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PREFACE 
"' ...... 

The study of algorithms is at the very heart of c.:omputer science:- Irr; -redeht 
years a number of significant advances in the field of algorithms· have b'f'en 
made. These advances have ranged from the development off~s,te,r; algori,th~~. 
such as the fast Fourier transform. to the startling discovery of-q:rtain r)atur.~I. 
problems·for which all algorithms are inefficient. These results have kindled 
considerable interest in the study of algorithms. and the area of algorithm de­
sign and analysis has blossomed into a field of intense interest. The intent of 
this book is to bring together the fundamental results in this area, so the uni­
fying principles and underlying concepts of algorithm design may more easily 
be taught. 

THE SCOPE OF THE BOOK ..1 

To analyze the performance of an algorithm some model of a computer is 
necessary. Our book begins by formulating several computer models which 
are simple enough to establish analytical results but which at the same time 
accurately reflect the salient features of real machines. These models include 
the random access register machine. the random access stored program ma­
chine, and some specialized variants of these. The Turing machine is intro­
duced in order to prove the exponential lower bounds on efficiency in Chapters, 
I 0 and 11. Since the trend in program design is away from machine language, 
a high.:..level language called Pidgin ALGOL is introduced as the main vehicle 
for describing algorithms. The complexity of a Pidgin ALGOL program is 
related to the machine models. 

The second chapter introduces basic data structures and programming 
techniques often used in efficient algorithms. It covers the use of lists. push­
down stores. queues. trees. and graphs. Detailed explanations of recursion. 
divide-and-conquer. and dynamic programming are giv~n. along. with examples 
of their use. 

Chapters 3 to 9 provide a sampling of the diverse areas to which the funda­
mental techniques of Chapter :! can be applied. Otfr eh1phasis i"n these··chap~ 
ters is. on developing algo1:ithms that are a·symp.toti.caUy: th:e · m1ost' ~ffiti'ent 
known. Because of thiS' emphasis. some of the algorithms. presented are.suit­
able only for inputs whose size is much larger than what is currently encoun-

· ·· :" _· 
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iv PREFACE 

tered in practice. This is particularly true of some of the matrix multiplication 
algorithms in Chapter 6, the SchOnhage-Strassen integer-muitiptication algo­
rithm of Chap~er 7. and some of the polynomial .and integer algorjthms of 
Chapter 8. , 

On the o~her hand, most of the sorting algorithms of Chapter 3, the scarch­
irig algorithms of Chapter 4, the graph a.lgorithms of Chapter 5, the fast Fourier 
transform of Chapter 7, and the string-matching algorithms of Chapter 9 are 
widely used, since the sizes of ,inputs for which these algorithms are efficient 
are sufficiently s_maH to. be encountered in many practical situations .. 

Chapters I 0 through 12 discuss lower bounds on computational com­
plexity. The inherent computational difficulty of a problem is of universal 
interest. both to program design and to an understanding of the nature of com­
putation. In Chapter IO an important class of problems, the NP-complete 
problems, is studied. All problems in this class are equivalent in computa­
qonal difficulty. in that if one problem in the class has an efficient (polynomial 
ti-~e-~ound_ed) solution, then all problems in the class have efficient sol.µtions. 
Since -this class of problems contains many practically important and well­
studied problems, such as the integer-programming problem and the traveling 
salesman problem, there is good r~ason to suspect that no problem in this class 
can be solved efficiently. Thus, if a program designer knows that the problem 
for which he is trying to find an effiC:ient algorithm is in this class. then he .may 
very well be content to try heuristic approaches to the problem. In spite of the 
overwhelming empirical evidence to the contrary, it is still an open question 
whether NP-complete problems admit of efficient solutions. 

In Chapter 11 certain problems are defined for which we can actually 
prove that no efficient algorithms exist. The material in Chapters I 0 and 11 
draws heavily on the concept of Turing machines introduced in Section~ 1.6 
and 1.7. · · 

In the final chapter of the book w.~ relate concepts of computational dif­
ficulty to notions of linear independence in vector spaces. The material in this 
~hapter provides techniques for proving lower bounds for much simpler prob­
lems than those considered in Chapters I 0 and 11. 
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THE USE OF THE BOOK 

This: book is intended as a first course in the design and analysis of algorithms. 
The emphasis is on ideas and ease of un~erstanding rather than implementa­
tion details or progra~ming tricks. Informal, intuitive ~xplanations are often 
used in place of long tedious proofs. The book is self-contained and assumes 
no specific background iri mathematics or programming languages. However, 
a certain amount of maturity in being able to handle mathematical concepts is 
desirable, as is some exposure to a higher-level programming language such as 
FORTRAN \or ALGOL. Some knowledge of linear algeb~a is needed for a 
full understanding of Chapters 6; 7, 8, and 12. 

This book has been used in graduate and undergraduate c'ourses in algo­
rithm design. In a one-semester course most of Chapters 1-5 and 9-10 were 
covered, aiong with a smattering of topics from the remaining chapters. In 
introductory courses the emphasis was on material from Chapters 1~5. but 
Se·ctions 1.6, 1.7, 4.13, 5.11, and Theorem 4.5 were generally not covered. 
The book can also be used in more advanced courses emphasizing the th~ory of 
algorithms. Chapters 6-12 could serve as the foundation for such a course. 

Numerous exercises have been provided at the end of each chapter to 
provide an instructor with a wide range of homework problems. The exercises 
are graded according to difficulty. Exercises with no stars are suitable for in­
troductory courses, singly starred exercises for more advanced courses, and 
doubly starred exercises. for advanced graduate courses. The bibliographic 
notes at the end of every chapter attempt to point to a published source for 
each of the .algorithms and results contained in the text and the exercises. 
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2 MODELS OF COMPUTATION 1.1 

Given a problem. how do we find an efficient algorithm for its solution'? Once 
we have found an algorithm. how can we compare this algorithm with other 
algorithms that solve the same problem? How should we judge the goodness 
of an algorithm? Questions of this nature are of interest both to programmers 
and to theoretically oriented computer scientists. In this book we shall ex­
amine various lines of research that attempt to answer questions such as these. 

In this chapter we consider several models of a computer-the random 
access machine. the random access stored program machine. and the Turing 
machine. We compare these models on the basis of their ability to reflect 
the complexity of an algorithm. and derive from them several more specialized 
models of computation, namely, straight-line arithmetic sequences. bitwise 
computations, bit vector computations, and decisiori trees. Finally, in the 
last section of this chapter we introduce a language called "Pidgin ALGOL" 

_ for describing algorithms. 

1.1 ALGORITHMS AND THEIR COMPLEXITY 

Algorithms can be ~valuated by a variety of criteria. Most often we shall 
be interested in the rate of growth of the time or space required to solve larger 
and larger instances of a problem. We would like to associate with a problem 
an integer. called the size of the problem, which is a measure of the quantity 
of input data. For example, the size of a matrix multiplication problem might 
be the largest dimension of the matrices to be multiplied. The size of a graph 
problem might .be the number of edges. 

The time needed by an algorithm expressed as a function of the size of 
a problem is called the time complexity of the algorithm. The limiting be­
havior of the compiexity as size increases is called the asymptotic time com­
plexity. Analogous definitions can be made for space complexity and asymp­
totic space complexity. 

It is the asymptotic complexity of an algorithm which ultimately deter­
mines the size of problems that can be solved by the algorithm. If an algo­
rithm processes inputs of size /1 in time cn2 for some constant c, then we say 
that the time complexity of that algorithm is 0(112), read "order 112." More 
precisely, a function g(n) is said to be O(f(n)) if there exists a constant c 
such that g(n) s cj'(n) for all but some finite (possibly empty) set of non­
negative values for 11. 

One might suspect that the tremendous increase in the speed of calcula­
tions brought about bY. the advent of the present generation of digital com­
puters would decrease the importance of efficient algorithms. However, just 
the opposite is true. As computers become faster and we can handle larger 
problt:ms, it is the complexity of an algorithm that determines the increase 
in problem size that can be achieved with an increase in computer speed. 

Suppose we have five algorithms A 1-A 5 with the following time com­
plexities. 



Algorithm 

ALGORITHMS AND THEIR COMPLEXITY :: 

Time complexity 

11 

lz log nt 
n2 
ll:J 

.2" 

The time complexity here is the number of time units required to process an 
input of size n. Assuming that one unit of time equals one· millisecond, algo­
richm A 1 can process in one second an input of size I 000, whereas algorithm 
A5 can process in one secqnd an input of size at most 9. Figure I. J gives the 
sizes of problems that can be solved in one second, one minute, and one hour 
by each of these five algorithms. 

Time 
Maximum problem size 

Algorithm complexity I sec I min I hour 

A1 n 1000 

I 
6 x 104 3.6 x 106 

A2 n log ti' 140 4893 2.0 x 105 

Aa n2 31 244 1897 
A4 n3 IO 39 I 153 
As 2" 9 15 I 21 

Fig. 1.1. Limits on problem size as determined by growth rate. 

Maximum Maximum 
Time problem size problem size 

Algorithm complexity before speed-up after speed-up 
-

Ai ll S1 I0s1 

A2 n log n S2 Approximately I Os:? 
for large s2 

Aa /l2 S3 3.16s3 

A4 ri1 S4 2. l 5s4 
As ')II Ss S:; + 3.3 I 

Fig. 1.2. Effect of tenfold speed-up. 

t Unless otherwise stated, all logarithms in this book are to the base 2. 
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Suppose that the next generation of computers is t'!n times faster than the 
current generation. Figure 1.2 shows the increase in the size of the problem 
\Ve can solve due to this increase in speed. Note that wi!h alg~rithm A 5 • a 
tenfold increase in speed only increases by three the size of problem that can 
be solved. whereas with algorithm A:: the siz.e more than triples. 

instead of an incre~se in speed. consider the effect of using a more efficient 
algorithm. Refer again to Fig. I. I. lJ sing one minute as a basis for com­
parison. by replacing algorithm A-4 with A:i we can solve a problem six times 
larger: by replacing A 4 with A:? we can solve a problem 125 times larger. These 
results are far more impressive than the twofold improvement obtained by a 
tenfold increase in speed. If an hour is used as the basis of comparison. the 
differences are even more significant. We conclude that the asymptotic com­
plexity of an algorithm is an important measure of the goodness of an algorithm. 
one that promises to become even more important with future increases in 
computing speed. , 

Despite our concentration on order-of-magnitude performance. we should 
realize that an algorithm with a rapid growth rate might have a smaller con­
stant of proportionality than one with a lower growth rate. In that case. the 
rapidly growing algorithm might be superior for small problems. possibly even 
for all problems of a size that .would interest us. For example, suppose the 
time complexities of algorithms A 1• A 2 • A:i. A 4 • and A 5 were really 1000n. 
iOOn log n. I On:?. 11\ and 2". Then A 5 would be best for problems of size 
2 .s /1 s 9. A:i would be best for 10 s 11 s 58. A 2 would be best for 59 s n .s 
I 024, and A 1 best for problems of size greater than I 024. 

Before going further with our discussion of algorithms and their com­
plexity, we must specify a model of a computing device for executing algo­
rithms and define what is meant by a basic step in a computation. U nfortu­
nately. there is no one computational model which is suitable for all situations. 
One of the main difficulties arises from the size of computer words. For ex­
ample. if one assumes that a computer word can hold an integer of arbitrary 
size. then an entire problem could be encoded into a single integer in one com­
puter word. On the other hand. if a computer word is assumed to be finite. 
one must consider the difficulty of simply storing arbitrarily large integers, as 
well as other problems which one often avoids when given problems of modest 
size. For each problem we must select an appropriate model which will 
accurately reflect the actual computation time on a real computer. 

In the following sections we discuss several fundamental models of com­
puting de'J.ices. the more important models being the random access machine. 
the random access stored program machine. and the Turing machine. These 
three models are equivalent in computational power but not in speed. 

Perhaps the most important motivation for formal models of computation 
is the desire to discover the inherent computational difficulty of various prob­
lems. We would like to prove lower bounds on computation time. In order 
to show that there is no algorithm to perform a given task in less than a certain 
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amount of time. we need a precise and often highly stylized definition of what 
constitutes an algorithm. Turing machines (Section 1.6) are an example of 
such a definition. 

In describing and communicating algorithms we would like a notation 
more natural and easy to understand than a program for a random access ma­
chine. random access stored program machine, or Turing machine. For this 
reason we shall also introduce a high-level language called Pidgin ALGOL. 
This is the language we shall use throughout the book to describe algorithms. 
However. to understand the computational complexity of an algorithm de­
scribed in Pidgin ALGOL we must relate Pidgin ALGOL to the more formal 
models. This we do in the last section of this chapter. 

1.2 RANOOM ACCESS MACHINES 

A random access machine (RAM) models a one-accumulator computer in 
which instructions are not permitted to modify themselves. 

A RAM consists of a read-only input tape, a write-only output tape, a 
program, and a memory (Fig. 1.3). The input tape is a sequence of squares, 
each of which holds an integer (possibly negative). Whenever a symboi is 
read from the input tape, the tape head moves one square to the right. The 
output is a write-only tape ruled into squares which are initially all blank. 
When a write instruction is executed, an integer is printed in the square of the 

...._ __ __. __ ""T"""'_._ ____ _._ __ ___. 
Read-only 
input tape 

r----------------- ----------------------, 

Location 
counter Program 

Memory 

Accumulator 

I 
I 
I 
I 
I 
I 

L __________ _ 
--------------------------------' 

Write-only 
output tape 

Fig. 1.3 A random access machine. 
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output tape that is currently under the output tape head. and the tape head is 
moved one square to the right. Once an output symbol has been written. it 
cannot be changed. 

The memory consists of a sequence of registers. r:i. r 1 • ••• , ri• ...• each 
of which is capable of holding an integer of arbitrary size. We place no upper 
bound on the number of registers that can be used. This abstraction is valid 
in cases where: 

I. the size of the problem is small enough to fit in the main memory cf a 
computer. and 

., the integers used in the computation are small enough to fit in one com­
puter word. 

The program for. a RAM is not stored in the memory. Thus we are 
assuming that the program does not modify itself. The program is merely a 
sequence of (optionally) labeled instructions. The exact nature of the instruc­
tions used in the program is not too important. as long as the instructions re­
semble those usually found in real computers. We assume there are arith­
metic instructions. input-output instructions. indirect addressing (for indexing 
arrays. e.g.) and branching instructions. All comp_utation takes place in the 
first register r0 , called the accumulator. which like every other memory reg­
ister can hold an arbitrary integer. A sample set of instructions for the RAM 
is shown in Fig. 1.4. Each instruction consists of two parts - an operation 
code and an address. 

In principle. we could augment our set with any other instructions fonnd 
in real computers. such as logical or character operations. without altering the 
order-of-magnitude complexity of problems. The reader may imagine the 
instruction set to be so augmented if it suits him. 

Operation code 

I. LOAD 
., STORE 
3. ADD 
4. SUB 
5. MULT 
6. DIV 
7. READ 
8. WRITE 
9. JUMP 

10. JGTZ 
11. JZERO 
12. HALT 

Address 

operand 
operand 
operand 
operand 
operand 
operand 
operand 
operand 
label 
label 
label 

Fig. 1.4. Table of RAM instructions. 
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An operand can be one of the folJowing: 

t. =i. indicating the integer i itself . 
.., A nonnegative integer i, indicating the contents of register i. 
3. *i. indicating indirect addressing. That is. the operand is the contents 

of register j. where j is the integer found in register i. If j <;. 0. then the 
machine halts. 

These instructions should be quite familiar to anyone who has programmed 
in assembly language. We can define the meaning of a program P with the 
help of two quantities. a mapping c from nonnegative integers to integers 
and a "location counter" which determines the next instruction to execute. 
The function c is a memory map; c(i) is the integer stored in register i (the 
cm11e11t.\· of register i). 

Initially, c(i) = 0 for all i 2:: 0, the location counter is set to the first in­
struction in P, and the output tape is all blank. After execution of the kth 
instruction in P. the location counter is automatically set to k + I (i.e .. the 
next instruction), unless the A.th instruction is JUMP, HALT, JGTZ. or 
JZERO. 

To specify the meaning of an instruction we define v(a), the rnlue of 
operand a, as follows: 

_y(=i) = i, 
1·(i)=c(i), 

v(*i) = c(c(i) ). 

The table of Fig. 1.5 defines the meaning of each instruction in Fig. I .4. In­
structions not defined, such as STORE =i, may be considered equivalent to 
HALT. Likewise, division by zero halts the machine. 

During the execution of each of the first eight instructions the location 
counter is incremented by one. Thus instructions in the program are executed 
in sequential order until a JUMP or HALT instruction is encountered, a JGTZ 
instruction is encountered with the contents of the accumulator greater than 
zero, or a JZERO instruclion is encountered with the contents of the accumu­
lator equal to zero. 

In general. a RAM program defines a mapping from input tapes to output 
tapes. Since the program may not halt on all input tapes, the mapping is a 
panial mapping (that is, the mapping may be undefined for certain inputs). 
The mapping can be interpreted in a variety of ways. Two important inter­
pretations are as a function or as a language. 

Suppose a program P al~ays reads /1 integers from the input tape and 
Writes at most one integer on the output tape. If. when x1, x2 • •••• x,, are the 
integers in the first /1 squares of the input tape. P writes y on the first square 
of the output tape and subsequently halts. then we say that P computes the 
function f<x 1• x2 • •••• x,,) = y. It is easily shown that a RAM. like any other 
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Instruction 

I. LOAD a 
.., STORE i 

STORE *i 
3. ADD a 
4. SUB a 
5. MU.LT a 
6. DIV a 
7. READ i 

READ *i 

8. WRITE a 

9. JUMP b 
IO. JGTZ b 

11. JZERO b 

12. HALT 

c(O) - \'(a) 
c(i) - c(O) 
c(c(i)) - c(O) 
c(O) - c(O) + v(a) 
c( 0) - c(O) - v(a) 
c(O) - c(O) X v(a) 
c(O) - Lc(O)/v(a)Jt 

Meaning 

c(i) - current input symbol. 
c(c(i)) - current input symbol. The input tape head 
moves one square right in either case. 
v(a) is printed on the square of the output tape currently 
under the output tape head. Then the tape head is moved 
one square right. 
The location counter is set to the instruction labeled b. 
The location counter is set to the instruction labeled b if 
c(O) > 0; otherwise, the location counter is set to the 
next instruction. 
The location counter is set to the instruction labeled b if 
C(O) = O; otherwise, the location counter is set to the 
next instruction. 
Execution ceases. 

t Throughout this book, f x 1 (ceiling of x) denotes the least integer equal to or greater than x, and 
LxJ <floor, or integer part of x) denotes the greatest integer equal to or less than x. 

Fig. 1.5. Meaning of RAM instructions. The operand a is either =i. i, or *i. 

reasonable model of a computer, can compute exactly the partial recursive 
functions. That is, given any partial recursive function f we can define a 
RAM program that computes f, and given any RAM program we can define 
an equivalent partial recursive function. (See Davis [ 1958] or Rogers [ 1967] 
for a discussion of recursive functions.) 

Another way to interpret a RAM program is as an acceptor of a language. 
An alphabet is a finite set of symbols, and a language is a set of strings over 
some alphabet. The symbols of an alphabet can be represented by the inte­
gers I. 2 .... , k for some k. A RAM can accept a language in the following 
manner. We place an input string s = a1a2 • • • an on the input tape, placing 
the symbol a 1 in the first square, the symbol a2 in the second square, al)d so on. 
We place 0. a symbol we shall use as an endmarker. in the (n + 1 )st square 
to mark the end of the input string. 
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The input string s is accepted by a RAM program P if P reads all of s 
and the endmarker, writes a I in the first square of the output tape, and halts. 
The language accepted by P is the set of accepted input strings. For input 
strings not in the language accepted by P, P may print a symbol other than I 
on the output tape and halt, or P may not even halt. It is easily shown that a 
language is accepted by a RAM program if and only if it is recursive_ly enumer­
able. A language is accepted by a RAM that halts on all inputs if and only if 
it is a recursive language (see Hopcroft and UUman [ 1969] for a discussion 
of recursive and recursively enumerable languages). ' 

Let us consider two examples of RAM programs. The first defines a 
function: the second accepts a language. 

Example 1.1. Consider the function f( n) given by 

{n" 
f(n) = 0 

for all integers n 2:: I , 
otherwise. 

A Pidgin ALGOL program which computes f(n) by multiplying n by itself 
11 - I times is illustrated in Fig. 1.6.t A corresponding RAM program is 
given in Fig. 1. 7. The variables rl, r2, and r3 are stored in registers l, 2. 
and 3 respectively. Certain obvious optimizations have not been made, so 
the correspondence between Figs. 1.6 and 1.7 will be transparent. D 

• 

begin 

end 

read rl; 
if r 1 s 0 then write 0 
else 

begin 
r2 - rl; 
r3 - rl - 1; 
while r3 > 0 do 

begin 

end; 
write r2 

end 

r2 - r2 * rl; 
r3 - r3 - 1 

Fig. 1.6. Pidgin ALGOL program for n". 

t See Section 1.8 for a description of Pidgin ALGOL. 
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Corresponding 
RAM program Pidgin ALGOL statements 

READ read r I 
LOAD 

} JGTZ pos if r I < 0 then write 0 
WRITE =O 
JUMP endif 

pos: LOAD I } r2 - rl STORE 
.., 
-

LOAD 

} SUB =I r3 - rl :....- I 
STORE 3 

while: LOAD !ontinue} JGTZ while r3 > 0 do 
JUMP end while 

continue: LOAD 
., 

} MULT r2 - r'2 * rl 
STORE 

., 
-

LOAD 3 

} SUB =I r3 - r3 - I 
STORE 3 
JUMP while 

end while: WRITE ., write r'2 
endif: HALT 

Fig. 1.7. RAM program for 11 11 • 

Example 1.2. Consider a RAM program that accepts the language over the 
input alphabet {I. '2} consisting of all strings with the same number of I's 
and 2's. The program reads each input symbol into register I and in register 
'2 keeps track of the differenced between the number of I's and 2's seen so far. 
When the endmarker 0 is encountered. the program checks that the difference 
is zero. and if so prints I and halts. We assume that 0. 1. and 2 are the only 
possible input symbols. 

The program of Fig. 1.8 contains the essential details of the algorithm. 
An equivalent RAM program is given in Fig. 1.9; xis stored in register I and 
d in register 2. D 



while: 

one: 

endif: 

endwhile: 

output: 

begin 
d-0: 
read x: 
while x""' 0 do 

begin 
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if x ""' I then d +- cl - I else d - d + I : 
read x 

end; 
if d = 0 then write I 

end 

Fig. 1.8. Recognizing strings with equal numbers of l's and :rs. 

Corresponding 
RAM program Pidgin ALGOL statements 

LOAD =O } d +-0 
STORE 2 
READ .;. read x 
LOAD ~ndwhile} while x""' 0 do JZERO 
LOAD I 

) SUB =I if x""' I 
JZERO one 
LOAD 2 

) SUB =I then d +-d- I 
STORE 2 
JUMP en.dif 
LOAD 2 
ADD =I else d +-d+ I 
STORE 2 
READ read x 
JUMP while 
LOAD 2 

I JZERO output if d = 0 then write I 
HALT 
WRITE =I 
HALT 

Fig. 1.9. RAM program corresponding to algorithm in Fig. 1.8. 
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1.3 COMPUTATIONAL COMPLEXITY OF RAM PROGRAMS 

Two important measures of an algorithm are its time and space complexity. 
measured as functions of the size of the input. If for a given size the com­
plexity is taken as the maximum complexity over all inputs of that size. then 
the complexity is called the 11·or.,·r-case eomplexiry. If the complexity is taken 
as the ··average" complexity over all inputs of given size. then the complexity 
is called the expecreci complexity. The expected complexity of an algorithm 
is usually more difficult to ascertain than the worst-case complexity. One 
must make some assumption about the distribution of inputs. and realistic 
assumptions are often not mathematically tractable. We shall emphasize the 
worst case. since it is more tractable and has a universal applicability. How­
ever. it should be borne in mind that the algorithm with the best worst-case 
complexity does not necessarily have the best expected complexity. 

The 1rnr.\·t-case rime complexity (or just time complexity) of a RAM pro­
gram is the function f(n) which is the maximum, over all inputs of size n. of 
the sum of the "'time" taken by each instruction executed. The expected time 
complexity is the average. over all inputs of size n. of the same sum. The 
same terms are defined for space if we substitute "'space· used by each reg­
ister referenced'' for "'time' taken by each instruction executed." 

To specify the time and space complexity exactly. we must specify the 
time required to execute each RAM instruction and the space used by each 
register. We shall consider two such cost criteria for RAM programs. Under 
the uniform cost criterion each RAM instruction requires one unit of time 
and each register requires one unit of space. Unless otherwise mentioned. 
the complexity of a RAM program will be measured according to the uniform 
cost criterion. 

A second. sometimes more realistic definition takes into account the 
limited size of a real memory word and is called the logarithmic cost criterion. 
Let /(i) be the following logarithmic function on the integers: 

/(i) = {Llog lilJ +I. 
I, 

i ;if 0 
i = 0 

The table of Fig. I. I 0 summarizes the logarithmic cost t(a) for the three pos­
sible forms of an operand a. Figure I. I I summarizes the time required by 
each instruction. 

Operand a Cost r (al 

=i /( i) 

/(i) + /(cli)) 
:t:i /(i) + /(c{i)) + /(c(c(i))) 

Fig. 1.10. Logarithmic cost of an operand. 
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Instruction 

I. LOAD a 
2. STORE i 

STORE *i 
3. ADD a 
4. SUB a 
5. MULT a 
6. DIV a 
7. READ i 

READ *i 
8. WRITE a 
9. JUMP b 

IO. JGTZ b 
I I. JZERO b 
12. HALT 

Cost 

t(a) 
/(c(O}) + /(i) 
l(c(O)) + l(i) + l(c(i)) 
l(c(O)) + t(a) 
l(c(O)) + t(a) 
l(c(O)) +.t(a) 
l(c(O)) + t(a) 
/(input) + /(i) 
/(input) + l(i) + l(c(i)) 
t(a) 
1 
l(c(O)) 
l(c(O)) 
1 

Fig. 1.11. Logarithmic cost of RAM instructions, 
where t(a) is the cost of operand a. and b denotes a 
label. 

The cost takes into accorlnt the fact that Llog nJ + 1 bits are required to 
represent the integer n in a register. Registers, we recall, can hold arbitrarily 
large integers. 

The logarithmic cost criterion is based on the crude assumption that the 
cost of performing an instruction is proportional to the length of the operands 
of the instructions. For example, consider the cost of instruction ADD *i. 
First we must determine the cost of decoding the operand represented by 
the address. To examine the integer i requires time /(i). Then to read c(i), 
the contents of register i, and locate register c(i) requires time l(c(i)). Finally, 
reading the conterits of register c(i) costs l(c(c(i))). Since the instruction 
ADD *; adds the integer c(c(i)) to c(O), the integer in the accumulator, we see 
that /(c(O)) + l(i) + l(c(i)) + /(c(c(i))) is a reasonable cost to assign to the in­
struction ADD *i. 

We define the logarithmic space complexity of a RAM program to be the 
sum over all registers, including the accumulator, of l(x1), where x 1 is the inte­
ger of largest magnitude stored in register i at any time during the computation. 

It goes without saying that a given program may have radically different 
time complexities depending on whether the uniform or logarithmic cost is 
used. If it is reasonable to assume that each number encountered in a prob­
lem can be stored in one computer word. then the uniform cost function is 
appropriate. Otherwise the logarithmic cost might be more appropriate for 
a realistic complexity analysis. 
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Let us compute the time and space complexity of the RAM program in 
Example 1.1. which evaluates 11 11 • The time complexity of the program is 
dominated by the loop with the MU LT instruction. The ith time the MU LT 
instruction is executed the accumulator contains ,,; and register 2 contains 11. 

A total of /1 - I MUL T instructions are executed. Under the uniform cost 
criterion. each MUL T instruction costs one unit of time. and thus 0111) time 
is spent in executing all the MUL T instructions. Under the logarithmic cost 
criterion, the cost of executing the ith MUL T instruction is /(n;) + /(11) = 
(i + I) log 11. and thus the total cost of the MUL T instructions is 

11-1 

_'L (i + I ) log 11. 
i=I 

which is O(n 2 log 11). 

The space complexity is determined by the integers stored in registers 
0 to 3. Under the uniform cost the space complexity is simply 0(1). Under 
the logarithmic cost, the space complexity is O(n log n). since the largest in­
teger stored in any of these registers is n", and /(11 11 ) = n log 11. Thus we have 
the following complexities for the program of Example I . I . 

Time complexity 
Space complexity 

Uniform 
cost 

O(n) 
0( I) 

Logarithmic 
cost 

0( n2 log n) 
O(n log n) 

For this program the uniform cost is realistic only if a single computer word 
can store an integer as large as n". If 11 11 is larger than what can be stored in 
one computer word, then even the logarithmic time complexity is somewhat 
unrealistic, since it assumes that two integers i andj can be multiplied together 
in time 0 (l(i) + l(j)), which is not known to be possible. 

For the RAM program in Example 1.2. assuming n is the length of the 
input string, the time and space complexities are: 

Time complexity 
Space complexity 

Uniform 
cost 

O(n) 
0( I) 

Logarithmic 
cost 

0( n log n) 
O(log 11) 

For this program. if n is larger than what can be stored in one computer word. 
the logarithmic cost is quite realistic. 
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1.4 A STORED PROGRAM MODEL 

Since a RAM program is not stored in the memory of the ·RAM. the program 
cannot modify itself. We now consider another model of a computer. called 
a random access stored prVRIWll machine (RASP), which is similar to a RAM 
with the exception that the program is in memory and can modify itself. 

The instruction set for a RASP is identical to that for a RAM. except 
indirect addressing is not permitted since it is not needed. We shall see that 
a RASP can simulate indirect addressing by the modification of instructions 
during program execution. 

The overall structure of a RASP is also similar to that of a RAM. but 
the program of a RASP is assumed to be in the registers of the memory. Each 
RASP instruction occupies two consecutive memory registers. The first 
register. holds an encoding of the operation code: the second register holds 
the address. If the address is of the form =i, then the first register will also 
encode the fact that the operand is a literal. and the second register will con­
tain i. Integers are used to encode the instructions. Figure 1.12 gives one 
possible encoding. For example, the instruction LOAD =32 would be stored 
with 2 in one register and 32 in the following register. 

As for a RAM. the state of a RASP can be represented by: 

I. the memory map c. where c(i), i 2:::: 0. is the contents of register i. and 
., the location counter. wtfich indicates the first of the two consecutive 

memory registers from which the.current instruction is to be taken. 

Initially, the location counter is set at some specified register. The ini­
tial contents of the memory registers are usually not all 0, since the program 
has been loaded into the memory at the start. However. we insist that all but 
a finite number of the registers contain 0 at the start and that the accumulator 
contain 0. After each instruction is executed, the location counter is increased 

Instruction Encoding Instruction Encoding 

LOAD I DIV i IO 
LOAD =i ") DIV =1 1 I 
STORE i 3 READ 12 
ADD i 4 WRITE i 13 
ADD =i 5 WRITE =i 14 
SUB i 6 JUMP i 15 
SUB =i 7 JGTZ 16 
MULT I 8 JZERO 17 
MULT =i 9 HALT 18 

Fig. 1.12. Code for RASP instructions. 
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by 2. except in the case of JUMP i. JGTZ i (when the accumulator is positive), 
or JZERO i (when the accumulator contains 0). in which case the location 
counter is set to i. The effect of each instruction is the same as the corre­
sponding RAM instruction. 

The time complexity of a RASP program can be defined in much the same 
manner as that of a RAM program. We can use either the uniform cost cri­
terion or the logarithmic cost. In the latter case, however. we must charge 
not only for evaluating an operand. but also for accessing the instruction itself. 
The accessing cost is /(LC) where LC denotes the contents of the location 
counter. For example, the cost of executing the instruction ADD =i. stored 
in registersj andj+ I, is /(j) + /(c(O)) + /(i).t The cost of the instruction 
ADD i. stored in registersj andj+ I, is /(j) + /(c(O)) + l(i) + /(c(i)). 

It is interesting to ask what is the difference in complexity between a 
RAM program and the corresponding RASP program. The answer is not 
surprising. Any input-output mapping that can be performed in time T(n) 
by one model can be performed in time kT(n) by the other, for some constant 
k, whether cost is taken to be uniform or logarithmic. Likewise, the space 
used by either model differs by only a constant factor under these two cost 
measures. 

These relationships are stated formally in the following two theorems. 
Both theorems are proved by exhibiting algorithms whereby a RAM can 
simulate a RASP. and vice versa. 

Theorem 1.1. If costs of instructions are either uniform or logarithmic, 
for every RAM program of time complexity T(n) there is a constant k 
such that there is an equivalent RASP program of time complexity kT(n). 

Proof We show how to simulate a RAM program P by a RASP program. 
Register I of the RASP will be used to store temporarily the contents of the 
RAM accumulator. From P we shall construct a RASP program Ps which 
will occupy the next r - I registers of the RASP. The constant r is deter­
mined by the RAM program P. The contents of RAM register i, i ;::::: I. will 
be stored in RASP register r + i, so all memory references in the RASP pro­
gram are r more than the corresponding references in the RAM program. 

Each RAM instruction in P not involving indirect addressing is directly 
encoded into the identical RASP instruction (with memory references appro­
pri~tely incremented). Each RAM instruction in P involving indirect address­
ing is mapped into a sequence of six RASP instructions that simulates the 
indirect addressing via instruction modification. 

t We could also charge for reading register j + I. but this cost cannot differ greatly 
from l(j). Throughout this chapter we are not concerned with constant factors. but 
r.ither with the growth rate of functions. Thus /(j) + /(j + I) is "approximately" 
l(j). that is. within a factor of 3 at most. 
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Register Contents Meaning 

100 ~ } STORE 
10 I 
102 

r +Ii} LOAD r+i 
103 
104 .5 l ADD 
105 ,. J =r 

106 
11 ~} STORE I I 1 

107 
108 : } LOAD 
109 
1 10 ~} SUB b where b is the contents 
I I I of RAM register i 

Fig. 1.13. Simulation of SUB *i by RASP. 

An example should suffice to illustrate the simulation of indirect address­
ing. To simulate the RAM instruction SUB *i, where i is a positive integer. 
we shall compile a sequence of .RASP instructions that 

I. temporarily stores the contents of the accumulator in register 1 . 
.., loads the contents of register r + i into the accumulator (register r + i of 

the RASP corresponds to register i of the RAM), 
3. adds r to the accumulator, 
4. stores the number calculated by step 3 into the address field of a SUB 

instruction, 
5. restores the accumulator from the temporary register I. and finally 
6. uses the SUB instruction created in step 4 to pe!form the subtraction. 

For example. using the encoding for RASP instructions given in Fig. 
I .12 and assuming the sequence of RASP instructions begins in register I 00. 
we would simulate SUB *i with the sequence shown in Fig. 1.13. The offset 
r can be determined once the number of instructions in the RASP program P .• 
is known. 

We observe that each RAM instruction requires at most six RASP in­
structions. so under the uniform cost criterion the time complexity of the 
RASP program is at most 6T(n). (Note that this measure is independent of 
the way in which the "size" of the input is determined.) 

Under the logarithmic cost criterion. we observe that each RAM instruc­
tion I in Pis simulated by a sequence S of either one or six RASP instructions 
in Ps. We can show that there is a constant k dependent on P such that the 
cost of the instructions in S is not greater than k times the cost of instruction /. 
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RASP register Instruction 

J 

Cost 

/(j) +/(I)+ /(c(O)) 

l(j+ 2) +Hr+ i) + /(c(i)) 
l(j+ 4) + /(c(i)) + /(r) 

1.4 

.i + 2 
j+4 
j+6 
j+8 
j+ 10 

STORE 
LOAD r+ i 
ADD =r 
STORE j+ II 
LOAD I 
SUB 

/(j+ 6) + l(j+ 11) + /(c(i) + r) 
/(j+8) +/(I) +/(c(O)) 
/(j+ 10) + /(c(i) + r) + /(c(O)) 

+/(c(c(i))) 

Fig. 1.14. Cost of RASP instructions. 

For example, the RAM instruction SUB *i has cost 

M = l(c(O)) + l(i) + l(c(i)) + l(c(c(i))). 

The sequence S that simulates this RAM instruction is shown in Fig. 1.14. 
c!O.). c(i). and c(c(i)) in Fig. 1.14 refer to the contents of RAM registers. 
Since P, occupies the registers 2 through r of the RASP, we have j ::::; r - 11. 
Also, /(x+ y)::::; /(x) + l(y), so the cost of Sis certainly less than 

'21( I) + 4M + I ll(r) < (6 + 1 Il(r) )M. 

Thus we can conclude that there is a constant k = 6 + 11/(r) such that if P is 
of time complexity T(n), then Ps is of time complexity at most kT(n). D 

Theorem 1.2. If costs of instructions are either uniform or logarithmic. 
for every RASP program of time complexity T(n) there is a constant k 
such that there is an equivalent RAM program of time complexity at 
most kT(n). 

Proul The RAM program we shall construct to simulate the RASP will use 
indirect addressing to decode and simulate RASP instructions stored in the 
memory of the RAM. Certain registers of the RAM will have special purposes: 

register I - used for indirect addressing, 
register 2-the RASP's location counter, 
register 3 - storage for the RAS P's accumulator. 

Register i of the RASP will be stored in register i + 3 of the RAM for i ~ I. 
The RAM begins with the finite-length RASP-program loaded in its mem­

ory starting at register 4. Register 2. the location counter. holds 4: registers 
I and 3 hold 0. The RAM program consists of a simulation loop which begins 
by reading an instruction of the RASP (with a LOAD *2 RAM instruction). 
decoding it and branching to one of 18 sets of instructions. each designed to 
handle one type of RASP instruction. On an invalid operation code the RAM. 
like the RASP. will halt. 

The decoding and branching operations are straightforward: Example 1.2 
can serve as a model (although the symbol decoded there was read from the 



LOAD 2] 
ADD =I 
STORE 2 

LOAD *2] 
ADD =3 
STORE I 

LOAD 3} 
SUB *I 
STORE 3 

LOAD 2} 
ADD =I 
STORE 2 
JUMP a 

ABSTRACTIONS OF THE RAM 19 

Increment the location counter by I. so it points to the reg­
ister holding the operand i of the SUB i ·instruction. 

Bring i to the accumulator, add 3, and store the result in 
register 1. 

Fetch·the contents of the RASP accumulator from register 3. 
Subtract the contents of register i + 3 and place the result 
back in register 3. 

Increment the location counter by I again so it now points 
to the next RASP instruction. 

Return to the beginning of the simulation loop (here named 
"'a"). 

Fig. 1.15. Simulation of SUB i by RAM. 

input, and here it is read from memory). We shall give an example of the 
RAM instructions to simulate RASP instruction 6, i.e., SUB i. This pro­
gram. shown in Fig. 1.15, is invoked when c(c(2)) = 6, that is, the location 
counter points to a register holding 6, the cod~ for SUB. 

We omit further details of the RAM program construction. It is left as 
an exercise to show that under the uniform or logarithmic cost criterion the 
time complexity of the RAM program is at most a constant times that of the 
RASP. 0 

It follows from Theorems 1.1 and 1.2 that as far as time complexity (and 
also space complexity- which is left as an exercise) is concerned, the RAM 
and RASP models are equivalent within a constant factor, i.e., their order-of­
magnitude complexities are the same for the same algorithm. Of the two 
models, in this text we shall usually use the RAM model, since it is somewhat 
simpler. 

1.5 ABSTRACTIONS OF THE RAM 

The RAM and RASP are more complicated models of computation than are 
needed for many situations. Thus we define a number of models which ab­
stract certain features of the RAM and ignore others. The justification for 
such models is that the ignored instructions represent at most a constant frac­
tion of the cost of any efficie~t algorithm for problems to which the model is 
applied. 

I. Straight-Line Programs 

The first model we consider is the straight-line program. For many problems 
it is reasonable to restrict attention to the class of RAM programs in which 
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branching instructions are used solely to cause a sequence of instructions to 
be repeated a number of times proportional to 11, the size of the input. In this 
case we may "unroll" the program for each size /1 by duplicating the instruc­
tions to be repeated an appropriate number of times. This results in a se­
quence of straight-line (loop-free) programs of presumably increasi·ng length. 
one for (!<.tch 11. · 

Example 1.3. Consider the multiplication· of two n x /1 matrices of integers. 
It is often reasonable to expect that in a RAM program. the number of times 
a loop is executed is independent of the actual entries of the matrices. We 
may therefore find it a useful simplification to assume that the only loops per­
mitted are those whose test instructions involve only n, the size of the problem. 
For example, the obvious matrix multiplication algorithm has loops which must 
be executed exactly /1 times. requiring branch instructions that compare an 
index to 11. 0 

Unrolling a program into a straight line allows us to dispense with branch­
ing instructions. The justification is that in many problems no more than a 
constant fraction of the cost of a RAM program is devoted to branch instruc­
tions controlling loops. Likewise, it may often be assumed that input state­
ments form only a constant fraction of the cost of the program, and we elim­
inate them by assuming the finite set of inputs needed for a particular n to be 
in memory at the start of the program. The effect of indirect addressing can 
be determined when n is fixed, provided the registers used for indirection con­
tain values depending only on n, not on the values of the input variables. We 
therefore assume that our straight-line programs have no indirect addressing. 

In addition, since each straight-line program can reference only a finite 
number of memory registers, it is convenient to name the registers used by 
the program. Thus registers are referred to by symbolic addresses (symbols 
or strings of letters) rather than integer numbers. 

Having eliminated the need for READ. JUMP. JGTZ, and JZERO. we 
are left with the LOAD. STORE. WRITE, HALT, and arithmetic operations 
from the RAM repertoire. We don't need HALT, since the end of the pro­
gram must indicate the halt. We can dispense with WRITE by designating 
certain symbolic addresses to be output mriables; the output of the program 
is the value held by these variables upon termination. · 

Finally, we can combine LOAD and STORE into the arithmetic opera­
tions by replacing sequences such as 

LOAD a 
ADD b 
STORE c 
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by c - a+ b. The entire repertoire of straight-line program instructions is: 

x - y+z 
x-y-z 
z-)'*Z 

z - y/z 
x - i 

-._ 

where x, y, and z are symbolic addresses (or variables) and i is a constant. It 
is easy to see that any sequence of LOAD, STORE, and arithmetic operations 
on the accumulator can be replaced by a sequence of the five instructions 
above. 

Associafed with a straight-line program are two designated sets of vari­
ables, the inputs and outputs. The function computed by the straight-line 
program is the set of values of the output variables (in designated order) ex­
pressed in terms of the values of its input variables. 

Example 1.4. Consider evaluating the polynomial 

p(x) = anx" + an- 1x11 - 1 + · · · + a 1x + a0 • 

The input variables are the coefficients a0 , a 1 , ••• , a11 and the indetermi­
nate x. The output variable is p.- Homer's rule evaluates p(x) as 

1. a1x + a 0 

"' (a2x + a1)x + ao 
3. ( (a3x + a2 )x + ai)x + a0 

for n = I, 
for n = 2, 
for n = 3. 

_,... 

The straight-line programs of Fig. I. I 6 correspond to these expressions. 
Homer's rule for arbitrary n should now be clear. For each n we have a 
straight-line program of 2n steps evaluating a general nth-degree polynomial. 
In Chapter 12 we show that n multiplications and n additions are necessary 
to evaluate an arbitrary nth-degree polynomial given the coefficients as input, 
Thus Homer's rule is optimal under the straight-line program model. 0 

n=I 11 = 2 

t - Cl2 * x 
t - t + 01 

t - t * x 
p - t + a0 

11 = 3 

t - ll3 * x 
t - t + a2 

t - t * x 
t - t + ll1 

t - t * x 
p - t + a0 

Fig. 1.16. Straight-line programs correspond­
ing to Homer's rule. 
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Under the straight-line program model of computation. the time com­
plexity of a sequence of programs is the number of steps in the nth program. 
as a function of 11. For example. Homer's rule yields a sequence of time 
complexity 211. Note that measuring time complexity is the same as measur­
ing the number of arithmetic operations. The space complexity of a sequence 
of programs is the number of variables mentioned. again as a function of 11. 

The programs of Example 1.4 have space complexity /1 + 4. 

Definition. When the straight-line program model is intended. we say a 
problem is of time or space complexity O_,(f(n)) if there is a sequence of 
programs of time or space complexity at most cf(n) for some constant c. 
(The notation O,,(f(n)) stands for "on the order of /(11) steps using the 
straight-line program model." The subscript A stands for "arithmetic,'· 
which is the chief characteristic of straight-line code.) Thus polynomial 
evaluation is of time complexity OA(n) and space complexity OA(n), 
as well. 

II. Bitwise Computations 

The straight-line program model is clearly based on the uniform cost function. 
As we have mentioned. this cost is appropriate under the assumption that all 
computed quantities are of "reasonable" size. There is a simple modifica­
tion of the straight-line program model which reflects the logarithmic cost 
function. This model. which we call bitwise computation, is essentially the 
same as straight-line code, except that: 

I. All variables are assumed to have the values 0 or I. i.e., they are bits. 
2. The operations used are logical rather than arithmetic. t We use /\ for 

and, V for or, EB for exclusive or, and --, for not. 

Under the bitwise model. arithmetic operations on integers i and j take 
at least /(i) + i(j) steps, reflecting the logarithmic cost of operands. In fact, 
multiplication and division by the best algorithms known require more than 
/(i) + /(j) steps to multiply or divide i by j. 

We use 0 8 to indicate order of magnitude under the bitwise computa­
tion model. The bitwise model is useful for talking about basic operations, 
such as the arithmetic ones, which are primitive in other models. For ex­
ample. under the straight-line program model, multiplication of two n-bit in­
tegers can be done in 0 _,(I) step whereas under the bitwise model the best re­
sult known is 0 11(11 log /1 loglog 11) steps. 

Another application of the bitwise model is to logic circuits. Straight­
line programs with binary inputs and operations have a one-to-one corre­
spondence with combinational logic circuits computing a set of Boolean func­
tions. The number of stepS- in the program is the number of logic elements in 
the circuit. 

t Thus the instruction .,et of our RAM. must include the~e operations. 
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Fig. 1.17 (a) Bitwise addition program: (b) equivalent logical circuit. 

Example 1.5. Figure l. l 7(a) contains a program to add two 2-bit numbers 
[a 1a0 ] and [b1b0 ]. The output variables are c2 , c1• and c0 such that [a 1a0 ] + 
[h1b0]·= [c2c1c0]. The straight-line program in Fig. l. I 7(a) computes: 

c0 = a0 EB b0 , 

C1 = ((ao A h0 ) EB ll 1 ) EB b1 • 

C:i= ((a0 A h0 ) A (a 1 V b1 )) V (a 1 A b1 ). 

Figure I. I 7(b) shows the corresponding logical circuit. We leave it as an 
exercise to show that addition of two 11-bit numbers can be performed m 
0 0(11) steps. 0 

Ill. Bit Vector Operations 

Instead of restricting the value of a variable to be 0 or I. we might go in the 
opposite direction and allow variables to assume any vector of bits as a value. 
Actually, bit vectors of fixed length correspond to integers in an obvious way. 
so we have not taken substantial liberties beyond what was done in the RAM 
model. i.e .. we still assume unbounded size for registers when convenient. 
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However. in those few algorithms where the bit vector model is used. it 
will be seen that the length of the vectors used is considerably above the num­
ber of bits required to represent the size of the problem. The magnitude of 
most integers used in the algorithm will be of the same order as the size of 
the problem. For example. dealing with path problems in a I 00-vertex graph. 
we might use bit vectors of length I 00 to indicate whether there was a path 
from a given vertex v to each of the vertices: i.e., the ith position in the vector 
for vertex v is I if and only if there is a path from v to i·i· In the same prob­
lem we might also use integers (for counting and indexing, for example) and 
they would likely be of size on the order of I 00. Thus 7 bits would be re­
quired for integers. while I 00 bits would be needed for the vectors. 

The comparison might not be all that lopsided, however, since most com­
puters do logical operations on full-word bit vectors in one instruction cycle. 
Thus bit vectors of length 100 could be manipulated in three or four steps, in 
comparison to one step for integers. Nevertheless, we must take cum grano 
salis the results on time anrl space complexity of algorithms using the bit 
vector model, as the problem size at which the model becomes unrealistic is 
much smaller than for the RAM and straight-line code models. We use 0 8 v 

to denote order of magnitude using the bit vector model. 

IV. Decision Trees 

We have considered three abstractions of the RAM that ignored branch in­
structions and that considered only the program steps which involve calcula­
tion. There are certain problems where it is realistic to consider the number 
of branch instructions executed as the primary measure of complexity. In 
the case of sorting, for example, the outputs-are _identical to the inputs except 
for order. It thus becomes reasonable to consider a model in which all steps 
are two-way branches based on a comparison between two quantities. 

The usual representation for a program of branches is a binary treet called 
a decision tree. Each int~rior vertex represents a decision. The test repre­
sented by the root is made first, and ··control" then passes to one of its sons. 
depending on the outcome. In general, control continues to pass from a ver­
tex to one of its sons, the choice in each case depending on the outcome of the 
test at the vertex, until a leaf is reached. The desired· output is available at 
the leaf reached. 

Example 1.6. Figure 1.18 illustrates a decision tree for a program that sorts 
three numbers a, b, and c. Tests are indicated by the circled comparisons 
at the vertices: control moves to the left if the answer to the test is "yes." 
and to the right if "no." D 

t See Section 2.4 for definitions concerning trees. 
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Order is 
Cl< /.J < c 

Order is 
a<.c<b 

ii< c 

,, .• /J 

Order is 
/J<:CJ<C 

Order is 
c<a<b 

Order is 
b<c<a 

Fig. 1.18 A decision tree. 

b<c 

Order is 
c<b<a 

The time complexity of a decision tree is the height of the tree, as a func­
tion of the size of the problem. Normally we wish to measure the maximum 
number of comparisons which must be made to find our way from the root to 
a leaf. We use Oc for order of magnitude under the decision tree (comparison) 
model. Note that the total number of vertices in the tree may greatly exceed 
its height. For example, a decision tree to sort n numbers must have at least 
11 ! leaves, although ,a tree of height about n log n suffices. 

1.6 A PRIMITIVE MODEL OF COMPUTATION: THE TURING MACHINE 

To prove that a particular function requires a certain minimum amount of 
time, we need a model which is as general as. but more primitive than. the 
models we. have seen. The instruction repertoire must be as limited as pos­
sible. yet the model must be able not only to compute anything the RAM can 
compute. but to do so "almost" as fast. The definition of "almost" that we 
shall use is "polynomially related.·· 

Definition. We say that functions / 1(11) and /;(11) are poly110111ially related 
if there are polynomials p,(.r) and P:?(x) such that for all values of 11 • 
.f~ ( 11) :s: p I u;< 11)) and/:!( 11) :s: P:!IJ; (11)). 

Example 1.7. The two functions /;(11) = 211:? and ,1;(:1) = 11:' are polynomially 
related: we may let p 1(x) = 2x since 211:? :s: 211:'. and p:!(x) = x=1 since11:' :s: (2n:!r:. 
However. 11:! and 211 are not polynomially related. since there is no polynomial 
p(.r) such that p(n2 ) =:::: 211 for all 11. 0 
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At present. the only range in which we have been able to use general 
computational models such as the Turing machine to prove lower bounds on 
computational complexity is the .. higher range... For example. in Chapter 11 
we show· that certain problems require exponential time and space. (jfo) is 
an C!Xfw11e11tial function if there exist constants c1 > 0, k1 > I. c2 > O. and 
k2 > I such that c 1 k~' sf(n) s c2k.~ for all but.a finite number of values of 11.) 

In the exponential range, polynomially related functions are essentially the 
same. since any function which is polynomially related to an exponential 
function is itself an exponential function. 

Thus there is motivation for us to use a primitive model on which the 
time complexity of problems is polynomially related to their complexity on the 
RAM model. In particular. the model we use- the multitape Turing ma­
chine - may require ( [f(n)]-1) timet to do what a RAM. under the logarithmic 
cost function. can do in time f(n), but no more. Thus time complexity on the 
RAM and Turing machine models will be seen to be polynomially related. 

Definition. A multitape Turing machine (TM) is pictured in Fig. 1.19. 
It consists of some number k of tapes, which are infinite to the right. 
Each tape is marked off into cells. each of which holds one of a finite 
number of rape symbols. One cell on each tape is scanned by a tape head, 
which can read and write. Operation of the Turing machine is deter­
mined by a primitive program called a finite control. The finite control 
is always in one of a finite number of states, which can be regarded as 
positions in a program. 

One computational step of a Turing machine consists of the following. 
In accordance with the current state of the finite control and the tape sym­
bols which are under (scanned by) each of the tape heads. the Turing machine 
may do any or all of these operations: 

I. Change the state of the finite control. 
.., 

Print new tape symbols over the current symbols in any or all of the 
cells under tape heads. 

3. Move any or all of the tape heads. independently, one cell left ( L) or 
right ( R) or keep them stationary ($). 

Formally, we denote a k-tape Turing machine by the seven-tuple 

( Q . T. I. 5 . b. <Jo • qr ) . 

7 A<.:tually. a tighter bound of O<[fln) logflnl loglogfln)P) may he shown. hut since 
we are not concerned with polynomial factors here. the fourth-power re~ult will do 
I ~ee Section 7 .5 ). 
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Finite state control 

Fig. 1.19 A muititape Turing machine. 

where: 

I. Q is the set of states . 
..., T is the set of tape symbols. 
3. I is the set of input symbols; I ~ T. 
4. b. in T - I. is the blank. 
5. q0 is the initial state. 
6. qr is the.final (or accepting) state. 
7. o, the next-moi'R function, maps a subset of Q x T" to Q x (T x {L, R. S} )1'. 

That is. for some (k + I )-tuples consisting of a state and k tape sym­
bols, it gives a new state and k pairs, each pair consisting of a new tape 
symbol and a direction for the tape head. Suppose o(q. a1• a2 • •••• a,..)= 
(q'. (a~. d1), (a~, d2), •••• (ak, dk)). and the Turing machine is in state q 
with the ith tape head scanning tape symbol ai for I :s i :s k. Then in 
one move the Turing machine enters state q'. changes symbol ai to a;. 
and moves the ith tape head in the direction di for I :s i :s k. 

A Turing machine can be made to recognize a language as follows. The 
tape symbols of the Turing machine include the alphabet of the language. 
called the input symbols. a special symbol blank. denoted b. and perhaps 
other symbols. Initially. the first tape holds a string of input symbols. one 
symbol per cell starting with the leftmost cell. All cells to the right of the 
cells containing the input string are blank. All other tapes are completely 
blank. The string of input symbols is accepted if and only if the Turing ma­
chine. started in the designated initial state. with all tape heads at the left 
ends of their tapes. makes a sequence of moves in which it eventually enters 
the accepting state. The langua1:e accerm'd by the Turing machine is the set 
of strings of input symbols so accepted. 



28 MODELS OF COMPUTATION 1.6 

,, " q, 

x 0 1 1 1 

(a) (b) 

b b 

(ci 

Fig. 1.20 Turing machine processing 01110. 

Example 1.8. The two-tape Turing machine in Fig. 1.20 recognizes palin­
dromest on the alphabet {O. I} as follows. 

I. The first cell on tape 2 is marked with a special symbol X. and the input 
is copied from tape I. where it appears initially (see Fig. I .20a), onto 
tape 2 (see Fig. I .20b) . 

.., Then the tape head on tape 2 is moved to the X (Fig. l.20c). 
3. Repeatedly. the head of tape 2 is moved right one cell and the head 

of tape I left one cell. comparing the respective symbols. If all symbols 
match. the input is a palindrome and the Turing machine enters the ac­
cepting state q5 • Otherwise. the Turing machine will at some point have 
no legal move to make: it will halt without accepting. 

The next-move function of the Turing machine is given by the table of 
Fig. 1.21. ri 

7 :\ :-.tring which real.ls the -;ame backwards as forwards. e.g .. 0 I 000 I 0. is called a 
pa Ii ncln 1m e. 
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(New symhol. 

Current Symhol on: head move) New 

.,talc Tape I Tape 2 Tape I Tape 2 state Comments 

tfo 0 b o.s X.R qi If input is nonempty. print X on 
I b l.S X.R 'ii tupe 2 and move head right: go 
b b b.S b.S CJ:. to state q 1• Otherwise. go to 

state Cf5. --x-

£/1 0 b O.R O.R C/1 Stay in state q1 copying tape I 
I b l.R l.R l/1 onto tape 2 until b is reached 
b b b.S b.L 'h on tape I. Then go to state q~. 

q~ b 0 b,S O.L q~ Keep tape I's head fixed and 
'b I b,S 1.L q~ move tape 2.'s left until X is 

b x b.L X.R q;i reached. Then go to state q;1• 

£/:: 0 0 o.s O,R {j.4 Control alternates between 
I I 1.S 1.R q4 states £/:1 and q4. In q:1 com-

pare the symbols on the two 
q4 0 0 0.L o.s £/:1 tapes. move tape 2.'s head right. 

0 I O,L l.S £/:1 and go to q4. In q4 go to qs 
I 0 1,L o.s l/:1 and accept if head has reached 
I I 1.L l.S £/:1 b on tape 2. Otherwise move 
0 b o.s b.S q5 tape J's head left and go back 
1 b l,S b,S q~ to £/a· The alternation q;1• q4 

prevents the input head from 
falling off the left end of 
tape I. 

q5 Accept 

Fig. 1.21. Next-move function for Turing machine recognizing palindromes. 

The activity of a Turing machine can be described formally by means 
of "instantaneous descriptions.'' An installlaneous description (10) of a 
k-tape Turing machine Mis a k-tuple (a1• a 2 •...• ak) where each ai is a string 
of the form xqy such that xy is the string on the ith tape of M (with trailing 
blanks omitted) and q is the current state of M. The symbol immediately to 
the right of the ith q is the symbol being scanned on the ith tape. 

If instantaneous description D 1 becomes instantaneous description D 2 

after one move of the Turing machine M. then we write D 1 ~ D 2 (read ~as 

.. goes to"). If D 1 ~ D~ ~ · · · ~ D,, for some /1 ;;:= 2. then we write D 1 ~ D,,. 

If either D = D' or D ~ D'. then we write D ~ D'. 
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The k-tape Turing machine M = (Q. T. I. 8. b. C/o· cfr) accepts string 

a 1 a~ · · · (/ 11 , where the a·s are in /. if (c/oll 1 ll~ · · · a,,. C/n· C/n· ...• Cfo) lfi 
(n 1• n~ ..... ak) for some a;·s with £/r in them. 

Example I.9. The sequence of instantaneous descriptions entered by the 
Turing machine of Fig. 1.21 when presented with the input 0 I 0 is shown in 
Fig. 1.22. Since q5 is the final state. the Turing machine accepts 0 I 0. 0 

In addition to its natural interpretation as a language acceptor. a Turing 
machine can be regarded as a device that computes a function j: The argu­
ments of the function are encoded on the input tape as a string x with a special 
marker such as # separating the arguments. If the Turing machine halts with 
an integer y (the value of the function) written on a tape designated as the 
output tape, we say f(x) = y. Thus the process of computing a function is 
little different from that of accepting a language. 

The time complexity T(11) of a Turing machine Mis the maximum num­
ber of moves made by M in processing any input of length n. taken over all 
inputs of length 11. If for some input of length n the Turing machine does not 
halt, then T(n) is undefined for that value of n. The space complexity S(n) 
of a Turing machine is the maximum distance from the left end of a tape which 

(qoO l O. qo) r (q1010, Xq1) 

r <Oq1 IO. XOq 1) 

r (Olq10, XOlq1) 

r (0 I Oqp XO l Oq1) 

r (0 I Oq2. XO I q20) 

r (0 I Oq2. X0q2 I 0) 

r (0 I Oq2, Xq20 I 0) 

r (0 I Oq2, q2 XO l 0) 

r (QI q30. Xq30 I 0) 

r (0 I q40. XOq4 I 0) 

r (Qq3 I 0. XOq:i I 0) 

r (0q4IO. XOlq40) 

r (c/:1010. X01q:10) 

r (440 I 0. XO I Oq4 ) 

r (q:;OIO. XOIOq:;) 

Fig. 1.22. Sequence of Turing machine I D's. 
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any tape head travels in processing any input of length 11. If a tape head moves 
indefinitely to the right. then 5(11) is undefined. We use On1 for order of mag­
nitude under the Turing machine model. 

Example I.IO.· The time complexity of the Turing machine of Fig. 1.21 is 
T11i1=411+3. and its space complexity is 5(11) = n + 2. as can be checked 
t-y examining the case when the input actually is a palindrome. 0 

1.7 RELATIONSHIP BETWEEN THE TURING MACHINE AND RAM MODELS 

The principal application of the Turing machine (TM) model is in determining 
lower bounds on the space or time necessary to solve a given problem. For 
the most. part, we can determine lower bounds only to within a polynomially 
related function. Deriving tighter bounds involves more specific detaiis of a 
particular model. Fortunately, computations on a RAM or RASP are poly­
nomially related to computations on a TM. 

Consider the relationship between the RAM and TM models. Clearly 
a RAM can simulate a k-tape TM by holding one cell of a TM tape in each of 
its registers. In particular. the ith cell of the jth tape can be stored in register 
ki + j + c. where c is a constant designed to allow the RAM some "scratch 
space." Included in the scratch space are k registers to hold the positions of 
the k heads of the TM. Cells of the TM's tape can be read by the RAM by 
u~ing indirect addressing through the registers holding the tape head positions. 

Suppose the TM is of time complexity T(n) ~ n. Then the RAM can read 
its input, store it in the registers representing the first tape, and simulate the 
TM in O(T(n)) time if the uniform cost function is used or in O(Ten) log T(n)) 
time if the logarithmic cost function is used. In either case, the time on the 
RAM is bounded above by a polynomial function of the time on the TM. since 
any O(T(n) log T(n)) function is certainly 0(T2(n)). 

A converse result holds only under the logarithmic cost for RAM's. 
Under the uniform cost an n-step RAM program. without input. can compute 
numbers as high as 22•• which requires 2" TM cells just to store and read. 
Thus under the uniform cost no polynomial relationship between RAM's 
and TM's is apparent (Exercise 1.19). 

Although we prefer the uniform cost for its simplicity when analyzing 
algorithms. we must reject it when attempting to prove lower bounds on time 
complexity. The RAM with uniform cost is quite reasonable when numbers 
do not grow out of proportion with the size of the problem. But. as we said 
previously. with the RAM mod"el the size of numbers is "swept under the 
rug." and rarely can useful lower bounds be obtained. For the logarithmic 
cost, however. we have the following theorem. 

Theorem 1.3. Let L be a language that is accepted by a RAM program 
of time complexity T(n) under the logarithmic cost criterion. If the RAM 
program uses no multiplications or divisions. then L is of time complexity 
at most O(Flnl) on a multitape Turing machine. 
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I# I# I ;. i # I c. I # I# I;~ I# I ('~I # I# I· · · I ih· I# I ck I# I # I b I· 
Fig. 1.23. TM representation of RAM. 

Pro<~f'. We represent all the RAM registers not holding 0 as shown in Fig. 1.23. 
The tape consists of a sequence of pairs (ii, cj) written in binary with no leading 
o·s and separated by marker symbols. For each j, ci is the contents of RAM 
register ii. The contents of the RAM accumulator is stored in binary on a 
second tape. and a third tape is used for scratch memory. Two other tapes 
serve to hold the input and output of the RAM. Each step of the RAM pro­
gram is represented by a finite set of states of the TM. We shall not describe 
the simulation of an arbitrary RAM instruction, but shall consider only the 
instr.uctions ADD *20 and STORE 30, which should make the ideas .clear. 
For ADD *20, we can design the TM to do the following: 

I. Search tape I for an entry for RAM register 20, i.e., a sequence 
##IO I 00#. If found. place the integer following. which will be the con­
tents of register 20, on tape 3. If not found, then halt. The contents of 
register 20 is 0 and thus the indirect addressing cannot be done. 

,., Look on tape I for an entry for the RAM register whose number is stored 
on tape 3. If found. copy the contents of that register onto tape 3. If 
not found, place 0 there. 

3. Add the numher placed on tape 3 in step 2 to the contents of the accumu­
lator, which is held on tape 2. 

To simulate the instruction STORE 30, we can design the TM to do the 
following: 

I. Search for an entry for RAM register 30, i,e .• ##I 1110# . 
., If found. copy everything to the right of## 11110#, except for the in­

teger immediately following (the old contents of register 30), onto tape 3. 
Then copy th~ contents of the accumulator (tape 2) immediately to the 
right of ##I I I I 0# and follow it by the string copied onto tape 3. 

3. If no entry for register 30 was found on tape I, instead go to the leftmost 
blank. print 11110#, followed by the contents of the accumulator. fol­
lowed by##. 

With a little thought. it should be evident that the TM can be designed to 
simulate the RAl\I faithfully. We must show that a RAM computation of 
logarithmic cost J.. requires at most Q(I,~) steps of the Turing machine. We 
begin by observing that a register will not appear on tape I unless its current 
value was stored into the register at some previous time. The cost of storing 
ci into register ii is /(ci) + /(ii). which is, to within a constant, the length of the 
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n.:pn.:sentation ##i_;#c;##. We conclude that the length of the nonhlank por­
t illll of tape I is 01 kl. 

The simulation of any instruction other than a STORE is on the order of 
the: kngth of tape I. that is. ()(/..:). since the dominant. cost is a search of the 
tape. Similarly. the cost of a STORE is no more than the cost of searching 
wpc I plus the cost of copying it. both (}(/..). Hence one RAM instruction 
1cxcept for multiply and divide) can be simulated in at most 0(/\) steps of 
the TM. Since a RAM instruction costs at least one time unit under the loga­
rithmic cost criterion. the total time spent by the TM is 0(/\2 ). as was to be 
proved. D 

If a RAM program employs multiply and divide instructions. then we can 
write subroutines of the TM to implement these instructions by means of 
auditions and subtractions. We leave it to the reader to show that the ioga­
rithmic cost of the subroutines is no greater than the square of the logarithmic 
cost of the instructions they simulate. It is thus not hard to prove the following 
theorem. 

Theorem 1.4. The RAM and RASP under logarithmic cost and the multi­
tape Turing machine are all polynomially related models. 

Proof Use Theorems 1.1. 1.2. and 1.3 and your analysis of multiplication 
and division subroutines. D 

An analogous result holds for space complexity. although the result 
appears less interesting. 

1.8 PIDGIN ALGOL-A HIGH-LEVEL LANGUAGE 

Although our basic measures of complexity are in terms of operations on a 
RAM. RASP, or Turing machine. we do not generally want to describe algo­
rithms in terms of such primitive machines. nor is it necessary. In order to 
describe algorithms more clearly we shall use a high-level language called 
Pidgin ALGOL. 

A Pidgin ALGOL program can be translated into a RAM or RASP pro­
gram in a straightforward manner. Indeed this would be precisely the role 
of a Pidgin ALGOL compiler. We shall not. however. concern ourselves with 
the details of translating Pidgin ALGOL into RAM or RASP code. For our 
purposes. it is necessary to consider only the time and space necessary lll 

execute the code corresponding to a Piugin ALGOL statement. 
Pidgin ALGOL is unlike any conventional programming language in 

that it allmvs the use of any type of mathematical statement as long as its mean­
ing is clear and the trnnslation into RAM or RASP code is evident. Similar!\·. 
~he language does not have a fixed set of data types. Variables can represe~t 
integers. strings. and arrays. Additional data types such as sets. graphs. lists. 
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and queues can be introduced as needed. Formal declarations of data types 
are avoided as much as possible. The data type of a variable and its scopet 
should he evident either from its name or from its context. 

Pidgin ALGOL uses traditional mathematical and programming language 
constructs such as expressions. conditions. statements. and procedures. In­
formal descriptions of some of these constructs are given below. No attempt 
is made to give a precise definition. as that would be far beyond the scope of 
the book. It should be recognized that one can easily write programs whose 
meaning depends on details not covered here. but one should refrain from doing 
so. and we have (hopefully) done so in this book. 

A Pidgin ALGOL program is a statement of one of the following types. 

1. variable - expression 
"' if condition then statement else statement* 
3a. while condition do statement 

b. repeat statement until condition 
4. for variable - initial-value step step-size§ until final-value do statement 
5. label: statement 
6. goto label 
7. begin 

statement: 
statement: 

end 

statement: 
statement 

8a. procedure name (list of parameters): statement 
b. return expression 
c. procedure-name (arguments) 

9a. read variable 
b. write expression 

10. comment comment 
i I. any other misce!lane<1us statement 

t The scope or a variable is the environment in which it has a meaning. For example, 
the scope of an index of a summation is defined only within the summation and has no 
meaning outside the summation. 
+ '"else statement" is optional. This option leads to the usual "dangling else"' ambi­
guity. We take the traditional way out and assume else to be matched with the closest 
unmatched then. 
§ "step step-size" is optional if step-size is I. 
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We shall give a brief synopsis of each of these statement types. 

1. The assignment statement 

variable - expression 

causes the expression to the right of.-- to be evaluated and the resulting value 
10 be assigned to the variable on the left. The time complexity of the assign­
ment statement is the time taken to evaluate the expression and to assign the 
value to the variable. If the value of the expression is not a basic data type. 
such as an integer. one may in some cases reduce the cost by means of pointers. 
For example. the assignment A +- B where A and Bare n x n matrices would 
normally require 0(n2 ) time. However. if B is no longer used. then the time 
can be made finite and independent of n by simply renaming the array . 

.., in 'the if statement 

if condition then statement else statement 

the condition following the if can be any expression that has a value true or 
false. If the condition has the value true, the statement following then is to 
be executed. Otherwise. the statement following else (if present) is to be exe­
cuted. The cost of the if statement is the sum of the costs required to evaluate 
and test the expression plus Jhe cost of the statement following then or the 
cost of the statement following else, whichever is actually executed. 

3. The purpose of the while statement 

while condition do statement 

and the repeat statement 

repeat statement until condition 

is to create a loop. In the while statement the condition following while is 
evaluated. If the condition is true, the statement after the do is executed. 
This process is repeated until the condition becomes false. If the condition 
is originally true, then eventually an execution of the statement must cause 
the condition to become false if the execution of the while statement is to ter­
minate. The cost of the while statement is the sum of the costs of evaluating 
the condition as many times as it is evaluated plus the sum of the costs of exe­
cuting the statement as many times as it is executed. 

The repeat statement is similar except that the statement following repeat 
is executed before the condition is evaluated. 

4. In the for statement 

for variable - initial-value step step-size until final-value do statement 

initial-value. step-size. and final-value are all expressions. In the case where 
step-size is positive the variable (called the index) is set equal to the value of 
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the initial-value expression. If this value exceeds the final-value. then execu 
tinn terminates. Otherwise the statement following do is executed. the \'alu1 
of the variahle is incremented hy step-size and compared with the final-value 
The pro<.:ess is repeated until the value of the variable exceeds the final-value 
The case where the step-size is negative is similar. hut termination occur~ 
when the value of the variable is less than the final-value. The cost of tht 
for statement should be obvious in light of the preceding analysis of the whilt 
statement. 

The above description completely ignores such details as when the ex· 
pressions for initial-value. step-size. and final-value are evaluated. It is pos­
sible that the execution of the statement following do modifies the value of 
the expression step-size. in which case evaluating the expression for step-size 
every time the variable is incremented has an effect different from evaluating 
step-size once and for all. Similarly. evaluating step-size can affect the value 
of final-value. and a change in sign of step-size changes the test for termination. 
We resolve these problems by not writing programs where such phenomena 
\vould make the meaning unclear. 

5. Any statement can be made into a labeled statement by prefixing it with 
a label followed by a colon. The primary purpose of the label is to establish 
a target for a goto statement. There is no cost associated with the label. 

6. The goto statement 

goto label 

causes the statement with the given label to be executed next. The statement 
so labeled is not allowed to be inside a block-statement (7) unless the goto 
statement is inside the same block-statement. The cost of the goto statement 
is one. goto statements should be used sparingly. since they generally make 
programs difficult to understand. The primary use of goto statements is to 
break out of while statements. 

7. A sequence of statements separated by semicolons and nested between 
the keywords begin and end is a statement which is called a block. Since a 
block is a statement. it can be used wherever a statement can be used. Nor­
mally. a program will be a block. The cost of a block is the sum of the <.:osts 
of the statements appearing within the block. 

8. Procedures. In Pidgin ALGOL procedures can be defined and subse­
quently invoked. Pro<.:edures are defined hy the 1imn·c/11re-cl<'.fi11irio11 state­

mem whi<.:h is of the form: 

procedure name llist of parameters): statement 

The I ist of parnrr.::tcrs is a sequence of dummy variables <.:ailed .fim11al parw11-
e11•rs. for example. the following statement defines a function prn<.:edurc 
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named MIN. 
procedure MIN(x. y): 
if x > y then return y else return x 

The arguments x and y are formal parameters. 
Procedures are used in one of two ways. One way is as aftmction. After 

a function procedure has been defined. it can. be invoked in an expression by 
using its name with the desired arguments. In this case the last statement 
executed in the procedure must be a return statement 8(b). The return state­
ment causes the expression following the keyword return to be evaluated and 
execution of the procedure to terminate. The value of the function is the value 
of this expression. For example. 

A -. MIN(:!+ 3. 7) 

causes A to receive the value 5. The expressions 2 + 3 and 7 are called the 
actual parameters of this procedure invocation. 

The second method of using a procedure is to call it by means of the 
procedure-calling statement 8(c). This statement is merely the name of the 
procedure followed by a list of actual parameters. The procedure-calling 
statement can (and usually does) modify the data of the calling program. A 
procedure called this way does not need a return statement in its definition. 
Completion of execution of the" last statement in the procedure completes the 
execution of the procedure-calling statement. For example. the following 
statement defines a procedure named INTERCHANGE. 

procedure INTERCHANGE(x. y): 
begin 

end 

t +- x: 
x-y: 
y +- t 

To invoke this procedure we could write a procedure-calling statement such as 

INTERCHANGE(A [i]. A [j]) 

There are two methods by which a procedure can communicate with other 
procedures. One way is by global variables. We assume that global variables 
are implicitly declared in some universal environment. Within this environ­
ment is a subenvironment in which procedures are defined. 

The other method of communicating with procedures is by means of the 
parameters. ALGOL 60 uses call-by-value and call-by-name. In call-by-
1·a/11e the formal parameters of a procedure are treated as local variables \vhich 
are initialized to the values of the actual parameters. In call-by-11a111e formal 
parameters serve as place holders in the program. actual parameters being 
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suh-;tituteJ for every occurrence of the correspom.ling formal parameters. For 
simplicity we Jepart from ALGOL 60 anJ use call-by-reference. In call-hy­
rL'/c'r£'11CC' parameters are rasseJ by means of pointers to the actual parameters. 
II: an m:tual parameter is an expression (possibly a constant). then the corre­
sponJing formal parameter is treated as a local variable initialized to the value 
of the expression. Thus the cost of a function· or procedure-call in a RAM or 
RASP implementation is the sum of the costs of executing the statements in 
the definition of the procedure. The cost and implementation of a procedure 
that calls other procedures. possibly itself. is discusseJ in Chapter 2. 

9. The read statement and write statement have the obvious meaning. The 
read statement has a cost of one. The write statement has a cost of one plus 
the cost of evaluating the expression following the keyword write. 

1 o. The comment statement allows insertion of remarks to aid in the under­
standing of the program and has zero cost. 

11. In addition to the conventional programming language statements we in­
clude under "miscellaneous" any statement which makes an algorithm more 
understandable than an equivalent sequence of programming language state­
ments. Such statements are used when the details of implementation are either 
irrelevant or obvious, or when a higher level of description is desirable. Some 
examples of commonly used miscellaneous statements are: 

a) let a be the smallest element of set S 
b) mark element a as being "old"t 
c) without loss of generality (wig) assume that ... otherwise ... in statement 

For example. 

wig assume a ::::; b otherwise interchange c and d in statement 

means that if a ::::; b the following statement is to be executed as written. 
If a > b. a duplicate of the statement with the roles of c and d inter­
changed is to be executed. 

Implementation of these statements in terms of conventional programming 
language statements or in terms of RAM code is straightforward but tedious. 
Assignment of a cost to statements of this nature depends on the context in 
which the statement is found. Further examples of statements of this nature 
will be found throughout the Pidgin ALGOL programs in this book. 

Since variables will usually not be declared. we should state some con­
ventions concerning the scope of variables. In a given program or procedure 
we Jo not use the same name for'two different variables. Thus the scope of 
a variable can usually be taken to be the entire procedure or program in which 

t Hy this we suppose there is an array ST A TU S. such that ST A TU Sr 11] is I if a i!'I 
"olJ" anJ 0 if a is "new.·· 
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it occurs.t One important exception occurs when there is a common data 
tiasc on which several procedures operate. In this case the variables of the 
common data base are assumed to be global and the variables used by the 
procedure for temporary storage in manipulating the data base are assumed 
w he local to the procedure. Whenever confusion can arise concerning the 
scope of a variable. an explicit declaration will be made. 

EXERCISES 

1.1 Prove that /,:(II) is O(j(11)) if <a) f<n J 2: e. for some e > 0 and for all but some 
finite set of n and (bJ there exist constants c, > 0 and c2 > 0 such that R<n J :s; 
c .J<11) + c2 for almost all /1 2: 0. 

1.2 Write f(n) ~ g(11) if there exists a positive constant c such that f(n) :S cg(n) for 
all 11. Show thatf1 ~ g 1 and};~ g2 imply f; +.t; ~ g, + g 2 • What other prop­
erties are enjo'yed by the relation ~ ? 

1.3 Give RAM.·RASP. and Pidgin ALGOL programs to do the following: 
a) Compute 11! given input n. 
b) Read n positive integers followed by an endmarker (0) and then print the /1 

numbers in sorted order. 
c) Accept all inputs of the form I "2"'0. 

1.4 Analyze the time and space 'complexities of your answers to Exercise 1.3 under 
(a) the uniform and (b) the logarithmic cost. State your measure of the "size" 
of the input. 

*I.S Write a RAM program of uniform-cost time complexity O(log n) to compute 11 11 • 

Prove that your program is correct. 

"'1.6 Show that for each RAM program of time complexity T<n) under the logarithmic 
cost function there is an equivalent RAM program of time complexity 0(T2(n)) 

which has no MUL T or DIV instructions. [Hint: Simulate MUL T and DIV 
by subroutines that use even-numbered registers for scratch storage. For MUL T. 
show that if i is to be multiplied by j. you can compute each of the /(j) partial 
products and sum them in 0(/(j)) steps. each step requiring 0(/(i)) time.] 

"'1.7 What happens to the computing power of a RAM or RASP if both MU LT and 
ADD are removed from the instruction repertoire? How is the cost of compu­
tation affected? 

*"1.8 Show that any language accepted by a RAM can be accepted by a RAM with­
out indirect addressing. [Him: Show that an entire Turing machine tape can 
be encoded as a single integer. Thus any TM can be simulated in a finite number 
of registers of a RAM.] 

+There are some unimportant exceptions to this statement. For example. u proce­
dure may have two unnested for statements both with the index i. Strictly speaking. 
the scope of the index of a for statement is the for statement itself. and thus the i"s 
are different variables. 
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1.9 Show that under (al uniform and (b) logarithmic cost. the RAM and RASP are 
equivalent in space complexity. to within a constant factor. 

1.10 Find a straight-line program that computes the· determinant of a 3 x 3 matrix. 
given its nine scalar elements as inputs. 

1.11 Write a sequence of bit operations to compute the product of two 2-bit integers. 

1.12 Show that the set of functions computed by any 11-statement straight-line pro­
gram with binary inputs and Boolean operators can be implemented by a combi­
national logic circuit with 11 Boolean circuit elements. 

1.13 Show that any Boolean function can be computed by a straight-line program. 

,;, 1.1~ Suppose an 11-vertex graph is represented by a set of bit vectors v;. where the 
jth component of v; is I if and only if there is an edge from vertex i to vertex j. 
Find an 0 8 v(11) algorithm to determine the vector p1 which has I in position j if 
and only if there is a path from I to vertex j. The operations you may use are 
the bitwise logical operations on bit vectors. arithmetic operations (on variables 
which are of "integer type"). instructions which set particular bits of particular 
vectNs to 0 or I, and an instruction which assigns j to integer variable a if the 
leftmost I in vector v is in position j, and sets a = 0 if v is all O's. 

* 1.15 Specify a Turing machine which when given two binary integers on tapes I and 
2 will print their sum on tape 3. You may assume the left ends of the tapes are 
marked by a special symbol #. 

1.16 Give the sequence of configurations entered by the TM of Fig. 1.21 (p. 29) 
when presented with input (a) 0010, ( b) 01110. 

*1.17 Give a TM which does the following: 
a) Prints 011" on tape 2 when started with 011 on tape I. 
b) Accepts inputs of the form 011 1011'. 

1.18 Give a set of TM states and a next-move function to allow a TM to simulate 
the RAM instruction LOAD 3 as in the proof of Theorem 1.3. 

1.19 Give an 0(11) step RAM program which computes 22• given 11. What is the 
<al uniform and (b) logarithmic cost of your program? 

*1.20 Define g(m. 11) by g(O. 11) = /1 and g(m, 11) = 2mm- 1•111 form> 0. Give a RAM 
program to compute g(11. 11), given n. How do the uniform and logarithmic costs 
of your program compare? 

l.21 Execute the procedure INTERCHANGE of Section 1.8 with actual parameters 
i and A [i] using call-by-name. then using call-by-reference. Are the results 
the same? 

Research Problem 

1.22 Can the 0(72(11)) upper bound on the time required for a Turing machine to 
simulate a RAM. as in Theorem 1.3. be improved'? 
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BIBLIOGRAPHIC NOTES 

The RAM and RASP have received formal treatment in Shepherdson and Sturgis 
; 1963]. Elgot and Robinson [1964). and Hartmanis [1971]. Most of the results on 
RAM.!> and RASP's presented here are patterned after Cook and Reckhow [ 1973]. 

The Turing machine is due to Turing [ 1936]. A more detailed exposition of the 
concept can be found in Minsky (1967] or Hopcroft and Ullman l1969]. as can t~e 
an~wer to Exercise 1.8. Time complexity of Turing machines was first studied by 
Hartmanis and Stearns [ 1965]. and space complexity by Hartmanis. Lewis. and 
Stearns [ 1965] and Lewis. Stearns. and Hartmanis [ 1965]. The notion of compu­
tational complexity has received much abstract treatment. beginning with Blum [ 1967]. 
Surveys can be found in Hartmanis and Hopcroft [ 1971] and Borodin [I 973a]. 

Rabin [ 1972] provides an interesting extension to the decision tree model of 
computation. 





DESIGN 
OF 
EFFICIENT 
ALGORITHMS 

CHAPTER 2 



44 DESIGN OF EFFICIENT ALGORITHMS 2.1 

The purpose of this chapter is twofold. First. we introduce some basic data 
structures that are useful in designing efficient algorithms for large classes of 
prohlems. Second. we introduce some ··programming" techniques. such as 
recursion and dynamic programming. that are common to many t!llicient 
algorithms. 

In Chapter I we considered the basic models of computation. Although 
our primary model is the RAM. we do not normally want to describe algo­
rithms in terms of such a basic device. We therefore introduced Pidgin 
ALGOL (St!ction 1.8). But even this language is too primitive unless we 
introduce data structures that are more complex than arrays. We begin this 
chapter by familiarizing the reader with elementary data structures. such as 
lists and stacks, which are frequently used in efficient algorithms. We indi­
cate how these structures can be used to represent sets. graphs. and trees. 
The treatment is necessarily brief. and the reader not familiar with list process­
ing should consult one of the more basic references at the end of the chapter 
or give special attention to the exercises. 

We have also included a section on recursion. One of the important 
aspects of recursion is the resulting conceptual simplification of algorithms. 
Although the examples in this chapter are too simple to substantiate this claim 
fully, the suppression of bookkeeping details by the use of recursion is most 
useful in being able to express concisely the more complex algorithms in later 
chapters. Recursion by itself does not necessarily lead to more efficient algo­
rithms. However, when it is combined with other techniques such as bal­
ancing, divide-and-conquer, and algebraic simplification. we shall see that it 
often yields algorithms that are both efficient and elegant. 

2.1 DATA STRUCTURES: LISTS, QUEUES, ANO STACKS 

We assume that the reader is familiar both with elementary concepts of mathe­
matics such as sets and relations and with basic data types such as integers. 
strings. and arrays. In this section we provide a quick review of basic list 
operations. 

Mathematically. a list is a finite sequence of items drawn from some set 
pertinent to the application at hand. Often the description of an algorithm 
will involve a list to which items are added and deleted. In particular. we may 
want to add or delete an item somewhere in the middle of a list. For this 
reason we wish to develop data structures that allow us to implement lists in 
which items can be added or deleted at will. 

Consider the list 

Item I. Item 2. Item 3. Item 4 ( 2.1) 

The simplest implementation of this list is the singly linked structure illus­
trated in Fig. :!. I. Each element in the structure consists of two memory 
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Fig. 2.1 A linked list. 

NAME NEXT 

0 - I 

Item I 3 

Item 4 0 

3 Item 2 4 

4 Item 3 2 

Fig. 2.2. Representation of a list wit~ four items. 

locations. The first contains the item itself,t the second contains a pointer to 
the next element. One possible implementation is in terms of two arrays which 
in Fig. 2.2 are called NAME and NEXT.* If ELEMENT is an index into the 
arrays. then NAME[ELEMENT] is the item stored and NEXT[ELEMENT] 
is the index of the next item on the list, provided there is a next item. If ELE­
MENT is the index of the last item on the list, then NEXT[ELEMENT] = 0. 

In Fig. 2.2 we have used NEXT[O] as a permanent pointer to the first 
element of the list. Note that the order of the items in the array NAME is 
not the same as their order on the list. However. Fig. 2.2 is a.faithful represen­
tation of Fig. 2.1. since the NEXT array sequences the items as they appear 
on the list C. I). 

The following procedure inserts an element into a list. It assumes that 
FREE is the index of an unused location in the arrays NAME and NEXT 

i' If the item is itself a complex structure. then the first location might contain a pointer 
to the item. 
; An a_lternutive (and equivalent) view is that there is a "cell" for each element. Each 
cell_ ha~ an ··address.'' which is the first (possibly only) memory register in a block of 
register~ reserved for that element. Within each cell are one or more "fields... Here 
~he fields are NAME and NEXT. and NAME[ELEMENT] and NEXT[ ELEMENT] 
<ire used to refer to the contents of these fields in the cell whose address is ELEMENT. 
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1, 11ti1ai111.:d hy Jdt:ting the first cell on the free list. On deleting an item from 
11,1 .·I. thi.: cell i!-> returned tu the free list for future use. 

Thi~ method of storage management is not the only method in use but i!-1 
pn:,cntcd to establish that the operation of adding or deleting items from lists 
;:an he accomplished in a bounded number of operations once we have deter­
mini.:d where the item is to be inserted or deleted. 

Other basic operations on lists are concatenation of two lists to form a 
single list and the inverse operation of cutting a list after some element to make 
tWl' list!->. The operation of concatenation can be performed in bounded time 
ti,· add in!! another pointer to the representation of a list. This pointer gives the . -
index of the last element on the list and obviates the need to search the entire 
li~1 to find the last element. The cutting operation can be made bounded if 
we are giyen the index of the element immediately preceding the cut. 

Lists can be traversed in both directions by adding another array called 
PREVIOUS. The value of PREVIOUS[/] is the location of the item on the 
list immediately before the item which is in location /. A list of this nature is 
said to be doubly linked. In a doubly linked list we can delete an item or in­
sert an item without being given the location of the previous item. 

Often a list is manipulated in a very restricted manner. For example. 
items might be added or deleted only at the end of a list. That is. items are 
inserted and deleted in a last-i11;.. first-out fashion. In this case the list is re­
ferred to as a stack or pushdo11·11 store. 

Often a stack is implemented as a single array. For example. the list 

Item I. Item '.!. Item 3 

.:oulu be stored in the array J\IAME as shown in Fig. 2.4. The variable TOP 

NAME 

0 Item I 

I Item 2 
I 

TOP~ 2 Item 3 

I 
I 
I . 

Fig. 2.4. I mpll!mentation of u stack. 
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is a pointer to the last item added to the stack. To add tPUSH) a new item 
onto the stack. we set TOP to TOP + I and then place the new item in 
NAME[TOP]. (Since the array NAME is of finite length I. we should check 
that TOP< I - I before trying to insert the new item.) To delete tPOP) an 
item from the top of the stack. we simply set TOP to TOP - I. Note that it 
is not necessary to physically erase the item deleted from the stack. An empty 
stack is detected by checking to see whether TOP has a value less than zero. 
Clearly. the execution time of the operations PUSH. POP. and the test for 
emptiness are independent of the number of elements on the stack. 

Another special form of list is the queue, a list in which items are always 
added to one end (the front) and removed from the other. As with a stack, we 
may implement a queue by a single array as shown in Fig. 2.5, which shows 
a queue containing the list of items P, Q, R, S, T. Two pointers indicate the 
locations of the current front and rear of the queue. To add (ENQUEUE) 
a new item to a queue we set FRONT to FRONT+ l and store the new item 
in NAME[FRONT], as for a stack. To remove (DEQUEUE) an item from 

NAME 

. . . 
REAR- p 

Q 

R 

s 

FRONT- T 

. . . 

Fig. 2.S. Single array implementation of a queue. 
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;i queue. we set REAR to REAR+ I. Note that this technique causes items 
Ill he accessed on a first-in. first-out basis. 

Since the array NAME is of finite length. say I. the pointers FRONT and 
REAR will eventually reach the end of the array. If the length of the list 
represented by the queue never exceeds /. then we may treat NAME[O] 
a., though it followed NAME[/ - I]. 

Items stored on a list may themselves be complicated structures. In 
manipulating a list of arrays, for example. one does not actually add or delete 
arrays. since each addition or deletion would require time proportional to the 
size of the array. Instead one adds or deletes pointers to the arrays. Thus 
a complex structure can be added or deleted in fbfod time independent of 
its size. 

--- . 

2.2 SET REPRESENTATIONS 

A common use of a list is to represent a set. With this representation the 
amount ·or memory required to represent a set is proportional to the number 
of elements in the set. The amodnt of time required to perform a set opera­
tion depends on the nature of the operation. For example, suppose A and B 
are two sets. An operation such as A n B requires time at least proportional 
to the sum of the sizes of the two sets. since the list representing A and the 
list representing B must each be scanned at least once.t 

The operation A U B likewise requires time at least proportional to the 
sum of the set sizes, since we must check for the same element appearing in 
both sets and delete one instance of each such element. If A and B are dis­
joint, however, we may find A U B in time independent of the size of A and 
B by simply concatenating the two lists representing A and B. The matter of 
disjoint set unions is made more complicated if we also require a fast method 
of determining whether a given element is in a given set. We discuss this ..sub­
ject more fully in Sections 4.6 and 4.7. 

An alternative to the list is a bit vector representation of sets. Assume 
the universe of discourse U (of which all sets are subsets) has /1 members. 
Linearly order the elements of U. A subset S ~ U is represented as a vector 
,.s of /1 bits .. where the ith bit in v8 is I if and only if the ith element of U is an' 
element of S. We call Vs the charactaistic 1·ector for S. · 

The bit vector representation has the advantage that one can determine 
whether the ith elem~nt of U is an element of a set in time independent of the 
size of the set. Fufrhermore. basic operations on sets such as union and in­
tersection can be carried out by the bit vector operations V and /\. 

If we do not wish to consider bit vector operations to be primitive (re­
quiring one time unit). then we can achieve the effect of a characteristic vector 

t If the two lists are sorted. then a linear algorithm to find their intersection exists. 
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by defining an array A, such that A [i] = I if and only if the ith member of U 
is in set S. In this representation, it is still easy to determine whether an ele­
ment is a member of a set. The disadvantage is that unions and intersections 
require time proportional to llVllt rather than the sizes of the sets involved. 
Likewise, the space required to store set Sis prnportional to llVll rather than llSll-

2.3 GRAPHS 

We now introduce the mathematical notion of a graph and the data structures 
commonly used to represent a graph. 

Definition. A graph G = (V, E) consists of a finite, nonempty set of ver­
tices V and a set of edges E. If the edges are ordered pairs (v, w) of ver­
tices, then the graph is said to be directed; v is called the tail and w the 
head of the edge (v, w). If the edges are unordered pairs (sets) of distinct 
vertices, also denoted by (v, w), then the graph is said to be undirected.t. 

I 
In a directed graph G = (V, £), if (v, w) js.;m edge in£, then we say ver-

tex w is adjacent to vertex v. We also say edge (v, w) is from v to w. The 
number of vertices adjacent to v is called the (out-) degree of v. 

In an undirected graph G = (V, £), if (v, w) is an edge in E we assume 
(w, v) = (v, w), so (w, v) is the same edge. We say w is adja~ent to v if (v, w) 
[and therefore (w, v)] is in E. The degree of a vertex is the number of ver­
tices adjacent to it. 

A path in a directed or undirected graph is a sequence of edges of the 
form (v1, v2), (v2, v3), .•• , (Vn-I• Vn). We say that the path is from v1 to Vn 

and is of length n - 1. Often such a path is represented by the sequence 
v1' v2, ••• , Vn of vertices on the path. As a special case, a single vertex de­
notes a path of length 0 from itself to itself. A path is simple if all edges and 
all vertices on the path, except possibly the first and last vertices, are distinct. 
A cycle is a simple path of length at least 1 which begins and ends at the same 
vertex. Note that in an undirected graph, a cycle must be of length at least 3. 

There an~ sev~ral common representations for a --graph G = (V, E). 
One such is the adjacency matrix, a llVJI X llVll matrix A of O's and I's, where 
the ijth element, A [i, j], is 1 if and only if there is an edge from vertex i to 
vertex j. The adjacency matrix representation is convenient for graph algo­
rithms which frequently require knowledge of whether certain edges are 
present, since the time needed to determine whether· an edge is present is 
fixed and independent of llVll and 11£11. The main drawback to using an adja­
cency matrix is that it requires llVll2 storage even if the graph has only O<llVJI) 
edges. Simply to initialize the adjacency matrix in the straightforward manner 
requires O<llVll2) time, which would preclude O<llVll> algorithms for manipu-

t We use llXll for the number of elements in (size or cardinality of) set X. 
+ Note that (a, a) may be an edge of a directed graph. but not an undirected one. 
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lating graphs with only 0(jji11> edges. Although there exist methods to over­
eome this difficulty (see Exercise 2.12). other problems almost invariably arise 
which make O<lli11> algorithms based on adjacency matrices rare. 

An interesting alternative is to represent the rows and/or columns of an 
adjacency matrix by bit vectors. Such a representation may introduce con­
siderable efficiency into graph algorithms. 

Another possible representation for a graph is by means of lists. The 
ac(jacency list for a vertex v is a list of all vertices w adjacent to l'. A graph 
can be represented by lli11 adjacency lists, one for each vertex. 

Example 2.2. Figure 2.6(a) illustrates a directed graph with four vertices. 
Figure 2.6(b) shows the adjacency matrix. Figure '2.6(c) shows the four adja­
cency lists, one-for__each vertex. For example, there are edges from vertex I 

't 2 3 4 
\ 

0 0 

2 0 0 0 

3 0 0 0 0 

4 0 0 

(a) (b) 

HEAD NEXT 

~4101 Voc<k"{ 
2 

Ver~ex j 2 j 3 
4 

ve;tex ~ 
5 

5 

7 

0 

8 

2 6 

6 4 0 
Vertex Empty list 3 Edges 7 3 0 

ii- 8 2 9 

Ve~tex I 2 1 ~31ol 9 3 0 

(c) (d) 

Fig. 2.6 A directed graph and its representations: (a) directed 
graph: (b) adjacency matrix: (c) adjacency lists: (d) tabular rep­
resentation of adjacency lists. 
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to vertices 2 and 4. so the adjacency list for I has items 2 and 4 linked together 
in the format of Fig. 2. I. 

A tabular representation of the adjacency lists is shown in Fig. 2.6(d). 
Each of the first four locations in the array NEXT holds a pointer to the first 
vertex on an adjacency list, with NEXT[i] pointing to the first vertex on the 
adjacency list for vertex i. Note that NEXT[3] = 0, since there are no ver­
tices on the adjacency list of vertex 3. The remaining entries of array NEXT 
represent the edges of the graph. The array HEAD contains the vertices in 
the adjacency lists. Thus the adjacency list for vertex I begins at location 5, 
since NEXT[ 1] = 5. HEAD [5] = 2, indicating that there is an edge (1, 2). 
NEXT[5] = 6, and HEAD[6] = 4 indicating the edge (1. 4). NEXT[6] = 0, 
indicating that there are no more edges with tail 1. D 

Note that the adjacency list representation of a graph requires storage 
proportional to llVll + 11£11- The adjacency list representation is often used 
when 11£11 << llVll2• / 

If the graph is undirected, then each ec\ge (v, w) is represented twice. 
once in the adjacency list of v and once in the adjacency list of w. In this case 
one might add a new array called LINK to correlate both copies of an un­
directed edge. Thus if i is the location of vertex w in the adjacency list of v, 
LINK[i] is the location of v in the adjacency list of w. 

If we wish to conveniently delete edges from an undirected graph, adja­
cency lists can be doubly linked. This is usually necessary because even if 
we always delete an edge (v, w) which is the first edge on the adjacency list 
for vertex v, the edge in the reverse direction may be in the middle of the 
adjacency list for vertex w. In order to delete edge (v, w) from the adjacency 
list of w quickly, we must be able to find the location of the previous edge on 
this adjacency list quickly. 

2.4 TREES 

Next. we introduce a very important kind of directed graph, the-free,-and we 
consider the data structures appropriate to represent it. 

Definition. A. directed graph with no cycles is called a directed acyclic 
graph. A (directed) tree (sometimes called a rooted tree) is a directed 
acyclic graph satisfying the following properties: 

1. There is exactly one vertex. called the root, which no edges enter . 
., Every vertex except the root has exactly one entering edge. 
3. There is a path (which is easily shown unique) from the root to each 

vertex. 
A directed graph consisting of a collection of trees is called a forest. 

Forests and trees are special cases of directed acyclic graphs that arise so 
frequently that we shall develop additional terminology to discuss them. 
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Definition. Let F = (V. £)be a graph which is a forest. If(\', 11·) is in£. 
then 1· is called the.father of w. and w is a son of 1·. If there is a path from 
1· to 11·. then ,, is an ancestor of w and w is a descendant of 1·. Further­
more if 1· =F w, then v is a proper ancestor of w, and 11· is a proper de­
scendant of ''· A vertex with no proper descendants is called a lel{f A 
vertex 1· and all its descendants are called a subtree of F. The vertex 1· 

is called the root of that subtree. 

The depth of a vertex v in a tree is the length of the path from the root 
to 1·. The height of a vertex v in a tree is the length of a longest path from 
,. to a leaf. The height of a tree is the height of._the root. The level of a 
vertex v in a tree is the height of the tree minus the depth of 1·. In Fig. 
~. 7(a), for example, vertex 3 is of depth 2, height 0, and level 1. 

An ordered tree is a tree in which the sons of each vertex are ordered. 
When drawing an ordered tree, we assume that the sons of each vertex 
are ordered from left to right. A binary tree is an ordered tree such that: 

I. each son of a vertex is distinguished either as a left son or as a right 
son, and 

2. no vertex has more than one left son nor more than one right son. 

