties, and the devel-
opment of an appropriate methodology for the cryptanalysis of functions based on
worst-case assumptions. For simplicity, at the technical level, we focus on collision
resistant hash functions, which are described and analyzed in some depth. We also
illustrate the main ideas behind the construction of public key encryption schemes
and efficient cryptographic functions based on special classes of lattices, but at a
more informal level. For an overview of the zero knowledge proof systems underly-
ing the lattice based identification schemes of [26] the reader is referred to Regev’s
survey [32] in this volume.

The rest of the paper is organized as follows. In Section “Background” we give
some general background about lattices. In Section “Collision Resistant Hashing”
we describe and analyze (a simplified version of) the collision resistant hash func-
tion of Micciancio and Regev [16]. In particular, in Section “Simple Cryptographic
Hash Function with Worst-Case/Average-Case Connection”, we give a detailed
and essentially self-contained description of a cryptographic function (and relative
security proof) based on a worst-case complexity assumption. In Section “Using
Special Lattices to Improve Efficiency” we also informally discuss the work of
Micciancio [17] and subsequent developments [19, 20] on efficient hash functions
based on special lattices. Next, in Section “Public-Key Encryption Scheme”, we
describe the main ideas behind the public-key cryptosystems of Ajtai and Dwork
[22] and Regev [23]. Section “Concrete Security of Lattice Based Cryptogra-
phy” concludes the paper with a discussion of the aforementioned issues related
to the security evaluation of cryptographic functions with average-case/worst-case
security guarantees.
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Background

In this section we briefly define the concepts and notation used in the algorithmic
study of lattices. For additional background, the reader is referred to [33].

We use QO.f .n// to denote the set of all functions g.n/ that are asymptotically
bounded by f .n/ up to poly-logarithmic terms, i.e., g.n/ � f .n/ logc f .n/ for
some constant c and all sufficiently large n. A function ".n/ is negligible if ".n/ <
1=nc for any c > 0 and all sufficiently large n.

A lattice (see Fig. 13.1) is the set of all integer linear combinationsL.b1; : : : ;bn/

D P
i bi � xi (where xi 2 Z) of a set of linearly independent vectors b1; : : : ;bn,

called the basis of the lattice. The integer n is called the rank of the lattice.
Using matrix notation, if BD Œb1; : : : ;bn� is the matrix with the basis vectors as
columns, lattice vectors can be written as Bx, and L.B/DfBx W x 2 Z

ng. In this
paper, we will be mostly concerned with the Euclidean (also known as the `2)

norm kxkD
qP

i x
2
i . Another norm that will be occasionally used is the `1 norm

kxk1D maxi jxi j. Define the half-open parallelepiped P.B/DfPi xi bi W 0 �
xi < 1 for 1 � i � ng. For any lattice basis B and point x in the linear span of B,
there exists a unique vector y 2 P.B/ such that y�x 2 L.B/. This vector is denoted
yD x mod B, and it can be computed in polynomial time given B and x. The dual
of a lattice � is the set

��Dfx 2 linspan.�/ W 8y 2 � hx; yi 2 Zg

of all vectors that have integer scalar product (hx; yiD P
i xiyi ) with all lattice vec-

tors. It is easy to see that for any lattice� and c 2 R, the dual of the lattice obtained
scaling all vectors in � by a factor c is .c�/� D .1=c/��. The determinant of a
lattice det.L.B// is the (n-dimensional) volume of the fundamental parallelepiped
P.B/, and does not depend on the choice of the basis. The determinant of the dual
lattice is det.��/D 1= det.�/.

The minimum distance of a lattice �, denoted �1.�/, is the minimum distance
between any two distinct lattice points, and equals the length of the shortest nonzero
lattice vector:

�1.�/ D minfkx � yk W x ¤ y 2 �g
D minfkxk W x 2 � n f0gg :

This definition can be generalized to define the i th successive minimum as the
smallest �i such that the ball �iB D fx W kxk � �ig contains at least i linearly
independent lattice points. With some abuse of notation, we will often write �i .B/
to denote the successive minima of the lattice generated by basis B.

A central problem in the computational study of lattices is the Shortest Vector
Problem (SVP): given a lattice basis B, find a nonzero lattice vector Bx ¤ 0 achiev-
ing the minimum distance kBxk D �1. The problem can be defined with respect to
any norm, but the Euclidean norm `2 is the most common. A � -approximate solution
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to the shortest vector problem (SVP ) is a nonzero lattice vector of length at most
��1.B/. In complexity theory it is common to consider the decision version of SVP

(typically denoted GapSVP ), defined below.

Definition 1 (Shortest Vector Decision Problem). An input to GapSVP1 is a pair
.B; d / where B is an n-dimensional lattice basis and d is a rational number. The
problem is to decide whether �1.B/ � d or �1.B/ > d . More generally, for any
� � 1, an input to GapSVP is a pair .B; d / where B is an n-dimensional lattice
basis and d is a rational number. The problem is to decide whether �1.B/ � d or
�1.B/ > �.n/ � d . (If neither condition is satisfied, any answer is acceptable.)

Clearly, the promise problem GapSVP reduces to the problem of finding non-
zero vectors of length at most � � �1. In the opposite direction, showing that solving
GapSVP is at least as hard as computing vectors of length at most � ��1 is a classic
open problem. In Section “Public-Key Encryption Scheme” we will also consider
a restricted version of GapSVP (denoted uGapSVP ) where the second minimum
of the lattice satisfies �2.B/ > �d . Interestingly, uGapSVP is polynomial time
equivalent (in both directions) to the corresponding search problem uSVP : given a
lattice basis B such that �2.B/ > ��1.B/, find the shortest nonzero lattice vector.

Another classic problem in the study of lattices is the Closest Vector Problem
(CVP ): Given a lattice basis B and a target vector t, find the lattice point closest
to the target. In the approximate version of the problem CVP , the goal is to find a
lattice vector within distance from the target no more than � times the distance of
the optimal solution. For any approximation factor � , CVP is at least as hard as
SVP [34].

The last successive minimum �n (where n is the rank of the lattice) and corre-
sponding search problem defined below, play a central role in the construction of
cryptographic functions with average-case/worst-case connection.

Definition 2 (Shortest Independent Vectors Problem). An input to SIVP is a
lattice basis B. The goal is to output a set of n linearly independent lattice vectors
S � L.B/ such that kSk � �.n/ � �n.B/ where kSk is the maximum length of a
vector in S, and n is the rank of the lattice.

The shortest independent vectors problem is closely related to the following
variant of the closest vector problem.

Definition 3 (Guaranteed Distance Decoding). An input to GDD is a lattice
basis B and a target point t. The goal is to output a lattice point x 2 L.B/ such
that kt � xk � �.n/ � �.B/, where � D maxt2P.B/ minx2L.B/ kt � xk is the covering
radius of the lattice.

The difference between GDD and CVP is that the quality of the solution is
measured with respect to the worst possible distance �, rather than the distance
of the given target. (A related and more common variant of CVP that arises in
coding theory applications, but not used in this survey, is the “Bounded Distance
Decoding,” where the promise is that the target is very close to the lattice, typically
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within distance �1=2.) The relation between SIVP and GDD is easily explained.
First, we recall (e.g., see [33, Theorem 7.9]) that for any n-dimensional lattice, �
and �n satisfy

�n � 2� �
p
n�n: (13.1)

Next, we observe that the proof of (13.1) is constructive in the sense that it gives
efficient reductions from GDDpn to SIVP and from SIVPpn to GDD . Specifi-
cally, given a solution to SIVP instance B, and a target vector t, one can efficiently
find (e.g., using Babai’s nearest plane algorithm [35]) a lattice point within distance
.
p
n=2/� � �n.B/ from the target. (When � D 1, this proves that 2� � pn�n.)

Conversely, given a lattice B, one can efficiently find a set of linearly independent
lattice vectors v1; : : : ; vn of length 2�� making n calls to a GDD oracle on input
the same lattice B and n distinct target vectors, where each ti is chosen adaptively
as a vector orthogonal to v1; : : : ; vi�1 of length (slightly larger than) ��. (Again,
when � D 1, this proves that �n � 2�.)

Collision Resistant Hashing

In this section, we give a general introduction to the problem of designing crypto-
graphic functions that are provably secure, based on the worst-case intractability of
lattice problems. For simplicity, in this section, we concentrate on collision resistant
hashing (defined below), a fairly simple, but still useful, cryptographic primitive.
Public-key encryption schemes are discussed separately in Section “Public-Key
Encryption Scheme”.

A collision resistant hash function family is a collection of keyed functions
fhk W D ! Rgk2K with common domain D and range R. The hash functions are
efficiently computable in the sense that there is an efficient algorithm that on input a
key k 2 K and a value x 2 D, computes the corresponding value fk.x/ 2 R in the
range of the functions. Usually, the domainD is larger than the range R, so that by
the pigeon-hole principle, each function fk admits collisions, i.e., pairs x ¤ y of
distinct inputs that are mapped to the same output fk.x/ D fk.y/. A hash function
family is called collision resistant, if such collisions are hard to find, i.e., no efficient
algorithm on input a randomly chosen key k 2 K will find a collision for function
fk . In order to study hash function families in the asymptotic computational setting,
one considers sequences fhk W Dn ! Rngk2Kn

of hash function families (indexed
by a security parameter n,) with larger and larger domain, range and key space, e.g.,
Kn D f0; 1gn, Dn D f0; 1g2n and Rn D f0; 1gn.

Most lattice based cryptographic functions have a subset-sum structure, and the
constructions are fairly easy to describe. Let .G;C; 0/ be a commutative group with
binary operation C and identity element 0. Any sequence a D .a1; : : : ; am/ 2
Gm of group elements defines a subset-sum function fa.x/ mapping binary string
x 2 f0; 1gm to group element

fa.x/ D
mX

iD1

ai � xi : (13.2)
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A collision for function fa is a pair of binary vectors x ¤ y such that fa.x/ D
fa.y/. Equivalently, collisions can be represented by a single vector z D x� y such
that kzk1 D 1 and fa.z/ D 0 is the identity element in G.

Notice that if m > log2 jGj, then fa is a hash function, i.e., it compresses the
input, and collisions are guaranteed to exist. We want to prove that for appropriate
choice of the group G and parameter m, finding collisions to function fa with non-
negligible probability (when the key a 2 Gm is chosen uniformly at random) is at
least as hard as solving various lattice approximation problems in the worst case.

We remark that, for any subset-sum function (13.2), the set of integer vectors
z 2 Z

m satisfying fa.z/ D 0 forms a lattice. So, the problem of breaking (i.e., find-
ing collisions to) hash function fa can be equivalently formulated as the problem of
finding shortest nonzero vectors (in the `1 norm) in a random lattice. In this sense,
the construction of lattice based hash functions establishes a connection between
the worst-case and average-case complexity of (different) lattice problems.

In the rest of this section we first review some mathematical material that will
be used in the analysis of the hash functions. Next, we present an oversimplified
instantiation and analysis of a lattice based function, which, although technically
inaccurate, conveys most of the intuition behind the actual constructions. In Section
“Simple Cryptographic Hash Function with Worst-Case/Average-Case Connection”
we give a self contained analysis (using the mathematical facts stated in Section
“Background”) of a simple lattice based hash function. In this section we strive for
simplicity, rather than achieving the best quantitative results. The current state of
the art in the construction of lattice based hash functions is discussed in Section
“Improving the Construction and Analysis”, followed in Section “Using Special
Lattices to Improve Efficiency” by a description of recent work on the construction
of very efficient cryptographic functions based on special classes of lattices.

Background

The mathematical techniques used in the analysis of the currently best results
in the area of lattice based cryptography involve Gaussian distributions and the
n-dimensional Fourier transform. Fortunately, just a few basic facts in the area are
enough to analyze a simplified version of the hash function of [16]. In this sec-
tion we briefly review all necessary definitions and properties used in our analysis
in Section “Simple Cryptographic Hash Function with Worst-Case/Average-Case
Connection”.

For any vector c 2 R
n and parameter s > 0, let Ds;c.x/ D e��k.x�c/=sk2=sn

be (the probability density function of) the Gaussian distribution with center c and
variance ns2=.2	/. For any n-dimensional lattice�, letD�;s;c be the discrete prob-
ability distribution obtained conditioning Ds;c.x/ on the event that x 2 �. More
precisely, for any x 2 � let

D�;s;c.x/ D Ds;c.x/P
y2�Ds;c.y/

:
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In [16], Micciancio and Regev introduce a lattice parameter ".�/, called the
smoothing parameter of the lattice. (To be precise, " is a family of parameters,
indexed by a real number ". Typically, one considers families of lattices �n in
increasing dimension, and smoothing parameter " where ".n/ is some fixed neg-
ligible function of n.) Informally, the smoothing parameter satisfies the following
fundamental property [16, Lemma 4.1]: if s � ".�/, then adding Gaussian noise
with distribution Ds;c to a lattice � results in an almost uniform distribution over
R

n. More precisely, the property satisfied by the smoothing parameter is that for any
n-dimensional lattice L.B/, vector c 2 R

n, and parameter s � ".�/, the statistical
distance betweenDs;c mod P.B/ and the uniform distribution over P.B/ is at most

�.Ds;c mod P.B/; U.P.B/// � "=2: (13.3)

Here, the operation of adding noise D to a lattice L.B/ is expressed as reduc-
ing D (which is a distribution over R

n) modulo the lattice, yielding a distribution
over P.B/. Intuitively, this represents a distribution over the entire space obtained
by tiling R

n with copies of P.B/. We refer the reader to [16] for the exact definition
of the smoothing parameter, which involves the dual lattice, and is somehow tech-
nical. The reader can think of (13.3) essentially as the definition of the smoothing
parameter. Below we state the two only other important properties of the smoothing
parameter that will be used in this paper. The first property [16, Lemma 4.2] is that
the smoothing parameter is not much larger than �n: for any n-dimensional lattice
� and positive real " > 0

".�/ �
r

ln.2n.1C 1="//
	

� �n.�/: (13.4)

As a special case, if " D n� log n, then ".�/ � log.n/ ��n.�/. The second property
is that if s � ".�/, then the discrete distribution D�;s;c behaves in many respect
like the continuous distribution Ds;c. In particular, (and this is all we need in this
paper) [16, Lemma 4.4] shows that if s � ".�/, then

Px�D�;s;cfkx � ck > spng � 1C "
1 � " � 2

�n; (13.5)

i.e., the discrete distributionD�;s;c is highly concentrated in a sphere of radius s
p
n

around c.

An Oversimplified Construction

In the limit, the hash function family that we are going to describe and analyze,
corresponds to the subset-sum problem over the additive group R

n of n-dimensional
real vectors. Using matrix notation, the subset-sum functions are indexed by a real
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matrix A 2 R
n	m and map input x 2 f0; 1gm to fA.x/ D Ax 2 R

n. Clearly, using
R

n as underlying group is not a valid choice, because it results in a function with
finite domain f0; 1gm and infinite range R

n that cannot possibly compress the input
and be a hash function. Still, the intuition behind the actual construction can be
easily illustrated using real numbers. So, let us ignore this finiteness issue for now,
and observe that the range of the function does not depend on the parameter m.
So, if the range were finite, we could easily make the domain f0; 1gm bigger than
the range by choosing a sufficiently largem.

We want to prove that collisions are hard to find, in the sense that any procedure
that finds collisions to fA for random A (with arbitrarily small, but non-negligible
probability) can be converted into a worst-case approximation algorithm for lattice
problems, e.g., finding short vectors in an arbitrary input lattice B. Technically, we
want to give a reduction that on input a lattice basis B selects a key A such that the
ability to find a collision for fA helps to find short vectors in L.B/. The challenge
is that in order for this to be a valid worst-case to average-case reduction, the key A
selected by the reduction should be (almost) independent from the input lattice B.
In other words, no matter what lattice L.B/ we start from, we should end up gener-
ating keys A with essentially the same (uniformly random) probability distribution.

This can be achieved as follows. Consider the result of selecting a random lattice
point y 2 L.B/ and adding a small amount of noise r to it. Again, here we are
being informal. Since L.B/ is a countably infinite set of points, we cannot choose
y 2 L.B/ uniformly at random. We will solve this and other technical problems
in the next section. Going back to the proof, if the amount of noise is large enough
(say, r is chosen uniformly at random from a sphere of radius n�n sufficiently larger
than the smoothing parameter of the lattice) the resulting point y C r will be very
close to being uniformly distributed over the entire space R

n. So, we can select a
random key A by choosing, for i D 1; : : : ; m, a random lattice point yi 2 L.B/
and random small error vector ri , and setting ai D yi C ri . The resulting key
A D Œa1; : : : ; an� won’t be distributed exactly at random, but will be sufficiently
close to uniform that the hypothetical collision finder algorithm, on input A, will
find a collision fA.z/ D 0 (where kzk1 D 1) with non-negligible probability. (If the
collision finder does not produce a valid collision, we simply repeat the procedure
again by choosing a new A independently at random. Since the success probability
of the collision finder is non-negligible, a collision will be found with very high
probability after at most a polynomial number of iterations.) Let z be the collision
found by the algorithm. We have

P
i ai zi D 0. Substituting ai D yi C ri and

rearranging we get
mX

iD1

zi � yi D
mX

iD1

.�zi / � ri : (13.6)

Notice that the vector on the left hand side of (13.6) is a lattice vector because it is
an integer linear combination (with coefficients zi 2 Z) of lattice vectors yi 2 L.B/.
At the same time, the vector on the right hand side of (13.6) is a short vector because
it is a small linear combination (with coefficients �zi 2 f0; 1;�1g) of short vectors
ri . In particular, if the error vectors ri have length at most n�n, then the vector in
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(13.6) has length at most mn�n. So, we have found a lattice vector of length not
much bigger than �n.