The subtree T1 (if it exists) whose root is the left son of a vertex 1· is called 
the left subtree of v. Similarly. the subtree Tr (if it exists) whose root is the 
right son of 1• is called the right subtree of v. All vertices. in T1 are said to be 
to the left of all vertices in Tr· 

A binary tree is usually represented by two arrays LEFTSON and 
RIGHTSON. Let the vertices of a binary tree be denoted by the integers 

LEFTSON RIGHTSON 

(a) 

2 

3 

4 

5 

6 

7 

8 

9 

2 

3 

0 

0 

0 

7 

0 

0 

0 

(l..l) 

Fig. 2.7 A binary tree and its representation. 
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from I to 11. Then LEFTSON [i] = j if and only if j is the left son of i. 
If i has no left son. then LEFTSON[i] = 0. RIGHTSON[i] is defined 
analogously. 

Example 2.3. A binary tree and its representation are given in Fig. :!..7(a 
and (b). 0 

Definition. A binary tree is said to be complete if for some integer k 
every vertex of depth less than k has both a left son and a right son and 
every vertex of depth k is a leaf. A complete binary tree of height k has 
exactly 2""'" 1 - I vertices. 

A complete binary tree of height k is often represented by a single array. 
Position I in the array contains the root. The left son of the vertex in posi 
tion i is located at position 2i and the right son at position 2i + I. Given 
vertex at position i > l, its father is at position Li/2J. 

Many algorithms which make use of trees often traverse (visit each ver 
tex of) the tree in some order. There are several systematic ways of doing 
this. Three commonly used traversals are preorder, postor&r, and inorder 

Definition. Let T be a tree having root r with sons v1 , ••• , v,.., k;;:::: 0. In 
the case k = 0, the tree consists of the single vertex r. 

A preorder traversal of T is defined recursively as follows: 

I. Visit the root r. 
2. Visit in preorder the subtrees with roots v1, v2 , ••• , vi.. in that order 

A postorder traversal of T is defined recursively as follows: 

I. Visit in postorder the subtrees with roots v1 , v2 , ••• , vk in that order 
2. Visit the root r. 

(a) (b) (c) 

Fig. 2.8 Tree traversals: (a) preorder: (b) postorder: (c) inorder. 
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For a binary tree. an i11orcler trm·er.wl is defined recursively as follows: 

I. Visit in inorder the left subtree of the root r <if it exists). 
2. Visit r. 
3. Visit in inorder the right subtree of r (if it exists). 

Example 2.4. Figure 2.8 illustrates a binary tree with the vertices numbered 
in preorder <Fig. 2.8a). postorder CFig. 2.8b). and inorder (Fig. 2.8c). 0 

Once numbers have been assigned by a traversal. it is convenient to ref er 
to vertices by their assigned numbers. Thus 1· will denote the vertex which 
has been assigned the number 1·. If the vertices are numbered in the order 
visited. then the numberings have some interesting properties. 

In preorder all vertices in a subtree with root r have numbers no less 
than r. More precisely. if Dr is the set of descendants of r. then 1· is in D,. if 
and only if r ::;; 1· < r + llDrll. By associating with each vertex 1· both a pre­
order number and the number of descendants we can easily determine whether 
a vertex w is a descendant of 1·. After initially assigning preorder numbers 
and calculating the number of ·~escendants of each vertex. the question of 
whether w is a descendant of 1· can be answered in a fixed amount of time 
independent of tree size. Postorder numbers have an analogous property. 

lnorder numbers of a binary tree have the property that eacp vertex 
in the left subtree of a vertex 1· has a number less than 1· and each vertex in 
the right subtree has a number greater than r. Thus to find vertex w, compare 
11· to root r. If 11• = r, then 11· has been found. If 11· < r. then repeat the process 
for the left subtree; if 11• > r repeat the process for the right subtree. Eventu­
ally 11· will be found. Such properties of traversals will be used in later chapters. 

One final definition concerning trees should be made. 

Definition. An undirected tree is an undirected graph which is connected 
(there is a path between any two vertices) and acyclic. A roote"d un­
directed tree is an undirected tree in which one vertex is distinguished 
as the root. 

A directed tree can be made into a rooted undirected tree simply by 
making all edges undirected. We shall use the same terminology and nota· 
tional conventions for rooted undirected trees as for directed trees. The pri­
mary mathematical distinction is that in a directed tree all paths go from an­
cestors to descendants whereas in a rooted undirected tree paths exist in both 
directions. 

2.5 RECURSION 

A procedure that calls itself. directly or indirectly. is said to be rernrsii·e. 
The use of recursion often permits more lucid and concise descriptions of 
algorithms than would be possible without recursion. In this section we shall 
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I. 

., 
3. 
4. 

procedure INORDER(VERTEX): 
begin 

end 

if LEFTSON (VERTEX] # 0 then 
INORDER(LEFTSON [VERTEX]): 

NUMBER(VERTEX] +---COUNT: 
COUNT+--- COUNT+ I: 
if RIGHTSON[VERTEX] # 0 then 

INORDER(RIGHTSON[VERTEX]) 

Fig. 2.9. Recursive procedure for inorder. 

2.5 

give an example of a recursive algorithm and sketch how recursion can be 
implemented on a RAM. 

Consider the definition of inorder traversal of a binary tree given in Sec­
tion 2.4. In creating an algorithm for assigning morder numbers io the ver­
tices of a binary tree, we would like the algorithm to reflect the definition of 
inorder traversal. One such algorithm is given below. Note that tl)e algorithm 
calls itself recursively to number a subtree. 

Algorithm 2.1. lnorder numbering of the vertices of a binary tree. 

Input. A binary tree represented by arrays LEFTSON and RIGHTSON. 

Output. An array called NUMBER such that NUMBER[i] is the inorder 
number of vertex i. 

Method. In addition to LEFTSON, RIGHTSON, and NUMBER, the 
algorithm makes use of a global variable COUNT which contains the inorder 
number to be assigned to a vertex. COUNT has initial value 1. The param­
eter VERTEX is initially the root. The procedure of Fig. 2.9 is used re­
cursively. 

The algorithm itself is: 
begin 

COUNT+--- I: 
lNORDER(ROOT) 

end D 

The use of recursion has several advantages. First, it is often easier to 
understand recursive programs. Had the above algorithm not been written 
recursively. we would have had to construct an explicit mechanism for tra­
versing the tree. Following a path down the tree presents no problem, but 
the ability to return to an ancestor requires storing the ancestors on a stack, 
and the statements manipulating the stack would complicate the algorithm. 
The nonrecursive version of the same algorithm might look like the following. 
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Algorithm 2.2. Nonrecursive version of Algorithm 2.1. 

/11p111. Same as Algorithm 2.1. 

0111p111. Same as Algorithm 2.1. 

Method. The tree is traversed by storing on a stack all vertices which are 
not yet numbered and which are on the path from the root to the _vertex cur­
rently being searched. In goirig from vertex 1· to the left son of'" 1· is stored 
on the stack. After a search of the left subtree of 1·. 1· is numbered_ and popped 
from the stack. Then the right subtree of 1· is numbered. 

In going from 1· to the right son of 1·, 1· is not placed on the stack, since 
after numbering the right subtree we do not wish to return to l': rather. we wish 
to return to that ancestor of 1· which has not yet been numbered (the closest 
ancestor 11• of 1· such that v is in th_e left subtree of w). The algorithm is shown 
in Fig. 2. 10. D 

left: 

center: 

begin 

end 

COUNT - I; 
VERTEX ~ ROOT: 
STACK - empty; 
while LEFTSON [VERTEX] ~ 0 do 

begin 
push VERTEX onto STACK: 
VERTEX - LEFTSON [VERTEX] 

end; 
NUMBER[VERTEX] - COUNT: 
COUNT - COUNT+ I; 
if RIGHTSON [VERTEX] ~ 0 then 

begin 

end; 

VERTEX - RIGHTSON [VERTEX]: 
goto left 

if ST ACK not empty then 
begin 

end 

VERTEX~ top element of STACK: 
pop STACK: 
goto center 

Fig. 2.10. Nonrccursive inonJer algorithm. 
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The recursive version is easily proved correct by induction on the num­
qer ot"..vertices in the binary tree. The nonrecursive version can similarly be 
proved correct. but the induction hypothesis is not as transparent. and there 
is.r.iie additional concern of manipulating the stack and correctly traversing 
the binary tree. On the other hand there may be a penalty for recursion which 
'.affscts. the constant factor in the time and space complexity. 

The question naturally arises how recursive algorithms are to be trans­
lated into RAM code. To begin. it is sufficient, in light of Theorem 1.2, to 
discuss the construction of RASP code. since the RASP can be simulated by 
a RAM with at most a constant factor of slowdown. Here we shall discuss 
a rather straightforward technique for implementing recursion. This tech­
nique is adequate for all the programs that we use in this book but it does not 
cover all the cases that can arise. 

At the heart of recursive procedure implementation is a stack in which 
are stored the data used by each call of a procedure which has not yet termi-

/ 

nated. That is, all nonglobal data is on the stack. The stack is divided into 
stack frames, which are blocks of consec'!Jtiviiocations {registers). Each call 
of a procedure uses a stack frame whose length depends on the particular 
procedure called. 

Suppose procedure A is currently in execution. The stack would look 
like Fig. 2.11. If A calls procedure B, we do the following: 

I. A stack frame of the proper size is placed on top of the stack. Into the 
frame gC?es, in an order known to B: 
a) Pointers to the actual parameters for this call of B.t 
b) Empty space for the local variables used by B. 
c) The address of the RASP instruction in routine A which should be 

executed after the call to B terminates (the return address).+ If B is 
a function that returns a value, a pointer to the location in A's stack 
frame in which the value of the function is to be placed (the value ad­
dress) is also placed in the stack frame for B . 

.., Control passes to the first instruction of B. The address of the value of 
any parameter or local identifier belonging to B is found by indexing into 
the stack frame for B. 

3. When B terminates. it returns control to A by the following sequence 
of steps. 
a) The return address is obtained from the top of the stack. 

t If an actual parameter is an expression. it is evaluated in the stack fmme of A and 
a pointer to that value is placed in the frame for B. If an actual parameter is a struc­
ture such as an array. a single pointer to the first word of the structure suffices. 
+ It is the jumps to return addresses which are awkward (although possible. of course) 
for the RAM and which motivate us to use the RASP model here. 
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stack frame for main program 

stack frame for procedure that called A 

TOP --+ stack frame for this call of A 

Fig. 2.11. Stack for recun.;ve procedure calls. 

b) If B is a function. the value denoted by the expression portion of the 
return statement is stored in the location prescribed by the value ad­
dress on the stack. 

c) The stack frame for procedure B is popped from the stack. This 
leaves the frame for procedure A on top of the stack. 

d) Execution of A resumes at the location given by the return address. 

Example 2.5. Consider the procedure INORDER from Algorithm 2.1. 
When, for example, it calls itself with LEFTSON [VERTEX] as an actual 
parameter, it stores the address of the new value of VERTEX on the stack 
along with a return address to indicate that on completion of the call. execu­
tion continues with line 2. The variable VERTEX is thus effectively replaced 
by LEFTSON [VERTEX] wherever VERTEX occurs in the procedure 
definition. 

In a sense. the nonrecursive version, Algorithm 2.2. is modeled pn the 
above implementation. However, we have there recognized that the comple­
tion of a call to INORDER with actual parameter RIGHTSON [VERTEX] 
completes execution of the calling procedure also. Thus there is no need to 
store a return address or to store VERTEX on the stack in the case where 
the actual parameter is RIGHTSON[VERTEX]. 0 

The time required for a procedure call is proportional to the time re­
quired to evaluate the actual parameters and store pointers to their values on 
the stack. The time for a return is certainly no greater than this. 

In accounting for the time spent by a collection of recursive procedures. 
it is usually easiest to charge the cost of a call to the procedure doing the 
calling. Then one can bound. as a function of input size. the time spent by 
a call of each procedure. exclusive -of the time spent by the procedures it calls. 
Summing this bound over all calls of procedures gives an upper bound on the 
total time spent. 
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In order to calculate the time complexity of a recursive algorithm we 
make use of recurrence equations. A function T;(ll) is associated with the 
ith procedure and denotes the execution time of the ith procedure as a func­
tion of some parameter /1 of the input. Usually one can express a recurrence 
equation for T;l11) in terms of the execution times of procedures called by 
procedure i. The resulting set of simultaneous recurrence equations is then 
solved. Often only one procedure is involved. and Tf 11) depends on values 
of T!m) for a finite set of m less than 11. In the next section we shall study 
solutions for some frequently encountered recurrences. 

Remember that here. and elsewhere. all cost analyses assume the uniform 
cost function. If we use the logarithmic cost function. the length of the 
stack used to implement recursive procedures may affect the time complexity 
analysis. 

2.6 DIVIDE-AND-CONQUER 

A common approach to solving a problem is to partition the problem into 
smaller parts. find solutions for the parts, and then combine the solutions for 
the parts into a solution for the whole. This approach. especially when used 
recursively. often yields efficient solutions to problems in which the sub­
problems are smaller versions of the original problem. We illustrate the tech­
nique with two examples followed by an analysis of the resulting recurrence 
equations. 

Consider the problem of finding both the maximum and the minimum 
elements of a set S containing n elements. For simplicity we shall assume 
that /1 is a power of 2. One obvious way to find the maximum and minimum 
elements would be to find each separately. For example. the following_pro­
cedure finds the maximum element of S in n - I comparisons between ele­
ments of S. 

begin 
MAX+-- any element in S: 
for all other elements x in S do 

if x > MAX then MAX +-- x 
end 

We could similarly find the minimum of the remaining /1 - I elements with 
11 - 2 comparisons. giving a total of 2·11 - 3 comparisons to find the maxi­
mum and minimum. assuming /1 ;:::: 2. 

The divide-and-conquer approach would divide the set S into two sub­
sets S 1 and s~. each with 11/'2 elements. The algorithm would then find the 
maximum and minimum elements of each of the two halves. by recursive 
applications of the algorithm. The maximum and minimum elements of S 
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procedure MAXMINCS): 
I . if llSll = 2 then 

begin 
., let S ={a. b}: 
3. return (MAX(a. b). MIN(a. b)) 

end 
else 

begin 
-l. divide S into two subsets 5 1 and S2 • each with half the elements: 
5. (maxi, mini)+- MAXMIN(S 1): 

6. (max2, min2) +- MAXMIN(52): 

7. return (MAX(maxl, max2), MIN(minl, min2)) 
end 

Fig. 2.12. Procedure to find MAX and MIN. 

could be calculated from the maximum and minimum elements of S1 and S2 

by two more comparisons. The algorithm is stated more precisely below. 

Algorithm 2.3. Finding the maximum and minimum elem.ents of a set. 

Input. A set S with n elements, where /1 is a power of 2 and 11 2:: 2. 

Output. The maximum and minimum elements of S. 

Method. The recursive procedure MAXMIN is applied to setS. MAXMIN 
has one argumentt which is a set S with llSll = 2k for some k 2:: I . and it returns 
a pair (a, b), where a is the maximum and b the minimum element in S. Pro­
cedure MAXMIN is given in Fig. 2.12. 0 

Note that the only steps requiring a comparison between elements of S 
are step 3, where the two elements of S are compared. and step 7, where we 
must compare maxi with max2 and mini with min2. Let T(n) be the num­
ber of comparisons between elements of S required by MAXMIN to find the 
maximum and minimum elements in a set of n elements. Clearly. T(2) = 1. 
If n > 2, T(n) is the total number of comparisons used in the two calls of 
MAXMIN (lines 5 and 6) on sets of size n/2. plus the two comparisons from· 
line 7. That is, 

T(n) = gT(n/2) + 2. 
for /1 = 2. 
for /1 > 2. 

(2.2) 

t Since we are only counting comparisons here. the method of passing arguments is 
unimportant. However. if the set S is represented by an array. we can arnmge to call 
MAXMIN efficiently by passing pointers to the first and last elements in a subset of 
S. which will be in consecutive words of the array. 
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The function Tl 11 J = 111 - 2 is a solution to recurrence (2.2). It clearly 
satisfies <2.2) for 11 = 2. and if it satisfies (2.2) for /1 = m. where m ~ 2. then 

T(2m) = 2 (3~11 - 2) + 2=1(2m) - 2, 

and chus it satisfies 12.2) for /1 = 2m. Thus. by induction on 11, we have shown 
that T(11) = 111 - 2 satisfies (2.2) whenever /1 is a power of 2. 

We can show that at least in - 2 comparisons between elements of Sare 
necessary to find both the maximum and minimum elements in a set of /1 num­
bers. Thus Algorithm 2.3 is optimal with respect to the number of compari­
sons made between elements of S when /1 is a power of 2. 

In the preceding example. the divide-and-conquer approach reduced the 
number of comparisons by a constant factor. In the next example we shall 
actually reduce the asymptotic growth rate of an algorithm by using the 
divide-and-conquer technique. 

Consider multiplying two n-bit numbers. The traditional method re­
quires 0(n2 ) bit operations. The method developed below requires on the 
order of 11 101{ =1 or approximately 11u11 bit operations.t 

Let x and y be two n-bit numbers. Again for simplicity we assume that 
11 is a power of 2. We partition x and y into two halves as shown in Fig. 2.13. 
If we treat each half as an (n/2)-bit number, then we can express the product 
as follows: 

xy = (a2"12 + b) (c2"12 + d) 
= ac211 + (ad+ bc)2"12 + bd. 

(2.3) 

Equation (2.3) computes the product of x and y by four multiplications of 
(n/2)-bit numbers plus some additions and shifts (multiplications by powers 
of 2). The product z of x and y can also be computed by the following prog.ram. 

begin 

end 

u +- (a+ b) * (c + d); 
i· +-a * c; 
IV+- b * d; 
z +- v * 2" + (u - v - w) * 2"12 + w 

(2.4) 

Ignore for the moment the fact that due to a carry, a+ b and c + d may 
be (11/2 + I )-bit numbers and assume that they have only n/2 bits. The scheme 
requires only three multiplications of (11/2)-bit numbers, plus some additions 
and shifts. to multiply two 11-bit numbers. One can use the multiplication 

t Recall all logarithms are to the base 2 unless otherwise stated. 
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x= (/ I h 

y= (" I d 

Fig. 2.13. Partition of bit strings. 

routine recursively to evaluate the products 11, 1•, and 11·. The additions and 
shifts require time 0 8 (11). Thus the time complexity of multiplying two n-bit 
numbers is bounded from above by 

T(n) = {k, 
3T(n/2) +kn, 

for n = I, 
for n > 1, 

(2.5) 

where .k is a constant reflecting the additions and shifts in the expressions in 
(2.4). The solution to recurrence (2.5) is bounded from above by 

3kn1""" :i = 3kn 1•59 • 

One can actually show that 

T(n) = 3kn10"" :i - 2kn 

in (2.5). The proof proceeds by induction on n, for n a power of 2. The 
basis. n = I, is trivial. If T(n) = 3kn1°' 3 - 2kn satisfies (2.5) for n = m, then 

T(2m) = 3T(m) + 2km . 
= 3 [3km10g 3 - 2km] + 2km 
= 3k(2m) 10i: 3 - 2k(2m) 

for the induction step. Thus T(n) :s; 3k1110i: 3 follows.· Note that attempting 
to use 3kn10g 3 rather than 3kn10g 3 - 2kn in the induction fails to work. 

In order for the multiplication algorithm to be complete, we must take care 
of the fact that a + b and c + dare (n/2 + I )-bit numbers. and thus the product 
(a+ b)(c + d) cannot be directly calculated by a recursive application of the 
algorithm to a problem of size 11/2. Instead. we must write a+ bas a11"12 + h1 • 

where a1 is the leading bit of the sum a+ hand h1 is the remaining bits. Simi­
larly, write c + d as c12"12 + d1• The product (a+ h)(c + d) can be expressed as 

(:!.6) 

The term b1d1 is computed by a recursive application of the multiplication 
algorithm on a problem of size 11/'2. The other multiplications in (2.6) can be 
computed in OuCn) time. since they involve either one of the single bits a 1 and 
c, or a power of 2 as an argument. 
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Example 2.6. This asymptotically fast integer-multiplication algorithm can 
be applied to decimal numbers. as well as binary. The following calculations 
illustrate the method. · 

x = 3141 
y = 5927 

(/ = 31 
h=41 

a+h=T!. 

c = 59 
d= 27 

c + d= 86 

/( = ( (/ + h) le + d) = T2 x 86 = 6192 
\' = (/(' = 31 x 59 = 1829 

II"= hd = 41 x 27 = 1107 
xy = 18290000t + (6192 - 1829 - 1107) x 100 + 1107 

= 18616707 0 

Note that the algorithm based on (2.4) has replaced one multiplication 
by three additions and subtractions [in comparison with (2.3)]. The intuitive 
reason why this replacement leads to asymptotic efficiency is that multiplica­
tion is harder to perform than addition. and for sufficiently large n. any fixed 
number of n-bit additions requires less time than an n-bit multiplication no 
matter what (known) algorithm we use. At first it appears that reducing the 
number of (n/2)-bit products from four to three could at best rs:duce the total 
time by 25%. However, (2.4) is applied recursively to compute (n/2)-bit, 
(n/4)-bit, ... products. The 25% savings at each level is compounded and 
accounts for the improvement in the asymptotic time complexity. 

The time complexity of a procedure is determined by the number and 
size of the subproblems and to a lesser extent by the amount of work neces­
sary to divide the problem into subproblems. Since recurrences of the form 
of (2.2) or (2.5) arise frequently in analyzing recursive divide-and-conquer 
algorithms we shall consider the solution in the general case. 

Theorem 2.1. Let a, b, and c be nonnegative constants. The solution to 
the recurrence 

T(n) = {:T(n/c) + hn. 
for n= I. 
for ll > 

for n a power of c is 

{°(n), if a < C, 

T(n) = O(n log n). if a= C, 

O(nlol!rll}, if a> c. 

Proof If n is a power of c, then 

lof.!.,. u 

T(n) = hn 2: r;. where r = a/c. 
i=O 

t i· must be shifted four decimal places and u - 1· - 11· shifted two. 
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If a. c. then ~/;,,0 r; converges. so Tt11) is 0(11). If a= c. then each term 
in the sum is unity. and there are OClog 11) terms. Thus T(11) is ()(11 log 11). 

hnally. if" o > c then 

lua.:,. 11 ,.1+ho:.r n _ J 

Im "\' r; = Im . 
;:t. r-1 

which is 0(a1""· ")or equivalently 0(11 101-:, "). D 

From Theorem 2. I we see that dividing a problem (using a linear amount 
of work) into two subproblems of half size results in an 0(11 log 11) algorithm. 
tr the number of subproblems were 3. 4. or 8, then "the algorithm would be of 
order 11 101-: :1. 112 • or 11=1• respectively. On the other hand. dividing the problem 
into four subproblems of size 11/4 results in an 0(11 log 11) algorithm. and 9 
and 16 subproblems yield algorithms of order 11101: =1 and 112 • respectively. Thus 
an asymptotically faster algorithm for integer multiplication could be obtained 
if one divided the integers into four pieces and were able to express integer 
multiplication in terms of eight pr fewer smaller multiplications. Other im­
portant recurrences arise when 0;1e work to divide t~e problem is not propor­
tional to the size of the problem. Some of these are covered in the exercises. 

In the case where n is not a power of c. one can usually embed a problem 
of size /1 in a problem of size 11'. where 11' is the smallest power of c equal to 
or greater than 11. Thus the asymptotic· growth rates of Theorem 2.1 hold for 
arbitrary n. In practice. one can often design recursive algorithms which 
divide problems of any size as nearly into c equal parts as possible. These 
algorithms are usually more efficient (by a constant factor) than those obtained 
by pretending the input size is the next-higher power of c. 

2.7 BALANCING 

Both our examples of the divide-and-conquer technique partitioned a problem 
into subproblems of equal size. This was not a coincidence. A basic guide 
to good algorithm design is to maintain balance. To illustrate this principle 
we shall use an example from sorting and contrast the effect of dividing a prob­
lem into unequal-size subproblems as oppos"ed to equal-size subproblems. 
The reader should not infer from the example that divide-and-conquer is the 
only technique in which balancing is useful. Chapter 4 contains several ex­
amples in which balancing sizes of subtrees or balancing the costs of two 
operations results in efficient al_gorithms. 

Consider the problem of sorting a sequence of 11 integers into nonde­
creasing order. Perhaps the simplest sorting method is to locate the smallest 
element by scanning the sequence and then to interchange the smallest ele­
ment with the first. The process is repeated on the last 11 - I elements. which 
results in the second smallest element lieing placed in the second position. 
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Repeating the process on the last /1 - 2. 11 - 3 ..... 2 elements sorts the 
sequence. 

The algorithm gives rise to the recurrence 

T(11) = {0· 
T(n - I) + /1 - I, 

for /1 = I. 
for /1 > I 

(2.7) 

for the number of comparisons made between the elements to be sorted. The 
solution to (2.7) is T(n) = n(n - I )/2, which is O(n2 ). 

Although this sorting algorithm could be viewed as a recursive applica­
tion of divide-and-conquer with division into unequal pieces, it is not efficient 
for large n. In order to design an asymptotically efficient sorting algorithm 
one should achieve a balance. Instead of dividing a problem of size n into 
two problems. one of size I and one of size n - l, one should divide the prob­
lem into two subproblems of approximately half the size. This is accomplished 
by a method known as merge sorting. 

Consider a sequence of integers Xi, x2 , ••• , Xn. Again (or simplicity 
assume that n is a power of 2. One way to sort the sequence is to divide it 
into two sequences Xi, x2, ••• , Xn 12 and X(1112i+i· ••• , Xn, sort each subsequence, 
and then merge them. By "merging," we mean taking the two sequences 
which are already sorted and combining them into one sorted sequence. 

Algorithm 2.4. Mergesort. 

Input. Sequence of numbers x 1, x2 , ••• , x,., where n is a power of 2. 

Output. Sequence y 1, y 2 , ••• , Yn• a permutation of the input satisfying 
Y1 :s; Y2 ::5 • • • ::5 Yn· 

Method. We make use of a procedure MERGE(S, T), which takes two sorted 
sequences S and T as input and produces as output a sequence consisting of 
the elements of S and T in sorted order. Since S and T are themselves sorted, 
MERGE requires at most one fewer comparison than the sum of the lengths 
of S and T. It works by repeatedly selecting the larger of the largest elements 
remaining on Sand T. then deleting the element selected. Ties may be broken 
in favor of S. 

We also make use of the procedure SORT(i.j) in Fig. 2.14. which sorts 
the subsequence x;. X;+i• .•.• xi on the assumption that the subsequence has 
length 2" for some k ::::= 0. 

To sort the given sequence x 1• x2 • •••• x 11 we call SORT( I. n). D 

In counting comparisons. Algorithm 2.4 give~ rise to the. recurrence 

T(n) = {~T(11/2) + n - I. 
for n = I. 
for II > l 

whose solution. by Theorem 2.1. is T(n) = O(n log 11). For large 11, bal 
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procedure SO RT(i. j): 
if i = j then return X; 

else 
begin 

m +- (i + j - I ) /2: 
return MERGECSORT(i. mJ, SORT(m + I .j)) 

end 

Fig. 2.14. Mergesort. 

ancing the size of the subproblems has paid off handsomely. A similar anal­
ysis shows that the total time, not only comparisons, spent in procedure SORT 
is O(n log n). 

2.8 DYNAMIC PROGRAMMING 

Recursive techniques are useful if a problem can be divided into subproblems 
with reasonable effort and the sum of the sizes of the subproblems can be 
kept small. Recall from Theorem 2. J that if the sum of the sizes of the sub­
problems is an, for some constant a > I, the recursive algorithm is likely to 
be polynomial in time complexity. However, if the obvious division of a prob­
lem of size n results in n problems of size n - J, then a recursive algorithm is 
likely to have exponential growth. In this case a tabular technique called 
dynamic programming often results in a more efficient algorithm. 

In essence, dynamic programming calculates the solution to all subprob­
lems. The computation proceeds from the small subproblems to the larger 
subproblems, storing the answers in a table. The advantage of the method 
lies in the fact that once a subproblem is solved, the answer is stored and 
never recalculated. The technique is easily understood from a simple example. 

Consider the evaluation of the product of n matrices 

M = M1 x M2 x · · · x M,,. 

where each M; is a matrix with r;-1 rows and r; columns. The order in which 
the matrices are multiplied together can have a significant effect on the total 
number of operations required to evaluate M. no matter what matrix multi­
plication algorithm is used. 

Example 2.7. Assume that the multiplication of a p x q matrix by a q x r 
matrix requires pqr operations, as it does in the "usual .. algorithm. and con­
sider the product 

M= M 1 x M 2 x M 3 x M 4 (2.8) 
[IO x 20] [20 x 50] [50 x I] [I x JOO] 
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where the dimensions of each M; are shown in the brackets. Evaluating M 
in the order 

M 1 x IM~ x IM:1 x 1\tl.1)) 

requires 125.000 operations. while evaluating M in the order 

(M, x Uv/2 x M:1)) x M 4 

requires only 2200 operations. D 

Trying all possible orderings in which to evaluate the product of n matrices 
so as to minimize the number of operations is an exponential process (see Ex­
ercise 2.3 I), which is impractical when n is large. However, dynamic program­
ming provides an O(n:i) algorithm. Let mii be the minimum cost of computing 
M; x M;+i x · · · x Mi for I ::s; i ::s; j ::s; 11. Clearly, 

if i = j, 
if j > i. 

(2.9) 

The term m;k is the minimum cost of evaluating M' = M; x M;+ 1.X · · · x Mk. 
The second term, mi.·+i.i• is the minimum cost of evaluating 

M" = M1.:+i x Mk+2 x · · · x Mi. 

The third term is the cost of multiplying M' by M''. Note that M' is an r1_ 1 x r1.: 
matrix and M" is an r1.: X ri matrix. Equation (2.9) states that mu,j > i, is the 
minimum, taken over all possible values of k between i and j - I, of the sum 
of these three terms. 

The dynamic programming approach calculates the· mu's in order of in­
creasing difference in the subscripts. We begin by calculating mii for ·all i, 
then m1.i+ 1 for all i, next mi.1+2 , and so on. In this way, the terms m11.: and mk+t.i 
in (2.9) will be available when we calculate mu. This follows sincej- i must 
be strictly greater than either of k - i and j - (k + I) if k is in the range i ::s; 

k < j. The algorithm is given below. 

Algorithm 2.5. Dynamic programming algorithm for computing the minimum 
cost order of multiplying a string of n matrices, M, x M2 x · · · x M,.. 

Input. r0 , r1, •••• r,1, where r;-1 and r1 are the dimensions of matrix Mi. 

Output. The minimum cost of multiplying the M;'s. assuming pqr operations 
are required to multiply a p x q matrix by a q x r matrix. 

Method. The algorithm is shown in Fig. 2.15. D 

Example 2.8. Applying the algorithm to the string of four matrices in (2.8), 
where ru •...• r.1 are I 0. 20. 50. I. I 00. would result in computing the values 
for the mu"s shown in Fig. 2.16. Thus the minimum numher of operations 
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begin 
I.. for i +---I until 11 do m;; - 0: 

.., for I +--- I until 11 - I do 
3. for i +--- I until 11 - I do 

begin 
J- i+ I: 4. 

5. mu+--- MIN (m;A· + mk+t.i + r;-1 * rk * ri) 
end· ;,;,~<; 

' 6. write 111 111 

end 

Fig. 2.15. Dynamic programming algorithm for ordering matrix multiplications. 

11111 =0 11122 = 0 11133 = 0 11144 = 0 I 
I 

11112 = 10,000 11123 = 1000 17134 = 5000 

11113 = 1200 11124 = 3000 

11114 = 2200 

Fig. 2.16. Costs of computing products M; x M;+ 1 x · · · x M;. 

required to evaluate the product is 2200. An order in which the multiplica­
tions may be done can be determined by recording, for each table entry, a 
value of k which gives rise to the minimum seen in (2.9). 0 

2.9 EPILOGUE 

This chapter has touched upon a number of fundamental tec_hniques used in 
efficient algorithm design. We have seen how high-level data structures such 
as lists, queues, and stacks allow the algorithm designer to remove himself 
from such mundane chores as manipulating pointers and permit him to focus 
on the overall structµre of the algorithm itself. We have also seen how the 
powerful techniques~f recursion and dynamic programming often lead to 
elegant and natural algorithms. We also presented certain general principles 
such as divide-and-conquer and balancing. 

These techniques are certainly not the only tools available but they are 
among the more important. As we progress through the remainder of this 
book. we shall encounter a number of other techniques. These will range 
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from selecting an appropriate representation for a problem to performing 
operations in a judicious order. Perhaps the most important principle for 
the good algorithm designer is to refuse to be content. The designer should 
continue to examine a problem from a number of viewpoints until he is con­
vinced that he has the most suitable algorithm for his needs. 

EXERCISES 

2.1 Select an implementation for a doubly linked list. Write Pidgin ALGOL algo­
rithms for inserting and deleting an item. Make sure your programs work when 
deleting the first and/or the last item. and when the list is empty. 

2.2 Write an algorithm to reverse the order of items on a list. Prove that your 
algorithm works correctly. 

2.3 Write algorithms to implement the operations PUSH. POP, ENQUEUE, and 
DEQUEUE mentioned in Section 2.1. Do not forget to check -w;hether a pointer 
has reached the end of the array reserved for the stack or queue. 

2.4 Write the conditions for testing a queue for emptiness. Assume the array 
NAME used in Section 2.1 is of size k. How many elements may be stored in 
the queue'? Draw pictures illustrating the queue and typical positions for the 
pointers FRONT and REAR when the queue (a) is empty. (b) contains one 
element. and (c) is full. 

2.5 W1ite an algorithm to delete the first edge 11·. w) on the adjacency list for v in 
an undirected graph. Assume that adjacency lists are doubly linked and that 
LINK locates 11 on the adjacency list of w, as described in Section 2.3. 

2.6 Write an algorithm to construct the adjacency lists for an undirected graph. 
Each edge ( 1·. w) is to be represented twice. once in the adjacency list of 11 and 
once in the adjacency list of 11·. The two copies of each edge should be linked 
together so that when one is deleted the other can also be deleted easily. Assume 
the input is a list of edges. 

*2.7 (Topological sort.) Let G = (V, £) be a directed acyclic graph. Write an algo­
rithm to assign integers to the vertices of G such that if there is a directed edge 
from vertex i to vertex j. then i is less than j. [Hint: An acyclic graph must 
have a vertex with no edge coming into it. Why? One solution to the problem 
is to search for a vertex with no incoming edge. assign this vertex the lowest 
number. and delete it from the graph. along with all outgoing edges. Repeat the 
process on the resulting graph. assigning the next lowest number. and so on. 
To make the above algorithm efficient. i.e .. O<llEJI + llVll>. one must avoid search­
ing each new graph for a vertex with no incoming edge.] 

''2.8 Let G = ( V. £) be a directed acyclic graph with two designated vertices. the 
start vertex and the destination vertex. Write an algorithm to find a set. of paths 
from the start vertex to the destination vertex such that 

I) no vertex other than the start or destination vertex is common to two paths. 
2 l no additional path can he added to the set and still satisfy condition (I). 
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LEFTSON RIGHTSON 

2 

3 

4 

5 

6 

Fig. 2.17 A binary tree. 
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0 

0 

5 

0 

0 
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4 

0 

6 

0 

0 

Note that there may be many sets of paths satisfying the above conditions. You 
are not required to find the set with the most paths but any set satisfying the 
above conditions. Your algorithm should have an 0(11£11 + llVlD execution time. 

"2.9 (Stable marriage problem.) Let B be a set of /1 boys and G be a set of n girls. 
Each boy ranks the girls from I to n and each girl ranks the boys from I to n. 
A pairing is a one-one correspondence of boys to girls. A pairing is stable if 
for each two boys b1 and b 2 and their paired girls g 1 and g 2 , the following two 
conditions are both satisfied: 
I) either b1 ranks g 1 higher than g2 , or g2 ranks b2 higher than b" 
2) either b2 ranks g2 higher than g 1• or g1 ranks b1 higher than b2• 

Prove that a stable pairing always exists and write an algorithm to find one such 
pairing. 

2.10 Consider a binary tree with names attached to the vertices. Write an algorithm 
to print the names in (a) preorder. (b) postorder. and (c) inorder. 

•2.11 Write an algorithm to evaluate (a) prefix Polish. (b) infix, and (c) postfix Polish 
arithmetic expressions with operators + and x. 

'2.12 Develop a technique to initialize an entry of a matrix to zero the first time it is 
accessed, thereby eliminating the O(llVJl2 ) time to initialize an adjacency matrix. 
[Hint: Maintain a pointer in each initialized entry to a back pointer on a stack. 
Each time an entry is accessed. verify that the contents are not random by making 
sure the pointer in that entry points to the active region on the stack and that the 
back pointer points to the entry.] 

2.13 Simulate Algorithms 2.1 and 2.2 on the binary tree in Fig. 2.17. 

2.14 Prove that Algorithm 2.2 is correct. 

2.15 CToll'ers of Hanoi.) The Towers of Hanoi problem consists of three pegs A. 
B. and C. and /1 squares of varying size. Initially the squares are stacked on 
peg A in order of decreasing size. the largest square on the bottom. The prob­
lem is to move the squares from peg A to peg B one at a time in such a way 
that no square is ever placed on a smaller square. Peg C may he used for tem­
porary storage of squares. Write a recursive algorithm to solve this problem. 
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Input 1-------4._ -----eOutput 1 

. . 
Input 2----,..·- -·----Output 2 

--- Connections in position 1 

...... • Connections in position 2 

Fig. 2.18 A two-position switch. 

What is the execution time of your algorithm in terms of the number of times ; 
square is moved? 

**2.16 Solve Exercise 2.15 with a nonrecursive algorithm. Which algorithm is easie 
to understand and prove correct? -' 

*2.17 Prove that 2" - I moves are both n~ces/a~y and sufficient f~r the solution tc 
Exercise 2.15. 

2.18 Write an algorithm to generate all permutations of the integers I to n. [Hint 
The set of permutations of the integers I to n can be obtained from the set o: 
permutations of the integers I to n - 1 by inserting n in each possible positior·· 
of each permutation.] 

2.19 Write an algorithm to find the height of a binary tree. Assume that the tree i~ 

represented as in Fig. 2.7(b). 

2.20 Write an algorithm for calculating the number of descendants of each vertex ir 
a tree. 

**2.21 Consider a two-position switch with two inputs and two outputs, as shown in 
Fig. 2.18. 1 n one position inputs I and 2 are connected to outputs I and 2, re· 
spectively. In the other position inputs· I and 2 are connected to outputs 2 anc 
I, respectively. Using these switches, design a network with n inputs and r. 
outputs which is capable of achieving any of the n ! possible permutations of the 
inputs. Your network should use no more than O(n log n) switches. [Hint. 
Make use of the divide-and-conquer approach.] 

2.22 Write a RASP program to simulate the following program computing (:). 

procedure COMB(11, m): 
if m = 0 or n = m then return I 
else return ICOMB(n - -t";'m) _,,; COMB(n - I, m - I)) _,. 

Use a stack to store current values of n and m and the return and value addresse~ 
when calls are made. 

*2.23 In a number of situations a problem of size /1 is advantageously'divided into 
vn subproblems of size about vn. Recurrence equations of the form 

("2) T .2' = 11T(11 I + hn2 
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result. where r is an integer. r 2: I. Show that the solution to the recurrence 
equation is O<nelog nY loglog 11)". 

1.2-i Evaluate the sums: 

II II II 

a) ) i ....., b> :L "i c) Lia; 
i=I i=J ,,,,.,.,,-~i= I 

~· 

II (") f) ii(;) d> :L 2k-1;2 e> :L . 
i=I i=O I r=I 

• 2.25 Solve the following recurrences. given T( I) = I: 
a) T(n) = aT(n - I)+ bn b) T(n) = T(n/2) + bn log /1 

c) T(n) = aT(11 - I)+ bnr d) T(n) = aT(11/2) + bnr 

•2.26 Modify Algorithm 2.3 for finding the maximum and minimum elements of a 
set by allowing the recursion to go dow~ to level llSll = I. What is the asymp­
totic growth rate of the number of comparisons? 

•2.21 Show that r!n - 21 comparisons are necessary and sufficient for finding both 
the largest and smallest elements in a set of n elements. 

'2.28 Modify the integer-multiplication algorithm to divide each integer into (a) three, 
and (b) four pieces. What are the complexities of your algorithms? 

'2.29 Let A be an array of positive or negative integers of size n, where A [I] < 
A [2] < · · · <A [n]. Write an algorithm to find an i such that A [i] = i pro­
vided such an i exists. What is the order of execution time of your algorithm? 
Prove that Oc(log n) is the best possible. 

'2.30 If n is not a power of 2 in Algorithm 2.4, we can obtain a valid merge sort­
ing algorithm by replacing the statement m - (i + j- I )/2 in Fig. 2.14 by 
m - l (i + j)/2J. Let T(n) be the number of comparisons to sort n elements 
by this method. 
a) Show that 

T( I)= 0 
T(n) = T(ln/2J) + T(fn/21) + n - I 

b) Show that the solution to this recurrence is 

T(11) = nrlog nl - 211°~ 11 1 + 1 

2.31 Show that the solution to the recurrence 

X(l)=I. 
11-1 

X(11) = L X(i)X(n - i). for II > I. 
i-J 

is 
. I (211)· A.(n+l)=--1 . 

II+ 11 

X(n) is the number of ways to fully parenthesize a string of /1 symbols. The 
X ( 11) 's are called the Catalan numbers. Show that X ( 11) 2: 2 11 -~. 

?.32 Modify Algorithm 2.5 to write out an order in which the matrices should be 
multiplied so as to minimize the number of scalar multiplications. 
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2.33 Write an efficient algorithm to determine an order of evaluating the matrix 
product 1'vl 1 x M~ x · · · x 1\4,, so as to minimize the number of scalar multipli· 
cations in the case where each M is of dimension I x I. I x d. cl x I. or cl x cl fo1 
some fixed cl. 

Definition. A context-ji·ee wammar in (homsky normal form G is a four-tuple 
(N. ::£, P. 5) where (I) N is a finite set of 11011termi11al symbols. C!) ::£ is a finite 
set oF terminal symbols, (3) P is a finite set of pairs. called productions, of the 
form A--+ BC or A--+ a where A, B, Care in Nanda is in~. and (4) Sis a 
distinguished symbol in N. We write aAy~af3y if a. {3. y are strings of non­
terminals and terminals and A --+ f3 is in P. L(G), the language generated by 
G. is the set of terminal strings { wlS ~ 11·} where~ is the reflexive and transi­
tive closure of~. 

*2.34 Write an 0(11=1) algorithm to determine whether a given string w = a1a2 • • • a,. 
is in L(G), where G = (N, I, P, S) is a context-free grammar in Chomsky nor­
mal form. [Hint: Let mu= {A IA E N and A~ a;a;+i ... aJ. w E L(G) if 
and only if S E min· Use dynamic programming¢ compute the mii's.] 

*2.35 Let x and y be strings of symbols from $lme alphabet. Consider the opera­
tions of deleting _a symbol from x, inserting a symbol into x, and replacing a sym­
bol of x by another symbol. Describe an algorithm to find the minimum number 
of such operations needed to transform x into y. • 

BIBLIOGRAPHIC NOTES 

More information on data structures and their implementation can be found in Knuth 
[1968] or Stone [1972]. Pratt [1975] contains a description of recursion implemen­
tation in ALGOL-like languages. Berge [1958] and Harary [1969] discuss graph 
theory. Knuth [ 1968] is a source for trees and tree traversals. Burkhard [ 1973] is 
an additional source on tree traversal algorithms. 

The optimality of Algorithm 2.3 (finding the minimum and maximum) was shown 
by Pohl [ 1972]. The O(n .. 59) integer multiplication algorithm from Section 2.6 is by 
Karatsuba and Ofman [ 1962]. Winograd [ 1973] considers such speed-ups from a 
more general point of view. 

The notion of dynamic programming was popularized by Bellman [ 1957], and 
Algorithm 2.5 is a well-known application reported by Godbole [ 1973] and Muraoka 
and Kuck [ 1973]. The application of dynamic programming to context-free language 
recognition (Exercise 2.34) is the independent work of J. Cocke. Kasami [ 1965] and 
Younger (1967]. Wagner and Fischer [1974] contains a solution to Exercise 2.35. 

For more information on the solution of recurrence equations, see Liu [ 1968] 
or Sloane [ 1973]. 
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In this l:haptcr we l:Onsider two important related problems- sorting a 
sequence of elements and selecting the /.:th smallest element in a sequence. 
By sorting a sequence we mean rearranging the elements in the sequence so 
that the elements appear in nonincreasing or nondecreasing order. We can 
find the /.:th smallest element in a sequence by .sorting the sequence into non­
decreasing order and selecting the /.:th element from the resulting sequence. 
However. we shall see that there are faster methods than this for selecting the 
/.:th smallest element. 

Sorting is both a practically important and theoretically interesting 
problem. Since a significant portion of commercial data processing involves 
sorting large quantities of data, efficient sorting algorithms are of considerable 
economic importance. Even in algorithm design, the process of sorting a 
sequence of elements is an essential part of many algorithms. 

In this chapter we consider two classes of sorting algorithms. The first 
class of algorithms makes use of the structure of the elements to be sorted. 
For example. if the elements to be sorted are integers in a fixed range 0 to 
111 - I. then we can sort a sequence of /1 elemeQts. in O(n + m) time; if the ele­
ments to be sorted are strings over a fixed alphabet, then a sequence of strings 
can be sorted in time lfoearly proportional to the sum of the lengths of the 
strings. 

The second class of algorithms assumes no structure on the elements to 
be sorted. The basic operation is a comparison between a pair of elements. 
With algorithms of this nature we shall see that at least n log /1 comparisons 
are needed to sort a sequence of n elements. We give two Oc(n log n) sorting 
algorithms-Heapsort. which is Oc<n log 11) in the worst case, and Quicksort, 
which is Oc(n log n) in the expected case. 

3.1 THE SORTING PROBLEM 

Definition. A partial order on a set S is a relation R such that for each a, 
b. and c in S: 

I. aRa is true (R is reflexive), 
.., aRb and bRc imply aRc (R is transitive), and 
3. aRh and bRa imply a= b (R is antisymmetric). 

The relation s on integers and the relation ~ (set inclusion) are two ex­
amples of partial orders. 

A linear ore/a or total ore/er on a set S is a partial order R on S such 
that for every pair of elements a. b either aRh or bRa. The relation s 
on integers is a linear order:t ~ on sets is not. 

t For a linc<ir orders. we use a "- h tu c.Jenutc a :S b hut 11 r= h. u~ one woulc.J expe~t. 
:\bo. h ~· 11 is ~ynonymou~ with 11 < h anc.J h :::: a is the same us a :::; h. 
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The sortinR problem can be formulated as follows. We are given a 
sequence of /1 elements a,. a2 ••••• a,, drawn from a set having a linear order, 
which we shall usually denote s. We are to find a permutation TT of these n 
clements that will map the given sequence into a nondecreasing sequence 
tl,,111• a.,,.< 2 >· •••• a,,.(,,J such that a,.w s a.,,.<i+tJ for I s i < 11. Usually we shall 
produce the sorted sequence itself rather than the sorting. permutation TT. 

Sorting methods are classified as being internal (where the data resides in 
random access memory) or external (where the data is predominantly outside 
the random access memory). External sorting is an integral part of such 
applications as account processing, which usually invQ.lve far more elements 
than can be stored in random access memory at one time. Thus external 
sorting methods for data which are on secondary storage devices (such as a 
disk memory or a magnetic tape) have great commercial importance. 

Internal sorting is important in algorithm design as well as commercial 
applications. In those cases where sorting arises as part of another algorithm, 
the number of items to be sorted is usually small enough to fit in random 
access memory. However, we asst.I.me that the number of items to be sorted 
is moderately large. If one is going\o sort only a handful of items, a simple 
strategy such as the 0(n2) "bubble sort" (see Exercise 3.5) is far more expe­
dient. 

There are numerous sorting algorithms. We make no attempt to survey 
all the important ones; rather we limit ourselves to methods which we have 
found to be of use in algorithm design. We first consider the case in which 
the elements to be sorted are integers or (almost equivalently) strings over a 
finite alphabet. Here, we see that sorting can be performed in linear time. 
Then we consider the problem of sorting without making use of the special 
properties of integers or strings, in which case we are forced to make program 
branches depend only on comparisons between the elements to be sorted. 
Under these conditions we shall see that O(n log n) comparisons are neces­
sary, as well as sufficient, to sort a sequence of n elements. 

3.2 RADIX SORTING 

To begin our study of integer sorting, let a,. a2 •••• , a,, be a sequence of in­
tegers in the range 0 to m - 1. If m is not too large. the sequence can easily 
be sorted in the following manner. 

I. Initialize /11 emptt queues, one for each integer in the range 0 to /11 - I. 
Each queue is called a bucket. 

, Scan the sequence a,. a2 • •••• a,, from left to right. placing element a; in 
the a;-th queue. 

3. Concatenate the queues (the contents of queue i + I are appended to the 
end of queue i) to obtain the sorted sequence. 
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Since an element can be inserted into the ith queue in constant time. the 
11 elements can be inserted into the queues in time 0(11). Concatenating the 
m queues requires O<ml time. If m is 0(11). then the algorithm so.rts ,,. in­
tegers in time 0(11}. We call this algorithm a h11cke1 sort. 

The bucket sort can be extended to sort a ~equence of tuples (i.e .. lists) of 
integers into lexicographic order. Let ::s be a linear order on set S. The rela­
tion ::s when extended to tuples whose components are from S is a lex­
icographic order if (.\· 1. s2 • •••• s,,) ::s (t 1 • 12 • •••• t,1) exactly when either: 

I. there exists an integer j such that si < ti and for all i < j. S; = r.i• or 
2. p ::s q and S; = t; for I ::s i ::s p. 

For example, if one treats strings of letters (under the natural alphabetic or­
dering) as tuples. then the words in a dictionary are in lexicographic order. 

We first generalize the bucket sort to sequences consisting of k-tuples 
whose components are integers in the range 0 to m - I., The sorting is done 
by making k passes over the sequence using the bucl(et sort on each pass. 
On the first pass the k-tuples are sorted according to their kth components. 
On the second pass the resulting sequence is sorted according to the (k - I )st 
components. On the third pass the sequence resulting from the. second pass 
is sorted according to the (k - 2)nd components, and so on. On the kth (and 
final) pass the sequence resulting from the (k - I )st pass is sorted according 
to the first components.t The sequence is now in lexicographic order. A 
precise description of the algorithm is given below. 

Algorithm 3.1. Lexicographic sort. 

/11p11t. A sequence A 1, A 2 , ••• , A 11 where each A; is a k-tuple 

with a;i an integer in the range 0 tom·- I. (A convenient data structure for 
this sequence of k-tuples is an n x k array.) 

011tp11t. A sequence B 1 • 8 2 , .••• 8 11 which is a permutation of A 1 • A~· . ... A 11 

such that 8; ::s 8;+ 1 for I ::s i < 11. 

Method. In transferring a k-tuple A; to some bucket. only a pointer to A; is 
actually moved. Thus A; can be added to a bucket in fixed time rather than 
time bounded by k. We use a queue called QUEUE to hold the "current" 
sequence of elements. An array Q of in buckets is also used. where bucket 
Q [i] is intended to hold those k-tuples that have the integer i in the compo­
nent currently under consideration. The algorithm is shown in Fig. 3.1. D 

t In many practical situations it is sufficient to bucket sort the strings only on the basis 
of their first components. If the number of elements that get placed into each bucket 
is small. then we can sort the strings in c:ach buckc:l with some straightforward sorting 
alg,:-,, irhm such as huhhle sort. 
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hcJ!in 

end 

place A 1• A~ ..... A,, in QUEUE: 
for j - k step - I until I do 

begin 

end 

for I+-- 0 until 111 - I do make Q [/] empty: 
while QUEUE not empty do 

begin 

end; 

let A; be the first element in QUEUE: 
move A; from QUEUE to bucket Q[au] 

for I +-- 0 until m - I do 
concatenate contents of Q [/] to the end of QUEUE 

Fig. 3.1. Lexicographic sort algorithm. 

Theorem 3.1. Algorithm 3.1 lexicographically sorts a length 11 sequence 
of k-tuples. where each component of a k-tuple is an integer between 0 
and m - I, in time O((m + n)k). 

Proof The proof that Algorithm 3.1 works correctly is by induction on the 
number of executions of the outer loop. The induction hypothesis is that 
after r executions, the k-tuples in QUEUE will be lexicographically sorted ac­
cording to their r rightmost components. The result is easily established once 
it is observed that the (r + I )st execution sorts k-tuples by their (r + I )st com­
ponent from the right, and that if two k-tuples are placed in the same bucket. 
the first k-tuple precedes the second in the lexicographic order determined by 
the r rightmost components. 

One pass of the outer loop of Algorithm 3.1 requires O(m + nf time. 
The loop is repeated k times to give a time complexity of O((m + 11)k). D 

Algorithm 3.1 has a variety of applications. It has been used in punched 
card sorting machines for a long time. It can also be used to sort 0(11) in­
tegers in the range 0 to nk - I in time O(k11). since such an integer can be 
thought of as a k-tuple of digits in the range 0 to /1 - I (i.e .. the representatio·n 
of the integer in base /1 notation). 

Our final generalization of the bucket sort will be to tuples of varying 
sizes. which we shtrll call strings. If the longest string is of length k. we could 
pad out every string with a special symbol to make all strings be of lengt~ k 
and then use Algorithm 3.1. However. if there are only a few long strings. 
then this approach is unnecessarily inefficient for two reasons. First. on each 
pass. every string is examined. and second. every bucket Q [i] is examined 
even if almost all of these buckets are empty. We shall describe an algorithm 
that sorts a sequence of /1 strings of varying length. whose components are in 
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the range 0 to 111 - I. in time O(m + l1o1a1). where I; is the length of the ith 
string. and /1111 a 1 = ~:·= 1 /;. The algorithm is useful in the situation where /11 and 
/ 1.,1 .. 1 are both 0(11). 

The essence of the algorithm is to first arrange the strings in order of 
decreasing length. Let lmax be the length of the longest string. Then, as in 
Algorithm 3.1. lmax passes of the bucket sort are used. However, the first 
pass sorts (by rightmost component) only those strings of length lmax· The 
second pass sorts [according to the Umax - I )st component] those strings of 
length at least lrnax - I, and so on. 

For example. suppose bab, abc, and a are three strings to be sorted. 
(We have assumed that the components of tuples are integers, but for nota­
tional convenience we shall often use letters instead. This should cause no 
difficulty because we can always substitute 0, I, and 2 for a, b. and c, if we 
like.) Her..: lmax = 3. so on the first pass we would sort only the first two 
strings on the basis of their third components. In sorting these two strings we 
would put bab into the b-bucket and abc into the c-bucket. The a-bucket 
would remain empty. In the second pass we would sort these same two 
strings on the second component. Now the a-bucket and b-bucket would be 
occupied, but the c-bucket would remain empty. On the third- and final pass 
we would sort all three strings on the basis of their first component. This 
time the a- and b-buckets would be occupied and the c-bucket would be 
empty. 

We can see that in general on a given pass many buckets can be empty. 
Thus a preprocessing step that determines which buckets will be nonempty on 
a given pass is beneficial. The list of nonempty buckets for each pass is de­
termined in increasing order of bucket" number. This allows us to concat­
enate the nonempty buckets in time proportional to the number of nonempty 
buckets. 

Algorithm 3.2. Lexicographic sort of strings of varying length. 

Input. A sequence of strings (tuples), A 1 • A 2 , ••• , A,,, whose compo­
nents are integers in the range 0 to m - I. Let I; be the length of A; = 
(a; 1, a;2 , • •• , a;1,), and let lmax be the largest of the /;'s. 

Output. A permutation 8 1, 8 2, ••• , 8,. oftheA;'s such that 

8 1 ::;;82 ::::;: • • • ::;;8,,. 

Metlzud 

I. We begin by making lists. one for each /, I ::;; I ::;; lmax• of those symbols 
that appear in the /th component of one or more of the strings. We do so 
by first creating, for each component ail, I ::;; i ::;; 11, I ::;; I::;; I; of each 
string Ai. a pair (/, au). Such a pair indicates that the /th component of 
some string contains the integer a;1• These pairs are then sorted lex-
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begin 
I. make QUEUE empty: 
, for j - 0 until m - I do make Q [j] empty: 
3. for I - lmax step - I until I do 

begin 
4. concatenate LENGTH[/] to the beginning of 

QUEUE:t 
5. while QUEUE not empty do 

begin 
6. let A; be the first string on QUEUE: 
7. move A; from QUEUE to bucket Q[au] 

end; 
8. for eachj on NONEMPTY[/] do 

begin 
9. concatenate Q[j] to the end of QUEUE: 

I 0. make Q UJ empty 
l 

end l 
end 

end 

t Technically, we should only concatenate to the end of a queue, but concatenation to 
the beginning should present no conceptual difficulty. The most efficient approach 
here would be to select A 1 's from LENGTH[/] first at line 6, then select them from 
QUEUE, without ever concatenating LENGTH[/] and QUEUE at all. 

Fig. 3.2. Lexicographic sort of strings of varying length. 

icographically by an obvious generalization of Algorithm 3.1.:j: Then. by 
scanning the sorted list from left to right it is easy to create lmax sorted 
lists NONEMPTY[/], for I :::; /:::; lmax• such th~t NONEMPTY[/] con­
tains exactly those symbols that appear in the Ith component of some 
string. That is, NONEMPTY[/] contains, in sorted order, all those in­
tegers j such that au = j for some i. 

, We determine the length of each string. We then make lists 
LENGTH[/]; for I :::; I :::; lmax• where LENGTH[/] consists of all 
strings of length /. (Although we speak of moving a string. we are only 
moving a pointer to a string. Thus each string can be added to 
LENGTH[/] in a fixed number of steps.) 

3. We now sort thc!"strings by components as in Algorithm 3.1. beginning 
with the components in position lmax· However. after the ith puss 

~ In Algorithm 3.1. the assumption was made that components were chosen from the 
same alphabet. Here. the second component rnnges from 0 to m - I. while the first 
ranges from I to lmax· 
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QUEUE contains only those strings of length lmax - i + I or greater. and 
these strings will already be sorted according to components /max - i + I 
through lmax· The NONEMPTY lists computed in step I are used to de­
termine which buckets are occupied at -each pass of the bucket sort. 
This information is used to help speed up the concatenation of the 
buckets. This part of the algorithm is given in Pidgin ALGOL in Fig. 
3.2 on p. 81. D 

Example 3.1. Let us sort the strings a. bab, and abc using Algorithm 3.2. 
One possible representation for these strings is the data structure shown in 
Fig. 3.3. STRING is an array such that STRING [i] is a pointer to the rep­
resentation of the ith string whose length and components are stored in the 
array DATA. The cell in DATA pointed to by STRING[i] gives the 
number j of symbols in the ith string. The next j cells of DAT A contain 
these symbols. , 

The iists of strings used by Algorithm 3.2 are really lists of_ pointers such 
as those in the array STRING. For notatiori!f convenience, in the remainder 
of this example we shall write the actual strings, rather than the pointers to 
the strings, on lists. Bear in mind, however, that it i6 the pointers 
rather than the strings themselves that are being stored in the queues. 

In part 1 of Algorithm 3.2 we create the pair ( 1, a) from the first string, 
the pairs (1, b}, (2, a), (3, b) from the second, and the pairs (I, a), (2. b), (3, c) 
from the third. The sorted list of these pairs is: 

(1, a) (1, a) (1, b) (2, a) (2, b) (3, b) (3, c). 

By scanning this sorted list from left to right we deduce that 

NONEMPTY[ I]= a, b 
NONEMPTY[2] =a, b 
NONEMPTY[3] = b, c 

In part 2 of Algorithm 3.2 we compute /1 = I, /2 = 3. and 1:1 = 3. Thus 
LENGTH[I] =a, LENGTH[2] is empty, and LENGTH[3] = bab, abc. 
We therefoi:e.begin part 3 by setting QUEUE= bab, abc, and sorting these 
strings by their third component. The fact that NONEMPTY [3] = b. c as­
sures us that when we form the sorted list in lines 8-10 of Fig. 3.2. Q [a] need 
not be concatenated to the end of QUEUE. We thus have QUEUE= bab, 
abc after the first pass of the loop of lines 3-10 in Fig. 3.2. 

In the second pass, QUEUE does not change, since LENGTH['.!] is 
empty and the sort by second component does not change the order. In the 
third pass. we set QUEUE to a. bah. abc at line 4. The sort by first compo­
nents give~ QUEUE= a, abc, bab. which is the correct order. Note that in 
the third pass, Q[c] remains empty, and since c is not on NONEMPTY[ I]. 
we do not concatenate Q [ c] to the end of QUEUE. 0 
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STRING DATA 

. 1 

L. 
a 

3 

0 b 

a 

b 

---+ 3 

a ---
b 

c 

Fig. 3.3 Data structure for strings. 

Theorem 3.2. Algorithm 3.2 sbrts its input in time 0(/totai + m), where 
\ 

Proof An easy induction on the number of passes through the outer loop in 
Fig. 3.2 proves that after i passes, QUEUE contains those strings of length 
lmax - i + I or greater, and that they are sorted according to components 
/max - i + I through lmax· Thus the algorithm lexicographically sorts its input. 

For the timing result, part 1 of the algorithm uses 0(110121) time to create 
the pairs and O(m + /10tai) time to sort them. Similarly, part 2 requires no 
more than 0(/totai) time. 

We must now direct our attention to part 3 and the program of Fig. 3~2. 
Let 11; be the number of strings having an ith component. Let ·m; be the 
number of different symbols appearing in the ith components of the strings 
li.e. m; is the length of NONEMPTY[i]). 

Consider a fixed value of I in line 3 of Fig. 3.2. The loop of lines 5-7 
requires 0(111) time and the loop of lines 8-10 requi"res 0(1111) time. Step 4 
requires constant time. so one pass through the loop of lines 3-10 requires 
O(m, + 111) time. Thus the entire loop takes 

time. Since 

o(~ (m1 + 111)) 

'1'1·" 
2:1111 ::5 /total 
/=I 

and 
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we see that lines 3-1 U require time Olf1n1a1). Then, as line I requires constant 
time and line 2 requires Q(m) time. we have the desired result. D 

We offer one example where string sorting arises in the design of an 
algorithm. · 

Example 3.2. Two trees are said to be isonu>rphic if we can map one tree into 
the other by permuting the order of the sons of vertices. Consider the 
problem of determining whether two trees T, and T2 are isomorphic. The fol­
lowing algorithm works in time linearly proportional to the number of ver­
tices. The algorithm assigns integers to the vertices of the two trees. starting 
with vertices at level 0 and working up towards the roots. in such a way that 
the trees are isomorphic if and only if their roots are assigned the same in­
teger. The algorithm proceeds as follows. 

I. Assign to all leaves of T1 and T2 the integer 0. 
2. Inductively, assume that all vertices of T1 and T 2 at.Jcvel i - I have been 

assigned integers. Assume L1 is a list of the vertices of T 1 at level i - I 
sorted by nondecreasing value of the assign~d integers. Assume L 2 is the 
corresponding list for T 2· t 

3. Assign to the nonleaves of T1 at level i a tuple of integers. by scanning 
the list L 1 from left to right and performing the following actions: For 
each vertex v on list,l1 take the integer assigned to v to be the next com­
ponent of the tuple a'.ssociated with the father of v. On completion of this 
step, each nonleaf w of T1 at level i will have a tuple (i1, i2 , •.• , ik) as­
sociated with it, where i1, i2, ... , ik are the integers, in nondecreasing 
order, associated with the sons of w. Let S1 be the sequence of tuples 
created for the vertices of T1 on level i. 

4. Repeat step 3 for T2 and let S2 be the sequence of tuples created for the 
vertices of T2 on level i. 

5. Sort S1 and S2 using Algorithm 3.2. Lets; and s;, respectively, be the 
sorted sequences of tuples. 

6. If s; and s; are not identical, then halt; the trees are not isomorphic. 
Otherwise, assign the integer I to those vertices of T 1 on level i 
represented by the first distinct tuple on s;, assign the inteJer 2 to the 
vertices represented by the second distinct tuple. and so on. As these 
integers are assigned to the vertices of T1 on level i, make a list L 1 of the 
vertices so assigned. Append to the front of L 1 all leaves of T1 on level i. 
Let L2 be the corresponding list of vertices of T2• These two lists can 
now be used for the assignment of tuples to vertices at level i + I by re­
turning to step 3. 

t You should convince yourself that level numbers can be assigned in 0(11) steps by a 
preorder traversal of the tree. 
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Level 3 

Level 2 

Level 1 

Level 0 0 

Tree T, 

Level 3 

Level 2 

Level 1 0 

Level 0 

Fig. 3.4 Numbers assigned by tree isomorphism algorithm. 

7. If the roots of T 1 and T2 are assigned the same integer, T 1 and T2 are 
isomorphic. D 

Figure 3.4 illustrates the assignment of integers and tuples to the vertices 
of two isomorphic trees. ... . 

Theorem 3.3. We can determine whether two n-vertex trees are isomor-
phic in 0(11) time. 

Proof The theorem follows from a formalization of the algorithm of Ex­
ample 3.2. The proof of correctness of the algorithm will be omitted. The 
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analysis of the running time is obtained by observing that the work of as­
signing integers to vertices at level i. other than leaves. is proportional to the 
number of vertices at level i - I. Summing over all levels results in 0(11) 

time. The work in assigning integers to leaves is also proportional to /1 and 
thus the algorithm takes 0(11) time. 0 

A labeled tree is a tree in which labels are attached to the vertices. Sup­
pose the vertex labels are integers in the range I to 11. Then we can deter­
mine whether two labeled trees with /1 vertices are isomorphic in linear time if 
we include the label of each vertex as the first component of the tuple as­
signed to that vertex in the algorithm above. Thus we have the following cor­
ollary. 

Corollary. Determining the isomorphism of two 11-vertex labeled trees 
with labels in the range I to n takes O(n) time. 

, 
J 

3.3 SORTING BY COMPARISONS 

In this section we con.sider the problem of sorting a sequence of n elements 
drawn from a linearly ordered set S whose elements have no kqown structure. 
The only operation that can be used to gain information about the sequence is 
the comparison of two elements. We first show that any algorithm which 
sorts by comparisons must on some sequence of length n use at least 
0(11 log n) comparisons. 

Assume that there are 11. distinct elements a 1 , a2 , ••• , a,. which are to be 
sorted. An algorithm that sorts by comparisons can be represented by a 
decision tree as described in Section 1.5. Figure 1. I 8 (p. 25) showed a de­
cision tree that sorts the sequence a, b, c. In what follows, we assume that 
if element a is compared with element b at some vertex v of a decision tree, 
then we branch to the left son of v if a < b, and to the right son if a ~ b. 

Normally. sorting algorithms that use comparisons for branching restrict 
themselves tc comparing two input elements at a time. In fact, an algorithm 
that works for an arbitra:-y linearly ordered set may not combine input data in 
any way, since operations on data do not '!make sense" in the completely gen­
eral setting. In any event. we can prove a strong result about the height of 
any decision tree which sorts 11 elements. 

Lemma 3.1. A binary tree of height h has at most 2h leaves. 

Proof An elementary induction on /z. One need only observe that a binary 
tree of height lz is composed of a root and at most two subtrees. each of height 
at most Ii - I. 0 

Theorem 3.4. Any decision tree that sorts 11 distinct elements has height 
at least log 11 ! 
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/'rm~( Since the result of sorting /1 elements can be any one of the /1 ! permu­
tations of the input. there must be at least 11! leaves in the decision tree. By 
Lemma 3.1. the height must be at least log 11!. D 

Corollary. Any algorithm for sorting by comparisons requires at least 
c11 log n comparisons to sort /1 elements for some c > 0 and sufficiently 
large 11. 

Pr0<~t: We note that for /1 > I 

... (r-,211) -- {-121)"' 2
• 11!2:::11(11-1)(11-2) -. 

so log /1 ! ;:;::: (11/2) log (11/2) ;:;::: (11/4) log /1 for /1 ;:;::: 4. D 

From Stirling's approximation a more accurate estimate of 11! is (n/e)". so 
n(log /1 - log e) = n log n - 1.44n is a good approximate lower bound on the 
number of comparisons needed to sort n elements. 

3.4 HEAPSORT-AN O(n log n} COMPARISON SORT 

Since every sorting algorithm which sorts by comparisons requires essentially 
11 log /1 comparisons to sort at least one sequence of length n, it is natural to 
ask whether there exist sorting algorithms that use only 0(11 log 11) compari­
sons to sort all sequences of length n. In fact, we have already seen one such 
algorithm, the merge sort of Section 2. 7. Another such algorithm is Heap­
sort. In addition to being a useful sorting algorithm. Heapsort uses an inter­
esting data structure which has other applications. 

Heapsort is best understood in terms of a binary tree as in Fig. 3.5 in 
which every leaf is of depth d or d - I. We label the vertices of the tree with 
the elements of the sequence to be sorted. Heapsort then rearranges the ele­
ments on the tree until the element associated with each vertex is greater than 
or equal to the elements associated with its sons. Such a labeled tree is called 
a heap. 

Example 3.3. Figure 3.5 illustrates a heap. Note that the sequence of ele­
ments on the path from each leaf to the root is linearly ordered and that the· 
largest element in a subtree is always at the root of that subtree. D 

The next step in Heapsort is to remove from the heap the largest ele­
ment. which is at t~ root. The label of some leaf is moved to the root and 
that leaf is deleted. The tree is then remade into a heap and the process is 
repeated. The sequence of elements removed from the heap is the sorted 
sequence (in descending order). 

A convenient data structure for a heap is an array A. where A [I] is the 
element stored at the root, and A [2i] and A [2i + I] are the elements stored at 
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Fig. 3.5 A heap. 

the left and right sons (if they exist) of the vertex a~/which element A [i] is 
stored. For example, the heap in Fig. 3.5 \_1-'~~d be represented by the fol-
lowing array. . 

Observe that the vertices of smallest depth appear first in the array, and ver­
tices of equal depth appear in left-to-right order. 

Not every. heap can be so represented. In terms of the tree represen­
tation, the leaves at the lowest level must be as far left as possible, as in 
Fig. 3.5. 

If we use an array to represent the heap, several operations in the Heap­
sort algorithm are easy to perform. For example, in the algorithm we must 
remove the element at the root, store this element somewhere, then remake 
the remaining tree into a heap, and remove the unlabeled leaf. We can 
remove the largest element from the heap and store it by interchanging A [ 1] 
and A [n], and then considering location n of the array no longer part of the 
heap. We treat location n as the leaf deleted from the tree. To remake the 
tree in locations 1, 2 •... , n - 1 into a heap, we take the new element A [ 1 ] 
and percolate it as far down a path in the tree as necessary. We can then 
repeat this process interchanging A [ 1] and A [n - 1] and considering the tree 
to occupy locations 1, 2, ... , n - 2, and so on. 

Example 3.4. Consider, in terms of the heap of Fig. 3.5, what happens when 
we interchange the first and last elements in the array representing the heap. 
The resulting array corresponds to the labeled tree in Fig. 3.6(a). 

14111 19110 is 161 s I 1I2I16 I 
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8 

(a) (IJ) 

Fig. 3.6 (a) Result of interchanging 4 and 16 in the heap of Fig. 3.5: (b) result after 
reconstructing heap and excluding element 16. 

We exclude element 16 from furtlier consideration. To convert the resulting 
tree into a heap. we exchange element 4 with I I. the larger of its two sons I I 
and 9. 

In its new position, 4 has sons 10 and 5. Since these are larger than 4, 
we interchange 4 with I 0, the larger son. Then the sons of 4 in its new posi­
tion are I .and 2. Since 4 exceeds each of these. no further interchanges are 
needed. The resulting heap is shown in Fig. 3.6(b). Note that although ele­
ment I 6 has been removed from the heap it is still present at the end of the 
array A. 0 

We now begin a formal description of the Heapsort algorithm. Let 
"•· a2 , ••• , a11 be the sequence of elements to be sorted. Assume that these 
elements are initially in the array A in this order, i.e., A [i] =a;, I s i :5 n. 
The first step is to build the heap. That is. the elements in A are rearranged 
to satisfy the heap property: A [i] ;;::: A [2i] for I s i s 11/2, and 
A [i] ;;::: A [2i + 1] for 1 s i < n/2. This is done by starting with the leaves 
and building larger and larger heaps. Each subtree consisting of a leaf 
already forms a heap. A subtree of height lz is made into a heap by in­
terchanging the element at the root with the larger of the elements at the sons 
of the root, if it is smaller than either of them. So doing may destroy a heap 
of height lz - I, which must then be remade into a heap. The algorithm is ... . 
made precise below. 

Algorithm 3.3. Construction of a heap. 

Input. Array of elements A [i]. I s i s 11. 

Output. Elements of A arranged into a heap such that A [i] s A [ li/2J] for 
I < i s II. 
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1He1/10cl. The heart of the algorithm is the recursive procedure HEAPIFY. 
The parameters i and j give the range of locations in the array A having the 
heap property. and i is the root of the heap to be made. 

procedure HEAPIFY(i.j): 
I. if i is not a leaf and if a son of i contains a larger element than i 

does then 
begin 

2. let k be a son of i with the largest element: 
3. interchangeA[i] andA[k]: 
4. HEAPIFY(k,j) 

end 

The parameter j is used to determine whether i is a leaf and whether i has one 
or two sons. If i > j/2. then i is a leaf and HEAPIFY(i, j) need not do any­
thing, since A [i] is a heap by itself. 

The algorithm to give all of A the heap property is simply: 

procedure BUILDHEAP: 
for i +-- 11t step - 1 until I do HEAPIFY(i, 11) C3 

We next show that Algorithm 3.3 makes a heap out of A in linear time. 

Lemma 3.2. If the vertices i + I, i + 2, ...• n are the roots of heaps, 
then after a call to HEAPIFY(i, n), all of i, i + I, .... n will be the roots 
of heaps. 

Proof The proof proceeds by backwards induction on i. The basis, i = n, is 
trivial, since vertex n must be a leaf, and the test of line l assures that 
HEAPIFY(n, n) does nothing. 

For the inductive step, note that if vertex i is a leaf or if i has no son with 
a larger element, then there is nothing to prove, by the above argument. 
However, if vertex i has one son (i.e., if 2i = 11) and if A [i] < A [2i], then 
line 3 of HEAPI FY interchanges A [i] and A [2i]. At line 4, HEAPIFY(2i, 11) 
is called, so the inductive hypothesis implies that the tree with root 
at vertex 2i is remade into a heap. Vertices i + I, i + 2, ...• 2i - I never 
cease being the roots of heaps. Since in the new permutation of array A we 
have A [i] >A [2i]. the tree with root i is likewise a heap. 

Similarly. if vertex i has two sons (i.e., 2i + I ::5 n) ·and if the larger 
of A [2i] and A [2i + I] is larger than A [il. we c~n :1rgue as above to show 
that after the call of HEAP I FY (i, 11 j, all of i. i + I .... , 11 will be roots of 
heaps. 0 

Theorem 3.5. Algorithm 3.3 makes A into a heap in linear time. 

t In practice. we would begin at t n/2 J. 
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/'rotf Using Lemma 3.2. we may show by an easy backwards induction on i 
thal vertex i becomes the root of a heap for all i. I :::; i :S 11. 

Let T(/1) be the time required to execute HEAPl FY on a vertex of 
height Ji. Then T(/1) :::; T<h - I)+ c for some constant c, which implies that 
Tllil is 0(/1). 

Algorithm 3.3 calls H EA Pl FY, exclusive of recursive calls, once for 
each vertex. Thus the time spent by BUILDHEAP is on the order of the 
sum. over all vertices. of the heights of the vertices. But at most r II /2i+l 1 ver­
tices are of height i. Therefore, the total time spent by BUILDHEAP is on 
the order of 

/1 • II 

2: I -;;I· 
i=I -

which is O(n). D 

We can now complete the specification of Heapsort. Once the elements 
of A have been arranged into a heap, elements are removed one at a time from 
the root. This .is done by in~erchanging A [I] and A [ n] and rearranging 
A[l],A[2], ... ,A[n-1] intd a heap. Next A[l] and A[n-1] are in­
terchanged and A [I], A (2], ... , A [n - 2] are rearranged into a heap, and 
so on until the heap consists of one element. At that point 
A[l],A[2], ... ,A[n] is the sorted sequence. 

Algorithm 3.4. Heapsort. 

Input. Array of elements A [i], I :::; i :::; n. 

Output. Elements of A sorted into nondecreasing order. 

Method. We make use of the procedure BUILDHEAP, which is Algorithm 
3.3. The algorithm is as follows. 

begin 
BUILDHEAP; 
for i ~ /1 step - I until 2 do 

begin 
interchange A [I] and A [i]: 
HEAPIFYCI. i- I) 

end 
end 0 

.... . 
Theorem 3.6. Algorithm 3.4 sorts /1 elements in time 0(11 log 11). 

Proof. The proof of correctness is by induction on the number of times m 
that the main loop has been executed. The induction hypothesis is that after 
111 iterations A [11 - /11 + I] ..... A [11] contains the 111 largest elements in 
sorted (smallest first) order. and A [I] ..... A [11 - m] forms a heap. The de-
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tails are left for an exercise. The time to execute HEAPIFY(I. i) 1s 
O(iog i). Hence Algorithm 3.4 is of complexity 0(11log11). D 

Corollary. Heapsort is Oc(11 log 11) in time complexity. 

3.5 QUICKSORT-AN O(n log n) EXPECTED TIME SORT 

So far we have considered only the worst-case behavior of sorting algorithms. 
For many applications a more realistic measure of the time complexity of an 
algorithm is its expected running time. When we consider sorting. we find 
that no comparison sorting algorithm can have an expected time complexity 
significantly lower than /1 log 11 under the decision tree model. However, we 
do find that there are sorting algorithms whose worst-case running times are 
cn2 for some constant c but whose expected running times are among the best 
of known sorting algorithms. Quicksort, the algorithm to be discussed in 
this section. is an example of such an algorithm. 

Before we can talk about the expected running time of an algorithm, we 
must agree on what.the probability distribution of the inputs is. For sorting, a 
natural assumption. and the one we shall make, is that every permutation of 
the sequence to be sorted is equally likely to appear as an input. Under this 
assumption, we can readily bound from below the expected number of com­
parisons needed to sort a sequence of n elements. 

The general method is to associate with each leaf v of a decision tree the 
probability that v will be reached on a given input. If we know the probabil­
ity distribution of the inputs, the probabilities associated with the leaves can 
be determined. Thus we can calculate the expected number of comparisons 
made by a particular sorting algorithm by evaluating, over all leaves of the 
decision tree for that algorithm, the sum ~;p;d;, where p; is the probability 
of reaching the ith leaf and d; is its depth. This figure is called the expected 
depth of the decision tree. We are thus led to the following generalization 
of Theorem 3 .4. 

Theorem 3.7. On the assumption that all permutations of a sequence of n 
elements are equally likely to appear as input, any decision tree that sorts 
11 elements has an expected depth of at least log /1 !. 

Proof Let D(T) be the sum of the depths of the leaves of a binary tree T. 
Let D(m) be the. smallest value of D(T) taken over all binary trees T with m 
leaves. We shall show. by induction on m. that D(m) ~ m log 111. 

The basis. m = I, is trivial. Now, assume the inductive hypothesis is 
true for all values of /11 less than k. Consider a decision tree T with k leaves. 
T consists of a root having a left subtree T; with i leaves and a right subtree 
Tk-i with k - i leaves for some i, I :::; i < k. Clearly. 

D(T) = i + D(T;) + (k - i) + D(T"_;). 
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Therefore. the minimum sum is given by 

D(k) = MJN [k + D(i) + D(k - i)]. 
J::::.1s4 

1 nvoking the inductive hypothesis, we obtain from (3.1) 

D(k) =::: k +MIN [i log i + (k - i) log (k - i)]. 
Js1s4 

It is easy to show that the minimum occurs at i = k/2. Thus 

k 
D(k) =::: k + k log 2 = k log k. 

We conclude that D(m) 2: m log m for all m 2: 1. 

(3.1) 

(3.2) 

Now we claim that a decision tree T sorting n random elements has at 
least n! leaves. Moreover, exactly n! leaves will have probability l/n! each, 
and.the remaining leaves will have probability zero. We may remove from T 
all vertices that are ancestors only\ of leaves of probability zero, without 
changing the expected depth of T. We are thus left with a tree T' having 11! 
leaves each of probability l/n!. Since D(T') 2: n! log n!, the expected depth 
of T' (and hence of T) is at least (l/n!) n! log 11! =log n!. 0 

Corollary. Every comparison sort makes at least en log n comparisons 
on average for some constant c > 0. 

There is an efficient algorithm, called Quicksort, which is worth men­
tioning because its expected running time, while bounded below by en log n 
for some constant c, as any comparison sort must be, is a fraction of the run­
ning time of other known algorithms when implemented on most real ma­
chines. The fact that Quicksort has a worst-case running time which is qua­
dratic is not important in many applications. 

i\lgorithm 3.5. Quicksort. 

Input. Sequence S of n elements, a 1, a2 •••• , an. 

'Jutput. The elements of S in sorted order. 

\1ethod. We define the recursive procedure QUICKSORT in Fig. 3.7. The 
ilgorithm consists of a call to QUICKSORT(S). 0 

• 
Theorem 3.8. Algorithm 3.5 sorts a sequence of n elements in O(n log 11) 

expected time. 

>roof The correctness of Algorithm 3.5 follows by a straightforward induc­
ion on the size of S. For simplicity in the timing analysis assume that all ele­
nents of S are distinct. This assumption will maximize the sizes of S 1 and 5:1 
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procedure QU ICKSORT(S): 
I. if S contains at most one element then return S 

else 
begin 

.., choose an element a randomly from S: 

3.5 

3. let 5 1, 5 2 , and S:i be the sequences of elements in S less 
than, equal to. and greater than a, respectively; 

4. return (QUICKSORT(S1) followed by 52 followed by 
QUICKSORT(S3)) 

end 

Fig. 3.7. Quicksort program. 

constructed at line 3, and therefore maximize the average time spent in the 
recursive calls at line 4. Let T(n) be the expectecl'time required by QUICK­
SO RT to sort a sequence of 11 elements, . .,(:I early, T (0) = T( I) = b for some 
constant b. · · 

Suppose that element a chosen at line 2 is the ith smallest element of the 
n elements in sequence S. Then the two recursive calls of QUICKSORT at 
line 4 have an expected time of T(i - I) and T(n - i), respectively. Since i is 
equally likely to take on any value between I and n, and the balance of 
QUICKSORT(S) clearly requires time en for some constant c, we have the 
relationship: 

I II 

T(11):::;; en +-_L [T(i- I)+ T(n - i)], 
II i=I 

for II 2: 2. (3.3) 

Algebraic manipulation of (3.3) yields 
2 11-1 

T(n) :::;; en + - L T(i). 
ll i=ll 

(3.4) 

We shall show that for /1 2: 2, T(11) :::;; k11 log,, 11, where k = 2c + 2b and 
b = T(O) = T( I). For the basis n = 2. T(2) :::;; 2.c + 2b follows immediately 
from (3 4). For the induction step, write (3.4) as 

4b " 11-1 
Ten> :::;; en+ - +-=- L ki log,, i. 

II II i=:! 
( 3.5) 

Since i log,. i is concave upwards. it is easy to show that 

u-1 . . (" II:! log,, II /I:! 
~ 1 log,. 1 :::;; J2 x log,, x dx:::;; 2 -4- (3.6) 

Substituting (3.6) in (3.5) yields 

4b kn 
T(n) :::;; en + - +kn log,. /1 - -::;--

11 -
(3.7) 
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Since 11 ;::::: 2 and /.; = 2c + 2h. it follows that rn + 4h/11 :s; J.:11/2. Thus 
Tllll !S kn log,. 11 follows from (3.7). D 

As a practical matter. we should consider two details. First is the 
method of "randomly" selecting element a in line 2 of QUICKSORT. The 
jmplementer might be tempted to take the easy way out by always choosing. 
say. the first element of sequence S. This choice could cause the perform­
ance of QUICKSORT to be considerably worse than is implied by Eq. (3.3). 
Frequently, the sequence passed to a sorting routine is "somewhat" sorted 
already, so the first element has a higher than average probability of being 
small. As an extreme case, the reader can check tj:iat if QUICKSORT is set 
to work on an already sorted sequence with no duplicates, and if the first ele­
ment of Sis always chosen to be the element a at line 2. then sequence S3 will 
always contain one fewer element than S. In this case QU ICKSORT would 
take a quadratic number of steps. 

A better technique for choosing the partition element a at line 2 would be 
to u·se a random number generator to generate an integer i, I :s; i :s; IS J, t and 
then select the ith element in S a.s a. A somewhat simpler approach would be 
to choose a sample of elements :t\-om S and then use the median of the sample 
as the partition element. For example, the median of the first, middle. and 
last elements of S could be used as the partition element. 

The second matter is how to efficiently partition S into the three 
sequences S 1 • S 2 , and S 3 • It is possible and desirable to have all n original 
elements in an array A. As QUICKSORT calls itself recursively, its 
argument S will always be in consecutive array entries, say 
A [f], A [f + 1], ... , A [I] for some I :s; f :s; I :s; 11. Having selected the 
"random" element a, we can arrange to partition S in place. That is, we can 
move S 1 to A I/] , A I/+ 1 ]. . . . , A [ /.;] , and S 2 U S 3 to A [ /.; + 1 ] , 
A[/.:+ 2], ... , A[/], for some k,f :s; k :s; /. Then, S 2 U S3 can be split up if 
desired, but it is usually more efficient to simply call QUICKSORT recur­
sively on S 1 and S 2 U S 3 , unless one of these sets is empty. 

Perhaps the easiest way to partition S in place is to use two pointers to 
the array. i andj. Initially, i = f, and at all times, A I/] through A [i - I] will 
contain elements of S 1• Similarly, j =I initially, and at all times A [j + I] 
through A[/] will hold elements of S2 U S:i· The routine in Fig. 3.8 will per­
form the partition .. 

After the partition. we can call QU ICKSORT on the array A[{] through 
A(i-1]. which is S 1• and on the array A[j+ I] through A[l]. which is 
S2 U S3 • Howevet if i = f. irr which case S1 = 0. we must first remove at 
least one instance of a. from S2 U S:i· It is convenient to remove the element 
on which we partitioned. It should also be noted that if this array represent-

t We use IS I to denote the length of a sequence S. 
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begin 
). i+-f; 
") j+-1; 

3. while i :::; j do 
begin 

4. while A [j] ~ a and j ~ f do j +-- j - I ; 
5. while A [i] < a and i ::5 I do i +-- i + I; 
6. if i < j then 

begin 
7. interchange A [i] and A [j]; 
8. i - i + l; 
9. j +- j- I; 

end 
end 

end 

Fig. 3.8. Partitioning S into S1 and S2 U S3, in place. 

(a) 

(b) I 2 I 3 I 1 191 1 ! 6 I s I 31 
t t 

j 

Cc) I 2 I 1 13 191 71618131 
t t 
j 

Fig. 3.9. Partitioning an array. 
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;ition is used for sequences. we can pass arguments to QUICKSORT simply 
Ii\' passing pointers to the first and last locations of the portion of the array 
ti~ing used. 

Example 3.5. Let us partition the array A 

2 3 4 5 6 7 8 9 

about the element a = 3. The while statement of line 4 results in j being 
decreased from 9. its initial value. to 7, since A [9] = 3 and A [8] = 8 are both 
equal to or greater than a, but A [7] = I < a. Line 5 does not increase i from 
its initial value of I. since A [I] = 6 ;;;:::: a. Thus we interchange A [I] and 
A [7], set i to 2 and j to 6, leaving the array of Fig. 3.9(a). The results after 
the next two passes through the loop of lines 3-9 are shown in Fig. 3.9(b) and 
(c). At this point i > j, and the execution of the while statement of line 3 is 
complete. 0 

2.6 ORDER STATISTICS 

A problem closely related to sorting is that of selecting the kth smallest ele­
ment in a sequence of /1 elements.t One obvious solution is to sort the 
sequence into nondecreasing order and then locate the kth element. As we 
have seen, this would require /1 log n comparisons. By a careful application 
of the divide-and-conquer strategy, we can find the kth smallest element in 
O(n) steps. An important special case occurs when k = f n/21. in which case 
we are finding the median of a sequence in linear time. 

Algorithm 3.6. Finding the kth smallest element. 

Input. A sequence S of /1 elements drawn from a linearly ordered set and an 
integer k, I s k s 11. 

Output. The /.:th smallest element in S. 

1He1/wd. We use the recursive procedure SELECT in Fig. 3.10. 0 

Let us examine Algorithm 3.6 intuitively to see why it works. The basic 
idea is to partition the given sequence about some element /11 into three 
subsequences 5 1• 5 2 • 53 such that S 1 contains all elements less than m. S 2 all 

.,. Strictly speaking. the kth small<'st of a sequence a 1. a~ . .... a,, is an element h in 
the sequence such that there are at most k - I values for i for which a; < h and at least 
I.:. values of i for which a; ::5 h. For example. 4 is the second and third smallest ele­
ment of the sequence 7. 4. ::!. 4. 
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procedure SELECT(k. 5): 
I. if ISi < 50 then 

begin 
., sort S: 
3. return kth smallest element in S 

end 
else 

begin 
4. divide S into LISl/5 J sequences of 5 elements each 
5. with up to four leftover elements: 
6. sort each 5-element sequence; 

3.6 

7. let M be the sequence of medians of the 5-element sets; 
8. m +- SELECT(f!Ml/21. M); 
9. let S1, S2 , and Sa be the sequences of elements in S less 

than, equal to, and greater than' m, respectively; 
10. if IS 1I =::= k then return_SEl.ECT(k. 5 1) 

else , 
11. if (15 11 + JS2 J =::= k) then return m 
12. else return SELECT(k- !Sil - IS2I. Sa) 

end 

Fig. 3.10. Algorithm to select kth smallest element. 

Elements known to 
be less than 

... ----or equal tom 

r-___ l ___ -:-1 

1• • • ., 

!DI~ sorted sequences I I Sequence M shown 
represented as I • • • I • in sorted order 
columns with smallest I m L µ 
element on top ( t Ir'. I ~ 

--=t=· =· =-::t'.--J _. -~~ 
I I 
1 • • • • 1 

I I 
l.!_ • ..!, _. ~ -- _.!.J • • • 

• • • 

s I 
Elements known to----· 
be greater than 
or equal tom 

Fig. 3.11 Partitioning of S by Algorithm 3.6. 
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clements equal to m. and 5:1 all elements greater than m. By counting the 
numhcr of elements in S 1 and in S ~·we can determine in which of S 1 • S ~. or S :i 
the kth smallest element lies. In this manner we can replace the given 
problem by a smaller problem. 

In order to obtain a linear algorithm we must be able to find a partition 
clement in linear time such that the sizes of the subsequences 5 1 and Sa are 
each no more than a fixed fraction of the size of S. The trick is in how the 
partition element 111 is chosen. The sequence S is partitioned into sub­
sequences of five elements each. Each subsequence is sorted and the median 
is selected from each subsequence to form the sequence M. Now M contains 
only Ln/5 J elements, and we can find its median five.-times faster than that of a 
sequence of /1 elements. 

Furthermore at least one-fourth of the elements of S are less than or 
equal to m and at least one-fourth of the elements are greater than or equal to 
m. This is illustrated in Fig. 3. 1 1. The question arises, why the "magic 
number" 5? The answer is that there are two recursive calls of SELECT, 
each on a sequence a fraction of the size of S. The lengths of the two 
sequences must sum to less thip IS I to make the algorithm work in linear 
time. Numbers other than 5 will work, but for certain numbers sorting the 
subsequences will become expensive. We leave it as an exercise to deter­
mine which numbers are appropriate in place of 5. 

Theorem 3.9. Algorithm 3.6 finds the kth smallest element in a sequence 
S of n elements in time O(n). 

Proof The correctness of the algorithm is a straightforward induction on the 
size of S, and this part of the proof is left for an exercise. Let T (11) be the 
time required to select the kth smallest element from a sequence of size n. 
The sequence of medians M is of size at most n/5 and thus the recursive call 

SELECT(flMl/2·1. M) 

requires at most T(n/5) time. 
Sequences S1 and S3 are each of size at most 311/4. To see this note that 

at least Ln/tOJ elements of Mare greater than or equal to 111. and for each of 
these elements there are two distinct elements of S which are at least as large. 
Thus S 1 is of size at most ll - 3 L11/IOJ, which for /1 ~ 50 is less than 311/4. A 
similar argument applies to Sa. Thus the recursive call at line 10 or 11 
requires at most T(3n/4) time. All other statements require at most 0(11) 
time. Thus, for SOP1e constant .c, we have 

T(11) s en, 
T(n) s T(11/5) + T(311/4) +en. 

for /1 s 49. 
for /1 ~ 50. 

From (3.8) we can prove by induction on /1 that T(n) s 10c11. D 

(3.8) 
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3.7 EXPECTED TIME FOR ORDER STATISTICS 

In this section we shall consider expected time results for selecting the k th 
smallest element in a sequence of /1 elements. We shall see that at least /1 - I 
comparisons are needed to find the kth smallest element both in the worst 
case and in the expected time case. Thus the·selection algorithm given in the 
previous section is optimal under the decision tree model to within a constant 
factor. In this section we shall present another selection algorithm. one 
whose worst-case behavior is quadratic but whose expected time behavior is a 
fraction of that of Algorithm 3.6. 

Let S = {a 1, a2 , •••• a,,} be. a set of /1 distinct elements. Let T be the 
decision tree of an algorithm for finding the kth smallest element in S. Every 
path p in T defines a relation R,, on S such that a;R 1,ai if two distinct elements 
a; and a i are compared at some vertex on p and the outcome of that compari­
son is either a;< ai or a;:::;; ai.t Let Rt be the transitive closure of the rela­
tion R ".+ l ntuitively. if a ;Rt ai, then the sequence of Comparisons represented 
by path p determines that a; < a; sine~ no·.,element is compared to itself. 

Lemma 3.3. If path p determines that element am is the kth smallest in S, 
then for each i ¥- m, 1 :::;; i :::;; n, either a;Rta 111 or a,,,Rta;. ' 

Proof Suppose some element au is unrelated to am by the relation Rt. We 
shall show that by placing a,, either before a111 or after a,,, in the linear ordering 
on S. we can contradict the assumption: that path p has correctly determined 
that a 111 is the kth smallest element in S. Let S 1 = {a;la;Rtau} and 
S2 = {ailauRta;}. Let S3 be the remaining elements in S. By hypothesis, au 
and am are in S3• 

If ai is any element in S 1 (respectively, S 2 ) and a1Rtai (respec­
tively, aiR;a1), then by transitivity, a 1 is also in S 1 (respectively,. S 2). 

Thus we may construct a linear order R consistent with Rt such that all 
elements in S 1 precede all those in S3 which, in turn, precede all those in S2• 

By hypothesis a" is unrelated by Rt to any element in S3 • Suppose that 
a,, precedes a,,,. in this linear order R. i.e .. a11Ra 111 • Then we can find a new 
linear order R' which is the same as R except that a11 is moved immediately 
after a 111. R' is also consistent with R;. For each of R and R' we can find 
distinct integer values for the a's that will satisfy either R or R ', respectively. 
But a,,, cannot be the kth element in both cases. since a 111 is preceded by one 
fewer element in R' than in R. We may therefore conclude that if some ele­
ment in S is not related by Rt to a,,,. then T does not correctly select the kth 

'element in the set S. The case a,,.Ra,. is handled symmetrically. 0 

t Recall that we assume each comparison 11 vs. h has outcome a < h or b ::::;; 11. If 
a, < 11;. the comparison was 11; vs. a; with outcome a; < 11;. If a, =::; a;. the comparison 
was a; vs. a; with outcome a; s a;. . 
+ The trc111siti1·e clo.rnre 'of a relation R is the relation R+ defined by cR +cf if a11d oniy if 
there is a sequence e,Re~. e~R<':i· .. .. e,,,_ 1Re,,,. where /11 2: 2. ,. = e1, and cl= e,,,. 
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Theorem 3.10. If T is a decision tree that selects the kth smallest ele­
ment in a set S. 11511 = 11, then every leaf of T has depth at least /1 - I. 

Pr(}(~( Consider a path p in T from the root to a leaf. By Lemrria 3.3. either 
a ;R ;a,,, or a ,,,R ;a; for each i ¥- m. where a,,, is the element selected as k th 
smallest. For element a;, i ¥- m, define the key comparison for a; to be the 
first comparison on p involving a; such that either: 

I. ·a; is compared with am• 
2. a; is compared with ai, a;R1,ai, and aJRta,,,, or 
3. a; is compared with ai, aiR11a;. and a,,,R;ai. 

Intuitively, the key comparison for a; is the first comparison from which we 
can eventually determine whether.a; precedes or follows am. 

Clearly. every element a; except a 111 has a key comparison, else we would 
have neither a;Rta 111 nor amRta;. Furthermore, it is easy to see that no com­
parison may be the key comparison for both elements being compared. Since 
there are n - 1 elements that must be involved in key comparisons, the path p 
must have length at least n - 1. q 

\ 
Corollary. Finding the kth smaliest element in S requires at least n - 1 
comparisons in either the expected or worst-case sense. 

In fact, a stronger result than Theorem 3.10 can be proven for all k ex­
cept 1 or n. See Exercises 3.21-3.23. 

When it comes to finding a good expected-time algorithm for computing 
the kth smallest element in S, a strategy similar to Quicksort works well. 

Algorithm 3.7. Finding the kth smallest element. 

Input. A sequence S of 11 elements drawn from a set with linear order :s, and 
an integer k, 1 :s k :s n. 

Output. The kth smallest element in S. 

Method. We apply the recursive procedure SELECT given in Fig. 3.12. 0 

Theorem 3.11. Algorithm 3.7 has a linear expected running time. 

Proof Let T(11) be the expected running time of SELECT on a sequence of 
n elements. For simplicity, assume that all elements in S are distinct. (The 
results do not change if there are repeated elements.) 

Suppose the element a chosen at line 2 is the ith smallest element in S. 
Then i may be any bf I, 2, ... ; /1 with equal probability. If i > k, we call 
SELECT on a sequence of. i - I elements, and if i < k. we call it on a 
sequence of /1 - i elements. Thus the expected cost of the recursion at line 4 
or 6 is 

I [k-1 " J I [ 11-1 11-1 J n ~ T(11 - i) + i=~i T(i - I) = n i=r~·+i T(i) + ~- T(i) . 
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procedure SELECT(k. S): 
I. if ISi = I then return the single element in S 

else 
begin 

.., choose an element a randomly from S: 
3. let S 1• 5 2 • and S:1 be the sequences of elements in S less 

than. equal to. and greater than a. respectively: 
4. if IS 1 I ;:::: k then return SELECT<k. S1) 

else 
5. if IS 1 I + IS2I ;:::: k then return a 
6. else return SELECT(k - IS,1- IS2 j. S3 ) 

end 

Fig. 3.12. Selection algorithm. 

I 

The rest of procedure SELECT require~.cn time for some constant c, so 
we have the following inequality for n .;::;_ 2: 

{ J [ 11-1 11-1 ]} 

T(n) ::::;; en + M~X n i=•~+• T(i) + ~ T(i) • · (3.9) 

We leave it as an inductive exercise to show that if T(l) ::::;; c, then for all 
n ;:::: 2, T(n) ::::;; 4cn. 0 

EXERCISES 

3.1 Use Algorithm 3.1 to sort the strings abc, acb, bca, bbc, ace, bac, baa. 

3.2 Use Algorithm 3.2 to sort the strings a, be:, aab, baca, c:bc:. cc. 

3.3 Test whether the two trees in Fig. 3.13 are isomorphic in the sense of Example 
3.2. 

3.4 Sort the list 3. I. 4. I. 5. 9, 2. 6. 5. 3. 5. 8, 9. 7 using (al Heapsort, (b) Quick­
sort. (c) Mergesort !Algorithm 2.4). In each case. how many comparisons are 
made? 

3.5 Consider the following algorithm to sort a sequence of elements a 1, a2 • •••• lln 

stored in array A. That is. A [i] =a; for I s i s 11. 

procedure BUBBLESORT(Al: 
for j = 11 - I step - I until I d.o 

for i = I step I until j do 
if A [i + I] <A [i] then interchange A [i] and A [i + I] 

al Prove that BUBBLESORi sorts the elements in A into nondecreasing order. 
hi Determine the worst-case and expected running times of BUBBLESORT. 
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Fig. 3.13 Two trees. 

3.6 Complete the proof that a heap can be constructed in linear time (Theorem 3.5). 

3.7 Complete the proof that Heapsort requires O(n log n) time (Theorem 3.6). 
t 

3.8 Show that the worst-case running time of Quicksort is 0(n2 ). 

3.9 What is the worst-case running time of Algorithm 3.7 for finding the kth smallest 
element? 

3.10 Prove that the expected time to sort n elements is bounded below by en log 11 

for some constant c by completing the proof of Theorem 3. 7 and solving 
Eq. (3.2), on p. 93. 

3.11 Complete the proof that Algorithm 3.6 finds the kth smallest element in time 
O(n) (Theorem 3.9) by solving Eq. (3.8), on p. 99. 

3.12 Prove the correctness of the partitioning routine in Fig. 3.8 (p. 96) and 
analyze its running time. 

3.13 Complete the proof that Algorithm 3.7 for finding the kth smallest element has 
expected time O(n) (Theorem 3. I I) by solving Eq. (3.9), on p. 102. 

3.14 Show that the expected number of comparisons used by Algorithm 3.7 is at 
most 411. Can you improve this bound if you know the value of k for which the 
algorithm will be used? 

3.15 Let S be a sequence of elements with m; copies of the i!h element for 
I :s i :s k. Let n = If=imi. Prove that 

comparisons are ne~essary and s'ufficient to sort S by a comparison sort. 

1.16 Let S 1• S 2 ••••• SA. be sets of integers in the range I to 11. where the sum of the 
cardinalities of the S;'s is n. Describe an 0(11).algorithm to sort all of the S;'s. 

l.17 Given a sequence a 1• a 2 • .•. , l!n and a permutation 7T( I). 7T(2), .•.• 7T(n). write 
a Pidgin ALGOL algorithm to rearrange the sequence in place into the order 
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"3.18 

3.19 

*3.20 

**3.21 

**3.22 

**3.23 

**3.24 

*3.25 

*3.26 

SORTING AND ORDER STATISTICS 

c1.,.11 ,. 11,.,~·· •••• 11,.,n•· \Vhat arc lhc worst-case and the expected running times 
of your algorithm? 

In building a heap of size 2"° - I. we built two heaps of size 2"°- 1 - I. then com­
hined them hy adding a root and pushing the clement at the root down to its 
proper place. .One could just as easily have built a heap by adding one element 
at a time as a new leaf and pushing the riew element up the tree. Write an 
algorithm for building a heap by adding one leaf at a time and compare the 
asymptotic growth rate of your algorithm to that of Algorithm 3.3. 

Consider a rectangular array. Sort the elements in each row into increasing 
order. Next sort the elements in each column into increasing orJer. Prove that 
the elements in each row remain sorted. 

Let 11 1• a~ .. ... a,. be a sequence of elements and let p and q be pos1t1ve in­
tegers. Consider the subsequences formed by selecting every pth element. Sort 
these subsequences. Repeat the process for q. Prove that the subsequences of 
distance p remain sorted. 

Consider finding both the largest and 
elements by means of comparisons. 
are necessary and sufficient. 

l 
second largest elements from a set of /1 

P-rove°'that II + r log 11 l - 2 comparisons 

Show that the expected number of comparisons needed to find the kth small­
est element in a sequence of /1 elements is at least (I + . 7 5a( I - a ))n, where 
a = k/11. and k and /1 are sufficiently large. 

Show that in the worst case, 11 + MIN (k, 11 - k + I) - 2 comparisons are nec­
essary to find the kth smallest element in a set of n elements. 
Let S be a set of 11 integers. Assume you can perform only addition of ele­
ments of Sand comparisons between sums. Under these conditions how many 
comparisons are required to find the maximum element of S? 

Algorithm 3.6 divides its argument into subsequences of size 5. Does the 
algorithm work for other sizes such as 3, 7, or 9? Select that size which 
minimizes the total number of comparisons. Figure 3.14 indicates the fewest 
known number of comparisons to sort various size sets. For n s 12. the 
number of comparisons shown is known to be optimal. 

Algorithm 3.5 divides a sequence into subsequences of length 5, finds the 
median of each subsequence, and then finds the median of the medians. Instead 
of finding the median of the medians would it be more efficient to find some 
other element such as the Lk/5 Jth? 

Si/.c 11 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Compari~ons () I 3 5 7 10 13 16 19 .,., 26 30 34 38 42 46 50 --

Fi~. 3.1-1. Fewest known comparisons to sort 11 elements. 
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• 3.27 Consider the following sorting method. Start with a sequence consisting o!" 
one element. Insert the remaining elements into the sequence one at a time hy 
binary search. Devise a data structure which will allow you to perform binary 
search and insert elements quickly. Can you implement this sort in· 0(11 log 11) 

time? 

••J.28 Instead of selecting one random element to partition a set of size 11, as we did 
in Quicksort or Algorithm 3.7, we could choose a small sample. say of size s, 
find its median, and use that median to partition the entire set. Show how to 
choose s as a function of n to minimize the expected number of comparisons 
needed to sort. 

'*3.29 Extend the idea of Exercise 3.28 to minimize theT number of comparisons 
needed to find order statistics. [Hint: Choose two elements from the sample set 
that with high probability straddle the desired element.] 

3.30 A sorting method is stable if equal elements remain in the same relative order in 
the sorted sequence as they were in originally. Which of the following sorting 
algorithms are stable? 
a) BUBBLESORT (Exercise 3.5) 
b) Mergesort (Algorithm 2.4) ' 

\ c) Heapsort (Algorithm 3.4) 
d) Quicksort (Algorithm 3.5) 

Research Problem 

3.31 There are several open problems concerning the number of comparisons needed 
in certain situations. For example, one might wish to find the k smallest ele­
ments out of a set of 11. The case k = 3 is discussed by Pratt and Yao [ 1973]. 
It is not known, for n ~ 13, whether the numbers given in Fig. 3.14 are optimal 
for sorting n elements. For small n, the sorting algorithm of Ford and Johnson 
[ 1959] is optimal in terms of the number of comparisons. 

BIBLIOGRAPHIC NOTES 

Knuth [ l 973a] is an encyclopedic compendium of sorting methods. Heapsort origi­
nated with Williams [ 1964] and was improved by Floyd [ 1964]. Quicksort is due to 
Hoare [1962]. Improvements to Quicksort along the lines of Exercise 3.28 were 
suggested by Singleton [ 1969] and Frazer and Mc Kellar [ 1970]. Algorithm 3.6. the 
linear worst-case algorithm for finding order statistics. is by Blum, Floyd, Pratt, 
Rivest, and Tarjan [ 1972]. Hadian and Sobel [ 1969] and Pratt and Yao [ 197 3] 
discuss the number of comparisons for finding certain order statistics. 

The result in Exercise 3.21 is due to Kislitsyn [1964]. Exercises 3.22. 3.23 and 
3.29 are from Floyd and'"R.ivest [ 1973], which also contains a stronger lower bound 
than stated in Exercise 3.22. Exercises 3.19. 3.20. and some generalizations are dis­
cussed in Gale and Karp [ 1970] and Liu [ 197::!]. An interesting application of 
sorting to finding the convex hull of a set of points in the plane is given by Graham 
[1972]. Stable sorting has been tre.ated by Horvath [1974]. 
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A good way to approach the design of an efficient algorithm for a given 
problem is to examine the fundamental nature of the problem. Often. a 
problem can be formulated in terms of basic mathematical objects such as 
sets. and an algorithm for the problem can be outlined in terms of fundamental 
operations on these basic objects. An advant~ge of this point of view is that 
we can examine several alternative data structures in order to select the one 
that is best suited for the problem as a whole. Thus good data structure 
design goes hand-in-hand with good algorithm design. 

In this chapter we shall study seven fundamental operations on sets, 
which are characteristic of many searching and information retrieval 
problems. We present a variety of data structures for representing sets and 
consider the suitability of each structure when a sequence of various types of 
operations is to be performed. 

·' 
4.1 FUNDAMENTAL OPERATIONS ON SET~ . ·~·· 

We shall consider the foliowing basic operations on sets. 

I. MEMBER(a, S). Determine whether a is a member of s; if so, print 
"yes," otherwise, print "no." 

.., INSERT(a, S). Replace set S by S U {a}. 
3. DELETE(a, S). Replace set S by S - {a}. 
4. UNION(St> S 2 , S 3). Replace sets S 1 and S 2 by S 3 = S 1 U S 2 • We shall 

assume that S 1 and S 2 are disjoint when this operation is performed, in 
order to avoid the necessity of deleting duplicate copies of an element in 
s I u S2. 

5. FIND(a). Print the name of the set of which a is currently a member. 
If a is in more than one set, the instruction is undefined. 

6. SPLIT(a, S). Here we assume S is a set with a linear order ::::; on its ele­
ments. This operation partitions S into two sets S 1 and S 2 such that S 1 = 
{bib ::::; a and b E S} and S2 = {bib > a and b E S-}. 

7. MIN (S ). Print the smallest (with respect to ::::;) element of the set S. 

Many problems encountered in practice can be reduced to one or more 
subproblems, where each subproblem can be abstractly formulated as a 
sequence of basic instructions to be performed on some data base (universal 
set of elements). In this chapter we shall consider sequences of instructions 
<T in which the instructions in <T are drawn from a subset of these seven set 
operations. 

For example, processing sequences of MEMBER, INSERT, and DE­
LETE operations is an integral part of many searching problems. A data 
structure that can be used to process a sequence of MEMBER. INSERT. and 
DELETE operations will be called a dictionary. In this chapter we shall 
study several data structures, such as hash tables, binary search trees, and 
2-3 trees. which can be used to implement dictionaries. 
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There are a number of questions of interest. We shall be primarily inter­
ested in the time complexity of er, that is, the amount of time required to ex­
ecute the instructions in er measured as a function of the length of er and the 
size of the data base. We shall consider both average and worst-case time 
complexity and shall make a further distinction between on-line and off-line 
complexity. 

Definition. The on-line execution of er requires that the instructions in er 
be executed from left to right, executing the ith instruction in er without 
looking at any following instructions. The off-line execution of er permits 
all of er to be scanned before any answers need to be produced. 

Clearly, any on-line algorithm can be used as an off-line algorithm, but 
the converse is not necessarily true. We shall see situations in which an off­
line algorithm is faster than any known on-line algorithm. However, in many 
applications we are restricted to considering only on-line algorithms. 

Given a sequence of instructions to execute, the most basic question is 
what data structure we should µse to represent the underlying data base. 
Often, a problem will require a careful balance between two conflicting 
desires. In the typical situation, the sequence will specify several operations 
which are tq be repeatedly performed, often in an unknown order. There 
may be several data structures, each of which makes one operation very easy 
to perform but .other operations very hard. In many cases, the best solution 
is a compromise. We often use some data structure that makes no operation 
as easy as it could be, but one that makes the overall performance better than 
that of any obvious approach. 

We now give an example that illustrates how the spanning tree problem 
for graphs can be formulated in terms of a sequence of set operations. 

Definition. Let G = (V, E) be an undirected graph. A spanning tr~e of 
G is an undirected tree S = (V, T). A spanning forest for G = (V, E) is 
a set of undirected trees {(V1 , T1), (V2, T2), ... , (Vk, Tk)} such that the 
V;'s form a partitiont of V and each T; is a (possibly empty) subset of E. 

A cost function c for a graph G = (V, E) is a mapping from E to real 
numbers. c( G '), the cost of a subgraph G' = ( V', E') of G, is ~eeE' c(e ). 

Example 4.1. Consider the algorithm shown in Fig. 4.1 for finding 
S = (V, T), a minimum-cost spanning tree of a given graph G = (V. E). This 
minimum-cost spanning tree algorithm is discussed in detail in Section 5.1, 
and its application is.illustrated in Example 5.1. 

The algorithm of Fig. 4.1 uses three sets, E, T, and VS. Set E contains 
the edges of the given graph G. Set T is used to collect the edges of the final 
spanning tree. The algorithm ~orks by transforming a spanning forest for G 

t That is, V1 u V2 U · · · U v,. = V and V; n V; = 0 for i ¢ j. 
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begin 
I. T~~: 
.., VS~ IX: 
3. for each vertex 1· E V do add the singleton set {I"} to VS: 
4. while llVSll > I do 

begin 
5. choose (v. 11·). an edge in E of lowest cost: 
6. delete (1•, w) from £: 
7. if 1• and 11· are in different sets W, and W2 m VS then 

begin 
8. replace W 1 and W2 in VS by W, U W2 : 

9. add (v, w) to T 
end 

end 
end 

/ 

l 

Fig. 4:1. Minimum-cost spanning tree algorithm. 

into a single spanning tree. The set VS .contains the vertex sets of the trees in 
the spanning forest. Initially. VS contains each vertex of G in a set by itself. 

We can view the algorithm as a sequence of operations that manipulate 
the three sets £, T, and VS. Line 1 initializes the set T. Lines 2 and 3 ini­
tialize VS; the elements of VS are sets themselves. Line 3 adds the initial 
singleton sets to VS. Line 4. which controls the main loop of this algorithm. 
requires maintaining a count of the number of sets of vertices in the set VS. 
In line 7 we determine whether edge (v, w) connects two trees in the spanning 
forest. If so, the two trees are merged in line 8 and the edge (1·, w) is added 
to the final spanning tree in line 9. 

Line 7 requires that we be able to find the name of the set in VS that con­
tains a particular vertex. (The actual names used for the sets in VS are not 
important. so arbitrary names can be used.) Basically, line 7 requires that we 
be able to handle the FIND primitive efficiently. Similarly. line 8 requires 
that we be able to execute the UNION operation on disjoint sets of vertices. 

Finding a data structure to handle either the UNION operation by itself 
or the FIND operation by itself is relatively easy. However, here the data 
structure should be one in which both UNION and FIND ate easy to 
implement. Furthermore, since execution of the UN ION operation in line 8 
depends on the outcome of the FIND operations in line 7, the execution of 
the required sequence of UNION and FIND instructions· must be on-line. 
We shall study two such structures in Sections 4.6 and 4.7. 

Consider the sequence of operations performed on the set of edges £. 
At line 5 we need the MIN interrogation primitive and in line 6 we need th~ 
DELETE primitive. We have already encountered a good data structure fol 
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these two primitives. the heap of Section 3.4. (Although there the heap was 
used to find the largest element. it should be obvious that the heap can be 
used just as easily to find the smallest element.) 

Finally. the set T of edges for the spanning tree requires only the opera­
tion INSERT at line 9 to add a new edge to T. A simple list suffices here. 0 

4.2 HASHING 

Besides the question of which instructions appear in a given sequence of in­
structions <r, another important issue in the selection of a suitable data struc­
ture to process <r is the size of the data base (universal ~set) being manipulated 
by the operations in <r. For example, we saw in Chapter 3 that the problem 
of sorting a sequence of /1 elements could be done in linear time using a 
bucket sort if the elements were integers· in some suitable range. However, 
if the elements were drawn from an arbitrary linearly ordered set, then 
0(11 log 11) time was the best we could do. 

In this section we shall consider the problem of maintaining a changing 
sei S of elements. New elements w\JI be added to S, old elements will be re­
moved from S, and from time to time we shall have to answer the question, 
''ls element x currently in S ?" This problem is modeled naturally by a dic­
tionary: we need a data structure_ that will permit sequences of MEMBER, 
INSERT, and DELETE instructions to be processed conveniently. We shall 
assume that the elements that can appear in S are chosen from an extremely 
large universal set, so that representing S as a bit vector is impractical. 

Example 4.2. A compiler or an assembler keeps track in a "symbol table" of 
all the identifiers it has seen in the program it is translating. For most 
programming languages the set of all possible identifiers is extremely large. 
For example, in FORTRAN there are about 1.62 x I 0 11 possible identifiers. 
Thus it is infeasible to represent a symbol table by an array with one entry for 
each possible identifier, independent of whether that identifier actually ap­
pears in the program. 

The operations which a compile.r performs on a symbol table are of two 
types. First, new identifiers must be added to the table as they are encoun­
tered. This job involves setting up a location in the table into which the par­
ticular identifier is stored and into which data about the identifier (e.g .. is it 
real or integer?) can be stored. Second. from time to time the compiler may 
request information a~out an iden~ifier (e.g .. is the identifier of type integer?). 

Thus a data structure that can handle the operations INSERT and 
MEMBER is likely to be satisfactory for implementing a symbol table. In 
fact. the data structure discussed in this section is often used to implement a 
symbol table. 0 

We shall consider lwshi11~. a technique which handles not only INSERT 
and MEMBER instructions. as needed in symbol tuble construction. but the 
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A 