The construction we just described and informally analyzed has several short-
comings. The main problem is that the range of the function is infinite, so the
assumption that no algorithm can find collisions is vacuous. (Specifically, when
A 2 R

n	m is chosen at random, the corresponding function is injective with proba-
bility 1.) The conclusion that we can find a short vector in a lattice is also trivial, as
our proof sketch does not rule out the possibility that the vector

P
i yi � zi equals 0.

All these problems are solved in the next section by replacing R
n with the finite

group Z
n
q of n-dimensional vectors modulo q, and using a variant of the closest

vector problem (GDD ) as the worst-case problem to be solved.

Simple Cryptographic Hash Function
with Worst-Case/Average-Case Connection

Consider the subset-sum function family over the group Z
n
q of integer vectors mod-

ulo q. Using matrix notation, this function family is indexed by A 2 Z
n	m
q , and each

function maps binary string x 2 f0; 1gm to vector

fA.x/ D Ax mod q 2 Z
n
q : (13.7)

For concreteness, let us fix q D 2n and m D 2n2. Notice that the correspond-
ing subset-sum function has a domain of size jf0; 1gmj D 22n2

and range of size
jZn

q j D 2n2
. So, the function compresses the length of the input by a factor 2, and

collisions fA.z/ D 0 (with kzk1 D 1) are guaranteed to exist. We prove that finding
collisions is computationally hard, even on the average when A is chosen uniformly
at random.

Theorem 1. Let ffA W f0; 1gm ! Z
n
qgA be the function family defined in (13.7),

with q.n/ D 2n, m.n/ D 2n2, and A 2 Z
n	m. If no polynomial time algorithm can

solve GDD in the worst case within a factor � D n3 (where n is the rank of the
input lattice), then ffAgA is collision resistant.

Proof. Assume for contradiction that there exists an algorithm F that on input
a uniformly random matrix A 2 Z

n	m
q , finds a collision z with non-negligible

probability p. We can assume, without loss of generality, that F always outputs
a vector z D F.A/ of norm kzk1 D 1, which may or may not satisfy Az D 0
.mod q/. We know that PfAz mod q D 0g D p is non-negligible. Notice that
for any possible output z D F.A/, there exists an index j 2 f1; : : : ; mg such
that zj ¤ 0. So, by union bound, there is an index j0 2 f1; : : : ; mg such that
PfAz mod q D 0 ^ zj0

¤ 0g � p=m D p=2n2 is also non-negligible, where the
probability is computed over the random selection of A 2 Z

n	m
q and z D F.A/.

We use F to approximate the GDD variant of the closest vector problem within
a factor n3. Specifically, given a lattice basis B 2 R

n	n and target t 2 R
n, we find
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a lattice vector in L.B/ within distance n3�.B/ from t, where �.B/ is the covering
radius of the lattice. As remarked in Section “Background”, it is easy to see that
this problem is at least as hard as approximating SIVP within (slightly larger)
polynomial factors � 0 D n3:5. Assume that a value r 2 Œn3�.B/=2; n3�.B/� is
known. (In general, one can try all possible values r D 2k , and stop as soon as the
reduction is successful.) Oracle F is used as follows:

1. Apply the LLL basis reduction algorithm to B, so that kBk � .2=p3/n�n.B/.
2. Choose a random index j 2 f1; : : : ; mg.
3. Choose error vectors ri with distribution Ds;ıij t where s D r=.2m

p
n/, and

ıij 2 f0; 1g equals 1 if and only if i D j . In other words, ri is chosen according
to a Gaussian distribution of parameter s centered around either 0 or t.

4. Let ci D ri mod B and yi D ci � ri 2 L.B/.
5. Let ai D bqB�1cic, and call the oracle F.A/ on input A D Œa1; : : : ; am�.
6. Output the vector

x D zj .BA=q � Y/z

where Y D Œy1; : : : ; ym� and z D F.A/ is the collision returned by the oracle.

We need to prove that the reduction is correct, i.e., it outputs a lattice vector
x 2 L.B/ within distance r from the target t with non-negligible probability. (Since
the success probability depends only on the internal randomness of the reduction
algorithm, the failure probability can be made exponentially small using standard
repetition techniques.)

Since j is chosen uniformly at random, j D j0 with non-negligible probability
1=m D 1=.2n2/. In the rest of the proof, we consider the conditional success prob-
ability of the reduction given that j D j0, and show that this conditional probability
is still non-negligible.

Notice that, by our assumption on r , and using (13.4), the Gaussian parameter
satisfies s D r=.2m

p
n/ � n3�=4m

p
n � .

p
n=16/ � �n.B/ � ".B/ for any

" D 2�o.n/. So, by (13.3), the distribution of the vectors ci D ri mod B is within
statistical distance "=2 from the uniform distribution over P.B/. Since the function
c 7! bqB�1cc maps the uniform distribution over P.B/ to the uniform distribution
over Z

n
q , we get that each vector ai D bqB�1cic is also within statistical distance

"=2 from the uniform distribution over Z
n
q . Overall, the key A D Œa1; : : : ; am� is

within negligible distance "m=2 from uniform and

PfAz D 0 .mod q/ ^ zj0
¤ 0g � p

m
� "m

2
� p

2m
:

Notice that if Az D 0 .mod q/, then the output of the reduction

x D zj B
Az
q
� zj Yz
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is certainly a lattice vector because it is a linear combination of lattice vectors B
and Y with integer coefficients zj .Az=q/ and �zj z. It remains to prove that the
conditional probability that kt � xk � r (given that j D j0, Az D 0 .mod q/ and
zj0
¤ 0) is non-negligible. We will prove something even stronger: the conditional

probability, given j D j0, C, A and z satisfying Az D 0 .mod q/ and zj0
¤ 0, is

exponentially close to 1. We bound the distance kt � xk as follows:

kt � xk � kt � zj .BA=q �Y/zk
D kzj � tC .C � BA=q/zC .Y �C/zk
� n

q
kBk � k.qB�1C � bqB�1Cc/zk1 C

X

i

jzi j � kyi � .ci � ıij t/k

� nm

q
kBk Cm �max

i
�kyi � .ci � ıij t/k:

Finally, observe that the distribution of yi , given ci and j , is DL.B/;s;ci�ıij t. So,
by (13.5), kyi � .ci � ıij t/k � pns with probability exponentially close to 1, and

kt � xk � 2n3.2=
p
3/n

2n
�n.B/Cm

p
n

r

2m
p
n
D 2n3

3n=2
�n.B/C r

2
< r:

ut

Improving the Construction and Analysis

The main difference between the construction described in Section “Simple Cryp-
tographic Hash Function with Worst-Case/Average-Case Connection” and those
studied and analyzed in [14–16, 36] is that we used a very large value of q (expo-
nential in n), while [14–16, 36] use q D nO.1/. Using a large value of q seems
necessary if one starts from an LLL reduced basis and wants to find a short vector
with just one application of the reduction. The approach taken in [14–16, 36] is to
use the reduction to find lattice vectors that are shorter than the vectors in the input
basis B by just a small (constant or polynomial) factor. A set of very short lattice
vectors can then be found by successive improvements, starting from a basis B that
contains vectors potentially as large as 2n�n, and progressively finding shorter and
shorter bases for the lattice.

Using a large value of q has a negative impact on both the efficiency and provable
security of the hash function. On the efficiency side, since 2m > qn, using q D 2n

yields hash functions with key size and computation time at least n �m � log.q/ > n4.
By contrast, using q D nO.1/ yields key size and computation time QO.n2/. On the
security side, our proof shows that breaking the hash function is at least as hard
as approximating SIVP within a factor � D n3:5. In fact, with little more effort,
one can reduce the factor to � D QO.pmn/. Still, using q D 2n results in factors
larger than n1:5. Using smaller q D nO.1/ yields collision resistant hash functions
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that are at least as hard to break as approximating SIVP within factors � D QO.n/
almost linear in the dimension of the lattice. This is the best currently known result,
proved by Micciancio and Regev in [16]. (See also [29] for a method to reduce the
parameter q to as low as q.n/ D QO.n/.)
Theorem 2. For any sufficiently large polynomial q (e.g., q.n/ D n3) the subset-
sum function fA W f0; 1gm ! Z

n
q defined in (13.2) is collision resistant, assuming

that no polynomial time algorithm can solve SIVP (as well as various other lattice
problems, e.g., GapSVP ) in the worst case within a factor � D QO.n/ almost linear
in the rank of the lattice.

We remark that the collision resistant hash function of Micciancio and Regev
[16] is essentially the same as the one-way function originally proposed by Ajtai
[13]. The difference across [13–16] is mostly in the techniques used to analyze the
function, choice of the parameters, and corresponding worst-case factor achieved.
Further reducing the factor in the worst-case inapproximability assumption to

p
n

(or even to n1�" for some constant " > 0) is currently one of the main open problems
in the area.

Using Special Lattices to Improve Efficiency

From a practical point of view, a drawback of the cryptographic functions of [13–16]
is that they require a key size QO.n2/, approximately quadratic in the natural security
parameter n. Unfortunately, it seems hard to build lattice based hash functions with
key size sub-quadratic in the dimension of the underlying lattice. Intuitively, the
reason is that an n-dimensional lattice is described by an n � n integer matrix, and
this representation is essentially optimal. (For example, it can be easily shown that
there are 2˝.n2/ distinct integer lattices with determinant 2n.) More concretely, the
keys to the hash functions studied in Section “Simple Cryptographic Hash Function
with Worst-Case/Average-Case Connection” and “Improving the Construction and
Analysis” are matrices

A D

2
64
a1;1 � � � a1;n a1;nC1 � � � a1;2n a1;2nC1 � � � a1;m

:::
: : :

:::
:::

: : :
:::

::: � � � :::

an;1 � � � an;n an;nC1 � � � an;2n an;2nC1 � � � an;m

3
75

where the number of rows is the rank n of the underlying lattice, and the number
of columns m is strictly larger than n in order to achieve compression. So, even if
the entries ai;j are small integers, the key size is still at least O.n2/. A possible
approach to overcome this difficulty and get more efficient and provably secure
lattice based cryptographic functions was suggested by Micciancio in [17], inspired
in part by NTRU [37], a very fast commercial cryptosystem. NTRU is a ring based
cryptosystem that can equivalently be described using certain lattices with special
structure, but for which no proof of security is known. The idea common to [17]
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and [37] is to use lattices with special structure that can be described with only
QO.n/ bits. For example, Micciancio [17] considers cyclic lattices, i.e., lattices that

are invariant under cyclic rotations of the coordinates. Many such lattices can be
described by giving a single lattice vector v, and a basis for the corresponding lattice

Cv D

2
666664

v1 vn vn�1 � � � v2

v2 v1 vn � � � v3

v3 v2 v1 � � � v4

:::
:::

:::
: : :

:::

vn vn�1 vn�2 � � � v1

3
777775

can be obtained by taking v together with its n � 1 cyclic rotations.
The novelty in Micciancio’s work [17] (which sets it apart from [37]), is that

lattices with special structure are used to build very efficient cryptographic func-
tions that also have strong provable security guarantees, similar to those of Ajtai’s
original proposal [13] and subsequent work [14–16]. Specifically, Micciancio [17]
gives a much more efficient one-way function than the one of [13, 16], and still
provably secure based on the worst-case intractability of SIVP (and other lattice
problems) within almost linear factors over the class of cyclic lattices. In particular,
the one-way function of [17] has key size and computation time QO.n/ almost linear
in the security parameter n. The adaptation of the proof of [16] to the cyclic set-
ting is non-trivial, and several subtle issues come up during the proof. For example,
Micciancio [17] only shows that the proposed cryptographic function is one-way,
but not necessarily collision resistant. In fact, it was later shown (independently, by
Peikert and Rosen [20] and Lyubashevsky and Micciancio [19]) that the function
of [17] is not collision resistant, but it can be easily modified to become a collision
resistant hash function provably secure essentially under the same assumptions as
in [17]. Lyubashevsky and Micciancio [19] also extend the construction to a wider
class of lattices, named “ideal” lattices in that paper.

We only describe the construction of efficient cryptographic functions (called
“generalized compact knapsacks”), and refer the reader to the original papers for
the proofs of security, which combine the geometric techniques described in Section
“Simple Cryptographic Hash Function with Worst-Case/Average-Case Connection”
with new algebraic methods. The fundamental idea of [17] is that the key A to
function fA.x/ D Ax .mod q/ does not have to be chosen at random from the set
Z

n	m
q of all possible matrices. One can restrict, for example, matrix A to be the

concatenation

A D ŒCa1Ca2 � � �Cam=n � D

2

64
a1

1 � � � a1
2 a

2
1 � � � a2

2 a
3
1 � � � am=n

2
:::
: : :

:::
:::
: : :

:::
::: � � � :::

a1
n � � � a1

1 a
2
n � � � a2

1 a
3
n � � � am=n

1

3

75

of a small number of circulant matrices, i.e., matrices Cai where each column is
the cyclic rotation of the previous column. Perhaps unexpectedly, an algorithm to
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invert random instances of the corresponding function fA can be used to approx-
imate SIVP and other lattice problems in the worst case, when restricted to the
special case of cyclic lattices, i.e., lattices that are invariant under cyclic rotation of
the coordinates. As already remarked, adapting the reduction of [16] from general
lattices to the cyclic case is non-trivial, and, in particular achieving collision resis-
tance requires some new algebraic ideas. The nice feature of the new function is
that the key A can now be represented using only m log q bits (e.g., just the vectors
a1; : : : ; am=n, rather than the entire matrix A), and the corresponding function fA

can also be computed in QO.m logq/ time using the fast Fourier transform.
The idea of using structured matrices is further developed in [19, 20] where it

is shown how to turn fA into a collision resistant hash function. The approaches
followed in the two (independent) papers are closely related, but different. In
[20], collision resistance is achieved by restricting the domain of the function to
a subset of all binary strings. In [19], it is shown how to achieve collision resis-
tance by appropriately changing the constraint on matrix A. Here we follow the
approach of [19], which better illustrates the algebraic ideas common to both papers.
The fundamental idea (already present in [17,37]) is that the ring of circulant matri-
ces is isomorphic to the ring of polynomials ZŒX� modulo .Xn � 1/. It turns out
that the collision resistance properties of fA are closely related to the factoriza-
tion of Xn � 1: the linear factor .X � 1/ allows to efficiently find collisions, while
if we replace .Xn � 1/ with an irreducible polynomial p.X/, we get a collision
resistant function. The proof of security is based on the worst-case intractability of
lattice problems over the corresponding class of “ideal” lattices: lattices that can be
expressed as ideals of the ring ZŒX�=p.X/. (Notice that when p.X/ D Xn � 1,
the ideals of ZŒX�=p.X/ correspond exactly to cyclic lattices.) A specific choice of
p.X/ that results in very efficient implementation [21] is p.X/ D Xn C 1, which
is irreducible when n is a power of 2. In terms of matrices, Xn C 1 corresponds to
using a variant of circulant matrices

C�v D

2

666664

v1 �vn �vn�1 � � � �v2

v2 v1 �vn � � � �v3

v3 v2 v1 � � � �v4

:::
:::

:::
: : :

:::

vn vn�1 vn�2 � � � v1

3

777775

where each column is a cyclic shift of the previous one, with the element wrapping
around negated.

We emphasize that the lattice intractability assumption underlying the construc-
tions of [17, 19, 20] is a worst-case one, but over a restricted class of lattices.
The main open question is whether lattice problems over cyclic (or, more gener-
ally, ideal) lattices are indeed hard. Very little is known about them, but state of the
art lattice reduction algorithms do not seem to perform any better over cyclic lattices
than arbitrary ones, supporting the conjecture that lattice problems over cyclic (or
similarly restricted) lattices are as hard as the general case.
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Public-Key Encryption Scheme

One-way functions and collision resistant hash functions (treated in the previous
section) are useful cryptographic primitives, and can be used (at least in theory, via
polynomial time but not necessarily practical constructions) to realize many other
cryptographic operations, like pseudo-random generation, private key encryption,
message authentication, commitments schemes, and digital signatures. Unfortu-
nately, this is not the case for public-key encryption, one of the most fundamental
operations of modern cryptography, defined below.

Definition 4. A public-key encryption scheme is a triple of probabilistic polyno-
mial time algorithms .G;E;D/ where

� G, the key generation algorithm, on input a security parameter n, outputs (in time
polynomial in n) a pair of keys .pk; sk/, called the public and secret key.

� E, the encryption algorithm, on input the public key pk and a message string m
(called plaintext), outputs a string E.pk;m/, called ciphertext.

� D, the decryption algorithm, on input the secret key sk and a ciphertext
c D E.pk;m/, recovers the original messageD.sk;E.pk;m// D m.

The typical application of public-key encryption schemes is the transmission of
confidential information over a public network. Here, the intended recipient gener-
ates a pair of keys .pk; sk/ using the key generation algorithm, and makes his public
key pk widely available, e.g., by publishing it next to his name in a directory. Any-
body wishing to send a message to this recipient can use the public key pk to encode
the messagem into a corresponding ciphertextE.pk;m/, which is transmitted over
the network. The intended recipient can recover the underlying messagem using the
decryption algorithm and his knowledge of the secret key sk, but it is assumed that
nobody else can efficiently perform the same task. This security property is formu-
lated as follows: when the public key pk is generated at random using G, for any
two messages m0; m1 no efficient (probabilistic polynomial time) adversary, given
pk and the encryptionE.pk;mb/ of a randomly selected message, can guess the bit
b with probability substantially better than 1=2. This is essentially the classic notion
of security introduced by Goldwasser and Micali in [38], and typically referred to
as security against chosen plaintext attack (or, CPA-security).