0 List for h(iJ) = O 

List for h(iJ) = 1 

m-1 --r-- · · · List for ll(a) = m - 1 
~~~ 

Fig. 4.2 ·A hashing scheme. 

DELETE instruction as well. There are many varia.tions on the theme of 
hashing, and we shall consider only the basic idea here. 

· A hashing scheme is represented by fig. ·44':2. There is a hashing func­
tion h, which maps elements of the universal set (e.g., in the case of a symbol 
table, the set of all possible identifiers) to the integers 0 through m - I. We 
assume throughout that, for all elements a, h(a) can be computed in a con­
stant amount of time. There is a size m array A whose entries are pointers to 
lists of members of the set S. The list pointed to by A [i] consists of all those 
elements a in S such that h(a) = i. 

To execute the instruction INSERT(a, S). we compute /z(a) and then 
search the list pointed to by A [lt(a)]. If a is not on this list, it is appended to 
the end of t~is list. To execute the instruction DELETE(a, S), we again 
search the !is! A [h (a)] and delete a if it appears on this list. Similarly,. 
MEMBER(a. 5) is answered by scanning the list A [lt(a)]. 

The computational complexity of this hashing scheme is easy to analyze. 
From a worst-case standpoint it is not very good. For example, suppose we 
have a sequence u of n distinct INSERT operations. It is possible that lz 
applied to each element to be inserted yields the same number, with the result 
that all elements appear on the same list. In this situation, it requires time 
proportional to i to process the ith instruction in <T. Thus hashing can require 
time proportional to 11 2 to add all n elements to the set S. 

However. in an expected time sense hashing looks muc.h better. If we 
·assume that /z(a) is equally likely to be any value between 0 and m - l, and 
that /1 :::; m elements are· to be inserted. then on inserting the ith element. the 
expected length of the list on which it is placed is (i - I )/m. which is always 
less than I. Thus the expected time needed to insert n elements is O(n). If 
O(nl DELETE and MEMBER operations are executed in conjunction with 
the INSERT operations. the total expected cost is still O(:r). · 

Bear in mind that this analysis presumes m, the size of the hash table, to 
be equal to or greater than 11. the maximum size of the set S. However. /1 is 
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usually not known in advance. A reasonable way to proceed when n is un­
known is to be prepared to construct a sequence of hash tables T11 • T,. 

T" .... 
- We choose some suitable value for the size /11 of the initial hash table T 0 . 

Then. once the number of elements inserted in T 0 exceeds m, we create a new 
hash table T 1 of size 2m and, by rehashing,t move all elements currently in T0 

into T,. The old hash table T0 can now be discarded. We can then continue 
inserting more elements in T 1 until the number of elements exceeds 2m. At 
this point we create a new hash table T 2 of size 4m, and rehash the elements 
from T, to T 2 • In general, we create a table T1.· of size 2km as soon as table 
Tk-i contains 2k- 1111 ele_ments. We continue in this- way until we have in­
serted all elements. 

Consider the expected time required to insert 2k elements into a hash 
table, using this scheme and assuming m = 1. We see that this process is 
modeled by the recurrence 

T(I) = 1, 

T(2k) = T(2k- 1 ) + 2k, ' 
\ 

whose solution is clearly T(2k) = 2k+1 - 1. 
We conclude that a sequence of 11 INSERT, MEMBER, and DELETE 

instructions can be processed in 0(11) expected time by hashing. 
The choice of the hashing function h is important. If the elements to be 

added to S are integers uniformly distributed in some range 0 to r, where 
r >> 11, then h(a) can be taken to be a modulo m, where m is the size of the 
current hash table. Other examples of hashing functions can be found in 
some of the references cited at the end of the chapter. 

4.3 BINARY SEARCH 

In this section we shall compare three different solutions to a simple searching 
problem. We are given a set S with n elements drawn from some large uni­
versal set. We are to process a sequence <T consisting only of MEMBER in­
structions. 

The most straightforward solution is to store the elements of S in a list. 
Each MEMBER(a, S) instruction is processed by sequentially searching the 
list until the given element a is found or until all of the elements in the list 
have been examined. This solu~ion requires time proportional to 11 x i<TI to 
process all instructions in <T both in the worst case and in the expected case. 
The main advantage of this scheme is that it requires very little preprocessing 
time. 

t A new hashing function. one which will give values from 0 through 2m - I. must be 
used. · 
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· procedure SEARCH(a. I /): 
if f > I then return "no" 
else 

if a= A ( L<f + /)/2_J] then retu~n "yes" 
else 

if a < A [ l (f + /)/2 J] then 
return SEARCH(a,f, L<J+ l)/2J - I) 

else return SEARCH(a, l<f + /)/2J + I. /) 

Fig. 4.3. Binary search algorithm. 

4.3 

Another solution is to enter the elements of S in a hash table of size llSll. 
An instruction MEMBER(a, S) is executed by searching the list h(a). If a 
good hashing function h can be found, then this solution requires O(lo-1> ex­
pected and O(nlo-1> worst-case time to process o-. The· primary difficulty is 

I 

finding a hashing function that will uniformly distribute the elements of S 
throughout the hash table. - ·4 •· 

If tqere is a linear order ::::; on S, a third solution is to use binary search. 
Here we store the elements of S in an array A. Next we sort the.array so that 
A [I] <A [2] < · · · <A [n]. Then to determine whether an element a is in 
S, we compare a with the element b stored in location LO + n)/2J. If a= b, 
we halt and answer "yes." Otherwise, we repeat this procedure on the first 
half of the array if a < b, or on the last half if a > b. By repeatedly splitting 
the search area in half, we need never make more than flog (n + 1)1 compari­
sons to find a ot to determine that it is not in S. 

The recursive procedure SEARCH(a, f, I) given in Fig. 4.3 looks for ele­
ment a in locations f, f + I, f + 2, ... , I of the array A. In order to deter­
mine whether a is in S, we call SEARCH(a, I, n). 

To understand why this procedure works, we can imagine that the array 
A represents a binary tree. The root is at location L(I + n)/2J, and the left 
and right sons of the root are_ located at. LO + n)/4 J and L3( I + 11)/4 J, and so 
on. This interpretation of binary search will become clearer in the next sec­
tion. 

It can be easily shown that SEARCH makes at most flog (11 + I >l com­
parisons when looking for any element in A, since no path in the underlying 
tree is longer than flog (11 + 1)1. If all elements are equally likely to be 
targets for a search, then it can also be shown (Exercise 4.4) that SEARCH 
gives the optimal expected number of comparisons (namely, lo-I x log ii) to 
process the MEMBER instructions in the sequence cr.t 

t Of course. hashing does not work by comparisons alone. so it is possible. that 
hashing is "better" than binary search, and in many cases, it is. 



BINARY SEARCH TREES 115 

4.4 BINARY SEARCH TREES 

Consider the following problem. We have a set S in which elements are 
being inserted, and from which elements are being deleted. From time to 
time we may want to know whether a given element is in S or we may want to 
know what is the smallest element currently in S. We assume that the ele­
ments being added to S come from a large universal set that is linearly or­
dered by a relation· :s;. This problem can be abstracted as processing a 
sequence of INSERT, DELETE, MEMBER, and MIN instructions. 

We have seen that a hash table is a good data structure for processing 
sequences of INSERT, DELETE, and MEMBER instr.!lctions. However, it 
is not possible to find the smallest element in a hash table without searching 
the entire table. A data structure that is suited for all four instructions is the 
binary search tree. 

Definition. A binary search tree for a set S is a labeled binary tree in 
which each vertex v is labeled by an element l(v) E S such that 

I. for each vertex u in the left ,subtree of v, l(u) < l(v), 
2. for each vertex u in the right subtree of v, l(u) > L(v), and 
3. for each element a E S, there is exactly one vertex v such that 

L(v) =a. 

Note that conditions 1 ·and 2 imply that the labels of the tree are in in­
order. Also, condition 3 follows from 1 and 2. 

Example 4.3. Figure 4.4 shows one possible binary search tree for the 
ALGOL keywords begin, else, end, if, then. The linear order here is lex­
icographic order. D 

Fig. 4.4 A binary search tree. 
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To determine whether an element a is in a set S represented by a binary 
search tree, we compare a with the label of the root. If the label of the root is 
a, then a is clearly in S. If a is less than the label of the root, we then search 
the teft subtree of the root (if one exists). If a is greater than the label of the 
root. we search the right subtree of the root.. If a is in the tree. it will eventu­
ally be located. Otherwise, the process terminates when we would have to 
search a nonexistent left or right subtree_. 

Algorithm 4.1. Searching a binary search tree. 

Input. A binary search tree T for a set Sand an element a. 

Owput. "Yes" if a E S, "no" otherwise. 

MethQd. If Tis empty,t return "no." Otherwise let r be the root of T. The 
algorithm then consists of a single procedure call. SEARCH(a, r), of the 
recursive procedure SEARCH defined in Fig. 4.5. Q 

Algorithm 4.1 clearly suffices to execute.,the instruction MEMBER(a, S). 
Moreover, we can e&sily modify it to execute the instruction INSERT(a, S). 
If the tree is empty, we create a root labeled a. If the tr~e is not empty and 
the element to be inserted is not found on the tree, then the procedure 
SEARCH fails to find a son either at line 3 or at line 5. Instead of returning 
"no" at line 4 or 6, respectively, a new vertex is created for the element and 
attached where the missing son belongs. 

Binary search trees are convenient for executing MIN and DELETE in­
structions as .well. The smallest element in a binary search tree T is found by 
following the: path v0, v1, ... , vp, where v0 is the root of T, v1 is the left son 
of v1_ 1 for I s i s p, and vP has no left son. The label on vp is the smallest 
element in T. In certain problems it might be convenient to maintain a 
pointer to vp to provide a constant access time to the smallest element. 

Implementation of the instruction DELETE(a, S) is a little harder. Sup­
pose that the element a to be deleted is found at vertex v. Three cases can 
occur. 

l. Vertex v is a leaf. In this case remove vertex v from the tree. 
2. Vertex v has exactly one son. In this case make the father of v the father 

of the son, effectively removing v from the tree. (If v is the root, then 
make the son of ~· the new root.) 

3. VertP-x " has two sons. Find the largest element b in the left subtree 
of v. Recursively, remove the vertex containing b from the subtree 
and then set the label of v to b. Note that b will be the largest element 
that is smaller than a in the.entire tree. 

t Although our definition of a tree requires a tree to have at least one vertex. the root. 
in many algorithms we shall treat the empty tree (the tree with no vertices) as a binary 
tree. 
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procedure SEARCH(a. l'}: 

I. if a=/(\•) then return "yes" 
else 

.., if a < l(v) then 
3. if,. has a left son 11· then return SEARCH(a. w) 

4. else return "no" 
else 

5. 
6. 

if v has a right son w then return SEARCH(a, w) 

else return "no" 

Fig. 4.5. Searching a binary search ti;ee. 

Fig. 4.6 Binary search tree after DELETE. 

We leave a Pidgin ALGOL specification of the DELETE operation as an 
exercise. Note that a single MEMBER, INSERT, DELETE, or MIN in­
struction can use O(n) time. 

Example 4.4. Suppose we wish to remove the word if from the binary search 
tree in Fig. 4.4. The word if is located at the root, which has two sons. The 
largest word less than if (lexicographically) in the left subtree of the root is 
end. We remove the vertex labeled end from the tree and replace if by end at 
the root. Then, since end had one son (begin), we make begin be a son of the 
root, leaving the tree of Fig. 4.6. D 

Consider the time complexity of a sequence of n INSERT instructions, 
when a binary search tree is used to represent the underlying set. The time 
required to insert an element a into a binary search tree is bounded by a con­
stant times the number of comparisons made between a and the elements 
already in the tree. Thus we can measure time in terms of the number of 
comparisons made. 

In the worst case, adding n elements to a tree could require quadratic 
time. For example, suppose th~ sequence of elements to be added happens 
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to be sorted (in increasing order). In this case the search tree would consist 
of a single chain of right sons. However, if /1 random elements are inserted. 
then the required insertion time is 0(11 log 11), as the following theorem shows. 

Theorem 4.1. The expected number of comparisons needed to insert n 
random elements into an initially empty binary search tree is 0(11 log 11), 

for /1 ~ I. 

Proof. Let T(11) be the number of comparisons between sequence elem_ents 
needed to create a binary search tree from the sequence a 1 , a 2 , ••• , "n· We 
assume T(O) = 0. Let b1 , b2 , ••• , bn be this sequence sorted in ascending 
order. 

If a 1 , ••• , an is a random sequence of elements, then a 1 is equally likely 
to be bi for any j, I s j s n. Element a 1 becomes the root of the binary 
search tree, and in the final tree the j - 1 elements b 1 , b2 , ••• , b i- 1 will be in 
the left subtree of the root and then - j elements b11'1• bi+2 , ••• , bn will be in 
the right subtree.. . . 

Let us count the expected number ·o( c~"inparisons made when inserting 
b 1 , b 2 , ••• , bi_1 into.the tree. Each of these elements is ~ompared once with 
the root, giving a total of j - 1 comparisons with the root. Then inductively, 
T(j- I) more comparisons are necessary to insert bt> b 2 , • •• , bi-I into the 
left subtree of the tree. All told, j - 1 + T(j - 1) comparisons are made to 
insert b 1 , b2 , ••• , b i-l into the binary search tree. Similarly, n - j + 
T(n - j) comparisons are made to insert. b;+1> h;+2 , ••• , bn into the tree. 

Since j is equally likely to have any value between 1 and n, we have 

T(n) = l. i (n - 1 + TU- 1) + T(n - })). 
ll i=I . 

Simple algebraic manipulation of ( 4. l) yields 

., 11-1 

T(n) = n- l +.::. L T(j). 
/l i=O 

Using the techniques of Section 3.5 we can show that 

T(n) :s;; kn log 11 

( 4.1) 

(4.2) 

where k = log,. 4 = l .39. Thus the expected number of comparisons to insert 
11 elements into a binary search tree is 0(11 log 11). 0 

. In summary, using the techniques of this section we can process a 
random sequence of /1 INSERT, DELETE, MEMBER, and MIN instruc­
tions in 0(11 log 11) expected time. The worst-case performance is qua­
dratic. However. even this can be improved to 0(11 log 11) by one of the bal­
anced tree schemes (2-3 trees, A VL trees or trees of bounded balance) 
discussed in Section 4.9 and Exc::!ses 4.30-4.37. 
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4.5 OPTIMAL BINARY SEARCH TREES 

In Section 4.3 we were given a set S = {a1. a2 ..... a,,}, that is. a subset of 
some large universal set U. and we were asked to design a data structure that 
would allow us to process efficiently a sequence <r consisting only of 
MEMBER instructions. Let us reconsider this problem, but this time let us 
U!\!\ume that. in addition to being given the set S. we are given the probability 
that the instruction MEMBER(a, S) will appear in <r for all elements a in the 
universal set U. We would now like to design a binary search tree for S such 
that a sequence <r of MEMBER instructions can be processed on-line with 
the smallest expected number of comparisons. 

Let a 1 , a2 , ••• , a,, be the elements in the set S injncreasing order, and 
let p; be the probability of the instruction MEMBER(a;, S) in <r. Let q0 be 
the probability that an instruction of the form MEMBER(a, S), for some 
a < a 1, appears in <r: Let qi be the probability that an instruction of the form 
MEMBER(a, S), for some ai < a < ai+1 appears in <r. Finally, let q,, be the 
probability that an instruction of the form MEMBER(a, S), for some a > a,,, 
appears in <r. To define the cost of a binary search tree it is convenient to 
add n + I fictitious leaves to the binary tree to reflect the elements in U - S. 
We shall call these leaves 0, I, ... , ~-

Figure 4.7 shows the binary search tree of Fig. 4.4 with these fictitious 
leaves. For example, the leaf labeled 3 represents those elements a such that 
end< a< if. 

We need to define the cost of a binary search tree. If element a is the 
label /(v) of some vertex v, then the number of vertices visited when we 

Fig. 4.7 Binary search tree with added leaves. 
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Fig. 4.8 Subtree T ii· 

process the instruction MEMBER(a, S) is one more than the depth of vertex 
v. If a ¢. S, and ai < a < ai+1, then the number of vertices visited to process 
the instruction MEMBER(a, S) is equal to the depth of. the fictitious leaf i. 
Thus the cost of a binary search tree can be defined as ' 

,, " ....... 
L p; X (DEPTH(a;) +I)+ L qi x DEPTH(i). 
~1 ~o 

Once we have a minimum-cost binary search tree T, we can execute a 
sequence of MEMBER instructions with the smallest expected number of 
vertex visits, simply by using Algorithm 4.1 on T to process each MEMBER 
instruction. 

Given the p/s and q/s, how do we find a minimum-cost tree? The 
divide-and-conquer approach suggests determining the element a, that belongs 
at the root. This would divide the problem into two subproblems: con­
structing the left subtree and constructing the right subtree. However, there 
seems to be no easy way to determine the root, short of solving the entire 
problem. This suggests we consider 2n subproblems, two for each possible 
root. This naturally leads to a dynamic programming solution. 

For 0 ::;; i < j ::;; n, let T;; be a minimum-cost tree for the subset of ele­
ments { ai+1, ai+2• ... , a;}. Let cii be the cost of Tii and r;; the root of T;;. 
The weight w;; of T;; is defined to be qi+ (Pi+1 + qi+1) + · · · + (p; + q;). 

A tree Tu consists of a root ak, plus a left subtree Ti,k-i which is a 
minimum-cost tree for {ai+ 1 , a;+2 , ••• , ak-i }, plus a right subtree T ki which is 
a minimum-cost tree for {ak+t• ak+2, ...• aj}, as shown in Fig. 4.8. If i = 
k - I, there is no left subtree and if k = j, there is no right subtree. For nota­
tional convenience we shall treat T;; as the empty tree. The weight wii of Tii 
is qi and its cost c 11 is 0. 

In T ii• i < j, the depth of every vertex in the left and right subtrees has 
increased by one from what the depths were in Ti.k-i and T ki· Thus ci;• the 
cost of TU• can be expressed as 

cu·= w1.k-1 +Pk+ wk;+ ci.k-1 +ck; 

= Wjj + Ci,k-1 +Ck;• 
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The value of k to use is that which minimizes the sum c;.k-i + cki· Thus to 
find an optimal tree Tu we compute the cost for each k, i < k s j, of the tree 
with root a k• left subtree T i.k-1 • and right subtree T ki• and then select a tree of 
minimum cost. The following algorithm contains the details. 

Algorithm 4.2. Construction of an optimal binary search tree. 

Input. A set of elements S = {a 1 • a 2 , ••• , a,,}. We assume a 1 < a 2 < 
.. · < a,,. We are also given probabilities qo. q1 •. ..• q,, and p 1, p2 •. ..• p,, 
such that for I s i < 11. q; denotes the probability of executing an instruction 
of the form MEMBER(a. S) taken ·over all a such that a; < a < ll;+i• q 11 

denotes the probability of executing MEMBER(a. S> for {i < a 1 • q,, denotes 
the probability of executing MEMBER(a, S) for a > a,,. and for I s i s /1 Pi 
denotes the probability of executing MEMBER(ai, S). 

Output. A minimum cost binary search tree for S. 

Method 

1. For 0 s i < j s n, we compute ri; and cu in order of increasing value of 
j- i, using the dynamic pro~amming algorithm of Fig. 4.9. 

2. Having computed the ru's we call BUILDTREE(O: 11) to recursively con­
struct an optimal tree for T 1111 • The procedure BUILDTREE is given in 
Fig. 4.10. D 

begin 
1. for i - 0 until n do 

begin 
2. Wii - qi; 
3. Cu - 0 

end; 
4. for I - 1 until n do 
5. for i - 0 until n - I do 

begin 
6. j-i+l: 
7. Wu - 11·i.i-1 +Pi+ qi: 
8. let m be a value of k. i < k s j. for which ci.k-i + cki 

9. 
10. 

end 

• is minimum: 
cu - 11·u + ci.111-! + c,,,i: 

'end 

Fig. 4.9. Algorithm to compute roots of optimal subtrees. 
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procedure BU I LDTREE(i. j): 
begin 

create vertex vii• the root of Tii; 
label 1· ii by ru: 
let m be the subscript of rii (i.e., rii =am): 

4.5 

if i < m - I then make BUILDTREE(i, m - 1) the left subtree of vii; 
if m < j then make BUILDTREE(m, j) the right subtree of v;; 

end 

Fig. 4.10. Procedure to construct optimal binary search tree. 

Example 4.5. Consider the four elements a 1 < a 2 < a 3 < a 4 with q0 = i, 
qi=-r\, q2=qa= q4=n. and P1=t, P2=i, Pa=P-1=-h. Figure 4.11 
shows the values of W;;. r;;, and c1; computed by the algorithm given in Fig. 
4.9. For notational convenience, the values Q£·wu and cii in this table have all 
been multiplied by 16,. • 

l=j- i 
! 0 

2 

3 

4 

i~ 

0 

ll'no = 2 
~·oo = 0 

l\'01=9 

Co1 = 9 

li11 = ll1 

11'02 = 12 
C112 = 18 
liri = ll1 

11'0:1 = 14 
C11:1 = 25 
li1:1 = ll1 

11'114 = 16 
C114 = 33, 

'i1.1 = (I:! 

2 

W11=3 »'22 = 1 
Cu = 0 C22 = 0 

W12 = 6 W23 = 3 

C12 = 6 C23 = 3 

1"12 = ll:! Y2:1 = ll;s 

ll'1:1 = 8 l\'24 = 5 
Crn = I I c:!4 = 8 
'1:1 = ll2 /'24 = ll4 

l\'14 = IO 
C14 = 18 
Y14 = ll2 

Fig. 4.11. Values of 11·;;. C;;. and r;;. 

3 4 

W33 = I l\'44 = I 
C33 = Q C44= Q 

IV34 = 3 

C3.f = 3 

1":14 = ll4 
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Fig. 4.12 A minimum-cost tree. 

For example, to compute r14 we must compare the values of c 11 + c24 , 

c 12 +_('34 , and c 13 + c44 , which (multiplied by 16) are, respectively, 8, 9, and 
11. Thus in line 8 of Fig. 4.9, k = 2 achieves the minimum, so r 14 = a 2 • 

Having computed the table of Fig. 4.11, we construct the tree T 04 by 
calling BUILDT.JlEE(O, 4). The ~esulting binary search.tree is shown in Fig. 
4.12. This tree has cost 33/16. 0 · 

Theorem 4.2. Algorithm 4.2 requires 0(n 3) time to construct an optimal 
binary search tree. 

Proof Once we have computed the table of ru's, we construct an optimal 
tree from this table in O(n) time with the procedure BUILDTRE:E. There 
are only n calls of the procedure ~nd each call takes constant time. 

The costliest part is the dynamic programming algorithm of Fig. 4.9. 
Line 8 requires OU- i) time to find a value of k. that minimizes ci,k-1 +ck;· 
The other steps in the loop of lines 5-10 require constant time. The outer 
loop at line 4 is executed n times. The inner loop is executed at most n times 
for each iteration of the outer loop. Thus the total cost is O(n3 ). 

For the correctness of the algorithm, a simple induction on I= j - i 
shows that ru and Cjj are correctly computed at lines 9 and 10. 

To show that an optimal tree is correctly constructed by BUILDTREE. 
we observe that if a vertex 1·u is the root ofa subtree for {a;+1: ai+2 •• •• , ai}, 
then its left son will be the root of an optimal tree for {a;+i• ll;+ 2 , ••• , a,,,_i}, 
where ru = a,,, and its right son will be the root of an optimal tree for 
{a 111 +1o a,,,+2 • ••• , ai}. An inductive proof that BUILDTREE(i,j) correctly 
constructs an optim~ tree for {<ii+•• ai+2 • •••• ai} should thus be evident. D 

In Algorithm 4.2 we may restrict our search form in line 8 of Fig. 4.9 to 
the range between ttie positions of the roots of T;.j-i and Ti+i.; and still be 
guaranteed to find a minimum. With this modification Algorithm 4.2 can be 
made to find an optimal tree in 0(11~) time. 
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I 

4.6 A SIMPLE DISJOINT-SET UNION ALGORITHM 

Consider the handling of vertices in the spanning tree algorithm of Example 
4.1. The set-processing problem that arose had the following three character­
istics. 

I. Whenever two sets were merged. the two sets were disjoint. 
2. The elements of the sets could be treated as integers in the range I 

through 11. 

3. The operations were UNION and FIND. 

In this section and the next we shall consider data structures for 
problems of this nature. Assume we are given n elements. which we shall 
take to be the integers 1, 2 .... , 11. Initially, each element is assumed to be 
in a set by itself. A sequence of UNION and FIND instructions is to be ex­
ecuted. A UNION instruction. we recall, is of the fo,tm UNION(A, B, C), 
indicating that two disjoint sets named A an9 .§.· are to be replaced by their 
union, and their union i~ to be named C. In applications it is often unimpor­
tant what we ('hoose to name a set, so we shall assume that s~ts can be named 
by integers in the range I to n. Moreover, we shall assume no two sets are 
ever given the same name. 

There are several interesting data structures to handle this problem. In 
this section we shall present a data structure that is capable of processing a 
sequence containing up to. /1 - I UNION instructions and O(n log n) FIND 
instructions in time O(n log n). In the next section we shall describe a data 
structure that will handle a sequence of O(n) UNION and FIND instructions 
with a worst-case time that is almost linear in n. These data struC:tures are 
also capable of handling sequences of INSERT, DELETE, and MEMBER 
instructions with the same computational complexity. 

Note that the searching algorithms we considered in Sections 4.2-4.5 as­
sumed that the elements were drawn from a universal set that was much 
larger than the number of instructions to be e;~ecuted. In this section. we are 
assuming that the universal set is approximateJy the same size as the length of 
the sequence of instructions to be executed. 

Perhaps the simplest data structure for the UNION-FIND problem is to 
use an array to represent the collection of sets present at any one time. Let 
R be an array of size n such that R [i] is the name of the set containing ele­
ment i. Since the names of sets are unimportant. we may initially take 
R [i] = i, I s i ~ 11. to denote the fact that at the start the collection of sets is 
{ {I}. {2} ..... {n}} and set {i} is named i. 

The instruction FIN D(i) is executed by printing the current value of 
R [ i]. Thus the cost of executing a FIND instruction is a constant, which is 
the best we could hope for. 
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To execute the instruction UNION(A, B, C), we sequentially scan the 
array R. and each entry containing either A or B is set to C. Thus the cost of 
executing a UNION instruction is O(n). A sequence of n UNION instruc­
tions could require 0(112) time, which is undesirable. 

This simple-minded algorithm can be improved in several ways. One 
improvement would take advantage of linked lists. Another would recognize 
that it is more efficient always to merge a smaller set into a larger one. To do 
so. we need to distinguish between "internal names," which are used to iden­
tify sets in the R array, and "external names," the ones mentioned in the 
UNION instructions. Both are presumably integers between I and n, but 
not necessarily the same. 

Let us consider the follovv ing data structure for this problem. As before, 
we use an array R such that R [i] contains the "internal" name of the set con­
taining the element i. But now, for each set A we construct a linked list 
LIST[A] containing the elements of the set. Two arrays, LIST and NEXT, 
are used to implement this linked list. LIST[A] is an integer j indicating that 
j is the first element in the set whose internal name is A. NEXT[j] gives the 
next element in A, NEXT[NEXT[j~] the next element, and so on. 

In addition, we shall use an array called SIZE, where SIZE[A] is the 
number of elements in set A. Also, sets are renamed internally. Two arrays 
INTERNAL_NAME and EXTERNALNAME associate internal and ex­
ternal names. That is, EXTERNAL_NAME[A] gives the real name (the 
name dictated by the UNION instructions) of the set with internal name A. 
INTERNALNAME[j] is the internal name of the set with external namej. 
The internal names are the ones used in the array R. 

Example 4.6. Suppose n = 8 and we have the collection of three sets 
{I, 3, 5, 7}, {2, 4, 8}, and {6} with external names I, 2, and 3, respectively. 
The data structures for these three sets are shown in Fig. 4.13, where we as­
sume 1, 2, and 3 have the internal names 2, 3, and I, respectively. 0 

The instruction FIND(i). is executed as before, by consulting R [i] to de­
termine the internal name of the set currently containing element i. Then 
EXTERNAL_NAME[R [i]] gives the real name of the set containing i. 

A union instruction of the form UNION(/, J, K) is executed as follows. 
CThe line numbers refer to Fig. 4.14.) 

1. We determine the internal names for sets I and J (lines 1-2). 
2. We compare the relative sizes of sets I and J by consulting the array . .. 

SIZE (lines 3-4). 
3. We traverse the list of elements of the smaller set and change the corre­

sponding entries in the array R to the internal name of the larger set 
(lines 5-9). 
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Fig. 4.13. Data structures for UNION~FIND algorithm. 
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procedure UNION(/, J. K): 
begin 

end 

A+-- INTERNALNAME[/]; 
B +-- INTERNALNAME[J]; 
wig assume SIZE[A] s SIZE[B] 

othenvise interchange roles of A and B in 
begin 

end 

ELEMENT+-- LIST[A]; 
while ELEMENT ¥- 0 do 

begin 

end; 

R [ELEMENT] ~ B; 
LAST +-- ELEMENT; 
ELEMENT+-- NEXT[ELEMENT] 

NEXT[LAST] +-- LIST[B]; 
LIST[B] +-- LIST[A]; 
SIZE[B] +-- SIZE[A] + SIZE[B]; 
INTER~AL_NAME[K] +-- ~; 
EXTERNAL_NAME[B] +-- K 

Fig. 4.14. Implementation of UNION instruction. 

4. We merge the smaller set into the larger by appending the list of elements 
of the smaller set to the beginning of the list for the larger set (lines 
10-12).' 

5. We give the combined set the external name K (lines 13-14). 

By merging the smaller set into the larger, the UNION instruction can be 
executed in time proportional to the cardinality of the smaller set. The 
complete details are given in the procedure in Fig. 4.14. 

Example 4.7. After execution of the instruction UNION(I, 2, 4), the data 
structures in Fig. 4.13 would become as shown in Fig. 4. 15. D 

Theorem 4.3. Using the algorithm of Fig. 4.14 we can execute /1 - I 
UNION operations (the maximum possible number) in 0(11 log 11) steps. 

Proof Since the cost of each UNION is proportional to the number of ele­
ments moved, apportibning the cost of each UNION instruction uniformly 
among the elements moved results in a fixed charge to an element each time it 
is moved. The key observation is that each time an element is moved from a 
list, it finds itself on a list which is at least twice as long as before. Thus no 
element can be moved more than log /1 times and hence the total cost charged 
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Fig. 4.15. Data structures after UN ION instruction. 
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to any element is O(log 11). The total cost is obtained by summing the costs 
charged to the elements. Thus the total cost is 0(11 log 11). D 

It follows from Theorem 4.3 that if 111 FIND and up to /1 - I UNION in­
structions are executed, then the total time spent is O(MAX(m. /1 log 11)). If 
111 is on the order of n log /1 or greater. then this algorithm is actually optimal 
to within a constant factor. However, in many situations we shall find that /11 

is O(n), and in this case, we can do better than OCMAX(m, Ii log 11)). as we 
shall see in the next section. 

4.7 TREE STRUCTURES FOR THE UNION-FIND PROBLEM 

In the last section we presented a data structure for the UNION-FIND 
problem that would allow the processing of /1 - 1 UNION instructions and 
O(n log n) FIND instructions in time O(n log n). In this section we shall 
present a data structure consisting of a forest of trees to represent the collec­
tion of sets. This data structure will allow the processing of O(n) UNION 
and FIND instructions in almost linear time. 

Suppose we represent each s~t A by a rooted undir-ected tree TA, where 
the elements of A correspond to the vertices of TA. The name of the set is at­
tached to the root of the tree. An instruction of the form UNION(A, B, C) 
can be executed by making the root of T.~ a son of the root of TH and changing 
the name at the root of T8 to C. An instruction of the form FIND{i) can be 
executed by locating the vertex representing element i in some tree T in the 
forest, and traversing the path from this vertex to the root of T, where we find 
the name of the set containing i. 

With such a scheme, the cost of merging two trees is a constant. How­
ever, the cost of a FIND(i) instruction is on the order of the length of the 
path from vertex i to its root. This path could have length n - I. Thus the 
cost of executing n - 1 UNION instructions followed by /1 FIND instruc­
tions could be as high as 0(n 2 ). For example, consider the cost of the follow­
ing sequence: 

UN ION( I. 2. '.!) 

UNION(2. 3. 3) 

UN·IONC11 - I. 11. 11) 

FIND( I) 
FINDC2> 

FIND(11) 
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Fig. 4.16 Tree after UN ION instructions. 

Then - 1 UNION instructions result in the tree shown in Fig. 4.16. 1he 
cost of the n FIND instructions is proportional to 

11 - 1 • n(n-1) 
~>= ? . 
i=O -

However, the cost can be reduced if the trees can be kept balanced. One 
way to accomplish this is to keep count of the number of vertices in each tree 
and, when merging two sets, always to attach the smaller tree to the root of 
the larger. This technique is analogous to the technique of merging smaller 
sets into larger, which we used in the last section. 

Lemma 4.1. If in executing each UNION instruction the root of the tree 
with fewer vertices (ties are broken arbitrarily) is made a son of the root 
of the larger, then no tree in the forest will have height greater than or 
equal to Ji unless it has at least 2h vertices. 

Proof. The proof is by induction on lz. For lz-= 0, the hypothesis is true 
since every tree has at least one vertex. Assume the induction hypothesis 
true for all values less than /1 ;:::: l. Let T be a tree of height /z with fewest 
vertices. Then T must have been obtained by merging two trees 7 1 and T2 , 

where Ti has height lz - l and Ti has no more vertices than T 2 • By the in­
duction hypothesis T 1 has at least 2h-i vertices and hence T2 has at least 2h-• 
vertices, implying that T has at least :?.h vertices. 0 

Consider the worst-case execution time for a sequence of n UNION and 
FIND instructions using the forest data structure, with the modification that 
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(a) (b) 

Fig. 4.17 Eff~ct of path compression. 

in a UNION the root of the smaller tree becomes a son of the root of the 
larger tree. No tree can have height greater than log n. Hence the execu­
tion of O(n) UNION and FIND instructions costs at most O(n log n) units 
of time. This bound is tight, in that there are sequences of n instructions that 
will take time proportional to n log n. 

We now introduce another modification to this algorithm, called path 
compression. Since the cost of the FIND's appears to dominate the total 
cost, we shall try to reduce the cost of the FIN D's. Each time a FIND(i) in­
struction is executed we traverse the path from vertex i to its root r. Let· i, 
vi. v2 , ••• , vn, r be the vertices on this path. We then make each of i, v1 , 1·2 , 

/ 

•.. , vn-i a son of the root. Figure 4.17(b) illustrates the effect of the instruc-
tion FIND(i) on the tree of Fig. 4. l 7(a). 

The complete tree-merging algorithm for the UNION-FIND problem, 
including path compression, is expressed by the following algorithm. 

Algorithm 4.3. :fast disjoint-set union algorithm. 

Input. A sequence u of UNION and FIND instructions on a collection of 
sets whose elements consist of integers from I through n. The set names are 
also assumed to be integers from I to 11, and initially, element i is by itself in a 
set named i. 

Output. The sequence of responses· to the FIND instructions in u. The 
response to each FIND instruction is to be produced before looking at the 
next instruction in u. 
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Afrtlwd. We describe the algoritbm in three parts- the initialization. the 
response to a FIND. and t~e response to a UNION. 

I. lnitiali::.atio11. For each element i. I :s i :s 11. we create a vertex\';. We 
set COUNT[,·;]= I. NAME[r;] = i. and FATHER[\';]= 0. Ini­
tially. each vertex\'; is a tree by itself. In order to locate the root of set i, 
we create an array ROOT with ROOT[i] pointing to 1·;. To locate the 
vertex for· element i. we create an array ELEMENT. initially with 
ELEMENT[i] = \'; . 

.., Executing FIND(i). The program is shown in Fig. 4.18. Starting at 
vertex ELEMENT[i] we follow the path to the root of the tree. making 

begin 
make LIST empty; 
v +- ELEMENT[i]; . · ·4• 
while FATHER[v] 'I:- 0 do 

begin 
add v to LIST; 
v +- FATHER[v] 

end; 
comment v is now the root; 
print NAME[v]; 
for each won LIST do FATHER[w] +- v 

end 

Fig. 4.18. Executing instruction FIND(i). 

begin . 
wig assume COUNT[ROOT[i]] :s COUNT[ROOT(j]] 

otherwise interchange i and j in 
begin 

LARGE+- ROOT[j]: 
SMALL+- ROOT[i]: 
FATHERLSMALLJ +-LARGE: 
COUNT[LARGE] +- COUNT[LARGE] + COUNT[SMALL]; 
NAME[LARGE] +- k: . 
ROOT[k] +-LARGE 

end 
end 

Fig. 4.19. Executing instruction UN ION(i. j, k). 
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a list of vertices encountered. At the root. the name of the set is printed. 
and each vertex on the path traversed is made a son of the root. 

3. £.xecurinR UNION(i, j, k). Via the array ROOT. we find the roots of 
the trees representing sets i and j. We then make the· root of the smaller 
tree a son of the root of the larger. See Fig. 4.19. D 

We shall show that path compression speeds up the algorithm consider­
.hly. To calculate the improvement we introduce two functions F and G. 

~et 

F(O)=I, 

for i > 0. 

fhe function F grows extremely fast, as the table in Fig. 4.20 shows. The 
·unction G(n) is defined to be smallest integer k such that F(k) ~ n. The 
unction G grows extremely slowly. In fact, G(n) ::;; 5 for all "practical" val-
1es of 11, i.e., for all /1 ::;; 265536. 

We shall now prove that Algorithm 4.3 will execute a sequence CT of en 
JNION and FIND instructions in -~t most c'nG(n) time, where c and c' 
tre constants, c' depending on c. For simplicity, we assume the execution of a 
JNION instruction takes one "time unit" and the execution of the instruc­
.ion FIND(i) takes a number of time units proportional to the number of ver­
·ices on the path from the vertex labeled i to the root of the tree containing 
.his vertex. t 

n F(11) 

0 I 

I 2 

2 4 

3 16 

4 65536 

5 '"165536 

Fig. 4.20. Some values of F. 

· Thus one "time unit" in the sense used here requires some constant number of steps 
>n a RAM. Since we neglect constant factors. order-of-magnitude results can as well 
>e expressed in terms of "time units." 
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Definition. It is convenient to define the rank of a vertex with respect to 
the sequence er of UNION and FIND instructions as follows: 

I. Delete the FIND instructions from er. 
2. Execute the resulting sequence rr' of UN ION instructions. 
3. The rank of a vertex ,. is the height of ,. in the resulting forest. 

We shall now derive some important properties of the rank of a vertex. 

Lemma 4.2. There are at most 11/2r vertices of rank r. 

Proof By Lemma 4.1 each vertex of rank r has at least 2r descendants in the 
forest which results from executing er'. Since the sets of descendants of any 
two distinct vertices of the same height in a forest are disjoint and since there 
are at most n/2r disjoint sets of 2r or more vertices, there can be at most n/2r 
vertices of rank r. 0 

Corollary. No vertex has rank greater than log n~ 

Lemma 4.3. If at some time during·the·~·~ecution of er, IV is a proper 
descendant of v. then the rank of w is less than the rank of v. 

Proof If at some time during the execution of er, IV is made a descendant of 
v, then w will be a descendant of v in the forest resulting from the execution of 
the sequence er'. Thus the height of 1v must be less than the height of v, so 
the rank of w is less than the rank of\'. 0 

We now partition the ranks into groups. We put rank r in group G(r). 
For example, rcmks 0 and I are in group 0, rank 2 is in group 1, ranks 3 and 4 
are in group 2, ranks 5 through 16 are in group 3. For n > I, the largest pos­
sible rank, L log /1 J. is in rank group G (L log n J) :s; G (n) - l. 

Consider the cost of executing a sequence er of en UNION and FIND 
instructions. Since each UNION instruction can be executed at the cost of 
one time unit, all UN ION instructions in er can be executed in O(n) time. In 
order to bound the cost of executing all FIND instructions we use an impor­
tant "bookkeeping" trick. The cost of executing a single FIND is appor­
tioned between the FIND instruction itself and certain vertices on the path in 
the forest data structure which are actually moved. The total cost is com­
puted by summing over all FIND instructions the cost apportioned to them, 
and then summing the cost assigned to the vertices, over all vertices in the 
forest. 

We charge for the instruction FIND(i) as follows. Let,. be a vertex on 
the path from the vertex representing i to tht> root of tree containing i. 

I. If,. is the root. or if FATHER[,·] is in a different rank group from 1·. 

then charge one time unit to the FIND instruction itself. 
"' If both ,. and its father are in the same rank group. then charge orie time 

unit to \'. 
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By Lemma 4.3 the vertices going up a path are monotonically increasing 
in rank. and since there are at most G(11) different rank groups. no FIND in­
struction is charged more than G (11) time units under rule I. If rule 2 applies. 
vertex ,. will be moved and made the son of a vertex of higher rank than its 
previous father. If vertex 1• is in rank group R > 0. then ,. can be moved and 
charged at most F(g) - F(g - I) times before it acquires a father in a higher 
rank group. In rank group 0, a vertex can be moved at most once before ob­
taining a father in a higher group. From then on. the cost of moving ,. will be 
charged to the FIND instructions by rule I. 

To obtain an upper bound on the charges made to the vertices them­
selves. we multiply the maximum possible charge to any vertex in a rank 
group by the number of vertices in that rank group, and sum over all rank 
groups. Let N(g) be the number of vertices in rank group g > 0. Then by 
Lemma 4.2: 

N(g) :S r=F%)1J+1 11/2r 

:s (n/2F<u11>+1 )[I + i + t + · · · ] 
:S n/2F(g-l) . 

:s n/F(g). 

The maximum charge to any vertex in rank group g > 0 is less than or equal 
to F(g) - F(g - 1). Thus the maximum charge to all vertices in rank group g 
is bounded by 11. The same statement clearly applies for g = 0 as well. 
Since there are at most G(n) rank groups, the maximum charge to all vertices 
is 11G(n). Therefore, the total amount of time required to process en FIND 
instructions is at most enG(n) charged to the FIND's and at most 11G(11) 
charged to the vertices. Thus we have the following theorem. 

Theorem 4.4. Let e be any constant. Then there exists another constant 
e' depending on e such that Algorithm 4.3 will execute a sequence a- of 
en UNION and FIND instructions on n elements in at most c'11G(11) 
time units. 

Proof By the above discussion. 0 

It is left as an exercise to show that if the primitive operations INSERT 
and DELETE, as well as UNION and FIND, are permitted in the sequence 
u, then a- can still be executed in 0(11G(11)) time. 

It is not known.whether Theorem 4.4 provides a tight bound on the run­
ning time of Algorithm 4.3. However. as a matter of theoretical interest. in 
the remainder of this section we shall prove that the running time of 
Algorithm 4.3 is not linear in 11. To do this. we shall construct a particular 
sequence of UNION and FIND instructions. which Algorithm 4.3 takes 
more than linear time to process. 



136 DATA STRUCTURES FOR SET MANIPULATION PROBLEMS 4.7 

(a) ..... (b) 

Fig .. 4.21 Effect of partial FIND operation. 

Fig. 4.22 The tree T(2). 

It is convenient to introduce a new operation on trees which we shall call 
partial FIND, or PF for short. Let T be a tree in which v, v1 , v2 , ••• , vm, w 
is a path from a vertex v to an ancestor w. (w is not necessarily the root.) 
The operation PF(v, w) makes each of v, vi. v2 , ••• , Vm-i sons of vertex w. 
We say this partial FIND is of length m + I (if v = w, the length is 0). Fig­
ure 4.21(b) illustrates the effect of PF(v, w) on the tree of Fig. 4.2l(a). 

Suppose we are given a sequence <T of UNION and FIND instructions. 
When we execute a given FIND instruction in <T we locate a vertex v in some 
tree T and follow the path from ~· to the root w of T. Now suppose we ex­
ecute only the UNION instructions in <T, ignoring the FIND's. This will 
result in a forest F of trees. We can still capture the effect of a given FIND 
instruction in <T by locating in F the vertices v and w used by the original 
FIND instruction and then executing PF(v, w). Note that the vertex w may 
no longer be a root in F. 
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In deriving a lower bound on the running time of Algorithm 4.3. we con­
sider the behavior of the algorithm on a sequence of UN ION~s followed by 
pf's which can be replaced by a sequence of UN ION's and FIND"s whose 
execution time is the same. From the following special trees we shall derive 
particular sequences of UNION's and PF's on which Algorithm 4.3 takes 
more than linear time. 

Definition. For k ~ 0, let T(k) be the tree such that 

I. each leaf of T(k) has depth k. 
2. each vertex of height h has 2h sons, h ~ I. 

Thus the root of T(k) has 2 k sons, each of which is a root of a copy 
of T(k - I). Figure 4.22 shows T(2). · 

Lemma 4.4. With a sequence of UNION instructions we can create, for 
any k ~ 0, a tree T'(k) that contains as a subgraph the tree T(k). Fur­
thermore, at least one-quarter of the vertices in T' (k) are leaves of T(k). 

Proof The proof proceeds by induction on k. The lemma is trivial for k = 0, 
since T(O) consists of a single vertex. l"o construct T' (k) for .k > 0, first con­
struct 2k + 1 copies of T '(k - I). Form the tree T' (k) by selecting one copy 
of T'(k - I) and then merging into it, one by one, each of the remaining 
:opies. The root of the resulting tree has (among others) 2k sons, each of 
which is a root of T'(k - 1). 

Let N'(k) be the total number of vertices in T'(k) a~d I~t L(k) be ~he 
1umber of leaves in T(k). Then 

md 

N' (0) = 1 

N' (k) = (2k + l)N' (k- 1), 

L(O) = 1 

fork~ 1, 

L(k) = 2kL(k- 1), fork~ 1; 
;o 

k II 2i 
L(k) i=1 2 Ilk 

N' (k) - k = 3. _1_+_2_-i' 
II ( 2 i + I ) r=2 

fork~ I. 

i=l 

Ne note that for i ~ 2, log!' (1 + 2-i) < 2-i, so 

Jsing (4.3) and (4.4) together we have 

L(k) ~ _11., i _........____ > *£' - > 
N'(k) - :• - ~. 

hus proving the lemma. D 

(4.3) 

(4.4) 
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We shall construct a sequence of UN ION and PF instructions that will 
first build the tree T' (k) and then perform PF's on the leaves of the subgraph 
T(k). We shall now show that for every I> 0, there exists a k such that we 
can perform a PF of length I in succession on every leaf of T(k). 

Definition. Let D(c, I, /z) be the smallest value of k such that if we 
replace every subtree in T(k) whose root has height /z by any tree having I 
leaves and height at least I, then we may perform a PF of length c on 
each leaf in the resulting tree. 

Lemma 4.5. D(c, I. h) is defined (i.e., finite) for all c, /,and h greater than 
zero. 

Proof The proof involves a double induction. We wish to prove the result 
by induction on c. But in order to prove the result for c given the result for 
c - I. we must also do an induction on I. 

' The basis, c = I, is easy. D(l, /, h) = h for all I and h, since a PF of 
length I does not move any vertices. ·~• 

Now for the induction on C,suppose that for all/ and It, D(c - 1, I, h) is 
defined. We must show that D(c, I, h) is defined for all/ and h. This is done 
by induction on I. 

For the basis of this induction, we show 

D(c, I, It) s D(c- I, 2h+1, h +I). 

Note that when I= 1, we have substituted trees with a single leaf for subtrees 
with roots at the vertices of height h in T(k) for some k. Let H be the set of 
vertices of height h in this T(k). Clearly, in the modified tree each leaf is the 
proper descendant of a unique member of H. Therefore, if we could do PF's 
of length c - I on all the members of H, we could certainly do PF's of length 
c on all the leaves. 

Let k = D(c- I, 2h+•, It+ I). By the hypothesis for the induction on c, 
we know that k exists. If we consider the vertices of height h + I in T(k), we 
see that each has 2h+• sons, all of which are members of H. If we delete all 
proper descendants of the vertices in H from T(k), we have in effect substi­
tuted trees of height I with 2h+i leaves for each subtree having roots at height 
/z + I. By the definition of D, k = D(c - I, Zh+i, It+ l) is sufficiently large so 
that PF's of length c - I can be done on all its leaves, i.e., the members of H. 

Now, to complete the induction on c, we must do the inductive step for I. 
In particular, we shall show: 

D(c, /,Jr) s D(c- I, 201c.1-t.h)(1+01c.1-1.11»12, D(c, l- I. !z)) for I> I. 
(4.5) 

To prove (4.5), let k = D(c, I - I, h) and let k' be the right side of (4.5). We 
must find a way to substitute a tree of / leaves for each vertex of height Jr in 
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Tlk' ). then perform a PF of length c on each leaf. We begin by performing 
the PF"s on I - I of the leaves of each substituted tree. By the inductive 
hypothesis for the induction on /. we can perform_ the PF's on I - I of the 
leaves of each substituted tree in these subtrees. 

Having done PF's on I - 1 of the leaves, we find that the /th leaf of each 
substituted tree now has a father distinct from that of the /th leaf of any other 
substituted tree. Call the set of such fathers F. If we can do PF's of length 
c - I on the fathers. then we can do PF's of length c on the leaves. Let S be 
a su!Jtree whose root had height k in T(k'). It is easy to check that S has 
::!1:1Ho12 leaves in T(k'). Thus, after we have done the PF's. the number of 
vertices in S which are also in F is at most 2k<Ho12• ~What remains of S c~n 
thus be regarded as an arbitrary tree with 2k<k+o12 leaves, the vertices in F. 
By the inductive hypotheses for c and /, (4.5) holds. D 

Theorem 4.5. Algorithm 4.3 has a time complexity which is greater than 
en for any constant c. 

Proof Assume there is a constant c such that Algorithm 4.3 will execute any 
sequence of n - l MERGE and /1 :qIND instructions in no more than en time' 
units. Select d > 4c, and calculate k = D(d, 1. 1). Construct T'(k) by a 
sequence of UNION instructions. Since we can perform a PF of length don 
each leaf of the embedded tree T(k). and since the leaves of T(k) make up 
more than one-quarter of the vertices of T'(k), this sequence of UNION and 
PF instructions will require more than en time units, a contradiction. D 

4.8 APPLICATIONS AND EXTENSIONS OF 
THE UNION-FIND ALGORITHM 

We have seen how. a sequence of the primitive instructions UNION and 
FIND naturally arose in the spanning tree problem of Example 4. I. In this 
section we present several other problems which give rise to sequences of 
UNION and FIND instructions. In our first problem, the computation can 
be performed off-line, that is, the entire sequence of instructions can be read 
before any answers need to be produced. 

Application 1. Off-line MIN problem 

We are given two types of instructions. INSERT(i) and EXTRACT_MIN. 
We start with a set S which is initially empty. Each time an instruction 
INSERT(i) is encoumered we place the integer i in S. Each time an instruc­
tion EXTRACT _MIN is executed. we find the minimum element in S and 
delete it. · 

Let <:T be a sequence of INSERT and EXTRACT_MIN instructions 
such that for each i. l :s i :s 11. the instruction IN SERT(i) appears at most 
once. Given the sequence <:T. we are to find the sequence of integers deleted 
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for i - l until n do 
begin 

j - FIND(i): 
if j::::; k then 

begin 

4.8 

print i "is deleted by the "j"th EXTRACT_MIN instruc-

end 
end 

tion": 
UNIONU, SUCC(j], SUCC[j]); 
SUCC[PRED(j]] - SUCC(j]; 
PRED[SUCC[j]] - PRED(j] 

Fig. 4.23. Program for off-line MIN problem. 

by the EXTRACT _MIN instructions. 'Th~4~roblem is off-line since we as­
sume we are given the complete sequence CT before we need to compute even 
the first element of the output sequence. 

The off-line MIN problem can be solved by the following method. Let k 
be the number of EXTRACT_MIN instructions in CT. We may write CT as 
CT 1Eo-2 Eo-3 E • • • CTkEa-k+1' where each CT;, I ::::; j::::; k + I, consists only of IN­
SERT instructions and E stands for one EXTRACT_MIN instruction. We 
shall simulate CT via the set union algorithm, Algorithm 4.3. We initialize a 
sequence of :sets for the set union algorithm by letting the set named j, 
I ::::; j ::::; k + I, contain the element i, provided the instruction INSERT(i) 
occurs in the subsequence CT;. Two arrays PRED and SUCC are used to 
create a doubly linked sorted list for those values of j for which a set named j 
exists. Initially, PRED(j] =j- I for I :::;j::::; k+ I and SUCC[j] =j+ I 
for 0 ::::; j ::::; k. We then execute the program of Fig. 4.23. 

It is easily seen that the execution time of this program is bounded by the 
running time of the set union algorithm. Hence the off-line MIN problem is 
O(nG(n)) in time complexity. 

Example 4.8. Consider the sequence of instructions CT= 4 3 E 2 E I £, 
where j stands for INSERTU) and E stands for EXTRACT_MIN. Thus 
CT1 = 4 3. o-2 = 2, CT:i = I, and CT4 is the empty sequence. The initial data 
structure is the sequence of sets 

1={3,4} 2={2} 3={1} 4=kf. 

In the first execution of the for loop; we determine FIND(l) = 3. Thus the 
answer to the third EXTRACT_MJN instruction in <r is 1. The sequence of 
sets becomes 

1={3.4} 2={2} 4={1}. 
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o\t this point SU CC [2] is set equal to 4 and PRED [ 4] is set equal to 2. since 
;ct~ named 3 and 4 have been merged into a single set named 4. 

On execution of the next pass with i = 2. we determine that 
FJND(2) = 2. Thus the answer to the second EXTRACT_MIN instruction 
s :?. We merge the set named 2 with the successor set (named 4) to obtain 
he sequence of sets 

I= {3, 4} 4= {I, 2}. 

fhe final two passes determine that the answer to the first EXTRACT _MIN 
nstruction is 3, and that 4 is never extracted. D 

Our next application is to a .depth determination problem. One place 
vhere it arises is in the "equivalencing" of identifiers in an assembly language 
irogram. Many assembly languages allow statements which declare that two 
dentifiers represent the same memory location. Should an assembler en­
:ounter a statement equivalencing two identifiers a and {3, then it must find 
he two sets Sa and S fJ, representing the sets· of identifiers equivalent to a and 
J. respectively, and replace these tw~ sets by their union. Obviously, this 
1roblem can be modeled by a sequence of UNION and FIND instructions. 

However, if we examine this problem more carefully. we can find another 
vay to apply the data structures of the preceding section. Each identifier has 
n entry in a symbol table, and if a group of identifiers are equivalent, it is 
·onvenient to keep data about them in only one of the symbol table entries. 
"his means that for each set of equivalent identifiers there is an origin, a place 
1 the symbol table holding information about the set, and each member has a 
'isplacement from the origin. The location in the symbol table for an iden­
.fier is found by adding its displacement to the origin of its set. However, 
1hen two sets of identifiers· are made equivalent, the displacements from the 
rigin must be modified. Application 2 is an abstraction of this problem of 
pdating displacements . 

.pplication 2. Depth determination problem 

Ve are given a sequence of two types of instructions: LIN K(v, r) and 
IN D_DEPTH( v). We start with n undirected, rooted trees. each consisting of 
single vertex i, 1 :s i :s n. An instruction LIN K(v, r), where r is a root of a 
·ee and 1• is a vertex in a different tree. results in making the root r a son of 1·. 
he conditions that v and r are in different trees and that r is a root insure that 
1e resulting graph is .still a forest. The instruction FIND_DEPTH(1·) 
:quires determining and printing the current depth of vertex 1·. 

If we maintain the forest using a conventional adjacency list represent­
.ion and determine the depth of vertices in the obvious manner, the growth 
1te of the algorithm will be 0(11 2 ). Instead we shall use another forest. 
hich we shall call the D-forest. to represent the original forest. The sole 
lrpose of the D-forest is to enable us to calculate the depths quickly. Each 
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vertex in the D-forest is assigned an integer weight such that the sum of the 
weights along a path in the D-forest from a vertex 1· to the root is the depth ol 
1· in the original forest. For each tree in the D-forest a count is kept of the 
number of vertices in the tree. 

Initially. the D-forest consists of 11 . trees. each consisting of a single 
vertex corresponding to a unique integer i. I s i s 11. The initial weight ol 
each vertex is zero. 

An instruction FIN O_DEPTH(1·) is executed by following the path from 
1· to the root r. Let 1· 1 • 1·2 , •••• 1·,. be the vertices on the path (1• 1 = v, v,. = r). 
Then 

k 

DEPTH(v) = L WEIGHT[v;]. 
i=I 

In addition, we do path compression. Each v;. 1 ::S i ::S k - 2, is made a son 
of the root r. To preserve the property of weights, the new WEIGHT of v 
must become !.j=.;;1 WEIGHT[1·i] for I ::;;;.~.< k. Since the new weights car 
be computed in O(k,) time, the executio0h time of a FIND_DEPTH instructior 
is of the same order of magnitude as a FIND instruction. 

An instruction LINK(v, r) is executed by combining the trees containing 
the vertices v and r, again merging the smaller tree into the larger. Let T v and 
Tr be the trees in the D-forest containing v and r, respectively. Let v' and ,. .. 
be the roots of T v and Tr· In the D-forest, the trees are not necessaril}' 
isomorphic to the trees in the original forest, so that, in particular, r may not 
be the root .of T,.. Let COUNT(T) denote the number of vertices in the tree 
T. There are two cases to consider. 

CASE I. COUNT(Tr) ::s; COUNT(Tv)· We maker' a son of v'. We must 
also adjust the weight of r', the old root of Tr• so that the depth of each vertex 
iv in Tr will be correctly computed by following the new path from w to v' in 
the merged tree. To do so. we execute the instruction FIN O_DEPTHM 
and then do the following: 

WEIGHT(r'] - WEIGHT(r'] - WEIGHT(1·'] + DEPTH(v) +I. 

Thus the depth of each vertex in Tr has been effectively increased by the 
depth of v plus one. Finally, we make the count of the merged tree equal to 
the sum of the counts of Tr and 7 1 •• 

CASE 2. COUNT(T,.) < COUNT(T r>· Here we execute DEPTH(1·). then 
make 1·' a son of r' and do the following: 

-
WEIGHT(r'] - WEIGHT(r'] + DEPTH(1') +I 

WEIGHT(1·'] - WEIGHT(1·'] -WEIGHT(r'] 

COUNT(Tr> - COUNT(T,.) + COUNT!Trl 
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In conclusion. 0(11) LINK and FIND_DEPTH instructions can be ex­
pcuted in 0(11G(11)) time. 

Application 3. Equivalence of finite automata 

A deterministic finite automaton is a machine that recognizes strings of 
symbols. It has an input tape ruled into squares. an input tape head, and a 
finite state control, as shown in Fig. 4.24. We denote a finite automaton M 
JY a 5-tuple (5. I, 8, s 0 , F ), where: 

1. S is the set of states of the finite control . 
.., I is the input alphabet. Each square of the input tape contains a symbol 

from/. 
3. 8 is a mapping from S x I into S. If o(s, a)= s', then whenever Mis in 

state s with input symbol a under the input head, M moves its input head 
right and enters state s'. 

4. s0 is a distinguished state in S called the start state. 
5. F is a designated subset of S, called the set of accepting (or final) states. 

We let I* denote the set of all 'finite-length strings of symbols from / . 
. ncluded in I* is e, the empty· string. We extend the function 8 to map 
) x I* to S as follows: 

. I. o(s, €) = s 
2. For all x in I* and a in I, 8(s, xa) = 8(8(s, x), a). 

An input string x is accepted by M if 8(s 0 , x) E F. The language ac­
epted by M, denoted L(M ), is the set of strings accepted by M. Section 9.1 
ontains a more extensive introduction to finite automata. 

We say two states s 1 and s 2 are equivalent if for each x in/*, 8(si. x) is 
n accepting state if and only if 8(s 2 , x) is an accepting state. 

We say two finite automata M 1 and M 2 are equivalent if L(M 1 ) = L(M 2 ). 

n this section we shall show that the UNION-FIND algorithm can be used 
J determine whether two finite automata M 1 = (S 1 • I. 8 1 • s 1 • F 1 ) and M 2 = 
~2• /, 82 , s 2 • F2 ) are equivalent in O(nG(n)) steps. where 11=llSill+1152 11-

b a c Input tape 

... 
Head 

s Finite state 
control 

Fig. 4.2..i. A finite automation. 
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An important property of state equivalence is that if two states s and 
are equivalent. then for all input symbols a. li(s. a) and S(s'. a) must also 
equivalent. Also. no accepting state can be equivalent to a nonaccepti 
state. thanks to the empty string. Thus if we begin with the assumption ti: 
s 1 and s 2 • the start states of 1'vl 1 and M 2 ·• are equivalent. then we can dedu 
certain other pairs of states which must also be equivalent. If one of the 
pairs includes both an accepting and a nonaccepting state, then s 1 and s 2 a 
not equivalent. While we shall not show it. the converse holds as we 

To determine whether two finite automata M 1 = (S 1 • I. 81 • s 1 , F 1 ) a1 
1\-1 2 = (S 2 • I, 02 , s 2 , F 2 ) are equivalent we may proceed as follows: 

I. We use the program in Fig. 4.25 to determine all sets of states whi< 
must be equivalent, assuming the two start states s 1 and s2 are equivaler 
LIST holds pair~ of states (s, s') such that s and s' have been fom 
equivalent but whose successors (o(s, a), ~(s', a)) have not yet bee 
examined. To' begin, LIST contai11s.,pnly t~e pair of start states (s 1 , s1 

To find the sets of equivalent states, the program uses the disjoint-s 
union algorithm. COLLECTION represents a family of sets. Initial 
each state in S 1 U S 2 is in a set by itself. (Without loss of generality, ~ 
can assume the states in S 1 and S 2 are disjoint.) Then whenever tv. 
states s and s' are found to be equivalent, we merge A and A'. the se 

begin 

end 

LIST~ (Si. S2); 

COLLECTION ~ ~.; . 
for each sin S 1 U S 2 do add {s} to COLLECTION; 
comment We have just initialized a set for each state in S 1 U S 2 ; 

while there is a pair (s, s') of states on LIST do 
begin 

end 

delete (s, s') from LIST; 
let A and A' be FIND(s) and FIND(s'), respectively; 
if A o;6 A' then 

begin 

end 

UNION(A, A', A); 
for all a in I do 

add (S(s. a). 5(s'. a)) to LIST 

Fig . .i.25. Algorithm for finding sets of equivalent states. assuming s 1 and .1· 2 are 
equivalent. 
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contammg s and s' in CO_LLECTION. and call the resulting set A. 
,, On completion of the program, the sets in COLLECTION represent a 

partition of S 1 U 52 into blocks of states that must be equivalent. M 1 

and M2 are equivalent if and only if no block contains both an accepting 
state and a nonaccepting state. 

The running time of the algorithm (as a function of /1 = llS 1 11 + llS 2 11. the 
number of states) is dominated by the set union algorithm. There can be at 
most /1 - I UNION's since each UNION instruction reduces the number of 
sets in COLLECTION by one, and there were only /1 sets to begin with. 
The number of FIN D's is proportional to the number of pairs placed on 
UST. This number is at most /1 x 11111 ~ince with thCexception of the initial 
pair (s 1 , s 2 ), a pair is placed on LIST only after a UNION instruction. Thus 
the time required to determine whether M 1 is equivalent to M 2 is 0 (nG (11)), 

assuming III II is a constant. 

4.9 BALANCED TREE SCHEMES , 

There are several important classJs of problems which are similar to the 
UNION-FIND problem but which apparently force us to fall back on tech­
niques that require O(n log n) time (worst case) to process a sequence of /1 in­
structions. One such class of problems involves processing a sequence of 
MEMBER, INSERT, and DELETE instructions when the universe of pos­
sible elements is much larger than the number of elements actually used. In 
this case we cannot access an element by directly indexing into an array of 
pointers. We must use either hashing or a binary search tree. 

If n elements have been inserted, the hashing method has an average 
access time which is constant but a worst-case time which is 0(11) per access. 
Using a binary search tree gives an expected access time of O(log 11) per 
access. However, a binary search tree can also give a poor worst-case access 
time if the set of names· is not static. If we simply add names to the tree 
without some mechanism to keep the tree balanced, we may eventually end 
up with a tree of n elements which has a depth close to 11. Thus the worst­
case performance of a binary search tree can be O(n) per operation. The 
techniques of this section can be used to reduce the worst-case performance 
to O(log n) steps per operation. 

Another class of problems requiring O(n log 11) time is the on-line pro­
cessing of sequences of n instructions containing the operations INSERT . .. 
DELETE. and MIN. Still a third such class of problems arises if we need to 
represent ordered lists and have the capability of concatenating and splitting 
lists. 

In this section we shall present techniques that will allow us to process. 
on-line, sequences containing important subsets of the seven fundamental 
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uperations on sets mentioneJ in Section 4.1. The unJerlying data structure is 
a lwlc111ced rree. by which we mean a tree whose height is approximately 
equal to the logarithm of the number of vertices in the tree. 

A balanceJ tree is easy to construct initially. However. the problem is 
to prevent the tree from becoming unbalanced while executing a sequence of 
INSERT and DELETE commands. For example. if we execute a sequence 
of DELETE commands that remove vertices from only the left side of the 
tree. we shall end up with a tree that is unbalanced to the right unless we peri­
odically rebalance the tree. 

There are a number of mechanisms that can be used to rebalance the tree 
when necessary. Several of these methods leave the structure of the tree 
flexible enough so that the number of vertices in a tree of height h can range 
anywhere from 211 to 211 +1 or 311 • Such methods allow us to at least double the 
number of vertices in a subtree before having to make any change above the 
root of a subtree. 

Two specific methods of this nature whi~p we shall discuss are 2-3 trees 
and A VL trees. The algorithms for mahipulating 2-3 trees are conceptually 
easier to understand and these we shall discuss in the text. The algorithms 
for manipulating A VL trees are similar to those for 2-3 trees and are found in 
the exercises. 

Definition. A 2-3 tree is a tree in which each vertex which is not a leaf 
has 2 or 3 sons, and every path from the root to a leaf is of the same 
length. Note that the tree consisting of a single vertex is a 2-3 tree. 
Figure 4.26 shows the two 2-3 trees with six leaves. 

The following lemma gives the relationship between the number of ver­
tices and leaves in a 2-3 tree and its height. 

Lemma 4.6. Let T be a 2-3 tree of height h. The number of vertices of 
T is between 21•+ 1 - I and (3 11 + 1 - I )/2. and the number of leaves is 
between 211 and 311 • 

Pror~{ Elementary induction on h. 0 

A linearly ordered set S can be represented by a 2-3 tree by assigning the 
elements of the set to the leaves of the tree. We shall use E [/] to denote the 
t.:lement storeJ at leaf /. There are two basic methods of assigning the ele­
ments to the leaves: which method is used depends on the application. 

If the universe of possible elements is much larger than the actual 
number of elements used and the tree is to be used as a dictionary, then we 
·-;hall probably want to assign the elements in increasing order from left to 
right. At each vertex 1· which is not a leaf. we need iWO adJitional pieces of 
information. L[1·] and A-/ [1·]. L[1·] is the largest element of S assigneJ to the 
'illhtree whose root is the leftmost son of 1·: J'vf [ 1·] is the largest element of S 
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Fig. 4.26 2-3 trees. 

ssigned to the subtree whose. root is the second son of v. See Fig. 4.26. 
"he values of L and M attached to the vertices enable us to start at the root 
nd search for an element in a manner analogous to binary search. The time 
) find any element is proportional to the height ·of the tree. Thus a 
1EMBER instruction on a set with n elements can be processed in time 
•(log 11) if a 2-3 tree of this nature is. used to represent the set. 

The second method of assignin~ elements to leaves is to place no 
:striction on the order in which the elements are assigned. This method is 
articularly useful in implementing the instruction UNION. However, to ex­
;ute instructions such as DELETE a mechanism is needed to locate the leaf 
-~presenting a given element. If the elements of the sets are integers in some 
ted range, say 1 to 11, the leaf representing element i can be found via the ith 
cation of some array. If the elements of the sets are from some large uni­
:rsal set, then the leaf representing element i can be found via an auxiliary 
ctionary. 

Consider the following sets of instructions. 

INSERT, DELETE, MEMBER 
I INSERT, DELETE, MIN 

INSERT, DELETE, UNION, MIN 
·. INSERT, DELETE, FIND, CONCATENATE, SPLIT 

e shall call a data structure that can process instructions from set I a dic:­
nary, from set 2 a priority queue, from set 3 a mergeable heap, and from 
. 4 a concatenable queue. 

We shall show that 2-3 trees can be used to implement dictionaries, pri­
ty queues, concatenable queues. and mergeable heaps with which we 
1 process n instructiort'S in time O(n log n). The techniques used are suf­
ently powerful to execute sequences of any compatible subset of the seven 
tructions listed at the beginning of the chapter. The only incompatibility is 
t UNION implies an unordered set. and SPLIT and CONCATENATE 
>ly order. 
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4.10 DICTIONARIES AND PRIORITY QUEUES 

In this section we shall consider the basic operations required to implement 
dictionaries and priority queues. Throughout this section we shall assume 
that elements are assigned to the leaves of a 2-3 tree in left-to-right order. and 
L [ 1·] and M [ 1·] (the .. largest" descendant functions described in the previous 
section) are present at each nonleaf i·. 

To insert a new element a into a 2-3 tree we must locate the position for 
the new leaf I that will contain a. This is done by trying to locate element a 
in the tree. Assuming the tree contains more than one element, the search for 
a terminates at a vertex f such that f has either two or three leaves as sons. 

Iffhas only two leaves /1 and/.!., we make la son off If a< £[/1 ],t we 
make I the leftmost son of fand set L[f] =a and M[f] = £[/1 ]: if £[/1 ] < 
a< £[/2 ], we make I the middle son off and set M[f] =a: if E[/2 ] <a, we 
make I the third son of f The L or M values of some proper ancestors 
off may have to be changed in the latter case. 

Example 4.9. If we insert the element 2.intd''the 2-3 tree of Fig. 4.27(a), we 
get the 2-3 tree of Fig. 4.27(b). D 

Now suppose f already has three leaves, 11 , 12 , and /3 • We make I the 
appropriate son off Vertex f now has four sons. To maintain the 2-3 prop­
erty, we create a new vertex g. We keep the two leftmost sons as sons off, 
but change the two rightmost sons into sons of g. We then make g a brother 
of vertex f by making g a son of the father off If the father off had two 
sons, we stop here. If the father off had three sons, we must repeat this 
procedure redirsiveiy until all vertices in the tree have at most three sons. If 
the root is given four sons, we create a new root with two new sons, each of 
which has two of the four sons of the former root. 

Example 4.10. If we insert element 4 into the 2-3 tree of Fig. 4.27(a), we find 
that the new leaf labeled 4 should be made the leftmost son of vertex c. 
Since vertex c already has three sons, we create a new vertex c'. We make 
leaves 4 and 5 sons of c, and leaves 6 and 7 sons of c'. We now make c' a 
son of vertex ·a. However, since vertex a already has three sons, we create 
another vertex a'. We make vertices b and c sons of the old vertex a, and 
vertices c' and d sons of the new vertex a'. Finally, we create a new root r 
and make a and a' sons of r. The resulting tree is shown in Fig. 4.28. 0 

Algorithm 4.4. Insertion of a new element into a 2-3 tree. 

Input. A nonempty 2-3 tree T with root rand a new element a not in T. 

Output. A revised 2-3 tree with a new leaf labeled a. 

t £ [ ~·] is the element stored at leaf ~·-
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(a} (IJ} 

fig. 4.27 Insertion into a 2-3 tree: (a) tree before insertion; (b) tree after inserting ::!. 

Fig. 4.28 Tree of Fig. 4.27(a), after inserting 4. 

Method. We assume T has at least one element. To simplify description of 
the algorithm we have omitted the details of updating L and M at various ver­
tices. 

1. If T consists of a single leaf/ labeled b, then create a new root r'. Create 
a new leaf v labeled a. Make I and \' sons of r', making I the left son if 
b < a, otherwise, making I the right son. 

2. If T has more than one vertex, let f= SEARCH(a, r), where SEARCH 
is the procedure in Fig. 4.29. Create a new leaf/ labeled a. lf.f has two 
sons labeled b1 3fld b2 , then ·make I the appropriate son off Make I the 
left son if a < b1 , the middle son if h. < a < b2 , the ;ight son if b2 < a. 
If f has three sons, make I the appropriate son of f and then call 
ADDSON(f) to incorporate/ and its four sons into T. ADDSON is the 
procedure in Fig. 4.30. Adjust the values of L and M along the path 
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procedure SEARCH(a, r): 
if any son of r is a leaf then return r 
else 

begin 

end 

let s; be the ith son of r; 
if a :5 L[r] then return SEARCH(a, s 1 ) 

else 
if r has two sons or a :5 M [r] then return SEARCH(a, s 2) 

else return SEARCH(a, s3 ) 

Fig. 4.29. Procedure SEARCH. 

procedure ADDSON(v): 
begin . ·~· 

end 

create a new vertex v' ; 
make the two rightmost sons of v the left and right sons of v'; 
if v has no father then 

else 

begin 
create a new root r; 
make v the left son and v' the right son of r 

end 

begin 

end 

let f be the father of v; 
make v' a son off immediately to the right of v; 
if f now has four sons then ADDSON(f) 

Fig. 4.30. Procedure ADDSON. 

from a to the root to account for the presence of a.t Other obvious ad­
justments to L and M values are made by ADDSON (these are omitted 
and left as an exercise). 0 

Theorem 4.6. Algorithm 4.4 inserts a new element into a 2-3 tree with /1 

leaves in at most O(log 11) time. Moreover, the algorithm maintains 
the order of the original leaves and retains the 2-3 tree structure. 

t We need only follow the path from a until we reach a vertex such that a is not the 
largest element in its subtree. 
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proof. A straightforward induction on the number of calls of SEARCH 
shows that the new leaf is made a son of the correct vertex. The ordering of 
ihe"original leaves is not disturbed. For the timing result we noted by Lemma 
4.6 that the height of a 2-3 tree with /1 leaves is at most log 11. Since 
ADDSON(1•) calls itself recursively only on the father of 1·. at most log /1 

recursive calls are possible. Since each call of ADDSON requires only a 
constant amount of time, the total time is at most O(log 11). 0 

An element a can be deleted from a 2-3 tree in essentially the reverse of 
the manner by which an_ element is inserted. Suppose element a is the label 
of leaf/. There are three cases to consider. 

~ 

CASE I. lf I is the root. remove/. (In this case. a was the only element in the 
tree.) 

CASE 2. If I is the son of a vertex having three sons, remove /. 

CASE 3. If I is the son of a vertex f having two sons s and /, then there are 
two possibilities: 

a) /is the root. Remove I and f, apd leave the remaining son s as the root. 
b) fis not the root. Suppose! has a brothert g to its left. A brother to the 

right is handled similarly. If g has only two sons, make s the rightmost 
son of g, remove/, and call the deletion procedure recursively to deletef 
If g has three sons, make the rightmost son of g be the left son off and 
remove l from the tree. 

Example 4.11. Let us delete element 4 from the 2-3 tree of Fig. 4.28. The 
leaf labeled 4 is a son of vertex c which has two sons. Thus we make the leaf 
labeled 5 the rightmost son of vertex b, remove the leaf labeled 4, and then 
recursively remove vertex c. 

Vertex c is a son of vertex a, which has two sons. Vertex a' is the righ~ 
orother of a. Thus, by symmetry, we make b the leftmost son of a', remove 
vertex c, and then recursively remove ve"rtex a. 

Vertex a is a son of the root. Applying case 3(a). we leave a' as the root 
>f the remaining tree, which is shown in Fig. 4.3 1. 0 

We leave a formal specification of the deletion process as an exercise. 
1long with the proof that it can be executed in at most O(log 11) steps on a 2-3 
ree with n leaves. 

We have now seen that a MEMBER. INSERT, or DELETE instruction 
:an be executed in at mE>st O(log 11)· steps on a 2-3 tree with /1 leaves. Thus. 
• 2-3 tree can be used as an 0(11 log 11) dictionary since it can process a 
equence of /1 MEMBER. INSERT, and DELETE instructions in at most 
)(11 log 11) steps. 

Two vertices with the same father are called brother.\'. 
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Fig. 4.31 Tree of Fig. 4.'.!8. after removing 4. 

Let us·now consider the MIN instruction. The smallest element in a 2-3 
tree is located at the leftmost leaf, which can certainly be found in O(log n) 
steps. Therefore any sequence of n INSERT, DELETE, and MIN instruc­
tions can be processed in O(n log n) time usiog a 2-3 tree. We have thus 
verified our claim that a 2-3 tree can be ttsed"'io implement an O(n log 11) pri­
ority queue. Two other data structures that can be used to implement an 
O(n log 11) priority queue are the heap used in Heapsort and the A VL tree 
discussed in Exercises 4.30-4.33. 

4.11 MERGEABLE HEAPS 

In this section we present a data structure that can be used to process 
sequences of n INSERT, DELETE, UNION, and MIN instructions in time 
0(11 log n). The structure, which can be thought of as a generalization of the 
heap discussed in Section 3.4, uses a 2-3 tree T to represent a set of elements 
S. Each element of S appears· as the label of a leaf of T, but the leav·es are 
not linearly ordered as in the previous two sections. To each interior vertex 
of T we attach a label SMALLEST[v] which indicates the value of the 
smallest element ·stored in the subtree with root v. L [v] and M [v] are not 
needed in this application of 2-3 trees. 

The smallest element in the set S can be found by starting at the root of T 
and walking down the tree as follows. If we are at an interior vertex 11, we 
next visit the son of v with the lowest value of SMALLEST. Thus if T has /1 

leaves, the instruction MIN requires O(log 11) steps. 
In many applications whenever we delete an element from S, it is always 

the smallest. However, if we want to delete an arbitrary element from S, we 
must be able to find the leaf containing that element. In applications where 
the elements can be represented by the integers I. 2 .... , 11, we can index the 
leaves directly. If the elements are arbitrary. we can use an auxiliary 2-3 
dictionary whose leaves contain pointers to the leaves of T. Via this dic­
tionary an arbitrary leaf of T can be accessed in O(log 11) steps. The die-
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procedure IMPLANTCT1 , T~): 

if HEIGHT(T1 ) = HEIGHT(T2 ) then 
begin 

else 

create a new root r: 
make ROOT[T1 ) and ROOT[TJ the left and right sons of r 

end 

wig assume HEIGHTCT.> > HEIGHT(T2 ) otherwise 
interchange T1 and T2 and interchange "left" and "right" in 

begin 

end 

let 1· be the vertex on the rightmosf path of T1 such that 
DEPTH(1·) = HEIGHTlT1 ) - HEIG.HTCT2 ): 

Jet f be the father of I'; 
make ROOT[T2 ] a son off immediately to the right of 1·: 

if f now has four sons then ADDSON(f)t 

t If we wish to have L and M value~ for the new vertex which ADDSON(f) will 
create, we must first find the maximum descendant of 1· by following the path to the 
rightmost leaf. 

Fig. 4.32. Procedure IMPLANT. 

tionary must be updated each time an INSERT instruction is executed but 
this requires at most 0 (log 11) steps. 

Once we have deleted a leaf I from T, we have to recompute the values of 
SMALLEST for each proper ancestor 1· of /. The new value of SMALL­
EST[ v] will be the minimum of SMALLEST[s] over the two or three sons 
s of v. If we always do the recomputation bottom-up, we can show, by induc­
tion on the number of recomputations, that each computation produces the 
correct answer for SMALLEST. Since the only SMALLEST values that 
change are at ancestors of the deleted leaf. a DELETE instruction can be 
processed in O(log n) steps. 

Let us now consider the UN ION instruction. Each set is represented by 
a distinct 2-3 tree. To. merge two sets S 1 and S 2 we call the procedure 
IMPLANT(T 1 , T2 ) of Fig. 4.32. where T 1 and T 2 are the 2-3 trees repre­
senting S 1 and S2 .:j: • 

Let us suppose that Ii 1 , the height of T 1. is greater than or equal to Ii 2 , the 
height of T 2 • IMPLANT finds, on the rightmost path in T 1 , that vertex 1· 

* The distinction between ··1eft"' and ··right" is not important here but is 
made for the sake of concatenable queues which arc discussed in the next section. 
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which is of height '1 2 and makes the root of T2 the rightmost brother of 1·. 

Should .f the father of 1·. now have four sons. IMP LA NT calls the procedure 
ADDSON(f). The values of SMALLEST for the vertices whose descen­
dants change during the IMPLANT operation can be updated in the same 
manner as in a DELETE operation. 

We leave it as an exercise to show that the procedure IM PLANT com­
bines T1 and T2 into a single 2-3 tree in time 0(h 1 - lz 2 ). When we count the 
time to update the l and M values, then the procedure IMPLANT can use 
O(MAX(log llS 111. log JJS2ll)) time. 

Let us consider an application in which the operations UNION, MIN, 
and DELETE arise naturally. 

Example 4.12. We discussed one algorithm for finding minimum-cost span­
ning trees in Example 4.1 (p. 109). There, vertices were collected into larger 
and larger sets such that the members of each set were connected by edges 
already selected for the minimum-cost spannin~Jree. The strategy for finding 
new edges for the spanning tree was to con~ider edges (shortest ones first) and 
to see whether they connected vertices not yet connected. 

Another strategy is to keep, for each set of vertices V;, the set Ei of all 
unconsidered edges incident upon some vertex in Vi. If we select a pre­
viously unconsidered edge e that is incident upon a vertex in a relatively small 
set V;, then there is a high probability that the other end of e is not in V;, and 
we can add e to the spanning tree. If e is the minimum-cost unconsidered 
edge incident upon a vertex in V;, then it can be shown that adding e to the 
spanning tree \Vill lead to a minimum-cost spanning tree. 

To implement this algorithm we must initially form for each vertex the 
set of incident edges. To find a minimum-cost unconsidered edge incident 
upon a set of vertices Vj, we apply the MIN operator to Ei, the set of uncon­
sidered edges for Vi. Then we delete from Ei the edge e so found. If e turns 
out to have only one end in V; and the other in a distinct set of vertices v;, 
then we UNION V; and v; (which can be done using the data structure of 
Algorithm 4.3) and also UNION Ei with E;. 

One data structure which can be used to represent each set of edges Ei is 
a 2-3 tree with each leaf labeled by an edge and its cost. The edges are in no 
particular order. Each nonleaf v has attached to it the smallest cost of any of 
its descendant leaves, denoted SMALLEST[v]. 

Initially, we create for each vertex a 2-3 tree containing each edge in­
cident upon that vertex. To build such a tree we start by creating the leaves. 
Then we add the vertices of height 1 by combining leaves into groups of two 
or three, with at most two groups of two. As we do so, we calculate the 
minimum cost of a descendant leaf for each vertex at height 1. We then 
group the height I vertices into groups of two or three, and continue until at 
some level only one vertex, the root. is created. The time taken to construct 
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a tree in this manner is proportional to the number of leaves. The implemen­
tation of the !"emainder of the algorithm should now be straightforward. The 
overall running time of the algorithm is O(e loge) where e is the total number 
of edges. D 

4.12 CONCATENABLE QUEUES 

We have seen in Section 4.10 how each of the instructions INSERT. DE­
LETE. MIN and MEMBER can be executed on a 2-3 tree with n leaves in at 
most O(log n) steps per instruction when the L and M values are used. We 
shall now show how each of the instructions CONCATENATE and SPLIT 
can also be executed in O(log ft) time. Again we are assuming the elements 
appear on the leaves of a 2-3 tree in ascending order from left to right and 
L [ 1·] and M [ 1•] are computed for each v.ertex 11 • 

The instruction CONCATENATE(S1> S2) takes as input two sequences 
Si and-S2 such that every element of S1 is less than every element of S 2 , and 
produces as output the concatenated sequence SiS2• If Si is represented as a 
2-3 tree T1 and S2 as a 2-3 tree T2,\then we want to combine Ti and T 2 into a 
single 2-3 tree T having, as leaves, the leaves of Ti in their original order 
followed by the leaves of T2 in their original order. We can do so by calling 
IMPLANT(T1t T 2 ) of Fig. 4.32 (p. 153). 

Let us consider as a final operation the SPLIT instruction. Recall that 
the operation SPLIT(a, S) partitions S into two sets Si= {bib :s; a and b E S} 
and S2 = {bib > a and b E S }. To implement this instruction using 2-3 trees 

Fi~. 4.33 Splitting a 2-3 tree. 
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we shall <.letine a proce<.lure DIVIDE(a. T) to split a 2-3 tree Tinto two 2-3 
trees T1 an<.l T2 such that all leaves in T1 have labels less than or equal to a, 
and .all leaves in T 2 have labels greater than a. 

The method can be described informally as follows. Given a 2-3 tree T 
containing element a. we follow the path froi:n the root to the leaf labeled a. 
This path divides the tree into a collection of subtrees. whose roots are sons 
of vertices on the path. but are not themselves on the path. as shown in Fig. 
4.33. There. the trees to the left of the path are· T1• T2, T;1, and the trivial tree 
consisting of vertex 1·1• The trees to the right are T~, T5 , ancj i-2 • 

The trees to the left of the path plus the tree consisting of a alone are 
combined using the tree-concatenating algorithm just described. Similarly the 
trees to the right of the path are combined. The procedure DIVIDE given in 
Fig. 4.34 contains the details. 

Theorem 4.7. The procedure DIVIDE partitions a 2-3 tree T about a 
leaf a so that all leaves to the left of a an.d.,s4· itself are in one 2-3 tree and 
all leaves to the right of a are in a second 2-3 tree. The procedure takes 
time O(HEIGHT(T)). The order of the leaves is preserved. 

Proof. That the trees are properly reassembled follows from the properties of 
the procedure IMPLANT. The timing result is obtained by the following ob­
servations. Initially there are at most two trees of any given height, with the 
exception that there can be three trees of height 0. When two trees are com­
bined, the resulting tree can have height at most one greater than the max­
imum of the heights of the two original trees. In the case where the resulting 
tree is of height one greater than either of the original trees, its root is of 
degree 2. Thus if three trees of height h are combined the resulting tree is of 
height at most Ii + I. Hence at each stage in the recombination process, 
there are at most three trees of the same height. 

Since the time required to combine two trees of different height is propor­
tional to the difference of their heights and the time required to combine two 
trees of the same height is constant, the time to recombine all trees is propor­
tional to number of trees plus the maximum difference in the heights of any 
two trees. Thus the total time spent is on the order of the height of the origi­
nal tree. 0 

We observe that with a concatenable queue we can insert a sequence 52 

between a pair of elements in a sequence S 1 in time O(MAX(logjS 1 j. logjS2j)). 
If S2 = b1• b2, . ..• b,1 and S 1 =ah C12, •••• a,,., and if 5 2 is to be inserted 
between elements a; and a;+ 1• then we can use the instruction SPLIT(a;, 5 1) 

to partition S 1 about a; into two sequences S; = a 1 •••• , a; and 
S'; = t1;+1> •••• a,,.. We then use CONCATENATE(S;. S2 ) to get the 
sequence 5:1 =at> . ... a;. b1 ••••• b,., and finally CONCATENATECS:1• S';) 
to get the desired sequence. 
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·rocedure DIVI DE(a, T): 

e1:in 
on the path from ROOT l T] to the leaf labeled a remove all vertices ex-

cept the leaf; 
comment At this point T has been divided into two forests- the left 

forest, which consists of all trees with leaves to the left of and including 
the leaf labeled a, and the right forest, which consists of all trees with 
leaves to the right of a: 

while there is more than one tree in the left forest do 
~egin 

end; 

let T' and T" be the two rightmost trees in the left forest; 
IMPLANT(T', T")t 

while there is more than one tree in the right forest do 
begin 

let T' and T" be the two leftmost trees in the right forest: 
IMPLANT(T', T") \ 

end 

he result of I MPLANT(T', T") should be considered as remaining in the left 
.... :st. Similarly, when applied to trees in the right forest, the result of IMPLANT is 

ee in the right forest. 

Fig. 4.34. Procedure to split a 2-3 tree. 

PARTITIONING 

now consider a special kind of set splitting, called partitioning. The 
?lem of partitioning a set occurs frequently, and the solution we present 
· is instructive in its own right. Suppose we are given a set S, and an ini­
'artition 1T of S into disjoint blocks {B., B2, ••• , BP}. We are also given 
1ction f on S. Our task is to find the coarsest (having fewest blocks) par-
1 of S, say r.' = {£1, £ 2 , ••• , Eq}. such that: 

rr' is consistent with 1T (that is. each E; is a subset of some Bi), and 
'.I and b in E; implies f(a) and f(b) are in some one Ei. 

We shall call r.' the coar.\'l'St partition<~{ s comparihlC' wirlz 7i """ f 
fhe obvious solution is to repeatedly refine the blocks of the original par­
by the following method. Let B; be a block. Examine f(a) for each a 

B; is then partitioned so that two elements a and b are put in the same 
if and only if f<a) and f( b) are both in some block Bi. The process is 

ed until no further refinements are possible. This method yields an 
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0(11:?) algorithm. since each refinement requires time 0(11) and there can be 
0(11) refinements. That the method can actually require a quadratic number 
of .steps is illustrated by Example _4.13. " 

Example 4.13. Let S={l,2 ..... 11} aryd let 8 1={1,2, .... n-1}, 
B:? = {11} be the original partition. Let f be the function on S such that 
j(i) = i + I for I s i < n and f(11) = n. On the first iteration we partition B 1 

into {I. 2 ..... /1 - 2} and {n - I}. This iteration requires /1 - I steps since 
we must examine each element in B 1• On the next iteration we partition 
{I, 2 ..... 11 - 2} into {I, 2 ..... /1 - 3} and {11 - 2}. Proceeding in this 
manner, we need a total of /1 - 2 iterations. with the ith iteration taking n - i 
steps. Thus a total of 

'~ ( .) 11(n- l) 1 L.J n-1 = -
i=I 2 

, 
steps are required. The final partition has E; = {i}, for 1 s i s n. D 

- -~· 
The difficulty with this method is that refining a block may require O(n) 

steps even if only a single element is removed from the block. Here we shall 
develop a partitioning algorithm that in refining a block into two subblocks 
requires time proportional to the smaller subblock. This approach results in 
an 0(11 log n) algorithm.· 

For each B ~ S, let 1-1(B) = {blf(b) E B}. Instead of partitioning a 
block B; by the values of f(a) for a E B;, we partition with respect to B; those 
blocks Bi whic)l contain at least one element inl-1(B;) and one element not in 
1-•(B;). That is, each such B; is partitioned into sets {bib E B; andl(b) E B;} 
and {bib E Bi and l(b) ff B;}. 

Once we have partitioned with respect to B;, we need not partition with 
respect to B; again unless B; itself is split. If initially l(b) E B; for each ele­
ment b E Bi, and B; is split into B; and B';, then we can partition B; with 
respect to either of Bi or B'i and we will get the same result since {bib E Bi 
and l(b) E B;} is identical to B1 - {bib E Bi and l(b) E B7}. 

Since we have our choice of partitioning with respect to either B; or Bi, 
we partition with respect to the easier one. That is, we partition using the 
smaller of f- 1(B i) and 1-•(B'[). The algorithm is given in Fig. 4.35. 

Algorithm 4.5. Partitioning. 

Input. A set of /1 elements S. an initial partition 7T = {B [I], .... B [p ]}. 
and a function f: S - S. 

Output. A partition7T 1 = {B[l], B[2], .... B[q]} such that7r' is the coar­
sest partition of .S compatible with 7T and j: 

Method. We apply the program given in Fig. 4.35 to 'TT. This program omits 
certain important implementation details. We discuss those details later. 
when the running time is analyzed. ll 
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begin 
I. WAITING+-{1.2 ..... p}; 
., q+-p; 

3. while WAITING not empty do 
begin 

4. select and de.lete any integer i from WAITING; 
5. INVERSE+-- f- 1(B [i]); 
6. for each j such that B [.j] n INVERSE # 0 and 

B [j] rt, INVERSE do 
begin 

7. q+-q+I; 
8. create a new block B [q]; 
9. B [q] +-- B [j] n INVERSE; 

JO. B[j] +-- B[j] - B[q]; 
11. if j is in WAITING then add q to WAITING 

else 
12. if llB [j]ll :::;; llB [q]ll then 
13. \ addj to WAITING 
14. else add q to WAITING 

end 
end 

end 

Fig. 4.35. Partitioning algorithm. 

Let us begin the analysis of Algorithm 4.5 by·proving that it partitions S 
correctly. Let TT be any partition of the set S and fa function on S. We say 
set T ~ S is safe for TT if for every block B in TT, either B ~ f- 1(T) or 
B n f- 1(T) = 0. For example, in Fig. 4.35 lines 9 and I 0 assure that B [i] is 
safe for the resulting partition, since if B n f- 1(B [i]) #~for some block B, 
then either B ~ INVERSE, in which case B ~ f- 1(B [i]) is immediate, or at 
lines 9 and 10; B is split into two blocks, one of which is a subset. of f- 1(B [i]) 
and the other of which is disjoint from that set. 

Part of the work involved in showing Algorithm 4.5 correct is proving 
that the final partition is not too coarse. That is, we must show the following. 

Lemma 4.7. After Algorithm 4.5 terminates, every block B in the re­
sulting partition TT' is safe for TT'. 

Proof What we shalil actually show for each block B [I] is: 

After every execution of the loop of lines 4-14 in Fig. 4.35, if I 
is not in WAITING. and I:::;; q. then there is some list 
q 1 • q 2 • •••• qk (possibly empty) such that each l/; is on (4.6) 
WAITING. T :5 i :5 k. and B [/] U B [q,] U · · · U B [qi.] 
is safe for the current partition. 
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Intuitively. when a block B [I] is removed from WAITING. lines 6-14 
make B [I] safe for the partition in effect after line 14. B [I] remains safe 
until it is partitioned. When B [I] is partitioned. one subblock. call it B [q], is 
placed on WAITING. The other subblock is still called B[I]. Clearly. the 
union of these two subblocks. B [I] U B [q]. is safe since it is the old B [I]. 
Further partitioning creates blocks B [q 1] •••• , B [q,.J such that q 1, ••• , qk 
are on WAITING and R = B [I] U B [q 1 ] U · · · U B [cJk] is safe. When 
some q;, I s i s k, is removed from WAITING. lines 6-14 again make 
B [ q;] and R - B [ q;] safe. These ideas are made precise below. 

We prove (4.6) for all /by induction on the number of times we have ex­
ecuted lines 4-14. When the algorithm terminates, WAITING is empty and 
hence (4.6) implies that each block of the final partition TT' is safe for TT 1

• 

For the basis, we take 0 times, whereupon (4.6) is trivial, since I is on 
WAITING for all 1 s Is q = p. 

• I 

For the inductive step, suppose I is not on WAITING after finishing line 
14. If I was on WAITING the previous tiitte through, t!ien I has the value i 
which was defined at line 4. It is easy to show that the loop of lines 6-14 
makes B [i] safe for the partition in effect after line 14. We argued this state­
ment after the definition of "safe." 

If I was not on WAITING the previous time through line 14, then by the 
inductive hypothesis, there is some list q1, ... , qk such that (4.6) was sat­
isfied for I at the previous stage. Also, we can be sure that i 7'= I at line 4. 

CASE I. i is not among L = {qh q2, ... , qk}. Several blocks may be split at 
lines 9-10. For each such block B[qr], 1 s rs k, (that is,j= qr) add the 
subscript of the block created at line 8 to L. By line 11, L will continue to 
consist only of subscripts oh WAITING. If B [/] itself is not split, then B [/] 
and the set of blocks on L continue to form a set that is safe for the current 
partition, satisfying ( 4.6 ). If B [/] is split, we must also add to L that index q 
selected at line 8 whenj =I. Hence B [/] U,. "d '· B [r] will be safe for the cur­
rent partition. 

CASE 2. i is among L = {q 1, q2, ••• , qd. Assume without loss of general­
ity that i = q 1• The argument proceeds almost as in case I, but q 1 may not be 
on WAITING at the end of the current iteration of lines 4-14. However, we 
know that every block B of the current partition win be either a subset of 
f- 1(8 [q 1 ]) or disjoint from it. Let T = B [/] U U B [r], where L has been 
modified as in case I. If B ~ f- 1(8 [q 1 ]). then,.·~~·rely B n f- 1(T) = H. If 
B n f- 1(8 [q 1 ]) = .0. then the argument B n f- 1(T) = 0 or B ~ f- 1(T) is 
analagous to case I . 

Finally, when Algorithm 4.5 ends. WAITING must be empty. Thus 
(4.6) implies that for each I. B [/] is safe for the final partition. D 
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Theorem 4.8. Algorithm 4.5 correctly computes the coarsest partition of 
S compatible with r. and f. 

Proof. Lemma 4. 7 shows that the output r.' of Algorithm 4.5 is compatible 
with 1T andf. We must show that 7T 1 is as coarse as possible. A simple induc­
tion on the number of blocks split at lines 9-10 proves that every such split 
made by the algorithm is necessary for compatibility. We leave this induction 
as an exercise. D 

We must now consider in detail the implementation of Algorithm 4.5 in 
order to show its running time to be O(n log 11), where n = llSll. The crux of 
the timing argument is to show how the loop of lines 5-14 can be executed in 
time proportional to llINVERSEll. Our first problem is how to find efficiently 
the appropriate set of j's at line 6. We need an array IN BLOCK such that 
IN BLOCK[/] is the index of the block containing/. IN BLOCK can be ini­
tialized in O(n) steps and updated after line 9 in no more time than it takes to 
create the list B [q] at that line. Thus, since we care only about the order of 
magnitude of the time complexity, ~e are justified in ignoring the handling of 
IN BLOCK. \ 

Using IN BLOCK, it is easy to construct a list JUST of the j's needed in 
line 6 in O(llINVERSEll> steps. For each element a of INVERSE, add the 
index of the block containing a to JUST if it is not already there. For eachj. 
a count is kept of the number of elements in INVERSE which are also in 
B [j]. If the count reaches llB UJll. then B [j] ~ INVERSE, and j is deleted 
from JLIST. 

Also using INBLOCK, we can make, for eachj on JUST, a list INTER­
SECTION[j] of the integers in the intersection of B[j] and INVERSE. To 
rapidly delete the elements of INTERSECTION [j] from B [j] and add them 
to B[q], we must maintain the lists B[l], 1 :5 I :5 q in doubly linked form, 
i.e., with pointers to both successors and predecessors. 

Lines 9 and IO require O(llB [q ]ID steps. For a given execution of the for 
loop, the aggregate time spent on finding the proper .i's and lines 7-10 is 
O<llINVERSEll). Also, the test of lines 12-14 is easily seen to require 
O(llB [q]ll> time if done properly. for an aggregate of O<llINVERSEll> time. 

We need only consider line 11. To tell whether j is on list WAITING 
quickly. we create another array INWAITING [j]. INWAITING can be 
initialized in 0(11) steps and maintained without difficulty at lines 11-14. We 
thus have the following lemma. 

Lemma 4.8. The for loop of lines 6-14 in Fig. 4.35 can be implemented 
in O<llINVERSEll> steps. 

Proof. By the above. D 

Theorem. 4.9. Algorithm 4.5 can be implemented m 0(11 log n) time. 
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Proof Let us consider the circumstances under which an integer s. which 
was in a block not on WAITING. can find its block put on WAITING. This 
can happen once at line I. It cannot happen at line 11 even ifs E B [q]. since 
s would have formerly been in B [j] and j was already on WAITING. If it 
happens at line 13 or 14. thens is in a block no more than half the size of the 
block containing s the previous time the index of the set containing s was put 
on WAITING. We may conclude that the index of the set containings is not 
put on WAITING more than I + log /1 times. Consequently, s cannot be in 
the block i chosen at line 4 more than I + log /1 times. 

Suppose the cost for each execution of the loop of lines 6-14 is charged 
to element s of B [i] in proportion to llf- 1(s)il. Then there is a constant c 
such that s is charged no more than cllf- 1(s)i1 for this execution of the loop. 
But we have previously argued that s cannot be in the selected B [i] more 
than O(log n) times, so its total charge is O<llJ- 1(s)i1 x log n). Since the sum 
L .• esllf- 1(s)i1 must be 11, the aggregate cost of all executions of the for loop is 
O(n log n). The cost of the remainder Qf A'llg'Orithm 4.5 is easily seen to be 
O(n), so we have our.theorem. D 

Algorithm 4.5 has several applications. One important application is in 
minimizing the number of states in a finite automaton. We are given a finite 
automaton M = (S, /, 8, s0 , F), and we want to find that automaton M' with 
the minimum number of states which is equivalent to M. For each state s 
and input symbol a, B(s, a) denotes the next state of M. The states of M can 
be initially partitioned into F, the set of accepting states, and S - F, the set of 
nonaccepting ;states. The problem of minimizing states in M is equivalent to 
finding the coarsest partition 'TT'' of S, consistent with the initial partition 
{ F, S - F}, such that if states s and t are in one block of 'TT'', then states 
S(s, a) and S(t, a) are also in one block of M' for each input symbol a. 

The only difference between this problem and that of Algorithm 4.5 is 
that 8 is a mapping from S x I to S rather than just a mapping from S to S. 
However, we can treat 8 as a set {801 , 8,.2 , ••• , 8,,J of functions on S, where 
each 8,. is the restriction of 5 to the input symbol a. 

Algorithm 4.5 can be easily modified to handle this more general problem 
by placing pairs (i, 811 ) in the set WAITING. Each pair (i, 511 ) consists of the 
index i of a block of the partition plus 5,,, the function on which to partition. 
Initially, WAITING= {(i, 8,,)Ji = I or 2 and a E /}, since the initial parti­
tion { F, S - F} has two blocks. Whenever a block B [j] is split into B [j] 
and B [q], each possible function 5,, is paired withj and q. The remaining de­
tails are left for an exercise. 

4.14 CHAPTER SUMMARY 

Figure 4.36 summarizes the various data structures discussed in this chapter. 
the types of instructions they can handle. and the assumption made about 
the size and nature of the universal set from which elements are drawn. 
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-
Time to process 11 

instructions on sch 
Of size II 

Type of Expected Worst-case 
Data structure universe Instructions permitted time time 

1. Hash table Arbitrary set MEMBER. INSERT. 0(11) 0( 112 ) 

on which a DELETE 
hashing func-
lion can be ~ 

computed 

2. Binary search Arbitrary MEMBER, INSERT, 0(11 log 11) 0( 112) 

tree ordered set DELETE, MIN 

3. Tree structure Integers I to n MEMBER, INSERT, O(nG (11)) Ol11Gl11)) 

of Aigorithm DELETE, UNION, at most at most 
4.3 FIND 

4. 2-3 trees Arbitrary ~EMBER, INSERT, 0(11 log 11) 0(11 log 11) 

with leaves ordered set DELETE, UNION, 
unordered FIND, MIN 

5. 2-3 trees Arbitrary MEMBER. INSERT. 0(11 log 11) 0( II log II) 

with leaves ordered set DELETE, FIND. 
ordered SPLIT, MIN, 

CONCATENATE 

Fig. 4.36. Summary of properties of data structures. 

EXERCISES 

4.1 Give a subset of the seven primitive operations of Section 4.1 that is sufficient 
to sort an arbitrary sequence of 11 elements. What can be said about .the 
complexity of executing a stream of n instructions chosen from your subset? 

4.2 Suppose that elements are strings of letters and the following hashing function 
for a table of size m = 5 is used: Add the "values" of the letters. where A has 
value 1, B has value 2, and so on. Divide the resulting sum by 5 and take the 
remainder. Show the contents of the hash table and lists. given that the follow­
ing strings are inserted: DASHER, DANCER. PRANCER. VIXEN. 
COMET, CUPID,..DONNER, BUTZEN. 

4.3 Insert the eight strings of Exercise 4.2 into a binary search tree. What is the 
sequence of vertices visited if we wish to test RUDOLPH for membership in 
the set? 

4.4 Show that the procedure SEARCH of Fig. 4.3 (p. 114) gives the smallest pos­
sible expected search time if all elements in the universal set are equally likely to 
be sought. 
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..$.5 Find an optimal binary search tree for a. b, .... Ii if the elements. in order, 
have probabilities 0.1. O.:!. 0.05. 0.1. 0.3. 0.05. 0.15. 0.05 and all other elements 
have zero probability. 

**-t6 Shov.· that in Algorithm ..$.:! we may restrict our search for /11 in line 8 of 
Fig. 4. 9 ( p. I:! I) to the range of the positions ofr;.;- 1 through r;+ 1.; and still be guaran-
teed to find a 'n1aximum. · 

*..$.7 Use Exercise 4.6 to modify Algorithm 4.2 so that it runs in 0(11 2) time . 

.i.8 Complete the proof of Theorem 4.:! by showing that the tree construction 
algorithm of Fig. 4.10 (p. I:!:!) works correctly. 

4.9 Complete the proof of Theorem 4.3. 

*4.10 Construct an interface to translate between a set of 11 external names in the 
range I to rand a set of internal names consisting of the integers I to 11. The in­
terface must be such that one can translate in either direction, assuming r > > n. 
a) Design the interface for good expected time behavior. 
b) Design the interface for good worst-case behavior. 

*4.11 Find an efficient data structure for repr.eseri~lig a subset S of the integers from 
I to n. Operations we wish to perform on the set are: 
I. Select an unspecified integer from the set and delete it. 
2. Add an integer i to the set. 
A mechanism must be provided to ignore a request to add integer i to S in the 
case where S already contains i. The data structure must be such that the time 
to select and delete an element and the time to add an element are constant in­
dependent of llSll. 

4.12 Show the tree that results when Algorithm 4.3 is used to execute the sequence 
of UNION and FIND instructions generated by the following program. As­
sume set i is {i} initially, for 1 s i s 16. 

begin 

end 

for i +- I step 2 until 15 do UNION(i, i + I, i); 
for i +- I step 4 until 13 do UNION(i, i + 2. i); 
UNION(!, 5, !): 
UNION(9, 13. 9): 
UNION(!, 9, I): 
for i +- 1 step 4 until 13 do FIN D(i) 

4.13 Let u be a sequence of UNION and FIND instructions in which all UNION's 
occur before the FIN D's. Prove that Algorithm 4.3 executes u in time propor­
tional to the length of u . 

..$.14 An S0-tree is a tree consisting of a single vertex. For i > O. an S;-tree is ob­
tained by making the root of one S;-1-tree the son of the root of another s,_.-
tree. Prove the following. · 

al An S,.-tree has ( ~) vertices of height Ir. 

bl An S,.-tree can be obtained from an S,,,-tree. m ~ 11. by replacing each vertex 
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- .us 

~ .. , .. , 

Ul 

of the S ,,,-tree by an S ,,_,,,-tree. Sons of the vertex become sons of the root of 
the replacing s,,_,,, tree. 

cl An S,,-tree contains a vertex with 11 sons: the sons are roots of an S 0 -. an 
s 1- ••••• and an S 11-1-tree. 

Consider an algorithm for the disjoint-set union problem which makes the root 
of the tree with fewer vertices (ties are broken arbitrarily) a son of the root of 
the larger but does not use path compression. Prove that the upper bound of 
a1 11 log 11) cannot be improved. That is. show that for some constant c and for 
arbitrarily large 11, there exist sequences of UN ION and FIND instructions 
which require cn log 11 steps. 

Let Tin) be the worst-case time complexity of e?iecuting 11 UNION and 
FIND instructions. using the tree structure of Section 4.7 with path compres­
sion for the FIN D's but executing UNION(A, B, C) by making the root of A a 
son of the root of B independent of which set is the larger. Show that 
Tin) 2 /.; 111log11 for some constant k1 > 0. 

Show that T(11) :s; k211 log /1 for some constant k2 , where T(11) is as in Exer­
c"ise 4.16. 

Show ·how we may execute a sequence of /1 instructions UNION. FIND. 
MEMBER, INSERT, DELETE bn integers 1, 2, ... , /1 in time 0(11G(11)). As­
sume that DELETE(i, S) makes i the member of a new set {i}, which should be 
given an (arbitrary) name. This set may be subsequently merged with another. 
Also assume no element is a member of more than one set. 

Generalize the off-line MIN problem to handle a MIN instruction of the form 
MIN(i) which determines all integers less than i to the left of the MIN instruc­
tion not found by a previous MIN instruction. 

··Develop complete data structures for the off-line MIN problem including the 
representation of trees by arrays, and write a program using arrays rather than 
the higher-level commands of the disjoint-set union algorithm. 

Generalize the off-line MIN problem as follows. Let T be a tree with 11 ver­
tices. An integer between I and 11 is associated with each vertex. Associated 
with certain vertices are EXTRACT_MIN instructions. Traverse the tree in 
postorder. On encountering an EXTRACT_MIN instruction at vertex 1·, lo­
cate and delete the smallest integer on the subtree with root 1· (excluding the in­
teger at 1·) not previously deleted. Give an off-line O(nG (11)) algorithm for 
this process. 

Design an 0(11 loglog 11) solution to the UNION_FIND problem using a data 
structure consisting of a tree each of whose leaves is of distance 2 from the root. 
Restrict the degree of the root to be between I and 11/log 11. Restrict the degree 
of each son of the ~oot to be between I and log 11. How can the algorithm be 
modified lo get an 0(11 logloglog 11) time bound? What is the best time bound 
that you can obtain by a generalization of this method? 

Show how to keep track of the displacements from the origin in a symbol table 
as mentioned in Application 2 of Section 4.8. [Hint: Utilize the technique used 
for depth determination.] 
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.i.2.i Write a program for the UN ION and FIND primitives with weight computation 
as in Application 2 of Section 4.8 . 

.i.25 Test the finite automata illustrated below for equivalence. using the algorithm of 
Fig. 4.25 (p. 144). The start states are I and A. respectively. and the sets of 
final states are {5} and { C. £}. respectively. 

, 
Present 

state 
3 

4 

5 

Input 
0 I 

, 3 

3 5 

4 5 

2 5 

I 2 

Next 
state 

A 

B 

Present c 
state 

- ..... D 

E 

Input 
0 I 

D B 

D c 

A B 
I 

B E 

A D 

Next 
state 

4.26 Write complete programs to execute the following instructions on 2-3 trees. 
a) DELETE 
b) UNION 
c) MEMBER (assuming leaves are ordered and each vertex has the label of its 

highest leaf attached) 
d) SPLIT (assuming the leaf at which the split is to occur is given and .leaves 

are ordered) 

4.27 Write a complete program to insert a new vertex into a 2-3 tree assuming the 
leaves are ordered.· 

4.28 Write programs for the primitives MEMBER. INSERT. DELETE, MIN, 
UNION, and.FIND using the 2-3 tree with the SMALLEST labels of Section 
4. I I. Assume the universal set is { I. 2 ..... 11}. 

4.29 Consider the 2-3 tree implementation of the mergeable heap (INSERT, DE­
LETE. UNION. MIN). Assume that the universe from which elements are 
drawn is large. Describe how to implement FIND in OClog n) steps per FINO 
instruction. where /1 is the total number of elements in all heaps combined. 

Definition. An A VL treet is a binary search tree such that at each vertex v the 
heights uf the left and right subtrees of i· differ by at most one. If a subtree is 
missing it is deemed to be of "height"' -1. 

t Named for its originators. Adel'son-Vel'skii and Landis [ 1962]. 
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Fig. 4.37. A non-AVL tree. 

E'.xample 4.14. The tree of Fig. 4.37 is not an A VL tree because the vertex 
marked * has a left subtree of height 2 and a right subtree of height 0. The A VL 
condition is, however, met at evc:ry other vertex in Fig. 4.3 7. 0 

4.30 Show that an A VL tree of height h has at most 2h+i - I vertices and at least 

5 + 2 Vs ( 1 + Vs )'' 5 - 2 Vs ( I - \/5 )h _ 
5 2 + 5 2 1 

vertices. 

•4.31 Let T be a binary search tree with 11 vertices that is an A VL tree. Write 
O(log 11) algorithms for the instructions INSERT and DELETE that keep the 
tree an A VL tree. You may assume the height of each vertex can be found at 
that vertex and that height information is automatically updated. 

•4.32 Write algorithms to split an A VL tree and to concatenate two A VL trees. The 
algorithms should work in time proportional to the heights of the trees. 

•4.33 Use. an AVL tree as the basis of an algorithm to execute MIN, UNION, and 
DELETE on sets consisting of integers I through n. using O(log 11) steps per 
operation. 

Definition. The balance of a vertex r in a binary tree is (I + L)/(2 + L + R ). 
where Land R are the numbers of vertices in the left and right subtrees of\'. A 
binary search tree is a-balanced if every vertex· has balance between a and 
I - a. 

Example 4.15. The balance of the vertex marked * in Fig. 4.37 is t. No other 
vertex has a balarft:e which deviates that greatly from L so the tree of Fig. 4.37 
is l-balanced. 0 

.•4.34 Give upper and lower bounds on the number of vertices in an a-balanced tree 
of height h. 

~4.35 Repeat Exercises 4.31-4.33 for trees of balance a. where a ::s t 
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*4.36 Can you do Exercises 4.31-4.33 if a> t? 
4.37 Design a balanced tree with data at leaves where balancing is obtained b 

keeping the difference in the height of subtrees to within a fixed constant. 

*4.38 Write an 0(11G(11)) algorithm which. given an 11-vertex tree and a list of 11 pai1 
of vertices. determines for each pair (1·: w) the vertex which is an ancestor c 
both 1· and w and is the closest of all such common ancestors of 1• and '' 

*4.39 The extemal path length of a binary tree is the sum over all leaves of their deptl 
The illlemal path length of a binary tree is the sum of the depths of all vertice 
What is the relation between external and internal path length if every vertex h~ 
two sons or none? 

*4.40 Design a data structure for implementing queues so that the following open: 
tions can be executed on-line. 
a) ENQUEUE(i, A)-add integer i to queue A. Distinct instances of the sam 

integers are permitted. 
b) DEQUEUE(A)-extract from queue A that element which has been ther 

longest. . 
c) MERGE(A. B, C)-merge queue6 A 'fild Band call the resulting queue C 

Elements are deemed present on the merged queue for as long as they wer 
on whichever of A or B they were on. Note that the same integer may occu 
several times on A and B, and each occurrence is to be considered a separat 
element. 

What is the time needed for execution of a sequence of n instructions? 

*4.41 Design a data structure for implementing the operations in Exercise 4.40 oft 
line. What is the time needed to execute a sequence of n of these instruction 
off-line? 

' 
*4.42 In Algorithm 4.5 suppose the initial partition 1T ={Bi. ... , Bq} has the prop 

erty that for each I ::5 i ::5 q,J-1(8;) s B; for somej. Show that at most onej i 
selected on line 6 of Fig. 4.35. ls the time complexity of Algorithm 4.5 reduce• 
by this simplification? 

Research Problem 

4.43 There are a number of unresolved questions concerning how fast one can ex 
ecute sequences of 11 operations chosen from the seven given in Section 4. J -Q 

other primitives for that matter. If the elements are chosen from an arbitrar 
set, and the only way to obtain information about them is by comparisons, the 
any set of primitives with which one can sort must take Oc(n log n) time. Ho~ 

ever, there is little that can be used to argue that anything more than O(n) tim• 
is required when the universe is the set of integers {I, 2, .... 11} (or even 
through 11k for fixed k). or if the set of primitives is not sufficient to sort 
Therefore there is much room for improvement on either the expected or worst 
case times shown in Fig. 4.36. Alternatively, can one show lower bounds bette 
than 0(11) for some subset (or even all) of the primitives on the integers 
through 11 '? 
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The partitioning algorithm is taken from Hopcroft [ 191 I], as is the application to 
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11.i. ALGORITHMS ON GRAPHS 5.1 

Many problems in ·engineering and science can be formulated in terms of un­
directed or directed graphs. In this chapter we shall discuss some of the prin­
cipal graph problems that have solutions that are polynomial (in running time) 
in the number of vertices. and hence edges, of a graph. We shall concentrate 
on problems dealing with the connectivity of graphs. Included are algorithms 
for finding spanning trees, biconnected comp.onents, strongly connected ·com­
ponents. and paths between vertices. In Chapter I 0 we shall study more dif­
ficult graph problems. 

5.1 MINIMUM-COST SPANNING TREES 

Let G = (V, £) be a connected, undirected graph with a cost function map­
ping edges to real numbers. A spanning tree, we recall, is an undirected tree 
that connects all vertices in V. The cost of a spanning tree is just the sum of 
the costs of its edges. Our goal is to find a spanning tree of minimal cost for 
G. We shall see that a minimum-cost spann~qj.-tree for a graph with e edges 
can be found in O(e loge) time in general'and in O(e) time if e is sufficiently 
large compared with the number of vertices (see Exercise 5.3). Many span­
ning tree algorithms are based on the following two lemmas. 

Lemma 5.1. Let G = (V, £) be a connected, undirected graph and 
S = (V, T) a spanning tree for G. Then 

a) for all v1 and v2 in V, the path between ;•1 and v2 in S is unique, and 
b) if any edge in£- Tis added to S, a unique cycle results. 

Proof. Part (a)' is trivial, since if there were more than one path there would 
be a cycle. 

Part (b) is likewise trivial, since there must already be a path between the 
endpoints of the added edge. 0 

Lemma 5.2. Let G = (V, £) be a connected, undirected graph and c a 
cost function on its edges. Let {(V1, T 1), (V2 , T2), ••• , (Vk, Tk)} be any 

v, 

Fig. 5.1 A cycle in graph G. 
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• 

spanning forest for G with k > I. Let T = U f=t T;. Suppose e = (1·. II') 

is an edge of lowest cost in £ - -T such that v E V1 and w ft. V1• Then 
the.re is a spanning tree for G which includes T U { e} and is of as low a 
cost as any spanning tree for G that includes T. 

Pro4 Suppose to the contrary that S' = ( V, T ') is a spanning tree for G 
such that T' includes T but not e, and that S' is of lower cost than any span­
ning tree for G that includes T U { e}. 

By Lemma 5.1 (b). the addition of e to S' forms a cycle. as shown in Fig. 
5.1. The cycle must contain an edge e' = (v', w'), other than e, such that 
l'' E V1 and w' E V1 • By hypothesis c(e) :s c(e'). 

Consider the graph S formed by adding e to S' a~d deleting e' from S '. 
S has no cycle, since the only cycle was broken by deletion of edge e '. 
Moreover, all vertices in V are still connected, since there is a path between 
l'' and w' in S. Thus Sis a spanning tree for G. Since c(e) :s c(e'), Sis no 
more costly than S '. But S contains both Tande, contradicting the minimal­
ity of S'. D 

We now give one algorithm to find a minimum-cost spanning tree for an 
undirected graph G = (V, E). The algorithm is essentially the same as the one 
in Example 4.1. The algorithm maintains a collection VS of disjoint sets of 
vertices. Each set W in VS represents a connected set of vertices forming a 
spanning tree in the spanning forest represented by VS. Edges are chosen 
from£, in order of increasing cost. We consider each edge (v, w) in turn. If v 

I. 
2. 
3. 
4. 
5. 

6. 
7. 
8. 

9. 
10. 

begin 

end 

T +-0: 
vs-~: 
construct a priority queue Q containing all edges in £: 
for each vertex l' E V do add { 1·} to VS: 
while llVSll > l do 

begin 

end 

choose (1•, w), an edge in Q of lowest cost: 
delete (1•. 11•) from Q: 
if 1· and ware in different sets W1 and W 2 in VS then 

begin 

end 

replace W1 and W 2 in VS by W1 U W 2 : 

add (1', 11') to T 

Fig. 5.2. Minimum-cost spanning tree algorithm. 
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and w are already in the same set in VS. we discard the edge. If 1• and ware 
in distinct sets W1 and W2 (which means W1 and W 2 are not yet connected). 
we merge W1 and W 2 into a single set and add (l', w) to T. the set of edges in 
the final spanning tree. The disjoint-set union algorithm of Section 4. 7 can be 
used here. By Lemma 5.2 and an easy induction on the number of edges 
selected. we know that at least one minimum-cost spanning tree for G will 
contain this edge. 

Algorithm 5.1. Minimum-cost spanning tree (Kruskal's algorithm). 

Input. An undirected graph G = (V, E) with a cost function con the edges.' 

Output. S = (V, T), a minimum-cost spanning tree for G. 

Method. The program is given in Fig. 5.2 on p. 173. D 

Example 5.1. Consider the undirected graph in Fig.' 5.3. The list of edges, 
sorted in order of increasing cost, is: . . 4 .-

·Edge Cost Edge Cost 

(V1, V7) 1 (V4, V5) 17 
(V3, V4) 3 (V1, V2) 20 
(V2, V7) 4 (v1, Vs) 23 
(V3, V7) 9 (v5, V1) 25 
(V2, V3) 15 (vs, Vs) 28 
(V4, V7) 16 (vs, V1) 36 

Of course the edges are not actually sorted in step 3 of Algorithm 5.1 but are 
kept in a heap, 2-3 tree, or some other suitable data structure until they are 
needed. In fact, the heap of Section 3.4 is an ideal choice to implement the 
priority queue. The repeated request to find the minimum-cost edge at line 6 

Fig. 5.3 An undirected graph with costs on edges. 
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Edge Action Sets in VS (connected components) 

(I' 1, I';) Add {1·,, I';}. {1·2}, {1·3}, {1·4}. {1'5}, {1·6} 

( 1':1• 1'4) Add {1·1, I';}. {1·2}. {l'3, l'4}, {1•5}, {1•5} 

( 1·2• I';) Add {1·1• 1'2· I';}. {1·:1• 1'4}, {1•5}, {l's} 

(l':i• I';) Add { 1·1• 1·2• 1·3, 1'4, 1'7}, { 1•5}, {l's} 

(1'2· 1'3) Reject 
(1'4. 1'7) Reject 
(1'4, 1'5) Add { 1'1 • 1'2• 1'3, 1'4, 1'5, I';}• {l's} 

(I' I• 1'2) Reject 
( 1'1 • 1·6~ Add { 1'1• ...• l'7} 

Fig. 5.4. Sequence of steps for constructing a spanning tree . 

. s the basic operation of Heapsort. Moreover. the number of edges chosen at 
iine 6 to construct a spanning tree is often less than 11£11. In such situations, 
we save time since we never sort E completely. 

Initially, each vertex is in a set i:Jl}.r itself in VS. The lowest-cost edge is 
:1·1o v7 ), so we add this edge to the tree and merge the sets { v1 } and { v7 } in VS. 
We then consider (v3 , v4 ). Since v3 and v4 are in different sets in VS, we add 
)•3 , v4) to the tree and merge {v3 } and {114 }. Next, we add (v2 , v7 ) and merge 
'[v2 } with {v1, v7 }. We also add the fourth edge (v3 , v7 ) and merge {v1> v2 , v7 } 

With { V3, V4}. 

Then, we consider (v2 , v3). Both v2 and v3 are in the same set, 
[1•1, v2 , v3 , v4 , v7 }. Thus there is a path from v2 to v3 consisting of edges 
ilready in the spanning tree, so we do not add (v2 , v3). The entire sequence 
:>f steps is summarized in Fig. 5.4. The resulting undirected spanning tree is 
shown in Fig. 5.5. 0 

• 

Vs }------I 
17 

Fig. 5.5 A minimum-cost spanning tree. 
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Theorem 5.1. Algorithm 5.1 finds a minimum-cost spanning tree if the 
graph G is connected. If d edges are examined in the loop of lines 5- I 0, 
then the time spent is O(d log e). where e = 11£11. Hence Algorithm 5.1 
requires at most O(e log e) time. 

Proof Correctness of the algorithm follows immediately from Lemma 5.2 
and frqm the fact that lines 8 and 9 correctly keep vertices in the same set if 
and only if they are in the same tree in the spanning forest represented by VS. 

For the timing, suppose that d iterations of the loop of lines 5- I 0 are 
required. Discovery of a lowest-cost edge on Q (line 6) requires O(log e) 

steps if Q is implemented by a priority queue. The total time to find all the 
sets W1 and W:i containing v and w (line 8) and to replace them by their union 
(line 9) is at most O(e G (e)) if the fast disjoint-set union algorithm is used. 
The remainder of the loop clearly requires a constant amount of time indepen­
dent of the size of G. Initialization of Q takes O(e) time and initialization of 
VS. O(n) time, where n is the number of vertice~ in V. 0 

. ·4• 

5.2 DEPTH-FIRST SEARCH 

Consider visiting the vertices of an undirected graph in the following manner. 
We select and "visit" a starting vertex v. Then we select any edge (v, w) in­
cident upon v, and visit w. In general, suppose x is the most recently visited 
vertex. The search is continued by selecting some unexplored edge (x, y) in­
cident upon x. If y has been previously visited, we find another new edge in­
cident upon x. Jf y has not been previously visited, then we visit y and begin 
the search anew starting at vertex y. After completing the search through all 
paths beginning at y, the search returns to x, the vertex from which y was first 
reached. The process of selecting unexplored edges incident upon x is con­
tinued until the list of these edges is exhausted. This method of visiting the 
vertices of an undirected graph is called a depth-first search since we contin_ue 
searching in the forward (deeper) direction as long as possible. 

Depth-first search can be applied to a directed graph as well. If the 
graph is directed, then at vertex x we select only edges (x, y) directed out of x. 
After exhausting all edges out of y, we return to x even though there may be 
other edges directed into y which have not yet been searched. 

If depth-first search is applied to an undirected graph which is connected. 
then it is easy to show that every vertex will be visited and every edge exam­
ined. If the graph is not connected. then a connected component of the graph 
will be searched. Upon completion of a connected component. a vertex not 
yet visited is selected as the new start vertex and a new search is begun. 

A depth-first search of an undirected graph G = ( V. E) partitions the 
edges in E into two sets T and B. An edge (i', w) is placed in set T if vertex 
w has not been previously visited when we are at vertex v consid~ring edge 
(v. iv). Otherwise. edge (v, w) is placed in set B. The edges in Tare called 



procedure SEARCH(1·): 
begin 

I. mark 1· "old"; 
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2. for each vertex w on L [ v] do 
3. if 11' is marked "new" then 

begin 
4. add (v, 11') to T: 
5. SEARCH(w) 

end 
end 

Fig. 5.6. Depth-first search. 

tree edges, and those in B back edges. The subgraph (V, T) is an undirected 
forest, called a depth-first spanning forest for G. Jn the case that the forest 
consists of a single tree, (V, T) is called a depth-first spanning tree. Note 
that if G is connected, the depth-first spanning forest will be a tree. We con­
sider each tree in the depth-first sp.\1-nning forest to be rooted at that vertex at 
which the depth-first search of that tree was begun. 

An algorithm for the depth-first search of a graph is given below. 

Algorithm 5.2. Depth-first search of an undirected graph. 

Input. A graph G = (V, E) represented by adjacency lists L [ v], for v E V. 

Output. A partition of E into T, a set of tree edges, and B, a set of back 
edges. 

Method. The recursive procedure SEARCH(v) in Fig. 5.6 adds edge (v, w) 
to T if vertex w is first reached during the search by an edge from v. We as­
sume all vertices are initially marked "new .. " The entire algorithm is as 
follows: 

begin 
6. T ~ 15: 
7. for all v in V do mark v "new": 
8. while there exists a vertex 1· in V marked .. new'' do 
9. SEARCH(v) 

end 

All edges in E noiplaced in Tare considered to be in B. Note that if edge 
(v, w) is in E, then w will be on L[1•] and 1· will be on L[ll']. Thus we cannot 
simply place edge (1', w) in B if we are at vertex 1· and vertex 11· is marked 
"old" since II' might be the father of 1·. D 

Example 5.2. We shall adopt the convention of showing the tree edges in T 
solid and back edges in B dashed. Also. the tree (or trees) will be drawn with 
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Fig. 5.7 A graph and its depth-first spanning tree. 

5. 

the root (the starting vertex selected at line 8) at the top, and with the sons of 
each vertex drawn from left to right in the order in which their edges were 
added at line 4 of SEARCH. Consider the graph of Fig. 5.7(a). One pos­
sible partition of this graph into tree and .bacJ.<edges resulting from a depth­
first search is shown in Fig. 5.7(b). 

Initially, all vertices are "new." Suppose v 1 is selected at line 8. When 
we perform SEARCH(v 1), we might select w = v2 at line 2. Since v·2 is 
marked "new," we add (v 1 , v2 ) to T and call SEARCH(v2 ). SEARCH(v2 ) 

might select v 1 from L [vi], but v 1 has been marked "old." Then suppose 
we select 111 = v:i. Since v:i is "new," we add (v~, v:1) to T and call 
SEARCH(v3). Each of the vertices adjacent to v3 is now "old," so we return 
to SEARCH(v2). 

Then. proceeding with SEARCH(v2), we find edge (v2 , v4), add it to T, 
and call SEARCH(v4). Note that v4 is drawn to the right of v3 , a previously 
found son of v2 in Fig. 5.7(b). No "new" vertices are adjacent to v4 , so we re­
turn to SEARCH(v2). Now we find no "new" vertices adjacent to v2 , and so 
return to SEARCH(1· 1 ). Continuing. SEARCH(v 1) finds'':;, and SEARCH(v5 ) 

finds v6• All vertices would then be on the tree and marked "old," and thus 
the algorithm would end. If the graph we;·e not connected. the loop of lines 
8-9 would repeat. once for each component. 0 

Theorem 5.2. Algorithm 5.2 requires 0( MAX(11. e)) steps on a graph 
with /1 vertices and e edges. 

Proof Line 7 and the search for "new" vertices at line 8 require 0(11) steps 
if a list of vertices is made and scanned once. The time spent in 
SEARCH(v). exclusive of recursive calls to itself. is proportional to the 
number of vertices adjacent to 1·. SEARCH(1·) is called only once for a given 
1·. since 1· is marked "old" the first time SEARCH(!•) is called. Thus the total 
time spent in SEARCH is 0(MAX(11. e)). and we have the theorem. 0 

Part of the power of depth-first search is contained in the following 
lemma. which says that each edge of an undirected graph G is either an edge 
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in the depth-first spanning forest or connects an ancestor to a descendant in 
some tree of the depth-first spanning forest. Thus all edges in G. whether 
;ree or back, connect two vertices such that one vertex is an ancestor of the 
other in the spanning forest. · 

Lemma 5.3. If (v, w) is a back edge, then in the spanning forest ,. is an 
ancestor of w or vice versa. 

Proof Suppose without loss of generality that v is visited before w, in the 
sense that SEARCH(v) is called before SEARCH(w). Thus when v is 
reached, w is still labeled "new." All "new" vertices visited by SEARCH(v) 
will become descendants of v in the spanning forest. ~But SEARCH(v) 
cannot end until w is reached, since w is on the list L [ v]. 0 

There is a natural order which depth-first search imposes on the vertices 
of a spanning forest. Namely, vertices can be labeled in the order they are 
visited if we initialize COUNT to 1 between lines 6 and 7 of Algorithm 5.2 
and insert 

DFNUMBER[v] +--COUNT; 
COUNT +-- COUNT+ ] ; 

at the beginning of procedure SEARCH. Then the vertices of the forest 
would be labeled l, 2, ... , up to the number of vertices in the forest. 

The labels can clearly be assigned in O(n) time for a graph of n vertices. 
The order corresponds to a preorder traversal of each tree in the resulting 
spanning forest. We shall subsequently assume that all depth-first spanning 
forests are so labeled. We shall often treat these vertex labels as though they 
are the vertex names themselves. It thus makes sense to say, e.g., "v < w," 
where v and w are vertices. 

Example 5.3. The depth-first order of the vertices of the graph in Fig. 5.7(a) 
is V1o v2 , v3 , v4 , v5 , v6 , which can be ascertained either by tracing the order in 
which SEARCH was initiated for the various vertices or traversing the tree of 
Fig. 5.7(b) in preorder. 0 . 

Note especially that if vis a proper ancestor of II', then v < w. Also, if v 
is to the left of w in a tree, then v <: w. 

5.3 BICONNECTIVITY 

We now consider an lpplication of depth-first search to determining the 
biconnecte<;i components of an undirected graph. Let G = ( V, E) be a con­
nected, undirected graph. A vertex a is said to be an articulation point of G 
if there exist vertices v and w such that v. 11', and a are distinct, and every 
path between v and w contains the vertex a. Stated another way, a is an 
aniculation point of G if removing a splits G into two or more parts. The 
graph G is bico1111ected if for every distinct triple of vertices 1·. 11·. a there 
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(a) (b) 

f0 
Gf 

Fig. 5.8 (a) An undirected graph and (b) its biconnected compo­
nents. 

5.3 

exists a path between v and w not contammg a. Thus an undirected con­
nected graph is biconnected if and only if it has no articulation points. 

We can define a natural relation on the set of edges of G by saying that 
two edges el and e2 are related if el = e2 or there is a cycle containing both el 
and e2. It is easy to show that this relation is an equivalence relationt that 
partitions the edges of G into equivalence classes £ 1 , £ 2 , ••• , Ek such that 
two distinct edges are in the same class if and only if they lie on a common 
cycle. For I s i s k, let Vi be the set of vertices of the edges in E;. Each 
graph G i = (Vi, E;) is called a biconnected component of G. 

Example 5.4. Consider the undirected graph of Fig. 5.8(a). Vertex v4 , for ex­
ample, is an articulation point, since every path between v1 and v1 passes 
through v4 • The equivalence classes of edges lying on common cycles are 

{(v1, V2). (vi, V3), (v2, va)}, 
{(v2, V4), (v2. V5), (V4, V5)}, 
{(v," v6)}, 
{(v6, v1), (v6, Vs). (v6,.v9), (v1, vs). (vs, V9)}. 

t R is an eq11i\'alence relation on set S if R is reff<'Xfre (aRa for all a E S), symmetric 
(aRb implies bRa for all a, b E S), and transitive (aRb and bRc implies aRc). It is 
easy to show that an equivalence relation on S partitions S into disjoint equivalence 
classes. (The subset [a]= {hlhRa} is called an equii·alence class.) 



BICONNECTIVITY 181 

These sets give rise to the biconnected components shown in Fig. 5.8( bl. 
The only unintuitive observation is that the edge (\·4 • \"1;). being in an equiva­
lence class by itself (no cycles include this edge), gives rise to a "biconnected 
component" consisting of \'4 and i·6 . 0 

The following lemma provides some useful information about biconnec-
tivity. 

Lemma 5.4. For 1 :::; i:::; k, Jet G; = (V;, E;) be the biconnected compo­
nents of a connected undirected graph G = (V, E). Then 

I. G i is biconnected for each i, 1 :::; i :::; k. 
2. For all i ~ j, V; n Vi contains at most one vutex. 
3. a is an articulation point of G if and only if a E V; n Vi for some 

i ~ j. 

Proof 
l. Suppose there are three distinct vertices '', w, and a in V; such that 

all paths in G; between v and w pass through a. Then surely (v, w) is not an 
edge in.£;. Thus there are distinct. edges (v, v') and (w, w') in£;. and there is 
a cycle in Gi including these edge!l By the definition of a biconnected com­
ponent, all edges and vertices on this cycle are in E; and V;, respectively. 
Thus there are two paths in G 1 between v and w, only one of which could con­
tain a, a contradiction. 

2. Suppose two distinct vertices v and w are in V; n Vi. Then there 
exists a cycle C 1 in Gi that contains v and w, and a cycle C2 in Gj that also 
contains v and w. Since£; and Ei are disjoint, the sets of edges in C 1 and C 2 

are disjoint. However, we may construct a cycle containing r and w that uses 
edges from both C 1 and C 2 , implying that at least one edge in £; is equivalent 
to an edge in Ei. Thus Ei and Ei are not equivalence classes, as supposed. 

3. Suppose vertex a is an articulation point of G. Then there exist two 
vertices v and w such that v, 11', and a are distinct. and every path between 1· 

and w contains a. Since G is connected, there is at least one such path. Let 
(x, a) and (y, a) be the two edges on a path between ,. and 11· incident upon a. 
If there is a cycle containing these two edges. then there is a path between v 
and 11· not containing a. Thus (x, a) and (y. a) are in different biconnected 
components, and a is in the intersection of their vertex sets. 

For the converse, if a E V; n Vi. then there are edges (x. a) and ( y. a) in 
E1 and Ei. respectively. Since both these edges do not occur on any one 
cycle, it follows that e~ery path from x toy contains a. Thus a is an articula­
tion point. O 

Depth-first search is particularly useful in finding the biconnected compo­
nents of an undirected graph. One reason for this is that by Lemma 5.3. 
there are no ·'cross edges." That is. if vertex ,. is neither an ancestor nor a 
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descendant of vertex 11· in the spanning forest. then there can be no edge from 
v to w. 

If vertex a is an articulation point, then the removal of a and all edges in­
cident upon a splits the graph into two or more parts. One consists of a son s 
of a and all of its descendants in the depth-first spanning tree. Thus in the 
depth-first spanning tree a must have a son· s such that there is no back edge 
between a descendant of s and a proper ancestor of a. Conversely, with the 
exception of the root of the spanning tree, the absence of cross edges implies 
that vertex a is an articulation point if there is no back edge from any 
descendant of some son of a to a proper ancestor of a. The root of the depth­
first spanning tree is an articulation point if and only if it has two or more 
sons. 

Example S.S. A depth-first spanning tree for the graph of Fig. 5.8(a) is shown 
in Fig. 5.9. The articulation points are v2 , v." and v6 • Vertex v2 has son v4 , 

and no descendant of v4 has a back edge to a proper ancestor of v2• Likewise, 
v4 has son v6 , and v6 has son v8 with the anal9gous property. 0 . 

The preceding ideas are embodied in the following lemma. 

Lemma S.S. Let G = (V, E) be a connected, undirected graph, and let 
S = (V, T) be a depth-first spanning tree for G. Vertex a is an articula-

'\ 
'\ 

'\ 
'\ 
'\ 
'\ 

'\ 

Fig. 5.9 A depth-first spanning tree. 
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tion point of G if and only if either 
J. a is the root and a has more than one son, or 
.., a is not the root. and for some son s of a there is no back edge 

between any descendant of s (including .\· itself) and a proper ances­
tor of a. 

Proof It is easy to show that the root is an articulation point if and only if it 
has more than one son. We leave this portion as an exercise. 

Suppose condition 2 is true. Let f be the father of a. By Lemma 5.3 
each back edge goes from a vertex to an ancestor of the vertex. Thus any 
back edge from a descendant 1· of s goes to an ancestor of v. By the 
hypothesis of the lemma the back edge cannot go to a~ proper ancestor of a. 
Hence it goes either to a or to a descendant of s. Thus every path from s to f 
contains a, implying that a is an articulation point. 

To prove the converse, suppose that a is an articulation point but not the 
root. Let x and y be distinct vertices other than a such that every path in G 
between x and y contains a. At least one of x and y, say x, is a proper 
descendant of a in S, else there is a path in G between x and y using edges in 
T and avoiding a. Let s be the sofi of a such that x is a descendant of s 
(perhaps x = s). Either there is no back edge between a descendant 1· of s 
and a proper ancestor w of a, in which case condition 2 is immediately true. or 
there is such an edge (v, w). In the latter situation we must consider two 
cases. 

(a) 

' ' " " ' 

(b) 

Fig. 5.10 Counterexample paths. 
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\ 

\ 
\ 

\ 
\ 
\ 
I 
I 



184 ALGORITHMS ON GRAPHS 5.3 

CASE I. Suppose y is not a descendant of a. Then there is a path from x to v 
to 11· toy that avoids a. a contradiction. See Fig. 5.1 (}(a). 

CASE:!. Suppose y is a descendant of a. Surely y is not a descendant of s, 
else there is a path from x toy that avoids a. Lets' be the son of a such that 
y is a descendant of s'. Either there is ho back edge between a descend­
ant 1·' of s' and a proper ancestor w' of a, in which case condition 2 is imme­
diately true, or there is such an edge ( v ', II''). In the latter case there is a 
path from x to 1· to w to w' to 11 ' to y that avoids a, a contradiction. See Fig. 
5. IO(b). We conclude that condition 2 is true. 0 

Let T and B be the sets of tree and back edges produced by a depth-first 
search of a connected, undirected graph G = (V, E). We assume the vertices 
m V are named by their depth-first numbers. For each v in V, we define 

LOW[1·] =MIN( {v} U {wjthere exists a back edge (x, 11') E B 
such that x is a descendant of v, 
and w an aii"c~stor of v in the depth 
first spanning forest (V, T)}) (5.1) 

The preorder numbering implies that if x is a descendant of v and (x, w) is a 
back edge such that w < v, then w is a proper ancestor of v. Thus by Lemma 
5.5, if vertex v is not the root, then v is an articulation point if and only if v 
has a sons such that LOW[s] ~ v. 

We can embed into the procedure SEARCH a calculation to determine 
the LOW value of each vertex if we rewrite (5.1) to express LOW[v] in 
terms of the vertices adjacent to v via back edges and the values of LOW at 
the sons of v. Specifically, LOW[v] can be computed by determining the 
minimum value of those vertices IV such that either 

1. IV= v, or 
2. w = LOW[s] ands is a son of v, or 
3. (v, w) is a back edge in B. 

The minimum value of w can be determined once L [ v], the list of vertices ad­
jacent to v, is exhausted. Thus (5.1) is equivalent to 

LOW[1·] =MIN( { 1·} U {LOW[s] is is a son of I'} U {wj(1•, w) E B}). 
(5.2) 

We have incorporated both the renaming of the vertices by first visit and 
the computation of LOW into the revised version of SEARCH shown in Fig. 
5.11. In line 4 we initialize LOW[v] to its maximum possible value. If 
vertex 1· has a son w in the depth-first spanning forest, then in line I I we ad­
just LOW[1·] if LOW[w] is less than the current value of LOW[l']. If 
vertex v is connected by a back edge to vertex 11•, then in line 13 we make 
LOW[1·] be DFNUMBER[ll'] if the depth-first number of vertex 11· is less 
than the current value of LOW [ 1·]. The test on line 12 checks for the case 
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procedure SEARCHB(v): 
begin 

1. mark 1• "old": 
:?. DFNUMBER[v] +--COUNT; 
3. COUNT+-- COUNT+ I: 
4. LOW[v] +-- DFNUMBER[1·]: 
.5. for each ve'rtex 11· on L[v] do 
6. if w is marked "new" then 

begin 
7. add (v, w) to T; 
8. FATHER[w] +-- 1•; 
·9. SEARCHB(w); 

10. if LOW[w] 2=: DFNUMBER[1·] then a biconnected 
component has been found: 

I I. LOW[v] +-- MIN(LOW[v], LOW[w]) 
end 

12. else if 11· is not FATHER[v] then 
13. LOW[v] +-- MiN(LOW[v], DFNUMBER[w]) 

end 

Fig. 5.11. Depth-first search with LOW computation. 

that (v, w) is not really a back edge because w is the father of v on the depth­
first spanning tree. Thus Fig. 5 .11 implements Eq. (5 .2). 

Having found LOW[v] for each vertex v, we can easily identify the artic­
ulation points. We first give the complete algorithm, then prove its cor­
rectness and show that it requires O(e) time. 

Algorithm 5.3. Finding biconnected components. 

Input. A connected, undirected graph G = (V, E). 

Output. A list of the edges of each biconnected component of G. 

Method 
I. Initially set T to 0 and COUNT to I. Also. mark each vertex in V as 

being "new." Then select an arbitrary vertex 1·0 in V and call 
SEARCHB(v0 ) (Fig. 5.11) to build a depth-first spanning tree S = (V, T) 

and to compute 1.0W(v) for ~ach 1· in V. 
2. When vertex w is encountered at line 5 of SEARCHB. put edge (v, 11·) on 

STACK. a pushdown store of edges. if it is not already there.t After dis-

t Note that if (1'. 11') is an edge. 1· is on L[w] and II" is on L[1·). Thus (1·. 11") is encoun­
tered twice. once when vertex 1· is visited und once when vertex 11· is visited. We can 
test whether (1·. 11·) is alreudy on STACK hy checking if 1· < 11· and 11· is "old" or if 
''>wand 11· = FATHER(1·]. 
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LOW [11=1 

LOW (2) = 1 

LOW [3) = 2 

LOW [4) = 4 

I 
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LOW (5) = 4 I 
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LOW [6] = 4 

LOW [91=1 

LOW [8] = 2 

LOW (7] = 4 

Fig. 5.12 Spanning tree of Fig. 5.9, with 
values of LOW. 

5.3 

covering a pair (v, w) at line I 0 ·s~~·h that w is a son of v and 
LOW[w] ~ I', pop from ST ACK all edges up to and including (v, w). 
These edges form a biconnected component of G. D 

Example 5.6. The depth-first spanning tree of Fig. 5.9 is reproduced as Fig. 
5.12 with the vertices renamed by DFNUMBER and the values of LOW in­
dicated. For example, SEARCHB(6) determines that LOW[6] = 4, since 
back edge (6, 4) exists. Then SEARCHB(5), which called SEARCHB(6), 
sets LOW[5;] = 4, since 4 is less than the initial value of LOW[5], which 
is 5. 

On completion of SEARCHB(5) we discover (line 10) that LOW[5] = 4. 
Thus 4 is an articulation point. At this point the pushdown store contains the 
edges (from bottom to top) 

(1, 2). (2, 3), (3, 4), (4, 5), (5, 6), (6, 4). (5, 7), (7, 4). 

Thus we pop the edges down to and including (4, 5). That is. we output the 
edges (7. 4), (5, 7). (6. 4), (5, 6), and (4. 5) which are the edges of the first 
biconnected component found. 

Observe that on completion of SEARCH BC:!) we discover that 
LOW[2] = 1 and empty the pushdown store of edges even though I is not an 
articulation point. This insures that the biconnected component containing 
the root is emitted. D 

Theorem 5.3. Algorithm 5.3 correctly finds the hiconnected components 
of G and requires fJ(l') time if G has e edges. 

Proo}: The proof that step I requires Ok) time is a simple extension of thal 
observation for SEARCH (Theorem 5.2). Step 2 examines each edge once. 
places it on a pushdown store, and subsequently pops it. Thus step 2 is Ok). 
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For the correctness of the algorithm, Lemma 5.5 assures us that the artic­
ulation points are correctly identified. Even if the root is not an ·articulation 
point. it is treated as one in order to emit the biconnected component con­
taining the root. 

We must prove that if LOW[ll'] ;::: \',then when SEARCHB(ll') is com­
pleted the edges above (1', 11') on STACK will be exactly those edges in the 
biconnected component containing (v, w). This is done by induction on the 
number b of biconnected components of G. The basis, b = I. is trivial since 
in this case vis the root of the tree, (v, w)-is the only tree edge out of\', and on 
completion of SEARCHB(w) all edges of G are on STACK. 

Now, assume the induction hypothesis is true for all graphs with b bicon­
nected components, and let G be a graph with b + I biconnected components. 
Let SEARCHB(w) be the first call of SEARCHB to end with LOW(wJ ;::: v, 
for (v, w) a tree edge. Since no edges have been removed from STACK. the 
set of edges above (v, w) on STACK is the set of all edges incident upon 
descendants of w. It is easily shown that these edges are exactly the edges of 
the biconnected component cont_aining (v, w). On removal of these edges 
from ST ACK, the algorithm behayes exactly as it would on the graph G' that 
is obtained from G by deleting the biconnected component with edge (\', w). 

The induction step now follows since G ' has b biconnected components. D 

5.4 DEPTH-FIRST SEARCH OF A DIRECTED GRAPH 

Algorithm 5.2 can also be used to .find a directed spanning forest for a 
directed graph G = (V, E) if we define the list L [ 1·] of vertices "adjacent" to 
v to be {wl(v, w) is an edge}, that is, L[v] is the list of vertices that are the 
heads of edges with tail v. 

Ex@lple 5.7. A directed graph is shown in Fig. 5. I 3(a), and a depth-first 

I 
I 

I 
I 

(a) 

I 

/ 
/ 

/ 

(b) 

-----------------

Fig. 5.13 Depth-first search of a directed graph: (a) directed graph: (hl spanning 
forest. 
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spanning forest for it is shown in Fig. 5. I 3(b). As before, we show tree edges 
solid and others dashed; 

To construct the spanning forest we begin at v1 • SEARCH(l'1) calls 
SEARCH(,·2), which calls SEARCH(v3). The latter terminates with no addi­
tions to the tree, since the only edge with tail ":i goes to '' 1, which is already 
marked "old." Thus we return to SEARCH(v2), which then adds V4 as a sec­
ond son of ,.2 • SEARCH(v4) terminates, making no additions to the forest, 
since va is already "old." Then SEARCH(v2) ends. since all edges leaving v2 

have now been considered. Thus we fall back to v1, which calls 
SEARCH(v5). The latter terminates with no additions to the tree, and like­
wise. SEARCH(v1) can add no more. 

We now choose v6 as the root of a new depth-first spanning tree. Its con­
struction is similar to the preceding, and we leave it to the reader to follow it. 
N.ote that the order in which we have chosen to visit the vertices is 
vi> v2 , ••• , v8 • Thus the depth-first number of vertex v; is i for 1 $ i $ 8. D 

. ·4• 
Note that in the depth-first search of a directed graph there are three 

types of edges in additiOn to tree edges. There are back edges such as (v3 , v1) 

in Fig. 5. l 3(b), right-to-left cross edges such as (v4 , v3), and forward edges 
such as (vi. v4 ). However, no edge goes from a vertex with a lower depth­
first number to one with a higher number unless the latter is a descendant of 
the former. This is not accidental. 

The explanation is similar to the reason that there are no cross edges in 
the undirected case. Assume (v, w) is an edge and that v is visited before w 
(i.e., v < w). Every vertex assigned a number between the time SEARCH(v) 
began and the time it ended becomes a descendant of v. But w must be as­
signed a number at the time edge (v, w) is explored unless w was already as­
signed a number. If w is assigned a number at the time edge (v, w) is 
explored, (v, w) becomes a tree edge. Otherwise, (v, w) is a forward edge. 
Thus there can be no cross edge (v, w) with v < w. 

The edges in a directed graph G are partitioned into four categories by a 
depth-first search of G: 

I. Tree edges, which are edges leading to new vertices during the search. 
2. Forward edges, which go from ancestors to proper descendants but are 

not tree edges. 
3. · Back edges, which go from descendants to ancestors (possibly from a 

vertex to itself). 
4. Cross edges, which go between vertices that are neither ancestors nor 

descendants of one another. 

The key property of cross edges is stated in the next lemma. 

Lemma 5.6. If (v, w) is a cross edge. then v > w. i.e., cross edges go 
from right to left. 



STRONG CONNECTIVITY 189 

Proof The proof is similar to that of Lemma 5.3 and is left a~ an exercise for 
chc reader. D 

S.5 STRONG CONNECTIVITY 

As an example of an efficient algorithm made possible by depth-first search of 
a directed graph, consider the problem of determining whether a directed 
graph is strongly connected, i.e .. whether there is a path from each vertex to 
every other vertex. 

Definition. Let G = (V, £) be a directed graph.~ We can partition V into 
equivalence classes V;, I s i s r, such that vertices v and w are equiva­
lent if and only if there is a path from v to wand a path from w to v. Let 
£;, I s i s r, be the set of edges connecting the pairs of vertices in V;. 
The graphs Gi = (V;, Ei) are called the strongly connected components of 
G. Even though every vertex of G is in some V;, G may have edges not 
in any Ei. A graph is said to be strongly connected if it has only one 
strongly connected componel\t. 

We now make use of the depth-first search to find the strongly connected 
components of a graph. We first show that the vertices of each strongly con­
nected component are a connected subgraph of the spanning forest deter­
mined by the depth-first search. This connected subgraph is a tree and the 
root of the tree is called the root of the strongly connected component. How­
ever, not every tree in the depth-first spanning forest necessarily represents a 
strongly connected component. 

Lemma 5.7. Let Gi = (V;, Ei) be a strongly connected component of a 
directed graph G. Let S = ( V, T) be a depth-first spanning forest for G. 
Then the vertices of Gi together with the edges which are common to 
both £ 1 and T form a tree. 

Proof Let v and w be vertices in V;. (We assume vertices are named by 
their depth-first numbers.) Without loss of generality assume that 1· < w. 
Since v and w are both in the same strongly connected component. there 
exists a path P in G 1 from v to 11•. Let x be the lowest-numbered vertex on P 
(possibly v itself). Once path Preaches a descendant of x. it cannot leave the 
subtree of descendants of x, since the only edges out of the subtree are cross 
edges and back edges to vertices numbered lower than x. (Since the descend­
ants of x are numbered consecutively starting with x, a cross edge or back 
edge out of the subtree of descendants of x must go to a vertex numbered less 
than x.) Thus 11· is a descendant of x. Because vertices are numbered in 
preorder, all vertices numbered between x and 11· are also descendants of x. 
Since x s v < w, 1• is a descendant of x. 

We have just shown that any two vertices in G; have a common ancestor 
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in G;. Let r be the lowest-numbered common ancestor of vertices in G;. If 
1· is in G ;. then any vertex on the spanning tree path from r to 1· is also m 
G;. 0 

The strongly connected components of a directed graph G can be found 
by discovering the roots of the components in the order that the roots are last 
encountered during a depth-first search of G. Let r 1, r".! • •..• rk be the roots 
in the order in which the depth-first search of these vertices terminated (i.e., 
the search of r; terminated before the search of r;+ 1). Then for each i < j 
either r; is to the left of ri or r; is a descendant of ri in the depth-first spanning 
forest. 

Let G; be the strongly connected component with root r; for I s i s k. 
Then G 1 consists of all descendants of r1 , since no rj,j > I, can be a descend­
ant of r 1• Similarly, we can show the following. 

Lemma 5.8. For each i, I s i s k, G; consists of those vertices which 
are descendants of r; but are in none of G 1 , G.,, .... , G;- 1 • 

. ·~· . 
Proof The root ri, for j :::=: i, cannot be a descendant of r;, since the call of 
SEARCH(r) terminates after SEARCH(r;). 0 

To aid in finding the roots. a function called LOW LINK is defined: 

LOWLINK[v] = MIN({v} U {withere is a cross edge or back 
edge from a descendant of 
v to w. and the root of the 
strongly connected component 
containing w is an ancestor 
of v}) (5.3) 

Figure 5.14 illustrates a cross edge from a descendant of v to w, where 
the root r of the strongly connected component containing w is an ances­
tor of v. 

I 
I 
I 
I 
I 
I 
I 
\ 

I 

/ 
/ 

I 

() 
Fig. S.14 A cross edge satis­
fying the condition of LOW­
LIN K. 



STRONG CONNECTIVITY 191 

We shall soon see how to calculate LOWLINK as we perform a depth­
first search. First. we provide a characterization of the roots of the strongly 
connected components in terms of LOWLINK. 

Lemma 5.9. Let G be a directed graph. A vertex v is the root of a 
strongly connected component of G if and only if LOWLI N K [ l'] = l'. 

Proof 

ONLY IF. Assume v is the root of a strongly connected component of G. 
By definition of LOWLINK, LOWLINK[i•] :5 v. Suppose that we have 
LOWLINK[1·] < v. Then there are vertices wand r sych that 

I. w is reached by a cross or back edge from a descendant of v, 
2. r is the root of the strongly connected component containing w, 
3. r is an ancestor of v, and 
4. w < l'. 

By condition 2, r is an ancestor of w, so r :5 w. Thus by condition 4, r < v, 
implying by condition 3 that r is a proper ancestor of v. But r and v must be 
in the same strongly connected com~onent, since there is a path in G from 
r to v and a path from v to r via w. Thus v is not the root of a strongly 
connected component, which is a contradiction. Hence we may conclude 
that LOWLINK[v] = v. 

IF: Assume LOWLI N K [ v] = v. If v is not the root of the strongly con­
nected component containing v, then some proper ancestor r of l' is the root. 
Thus there is a path P from v to r. Consider the first edge of P from a 
descendant of v to a vertex w which is not a descendant of v. The edge is 
either a back edge to an ancestor of v or a cross edge to a vertex numbered 
lower than v. In either case w < v. 

It remains to b_e shown that rand w are in the same strongly connected 
component of G. There must be a path from r to v since r is an ancestor of v. 
The path P goes from v to w to r. Hence r and 11· are in the same strongly 
connected component. Thus LOWLINK[v] :5 w < 1·, a contradiction. D 

The values of LOWLIN K are easy to calculate during the depth-first 
search. The strongly connected components can also be easily found as 
follows. The vertices of G are placed on a stack in the order they are visited 
during the search. Whenever a root is found, all vertices of the corre­
sponding strongly connected component are on top of the stack and are • popped. This strategy "works" by Lemma 5.8 and the properties of depth-
first numbering. 

On reaching vertex v the first time. LOWLI N K [ l'] is set equal to l'. If a 
hack or cross edge (1·, w) is explored. and w is in the same strongly connected 
component as some ancestor of l'. then LOWLINK[1·] is set to the minimum 
of its current value and w. If a tree edge (1•. w) is explored. then the subtree 
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with root 11· is recursively explored and LOWLINK[11·] calculated. After r. 
turning to 1•. LOWLINK[1•] is set to the minimum of its current value ar 
LOWLINK[ll']. 

The test to determine· whether II' is in the same component as some ai 

cestor of 1· is accomplished by checking ~o see whether 11· is still on the stac 
of vertices. This test is implemented by using an array to indicate whether c 
not a vertex is on the stack. Note that by Lemma 5.8. if w is still on th 
stack, the root of the strongly connected component containing 11· is an ar 
cestor of v. 

We now give a modification of the procedure SEARCH which compute 
LOWLINK. It makes use of a pushdown list STACK for vertices. Th· 
procedure is shown in Fig. 5.15. 

procedure SEARCHC(v): 
begin 

I. mark v "old"; 
2. DFNUMBER[v] +-- COl}NT~• 

3. COUN,T +-- COUNT+ 1; 
4. LOWLINK[v] +-- DFNUMBER[v]; 
5. push v on STACK; 
6. for each vertex w on L [ v] do 
7. if w is marked "new" then 

begin 
8. SEARCHC(w); 
9. LOWLINK[v] +-- MIN(LOWLINK[v], 

LOWLINK[w]) 
end 

else 
10. if DFNUMBER[w] < DFNUMBER[v] and w is on 

STACK then 
1 I. LOWLINK[v] +-- MIN(DFNUMBER[w], 

LOWLINK[v]); 
12. if LOWLINK[v] = DFNUMBER[v] then 

begin 
repeat 

begin 
13. pop x from top of ST ACK; 
14. print x 

end 
15. until x = v; 
16. print "end of strongly connected component" 

end 
end 

Fig. 5.15. Procedure to compute LOWLI N K. 
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The LOWLINK computation occurs at lines 4, 9, and 11. At line 4 
LOWLINK[v] is initialized to the depth-first number of vertex 1·. At line 9 
LOWLINK[r] is set to LOWLINK(w]. if for some son w, LOWLINK[ll'] 
is Jess than the current value of LOWLINK[1•]. At line 10 we determine 
whether ( l', w) is either a back edge or cross edge and we check to see whether 
the strongly connected component containing w has been foun.ci. If not, then 
the root of the strongly connected component containing w is an ancestor of 1·. 
Perforce, at line I I we set LOWLINK[v] to the depth-first number of 11· if it 
does not already have a lower value. 

We now give the entire algorithm to find the strongly connected compo­
nents of a directed graph. 

Algorithm 5.4. Strongly connected components of a directed graph. 

Input. A directed graph G = (V, E). 

Output. A list of the strongly connected components of G. 

Method 
begin 

' COUNT~ I; 
for all v in V do mark v "new"; 
initialize STACK to empty; 
while there exists a vertex v marked "new" do SEARCHC(v) 

end D 

Example 5.8. Consider the depth-first spanning forest of Fig. 5.13, which is 
reproduced as Fig. 5.16 with LOWLINK computed. The first SEARCHC 
call to terminate is SEARCHC(3). When we examine the edge (3, I). we 
set LOWLINK[3] to MIN(l, 3) = 1. On returning to SEARCHC(2), we 
set LOWLINK(2] to MIN(2, LOWLINK[3]) = 1. Then we call 
SEARCHC(4), which considers edge (4, 3). Since 3 < 4 and 3 is still on 
STACK, we set LOWLINK[4] to MIN(3, 4) = 3. 

Then we return to SEARCHC(2) and set LOWLINK[2] to the min­
imum of LOWLINK[ 4] and the current value of LOWLINK[2]. which is I. 
Since the latter is smaller, no change to LOWLINK[2] occurs. We return to 

LOWLINK [1) = 1 

/ 
/ 

LOWLINK [2) = 1 // 2 
/ 

/ 

lWLINK [3) = 1 

/ 
/ 

8 LOWLINK [8] = 6 

-----LOWLINK [7) = 7 

LOWLINK [4) = 3 

Fig. 5.16 A spanning forest with LOW LINK computed. 
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SEARCHC( I). setting LOW LINK[ I] to M IN(I. LO'.VLINK[2]) = I. If 
we then consider edge (I. 4). we do nothing since (I. 4) is a forward edge and 
the condition of line 10 of SEARCHC is not met because 4 > I. 

Next. we call SEARCHC(5). and cross edge (5. 4) causes us to set 
LOW LIN K[5] to 4. since 4 < 5 and 4 is on STACK. When we again re­
turn to SEARCHC( I). we set LOW LIN K[i] to the minimum of its former 
value I and LOWLINK[5], which yields I. 

Then. since all edges out of I have been considered, and LOW­
LI N K [I] = I, we discover that I is the root of a strongly connected compo­
nent. This component consists of I and all vertices above I on the stack. 
Since I was the first vertex visited, vertices 2, 3, 4. and 5 are all above I, in 
that order. Thus the stack is emptied and the list of vertices I, 2, 3, 4, 5 is 
printed as a strongly connected component of G. 

The remaining strongly connected components are {7} and {6, 8}. We 
leave it to the reader to complete the calculation of LOWLINK and the 
strongly connected components, starting at vertex 6. Note that the roots of 
the strongly connected components were _lq;t encountered in the order 
I, 7, 6. [] . 

Theorem 5.4. Algorithm 5.4 correctly finds the strongly connected com­
ponents of G in O(MAX(n. e)) time on an 11-vertex, e-edge directed 
graph G. 

Proof It is easy to check that the time spent by one call of SEARCHC(v), 
exclusive of recursive calls to SEARCHC, is a constant plus time propor­
tional to the number of edges leaving vertex v. Thus all calls to SEARCHC 
together require: time proportional to the number of vertices plus the number 
of edges, as SEARCHC is called only once at any vertex. The portions of 
Algorithm 5.4 other than SEARCHC can clearly be implemented in time 
O(n). Thus the time bound is proven. 

To prove correctness it suffices to prove, by induction on the number of 
calls to SEARCHC that have terminated, that when SEARCH(v) terminates, 
LOWLINK[v] is correctly computed. By lines 12-16 of SEARCHC, vis 
made the root of a strongly connected component if and only if we have 
LOWLINK[v] = v. Moreover, the vertices printed out are exactly those 
descendants of v which are not in components whose roots have been found 
before v, as required by Lemma 5.8. That is, the vertices above 1• on the 
stack are descendants of v, and their roots have not been found before v since 
they are still on the stack. 

To prove LOWLINK is computed correctly, note that there are two 
places in Fig. 5.15 where LOWLINK[v] could receive a value less than v. 
that is. at lines 9 and 11 of SEARCHC. In the first case, w is a son of v, and 
LOWLINK[w] < \'. Then there is a vertex x = LOWLINK[w] that c39 be 
reached from a descendant y of w by a cross or back edge. Moreover, the 
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root r of the strongly connected component containing .x is an ancestor of ti'. 
Since x < 1·. we have r < 1·. so r is a proper ancestor of 1·. Thus we see 
LOWLINKf 1·] should be at least as small as LOWLINK[11·]. 

In the second case. at line 11. there is a cross or back edge from 1· to a 
vertex 11· < 1· whose strongly connected component C has not yet been found. 
The call of SEARCHC on the root r of Chas not terminated. so r must be an 
ancestor of 1·. (Since r :::;· 11· < 1·. either r is to the left of 1· or r is an ancestor 
of 1·. But if r were to the left of 1·. SEARCHC(r) would have terminated.) 
Again it follows that LOWLI N K [I'] should be at least as low as w. 

We must still show that SEARCHC computes LOWLINK[i•] to be as 
low as it should be. Suppose in contradiction that the~re.is a descendant .x of 1· 

with a cross or back edge from x to y, and the root r of the strongly connected 
component containing y is an ancestor of v. We must show that LOWLIN K 
is set at least as low as y. 

CASE I. x = 1•. We may assume by the inductive hypothesis and Lemma 5.9 
that all strongly connected components found so far are correct. Then y must 
still be on ST ACK, since SEARC{I(r) has not terminated. Thus line 11 sets 
LOWLINK[v] toy or lower. 

CASE 2 . .x =F v. Let z be the son of v of which x is a descendant. Then by 
the inductive hypothesis. when SEARCHC(z) terminates, LOWLINK[z] 
has been set toy or lower. At line 9 LOWLIN K[ v] is set this low, if it is not 
already lower. D 

5.6 PATH-FINDING PROBLEMS 

In this section we consider two frequently occurring problems having to do 
with paths between vertices. In what follows let G be a directed graph. The 
graph G * which has the same vertex set as G, but has an edge from ,, to 11· if 
and only if there is a path (of length 0 or more) from 1· to w in G, is called the 
(reflexive and) transitive closure of G. 

A problem closely related to finding the transitive closure of a graph is 
the shortest-path problem. Associate with each edge e of G a nonnegative 
cost c(e). The cost of a path is defined to be the sum of the costs of the 
edges in the path. The shortest-path problem is to find for each ordered pair 
of vertices (1·. 11·) the lowest cost of any path from 1· to 11·. 

It turns out that the ideas behind the best algori.thms known for both the 
transitive closure amj shortest-p~th problems are (easy) special cases of the 
problem of finding the (infinite) set of all paths between each pair of vertices. 
To discuss the problem in its generality. we introduce a special algebraic 
Structure. 

Definition. A closed semiring is a system (S. +. ·. 0, I), where S is a set 
of elements. and+ and ·are binary operations on S, satisfying the follow-
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ing five properties: 

I. (5. +. 0) is a monoid, that is. it is clo.H'd under+ [i.e .. a + b E S for 
all a and b in S]. +is as.rnciath·e [i.e., a+ (h + c) = (a+ b) + c for 
all a, b, c in S]. and 0 is an id£'ntity [i.e .. a+ 0 = 0 +a= a for all a 
in SJ. Likewise, (S, ·, I) is a monoid. We also assume 0 is an amzi­
hilatvr. i.e .. a · 0 = 0 · a= 0. 

2. +is cvmnwtatil'e, i.e., a+ b = b +a, and idempotent, i.e., a+ a= a. 
3. · distributes over +, that is, a · (b + c) =a · b +a · c and 

(b + c) · a= b · a+ c · a. 
4. If a 1 , a2 , ••• , a;. ... is a countable sequence of elements in S, 

then a1 + a2 + · · · + ll; + · · · exists and is unique. Moreover, 
associativity, com,nutativity, and idempotence apply to infinite as well 
as finite sums. 

5. · must distribute over countably infinite sums as well as fini.te ones 
(this does not follow from property 3). Thus (4) and (5) imply 

.. ,, .. 

Example 5.9. The following three systems are closed semirings. 

I. Let S 1 = ({0, I},+,·, 0, I) with addition and multiplication tables as 
follows: 

+ 0 

0 0 
I 

Then properties 1-3 are easy to verify. For properties 4 and 5, note that 
a countable sum is 0 if and only if all terms are 0. 

2. Let S2 = (R, MIN,+, +:x:, 0), where R is the set of nonnegative reals 
including +x. It is easy to verify that +x is the identity under MIN and 
0 the identity under +. 

3. Let I be a finite alphabet (i.e., a set of symbols), and let S:1 = 
(FJ:., U, "0, {e}), where F~ is the family of sets of finite-length strings 
of symbols from I, including E, the empty string (i.e., the string of 
length 0). Here the first operator is set union and · denotes set conca­
tenation. t The U identity is B and the · identity is { E}. The reader may 
verify properties 1-3. For properties 4 and 5. we must observe that 

t The c:om:ate11ation of sets A and B. denoted A · B, is the set {xix= yz. y E A and 
;: EB}. 
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countable unions behave as they should if we define x E (A 1 U A 2 U · · ·) 
if and only if x E A; for some i. D 
A unary operation, denoted * and called closure, is central to our analysis 

of closed semirings. If (S, +. ·. 0. 1) is a closed semiring. and a E S, then we 
define a* to be ~~o a;, where a 0 = 1 and a;= a · ai-i. That is. a* is the infi­
nite sum 1 +a+ a · a+ a · a · a+ · · ·. Note that property 4 of the defini­
tion of a closed semiring assures that a* E S. Properties 4 and 5 imply 
a*= I +a · a*. Note that 0* = 1 * = I. 

Example 5.10. Let us refer to the semirings S 1, S 2 , and Sa of Example 5.9. 
For S1, a*= I for a= 0 or I. For S 2, a*= 0 for all a in R. For Sa. A*= 
{E} U {x1x2 · · · xkl~ ~ I and x; EA for I :s i :s k} for all A E F'!.. For ex­
ample, {a, b }* = {E, a, b, aa, ab, ba, bb, aaa, ... }, that is, all strings of a's 
and b's including the empty string. In fact, F ~ = .9'(~ *), where .9'(X) denotes 
the power set of set X. D 

Now, let us suppose we have a directed graph G = (V, E) in which each 
edge is labeled by an element of some closed semiring (S, +, ·, 0, 1).t We 
define the label of a path to be the nroduct (.) of the labels of the edges in the 
path, taken in order. As a special case, the label of the path of zero length is 
I (the · identity of the semiring). For each pair of vertices (v, w), we define 
c(v, w) to be the sum of the labels of all the paths between v and w. We shall 
refer to c(v, w) as the cost of going from v tow. By convention, the sum over 
an empty set of paths is 0 (the+ identity of the semiring). Note that if G has 
cycles, there may be an infinity of paths between v and w, but the axioms of a 
closed semiring assure us that c(v, w) will be well defined. 

Example 5.11. Consider the directed graph in Fig. 5 .17, in which each edge 
has been labeled by an element from the semiring S 1 of Example 5.9. The 
label of the path 11, w, xis I · I = I. The simple cycle from w tow has label 
I · 0 = 0. In fact, every path of length greater than zero from w to w has 
label 0. However, the path of zero length from w to w has cost I. Con­
sequently, c(w, w) = 1. D 

We now give an algorithm to compute c(1•, w) for all pairs of vertices 1· 
and w. The basic unit-time steps of the algorithm are the operations+. ·,and 

0 

x 

Fig. 5.17 A labeled directed graph. 

t The reader should not miss the analogy between such a situation and a nondeter­
ministic finite automaton (see Hopcroft and Ullman [ 1969] or Aho and Ullman 
[ 1972] ). as we shall discuss in Section 9. I. There. the vertices are states and the edge 
labels are symbols from some finite alphabet. 
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* of an arbitrary closed semiring. Of course. for structures such as the set of 
all sets of strings over an alphabet. it is not clear that such operations can be 
implemented at all, let alone in "'unit time.·· However. for the semirings of 
which we shall make use. the operations will be easy to perform. 

Algorithm 5.5~ Computation of costs between vertices. 

Input. A directed graph G = ( V. E), where V = { 1· 1, 1·2 , •••• v,. }, and a 
labeling function I: ( V x V) --+ S, where (5. +. ·. O. I) is a closed semiring. 
We take /(1·;. 1·1) = 0 if (1';, 1·J) is not in £. 

Output. For all i and j between I and 11, the element c(1•;, vi) of S which is 
equal to the sum over all paths from vi to vi of the label of that path. 

Method. We compute Ct for all I :S i :S n, I :S j :S n. and 0 :S k :S n. The 
intention is that Ct should be the sum of the labels of all paths from vi to vi 
such that all vertices on the path, except possibly the endpoints, are in the 
set {v1 , v2 , ••• , vd. For example, the path v9 , v:1• v8 is considered in 
C38 and C~8 but not in C§8 . The algorithm is as follows. 

begin 
I. for. i - I until n do C?i - I + /(1·i· 1·;): 
2. for 1 :S i, j :S n and i 9'= j do C?J +-- /(vi, vJ); 
3. fork+-- I until n do 
4. for I :S i,j :Sn do 
5 C ~. - c~.-1 + c· ~-1 . <Ck-I)* . Ck-:-1 · 

• IJ IJ 1k A·k A"J ' 

6. for. I :S i, j :S n do c(vi, vi) +-- C}~ 

end D 

Theorem 5.5. Algorithm 5.5 uses 0(n3 ) +, ·, and * operations frorrr the 
semiring and compuJes c(v;, l'J) for I :S i, j :S n. 

Proof It is easy to check that line 5 is executed n 3 times, requiring four 
operations each time, and that the for loops of lines I, 2, and 6 are iterated at 
most 11 2 times each. Thus 0(11 3 ) operations suffice. 

To show correctness. we must prove by induction on k that Ct is the 
sum, over all paths from v; to vi with no intermediate vertex (excluding the 
endpoints) of index higher than k. of the label of such a path. The basis, k = 0. 
is trivial by lines I and 2. since any such path is of zero length, or consists of a 
single edge. The induction ·step follows from line 5, since a path from vi to rJ 

with no intermediate vertex higher than k either 

i) has no intermediate vertex higher than k - I (the term ct- 1). or 
ii) goes from vi to i·k· then from l'k to 1·A· some number of times (possibly 0). 

and finally·from l'k to 1·J. all with no intermediate vertex higher than k - I 
[the term Cfk-• · (C~k" 1 )* · C~j 1 ]. · 
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The laws of a closed semiring insure that line 5 correctly computes the 
sum of the labels of all these paths. 0 

5.7 A TRANSITIVE CLOSURE ALGORITHM 

We specialize Algorithm 5.5 to two interesting cases. The first is to the closed 
semirii:ig S 1 described in Example 5.9. In S 1 addition and multiplication 
are easy to perform, and * is also easy. since 0* = I* = I. In fact, since I is 
the · identity. we may replace line 5 of Algorithm 5.5 byt 

(5.4) 

To compute the reflexive-transitive closure of a graph. we define the 
labeling function 

l(v, w) = {~: if (v, w) is an edge, 
if not. 

Then c(v, w) = 1 if and only if there is a path of length 0 or more from,. to 11·, 

as may easily be checked, using the laws of the closed semiring {O. 1 }. 

Example 5.12. Consider the graph of Fig. 5.18, ignoring the numbers on the 
edges temporarily. The labeling function /(v;, vi) is given as follows. 

I' I 1'2 \'3 

Vi 1 I I 
1'2 I 0 0 
\.'3 0 0 

/(I';, V1) 

Then, line 1 of Algorithm 5.5 sets CY1 = cg2 = C33 = I. Line " sets 
Ct= l(v;. VJ) for i =F j, so we have the following values for the c~ 's. 

\' I \'2 \' 3 

\'1 I I 
1'2 I 0 
I' 3 0 

q~ 

t It is natural to interpret this observation as saying "it is sufficient to consider only 
cycle-free paths:· However, it should be noted that with (5.4) in place of line 5. 
Algorithm 5.5 will compute sums over seto; of paths which include all cycle-free paths. 
but some others as well. 
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2 

Figure 5.18 

We now set k = 1 and perform the loop of lines 4 and 5, with (5.4) in 
place of line 5. For example, Cla = cg3 + cg1 • C~3 = 0 + 1 · 1 = 1. The 
tables giving Cli• Cr;. and ci are shown in Fig. 5.19. D 

Vi 1'2 V:i Vi . -ie.· V3 

v i . 1 Vi 

V2 I V2 

V;i 0 V3 

qj C[; = C~j = c(v;, v) 

Fig. 5.19. Values of Cf;. 

5.8 A SHORTEST-PATH ALGORITHM 

For computation of shortest paths, we use the second closed semiring dis­
cussed in Example 5.9, namely the nonnegative reals with +oo. Recall that 
the additive operation is MIN and the multiplicative operation is addition in 
the reals. That is, we are considering the structure (R, MIN,+, +:x:, 0). We 
observed in Example 5. I 0 th'at a* .= 0 for all a E R, so we may again delete 
the * operation on line 5 of Algorithm 5.5, replacing that line by 

(5.5) 

Informally, (5.5) says that the shortest path from v; to v; which passes through 
no vertex higher than vk is the shorter of 

i) the shortest path which passes through no vertex higher than vk-I• and 
ii) the path which in as short a distance as possible goes from vi to vk and 

then to v1, passing through no vertex higher than vk-i between these 
points. 

To convert Algorithm 5.5 into a shortest-path algorithm, let /(v;. \'i) be 
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,., \'2 l':i ,., \'2 \':1 

,., 2 8 5 I' I 0 8 5 
\'2 3 oc x \'2 3 0 oc 

l';i 00 2 00 l':i 00 2 0 

/( V;, 1') c•. 
IJ 

I' I \'2 1':1 \' I 1'2 l':i 

\' I 0 8 5 I' I 0 8 5 
\' 2 3 0 8 V2 3 0 8 
V:i 00 2 0 V;i 5 2 0 

qj qi 

v I "'2 V:i 

v I o, 7 5 
V2 3 0 8 
V3 5 2 0 

q = c(v;, v;) 

Fig. 5.20. Shortest-path calculation. 

the cost of edge (v;, v;), if one exists, and +:x otherwise. Then substitute 
(5.5) for line 5 and by Theorem 5.5, the value of c(v;. v;) produced by 
Algorithm 5.5 will be the minimum over all paths between v; and vi of the cost 
!i.e., sum of costs of edges) of the path. 

Example 5.13. Consider the graph of Fig. 5.18 again. Let the label of 
~ach edge be as indicated there. Then Fig. 5.20 shows the functions I. 
~t. Cb, Cf;. and C~;. For example, C~2 = MIN(Ci2 • c;3 + C52 ) = 
\flN(8, 5 + 2) = 7. D 

5.9 PATH PROBLEMS /\ND MATRl)!C MULTIPLICATION 

let (S, +. ·, 0, I) be a closed semiring. We can define /1 x /1 matrices of ele­
llents of S with the usual sum and product. That is. let A. B. and C have ele­
nents a;;. b;i• and cii• respectively, for I ~ i,j ~ n. Then C =A+ B means 
:u =au+ bii for all i and j, and C =A · B means cii = ~~=1 aik ·bk; for all i 
lnd j. It is easy to check the following. 
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Lemma 5.10. Let IS. +. ·. 0. I) be a close<..! semi ring and lvl,, the set of 
11 x /1 matrices over S. Let+,, and ·,, be matrix addition and multiplica­
tion. respectively. let 011 be the matrix each of whose elements is 0 and let 
I,, be the matrix with I's on the diagonal anti O's elsewhere. Then 
(1V/ 11 , +,,. ·,,. 0,,, /,,)is a closed semiring._ 

Pr{)(~{ Exercise. D 

Let G = ( V. £) be a directed graph. where V = { 1· 1• 1·~· ••.• 1·,, }. Sup­
pose /:(V x V) ~Sis a labeling function as in Algorithm 5.5. Let Ar; be the 
11 x /1 matrix whose ijth entry is /(1·;, 1•i). The next lemma relates the compu­
tation performed by Algorithm 5.5 to the computation of the closure At; in the 
semiring M,1 of /1 x /1 matrices over S. 

Lemma 5.11. Let G and AG be as above. Then the ijth element of At, is 
C(l'i• I';). 

Proof A(';=~i=oAL where A?:=I,, and Ah=AG·A~; 1 for i~ 1. It is 
straightforward to show by induction on i thM .. the ij th element of A~ is the 
sum, over all paths of length k from I'; to vi, of the cost of that path. It 
follows immediately that the ijth element of A~ is the sum of the costs of all 
paths from 1•; to "i· D 

As a consequence of Lemma 5.11, Algorithm 5.5 can be regarded as an 
algorithm to compute the closure of a matrix .. It was claimed in Theorem 5.5 
that Algorithm 5.5 requires O(n 3) scalar operations (i.e., operations+. ·,and 
* taken from the semiring). The obvious algorithm for matrix multiplication 
likewise requires 0(n 3) scalar operations. We shall show that when the 
scalars come from a closed semiring, computing the product of two matrices 
is computationally equivalent to computing the closure of a matrix. That is, 
given any algorithm for computing the product, we can construct an algorithm 
for closure and vice versa, and the order of the execution times will be the 
same. This result will be better appreciated in Chapter 6, where we show 
that when the scalars form a. ring, fewer than 0(n 3 ) operations suffice for ma­
trix multiplication. The construction is in two parts. 

Theorem S.6. If the closure of an arbitrary n x n matrix over a closed 
semiring can be computed in time T(11), where T(11) satisfies 
T(311) :S 27 T(n).t then there exists a constant c such that the time M(n) 
to multiply two /1 x /1 matrices A and B satisfies M(11) s: cT(11). 

Proof Assume we wish to compute the product A · B, where A and B are 

t This is a likely assumption, since Ten) is at worst 0!11:1). Actually any constant 
would do in place of 27 in the statement of the theorem. 
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11 x 11 matrices. First form the 3n x 311 matrix 

and find the closure of X. Note that 

and 

Thus 

A A· B) 
/" B . 
0 In 

Since A · B can be read from the upper right corner, we conclude that 
M(n) ::5 T(3n) ::5 27T(n). D 

The proof of Theorem 5.6 has the following graphica~ interpreta­
'tion. Consider a graph G with 3n vertices { 1, 2, ... , 311} partitioned into 
three sets V1 = { 1, 2, ... , n}, V2 = {n + I, n + 2, ... , 2n}, and V:1 = 
[2n + 1, 2n + 2, ... , 311}. Assume each edge of G has either its tail in 
V, and its head in V 2 or its tail in V 2_ and its head in V;1• Such a graph is illus­
:rated in Fig. 5.21. Let A and B be n x n matrices where the ijth element of 
4 is the label of the edge from vertex i to vertex /1 + j and the ijth element of 

2n + 1 

2 2n + 2 

3 2n + 3 

Fig. 5.21 Graphical interpretation of Theorem 5.6. 
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B is the label of the edge from vertex /1 + i to vertex 2n + j. The ij th element 
of the product A · B happens to be the sum of the labels of the paths from 
vertex i to vertex 211 + j since each such path consists of an edge from vertex 
i to some vertex k. 11 < k :::; 211. followed by an edge from vertex k to vertex 
211 + j. Thus the sum of the labels of all paths from i to 2n + j is the same as 
the ijth element of A · B. · 

We now proceed to show the converse of Theorem 5.6. Given an 
algorithm for matrix multiplication we can find a closure algorithm that is of 
the same speed, neglecting constant factors. 

Theorem 5.7. If the product of two arbitrary n x n matrices over a 
closed semiring can be computed in time M(n), where M(n) satisfies 
M(2n) ~ 4M(n), then there exists a constant c such that the time T(n) to 
compute the closure of an arbitrary matrix satisfies T(n) :::; cM(n). 

Proof Let X be an n x n matrix. First consider the case in which n is a 
power of 2, say 2 k. Partition X into four matrices of size 2 k-1 x 2 k- 1, 

- ·~· 
X= (~ ~)-

Using Lemma 5 .11, ·we may suppose that matrix X represents a graph 
G = (V, E), where the vertices are partitioned into two sets V1 and V2 of size 
2k- 1• Matrix A represents edges between vertices in Vt> and matrix D repre­
sents edges between vertices in V2• Matrix B represents the edges from ver­
tices °in Vi to vertices in V2 and matrix C represents edges from vertices in V2 

to vertices in Vi. The arrangement is shown in Fig. 5.22. 

8 

A D 

c 

Fig. 5.22 The graph G. 

Now a path from v1 to v2 with both vertices in Vi ·is of one of two forms. 
Either 

I. the path never leaves V1, or 
.., for some k ~ I there are vertices wi, xi> Yi, and Z;, for I :::; i :::; k, where 

the w's and z's are in V1 and the x's and y's in V2, such that the path goes 
from v1 to w 1 within Vh then along an edge to xh then along a path in V2 
to Yi· then along an edge to Z1t then along a path in V 1 to w2 , and so on, to 
:.k, whereupon the path stays within Vi to v2 • The pattern is shown in 
Fig. 5.23. 
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Fig. 5.23 Paths s~tisfying condition 2. 

The sum of the labels of the paths satisfying condition 1 or 2 is easily 
·seen to be (A + B · D * · C)*. That is, B · D * · C represents the paths from 
It'; tp xi to Yi to Z; in Fig. 5.23. Thus A + B · D * · C represents the paths 
between vertices in Vi that either are a single edge or jump directly to V2 , stay 
within V2 for a while, and then jump back to Vi. All paths between ver.tices 
in Vi can be represented as the succession of paths represented by 
4 + B · D * · C. Thus (A + B · D * · C)* represents all paths between ver­
tices of Vi. Hence the upper left quadrant of X * has (A + B · D * · C)* in it. 

Let E = (A + B · D * · C)*. By similar reasoning, we may write each of 
:he four quadrants of X* as: 

X*-( E - Q*·C·E 
E·B·D* ) (£ 

D*+D*·C·E·B·D* = G ~). 
'Ne may compute these four quadrants E. F. G, and H by the sequence of 
;teps: 

Ti= D*, 
T2 =B··Ti. 
E = (A + T2 · C)*. 
F=E·T2. 

Ta= Ti· C. 
G =Ta· E. 
H =Ti+ G · T2. 
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The above steps require two closures. six multiplications. and two addi­
tions of 2k·- 1 x 2k-• matrices. Thus we may write: 

T(I)= I, 
T(2k) ::S 2T{2k-I) + 61V/(2k-I) + 2 · ::!.:?k-:?, k > I. (5.6) 

The three terms on the right of (5.6) represent the costs of the closures. mul­
tiplications, and additions, respectively. We claim that there exists a constant 
c such that T(2k) ::s cM(2k") satisfies (5.6) for all k. The basis, k = 0, is trivial 
since we may choose c as large as we like. For the inductive step. assume for 
some c that T(2k- 1 ) ::s cM(2k- 1). From the hypothesis of the theorem 
[M(2n) ~ 4M(n) we have M(2k-•) ~ 22k-2 • [Note M(I) = I]. Thus from 
(5.6) 

T(2k) ::s (2c + 8)M(2k-1). 

Again, by the theorem hypothesis, M(2k- 1) ::s tM(2k), so 

(5.7) 

If we choose c ~ 4, (5.7) implies T(2k) ::s cM(2k), as was to be shown. 
·If n is not a power of 2 we can embed X in a larger matrix, of dimension 

which is a power of 2, of the form 

(~ ~)' 
where I is an identity matrix of the smallest possible size. This will at most 
double the size of the matrix and hence will increase the constant bY' at 
most a factor of 8. Therefore there exists a new constant c' such that 
T(11) ::s c 'M (n) for all n, whether or not n is a power of 2. 0 

Corollary 1. The time necessary to compute the closure of a Boolean 
matrix is of the same order as the time to compute the product of two 
Boolean matrices of the same size. 

In Chapter 6 we shall see asymptotically faster algorithms for computing 
the product of Boolean matrices and thereby show that the transitive closure 
of a graph can be computed in time less than 0(113). 

Corollary 2. The time necessary to compute the closure of a matrix of 
nonnegative reals, with operations MIN and + playing the role of addi­
tion and multiplication of scalars, is of the same order as the time to com­
pute the product of two matrices of this type. 

At present no known method for the all-pairs shortest-path problem uses 
le~~ than c113 time, for some constant c. 
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> SINGLE-SOURCE PROBLEMS 

nany applications we may wish only to find shortest paths from one vertex 
: source). In fact, it may be desirable to find only the shortest path 
ween two particular vertices. but there is no known algorithm for that 
blem that is more efficient in the worst case than the best single-source 
Jrithm. 

For single-source problems we know of no unifying concept analogous to 
;ed semirings and Algorithm 5.5. Moreover, if we only wish to know to 
:ch vertices there exists a path from the source, the pro..blem is trivial and 
be solved by a number of algorithms which o·perate in O(e) on an e-edge 

ph. Since any algorithm which does not "look at" all edges cannot be cor­
t. it is not hard to believe that O(e) is the best we can hope for. 

When it comes to finding shortest paths from a single source, the situa-
1 changes. While there is no reason to suppose that more than O(e) time 
uld be required. no such algorithm is known. We shall discuss an 0(112) 

Jrithm, which works by constructing a set S of vertices whose shortest dis­
;:e from the source is known. At ea'ch step, we add to S that remaining 
tex v whose distance from the source is shortest of the remaining vertices. 
tll edges have nonnegative costs, then we can be sure the path from the 
rce to v passes only through vertices in S. Thus it is only necessary to 

·:>rd for eac·h vertex v the shortest distance from the source to v along 
ath that passes only through vertices of S. We now give the algorithm 
nally. 

orithm 5.6. Single-source shortest path (Dijkstra's algorithm). 

ut. A directed graph G = (V. £), a source v0 E V, and a function I from 
es to nonnegative reals. We take /(v;, vi) to be +:ic if (v;, vi) is not an 
e, v; ¥- vi, and l(v, v) = 0. 

rput. For each v E V, the minimum -over all paths P from v0 to v of the 
l of the labels of the edges of P. -

tlzod. We construct a set S ~ V such that the shortest path from the 
rce to each vertex v in S lies wholly in S. The array D [ \'] contains the 
t of the current shortest path from \"0 to \" passing only through vertices of 
The algorithm is given in Fig. 5.24. 0 

.mple 5.14. Consider-. the grapb of Fig. 5.25. Initially. S = {\'0 } • 

• •0] = 0. and D [v;] is 2, +x, +x, 10 for i = I. 2. 3, 4, respectively. At the 
: iteration of the loop of lines 4-8. 11· = 1·, is selected, since D [ 1•1] = 2 is 
minimum value of D. Then we· set D [1·~J = MIN(+x. 2 + 3) = 5 and 

-·~J = MIN(IO. 2 + 7) = 9. The sequence of values of D and other com­
:i.tions of Algorithm 5.6 are summarized in Fig. 5.26. 0 
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begin 
I. S - {i•0 }: 

2. D[i•0 ] -o: 
3. for each v in V- {v0 } do D[1•] - t(v," v): 
4. while S #- V do 

begin 
5. choose a vertex win V- S such that D [w] is a minimum; 
6. add w to S: 
7. for each v in V - S do 
8. D[v] - MIN(D[v], D[w] + l(w, v)) 

end 
end 

Fig. 5.24. Dijkstra's algorithm. 

Theorem 5.8. Algorithm 5.6 computes the cost of the shortest path from 
v0 to each vertex and requires 0(n 2).timl.• 

Proof The for loop of lines 7-8 requires O(n) steps, as does the selection of 
w at line 5. These are the dominant costs of the while loop of lines 4-8. In 
tum, the latter is executed O(n) times, for a total cost of O(n 2). Lines 1-3 
clearly require O(n) time. 

For correctness, we must prove by induction on the size of S that for 
each v in S, D [ v] is equal to the length of a shortest path from v0 to v. More­
over, for all v E V- S, D [v] is the length of the shortest path from v0 to v that 
lies wholly within S, except for v itself. 

Basis. llSll = 1. The shortest path from v0 to itself has length 0 and a 
path from v0 to v, wholly within S except for v, consists of the single edge (v0 , 

v). Thus lines 2 and 3 correctly initialize the D array. 
Inductive step. Suppose vertex w is chosen on line 5. If D [w] is not 

the length of a shortest path from v0 to w, then there must exist a shorter path 

Fig. 5.25 A graph with labeled edges. 
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Iteration s II' .D[ 11·] D[ 1·1] D[1·2] D[1·:1] D[1·.1] 

Initial {Vo} 2 +oo +cc 10 

I { \'o,V1} \'1 2 2 5 +x 9 
2 { Vo,V1,V2} \'2 5 ") 5 9 9 
3 { l"o• \'1 • \'2• V3} \':1 9 ") 5 9 9 
4 All \' ~ 9 ., 5 9 9 

Fig. 5.26. Computation of Algorithm 5.6 on graph of Fig. 5.25. 

Fig. 5.27 Paths to vertex '" 

P. The path P must contain some vertex other than w which is not in S. Let 
v be the first such vertex on P. But then the distance from v0 to v is shorter 
than D [ w], and moreover, the shortest path to v lies wholly within S, 
except for v itself. (See Fig. 5.27.) Thus by the inductive hypothesis, 
D[v] < D[w] when w was selected, a contradiction. We conclude that the 
path P does not exist and D [ w] is the length of the shortest path from v0 to w. 

The second part of the inductive hypothesis, that D [ w] remains correct, 
is obvious because of line 8. D 

5.11 DOMINATORS IN A DIRECTED ACYCLIC GRAPH: 
PUTTING THE CONCEPTS TOGETHER 

In this chapter we have seen several techniques, such as depth-first search 
and judicious ordering of computations, for designing efficient graph 
algorithms. In Chapter 4 we studied a numb6r of data structures that were 
useful in representing" sets being· manipulated by various operations. We 
conclude this chapter by an example whi.ch illustrates how efficient algorithms 
can be designed by combining the data structures of Chapter 4 with the graph 
techniques of this chapter. In particular. we shall use the off-line MIN 
algorithm, the disjoint-set union algorithm, and 2-3 trees in conjunction with a 
depth-first search to find the dominators of a directed acyclic graph. 
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A di rec tell graph G = ( V. £) is rooted at vertex r if there is a path from ,. 
to every vertex in V. For the remainder of this section we shall assume that 
G = ( V. £) is a rooted directed acyclic graph with root r. 

Vertex ,. is a dominator of vertex w if every path from the root to w con­
tains 1·. Every vertex is a dominator of itself, and the root dominates every 
vertex. The set of dominators of a vertex ,;. can be linearly ordered by their 
order of occurrence on a shortest path from the root to w. The dominator of 
w closest to w (other than w itself) is called the immediate dominator of w. 
Since the dominators of each vertex are linearly ordered, the relation "v domi­
nates w" can be represented by a tree with root r called the dominator tree 
for G. Computing dominators is useful in code optimization problems (see 
[Aho and Ullman. 1973] and [Hecht, 1973]). 

We shall develop an O(e loge) algorithm to compute the dominator tree 
for a rooted directed acyclic graph with e edges. The main purpose of this 
algorithm is to illustrate how the techniques of this and the previous chapter 
can be combined. The algorithm is based QnJ}1e next three lemmas. 

Let G = (V, E) be a graph and G"' = (V'. £') a subgraph of G. If 
(a, b) E £',we write ·a r b. We use~ and~. respectively, to denote the 
transitive closure and the reflexive transitive closure of 'G""· If (a, b) E £, we 
write a =-·b. 

Lemma 5.12. Let G = (V, E) be a directed acyclic graph with root r. Let 
S = (V, T) be a depth-first spanning tree for G with root r. Let a, b, c, and 
d be vertices in V, such that a+ b + c +cl. Let (a, c) and (b, d) be 
forward ec;lges. Then replacing forward edge (b, d) by forward edge (a, d) 
does not change the dominators of any vertex in G. (See Fig. 5.28.) 

Proof Let G' be the graph resulting from replacing edge (b, d) in G by the 
edge (a, d). Assume v is a dominator of w in G but not in G '. Then there 

\ 
\ 
\ 

I 

\ G' 

I 
I 

Fig. 5.28 Transformation of Lemma 5.12. 
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No '°'";og r 
cross edges 1 

l 

\No forward 
I edges of 
I this kind 

I 

G 

I 
I 
I 
I 
\ 

~G' 
Fig. 5.29 Transformation of Lemma 5.1--3. 

exists a path P from r to II' in G' not containing v. Clearly, this path must use 
the edge (a, d) since it is the only edge in G' not in G. Thus we can write 
P: r ====.a== d ~ 11·. It follows that 1• must lie on the path a+ d and that 1· is 
distinct from a and d. If a < v s bin the depth-first numbering, then replacing 
the edge a == d in P by the path a == c + d results in a p&th from r to w in G 
not containing 1·. If b < v < d, then ~eplacing the edge a== din P by the path 
a+ b == d results in a path from r to w in G not containing v. Since either 
a < v s b orb < 1· < d, there is a path from r to win G not containing v, a con­
tradiction. 

Assume vis a dominator of 11· in G ' but not in G. Then there exists a path 
P from r to win G not containing v. Since this path is not in G ',the path P 
nust contain the edge b ==- d. It follows that v is on the path b ~ d and 
7 < " < d. Thus there is a path r=j=- a== cl====. v in G' not containing v, a con­
.radiction. D 

Lemma 5.13. Let G and S be as in Lemma 5.12. Let a+ band let (a, b) 
be a forward edge of G. If there is no forward edge (c. d) with c < a and 
a < d s b, and no cross edge (e, d) with a < d s b. then deleting the tree 
edge into b does not change the dominators of a vertex. (See Fig. 5.29.) 

,roof The proof is similar to that of Lemma 5 .12. D 

Lemma 5.14. Let G and S be as in Lemma 5.12. Let (c, cl) be a cross 
edge of G and let b be the highest-numbered common ancestor of c and cl. 
Let a be MIN({b} U {1·!(1·, 11') is a forward edge and b < 11· s c}). If 
there is no cross edge entering any vertex on path b + c. excluding vertex 
b, then replacing cross edge (c. d) by a forward edge (a. d) does not 
change the dominafors of any v.ertex in G. CSee Fig. 5.30.) 

'roof: Let G' be the graph resulting from the replacement of edge le. cl) in G 
Y the edge (a. d ). Assume vertex 1· is a dominator of vertex 11· in G but not in 
i '. Then there exists a path P from r to 11· in G' not containing 1·. Clearly. P 
lust contain the edge (a. d ). Thus 1· must lie on the spanning tree path a+ h 



212 ALGORITHMS ON GRAPHS 

} 
No entering 
cross edges 

c 

G 

I 
I 

I 
I 
I 
I 
I 

I 
I 

I 

G' 

Fig. 5.30 Transformation of Lemma 5.14. 

s.11 

else replacing a =- din P by either a+ d or a + c =- d results in a path from r 
to w in G not containing v. But then replacing the edge a=- d in P by 
a=- u + c ===> d. where u is on the path b + c, and u > b, results in a path 
from r to w in G not containing v, a contradiction. 

Assume v is a dominator of w in G ' but not in G. Then there exists a path 
P from r tow in G not containing v. Clearly, P contains the edge (c, d). Write 
P as r ..:._ c ===> d ===. w. The path r ===. c must contain some vertex on path 
a+ b, since t~ere are no cross edges with heads on b + c (excluding b). Let x 
be the highest-numbered such vertex. Let P 1 be the portion of the path P from 
r to x, followed by x + d, followed by the portion of P from d to w. Let P2 be 
the path r +a===- d followed by the portion of P from d tow. If vis on Pi. then 
v must be on x + d with v > x. If v is on P2 , then v must be on r +a. Since 
a ::::; x, one of these paths in G' does not contain v, a contradiction. D 

It is easily shown that repeated application of the transformations in 
Lemmas 5.12-5.14, until they can no longer be applied, will transform G into a 
tree. Since the transformations do not change the dominator relation, the final 
tree must be the dominator tree for G. This will be our algorithm to compute 
the dominators of G. The whole trick is to design a data structure that will 
allow us to find efficiently the appropriate edges to which to apply the transfor­
mations of Lemmas 5.12, 5.13, and 5.14. 

Intuitively, we construct the dominator tree for the given directed acyclic 
graph G = (V, E) as follows. First we perform a depth-first search of G 
starting at the root to construct a depth-first spanning tree S = (V, T). We 
relabel the vertices of G according to their depth-first numbering. We then 
apply the transformations in Lemmas 5.12-5.14 to G. The transformations 
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1re implemented by two interrelated routines, one which handles forward 
:dges. the other cross edges . 

. Forward edges 

Ve assume for the time being that G has no cross edges. If a vertex ,. is the 
ead of more than one forward edge. then by Lemma 5 .12, all forward edges 
1ith head 1•, except for the one with lowest tail, can be deleted without chang-
1g the dominator of any vertex. 

A composite edge is an ordered pair (t, H), where t is a vertex called the 
iii of the composite edge and H is a set of vertices called the head of the 
>mposite edge. A composite edge (t, {h1 , h2 , ••• , hk}) represents the set of 
lges (t, '11). (t, '12) •... , (t, hk). 

Lemma 5.12 is repeatedly applied to change the tails of various forward 
lges. Sometimes each edge in a set of edges with common tail t will have its 
ii changed to r '. To do this efficiently, certain sets of forward edges with 
·mmon tails are represented by a single composite edge. Initially, each 
rward edge (t, h) is represented by a composite edge (t, {h}). 

We associate with each vertex v of (J a set F [ v]. F [ v] contains pairs of 
~ form (t, {hh h2 , ••• , hm}) such that t is an ancestor of v, each It; is a 
scendant of v, and (t, h ;) is a forward edge in G. Initially, F [ ,. ] = 
, { v})} where t is the lowest-numbered tail of a forward edge with 
id v . 

.- Now, we traverse the spanning tree in reverse preorder. On returning 
ng spanning tree edge (v, w), we find that the set F [w] contains a compos­
edge for each proper ancestor t of w which is currently the tail of a forward 
:e of a descendant of w. We then perform the following actions. 

Let (t, {h1 , h2 , •• • , hm}) be the composite edge in F [w] with the highest­
numbered tail. If t = v, then remove this composite edge from F [ w]. 
(The composite edge represents a set of forward edges whose tails have 
been pulled up to v but will not be pulled up further by application of 
Lemma 5.12.) Delete from G the spanning tree edge with head h;, for 
1 :::;; i :s: m. (This step corresponds to an application of Lemma 5.13.) 
If there is a forward edge (t, v) in G .t then for each composite edge 
(u, {'1 1, ••• , '1 111 }) in F[w] such that 11 ~ t, do the following: 
a) Remove (u, {h 1, ••• , hm}) from F [11']. 
b) Union { h 1, ... , h m} with the head of the composite edge in_ F [ 1·] 
which represents among other edges, the edge (t, v). 
(This step corresponds to an application of Lemma 5.12.) 
Replace F[v] by F[v] U F[w]. 

:all that we assume all forward edges with head '" except that with lowest tail. 
been removed from G. 
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Fig. 5.31 A rooted directed acyclic graph. 

Example 5.15. Consider the rooted directed acyclic graph G. shown in Fig. 
5.31. A depth-first se~rch of G can produce the graph in Fig. 5.32(a). Also 
shown on the graph are the F-sets associ9f.ed with each vertex. Figure 
5.32(b)-(d) shows the effect of processing forward edges. The final domin­
ator tree is the one in· Fig. 5.32(d) 0 

It is left to you to show that upon reaching the root, the resulting graph is 
the correct dominator tree (assuming no cross edges). The algorithm can be 
efficiently implemented by using the disjoint-set union algorithm to manipulate 
the sets of heads of composite edges. The sets F [ v], consisting of composite 
edges, can be represented by 2-3 trees, since we must be able to delete ef­
ficiently a co~posite edge, to find that composite edge with greatest tail in a 
set of composite edges, and to form unions of sets of composite edges. With 
such a data structure the time required to process a graph with e edges is 
O(e log e). 

II. Cross edges 

We cannot in general assume that there are no cross edges. We can, by the 
method to be described, replace cross edges by forward edges. However, we 
should not do this replacement before working on forward edges as in part I, 
since the data structures built during part I help us to apply Lemma 5.14 ef­
ficiently. Moreover, we should not execute part I completely before elimi­
nating cross edges, since each cross edge eliminated will become a forwar~ 
edge. What we should do is add cross-edge handling steps to the reverse 
preorder traversal described for forward edges. Note that part I requires, 
because of the use of Lemma 5 .13, that there be no cross edges into certain 
vertices at certain times. The fact that the traversal is done in reverse 
preorder. together with the steps outlined below, should convince you that 
each cross edge will have been changed to a forward edge before that time 
-.whe11 its t:xi:..tence would make Lemma 5.13 inapplicable. 
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Fig. 5.32 Effect of forward edges transformation: (a) ini­
tially; (b) on returning along spanning tree edge (6, 7); (c) 
on returning along spanning tree edge (3. 4); (d) on re­
turning along spanning tree edge (I, 2). 

Let S be the Qepth-first spanning tree for G. Initially, for each cross 
edge (1·. w) we compute the highest-numbered common ancestor of 1· and II'. 

To each vertex 1· we shall attach a set L [ 1·] of ordered pairs (u. 11·). where 
(u, w) represents a request for the highest-numbered ancestor of u and w. 
u > w. Initially, L[v] = {(1•, 11·)jthere is a cross edge (1·. 11'), 1· > 11·}. While 
traversing S as in part I. we perform the following additional actions. 
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I. On traversing the tree edge (1·. 11'), v < 11•. delete from L[1•] each (x. y) 

such that y :2:: 11·. Vertex 1· is the highest-numbered common ancestor of 
x and y . 

.., On returning to 1· by spanning tree edge ( 1·, 11'), replace L [ v] -by 
L[v] U L[w]. 

Computing the highest-numbered ancestors can be done in at most 
O(eG (e)) steps, where e is the number of edges in G, by use of a general­
ization of _the off-line MIN algorithm of Exercise 4.21. 

The cross edges ar~ handled by converting them to forward edges by 
Lemma 5.14. The process of converting cross edges into forward edges 
must be done while the forward edges are being processed. With each 
vertex v we shall associate a set C [ v] of composite edges. Initially, C [ v] = 
{(v, {/z1> ... , lzm})l(v, h;) is a cross edge for 1 ::::; i::::; m}. On returning to 
vertex v by tree edge (v, w), we perform the following steps, in addition to 
those for handling forward edges. 

I. Replace C [ v] by C [ v] U C [ w]. 
. .... 

2. Delete each cross· edge (x, y) such that v is the highest-numbered an­
cestor of x and y from the composite edge currently representing it. If 
the composite edge has tail t, replace the cross edge (x, y) by the forward 
edge (t, y). If there is already a forward edge into y, retain only the 
forward edge with lower tail. 

3. Let (u, v) be the forward edge, if any, with head v. Otherwise, let (u, v) 

be the tree edge into v. After searching all descendants of v, delete from 

C[l) = 0 C[l] = 0 

\ \ 
\ C(2] =0 

\ 
C(2] =0 \ \ 

' \ ' \ 
'\ \ \ \ 

\\ C[3] = 0 \\ C[3] =0 

\ \ 
1\ J 

I I C[6] = {16, {5 ll} 6 I\ 
I I I 
I I 
I C[7] =0 I 

I I 

C[8] = {18, {411} 

(a) (b) 

Fig. 5.33 Removing cross edges: la) initially; (b) after 
considering edge (3,6). 
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c Id any composite cross edge with tail above 11. Union the sch of 
heads of the deleted composite cross edges together and form a new com­
posite edge with tail u. Add the new composite edge to C [ 1·). 

£sample 5.16. Consider the depth-first spanning tree shown in Fig. 5.33!al. 
Values for C [ 1·] are shown for selected vertices. Since there is a forward 
tdi!C from vertex 2 into vertex 8. we change composite edge (8. {4}) in C[8] 
10 <:?. {4 }). We then union C [8] into C [7]. Since (I. 7) is a forward edge. 
we change composite edge (2. { 4}) into (I, { 4} ). On our return to 6. C [ 6] 
becomes {Cl. {4}), (6, {5})}. 

When we return from vertex 6 to vertex 3, ~C(3) becomes {<3. {5}l. 
( t. { 4})}. Vertex 3 is the· highest-numbered ancestor of vertices 6 and 5. and 
8 and 4. so we delete the composite edges <3: { 5}) and (I. { 4}) from C [3] and 
add tlie forward edge (3, 5) and (I, 4) to G. The result is shown in Fig. 
S.33(b). The remainder of the search produces no further changes. 0 

The composite cross edges can be represented by 2-3 trees. We leave 
as an interesting exercise the foqnal description of the dominator algorithm. 
If you can combine the appropriate structures you have mastered the tech­
niques of Chapter 4 and 5. 

EXERCISES 

.,,... 

. 5.1 Find the minimum-cost spanning tree for the graph of Fig. 5.34 on the assump­
tion that edge~ shown are undirected. 

5.2 Let S = (V, T) be a minimum-cost spanning tree constructed by Algorithm 5.1. 
Let c1 s c2 s · · · s c,, be the costs of the edges in T. Let S' be an arbitrary 
spanning tree with edge costs d1 s d2 s · · · s d,,. Show that C; s d; for 
I s ; s "· 

Figure 5.34 
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**5.3 Thi:: following strategy can be used to find a minimum-en"! spanning tree for a 
graph with /1 vertices and e t:dges in time Ok). provided e ?_fl11) for some func­
tion/ which you must find. At various times. vertices will be grouped into sets 
which are connected by the tree edges found so far. All edges incident upon 
one or two vertices in the set will be kept in a priority queue for the set. Ini­
tially. each vertex is in a set by itself. 

The iterative step is to find a smallest set S and the lowest-cost edge leading 
out of S. say to set T. Then add that edge to the spanning tree and merge sets S 
and T. However. if all sets are at least of size g(11). where g is another function 
you must find. then instead make a new graph with one vertex for each set. The 
vertices in the new graph corresponding to sets 5 1 and S2 are adjacent if some 
vertex in 5 1 was originally adjacent to some vertex in S2 • The cost of the edge 
joining S 1 and 5 2 in the new graph is the minimum cost of any edge originally 
between any vertex in 5 1 and a vertex in 5 2• Then apply the algorithm recur­
sively to the new graph. 

Your problem is to select g(11) so that f(n) is minimized. 

5.4 Find a depth-first spanning forest for the undirected graph of Fig. 5.35. Choose 
any vertex you like to begin each tree. Find t.~~ biconnected components of the 
graph. · 

5.5 Find a depth-first sp·anning forest for the directed graph of Fig. 5.34. Then find 
the strongly connected components. 

5.6 Find the biconnected components of the graph of Fig. 5.36. 

5.7 Use depth-first search to help design efficient algorithms to do the following. 
a) Divide an undirected graph into its connected components. 
b) Find a path in an undirected connected graph which goes through each edge 

exactly once in each direction. 
c) Test whether a directed graph is acyclic. 
d) Find an order for the vertices of an acyclic directed graph such that v < w if 

there is a path from v to w of length greater than zero. 
e) Determine whether the edges of a connected, undirected graph can be 

directed to produce a strongly connected, directed graph. [Hint: Show that 
this can be done if and only if removing any edge from G leaves a connected 
graph.] 

Figure 5.35 
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Figure 5.36 

5.8 Let G = (V, E) be a multigraph (i.e., an undirected graph G which may have 
more than one edge between a pair of vertices). Write an 0(11£11> algorithm to 
delete each degree 2 vertex v [by replacing edges (u, v) and (1•, w) by an edge 
.(u, w)] and eliminate multiple copies of edges by replacing them with a single 
edge. Note that replacing multiple copies of an edge by a single edge may 
create a degree 2 vertex which must then be removed. Similarly, removing a 
degree 2 vertex may create a multiple edge which must then be removed. 

5.9 An Euler circuit for an undirected graph is a path which starts and ends at the 
same vertex and uses each edge exactly once. A connected, undirected graph 
G has an Euler circuit if and only if every vertex is of even degree. Give an 
O(e) algorithm to find an Euler circuit in a graph with e edges provided one 
exists. 

*5.10 Let G = (V, E) be a biconnected undirected graph. Let (1', w) be an edge of 
G. Let G' = ({v, w}, {(r, w)}). Find a technique for executing on-line a 
sequence of instructions of the form FINDPATH(s, t), wheres is a vertex of 
G' and (s, t) is an edge ofG not in G'. FINDPATH(s, t) is executed by find­
ing a simple path in G starting with edge (s, t) and ending at a vertex in G ' other 
than s and adding the vertices and edges of the path to G '. The execution time 
of any sequence should. be 0_(11£11). 

5.11 Consider the directed graph G of Fig. 5.37. 
a) Find the transitive closure of G. 
b) Find the length of the shortest path between each pair of vertices of G. The 

cost of each edge is shown in Fig. 5.37. 

*5.12 Find a closed semiring with four elements. 

*5.13 A transitfre red11ctio11 of a directed graph G = (V. £) is defined to be any 
graph G' = (V. E') with as few edges as possible, such that the transitive 
closure of G' is iqual to the transitive closure of G. Show that if G is acyclic. 
then the transitive reduction of G is unique. 

**5.14 Show that the time Rl11) to compute the transitive reduction of an 11-vertex 
acyclic graph is within a constant factor of the time 7(11) to compute transitive 
closures, on the (reasonable) assumption that 8R(11) ::: RC211l ::: 4Rl11l and 
8Tl11)::: TC211)::: 47(11). 
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Figure 5.~7 . .,.-

*5.15 Show that the time necessary to compute the transitive reduction of an acyclic 
graph is within a constant factor of the time necessary to find the transitive 
reduction of an arbitrary graph, on the assumption of Exercise 5.14. 

*5.16 Prove Exercise 5.15 for transitive closure. 

*5.17 Let A be an n x n matrix over the closed semiring {O, I}. Without using a 
graph interpretation, prove the following. 

a) A* = In + A + A 2 + · · · + An 

( A B)* =(A* A *BC*) 
b) 0 C 0 C* 

[Hint: Show that 

(~ ~Y=(~' Ai-IB +AHBC + · · · + BCi-1)] 
C' . 

*5.18 Show that the shortest-path algorithm of Section 5.8 still works if some of the 
edges have negative cost but no cycle has negative cost. What happens if there 
are cycles of negative cost? 

**5.19 Show that the positive and negative reals with +oo and -oo is not a closed 
semiring. How do you explain Exercise 5.18 in this light? [Hint: What proper­
ties of a closed semiring are actually used in Algorithm 5.5?] 

5.20 Use Algorithm 5.6 to find the shortest distance from vertex v8 to each vertex v 
in the graph G of Fig. 5.37. 

*5.21 Show that the single-source shortest-path problem for nonnegative edges can 
be solved in time O(e log n) for a graph withe edges and n vertices. [Hint: Use 
the proper data structure so that lines 5 and 8 of Algorithm 5.6 can be done ef­
ficiently when e << n2.] 
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begin 

end 

S +- {i•0 }; 

D[,·0 ] +-0; 
for each v in V- {v0 } do D[\'] +- l(v0 , v); 
while S ¥- V do 

begin 

end 

choose a vertex w in V - S such that D [ w] is a minimum; 
S+-S U {w}; 
for v E V such that D [v] > D [w] + /(w, \')do 

begin 

end 

D[v] = D[w] + /(w, v); 
S+-S-{v} 

Fig. S.38. A single-source shortest-path algorithm. 

' "'S.22 Show that the single-source shortest-path problem for nonnegative edges can 
be solved in time O(ke + kn1+ 11k) for any fixed constant k, on a graph with e 
edges and n vertices. 

"'5.23 Prove that the single-source shortest path algorithm of Fig. 5.38 computes the 
shortest path from v0 to each v in an arbitrary graph with negative cost edges but 
no negative cost cycles. 

•5.24 What is the order of the execution time of the algorithm of Fig. 5.38? [Hint: 
Execute the algorithm on a five-vertex graph with the edge costs shown in Fig. 
5.39.) 

5.25 Give an algorithm to determine whether a directed graph with positive and nega­
tive cost edges has a negative cost cycle. 

5.26 Change the selection rule for win the algorithm of Fig. 5.38 so as to guarantee for 
arbitrary cost edge!\ that the time bound is 0(n3 ). 

5.27 Write an algorithm which given an /1 x n matrix M of positive integers will find a 
sequence ofadjacent entries starting from M [ 11, I ] and ending at M [ l, 11] such that 
the sum of the absolute values of differences between adjacent entries is minimized. 
Two entries M [i,j] and M [k. I] are adjaC£'11t if(a) i = k ± I andj =/,or (b) i = k 

Jo 2 3 4 5 

I 0 7 8 9 10 
2 0 0 8 9 10 
3 0 

_.., 0 9 10 
4 0 -4 -3 0 10 
5 0 -7 -6 -5 0 

Fig. S.39. Edge cost for a five-vertex graph. 
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I 9 6 12 

8 7 3 5 

5 9 11 4 

7 3 ., 
6 

Fig. 5.40 Matrix of positive integers. 

andj =I± I. For example. in Fig. 5.40, the sequence 7, 5. 8, 7. 9, 6, 12 is a solu­
tion. 

5.28 The algorithm of Fig. 5.24 (p. 208) computes for each v E V the minimum over 
all paths P from v0 to v of the cost of P. Modify the algorithm to. produce for 
each v in V a path of minimum cost. 

**5.29 Write a program to implement the dominatoi: algorithm in Section 5.1 I. 
"6• 

Research Problems 

5.30 There are numerous graph problems in which depth-first search might be of 
some utility. One that stands out concerns k-connectedness. An undirected 
graph is k-connected if, for every pair of vertices v and w, there are k paths· 
between v and w such that no vertex (except v and w) appears on more than one 
path. Thus biconnected means 2-connected. Hopcroft and Tarjan [ 197 3b] 
have given a linear time algorithm to find 3-connected components. It is natural 
to conjecture that there exist linear (in numbers of vertices and edges) time 
algorithms to find k-connected components for each k. Can you find one? 

5.31 Another interesting prospect, which may or may not involve depth-first search, 
is to find a linear (in number of edges) algorithm for finding minimum-cost span­
ning trees. 

5.32 A third problem worth considering is the single-source shortest-path problem 
when e << n2• Does there exist an O(e) algorithm to find even the shortest dis­
tance between two particular points? The ·reader should be aware of Exercises 
5.21 and 5.22 from Johnson (1973), and also of Spira and Pan (1973), which 
shows that n 2/4 comparisons are necessary in general for those algorithms which 
use only comparisons between sums of edge costs. Wagner [ 1974] has used a 
bucket sort technique to obtain an O(e) algorithm in the case where the edge 
weights are small integers. 

5.33 The problem of findfo.g shortest paths between all pairs of points has been 
shown to require kn3 steps for some constant k > 0 (Kerr, [ 1972)) provided that 
the only permissible operations are MIN and+. M. 0. Rabin has strengthened 
this result to 113/6. However. it is possible that we can do better than 0(113) if 
we permit other operations. For example, transitive closure (equivalently. 
Boolean matrix multiplication) can be done in less than 0(n3 ) steps if we use 
operations other than the Boolean ones, as we shall see in the next chapter. 
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BIBLIOGRAPHIC NOTES 

Two sources on graph theory are Berge [ 1958] and Harary [ 1969]. Algorithm 5.1 on 
minimum-cost spanning trees is from Kruskal [I 956]. Prim [ 1957] provides another 
approach to the problem. The algorithm proposed in Exercise 5.3 was pointed out to 
us by P. M. Spira. 

The biconnectedness algorithm using depth-first search is due to J. E. Hopcroft. 
The strongly connected components algorithm is from Tarjan [ 1972]. Numerous 
applications of depth-first search to produce optimal or best known algorithms appear 
in the literature. Hopcroft and Tarjan [ l 973a] gives a linear planarity test. Hopcroft 
and Tarjan [ l 973b] describes a linear algorithm for triply connected components. 
Tarjan [I 973a] uses the concept to produce the best algorithm known for finding 
dominators and Tarjan [1973b] gives a test for "flow graph reducibility." 

Algorithm 5.5, the general path-finding algorithm, is essentially due to Kleene 
(1956], who used it in connection with "regular expressions" (see Section 9.1). The 
form of the algorithm given here is from McNaughton and Yamada [1960]. The 
0 (n3 ) transitive closure algorithm is due to Warshall [ 1962]. The analogous shortest­
path algorithm for all pairs of points is from Floyd (1962]. (See also Hu [ 1968]). 
The single-source algorithm is by Dijkstra (1959]. Spira and Pan (1973] show that 
Dijkstra's algorithm is essentially optim'al under the decision tree model. 

In Dantzig, Blattner, and Rao [ 1967] it was observed that the presence of nega­
tive edges does not affect the all-points shortest-path problem if no negative cycles are 
present. Johnson [ 1973] discusses the single-source problem with negative edges. 
and the solutions to Exercises 5.21 and 5.22 can be found there. Spira [1973] gives 
an 0(n2 log2 n) expected time algorithm for finding s·hortest paths. 

The relation between path problems and matrix multiplication is due to Munro 
(1971] and Furman [1970] (Theorem 5.7), and Fischer and Meyer (1971] (Theorem 
5.6). The relation with transitive reduction (Exercises 5. 13-5. I 5) is from Aho, 
Garey, and Ullman [ 1972). Even [I 973] discusses the k-connectivity of graphs. 
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In this chapter we investigate the asy.mptotic computational complexity of 
matrix multiplication with elements chosen from an arbitrary ring. We shall 
see that the 0(11:1) "ordinary·• f!latrix multiplication algorithm can be asymp­
totically improved: 0(11~·111 ) time is sufficient to multiply two /1 x /1 matrices. 
Moreover. we shall see that other operations such as LUP decomposition, 
matrix inversion. and evaluation of a determinant are reducible to matrix 
multiplication and thus can be performed as fast as matrix multiplication. 
We shall further show that matrix multiplication is reducible to matrix inver­
sion and thus any improvement in the asymptotic time for one problem would 
result in a similar improvement for the other. We conclude the chapter with 
two algorithms for Boolean matrix multiplication whose asymptotic time 
complexities are less than 0(113). 

To a large extent the algorithms in this chapter are not to be regarded as 
being practical with current computer hardware. For one thing, because of 
the hidden constant factors, it is only for quite large values of n that the asymp­
totically faster algorithms actually outperform the usual 0(n3) algorithms. 
Furthermore, the problem of numerical error ~o.ntrol for this family of algo­
rithms is not sufficiently well understood. Nevertheless, we feel that the ideas 
of this chapter are worth considering because they remind us that the obvious 
algorithms are not always best, and they hopefully lay the groundwork for 
the development of even more efficient and genuinely practical algorithms for 
this important family of problems. 

6.1 BASICS 

This section presents basic definitions of some algebraic concepts that are 
useful in dealing with matrix multiplication problems. The reader familiar 
with rings and linear algebra should proceed directly to Section 6.2. 

Definition. A ring is an algebraic structure (S, +. ·• 0, I) in which Sis a 
set of elements, and + and · are binary operations on S. For each a, b, 
and c in S. the following properties hold. 

I. (a + b) + c = a + ( b + c) and (a · b) · c = a · ( b + c) 
(+ and · are associative). 