No public-key encryption scheme based on an arbitrary one-way or collision
resistant hash function family is known, and any such construction must necessarily
be non black-box [39]. Still, public-key encryption schemes can be built from many
specific (average-case) computational hardness assumptions, e.g., the hardness of
factoring random numbers, or computing discrete logarithms in finite fields, etc.
Can a public-key encryption scheme be constructed and proved secure based on the
assumption that SVP or SIVP is hard to approximate in the worst-case?

Inspired by Ajtai’s work on lattice-based one-way functions [13], Ajtai and
Dwork [22] proposed a public-key encryption scheme (subsequently improved
by Regev [23], whose proof techniques are followed in this survey) that is provably
secure based on the worst-case hardness of a lattice problem, although a seemingly
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Fig. 13.2 A lattice with
“unique” shortest vector. The
length �1 of the shortest
nonzero vector v in the lattice
is much smaller than the
length �2 of all lattice vectors
that are not parallel to v

2λ

1λ

v

easier one that those underlying the construction of one-way hash functions. The
problem underlying the Ajtai-Dwork cryptosystem can be described as a restriction
of SVP to a special class of lattices, namely lattices such that �2 > ��1 for some
factor � D nO.1/ polynomial in the rank of the lattice (see fig. 13.2). The restric-
tion of SVP to such lattices is usually referred to as the “unique shortest vector
problem” (uSVP ).

Definition 5 (Unique Shortest Vector Problem, uSVP ). On input a lattice basis
B such that �2.B/ > ��1.B/, find a nonzero lattice vector v 2 L.B/ of length
�1.B/.

The name of this problem is motivated by the fact that in such lattices the shortest
nonzero vector v is unique, in the sense that any vector of length less than ��1 is
parallel to v. It is also easy to see that for such lattices, finding a � -approximate
solution to SVP is equivalent to finding the shortest nonzero lattice vector exactly:
given a � -approximate solution v, the shortest vector in the lattice is necessarily of
the form v=c for some c 2 f1; : : : ; �g, and can be found in polynomial time by
checking all possible candidates for membership in the lattice. (Here we are using
the fact that � is polynomially bounded. Better ways to find the shortest vector exist,
which work for any factor � .) Interestingly, it can be shown [23] that solving uSVP

is also equivalent to the decision problem GapSVP under the additional promise
that the input instance .B; d / satisfies �2.B/ > �d . We refer to this problem as
uGapSVP .

Definition 6 (Unique Shortest Vector Decision Problem, uSVP ). Given a lattice
basis B and a real d , distinguish between these two cases

� �1.B/ � d and �2.B/ > �d ,
� �1.B/ > �d (and �2.B/ > �d ).

If the input satisfies neither condition, any answer is acceptable.

We remark that this is different from the variant of GapSVP considered in
[40], and proved not to be NP-hard for factor � D n1=4 under standard complexity
assumptions. The problem studied in [40] corresponds to GapSVP with the
stronger additional promise that �2.B/ > ��1.B/, and is not known to be equivalent
to uSVP .
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Fig. 13.3 The vector u
defines a collection of equally
spaced hyperplanes
Hi D fx W hx; ui D ig at
distance 1=kuk one from the
other

H0

H1

H2

H3

H4

H−2
u/ u 2

H−1

Theorem 3 ([23]). For any polynomially bounded factor � , uSVP and uGapSVP

are equivalent under polynomial time reductions.

Another equivalent formulation of uSVP is the “hidden hyperplane problem,”
described below, which is the problem directly underlying the Ajtai-Dwork cryp-
tosystem. Informally, the “hidden hyperplane problem” is the problem of distin-
guishing the uniform distribution over R

n from a distribution concentrated nearby
a set of equally spaced parallel hyperplanes Hi D fv W hv;ui D ig (where u is a
vector orthogonal to the hyperplanes of length inversely proportional to the distance
between consecutive hyperplanes, see Fig. 13.3). The relation between the hidden
hyperplane problem and uSVP is easily explained, but it requires the use of dual
lattices. Recall that the dual lattice L.B/� is the set of all vectors u that have integer
scalar product with all lattice vectors v 2 L.B/. So, any dual vector u partitions the
lattice L.B/ into consecutive hyperplanes

Hi D fv W hu; vi D ig

(for i 2 Z) at distance 1=kuk from each other. If the dual lattice contains a very
short vector u, then the distance between the hyperplanes defined by u will be very
large. Moreover, if the successive minimum �2.L.B/�/ is much larger than kuk (i.e.,
L.B/� is a uSVP lattice), then the distance between the hyperplanes will be much
larger than the characteristic distance between lattice points within each hyperplane.
So, a uGapSVP instance .B; d / can be reduced to the hidden hyperplane problem
as follows:

1. Pick a random lattice point in the dual lattice u 2 L.B/�. (Here we are being
rather informal. Technical problems like the impossibility of choosing lattice
points uniformly at random can be easily solved by methods similar to those
described in Section “Collision Resistant Hashing”.)

2. Perturb the dual lattice point by a random error vector r.
3. Run the hidden hyperplane distinguisher on the perturbed dual lattice point uCr.

We observe that if the length of the error vector is appropriately chosen, the reduc-
tion is correct. We only describe the main idea here, and refer the reader to [22, 23]
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for the technical details. If .B; d / is a “yes” instance of uGapSVP , then L.B/
contains a vector u of length at most d , and the dual lattice L.B�/ can be parti-
tioned into hyperplanes at distance 1=d from each other. Moreover, the additional
uGapSVP promise that �2 > �d guarantees that the distance between dual lattice
points within each hyperplane is much smaller than 1=d (essentially proportional to
1=�d ). So, by adding some noise (sufficiently bigger than 1=�d , but smaller than
1=d ) to the dual lattice points, we can erase the fine structure of the dual lattice
within each hyperplane, and obtain a distribution concentrated nearby (and almost
uniform over) these hyperplanes. On the other hand, if .B; d / is a “no” instance of
uGapSVP , then �1.B/ > �d , and the characteristic distance between all dual lat-
tice points is proportional to 1=�d . So, by adding an amount of noise much larger
than 1=�d we get a distribution that is very close to uniform over the entire space.
This shows that the perturbed dual lattice point uC r is chosen according to one of
the two hidden hyperplane distributions, almost uniform either over the entire space
or nearby the hidden hyperplanes. So, the reduction is correct.

The nice feature of the hidden hyperplane problem is that it is, in a sense, ran-
dom self reducible: given an arbitrary instance of the problem, we can obtain a
random instance by applying a random rotation and scaling. (Technically, the hid-
den hyperplane problem is not a computational problem in the standard sense, as its
instances are not strings, but probability distributions. What we mean by reducing a
given instance to a random instance of the hidden hyperplane problem is that there
is an efficient oracle algorithm that, given black-box access to a hidden hyperplane
distribution corresponding to a fixed vector u, produces samples according to the
distribution corresponding to a random rotation Qu.) So, if we can solve the hidden
hyperplane problem for a non-negligible fraction of the “hidden” vectors u, then
we can efficiently solve it for all vectors u with very high probability. Equivalently,
solving the hidden hyperplane problem on the average is at least as hard as solving
uSVP in the worst case. From the average-case hardness of the hidden hyperplane
problem it is easy to derive a secure public-key cryptosystem for single bit messages
(longer messages can be encrypted bit by bit):

� The secret key is a random vector u.
� The public key is a set of polynomially many points p1; : : : ;pn chosen at random

nearby the hyperplanes defined by u.
� The bit 0 is encrypted by adding up a small subset of the public vectors, and

perturbing it by a small amount of noise. Notice that this results in a vector
distributed at random nearby the hyperplanes.

� The bit 1 is encrypted by picking a random point in space, which, with high
probability, will be far from the hyperplanes.

Notice that on the one hand, the encrypted bit can be efficiently recovered using
the secret key u by computing the scalar product hu; ci, where c is the received
cipher-text. If c is the encryption of 0, then the product will be close to an inte-
ger, while if c is the encryption of 1, the product will be close to ZC 1

2
with high

probability. On the other hand, distinguishing encryptions of 0 from encryptions
of 1 is essentially a random instance of the hidden hyperplane problem, which is
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hard to solve on the average. So, the encryption scheme is secure based on the
worst-case hardness of uSVP . We remark that many applications require a stronger
notion of security than the CPA-security considered here. Informally, CPA-security
corresponds to passive adversary that can eavesdrop, but not alter, the transmitted
ciphertexts. Security with respect to active adversaries that are able to alter transmit-
ted messages, and trick the legitimate receiver into decrypting adversarially chosen
ciphertexts (called security against chosen ciphertext attacks, or CCA-security), is
often desirable.

The Ajtai-Dwork cryptosystem introduces the possibility of decryption errors: it
is possible that the bit 1 is encrypted (by chance) as a vector close to the hyperplanes,
which would subsequently be decrypted as 0. This problem can be easily solved (as
suggested by Goldreich, Goldwasser and Halevi, [41]) by encrypting 0’s and 1’s as
points close to alternating sequences of hyperplanes. Another problem with Ajtai-
Dwork cryptosystem is that it relies on the hardness of uSVP for a fairly large
value of � . This has also been substantially improved by Regev [23] to � D n1:5

using Fourier analysis techniques similar to those described in Section “Collision
Resistant Hashing”. Regev [23] also shows that the hidden hyperplane problem can
be reduced to a one-dimensional problem, yielding a subset-sum style cryptosystem
where the public vectors p1; : : : ;pn are replaced by single numbersp1; : : : ; pn. The
use of numbers pi rather than vectors pi seems to be essentially a matter of style,
without much of an impact on performance, because the numbers pi require very
high precision.

A very interesting result is another public-key cryptosystem of Regev [24], which
can be proved secure under the assumption that no quantum algorithm can efficiently
approximate SVP (in the worst case over arbitrary lattices) within polynomial fac-
tors. Another recent interesting result is the work of Peikert and Waters [25] who,
building on the cryptosystem of [24], were able to design a lattice-based cryp-
tosystem achieving CCA security. We remark that the cryptosystems of [24, 25]
are entirely classical: encryption and decryption can be efficiently implemented on
standard computers. Only the reduction from SVP to the problem of breaking the
cryptosystems involves quantum computation.

Concrete Security of Lattice Based Cryptography

The importance of basing lattice cryptography on worst-case complexity assump-
tions cannot be overemphasized. The worst-case approximation factor achieved by
lattice reduction algorithms [1,6,12] is known to be exponential in the dimension of
the lattice [1,36]. However, lattice reduction algorithms have often been reported to
perform much better in practice than the worst-case theoretical upper bound, when
run on random problem instances like those arising in cryptanalysis applications.
(See also [42,43] for a recent empirical study showing that the approximation factor
achieved by the LLL algorithm (and improvements) on the average, when the input
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lattice is random, is still exponential in the rank, but with a much smaller constant in
the exponent than the worst-case factor.) So, while it seems reasonable to conjecture,
based on our current knowledge, that many computational problems on lattices
may be hard to approximate in the worst-case even within moderately large factors,
extreme caution should be exercised when making conjectures on the average-case
complexity of the same problems. In summary, if worst-case intractability assump-
tions are preferable to average-case ones in general, this is especially true when
dealing with point lattices.

The use of worst-case intractability assumptions also frees us from a major bur-
den associated with making average-case complexity conjectures: finding appropri-
ate distributions on problem instances for which no heuristics perform satisfactorily.
In the case of lattice problems, heuristics (e.g., [5, 44]) seem to perform reason-
ably well in practice, and the lattices demonstrating the worst-case performance of
known algorithms [1, 36] seem to be more of a pathological example than a source
of real practical concern. Worst-case intractability assumptions do not require the
selection of an appropriate distribution over input lattices, and the performance of
heuristic approaches does not say much about the validity of the assumption. Since
the conjecture is a worst-case intractability one, if the algorithm fails to achieve
good approximation guarantees even on just a few examples, the conjecture still
stands.

All this seems good news for the cryptographic designer, but it also raises
new issues when it comes to instantiating the function with specific values of the
security parameter. Traditionally, the concrete hardness of average-case problems
has been evaluated through a challenge/cryptanalysis process: the cryptographic
designer proposing a new intractability assumption produces a list of random prob-
lem instances (for increasing values of the security parameter) as a challenge to
the rest of the cryptography community. If cryptanalysts are successful in break-
ing a challenge, the corresponding value of the security parameter is considered
too small to achieve security in practice. Typically, there is a cost associated to
breaking challenges in varying dimension, which can be experimentally evalu-
ated for moderately small values of the security parameter, and extrapolated to
larger values as an estimate of the time required to break bigger instances (see for
example [45]).

Now consider worst-case intractability assumptions. If heuristic approaches to
lattice cryptanalysis cannot be used to disprove worst-case intractability assump-
tions, how can we possibly gain confidence in the validity of the assumption?
And how can we select appropriate values of the security parameter to be used in
practice? Several approaches come to mind:

1. The worst-case challenge approach: We ask the cryptographer to come up with
a list of (not necessarily random) challenge problems. Since the cryptographer
has complete freedom in the choice of the challenges, he can choose the worst
problem instances that are hardest to solve by any algorithm. The problem
with this approach is that the cryptographer may not know how to select hard
instances. In fact, worst-case intractability assumptions do not even require
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such hard instances to be easy to find. One of the nicest features of worst-case
intractability assumptions is that they do not require to find such hard instances.
By asking the cryptographer to come up with hard challenges, the advantage of
basing cryptography on worst-case problems would be largely lost.

2. The reverse challenge approach: After the cryptographer formulates a worst-case
intractability conjecture, the cryptanalyst produces a challenge to the conjecture
in the form of a heuristic algorithm and a claim on its worst-case performance.
The challenge is for the cryptographer to come up with an input instance for
which the heuristic algorithm does not meet the promised performance bound.

3. Direct cryptanalysis of the cryptographic function: Instead of evaluating the
strength of the underlying worst-case complexity assumption, directly attack the
cryptographic application.

We remark that the second approach, although unconventional, seems at least
more appropriate than the first one. Since the intractability assumption is that no
efficient algorithm solves every single problem instance, in an experimental setting
it seems more appropriate to first fix the algorithm and then search for the input
that triggers the worst-case performance, rather then the other way around. Still,
producing a counterexample each time somebody comes up with a new heuristic
algorithm with worst-case performance claims may seem too much of a burden for
the cryptographers.

A disadvantage of both the first and second approach is that it does not neces-
sarily give an indication of the true security of the cryptographic scheme. It may
well be the case that breaking the cryptographic function is even harder than solv-
ing the worst case problem underlying the security proof. This issue is addressed by
the last approach, which focuses directly on the cryptographic function rather than
the underlying complexity assumption. This last approach has also the advantage
that the proof of security already gives a precise probability distribution according
to which challenges should be chosen. For example, in the case of lattice based
hash functions, for any set of parameters n;m; q, the challenge should be a matrix
M 2 Z

n	m
q chosen uniformly at random. There is no need to have the cryptographer

to come up with a list of challenges. The cryptanalyst can select the challenges on
her own, as long as the challenge is selected at random according to the prescribed
probability distribution.

A possible objection to the last approach is that it bypasses the proof of security.
If the concrete security of the cryptographic function is evaluated directly by crypt-
analysis, what is the value of providing a security proof? We believe that even in
this scenario, security proofs are very valuable. They may not help in assessing the
concrete security of the function for specific values of the security parameter, but
they ensure that the construction has no structural flaw, and (in the case of worst-
case to average-case reductions) they provide invaluable guidance when selecting
the appropriate distribution over random keys.

A more serious disadvantage of the last approach is that any new cryptographic
primitive requires a separate cryptanalytic effort to assess its concrete security. This
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way, one of the main advantages of the provable security approach is lost: the
ability to concentrate cryptanalytic efforts on a small number of selected compu-
tational problems, and derive the (concrete) security of old and new cryptographic
constructions by means of mathematical proofs.

One possible way to address some of the issues brought up in the previous
discussion is to study the tightness of worst-case to average-case security proofs.
For example, we know that breaking the cryptographic hash functions described in
Section “Collision Resistant Hashing” with non-negligible probability is at least as
hard as approximating SIVP within a factor QO.n/. Is it possible to prove also that
given an oracle that solves SIVP within a factor QO.n/ (in the worst-case) one can
find collisions to the hash function for randomly chosen keys? Some results of this
kind are proved by Nguyen and Stern [46], who show that solving SVP within
a factor n0:5�" allows to break the Ajtai-Dwork cryptosystem. However, there are
several gaps between the two reductions: in [46] the worst-case lattice problems are
different (SVP or CVP , rather than SIVP or GapSVP ), the required polyno-
mial approximation factors are smaller, and the lattice dimension is larger than in
the proof of security. Giving a tight worst-case to average-case reduction between
lattice problems is an important open problem as it would allow to evaluate the
concrete worst-case complexity of lattice problems by cryptanalyzing random chal-
lenges of the average-case problem. Well understood worst-case assumptions could
then be used to prove the security of other average-case problems, without the need
of new challenges and cryptanalysis.

We conclude the paper with a discussion of two other issues that have received
little attention so far, but are certainly very important in the context of cryptanalysis
of lattice based functions. The first issue is that most lattice cryptanalysis problems
are more naturally formulated as lattice approximation problems in the `1 norm.
For example, we observe that finding collisions to the hash function described in
Section “Collision Resistant Hashing” is exactly the same as solving SVP in the
`1 norm in the lattice naturally associated to the function. Still, most algorithmic
work has focused on the Euclidean norm `2. While the `2 norm may be more con-
venient when designing algorithms, there are several reasons to prefer the `1 norm
when working with applications of lattices: the `1 norm often leads to faster and
easier to implement functions, and there is theoretical evidence [47, 48] that lattice
problems in the `1 norm are harder (or at least not easier) than the same prob-
lems in the Euclidean norm. For example, Regev and Rosen [48] gives reductions
from many lattice problems in the `2 norm to the same problems in the `1 norm.
Moreover, hardness results for SVP in the `2 norm lag behind similar results in
the `1 norm. For example, SVP in the `1 norm can be shown to be hard to
approximate within almost polynomial factors n1=O.log log n/ under the assumption
that NP ¤ P [47]. A similar result can be proved for the `2 norm [49], but only under
the much stronger assumption that NP does not have randomized sub-exponential
time algorithms.