2. a + b = b + a (+ is commutative). 
3. (a+ b) · c =a · c + b · c and a · (b + c) =a · b +a ·.c 

( · distributes over+). 
4. a + 0 = 0 + a = a (0 is the + identity). 
5. a · I = I · a= a (I is the · identity). 
6. For each a in S there ~s an inverse -a such that a+ (-a)= (-a) + 

a=O. 

Note that the last property, the existence of an additive inverse. is not neces~ 
sarily applicable to every closed semiring (see Section 5.6). Also. the fourth 



BASICS 227 

property for a closed semiring. namely that infinite sums exist and are unique. 
is not always applicable to a ring. If · is commutative. we say_ the ring is 
commutatfre. 

If, in a commutative ring, for each element a there is a multiplicative in-
verse a- 1 such that a · {r 1 = {i- 1 • a= J, then the ring is called afield. 

Example 6.1. The real numbers form a ring with + and · standing for ordinary 
addition and multiplication. The reals do not, however, form a closed semiring. 

The system ({0, I},+.·, 0, I), where+ is addition modulo 2 and· is ordi­
nary multiplication. forms a ring but not a closed semiring since I + I + · · · 
is not well defined. However. if+ is redefined so that '1 +bis 0 if both a and 
bare 0, and a+ b is I otherwise, then we have the closed semiring S 2 of Ex­
ample 5. I. S2 is not a ring. since I has no inverse. 0 

An important class of rings formed from matrices is introduced in the 
following definition and lem_ma. 

Definition. Let R = (S, +, ·, 0, 1) be a ring, and let M 11 be the set of 
n X n matrices whose elements p.re chosen from R. Let On be the n x /1 

matrix of O's and let In be the n X n identity matrix with l's on the main 
diagonal and O's elsewhere. For A and Bin M 11 let A +11 B be then X /1 

matrix C, where C[i,j] =-1[i,j] + B[i,j].t and let A ·11 B be the 11x11 

matrix D, where D[i,j] = ~Z= 1A [i, k] · B[k,j]. 

Lemma 6.1. (Mn, +n, 'n• On, / 11 ) is a ring. 

Proof Elementary exercise. 0 

Note that 'n• the matrix multiplication operation as defined above, is not 
commutative for n > 1. even if ·, the multiplicativ·e operation in the under­
lying ring R, is commutative. We shall use+ and · instead of +11 and ·n when 
there is n~ possibility of confusion with the addition and multiplication oper­
ators in the underlying _ring R. Also, we shall often omit the multiplication 
operator when its presence should be apparent. 

Let R be a ring and let M 11 be the ring of /1 x 11 matrices with elements 
from R. Let us assume 11 is even. An 11 x /1 matrix in Mn can be partitioned 
into four (n/2) x (11/2) matrices. Let R2 .1112 be the ring of all 2 x 2 matrices 
with elements from M,, 12 • It is straightforward to verify that multiplication 
and addition of 11 x /1 matrices in M,, is equivalent to multiplication and addi­
tion, respectively, of the equivalent 2 x 2 matrices in R 2,,,12 whose elements 
are (n/2) x (n/2) matric~s. · 

Lemma 6.2. Letf be the mapping from M,, to R 2,,,12 such that/CA) is the 
matrix 

[Au A12] 
A21 A22 

t We use M [i, j] to denote the element in the ith row and jth column of matrix M. 



228 MATRIX MULTIPLICATION AND RELATED OPERATIONS 6.1 

in R"!..,,t"!.· where A 1 is the upper left quadrant of A, A 2 the upper right, A 3 

the lower left. and A 4 the lower right. Then 

i) f(A + B) =f(A) + f(B). 
ii) f(AB) = f(A) · f(B). 

Proof It is an elementary exercise to substitute the definitions of+ and · for 
M,, 12 into the definitions of+ and · for R2.1112 • D 

The importance of Lemma 6.2 is that we can construct an algorithm for 
11 x /1 matrix multiplication out of algorithms for 2 x 2 and (11/2) x (11/2) matrix 
multiplication. We shall make use of this fact in the next section to develop 
an asymptotically fast matrix-multiplication algorithm. For the moment we 
stress the fact that the algorithm for 2 x 2 matrix multiplication is not an arbi­
trary algorithm but one specifically designed for R 2,n12 • Since R2,1112 is not 
necessarily commutative even though R is. the 2 x 2 matrix multiplication 
algorithm cannot assume commutativity of the (n/2) x (n/2) multiplicative 
operation. It can, of course, make use of arw•ring property . . 

Definition. Let A be an n X n matrix with elements chosen from some 
field. The inverse of A, denoted A- 1, is that n x n matrix, if it exists, 
such that AA-•= In. 

It is easy to show that if A- 1 exists, it is unique and thatAA- 1 = A- 1A =In. 
Furthermore, (AB)-1 = s-1A-1. 

Definition. Let A be an n X /1 matrix. The determinant of A, denoted 
det(A ), is, the sum over all permutations p = (i1, i2 , ••• , i,,) of the inte­
gers 1 through n of the product 

II 

.(-1)"• fIA[j, ii], 
j=l 

where kp is 0 if p is even [constructible from (I, 2 •... , n) by an even 
number of interchanges] and kp is I if p is Qdd (constructible by an odd 
number of interchanges). 

It is easily shown that a permutation is even or odd but not both. 

Example 6.2. Let 

The six permutations of I, 2. 3 are (I. 2. 3). (1, 3. 2). (2. I. 3). (2. 3. I). 
( 3. I, 2 ). ( 3. 2, I). Surely the permutation ( I. 2. 3) is even. since it is con­
structed by 0 interchanges from itself. The permutation <2. 3. I) is even. 
since we can begin with (I. 2. 3), interchange 2 and 3 to get (I. 3. 2). then 
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interchange I and 2 to get (:!. 3, I). Similarly, (3. I.:!) is even and the re­
naining three permutations are odd. Thus det(A) = a 11 a22a33 - a 11 a23a32 -

112ll21llaa + a12a2aaa1 + a1aa21lla2 - ll1all22aa1· D 

Let A be an .n x /1 matrix with elements chosen from some field. We can 
;how that A-• exists if and only if det(A) =F 0 and that det(AB) = det(A) det(B). 
[n the case that det(A) =F 0 we say that the matrix A is nonsingular. 

Definition. An 111 x n matrix A is upper tria11Rular if A [i, j] = 0 whenever 
I :::;; j < i :::;; 111. An 111 x /1 matrix A is lower triangular if A [i, j] = 0 
whenever I :::;; i < j ::s 11. 

The product of two upper triangular matrices is an upper triangular matrix. 
fhe analogous result is true for lower triangular matrices. 

Lemma 6.3. If A is a square upper or lower triangular matrix, then 
a) det(A) is the product of the elements on the main diagonal (i.e., 

Il;A [i, i]), and 
b) A is nonsingular if and only if_ no element on the main diagonal is zero. 

0 roof. (a) Every permutation (i1 , i2 , '· •• , in) except (1, 2, ... , n) has some 
:omponent i; such that i; < j and another component ik such that ik > k. Thus 
!very term in det(A) except the one for the permutation (1, 2, ... , 11) is zero. 
b) Follows immediately from (a). D 

Definition. A unit matrix is a matrix with I's along the main diagonal 
(off-diagonal elements are arbitrary). 

Observe that the determinant of a unit upper triangular matrix or unit 
ower triangular matrix is unity. 

Definition. A permutation matrix is a matrix of O's and 1 's such that each 
row and each column has exactly one I. 

Definition. A submatrix of a matrix A is a matrix obtained by deleting 
some rows and columns of A. A principal submatrix of an /1 x /1 matrix 
A is a square submatrix of A that consists of the first k rows of the first 
k columns of A, 1 ::s k ::s 11. 

The rank of A, denoted rank(A ), is the size of the largest square non­
ingular submatrix of A. For example. the rank of an /1 x n permutation 
natrix is 11. 

We observe that if A= BC. rank(A) is less than or equal to MIN(rank(B), 
ank(C)). Also, if A has /11 rows and is of rank m, then any k rows of A form 
. matrix of rank k. 

Definition. The transpose of a matrix A. denoted Ar. is the matrix formed 
by exchanging A [i, j] and A [J. i] for each i and j. 
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6.2 STRASSEN'S MATRIX-MULTIPLICATION ALGORITHM 

Let A and B be two /1 x /1 matrices. where /1 is· a power of 2. By Lemma 6.2. 
we can partition each of A and B into four ( 11/2) x ( 11/2) matrices and express 
the product of A and B in terms of these (11/2) x (11/2) matrices as: 

where 
C11 =A11B11 +A12B21• 
C12 = A11B12 + A12B22• 
C21 = A21B11 + A22B21• 
C22 = A21B12 + A22B22· 

( 6.1) 

If we treat A and Bas 2 x 2 matrices, each of whose elements are (n/2)· x (n/2) 
matrices, then the product of A and B can be expressed in terms of sums and 
products of (11/2) X (11/2) matrices as given in {6.1). Suppose we can com­
pute the Cii's using m multiplications and a additions (or subtractions) of the 
(11/2) x (11/2) matrices. By applying the algorftbm recursively, we can com­
pute the product of two /1 X n matrices in time T (n), where for /1 a power of 
2, T(n) satisfies 

T(n) :::;; mT (~) + a~12 , 11 > 2. (6.2) 

The first term on the right of (6.2) is the cost of multiplying m pairs of (n/2) x 
(n/2) matrices. and the second is the cost of doing a additions, assuming n2/4 
time is required for each addition or subtraction of two (n/2) x (n/2) matrices. 
By an analysis similar to that of Theorem 2.1 with c = 2, we can show that as 
long as m > 4, the solution to (6.2) is bounded from above by k1110g"' for some 
constant k. The form of the solution is independent of a, the number of addi­
tions. Thus if m < 8 we have a method asymptotically superior to the usual 
0 ( n:1) method. 

V. Strassen discovered a clever method of multiplying two 2 x 2 matrices 
with elements from an arbitrary iing using only seven multiplications. By 
using the method recursively, he was able to multiply two /1 x n matrices in 
time 0 ( 111011 ;) , which is of order approximately 11 2 ·H•. 

Lemma 6.4. The product of two 2 x 2 matrices with elements chosen 
from an arbitrary ring can be computed with 7 multiplications and 18 
additions/subtractions. 

Pror~t: To compute the matrix product 

first compute the following products. 
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1111 = (a12 - a22) (b21 + h22). 

1112 = ( (/11 + (/:.!.:.!.) (/JI.I + /J22) • 

1113 = (a11 - 0 21 ) (bu + h12). 

11l4 = (au+ C112)b22• 

1115 ={Ill (h12 - h22)' 

ms= 022 (h21 - bu)' 
1117 = (ll21 + 022)h11. 

Then compute the cii's, using the formulas 

Cu =·1111 + 1112 - 1114 + 1115, 

C12::;:::: 1114 + 1115, 

C21=1115 + 1117, 

C22 = 1112 - 1113 + 1115 - 1117. 

The count of operations is straightforward. The proof that the desired 
cli's are obtained is a simple a!gebraic exercise using the laws of a ring. O 

Exercise 6.5 gives a technique .for computing the product of two 2 x 2 
matrices with 7 multiplications and hS additions. 

Theorem 6.1. Two n x n matrices with elements from an arbitrary ring 
can be multiplied in 0(n10g 7) arithmetic operations. 

Proof First consider the case in which n = 2k. Let T(n) be the number of 
arithmetic operations needed to multiply two /1 X /1 matrices. By application 
of Lemma 6.4, 

T(n) = 7T (~) + 18 (~)2 for /1 ~ 2. 

Thus T(n) is 0(7101111 ) or 0(1110g 7 ) by an easy modification of Theorem 2.1. 
If n is not a power of 2, then we embed each matrix in a matrix whose 

:limension is the next-higher power of 2. This at most doubles the dimension 
ind thus increases the constant by at most a factor of 7. Thus T ( 11) is 
?(n10117 ) for all /1 ~ I. 0 · 

Theorem 6. I is concerned only with the functional growth rate of T ( 11). 

lut to know for what value of /1 Strassen's algorithm outperforms the usual 
nethod we must determine the constant of proportionality. However, for /1 

1ot a power of 2. simply embedding each matrix in a matrix whose dimension 
i the next-higher power of'.! will give too large a constant. Instead. we can 
mbed each matrix in a"matrix of dimension 2''r for some small value of r. 
nd use p applications of Lemma 6.4, multiplying the r x r matrices by the 
onventional O (,.a) method. Alternatively, we could write a more general 
:cursive algorithm which. when /1 is even. would split each matrix into four 
Jbrnatrices as before and which. when n is odd. would first augment the di­
ension of the matrices by I . 
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We should point out that determining the constant of proportionality onl'. 
bounds the number of arithmetic operations. To compare Strassen's metho1 
with the ordinary method for matrix multiplication we must also consider th1 
additional complexity of the functions needed to access a matrix elemeni 

6.3 INVERSION OF MATRICES 

In this section we shall show that the problem of inverting matrices in a cer 
tain class can be reduced to the problem of matrix multiplication. The clas 
includes all triangular matrices which are invertible but does not include al 
invertible matrices. Later, we extend the result to arbitrary invertible matrices 
In this section and Sections 6.4 and 6.5 we assume all matrices have element: 
chosen from some field. 

Lemma 6.5. Let A be partitioned as 

[~:: ~~:.J. 
Suppose Ail e.xists. Define A= A22 -A21A1lA 12 and assume A-1 exists 
Then 

(6.3 

Proof By straightforward algebraic manipulation one can show that 

o][Au OJ[/ A1lA12J 
I 0 A 0 I ' 

where A= A22 - A21AilA 12. Thus 

A-1 =[of -A1/11A12J[Ao·11 0 ][ I 01] 
A- 1 -A 21A1l 

= [Al11 + AllA12 A- 1A21Ail -A1lA12 A-1] 
-A-1A21A)11 A-1 . 0 

Lemma 6.5 does not apply to all nonsingular matrices. For example, th• 
n x n permutation matrix A with A [i, j] equal to I if j = n - i + I and 0 other 
wise is nonsingular. but det(A 11 ) = 0 for each principal submatrix A 11 • How 
ever. Lemma 6.5 does apply to all nonsingular lower or upper triangula 
matrices. 

Lemma 6.6. If A is a nonsingular upper (lower) triangular matrix, the1 
the matrices A 11 and u of Lemma 6.5 have inverses and are nonsingula 
upper (lower) triangular. 

Proof Assume that A is upper triangular. The proof for the lower triangula 
case is analogous. Clearly. A 11 is nonsingular upper triangular, hence Ali' ex 
ists. Next observe that A:H = 0. Thus A= A22 -A:HA)11A 12 = A22 and is non 
-;ingular upper triangular. 0 
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Theorem 6.2. Let M (n) be the time required to multiply two /1 x /1 ma­
trices over a ring. If for all m, 8M(m) ~ M(2m) ~ 4Mlm). then there 
exists a constant c such that the inverse of any n x n nonsingular upper 
(lower) triangular matrix A can be computed in time cM ( /1 J. 

proof We prove the result for /1 a power of 2. Clearly, if /1 is not a power of 
2. we can embed A in a matrix of the form 

where m + n ::; 2n is a power of 2. Thus by increasing the constant ·c by at 
most a factor of 8, the result is established for arbitrary n.t 

Assuming n is a power of 2, we can partition A into four (n/2) x (11/2) 
submatrices and apply (6.3) recursively. Note A 21 = 0, so !J. = A 22 • Thus we 
require 2T(n/2) time for the inverses of triangular matrices A 11 and !J., 2M (n/2) 
time for the two nontrivial multiplications, and 11 2/4 time for the negation on 
the upper right. From the theorem hypothesis and the observation M (I) ~ 1, 
we have n2/4 ::; M(n/2). Thus \ 

T( I) = I 

T(n) ::; 2T (I)+ 3M(§:). for n ~ 2. (6.4) 

It is an elementary exercise to show that (6.4) implies T(n) ::; 3M(n)/2. D 

6.4 LUP DECOMPOSITION OF MATRICES 

An efficient method for solving simultaneous linear equations is to make use 
of what is known as LU P decomposition. 

Definition. The LU decomposition of an m X n matrix A, m ::; n, is a pair 
of matrices Land U such that A =LU, L is m x m unit lower triangular, 
and U is m x n upper triangular. 

We can solve the equation Ax= b for x, where A is an /1 x /1 matrix. x an 
n-dimensional column vector of unknowns, and b an n-dimensional column 
vector, by factoring A into the product of a unit lower triangular matrix L and 
an upper triangular matrix U, provided such factors exist. Then we can write 
Ax= bas LUx = b. To obtain the solution x. we first solve Ly= b for y and 
then solve Ux = y for x. 

The difficulty with this method is that A may not have an LU decomposi­
tion even if A is nonsingular. For example, the matrix 

[~ ~] 
t Again. more careful analysis produces a constant c for arbitrary fl that is not much 
~ifferent from the best constant known for the case where fl is a power of 2. 



234 MATRIX MULTIPLICATION AND RELATED OPERATIONS 6. 

II 

{~·mlSJ·mB·"D 
Fig. 6.1 Desired output of FACTOR. 

/) j) 

111/2 8 ,,, A --------
m/2 c 

(a) 

p 

p m .,, .. 
p 

m)2~ m/2 U, ,,, A ----- p 

m/2 ! ff m/2 D 

P, 

(b) 

p p-m/2 

m/2 u, m/2 Rest of U, 

----- ----
m/2 D m/2 F I Rest of D 

(c) 

p 

p m/2 m/2 p 

m/2 m/2 U, 
m A ----- p P, 

m/2 m/2 G 

(d) 

Fig. 6.2 Steps in the procedure FACTOR: (a) initial partition of A: (bl factorization 
after first call to FACTOR: (c) partition of U 1 and D; (d) zeroing of the lower left cc 
of D. 

t Note that I can be regarded as a unit lower for upperl triangular matrix. 
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6.3 Completion of FACTOR: (a) construction of P3 : (b) decomposition of U 1 and G; 
.omposition of A. 

s nonsingular but has no LU decomposition. However, if A is nonsingular, 
here exists· a permutation matrix P such that A p-i has an LU decomposition. 
Ve now give an algorithm to find. for any nonsingular matrix A, factors L, 
J, and P such that A= LUP. The matrices L, U, and Pare called an LUP 
1eco~positiofl of A. 

Llgorithm 6.1. LUP decomposition. 

11p111. A nonsingular /1 x fl matrix M. where fl is a power of::?.. 

)utput. Matrices L. U~and P such· that M = LUP, Lis unit lower triangular. 
J is upper triangular, and P is a permutation matrix. 

tfethod. We call FACTOR<M. 11. 11). where FACTOR is the recursive pro­
edure shown in Fig. 6.4. The specification of FACTOR makes use of the 
liagrams of Figs. 6.1, 6.::?., and 6.3. in which the shaded area of a matrix rep­
esents a portion of the matrix known to be all zeros. 
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procedure FACTOR(A, m. p): 
if /11 = I tht!n 

begin 
I. set L = [I] (i.e .. L is a unit I x I matrix): 

6.4 

.., find. if possible. a column c: of A having a nonzero element and 
let P be the p x p permutation matrix which interchanges 
columns I and c: 

comment Note P = p-•: 
3. letU=AP: 
4. return (L, U, P) 

end 
else 

begin 
5. partition A into (m/2) x p matrices B and C as shown in 

Fig. 6.2(a): 
6. call FACTOR(B, m/2, p) to·.produce L1 , U 1 , P1 ; 

7. compute D = CP11 : ' 

comment At this point, A can be written as the product of the 
three matrices shown in Fig. 6.2(b); 

8. let E and F be, respectively, the first m/2 columns of U 1 and 
D, as shown in Fig. 6.2(c); 

9. compute G = D - FE- 1U 1 ; 

comment Note that the first m/2 columns of G are all 0. A 
may be written as the product of the matrices shown in 
Fig. 6.2(d); 

10. let G' be the rightmost p - m/2 columns of G; 
11. call FACTOR(G', mf2, p - m/2) to produce L2 , U 2 , and P2 ; 

12. let P:i be the p x p permutation matrix with lm12 in the upper 
left and P 2 in the lower right, as in Fig. 6.3(a): 

13. compute H = U1P3-•; . 

comment At this time, the matrix composed of U1 and G can 
be expressed as shown in Fig. 6.3(b). Substituting the right 
side of Fig. 6.3(b) into Fig. 6.2(d) expresses A as the product 
of five matrices. The first tVJO are unit lower triangular, the 
third is upper triangular, and the last two are permutation 
matrices. We .shall multiply the first two together and the 
last two together to get the desired decomposition of A: 

14. let L be the m x m matrix consisting of L 1 , Om12 , FE- 1, and 
L.!. as shown in Fig. 6.3(c); 

15. let U be the m x p matrix with Hin the upper half and Om1: 
and U2 in the lower half as shown in Fig. 6.3(c): 

16. let P be the product P:1P 1: 

17. return (L, U. P) 
end 

Fig. 6.4. The procedure FACTOR. 
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Each recursive call of FACTOR is made on an m x p submatrix A of the 
11 x /1 matrix M. Al each call m is a power of 2 and m s p ::5 n. The outputs 
of FACTOR are the three matrices L, U, and P shown in Fig. 6.1. D 

Example 6.3. Let us find the LU P decomposition of the matrix 

M~ [n ~ ~l 
To begin, we call FACTOR(M, 4, 4), which immediately.calls 

FACTOR ([~ ~ ~ ~]. 2, 4). 
Letting this matrix be A, we call FACTOR ( [ 0 0 0 I J, I , 4), which returns 

L 1 =[IJ,U1 =[l 0 0 OJ, and 
0 I 0 0 [
O 0 0 I] 

Pi= 0 0 I 0 ' 

I 0 0 0 

which interchanges columns I and 4. 
At line 7 we compute 

D ~ CP;' ~ [O O 2 OJ [~ I 0 0 = [O 0 ., OJ 
0 0 I] t 
0 I 0 . 
0 0 0 

Then at li~e 8 we have E = [I J and F = [OJ, so G = D = [O 0 2 OJ at 
line 9. At line IO we have G' = [O 2 OJ, so at line I I we have 

and [O I OJ 
P2 = I 0 0 . 

0 0 I 

Next, at line I 2 

l'\t line I 3 

[I 0 0 OJ 
_ 1 0 0 I 0 

H = U1P3 =[I 0 0 OJ O I O O =[I 

0 0 0 I 

0 0 O]. 

L In this example, all permutation matrices happen to be their own inverses. 
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Thus 

FACTOR([~ 0 0 ~J. 2. 4) 0 , 
-

returns 

ro 0 0 1J 
L = [~ ~]. U= [~ O 0 OJ and 

0 0 I 0 
2 0 0 p = p JP I = 0 I 0 0 . 

I 0 0 0 

We now return to FACTOR(M, 4, 4) at line 6, with L, U, and P above 
becoming L 1• U 1 , and P1, respectively. Then at line 7 we compute 

ro 0 
0 

~i ~ [o o 1 D = CP1 1 = [~ 3 0 OJ 0 0 I ~]. 0 0 0 0 I 0 0 0 0 0 
I 0 0 0 

At line 8 we find ·4• 

E = [~ ~J and F= [~ ~]. 
Thus 

G = D = [~ ~ ~ ~J 
at line 9, and 

G' = [~ ~J 
at line 10. It is left to the reader to check that the call to FACTOR(G', 2, 2) 
produces 

and 

Thus P3 is / 4 , an identity matrix at line 12, and 

at line 13. 
We thus find at lines 14-16 that 

rl 0 0 01 0 I 0 0 
L= 0 0 I 0' 

0 0 0 I 

r
l 0 0 

U= 0 2 0 
0 0 3 
0 0 0 

~l · 
4 

and 
P= r~ ~ ! ~l· 

I 0 0 () I ' 

Next we proceed to analyze and prove the correctness of Algorithm 6.1. 

Theorem 6.3. Algorithm 6.1 calculates L, U, and P such that A = LVP 
for any nonsingular matrix A. 
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'r(}(~{ We leave as exercises the details needed to show that the various de­
:ompositions depicted in Figs. 6.2 and 6.3 are correct. It is necessary only 
o show that 

I. a nonzero column can always be found on line 2 of FACTOR. and 
2. £-• always exists on line 9. 

Let A be an 111 x 11 matrix. We show by induction on m, where m is a 
>ower of 2, that if A has rank 111. FACTOR will compute L. U. P such that 
4 = LUP, L. U, and Pare lower triangular. upper triangular. and permutation 
natrices of ranks m, m. and 11. respectively. Furthermore, the first m columns 
Jf U are of rank m. If 111 = I. then A must have a nonzyero element and thus 
:he induction hypothesis is clearly true. Assume m = 2". k ~ 1. Since A has 
11 columns and is of rank m. Band Con line 5 each have m/2 columns, and each 
tre of rank m/2. By the induction hypothesis the call to FACTOR on line 6 
>roduces the desired Li. Vi. and Pi. and the first m/2 columns of U 1 are of 
-ank m/2. Thus £-i exists on line 9. 

From Fig. 6.2(d), we see that A is the product of three matrices, one of 
Nhich is U 1 above G. Since A is of rlnk m, so must that matrix be of rank m. 
rherefore, G is of rank 111/2. Since the first m/2 columns of G are zero and 
;ince G' is G minus the first 111/2 columns. G' is also of rank m/2. Thus by 
.he induction hypothesis the call to FACTOR on line 1 1 produces the de­
;ired L 2 , U 2 , P 2 • The induction hypothesis follows in a straightforward 
nanner. D 

Before proceeding with a timing analysis, we observe that a permutation 
natrix can be represented by an array P such that P [ i] = j if and only if column 
has its 1 in. row j. Thus two n x 11 permutation matrices can be multiplied 

n time O(n) by setting P1P2 [i] = P1[P2[i]]. In this representation, the in-
1erse of a permutation matrix may also be computed in time O(n). 

Theorem 6.4. Suppose for each 11 we can m1:1ltiply two n x /1 matrices in 
time M(11), where for all m and some€> 0 we have M(2m) ~ 2HEM(m).t 
Then there is a constant k such that Algorithm 6.1 requires at most kM(n J 
time on any nonsingular matrix. 

0roof Let Algorithm 6.1 be applied to an /1 x 11 matrix. Let T(m) be the 
:ime required for a call FACTORlA. 111. p). where A is an m x p matrix. 
11:::; p:::; 11. By lines 1-4 of FACTOR. we have T( I)= b11 for some con­
;tant b. For the recurr&nce. lines 6 and 11 each require time T(m/2). Lines 
7 and 13 each require the computation of the inverse of a permutation matrix 
.vhich is O (11) and the product of an arbitrary matrix by a ·permutation matrix. 
rhis product simply permutes the columns of the first matrix. Using the array 
·epresentation P for a permutation matrix. we easily see that the P[i]th col-

· Intuitively this condition requires that Mini he in the range 11~·· to 11:1. It is possible. 
;ay. that M(11) =kn~ log 11 for some ~onstunt /... in which case the hypothesis of the 
heorem is not satisfied. 
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umn of the first matrix will become the ith column of the product. Thus th 
product can be found in 0 (m11) time, and lines 7 and 13 are 0 (11111). 

Line 9 requires O(M(m/2)) time to compute £-• by Theorem 6.2. an1 
the same time to compute.the product FE-•. Since U 1 is at most (m/2) x /1 

the product ( F £-•) U 1 can be computed in time 

Note that m divides n, since both are powers of 2 and m ::; n. The remainin! 
steps are easily seen to be O(mn) at worst. Thus we have the followini 
recurrence. 

T(m) ::; {2T (~) + c; M·(;) + dmn, 

bn, 

if m >I, 
(6.5; 

ifm=I. 

for constants b. c, and d. 
By the theorem hypothesis and M(I) :::i1•1, we have M(m/2) =::: (m/2)2. 

Thus we can combine the second and third terms of (6.5). For some con­
stant e 

From (6.6) we can obtain 

if m > I, 

if m = I. 

T(m) ::; :~ [ 4M (;) + 42M (;) + · · · + 41ou1M(I) J + bnm 

en •m: 111 • (m) ::; - L 41M ,.,; + bnm. 
4m i=I -

(6.6) 

It follows from the theorem hypothesis that 4iM(m/2i)::; (l/2E)iM(m). Thus 

en ~ ( J ); T(m) ::; 4m M(m) ~ 2E + bnm. 

Since the sum converges and M(m) =::: m2, there exists a constant k such 
that T(m) ::; (kn/m)M(m). For Algorithm 6.1 n = m and hence T(n) :::;; 
kM(n). D 

Corollary. Gi.ven any nonsingular matrix A we can find an LUP.decom­
position of A in 0(n2·"1) steps. 

Proof By Theorems 6.1, 6.3, and 6.4. D 

6.5 APPLICATIONS OF LUP DECOMPOSITION 

In this section we shall show how LUP decomposition can be used to com­
pute matrix inverses and determinants and to solve simultaneous linear equa­
tions. We shall see that each of these problems is reduced to the problem of 
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multiplying two matrices, and thus any improvement in the asymptotic time 
complexity of matrix multiplication results in an improvement in the asymp­
totic time complexity of these problems. Conversely we shall show that matrix 
multiplication is reducible to matrix inversion, and thus matrix multiplication 
and matrix inversion are computationally equivalent problems. 

Theorem 6.5. Let E > 0 and a :::=:: I. Let M (11) be the time required to 
multiply two matrices over some ring. and assume M ( '2111) :::=:: 2~- •M ( m) 
for some E > 0. Then the inverse of any nonsingular matrix can he com­
puted in O(M(11)) time. 

Proof Let A be any nonsingular /1 x /1 matrix. By Theorems 6.3 and 6.4 we 
can find A= LUP in time O(M(11) ). Thus A- 1 = p-•u-•L- 1• p-• is easy to 
compute in 0(11) steps. u-• and L- 1 exist and can be computed in O(M(11)) 
steps by Theorem 6.2. The product p-• u- 1L- 1 can likewise be computed in 
O~M(n)) steps. 0 

Corollary. The inverse of an 11 x 11 matrix can be obtained in 0 ( 11~· 81 ) 

steps. t 

Theorem 6.6. If M(n) is as in Theorem 6.5 and A is an /1 x /1 matrix, then 
we can compute det(A) in O(M(n)) steps. 

Proof Apply Algorithm 6.1 to find the LUP decomposition of A. If the 
algorithm fails to work because a nonzero column cannot be found at line 2 
or E-1 does not exist at line 9, then A is singular and det(A) = 0. Otherwise, 
letA =LUP. Thendet(A) =det(L) det(U) det(P). Wecanfinddet(L) and 
det( U) by taking the product of the main diagonal elements. Since L is unit 
lower triangular, det(L) = 1. Since U is upper triangular. we can calculate 
det(V) in O(n) steps. Since Pis a permutation matrix. det(P) = ±1. depend­
ing on whether P represents an odd or an even permutation. We can tell 
whether a permutation is odd or even by actually constructing the permutation 
from (I, 2, ... , n) by interchanges. At most 11 - I interchanges are needed. 
and the number of permutations can be counted as they are performed. D 

Corollary. The determinant of an 11 x /1 matrix can be computed in 
0 (n2 ·81 ) steps. 

Example 6.4. Let us compute the determinant of the matrix M of Example 6.3. 
There, we determined the LUP decomposition 

[H ~ ~] ~ [~ ! H] [H HJ [H ! ~]· 
4000 0001 0004 1000 

The determinants of the first and second of these matrices are the products of 
the diagonal terms. and thus are+ I and +'24. respectively. We must deter­
mine only whether the last matrix P reprt!scnts an odd or even permutation. 
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Since P represents the permutation (4, 3. 2. I). and this permutation can t 
constructed by the sequence of two interchanges (I.'.!. 3. 4) ~ (4. 2. 3. I): 
(4. 3. 2. I). we find that the permutation is even and det(P) =+I. Thu 
det(M) = + 24. 0 

Theorem 6.7. Let M(11) be as in Theorem 6.5. let A be a nonsinguh: 
11 x n matrix. and let b be a column vector of length 11. Let x be the co 
umn vector of unknowns [x1, x"2 , ••• , x,,]1'. Then the solution to the S( 

of simultaneous linear equations Ax= b can be obtained in 0 (M(n)) stepi 

Proof Write A= LUP by Algorithm 6.1. Then LUPx =bis solved in tw 
steps. First Ly = b is solved for the vector of unknowns y, and then U Px =. 
is solved for x. Each subproblem can be solved by back substitution in O (112 

steps, i.e., solve for y 1 , substitute the value of y 1 for unknown y 1 , and solv. 
for y 2 , etc. The LUP decomposition can be done in O(M(11)) steps b! 
Theorem 6.4, and the soiution of LU Px = b can then be obtained in 0(11 2 

steps. 0 

Corollary. n simultaneous equations in n unknowns can be solved ii 
O (112·81 ) steps. 

Finally we show that matrix multiplication and matrix inversion are o 
the same computational complexity. 

Theorem 6.8. Let M(n) and /(11) be the amounts of time required tc 
multiply two n x n matrices and to invert an n x n matrix, respectively. 
Assume,8M(m) ;::: M(2m) ;::: 22+EM(m) for some e > 0, and analogous!) 
for l(n). Then M(n) and l(n) are, to within a constant factor, the same. 

Proof Theorem 6.5 shows that l(n) :s c1M(11) for some c1• To establish 
the relationship M(n) :s c2/(11) for some c2, let A and B be /1 x n matrices. 
Then 

[
/ A 
0 I 
0 0 

o]-1 
[/ -A A BJ 

B = 0 I -B . 
I 0 ·o I 

Thus we can obtain the product AB by inverting a 311 x 3n matrix. It follows 
that M ( n) :s I ( 311) ::;; I ( 411) ::;; 64/ ( 11). 0 

6.6 BOOLEAN MATRIX MULTIPLICATION 

In Section 5.9 we considered the problem of multiplying two Boolean matrices 
whose elements were chosen from the closed semiring {O. I} with sum and 
product defined by 

+ () 0 

0 0 () 0 0 
I 0 
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We showed that the problem of multiplying two Boolean matrices is equivalent 
to the computation of the transitive closure of a graph. Unfortunately. the 
closed semiring {O. I} is not a ring. and therefore Strassen's matrix-multipli­
cation algorithm and the rest of the results presented so far in this chapter do 
not apply directly to Boolean matrix multiplication. 

Clearly. the ordinary matrix-multiplication algorithm requires O(n:i) steps.I 
However, there are at least two ways of multiplying Boolean matrices in less 
than 0(11=1) steps. The first is asymptotically better, but the second is likely 
to be more practical for moderate 11. We present the first method in the next 
theorem. 

Theorem 6.9. The product of two Boolean /1 x /1 matrices A and B can 
be computed in 0A(n2·H 1) steps. 

Proof The integers modulo n + I form a ring Zn+i· We may use Strassen's 
matrix-multiplication algorithm to multiply matrices A and B in Zn+i· Let C 
be the product of A and B in Z11+1 and D be their product treated as Boolean 
matrices. Then it is easy to show that if D[i,j] = 0 then C[i,j] = 0, and if 
D[i,j] =I then I s C[i.j] s 11.' Thus D can be immediately obtained 
from C. D 

Corollary 1. If multiplication of two k-bit integers requires m(k) bit­
wise operations. then Boolean matrix multiplication can be done in 
0 8 (11 2·81 m(log 11)) steps. 

Proof Since all arithmetic may be done in Z11+1, we need at most llog nJ + I 
bits to represent numbers. Multiplication of two such integers uses at most 
0 8 (m(log n)) time and addition or subtraction uses at most 0 8 (1og 11), which 
is surely no greater. D 

In Chapter 7, we shall discuss a multiplication algorithm for which m(k) 
is 0 8 (k log k loglog k). Using this value we have the following corollary. 

Corollary 2. Boolean matrix multiplication requires at most 

On (112 •111 log /1 loglog /1 logloglog n) 
steps. 

The second method. often called the "Four Russians'" algorithm. after 
the cardinality and nationality of its inventors. is somewhat more "practical" 
than the algorithm in Theorem 6.9. Moreover, the algorithm lends itself 
readily to bit vector calculations. \vhich the algorithm in Theorem 6.9 does not. 

t If almost all elements of the product arc I. then we can multiply two Boolean matrices 
in 0(112) expected time by computing each sum ~Z=i au,bki only until a term which is I 
is found. Then We know the sum is I. If. for example. each element a;k or h~., has 
probability p of being I. independently. then the expected number of terms we have 
to look at is at most I/pt. independent of 11. 
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Let us suppose we wish to multiply A and B. two /1 x 11 Boolean matrice: 
For convenience assume that log 11 divides /1 evenly. We can partition A int 
11 x (log 11) submatrlces and B into (log 11) x /1 submatrices as in Fig. 6.5. The 
we can write 

11/loi: 11 

AB= L ·A;B;. 
i=I 

Note that each product A ;B; i~n /1 x /1 matrix in itself. If we can comput 
each product A;B; in 0(112) sjeps, then we can compute AB in 0(11=1/log n 
steps, since there are 11/log 11 such prc;>ducts. 

We now focus our attention on computing the products A;B;. We couli 
compute each product AiBi in 0(112 log n) steps as follows. To compute AiB, 
we evaluate aiBi for each row ai of Ai. To determine a;Bi, we find each rov 
k of Bi for which ai has a I in column k. We then add together these rows o 
Bi, treating the rows as bit vectors of length n. 

For example, suppose 

·~· 0 0 I 
0 I 

I I I 

B,~ [~ 
I 0 I 0 0 

H A;= 
I 0 0 

and 0 0 0 l 0 
0 0 0 
I I 0 

0 0 0 0 

0 0 0 
0 

Then 
1 0 0 0 0 0 
l 0 I 0 0 I 

I I 0 l I 0 l 

Ci=AiB;= 
0 l 0 I I 0 0 I 
0 0 0 0 0 0 0 0 
0 I 0 I I I 0 I 
0 0 0 0 0 0 0 0 
I 0 0 0 0 

The first row of Ci is merely the third row of Bi• since the first row of A; ha! 
a I in column 3 only. The second row of Ci is the sum of the first and third 
rows of B;. since the second row of A; has a I in columns I and 3, and so on. 

To compute a1Bi requires O(n log n) time for each row a1 of Ai· Since A, 
ha:; n rows, the total amount of work to compute AiBi is 0(n2 log 11). 

To compute the product AiB1 faster, we observe that each row of A 1 has 
log n elements, each of which is either 0 or I. Thus there can be at most 
::!10IC" = n distinct rows among all the A ;'s. 
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B, 

B, 

~------------------

~-------------------

Bn /log n 

B 

Fig. 6.5 Partition of Boolean matrices A and B. 

Thus there are only n distinct possible sums of rows of Bi. We can pre­
compute all possible sums of rows bf Bi, and instead of computing a;Bi we 
simply index into a table by a; to look up the answer. 

This method requires only 0(n2) time to compute A;Bi. The reasoning 
is as follows. Any subset of rows of B; is empty, a singleton set, or the union 
of a singleton set and a smaller set. We can, if we choose the right order, 
compute each sum of rows by adding one row of B1 to a row sum already com­
puted. We can then obtain all n sums of rows of B1 in 0(n2) steps. After 
computing the sums and placing them in an array, we can select the appropriate 
sum for each of then rows of A 1• 

Algorithm 6.2. Four Russians' Boolean matrix multiplication algorithm. 

Input. Two n x n Boolean matrices, A and B. 

Output. The product C =AB. 

Method. Define m to be Llog nj. Partition A into matricesA 1, A 2 , • •• , Ar,11111 1. 

where A 1, 1 s i < f n/m l, consists of columns m(i - 1) + 1 through mi of A, 
and Arniml consists of the remaining columns, with extra columns of O"s if 
necessary to make m columns. Partition B into matrices B1, B2 , • •• , Brniml· 
where B1, 1 s i < f 11/m l. consists of rows m(i - 1) + 1 through mi of B. and 
Brniml consists of the remaining rows with extra rows of O's if necessary to 
make m rows. The sidlation is essentially that of Fig. 6.5. The computation 
is shown in Fig. 6.6. We use NUM(v) for the integer represented by the 
reverse of a vector v of O's and 1 ·s. For example, NUM ( [O, I, I]) = 6. D 

Theorem 6.10. Algorithm 6.:! computes C =AB and takes 0(11=1/log 11) 

steps. 
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begin 
I. for i - I until r 11/m l do 

begin 
comment We compute the sums of the rows b\il, ... , b~ 

of B;: 
') ROWSUM[O] - [O. O ..... OJ: 

II 

3. for j - I until 2"' - I do 
begin 

4. let k be such that 2,. s j < 2H 1 ; 

5. ROWSUM[j] - ROWSUM[j- 2~·] + b~L 1t 
end; 

6. let C; be the matrix whose jth row, I s j s n, 
ROWSUM[NUM(a;)], where a; is thejth row of Ai 

7. 
end; 

let C be '5'!.111111 1 c. -1=! I 

..... 
end 

t Bitwise Boolean sum is meant here, of course. 

Fig. 6.6. Four Russians' algorithm. 

Proof An easy induction on j shows that at lines 2-5 ROWSUM[j] is se 
equal to the bitwise Boolean sum of those rows bk of B1· such that the binar; 
representation of j has I in the k th place from the right. It then follows tha 
C; =A ;B; at line 6 and hence C =AB at line 7. 

For the time complexity of the algorithm, first consider the loop of line: 
3-5. The assignment statement of line 5 clearly requires O(n) steps. Thi 
computation to evaluate k at line 4 is O(m), which is less than O(n), so th1 
whole body of the loop, lines 4-5, is O(n). The loop is repeated 2rn - I times 
so the loop is 0(n2"'). Since m s log n, the loop of lines ?-5 is O(n2). 

For line 6, computation of NUM(aJ is O(m), and copying vecto1 
ROWS UM [NUM(a;)] is 0(11). so line 6 is 0(n 2 ). Since r n/m l s 211/log 11. 

the loop of lines 1-6, which is executed r n/ ml times. is O (n3/log n). Simi· 
larly. step 7 requires at most 2n/log /1 sums of 11 x /1 matrices, for a total of 
0(11=1/log n) steps. Thus the entire algorithm requires O(n3/log n) steps. 0 

What is perhaps more interesting is the fact that Algorithm 6.2 can bt 
implemented in 0 8dn2/log 11) bit vector steps, provided we have logical anc 
arithmetic operations on bit strings available. 

Theorem 6.11. Algorithm 6.2 can be implemented in 0 8 v(n2/log 11) bil 
vector steps. 

Proof A counter is used to determine when to increment k. Initially. the: 
counter has value I and k has value 0. Each timej is incremented, the counter 
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is decremented by I unless it has value I. in which case the counter is set to 
the new value of j. and k is incremented by I. 

The assignments of lines 2 and 5 in Fig. 6.6 require a constant number 
of steps. Thus the loop of lines 3-5 is 0 8 v(11 ). In the construction of C; in 
line 6. note that the computation of NU M(a;) requires no time. since the rep­
resentation of a bit vector in a RAM is by an integer.t Hence each row of 
C; can be found in a constant number of bit vector steps. and line 6 requires 
0,1\.(11). Therefore the loop of lines 1-6 is 0 11dn2/log 11) and line 7 is of the 
same complexity. D 

EXERCISES 

6.1 Show that the integers modulo /1 form a ring. That is. Z,, is the ring ( { 0. I ..... 
11 - I},+, ., 0, I), where a+ b and a · b are ordinary addition and multiplica­
tion modulo n. 

6.2 Show that Mn, the set of /1 x /1 matrices with elements chosen from some ring 
R. itself forms a ring. 

6.3 Give an example to show that the 'product of matrices is not commutative. even 
if the elements are chosen from a ring in which multiplication is commutative. 

6.4 Use Strassen's algorithm to compute the product 

6.5 Another version of Strassen's algorithm uses the following identities to help 
compute the product of two 2 x 2 matrices. 

Si = C/21 + 022 

S2 = S1 - C/11 

Sa= au - C/21 

S4 = a12 - S2 

Ss = h12 - bu 
Sn=· h22 - S5 

S7 = h22 - h12 

SH= SG - h21 

m 1 = s2s6 

m2 = a11b11 

ma= C112b21 

1114 = SaS1 

n15 = S1Ss 

11ls = S4b22 

1111 = C/22Ss 

The elements of the product matrix are: 

c 11 =m2 +1113 • 

<"12 = 11 + 111s + 1115. 

C21 = 12 - /117, 

C:: = 12 + 1115. 

11=1111+1112 

12 = 11 + /114 

Show that these elements compute Eq. (6.1 ). Note that only 7 multiplica­
tions and 15 additions have been used. 

t We can get around the detail that NU Mia;) is the integer reprc~cnting the reverse of 
•1 by taking the ')th row·· of /J; to he thejth row from the hottom in"itcad of the top as 
We have previously done. 
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6.6 

6.7 

6.8 

6.9 

6.10· 

6.11 

6.12 

MATRIX MULTIPLICATION AND RELATED OPERATIONS 

Prove the following for /1 x /1 matrices A. B. and C. 
a) AB= I and AC= I implies B = C. 
b) ,.i- 1A =I. 
c) (AB)- 1 = B-•A- 1• 

d) (A- 1)- 1 =A. 
e) det(AB) = det(A) det(B). 

Theorem 6.2 shows that the inverse of a nonsingular upper triangular matrix car 
be taken in c112·H 1 arithmetic operations for some c. Find the constant c on the 
assumption that matrix multiplication is by Strassen's algorithm and n is a powe1 
of 2. 

Represent a permutation matrix by ail array P such that P[i] = j if an<;! only ii 
column i has its I in row j. Let P 1 and P2 be representations of n x n permuta. 
tion matrices. 
a) Prove P 1P2[i] = P 1 [P2[i]). 
b) Give an O(n) algorithm for computing P11• 

c) Change the representation such that P[i] = j if and only if row i has its I in 
column j. Give the correct formula for P 1P2 and the algorithm for com· .... 
puting P11• • •. 

Use Algorithm 6.1 to find the LUP decomposition of the matrix 

I -I 

I 
3 
0 

M= [~ ~ 
2 0 -I 

We have shown that LUP decomposition, matrix inversion, determinant com· 
putation .• and solution of linear equations are each 0 A(n2·81). Find the best pos· 
sible constant factor for each problem, assuming that Strassen's algorithm is 
used for the multiplications, n is a power of 2, and the techniques of Algorithm 
6.1 and Theorems 6.4-6. 7 are used. 

Find (a) the inverse and (b) the determinant of the matrix M of Exercise 6.9, 
using the techniques of this chapter. 

Solve the following set of simultaneous linear equations using LUP decom· 
position. 

X3 + 2X4 = 7 
3X3 9 

Xi - X2 + X4 = 3 
2X1 - :C3 + 3X4 = JO 

6.13 Show that every permutation is either even or odd, but not both. 

6.14 Compute the following Boolean matrix product using (a) the method of Theorem 
6.9. and (b) the Four Russians' Algorithm. 

[! ~ ! I] [I ~ ! ~] 
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6.15 Complete the proof of Theorem 6.3 by showing that the relationships shown in 
Figs. 6.2 and 6.3 are valid. 

'"*6.16 Consider the fieldt F2 of integers modulo 2. Find a multiplication algorithm 
for II x II matrices over F2 with an asymptotic bound of 112-H• /Clog II )11 •·1• r Hint: 
Partition the matrices into blocks of size vlog/, x Vlog /1 .] 

6.17 Estimate the value of /1 beyond which 112·" 1 is less than 11=1/log 11. 

*6.18 Let L(11) be· the time to multiply two n x /1 lower triangular matrice-.. Let 
T(11) be the time to multiply two arbitrary matrices. Prove that there exist-. a 
constant c such that 7"(11) s; cL(n). 

6.19 Prove that the inverse of an upper (lower) triangular matrix is upper llowerl 
triangular. 

*6.20 Let /(n) and U(n) be the number of steps needed to invert an /1 x /1 matrix 
and an n x n upper triangular matrix, respectively. Prove there exists a constant 
c such that /(n) s; cU(n) for all n. 

**S.21 To compute the matrix product C =AB one could compute the product 
D = (PAQ) (Q- 1BR) and then compute C = p-1DR- 1• If P, Q, and R are cer­
tain matrices, e.g., permutation\matrices, the multiplications PAQ, Q- 1BR. and 
p-•DR-1 require no multiplications of ring elements. Use this idea to find an­
other method of multiplying 2 x 2 matrices in seven multiplications. 

6.22 Prove that the LU decomposition of a nonsingular matrix A is unique when­
ever it exists. [Hint: Assume A,;,, L1U1 =L2U2. ShowthatL2 1L1 = u 2 u1• = /.] 

6.23 Prove that if A is nonsingular and every principal submatrix of A is nonsingular. 
then A has an LUP decomposition. 

6.24 Can a singular matrix have anJ,_UP decomposition? 

**6.25 Let A be an n x n matrix over the reals. A is positii·e definite if for each non­
zero column vector x, x7:Ax > 0. 
a) Sho·w that Lemma 6.5 can be used to invert any nonsingular symmetric 

positive definite matrix. 
b) Prove that AAT is always positive definite and symmetric. 
c) Using (a) and (b) give an 0 (M (n)) algorithm for matrix inversion of arbi­

trary nonsingular matrices over the reals. 
d) Does your algorithm in (c) work for the field of integers modulo 2? 

*6.26 An 11 x 11 Toeplit:. matrix is a matrix A with the property that 
A[i,j] =A[i- l,j- I]. 2 s; i.j s; 11. 

a) Find a representation for a Toeplitz matrix so that two /1 x /1 Toeplitz matrices 
can be added in 0 ( 11) operations. 

b) Find a divide~nd-conquer algorithm for multiplying an /1 x /1 Tocplitz matrix 
by a column vector. How many arithmetic operations are required? [Hint: 
Using the divide-and-conquer approach one can obtain an 01111.:.!•i algorithm. 
In Chapter 7 we develop techniques which can be used to improve upon this 
result.] 

c) Find an asymptotically efficient algorithm for multiplying two 11 x 11 Toeplitz 

t See Section 12. I for a definition of .. field." 
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matrices. How many arithmetic operations are required? Note that the 
product of Toeplitz matrices is not necessarily Toeplitz. 

Research Problems 

6.27 A natural problem is to improve on Strassen's method directly. It has been 
shown by Hopcroft and Kerr [ 1971] that seven multiplications are required for 
2 x 2 matrix multiplication over an arbitrary ring. However. a recursive algo­
rithm could be based on some other small-sized matrix. For example, we could 
asymptotically improve on Strassen if we did 3 x 3 matrix multiplication in 21 
multiplications or 4 x 4 in 48. 

6.28 Can we do the shortest-path problem in less-than 0(11'1) steps? Strassen's algo­
rithm does not apply to the closed semiring consisting of the nonnegative reals 
with +oc, but it may be possible to embed this closed semiring in a ring as we 
did for Boolean matrices. 

BIBLIOGRAPHIC NOTES 

Strassen's algorithm is taken from Strassen [J-969]. Winograd [ 1973] reduced the 
number of additions required to 15, which improved the constant factor but not the 
order-of-magnitude complexity (see Exercise 6.5). 

Strassen [ 1969] also gave 0 (n2•81 ) methods for matrix inversion. computation 
of determinants, and solution of simultaneous linear equations, on the assumption 
that each matrix encountered during the recursion was nonsingular. Bunch and Hop­
croft [ 1974] showed that LUP decomposition could be done in O(n2•81 ) steps with 
only the condition that the initial matrix be nonsingular. A. Schonhage independently 
showed that inversion of any nonsingular matrix over an ordered field could be done 
in 0(n2•81 ) steps (Exercise 6.25). 

The result that matrix multiplication is no harder than inversion is by Winograd 
[I 970c]. The O"(n2·s1) algorithm for Boolean matrix multiplication is by .Fischer 
and Meyer [1971]. The "Four Russians" are Arlazarov, Dinic. Kronrod, and 
Faradzev [ 1970]. 

For additional reading on the mathematics of matrices consult Hohn [ 1958 ]. 
Algebraic concepts. such as the theory of rings, can be found in Mac Lane and Birkhoff 
[ 1967]. A solution to Exercise 6.13 can be found in Birkhoff and Bartee [ 1970]. 
Exercise 6.16 is by J. Hopcroft. 
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The Fourier transform arises naturally in many fields of science and engineer­
ing. and thus an efficient algorithm for computing the Fourier transform is of 
interest. The ubiquity of the Fourier transform is further demonstrated by its 
applicability to the design of efficient algorithms. In many applications it is 
convenient to transform a problem into another. easier problem. An example 
occurs in computing lhe product of two poiynomials. It is computationally 
expedient first to apply a linear transformation to the coefficient vectors of the 
polynomials. then to perform an operation simpler than convolution on the 
images of the coefficients, and finally to apply the inverse transformation to 
the result to gel the desired product. An appropriate linear transformation 
for this situation is the discrete Fourier transform. 

In this chapter we shall study the Fourier transform, its inverse, and its 
role in computing convolutions and products of various types. We shall 
develop an efficient algorithm called the fast Fourier transform (FFT) for 
computing the Fourier transform. The algorithm, which is based on tech­
niques of polynomial evaluation by division,.pakes use of the fact that a 
polynomial is being evaluated at the roots ·of unity. . 

Then we shall prove the Convolution Theorem. We snail interpret 
convolution as polynomial evaluation at roots of unity, multiplication of 
sample values, and finally polynomial interpolation. We shall develop an ef­
ficient algorithm for convolution using the fast Fom.:ier transform, and apply 
the convolution algorithm to symbolic multiplication of polynomials and in­
teger multiplication. The resulting algorithm for integer multiplication, the 
so-called SchOnhage-Strassen algorithm, is asymptotically the fastest known 
way to multiply two integers together. 

7.1 THE DISCRETE FOURIER TRANSFORM AND ITS INVERSE 

The Fourier transform is usually defined over the complex numbers. For 
reasons which will become apparent later, we shall define the Fourier trans­
form over an arbitrary commutative ring (R. +, ·. 0, I ).t An element w of R 
such that 

I. w ~ I. 
2. w" =I. and 

11-1 

3. L wi,, = 0, for I :5 p < n, 
j=ll 

is said to be a principal 11th root of 1111ity. The elements w0 , w 1 ••••• w 11 - 1 are 
the 11th roots of 1111ity. 

For example. e2.,,.;111 • where i = V-i. is a principal 11th root of unity in the 
ring of complex numbers. 

t Recall that a commutative ring is one in which multiplication (as well as addition> is 
commutative. 



THE DISCRETE FOURIER TRANSFORM AND ITS INVERSE 253 

Let a= [a 0 , a 1 •••• , a,._ 1 ]T be a length-11 (column) vector with elements 
from R. We assume the integer 11 has a multiplicative inverse"in Rt and that 
R has a principal nth root of unity w. Let A be an /1 x /1 matrix such that 
A [i, j] = wu, for 0 s i, j < 1z. The vector F(a) = Aa whose ith component 
h;. O s i < n. is ~~;;;A akwik is called the discrete Fouria tram:form of a. The 
matrix A is nonsingular, and thus A- 1 exists. A- 1 has the simple form given 
in Lemma 7.1. 

Lemma 7.1. Let R be a commutative ring having a principal nth root of 
unity w, where n has a multiplicative inverse in R. Let A be the n x /1 

matrix whose ijth element is wii for 0 s i,j < n. Then A- 1 exists and tt.e 
ijth element of A- 1 is (1/n'}w-ii. ~ 

Proof Let 5;; be 1 if i = j and 0 otherwise. It suffices to show that if A- 1 is 
defined as above, then A · A-1 = I,., that is, the ijth element in A · A- 1 is 

for 0 s i, j < n. 

If i = j, then the left-hand side of (7. l) reduces to 

I n-1 - :L WO=}. 
l1 k=O 

If i "16- j, let q = i - j. Then the left-hand side of (7 .1) reduces to 

1 n-1 
- "1 wqk 

n~ ' 

If q > 0, we have 

-n < q < n, q "16- 0. 

1 11-1 - L wqk = 0, 
l1 k=O 

(7 .1) 

since w is an nth root of unity. If q < 0, then multiplying by w-q(n- 1>, 
rearranging the order of the terms in the summation, and replacing q by -q 
yields 

1 n-1 n :L wqk, 

k=O 

0 < q < n, 

which again has value O since w is a principal nth root of unity. Equation (7 .1) 
follows immediately. 0 

The vector F-1(a}.= A- 1a whose ith component. 0 s i < n. is 

t The integers appear in any ring. even finite ones. Take /1 to be I + I + · · · + I 
(n times), where I is the multiplicative identity. Note that wCJF 1 = I sow has an in­
verse and thus it makes sense to talk about negative powers of w. 
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is the inn•r.H' discrete Fourier transform of a. Clearly. the inverse transform 
of the transform of a is a itself. i.e .. F- 1 F (a) = a. 

There is a close relationship between Fourier transforms and polynomial 
evaluation and interpolation. Let 

11-1. 

p(x) = L aixi 
i=O 

be an (11 - I )st-degree polynomial. This polynomial can be uniquely repre­
sented in two ways, either by a list of its coefficients a0 , a 1 , ••• , a 11 _ 1 or by a 
list of its values at /1 distinct points x 0 , X1o ... , x,,_ 1 • The process of finding 
the coefficient representation of a polynomial given its values at x0 , x 1 , 

... , x 11 _ 1 is called interpolation. 
Computing the Fourier transform of a vector [a0, a1o ... , a 11 _ 1]T is 

equivalent to converting the coefficient representation of the polynomial 
Il~Jaixi to its value representation at the points w0 , w 1 , ••• , w'i-1. Likewise, 
the inverse Fourier transform is equival~nt t~1nterpolating a polynomial given 
its values at the nth roots of unity. 

One could define a transform which evaluates a polynomial at a set of 
points other than the nth roots of unity. For example, one could use the in­
tegers I, 2, ... , n. However, we shall see that by choosing the powers 
of w, evaluation and interpolation become particularly straightforward. In 
Chapter 8 the Fourier transform is used to evaluate and interpolate polyno-
mials at arbitrary points. . 

One of t~e principal applications of the Fourier transform is in computing 
the convolution of two vectors. Let 

/ 
a= [ao. a1 ..... a11_iJT and b = [ho. bi, . .. , b,.-1F 

be two column vectors. The conwJlution of a and b, denoted a ® b, is the 
vector c = [c 0 , C1o ••• , c 211_ 1] r, where ci = Ij~01 aibi-i· (Take ak =bk= 0 if 
k < 0 or k ;;::: 11). Thus 

and so on. Note that c 211 _ 1 = O; this term is included for symmetry only. 
To motivate the convolution, consider again the representation of a 

polynomial by its coefficients. The product of two (n - I )st-degree polyno­
mials 

11-1 11-1 

p(x) = L ajxi and q(x) = L bixi 
i=O j=zO 

is the (2n - 2)nd-degree polynomial 
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Observe that the coefficients of the product polynomial are exactly the com­
ponents of the convolution of the coefficient vectors [a 0 • a 1 •••• a,, F ·and 
[b 0 , h1, .... h,1F of the original polynomials, if we neglect c2n-i· which is 
zero. 

If the two (n - ])st-degree polynomials are represented hy their coeffi­
cients, then to compute the coefficient representation of their product we can 
convolve the two coefficient vectors. On the other hand if p(x) c,tnd qC.r) are 
represented by their values at the nth roots of unity, then to compute the val­
ues representation of their product we can simply multiply pairs of values at 
corresponding roots. This suggests that the convolution of the two vectors a 
and b is the inverse transform of the componentwise product of the transform 
of the two vectors. Symbolically, a © b = F- 1(F(a) · F(b)). That is. a 
convolution may be computed by taking Fourier transforms. computing their 
pairwise product, and then inverting. The only problem is that the product of 
two (n - 1 )st-degree polynomials is in general a (2n - 2)nd-degree polyno. 
mial, and to represent it requires values at 2n - 2 distinct points. This tech­
nicality is resolved in the following theorem by considering p(x) and q(x) to be 
(2n - l)st-degree polynomials, where the coefficients of the (n - l)st highest 
powers of x are zero [i.e., treating tn - l)st-degree polynomials as (211 - 1 )st­
degree polynomials]. 

Theorem 7.1 (Convolution Theorem). Let 

a= [a 0 , a 1, .••• a 11 _ 1• 0, ... , O]T 

and 

b = [b 0 , hi •.. . , b11 -1> 0, ... , O]T 

be column vectors of length 211. Let 

F(a) = [a~. a; • ...• a;,1-1F 

and 

F(b) = [h~. b; •. ... b;,._I F 
be their Fourier transforms. Then a® b = p-• (F(a) · F(b)). 

Proof Since ai = b; = 0 for /1 ::: i < '211. we note that for 0 ::: I < 211, 

Thus 

11-1 

a;= L aiw'i 
j=O 

and 

11-1 11-1 

11-1 

h i - "" b lk 1- k.J A·W. 
k=O 

a ihi = 2: L aihA.wtU+ki. 
j=O A·=O 

Let a© b= [c 0 • c 1 ••••• C211-1F and F(a © b)= [c;,. c;. 

( 7 .:! ) 

' ] 7· 
(":!11-1 • 
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211-1 211-i 

c; = L L a)Jp-iw 11'. (7.3) 
11=0 j=O 

Interchanging the order of summation in (7.3) and substituting k for p - j 
yields 

211-i 211-i-J 

c; = L L aibkw 1<Hk>. 
j=O k=-j 

(7.4) 

Since bk= 0 fork< 0, we may raise the lower limit on the inner summa­
tion to k = 0. Likewise, since ai = 0 for j;:::::: n, we may lower the upper limit 
on the outer summation to n - 1. The upper limit on the inner summation is 
at least n no matter what the value of j is. Thus we may replace the upper 
limit by n - 1 since bk= 0 for k ;:::::: fl. When we make these changes, (7.4) 
becomes identical to (7.2), hence cl= a; bl. We have now shown F (a® b) = 
F (a) · F (b), from which it follows that a @ b = F-1(F (a) · F (b)). D 

The convolution of two vectors of leqgth ·w·is a vector of length 2n.. This 
requires "padding" with n zeros the vectors a and b in the Convolution 
Theorem. To avoid this "padding," we can use "wrapped" convolutions. 

Definition. Let a= [a 0 , ai. ... , an-iF and b = [b 0 , bi. ... , bn-iF be 
two vectors of length n. The positive wrapped con_volution of a and b is 
the vector c = [c 0 , c 1, ••• , Cn-1]T, where 

i n-1 

ci = L aibi-i + L aibn+i-J· 
j=O J=i+l 

The negative wrapped convolution of a and b is the vector d = [d0 , di, 
... , dn-iF. where 

i n-1 

d; = L aibi-i - L aib11+i-i· 
j=O i=i+i 

We shall later make use of the wrapped convolutions in Section 7.5 in the 
Schonhage-Strassen algorithm, a fast integer-multiplication algorithm. For 
the moment observe that one can evaluate two /1 - 1st-degree polynomials at 
the nth roots of unity and multiply the pairs of values at the corresponding 
roots together. This gives n values through which we can interpolate a 
unique fl - 1st-degree polynomial. The vector of coefficients of this unique 
polynomial is precisely the positive wrapped convolution of the vectors of 
coefficients of the two original polynomials. 

Theorem 7.2. Let a= [a0 , ai, . .. , a,,_ 1]T and b = [b0 , bi, ... , b,1_ 1]T be 
two vectors of length n. Let w be a principal nth root of unity and let 
•fl:! = w. Assume that n has a multiplicative inverse. 
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I. The positive wrapped convolution of a and b is given by 
F- 1(F(a) · F(b)) . 

., Let d = [do. d 1 • •••• d,,_1J7' be the negative wrapped convolution of a 
and b. Let a, b, and d be [ao. t/jal .... • 1/1 11 - 1a,,_1F. [b ... •bb •.. ..• 
l/J 11 - 1b,,_,y, and [d0 • l/ld 1, •••• 1/1 1i-1d,,_ 1]7'. respectively. Then d = 
F-1(F(a) · F(b)). 

Proof The proof is analogous to that of Theorem 7. I with the observation 
that I/I" = - I. The details are left for an exercise. 0 

7.2 THE FAST FOURIER TRANSFORM ALGORITHM 
_/ . 

It is clear that we can compute the Fourier transform and inverse Fourier 
transform of a vector a in R" in OA(n2 ) time if we assume that arithmetic 
operations on arbitrary elements of the ring R require one step each. How­
ever, when n is a power of 2, we can do much better; there is an o ... <11 log 11) 

algorithm to evaluate the Fourier transform or the inverse Fourier transform, 
and we conjecture that this is optimal. We give the algorithm for the Fourier 
transform itself. The algorithm for the inverse transform is analogous and is 
left for the reader. The basic idea behind the fast Fourier transform (FFT) is 
algebraic in nature; we find similarities among portions of the 11 sums implied 
by A a. Throughout the section we assume n = 2 k for some integer k. 

Recall that evaluating Aa is equivalent to evaluating the polynomial 
p(x) = 2.J;;Ja;xi for x equal to w 0 , w1, •••• w11- 1• However, evaluation of a 
polynomial p(x) at a point x =a is equivalent to finding the remainder when 
p(x) is divided by x - a. [To see this, we can write p(x) = (x - a)q(x) + c. 
where c is a constant. Then p(a) = c.] Thus evaluation of the Fourier trans­
form reduces to finding the remainder when an (n - I )st-degree polynomial 
p(x) = "'2.~~Jaixi is divided by each of x - w 0 , x - w1, ••• , x - w11 - 1• 

Simply dividing p(x) by e!J.ch of the x - wi in turn is an 0(11 2) process. 
To obtain a faster algorithm we multiply the x - wi together in pairs. then 
multiply the resulting 11/2 polynomials together in pairs. and so on until finally 
we are left with two polynomials. q, and q2• each of which is a product of half 
of the x - wi's. Next, we divide p(x) by q 1 and by q2 , obtaining remainders 
r1(x) and r2(x}, respectively, which are each of degree at most n/2 - I. For 
each wi such that x - w 1 is a factor of q 1• finding the remainder of p(x} divided 
by x - wi is equivalent to finding the remainder of r 1 (x) divided by x - wi. A 
similar statement is trtle for each ·wi such that x - wi is a factor of q2 • Thus 
computing the remainders of p(.r) when divided by each of the x - wi's is 
equivalent to computing the remainders Of r 1(X) and r2(x) when divided by 
each of the n/2 appropriate x - wi's. Recursively applying this divide-and­
conquer approach is much more efficient than the straightforward method of 
dividing p(x) by each x - wi. 
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In multiplying the x - wi's together one would expect the products to 
have cross product terms. However, by appropriately arranging the order of 
the x - wi's we can make all resulting products to be of the form xj - wi, fur­
ther reducing. the time spent in multiplying and dividing polynomials. We 
now make these ideas more precise. . 

Let c0 , c1, ••• , c11 _ 1 be a permutation of w0 , w 1 • ••• , w11 - 1 which will be 
specified later. We define polynomials q 1111 , for 0 ~ m ~ k and for I an integer 
multiple of 2 111 in the range 0 ~I~ 2k - 1. as follows: 

1+2'"-1 

q,111 = TI (x - c). 
j=l 

Thus q0k is the product (x - c0)(x - c1) · · · (x - Cn-1), q,0 is x - c,, and in 
general 

There are 2k-m polynomials with second s~script m and each x - c1 is a 
factor of exactly one of them. The polynomials q1111 are illustrated· in Fig. 7. I. 
(Also see Sections 8.4 and 8.5.) 

Our goal is to compute the remainder of p(x)/qw(x) for each/. To do this 
we compute the remainders of p(x)/q 1111(x) for each q 1111 starting at m = k - I 
and ending at m = 0. 

(x -c;l 

2k-1 n (x-c;l 

X-Co x-c, 

Fig. 7.1 The polynomials Q1rn· 
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Suppose we have already computed the (::!"' - I )st-degree polynomial r1,,, 

which is the remainder of p(x)/q,,,,(x). (We can assume ,-11,, = p(.r).] Since 
q1,,. = q'q" where q' = C/t.m- 1 and q" = q,+~m-1.,,,_ 1 , we clai"1 that p(.x)/q'(.x) has 
the same remainder as r1,,,/q'(x) and that a similar statement holds for q"(x). 
In proof. let 

p(x) = h1(x)q'(x) + r1.111-1• 

where the degree of r 1•111 _ 1 is at most 2111 - 1 - 1. Since 

we have 

(7.5) 

If both sides of (7.5) are divided by q'(x), we observe that h1(x)q'(x) and 
h2(x)q 1111(x) leave no remainder, so the remainder of r 1111 /q'(x) is r1.,,._1• 

Thus we can obtain the remainders of p(x)/q'(x) and p(x)/q"(x) by dividing 
the (2k-m - ))st-degree polynomial r1,,. "by-q'(x) and q"(x), rather than by 
dividing the (2k - ))st-degree pollynomial p(x) by q'(x) and q"(x). This 
method of performing the divisions in itself is a saving. However we can do 
more. By choosing a judicious ordering of c0 , c 1", ••• , c 11 _1 for the powers 
of w, we can guarantee that each polynomial q 1111 is of the form x 2"' - w8 for 
some s. Division by such a polynomial is especially easy. 

Lemma 7.2. Let /1 = 2" and let w be a principal nth root of unity. For 
0 :s; j < 2 1: let [d0d 1 • • •· dk_1] be the binary representation of the integer 
jt and let revU) be the integer whose binary representation is 
[dk-ldk-2 .. do]. Let C; be wrevv> and let qlm = rr~~r- 1 (x - C;). Then 
qlm = x2"'- wrrYl/12"') 

Proof The proof is by induction on m. The basis, m = 0, is trivial. since by 
definition q10 = x - c1 = x - wmtn. For the inductive step, we know for 
m > 0, 

q,,,, = l/1.111-1C/1+~·-•.111-1 
= (X 2 rN-1 _ wre•C//2'"-ll)(X2 m-1_ wrev(l/2'"-1+1>), 

where 1/2 111 - 1 is an even integer in the range 0 to 2k - 1. Then 

k-1 
..... °"'d .,. 
I I.e .• J = £,,, k-l-i-' 

i=O 
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x~-w~· 

x-w" . ' x-w x-w- x-w• x-w' x-w 5 x-w 3 x-w 1 

Fig. 7.2 lllustration of q 1,,, of Lemma 7.2. 

since w 2t-i = w"12 = - I. Thus 

2.. ., 11····-· 2.. (//2'") q/m = X - w-roY( - } = X~· - Wrov , . 
since rev(2t) = !rev(t ). 0 

Example 7.1. If n = 8, the list c0 , c1, ••• , c7 is w 0 , w4, w 2 , w 6 , w 1, w 5, w 3 , w 7• 

The q1m are illustrated in Fig. 7.2. 
The q 1111 are used to compute the remainders as follows. Initially we 

evaluate r 02 and r42 , the remainders of p(x)/(x 4 - w 0) and p(x)/(x 4 - w 4) where 
p(x) = IJ-oaixi. Then we evaluate r01 and r21 the remainders of r02 /(x 2 - w 0) 

and r02/(x 2 - w 4), and r41 and r61> the remainders of r42/(x 2 - w 2) and 
r42/(x2 - w 6 ). ·Finally we evaluate r 00 , r 10 , r 20 , ••• , r70 where r 00 and r 10 are 
the remainders of r01 /(x - w 0 ) andr0i/(x - w 4), r 20 and r30 are the remainders of 
r 21 /(x - w2 ) and r 21 /(x - w6 ), and so on. 

For more examples of this approach, also see Section 8.5. 0 

Having shown that the q1m are of the form x·' - c, we now show that the 
remainder of p(x) when divided by xx - c is easy to compute. 

Lemma 7.3. Let 
2r-1 

p(x) = _2: a ixi 
j=O 

and let c be a constant. Then the remainder of p(x}/(x 1 - c) is 

1-1 

r(x) = _2: (ai + cai+c)xi. 
j=O 

Proof: Simply observe that p(x} can be expressed as 

[
l-l ] . ? ai+rxi (x 1 - c) + r(x). 0 
J=U 
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Thus computing the remainder of an arbitrary (2t - I )st-degree polyno­
mial when divided by x' - c can be done in 0 A(t) steps. which is less than that 
required by any known algorithm for computing the remainder of an arbitrary 
(2t - !)st-degree polynomial when divided by an arbitrary tth degree polyno­
mial. 

The complete FFT algorithm is given below. 

Algorithm 7.1. Fast Fourier transform. 

Input: A vector a= [a 0 , a1, ... , a 11-1F. where n = 2k for some integer k. 

Output. The vector F(a) = [b0, b1, ... , b11-1F. where b; = lj'.,;01 aiwii for 
0 :Si< n. 

Method. See Fig. 7.3. 0 

To modify Algorithm 7. I to compute inverse transforms, we merely 
replace w by w- 1 by changing the sign of the exponents of w in lines 6 and 7. 
Then we divide b, •• <t> by n in line 8. 

Example 7.2. Let n = 8 and thus R = 3. For m = 2 the loop of lines 3-7 is 
executed only for I= 0. At line 4, r03 is 2.J=oaixi. At line 5, sis 0. At lines 
6 and 7, 

·begin 
I. iet rok be 2. j~l a ixi; 

comment A polynomial is represented by its coefficients so no 
computation is involved at line I. r1,,, will represent the re­
mainder when 2. j1;;;01 a ixi is divided by q1111 ; 

2. for m +- k - I step - I until 0 do 
3. for I +- 0 step 2 111 +1 until n - I do 

begin 
4. let r1,111+1 be ~r::;,'-I ajxi; 

comment We compute the remainders of lower de­
gree from the coefficients of r 1,111 +1; 

5. s +- rev(//'2"' l: 
,.,"'I . 6. r 1111 (.r) +- .-J=;; (ai + wsai+:t)xJ; 

7 • ('")+-~:?"'-1(a +w•+1112<1 )\·i • r/+:!"'.m A - j=O j i+'f" · 

end; 
8. for/+- 0 until /1 - I do b..,(11 +- rw 

end 

Fig. 7.3. The fast Fourier transform. 
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an<l 

r.12 = (a:1 + w 4a;)x=1 + (a2 + w 4a 6 )x 2 + (a 1 + w 'a5 )x + (a0 + w 4a 4}. 

For 111 = I. I takes on the values 0 an<l 4. When I= 0. we have s = 0 o1 

line 5. Thus by lines 6 and 7 

and 

When I= 4, we compute s = 2. We obtain by lines 6 and 7 and the formul~ 
for r42 above that 

r 41 = (a 1 + w 2a 3 + w4a 5 + w6a1)x + (a 0 + w 2a 2 + w 4a 4 + w6a 6 ), 

r61 = (a 1 + w6a 3 + w 4a 5 + w2a;)X + (a0 + w 6a 2 + w4a 4 + w 2a 6 ). 

Finally, for m = 0, I takes on the valu·t~ 0, 2, 4, and 6. _With I = 4, for 
example, we have s :== I, and we compute from r41 : 

On reaching the for loop of line 8, r10 will always be a polynomial of degree 0, 
i.e., a constant. For example, when I= 4, rev(/) = I. and r40 is assigned to b1• 

This formula for b 1 agrees with the definition of b 1 • 0 

We must now show that Algorithm 7.1 is correct . 
. .......__ 

Theorem. 7.3. Algorithm 7.1 computes the discrete Fourier transform. 

Proof At line 6, r1,,, = r1,111+1f q1m and at line 7, r1+2'".m = r1,111 +1f q 1+2'",m. Thus by 
use of Lemmas 7.2 and 7.3. it is simple to prove by induction on k - m that 
r 1111 is the remainder when l~~01 aixi is divided by q1,,.. Then, for m = 0. 
Lemma 7 .3 guarantees that the for loop of line 8 assigns the correct (constant} 
remainder to each of the b;'s. 0 

Theorem 7.4. Algorithm 7.1 requires 0,\(n log n} time. 

Proof Lines 6 and 7 require 0 "(2"') steps each time they are executed. For 
fixed m, the loop of lines 3-7 is iterated n/2m+ 1 times for a total cost of 0 _1(n). 
independent of m. The outer loop beginning at line 2 is executed log n times. 
for a total cost of 0,\(n log n). The loop of line 8 actually requires no arith­
metic. 0 

We have assumed in Theorem 7.4 that n was fixed. Thus powers 'of w 
and the values of s and rev(/) computed from I on lines 5 and 8 can be 
precomputed and used as constants in a straight-line program. If it is desired 
that /1 be a parameter. we can still compute the powers of w and store them in 
a table in 0(11) steps of a RAM. Moreover. even if O(log n) steps are spent 
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computing s and rev(/) from I on lines 5 and 8. no more than 311 such calcula­
tions are done, so the entire algorithm is 0(11 log 11) in time complexity on a 
RAM. 

Corollary I. We may compute a © b. where a and b are vectors of length 
11, _in 0 A(11 log n) steps. 

Proof By Theorems 7. I, 7 .3, and 7.4. 0 

Corollary 2. We may compute the positive and negative wrapped convo­
lutions of a and b in 0 A(n log n) steps. 

Algorithm 7 .1 for the FFT was presented to provide intuitive insight into 
the development of the algorithm. If one were to actually compute the FFT 
one would work only with the coefficients and simplify the algorithm some­
what. This is done in Algorithm 7.2. 

Alp.orithm 7.2. Simplified FFT algorithm. 

Input. A vector a= [a0 , a 1, ••• , an-iF. where n = 2k for integer k. 

Output. The vector F(a) = [b 0 , b\, ... ,Jz.u._ 1 )T, where b; = I.~',;.,1 a;wii for 
0 ::::; i < n. 

Method. We use the program in Fig. 7.4. In this program we have used. for 
conceptual simplicity, a temporary array S to hold the results of the previous 
step. In practice, the computation can be done in place. 0 

begin 
I. for·i +-- 0 until 2k - I do R[i] +--a;; 

2. for I +-- 0 until k - I do 
begin 

3. fori+-Ountil 2k- J doS[i] +-R[i]; 
4. for i +-- 0 until 2 k - I do 

begin 
5. let [dod1 • • • dk_ 1] be the binary representation 

of the integer i; 
6. R [[do· · · dk-1]] +-

S[[do · · · d1-10d1+1 · · · dA--1]] 
+ wlrt1rt1-1···doO···OIS[[do . .• d1_1 Jd1_.. 1 • • • lh.- 1 ]) 

end; 
7. for i +-- 0 until '2k - I do 

b1,1o .. ·"·-·' +-- R[[dk-1 · · · d 0 ]] 

end 

Fig. 7.4. Simplified FFT. 
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The first time line 3 is executed the coefficients of the polynomia 
p(x) = ~l~.:-.1 aixi are stored in the array S. The first time line 6 is executed p(x 

is divided by xn12 - I and x 1112 - wn12• The remainders are 

11/2-1 11/2-1 

L (ai + ai+n12)xi and L (a;+ w"'2ai+n12)xi. 
i=O i=O 

The coefficients of the two remainders are stored in the array S at the seconc 
execution of line 3. The coefficients of the first remainder occupy the first hall 
of S and the coefficients of the second remainder occupy the last half of S. 

On the second execution of line 6 each of the two remainder polynomials is 
divided into two polynomials of the form x 1114 - w'. This process results in 
four remainders each of degree n/4 - 1. The third execution of line 3 stores 
the coefficients of these four remainders in S, and so on. Line 7 rearranges the 
components of the answer into their proper order. This line is needed since the 
roots of unity were permuted in order to eliminate the cross product terms 
when computing products of the x - w 1's. The process is partially illustrated 
for n = 8 in Fig. 7.5. ·~· 

ao +a. a, +a, a0 +a4 a, +a, 
+ (a2 +a. ) + (a3 + a1 ) + w • (a2 + a 6 ) + w • (a J + a,) 

+w•(a, +a3 +a, +a1l 

Fig. 7.5 Illustration of the computation of FFT by Algorithm 7 .2. The coefficients of cer­
tain remainder polynomials are omitted for lack of space. 
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.3 THE FFT USING BIT OPERATIONS 

n applications where the Fourier transform is used to simplify the computation 
fa convolution, we often require an exact result. If we are working in the ring 
f real numbers, we must approximate real numbers with finite precision 
umbers, thus introducing errors. These errors can be avoided by perform-
1g the computation in a finite field.t For example, to convolve a= 
a 0 , a 1 , a 2 , 0, OF and b = [b0 , b 1 , b2 , 0, O)T, we can let 2 play the role of the 
fth root of unity and perform computations modulo 31. Then transforming 
and b, performing the pairwise product, and computing the inverse trans­

Jrm results in a® b modulo ·3 J. exactly.t The difficuLty with using a finite 
eld is in finding a suitable field with an nth root of unity. What we shall do in­
tead is use the ring Rm of integers modulo m, selecting m so that Rm will have 
n nth root of unity w.§ It is not immediately clear that given n, we can find w 

nd m such that w is an nth root of unity in the ring of integers modulo m. 
fore:>ver, it would not do form to be too large, since computations modulo m 
10uld become prohibitive. Fortunately, if n is a power of 2, there always· 
xists a suitable m, where m is approximately 2n. In particular we show 
fheorem 7 .5) that when n and w ~ 1 are powers of 2, we can compute 
onvolutions in the ring of integers modulo (wn12 + I) by a Fourier transform, 
omponentwise multiplication, and an inverse transform. First, we establish 
NO preliminary results in Lemmas 7.4 and 7.5. In these lemmas we assume 
·1at R = (S, +, ·, 0, 1) is a commutative ring'and n = 2k, k ;;:::: I. 

Lemma 7.4. For all a E S, 

n-1 k-1 . L ai = IT o + a2'). 
i=O i=O 

roof The proof is by induction on k. The basis, k = I, is trivial. Now, ob­
:rve that 

n-1 11/2-1 L ai = (1 + a) L (a2)i. (7.6) 
i=O i=O 

y the induction hypothesis and substituting a 2 for a, we obtain 

11/2-1 k-2 . k-1 . L (a2)i =TI [I+ (a2)2'] =rr [I+ a21]. 
i=O i=O i=l 

(7. 7) 

See Section 12.1 for a definition of "field." 
Of course, we must be stf're the eleme'nts of the answer are between 0 and 30. else 
e could not recover them. In general, we must choose our modulus sufficiently large 
' recover the answer. 
Until now, you have not been led astray if you thought of w as the complex number 
" 11n and arithmetic as it is done in the field of complex numbers. From here on 
ough, w must be thought of as an integer and all arithmetic must be done in a finite 
1g of integers modulo m. 
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The induction hypothesis follows by substituting (7. 7) into the right-hand sic 
of (7.6). 0 

Lemma 7.5. Let /11 = w"12 + I, where w E S. w ¥- 0. Then for I ::::; p < 1 

we have ~l'.:i/ w;,, = 0 modulo m. 

Proof By Lemma 7.4 it suffices to show.that I+ w 211• = 0 modulo m forsom 
j. 0 ::;;j < k. Let p = 2·•p', where p' is odd. Surely 0::::; s < k. Choose 
such that j + s = k - I. Then I + w 2'" = I + w 2k-•,,• = I + (m - 1)1''. BL 
(m - I)= - I modulo m and p' is odd, so (m - I)'''= -1 modulo m. I 
follows that I + w 2 '1• = 0 modulo /11 for j = k - I - s. O 

Theorem 7.5. Let /1 and w be positive powers of 2 and let m = w"'2 + I 
Let Rm be the ring of integers modulo m. Then in Rm, n has a multiplica 
tive inverse modulo m and w is a principal nth root of unity. 

Proof Since n is a power of 2 and m is odd, it follows that m is relativell 
prime to n. Thus n has a multiplicative inverse modulo m.t Since w ?6 I 
w" = w"12w"12 = (-1)(-1) = I modulo. (w•"- + J). It then. follows fron 
Lemma 7.5 that w is a principal nth root of unity in Rm· 0 

The importance of Theorem 7 .5 is that the convolution theorem is valid 
for the ring of integers modulo 21112 + I. If we wish to compute the convolu:· 
tion of two 11-vectors with integer ·-&omponents, and the components of the 
convolution are in the range 0 to 21112 , then we can be assured that an exact 
answer will be obtained. If the components of the convolution are not in the 
range 0 to 21112 , then they are correct modulo 21112 + I. 

We are almost ready to establish the number of bit operations needed to 
compute a convolution modulo m. First, however, we consider the number 
of bit operations used in calculating the residue of an integer modulo m, as 
this is an essential step in deducing the number of bit operations from the~ 
number of arithmetic operations modulo m. · 

Let m = w'' + I for some integer p. A generalization of "casting out 9's" 
is used to compute a modulo m. If a is written in base ·w'' notati,on as a 
sequence of I blocks of p digits, then a modulo m can be calculated by alter­
nately adding and subtracting the I blocks of p digits. 

Lemma 7.6. Let m = w 1' + I and let a= ~l;;; 1\a;w 11i, where 0 ::::; ai < wP 

for each i. Then a= !l;;;111a;(-J)i modulo m. 

Proof Observe that w'' = - I modulo m. 0 

t This result is a basic theorem of number theory. In Section 8.8, we show that if a 
and h are relatively prime, there exist integers x and y such that ax + by = 1. Then 
i.1x = I modulo b. Letting b = m and a be n gives us our result. 
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Note that if I (the number of blocks) in Lemma 7.6 is fixed. then the com­
putation of the residue a modulo m can be accomplished in 0 11(p log w) bit 
operations. 

Example 7.3. Let /1 = 4, w = 2. and m = 22 + I. Thus p = 2 in Lemma 7.6. 
Consider a·= 101100 in base 2. Here llo = 00, a.= 11. and a~= 10. We 
compute a1, - a 1 + a2 = - I and then add m to find that a = 4 modulo 5. 
Since a is 44, this result checks. 0 

Lemma 7.6 provides an efficient method of computing a modulo 111. It 
plays an important role in the following theorem which gives an upper bound 
on the number of bit operations needed to compute the discrete Fourier trans­
form and its inverse. 

Theorem 7.6. Let w and n be powers of 2 and m = w"12 + I. Let 
[a0 , a 1, ••• , a 11 _ 1]T be a vector with integer components. where 
0 s a; < m for each i. Then the discrete Fourier transform of 
[a0 , a 1 , ••• , an-iF and its inverse can be computed modulo 111 in 
0 8 (11 2 log n log w) steps. 

Proof Use Algorithm 7.1 or 7.2. In the inverse transform, substitute w-• 
for w and multiply each result by 11-1• An integer modulo m can be repre­
sented by a string of b = ((n/2) log w) + I bits. Since m = 21•- 1 + I, the resi­
dues modulo m can be represented by the bit strings 00 ... 0 through 
JOO ... 0. 

Algorithm 7. I requires integer addition modulo m and multiplication 
modulo m of an integer by a power of w. These operations are performed 
O(n log n) tinies. Using Lemma 7.6. addition modulo 111 requires 0 8 (b) steps 
where b = ((n/2) log w) + I. Multiplication by w''. 0 ::s: p < 11, is equivalent to 
a left shift of p log w places, since w is a power of 2. The resulting integer 
has at most 3b - 2 bits, and thus by Lemma 7 .6 the shifting and computation 
of residues requires 0 8 (b) steps. Thus the Fourier transform in the forward 
direction is of time complexity 0 11(bn log 11). i.e. 0 11(n 2 log /1 log w). 

The inverse transform requires multiplication by w-1• and by 11- 1•• Since 
w1'w 11 - 1' = I modulo m. we have w"-'' = w-" modulo m. Thus the effect of 
multiplying by w-" can be achieved by multiplying by w 11 - 1'·. The latter is a 
left shift of (11 - p)log w places. and the resulting integer has at most 3b - 2 
bits. Again residues may be found in On(h) steps by Lemma 7.6. Finally. 
we consider multiplication by 11-•.. If /1 = 2k. then we shift left 11. log w - k 
places, again leaving ~ number of at most 3h - 2 bits. and compute the 
residue by Lemma 7 .6. Thus the inverse transform also requires 
Oa(11 2 log /1 log w) steps. 0 

Example 7.4. Let w = 2. /1 = 4. and m = 5. We shall take the Fourier trans­
form of the vector [a0 , a 1• a 2 • a:1F· where a;= i. As a; < 5 for each i. we 
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a11 • ti.! - la 1 ....._ t1;1) tin ..,.. ti:! + ··lli1 1 + a3 ) "11 + 4.:1 2 + .'.!la 1 + -'t13 ) lln + 4tl~ + 8lt1 1 + 4113 ) 

= 1111 + a 1 + ti".! + 11:1 = Clo + 4t1 1 + 11:! + 4ll:s = tl0 + :!a 1 + 4a:! + Rt13 = ll0 + 8a, + 4t12 + ~. 
= h., = h, .,; h, .. "· 

Fig. 7.6. Computation of fast Fourier transform for /1 = 4. 

may expect to recover this vector if we compute modulo m. We use three 
bits to represent numbers, but only 000, ... , 100 will actually be used, ex. 
cept in temporary results. 

We must, in Algorithm 7. I, compute the polynomial coefficients shown in 
Fig. 7.6, where 2 has been substituted for w. 

The actual values for Fig. 7 .6 are: 

a0 = 000 a1 = 001 a9 = 010 a3 = 011 .,,.. -
a 11 +a2 =0IO a1+a3= 100 ao+4a2=0ll a1+4a3 =011 

b0 = 00 I b2 = 01 I b1 = I 00 b3 = 0 I 0 

The transform of [O, I, 2, 3]T is thus [1, 4, 3, 2]T modulo 5. Consider the 
last entry, b3 , in the bottom row. It is computed from the last two entries in 
the middle-row by the following steps. 

Take a1 + 4a3 

Shift left three places (multiply by 8) 
Split into three blocks of 2 
Take the sum of the first and third blocks minus the second 
Add m = 5 
Add a0 + 4a2 = 0 I l 
Subtract m 

Oil 
11000 
IO 00 

-I 
100 
111 
010 

To invert, we note that 2-1 = 8 modulo 5, 4-1 = 4 modulo 5, and s-1 = 2 
modulo 5. Thus the formulas for inverse transforms may be obtained from 
Fig. 7 .6 by interchanging a; and b; and interchanging 2 and 8. .The computa­
tion is thus: 

b0 =00l b1=IOO b2=0ll b3 =010 
b11 +b2 =IOO b1+b3 =001 bo+4b2 =01l b1 +4b3 =010 

4a11 =000 4a2 =0Il 4a 1 = 100 4a3 =010 

Finally, we divide each answer by 4 (multiply by 4 since 4-1 = 4 modulo 5) 
and obtain [O, l, 2, 3]T for [a11• a 1, a2 , a:1]r. D 

Corollary to Theorem 7.6. Let 0 8 (M(k)) be the number of steps needed 
to compute the product of two k-bit integers. Let a and b be vectors of 
length /1 with integer components in the range 0 to w 11 , where /1 and ware 
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powers of 2. Then we may compute a © b or the positive or negative 
wrapped convolutions of a and b modulo w" + I in 

0 11(MAX[n 2 log n log w. nM(n log w)]) 

time. 
The first term in the function of the corollary to Theorem 7.6 is the time 

> take the transforms. The second is the cost of doing 211 multiplications 
f (11 log w + 1)-bit integers. The best value we can obtain for M(k) is 
log k loglog k (see Section 7.5). At this value, the second term dominates 

'.le first, so we require 0 8(11 2 log n loglog n log w loglog w logloglog w) steps 
) do this convolution . 

. 4 PRODUCTS OF POLYNOMIALS 

'he problem of computing the product of two polynomials in a single variable 
. actually the same as computing the convolution of two sequences. That is 

where 
11-1 

ck= 2: ambk-m· 
m=O 

.s before, ap and bp are taken to be zero if p < 0 or p ~ n. Also recall that 
111_ 1 must be zero. We thus have the following additional corollaries to 

'· 'heorem 7.4. 

Corollary 3 to Theorem 7.4. The coefficients in the product of two nth­
degree polynomials can be computed in 0 A(n log n) steps. 

roof. From Corollary 1 to Theorem 7.4 and the above observation. D 

Corollary 4 to Theorem 7.4. Suppose we can compute the product of two 
k-bit integers in M (k) steps. Let 

11-1 11-1 

p(x)= L a;xi and q(x) = L b;x;. 
i=O i=O 

Suppose a; and bi are integers in the range 0 to w 11 ' 2/vn for all i and j, 
where n and w are powers of 2. Then we may compute the coefficients 
of p(x)q(x) in 0 8 (MAX[n 2 log n log w, 11M(11 log w)]) step_s. 

roof. From Theorem 7.4 and the corollary to Theorem 7 .6. D 

Again note that the second term will dominate in Corollary 4. 
In fact, Theorem 7. Ji. has the fol-lowing interpretation. Suppose p(x} and 

:.t) are (11 - I )st-degree polynomials. We may evaluate p and q at any 
t - I or more points, say c0 • c •• ... , and then multiply the values p(ci )q(ci) 

· obtain the values of pq at these points. A unique (211 - 2)nd-degree 
>lynomial can then be interpolated through these points. This (211 - 2)nd­
:gree polynomial will be the product p(x)q(x). 
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When we apply the Fourier transform to convolutions (or equivalently 
polynomial multiplication), we are choosing ci = wi. where w is a principa 
211 th root of unity. We take the Fourier transforms of p and q. i.e .. evaluati 
them at the points c0 • c 1•• • • Next. we take the pairwise products of th1 

transforms, i.e., multiply p(ci) by q(cj). to obtain the value of the product at cJ 
Then, we find pq by applying the inverse· transform. Lemma 7. I guaranteei 
that the inverse is in fact a formula for interpolation. That is, we really de 
recover the polynomial from its values at the points w 0 , w 1, ••• , w 2n-1• 

7.5 THE SCHONHAGE-STRASSEN INTEGER-MULTIPLICATION ALGORITHM 

We now tum to an important application of the Convolution Theorem-a fas1 
bitwise integer-multiplication algorithm. In Section 2.6 we saw how to multi~ 
ply two n-bit integers in 0(n1013 ) steps by partitioning each binary integer intd 
two (n/2)-bit integers. The method can be generalized by partitioning each 
integer into b blocks of I bits each. Expressions analogous to those in (2.4] 
are developed by treating the b blocks a~6s;oefficients of a polynomial. To 
find the coefficients of the product polynomial, we evaluate the polynomials at 
some convenient set of points, multiply sample values, and interpolate. By 
selecting the principal roots of unity as evaluation points, we can make use oi 
the Fourier transform and the convolution theorem. By letting b be a func~ 
tion of n and using recursion we can multiply two n-bit numbers iri 
0 8 (n log n loglog n) steps. , 

To simplify matters, we restrict n to be a_ power of 2. In the case where 
n is not a power of 2, add an appropriate nt(n,ber of leading zeros so that n i~ 
a power of 2 (this increases only the constant factor). Furthermore, we shall 

I 
compute the product of two n-bit integers modulo (2 11 + l ). To obtain the 
exact product of two n-bit integers, we must introduce leading O's and W-Ulti4 
ply 2n-bit integers modulo (2 211 + l), thereby again increasing the time by ~ 
constant factor. l 

Let u and v be binary integers between 0 and 2" which we are to multipl~ 
modulo (2" + l ). Observe that 2n requires n + l bits for its binary represeni 
tation. If either u or v equals 2" it is represented by a special symbol, -1, and: 
the multiplication is easily handled as a special case. If u = 211 , then u~ 
modulo (2" + I) is obtained by computing (2'1 + I - i 1 ) modulo (2'1 + I). ; 

Suppose n = 2k and let b = 2k12 if k is even, else let b = 2<k-012• Le( 
I= n/b. Observe that I ;;::: b and that b divides/. The first step is to divide 1/ 
and v into b blocks of I bits each. Thus 

and 
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The product of" and 1· is given by 

where 11-J 

Yi= L Uj\'i-j• 

i=O 

(7.8) 

() s i < 2b. 

(for j < 0 or j > b - 1 take ui = 1·.i = 0. The term y2,,_ 1 is 0 and is included 
for symmetry only.) 

The product uv could be computed by using the Convolution Theorem. 
Multiplying the Fourier transforms would require 2b multiplications. By 
using· a wrapped convolution, we can reduce the number of multiplications to 
b. This is the reason we compute m• modulo 211 + I. Since bl= 11. we have 
21•1 = - I modulo (2" + 1 ). Thus by (7.8) and Lemma 7.6, taking 111· modulo 
(2" + 1) gives 

uv = (11·,,_ 12111- 1>1 + · · · + w 121 + w0) modulo (211 + I). 

where 11·i = )'; - Yi!+i• 0 s i < b. 
Since the product of two /-bit numbers must be less ·than 22' and since Y; 

and Yb+i are sums of i + I and b -\(i + I) such products, respectively, 11·; = 
Yi - Yb+i must be in the range -(b -'--1 - i)2 21 < wi < (i + 1 )2 21 • Thus there 
are at most b2 21 possible values which 11·i may assume. If we can compute the 
11'/s modulo b2 21 we can compute uv modulo (2 11 + I) in O(b log(b2 21 )) addi­
tional steps by ~dding the b w;'s together with appropriate shifts. 

To' compute the w;'s modulo b221 we compute the w;'s twice, once modulo 
band once modulo 2 21 + I. Let w; be w; modulo band let 11·;· be II'; modulo 
(2 21 + 1). Since b is a power of 2 and 2 21 + 1 is odd, b and 2 21 + I are rela­
tively prime. Thus the w;'s can be computed from the 11·; 's and 11· i's by the 
formula 

11·; = (2 21 + l)((wj - w7) modulo b) + 11·7 t 

and w; is between (b - I - i)221 and (i + 1)'.~21 • The work necessary to calcu­
late w; from w; and wi' is 0(1 + log b) for each w;, for a total of O(bl + b log b ), 
or 0(11). 

The 11·;'s are calculated modulo b by taking u; = u; modulo· b and ,. ; = \'; 
modulo b and forming two (3b log b)-bit numbers ti and i· as shown in Fig. 
7.7. Taking the product tii· by the algorithm of Section 2.6 (p. 62) requires 
at most 0 ((3b log b )1.1;). i.e., less than 0 (11) steps. We see iii· = ~ r~;; 1 _,.; 21:1 10.: tiii 

Where y;=~j~;; 1 11j1·;-i. Note that Yi< 2:1 10.: 11• so the y;·s can be easily 
recovered from the pr~duct tti'. The values of the II'; ·s modulo h can then be 
found by computing (_r;- y;,~;) modulo h. 

t lfforp 1 andp 2 relatively prime.11· = C/ 1 modulop,. w:: 'h modulop2.unc.I 0 :s "'<. 
P1P 2 • then 11· = p 2(p-;• modulo p 1 )(q 1 - c12 modulo p, l + 'h· Let p, = b und (J 2 = 
~ 21 + I. Since h is a power of 1 and h :s 1 21 • h divide~ ::! 2' and thu~ the multiplicative 
inverse of 121 + I modulo h is I. · 
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ti = lib-I 00 ... 0 llb-2 00 ... 0 lib-:! · .. 00 ... 0 II~ 

i· = 1·i,-1 00 ... 0 1·1'-2 00 ... 0 1·i.-:1 ... 00 ... 0 \'~ . 

Fig. 7.7. Illustration of composite numbers used in com­
puting w; modulo b. There are :i log b zeros in each block 
of zeros. 

Having computed the wi's modulo b, we compute the w;'s modul 
221 + I by means of a wrapped convolution. This involves taking the Fourie 
transform, pairwise multiplication, and an inverse transform. Let w = 241• 

and m = 221 + I. By Theorem 7.5, w and b have multiplicative inverse 
modulo m, and w is a principal bth root of unity. Thus the negative wrappe1 

convolution of [u0 , tfsu 1, ••• , iJsb-i"h-i] and [v0 , tfsv 1 , ••• , iJsb- 1v1,_ 1], when 
iJs = 2 21Jb (l/s is a 2bth root of unity), is 

[(Yo - y,,), l/s(Y1 - Y11+1) •..• , iJsb--: 1 (y,;~;· - Y211-1)] modulo 2 21 + 1, 

where Yi= If,;;Ju;vi·-; for 0 sis 2b - I. The wi's modulo 221 + I can bE 
obtained by an appropriate shift. The complete algorithm is summarize( 
below. 

Algorithm 7.3. Schonhage-Strassen integer-multiplication algorithm. 

Input. Two n-bit integers, u and v, where n ~'2k. 
Output. The (n + 1)-bit product of u and v modulo zn + I. 
Method. If n is small, multiply u and v modulo zn + 1 by your favorite 
algorithm. For large n let b = 2k12 if k is even, else let b = 2<k- 1>12 • Let 
I= n/b. Express u = Ir.:-Ju;2u and v = If,;Jv;211, where u; and v; are inte-: 
gers between 0 and 21 - I (that is, the u ;'s are blocks of I bits of u and 
similarly the v;'s are blocks of I bits of\'). 

I. Compute the Fourier transform, modulo 221 + I, of 

[uo, tfsu ••... , iJsb- 111b-1F and [vo, tfsv,, ...• tJsb-i")-1F 

with iJs = 2 211h using l/1 2 as the principal bth root of unity. 
2. Compute the pairwise product of the Fourier transforms computed in 

step I, modulo 221 + I, using Algorithm 7 .3 recursiveiy to compute each 
pairwise product. (The situation in which one of the numbers is 221 is 
handled as an easy special case.) 

3. Compute the inverse Fourier transform modulo 221 + I of the vector of 
pairwise products from step 2. The result of this computation will be 
[w0 , tfsw 1, •• • , tfs,,_ 1wb-iF modulo 221 + I. where wi is the ith term of the 
negative wrapped convolution of [u0 , u 1 , •••• u 1,_ 1 ]T and [v0 • \'1·· ••• 
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v1,_ 1 ]7". Compute II';'= 11·; modulo 221 + I by multiplying tl1;11·; by lf1-; 

modulo 221 + I. 
4. Compute w; = w; mod b as follows. 

a) Let 11; = 11; modulo h and let \'; = v; modulo h for 0 :s i < h. 
b) Construct the numbers If and I· by stringing the 11; 's and 1·; 's to­

gether with 2 log b intervening O's. That is, If= ~l'.:-1 :11; 21=1111" 11 1; and 
I'= ~f,;;-1/ 1·; 2<alo11('>i. 

c) Compute the product 1i1~ using the algorithm of Section 2.6 (p. 62). 
d) The product iii· is ~r~0 1 y; 2r31"" 1' 1; where y; = ':f.]~0 1 11; 1· ;-j· The 11·;·s 

modulo h can be recovered from this product by evaluating 
w i = (y; - y i,+;) modulo b, for 0 :s i < b. 

5. Compute the w;'s exactly using the formula 

w; = (2 21 + I) ( ( wj - w;') modulo b) + ll'j' 
and w; is between (b - 1 - i)221 and (i + I )221 • 

6. Compute lf,;;-Jw;2 1; modulo (2" + 1). This is the desired result. D 

Theorem 7.7. Algorithm 7.3 computes uv modulo (2" + I). 

Proof By Theorem 7.2, steps 1 through 3 of Algorithm 7.3 correctly evalu­
ate the w;'s modulo 221 + I. We leave as an exercise the fact that step 4 
computes the w;'s ~odulo b and that step 5 computes the 11·;'s modulo 
b(2 21 + 1), i.e., the exact value of each 11·;. D 

Theorem 7.8. The execution time of Algorithm 7.3 is 

0 8 (11 log n loglog n) 

steps. 

Proof By the corollary to Theorem 7.6, steps 1 through 3 require time 
0 8 [bl log b + bM(21)], where M(m) i!! the time to multiply two m-bit integers 
by a recursive application of the algorithm. In step 4, we construct u and ,~of 
length 3b log band multiply them in 0 8 [(3b log b)I.59 ] steps. For sufficiently 
large b, (3b log b)1.59 < b2 and hence the time for step 4 can be ignored in 
view of the 0 8 (b2 log b) term introduced for steps 1 through 3. Steps 5 and 6 
are both O(n) and can also be ignored. 

Since n = bl and b is at most Vil. we obtain the recurrence 

M(11) :s c11 log 11 + bM(21) (7.9) 

for some constant c and sufficiently large 11. Let M'(n) = M(n)/11. Then (7.9) 
becomes ~ 

M 1 (11) :s c log 11 + 2M '(2/). (7.10) 

Since I :s 2 Vt;, 
M '(11) :s c log 11 + 2M '(4 v'°n), ( 7. 11 ) 

which implies M '(11) :s c' log 11 loglog 11 for suitable c '. To see this. substi-
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tute c' log(4Vl/)loglog 4\//lfor M'(4V/i) in (7.11). Straightforward manii 
ulation yields 

1\./ '(11) :::::; c log /1 + 4c' log(2 +!log 11) + c' log /1 log(2 +!log 11). 

For large 11, 2 + ! log /1 :::::; * log 11. Thus. 

M '(11) :s c log /1 + 4c' log*+ 4c' loglog /1 + 
c' log ~ log /1 + c' log n loglog 11. (7. I: 

For large /1 and sufficiently large c ', the first four terms are dominated b 
the fourth which is negative. Thus M '(11) :::::; c' log n loglog 11. From this w 
conclude that M (n) :::::; c '11 log /1 loglog 11. D 

EXERCISES 

7.1 What are the principal nth roots of unity·J"-Or 11 = 3, 4, 5 in the ring of comple 
numbers? · 

7.2 Show how Algorithm 7.2 can be implemented without the temporary array . 

7.3 Compute the discrete Fourier transform of the following sequences with respe1 
to the ring of complex numbers. 
a) (0. I, 2, 3] 
b) [I. 2. 0, 2. 0, 0, 0, I] 

7.4 Generalize the fast Fourier transform algorithm to tb._e case where n is not 
power of 2. 

Definition. The triple of integers (cu, n, m) is said to be admissible if cu and 
have multiplicative inverses and cu is a principal nth root of unity in the ring 
integers modulo m. 

7.5 Which of the following are admissible triples? 
a) (3, 4, 5) 
b) (2, 6. 21) 
c) (2. 6, 7) 

7.6 Show that if (cu, 11, m) is an admissible triple. then cu" = I modulo m and cuP ~ · 
if I s p <II. 

*7.7 Show that if /1 is a power of2. 2" = I modulo m, and 2" - I is relatively prime to 
for I s p < 11. then (2, n. m) is an admissible triple. 

**7.8 Show that if m is a prime and cu is arbitrary, then there is some 11 such tha 
(cu. 11. m) is an admissible triple. 

*7.9 Show that if a and b are relatively prime then ac = I modulo b for some c. an< 
conversely. Prove that c is unique modulo b. 

7.10 Find ( 10101110011110)~ modulo 2; +I. 

7.11 Lett be an integer in base 10. Show that adding the digits oft together. ther 
adding the digits of the result together. and so on·. until a single digit remains 
results in t modulo 9. 
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7.12 Compute the convolution of the sequences [I. :!. 3. 4] and [ 4. 3. :!. I] modulo 
17 by the Convolution Theorem using the admissible triple(:!. 8. 17). 

7.13 Compute the product of the binary numbers (I 0 I I 0 I I )2 and I I 000 I I I I )2 using 
Algorithm 7.3. 

7.14 Show that the result of taking the square root of a number 11 = ::! 2 '. loglog 11 times . ., 
IS-· 

•7.15 Develop a fast integer-multiplication algorithm using a convolution rather 
than a wrapped convolution. What is the asymptotic running time of your 
algorithm? 

*7.16 The cyclic cl(ffere11cc• of sequence a= [a0, a, ..... a,,_,]T, denoted .la. is the 
sequence [ct 0 - a,,_,. a, - ct0. a 2 - "•· ••• ,a,,_, - a,,-:r]T. Let 

F(a) =[a:,, a; .... , a;,_,)T. 

Show that F(~a) =~O, a;(J - w), a~(I - w2 ), •••• a;,_,(I - w"- 1)]. where w is 
the nth root of unity. 

*7.17 Use Exercise 7.16 to show that if X(n)- X(n - I)= /1 and X(O) = 0. then 
X(11) = 11(11 + I )/2. 

*7.18 A cirrnla11t is a matrix in which ~ach row is a circular shift one space to the 
right of the row above it. For exampl_e. 

is a 3 x 3 circulant. Show that computing the discrete Fourier transform of a 
vector of length 11, where /1 is a prime, is equivalent to multiplying by an 
(11 - I) x (11 - I) circulant. 

*7.19 Show that the finite Fourier transform over a finite field. for 11 a prime, can be 
calculated in 0 A(11 log 11) steps. 

*7.20 Consider representing a polynomial by the values of each of its derivatives at 
a point. Is the transformation from the coefficients to the values of the deriva­
tives linear? 

*7.21 Give a "physical" explanation -of the wrapped convolution in terms of polyno­
mial operations. 

*7.22 Use the FFT to give an 0(11 log 11) algorithm for multiplying a Toeplitz matrix 
times a vector. Compare this solution to that of Exercise 6.:!6!bl. 

Research Problem 

7.23 Find faster algoritl'ims for integer multiplication or discrete Fourier transforms. 
Alternatively. show the::t the Schi.inhage-Stra~sen algorithm or the FFT is 
the best one can do under some restricted model. Take note of Paterson. 
Fischer. and Meyer [ 1974]. which shows that. under certain restrictions. 
0 11((11 log 11)/(loglog 11)) time is necessary fur hitwise integer multiplication. 
Similarly. Morgenstern [ 1973] shows that under certain restrictions. 
0.-\(11 log 11) is required for the discrete Fuurier transform. 
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Cooley. Lewis. anq Welch [1967] trace the origins of the fast Fourier transform ti 
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[ 1965] made clear the nature of the technique. The development of the FFT as ; 
polynomial division problem. the approach used here. is due to Fiduccia [ 1972] 
Because of its importance in computing. a good deal of attention has been paid to thf 
efficient implementation of the algorithm. For example. see Gentleman and Sande 
[ 1966] and many articles from Rabiner and Rader [ 1972]. The integer-multiplication 
algorithm is from Schonhage and Strassen [ 1971]. Exercises 7 .18 and 7 .19 are from 
Rader [ 1968]. 
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A good reason for treating integer and polynomial arithmetic together is H 
many of the algorithms for manipulating integers and univariate polynomi; 
are essentially identical. This is true not only for operations like multiplic 
tion and division but also for more sophisticated operations. For examp. 
finding the residue of an integer modulo a second integer is equivalent 
evaluating a polynomial at a point. Representing an integer by its residues 
equivalent to representing a polynomial by its values at several points. Reco 
structing an integer from residues ("Chinese remaindering") is equivalent 
int.erpolating a polynomial. 

In this chapter, we shall show that certain integer and polynomial oper; 
tions, such as division and squaring, require the same order of time as mu 
tiplication. Other operations, such as the residue operations mentione 
above, or the calculation of greatest common divisors, are shown to require ~ 
most a factor of log n more time than multiplication, where n is the length c 
the binary integer or degree of the polynomial. Our strategy will be to alte1 
nate results for integers with the correspJlnding results for polynomiah 
usually proving the results for only one" and leaving the other as an exercise 
As in the other chapters, our emphasis is on algorithms that are asymptoticall~ 
the most efficient known. 

At the end of the chapter we briefly discuss some distinc.tions between 1 

model for polynomials that assumes most coefficients are nonzero (the denst 
model) and one that assumes most coefficients are zero (the sparse model) 
The sparse model is particularly useful when dealing with polynomials in· 
volving many variables (a case we do not discuss). 

8.1 THE SIMILARITY BETWEEN INTEGERS AND POLYNOMIALS 

The most obvious similarity between a nonnegative integer and a polynomial 
in one variable is that each can be represented as a finite power series 
°Il'.:;11 a;x;. In the integer case, the a/s can be chosen from the set {O. I} with 
x = 2. In the polynomial case, the ai 's carr be chosen from some coefficient 
sett with x the indeterminate. 

There is a natural "size" measure, which is essentially the length of the 
power series representing the integer or polynomial. In the binary integer 
case the size is the number of bits needed to represent the integer; in the 
polynomial case, the size is the number of coefficients. Thus we make the 
following definition. 

+ In what follows, you may regard the coefficient set as the field (see Section 12.1) of 
n:al numbers, although the results will apply to any field of coefficients. with computa­
tional complexity measured in terms of the number of operations in the coefficient 
field. fhus we do not consider the size of coefficients in our model. 
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Definition. If i is a nonnegative integer. then SIZE(i) = Llog iJ + I. If 
p(x) is a polynomial. then SIZElp) = DEG(p) + I. where DEG(p) is the 
degree of p, i.e., the highest power of x with a nonzero coefficient. 

With integers and polynomials we can perform approximate division. If 
a and b are two integers. with b ¥ 0. then there is a unique pair of integers q 
and r such that 

I. a = bq + r, and 
,, ,. < b 

where q and r are the quotient and remainder when c!.. is divided by h. 
Similarly, if a and bare polynomials, with b not equal to a constant. then 

unique polynomials q and r can be found to satisfy 

1. a = bq + r, and 
2. DEG(r) < DEG(b). 

Another similarity between integers and polynomials is that they each 
have surprisingly fast multiplication algorithms. In the previous chapter we 
showed that two nth-degree polynomials with real coefficients can be mul­
tiplied in 0 A(n log n) time by use of the FFT. The arithmetic operation 
measure of complexity is reasonable, since in practice we would represent 
polynomials by their coefficients to fixed precision and implement the various 
polynomial 9perations ·by arithmetic operations on the coefficients. 

If we use the Schonhage-Strassen algorithm of Section 7 .5, we can multi­
ply two n-bit integers in 0 8 (n log n loglog n) time. We claim that for in­
tegers, bit operations are the only measure of interest. There are essentially 
two situations in which we would not consider multiplication of integers to be 
primitive. The first is in designing multiplication hardware. The number of 
bit operations reflects the number of elements needed in a multiplication cir­
cuit. The second application is irt designing fixed-point arbitrary precision 
algorithms for fixed-word-length computers. There, the number of bit opera­
tions is related to the number of mach"ine instructions needed to do 11-

precision multiplication. 
Thus the results for polynomial and integer arithmetic will appear quite 

similar when the two different measures of complexity (arithmetic and bit) are 
used. Moreover, the two measures are analogous in the sense that bit opera­
tions are coefficient operations for the power series representing integers. just 
as arithmetic operations are coefficient operations for polynomials. . . 

8.2 INTEGER MUL Tl PLICATION AND DIVISION 

We shall show that the time. in bit operations, to do integer multiplication is. 
to within a constant factor. the same as the time to do integer division and is 
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similarly related to the operations of squaring and taking reciprocals. In thi~ 
section we shall use four symbols with the following meanings: 

Meaning 

Time to multiply two integers .of size /1 

Symbol 

M(n) 

D(11) 
5(11) 

R(11) 

Time to divide an integer of size at most 211 by an integer of size /1 

Time to square an integer of size 11 
Time to compute the reciprocal of an integer of size /1 

In each case the time is measured in bit operations. We shall also make the 
reasonable assumption that M(n) satisfies the condition 

a2M(n) ?: M(an) ?: aM(n) 

for a ?: 1. We assume the other three functions also share this property. 
We first show that the reciprocal of an n-bit integer i can be calculated in 

essentially the time to multiply two n-bit numbers. Since 1/i is not an integer 
for i > I, what we really mean by the. "re~rocal" of i is the n-significant­
bit approximation to .the fraction 1/i. Since scaling (shifts of the binary point) 
is assumed to cost nothing, we may equivalently say that the "reciprocal" of i. 
is the quotient of 22n-1 divided by i. For the remainder of this section we use 
the term reciprocal with this meaning. · 

First let us consider finding a sequence of approximations to the number 
A = 1/P, where P is an integer. Let Ai be the ith approximation to 1/P. 
Then the exact value of A can be expressed as 

' ' 
(8.1) i 

If we approximate the value of 1/P by Ai in (8.1) we obtain j 

A;+1 =Ai+ Aio - AiP) = 2Ai - A rP, (8.2> I 
1 

which can be used as an iteration formula for finding the (i + 1 )st approxi-l 
mation of A in terms of the ith approximation. Note that if A ip = 1 - S, then I 

; 
A;+1P=2A;P-AfP2 =2(1-S)-(1-S)2 = 1-52• i 

This shows that the iteration formula (8.2) converges quadratically. If S ~ !.4 
then the number of correct bits is doubled each iteration. 

Since P presumably has many bits, it is unnecessary to use all bits of P. 
I 

for the earlier approximations, because only the leading bits of P affect those: 
bits of A;+1 which are correct. Moreover, if the first k bits of A; to the right of, 
the decimal point are correct, then we can obtain A;+ 1 to 2k bits using thei 
formula (8.2). That is, we computeAi+i = 2A; -AfP, with 2Ai truncated tokj 
places to the right of the decimal point and Ar P computed by approximating! 
P to 2k places and then truncating the product to 2k places to the right of the'. 
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decimal point. This last approximation may of course affect the convergence. 
since we previously assumed that P was exact. 

We shall use these ideas in the next algorithm. There we actually com­
pute the quotient L'2 2"- 1/P J. where I'= p 1p 2 • • • p,, is an 11-bit integer with 
p 1 = I. The method is essentially that of Eq. (8.'2). with scaling introduced to 
allow us to deal exclusively with integers. Thus no maintenance of the deci­
mal point is necessary. 

Algorithm 8.1. lnt_~~er reciprocals. 

Input. An 11-bit integer P = [p 1p2 • • • p,,]. with p 1 =). For convenience. 
wt; assume 1i is a power of 2 and [x l is the integer denoted by the bit string x 
(e.g., [ 110] = 6). 

Output. The integerA = [a0a 1 ···a,,] such thatA = L2211 - 1/PJ. 

Method. We call RECIPROCAL([p 1p 2 • • • p,,]), where RECIPROCAL is 
the recursive procedure in Fig. 8. I. It computes an approximation to 
L22k-1/[p1p 2 • • • Pd J for any k which is a power of 2. Observe that the result 
is normally a k-bit integer except w~en P is a power of 2, in which case the 
result is a (k + I )-bit integer. 

Given k bits of the reciprocal of [p 1p2 • • • Pd. lines 2-4 compute 2k - 3 
bits of the reciprocal of [p 1p2 • • • p 2k]. Lines 5-7 correct the last three bits. 
In practice, one would skip lines 5-7 and obtain the desired accuracy by an 
extra application of Eq. (8.2) at the end. We have chosen to include the loop 
of lines 5-7 to simplify both the understanding of the algorithm and the proof 
that the algorithm does indeed work. D 

Example 8.1. Let us compute 2 15/153. Here. 

11 = 8 and 153 = [P 1P2 · · · p 11 ] = [IOOl IOOI]. 

We call 

RECIPROCAL([ 1001 IOOI ]). 

which in turn calls RECIPROCAL recursively with arguments [1001]. [10]. 
and [I]. At line I. we find RECIPROCAL([!])= [10] and return to 
RECIPROCAL([IO]) at li!Je 2, where we set [c0c 1] +-- [10]. Then. at line 
3, we compute [d1 • • • d4 ] +--[JO]* 2:i - [10]2 * [10] = [IOOO]. Next. we 
set [a0a 1a 2 ] to [ IOO] at line 4. No changes occur in the loop of lines 5-7. 
We return to RECIPROCAL([IOOI]) with [100] as an approximation to 
23/[ 10]. 

Returning to line '2 with k = 4. we have [c11c 1c2 ] = [ 100]. Then 
[d1 • • • dK] = [011 IOOOO] and [a11 • • ·a.,]= [Ol I IO]. Again. there are no 
changes in the loop of lines 5-7. We return to RECIPROCAL<[ 10011001 ]l 
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procedure RECIPROCAU[p,p2 ···Pd>: 
I. if k = I then return [ 10] 

else 
begin 

, [CoC1 · · · CA·12] +- RECIPROCAL([p 1p2 · · · PA·12]): 
3. [c/1cl2 · · · cl2d +- [c .. c, · · · C1m] * 2=11m -

[c .. c, · · · ck12F * [P1P2 · · ·Pd: 
comment Although the right-hand side of line 3 appears to 

produce a (2k + I )-bit number. the leading [!2k + I )st] 
bit is always zero: 

4. (t1oll1 . • . CIA-] +- (c/1d2 ... dk+,]; 
comment [a0a 1 • • • ad is a good approximation to 

22k-•/ (p1p 2 • • • pd. The following loop improves the 
approximation by adding to the last three places if nec-
essary: . ~ 

5. for i +- 2 step - I until'f> do 
6. if ( [t10£11 · · • ad + 2i) * [p1p 2 • • • Pd :S 22k-• then 
7. [a0a1 • • ·ad +- [a0a 1 • • ·ad+ 2;; 
8. return [a0a 1 • • • ad 

end 

Fig. 8.1. Procedure to compute integer reciprocals. 

at line 2 with [c0 • • • c4 ] = [01110]. Then 

[d1 • • • d 16 ] = [0110101011011100]. 

8.2 

Thus at line 4, [a0 • • • a 8 ] = [011010101]. At line 6, we find that 
[011010101] * [10011001]. which is 213 * 153 in decimal. equals 32589, 
while 21:• = 327 68. Thus in the loop of lines 5-7. I is added to 213. yielding 
answer 214. or [011010110] in binary. D 

Theorem 8.1. Algorithm 8.1 finds La 11a 1 • • • ad such that 

(aoll1 ... ad * (P1P2 · · ·Pd = 22k-i - S 

and 0 :SS < [P1P2 · · ·pd. 
Proof The proof is by induction on k. The basis. k = I, is trivial by line I. 
For the inductive step. let C = [c .. c:, · · · C4-12 ]. P, = [p,p2 ·• • • Pk12 ]. and P2 = 
[PA·12+1PmH · · · p,;.]. Then P = [P1P2 · · ·Pd= P,2k12 + P2• By the induc· 
tion hypothesis 

CP, = 2,,._, - S. 

where 0 :SS < P,. Ry line 3. D = [c/1c/2 • • • c/2d is given by 

D = c2:1A·12 - c21P,2""'2 + P2>· (8.3) 
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Since p, = I. P, ~ 2A·12-• and thus C :::: '2m. It follows that D < 221' and 
hence the 2k bits used to represent D are sufficient. 

Consider the product PD= (P,2k12 + P2 )D. which by (8.3) is: 

(8.4) 

By substituting 2k-i - S for CP, in (8.4) and pe1forming some algebraic 
simplification. we get: 

PD= 2ak-2 - (S2k12 - CP2)2. (8.5) 

Dividing (8.5) by 2k- 1 ,. we have 

22k-1 = PD + T (8.6) 2k-l ' 

where T = (S2k 12 - CP2) 22-<k-ll. By the induction hypothesis and the fact 
that P1 < 2k12 , we have S < 2k12• Since C ::;;; 2k12 and P2 < 2k12 , we have 
0 ::;;; T < 2k+1. 

At line 4, A= [a0a 1 • • • ak] =t LD/2k-i J. Now 

so from (8.6) we have 

22k-1 > PD > pl_Q_J > PD _ p = 22k-1 _ T _ p > 22k-1 _ 2k+1 _ 2,. 
- 2k-l - 2k-l 2k-l . 

Thus 

pl_Q_J = 22k-J _ s I 
2k-l ' 

where O ::;;; S' < 2k+i + 2k. Since P ~ 2k-1, it follows that by adding at most 
6 to LD/2k-J J we obtain the number which satisfies the inductive hypothesis 
for -k. Since this job is done by lines 5-7, the induction step follows. 0 