Despite the importance of the `1 norm in cryptanalysis, the study of lattice
reduction algorithms in norms different from `2 has seen little progress so far.



450 D. Micciancio

For example, the lattice reduction algorithm of [50] for general norms is not even
known to terminate in polynomial time for arbitrary dimension.

A second very interesting issue that requires further investigation is the complex-
ity of lattice problems when restricted to special classes of lattices, as those arising
in the design of lattice based public-key cryptosystems, and efficient hash functions.
Most work on lattice algorithms has been focused on the solution of SVP or other
lattice problems in the `2 norm on arbitrary lattices. (See [51] for an interesting
exception.) We remark that the classes of lattices underlying the construction of
efficient one-way hash functions and public-key encryption schemes are restricted
in very different ways:

� In the case of one-way functions, the restriction is, in a sense, algebraic, as
clearly illustrated by the most recent work on collision resistance and ideal
lattices [19, 20, 52].

� In the case of public-key encryption, the restriction is more geometric (e.g., there
is a gap between �1 and �2).

Here we may call geometric those properties that are (approximately) preserved
under small perturbations of the lattice. It is easy to see that even a small perturba-
tion to a cyclic or ideal lattice would immediately destroy the algebraic structure.
Is there any reason to prefer one kind of restriction over the other one? Ajtai’s
work [53] (which essentially conjectures that any non-trivial geometric property
of a lattice is hard to decide) seems to express more confidence in the hardness
of lattice problems under geometric restrictions. On the other hand, cryptanalysis
experiments [4] suggest that lattice reduction algorithms perform better on the aver-
age when there is a big gap between �1 and �2. Improving our understanding of
the computational complexity of lattice approximation problems when restricted to
special classes of lattices, as well as classifying the restrictions into meaningful cat-
egories (like, algebraic or geometric restrictions) is a very interesting open problem,
both from a structural point of view (identifying properties that make computational
problems on lattices easier or harder to solve) and for the cryptographic applications
of lattices.
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Chapter 14
Inapproximability Results for Computational
Problems on Lattices

Subhash Khot

Abstract In this article, we present a survey of known inapproximability results
for computational problems on lattices, viz. the Shortest Vector Problem (SVP),
the Closest Vector Problem (CVP), the Closest Vector Problem with Preprocessing
(CVPP), the Covering Radius Problem (CRP), the Shortest Independent Vectors
Problem (SIVP), and the Shortest Basis Problem (SBP).

Introduction

An n-dimensional lattice L is a set of vectors fPn
iD1 xi bi j xi 2 Zg where

b1;b2; : : : ; bn 2 R
m is a set of linearly independent vectors called the basis for

the lattice (the same lattice could have many bases). In this article, we survey known
results regarding the complexity of several computational problems on lattices. Most
of these problems turn out to be intractable, and even computing approximate solu-
tions remains intractable. Excellent references on the subject include Micciancio
and Goldwasser’s book [1], an expository article by Kumar and Sivakumar [2], and
a survey of Regev [3] in the current proceedings.

The Shortest Vector Problem (SVP)

The most studied computational problem on lattices is the Shortest Vector Prob-
lem (SVP),1 where given a basis for an n-dimensional lattice, we seek the shortest
non-zero vector in the lattice.2
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1Formal definitions for all problems appear in Section “Notation and Problem Definitions” where
we also clarify the issue of how the input is represented.
2In this article, we use `2 norm unless stated otherwise.
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The problem has been studied since the time of Gauss ([4], 1801) who gave
an algorithm that works for 2-dimensional lattices. The general problem for arbi-
trary dimensions was formulated by Dirichlet in 1842. A well-known theorem
of Minkowski [5] deals with the existence of short non-zero vectors in lattices.
In a celebrated result, Lenstra, Lenstra, and LovKasz [6] gave a polynomial time
algorithm for approximating SVP within factor 2n=2. This algorithm has numer-
ous applications, e.g., factoring rational polynomials [6], breaking knapsack-based
codes [7], checking solvability by radicals [8] and integer programming in a fixed
number of variables [6, 9, 10]. Schnorr [11] improved the approximation factor to
2O.n.log log n/2= log n/. It is a major open problem whether SVP has an efficient poly-
nomial factor approximation. Exact computation of SVP in exponential time is also
investigated, see for instance Kannan [12] and Ajtai, Kumar, and Sivakumar [13].
The latter paper also gave a polynomial time 2O.n log log n= log n/ factor approximation,
an improvement over Schnorr’s algorithm.

In 1981, van Emde Boas [14] proved that SVP in `1 norm is NP-hard and
conjectured that the same is true in any `p norm. However, proving NP-hardness
in `2 norm (or in any finite `p norm for that matter) was an open problem for a
long time. A breakthrough result by Ajtai [15] in 1998 finally showed that SVP
is NP-hard under randomized reductions. Cai and Nerurkar [16] improved Ajtai’s
result to a hardness of approximation result showing a hardness factor of

�
1C 1

n"

�
.

Micciancio [17] showed that SVP is NP-hard to approximate within some constant
factor, specifically any factor less than

p
2. Recently, Khot [18] proved that SVP is

NP-hard to approximate within any constant factor and hard to approximate within
factor 2.log n/1=2�"

for any " > 0, unless NP has randomized quasipolynomial time
algorithms1. This hardness result was further improved to an almost polynomial
factor, i.e., 2.log n/1�"

, by Haviv and Regev [19].
Showing hardness of approximation results for SVP was greatly motivated by

Ajtai’s discovery [20] of worst-case to average-case reduction for SVP and subse-
quent construction of a lattice-based public key cryptosystem by Ajtai and Dwork
[21]. Ajtai showed that if there is a randomized polynomial time algorithm for solv-
ing (exact) SVP on a non-negligible fraction of lattices from a certain natural class
of lattices, then there is a randomized polynomial time algorithm for approximat-
ing SVP on every instance within some polynomial factor nc (he also presented a
candidate one-way function). In other words, if approximating SVP within fac-
tor nc is hard in the worst case, then solving SVP exactly is hard on average.
Based on this reduction, Ajtai and Dwork [21] constructed a public-key cryptosys-
tem whose security depends on (conjectured) worst-case hardness of approximating
SVP (cryptography in general relies on average-case hardness of problems, but for
SVP, it is same as worst-case hardness via Ajtai’s reduction).

Cai and Nerurkar [22] and Cai [23] brought down the constant c to 9 C " and
4C " respectively.

1 Quasipolynmial (randomized) Time is the class [C>0BPTIME.2.logn/C /.
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Recently, Regev [24] gave an alternate construction of a public key cryptosystem
based on n1:5-hardness of SVP.2 Thus, in principle, one could show that approx-
imating SVP within factor n1:5 is NP-hard, and it would imply cryptographic
primitives whose security relies on the widely believed conjecture that P 6D NP,
attaining the holy grail of cryptography! Unfortunately, there are barriers to showing
such strong hardness results. We summarize the so-called limits to inapproximabil-
ity results in Section “Limits to Inapproximability” and refer to Regev’s article [3]
in the current proceedings for a more detailed exposition.

The Closest Vector Problem (CVP)

Given a lattice and a point z, the Closest Vector Problem (CVP) is to find the lat-
tice point that is closest to z. Goldreich, Micciancio, Safra, and Seifert [25] gave a
Turing reduction from SVP to CVP, showing that any hardness for SVP implies
the same hardness for CVP (but not vice versa). CVP was shown to be NP-hard by
van Emde Boas [14]. Arora, Babai, Sweedyk, and Stern [26] used the PCP machin-
ery to show that approximating CVP within factor 2log1�" n is hard unless NP has
quasipolynomial time algorithms. This was improved to a NP-hardness result by
Dinur, Kindler, and Safra [27]; their result gives even a subconstant value of ", i.e.,
" D .log logn/�t for any t < 1

2
.

The Closest Vector Problem with Preprocessing (CVPP)

The Closest Vector Problem with Preprocessing (CVPP) is the following variant of
CVP: Given a lattice, one is allowed to do arbitrary preprocessing on it and store
polynomial amount of information. The computational problem is to compute the
closest lattice point to a given point z. The motivation for studying this problem
comes from cryptoraphic applications. In a common scenario, the encryption key
is a lattice, the received message is viewed as a point z and decryption consists
of computing the closest lattice point to z. Thus, the lattice is fixed and only the
received message changes as an input. A natural question to ask is whether the
hardness of CVP arises because one needs to solve the problem on every lattice,
or whether the problem remains hard even for some fixed lattice when arbitrary
preprocessing is allowed.

CVPP was shown to be NP-hard by Micciancio [28] and NP-hard to approx-
imate within any factor less than

p
5=3 by Feige and Micciancio [29]. This was

improved to any factor less than
p
3 by Regev [30]. Alekhnovich, Khot, Kindler,

2 Actually all these results assume hardness of a variant called unique-SVP, see [24] for its
definition.
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and Vishnoi [31] showed that for every " > 0, CVPP cannot be approximated
in polynomial time within factor .logn/1=2�" unless NP has quasipolynomial
time algorithms.3 Their reduction is from the problem of finding vertex cover
on k-uniform hypergraphs. On the other hand, Aharonov and Regev [32] gave a
polynomial time

p
n= logn-approximation.

The Covering Radius Problem (CRP)

The Covering Radius Problem (CRP) asks for a minimum radius r such that balls
of radius r around all lattice points cover the whole space. CRP is (clearly) in
˘2, but not even known to be NP-hard. Recently, Haviv and Regev [33] showed
that for every large enough p, there is a constant cp > 1 such that CRP under
`p norm is ˘2-hard to approximate within factor cp . For p D 1, they achieve
inapproximability factor of c1 D 1:5. Their reduction is from a ˘2-hard problem
called GroupColoing.

The Shortest Independent Vectors Problem (SIVP)
and the Shortest Basis Problem (SBP)

The Shortest Independent Vectors Problem (SIVP) asks for the minimum length r
such that the given n-dimensional lattice has n linearly independent vectors each of
length at most r . The Shortest Basis Problem (SBP) asks for the minimum length r
such that the given lattice has a basis with each vector of length at most r . BlRomer
and Seifert [34] showed that both SIVP and SBP are NP-hard and inapproximable
within almost polynomial factor unless NP has quasipolynomial time algorithms.
Their reduction is from CVP, and they use specific properties of hard CVP instances
produced by Arora et al. [26] reduction.

Results in `p Norms

Regev and Rosen [35] showed a reduction from lattice problems in `2 norm to cor-
responding problems in `p norm for any 1 � p � 1. The reduction preserves
the inapproximability gap upto 1 C " for any " > 0. Thus, all hardness results for
CVP;SVP;CVPP;SIVP;SBP mentioned above apply to the respective problems
in `p norm for every 1 � p � 1. The idea behind Regev and Rosen’s reduction

3 Because of the peculiar definition of CVPP, the hardness results actually rely on the assumption
that NP does not have (quasi)polynomial size circuits.
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is the well-known fact that `n
2 embeds into `poly.n/

p with distortion 1 C " for every
1 � p < 1, and moreover the embedding is linear. Thus, a lattice in `n

2 space can

be mapped to a lattice in `poly.n/
p space, essentially preserving all distances.

In `1 norm, stronger inapproximability results are known for SVP and CVP;
both are NP-hard to approximate within factor nc= log log n for some constant c > 0,
as proved by Dinur [36].

Limits to Inapproximability

For all the lattice problems, there is a limit to how strong an inapproximately result
can be proved. For example, Banaszczyk [37] showed that GapSVPn is in coNP.4

Thus, if GapSVPn is NP-hard then NP D coNP. We state the best known results
along this line (see Aharonov and Regev [32], Goldreich and Goldwasser [38],
Guruswami, Micciancio, and Regev [39]). We note that AM is the class of languages
that have a constant round interactive proof system. A well-known complexity
theoretic result is that if NP 	 coAM, then polynomial hierarchy collapses.

� GapCVPpn 2 coNP [32], GapCVPp
n= log n

2 coAM [38].

� GapSVPpn 2 coNP [32], GapSVPp
n= log n

2 coAM [38].

� GapCVPPp
n= log n

2 P [32].

� GapCRP2 2 AM; GapCRPp
n= log n

2 coAM; GapCRPpn 2 NP\coNP

[39].
� GapSIVPp

n= log n
2 coAM; GapSIVPpn 2 coNP [39].

In short, CVP;SVP;CRP;SIVP cannot be NP-hard to approximate withinp
n= logn unless NP 	 coAM (and polynomial hierarchy collapses). CRP can-

not be ˘2-hard to approximate within factor 2 unless ˘2 D AM. CVPP has a
polynomial time

p
n= logn-approximation.

Overview of the Article

After introducing the necessary notation and definitions, in the rest of the article,
we present inapproximability results for CVP and SVP. For CVP, we include
essentially complete proofs and for SVP, only a sketch of the proofs. We refrain
from presenting inapproximability results for the remaining problems. A more
comprehensive treatment of the subject is beyond the scope of this article.

In Section “Inapproximability of CVP”, we present inapproximability results for
CVP. We present two results: one gives an arbitrarily large constant factor hardness

4 See Section “Notation and Problem Definitions” for the definitions of gap-versions of problems.
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via a polynomial time reduction from Set Cover and and the other gives almost
polynomial factor hardness (i.e., 2.log n/1�"

for every " > 0) via a quasipolynomial
time reduction from the Label Cover Problem. Both results are due to Arora, Babai,
Stern, and Sweedyk [26], though our presentation is somewhat different.

In Section “Inapproximability of SVP”, we sketch inapproximability results for
SVP. We note that computing SVP exactly was proved NP-hard only in 1998, a
breakthrough result of Ajtai [15]. We skip Ajtai’s proof from this article (see [2]
for a nice sketch) and jump directly to inapproximability results. First we present a
reduction of Micciancio [17] showing that GapSVP is NP-hard for any constant

1 < � <
p
2.

Next, we present a result of Khot [18] and Haviv and Regev [19] showing that
GapSVP

2.log n/1�" is hard via a quasipolynomial time reduction.

Notation and Problem Definitions

In this section, we formally define all the lattice problems considered in this article.
We also define their gap-versions which are useful towards proving inapproximabil-
ity results.

All vectors are column vectors and denoted by bold face letters. A lattice L gen-
erated by a basis B is denoted as L.B/. B is a m � n real matrix whose columns are
the basis vectors. The columns are linearly independent (and hence m � n). The
n-dimensional lattice L in R

m is given by

L D L.B/ WD fBx j x 2 Z
ng:

We call x as the coefficient vector (with respect to the specific basis) and any
z D Bx as the lattice vector. The norm kzk denotes `2 norm. We restrict to the
`2-norm for much of the article, but Section “Results in `p Norms” does mention
known results for other `p norms.

Let �1.L/ denote the length of the shortest vector in a lattice, i.e.,

�1.L.B// WD min
x2Zn; x 6D0

kBxk:

Definition 1. The Shortest Vector Problem (SVP) asks for the value of �1.L.B//
when a lattice basis B is given as input.

Remark 1. In this article, the dimension m of the ambient space will always be
polynomial in the dimension n of the lattice. All real numbers involved are either
integers with poly.n/ bits or represented by an approximation with poly(n) bits,
but we hide this issue for the ease of presentation. Thus, the input size for all the
problems is parameterized by the dimension n of the lattice.

Let dist.z;L.B// denote the minimum distance between a vector z 2 R
m and any

vector in lattice L.B/, i.e.,



14 Inapproximability Results for Computational Problems on Lattices 459

dist.z;L.B// WD min
x2Zn

kz � Bxk:

Definition 2. The Closest Vector Problem (CVP) asks for the value of dist.z;L.B//
when a lattice basis B, and a vector z are given.

Definition 3. The Closest Vector Problem with Preprocessing (CVPP) is the fol-
lowing variant: Given a lattice L.B/, one is allowed to do arbitrary preprocessing
on it and store polynomial (in the dimension of the lattice) amount of information.
The computational problem is to compute dist.z;L.B// for a given point z 2 R

m.

Let span.B/ denote the linear span of the columns of B. This is a n-dimensional
linear subspace of R

m. Let �.L.B// denote the covering radius of a lattice, i.e.,
the least radius r such that balls of radius r around lattice points cover span.B/.
Equivalently, it is the maximum distance of any point in span.B/ from the lattice:

�.L.B// WD max
z2span.B/

dist.z;L.B//:

Definition 4. The Covering Radius Problem (CRP) asks for the value of �.L.B//
when a lattice basis B is given.

Let �n.L/ denote the minimum length r such that ball of radius r around the
origin contains n linearly independent vectors from the (n-dimensional) lattice L.

Definition 5. The Shortest Independent Vectors Problem (SIVP) asks for the value
of �n.L.B// when a lattice basis B is given.

Definition 6. The Shortest Basis Problem (SBP) asks for the minimum length r
such that given lattice L.B/ has a basis whose every vector has length at most r .

We note that CVP;SIVP;SBP are NP-complete and SVP is NP-complete under
randomized reductions.5 CVPP is NP-complete in the following sense: there is a
polynomial time reduction from a SAT instance � to CVPP instance .L.B/; z/ such
that the lattice L.B/ depends only on j�j and not on � itself. This implies that if there
is a polynomial time algorithm for CVPP, then SAT has polynomial size circuits
(and polynomial hierarchy collapses). Finally, CRP is in˘2, but not known even to
be NP-hard (but it is known to be ˘2-hard for `p norms with large p).

In this article, we focus on inapproximability results for lattice problems. Such
results are proved by a reduction from a hard problem (such as SAT) to the gap-
version of the lattice problem. Towards this end, we define the gap-versions of all
the problems under consideration. In the following g.n/> 1 is a function of the
dimension of the lattice that corresponds to the gap-function. In general, a gap-
version GapXg.n/ of an optimization problem X is a promise problem where the

5 We defined all problems as search problems, so to be precise, one considers their natural decision
versions while talking about NP-completeness.
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instance is guaranteed to either have a good optimum (the YES instances) or is
far from it (the NO instances). The ratio between the optimum value in the YES
and the NO cases is at least g.n/. An inapproximability result for problem X is
typically proved by exhibiting a polynomial time reduction from SAT to GapXg.n/

that preserves the YES and NO instances. Such a reduction clearly implies that it is
NP-hard to approximate X within a factor of g.n/.

Definition 7. GapSVPg.n/ is a promise problem .L.B/; r/ whose YES instances
satisfy �1.L.B// � r , and NO instances satisfy �1.L.B// � g.n/r .

Definition 8. GapCVPg.n/ is a promise problem .L.B/; t; r/whose YES instances
satisfy dist.t;L.B// � r , and NO instances satisfy dist.t;L.B// � g.n/r .

Definition 9. GapCVPPg.n/ is a promise problem .L.B/; t; r/ whose YES
instances satisfy dist.t;L.B// � r , and NO instances satisfy dist.t;L.B// � g.n/r .
The lattice L.B/ is fixed once the dimension n is fixed.

Definition 10. GapCRPg.n/ is a promise problem .L.B/; r/ whose YES instances
satisfy �.L.B// � r , and NO instances satisfy �.L.B// � g.n/r .

Definition 11. GapSIVPg.n/ is a promise problem .L.B/; r/ whose YES instances
satisfy �n.L.B// � r , and NO instances satisfy �n.L.B// � g.n/r .

Definition 12. GapSBPg.n/ is a promise problem .L.B/; r/ whose YES instances
have a basis with each basis vector of length at most r , and for NO instances, there
is no basis with each basis vector of length at most g.n/r .

Inapproximability of CVP

In this section, we present two results:

Theorem 1. For any constant  > 0, GapCVP1=
p

� is NP-hard. Thus, CVP is
NP-hard to approximate within any constant factor.

Theorem 2. For any constant " > 0, there is a reduction from SAT instance � to
GapCVP

2.log n/1�" that runs in time 2.log j�j/O.1="/

. Thus CVP is hard to approximate

within almost polynomial factor unless NP 	 DTIME.2.log n/O.1/
/.

Both results are due to Arora, Babai, Stern, and Sweedyk [26], though our
presentation is different, especially for the second result.

Proof of Theorem 1

We prove the following theorem which implies Theorem 1 along with some addi-
tional properties of GapCVP instance that we need later.



14 Inapproximability Results for Computational Problems on Lattices 461

Theorem 3. For any constant  > 0, there are constantsC;C 0; C 00, and a reduction
from SAT instance of size n to a CVP instance .L.Bcvp/; t/ with the following
properties:

1. Bcvp is an integer matrix with size C 0d � Cd . The vector t also has integer
co-ordinates and it is linearly independent of the columns of matrix Bcvp.

2. The reduction runs in time nC 00

and therefore d � nC 00

.
3. If the SAT instance is a YES instance, then there is a coefficient vector y 2
f0; 1gCd such that the vector Bcvpy� t is also a f0; 1g-vector and has exactly d
co-ordinates equal to 1. In particular, dist.t;L.Bcvp// � kBcvpy � tk Dpd .

4. If the SAT instance is a NO instance, then for any coefficient vector y 2 Z
Cd ,

and any non-zero integer j0, the vector Bcvpy � j0t either has a co-ordinate
equal to d 4d , or has at least d non-zero co-ordinates. In particular,
dist.t;L.Bcvp//�

p
d .

Proof. The reduction is from Exact Set Cover. It is known that for any constant
 > 0, there is a polynomial time reduction from SAT to the Set Cover problem
such that : If the SAT instance is a YES instance, then there are d sets that cover
each element of the universe exactly once. If the SAT instance is a NO instance
then there is no set-cover of size d . Let the universe for the set cover instance be
Œn0� and the sets be S1; S2; : : : ; Sn00 . It holds that n0 D C1d and n00 D Cd for some
constants C1; C .

Let the matrix Bcvp and vector t be as shown in Fig. 14.1. Here Q is a large inte-
ger, say Q D d 4d . The matrix Bcvp has n0 C n00 D C 0d rows and n00 columns. Bcvp

is Q-multiple of the element-set inclusion matrix appended by an identity matrix.
The vector t has first n0 co-ordinates equal to Q and the rest are 0.

Let y D .y1; y2; : : : ; yn00/ 2 Z
n00

be the coefficient vector. If the Set Cover
instance has an exact cover consisting of d sets, then define yj D 1 if the set Sj is

Fig. 14.1 The CVP instance

1
1

1

1

1

Q

Q

Q

Q

Q

Q  if  i CSj    i

Sj

Bcvp = =  t 
0  otherwise
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included in the set cover and yj D 0 otherwise. Clearly, Bcvpy � t has exactly d
co-ordinates equal to 1 and the rest are zero.

Now assume there is no set cover of size d . Let y be an arbitrary coefficient
vector and j0 2 Z; j0 6D 0. If at least d of the co-ordinates yj are non-zero, we are
done. Otherwise the family of sets Sj such that yj 6D 0 has fewer than d sets. This
family cannot cover the universe and therefore there is a coordinate in Bcvpy � j0t
that is a non-zero multiple of Q. This coordinate corresponds to an element that is
not covered.

Proof of Theorem 2

We prove Theorem 2 using a reduction from the Label Cover problem (see Def. 13).
The reduction is essentially from Arora et al. paper [26] which also defined the
Label Cover problem.

We first give a reformulation of CVP as the following problem: Let y D
.y1; y2; : : : ; yn/ be a vector of integer valued variables. For 1 � i � m, �i .y/ DP

j aijyj be (homogeneous) linear forms and for 1 � k � t ,  k.y/ D ck CP
j bkjyj be (non-homogeneous) linear forms. Then CVP (in `2 norm) is same as

the following optimization problem:

min
y2Zn

 
mX

iD1

j�i .y/j2
!1=2

subject to  k.y/ D 0 8 1 � k � t:

To see that this is just a reformulation of CVP, one can think of the constraints
 k.y/ D 0 as defining an affine subspace of R

n. The set of all points on this affine
subspace corresponding to y 2 Z

n is of the form fz0 � v j v 2 L0g for a suitable
point z0 and a suitable lattice L0. If ˚ denotes the matrix whose rows are the linear
forms �i , then we are minimizing k˚yk over y 2 Z

n. This is same as minimizing
k˚.z0 � v/k over v 2 L0. This, in turn, is same as minimizing the distance of point
˚z0 from the lattice ˚L0 (whose basis is obtained by linearly transforming the
basis for L0 via matrix ˚).

The Label Cover Problem

Definition 13. (Label Cover Problem): An instance of label cover is specified as:

LC.G.V;W;E/; n;m; f	v;wg.v;w/2E ; ŒR�; ŒS�/:
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G D .V;W;E/ is a bipartite graph with left side vertices V , right side vertices
W and a set of edges E. The graph is left regular, i.e., all vertices in V have the
same degree. n D jV j and m D jW j.

The goal is to assign one “label” to every vertex, where the vertices in V are
required to receive a label from set ŒR� and the vertices inW are required to receive a
label from set ŒS�. Thus, a labelingA is just a map A W V 7! ŒR�; A W W 7! ŒS�. The
labeling is supposed to satisfy certain constraints given by maps 	v;w W ŒR� 7! ŒS�.
There is one such map for every edge .v;w/ 2 E. A labeling A “satisfies” an edge
.v;w/, if

	v;w.A.v// D A.w/:

The optimum OPT .LC/ of the instance is defined to be the maximum fraction
of edges satisfied by any labeling. We assume that n � m, and R � S (thus the left
side is viewed as larger).

The following theorem can be obtained by combining the PCP Theorem (Arora
and Safra [40], Arora et al. [41]) with Raz’s Parallel Repetition Theorem [42]. This
theorem is the starting point for most of the recent PCP constructions and hardness
results.

Theorem 4. There exists an absolute constant ˇ > 0 such that for every inte-
ger R � 7, there is a reduction from SAT instance � to Label Cover instance
LC.G.V;W;E/; n;m; f	v;wg; ŒR�; ŒS�/ with the following property. The YES
instances of SAT map to label cover instances with OPT(LC)D 1 and the NO
instances map to label cover instances with OPT(LC)� R�ˇ . The running time of
the reduction and size of the label cover instance are bounded by j�jO.log R/.

Reduction from Label Cover to GapCVP

Let LC.G.V;W;E/; n;m; f	v;wg; ŒR�; ŒS�/ be the instance of Label Cover given by
Theorem 4. We describe a reduction from this instance to GapCVPg where the
gap g D 1

20
Rˇ=2. We construct the CVP instance according to the new CVP-

formulation described in the beginning of this section. The set of integer valued
variables is:

Y WD fyv;j j v 2 V; j 2 ŒR�g
[
fzw;i j w 2 W; i 2 ŒS�g:

The function to be minimized is

OBJ WD
0

@m �
X

v2V;j2ŒR�

y2
v;j C n �

X

w2W;i2ŒS�

z2
w;i

1

A
1=2

:
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The affine constraints are:

8 v 2 V;
X

j2ŒR�

yv;j D 1: (14.1)

8 w 2 W;
X

i2ŒS�

zw;i D 1: (14.2)

8 .v;w/ 2 E;8 i 2 ŒS�; zw;i D
X

j2ŒR�W�v;w.j /Di

yv;j : (14.3)

The YES Case:

We prove that if the Label Cover instance has a labeling that satisfies all edges (i.e.,
OPT .LC/ D 1), then there is an integer assignment to variables in Y such that
OBJ � p2mn. Indeed, let A W V 7! ŒR�; A W W 7! ŒS� be such a labeling. Define

yv;j WD
n
1 if j D A.v/
0 otherwise:

Similarly, define zw;i D 1 if i D A.w/ and zw;i D 0 otherwise. Clearly, for every
v 2 V (w 2 W resp.), there is exactly one j 2 ŒR� (i 2 ŒS� resp.) such that yv;j

(zw;i resp.) is non-zero, and its value equals 1. Therefore

OBJ D
p
m � jV j C n � jW j D p2mn:

The above reasoning also shows that all constraints in (14.1) and (14.2) are satis-
fied. Now we show that all constraints in (14.3) are satisfied. Fix any such constraint,
i.e., fix .v;w/ 2 E and i 2 ŒS�. We will show that

zw;i D
X

j2ŒR�W�v;w.j /Di

yv;j : (14.4)

Let i0 D A.w/ and j0 D A.v/. Since the labeling satisfies the edge .v;w/, we
have 	v;w.j0/ D i0. Clearly, if i 6D i0, then both sides of (14.4) evaluate to zero, and
if i D i0, both sides evaluate to 1.

The NO Case:

We prove that if the Label Cover instance has no labeling that satisfies even ˛ frac-
tion of its edges for ˛ < 0:1, then for any integer assignment to variables in Y that
satisfies constraints (14.1)–(14.3), one must have OBJ � 0:1

p
mn=˛. Note that,

once proven, it implies that if OPT .LC/ � R�ˇ , then OBJ � 0:1 � Rˇ=2
p
mn.

Thus the gap between the YES and NO cases is
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0:1 �Rˇ=2
p
mnp

2mn
� 1

20
Rˇ=2 as claimed:

Consider any integer assignment to variables in Y that satisfies constraints
(14.1)–(14.3). Define sets Tv 	 ŒR�; Tw 	 ŒS� as:

Tv WD fj 2 ŒR� j yv;j 6D 0g; Tw WD fi 2 ŒS� j zw;i 6D 0g:

Due to constraints (14.1) and (14.2), the sets Tv; Tw are non-empty for all v 2 V ,
w 2 W .

Lemma 1. For any .v;w/2E and i2Tw, there exists j � 2 Tv such that
	v;w.j

�/ D i .
Proof. Consider the constraint zw;i DPj2ŒR�W�v;w.j /Di yv;j . Since i 2 Tw, zw;i 6D 0.
Hence, one of the variables on the right side must be non-zero, say the variableyv;j � .
Thus j � 2 Tv and 	v;w.j

�/ D i .
We consider two scenarios depending on whether the typical size of sets Tv is

small or large. Towards this end, let

V � WD fv 2 V j jTvj � 0:1=˛g:

Case (i): jV �j � 0:1jV j D 0:1 � n. In this case,

OBJ �
0

@m �
X

v2V;j2ŒR�

y2
v;j

1

A
1=2

�
0

@m �
X

v2V �;j Wyv;j 6D0

1

1

A
1=2

D
0

@m �
X

v2jV �j
jTvj

1

A
1=2

�
p
m � jV �j � 0:1=˛ � 0:1

p
mn=˛:

Case (ii): jV �j � 0:1jV j. In this case, ignore the edges .v;w/ that are incident on
V �. Since the graph of label cover instance is regular, we ignore only 0:1 fraction
of its edges. Define the following labeling to V and W . The label of w 2 W is an
arbitrary label from set Tw. The label of v 2 V is a random label from set Tv. We
show that this labeling satisfies, in expectation, at least 0:9˛=0:1 fraction of edges of
label cover (arriving at a contradiction, since we know that there is no labeling that
satisfies even ˛ fraction of edges). Indeed, if .v;w/ is any edge such that v 62 V �,
then jTvj � 0:1=˛. Let label of w be some i� 2 Tw. By Lemma 1, we know that there
exists a label j � 2 Tv such that 	v;w.j

�/ D i�. With probability 1=jTvj � ˛=0:1,
we select j � as the label of v and the edge .v;w/ is satisfied. This completes the
proof.
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Finishing the Proof of Theorem 2

Let n be the size of SAT instance. Combining reduction from SAT to Label Cover
in Theorem 4 with our reduction from Label Cover to GapCVP, we get a reduction
from SAT to GapCVP1=20�Rˇ=2 that runs in time nC log R for some constant C .

Choose R D 2.log n/k
for some large integer k. The size of CVP instance is

N � nC log R. Thus logN � C logR logn � .logn/2Ck . The inapproximability
factor for CVP is

1

20
Rˇ=2 D 1

20
2ˇ=2 log R D 1

20
2ˇ=2.log n/k � 2.log n/k�1 � 2.log N /.k�1/=.kC2/

:

When k � 1=", the hardness factor is� 2.log N /1�"
which proves Theorem 2.

Inapproximability of SVP

In this section, we present two results:

Theorem 5. For any constant 1 < � 0 <
p
2, GapSVP 0 is NP-hard. Thus, SVP

is NP-hard to approximate within any constant factor less than
p
2.

Theorem 6. For any constant " > 0, there is a reduction from SAT instance � to
GapSVP

2.log n/1�" that runs in time 2.log j�j/O.1="/
. Thus SVP is hard to approximate

within almost polynomial factor unless NP 	 DTIME.2.log n/O.1/

/.

The first result is due to Micciancio [17] and the second is a combination of
results of Khot [18] and Haviv and Regev [19]. We present only a sketch of both
proofs.

Proof of Theorem 5

The reduction is from GapCVP. Let .Bcvp; t/ be an instance of GapCVP1=
p

� given
by Theorem 1. Micciancio constructs GapSVP instance L.B0/ as follows:

B0 D
"

˛BcvpT j ˛t
Bgad j s

#
(14.5)

Here, ˛ is a suitable constant, Bgad;T are matrices and s is a vector (of appropriate
dimensions). The crucial ingredient of Micciancio’s reduction is construction of the
gadget .Bgad;T; s/. Here, L.Bgad/ is a lattice and s is a (non-lattice) point such that:
(1) �1.L.Bgad// � �r for a parameter r , 1 < � <

p
2 and (2) the ball of radius r
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around s contains exponentially many lattice points of L.Bgad/. The set of all lattice
points in this ball also satisfy an extra property, as made precise in the statement
of the lemma below (and this is where the matrix T enters into the picture). The
construction is quite involved, based on sphere packings, Schnorr-Adleman prime
number lattice, and a probabilistic version of Sauer’s Lemma.

Micciancio’s Gadget Construction

Lemma 2. For every 1 < � <
p
2 and integerm, one can construct in probabilistic

polynomial time, matrices Bgad;T, a vector s, and parameters k; `; r such that:

1. T has size m � k, Bgad has size ` � k, and s is a column vector of size `. Here,
k; ` � poly.m/.

2. The lattice L.Bgad/ has no non-zero vector of length less than �r , i.e.,

8 x 2 Z
k ; x 6D 0; kBgadxk � �r:

3. For every y 2 f0; 1gm, there exists x 2 Z
k such that Tx D y and kBgadx�sk � r .

In particular, the ball of radius r around s contains at least 2m points from the
lattice L.Bgad/.

Micciancio’s Reduction

We now present a reduction from GapCVP to GapSVP. Let .Bcvp; t/ be the
GapCVP1=

p
� instance as in Theorem 1. We will choose  to be a small enough

constant later. Let m0 � m denote the size of matrix Bcvp (and hence t is a column
vector of size m). Let .Bgad;T; s/ be the gadget given by Lemma 2 with parameters
m and 1 < � <

p
2. Parameters k; `; r are as in that lemma.

Construct matrix B0 as in Equation (14.5) where ˛ D �r=pd . Let us denote the
coefficient vector for lattice L.B0/ by x0 and write x0 D .x; j / with j 2 Z. Note that

B0x0 D �˛.BcvpT xC j t/; Bgad xC j s
�
: (14.6)

Note that the GapCVP instance satisfies Property 3 (the YES case) or Property
4 (the NO case) in Theorem 1. We show that in the YES case, the lattice L.B0/ has
a short non-zero vector, whereas in the NO case, every non-zero vector is long.