Theorem 8.2. There is a constant c such that R(n) ::;;; cM(n). 

Proof It suffices to show that Algorithm 8. I works in time 0 8 (M(11)). Line 
2 requires R(k/2) bit operations. Line 3 consists of a squaring and multiplica­
tion. requiring M(k/2 + I) and M(k + 2) time. respectively. plus a subtraction 
requiring 0 8 (k) tim~. Note that multiplication by powers of 2 does not 
require any bit operations; the bits of the multiplicand are simply regarded as 
occupying new positions, i.e., as if they had been shifted. By our assumption 
on M, M(k/2 + I) ::;;; iM(k + 2). Furthermore. M(k + 2) - i\/(k) is 011(k} (see 
Section 2.6, for example) and thus line 3 is bounded by ~,H (k) + c' k for some 
constant c'. Line 4 is clearly 0 8 (k). 

It appears that the loop of lines 5-7 requires three multiplications. but the 
calculation can be done by one multiplication. [aua, · · ·a,...] * [.P1P~ · · ·pd. 
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and somt! additions and subtractions of at most 2k-bit integers. Thus line 
5-7 are bounded by AJ(k) + c:"(k} for some constant c:". Putting all cost 
together. we have 

(8.7 

for some constant c 1• 

We claim that there is a constant c such that R (k) ::::; c1W (k). We car 
choose c: so that c 2: R(l}/M(I} and c 2: 5 + 2c 1 • We verify the claim by in· 
duction on k. The basis. k = I, is immediate. The inductive step followi 
from (8.7). since 

(8.8) 

As M(k/2) ::::; i/vl(k) follows from our assumption about M, and k ::::; M(k) is 
obvious, we may rewrite (8.8) as 

R(k)::::; (~ +j+#'•i)M(k). (8.9) 

Since c 2: 5 + 2c1• (8.9) implies R(k) ::::; cM(k). D 

It should be evident that Algorithm 8.2 can be used to compute l/P ton 
significant bits, if P has that number·of bits, no matter where the binary point 
is. For example, if i < P < 1, and P has n bits, then by scaling in the obvi­
ous way, we can produce I IP as I, followed by n - I bits in the fractional 
part. 

We next show that S(n), the _time needed to square an integer of size n, is 
of no greater magnitude than R (n), the time to take the reciprocal of an in­
teger of size n. The technique involves the identity 

p2= -P. 
I I ----
p P+ I 

The next algorithm uses (8.10) with proper scaling. 

Algorithm 8.2. Squaring by reciprocals. 

Input. An 11-bit integer P, in binary representation. 

Output. The binary representation of P2 • 

Metlwd 

(8.10) 

I. Use Algorithm 8.1 to compute A= L2411 - 1/PJ by appending 2n O's to P 
and applying RECIPROCALt to compute L2611- 1/P22"J and then shifting. 

t RECIPROCAL was defined in Algorithm 8.1 only for integers whose length was" 
power of 2. The generalization to integers whose length is not a power of 2 should be 
obvious-add extra O's and change scale when nece~sary. 
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2. Similarly, compute B = L2411 - 1/(P + l)J. 
3. Let C =A - B. Note that C = 2 411- 1/(P 2 + P) + T where ITI :s I. The 

T arises from the fact that the truncation in computing A and B may give 
rise to an error of up to I. Since 2211 - 2 < P2 + P < 2:! 11 we have 
2211+1 2:: c 2:: 2211-1. 

4. Compute D = L2411 - 1/C J - P. 
5. Let Q be the last four bits of P. Adjust the last four bits of D up or down 

as little as possible to cause agreement with the last four bits of Q2. D 

Theorem 8.3. Algorithm 8.2 computes P 2• 

Proof Due to the truncation involved in steps and 2, we can be assured 
only that 

I 24n-1 

C = p 2 + p + T, where ITI :s I. 

Since 2211 - 1 :s C :s 2211+1 and since the error in C is in the range - I to I, the 
error in 24'i-t/C due to the error itt C is at most 

I 24n-1 _ 24n-1 I = I 24n-1 I 
c c- 1 c 2 -c · 

Since C 2 - C 2:: 24"-3, the error is at most 4. The truncation at line 4 can 
increase the error to 5. Thus IP2 - DI :s 5. Hence computing the last four 
bits of P2 at' step 5 insures that D is adjusted to be exactly P 2• D 

Example 8.2. Let n = 4 and P = [1101]. Then 

A= l2 15/[1101]J = [100111011000] 

and 

B = l2 15/[l 110]J = [100100100100]. 

Next, 

C =A - B = [101 lOIOO]. 

Then, 

D = l2 15/CJ - P =[IOI 101 IO] - [I IOI]= [IOIOIOOI]. 

Thus D is 169, the square of 13, and no correction is necessary at step 5. D 
• 

Theorem 8.4. There exists a constant c such that 5(11) :s cR(11). 

Proof Algorithm 8.2 uses three recipro.cal calculations on strings of length at 
most 311. Further, there are subtractions at steps 3 and 4 requiring 011(11) time, 
and a fixed amount of work at step 5, independent of 11. Hence 

5(11) :s 3R (311 l + c 111 (8.11) 
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for some constant c 1• Thus 5(11) :5 '27R(11) + c 111. Since R(11) ~ 11. choose 
c: = 27 + c 1 to prove the theorem. 0 

Theorem 8.5. M(11). R(11). D(11). and S(11) are all related by constant 
factors. 

Proof We have already shown R(11) :=::; c).4(11) and 5(11) :5 c2R(11) for con­
stants c: 1 and c 2 • It is easy to see that M(11) :5 c;i5(11) by noting that 

AB = H (A + B) 2 - A 2 - B 2 ]. 

Thus M, R, and S are related by constant factors. 
When we discuss division of n-bit numbers, we really mean the division 

of a number with up to 2n bits by one of exactly n bits, producing an answer 
of at most /1 + I bits. It is trivial that R(11) :5 D(n), so M(n) :5 c 2c;iD(n). 
Moreover, using the identity A/B =A * (l/B), we may show, taking care for 
scaling, that for some constant c 

D(n) :5 M(2n) + R(2t.>l-+ en. (8.12) 

Since R(2n) :5 c 1M(2n), and M(2n) :5 4M(n) is easy to show, we may 
rewrite (8. 12) as 

D(n) :5 4(1 + c1)M(n) +en. (8.13) 

Since M(n) ~ n, we have from (8.13) that D(n) :5 c4M(n), where 
c-1 = 4 + 4c 1 + c. Thus all functions have been shown to lie between dM(n) 
and e M (11) for some positive constants d and e. 0 

Corollary .. Division of a 2n-bit integer by an n-bit integer can be done in 
0 8 (n log /1 loglog n) time. 

Proof By Theorem 7.8 and Theorem 8.5. 0 

8.3 POLYNOM!AL MULTIPLICATION AND DIVISION 

All the techniques of the previous section carry over to univariate polynomial 
arithmetic. Let M(n), D(n),' R(n), and S(n) in this section stand for the time 
to multiply, divide, take reciprocals of, and square nth-degree polynomials.! 
We assume, as before, that a 2M(n) ~ i\f(a11) ~ aM(n) for a ~ I and similarly 
for the other functions. 

By the "reciprocal" of an nth-degree polynomial p(x), we mean 
Lx211 / p(x) J. t D(n) is the time to find Ls(x)/ p(x) J, where p(x) is of degree n and 
s(x) is of degree at most 2n. Note that we can "scale" polynomials by multi-

t By analogy with the notation fui integers, we use the "floor function" to denote the 
quotient of polyuom1als. That is, if p(x) is not a constant, Ls(x)/p(x)j is the unique q(x) 
such that s(x) = p(x)q(x) + r(x) and DEG(r(x)) < DEG(p(x)). 
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plying and dividing by powers of x. just as we scaled integers by powers of 2 
in the previous section. 

Since the results of this section are so similar to those for integers. we 
give only one result in detail: the polynomial "reciprocal .. algorithm analo­
gous to Algorithm 8.1 for integers. The polynomial algorithms arc somewhat 
easier than the integer ones. due essentially to the fact that carries from place 
to place in the power series do not occur as they do for integers. Thus the 
polynomial algorithms require no adjustment of least significant places as was 
necessary in, for example, lines 5-7 of Algorithm 8.1. ~ 

Algorithm 8.3. Polynomial reciprocals. 

Input. A polynomial p (x) of degree 11 - I. where /1 is a power of 2 [i.e .. 
p(x) has 21 terms for some integer t]. 

Output. The "reciprocal" Lx211- 2/p(x)j. 

Method. In Fig. 8.2 we define a new procedure 

RECIPROCAL (%~;x;). 

where k is a power of 2 and a1<-i ,= 0. The procedure computes 

Note that if k = I, then the argument is a constant a0 whose reciprocal is I /a 11 • 

1nother constant. We assume each operation on coefficients can be done in 
)ne step, and no call to RECIPROCAL is necessary to compute I/a,.. 

The algorithm itself is to call RECIPROCAL with argument p(x). 0 

I. 

2. 

3. 

4. 

procedure RECIPROCAL(~ aiX} 
•=0 

if k = I then return I /a0 

else 
begin 

q(x) +- RECIPROCAL ( 'f a;x;-1;12): 
. i=k/2 

(
A·-1 ) 

r(x) +-2q(x)x<312lk-2_ (q(x)l2 ~ ll;X;: 

return rr(.r)/x"-2 J 
end 

Fig. 8.2. Algorithm to compute polynomial rccipwcal-. 
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Example 8.3. Let us compute lx 14/p(x)j. where p(x) = x' - x 6 + x:. + '.!.r4. 

x=• - 3x 2 + x + 4. In line 2 we compute the reciprocal of x 3 - x 2 + x + 2, tha 
is. c/(.\·) = lx6/(x3 - x 2 + x + 2)j. You may verify that q(x) = x3 + x 2 - 3 
Since J.: = 8. line 3 computes r(x) = 2q(x~r•0 - (q(x))2p(x) = x 13 + x 12 - Jxio -
4x9 + 3xd + I 5x 1 + I 2x6 - 42x 5 - 34x4 +.39x3 + 5 lx 2 - 9x - 36. Then a 
line 4, the result is s(x)=x'+x 6 -3x4 -4x3 +3x 2 + 15x+ 12. We note 
that s(x)p(x) is x 14 plus a polynomial of degree 6. 0 

Theorem 8.6. Algorithm 8.3 correctly computes the reciprocal of 2 

polynomial. 

Proof We prove by induction on J.:, for J.: a power of 2, that if s(x) = 
RECIPROCAL(p(x)), and p(x) is of degree k - I, then s(x)p(x) == 
x 2k-2 + t(x), where t(x) is of degree less than k - I. The basis. k = I, is tri­
vial. since p(x) = a0 , s(x) = l/a0 • and t(x) need not exist. 

For the inductive step, let p(x) = p 1(x)xk12 + p 2(x), where DEG(p1) = 
k/2 - I and DEG(p2) :s k/2 - I. Tht:n by the inductive hypothesis, if s1(x) = 
RECIPROCAL(p 1(x)). then .s 1(xfp·1(x) = x'·-2 + t 1(x), where DEG(t1) < 
k/2 - I. At line 3, we compute 

(8.14) 

It suffices to show that r(x)p(x) is rk-4 plus terms of degree less than 2k - 3. 
Then division by xk- 2 at line 4 produces the desired result. 

By (8.14) and the fact that p(x) = p 1(x)xk12 + p 2(x), we have 

r(x)p(x) = 2s1(x)p1(x)x21H + 2s 1 (x)p 2 (x)x(312Jk-2 

- (s1(X)P1(x)xkl2 + S1(X)p2(x))2. (8.15) 

In substituting xk-2 + t1(x) for s1(x)p1(x), in (8.15) we obtain 

r(x)p(x) = x3k-4 - (t1(x)xk12 + si{x)p2(x))2• (8.16) 

Since DEG(t1) < k/2 - I. and s 1(x) and p2(x) are of degree at most k/2 - 1. 
the terms other than x 3k-4 in (8.16) are of degree at most 2k - 4. 0 

The running times of Algorithms 8.3 and 8.1 are clearly analogous when 
one considers the two measures of complexity (arithmetic and bitwise, respec-, 
tively) being used. In a similar manner we can show that the other time 
bounds of Section 8.2 apply to polynomials with arithmetic steps substituted 
for bit ones. Thus w·e have the following theorem. 

Theorem 8.7. Let M(11), D(11), R(n), and S(11) be the arithmetic complex· 
ities of univariate polynomial multiplication. division, reciprocal-taking. 
and squaring respectively. These functions are all related by constant 
factors. 

Proof Analogous to Theorem 8.5 and the results leading up to that 
theorem. 0 
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Corollary. Division of a 211th-degree polyrwmial h~ an 11th-degrel' pol~ -
nomial can he done in time O ·'I /1 log 111. 

Prm~( By Corollary 3 to Theorem 7.-t Ip. 26lJI and Theorem 8.7. = 
8.4 MODULAR ARITHMETIC 

There are certain applications in which it is convenient to do integer arith­
metic in a .. modular°' notation. That is. instead of representing an integer hy 
a fixed-radix notation. we represent the integer hy its resiLlucs modulo a set of 
pairwise relatively prime integers. If p,,. p, ..... p,,_; arc pairwise relatively 
prime integers and p = llf.:-1ip;. then we can represent ar:iy integer 11. 

0::::; 11 < p. uniquely by the set of residues 11,,. 11 1 .~ •••• 111;_ 1 where 11, = 

11 modulo {J;. for 0 ::::; i < k. When p,,. p, . .... p1,_, arc known. we write 
II+-+ (Uo. 111• · · · • ll1;_i). 

It is quite easy to do addition. subtraction. and multiplication. provided 
the results continue to lie between 0 and p - I Cor alternatively. these calcula­
tions can be regarded as being done modulo p). That is. let 

Then 

m• +-+ (yo. Y1. · · · • Y1;-1 ). 

where 11·; = (11; + 1·;) modulo p;. 

where x; = (11; - 1·;) modulo p;. 

where .\'; = 11;1'; modulo p;. 

(8.171 

(8.18) 

(8.19) 

Example 8.4. Let Po= 5. p 1 = 3. and p 2 = 2. Then 4 +-+ (4. I. 0). since 4 = 
4 modulo 5. I = 4 modulo 3. and 0 = 4 modulo 2. Similarly. 7 +-+ C. I. I) 
and 28 +-+ (3, I. 0). We observe that by (8.19) above. 4 x 7 +-+ (3. I. 0). 
which is the representation of 28. That is. the first component of 4 x 7 is 
4 x 2 modulo 5, which is 3: the second component is I x I modulo 3. which 
is I; and the last component is 0 x ·1 modulo 2. which is 0. Also. 
4 + 7 +-+ (I. 2. I). which is the representation of 11. and 7 - 4 +-+ (3. 0. I). 
which is the representation of 3. 0 

However. it is not clear how to do division economically using moLlular 
arithmetic. Note that 11/1· is not necessarily an integer and even if it were. we 
could not necessarily find its modular representation by computing 111,/1·, l 
modulo p; for each i. In fact. if /1; is not a prime. there may be sc\'cral in­
tegers 11· between 0 ~md p; - I which could be (11;/1·; I modull1 fl, in the sense 
that 11'1"; = II; modulo p;. For example. if p; = 6. 1·; = 3. and 11, = 3. then 11· 

could be I. 3. or 5. since f x 3 = 3 x 3 = 5 x 3 = 3 moLlulo 6. Thus 111,/1·, 1 
modulo p; may not "make sense." 

The advantage of modular representation is chiefly that arithmetic can he 
implemented with less hardware than is rcquircLI for con\'entional arithmetic. 
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since calculations are done for each modulus independently of the others. 
No carries are needed as for the usual (radix) number representations. 
Unfortunately. the problems of doing division and of detecting overflows 
(telling whether the result is outside the range 0 to p - I) efficiently appear in­
surmountable. and because of this such systems are rarely implemented in 
general purpose computer hardware. 

Nevertheless, the ideas involved do find use. mostly in the polynomial 
domain. Here, we are likely to find ourselves in a situation where no polyno­
mial division is required. Also. we shall see in the next section that evalua­
tion of polynomials and computation of residues of polynomials (modulo other 
polynomials) are closely related. We first prove that modular arithmetic for 
integers "works" as intended .. 

The first part of the proof is that Eqs. (8.17), (8.18), and (8.19) hold. 
These relationships are straightforward, and we leave them as exercises. 
The second part of the proof is to show that the correspondence 
u ~ (u0 , u 1, ••• , uk_ 1) is one-to-one (an isomorphism). Although this result 
is not hard, we give it as a lemma. ·~· 

Lemma 8.1. Let p 0 , P1> ... , Pk-i be a set of integers which are pairwise 
relatively prime. Let 

k-1 

p= TI Pi 
i=O 

and let 11; = 11 modulo Pi· Then 11 ~ (u0, u 1, ••. , uk_1) is a one-to-one 
correspondence between integer u, 0 s u < p, and 

for 0 s i < k. 

Proof. Clearly, for each 11 there exists a corresponding k-tuple. Since 
there are exactly p values of 11 in the interval and exactly p k-tuples, it suf­
fices to show that to each k-tuple there corresponds at most one integer 
11. Assume u and v, where 0 s u < ~· < p, both correspond to the k-tuple 
(uo. 11 1 , ••• , llJ.:- 1). Then v - u must be a multiple of each Pi· Since the p;'s 
are relatively prime, 1· - u must be a multiple of p. Since u ~ v, and v - 11 is a 
multiple of p, then u and v must differ by at least p and hence cannot both be; 
in the interval 0 to p - I. 0 

In order to use modular arithmetic, algorithms are needed to convert 
from radix notation to modular notation and back. One method to convert an 
integer u from radix notation to modular notation is to divide u by each of the 
Pt• 0 s i < k. 

Assume that each p 1 requires b bits in binary notation. Then 

k-1 
p=flp; 

i•O 
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requires roughly hk bits. and division of /1 hy each of the p,· .... where 
O s /1 < p. could involve k divisions of a kb-hit integer hy integers of h hits. 
By breaking each division into k divisions of 21>-hit integers hy />-hit integers. 
we can convert to modular notation in 0 11(k2D(b}) time. where Din) is the 
time to do integer division [at most 0 11(11 log /1 loglog 11) by the corollary to 
Theorem 8.5]. 

However. we can do the job in considerably less time hy a method 
reminiscent of the technique used to perform polynomial division in Section 
7.1. Instead of dividing an integer u by each of k moduli p11 , p 1 ••••• Pi:-•· we 
first compute the products PnP1. P2P:1· ...• P1:-2P1:-1 • then the products 
PoP1P2P:i· P4P~P6P<· ... and so on. Next we compure the residues by a divide­
and-conquer approach. By division we obtain the residues 11 1 and 11 2 of /1 

modulo Pn · · · P1:i2-1 and u modulo Pi·i2 · · · P1:-1· The problem of computing 
u modulo p;, 0 s i < k, is now reduced to two problems of half size. That is. 
11 modulo p; = 11 1 modulo p; for 0 s i < k/2, and u modulo P; = 11 2 modulo /J; 
for k/2 s i < k. 

Algorithm 8.4. Computation of residues. 
\ 

Input. Moduli p 11 • p 1 , •••• Pi:- 1 • and integer 11. where 0 s 11 < p = fll·;;,1p;. 

Output. 11;. 0 s i < k. where It;= u modulo p;. 

Method. Assume k is a power of 1, say k = 1'. (If necessary. add extra 
moduli. all of which are I. to ~he input so k becomes a power of 2. l We begin 
by computing certain products of the moduli similar to the tfo,,·s computed in 
Section 7 .2. 

For 0 s j < t, i a multiple of 2i, and 0 s i < k. let 

i+2i -I 

q;; = II p,,,. 
m=i 

Thus q;o = p; and CJ;;= q;,;:1 x q;_2 ,-•,i-•·· 
We first compute the q;i 's, then find the remainder uu when u is divided 

by each of the q;/s. The desired answers are the u;u·s. The details are in the 
program of Fig. 8.3. 0 

Theorem 8.8. Algorithm 8.4 correctly computes the u; 's. 

Proof _The proof parallels that of Theorem 7.3. where a polynomial was 
evaluated at the nth roots of unity. It is easy to show hy induction on j that 
line 4 computes theJoq;/s correctly. Then, by backwards induction on thej of 
line 6. we show that u;; = /1 modulo CJu. Lines 8 and 9 make this easy. Let­
ting j = 0. we have u; = u modulo p;. Details are left as an exercise. ~ 

Theorem 8.9. Algorithm 8.4 requires 0 11(M(bk) log k) time if at most b 
bits are needed to represent each of the p; 's. 

Proof It is easy to see that the loops of lines 3-4 and 7-9 are the 
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begin 
I. for i ~ 0 until k - I do q;o ~ p;; 
., for j ~ I until t - I do 
3. for i ~ 0 step 2i until k - I do 
4. <Ju~ qi.i-1 * C/i+~1-•.r-1: 
5. 1101 ~ 11; 
6. for j ~ t step - I until I do 
7. for i ~ 0 step 2 i until k - I do 

begin 
8. u;j-t ~ REMAINDER(u;)q1j-1); 

9. 11;+2J-•j-t ~ REMAINDER(uu/q;+2Hj-1) 

end; 
10. for i ~ 0 until k - 1 do u1 ~ uiO 

end 

Fig. 8.3. Computation of residues . ..... 

8.5 

most costly. Each requires 0 8(2HM(2i- 1b)) time.t Since we assume 
M(an) ;;:::: aM(n) for a ;;:::: I, we see the cost of these loops is bounded by 
Oa(M(2'b)) = 0 8 (M(kb)). Since each of these loops is executed t =log k 
times at most, we have our result. 0 

Corollary. If b bits are required to represent each of the moduli 
p 0 , p,, ... , Pk-i then the residues may be computed in at most 
0 8(bk log k log bk loglog bk) time. 

8.5 MODULAR POLYNOMIAL ARITHMETIC 
AND POLYNOMIAL EVALUATION 

Results analogous to those for integers hold for polynomials. Let 
p 0 , ••• , Pk-i be polynomials and p = Ilf.:-01p 1• Then each polynomial /1 can be 
represented by the sequence u0 , u1, ••• , 11k-i of remainders obtained by 
dividing u by each p 1• That is. i"t; is the unique polynomial with 
DEG(u;) < DEG(p;) such that 11 = p1q; + 111 for some polynomial q1• We 
write u1 = u modulo p1 in this situation, in complete analogy with integer mod­
ular arithmetic. 

In analogy with Lemma 8.1, we may show that u ~ (u 11 , u 1 , ••• , uk_1) is a 
one-to-one correspondence if the p1 's are pairwise relatively prime and u is 
restricted to have degree less than that of p, i.e., SIZE(u) < SIZE(p). More 
importantly, Algorithm 8.4 for computing residues works if the p 1's are poly­
nomials instead of integers. Instead of b (the number of bits in the p 1's). we 

t Recall that D(n) and M(n) are essentially the same. 
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must consider the maximum degree of the polynomials p;. Of course. com­
plexity is in terms of arithmetic steps rather than bitwise one~. With these 
changes. we have the following analog of Theorem 8.9. 

Theorem 8.10. By a conversion of Algorithm 8.4 to the polynomial 
domain. it is possible to find the residues with respect to polynomiab 
Po· Pi·., .. Pk-• of polynomial u in time O"(M(dk) log k). where ti i~ an 
upper bound on the degree of the p; ·s and the degree of u is less than that 
of m:i.1p;. 

Proof Analogous to Theorem 8.9 and left for an exercise. D 

Corollary I. Finding residues of a polynomial u with respect to polyno­
mials p 0 , p 1, •••• Pk-• requires time at most OA(dk log k log dk), where d 
is an upper bound on the degree of the p; 's and the degree of u is less 
than that of nt:il p;. . 

Example 8.5. Consider the four polynomial moduli 

Po= x- 3, 
Pi= ~2 + x +I, 
P2 = x2 - 4, 
P:i = 2x + 2. 

and suppose 11 = x5 + x4 + x3 + x2 + x + 1. First compute the products 

Then. compute 

PoP1 =x3 - 2x 2 - 2x - 3, 
P2P:i = 2r:i + 2l" 2 - 8x - 8. 

11' = 11 modulo PnP i = 28x2 + 28x + 28, 
u" = u modulo P2P:i = 2 Ix + 21. 

That ~s. 11 = p 0 p 1(x 2 + 3x + 9) + 28x 2 + 28x + 28, and u = P2P:i<!x 2 + ~) + 
21x + 21. 

Next, compute 

11 modulo p 0 = u' modulo Pn = 364. 
11 modulo Pi = 11' modulo Pi = 0. 
11 modulo p2 = 11" modulo P2 = 2 Ix+ 21. 
11 modulo P:i = 11" modulo P:i = 0. D 

Note that the FJ,;T algorithrn of Section 7.2 is really an implemen­
tation of this algorithm. where the polynomials p 0 , p 1, •••• Pk-• arc 
.t - w0 , x - w1 , •••• x - w"- 1• The FFT algorithm took advantage of the fact 
that P; = x - wi. Because of the ordering of the p; ·s. each product had the 
form of a power of x minus a power of w and hence division was especially 
easy. 
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As we observed in Section 7.'2. if Pi is the first-degree polynomial x - a 
then u modulo p; is u(a). Therefore. the case in which all the P; 's are o; 
degree I is especially important. We have the following corollary tc 
Theorem 8.10. 

Corollary 2. An nth-degree polynomial can be evaluated at /1 points in 
time OA(11 log2n). 

Proof To evaluate u(x) at the n points a 0 , a 1 , ••• , a 11 _ 1 we compute 
u(x) modulo(x - ai) for 0 ::::; i < 11. This evaluation requires 0 A(n log 2n) time 
by Corollary I, since d there is I. 0 

8.6 CHINESE REMAINDERING 

We now consider the problem of converting an integer from modular notation 
to radix notation.t Suppose we are given relatively prime moduli 
Po. Pi· ... , Pk-i and residues u 0 , u 1 , ••• , uk-~; where k = 21, and we wish to 
find the integer 11 such that u ~ (u0 , 11 1 , ." .• , uk-_ 1 ). We may do so by the in­
teger analog of the Lagrangian interpolation formula for polynomials. 

Lemma 8.2. Let c; be the product of all the p/s except Pi (that is, 
c; = p/pi where p = ITj'.:-01pi). Let di be c/ 1 modulo p; (that is, d;ci = 1 
modulo p;, and 0 ::::; d; < p;). Then 

k-1 

u = L c;d;u; modulo p. (8.20) 
i=O 

Proof Since the Pi 's are relatively prime to one another, we know d; exists 
and is unique (Exercise 7.9). Also, c; is divisible by Pi for j 7>6 i, so c;d;u; = 0 
modulo Pi if j 7>6 i. Thus 

k-1 

L cidiui = cidiui modulo Pi· 
i=O 

Since cidi = I modulo P;, we have 

k-1 

L cidiui = ui modulo Pi· 
i=O I 

Since Pi divides p, these relationships hold even if all arithmetic is done 
modulo p. Thus (8.20) holds. 0 

Our problem is to compute (8.20) efficiently. To begin, it is hardly clear 
how to compute the di 's from the p; 's except by trial and error. We shall later 
see that this task is not hard, given the Euclidean algorithm of Section 8.8 and 

t This process is known as Chinese remainderin~. since an algorithm for the process 
was known to the Chinese over 2000 years ago. 
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the fast implementation in Section 8.10. However. in this section we shall 
study only the "preconditioned" form of the Chinese remainder problem. If 
a portion of the input is fixed for a number of problems. then all constants 
depending on the fixed portion of the input can be precomputed and supplied 
as part of the input. If any such precomputation of constants is done. the 
algorithm is said to be preconditioned. 

For the preconditioned Chinese remainder algorithm. the input wiil be 
not only the moduli and the p; 's, but also the inverses (the d;'s). This situa­
tion is not unrealistic. If we are frequently using the Chinese remainder 
algorithm to convert numbers represented by a fixed set of moduli. it is rea­
sonable to precompute all functions of these moduli that are used by the 
algorithm. In the corollary to Theorem 8.21 we shall see that as far as order 
of magnitude is concerned, it makes only a modest difference whether the 
algorithm is preconditioned or not. 

If we look at (8.20), we notice that the terms cidiui have many factors in 
common as i varies. For example, c;diui has p0 p 1 • • • Pki2- 1 as a factor when­
ever i ~ k/2, and it has Pki2Pki2+1 · · · Pk-1 as a factor if i < k/2. Thus we 
could write (8.20) as 

(
k/2-1 ) k-1 ( k-1 ~ k/2-1 

u = 2 c;d;u; X II Pi+ 2 c7diu; x II Pi 
i=O i=k/2+1 i=k/2+1 i=O 

where c; is the product PoP 1 · · · P<ki2>-1 with Pi missing, and c;' is the prod­
uct Pk12Pk12+1 · · · Pk-1 with P; missing. This observation should suggest a 
divide-and-conquer approach similar to that used for computing residues. We 
compute the products 

i+2j-l 

qii = II Pm 
111=i 

(as in Algorithm 8.4) and then the integers 

i+2;-I 

Su= 2 qiidmum/ Pm· 
111=i 

If j = 0, then sm = diui. If j > O. we compute sii by the formula 

Ultimately we produce s 111 = 11, which evaluates (8.20). 

Algorithm 8.5. Pre~onditioned .fast Chinese remainder algorithm. 

Input 
I. Relatively prime integer moduli Po· p 1 •••• , p,._ 1• where k = 2' for some t. 
2. The set of "inverses" do. d •. .... dA·-i such that di= (p/pi)- 1 modulo p,. 

where p = nf;;:Pi· 
3. A sequence of residues (uu. 111 ••••• 11,._ 1). 
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begin 
I. for i ~ 0 until k - I do Sm~ d; * u;; 
2. for j ~ I until t do 
3. for i ~ 0 step 21 until k - I do 
4. Sjj ~ S;J-i * qi+2l-IJ-I + S;+21-1 ,J-i * qi.i-1; 

5. write s01 modulo· qot 
end 

Fig. 8.4. Program to compute integer from modular representation. 

Output. The unique integer u, 0 :::::; u < p, such that u ~ (u0, u1' .. , uk-i). 

Method. First compute qii = n:;:-~~- 1Pm as in Algorithm 8.4.t Then execute 
the program in Fig. 8.4, where Sjj is intended to be 

Example 8.6. Let p 0 , p 1, P2. p 3 be 2, 3, 5, 7, and let (u0 , Ui. u2 , u3) be 
(1, 2, 4, 3). Then q;0 =Pi for 0::;;; i < 4, qoi = 6, q21 = 35, and q 02 = p = 210. 
We note that 

d0 = (3 * 5 * 7)-i modulo 2 = l,· 
di = (2 * 5 * 7)-1 modulo 3 = l, 
d2 = (2 * 3 * 7)-1 modulo 5 = 3, 
d3 = (2 * 3 * 5)-1 modulo 7 = 4, 

Thus the effect of line 1 is to compute 

Soo = 1 * 1 = 1, 
S20 = 3 * 4 = 12, 

since 1 * 105 = 1 modulo 2, 
since 1 * 70 = 1 modulo 3, 
since 3 * 42 = 1 modulo 5, 
since 4 * 30 = 1 modulo 7. 

S10 = 1 * 2 = 2, 
S30 = 4 * 3 = 12. 

We then execute the loop of lines 3-4 with j = I. Here, i takes on the 
values 0 and 2; so we compute 

Soi = Soo * qio + Sio * qoo = I * 3 + 2 * 2 = 7, 
S2i = S20 * q30 + S30 * q20 = J 2 * 7 + 12 * 5 = 144. 

Next, we execute the loop of lines 3-4 with j = 2, and i takes only the 
value Q. We compute 

So2 =Soi * q2i + S21 * qoi = 7 * 35 + 144 * 6 = 1109. 

t Note that the q;/s are functions only of the p;'s. We should rightly include them as 
inputs rather than calculating them, since we allow preconditioning. However, it is 
easily shown that the order-of-magnitude running time is not affected by whether or 
not the q1/s are precomputed. 
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The result at line 5 is thus 1109 modulo 210. which is 59. You may check 
that the residues of 59 modulo 2, 3. 5. and 7 are I. 2. 4. and 3, respectively. 
Figure 8.5 graphically portrays the computations. D 

Theorem 8.11. Algorithm 8.5 correctly computes the integer u such that 
u ~ (uo. U1, ... , "k-1). 

Proof. An elementary induction on j proves that S;j is given its intended 
value, that is 

i+2LI 

Su= L q;;d,,,u,,,/p,,,. 
m=i 

The correctness of the algorithm then follows immediately from Lemma 8.2, 
that is, from the correctness of Eq. (8.20). D 

Theorem 8.12. Suppose we are given k relatively prime integer moduli 
piJ, p1, ... , Pk-i and residues (uo, Ui. ... , uk-1). If each of the p; 's 
requires at most b bits, there is a preconditioned algorithm that computes 
u such that 0 :$ u < p = II~,;Jp; and 11 ~ (u 0 , u 1 , • •• , u~-- 1 ) in time 
0 8 (M(bk) log k), where M(n) IB the time to multiply two n-bit numbers. 

I 

Qo1 = P0 P, P2P3 
210 

Fig. 8.5 Computations of Example 8.6. 
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Proof The computation of the q;/s requires 0 11(/H(bk) log k) time.t For the 
analysis of the body of the algorithm, note that su requires at most b2i + b + j 
bits. since it is the sum of '2i terms. each of which is the product of 2i + 1 in­
tegers of b or fewer bits. Hence each term requires no more than b(2i + I) 
bits. and the sum of 2i such terms requires at most b(2i + I) + log(2i) = 
b2i + b + j bits. Thus line 4 takes time 0 11(M(b2i)). The loop of lines 3-4 
is executed k/2i times for fixedj, so the total cost of the loop is 

0 8 (;i M(b2i)). 

which, by our usual assumption about the growth of M(n), is bounded above 
by 0 8(M(bk)). Since the loop of lines 2-4 is iterated log k times, the total 
cost is 0 8(M(bk) log k) time. Line 5 is easily shown to cost less than this. O 

Corollary. The preconditioned Chinese remaindering algorithm with k 
moduli of b bits each requires at most 0 8(bk log k log bk loglog bk) 
steps. 

8.7 CHINESE REMAINDERING AND INTERPOLATION OF POLYNOMIALS 

It should be clear that all the results of the previous section hold for polyno­
mial moduli p 0 , p 1, ••. , Pk-i as well as for integers. Thus we have the fol­
lowing theorem and corollary. 

Theorem 8.13. Suppose p 0(x), p 1(x), ... , Pk- 1(x) are polynomials 
of degree at most d, and M(n) is the number of arithmetic steps needed 
to multiply two nth-degree polynomials. Then given polynomials 
u0(x), u1(x), ... , uk_ 1(x), where the degree of u;(x) is less than that of 
Pi(x), for 0 s i < k, there is a preconditioned algorithm to compute the 
unique polynomial u(x) of degree less than that of p(x) = IH~1pi(x) such 
that u(x) +-+ (u0(x), u1(x), . -.-. , uk-1(x)) in 0 .,.(M(dk) log k) time. 

Proof Similar to Algorithm 8.5 and Theorem 8.12. D 

Corollary. There is a preconditioned algorithm for Chinese remaindering 
of polynomials requiring 0,\(dk log k log dk) tim~. 

An important special case occurs when all the moduli have degree 1. If 
P; = x - a; for 0 s i < k, then the residues (the u/s) are constants, i.e., poly­
nomials of degree 0. If u(x) = lt; modulo (x - a;), then u(x) = q(x)(x - a;)+ 11;. 

so u(a;) = tt;. Thus the unique polynomial u(x) of degree less than k such that 
u(x) +-+ (uo. lli. ... , uk_ 1) is the unique polynomial of degree less than k such 

t Since D(n) and M(n) are essentially the same functions, we use M(n) in preference 
throughout. 
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that u(a;) ·= 11; for each i, 0::::; i < k. Put another way. 11(.r) is the polynomial 
interpolated through the points (a;. 11;) for 0 ::::; i < k. 

Since interpolation is an important polynomial operation. it is pleasant to 
observe that interpolation through k points can be done in 0 "(k log2k) time 
even if preconditioning is not allowed. This is so because, as we shall see 
from the next lemma, the coefficients d; from Eq. (8.20) can be evaluated eas­
ily in this special case. t 

Lemma 8.3. Let p;(x) = x - a;. for 0 ::::; i < k, where the a;'s are distinct 
(i.e., the p;(x)'s are relatively prime). Let p(x) = nt:.l p_;(x). let 
c;(x) = p(x)/p;(x) and Jet d;(x) be the constant polynomial such that 

d;(x)c;(x) = I modulo p;(x). Then d;(x) = l/b, whe~e b = Jx p(x) l.r=ri." 

Proof We can write p(x) = C;(x)p;(x), so 

d d d 
dx p(x) = p;(x) dx C;(x) + C;(x) dx p;(x). (8.21) 

Now, dp;(x)/dx =I, and p 1(a;) = 0., Thus 

dp(x)I _ -d- - C;(a;). 
X .r=ri, 

(8.22) 

Note that d;(x) has the property that d;(x)c;(x) = I modulo (x - a;), so 
d;(x)c;(x) = q;(x)(x - a;) + I for some q;(x). Thus d;(a;) = 1/c;(a;). The 
lemma is now immediate from (8.22) since d;(x) is a constant. D 

Theorem 8.14. We may interpolate a polynomial through k points in 
0 A(k log2k) time without preconditioning. 

Proof By Lemma 8.3, the computation of the d;'s is equivalent to evaluating 
_the derivative of a (k - 1 )st-degree polynomial at k points. The polynomial 
p(x) = Ilf,:-01p;(x) can be obtained in 0 A(k Jog2k) time by first computing 
PnP1> P2Pa • ... , then PoP1P2Pa· P4PsP6P1• ... , and so on. The derivative of 
p(x) can be taken in 0 A(k) steps. The evaluation of the derivative requires 
0 A(k log2k) time by Corollary 2 to Theorem 8.10. The theorem then follows 
from the corollary to Theorem 8.13 with d :== I. D 

Example 8.7. Let us interpolate a polynomial through the points (I, 2), (2, 7). 
(3, 4), and (4, 8). That is. a;= i + I for 0::::; i < 4, 110 = 2, 11 1 = 7. 11 2 = 4, and 
113 = 8. Then p;(x) = x - i -. I, and p(x) = Il~=oP;(x) is x 4 - 10x3 + 
35x2 - 50x + 24. Next, dp(x)/dx = 4x:i - 30x2 + 70x - 50, and its values 
at I, 2, 3, 4 are -6, +2. -:!, +6. respectively. Thus d 11 , d 1, d2 , and d3 are -t,. 

t As was alluded to in Section 8.6, the task is really not hard in the general case. 
However, in the general case. we need the machinery of the next section. 
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+t. -t. and +f;, respectively. Using the fast Chinese remainder algorithm 
redone for polynomials (Algorithm 8.5) we compute: 

Then 

soi= do110P1 + d1t11P11 = (-i)(2)(x - 2) + (!)(7)(x - I)= J./x -¥. 
S21 = d2t12P:i + d:it1:1P2 = (-f)(4)(x - 4) + (t)(8)(x - 3) = -h + 4. 

So2 = u(x) = So1q21 + S21qo1 

= (1./x - Jj)(x2 - 7x + 12) + (-ix + 4)(x 2 - 3x + 2), 
u(x) = ix3 - 19x 2 + ¥x - 26. D 

As we mentioned in Chapter 7, we can do polynomial arithmetic, such a~ 
addition, subtraction, and multiplication, by evaluating polynomials at Ii 

points, performing the arithmetic on the values at the points, and then in· 
terpolating a polynomial through the resulting values. If the answer is a 
polynomial of degree n - I or less, this technique will yield the correcl 
answer. 

The FFT is a method of doing just th.fs·, where the points selected are 
w0 , w1, ••• , wn-1• In this case, the evaluation and interpolation algorithm~ 
were made especially easy because of properties of the powers of w and the 
particular order of these powers that we chose. However, it is worth notin~ 
that we could use any collection of points to substitute for the powers of w. 
Then we would have a "transform" that required 0 A(n log2n), rather thar.'' 
0 A(n log n) time, to compute and invert. 

8.8 GREATEST COMMON DIVISORS AND EUCLID'S ALGORITHM 

Definition: Let a 0 anda 1 be positive integers. A positive integer g is called a 
greatest common divisor of a0 and al> often denoted GCD(a0 , a 1), il 

I. g divides both ao and ah and 
2. every divisor of both a0 and a 1 divides g. 

It is' easy to show that if a0 and a 1 are positive integers, then g is unique. 
For example, GCD(57, 33) is 3. 

Euclid's algorithm for computing GCD(a0, a 1) is to compute the 
remainder sequence a0 , a1, ... , ak, where ai, for i ;::::: 2, is the nonzero re· 
i:nainder resulting from the division of a;_2 by a;-i. and where ak divides ak­
exactly (i.e., ak+i = 0). Then GCD(a0 , a 1) = ak. 

Example 8.8. In the example above, a0 = 57, a 1 = 33, a2 = 24, a3 = 9, a4 = 6 
and a 5 = 3. Thus k = 5 and GCD(57, 33) = 3. D 

Theorem 8.15. Euclid's algorithm correctly computes GCD(a0 , a 1). 

Proof The algorithm computes a;+ 1 = a;_ 1 - q;a; for I :S i < k, where q; = 
La;- 1/a;J. Since a;+ 1 < a 11 the algorithm will clearly terminate. Moreover 
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begin 
I. X 0 +- I; Yo +- 0; X 1 +- O; Yi +- I: i +- I: 
2. while a; does not divide a;_ 1 do 

begin 
3. q +- La;-1/a;J; 
4. a;+1 +- a;-1 - q * a;:, 
5. X1+1 +- X;-1 - q * X;; 

6. Yi+I +-Yi-I - q * Y;; 
7. i+-i+1 

end 
8. write a; ; write X;; write Y; 

end 

Fig. 8.6. Extended Euclidean algorithm. 
'-.......... 

any divisor of both a;-1 and a; is a divisor of a1+1t and any divisor of a; and a1+ 1 

is also a divisor of a;-1• Hence GCD(a0 , a1) = GCD(a 1, a2 ) = · · · = 

GCD(a,..._1> ak). Since GCD(ak-1' ak) is clearly a,..., we have our result. D 
\ 

The Euclidean algorithm can be extended to find not only the greatest 
common divisor of a0 and a 1 , but also to find integers x and y such that 
a0x + a 1y = GCD(a0 , a 1 ). The algorithm is as follows. 

Algorithm 8.6. Extended Euclidean algorithm. 

Input. Positive integers a0 and a1• 

Output. GCD(a0 , a 1) and integers x and y such that aoX + a1y = 
GCD(a0 , a1). 

Method. We execute the program in Fig. 8.6. D 

Example 8.9. If a0 = 57 and a1 = 33, we obtain the following values for the 
a; 's, X; 's, and Y; 's. 

a; X; Y; 

0 57 I 0 
33 0 I 

2 24 I -) 
3 9 -I ., 

.. 4 6 3 -5 
5 3 -4 7 

Note that 57 x (-4) + 33 x 7 = 3. D 

It should be clear that Algorithm 8.6 correctly computes GCD(a0 • a 1). 

since the a; 's clearly form the remainder sequence. An important property of 
the X; 's and Y; 's computed by Algorithm 8.6 is the subject of the next lemma. 
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Lemma 8.4. In Algorithm 8.6, for i :::: 0 

(8.23) 

Proo.f Equation (8.23) holds for i = 0 and i = I by line I of Algorithm 8 .. 6. 
Assume (8.23) holds for i - I and i. Then X;+1 = X;- 1 - qx; by line 5 and Y;+ 1 

= Yi-1 - qy; by line 6. Thus 

(8.24) 

By the inductive hypothesis and (8.24), we have 

Since a;-1 - qa; = ai+ 1 by line 4, we have our result. D 

Note that Lemma 8.4 does not even depend on the way q is computed at 
line 3, although line 3 is essential to guarantee that Algorithm 8.6 does com­
pute GCD(a0 , a1). We may put these observations together and prove the 
following theorem. -~· 

Theorem 8.16. Algorithm 8.6 computes GCD(a0 , a1) and numbers x and 
y such that aoX + a1y = GCD(a0 , a,). 

Proof. Elemeptary exercise from Lemma 8.4. D 

We now introduce some notation that will be useful in developments of 
the next section. 

Definition. Let a0 and a, be integers with remainder sequence 
a0 • a1 , ••• , ak .. Let q1 = Lai_1/ad, for I::;; i::;; k. We define 2 x 2 matri­
ces Rlf0·a•>, or Ru where a 0 and a, are understood for 0::;; i ::;;j::;; k, by: 

1. Ru = [ ~ ~ ]. for i :::: 0. 

2. lfj > i, then Ru=[~ -!J * [~ I J [O I J * ... * 
-qi-I I -qi+I . 

Example 8.10. Let a0 = 57 and a 1 = 33, with remainder sequence 57, 33, 24. 
9, 6, 3 and quotients q;, for I ::;; i ::;; 4, given by 1, I, 2, 1. Then 

RIA1.33'= [o 1] * [o '] * [o 1] * [o 1] =[ 3 -5]. 0 
1 -I I -2 I - I I -1 -4 7 

Two interesting properties of these matrices are given in the next lemma. 

Lemma 8.5 

) [ ai ]- R [ ai J a ai+• - ii ai+1 for i < j < k. 

[ 
X· 

b)Roi= J 
Xj+I 

YJ J 
Yi+I ' 

for 0::;; j < k, 
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where the a; ·s. x; 's, and )'; 's are as defined in the extended Euclidean 
algorithm. 

Proof Elementary inductive exercises. D 

We should observe that all the developments of this section go through 
with univariate polynomials instead of integers, with the following modifica­
tion. While it is easy to show that the greatest common divisor of two in­
tegers is uniquely defined, for polynomials over a field the greatest common 
divisor is unique only up to multiplication by a constant. That is, if g(x) 

divides polynomials a 0 (x) and a 1(x), and any other divisor of these two 
polynomials also divides g(x), then cg(x) also has this. property for any con­
stant c ¥- 0. We shall be satisfied with any polynomial that divides a 0 (x) and 
a 1(x) and that is divisible by any divisor of these. To insure uniqueness we 
could (but don't) insist that the greatest common divisor be monic, i.e., that its 
highest-degree term have coefficient l. / 

8.9 AN ASYMPTOTICALLY FAST ALGORITHM FOR POLYNOMIAL GCD'S 
\ 

For a discussion of greatest common divisor algorithms we reverse our pat-
tern and discuss polynomials first, since there are several extra details which 
must be handled when we adapt the algorithm to integers. Let a0(x) and a1(x) 
be the two polynomials whose greatest common divisor we wish to compute. 
We assume DEG(a1(x)) < DEG(a0(x)). This condition can be easily en­
forced as follows. If DEG(a0) = DEG(a1), replace the polynomials a0 and a1 

by a 1 and a0 modulo al> i.e., the second and third terms of the remainder 
sequence, and proceed from there. 

We shall break the problem into two parts. The first is to design an 
algorithm that obtains the last term in the remainder sequence whose degree 
is more than half that of a 0 • Formally, let /(i) be the unique integer such 
that DEG(a1(j)) > i and DEG(a1cn+1) :::;; i. Note that if a. 0 is of degree 11, 

then /(i) :::;; n - i - 1 on the assumption DEG(a 1) < DEG(a0), since 
DEG(a 1):::;; DEG(a;-1) - I for all i ~ 1. . 

We now introduce a recursive procedure HGCD (half GCD) which 
takes polynomials a0 and 0 1, with /1 = DEG(a0) > DEG(a1), and produces the 
matrix Roi (see Section 8.8), where j = /(n/2), that is, ai is the last term of the 
remainder sequence whose degree exceeds half that of a0 • 

The principle behind the HGCD algorithm is that quotients of polyno­
mials of degrees cJ.;. and d2 • with d1 > d2, depend only on the leading 
2(d1 - d2 ) + 1 terms of the dividend and the leading d1 - d2 + 1 terms of the 
divisor. HGCD is defined in Fig. 8.7. 

Example 8.11. Let 

p 1 (.r) = x~· + X 4 + x:1 + x 2 + x + I 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 

9. 
10. 

11. 

and 

procedure HGCD(a0 , a 1): [ 1 0 J 
if DEG(a 1) ::5 DEG(a 0 )/2 then return 0 1 
else 

begin 

end 

let a0 = boX"' + c0 , where m = LDEG(ao)/2J and 
DEG(c0 ) < m; 

let a 1 = b 1x"' + c 1 , where DEG(c1) < m; 
comment b0 and b1 are the leading terms of a0 and a1• 

We have· DEG(b0) = roEG(a0)/2l and DEG(b0) -

DEG(b1) = DEG(a0) - DEG(a1); 
R ~ HGCD(bo, b1); 

[~] ~ R [::l 
f ~ d modulo e; 
comment e and fare succesjive terms in the remainder 

sequence, of degree. at most r3m/2l, that is, 3/4 
the degree of a 0 ; 

let e = g0 xl"'12l + h0 , where DEG(h0) < Lm/2J; 
letf= g1xL"'12J + h1, where DEG(h1) < Lm/2J; . 
comment g0 and g 1 are each of degree m + 1, at most; 
S ~ HGCD(go, g1); 
q ~ Ld/eJ; 

return S * [ O 1 J * R 1 -q 

Fig. 8.7. The procedure HGCD. 

P2(x) = x" - 2x3 + 3x2 - x - 7. 

Suppose we attempt to compute HGCD(p1,p2 ). If a 0 = p 1 and a 1 = p 2 , then 
at lines 2 and 3 we have m = 2, and 

b0 = x3 + x 2 + x + 1, 
bi= x 2 - 2x + 3, 

Co= X + 1, 
Ci=-x-7. 

Then we call HGCD(b0 , bi) at line 4. We may check that R is given the 
value 

[ 01 l ] 
-(x + 3) 
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at that step. Next, at lines 5 and 6 we compute 

d = x 4 - 2x3 + 3x2 - x - 7, 
e = 4x3 - 7x2 + 1 lx + 22, 

f=--h-x 2 -ffx-¥. 
We find Lm/2J = l, so at lines 7 and 8 we obtain 

g0 = 4x 2 - 7x + 11, h0 = 22, 
g1 =--&-x -ff, '11 =-¥. 

Thus at line 9, we find 

s=[~ ~J. 
At line 10. q(x), the quotient Ld(x)/e(x)J, is found to bet tx - n. So at line I I 
we have the result 

Note that 

T [~:] = [/]. 

-(x+3) J 
t~2 + Hx + l~ · ·. 

which is ·correct since in the remainder sequence for p 1 and p 2 , e is the last 
polynomial whose degree exceeds half that of p 1• D 

Let us consider the matrix R computed at line 4 of HGCD. Presumably, 
R is 

'<rrll [o _ 1.]. 
J=l 1 qJ 

where q;(x) is thejth quotient of the remainder sequence for b0 and b1• That 
is, R = R~~f~~l2n. Yet on line 5, we used R as if it were the matrix R~''.1~1~:!,,~11 
to obtain d and e, where d is the last term in the remainder sequence of degree 
greater than 3m/2. We must show that both these interpretations of R are 

. Th . R <00•0 •> R <be.bi> s· ·1 1 h th t S correct. at 1s, · u.1<1:1111i2ll = u.1<l111i21>· 1m1 ar y, we must s ow a . 
computed on line 9, may play the role assigned to it. That is, 

S _ R(gu.111) _ R(e,(,l 
- o.lll11112ll - o.I ml· 

These results are implied by the. next lemmas. 
~ 

Lemma 8.6. Let 

(8.:!5) 

t This computation could be done right after line 5. or course. 
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where DEG(!;) < k, and let 

g(x) = g 1(x)xk + g2(x), (8.26) 

where DEG(g2) < k. Let q and q 1 be the quotients Lf(x)/g(x)J and 
L.fi(x)/gi(.t·)J, and let r and r 1 be th~ remainders f(x) - q(x)g(x) and 
f;(x) - qi{.l"}.!,1 1(.r). respectively. If DEG(f) > DEG(g) and k ::s 
2DEG(g) - DEG(}) [i.e., DEG(g 1):::::: !DEG(f1)], then 
a) q(x) = q 1 (x) and 
b) r(x) and r 1 (x)xk agree in all terms of degree k + DEG(f) - DEG(g) 

or higher. · 

Proof Consider dividing f(x) by g(x) using the ordinary division algorithm 
which divides the first term of f(x) by the first term of g(x) to get the first term 
of the quotient. The first term of the quotient js multiplied by g(x) and sub­
tracted from f(x) and so on. The first DEG(g) - k terms produced do 
not depend on g2(x). But the quotient has only terms of degree 
DEG(/) - DEG(g). Thus if DEG(/) - Di'.!J(g) ::s DEG(g) - k, that is, 
k s 2DEG(g) - DEG(/), the quotient· does not depend on g2(x). If 
DEG(/) - DEG(g) s DEG(/) - k, then the quotient does not depend on 
f 2(x). But DEG(f) - DEG(g) s DEG(f) - k follows from k s 2DEG(g) -
DEG(/) and DEG(/) > DEG(g). Thus part (a) follows. For part (b), 
similar reasoning shows that the remainder terms of degree DEG(/) -
(DEG(g) - kl_ or greater do not depend on g2(x). Similarly, terms of the re­
mainder of degree k or greater do not depend on f 2(x). But DEG(/) -
DEG(g) + k > k. Thus r(x) and r 1(x)xk agree in all terms of degree 
DEG(f) - DEG(g) + k or higher. D 

Lemma 8.7. Let f(x) = f 1(x)xk + f 2(x) and g(x) = g 1(x)xk + g 2(x), where 
DEG(};) < k and DEG(g2 ) < k. Let DEG(f) = n, and DEG(g) < 
DEG(j). Then 

Rlf.t1> = R<li.t11> 
o.L<fb1+ kl12)) 0.1([ n-kl2 l>· 

That is, the quotients of the remainder sequences for u: g) and (f1 , g 1 ) 

agree at least until the latter reaches a remainder whose degree is no 
more than half that of Ji. 

Proof Lemma 8.6 assures that the quotients agree, and that in the corre­
sponding remainders of the two remainder sequences a sufficient number of 
the high-order terms agree. D 

Theorem 8.17. Let a0(x) and a1(x} be polynomials, with DEG(a0 ) = n and 
DEG(a 1) < n. !hen HGCD(ao. a1) = Ro.11i1i2>· 

Proof The result is a straightforward induction on n, using Lemma 8.7 to in­
sure that R at line 4. is R~'.7<i':;~112 u and that S at line 9 is R~;;~1~~;~1>~i.ihn>· D 
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Theorem 8.18. HGCD requires O"(M(11) log 11) time if its arguments are 
of degree at most 11. where M(11) is the time required to multiply two 
polynomials of degree 11. 

Proof We show the result for /1 a power of 4. Since the time for HGCD is 
clearly a nondecreasing function. the theorem then follows for all 11. If 
DEG(au) is a power of 4, then 

DEG(h0 ) = tDEG(a0 ) and 

Thus T(n), the time for HGCD with input of degree n. is bounded by 

T.(11) :5 2TG) + cM <111 (8.27) 

for some constant c. That is, the body of HGCD involves two calls to itself 
with half-sized arguments and a constant number of other operations which 
are either 0 A(11} or 0 A(M(11)) in time complexity. The solution to (8.27) 
should be familiar; it is bounded from above by c 1M(n) log n for some con­
stant c 1• D 

Now we proceed to the complete \algorithm for greatest common divisors. 
It uses HGCD to calculate R0•1112 • then R 0,31114, then R0.1,,18 , and so on, where 11 
is the degree of the input. 

Algorithm 8.7. GCD algorithm. 

Input. Polynomials p 1(x) and p 2(x), where DEG(p2) < DEG(p1). 

Output. GCD(p1 , p2 ), the greatest common divisor of p 1 and p 2 • 

Method. We call the procedure GCD(p 1, p2 ), where GCD is the recursive 
procedure of Fig. 8.8. D · 

Example 8.12. Let us continue Example 8.11 (p. 303). 
x:. + .x4 + x:i + x 2 + I and p 2(x) = x·1 - '.!x=1 + 3x2 - x - 7. 
found 

HGCD(ph P2} = [-(1. _1_ 1 ) 
4 .t Tii 

There. P1(x} = 
We already 

Thus we compute bu= 4x3 - 7x2 + I Ix+ 22 and b1 = --i\rx2 - ~i:x - 4H5 at line 
3. We find that b 1 does not divide. bu. At line 5. we find 

~ 

bu modulo h, = 395'.!x + 3952. 

Since the latter divides -i~;X2 - f.{x - 4;. the call to GCD at line 6 termi­
nates at line I and produces 3952.r + 3952 as an answer. Of course. x + I is 
also a greatest common divisor of p, and P2· D 
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1. 

2. 

3. 

4. 

5. 
6. 

procedure GCD(a0 , a 1): 

if a 1 divides a0 then return a 1 

else 
begin 

end 

R +- HGCD(a0 , a.); 

[bo] +- R * [ao]; 
b1 a 1 

if b1 divides b0 then return b 1 

else 
begin 

c +- b0 modulo b1 ; 

return GCD(b1, c) 
end 

Fig. 8.8. Procedure GCD . .... 

8.10 

The correctness of Algorithm 8.7 is trivial if we can show that it termi­
nates. Thus the correctness of the algorithm is implied by its timing analysis, 
the result of the next theorem. 

Theorem 8.19. If DEG(p1) = n, then Algorithm 8.7 requires 
0 A(MOZTlog n) time, where M(n) is the time needed to multiply two 
polynomials of degree n. 

Proof The inequality 

T(n) ~ r(~) + C1M(n) + C2M(n) log n, (8.28) 

where c1 and c2 are constants, describes the running time of Algorithm 8.7. 
That is, the degree of b1 is less than half that of a0 , so the first term of (8.28) 
accounts for the recursive call on line 6. The term c1M(n) accounts for the 
divisions and multiplications on lines 1, 3, 4, and 5, and the last term accounts· 
for the call to HGCD on line 2. The solution to (8.28) is easily seen to be 
bounded from above by kM(n) log n for a constant k. 0 

Corollary. The GCD of two polynomials of degree at most n can be 
computed in OA(n log2n) time. 

8.10 INTEGER GCD'S 

We shall now briefly discuss the modifications to the procedures HGCD and 
GCD to make them work for integers. To understand where problems arise. 
let us look at Lemma 8.6, which showed that when taking quotients of 
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polynomials of degrees /1 and /1 - d, we have no need for terms of degree less 
than /1 - 2d in either. 

In analogy with Lemma 8.6, we may consider two integers/ and g, with 
f > g, and write!= J,.2k + !2 and g ~ g12k + g2, where f 2 < 2k and g2 < 2~·. 
In place of the condition DEG(g 1(x)) ;;::: !DEG(f1(x)). we may assume 
Ji ::5 (g1) 2 • Then, we may let/= qg +rand !1 = q1g1 + r 1• Combining these 
formulas, we obtain 

(8.29) 

Since r 1 < g1, J; < 2k, and all integers are nonnegative, we may easily 
show from (8.29) that q - q 1 ::5 0. Let q = q 1 - m, for some m ;;::: 0. Then 
from (8.29) we may conclude ·· 

mg12k ::5 qg2 + r = (q1 - m)g2 + r. 
Hence 

(8.30) 

Since Ji ::5 (g1) 2 , we have q1 ::5 g 1• Also, g2 < 2k and r < g are known, so 
(8.30) implies: ' 

(8.31) 

Now m < 2 follows immediately from (8.3 I). We conclude that either q = q 1 

or q = q 1 - I. 
In the former case, there is no problem. If q = q1 - I, on the other hand, 

we cannot expect HGCD to work properly. Fortunately, we can show that 
q1 =fi q only if the quotient is the last one in the remainder sequence whose 
matrix is produced by HGCD. That is, if we substitute q - q1 = - I into 
(8.29), we have 

(8.32) 

Since r < g = g12k + g2 , we conclude from (8.32) that r 12k + J; < g2(1 + q), 
or surely r1 < 1 + q, that is, r 1 < q1. 

Thus r1> which is the term in the remainder sequence following.fi and g 1 , 

must be less than fi/g 1• Since g1 ;;::: VJ:. we have r1 < VJ:. meaning that 
HGCD would return a matrix involving quotients up to !1/g1 but no further. 
If this matrix is used in line 5 of HGCD (p. 304), it is possible that f com­
puted on line 6 will not be less than a~14 • However. since there was an error 
of only one in the last quotient, it is possible to show that extending the 
remainder sequence a limited amount (independent of the size of a0 ) after line 
6 is sufficient to bring the sequence below a~14 • A similar "fixup" is needed for 
GC D after line 5 of that procedure. 

Another source of problems concerns Lemma 8.6. With polynomials, 
we were able to show that the remainder sequence formed by considering 
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leading terms of the polynomials agreed in certain high-order terms with the 
sequence formed from the complete polynomials. The analogous results hold 
approximately for integers, provided we have q = q 1• However, we can only 
limit the difference between rand r12k to within 2k(q + I); we cannot be sure 
that any particular bits of r and r 12k will agree. Nevertheless, this source of 
"rounding error" will cause only a limited number of additional terms of the 
remainder sequence to be needed after line 6 of HGCD and line 5 of GCD. 

Since the additional cost of extending the remainder sequence a bounded 
amount is 0 8 (M(n)) if M(n) is the time to multiply n-bit numbers, the timing 
analyses of HGCD and GCD are essentially unaffected. We therefore have 
the following theorem. 

Theorem 8.20. If M(n) is the time needed to multiply two n-bit numbers, 
then there is an algorithm to find GCD(a0 , a 1) for integers a0 and a 1 in 
0 8 (M(n) log n) time. 

Proof Exercise based on the above suggested modification to procedures 
HGCD and GCD. 0 . -~.-

Co~llary. We can find integer GCD's in 0 8 (n log2n loglog n) time. 0 

8.11 CHINESE REMAINDERING REVISITED 

As promised, we shall now see how the GCD algorithm can be used to 
develop an asymptotically fast algorithm for the integer case of Chinese 
remaindering without preconditioning. Recall that the preconditioned 
Algorithm 8.5 requires 0 8(M(bk) log k) time for reconstructing u from k 
moduli of b bits each. The problem is to compute d; = (p/p;)-1 modulo p;, 

where p0 , p 1, ••• , Pk-i are the moduli and p their product. 
Using the obvious divide-and-conquer algorithm, we can compute p itself 

by first computing products of pairs of Pi 's, then products of four Pi 's, etc., in 
0 8(M(bk) log k) time. The techniques of Algorithm 8.5 enable us to compute 
ei = (p/pi) modulo Pi in 0 13(M(bk) log k) steps, for 0 ~ i < k, without precon­
ditioning. It remains to determine the time necessary to calculate d; = e1 1 

modulo Pi· 
Since p/pi is the product of the moduli other than p;, it must be relatively 

prime to Pi· If we express p/pi as qpi + ei for some integer q, it follows that e; 
and Pi are relatively prime, that is, GCD(ei, Pi)= 1. Thus, given x and y such 
that e;x + P;Y = 1, we have eix = I modulo Pi· It follows that x = e/ 1 = d; 
modulo Pi· But the extended Euclidean algorithm computes such an x and Y· 

While procedure GCD was designed to produce only GCD(p 1, p 2), Wt! 

designed HGCD to produce the matrix Ro.1<1112,. Thus a simple modification 
to the GCD algorithm could allow it to produce Ro.l!Ol· It is then possible to 
obtain x, since it will be the upper left element of this matrix. It is now pos-
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sible to state the timing result for Chinese remaindering without precondi­
tioning. 

Theorem 8.21. Given k moduli of h bits each. in the integer case Chinese 
remaindering is 0 11(M(bk) log/.:)+ 0 11(/.:M(b) log b). 

Proof By the above analysis, the first term accounts for computing the £';·s 
and executing Algorithm 8.5. The second term accounts for computing the 
d;'s, since the computation of x and y may be done modulo f';. permitting h-bit 
arithmetic throughout. D 

Corollary. Chinese remaindering without preconcjjtioning requires time 
at most 0 8 [bk log2bk loglog bk].t 

8.12 SPARSE POLYNOMIALS 

We have been using a representation of univariate polynomials which as­
sumes that the polynomial Il'.:-01a;xi is dense, that is, almost all of the coeffi­
cients are nonzero. For many apQlications, it is useful to assume that the 
polynomial is sparse, that is, the number of nonzero coefficients is much less 
than the largest degree. In this situation, the logical representation of a 
polynomial is the list of pairs (a;, j;) consisting of a nonzero coefficient and its 
corresponding power of x. 

While we cannot delve into all the techniques known for doing arithmetic 
on sparse polynomials, we shall mention two interesting aspects of the theory. 
First, it is unreasonable to use Fourier transforms to do multiplication; thus 
we shall give one reasonable algorithm to multiply sparse polynom.Jals. Sec­
ond, we shall exhibit a surprising difference between the way arithmetic 
should be done on dense and on sparse polynomials by considering the com­
putation of [p(x)]4. 

The most reasonable known strategy for handling sparse polynomials 
when multiplications are being done is to represent a polynomial I1'= 1a;xi, as 
the list of pairs (a 1,j1), (a2,j2), •• • , (a,,,j11 ), where we assume the j's are dis­
tinct and in decreasing order, i.e., j; > j;+1 for I :5 i < 1z. To multiply two 
polynomials represented in this way, we compute products of pairs and sort 
the resulting terms by their exponents (second components of the pairs), com­
bining any terms with identical exponents. The penalty for not doing so is 
that our representations may have increasingly many terms with the same 
exponent. Thus, as~more and n:iore arithmetic is done. the cost begins to sig­
nificantly exceed what it could have been if we had combined terms at each 
step. 

t It is interesting to note that for MC11l = 11 log 11 loglog 11. this figure is the best that 
can be obtained from Theorem 8.:! I. no matter how b and k are related. 
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If we multiply sorted sparse polynomials, we can take advantage of the 
fact that they are sorted and the fact that one may have many more terms 
than the other to make the sorting of the product as simple as possible. We 
present an informal algorithm to do multiplication of sparse polynomials m 
this way. 

Algorithm 8.8. Multiplication of sorted sparse polynomials. 

Input. Polynomials 

Ill II 

f(x) = L a;xi; and g(x) = L b1xk1 , 

i=l 

represented by lists of pairs 

(ai.j1), (a2,j2), ... , (am,j111) 

i=t 

and 

where the j's and k's are monotonically decreasing. 

Output 
p -~· L c;x'1 = f(x)g(x), 

i=I 

represented by a list of pairs where the //s are monotonically decreasing. 

Method. Without loss of generality, assume m ~ n. 

I. Constructthe sequences S;, for I :5 i :5 n, whose rth term, I :5 r s m, is 
(arb;, jr + k;). That is, S; represents the product of f(x) with the ith term 
of g(x). 

2. Merge S2;_1 with S2; for I :5 i :5 n/2, combining terms. Then merge the 
resulting sequences in pairs, combining terms, and repeat until one sorted 
sequence remains. D 

Theorem 8.22. Algorithm 8.8_requires O(mn log n) time,t where m :;;:::: n 
is assumed. 

Proof Step 1 is O(mn),_ surely. Step 2 must be repeated flog n l times, and 
the total work at each pass is clearly O(mn). D 

Now let us see how Algorithm 8.8 and its time complexity affects the 
way sparse polynomial arithmetic should be done. 

Example 8.13. Consider the computation of p 4(x), where p(x) is a polynomial 
with n terms in both the dense and sparse cases. Given that p is dense, it is 
easy to show that the best way to compute p4(x) is by two squarings. That is. 

t Note we are using complexity on a RAM rather than arithmetic complexity here. 
since branches are inherent in the program for Algorithm 8.8, even if m and n are 
fixed. 
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assume M(n), the time to multiply dense polynomials. is rn Jog 11. Then we 
can compute p2(x) in en log /1 steps and square the result in 2rn Jog 211 steps. 
for a total cost of 3cn log /1 + 2cn steps. In comparison, if we compute 
p4 = p x (p x (p x p)). the time required is easily seen to be 6rn log 11. on the 
assumption that the multiplication p x p2 requires 2M(n) steps and the mul­
tiplication p x p=1 requires 3M(n) steps. Thus. for dense polynomials. we 
make the expected observation that p4 should be calculated by repeated 
squaring. 

Now suppose instead that p(x) is a sparse polynomial with /1 terms. If 
we compute (p2) 2 using Algorithm 8.8. the time required is cn2log /1 for the 
first squaring and, assuming that. few terms can be combined. rn4 log 112 

for the second, a total of c(2114 + 11 2) Jog 11. On the other hand, compu­
tation of p x (p x (p x p )) requires cn2log n + cn3log n + rn4log 11 = 
c(114 + na + 112) log 11. This figure is less than the time to square twice. Thus 
repeated squaring of sparse polynomials is not always a good way to compute 
p4 • The effect becomes more pronounced if we consider computation of p2 ' 

for large integers t. D 

EXERCISES 

8.1 Use Algorithm 8. I to find the "reciprocal'" of 429. 

8.2 Use Algorithm 8.2 to find 4292• 

8.3 Use Algorithm 8.3 to find the "reciprocal" of 

x; - x 6 + x5 - 3x4 + x3 - x 2 + 2x + I . 
*8.4 Give an algorithm analogous to Algorithm 8.2 to compute squares of polyno­

mials. 

8.5 Use your algorithm from Exercise 8.4 to compute (x3 - x2 + x - 2)2• 

8.6 Use Algorithm 8.4 to find the representation for one million when the moduli are 
2, 3, 5, 7. 11, 13, 17, 19. 

8.7 Write a complete algorithm to find residues ofa polynomial modulo a collection of 
polynomial moduli. 

8.8 Find the residues of x; + 3.r; + x5 + 3_,-1 + x2 + I modulo x + 3 .. r 1 - 3x + I. 
x2 + x - 2, and x2 - I. 

8.9 The polynomials in Exercise 8.8 were carefully selected to make hand computa­
tion feasible. Select at random four polynomials of degrees I. 2. 3, and 4 and find 
the residues of x1' - 4 with respect to the four polynomials. What happens'! 

8.10 Let 5. 6. 7. 11 be four moduli. Find that 11 less than their product such that 
II +-+ (), 2, 3, 4). 

*8.11 Generalize Lemma 8.3 to apply to arbitrary polynomial moduli whose roots are 
known or can be found (e.g .. polynomials of degree less than 5). What is the 
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complexity of polynomial Chinese remaimlering by use of your algorithm, as a 
function of the number and degree of the moduli? 

8.12 Find a polynomial whose values at 0. I. 2. 3 are. respectively. I. I, 2. 2. 

8.13 Find the greatest common divisor of 

x6 + 3x• + 3x4 + .r1 - · x2 - x - I . 
x6 + 2.r' + x4 + 2.\.a + 2x2 + x + I . 

8.14 The polynomials in Exercise 8.13 were carefully selected to make hand compu­
tation feasible. Select two arbitrary polynomials of degrees 7 and 8 respectively 
and attempt to find their GCD. What happens? What do you suspect the 
GCD would turn out to be? 

*8.15 Give a complete algorithm to find integer GCD's that runs in 0 11(11 log211 loglog11) 
time on 11-bit integers. 

8.16 Use your algorithm from Exercise 8.15 to find GCD(377,233). 

*8.17 Suppose p(x) is a sparse nth-degree polynomial. Determine, as a function of n. 
the best method of evaluating p 8(x) if multiplication is by Algorithm 8.8. 

**8.18 The following method of computing f(x~/g(:c(for polynomials f and g, on the 
assumption that g divides f, is proposed. Letf and g be of (n - l)st degree or 
less. 
(I) Compute F and G. the discrete Fourier transforms off and g, respectively. 
(2) Divide the terms of F by corresponding terms in G to yield sequence H. 
(3) Take the inverse transform of H. The result is f/g. Will this algorithm 

work? 

**8.19 Let M(n) be the time to multiply 11-bit numbers and Q(n) the time to find 
L v'TJ for an 11-bit integer i. Assume M(an) 2: aM(n) for a 2: I and similarly for 
Q(n). ~how that M(n) and Q(n) are within a constant factor of one another. 

*8.20 Generalize Exercise 8.19 to (a) polynomials. (b) rth roots for fixed r. 

**8.21 Give an 0_...(11 log 11) algorithm to evaluate an (11 - !)st-degree polynomial and 
all its derivatives at one point. 

**8.22 A dense polynomial in r variablest can be represented as 

11-1 11-1 11-1 

"" "" . . . ""' a ,.;, r" "(; r £.J £..J L,,,, i1i:! · · · i,.· I · :! • • • • r • 
j 1=11 j:!:ll ir=O 

Show that by evaluating and interpolating these polynomials at points x 1 = cJ•. 
x 2 = wi• .. .. , x,. = c.Jr. for 0 :S.jk < 211, where w is the principal 2nth root of 
unity, we can multiply such polynomials in 0.-1.(11,.log 11). 

**8.23 Show that under reasonable assumptions about the smoothness of Min) and 
0(11), the times needed to multiply and divide dense polynomials in r variables. 
J\1(11) and 0(11). are within a constant factor of one another. 

**8.24 Find an 0 11(11 log2n loglog 11) algorithm to convert (a) 11-bit binary numbers to 
decimal: (b) 11-place decimal number to binary. 

t As r gets large. the dense assumption becomes progressively less useful. 
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•*8.25 The least common multiple CLC M) of integer~ (polynomials) x and y is that : 
(some : in the polynomial case) divisible by x and y which divides any other in­
teger (polynomial) also divisible by x and y. Show that the time to find the LCM 
of two 11-bit numbers is at least as great as the time to multiply 11-bit numbers. 

8.26 Does the method of Section 2.6 for integer multiplication yield an 0"(11 1•5!1) time 
polynomial multiplication algorithm? 

"'"'8.27 Show that we may evaluate an (11 - I )st-degree polynomial at the points 
a". a' ... . , a"- 1 in 0_..(11 log 11) steps. [Hint: Show that c; = ~;':;,'h;t1;; can be 
written as CJ= "l.1~01f(i)gU- i) for some functions I and g.] 

"'*8.28 Show that we may evaluate an (11 - I )st-degree polynomial at the /1 points 
ba2i +' cai + d, for 0 s j < 11, in 0 ... (11 log 11) steps. ~ 

8.29 Give recursive versions of Algorithms 8.4 and 8.5. 

Research Problems 

8.30· In this chapter, we have shown a number of polynomial and integer problems to 
be 

i) essentially as complex as multiplication, or 
ii) at most a log factor more romplex than multiplication. 

Some of these problems appear in the exercises of this chapter. Exercise 9.9 
gives another problem in group (ii)- the problem of "and-or" multiplication. 

A reasonable research problem is to add to the set of problems in either 
class (i) or (ii). Another area is to show that some of the problems in group (ii) 
must necessarily be of the same complexity. For example, one might conjec­
ture that this is true for GCD's and LCM's. 

8.31 Another problem which appears deceptively simple is to determine whether 
Algorithm 8.8 is the best that can be done to multiply sorted sparse polynomials 
and sort the result. Johnson [ 197 4] has considered some aspects of this 
problem. 

8.32 The value of n for which many of the algorithms described here become prac­
tical is enormous. However, we could carefully combine them with the 0(111.59) 

methods mentioned in Section 2.6 and Exercise 8.26 for some small n's and the 
obvious 0(112 ) method for the smallest values of 11. Obtain in this way upper 
bounds on the values of n for which the problems of this chapter have better 
algorithms than the obvious ones. Some work along these lines has been done 
by Kung [ 1973]. 

BIBLIOGRAPHIC NOTES 

Theorem 8.2. the fact that finding reciprocals is no harder than multiplication. is 
from Cook [ 1966). Curiously. the fact that the algorithm has a polynomial analog 
was not realized for several years. l\foenck and Borodin [ 1972) gave an 0 11 (11 log~,, 

loglog 11) algorithm for division. and shortly thereafter the 0 11 (11 log 11 loglog 11) di­
vision algorithm was observed independently by several people. including Sicveking 
[ 1972]. 
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The development of algorithms for modular arithmetic, and for interpolation and 
evaluation of polynomials follows the lines of Moenck and Borodin [ 1972]. An 
0 11(11 log211 loglog 11) preconditioned algorithm for Chinese remaindering was found by 
Heindel and Horowitz [ 1971]. Borodin and Munro [ 1971] gave an 0(111.91 ) mul­
tipoint polynomial evaluation algorithm, and Horowitz [ 1972] extended this to in­
terpolation. Kung [ 1973] developed an Ou(n log211) polynomial evaluation algorithm 
without using a fast (11 log 11) division algorithm. The unity of Chinese remaindering, 
interpolation, the evaluation of polynomials, and the computation of integer residues is 
expressed in Lipson [ 1971]. 

The 0 11(11 log211loglog11) integer GCD algorithm is by Schonhage (1971]. It was 
adapted to polynomials and general Euclidean domains by Moenck [ 1973]. 

A survey of classical techniques for GCD's can be found in Knuth [ 1969]. A 
sampling of the material on the complexity of sparse polynomial arithmetic can be 
found in Brown [ 1971], Gentleman [ 1972] and Gentleman and Johnson [ 1973]. Ad­
ditional results on computer implementation of polynomial arithmetic can be found in 
Hall [ 1971], Brown [ 1973], and Collins [ 1973]. Algorithm 8.8 with a heap data 
structure has been implemented by S. Johnson in AL TRAN [Brown, 1973]. 

Exercises 8.19 and 8.20 are due to R. Karp and J. Ullman. Exercise 8.21 on the 
evaluation of a polynomial and its derivatives y.ias ~served by Vari [ 1974) and Aho, 
Steiglitz, and Ullman [ 1974], independently. Exercise 8.28 is from the latter. Exer­
cise 8.27 is due to Bluestein [ 1970) and Rabiner, Schafer, and Rader [ 1969). An 
expanded treatment of polynomial and integer arithmetic is found in Borodin and 
Munro (1975]. 
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Pattern matching is an integral part of many text-editing, data retrieval, and 
symbol manipulation problems. In a typical string-matching problem we are 
given a text string x and a set of pattern strings {y1 • y 2 , ••• }. The problem is 
to locate either an occurrence or all occurrences of pattern strings in x. The 
set of patterns is often a regular set specified by means of a regular expression. 
In this chapter we present several techniques for solving pattern-matching 
problems of this nature. 

We begin by reviewing regular expressions and finite automata. Next 
we give an algorithm for finding in a string x an occurrence of any substring y 
which is in a set denoted by a given regular expression. The algorithm runs 
in time on the order of the product of the length of x and the length of the reg­
ular expression. We then present a linear algorithm for determining whether 
a given string y is a substring of another given string x. There then follows a 
powerful theoretical result which states that any pattern recognition problem 
which can be solved by a two-way deterministic pushdown automaton can be 
solved in linear time on a RAM. The result is remarkable since the pushdown 
automaton may take quadratic or even ex.ponlntial time to solve the problem. 
Finally, we introduce the concept of a position tree and apply it to some other 
pattern-matching problems such as finding the longest repeated substrings in 
a given string. 

9.1 FINITE AUTOMATA AND REGULAR EXPRESSIONS 

Many pattern recognition problems and their solutions can be expressed in 
terms of regular expressions and finite automata. Thus we begin with a review 
of this material. 

Definition. An alphabet is a finite set of symbols. A string over an alpha­
bet I is a finite-length sequence of symbols from /. The empty string, 
denoted by E, is the string with no symbols. If x and y are strings, then the 
concatenation of x and y is the string xy. If xyz is a string, then x is a 
prefix, y a substring, and z a suffix of xyz. The length of a string x. de­
noted ·1xl, is the total number of symbols in x. For example. the string 
aab is of length 3; E is of length 0. 

A language over an alphabet I is a set of strings over I. Let L 1 and L.~ 
be two languages. The language L 1L2 , called the concatenation of L1 and 
L 2 , is {xylx E L 1 and y E L2 }. 

Let L be a language. Then define U = {E} and V = LLi-• for i 2 1. 
l he Kleene closure of L. denoted L *, is the language L * = U ~=o L; and 
the positive closure of L, denoted L +, is the language L + = U ;:1 V. 

Regular expressions and the languages they denote (regular sets) are a 
useful concept in many areas of computer science. In this chapter, we shall 
find that they are useful descriptors of patterns. 
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Definition. Let I be an alphabet. The re1:ular c·xpressions m·cr I and the 
languages that they denote are defined recursively as follows. 

I . .ff is a regular expression and denotes the empty set. 
2. E is a regular expression and denotes the set { E}. 
3. For each a in/, a is a regular expression and denotes the set {a}. 
4. If p and q are regular expressions denoting the regular sets P and Q. 

respectively, then (p + q), (pq), and (p*) are regular expressions that 
denote the sets P U Q, PQ, and P*. respectively. 

In writing a regular expression we can omit many parentheses if we 
assume that * has higher precedence than concatenation or+, and that con­
catenation has higher precedence than +. For example, ((0( I * )) + 0) may be 
written 01*+0. We also abbreviate the expression pp* top+. 

Example 9.1 
1. 01 is a regular expression that denotes { 0 I } . 
2. (0 + I)* denotes {O, 1} *. 
3. 1(0 + l)* 1 + 1 denotes the set of all strings beginning and ending with 

a 1. D 

A language is said to be regular if and only if it can be denoted by a regular 
expression. Two regular expressions a and f3 are said to be equivalent, de­
noted by a= f3, if they denote the same set. For example, (0 + I)* = (0* I*)*. 

The concept of a deterministic finite automaton was introduced in Chap­
ter 4 (p. 143). It may be viewed as a device consisting of a "control" which 
is always in one of a finite set of states and an input tape which is scanned 
from left to right by a tape head. The deterministic finite automaton makes 
"moves" determined by the current state of the control and input symbol 
under the input head. Each move consists of entering a new state and shifting 
the input head one square to the right. An important fact about finite auto­
mata is that a language can be represented by a regular expression if and 
only if it can be accepted by a finite automaton .. 

A major generalization is the nondeterministic finite automaton. For 
each state and input symbol, a nondeterministic finite automaton has zero or 
more choices of next move. It may also have the choice of changing state 
with no shift of the input head. 

Definition. A nondeterministic fi11ite automaton (ND FA) M is a 5-tuple 
(S, I, o, s0 , F), where 

• 
I. S is the finite set of states of the control. 
2. I is the alphabet from which input symbols are chosen. 
3. o is the state tra11sitio11 fu11ctio11 which maps S x (I U { E} J to the 

set of subsets of S. 
4. s0 in S is the i11itial state• of the finite control. 
5. F ~ Sis the set of.final (or acccpti111:> states. 
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An insta11ta11eous description (ID) of an NDFA Mis a pair (s. w), wher( 
s E S represents the state of the finite control and w E /* represents th( 
unused portion of the input string (the symbol under the input tape head fol. 
lowed by those to the right). An initial ID of M is an ID in which the firs1 
component is the initial state and the second component is the string to b( 
recognized, i.e., (s 0 , w) for some w E /*. 'An accepting ID is one of the fonr 
(s, e), wheres E F. 

We represent moves of an NDFA by a binary relation f- on ID's. JI 
5(s, a) contains s', then we write (s, aw) r (s', w) for all win/*. Note that a 
may be either e or a symbol of I. If a = e, then the state transition may be 
made independently of the input symbol scanned. If a "is not E, then a mus1 
appear on the next input square and the input head is shifted one square tc 
the right. 

We use j!- to denote the reflexive and transitive closure of r· We say w 
is accepted by M if (s 0 , w) ~ (s, e) for some sin F. That is, an input string 11. 

is accepted by M if there is some sequence of zero or more moves by which 
M can go from the initial ID (s0 , w) to .an att:epting ID (s, e). The set ol 
strings accepted by M, denoted L(M), is the language accepted by M. 

Example 9.2. Consider a nondeterministic finite automaton M that accepts 
all strings of a's and b's that end in aba" That is, L(M) = (a+ b)*aba. Let 
M = ({s 1 , s2 , s3 , s4}, {a, b}, 5, s1 , {s4}), where 5 is defined as in Fig. 9.1.­
(The e-transitions here are not necessary.) 

Suppose the input to Mis ababa. M can trace out the sequences of I D's 
shown in Fig. 9.2. Since (s1 , ababa) ~ (s4 , e) and since s4 is a final state, 
the string ababa is accepted by M. 0 

Associated with an NDFA is a directed graph which naturally represent~ 
its state transition function. 

Definition. Let M = (S, /, 5, s0 , F) be an NDFA. The transition dia­
gram associated with M is a directed graph G = (S, £) with labeled 
edges. The set E of edges and the labels are defined as follows. If 

· 5(s, a) contains s' for some a in I U {e}, then the edge (s, s') is in E. The 
label of (s, s') is the set of b in I U {e} such that 5.(s, b) contains s'. 

Input 
State ll b E 

s, {si.s2} {si} ¢ 
S2 ~ {s3} ¢ 
S3 {S4} ¢ {si} 
S4 ~ ¢ {s2} 

Fig. 9.1. State transition function a. 
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/ (s,, baba)-----+ (s,, aba) ~Is,. ba)---+ Is,+ a)~ (s,. c) 

,, ...... ,,.,"" r "'t'-"'"''~'"t 
(s2 • baba)-----+ (s,. aba) ______.is., ba) Is., f) 

Fig. 9.2 Sequences of I D's for input CJbCJba. 

a, b 
a 

b 

a 

Fig. 9.3 Transition diagram for Example 9.2. 

Example 9.3. The transition diagram for the NDFA M of Example 9.2 is 
shown in Fig. 9.3. Final states are doubly circled. D 

We can relate transition diagrams of NDFA's and path problems in 
graphs by means of a certain closed semiring. Let I be an alphabet and let 
S 1 = (9(1 *), U, ·, .0, {e}). From Section 5.6 we know-that S 1 is a closed 
semiring in which 9(/ *) is the set of all languages over I, 0 is the identity 
under union, and { e} is ·the identity under · (concatenation). 

Theorem 9.1. Each language accepted by a nondeterministic finite au­
tomaton is a regular set. 

Proof Let M = (S, I, S, so, F) be an NDFA and let G = (S, E) be the corre­
sponding transition diagram. Using Algorithm 5.5, we can compute for each 
pair of vertices s and s' in the transition diagram, the language Lss'• which is 
the set of all strings labeling paths from s to s '. We see that the label of each 
edge of a transitioll diagram is a regular expression. Moreover, if the sets 
ct-1 computed in Algorithm 5.5 have regular expressions, then by line 5 of 
the algorithm, the sets C~ will also have regular expressions. Thus each lan­
guage Lss' can be denoted by a regular expression, and hence is a regular set. 
L(M) = U sefLs .. • is a regular set. since, by definition, the union of regular sets 
is regular. D 
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The converse of Theorem 9.1 is also true. That is, given a regular 
expression, there is an ND FA accepting the language denoted. What will 
turn out to be most important from the computational complexity point of 
view is that we can find such an ND FA with no more states than twice the 
length of the regular expression and such that no state has more than two suc­
cessors. 

Theorem 9.2. Let a be a regular expression. Then there exists an 
NDFA M = (S, I, S, s0 , {sr}) accepting the language denoted by a 
having the following properties: 

I. llSll s 2lal. where lal denotes the length of a.t 
2. For each a in I U {e}, S(sr, a) is empty. 
3. For each s in S, the sum of li«S(s, a)ll over all a m I U {e} is at 

most 2. 

Proof The proof is by induction on the length of a. For the basis, lal = 1, a 
must be of one of the three forms (a) 0, (b) E, 01.(c) a for some a E /. The three 
two-state automata shown in Fig. 9.4 accept the denoted languages and sat­
isfy the conditions of the theorem. 

For the inductive step, a must be of one of the four forms (a) f3 + y, (b) 
{3y, (c) {3*, or (d) (/3) for regular expressions f3 and y. In case (d), a and f3 
denote the same language, so the induction is immediate. For the other 
cases, let M' and M" be NDFA's accepting the languages of f3 and y, respec­
tively and having disjoint sets of states. Let their initial states be s~ and 
s~ and their final states be s( and s'(. Then the transition diagrams in cases 
(a), (b), and (c) are as shown in Fig. 9.5. 

Let the lengths of a, {3, and y be la!, l/31, and IYI, respectively. Let n, n' 
and n" be the numbers of states in M, M', and M". In case (a), we have lal = 

l/31 + IYI + 1 and /1 = n' + n" + 2. By the inductive hypothesis, n' s 21/31 
and n" s 2lyl, so n s 2lal. Also, the only edges added in case (a) are two 
out of s 0 , which satisfies the constraint of at most two edges leaving any 
vertex, and one each out of s; ands~. Since by hypothesis,_s; ands~ each had 

expressions of length I: (a) for .0'. (b) for {e}, (c) for {a}. 

t The length of a regular expression a is the number of symbols in the string a. For 
example, Je* I = 2. We could strengthen this statement by ignoring parentheses when 
counting the length of a [e.g., under these circumstances the regular expression (a*b*)* 
would be of "length" 5 rather than 7]. 
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cc:~s~)~~~:.:-~~~s7~) 
~-------~ -------- / 

(a) lb) 

f 

(c) 

Fig. 9.5 Accepting the languages denoted by increasingly longer regular expressions: 
(a) for {3 + y; (b) for {3y; (c) for {3*. 

zero edges leaving before, the constraint on edges leaving is satisfied for s( 
and s'f. Finally, Sr clearly has no edges leaving. Case (b) is similarly 
checked.t 

For case (c), we have lad= I.Bl+ I and n = 11' + 2. Since n's 21.BI. it 
follows that n s 2lal. The constraint that no more than two edges leave any 
vertex is easy to check. D 

Example 9.4. Let us construct an NDFA for the regular expression ab*+ c, 
which is of length 5. The NDFA's for a, b. and care as in Fig. 9.4(c). Using 
the construction shown in Fig. 9.5(c), we construct the automaton for b* as 
shown in Fig. 9.6(a). Then, using the construction of Fig. 9.5(b), we con­
struct for ab* the automaton shown in Fig. 9.6(b). Finally, we use the con­
struction of Fig. 9.5(a) to construct the NDFA for ab*+ c. This automaton, 
which has I 0 states, is shown in Fig. 9.6(c). D 

One additional result needs mentioning. Given any NDFA. we can find 
an equivalent "deterministic" machine. The deterministic finite automaton 
may, however. have as many as 2" states. given an 11-state NDFA. so conver­
sion to a determh~istic finite automaton is not always an efficient way to simu­
late a nondeterministic finite automaton. Nevertheless. the deterministic 
finite automaton finds use in pattern recognition. and we recall the defini­
tion here. 

t In fact. the edge from s; to s;; is not necessary. We could identify s; ands~ instead. 
Similarly, in Fig. 9.5(a), si ands~ could be identified and made final. 
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E E 

(a) (b) 

(c) .... 
Fig. 9.6 Construction of an NDFA for ab* + c: (a) for b*; (b) for ab*; (c) for 
ab* + c. 

9.1 

Definition. A deterministic finite automaton (DF A) is a nondeterministic 
finite automaton (S, I, S, s0 , F) such that 

1. 8(s, e) = 0 for alls E S, and 
2. JJB(s, a)JJ ::; 1 for all s E S and a E /. 

Theorem 9.3. If L is a regular set, then L is accepted by a DF A. 

Proof We know by Theorem 9.2 that L is accepted by an NDFA M = 
(S, I, B, s0 , {sr}). We convert M to a DFA, as follows. First, we find those 
pairs of states (s, t) such that (s, e) ~ (t, e). To do so, we first construct a 
directed graph G = (S, E), with edge (s, t) if and only if 8(s, e) contains t. 
Then we compute G' = (S, E'), the reflexive and transitive closure of G. We 
claim that (s, e) lTi (t, e) if and only if (s, t) is in E'. · 

We now construct an NDFA M' = (S', /, B', s0 , F). such that L(M') = 
L(M) and M' has no e-transitions, as follows. 

i) S' = {s0 } U {tj8(s, a) contains t for some s in S and a in I}. 
ii) For each s in S' and a in I, 

8' (s, a) = {uJ (s, t) is in E' and S(t, a) contains u}. 

iii) F' = {sj(s,f) is in E' and/ is in F}. 

We leave it as an exercise to show that L(M) = L(M'). Surely M' has no 
transitions on e. 
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Next. we construct from M' a DFA M" whose set of states is the power 
set of S'. That is, M"= (9(S'), /, 5", {so}. F"), where 

i) for each subset S of S' and a in /, 

5"(S, a) = {tl5' (s, a) contains t for some s in S}. 
and 

ii) F" ={SIS n F "# £1}. 

We leave it as an exercise to show by induction on lwl that ( {s0 }, 11·) ~ .. (S. e) 
if and only if S ={ti (s0 , ~') ~· (t, e) }. Hence L(M) = L(M') = L(M"). D 

Example 9.5. Consider the NDFA M -of Fig. 9.7. ··The initial state s 1 can 
reach s3 and the final state s4 along paths labeled e. Thus, in computing G'. 
the reflexive and transitive closure of the directed graph G mentioned in the 
proof of Theorem 9.3, we must add edge (s1, s4 ). The entire graph G' is shown 
in Fig. 9.8. From Mand G' we construct the NDFA M' shown in Fig. 9.9. 
Since there is an edge entering s4 from every vertex of G', we make all states 
in M' final. Since the only edge entering s3 in M is labeled e, s3 does not 
appear in M'. ~ 

Fig. 9.7 The NDFA M of Example 9.5. 

Fig. 9.8 The graph G '. 
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b 

?~ 
a 

Flg. 9.9 The NDFA M'. 

Fig. 9.10 The DFA M". 

In constructing the DF A M" from M', we construct eight states. How­
ever, only four can be.reached from the initial state and thus the other four 
can be deleted. The resulting D FA M" is shown in Fig. 9. I 0. D 

9.2 RECOGNITION OF REGULAR EXPRESSION PATTERNS 

Consider a pattern recognition problem in which we are given a text. string 
x = a 1a2 • • • an and a regular expression a, called the pattern. We wish to 
find the leastj, and given thatj, some i such that the substring aiai+1 • • • a; of 
x is in the language denoted by a. 

Questions of this nature are very common. in text-editing applications. 
Many text-editing programs allow a user to specify replacements in a string 
of text. For example, a user may specify that he wants to replace a word)' 
by some other word in a piece of text x. To process such a command the text­
editing program must be capable of locating an occurrence of the word y as a 
substring of x. Some sophisticated text editors allow the user to specify a 
regular set as a set of possible strings to be replaced. For example, a user 
might say: "Replace [/*] in x by the empty string," meaning that a pair of 
brackets and their intervening symbols are to be erased from x. 

The problem above can be reformulated by replacing the given regular 
expression a by the expression f3 = /*a, where I is the alphabet of the text 
string. We can find the first occurrence of a in x = a 1a2 • • • an by finding the 
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shortest prefix of x which is in the language denoted hy {3. This prohlem can 
be solved by first constructing an NDFA M to recognize the set denoted 
by f3 an·d then applying Algorithm 9.1 (below) to determine the sequence 
of sets of states S; in which the N DFA can be after reading a,a~ · · · a; for 
i = I. 2 ..... 11. As soon as S; contains a final state. we know that a,a~ · · · a 

has a suffix a;a;+1 • • • a; such that a;a;+ 1 • • • ai is in the language denoted hy 
a for some I :s i :s j. Techniques for finding i. the left end of the pattern. arc 
discussed in Exercises 9.6-9.8. 

One way to simulate the behavior of the N DFA /\.f on the text string x is 
to convert-the N DFA i_nto a deterministic finite automaton as in Theorem 9.3. 
However, this method might be quite costly. since w·e could go from a regular 
expression f3 to an NDFA with 21/31 states and then to a DFA with nea.rly 
2~1 13 1 states. Just constructing the DFA can be prohibitive. 

Anot~er way to simulate the behavior of the NDFA Mon string xis to 
first eliminate e-transitions from M and thereby construct an e-free ND FA 
M' as we did in Theorem 9.3. Then, we can simulate the NDFA M' on the 
input string x = a 1a2 • • • an by computing for each i. I :s i :s 11. the set of 
states S; in which M' could be after reading a 1a2 • • • a;. Each S; is actually the 
state in which the DFA M" of Theorem 9.3 would be after reading a 1 a~ · · · a;. 

With this technique, we do not need to construct M": rather we compute 
only those states of M" that arise in processing the string x. To explain how 
the set S; can be calculated. we must show how to construct S; from S;-1• It 
is easy to see that 

S; = U S'(s. a;). 

where S' is the next state transition function of M'. Then S; is the union of 
up to 21/31 sets each of which contains at most 21/:11 members. Since we must 
eliminate duplicate members when taking unions (otherwise the representa­
tion of sets can become cumbersome) the obvious simulation of M' takes 
O(l/31 2) steps per input symbol, or O(nl/31 2 ) steps for the entire simulation. 

Surprisingly, in many practical cases it turns out to be far more efficient 
not to eliminate the e-transitions. but rather to work directly from the ND FA 
M constructed by Theorem 9.2 from the regular expression {3. The crucial 
property introduced in Theorem 9.2 is that each state of M has at most two 
edges leaving in its transition diagram. This property enables us to show that 
Algorithm 9.1 (below) requires OCn lfjj} steps to simulate the ND FA con­
structed from f3 on input string x = a,a~ · · · a,,. .. . 
Algorithm 9.1. Simulation of a nondeterministic finite automaton. 

Input. An NDFA M = (S. I. f>. so. Fl and a string x =:== a 1 ll~ • · ·""in/*. 

01ttp1tt. The sequence of states So. Si. s~ .... . S,. such that 

S;= {sj(s0 • ll 1 0~ ···a;) F Is. e)}. 0 :s i :S 11. 
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I. for i +- 0 until 11 do 
begin 

2. if i = 0 then Si +- {s0 } 

3. else Si +- U o(s. ai); 

comment S; has not yet reached its final value. It now corre-

4. 
5. 
6. 
7. 

8. 
9. 

IO. 

11. 
12. 

end 

sponds to the set Ti mentioned above; 
mark each t in Si "considered"; 
mark each tin S - Si "unconsidered"; 
QUEUE +-Si: 
while QUEUE not empty do 

begin 

end 

find and delete t, the first element of QUEUE; 
for each ll in o(t, €)do 

if u is "unconsidered" then 
begin 

mark u "considered"; 
add u to QUEUE and to Si 

end 

Fig. 9.11. Simulation of a nondeterministic finite automaton. 

Method. To compute Si from s,_1, first find the set of states Ti= {tlo(s, ai) 
contains t for some s in Si-1 }. Then compute the "closure" of T; by adding 
to Ti all those states u such that o(t, e) contains u for some t previously added 
to Ti. The closure of Ti> which is Si> is computed by constructing a queue of 
states t in Ti for which o(t, e) has not yet been examined. The algorithm is 
shown in Fig. 9.11. 0 

Example 9.6. Let M be the NDFA of Fig. 9.6(c) (p. 324). Suppose the 
input is x =ab. Then S0 = {s1} at line 2. At lines 9-12, s1 causes s2 and sa 
to be added to both QUEUE and S0 • Consideration of s2 and sa adds nothing. 
Thus S0 = {s1, s2 , sa}. Then at line 3, S 1 = {s3}. Considering s3 adds s4 to 
S 1, and considering s4 adds s5 and s7 • Consideration of s5 adds nothing. but 
consideration of s1 adds s 10• Thus S 1 = {s:i. s4 , s5 , s1 , s10 }. Then S2 is set to 
{s6 } at line 3 Consideration of s6 adds s5 and s7 to S2• Consideration of s1 
adds s10. Thus S2 = {s5, s6, s1. s10}. 0 

Theorem 9.4. Algorithm 9.1 correctly computes the sequence of states 
Su. S 1, ••• , S,., where S; = {sl (so. a 1a2 • • • a;) ~ (s, e) }. 

Proof The correctness of Algorithm 9.1 is a simple inductive exercise. and 
we leave it to the reader. 0 
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Theorem 9.5. Suppose M is such that its transition diagram has no more 
than e edges leaving any vertex. and suppose M has m states. Then 
Algorithm 9.1 takes O(emn) steps on an input string of length 11. 

Proof Consider the calculation of Si for one particular value of i. Lines 8-12 
of Fig. 9.11 require O(e) steps. Since no state finds its way onto QUEUE 
twice for given i. the loop of lines 7-12 requires time O(em). It is thus easy 
to show that the body of the main loop, lines 2-12, requires O(em) time. Thus 
the entire algorithm requires_O(emn) steps. D 

We have the following important corollary, which relates the recognition 
of regular sets to Algorithm 9.1. 

Corollary. If {3 is any regular expression and x = a 1a2 • • • a,, is a string 
of length 11, then there is an NDFA M accepting the language denoted by 
{3, such that Algorithm 9.1 requires O(n 1!31> steps to determine the sequence 
of states S0 , S 1 , •• : , S,,, where S1 = {sl (s0 , a1a2 • • • a1) ~ (s. e)} for 
0:::;; i:::;; n. 

Proof By Theorem 9.2, we may construct M to have at most 21/31 states and 
at most two edges out of any state. Thus e of Theorem 9 .5 is at most 2. D 

Various pattern recognition algorithms may be constructed from Algo­
rithm 9.1. For example, suppose we are given a regular expression a and a 
text string x = a1a2 • • • a,,, and we wish to find the least k such that there exists 
aj < k for which a;ai+1 · · · ak is in the set denoted by a. Using Theorem 9.2 
we can construct from a an NDFA M to accept the language /*a. To find 
the least k such that a 1a 2 • • • ak is in L(M), we can insert a test at the end of 
the block of lines 2-12 in Fig. 9.11 to see whether Si contains a state of F. 
We may, by Theorem 9.2, take F to be a singleton, so this test is not time­
consuming; it is O(m), where m is the number of states in M. If S1 contains 
a state of F, then we break out of the main loop, having found a 1a2 • • • ai to 
be the shortest prefix of x in L(M). 

Algorithm 9.1 can be further modified to produce for each such k the 
greatest j < k (or the least J) such that a;ai+i · · • ak is in the set denoted by a. 

This is done by associating an integer with each state in the sets S 1• The in­
teger associated with states in Sk indicates the greatestj (or the leastj) such 
that (s0 , a;a;-d · · · ad f!- (s, e). The details of updating these integers in Algo­
rithm 9.1 are left as an exercise. 

9.3 RECOGNITION OF SUBSTRINGS 

An important special case of the general problem described in the last section 
occurs when the regular expression a is of the form y 1 + y 2 + · · · + Yl· where 
each )'; is a string over some alphabet /. The corollary to Theorem 9.5 
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Fig. 9.12 A skeletal machine. 

implies that we could find the first occurrence of a pattern )'; in text string 
x = a 1a2 • • • a,. in 0(/n) steps, where I is the sum of the lengths of the y/s. 
However. an 0(1+11) solution is possible. We shall first consider the case 
where there is only one pattern string y = b1b2 • • • b1 , where each b; is a 
symbol in/. 

We shall construct from the pattern y a deterministic pattern-matching 
machine MY that recognizes the shortest instance of a string in l*y. To con­
struct MY we first construct a skeletal DF A with I + I states labeled 
0, I, ... , I and a transition from state i - I to state i on input symbol b; as 
shown in Fig. 9.12. State 0 also has a transition to itself on all b # b1• We 
can think of state i as a pointer to the ith posi~.on in the pattern string y. 

The pattern-matching machine MY op-erates like a deterministic finite au­
tomaton except that it can make several state transitions while scanning the 
same input symbol. MY has the same set of states as the skeletal machine. 
Thus statej of My corresponds to the prefix b1b2 • • • bi of the pattern stringy. 

Mu starts off in state 0 with its input pointer at a 1, the first symbol of the 
textstringx=a 1a 2 ···a,.. lfa 1 =b1othenMyentersstate I andadvancesits 
input pointer to position 2 of the text string. If a 1 # b 1 , then MY remains in 
state 0 and advances its input pointer to position 2. 

Suppose after having read a1a2 • • • ak, My is in statej. This implies that 
the Iastj symbols of a 1a2 • • • ak are b1b2 • • • bi and that the last m symbols of 
a1a2 • • • ak are not a prefix of b1b2 • • • b1 for m > j. If ak+h the next input 
symbol, agrees with bi+" MY enters state j + I and advances its input· pointer 
to ak+2 • If ak+i # bi+1> MY enters the highest-numbered state i such that 
b1b2 • • • b; is a suffix of a 1a2 • • • ak+i· 

To help determine state i, the machine MY has associated with it an in­
teger-valued function f, called the failure function, such thatf(j) is the largest 
s less thanj for which b1b2 • • • b., is a suffix of b1b2 • • • bi. That is,f(j) is the 
largest s < j such that b1b2 • • • b .• = bi-.•+ibi-.•+2 • • • bi. If there is no such 
s:::::: 1, thenf(j) = 0. 

Example 9.7. Suppose y = aabbaab. The values off are as follows. 

f(i) 

For example, f(6) = 2 since aa is the longest proper prefix of aabbaa that is a 
suffix of aabbaa. D 
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We shall give an algorithm to compute the failure function shortly. First. 
to see how the failure function is used by M 11 , let us define the functionj1"' 1(j) 
as follows: 

i) f(ll(j) = f(j ), and 
ii) f<"'l(j) = f(f 111 - 1(j)), form > I. 

That is, fl 111 l(j) is just f applied m times to j. [In Example 9. 7, j12 >( 6) = I . ] 
Suppose once again that Mu is in state j, having read a 1a 2 • • • ak. and 

that ak+i =I' bi+i· At this point M 11 applies the failure function repeatedly to j 
until it finds the smallest value of m for which either 

1. fl"'l(j) = u and ak+, = b11 + 1, or 
2. f1 111 l(j) = 0 and ak+i # b,. 

That is, M 11 backs up through states .f'.ll(j), j12 l(j), ... until either case I or 2 
holds for f("'l(j) but not for J< 111 - 1l(j). If case I holds, M11 enters state 11 + I. 
If case 2 holds, M 11 enters state 0. In either case, the input pointer is ad­
vanced to position ak+2· 

In case l it is easy to verify that if b 1b 2 • • • b; was the longest prefix of y 
that is a suffix of o 1a2 • · • ok, then b1b2 · · • bf""IU>-i is the longest prefix of y 
that is a suffix of a 1a 2 • • • ok+i· In case 2, no prefix of y is a suffix of 
0102 • .. Ok+I· 

My then processes input symbol ak+2· Mu continues operating in this 
fashion either until it enters the final state I, in which case we know that the 
last I input symbols scanned constitute an instance of the pattern 
y = b1b2 • • • b1 , or until M 11 has processed the last input symbol of x without 
entering state I, in which case we know that y is not a substring of x. 

Example 9.8. Suppose y = aabbaab. A pattern-matching machine M.v is 
shown in Fig. 9.13. The dashed arrow points to the value of the failure func­
tion at each state. On input x = abaabaabbaab, My would undergo the fol­
lowing sequence of state transitions. 

Input: 
State: 

a b a 
0 I 0 

0 

{/ b (I a b b a a b 
2 3 2 3 4 5 6 7 

0 

For example, initially M 11 is in state 0. On reading the first symbol of x, M 11 

enters state I. Since there is no transition from state I on the second input . . 
. /----------------, 

I \ 

b -- ~-><~~~- -~ ' --- -----:::....-=--~---........... _____ _ 
Fig. 9.13 A pattern-matching machine. 
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symbol b, M.11 then enters state 0, the value of the failure function for state I, 
without moving the input pointer. Since the first symbol of y is not b, case 2 
prevails and M 11 remains in state 0 and advances its input pointer to posi­
tion 3. 

After reading the 12th input symbol, My enters the final state 7. Thus, at 
position 12 of x, M 11 has found an occurrence· of the pattern y. 0 

The function J can be computed iteratively in much the same manner as 
that in which My operates. By definition, J(I) = 0. Suppose that we have 
computedJ(l),J(2), ... .JU). LetJU) = i. To computeJU +I), we exam-
ine bi+1 and b;+1 · If bi+1 = bi+i • the!1JU + I)= J(j) + I, since · 

b1b2 • . • b;bi+I = bj-it-Jbj-i+2 .. • b;bj+I • 

If bi+1 # bi+1, we then find the smallest m for which either 

I. J< 111>U) = u and b1+1 = hu+1> or 
2. pm>U) = 0 and bi+1 # b1. 

In case I, we set JU+ 1) = u + I. In case 2, we set JU+ 1) = 0. The fol­
lowing algorithm gives the details. 

Algorithm 9.2. Computing the failure function. 

Input. Pattern y = b1b2 • • • b,, I~ I. 

Output. Failure functionJfor y. 

Method. Execute the program in Fig. 9.14. 0 

Example 9.9. Consider the behavior of Algorithm 9.2 on input y = aabbaab. 
The initialization gives J(l) = 0. Since b2 = bl> J(2) = 1. However, b3 # b2 

and b:i # b1 so J(3) = 0. Continuing in this fashion, we get the values for J 
given in Example 9.7 0 

begin 
I. J(I) +- 0; 
2. for j +- 2 until I do 

begin 
3. i +-JU.- 1); . 
4. while bi # bi+ 1 and i > 0 do i +- J(i); 
5. if bi# b;+ 1 and. i = 0 then JU)+- 0 
6. else JU)+- i + I 

end 
end 

Fig. 9.14. Computation of the failure function. 
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We shall now prove that Algorithm 9.2 correctly computes.fin 0( IYI) 
time. We shall prove the correctness of Algorithm 9.2 first. 

Theorem 9.6. Algorithm 9.2 computes I 
' 

Proof We shall prove by induction on j that .f(j) is the largest integer i less 
thanj such that b1b2 · · · b; = bi-i+1bi-i+2 · · · bi. If no such i exists,/ c j l = 0. 

By definition. J( I)= 0. Suppose the inductive hypothesis is true for 
allJ(k), k <j. In computingJU). Algorithm 9.2 compares bi with hf!j-ll+i at 
line 4. 

CASE I. Suppose bi= b1<i-i>+i· Since JU - r) is the largest i such that 
b1 • • • b; = bi-i · · · bi-I• it follows that JU) = i + 1 is correct. Thus by lines 
5 and 6, JU) is computed correctly. 

CASE 2. Suppose bi =F bf(i-i>+i· Then we must find the largest value of i 
such that b1 • • • b; = b;-; · · · b;-1 and b;+ 1 = bi if such an i exists. If no such 
i exists then clearly JU) = 0, and JU) is correctly computed by line 5. Let 
i 1 , i 2 , ••• be the largest, secqnd largest, etc., values of i such that 

b1b2 . • • b; = bj-i " . • bj-1• 

By a simple induction we see that i1 = J(j - 1 ). i2 = J(i1) = j<2>(j - 1 ), · · · . 
ik = J(h--1) = J<k>(j - 1 ), since h·-i is the (k - I )st largest value of i such that 
b1 · · · b; = bi-i · · · bi-i and ik is the largest value of i < h·-i such that 
b1 • • • b; = b;k_1-;+1 • • ·b;,,_1 = bi-i · · · b;-1 • Line 4 considers i1 , i2 , • •• in 
turn until a value of i is found such that b 1 • • • b; = bi-i · · · bi-i and 
bi+ 1 =bi, if such a value of i exists. On termination of the execution of the 
while statement, i = i,,1 if such an im exists and thus JU) is correctly computed 
by line 5. 

Thus f U) is correctly computed for all j. 0 

Theorem 9.7. Algorithm 9 .2 computes Jin 0(1) steps. 

Proof Lines 3 and 5 are of fixed cost. The cost of the while statement is 
proportional to the number of times i is decremented by the statement 
i - J(i) following the do on line 4: The only way i is incremented is by as­
signingJU) = i + 1 in line 6 then incrementingj by I at line 2 and setting i to 
fU - 1) at line 3. Since i = 0 initially. and line 6 is executed at most I - I 
times, we conclude that the while statement of line 4 cannot be executed more 
than I times. ~Thus the t0tal cost of executing line 4 is 0 (/). The remainder 
of the algorithm is clearly 0(/). and thus the whole algorithm takes 0(/l 

time. O 

By an argument identical to that in Theorem 9.6 we can prove that the 
pattern-matching machine M 11 will be in state i after reading a1a2 • • • 'h· if and 
only if .b1b2 • • • b; is the longest prefix of y that is a suffix of a.a~ · · · a,... 
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Thus M 11 correctly finds the leftmost occurrence of y in the text string 
x = a1a2 • • • a,,. 

By the argument of Theorem 9.7 we can prove that M)/ will undergo at 
most ::!lxl state transitions in processing the input string x. Thus we can de­
termine whether y is a substring of x by tracing out the state transitions of M 11 

on input x.t To do this, all we need is 'the failure function f for y. By 
Theorem 9.7 the functionf can be constructed in 0(1.vl> time. Thus we can 
determine whether y is a substring of x in O(lxl + .IYI> time that is independent 
of the alphabet size. If the alphabet of the pattern string is small and if the 
text string is considerably longer than the pattern, then we might consider simu­
lating a DFA to accept the language J*y. The DFA makes exactly one state 
transition per input symbol. 

Algorithm 9.3. Construction of a DFA for J*y. 

Input. A pattern string y = b 1b2 • • • b1 over alphabet /. For convenience, 
we take b1+1 to be a new symbol not equal to any symbol in /. 

'#• 

Output. A DF A M such that L(M) = I *y. 

Method 
I. Use Algorithm 9.2 to construct the failure function f for y. 
2. Let M = (S, /, B, 0, {/}), where S = {O, 1, ... , /} and B is constructed 

as follows. 

begin 
for j = 1 until I do BU - 1, bJ +-- j; 
for each bin/, b ~ b1 do B(O, b) +-- O; 
for j = 1 until I do 

for each bin /, b =fi b;+ 1 do BU, b) +-- B(f(j), b) 
end D 

Theorem 9.8. Algorithm 9.3 constructs a DF A M such that 

(0, a1a2 · · · a·A.) f't (j, e) 

if and only if b1b2 • • • b; is a suffix of a 1a 2 • • • ak, but for no i > j is 
b1b2 • • • b; a suffix of a 1a2 • • • aA·· 

Proof The proof is an induction on k, making use of the arguments found in 
the proof of Theorem 9.6. We leave the proof to the reader. D 

Example 9.10. The DF A M for y = aabbaab resulting from using Algorithm 
9.3 is shown in Fig. 9.15. 

t Recall that the state of M 11 is really a pointer to a position in the pattern y. Thus 
the state transitions of M 11 can be directly implemented by moving a pointer within Y· 
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a 

Fig'. 9.15 A deterministic finite automaton accepting._(a + h)* aahhaah. 

On input x = abaabaabbaab, M would undergo the following state 
transitions. 

Input: a 
State: 0 

b a 

0 
a b a a b b a a h 

.., 3 2 3 4 5 6 7 

The only difference between M and Mu is that M has precomputed the next 
state in case of a mismatch. Thus M makes exactly one state transition on 
each input symbol. D 

We summarize the main results of this section in the following theorem. 

Theorem 9.9. In O(lxl + IYI> time we can determine whether y is a sub­
string of x. 

Let us now mention the case in which we ar-e given several pattern strings 
y 1 , y2 , ••• , YA·· Our problem is to determine whether some.\'; is a substring 
of a given string x = a1 • • • a11 • The methods of this section can also be ap­
plied to this problem. We first construct a skeletal machine for y 1• y2 , ••• , y,.. 
This machine will be a tree. We can then compute the failure function on the 
tree in time proportional to I= IYil + IY:?I + · · · + IYi.I· The pattern-matching 
machine can then be constructed in the same manner as b~fore. Thus in 
0(/ + n) steps we can determine whether some .\'; is a substring of x. The 
details are left for an exercise. 

9.4 TWO-WAY DETERMINISTIC PUSHDOWN AUTOMATA 

Once one suspects t~at there is an 0( lxl + 1.rl) algorithm to determine whether 
y is a substring of x, such an algorithm is not hard to find. But what would 
cause someone to suspect the existence of such an algorithm in the first place? 
One possible approach arises from the stuuy of two-way deterministic push­
down automata (2DPDA. for short). 

A 2DPDA is a special type of Turing machine that accepts a language. 
We can reformulate many pattern recognition problems in terms of langua!!e 
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recognition problems. For example, let L be the language {xcylx and y are 
in /*, c fl;. I. and y is a substring of x}. Then determining whether y is a sub­
string of x is equivalent to determining whether the string xcy is a sentence of 
the language L. In this section we shall show that there is a 2DPDA that 
can recognize L. Although the 2DPDA recognizing this language may take 
time 0(112), there is a powe1ful simulation technique whereby a RAM can in 
0(11) time simulate the behavior of a given 2DPDA on any input of length 11. 

In this section we shall study this simulation technique in detail. 
A 2DPDA can be viewed as a two-tape Turing machine in which one of 

the tapes is used as a pushdown store as shown in Fig. 9.16. A 2DPDA has 
a read-only input tape with a left endmarker ¢ in the leftmost square and a 
right endmarker $ in the rightmost square. The input string to be recognized 
is located between the two endmarkers, one symbol per square. Input sym­
bols are drawn from an input alphabet I which is presumed not to contain¢ 
or $. The input tape head can read one symbol at a time, and in one move the 
input tape head can shift one square to the lef~,remain stationary, or shift one 
square to the right. We assume the tape head cannot fall off either end of the 
input tape; the presence of the endmarkers ¢and $ allows us to write a next­
move function which never moves the input head left from¢ nor right from $. 

The pushdown list is a stack holding symbols from a pushdown list alpha­
bet T. The bottom cell of the pushdown list holds the special symbol Z0 , 

which marks the bottom of the stack. We assume Z0 is not in T. 
The finite control is always in one of a finite set of states S. The operation 

of the machine is dictated by a next-move function B, where for s in S, a in 

t a 

Finite 
state 

control 

a b b S 
Two-way 
read-only 
input tape 

Pushdown list 

c 

8 

A 

z. 

Fig. 9.16 A two-way deterministic pushdown automaton. 
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I U {¢. $}. and A in T U {Z0 }, B(s, a, A) indicates the action the machine 
will take when the finite control is in state s, the input tape head is scanning 
the symbol a, and the pushdown list has the symbol A on top. There arc 
three possible actions. 

provided B ¥- Z 0 : 

S(s,a,A)= (s',d); {
(s', d, push B) 

(s'. d. pop) if A ¥- Z 0 • 

In these three actions, the machine enters state s' and moves its input head 
in the direction d (where d = - I, +I, or 0, meaning move one square to the 
left, move one square to the right, or remain stationary). push B means add 
the symbol B to the top of the pushdown list. pop means remove the topmost 
symbol from the pushdown list. 

Definition. We can formally define a 2DPDA as a 7-tuple 

P = (S, I, T, S, s0 , Z0 • Sr). 

where 

I. S is the set of states of the finite control. 
2. I is the input alphabet (excluding¢ and $). 
3. Tis the pushdown list alphabet (excluding Z 0). 

4. Sis a mapping on (S - {sr}) X (I U {¢, $}) x (T U {Z0 } ). The value 
of S(s, a, A) is, if defined, of one of the forms (s', d; push B), (s', d), 
or (s', d, pop) where s' ES, BE T, and d E {-1, (J, +I}. We 
assume a 2DPDA makes no moves from the final state sr. and cer­
tain other states may have no moves defined. Also, S(s, ¢,A) does 
not have second component d = -1 and S(s, $,A) does not have 
second component d = + 1 for any sand A. Finally S(s, a, Z 0 ) does 
not have a third component pop. 

5. s0 in S is the initial state of the finite control. 
6. Z 0 is the bottom marker for the pushdown list. 
7. sc is the one designated.final state. 

An instantaneous description (ID) of a 2DPDA Pon input w = a 1a2 • • ·a" 
is a triple (s, i, a), where 

I. s is a state in S. 
2. i is an integer, j) 5 i 5 n + I. indicating the position of the input head. 

We assume a0 = ¢ and a,.+1 = $. 
3. a is a string representing the contents of the pushdown list with the left­

most symbol of a on top. 

A mol'e by a 2DPDA with input a 1 a~ · · · a,, can be defined hy a hinary 
relation f- on I D's. We write the following. 
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I. (.Li. Aa) f- (s'. i +cl. Bria) if o(s. Cl;. A)= (s'. cl. push B). 
, (s. i. All) f- (s'. i +cl, Aa) if o(s. a;. A) = (s', cl). 
3. (s. i. Aa) r (s'. i +cl. a) if &(s. a;. A)= (s'. d. pop). 

9.4 

Note that symbols can be added to. read from. or removed from only 
the top of the pushdown list. We also h~ve the restriction that a 2DPDA 
will have only one bottom marker on its pushdown list at any time. We use 
ft to denote sequences of zero or more moves. where ~ is the reflexive transi­
tive closure of r-. 

The initial ID of a 2DPDA P with input w = a 1a2 • • • a,1 (excluding end­
markers) is (s0 • I, Z 0 ). indicating P is in its initial state s0 , the input head is 
scanning the leftmost symbol of a1a2 • • • a,1a11+1.t and the pushdown list con­
tains only the bottom marker Z 0 • 

An accepting ID for w = a 1 • • • a,, is one of the form (sr, i, Z 0 ) for some 
0 :s; i :s; /1 + 1, indicating P has entered the final state Sr and the pushdown 
list contains only the bottom marker. 

A 2DPDA Pis said to accept an ini:?ut sFing w if under input w, 

(s0 , I, Zo) ft (sr. i, Zo) 

for some 0 :s; i :s; lwl + 1. The language accepted by P, denoted L(P), is the 
set of strings accepted by P. 

Let us consider some examples of 2DPDA's and the languages they 
accept. We shall describe the 2DPDA's informally in terms of their behavior 
rather than as formal 7-tuples. 

Example 9.11. Consider the language L = {xcylx and y are in {a, b}* and y 
is a substring of x}. A 2DPDA P can recognize L as follows. Suppose P 
is given an input string w of the form xcy, where x = a1a2 • • • an and ai E 
{a. b}, I :s; i :S 11. 

I. P moves its input head to the right until it encounters c . 