The YES Case:

In the YES case, we know that that there exists y 2 f0; 1gm such that kBcvpy� tk �p
d . We prove that L.B0/ has a non-zero vector of length at most

p
1C �2 � r .

Indeed, Lemma 2 guarantees existence of x 2 f0; 1gk such that Tx D y and kBgadx�
sk � r . We let x0 D .x;�1/. Clearly,
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kB0x0k2 D ˛2kBcvpT x � tk2 C kBgad x � sk2
� ˛2kBcvpy � tk2 C r2 � ˛2d C r2 D .1C �2/r2;

by the choice of ˛ D �r=
p
d . Note that kB0x0k � r by choosing  sufficiently

small.

The NO Case:

In the NO case, for every y 2 Z
m and j0 6D 0, kBcvpyC j0tk � pd . We prove that

every non-zero vector in L.B0/ has length at least �r .
Let B0x0 be an arbitrary non-zero lattice vector with x0 D .x; j0/. First consider

the case when j0 6D 0. In this case

kB0x0k � ˛kBcvp.T x/C j0tk � ˛
p
d D �r:

Now consider the case when j0 D 0. In this case x 6D 0 and from Lemma 2,
Property (2),

kB0x0k � kBgad xk � �r:

Thus, the instance of GapSVP has a gap of � 0 D p
1C2�

which can be made

arbitrarily close to
p
2 by choosing � to be close enough to

p
2 and then choosing

 small enough. This proves Theorem 5.

Proof of Theorem 6

Proof of Theorem 6 proceeds by first giving a basic reduction from GapCVP to
GapSVP1=� for some constant � < 1 and then boosting the SVP-hardness by ten-
soring operation on the lattice. Let L0 be the instance of GapSVP1=� produced by

the basic reduction, i.e., for some parameter d , either �1.L0.B// � �
p
d (YES

case) or �1.L0.B// �
p
d (NO case). By taking the k-wise tensored lattice L˝k

0 , it
is easy to see that in the YES case,

�1.L0.B// � �
p
d H) �1.L˝k

0 .B// � �k
p
d

k
:

On the other hand, in the NO case, suppose it were true that

�1.L0.B// �
p
d H) �1.L˝k

0 .B// �
p
d

k
: (14.7)
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The resulting gap would be boosted to .1=�/k and the size of instance L˝k
0 would

be .size.L0//
k . By choosing k appropriately, it would prove 2.log n/1�"

hardness for
SVP, i.e., Theorem 6. But, as we shall see, the implication in (14.7) is false for
a general lattice. However, the implication does hold for the specific lattice L0.B/
produced in the NO Case in Khot’s [18] reduction. Though he did not prove that
(14.7) holds for his lattice, by using a slight variant of the tensor product, he was
able to boost hardness to 2.log n/1=2�"

. In a subsequent paper, Haviv and Regev [19]
proved that (14.7) holds for Khot’s lattice. This boosts hardness to 2.log n/1�"

. Let us
first define the tensor product operation.

Tensor Product of Lattices

For two column vectors u and v of dimensions m1 and m2 respectively, we define
their tensor product u˝ v as the m1m2-dimensional column vector

0
B@

u1v
:::

um1
v

1
CA :

If we think of the coordinates of u ˝ v as arranged in an m1 � m2 matrix, we
obtain the equivalent description of u˝v as the matrix u �vT . Finally, for anm1�n1

matrix A and an m2 � n2 matrix B, one defines their tensor product A ˝ B as the
m1m2 � n1n2 matrix

0
B@
A11B � � � A1n1

B
:::

:::

Am11B � � � Am1n1
B

1
CA :

Let L1 be a lattice generated bym1 �n1 matrix B1 and L2 be a lattice generated
bym2�n2 matrix B2. Then the tensor product of L1 and L2 is defined as the n1n2-
dimensional lattice generated by the m1m2 � n1n2 matrix B1 ˝ B2 and is denoted
by L D L1 ˝ L2. Equivalently, L is generated by the n1n2 vectors obtained by
taking the tensor of two column vectors, one from B1 and one from B2.

We are interested in the behavior of the shortest vector in a tensor product of
lattices. It is easy to see that for any two lattices L1 and L2, we have

�1.L1 ˝ L2/ � �1.L1/ � �1.L2/: (14.8)

Indeed, any two vectors v1 and v2 satisfy kv1 ˝ v2k D kv1k � kv2k. Applying
this to shortest nonzero vectors of L1 and L2 implies Inequality (14.8).

Inequality (14.8) has an analogue for linear codes, with �1 replaced by the min-
imum distance of the code under the Hamming metric. There, it is not too hard to
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show that the inequality is in fact an equality: the minimal distance of the tensor
product of two linear codes always equals the product of their minimal distances.
However, contrary to what one might expect, there exist lattices for which Inequal-
ity (14.8) is strict. The following lemma due to Steinberg shows this fact (his lattice
is actually self-dual).

Lemma 3 ([43, Page 48]). For any large enough n there exists an n-dimensional
lattice L satisfying

�1.L˝ L/ � pn and �1.L/ D ˝.
p
n/:

Khot’s Reduction

Let us imagine a hypothetical reduction from CVP to an instance L0.B/ of SVP
that has the following properties (we assume w.l.o.g. that all lattice vectors have
integer co-ordinates):

1. If the CVP instance is a YES instance, then there is a non-zero lattice vector with
norm at most �

p
d where � < 1 is a constant.

2. If the CVP instance is a NO instance, then any non-zero lattice vector has at least
d non-zero co-ordinates.

In particular, this gives a gap-instance of SVP with gap 1=�. It is not hard to see
that if we had such a magic reduction, then the k-wise tensor product of the lattice
L0 in NO case would satisfy implication (14.7) and lead to a gap-instance with gap
.1=�/k. Thus the tensor product would work provided that in the NO case, every
non-zero lattice vector is not only long, but also has many non-zero co-ordinates.
However, we do not know whether such a reduction exists. Nevertheless, Khot [18]
gives a reduction that achieves somewhat weaker properties, but still good enough
for boosting purposes. The following theorem summarizes his reduction (with a
minor modification by Haviv and Regev [19]).

Theorem 7. There is a constant � < 1 and a polynomial-time randomized reduc-
tion from SAT to SVP that outputs a lattice basis B and integers n; d such that,
L.B/ 	 Z

n, and w.h.p. the following holds:

1. If the SAT instance is a YES instance, then �1.L.B// � � �
p
d .

2. If the SAT instance is a NO instance, then every nonzero vector v 2 L.B/

� Either has at least d nonzero coordinates
� Or has all coordinates even and at least d=4 of them are nonzero
� Or has all coordinates even and kvk2 � d
� Or has a coordinate with absolute value at least Q WD d 4d

In particular, �1.L.B// �
p
d .
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Boosting the SVP Hardness Factor

We boost the hardness factor using the standard tensor product of lattices. If
.L0.B/; d / is a YES instance of the SVP instance in Theorem 7, then clearly

�1.L˝k
0 / � �kdk=2: (14.9)

When .L0.B/; d / is a NO instance, Haviv and Regev [19] show that any nonzero
vector of L˝k

0 has norm at least dk=2, i.e.,

�1.L˝k
0 / � dk=2: (14.10)

This yields a gap of �k between the two cases. Inequality (14.10) easily follows
by induction from the central lemma of Haviv and Regev stated below, which shows
that NO instances “tensor nicely.” We skip the proof of this lemma.

Lemma 4. Let .L0.B/; d / be a NO instance of SVP given in Theorem 7. Then for
any lattice L,

�1.L0 ˝ L/ �
p
d � �1.L/:
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Chapter 15
On the Complexity of Lattice Problems
with Polynomial Approximation Factors

Oded Regev

Abstract Lattice problems are known to be hard to approximate to within
sub-polynomial factors. For larger approximation factors, such as

p
n, lattice prob-

lems are known to be in complexity classes, such as NP \ coNP, and are hence
unlikely to be NP-hard. Here, we survey known results in this area. We also discuss
some related zero-knowledge protocols for lattice problems.

Introduction

A lattice is the set of all integer combinations of n linearly independent vectors
v1; : : : ; vn in R

n. These vectors are known as a basis of the lattice. Lattices have
been investigated by mathematicians for decades and have recently also attracted
considerable attention in the computer science community following the discovery
of the LLL algorithm by Lenstra, Lenstra, and Lovász [1]. Many different problems
can be phrased as questions about lattices, such as integer programming [2], factor-
ing polynomials with rational coefficients [1], integer relation finding [3], integer
factoring, and Diophantine approximation [4]. More recently, the study of lattices
attracted renewed attention due to the fact that lattice problems were shown, by
Ajtai [5], to possess a particularly desirable property for cryptography: worst-case
to average-case reducibility.

Lattice problems, such as the shortest vector problem (SVP) and the closest
vector problem (CVP), are fascinating from a computational complexity point
of view (see Fig. 15.1). On one hand, by the LLL algorithm [1] and subsequent
improvements [6], we are able to efficiently approximate lattice problems to within
essentially exponential factors, namely 2n.log log n/2= log n, where n is the dimension
of the lattice. In fact, if we allow randomization, the approximation factor improves
slightly to 2n log log n= log n [7]. On the other hand, we know that for some c > 0,
no efficient algorithm can approximate lattice problems to within nc= log log n, unless

O. Regev
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

P.Q. Nguyen and B. Vallée (eds.), The LLL Algorithm, Information Security
and Cryptography, DOI 10.1007/978-3-642-02295-1 15,
c� Springer-Verlag Berlin Heidelberg 2010
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1 n1 / log log n
√

n / log n
√

n 2n log log n / log n

BPPhard NP ∩ coAM NP ∩ coNP

2n(log log n)2 / log n

P

Fig. 15.1 The complexity of lattice problems (some constants omitted)

P D NP or another unlikely event occurs. This was established in a long sequence
of works, including [8–14]. See also Khot’s chapter [15] in these proceedings.

Considering the above results, one immediate question arises: what can we
say about approximation factors in between these two extremes? There is a very
wide gap between the approximation factor achieved by the best known algorithm
(2n log log n= log n) and the best known hardness result (nc= log log n). Of particular impor-
tance is the range of polynomial approximation factors. The reason for this is that
the security of lattice-based cryptographic constructions following Ajtai’s seminal
work [5] is based on the worst-case hardness of approximating lattice problems
in this region (see also [16–18] and Micciancio’s chapter [19] in these proceed-
ings). If, for instance, we could prove that approximating lattice problems to within
O.n2/ is NP-hard, then this would have the tremendous implication of a public key
cryptosystem whose security is based solely on the P ¤ NP conjecture.

This scenario, however, is unlikely to happen. There are several results indicating
that approximating lattice problems to within polynomial factors is unlikely to be
NP-hard. These results are sometimes known as “limits on inapproximability.” They
are established by showing containment in complexity classes such as NP\ coNP.
As is well known, if a problem in NP \ coNP is NP-hard, then NPD coNP and
the polynomial hierarchy collapses. For lattice problems, this is true even under
Cook-reductions, as we show in Appendix 15.

To state these results precisely, let us first recall the promise problems associated
with the shortest vector problem and the closest vector problem. Below, we use
L.B/ to denote the lattice generated by the basis B . Moreover, all distances and
lengths in this survey are with respect to the `2 norm (but see [20] for an interesting
extension of the results described here to other `p norms).

Definition 1. GapCVP

YES instances: triples .B; v; d /, such that dist.v;L.B// � d
NO instances: triples .B; v; d /, such that dist.v;L.B// > �d ,

whereB is a basis for a lattice in Q
n, v 2 Q

n is a vector, and d 2 Q is some number.

Definition 2. GapSVP

YES instances: pairs .B; d/, such that �1.L.B// � d
NO instances: pairs .B; d/, such that �1.L.B// > �d ,

where B is a basis for a lattice in Q
n, d 2 Q is some number, and �1 denotes the

length of the shortest nonzero vector in a lattice.

Note that in both cases, setting d to some fixed value (say 1) leads to an essentially
equivalent definition (as one can easily rescale the input).
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The oldest result showing a limit on the inapproximability of lattice problems
is by Lagarias, Lenstra, and Schnorr [21], who showed that GapCVPn1:5 is in
NP \ coNP. As we mentioned above, this shows that GapCVPn1:5 is highly
unlikely to be NP-hard. Let us remark at the outset that showing containment in
NP is trivial: a witness for dist.v;L.B// � d is simply a vector u 2 L.B/, such that
kv�uk � d . The more interesting part is providing a witness for the fact that a point
is far from the lattice. Some thought reveals that this is no longer a trivial task: there
is a huge number of lattice vectors that can potentially be very close to v. The way
containment in coNP is usually shown is by utilizing properties of the dual lattice.
Let us also mention that although we state this result and the results below only for
GapCVP, they all hold also for GapSVP. This follows from a simple approxima-
tion preserving reduction from GapSVP to GapCVP [22], which we include for
completeness in Appendix 15.

An improvement of the Lagarias et al. result was obtained by Banaszczyk [23]
who showed that GapCVPn is in NP \ coNP. This was recently further improved
by Aharonov and Regev [24] to GapCVPpn.

Theorem 1 ([24]). There exists c > 0 such that GapCVPc
p

n is in NP \ coNP.

In their coNP proof, the witness simply consists of a list of short vectors in the dual
lattice. The verifier then uses these vectors to determine the distance of the target
vector v from the lattice. A sketch of this proof appears in Section “Containment in
coNP”.

Another “limits on inapproximability” result is by Goldreich and Goldwasser
[25], who showed that GapCVPp

n= log n
is in NP \ coAM (where containment

in coAM means that the complement of the problem is in the class AM defined in
Definition 3).

Theorem 2 ([25]). For any c > 0, GapCVP
c
p

n= log n
is in NP\ coAM.

We present a proof of this theorem in Section “The Goldreich–Goldwasser Proto-
col”. The proof uses an elegant protocol in which an all-powerful prover convinces
a computationally limited verifier that a point v is far from the lattice. We note that
their result is incomparable with that of [24] since it involves a slightly harder prob-
lem (GapCVPp

n= log n
), but shows containment in a somewhat wider class (coAM).

It is an interesting open question whether containment in NP\coNP holds also for
gaps between

p
n= logn and

p
n.

In Section “Zero-Knowledge Proof Systems”, we will discuss the topic of zero-
knowledge protocols. We will observe that the Goldreich–Goldwasser protocol is
zero-knowledge (against honest verifiers). We will then describe two zero-
knowledge protocols with efficient provers, one for coGapCVP and one for
GapCVP.

We can summarize our current state of knowledge by saying that for approxima-
tion factors beyond

p
n= logn, lattice problems are unlikely to be NP-hard. This

naturally brings us to one of the most important questions regarding the complexity
of lattice problems: is there an efficient algorithm for approximating lattice problem
to within polynomial factors? Given how difficult it is to come up with algorithms
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that perform even slightly better than the exponential factor achieved by the LLL
algorithm, many people conjecture that the answer is negative. This conjecture lies
at the heart of latticed-based cryptographic constructions, such as Ajtai’s [5], and is
therefore of central importance. How can we hope to show such hardness, if we do
not believe the problem is NP-hard? One promising direction is by relating lattice
problems to other problems that are believed to be hard. For instance, a reduction
from factoring to, say, GapSVPn2 would give a strong evidence to the conjecture,
and would also establish the remarkable fact that lattice-based cryptosystems are at
least as secure as factoring-based cryptosystems.

Outline:

In Section“The Goldreich–Goldwasser Protocol”, we present a proof of Theorem 2,
including some of the technical details that go into making the proof completely
rigorous. These technical details, especially how to work with periodic distribu-
tions, appear in many other lattice-related results and are therefore discussed in
detail. Then, in Section “Containment in coNP”, we present a sketch of the proof
of Theorem 1. This sketch contains all the important ideas of the proof, but proofs
of technical claims are omitted. The two sections are independent. Then, in Sec-
tion “Zero-Knowledge Proof Systems”, we discuss zero-knowledge proof systems
for lattice problems, and in particular, sketch the prover-efficient zero-knowledge
protocol of Micciancio and Vadhan [26]. This section requires a basic understand-
ing of Section“The Goldreich–Goldwasser Protocol”. Finally, in Appendix 15, we
show in what sense the two theorems above imply “limits on inapproximability,”
and in Appendix 15, we show how to extend our results to GapSVP.

The Goldreich–Goldwasser Protocol

In this section, we prove Theorem 2. For simplicity, we will show that GapCVPpn

2 coAM. A slightly more careful analysis of the same protocol yields a gap of
c
p
n= logn for any constant c > 0. First, let us define the class AM.

Definition 3. A promise problem is in AM, if there exists a protocol with a con-
stant number of rounds between a BPP machine Arthur and a computationally
unbounded machine Merlin, and two constants 0 � a < b � 1 such that

� Completeness: For any YES input, there exists a strategy for Merlin such that
Arthur accepts with probability at least b, and

� Soundness: For any NO input, and any strategy for Merlin, Arthur accepts with
probability at most a.

To prove Theorem 2, we present a protocol that allows Arthur to verify that
a point is far from the lattice. Specifically, given .B; v; d /, Arthur accepts with
probability 1, if dist.v;L.B// >

p
nd , and rejects with some positive probability, if

dist.v;L.B// � d .
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dist >
√

nd dist ≤ d

Fig. 15.2 The two distributions

Informally, the protocol is as follows. Arthur first flips a fair coin. If it comes up
heads, he randomly chooses a “uniform” point in the lattice L.B/; if it comes up
tails, he randomly chooses a “uniform” point in the shifted lattice vC L.B/. Let w
denote the resulting point. Arthur randomly chooses a uniform point x from the ball
of radius 1

2

p
nd around w and then sends x to Merlin. Merlin is supposed to tell

Arthur if the coin came up heads or not.
The correctness of this protocol follows from the following two observations

(see Fig. 15.2). If dist.v;L.B// >
p
nd , then the two distributions are disjoint

and Merlin can answer correctly with probability 1. On the other hand, if
dist.v;L.B// � d , then the overlap between the two distributions is large and
Merlin must make a mistake with some positive probability.

This informal description hides two technical problems. First, we cannot really
work with the point x, since it is chosen from a continuous distribution (and hence
cannot be represented precisely in any finite number of bits). This is easy to take
care of by working with an approximation of x with some polynomial number of
bits. Another technical issue is the choice of a “random” point from L.B/. This
is an infinite set and there is no uniform distribution on it. One possible solution
is to take the uniform distribution on points in the intersection of L.B/ with, say,
some very large hypercube. This indeed solves the problem, but introduces some
unnecessary complications to the proof, since one needs to argue that the probability
to fall close to the boundary of the hypercube is low. The solution we choose here
is different and avoids this problem altogether by working with distributions on the
basic parallelepiped of the lattice. We describe this solution in Section “Working
with Periodic Distributions”.

In the next few subsections, we present the necessary preliminaries for the proof.

Statistical Distance

Definition 4. The statistical distance between two distributions X , Y on some set
˝ is defined as

�.X; Y / D max
A�˝
jP.X 2 A/ � P.Y 2 A/j:
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One useful special case of this definition is the case where X and Y are discrete
distributions over some countable set ˝ . In this case, we have

�.X; Y / D 1

2

X

!2˝

jP.X D !/ � P.Y D !/j:

Another useful special case is when X and Y are distributions on R
n with density

functions f; g. In this case, we have

�.X; Y / D 1

2

Z

Rn

jf .x/ � g.x/j dx:

For any distributions X; Y , �.X; Y / obtains values between 0 and 1. It is 0 if
and only if X and Y are identical and 1 if and only if they are disjoint. It is helpful
to consider the following interpretation of statistical distance. Assume we are given
a sample that is taken from X with probability 1

2
or from Y with probability 1

2
.

Our goal is to decide which distribution the sample comes from. Then, it can be
seen that our best strategy succeeds with probability 1

2
C 1

2
�.X; Y /.

One important fact concerning the statistical distance is that it cannot increase by
the application of a possibly randomized function. In symbols, �.f .X/; f .Y // �
�.X; Y / for any (possibly randomized) function f . This fact follows easily from
the above interpretation of �.

Balls in n-Dimensional Space

Let B.v; r/ denote a ball of radius r around v. It is known that the volume of the unit
ball B.0; 1/ in n dimensions is

Vn
defD 	n=2

.n=2/Š
;

where we define nŠ D n.n � 1/Š for n � 1 and 1
2
Š D 1

2

p
	 . It can be shown that

.nC 1
2
/Š

nŠ
� nŠ

.n � 1
2
/Š
� pn:

Lemma 1. For any " > 0 and any vector v of length kvk � ", the relative volume
of the intersection of two unit balls whose centers are separated by v satisfies

vol.B.0; 1/\ B.v; 1//
vol.B.0; 1//

� " .1 � "
2/

n�1
2

3

p
n
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Fig. 15.3 A cylinder in the
intersection of two balls

1

Proof. It suffices to consider the case kvk D ". As shown in Fig. 15.3, the intersec-
tion contains a cylinder of height " and radius

p
1� "2 centered around v=2. Hence,

the volume of the intersection satisfies:

vol.B.0; 1/\ B.v; 1//
vol.B.0; 1//

>
"Vn�1.

p
1 � "2/n�1

Vn

D ".1 � "2/
n�1

2
	

n�1
2 =.n�1

2
/Š

	
n
2 =.n

2
/Š
� ".1 � "2/

n�1
2

p
n=2p
	
:

�
Notice that for " D 2p

n
, the right hand side of the expression in Lemma 1 is

bounded from below by some positive constant independent of n. This yields the
following corollary.

Corollary 1. There exists a constant ı > 0 such that for any d > 0 and any y 2 R
n

such that kyk � d ,

�
�
U.B.0; 1

2

p
nd//; U.B.y; 1

2

p
nd//

�
< 1 � ı;

where U.�/ denotes the uniform distribution on a set.

Proof. This statistical distance is exactly the volume of the symmetric difference of
two balls divided by the sum of their volumes. According to the above lemma, this
is bounded away from 1. �
Remark. When " D c

p
logn=n for some c > 0, the right hand side of the expres-

sion in Lemma 1 is still greater than some 1=poly.n/. Using this, one can obtain the
improved result GapCVP

c
p

n= log n
2 coAM.

Working with Periodic Distributions

In the informal description above, we talked about the “uniform distribution” on the
lattice. This is clearly not defined. One possible solution is to restrict our attention
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Fig. 15.4 A periodic distribution on Z
2 (left), restricted P..0; 1/; .1; 0// (center), and to

P..0; 1/; .1; 1// (right)

to some large enough cube Œ�K;K�n. While possible, this solution introduces some
technical annoyances as one has to argue that the probability to fall too close to the
boundary of the cube (where the protocol might behave badly) is small.

Instead, our solution will be to work with only one period of the distribution.
To demonstrate this approach, let us first consider the one-dimensional case. Assume
we want to represent the distribution intuitively described as follows: choose a
random point from the lattice 3Z and add to it a number chosen uniformly from
Œ�0:1; 0:1�. The first solution above would require us to take some large segment,
say, Œ�1000; 1000�, and to restrict our distribution to it. Instead, we take one period
of the distribution, say the segment Œ0; 3�, and consider the distribution on it. Hence,
we obtain the uniform distribution on Œ0; 0:1� [ Œ2:9; 3�. Notice that we could take
another period, say the segment Œ�3; 0�, and work with it instead. Crucially, the
transformation from one representation to another can be performed efficiently (by
subtracting or adding 3 as needed).

A similar idea works for higher dimensions (see Fig. 15.4). If we want to rep-
resent a periodic distribution on a lattice, we consider it as a distribution on some
period of the lattice. A common choice is to take a basic parallelepiped of the lattice,
defined as

P.B/ D P.v1; : : : ; vn/ D
(

nX

iD1

xi vi

ˇ̌
ˇ̌ xi 2 Œ0; 1/

)
;

where B D .v1; : : : ; vn/ is some basis of the lattice. As before, we have several
possible representations, depending on the choice of basis B . The transformation
from a representation using B1 to one using B2 can be done efficiently by reduc-
ing points modulo P.B2/ (see Definition 5 below). Mathematically speaking, the
objects we work with are distributions on the quotient R

n=L.B/, and P.B/ is its
set of representatives.

We emphasize that it is much easier to imagine “periodic distributions” on R
n.

However, technically, it is much easier to work with distributions on P.B/.

The Protocol

We will now show using Protocol 1 that GapCVPpn 2 coAM. The protocol uses
the following definition.
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Definition 5. For x 2R
n, x mod P.B/ is the unique y 2P.B/ satisfying

x � y 2 L.B/.

Protocol 1 The Goldreich–Goldwasser AM protocol

1. Arthur selects � 2 f0; 1g uniformly and a random point t in the ball B.0; 1
2

p
nd/. He then

sends x D .�vC t / mod P.B/ to Merlin.
2. Merlin checks if dist.x;L.B// < dist.x; vCL.B//. If so, he responds with � D 0; otherwise,

he responds with � D 1.
3. Arthur accepts if and only if � D � .

Remark. For simplicity, we ignore issues of finite precision; these can be dealt with
by standard techniques. One issue that we do want to address is how to choose
a point from the ball B.0;R/ uniformly at random. One option is to use known
algorithms for sampling (almost) uniformly from arbitrary convex bodies and apply
them to the case of a ball. A simpler solution is the following. Take n independent
samples u1; : : : ; un 2 R from the standard normal distribution and let u be the vector
.u1; : : : ; un/ 2 R

n. Then, u is distributed according to the standard n-dimensional
Gaussian distribution, which is rotationally invariant. Now, choose r from the dis-
tribution on Œ0; R� whose probability density function is proportional to rn�1 (this
corresponds to the .n � 1/-dimensional surface area of a sphere of radius r).
The vector r

kuku is distributed uniformly in B.0;R/.

Claim (Completeness). If dist.v;L.B//>
p
nd , then Arthur accepts with prob-

ability 1.

Proof. Assume � D 0. Then,

dist.x;L.B// D dist.t;L.B// � ktk � 1

2

p
nd:

On the other hand,

dist.x; vC L.B// D dist.t; vC L.B// D dist.t � v;L.B//

� dist.v;L.B//� ktk > 1

2

p
nd:

Hence, Merlin answers correctly and Arthur accepts. The case � D 1 is similar. �

Claim (Soundness). If dist.v;L.B// � d , then Arthur rejects with some constant
probability.

Proof. Let y be the difference between v and its closest lattice point. So, y is such
that v�y 2 L.B/ and kyk � d . Let 0 be the uniform distribution on B.0; 1

2

p
nd/

and let 1 be the uniform distribution on B.y; 1
2

p
nd/. Notice that the point Arthur

sends can be equivalently seen as a point chosen from 
 reduced modulo P.B/.
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According to Corollary 1, �.0; 1/ is smaller than 1 � ı. Since statistical distance
cannot increase by the application of a function,

�.0 mod P.B/; 1 mod P.B// � �.0; 1/ < 1 � ı

and Arthur rejects with probability at least ı. �

Containment in coNP

In this section, we sketch the proof of Theorem 1. For more details, see [24].
As mentioned in the introduction, containment in NP is trivial and it suffices to
prove, e.g., that GapCVP100

p
n is in coNP (we make no attempt to optimize the

constant 100 here). To show this, we construct an NP verifier that, given a witness
of polynomial size, verifies that the given point v is far from the lattice. There are
three steps to the proof.

1. Define f
In this part, we define a function f W Rn ! R

C that is periodic over the lattice
L, i.e., for all x 2 R

n and y 2 L, we have f .x/ D f .x C y/ (see Fig. 15.5).
For any lattice L, the function f satisfies the following two properties: it is non-
negligible (i.e., larger than some 1=poly.n/) for any point that lies within distancep

logn from a lattice point and is exponentially small at distance� pn from the
lattice. Hence, given the value f .v/, one can tell whether v is far or close to the
lattice.

2. Encode f
We show that there exists a succinct description (which we denote by W ) of a
function fW that approximatesf at any point in R

n to within polynomially small
additive error (see Fig. 15.5). We use W as the witness in the NP proof.

Fig. 15.5 The function f (left) and its approximation fW (right) for a two-dimensional lattice
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3. Verify f
We construct an efficient NP verifier that, given a witness W , verifies that v is
far from the lattice. The verifier verifies first that fW .v/ is small and also that
fW .x/ � 1=2, for any x that is close to the lattice.

We now explain each of these steps in more detail. For all missing proofs and
more details, see [24].

Step 1: Define f

Define the function g W Rn ! R as

g.x/ D
X

y2L
e��kx�yk2 ;

and let

f .x/ D g.x/

g.0/
:

Hence, f is a sum of Gaussians centered around each lattice point and is nor-
malized to be 1 at lattice points. See Fig. 15.5 for a plot of f . The function f was
originally used by Banaszczyk [23] to prove “transference theorems,” i.e., theorems
relating parameters of a lattice to those of its dual.

The two properties mentioned above can be stated formally as follows.

Lemma 2. Let c > 1p
2�

be a constant. Then for any x 2 R
n, if d.x;L/ � c

p
n

then f .x/ D 2�˝.n/.

Lemma 3. Let c > 0 be a constant. Then for any x 2 R
n, if d.x;L/ � cplogn

then f .x/ > n�10c2
.

Step 2: Encode f

This step is the core of the proof. Here, we show that the function f can be approx-
imated pointwise by a polynomial size circuit with only an inverse polynomial
additive error. A naive attempt would be to store f ’s values on some finite subset of
its domain and use these points for approximation on the rest of the domain. How-
ever, it seems that for this to be meaningful, we would have to store an exponential
number of points.

Instead, we consider the Fourier series of f , which is a function Of whose domain
is the dual lattice L� (defined as the set of all points in R

n with integer inner product
with all lattice points). For any w 2 L�, it is given by
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Fig. 15.6 The Fourier series Of of f

Of .w/ D 1

det.B/

Z

z2P.B/

f .z/e�2�ihw;zidz;

where B is some basis of L. (It can be shown that this definition is independent of
the basis we choose for L.) A short calculation, which we omit here, shows that Of
has a nice form, namely

Of .w/ D e��kwk2
P

z2L� e��kzk2 :

See Fig. 15.6 for a plot of Of . One very useful and crucial property of Of is that it is
a probability distribution over the dual lattice L�. In other words, it is a non-negative
function and the sum of all its values is 1.

A basic result in Fourier analysis is the Fourier inversion formula. It says that a
function f can be recovered from its Fourier series Of by using the formula

f .x/ D
X

w2L�

Of .w/e2�ihw;xi:

Since in our case, both f and Of are real, we can simplify it to

f .x/ D
X

w2L�

Of .w/ cos.2	hw; xi/
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by taking the real part of both sides. By thinking of Of as a probability distribution,
we can rewrite this as

f .x/ D E
w� Of Œcos.2	hw; xi/� :

Hence, f .x/ can be seen as the expectation of cos.2	hw; xi/ (whose values range
between �1 and 1), where w is chosen according to the probability distribution Of .

This brings us to the main idea of this step: we can approximate f by replacing
the expectation with an average over a large enough sample from Of . More formally,
for some large enough N D poly.n/, let W D .w1; : : : ;wN / be N vectors in the
dual lattice chosen randomly and independently from the distribution Of and define

fW .x/
defD 1

N

NX

iD1

cos.2	hx;wi i/: (15.1)

See Fig. 15.5 for a plot of fW . Then, one can show that with high probability,
jfW .x/ � f .x/j � n�10 for all x 2 R

n. The proof of this statement is based on the
Chernoff–Hoeffding bound.

Given the above, it is natural to choose our NP witness to be the list W D
.w1; : : : ;wN / of vectors in the dual lattice. We note that these vectors are typically
short and hence computing them directly seems difficult.

Step 3: Verify f

Here, we construct an efficient NP verifier that, given the witness W , verifies that
a point is far from the lattice. More precisely, given a lattice L and a vector v, it
accepts if the distance of v from L is greater than

p
n and rejects if this distance

is less than 1=100. This shows that GapCVP100
p

n is in coNP (after appropriate
rescaling).

The verifier starts by performing the following test: compute fW .v/, as defined in
(15.1), and reject if it is at least, say, 1=2. We can do this because when the distance
of v from L is greater than

p
n, f .v/ is exponentially small by Lemma 2 and hence

fW .v/ must be at most 1=poly.n/ < 1=2 (assuming the witness W is chosen from
Of , as it should be).

This verifier, however, is clearly not strong enough: the prover can “cheat” by
sending wi ’s that have nothing to do with Of or with the lattice, and for which fW .v/
is small even though v is within distance 1=100 of the lattice. One might try to
avoid such cheating strategies by verifying that fW is close to f everywhere, or,
alternatively, that the wi ’s were indeed chosen from the correct distribution Of . It is
not known how to construct such a verifier. Instead, we will now show a somewhat
weaker verifier. (This weaker verifier is what limits the proof to a gap of

p
n and
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not
p
n= logn as one could expect, given the properties of f stated in Lemmas 2

and 3.)
To test the witnessW , we verify that the wi ’s “look like” vectors chosen from Of ,

according to some simple statistical tests. We will later see that these tests suffice
to provide soundness. But, what do vectors chosen from Of look like? We identify
two important properties. First, by definition, we see that all the wi ’s are in L�.
Second, it turns out that with high probability, for any unit vector u 2 R

n, it holds
that 1

N

PN
iD1hu;wii2 is bounded from above by some constant, say 3. Intuitively,

this follows from the fact that the length of the wi ’s is roughly
p
n and that they are

not concentrated in any particular direction (the proof of this fact is not trivial and
is based on a lemma by Banaszczyk [23]).

Fortunately, the verifier can check these two properties efficiently. The first prop-
erty is easy to check by, say, solving linear equations. But, how can we check the
second property efficiently? It seems that we have to check it for all unit vectors u.
The main observation here is that we can equivalently check that the largest eigen-
value of the n � n matrix W �W T , where W is the n � N matrix whose columns
are the vectors w1; : : : ;wN , is at most 3N . This can be done in polynomial time by
known algorithms for computing the eigenvalues of a matrix.

To summarize, the verifier performs the following three tests and accepts if and
only if all of them are satisfied:

1. Checks that fW .v/ < 1=2;
2. Checks that W consists of vectors in the dual lattice L�;
3. Checks that the maximal eigenvalue of the n � n positive semidefinite matrix
WW T is at most 3N .

As mentioned above, if v is a YES instance, i.e., its distance from L is at least
p
n,

then a witness W chosen according to Of satisfies all the tests with high probability.
Hence, completeness holds. To complete the proof, we need to prove soundness. We
will show that any witnessW that passes tests (2) and (3) must satisfy fW .x/ � 1=2,
for all x within distance 1=100 from the lattice. In particular, if v is a NO instance,
i.e., its distance from L is at most 1=100, then test (1) must reject.

To see this, we note that by the definition of fW , the fact that W consists of
vectors in L� guarantees that the function fW is periodic on L. Indeed, for any
v 2 L,

hvC x;wi i D hv;wi i C hx;wi i

with the first term being integer by the definition of a dual lattice. Hence, it suffices
to show that fW .x/ � 1=2 for any x satisfying kxk � 1=100. For such x, the
eigenvalue test implies that for most i ’s, jhx;wi ij is small. Therefore, for such x,
most of the cosines in the definition of fW .x/ are close to 1. This implies that
fW .x/ is greater than 1=2 and soundness follows. In more detail, let x be such that
kxk � 1=100. Since test .c/ accepts, we have that
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1

N

NX

jD1

hx;wj i2 D 1

N
xTWW T x � 1

N

3N

10000
D 3

10000

where the inequality follows by expressing x in the eigenvector basis of WW T .
Using the inequality cosx � 1 � x2=2 (valid for any x 2 R), we get

fW .x/ D 1

N

NX

jD1

cos.2	hx;wj i/ � 1 � 4	
2

2N

NX

jD1

hx;wj i2 � 1 � 6	2

10000
>
1

2
:

Zero-Knowledge Proof Systems

The containments in NP, coNP, and coAM discussed in the previous sections can be
stated equivalently in terms of proof systems between a computationally unbounded
prover and a polynomial time verifier. For instance, Theorem 1 gives a proof system
for coGapCVPpn, in which the prover simply sends one message to the verifier
who then decides whether to accept or reject. Similarly, Theorem 2 gives a proof
system for coGapCVPp

n= log n
, in which the prover and verifier exchange a small

number of messages. Finally, for any � , GapCVP clearly has a proof system in
which the prover simply sends the nearby lattice point.

In addition to the usual requirements of completeness and soundness, one can ask
for proof systems that satisfy the zero-knowledge property. Intuitively, we say that a
proof system is zero-knowledge, if in the case of a true statement, the verifier learns
nothing beyond the validity of the statement. There are in fact two natural notions
of zero-knowledge: the first is zero-knowledge against honest verifiers, which are
verifiers that obey the protocol but still try to extract some information from the
interaction: the second and stronger notion is zero-knowledge against all verifiers,
which says that even if the verifier deviates from the protocol he can still learn
nothing from the interaction with the prover.

Although for our purposes the above intuitive description suffices, let us men-
tion that the formal definition of zero-knowledge uses the notion of a simulator.
Specifically, one says that a proof system is (statistical) zero-knowledge against
honest verifiers, if there exists an efficient algorithm, known as a simulator, that
produces communication transcripts whose distribution is statistically close to that
of the actual transcripts of communication between the verifier and the prover.
The existence of such a simulator captures the intuitive idea that the verifier learns
nothing from the interaction. A similar definition exists for zero-knowledge against
all verifiers. The concept of zero-knowledge has led to many important develop-
ments in cryptography and complexity over the past two decades. For the formal
definition and further discussion, see [27].

Among the three proof systems mentioned above, the only one that is zero-
knowledge is the one by Goldreich and Goldwasser. (The other two are clearly
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not zero-knowledge, since the verifier receives the witness.) Indeed, consider the
protocol described in Section “The Protocol” in the case of a true statement,
i.e., dist.v;L.B// >

p
nd . Notice that the answer � received by the verifier is

always identical to his bit � . Hence, the verifier already knows the answer the
prover is about to send him, and therefore can learn nothing from the protocol
(beyond the fact that dist.v;L.B// >

p
nd ). This argument (once written for-

mally) establishes that the Goldreich–Goldwasser protocol is a statistical (and in
fact perfect) zero-knowledge protocol against honest verifiers, or in complexity-
theoretic terms, that the class coGapCVPp

n= log n
is contained in a complexity

class known as Honest Verifier Statistical Zero Knowledge, or HVSZK. This proto-
col is not zero-knowledge against dishonest verifiers, since by deviating from the
protocol, a dishonest verifier can find out if certain points are close to the lat-
tice or not (which seems to be something he cannot do without the help of the
prover). Still, using the remarkable fact that HVSZK D SZK [27], we obtain that
coGapCVPp

n= log n
2 SZK, i.e., that coGapCVPp

n= log n
has a zero-knowledge

proof system that is secure also against dishonest verifiers. Another truly remarkable
fact regarding zero-knowledge proof systems is that SZK is closed under com-
plement [27, 28]. This implies that we also have that GapCVPp

n= log n
2 SZK,

i.e., there exists a zero-knowledge proof system that allows a prover to convince a
verifier that a point is close to the lattice.

Proof Systems with Efficient Provers

In the traditional complexity-theoretic definition of zero-knowledge protocols, the
complexity of the prover does not play any role. However, from a cryptographic
standpoint, in order for these proof systems to be useful, the prover must be effi-
ciently implementable. This gives rise to the following question: do all problems in
NP \ SZK have a statistical zero-knowledge proof system in which the prover can
be implemented efficiently when given an NP witness? Note that without providing
the prover with an NP witness, this task is clearly impossible. This is also the reason
the question makes sense only for problems in NP \ SZK.

In the context of lattice problems, this question was raised by Micciancio and
Vadhan [26], who also made some progress toward answering the question for gen-
eral problems in NP\ SZK. Building on their work, Nguyen and Vadhan [29] very
recently gave a positive answer to the question: any problem in NP \ SZK has a
statistical zero-knowledge proof system with an efficient prover. Their protocol is
secure even against dishonest verifiers.

From a theoretical point of view, Nguyen and Vadhan’s exciting result gives a
complete answer to our question. Yet, their construction is very complicated and
does not seem to yield protocols that are efficient in practice. For this reason, we
will now describe two examples of “practical” proof systems for lattice problems.
Such direct constructions of proof systems with efficient provers have applications
in cryptography, as described in [26].
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The first problem we consider is coGapCVP. As we have seen, coGapCVPpn

is in NP \ SZK. However, in the Goldreich–Goldwasser proof system, the prover
is required to solve a nontrivial problem, namely to tell whether a point x is within
distance 1

2

p
nd from L.B/ or within distance 1

2

p
nd from v C L.B/, under the

assumption that dist.v;L.B// >
p
nd . This seems like a hard problem, even

when given the NP witness described in Section “Containment in coNP”. How-
ever, the Goldreich–Goldwasser protocol as described in Section “The Protocol”
does have an efficient prover, if we consider it as a protocol for the (easier) problem
coGapCVPn. Indeed, the prover’s task in this protocol is to tell whether a point x is
within distance 1

2

p
nd from L.B/ or within distance 1

2

p
nd from vCL.B/, under

the assumption that dist.v;L.B// > nd . Notice that in the latter case, the distance of
x from L.B/ is at least nd � 1

2

p
nd � nd=2. Hence, the gap between the two cases

is at least
p
n and therefore the prover can distinguish between them by using the

witness described in Section “Containment in coNP”. This proof system, just like
the original Goldreich–Goldwasser protocol, is secure only against honest verifiers.

The second problem we consider is GapCVPpn. Here, the prover’s task is to
convince the verifier through a zero-knowledge protocol that a point v is close to the
lattice. An elegant protocol for this task was presented by Micciancio and Vadhan
in [26]. Their protocol is secure even against dishonest verifiers, and in addition,
the prover’s strategy can be efficiently implemented, given a lattice point close to v.
The main component in their protocol is given as Protocol 2. We use D0 to denote
the set of points that are within distance 1

2

p
nd of the lattice L.B/ andD1 to denote

the set of points that are within distance 1
2

p
nd of the shifted lattice vC L.B/ (see

Fig. 15.2).

Protocol 2 Part of the Micciancio–Vadhan zero-knowledge protocol for
GapCVPpn

1. The prover chooses uniformly a bit � 2 f0; 1g and sends to the verifier a point x chosen
“uniformly” from D� .

2. The verifier then challenges the prover by sending him a uniformly chosen bit � .
3. The prover is supposed to reply with a point y.
4. The verifier accepts if and only if dist.x; y/ � 1

2

p
nd and y 2 �vC L.B/ (i.e., y is a lattice

point if � D 0, and a point in the shifted lattice, if � D 1).

The soundness of this protocol is easy to establish: if dist.v;L.B// >
p
nd then

the verifier accepts with probability at most 1
2

, no matter what strategy is played by
the prover, since no point x can be within distance 1

2

p
nd both from L.B/ and from

v C L.B/. To prove completeness, consider the case dist.v;L.B// � d=10. Using
a proof similar to the one of Lemma 1, one can show that the relative volume of the
intersection of two balls of radius 1

2

p
nd , whose centers differ by at most d=10 is

at least 0:9. This means that with probability at least 0:9, the point x chosen by the
prover from D
 is also in D1�
 . In such a case, the prover is able to reply to both
possible challenges � and the verifier accepts. Notice, moreover, that the prover can
be efficiently implemented, if given a lattice point w within distance d=10 of v: by
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adding or subtracting w� v as necessary, the prover can respond to both challenges
in case x falls in D0 \D1.

Unfortunately, Protocol 2 is not zero-knowledge. Intuitively, the reason for that
is when the prover is unable to answer the verifier’s challenge, the verifier learns
that x is outside D0 \ D1, a fact which he most likely could not have established
alone. We can try to mend this by modifying the prover to only send points x that
are in D0 \ D1. This still does not help, since now the verifier obtains a uniform
point x in D0 \ D1, and it seems that he could not sample from this distribution
alone. (This modification does, however, allow us to obtain perfect completeness.)

Instead, the solution taken by [26] is to “amplify” Protocol 2, so as to make the
information leakage negligible. Instead of just sending one point x, the prover now
sends a list of 2k points x1; : : : ; x2k , each chosen independently as in the original
protocol, where k is some parameter. The verifier again challenges the prover with a
random bit � . The prover is then supposed to reply with a list of points y1; : : : ; y2k .
The verifier accepts if and only if for all i , dist.xi ; yi / � 1

2

p
nd and yi is either in

L.B/ or in vCL.B/, and moreover, the number of yi ’s contained in L.B/ is even, if
� D 0, and odd, otherwise. The idea in this modified protocol is to allow the prover to
respond to the challenge whenever there is at least one point xi that falls inD0\D1.
This reduces the probability of failure from a constant to an exponentially small
amount in k. The soundness, completeness, prover efficiency, and zero-knowledge
property of the modified protocol are established similarly to those of the original
protocol. For further details, see [26].

NP-Hardness

In this section we show that Theorem 1 implies that GapCVPpn is unlikely to be
NP-hard, even under Cook reductions. One can also show that Theorem 2 implies
that GapCVPp

n= log n
is unlikely to be NP-hard. However, for simplicity, we show

this only for a
p
n gap. Our proof is based on [17, 30, 31].

First, let us consider the simpler case of Karp reductions. If a problem in coNP
is NP-hard under a Karp reduction (i.e., there is a many-to-one reduction from SAT
to our problem) then the following easy claim shows that NP 	 coNP (and hence
the polynomial hierarchy collapses).

Claim. If a promise problem˘ D .˘YES; ˘NO/ is in coNP and is NP-hard under
Karp reductions, then NP 	 coNP.

Proof. Take any language L in NP. By assumption, there exists an efficient proce-
dure R that maps any x 2 L to R.x/ 2 ˘YES and any x … L to R.x/ 2 ˘NO.
Since˘ 2 coNP, we have an NP verifier V such that for any y 2 ˘NO there exists
a w such that V.y;w/ accepts, and for any y 2 ˘YES and any w, V.y;w/ rejects.
Consider the verifier U.x;w/ given by V.R.x/;w/. Notice that for all x … L there
exists a w such that U.x;w/ accepts and moreover, for all x 2 L and all w U.x;w/
rejects. Hence, L 2 coNP. �
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The case of Cook reductions requires some more care. For starters, there is noth-
ing special about a problem in coNP that is NP-hard under Cook reductions (for
example, coSAT is such a problem). Instead, we would like to show that if a prob-
lem in NP \ coNP is NP-hard under Cook reductions, the polynomial hierarchy
collapses. This implication is not too difficult to show for total problems (i.e., lan-
guages). However, we are dealing with promise problems and for such problems this
implication is not known to hold (although still quite believable). In a nutshell, the
difficulty arises because a Cook reduction might perform queries that are neither a
YES instance nor a NO instance and for such queries we have no witness.

This issue can be resolved by using the fact that not only GapCVPpn 2 NP but
also GapCVP1 2 NP. In other words, no promise is needed to show that a point
is close to the lattice. In the following, we show that any problem with the above
properties is unlikely to be NP-hard.

Lemma 4. Let˘ D .˘YES; ˘NO/ be a promise problem and let˘MAYBE denote
all instances outside ˘YES [˘NO . Assume that ˘ is in coNP and that the (non-
promise) problem˘ 0 D .˘YES[˘MAYBE; ˘NO/ is in NP. Then, if˘ is NP-hard
under Cook reductions then NP 	 coNP and the polynomial hierarchy collapses.

Proof. Take any language L in NP. By assumption, there exists a Cook reduction
from L to ˘ . That is, there exists a polynomial time procedure T that solves L
given access to an oracle for ˘ . The oracle answers YES on queries in ˘YES and
NO on queries in˘NO. Notice, however, that its answers on queries from˘MAYBE
are arbitrary and should not affect the output of T .

Since ˘ 2 coNP, there exists a verifier V1 and a witness w1.x/ for every x 2
˘NO such that V1 accepts .x;w1.x//. Moreover, V1 rejects .x;w/ for any x 2
˘YES and any w. Similarly, since˘ 0 2 NP, there exists a verifier V2 and a witness
w2.x/ for every x 2 ˘YES [˘MAYBE such that V2 accepts .x;w2.x//. Moreover,
V2 rejects .x;w/ for any x 2 ˘NO and any w.

We now show thatL is in coNP by constructing an NP verifier. Let˚ be an input
to L and let x1; : : : ; xk be the set of oracle queries which T performs on input ˚ .
Our witness consists of k pairs, one for each xi . For xi 2 ˘NO we include the pair
.NO;w1.xi // and for xi 2 ˘YES [ ˘MAYBE we include the pair .YES;w2.xi //.
The verifier simulates T ; for each query xi that T performs, the verifier reads the
pair corresponding to xi in the witness. If the pair is of the form .YES;w/ then the
verifier checks that V2.xi ;w/ accepts and then returns YES to T . Similarly, if the
pair is of the form .NO;w/ then the verifier checks that V1.xi ;w/ accepts and then
returns NO to T . If any of the calls to V1 or V2 rejects, then the verifier rejects.
Finally, if T decides that ˚ 2 L, the verifier rejects and otherwise it accepts.

The completeness follows easily. More specifically, if ˚ … L then the witness
described above will cause the verifier to accept. To prove soundness, assume that
˚ 2 L and let us show that the verifier rejects. Notice that for each query xi 2 ˘NO
the witness must include a pair of the form .NO;w/ because otherwise V2 would
reject. Similarly, for each query xi 2 ˘YES the witness must include a pair of the
form .YES;w/ because otherwise V1 would reject. This implies that T receives the
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correct answers for all of its queries inside˘NO[˘YES and must therefore output
the correct answer, i.e., that ˚ 2 L and then the verifier rejects. �

We just saw that the promise problem GapCVPpn is unlikely to be NP-hard,
even under Cook reductions. Consider now the search problem CVPpn where given
a lattice basis B and a vector v, the goal is to find a lattice vector w 2 L.B/
such that dist.v;w/ � pn dist.v;L.B//. This problem is clearly at least as hard
as GapCVPpn. Can it possibly be NP-hard (under Cook reductions)? A similar
argument to the one used above shows that this is still unlikely, as it would imply
NP 	 coNP. Let us sketch this argument. Assume we have a Cook reduction from
any NP languageL to the search problem CVPpn. Then we claim that L 2 coNP.
The witness used to show this is a list of valid answers by the CVPpn oracle to
the questions asked by the reduction, together with a witness that each answer is
correct. More precisely, for each question .B; v/, the witness is supposed to con-
tain the vector w 2 L.B/ closest to v together with an NP proof that the instance
.B; v; dist.v;w/=

p
n/ is a NO instance of GapCVPpn. Having the NP proof for

each answer w assures us that dist.v;w/ � pn dist.v;L.B// and hence w is a valid
answer of the CVPpn oracle.

Reducing GapSVP to GapCVP

Both Theorem 1 and Theorem 2 hold also for GapSVP. The following lemma
shows this for Theorem 1. A similar argument shows this for Theorem 2.

Lemma 5. If for some ˇ D ˇ.n/, GapCVPˇ is in coNP then so is GapSVPˇ .

Proof. Consider an instance of GapSVPˇ given by the lattice L whose basis is
.b1; : : : ; bn/ (in this proof we use Definitions 1 and 2 with d fixed to 1). We map
it to n instances of GapCVPˇ where the i th instance, i D 1; : : : ; n, is given by
the lattice Li spanned by .b1; : : : ; bi�1; 2bi ; biC1; : : : ; bn/ and the target vector bi .
In the following we show that this mapping has the property that if L is a YES

instance of GapSVPˇ then at least one of .Li ; bi / is a YES instance of GapCVPˇ

and if L is a NO instance then all n instances .Li ; bi / are NO instances. This will
complete the proof of the lemma since a NO witness for L can be given by n NO

witnesses for .Li ; bi /.
Consider the case where L is a YES instance. In other words, if

u D a1b1 C a2b2 C � � � C anbn

denotes the shortest vector, then its length is at most 1. Notice that not all the ai ’s
are even for otherwise the vector u=2 is a shorter lattice vector. Let j be such that
aj is odd. Then the distance of bj from the lattice Lj is at most kuk � 1 since
bj C u 2 Lj . Hence, .Lj ; bj / is a YES instance of GapCVPˇ . Now consider the
case where L is a NO instance of GapSVPˇ , i.e., the length of the shortest vector
in L is more than ˇ. Fix any i 2 Œn�. By definition, bi … Li and therefore for



15 On the Complexity of Lattice Problems with Polynomial Approximation Factors 495

any w 2 Li the vector bi � w ¤ 0. On the other hand, bi � w 2 L and hence
kbi � wk > ˇ. This shows that d.bi ;Li / > ˇ and hence .Li ; bi / is a NO instance
of GapCVPˇ . �
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