.., P then moves its input head to the left, copying a11a 11 _ 1 • • • a 1 onto the 

pushdown list until the input head reaches the left endmarker. At this 
point P has xZ0 = a1a2 • • • a,,Z0 on its pushdown list (with the leftmost 
symbol of xZ0 on top). 

3. P then moves its input head to the first symbol to the right of c (that is. 
to the beginning of y). without disturbing the pushdown list. and prepares 
to match y against the pushdown list. 

4. while the top symbol of the pushdown list matches the symbol scanned 
by the input head do 

begin 
pop the top symbol off the pushdown list: 
move the input head one position to the right 

end 

t If /1 = 0. that is. 11· = E, then P is scanning a,,+ 1 =$,the right endmarker. 
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5. At this point there are two possibilities: 
a) The input head has reached S. the right endmarker. in which case P 

accepts the input. 
b) The symbol on top of the pushdown list disagrees with the current 

input symbol. Since the string y and pushdown list have matched :-ill 

far. P may restore its pushdown list by moving its input head to the 
left, copying the input onto the pushdown list until the input symhol 
c is reached. At this point P has a;a;+ 1 • • • a 11Z 0 on its pushdown list 
for some I ::; i::; n.t If i = 11, P halts in a nonfinal slate. Otherwise 
P pops a; off the push.down list and moves iJs input head to the right. 
to the first symbol of y$. Then P goes back to step 4. attempting to 
find y as a prefix of the string ai+1 • • • a 11 • 

We see that P discovers whether y is a substring of x = a 1 a~ · · · a11 in 
the natural way. P attempts to match y with a prefix of a;a;+i · · · a 11 for 
i = i, 2 •... , n, in turn. If a match is found, P accepts. Otherwise P rejects. 
Note that this procedure may require O(lxl · IYI) moves by P. D 

• Example 9.12. Consider the language L= {will' E {a. b. c}~'. 1r=xy such 
that lxl 2: 2 and x1' = x} (i.e., some prefix of w of length 2 or greater is a palin­
drome). Here superscript R stands for string reversal: for example (abbY1 = 
bba. The requirement that lxl 2: 2 is imposed since every string in {a. b, c}­
begins with one of the trivial palindromes a, b, or c. Consider a 2DPDA P 
that behaves as follows, given an input string a1a2 • • • a11 • 

I. P moves its input head to the right endmarker. copying the input onto the 
pushdown list. The pushdown list now contains a,, · · · a2a.z0 • If /1 < 2. 
P rejects the input immediately . 

., P then moves its input head to the left endmarker without disturbing the 
pushdown list. P positions its input head over the symbol immediately 
to the right of the left endmarker. 

3. while the top symbol of the pushdown list matches the symbol scanned 
by the input head do 

begin 

end 

pop the top symbol off the pushdown list: 
move the input head one position to the right 

4. At this point there are two possibilities: 
a) The pushdown list coAtains only Zo. in which case P halts and accepts 

the input. 
b) The symbol on top of the pushdown list disagrees with the current input 

symbol. In this case P moves its input head to the left. copying the 
input back onto the pushdown list until the left endmarker is reached. 

t The first time we reach here. i = l. hut suh~cquently i will increase hy l each time 
through. 
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If the original input string was a 1a2 • • • a,.. then at this point P has 
a; · · · a2a1Z 0 on its pushdown list for some i. If i = 2, P halts and 
rejects. Otherwise, P pops a; off the pushdown list and moves its 
input head to the right one square, to the symbol immediately to the 
right of the left endmarker. P then goes back to step 3. 

Thus P determines whether an input string a 1 • • • a,, begins with a palin­
drome by attempting to match a; · · · a 1 with a prefix of a1 • • • a" for each i, 
2 :s i :s 11. This procedure may require P to make 0(n2) moves. D 

We shall now show that we can determine in O(lwl) time whether a 
2DPDA P accepts an input string 11· regardless of how many moves P actually 
makes. Throughout the following discussion we assume that we are talking 
about a fixed 2DPDA P = (S, I, T, 8, s0 , Z0 , Sr) and a fixed input string w of 
length n. 

Definition. A s11rface co11fig11ration (config11ration, for short) of P is a 
triple (s, i, A) such thats E S, i is an input head position, 0 ::s i :s n +I, 
and A is a single pushdown list symbol·in t•u {Z0}. 

Note that a configuration is an ID, although not every ID is a configuration. 
In a sense, each surface configuration represents many ID's, those whose 
"surface" - the top of the pushdown list-matches that of the configuration. 
We say configuration C = (s,i,A) derives configuration C = (s',i',A), written 
C = C', if there exists a sequence of moves by P such that, for m ~ 0, 

C ~ (s1 , ii, ai) 
r (s2, i2, a2) 

~ (Sm, im, am) 
~C', 

where lail ~ 2 for each i.t In this sequence of moves, the intermediate I D's 
(si, ii, a) have at least two symbols on the pushdown list. We shall deal with 
configurations rather than ID's because there are o~ly O(n) configurations. 
while there can be an exponential number of distinct ID's used. 

Definition. A configuration (s, i, A) is said to be terminal if 8(s, ai,_A) is 
undefined or of the form (s', d, pop). That is, a terminal ·configuration 
causes P to halt or to pop a symbol off the pushdown Ii.st. The terminator 
of a configuration C is the unique terminal configuration C' (if it exists) 
such that C do. C', where ~ is the reflexive and transitive closure of=--. 

t If m = 0, then C I- C '. 
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c,, 

Number of moves 

Fig. 9.17 Sequence of configurations. 

Example 9.13. If we plot the length of the pushdown list as a function of the 
number of moves made by P, we can obtain a curve that has the shape shown 
in Fig. 9.17. On this graph we have labeled each point by the configuration 
(not ID) of P after each move. . 

From Fig. 9.17 we see that C0 and C 11 , for example, have Z0 on top of 
the stack. Since there is no intervening configuration with Z0 on top of the 
stack, we conclude that C0 ==- C1-1• If C 11 is a final configuration. then C 11 is 
the terminator both for itself and for C0 as well. From this graph. we may 
also infer that C1 == C2 , C2 ==- C7 , C 1 ==... C10 , and that C10 is a terminal con­
figuration, since C10 causes P to pop a symbol from the pushdown list. D 

The following two simple lemmas are the key to the simulation algorithm. 

Lemma 9.1. P accepts w if and only if some configuration of the form 
(sr. i, Z 0) for some 0 :s i :s lwl + l is the terminator of the initial con­
figuration (s0 , I, Zo). 

Proof The result follows directly from the definition of how a 2DPDA 
accepts an input string. D 

Definition. We say that a configuration C is a predecessor of configura­
tion D if C ~-D. We say that C is an immediate predecessor of D if 
C ==- D. We say that a pair (C, D) of configurations is be/oll' a pair 
(C', D') of (not necessarily distinct) configurations if 

(l) 
(2) 
(3) 

and 

(4) 

C = (s, i, A) D = (t,j, A). 
C' = (s', i', B) D' = (t'.j'. B). 

(s, i,A) r (s', i', BA}, 

(t',j', BA) r (t,j,A}. 

that is, if P can go from C to C' by a push move and from D' to D hy a 
pop move. 

Lemma 9.2. If (C, D) is below (C'. D') and C' -=--- D'. then C ~· D. 
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Proof Easy exercise. 0 

Example 9.14. In Fig. 9.17, (C:i· C 5 ) is below (C4 , C 4 ), and (C7 , Cw) is below 
(C8 • C1). However. we cannot be sure whether (C2 , C 10 ) is below (Ca, C9 ), 

sine~ C;1 and C9 may not have the same pushdown symbol on top of the push­
down list. D 

The simulation algorithm works by finding the terminator for each con­
figuration of the 2DPDA P with input 11·. Once we have found the terminator 
for the initial configuration (q0 , I, Z 0) we are done. 

We shall use an array called TERM to store the terminator of each con­
figuration. We assume that the configurations have been linearly ordered 
(by means of some lexicographic conventions). Then we may treat configura­
tion name C as if it were an integer and let TERM [CJ be the terminator of C. 

We shall also use PRED, an array of lists. PRED is indexed by con­
figurations, and PRED [D] will be a list of configurations C such that C = D. 

In addition to the arrays TERM and PRED, we shall also use two addi­
tional lists, NEW and TEMP. The list NEW·"~ill contain pairs of not yet 
considered configurations (C, D) such that TERM[C] = D. The list TEMP 
is used in a procedure UPDATE (C, D) to hold predecessors of configuration C. 

We proceed as follows. We first set TERM[C] = C if C is a terminal 
configuration. (Each terminal configuration is its own terminator.) Add 
(C, C) to NEW. We then consider pairs (C, D) of configurations such that 
C I- D in one move of P. (Note that in such a move the pushdown list is 
not disturbed.) 

If the terminator of D is already known, we set TERM[£]= TERM[D] 
for all E that are known to be predecessors of C at this time, including C itself. 
(The proper predecessors are found on PRED[C].) We also add the pair 
(£, TERM[D]) to the list NEW. 

If the terminator of D is not yet known, then C is placed on PRED [D], 
the list of immediate predecessors of D. 

At this point, for each configuration C we shall have determined the unique 
configuration D such that C ~ D without manipulating the stack, and either 
D is the terminator of C or D ~ (s, i, a) for Jal= 2. We now consider all 
pairs of configurations that have been added to the list NEW. In general 
NEW contains unconsidered pairs of configurations (A, B) such that A ~ B 
and Bis terminal. Suppose NEW contains the pair (A, B). We remove (A, Bl 
from NEW and consider each pair (C, D) of configurations below (A, B). If 
the terminator of D has already been computed, then we set TERM [ C] = 
TERM [D] and add the pair (C. TERM [D]) to the list NEW. For each E that 
is on PRED[C], we set TERM[£]= TERM[D] and add (£, TERM[D]I 
to the list NEW. However, if the terminator of D has not yet been computed. 
then we place C on the list PRED[D]. We continue this procedure until. 
NEW becomes empty. At this point we shall have determined the terminator 
(if it exists) for each configuration C. 
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Once we have exhausted NEW we look at TERM[C0 ]. where C0 is the 
initial configuration. If TERM [ C0 ] is an accepting configuration. we know 
the 2DPDA P accepts 11·. Otherwise P rejects II'. 

The details are given more precisely in the following algorithm. 

Algorithm 9.4. Simulation of a 2DPDA. 

Input. A 2DPDA p = (S, /, T, o. So. Zo. Sr) and an inpul siring 11· E r. 
lwl = n. 

Output. The answer "yes" if"' E L(P). "no" otherwise. 

·Method 
I. Initialize the arrays and lists as follows. For each configuration C. set 

TERM[C] = 0 and PRED[C] = f1. Set NEW= £1 and TETvtP = 0. 
2. For each terminal configuration C, set TERM[C] = C and add the pair 

(C, C) to NEW. 
3. For each configuration C, determine whether C r D for some configura­

tion D in one move. If so, call UPDATE(C, D). The procedure UP­
DATE is given in Fig. 9.18. 

4. While NEW is not empty, remove a pair (C', D') of configurations from 
NEW. For each pair (C,D) such that (C,D) is below <C'.D'). call 
UPDATE(C,D). 

5. If TERM [ C0 ], where C0 is the initial configuration. is a final configura­
tion, then answer "yes." Otherwise, answer "no.·· D 

Example 9.15. Consider some of the computations that occur when Algorithm 
9.4 is applied to the 2DPDA suggested by Fig. 9. I 7 (p. 34 I). 

procedure UPDATE(C, D): 
begin 

comment Whenever UPDATE(C, D) is called. we have C=-D: 
I. if TERM[D] = 0 then add C to PRED[D] 

else 
begin 

2. TEMP~ {C}; 
3. while TEMP¥ 0 do 

begin 
4. select and remove a configuration 8 from TEMP: 
5. TERM[B] -TERM[/>]: 
6. add (B. TERl\·1[I>]> to NEW: 
7. for each A on PRED[B] do add A to TEMP 

end 
end 

end 
Fig. 9.18. The pn>i.:cuurc UPDATE. 
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In step 2 we determine that C.1• Ci;. C!,. C 10 • and C 11 are terminal configu­
rations. and hence their own terminators. Wt:. add the pairs (C4 • C4 ). (C6 , C6 ), 

(C1i. Cg), (Cao. C 10). and (C 11 • C 11 ) to NEW. 
In step 3 we call UPDATE(C1, C 2). Since TERM[C2 ] =~at this time. 

UPDATE merely places C 1 on the list PRED[C2 ]. In step 3 we also call 
UPDATE(C5 • C 6 ). Since TERM[C6 ] = C.;. UPDATE sets TERM[C5 ] = C6 ' 

and adds (C;;. C 6 ) to NEW. Also in step 3 we call UPDATE(C8 , C9 ), which 
sets TERM[C11 ] =Cg and adds (C8 , C9) to NEW. Thus after step 3 NEW 
contains the following seven pairs. 

(C4 • C-i) (Ca. C&) (Cg, Cg) (C10. C10) (C11• Cu) (Cs. C&) (Cs. Cg) 

In step 4 we remove (C4 , C4) from NEW and call UPDATE(C3 , C5), 

since (C3 , C5) is below (C4 , C 4). Since TERM[C5 ] = C6 at this time, UP­
DATE sets TERM[C3 ] =Ca and adds (C3 , C6 ) to NEW. Then, in step 4, 
we remove (C6 , C 6) from NEW, and since (let us suppose) there is no pair 
below (C6 , C 6 ) we do not call UPDATE.t Similarly, for pairs (Cg, Cg), 
(C 10 , C 10), (Cw C 11), and (C5 • C6), we do not call UPDATE. 

When (Cs, Cg) is removed from NEW, we call UPDATE(C7 , C 10), making 
TERM[C7 ] = C10 and adding (C7 , C 10) to NEW. At this point NEW con­
tains (C3 , C6 ) and (C1. C 10). 

Removing (C3 , C6) from NEW, we call UPDATE(C2 , C7), which makes 
TERM[C2 ] = C10 and TERM[C1] = C 10 , since PRED[C2 ] contains C1• 

We add (C2 , C 10), and (C 1, C 10) to NEW. 
We invite you to complete this simulation. D 

Theorem 9.10. Algorithm 9.4 correctly answers the question "Is w E 
L(P)?" in O(jwj) time. 

Proof It can be shown that TEMP will never have on it the same configura­
tion more than once. Thus every call to UPDATE will always terminate. 
It can also be shown that no pair of configurations is placed on the list NEW· 
more than once, so the algorithm itself will always terminate. The details of 
these two parts of the proof are left as exercises. 

We shall now show that at the conclusion of Algorithm 9.4, TERM[Co] 
is a final configuration if and only if w E L(P). It is easy to show simultane­
ously. by induction on the number of steps of Algorithm 9.4 executed. that 

i) IfTERM[C] is set to D, then Dis the terminator of C. 
ii) If C is added to PRED[D]. then C ~ D. 

iii) If (C, D) is placed on NEW. then TERM[C] = D. 

Thus if Algorithm 9 .4 finds that TERM [ C 0 ] is a final configuration. then 
11· E L<P) is true by Lemma 9.1. 

t For simplicity, we assume that P has no moves not implied by Fig. 9.17. 
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For the. converse, we must show that if D is the terminator of C. then 
TERM [CJ is eventually set to D. The proof is by induction on the number 
of moves in the sequence C j!.. D. The basis, zero moves. is trivial since 
C = D and TERM[C] is set to Din step 2 of Algorithm 9.4. 

For the inductive step, suppose C t E ~ D. There are two case~ to 
consider. 

CASE I. E is a configuration, i.e., the move C ~ E is not a push or pop move. 
Thus in step 3, UPDATE(C, E) is called. If TERM[£] has been set to D at 
this time, C will be placed on TEMP at line 2 and eventually TERM [CJ will 
be set to D at line 5. If TERM[£] is not yet~set to D. then we add C to 
PRED [£] at line 1 of UPDA TE(C, £). By the inductive hypothesis, we 
eventually set TERM[£]= D. If this occurs at line 5 of UPDATE. then C is 
added to TEMP at line 7, and TERM [CJ is set to D on t~at call of UPDATE. 
TERM[£] cannot be set to D in step 2 of Algorithm 9.4 since E ¥ D. (If 
E = D, then TERM[£] would have been set to D when we considered C ~ E 
in step 3.) We conclude that TERM[C] is set to D in case I. 

CASE 2. E is an ID such tHat C t E is a push move. Then we can find 
configurations A, B, and F, with (C, F) below (A. B), such that A r- B and 
F ~ D, each by sequences of fewer moves than the sequence C j!.. D. (Con­
figuration A is the "surface" of ID£.) By the inductive hypothesis, TERM[A] 
is set to Band TERM[F] is set to D. 

Suppose the latter occurs before the former. Then (A, B) is placed on 
NEW eventually, and in step 4, UPDATE(C, F) is called. Since TERM[F] = 
D at this time, we set TERM[C] to D at line 5. 

In the contrary situation, suppose TERM [A] is set to B before TERM [F] 
is set to D. Then when UPDATE(C, F) is called, TERM [F] =fl, in which 
case C is added to PRED[F]. ButthenTERM[C] is set toD whenTERM[F] 
is computed. This completes the induction and the proof of correctness for 
Algorithm 9.4. 

Consider the running time of Algorithm 9.4. Steps I and 2 require 0(11) 

time, since there are O(n) configurations. Since for each configuration the 
2DPDA has at most one possible move, there are at most 0(11) pairs of con­
figurations (C, D) such that C t D. Thus there are at most 0(11) calls of 
UPDATE in step 3. 

A pair (C', D') is placed on the list NEW when C ==-- D' and the termi­
nator of C' h~ been found to be D'. Since each configuration has a unique 
terminator (if it has one at all), no pair is placed on the list NEW more than 
once. Consequently, the total number of pairs placed on the list NEW docs 
not exceed 0(11). For each pair placed on NEW. there are only a bounded 
number of pairs below it. since if (C. D) is below (C'. D'), then C and C' differ 
in head position by at most one. and similarly for D and D'. Thus UPDATE 
is called 0(11) times. 



346 PATTERN-MATCHING ALGORITHMS 9.5 

Consider now the total amount of time spent in the subroutine UPDATE. 
It can be shown that each configuration appears at most once in the PRED 
array and no configuration is placed on the list TEMP more than once. Thus 
lines 4-6 of UPDATE can be "charged" to the configuration B removed from 
TEMP, and line 7 to the configuration A added to TEMP. Since UPDATE 
is called at most O(n) times, it follows that the total amount of time used by 
UPDATE, exclusive of that charged to configurations A and Bas above, is 
O(n). Consequently, Algorithm 9.4 runs in linear time. D 

The primary application of the results in this section is to show the exis­
tence of linear time algorithms for certain problems. We have seen that some 
pattern-matching problems can be formulated as language recognition prob­
lems. If we can design a 2DPDA to accept the language corresponding to a 
pattern-matching problem, then we know a linear time algorithm exists for the 
problem. The fact that the 2DPDA can make n2 or even 211 moves on an input 
of length n often makes it easier to find an algorithm to recognize the language 
on a 2DPDA than a linear algorithm to solve tji.e pattern-matching problem 
directly on a RAM. · 

9.5 POSITION TREES AND SUBSTRING IDENTIFIERS 

In the previous section we showed that if a pattern-matching problem can be 
formulated as a language recognition problem for which we can find a 2DPDA, 
then the original pattern-matching problem can be solved in linear time. We 
could use Algorithm 9.4 directly as a linear time algorithm for the original 
problem. However, the constant factor arising from the simulation would 
make this approach unappetizing at best. In this section we shall study a data 
structure that can be used in more practical linear time pattern-matching algo­
rithms. Some pattern-matching problems to which this data structure can be 
applied are the following. 

1. Given a text string x and a pattern stringy, determine all occurrences of 
yin x. 

2. Given a text string x, determine a longest repeated substring of x. 
3. Given two strings x and y, determine a longest string that is a substring 

of both x and y. 

Definition. A position in a string of length n is an integer between 1 and 
n. We say symbol a occurs in position i of string x if x = yaz, with 
I YI = i - I. We say substring 11 identifies position i in string x if x = yuz, 
I YI = i- I, and x cannot be written as y' uz' unless y' = y. That is, the 
only occurrence of u within x begins at position i. For example, the 
substring bba identifies position 2 of the string abbabb. The substring bb 
does not identify position 2. 



Position 

2 
3 
4 
5 
6 
7 
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Substring identifier 

abba 
bba 
ba 
abb$ 
bb$ 
b$ 
$ 

Fig. 9.19. Substring identifiers for ab~~bb$. 

For the remainder of the chapter let x = a 1a2 • • • a,. be a string over 
some alphabet /, and let a11+1 = $ be a symbol not in /. Then each position i 
of x$ = a1a2 • • • a11+1 is identified by at least one string, namely 
a;ai+1 • • • a 11+1• We call the shortest string which identifies position i in x $ 
the substring identifier for position i in x, denoted s(i). 

Example 9.16. Consider the string abbabb$. The substring identifiers for 
positions 1 through 7 are tabulated in Fig. 9 .19. 0 

The substring identifiers for the positions in a string x $ can be conve­
niently represented in terms of a tree called an /-tree, with edges and certain 
vertices labeled. 

Definition. An I-tree is a labeled tree T such that for each interior vertex 
v in T, the edges leaving v have distinct labels in alphabet/. If the edge 
(v, w) in T is labeled a, we shall call w the a-son of v. 

A position tree for a string x $ = a, · · · a11a11+1> where a; is in I, 
1 :5 i :5 n, and a11+ 1 =$,is an (I U {$})-tree such that: 

1. T has n + 1 leaves labeled 1, 2, ... , n + 1. The leaves of T are in 
one-to-one correspondence with the positions in x$. 

2. The sequence of labels of edges on the path from the root to the leaf 
labeled i is s(i), the substring identifier for position i. 

Example 9.17. The position tree for the string abbabb$ is shown in Fig. 9.20. 
For example, the path from the root to the leaf labeled 2 spells out bba, which 
is the substring identifier for position 2. 0 

A few basic properties of substring identifiers are stated in the next 
lemma. 

Lemma 9.3. Let s(i) be the substring identifier for position i of string 
x$ = a1a2 • • • a,, ... 1. 

a) If s(i) has length j. then s(i - l) has length at most j + I. 
b) No substring identifier is a proper prefix of another. 
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Fig. 9.20 A position tree. 

P .T ~· roo1 

a) If s(i - 1) has length greater than j + 1, then there is some position 
k "¥- i - 1 such that ai_1a; · · · a1+i-1 = akak+1 · · · ak+i· Hence 
a;a1+1 · · · a;+i-i = ak+iak+2 • • • ak+j, and a;a1+1 · · · ai+i-1 does not identify 
position i, a contradiction. 

b) Easy exercise. D 

As a consequence of Lemma 9.3(b), we can be assured that a position 
tree does in fact exist for each string x$. 

A number of pattern-matching problems can be solved with the position 
tree, including those mentioned at the beginning of this section. 

Example 9.18. Consider the basic pattern-matching problem: "Is 
y = b1b2 • • • bp a substring of x = a1a2 • • • an?" Suppose we have con­
structed the position tree T for x $. To determine whether y = b1b2 • • • bp is 
a substring of x, we treat the position tree as the transition diagram of a deter­
ministic finite automaton. That is, we start at the root of T and trace out the 
longest possible path in the position tree that spells out b1b2 • • • bi for some 
0 s j s p. Suppose this path terminates at vertex v. Several cases can 
occur. 

l. If j < p and vertex v is not a leaf, then answer "no." In this case, we 
know b1b2 • • • bi is a substring of x but b1b2 • • • bibi+1 is not. 

2. If j s p and vertex v is a leaf labeled i, then we know that b1b2 • • • bJ 
matches the j symbols of x beginning at position i. We must then com­
pare bj+ 1b;+2 • • • bp with a;+;a;+i+i · · · a;+p-t· If these two do not match. 
then answer "no"; otherwise answer "yes" and report that y is a 
substring of x beginning at position i. 
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3. If}= p and vertex vis not a leaf, then answer "yes:· In this case. y is a 
substring that begins in two or more positions in x. These positions are 
given by the labels on the leaves in the subtree of vertex ,. of the position 
tree. D 

Example 9.19. The position tree can be used to find a longest repl.!atcd 
substring in a given string x = a1a2 · · · a,, (the two occurrences of the 
substring may overlap). A longest repeated substring corresponds to an inte­
rior vertex of the po.sition tree with the greatest depth. Such a vertex can be 
located in a straightforward manner. 

Consider finding the longest repeated substring in abbabb. In the posi­
tion tree for abbabb $ shown in Fig. 9.20 there is one interior vertex of depth 
3 and no interior vertices of greater depth. Thus the string abh corre­
sponding to this vertex is the longest repeated substring in abbabb. The 
leaves labeled I and 4 tell where the two occurrences of abb begin. In this 
case they happen not to overlap. D 

We shall now consider in detail the problem of constructing the position 
tree. Throughout the remaindef of this chapter we use a1 • • • a,,a,,+ 1 to rep­
resent x$, where a,,+1 is the unique right endmarker $. We use x;, 
1 ::::; i::::; n + 1, to represent the suffix ai · · · a,,a,,+ 1• and s;U) to denote the 
substring iqentifier for position j in xi. All positions are with respect to the 
original string a 1 • • • a,,a11+1· 

We shall give an algorithm to construct the position tree for a 1 • • • a,,a,,+ 1 

in time proportional to the number of vertices in the resulting tree. We note 
that a position tree for a1 • • • a,,a,,+1 can have O(n 2) vertices. For example, 
the position tree for a 11b 11a 11b 11 $t has n 2 + 6n + 2 vertices. as you may check. 
However, under reasonable assumptions about what is a "random" string 
(e.g., symbols chosen uniformly and independently from a fixed alphabet). we 
can show an "average" position tree for a string of length 11 has 0(11) vertices. 
Although we shall not show it here, there is an O(n) worst-case algorithm to 
construct a compact form of the position tree directly from a given string. 
The bibliographic notes contain references to this algorithm. 

Let us consider the differences between Si, the set of substring identifiers 
for xi> and Si+t> the set of substring identifiers for X;+ 1 , since we shall construct 
Si from S;+i in the algorithm to follow. One obvious differe11ce is that Si con­
tains si(i), the substring identifier for the first position of X;. Because S; con­
tains this additio~al string, it is possible that the substring identifier for some 
position kin S;+1 is no longer.the substring identifier for position k in S;. This 
situation occurs if and only if s;+1(k), the substring identifier for position k in 
Si+1> is a prefix of s;(i). In this situation we must lengthen S1+1(kl to make it 
s;(k), the substring identifier for position kin S;. It is not possible that two 

t an stands for /1 a·s concatenated. 
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Position p s.,(p) S:1(P) s~(p) s,(p) 

7 $ $ 5 $ 
6 b$ h$ h$ b$ 
5 hh hb bb$ bb$ 
4 a (/ (/ abb$ 
3 - ba ba ba 
2. - - bba bba 
I - - - abba 

Fig. 9.21. Substring identifiers for certain suffixes of abbabb$. 

substring identifiers in Si+t need lengthening. For suppose both si+1(k1) and 
si+1(k2) did. Then both these strings would be a prefix of s;(i), and hence one 
would be a prefix of the other, violating Lemma 9.3(b). 

Example 9.20. Let a1 • • • a 11a 11+1 = abbabb$. The substring identifiers for 
x4 = abb$. X:i = babb$, x2 = bbabb$, and x 1 = abbabb$ are tabulated in Fig. 
9.21. Note that S3 is S4 with only s3(3) =pa acded. On the other hand, S2 is 
S3 with two changes. We have added s2(2) = bba to S2 and we have ap­
pended$ to the end of s3(5) to get s2(5) = bb$. To obtain S 1 we have added 
s1(l) = abba to S2 and we have appended bb$ to s2(4) to make 
s,(4) = abb$. D 

Consider what is involved in constructing Ti, the position tree repre­
senting Si, from Ti+t> the position tree representing Si+i· Given Ti+t• we must 
add to T;+ 1 a leaf labeled i that corresponds to si(i). If, for some i < k s n, 
si+1 (k) is a prefix of si(i), then we must also lengthen the path in Ti+ 1 from the 
root to the leaf labeled k, so the new leaf labeled k in Ti will correspond to 
si(k). Thus the key to efficiently constructing T;. the position tree· for x;. 
from Ti+ 1 is being able to find quickly the stringy such that a;y is the longest 
prefix of xi that is also a substring of X;+ 1 and determining whether aiy is a 
prefix of a substring identifier in T i+l • 

The construction requires attaching three new structures to a position 
tree. The first of these new structures is a bit vector (array) that we shall at­
tach to each vertex of a position tree Ti. We shall use B. to denote this bit 
vector at vertex v. There will be a component of this vector for each symbol 
in I. If v is the vertex in T; that corresponds to string y and a E /, then 
B,. [a] is I if ay is a substring of xi: Otherwise, B. [a] is 0. 

Next, we attach to each vertex its depth in the position tree. This infor­
mation can easily be updated as the tree grows, and we shall henceforth as­
sume that it is computed without mentioning that fact specifically. 

The final addition to the position tree is a new tree structure placed on 
the vertices of the position tree. We shall call this tree structure an "auxiliary 
tree" and in practice it will just be another set of edges defined on the vertices 
of the position tree. 
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(al (I.ii 

Fig. 9.22 Position tree (a) and its auxiliary tree (b) for hhahh$. 

Definition. Let T; be a position tree for x; = aiai+• · · · a,,$. The auxil­
iary tree for position tree T; istan (/ U {$})-tree A; such that: 

1. Ai has the same set of vertices as T;. 
2. Vertex w is the a-son of v in A; if ay is the string corresponding to 11· 

in T; and y is the string corresponding to 1· in T;. Thus in Ai the path 
from the root to w spells out yRa, whereas in T; the path from the 
root to w spells out ay. 

Example 9.21. The position and auxiliary trees for x2 = bbabb$ are shown in 
Fig. 9.22. (The numbers on the leaves are positions with respect to x = 
abbabb$.) Note that leaves of the auxiliary tree are not necessarily leaves 
in the position tree, but nevertheless the vertex sets are the same. D 

From the definition it is not clear that a position tree has an auxiliary 
tree; in fact, an arbitrary /~tree may not have one. The following theorem 
gives the conditions under which a tree possesses an auxiliary tree. 

Theorem 9.11. A necessary and sufficient condition for an /-tree T to 
have an auxiliary tree is that if there is a vertex in T that corresponds to 
the string ax, where a E I and x E I*. then there is also a vertex that 
corresponds to the string x. 

Proof Exercise. O• 

Corollary. Every position tree has an auxiliary tree. 

Proof If ax. is a prefix of the substring identifier for position i, then by 
Lemma 9.3(a), x is a prefix of the substring identifier for position i + I. D 

We are now ready to give an algorithm that computes T;. the position 
tree forx;, from T;+•• the position tree forx,+1· 
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Algorithm 9.5. Construction of T; from T;+i· 

Input. A string a 1 • • • a 11 a 11 +1, a position tree T;+ 1, and an auxiliary tree Ai+ 1 

for X;+ 1 = a;+ 1 • • • a,.a,.+1· 

Output. T; and A;, the position and auxiliary trees for X;. 

Method 
1. Find the leaf labeled i + I in Ti+i· (This was the last leaf added to T;+1.) 

2. Traverse the path from this leaf toward the root of T;+ 1 until a vertex Uy 

is encountered such that B,,.[ai] = I. (Vertex Uy corresponds to the 
longest stringy such that a;y is a prefix of xi and also a substring of xi+i 
starting at some position k, i < k :::;; n.) If no such vertex exists, con­
tinue to the root. 

3. Set B,, [aJ = I for each vertex v on the path from the leaf labeled i + 1 to 
the son of Uy on that path, or to the root if Uy does not exist. (Each 
vertex v on this path corresponds to some prefix z of X;+i· Hence a;z is 
clearly a substring of aixi+ 1.) ·•· 

4. i) If Uy does not exist, go to case .1. 
ii) Otherwise, if Uy has no acson in the auxiliary tree A;+ 1, go to case 2. 
iii) Otherwise, if Uy has an acson Vy in the auxiliary tree, go to case 3. 
The vertex Vy corresponds to aiy in the position tree Ti+i· 

CASE I. a; is a symbol that does not occur in x1+i· Thus the substring iden­
tifier for position i is just ai. To construct Ti from Ti+i• do the following. 

1. Create a new leaf, labeled i, the a 1-son of the root of Ti+i· 
2. Make B 1 [a] = 0 for all a E /. 

To construct Ai from A1+1, make the new vertex labeled i the arson of the 
root of A;+1· 

CASE 2. ai appears in X;+ 1 but only a proper prefix of a;y appears in Ti+I 
(spelling out a path from the root of T;+i to some leaf v1). This situation 
occurs when a substring identifier for some position k, i < k :::;; n, must be 
lengthened to become the substring identifier for position k in T;. Suppose 
y = a;+ 1a;+2 • • • ai and the leaf v1 corresponds to a1a;+1 · · · ap for some 
p < j. Then the leaf v1 is labeled k and a 1ai+i · · · ap is the substring identi­
fier for position k in T;+ 1 (that is, a 1a1+1 · · · ap = akak+i · · · a1). 

To construct T1 from T;+1 we add a subtree to vertex v1 with two new 
leaves labeled i and k. The path from v1 to kin this added subtree spells out 
a1+101+2 · · · am+i and the path from v1 to i spells out ap+1ap+2 · · · ai+" 
where a1+1U1+2 · · · am= a 11+1llp+2 · · · aJ. Thus the path from the root of T; 
to leaf k will spell out akak+i · • • a 111am+i. which is the new substring identifier 
for position k in x;, and the path from the root to leaf i will spell out 
a;a1 . ..i • • • aia;+i• which is the substring identifier for position i in x 1. 
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Specifically, to construct Ti from T;+ 1, do the following. 

I. By following the path in T;+ 1 from u 11 to the root find 11 1• the first ancestor 
of u 11 that has an ai-son in Ai+i· Let this a;-son be 1·1• In T;.;1 vertex 1· 1 is 
a leaf labeled k, for some i < k ::5 n. Remove the label k from vertex 1· 1• 

2. Let u" u2 , ••• , uq, u11 be the sequence of vertices on the path from 11 1 to 
u11 in Ti+i· Suppose the branch from u,, to uh+i is labeled by c-1,. 
1 ::5 h < q, and the branch from Uq to u11 is labeled Cq. as shown in Fig. 
9.23. (c 1c 2 • • • Cq = ap+1Gp+2 • • • a;= a1+1a1+2 • • • a,,, in the discussion 
above.) 

3. In Ti create q new vertices Vz, v3 , ••• , Vq, v11 • ·-Make v,,+1 the c1,-son of 
vh for 1 ::5 h < q. Make Vy the Cq-SOn of Vq. 

4. Letj be i plus the depth of Uy, and let m be k plus the depth of u11 • Give 
T; two new leaves labeled i and k; make leaf i the a;+i-son of 1·11 and 

.leaf k the a111+1-SOn of \' 11 • 

5. For all a E /,make B .. [a] = B,.,[a] for all v in {v2 , v3, ... , l'q, Vy. k}. 
6. Make B;[a] = 0 for all a E /. 

Fig. 9.23 Important parts of T 1 in 
Case 2. The dashed lines indicate 
edges in A;. 
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To construct A; from A;+ 1 do the following. 

7. Make v11 the a;-son of u.11 in A;. 
8. Let u' be the a1+1-son of u.11 in T;+i· Make the new leaf labeled i the 

a;-son of u' in A 1• 

9. Let 1111 be the llm+ 1-son of lly in Ti+ 1. Make the new leaf labeled k the 
a1-son of u" in A 1• 

10. Make vh the a;-son of uh in A; for 2 ;s; h ;s; q. 

CASE 3. Liy has an a;-son Vy in A;+i· There are two situations to consider in 
this case. 

a) Vy is a leaf labeled k in T;+i· This situation occurs when s1(i) = 
a1ai+1 • • • a;a;+1 and s1+1(k) = akak+t • · · am, where akak+i • • • am= 

a1a1+1 • • ·a;; it is a special instance of case 2, in which v1 =Vy. To 
construct T; from Ti+ 1 we remove the label k from Vy and give Vy an 
ai+1-son labeled i and an am+1-son labeled k. The details of this construc­
tion are identical to those in case 2 with -i!eps 3, 7 and IO omitted. 

b) Vy is an interior vertex in Ti+t· i:fhis case occurs when S 1 = 
Si+1 U {s 1(i)}. To construct T; from Ti+ 1 we simply give Vy an ai+ 1-son 
(which it does not have) and label this leaf i. The detailed algorithm is 
the following: 
1. Letj be i plus the depth of Uy. 

2. Make a new vertex labeled i the a;+1-son of Vy in T 1• (Note that Vy 

cannot have an a;+ 1-son in Ti+1 by the maximality of y.) 
3. Make B1[a] = 0 for all a E /. Since a;}'aJ+1 is not a substring of 

x 1+1, surely aa;Ya;+1 is not a substring of x 1 for any a. 

4. To construct A 1 from Ai+ 17 let vertex u' be the ai+1-son of Uy in Ti+i· 
(In Ti+ 17 u' corresponds to ya;+1.) Make the new vertex i the a;-son of 
u' in A;+i· (In A;, i will correspond to a;+1yRa1.) · 

The relationships between the vertices mentioned in case 3(b) are de­
picted in Fig. 9.24. 0 

Example 9.22. Let a 1 • • • anan+t = abbabb$. Let T2 and A2 be the trees in 
Fig. 9.22 (p. 351). From T2 and A2 we construct T1 and A1 using Algorithm 
9.5. Thus i = I and a1 =a here. 

First we locate the leaf labeled 2 and, since B2 [a] = 0, we set B 2 [a] = 1 
and move up to the vertex called u in Fig. 9.22. At vertex u, we find 
Bu [a] = 1, since abb is a substring of bbabb$. Thus vertex u is Uy. We now 
look for Vy, the a-son of u in A2• Vy does not exist so case 2 pertains. 

Vertex w, the father of u in T2, does not have an a-son in A2• However, 
vertex r, the father of w, does-namely, the vertex 4. Thus at step 1 of case 
2 we find that v1 is the vertex labeled 4 in T2 and A2• At step 2 we find q = 2, 
u1 = r, and u2 = w. Also, c1 = c2 = b. Therefore at step 3, we create a new 
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Fig. 9.24 Important parts of 
T1 in Case 3(b). The two 
dashed !lines labeled ai are 
edges in A1. 

vertex v, the b-son of the vertex labeled 4 in T2 (it has lost this label in T1). 

We also create v11 and make it the b-son of v. 
At step 4, we computej= 3. Since k, the former label of vertex vi is 4, 

we compute m = 6. We find a1+1 =a and am+i = $. Thus new vertices 
labeled 1 and 4 are made the a- and $-sons of v11 , respectively. The tree Ti is 
shown in Fig. 9.25. The remaining steps are left as an exercise. 0 

Lemma 9.4. If T1+1 and AH 1 are the position and auxiliary trees for X;+i. 

then T1 a_nd A; as constructed by Algorithm 9.5 are the correct position 
and auxiliary trees for x1• 

Proof Assume that T1+1 is a representation for S1+i• the set of substring iden­
tifiers for the positions in X;+1, and that A;+i is the auxiliary tree for T;+i· 

There are two possibilities: 

1. Si= S1+1 U {s1(i)}. 
2. Si= si+l - {s1+1(k)} u {s;(k), S;(i)} for some i < k :s /l. 

The first possibility is covered by cases l and 3(b) of Algorithm 9.5. The 
second possibility is covered by cases 2 and 3(a). The inferences needed to 
prove that cases 1-3 work correctly are included in the description of the 
algorithm. 0 

Thus to construct a position tree for an arbitrary string we can use the 
following procedure. 
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a b 

a 

••• 

Fig. 9.25 Final position tree T 1• 

r 

$ 

n+1 

Fig. 9.26 Initialization of the position tree. 

Algorithm 9.6. Construction of a position tree. 

Input. A string x$ = a1 • • • anan+i with ai E /, 1 ::::;; i::::;; n and an+i = $. 

Output. The position tree T 1 for x$. 

Method 

9.5 

l. Let Tn+i be the position tree of Fig. 9.26 and let Br[a] = Bn+i [a]= 0 for 
all a E /. 

2. Let A,.+ 1 be the auxiliary tree which is identical to that of Fig. 9.26. 
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3. for i +-- /1 step - I until I do use Algorithm 9.5 to construct T, and A; 
from T;+ 1 and Ai+•· 0 

Theorem 9.12. Algorithm 9.6 constructs the position tree for x S in time 
proportional to the number of vertices in T 1• the final position tree. 

Proof In step 1 of Algorithm 9.5 ~e can find leaf i + I in fixed time by 
keeping a pointer to this leaf when it is added to T;+i· When we add leaf i to 
T;. we set this pointer to leaf i. 

This work in each execution of steps 2 and 3 is clearly proportional to the 
length of the path traveled from vertex i + 1 to u11 , and the work in each ex­
ecution of step I is constant. The time required for execution of any of cases 
1-3 is proportional to the number of vertices added to the tree. as you may 
easily check. Thus the total time spent in all parts of Algorithm 9.5 except 
for steps 2 and 3 is proportional to the size of T 1• 

It remains to show that the sum of the distances between vertices i + I 
and u 11 (or the root if u 11 does not exist) in T;+ 1 for I s; i s; n is no greater than 
the size of T 1 • Let these distances be d2 , d3 , .•. , dn+i • and let e;, for 
1 s; i s; /1 + 1, be the depth of th~ vertex i in T;. A simple inspection of the 
cases 1-3 shows that 

e; s; ei+ 1 - d;+ 1 + 2. (9.1) 

If we sum both sides of (9 .1) from i equal to through n, we find that 

11+1 

L d; $ 2n + en+I - el. (9.2) 
i=2 

From (9.2) we immediately conclude that the time spent for steps 2 and 3 of 
Algorithm 9.5 is O(n), and hence at most proportional to the size of T 1• 0 

As we mentioned, a position tree for a string of length /1 can have O(n 2) 
vertices. Thus any pattern-matching algorithm in which such a tree is con­
structed would be 0(11 2) in time complexity. However, we may "compact'' a 
position and auxiliary tree by condensing all chains in the position tree into a 
single vertex. A chain is a path all of whose vertices have exactly one son. 
It is not hard to show that a compact position tree for a string of length n has 
at most 411 - 2 vertices. The compact tree can represent the same informa­
tion as the original position tree, and thus can be used in the same pattern­
matching algorithms. 

Algorithm 9.5 can be modified to produce the compact position and auxil­
iary tree in linear ti~e. We do not give the modified algorithm here because of 
its similarity to Algorithm 9.5 and the fact that in many applications we may 
expect the size of the position tree to be linearly proportional to the length of 
the input string. The bibliographic notes give sources for the algorithm with 
compaction of the position tree. along with some of its applications. 
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EXERCISES 

9.1 Give regular expressions and transition diagrams of finite automata for the fol­
lowing regular sets of strings over alphabet I= {a. h}. 
a) All strings beginning and ending in a 
b) All strings without two consecutive a·s . 

*c) All strings with an odd number of a·s and an even number of b's 
*d) All strings not containing the substring aha 

9.2 Prove that the set accepted by the N OF A of Fig. 9.1 (p. 320) is the set 
(a+ b)*aha. 

9.3 Construct N OF A's accepting the following regular sets. 
a) (a + h)*(aa + bb) 
b) a*b* + b*a* 
c) (a+ e)(b + e)(c + e) 

9.4 Show that the complement of a regular set is a regular set. 

*9.5 Show that the following sets of strings are not regular sets. 
a) {a"b" In 2: 1} 
b) {wwlw E {a, b}*} ·•· 
c) {wlw E {a, b}* and w = wR} (i.e., the set of palindromes) 

· 9.6 Let x = a,a2 • • • a,, be a given string and a a regular expression. Modify 
Algorithm 9.1 (p. 327) to find the least k and. having found k, the (a) leastj and 
(b) greatest j such that aiai+, · · · ak is in the set denoted by a. [Hi111: As­
sociate an integer j with each state in S;.] 

*9.7 Let x and a be as in Exercise 9.6. Modify Algorithm 9.1 to find the least j and. 
having found j, the greatest k such that a;ai+ 1 • • • ak is in the set denoted by a. 

9.8 Let x and a be as in Exercise 9.6. Construct an algorithm to find all substrings 
of x that are strings in the set denoted by a. What is the time complexity of 
your algorithm? 

*9.9 Let I be an alphabet and 0 be a symbol not in /. A string with don't cares 
(SWOC) is a string over I U {~}. We say SWOC b1b2 • • • b,, matches SWOC 
a 1a2 • • • lln at position i, if for all j, i ::::; j::::; 11. either a;= bi-H or one of a1 and 
bJ-id is 0. Show that for a fixed alphabet I the problem of determining the set 
of positions at which one SWOC matches another is equivalent in asymptotic 
time complexity to and-or m11/tiplicatio11, i.e., computing CJ= V l'.. 1d; /\ l!J-1• 

where the e's, d's, and e's are Boolean. 

**9.10 Show that determining the positions at which one SWOC matches another 
can be done in OA(11 log2n loglog 11) time. [Hint: Use Exercise 9.9 and the 
Schonhage-Strassen integer-multiplication algorithm.] 

9.11 Given strings a 1a2 • • ·a,, and b1b2 • • • h,,. find an O(n) algorithm to determine 
whether there exists a k, 1 ::::; k ::::; 11, such that a1 = hu·+Pmnrt ,, for I ::::; i ::::; 11. 

9.12 Use Algorithm 9.3 (p. 334) to construct machines for the following strings y. 
a) ahhhbabhbabhaba 
b) abcabc:ab 

9.13 Prove Theorem 9.8 (p. 334). 
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9.14 Let S = {.\· 1, y2 • •••• y,,,} be a set of strings. Design <1n algorithm to find <tll 
occurrences of strings in S as substrings of a text string x. What i~ the time 
complexity of your algorithm? 

*9.15 Construct 2DPDA 's to accept the following langu<1gc:-.. 
a) {xcy 1cy2 • • • cy,,,lm 2: I, x E {a, b}*. )'; E {a. h}* for I :.. i :· 111 • • ind at 

least one of y 1, y2 , ••• , y,,, is a substring of x}. 
b) {xyy 11 lx and y are/*, with IYI 2: I}. 
c) {x1cx2 • • ·ex,, Ix; E {a. b}* for I :s; i :s; 11 and all x;'s arc distinct}. 
d) {x1cx2 • • • cxkdy1cy2 • • • cydeach X; and )'; in {a. b} * and x, = y!' for ~ome i 

andj}. 

9.16 ...:onsider the 2DPDA P with rules: 

c5(s0 • a. Z 0 ) = 6(s0 , a, A) = (so, +I, push A). 
5(s0 , $,A)= (s., -1), 
6(s 1, a, A)= 6(s1> a, Z 0 ) = (s., - I, pop), 
c5(s 1• 4, Zo) = (sr. 0). 

a) List all the surface configurations of P with input aa. 
b) Use Algorithm 9.4 (p. 343) to compute the array TERM . 

• *9.17 Suppose a 2DPDA has the ability to go from position i (n is the input length) to 
each of the following in a single move. 
a) To position 11 - i 
b) To position i/2 
c) To position n/2 
d) To position log n 
Show that none of these modifications increases the recogmt1ve power of a 
2DPDA. What other capabilities can you add without increasing the ac­
cepting power of a 2DPDA? 

**9.18 Construct a 2DPDA to accept the language 

{11•111·fw2wf11':111'fi11i11·1, 11'2, ll'a E {a. h}+ and /1 E {a. h}*}. 

[Hint: Let x be an input string. Write a subroutine to find the shortest 11·1 such 
that w1wf y = x. Then apply this subroutine to y, using the subroutine recur­
sively to determine the symbol immediately to the left of y.] 

u9.19 Give linear time algorithms to recognize the following languages. 
a) {w11' 11 lw E /*}* 
b) {WI\' /1 u I w, u E I *. 111' I 2: I } 
c) {11·111·2 · · · 11',,lw; E {a. b}*. and each 11·; is a nonempty even length pulin­

drome} 

9.20 Construct a linear algorithm which takes strings "•"2 · · · a,, and h,h2 • • • h,, and 
finds the largest I such tnat a1a2 • • • a1 is a substring of b,h2 · · · h,.. How can 
the algorithm be used to test whether a given string is a palindrome'? 

The next four exercises discuss some variants of pushdown automata. 

*9.21 A k-heaclecl 2DPDA is a 2DPDA with k independent read head:-. on its input 
tape. Show that we can determine in 0(11k) time whether un input string of 
length /1 is accepted by a k-headcd 2DPDA. 
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9.22 A 011e-1rny pushdown automaton is one that never moves its input head to the 
left. A 11011cletermi11istic pushdown automaton is one that has zero or more 
choices for its next move. Thus there are four families of pushdown automata: 
I DPDA. INPDA. 2DPDA. and 2NPDA. A language accepted by a INPDA 
is called a context-free language. 
a) Show that {wcwRlw E {a, b}*} can be ·accepted by a IDPDA. 
b) Show that {ww 11 lw E {a, b}*} can be accepted by a INPDA. (This lan­

guage cannot be accepted by any I DPDA.) 
c) Showthat{wwxjwand:c E {a,b}*, lwl ~ l}canbeacceptedbya2NPDA. 

(This language cannot be accepted by any I NPDA.) 

*9.23 Show that a language L is generated by a Chomsky normal form context-free 
grammar (p. 74) if and only if L is accepted by a IN PDA. 

*9.24 Show that we can determine in 0 (11 3) time whether an input string of length /1 is 
accepted by a 2NPDA. 

9.25 Find the position trees for these strings: 
a) baaaab$. 
b) abababa$. 

9.26 Show that the position tree for a"b 11a 11b"$ fias ~4·+ 6n + 2 vertices. 

*9.27 Show that a position tree for a random input string x has O(lxl) vertices if all 
positions are chosen independently and uniformly from a fixed alphabet. 

9.28 For the position trees of Exercise 9.25 find: 
a) The auxiliary trees. 
b) The bit vectors B,. for each vertex v. 

9.29 Show that every position tree has an auxiliary tree. 

9.30 Complete the proof of Lemma 9.4 (p. 355) by showing that T; and A; are cor­
rectly constructed from T;T 1 and A;+i· 

*9.31 Show how the position tree for x may be used to test whether .any of 
Y1. Y2 ••.. , Ym is a substring of x in time proportional to 

IY.I + IY2I + ... + IY111I· 
9.32 Design an algorithm to find a longest common substring of two given strings x. 

and·y. What is the time complexity of your algorithm? 

9.33 Given a string x and a string b1b2 • • • bp, design an efficient algorithm to find for 
each i, I ::;; i ::;; p, a longest substring of x that is a prefix of b;bi+1 • • • bp. 

9.34 Given two strings x = a 1a2 • • • a,. and y = b1b2 • • • b11 over alphabet /, design 
an efficient algorithm to find a shortest representation for y as a string 
c 1c2 • • • c,,., where each c; is a symbol in I or a symbo.I denoting a substring of x. 
For example. if x = abbabb and y = ababbaa, then [I: 2] [ 4: 6] aa is a repre· 
sentation for y of length 4. The symbol [i :11 denotes the substring 
ll;ll;+1 • • • Cl; ofx. [Hint: Use Exercise 9.33.] 

9.35 Prove that a compact position tree for a string of length /1 has at most 411 - :? 
vertices. 

**9.36 Design an 0(11) algorithm to construct a compact position tree for a string of 
length 11. 
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9.37 A string x = a1a2 • • • a,, is a subsequence of string y = h 1 h~ ... h,, if 
0 102 · · · 0 11 = b;,b;, · · · b;, for some i1 < i2 < · · · < i,, (i.e .. x is ,. with zero or 
more symbols deleted). Design an O<lxl · l:rl> algorithm to iind a l<•n~est 
common subsequence of x and y. 

9.38 Given two strings x and)', design an algorithm to determine a shortest scqurnce 
of insertions and deletions of single symbols that will transform x into y. 

Research Problems 

9.39 Can the time bound in Exercise 9.10 be improved? 

9.40 ls O<lal · lxl> time necessary to determine whetQ.er a string m the language 
denoted by regular expression a is a substring of x? 

9.41 A k-headed 2DPDA can be simulated in O(nk) time on a RAM (Exercise 9.21). 
Can every context-free language be accepted by a two-headed 2DPDA? If so. 
then every context-free language could be accepted in 0(n 2) time on a RAM. 

9.42 ls there a context-free language that cannot be accepted by a 2DPDA? 

9.43 Is there a language that can be accepted by a 2NPDA that cannot be accepted 
by a 2DPDA? 

9.44 Can the time bound in Exercise 9.37 be improved? See Aho, Hirschberg, and 
Ullman [ 197 4] for bounds using the decision tree model. 

BIBLIOGRAPHIC NOTES 

The equivalence between finite automata and regular expressions is from Kleene 
[1956]. Nondeterministic finite automata were studied by Rabin and Scott [1959], 
who showed their equivalence to deterministic ones. The regular expression pattern­
matching algorithm (Algorithm 9.1) is an abstraction of an algorithm by Thompson 
[1968]. Ehrenfeucht and Zeiger [1974] discuss the complexity of the NDFA as a 
pattern-specifying device. The linear match of one string against another (Algorithm 
9.3) is from Morris and Pratt [1970]. The linear simulation of2DPDA's is by Cook 
[1971a], as is its extension in Exercise 9.21. Properties of 2DPDA's have been 
studied by Gray, Harrison, and Ibarra [ 1967]. An 0(11:1) simulation for two-way non­
deterministic PD A's (Exercise 9.24) is in Aho. Hopcroft. and Ullman [ 1968]. Ex­
ercise 9. I 5(b) is due to D. Chester and Exercise 9. I 9(c) to V. Pratt. A solution to 
Exercise 9. I 9(c) is contained in Knuth and Pratt [ 1971]. 

The material in Section 9.5 on position trees is due to Weiner [1973], as is the no­
tion of compact position trees. Solutions to Exercises 9.20 and 9.31-9.36, along with 
several other appli~ations, cai:i be found there and in Knuth [1973b]. The paper by 
Karp, Miller, and Rosenberg [ 1972] also contains some interesting pattern-matching 
algorithms concerning repeated substrings. Exercises 9.9 and 9.10 on matching 
strings with don't cares are due to Fischer and Paterson [ 1974]. Wagner and Fischer 
[ 1974] contains a solution to Exercise 9.38. That paper and Hirschberg [ 1973] 
discuss algorithms for the common subsequence problem. Exercise 9.3 7. 
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How much computation should a problem require before we rate the problem 
as being truly difficult? There is general agreement that if a problem cannot 
be solved in less than exponential time, then the problem should be considered 
completely intractable. The implication of this "rating scheme" is that prob­
lems _having polynomial-time-bounded algorithms are tractable. But bear in 
mind that although an exponential function such as 2" grows faster than any 
polynomial function of 11, for small values of n an 0(2")-time-bounded algo­
rithm can be more efficient than many polynomial-time-bounded algorithms. 
For example. 2" itself does not overtaken'° until /1 reaches 59. Nevertheless, 
the growth rate of an exponential function is so explosive that we say a prob­
lem is intractable if all algorithms to solve that problem are of at least expo­
nential time complexity. 

In this chapter we shall give evidence that a certain class of problems, 
the class cf nondeterministic polynomial-time complete ("NP-complete" for 
short) probl.ems, is quite likely to contain only intractable problems. This 
class of problems includes many "classical" problems in combinatorics, such 
as the traveling salesman problem, the Hamilton circuit problem, and integer 
linear programming, and all problems in the clas.~.can be shown "equivalent," 
in the sense that if one problem is tractable, then all are. Since many of these 
problems have been studied by mathematicians and computer scientists for 
decades, and no polynomial-time-bounded algorithm has been found for even 
one of them, it is natural to conjecture that no such polynomial algorithms 
exist, and consequently, to regard all the problems in this class as being in­
tractable. 

We shall also consider a second class of problems, called the "polynomial­
space complete" problems, which are at least as hard as the NP-complete 
problems, yet still not provably intractable. In Chapter 11 we exhibit certain 
problems which we can actually prove are intractable. 

10.1 NONDETERMINISTIC TURING MACHINES 

For reasons which will soon become clear, the key notion behind the theory 
of NP-complete problems is the nondeterministic Turing machine.t We have 
already discussed nondeterministic finite automata, for which each move could 
take an automaton to one of several states. In analogy, a nondeterministic 
Turing machine has a finite number of moves from which to choose at each 
step. An input string x is deemed accepted if at least one sequence of moves 
with x as input leads to an accepting instantaneous description (ID). 

On a given input x. we can think of a nondeterministic Turing machine M 
as executing all possible sequences of moves in parallel until either an accepting 
ID is reached or no more moves are possible. That is to say, after i moves 

t The reader not familiar with Turing machines is encouraged to review Section 1.6. 
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we can think of a number of "copies" of M being in existence. Each copy rep­
resents an ID in which M can be after i moves. On the (i + I )st move a copy 
C replicates itself into j copies if. in l D C. the Turing machine ha~ j choic1:~ 
for a next move. 

Thus the possible sequences of moves that M can make on input x can 
be arranged into a tree of ID's. Each path from the root to a leaf in the tree 
represents a sequence of possible moves. If o- is a shortest sequence of moves 
that terminates in an accepting ID. then as soon as M has made lcrl move~. 
M halts and accepts the input x. The time "spent" in processing xis the length 
of <T. If on input x no sequence of moves leads to an accepting ID. then M 
rejects x and the time spent in processing x is left undefined. 

It is often convenient to think of M as "guessing" only the moves in 
the sequence o- and verifying that o- indeed terminates in an accepting ID. 
However, since a deterministic machine cannot normally guess an accepting 
sequence of moves in advance, a deterministic simulation of M would require 
tracing out the tree of all possible sequences of moves on x, in some order. 
until a shortest sequence that terminated in an accepting ID was found. If no 
sequence of moves leads to acceptance, then a deterministic simulation of M 
::ould run forever unless there is some a priori bound on the length of a shortest 
:i.ccepting sequence. Thus it is natural to suspect that nondeterministic Turing 

. _nachines are capable of performing tasks that cannot be done by any deter­

. ninistic machine of equal time or space complexity. It is, however, a major 
lpen question whether there are languages that are accepted by a nondeter­
ninistic Turing machine of fixed time or space complexity but by no deter­
ninistic Turing machine of the same complexity. 

Definition. A k-tape nondeterministic Turing machine (N DTM for short) 
M is a seven-tuple (Q, T, /, S, b, q0 , qc) where all components have the 
same meaning as for the ordinary deterministic Turing machine, except 
that here the next-move function S is a mapping from Q x Tk to subsets 
of Q x (T x {L, R, S} )1'. That is, given a state and list of k tape sym­
bols, S returns a finite set of choices of next move; each choice is a new 
state, with knew tape symbols and k moves of the tape heads. Note that 
the N DTM M may choose any of these moves, but it cannot choose a 
next state from one and new tape symbols from another. or make any 
other combination of moves. 

Instantaneous desoriptions of ·an NDTM are defined exactly as for a 
eterministic Turing Machine (DTM). An N DTM !vi= (Q. T. I. 5. b. Cfu. <Jrl 
1akes a 11W\'£' by determining the current state. say q. and the symbols scanned 
y each of the k tape heads. say X 1, X 2 , •••• X,... Then it selects some ele-
1ent (r, (Y1, D 1), ••• , (Y,. .. D,..)) from the set S(q. X 1, X 2 • •••• X,J. This 
articular element specifies that the new state is to be r. Y; is to be printed 
l place of X; on the ith tape and the ith head is to move in the direction in-
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dicated hy D ;. for I :5 i :5 k. If ID C can become ID D for some choice of 
next move. then \Ve \vrite C f.I; D. (The subscript 1H will often be omitted 
from r·> Note that there may be several D's such that Cr D for NDTM At, 
but if 1\4 is deterministic. there is at most one such D for each C. 

We write C 1 f Ck if C 1 r C 2 r · · · r Ck for some k > I. or if C, =Ck. 
The N DTM M accepts string 11· if (tfoll'. lfo .. cfn . ...• l/o) f (cY,. cY2 ••••• ak), 
where a 1 (and hence a 2 • a:i • ...• crd has the final state symbol C/r somewhere 
within. The lcm1<11a1.:e accepted by M. denoted L(1\tl), is the set of strings 
accepted by M. 

Example IO.I. Let us design an N DTM to accept strings of the form 

JOi• 10;, · · · 10;• 

suchthatthereissomeset/ ~ {l,2, .... k}forwhichlieiii= ~ieiii. That 
is, a string 11· is to be accepted if the listt of integers i1, i2 , .•• , ik represented 
by w can be partitioned into two sublists such that the sum of the integers 
on one list equals the sum of the integers on the other. This problem is­
known as the partition problem. It is a proble~which has been shown NP­
complete when the integers are encoded in l:iinary and the size of the problem 
is the length of the list of binary integers.* 

We shall design a three-tape NDTM M to recognize this language. It 
scans its input tape from left to right, and each time a block of O's Qi, is reached, 
ii O's will be appended to either tape 2 or tape 3. nondeterministically. When 
the end of the input is reached, the N DTM will check whether it has placed 
an equal number of O's on tapes 2 and 3 and if so will accept. Thus.-if any se­
quence of choices to put the various i/s into one set _(tape 2) or the other (tape 
3) leads to equal sums. the NDTM will accept. The sequences of moves lead­
ing to unequal strings on tapes 2 and 3 are of no concern. as long as at least one 
sequence of choices works. Formally, let 

M= ({q0 , q1 , ••• , q5 }, {O, I, b. $}, {O, I}. 8, b. qo, q5 ), 

where 8. the next-move function. is shown in Fig. I 0. I. 
Figure I 0.2 shows two of the many sequences of moves which may be 

made by the N DTM on input I 0 I 00 I 0. The first leads to acceptance. the 
second _does not. Since there is at least one sequence of moves leading to 
acceptance. the N DTM accepts I 0 I 00 I 0. D 

t It is a list rather than a set because there may be repetitions. 
t As we shall see. the encoding used to represent a problem is all-importanr. It is nol 
hard to show that the language accepted by the N DTM of Example I 0.1 is in fact of 
time complexity 0-rnln~l. where /1 is the length of the input and a DTM is used. How· 
ever. if we encode the input in hinary. the length of the input becomes the sum of the 
logarithms of i1 • •••• i,. and the same strategy yields an On11c"l algorithm. whi:rc n 
is now the length of the l:iinary input and c > 1. 
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Definition. We say that an N DTM M is of time c111111JIC"xity T 111 J if for 
every accepted input string of length /1 there is ~omc :-.cqucncc of' at most 
T ( 11) moves leading to the accepting state. M is of s1){1cc' co111/J/c'.ri1y 

S ( 11) if for every accepted input of length /1 there i~ some scquem:c of 
moves ·leading to acceptance in which at most SI /1 l different cell:-. arc 
scanned on any one tape. 

Kample 10.2. The N DTM of Example I 0.1 is of time complexity 211 ~ 2 
he worst case is an input of /1 I's) and space complexity /1 + I. Other rea­
mable encodings of the partition problem also yield this same complexity. 
or example, let B ( i) be the binary encoding of the integer i. Let 

1 = {#B(ii)#B(i2 ) ••• #B(i,..)lthere exists a set 

J \'.;;;;;{I, 2, ... , k} such that I ii= I ii} 
jE/ jE/ 

1here # is a special marker sym~ol. To recognize L 1 we can design a new 
IDTM M 1 whose operation is similar to the NDTM M of Fig. 10.1. Haw­
ver, instead of copying O's onto tap~ 2 or 3, M 1 stores a binary number on 
ipes 2 and 3. Each new binary number encountered on the input is added 
) the number on one tape or the other. 

To process the list of integers i 1 , i2 , • •• , h-. M 1 would use the input string 
· = #B(i1 )#B(i2 ) ••• #B(i,..). To process the same problem, M would use 
1e input string 11· = I Qii IO;, . . . IO;, which can be exponentially longer than x. 
"hus, although M 1 is in some sense faster by an exponential factor than the 
~ DTM of Fig. I 0.1. its time and space complexities are still 0 (n), where /1 

; the length of the input, since the input has been shortened accordingly. 0 

We can show by means of a simulation that any language accepted by an 
.JDTM is also accepted by a DTM, but it seems that a heavy price must be 
•aid in terms of time complexity. The smallest upper bound we can show 
or such a simulation is exponential. That is, if T(n) is a reasonable time 
·omplexity function (reasonable in the sense of being "time-constructible." 
, term we shall define in Chapter I I), then for each T ( /1 )-time-bounded N DTl'vt 
vf we can find a constant c and a DTM M' such that L(M) = L(M') and M' 
s of time complexity On1 (en">). 

A proof of this result can be obtained by constructing a DTM M' to simu­
ate M by an exhaustive enumeration algorithm. There is some constant d 
.uch that M has no mote than d choices of next move in any situation. Thus 
t sequence of up to T(11) moves of M can be represented by a string over the 
1lphabet ~ = { 0. I .... , d - I } of length up to T ( 11). M' simulat_es the bc-
1avior of M on an input x of length /1 as follows. A-1' successively generates 
tll strings in ~ ,;, of length at most T(11) in lexicographic order. There arc no 
nore than ( d + I ) n 111 such strings. As soon as a new string w is generated. 
\1' simulates er,,.. the sequence of moves of M rcprcsentcd hy II". If er,,. cause:-. 
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-
<New symbol. 

Current symbol head move) 
Tape Tape Tape Tape Tape Tape New 

State I 2 3 I 2 3 Stale Comments 

qo I b b 1,S S.R $.R q. Mark left ends of tapes 2 
and 3 with $. then go to 
state q 1• 

I b b ! l.R b,S b,S (/2 Here we choose whether 
q. l.R b.S b.S q;, to write the next block on 

tape 2 (q2) or tape 3 (qa). 

q2 0 b b O.R O,R b,S q2 Copy the block of O's onto 
I b b 1,S b,S b.S q, tape 2, then return to state 
b b b b,S b,L b,L q4 q, when I is reached on 

tape I. If b is reached on 
tape I, instead go to state 
q4 to compare the lengths 
of tapes 2 and 3. 

0 b b O,R b,S O;R 
,. 

The same as for state q2. q3 q3 
I b b l,S b,S b,S q, but write on tape 3. 
b b b b.S b,L b,L q4 

q4 b 0 0 b,S O,L O,L q4 Compare the length of 
b $ $ b.S $.S $.S q5 tapes 2 and 3 

q5 Accept 

Fig. IO.I. Next moves of an NDTM. Each line represents one choice. 

M to accept x, then M' also accepts x. If <T w does not represent a valid se­
quence of moves by M, or if <Tw does not cause M to accept x, then M' repeats 
the process with the next string in I*. 

M' can simulate <Tu: in time O™(T(n)). It takes at most On1(T(n)) 
time to generate each string w. Thu~ the entire simulation of NDTM M can 
take time O™(T(n)(d+ 1)1"< 111), which is at most O™(cn11 >) for some con­
stant c. We leave the details of the simulation for an exercise. 

We should. however, emphasize that no nontrivial lower bound on the 
simulation of an N DTM by a DTM is known. That is, we know of no lan­
guage L which can be accepted by some NDTM of time complexity T<nl 
but which we can prove is not accepted by any DTM of time complexity 
T ( /1 J. The situation with regard to space complexity is much more pleasant. 

Definition. We say a function S (n) is space-constructible if there is a 
DTM M which when given an input of length /1 will place a special marker 
symbol on the S(n)th tape square of one of its tapes without using more 



(q0 1010010, qo, qo) 

r- (qi 1010010, $qi, $q1) 

r ( lq2010010, $q2, $q2) 

r (JOq2 IOOIO, $Oq2 , $q2) 

r ( IOq110010, $Oq1, $q1) 

r (10lq30010, $0qa, $qa) 

r ( 1010q3010, $0qa, $0qa) 

r ( 10100qa10, $0qa. $00qa) 

r (J0100q1IO, $Oq1, $00q1) 

r ( 10100Jq20, $0q2, $00q2) 

r ( 1010010q2 , $00q2, $00q/) 

r ( 1010010q4 , $0q40, _$0q40) 

r ( 1010010q4 , $q400, $q400) 

r (J010010q4 , q4$00, q4$00) 

r (J010010q5 , q5$00, q5 $00) 

Accept 
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(qolOIOOIO. 4 11 • q0 ) 

r (q11010010, Sq 1 • Sq 1 ) 

r- (lq30IOOIO. Sq:1• Sq:1 ) 

r ( 10q3 I 00 I 0. SCJ:1· $043 J 

r ( IOq1 10010. $41 • $04i) 

r ( 101q30010; Sq3 , $0q3 J 

r ( 1010q30l0. Sq3 , $00qa) 

r (IOI00q3 10, $q3 , $000q3 ) 

r ( 10100q1 IO, $q1, $OOOq1) 

r (I 0 JOO I q30, $q3 , $000q3 ) 

r ( IOIOOIOq3 , $q3 , $0000q3 ) 

r ( IOI0010q4, q4$, $000q40) 

Halt, no next ID 

Fig. 10.2. Two legal sequences of moves for an NDTM. 

than S (n) cells on any tape. Most common functions, e.g .. polynomials, 
2n' n !, r n log (n + J) l. are space-constructible. 

We can show that if S(n) is a constructible space complexity function. 
and Mis an NDTM of space complexity S(n), then there is a DTM M' such 
that L(M) = L(M') and M' is of O(S2(11)) space complexity. 

One strategy by which M' can simulate M is an interesting application of 
divide-and-conquer. If a k-tape NDTM M = (Q, T, I. S, b, q0 • qr) is of con­
structible complexity S (n), then there is some constant c such that the number 
of distinct I D's which M need enter when started with an input of length /1 is 
at most c'i(ll). A more precise bound is llQll x (llTll + I )''"''111 > x (S(n) )".where 
the first factor represents the number of states, the second bounds the number 
of possible tape contents, and the last bounds the number of possible head 
positions. Thus, if C 1 ~C2 , then there is some way for At to go from ID C 1 

to ID C 2 in at most cs1 11 > moves. We can test whether C 1 ~ C~ in up to ~i 
moves by testing, for all C 3 , whether C 1 ~, C:1 in up to i moves and C:1 fi, C ~ in 
up to i moves. 



370 NP-COMPLETE PROBLEM~ 

procedure TEST(C1 , Ci, i): 
if i = I then 

else 

if C 1 ~ C 2 or C 1 = C 2 then return true 
else return false 

begin 

end 

for each ID C3 with no more than S (n) cells used on any tape do 
if TEST(C17 C3 , fi/21) and TEST(C3 , C2 , li/2J) then 

return true; 
return false 

Fig. 10.3. The procedure TEST. 

.... , 

The strategy behind M', then, is to determine by the following algorithm 
if a given initial ID C0 goes to some accepting ID. 

Algorithm 10.1. Deterministic simulation o.f an.~DTM. 

Input. An NDTM M of space complexity S(n), where S(n) is space-con­
structible, and an input string w of length n. 

Output. "Yes" if w E L(M), "no" otherwise. 

Method. The recursive procedure TEST(CI> C2 , i) in Fig. 10.3 determines 
whether C 1 ~ C 2 in at most i steps. If so, its value is true, otherwise its value 
is false. Throughout the algorithm C 1 and C 2 are ID's in which no more than 
S (n) cells are used on any tape. 

The complete algorithm is to call TEST ( C0 , Cr. c-S< 11l), for each accepting 
ID Cr• where C 0 is the initial ID of M with input w. If any one of these calls 
is found to have the value true, then answer "yes," otherwise answer "no." 0 

Theorem 10.1. If M is an NDTM of constructible space complexity 
S(n), then there is a DTM M' of space complexity O(S2 (n)), such that 
L(M) = L(M'). 

Proof The proof is a Turing machine implementation of Algorithm IO.I. 
We know from Section 2.5 how to simulate the recursive procedure TEST on 
a RAM. We can use the same stacking strategy on a Turing machine. Since 
the space-consuming arguments to TEST are ID's of length O(S(n)), stack 
frames of this size must be laid out on a tape; the fact that S(n) is space-con· 
structible assures us we can do this. An examination of TEST shows that 
each time TEST is called, its third argument is essentially half the third argu· 
ment of the calling instance of TEST. Thus it may be shown that the number 
of stack frames at any one time does not exceed I + log f C:-S< 11'l. which is 
O(S(n) ). Since O(S(n)) cells per frame are used, the total number of cells 
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used by the Turing machine for the stack is O(S2 (n) ). The remaining details 
of the Turing machine construction are left for an exercise. O 

In order to simplify proofs, it is often desirable to restrict our attention 
to single-tape Turing machines. The next lemma allows us to do this if we are 
willing to pay by an increase in computing time. 

Lemma 10.1. If L is accepted by a k-tape NDTM M = (Q, T. J. 13. b, 
q0 , qr) of time complexity T(n), then L is accepted by a single-tape 
N DTM of time complexity 0 ( T2 ( n) ) . 

Proof We construct a single-tape N DTM M 1 of time complexity 0 ( T2 ( n)) 
which accepts L. The strategy involved is to think of M 1 's tape as if it had 
2k "tracks" as shown in Fig. 10.4. That is, the tape symbols for M 1 are 
2k-tuples whose odd-numbered components are symbols from T and whose 
even-numbered components are either the blank b or a special marker sym­
bol #. The k odd-numbered tracks correspond to the k tapes of Mand each 
even-numbered track contains all b's except for one occurrence of #. The 
#on track 2j marks the location!of the tape head of Mon tapej, which corre­
sponds to track 2j- I. In Fig. I 0.4 we have shown thejth tape head scanning 
cell ii of the jth tape for each j, I ~ j ~ k. 

M 1 simulates one move of Mas follows. Initially, suppose that the tape 
head of M 1 is at the cell containing the leftmost tape head of M. 

I. The tape head of M 1 moves right, until it has passed over all k head 
markers on the even-numbered tracks. As it goes, M 1 records in its own 
state the symbols scanned by each of M's tape heads. 

2. The action of M1 in step t is deterministic. Now M 1 makes a nondeter­
ministic "branch." Specifically, on the basis of the state of M, which 
M 1 has recorded in its own state, and of the tape symbols scanned by 

Tape I of M 

Head for tape I 

Tape 2 of M 

Head for tape 2 

Tape k of M 

Head for tape k 

Xu X12 xii, 

b b # 

X:i1 X22 

b b 

X1.·1 X1.-i xki • 
b b # 

Fig. 10.4. The tape of M 1• 

X:i;, 

# 
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M. which M 1 has just determined, M 1 nondeterministically selects a legal 
move of M. For each legal move of M in this situation, M 1 has one next 
state which it may enter. 

3. Having selected a move of M to simulate, M 1 changes the state of M re­
corded in its own state, according to the selected move. Then M 1 moves 
its tape head left until it has again passed .over the k head markers. Each 
time a head marker is found, M 1 changes the tape symbol on the track 
above, and moves the head marker at most one cell left or right, in con­
formity with the selected move. 

At this point, M 1 has simulated one move of M. Its tape head is at most 
two cells to the right of the leftmost head marker, so that marker may be found 
and the cycle repeated. 

M 1 may accept if M accepts, since M 1 records M's state. If M accepts 
a string w of length n, it does so with a sequence of no more than T(n) moves. 
Clearly, in a sequence of T(n) moves, the tape heads of M cannot get more 
than T(n) cells apart, so M 1 can simulate one move of the sequence in at most 
O(T(n)) of its own moves. Thus M 1 accepts·~ by a sequence of at most 
O(T2(n)) moves. It follows that M1 accepts language Land is of time com­
plexity O(T2 (n)). 0 

Corollary 1. If Lis accepted by a k-tape DTM of time complexity T(n), 
then L is accepted by a single-tape DTM of time complexity 0 ( T2 (n)). 

Proof In the proof above, if M is deterministic, then so is M 1• 0 

Corollary 2. If L is accepted by a k-tape NDTM of space complexity 
S(n), then Lis accepted by a single-tape NDTM of space complexity S(n). 

Corollary 3. If Lis accepted by a k-tape DTM of space corr.plexity S(n), 
then Lis accepted by a single-tape DTM of space complexity S(n)~ 

10.2 THE CLASSES 9 AND .;Vf/J 

We now introduce two important classes of languages. 

Definition. We define .9'-TIME to be the set of all languages which can 
be accepted by DTM's of polynomial time complexity. That is, 

.9'-TIME = {Llthere exists a DTM Mand a polynomial 
p ( n) such that M is of time complexity 
p(n) and L(M) = L}. 

We define .1V".9'-TIME to be the set of all languages which can be accepted 
by NDTM's of polynomial time complexity. We shall frequently abbrevi­
ate &>-TIME and .. Y.9'-TIME to fJJ and .#".9', respectively. 

First, we observe that although 9 and .1V.9' have been defined in terms of 
Turing machines, we could have used any of a number of models of compu-
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tation.· Intuitively. we can think of 9 as being that class of languages which 
can be recognized in polynomial time. For example. we showed that under 
the logarithmic cost. if a language L is of time complexity T ( 11) on a Turing 
machine, then the time complexity of L on a RAM or RASP lies hetwcen 
k1T(11) and k2 T~(11), for positive constants k1 and k~. Thus under the lo!!a­
rithmic cost criterion, L can be accepted by a Turing machine of polynomial 
time complexity if and only if L has a polynomial algorithm on a RAM or 
RASP. 

It is also possible to define a "nondeterministic'' RAM or RASP hy add­
ing to its repertoire an instruction 

CHOICE (L1 , L2 • ...• L") 

which causes one of the statements labeled L 1 , L~ • .... L1; to be nondetermi­
nistically selected and executed. Thus one can also define the class . I·,:;;> by 
polynomial-time-bounded nondeterministic RAM's or RASP's under the 
logarithmic cost criterion. 

We can, therefore, imagine a nondeterministic computer. such as a RAM 
or RASP, which can make many different possible sequences of moves start­
ing from a given initial ID. Suth a device appears capable of recognizing in 
polynomial time many languages that are apparently not recognizable in poly­
nomial time by deterministic algorithms. Of course. any attempt to directly 
simulate a nondeterministic device N by a deterministic device D which exe­
cutes all possible sequences of moves uses much more time than does any one 
copy of N, as D must keep track of a profusion of copies of N. The best we 
can say from the results of the previous section is that if Lis in .A~.9'. then Lis 
accepted by some DTM of time complexity k1'< 11 i for some constant k and poly­
nomial p, k, and p, each depending on L. 

On the other hand, no one has yet been able to prove that there is a lan­
guage in .A'9 that is not in 9. That is, it is not known whether 9 is properly 
contained in .A'9. However, we can show that certain languages are as "hard" 
as any in .A'9, in the sense that if we had a deterministic polynomial-time­
bounded algorithm to recognize one of these languages, then we could find a 
deterministic polynomial-time-bounded algorithm to recognize any language 
in .A'9. These languages are called "NP-complete." 

Definition. A language L0 in .• Y.9' is 11011dc•tami11istic poly11omial-time 
complete (NP-complete for short) if the following condition is satisfied: 
If we are given a deterministic algorithm of time complexity T(11) 2: 11 

to recognize,.£.0 , then for· every language L in. 1 ·9 we can effectively find a 
deterministic algorithm of time complexity T(pd11) ), where Pi. is a poly­
nomial that depends on L. We say L is rc•duciblt· to Lo. 

One way to prove that a language Lt, is NP-complete is to show that L0 

is in .A""9 and that every language L in ... 1 ··.<?' can be "polynomially transformed" 
to L0 • 
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Definition. We say that a language L is polynomially transformable to 
L0 if there is a deterministic polynomial-time-bounded Turing machine M 
which will convert each string w in the alphabet of L into a string w0 in 
the alphabet of L 0 • such that w is in L if and only if w0 is in L0 • 

If L is transformable to L0 , and L0 i~ accepted by some deterministic 
algorithm A of time complexity T(n) =:::: n, then we can determine whether w 
is in L by letting M transform input w into Wo and then using A to determine 
whether w 0 is in L 0 • If M is p(n)-time-bounded, then lwol :S p(jwl). Thus 
there is an algorithm to determine whether w is in L which takes time p(jwl) + 
T(p(jwi}) :S T(2p(jwl)). If T is a polynomial (that is, L 0 is in .9') then the 
algorithm to accept L would be polynomial-time-bounded, so L would also 
be in.9'. 

Some authors actually define a language L 0 to be NP-complete if L0 is 
in .1V.9' and every language in %9 is polynomially transformable to L0 • This 
definition appears more restrictive than the earlier one, although it is not known 
whether the class of NP-complete languages ij.different under the two defi­
nitions. The "reduces"definition implies that if M 0 is a deterministic T(n)-time­
bounded Turing machine for an NP-complete language Lo, then every language 
in .1VPJJ can be recognized in T(p(n)) time, for some polynomial p, by a deter­
ministic Turing machine that can call M 0 as a subroutine, zero or more times. 
The "transforms" definition implies that M 0 can be used only once, and then 
only in a restricted way. Although we shall adopt the broader definition, all 
of our proofs of NP-completeness reflect the narrower definition. 

Under either definition it should be clear that if there is a deterministic 
polynomial-time-bounded algorithm to recognize Lo, then all languages in 
.1V.9' can be recognized in polynomial time. Thus either all NP-complete lan­
guages are in PJJ or none are. The former is true if and only if PJJ = .!VPJJ. Un­
fortunately, at this time we can only conjecture that pjJ is properly contained 
in .1VPJJ. 

10.3 LANGUAGES AND PROBLEMS 

We have defined PJJ and %.9' to be classes of languages. The reason for doing 
so is twofold. First. it simplifies notation. Second, problems from diverse 
disciplines such as graph theory and number theory can often be couched as 
language recognition problems. For example, consider a problem which 
requires a "yes" or "no" answer for each instance. We can encode each in­
stance of such a problem as a string and reformulate the original problem as 
one of recognizing the language consisting of all strings representing those 
instances of the problem whose·answer is "yes." We have already seen such 
encodings in Chapter 9 where we formulated a number of pattern-matching 
problems in terms of language recognition problems. However, we must be 
careful in selecting the encoding because the time complexity of a problem can 
depend on the encoding used. 
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To make the problem-language relationship more explicit. we define 
some common "standard'" representations for problem!'.. In particular. ,,.c.: 
make the following assumptions. 

I. Integers will be represented in decimal. 
., Graphs of /1 vertices will have their vertices represented hy the integer!'. 

I, 2 ..... 11. encoded in decimal as· in assumption I. An edge i!-. repre­
sented by the string (i1• i2 ). where i1 and i:! are the decimal representation!'. 
for the vertex pair indicating the edge . 

.3. Boolean expressions with n propositional variables will be represented 
by strings in which * represents "and,"+ represents ··or." ' l'ep_rescnts 
"not,"t and the integers I, 2 .... • 11 represent the propositional variables. 
The * is omitted when possible. Parentheses will be used if needed. 

We may then say that a problem is in 9 or ,,1-,.J/J if and only if a standard 
encoding of the problem is in 9 or %9, respectively. 

Example 10.3. Consider the clique problem for undirected graphs. A k-clique 
in a graph G is a complete sub1/raph (every pair of distinct vertices in the sub­
graph is connected by an edge) of G with k vertices. The clique problem is. 
Given a graph G and an integer k. does G contain a k-clique? 

The instance of the clique problem with the graph G of Fig. I 0.5 and 
k = 3 could be encoded by the string: 

3(1, 2)(1, 4)(2, 3)(2, 4)(3, 4)(3, 5)(4. 5). 

The first integer represents the value of k. Then follow those pairs of ver­
tices connected by edges, with l'; represented by i. That is. the edges. in the 
order listed, are (v1, v2 ), (v1, V4), .•. , (v4, l's). 

The language L representing the clique problem is the set of strings of 
the.form 

Fig. 10.5. An undirected graph. 

i" We ~hall frequently use {r as ;in ubbrcviation for -:1tt1. Ir n con~i~b o.r a single 
lit<•rul (variable or complemented variable). then the p;ircnthc~cs can be om1t1cd. 
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such that the graph with edges Ur• jr) for I =:::; r =:::; /11 has a k-clique. Other 
languages could also represent the clique problem. For example. the con­
stant k could be required to follow rather than precede the graph. Or we 
could use binary integers instead of decimal. However, for any two such 
languages, there should exist a polynomial p. such that a string w representing 
an instance of the clique problem in one language can be transformed into the 
string representing the same instance of the problem in the other language 
in time p (I wl). Thus, as far as membership in f!lJ or .,Vf!IJ is conc~rned. the exact 
choice of language to represent the clique problem is unimportant, as long as 
a "standard" encoding is used. D 

The clique problem is in .1Vf!IJ. A nondeterministic Turing machine can 
first "guess" which k vertices will be in the complete subgraph and then verify 
that there is an edge between each pair of these vertices in 0 (n=1) steps, where 
n is the length of this encoding of the clique problem. The "power" of non­
determinism is illustrated here, since all subsets of k vertices are checked "in 
parallel" by independent copies of the device •• For the graph in Fig. 10.5, 
there are three 3-cliques, namely {v1' v2 , v~}. {v2 , v3 , v4}, and {v3 , v4 , v5 }. 

We shall see later that the clique problem is NP-complete. At the present 
time there is no known way to solve the clique problem in deterministic poly­
nomial time. 

Example 10.4. The Boolean expression (p 1 + p 2) * p 3 can be represented by 
the_ string (I + 2)3, where integer i represents variable p 1• Consider the lan­
guage L consisting of all strings representing satisfiable Boolean expressions 
(those for which some assignment of O's and I's to the variables gives the ex­
pression the value I). We claim that L is in .!Vf!IJ. A nondeterministic algo­
rithm to accept L begins by "guessing" a satisfying assignment of O's and J's 
to the propositional variables in an input string, if such an assignment ·exists. 
Then, the value (0 or I) of each variable is substituted for the variable wherever 
it occurs in the input string. Some shifting of the string will be needed to close 
up gaps when the single symbol 0 or 1 is substituted for a decimal representa­
tion of a propositional variable. Then the resulting expression is evaluated 
to verify that it has the value I. 

The evaluation can be done in time proportional to its length by a number 
of parsing algorithms (see Aho and Ullman [ 1972]). Even 'without using an 
efficient parsing algorithm. the reader should have little trouble evaluating a 
proposition in O(n2 ) steps. Hence there is a nondeterministic Turing machine 
of polynomial time complexity to accept satisfiable Boolean expressions. and 
thus the problem of determining whether a Boolean expression is satisfiable 
is in .1V'.9'. Note again how nondeterminism has been used to "parallelize" 
the problem, since "guessing" a correct solution really means trying out all 
possible solutions in parallel. This problem will also be shown to be NP­
complete. D 
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Often we are interested in optimization problems. such as finding a largest 
clique in a graph. Many such problems can be transformed in polynomial 
time to language recognition problems. For example. a maximal clique in a 
graph G can be found as follows. Let n be the length of the representation 
of G. For each k from I to /1 we determine whether there is a clique of silc /.... 
Once the size. m of a maximal clique is determined. we delete the vertice-; 
one by one until removing a vertex 1· destroys all remaining cliques of size 111. 

Then consider the subgraph G' consisting of all vertices in (i adjacent to 1· 

and call the process· recursively to find a clique C of size m - I in (; ·. A 
maximal clique for G is C plus the vertex 1·. 

We leave the reader to convince himseff that the time to find a maximal 
clique by the above method is a polynomial function of both 11. the length of 
the representation of G, and the time to determine whether there is a clique 
of size kin G. 

An optimization problem of the form "find the largest k such that PI k I 
is true" for some proposition P, where the number of possible k's is exponen­
tial in the length n of the proble.m description. can often be solved by binary 
search (Section 4.3). If P (k) is frue implies P (i) is true for i < k and the range 
of k is between 0 and c" for some constant c, then the largest k such that P ( k) 
is true can be found by binary search in log c" = n log c tests of propositions 
P(k). Again the reader should convince himself that the optimum value of 
k can be found in an amount of time that is a polynomial in /1 and the maximum 
time to decide P(k). 

We leave the development of techniques of this nature to the ingenuity 
of the reader and henceforth deal only with yes-no problems. 

10.4 NP-COMPLETENESS OF THE SATISFIABILITY PROBLEM 

We can show that a problem, or more accurately. its language representation 
L0 , is NP-complete by. showing that L0 is in . 1 ·:7' and that every language in 
.1V9" is polynomially transformable to L11 • Because of the "power" of nondeter­
minism, the easy part of such an NP-completeness proof is usually in showing 
the given problem to be in .A ··g.i. Examples I 0.3 and I 0.4 are typical of this 
step. The greatest difficulty is in showing that every problem in . I"!:/' is poly­
nomially transformable to the given problem. However. once we have proved 
a problem L 0 to ije N P-comp,lete, a new problem L can be proven NP-com­
plete by showing that L is in .¥9 and that Lo is polynomially transformable to L. 

We shall show that the satisfiability problem for Boolean expressions is 
NP-complete. Then we shall show that some fundamental problems in propo­
sitional calculus and graph theory arc NP-complete by showing that they are 
in .,r.9' and that the satisfiability problem (or some other already proven NP­
complete problem) is polynomially transformable to them. 
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The following definitions are needed to discuss some important NP-com­
plete problems on undirected graphs. 

Definition. Let G = ( V, E) be an undirected graph. 

1. A vertex cover of G is a subset S. ~ V such that each edge of G is 
incident upon some vertex in S. 

2. A Hamilton circuit is a cycle of G containing every vertex of V. 
3. G is k-colorable if there exists an assignment of the integers 1, 2, 

... , k, called "colors," to the vertices of G such that no two adjacent 
vertices are assigned the same color. The chromatic number of G 
is the smallest integer k such that G is k-colorable. 

The following definitions are needed to present some important NP-com­
plete problems on directed graphs. 

Definition. Let G = ( V, E) be a directed graph. 

1. A feedback vertex set is a subset S ·~ V such that every cycle of 
G contains a vertex in S. 

2. A feedback edge set is a subset F ~ E such that every cycle of G 
contains an edge in F. 

3. A directed Hamilton circuit is a cycle containing every vertex of V. 

Theorem 10.2. The following problems are in ./(9. 

I. (Satisfiability.) Is a Boolean expression satisfiable? 
2. (Clique.) Does an undirected graph have a clique of size k? 
3. (Vertex cover.) Does an undirected graph have a vertex cover of 

size k? 
4. (Hamilton circuit.) Does an undirected graph have a Hamilton 

circuit? 
5. (Colorability.) Is an undirected graph k-colorable? 
6. (Feedback vertex set.) Does a directed graph have a feedback vertex 

set with k .members? 
7. (Feedback edge set.) Does a directed graph have a feedback edge 

set with k members? 
8. (Directed Hamilton circuit.) Does a directed graph have a directed 

Hamilton circuit? 
9. (Set cover.) Given a family of sets S1 , S2 , ••• , Snt does there exist 

a subfamily of k sets S;,, S;" ... , S;. such that 

k n 
US;= US;? 
j=t J j=t 

t We encode finite sets hy strings of the fonn {i" i2 , ••• , im}, where the i's are deci· 
mal (or binary) integers representing the set elements. If there are n elements among 
all the sets. we represent the jth element by integer j. 
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10. (Exact cm·er.) Given a family of sets S,. S~ . .... S,, docs there 
exist a set cover consisting of a subfamily of pairwbc disjllint set~'.1 

Proof We showed that problems . , and 2 are in . ·I".-'/; in Examples I 0.4 am! 
10.3, respectively. Similarly. each of the other parts requires the design llf 
a nondeterministic polynomially-time-bounded Turing machine (or nondcte1-
ministic RAM program. if the reader prefers) which "guesses'" a solution and 
checks that it is indeed a solution. We leave the details for exercises. ~ 

We sha11 now prove that every language in A ·g; is polynomially transform­
able to the satisfiability problem, thereby establishing that satisfiability of 
Boolean expressions is an NP-complete problem. -

Theorem 10.3. The problem of determining whether a Boolean expression 
is satisfiable is NP-complete. 

Proof We already know the satisfiability problem is in. I·.:'/;_ Thus we need 
only show that every language L in %9 is polynomially transformable to the 
satisfiability problem. Let M be a nondeterministic Turing machine of poly­
nomial-time complexity that accepts L, and let 11· be an input to M. From M 
and w we can construct a Boolean expression 11·0 such that 11·0 is satisfiable if 
and only if M accepts II'. The crux of the proof is in showing that for each M 
there is a polynomial-time-bounded algorithm to construct the Boolean ex­
pression w0 from II'. The polynomial depends on the machine M. 

Every language in . J ";l'J is accepted by a nondeterministic single-tape 
Turing machine of polynomial-time complexity. according to Lemma I 0.1. 
Thus we may assume M has but a single tape. Suppose M has states lfi, lf~· 
••• , Cfs and tape symbols X 1 , X2, •.• , X 111 • Let p(11) be the time complexity 
ofM. 

Suppose an input w to Mis of length 11. If M accepts 11·, then it does so 
within p(n) moves. Thus if M accepts 11·, there is at least one sequence of 

ID's Q 0 , Q 1, ••• , Qq such that Q 0 is an initial ID, Q;-1 f Q, for I $ i ::sq, 

Qq is an accepting ID, q ::s p(n), and no ID has more than p(n) tape cells. 
We shall construct a Boolean expression 11·0 that "simulates'" a sequence 

of I D's entered by M. Each assignment of true (represented by I) and false 
(represented by 0) to the variables of 11·0 represents at most one sequence of 
I D's of M, possibly not a legal sequence. The Boolean expression w0 will 
take on the value I if and only if the assignment to the variables represents a 
sequence Q0 , Q 1, ·"· • , Qq of JD's leading to acceptance. That is. 11·0 will be 
satisfiable if and only if M accepts 11'. The following variables are used as the 
propositional variables in 11·0• We give them with their intended interpretation. 

I. C(i, j. t) is I if and only if the ith cell on M's input tape contains the tape 
symbol Xj at time t. Here I ::s i ::s p(n), I ::sj :s m. and 0 :st ::s p(n). 

., S(k. r) is I if and only if"'./ is in state 'lk at lime t. Here I :s k ::s sand 
0 ::s [ ::s p(ll ). 
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3. fl (i. t) is true if and only if at time t the tape head is scanning tape cell i. 
Here I ::s i ::s p ( 11) and 0 ::s t ::s p ( 11) • 

There are thus 0 (p:! ( 11)) propositional variables, and these can be repre­
sented by binary numbers with at most c: log /1 bits for some constant c de­
pending on p. It is convenient in what follows to maintain the fiction that 
each propositional variable can be represented by a single symbol, rather 
than c: log /1 symbols. This loss of a factor of c log /1 cannot affect the question 
of whether any function is polynomial-time-bounded. 

From these propositional variables we shall construct a Boolean expres­
sion w0 patterned after the sequence of ID's Q0 , Q1 , ••• , Qq. In the con­
struction we shall make use of the predicate U (x1• x2 , ••• , Xr) that has the 
value I when exactly one of the arguments x1, x2, ••• , Xr has value 1. U can 
be expressed as a Boolean expression of the form: 

U(x1, x2, ... , xr) = (x1 + x2 + · · · + xr) (TI (•x; + :.-~j)). ( 10.1) 
• . •• i.j 

i¢j 

The first factor of ( 10. I) asserts that at least one of the x/s is true. The re­
maining r(r - I )/2 factors assert that no two x/s are· true. Note that when 
written out formally, U(x1, ••• , Xr) is of length O(r2).t 

If M accepts w. then there is an accepting sequence of ID's Q0 , Q1, 

.... Qq entered by M in processing w. To simplify the discussion we can 
assume without loss of generality that M has been modified so that whenever 
it reaches the accepting state. it continues "running" without moving its head 
or leaving the accepting state and that each ID in the sequence is padded out 
with blanks to length p ( 11). Therefore, we shall construct w0 as the product 
of seven expressio.ns A, B • ... , G to assert that Q0 , Q 1 , ••• , Qq is an ac­
cepting sequence of ID's, where each Q; is of length p(n) and q = p(n). 
Asserting that Q0 , Q1 , ••• , Qµ< 11 > is an accepting sequence of ID's then is 
tantamount to asserting that: 

I. the tape head is scanning exactly one cell in each ID . 
.., each ID has exactly one tape symbol in each tape cell. 
3. each ID has exactly one state. 
4. at most one tape cell. the cell scanned by the tape head. is modified from 

one ID to the next. 
5. the change in state. head location. and tape cell contents between succes­

sive I D's is allowed by the move function of M. 
6. the first ID is an initial· 1 D. and 
7. the state in the last ID is the final state. 

t Recall that we are counting one symbol per variable. Strictly speaking O<r~ log rl. 
hence at most 0 ( ,:: ) . symbols would be required. 
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We now construct Boolean expressions A-G Ill mirror statements 
through 7 above. 

I. A asserts that at each unit of time M is scanning exact I y one cell. Let A, 
assert that at time 1 exactly one cell is scanned. Then A =A 11 A 1 • • • ,-1 1,,,, ,. 

where 

A 1 = U(H( I. t). H(2. 1) •... , H(p(n), 1) J. 

Note that when the shorthand U is expanded, A is of length O(p::(11JJ 
and can be written down in that time. 

"> B asserts that each tape cell contains exactly one symbol at each unit of 
time. Let Bil assert that the ith tape cell contains exactly one symbol at 
time t. Then 

B =TI Bil, 
i ,t 

where 

Bu= U(C(i, l/t), C(i, 2, t), ... , C(i, m, t)). 

The length of each Bu is independent of n, since m, the size of the tape 
alphabet, depends only on the Turing machine M. Thus B is of length 
O(p2 (n) ). 

3. C asserts that at each time t, M is in one and only one state: 

C = TI U(S(l, t), 5(2, t), ... , S(s, t) ). 
05/Sp(n) 

Since s, the number of states of M, is a constant, C is of length 0 (p ( n) ) . 
4. D asserts that the contents of at most one tape cell can be changed at 

any time t: 

D=TI [(C(i,j, t) =t C(i,j, 1+ I)) +H(i, t)]. 
j,j,t 

The expression (C(i,j, t) = C(i,j, t+ I)) +H(i, t) asserts that either 
a) the tape head is scanning cell i at time 1 or 
b) the jth symbol is in cell i at time t + I if and only if it was there at timer. 
Since A and B assert that the tape head is scanning only one cell at time 
r and that cell i contains only one symbol, either the tape head is scanning 
cell i at time i or the contents of cell i do not change at time t. When = 
is replaced by its denoted expression, D is of length 0 (p~ ( 11)). 

5. E asserts that each successive ID of M is obtained from the previous ID 
by one transition allowed by the next-move function 8 of /H. Let Ew.-1 

t We use .r = y to stand for xy +.\")'.that is. x if and only if y. 
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assert one of the following: 
a) that the ith cell does not contain symbol j at time t. 
b) that the tape head is not scanning cell i at time t. 
c) that Mis not in state k at time t, or 
d) that the next ID of Mis obtained frol\l the previous ID by a transition 

allowed by the move function of M. 
Then 

where 

E = fI Eu1 . .-1, 
i,j.k.t 

EUia =-.cu.}, t) + -,H <i, t) + --.s<k. t) 

+ 2: [C(i,j1, t+ I)S<ki. t+ I)H(ii, t+ I)]. 
l 

Here I ranges over all possible moves of M when scanning symbol Xi in 
state qk. That is. for each triple (q, X. d) in 8(q"' Xi), there is one value 
of I for which Xi,= X, q,,.1 = q, and i1 is i - I, i, or i + I as dis L S, or 
R, respectively. Here, 8 is the move function of M. Since M is nondeter­
ministic, there may be more than one such triple ( q, X, d), but a finite 
number in any case. Thus Eiikt is of bounded length independent of 11. 

Therefore.Eis of length O(p2 (n)). 
6. F asserts that the initial conditions are satisfied: 

F = s <I • 0) H ( I ' 0) IT c (i' jj, 0) IT c (i' I ' 0) ' 
Jsisn n<i~p(n) 

where S ( I , 0) asserts that at time t = 0, M is in state q 1 • which we take 
to be the initial state; H (I, 0) asserts that at time t = 0, A1 is scanning the 
leftmost tape cell: f1 '"';"'" C (i, Ji, 0) asserts that the first /1 tape cells ini­
tially contain the input string 1t·; and f1 n<ispln> C(i, I, O) asserts that the 
remaining tape cells are initially blank. We take X 1 to be the symbol for 
the blank. Clearly, F is of length 0 (p ( n)). 

7. G asserts that M eventually enters the final state. Since we have re­
quired that M remain in the final state once it has reached it, we have 
G = S(s, p(n)). We take qs to be the final state. 

The Boolean expression w0 is the product ABCDEFG. Since each of 
the seven factors of w0 requires at most O(p:i(n)) symbols, w0 itself has 
0 (p=1 ( 11)) symbols. Since we have been counting propositional variables as 
single symbols, when in fact they are represented by strings of length 0 ( log n) · 

we really have a bound on lwol of Q(p:!(n) log 11). which is in turn bounded 
by cnp=1 (11) for some constant c. Thus the length of w0 is a polynomial func­
tion of the length of w. It should be clear that w0 can be written down in time 
proportional to its length, given w and the polynomial p. 
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Given an accepting sequence of I o·s Q11 • Q1 ••••• Q,, we can ohviously 
find an assignment of O"s and l"s to the propositional variahlc~ C <i. j. 11. 

S(k. t). and H(i. t) that will make ll'o have the value true. Conversely. given 
an assignment of values to the variables of 11·0 that makes w0 true. we can casil\ 
find an accepting sequence of I D"s. Thus w0 is satisfiable if and only if M 
accepts w. 

We put no restrictions on L. the language accepted by M. other than that 
L be in .r~I>. We have therefore shown that any language in . I ·.-7' is poly­
nomially transformable to the satisfiability problem for Boolean expressions. 
We conclude that the satisfiability problem is N P-coroplete. D 

We have in fact shown more in Theorem I 0.3 than is stated. A Boolean 
expression is said to be in conjunctive normal form (CNF) if it is the product 
of sums of literals. where a literal is either x or ix for some variable x. For 
example. (x1 + x2 ) (x2 + i 1 + x3 ) is in CNF; X1X2 + x3 is not. The expression 
w0 constructed in Theorem 10.3 is practically in CNF, and we can put it in 
CNF without expanding its length by more than a constant factor. 

Corollary. The satisfiability problem for Boolean expressions in CNF 
is NP-complete. · 

Proof It suffices to show that each of the expressions A, ... , G defined in 
the proof of Theorem 10.3 is either already in CNF or can be manipulated 
into such an expression, by use of laws of Boolean algebra, without increasing 
the length of the expression by more than a constant factor. We observe that 
U, defined in Eq. (10.1), is already in CNF. It follows that A, B, and Care 
in CNF. F and G are trivially in CNF, since they are products of single 
literals. 

D is the product of expressions of the form (x = y) + z. If we replace 
the = sign we obtain the expression 

xy + xy + z. ( 10.2) 

We observe that (10.2) is equivalent to 

(x + y + z) (x + y + z). ( 10.3) 

By substituting (10.3) for (10.2) wherever it appears in D, we can obtain an 
equivalent expression that is in CNF and at most twice.as Jong as the original. 

Finally. the ex12ression E is the product of the expressions E;jkt· Since 
the length of each EfiA·t is bounded independently of 11, each Etikt can be ex­
pressed by a conjunctive normal form expression whose length is independent 
of 11. Thus converting E to CNF increases the length of E by at most a con­
stant factor. 

We have thus shown that the expression w0 can be put in CNF with hut 
a constant-factor increase in its length. D 
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We have just shown that the satisfiability problem for CNF expressions 
is NP-complete. We can show that even with a more stringent condition, the 
satisfiability problem for Boolean expressions is NP-complete. An expres­
sion is said to be in k-conjunctil'e normal form (k-CN F) if it is the product of 
sums of at most k literals. The k-satis.fiability problem is to determine whether 
an expression ink-CNF is satisfiable. Fork= I or 2 we can find deterministic 
polynomial algorithms to test for k-satisfiability. The situation (presumably) 
changes at k = 3, as seen in the next theorem. 

Theorem 10.4. 3-satisfiability is NP-complete. 

Proof We shall show that satisfiability for CNF expressions is polynomially 
transformable to 3-satisfiability. Given a product of sums, replace each sum 
(x1 + x2 + · · · + x,...), k ~ 4, with 

(x1 + X2 + Y1) (x3 + Y1 + Y2) {x4 + Y2 + y3) · · · 
(xk-2 + .Yi.-4 + Yk-3) (xk-1 + xk + Yk-3) (I 0.4) 

"#• 
for new variables y 1 , y2 , ••• , Yk-3· For ~xample, for k = 4, expression 
(10_.4) is (x1 + X2 + Y1)(x3 + X4 + .Y1). 

There is some assignment to the new variables which makes the replacing 
expression have value I if and only if one of the literals x1, x2 , ••• , xk has 
value I, that is, if and only if the original expression has value I. Assume 
xi = I. Then set Yi to I for j :s i - 2 and set Yi to 0 for j > i - 2. The re­
placing expression has value I. Conversely, assume that some assignment for 
the y/s makes the resulting expression have value I. If y 1 = 0, then either 
x1 or x2 must have value I. If Yk-3 = I, then either xk-i or xk must have value I. 
If Y1 = I and Yk-3 = 0, then for some i, I :s i :s k - 4, Yi= 1 and Y;+1 = 0, im­
plying xi+2 must have value 1. In any event some x; must have value I. 

The length of each replacing expression is bounded by a constant mul­
tiple of the length of the replaced expression. In fact, given any CNF expres­
sion £, we can find. by applying the above transformations to each sum. a 
3-CN F expression £' which is satisfiable if and only if the original expression 
is satisfiable. Moreover. we can find £' in time proportional to the length of 
E, since the transformations are straightforward to apply. 0 

10.5 ADDITIONAL NP-COMPLETE PROBLEMS 

We now proceed to show that each of the problems mentioned in Theorem 
I 0.2 is NP-complete by directly or indirectly transforming satisfiability to 
them. The tree in Fig. 10.6 shows the sequence of transformations we shall 
actually make. If P is the father of P' in Fig. 10.6. then we show that P is 
polynomially transformable to P'. 

Theorem 10.5. CNF-satisfiability is polynomially transformable to the 
clique problem. Therefore. the clique problem is NP-complete. 
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Fig. 10.6 Order of transformations for various hard problems. 
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Proof Let F = F1F2 • • • Fq be an expression in CNF. where the F;"s are 
the factors: each F; is of the form (xu + x;2 + · · · +xii.-,). where X;j is a literal. 
We shall construct an undirected graph G = ( V. E) whose vertices are pairs 
of integers [i, j], for I =:;;; i =:;;; q and I =:;;; j =:;;; k;. The first component of the 
pair represents a factor, and the second a literal within the factor. Thus each 
vertex of the graph corresponds to a particular literal of a particular factor in 
a natural way. 

The edges of G are those pairs ( [i, j]. [k, /]) such that i ~ k and xii ~ xk,· 
Intuitively, [i, j] and [k, I] are adjacent in G if they correspond to different 
factors and it is possible to assign values to the variables in literals xii and .rA-1 

in such a way that both literals have value I (giving F; and FA. the value I). 
That is, either X;j = Xkt• or xu and xA-1 are complemented or uncomplemented 
versions of different variables. 

The number of vertices in G is clearly less than the length of F. and the 
number of edges is at most the square of this number. Thus G can be encoded 
as a string whose length is bounded by a polynomial in the length of F. More 
importantly. sucJl an encoding can be computed in time bounded by u poly­
nomial in the length of F. We shall show that G has a clique of size q if and 
only if F is satisfiable. It then follows that given a polynomial-time-bounded 
algorithm for the clique problem we could construct a polynomial-time algo­
rithm for the CNF-satisfiability problem by converting an expression F to a 
graph G such that G has a clique of size q if and only if Fis satisfiable. The 
proof that G has a clique of size q if and only if F is satisfiable follows. 
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IF. Assume that F is satisfiable. Then there exists a 0-1 assignment of values 
to the variables such that F = I. For this assignment each factor of F has 
value I. Each factor F; contains at least one literal with value I. Let one 
such literal in F; be x;,,,,. 

We claim that the set of vertices { [i. m1] I 1 :::;:; i:::;:; q} forms a clique of 
size q. Otherwise there exist i and j, i ~ j. such that there is no edge between 
vertices [i. m;] and [j, mJ. This implies that X;rn, = .firn, by definition of the 
edge set of G. But this is impossible since x;,,,, = x;,,,, = I by the way the X;m, 's 
were selected. 

ONLY IF. Assume G has a clique of size q. Each vertex in the clique must 
have a distinct first component, since two vertices with the same first compo­
nent are not connected by an edge. Since there are exactly q vertices in the 
clique, there is a one-to-one correspondence between the vertices of the clique 
and the factors of F. Let the vertices:of the clique be [i, mi] for I :::;:; i :::;:; q. 
Let S1 = {ylx;111, = y, where l :::;:; i:::;:; qand y is a variable}, and let S2 = {ylx;,,,, = 
y, where I :::;:; i :::;:; q and y is a variable}. That i~·S 1 and S2 denote the sets of 
uncomplemented and complemented variables, respectively, represented by 
the vertices of the clique. Then S 1 n S 2 =if. otherwise there would be an edge 
between some [s, m.] and [t, m1], where Xsm, = i 1m,· By setting the variables 
of S1 to l and those of S2 to 0, the value of each F; is made I. Thus Fis 
satisfiable. D 

Example 10.5. Consider the expression F = (y1 + y2 ) (y2 + y3 ) (y3 + y1 ). The 
literals are 

Xu= Y1• 

X12 = Y2· 
X21 = Y2· 

X22 =Ya• 
Xa1 =Ya. 

Xa2 = Yt· 
The construction of Theorem I 0.5 yields the graph of Fig. l 0. 7. For example. 
[ l, I] is not connected to [I, 2] because the first components are the same, 
and [I, I] is not connected to (3, 2] since x11 = y 1 and x32 = y1• [I, I] is 
connected to the other three vertices. 

Fig. 10.7 Graph constructed by Theorem 10.5. 
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F has three factors, and it happens that there are two cliques of size 3 in 
the graph of Fig. 10.7, namely {[I. I]. [2. I]. r3. I]} and {[I. 2J. [2. 2]. 
[3. 2]}. In the first case. literals )'1, Y2· and )'3 are represented. These are all 
uncomplemented variables. and the clique corresponds to the assignment 
y 1 = Y2 = Ya = I to F. The other clique corresponds to the other assignment 
that makes F true, namely, )'1 = Y2 =Ya= 0. 0 

Theorem 10.6. The clique problem is polynomially transformable to the 
vertex cover problem. Therefore, the vertex cover problem is NP­
complete. 

Proof Given an undirected graph G = ( V, E), consider the complement 
graph G = (V, E), where E= {(v, w)jv, w EV, 1· ~ w. and 11·. 11·) E £}. 
We claim a set S ~ Vis a clique in G if and only if V - S is a vertex cover 
of G. For if Sis a clique in G, no edge in G connects two vertices in S. Thus 
every edge in G is incident upon at least one vertex in V - S. implying J' - S 
is a vertex cover of G. Similarly, if V - S is a vertex cover of G. then every 
edge of G is incident upon at least one vertex of V- S. Thus no edge of G 
connects two vertices in S. Therefore every pair of vertices of S is connected 
in G, and Sis a clique in G . . 

To find whether there exists a clique of size k. we construct G and deter­
mine whether it has a vertex cover of size llVll - k. Surely, given a standard 
representation of G = (V, E) and k, we can find a representation of G and 
llVll - k in time which is a polynomial in the length of the representation for 
G and k. 0 

Example 10.6. Graph G of Fig. 10.8(a) has cliques {I. 2. 5} and {I. 4, 5} of 
size 3. Gin Fig. I0.8(b) has the corresponding vertex covers {3. 4} and {2, 3} 
of size 2. G has cliques {2, 3} aqd {3, 4} of size 2 (among others). G has 
the corresponding vertex covers {I, 4, 5} and {I, 2, 5}.of size 3. 0 

Theorem 10.7. The vertex cover problem is polynomially transform­
able to the feedback vertex set problem. Therefore. the feedback vertex 
set problem is NP-complete. 

(a) G !blG 

Fig. 10.8 (a) A graph and (b) its complement. 
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Proof Let G = ( V. £) be an undirected graph. Let D be the directed grapt 
formed by replacing each edge of G by two directed edges. Specifically, le: 
D = (V. £'). where £' = {(1·. 11·). (11', 1·)j(1·, 11') E £}. Since every edge 
in E has been replaced by a cycle in D. a set S !: Vis a feedback vertex set fo1 
D (every cycle of D contains a vertex in S) if and only if S is a vertex cove1 
for G. Also. the representation of D can easily be found from G in polynomial 
time. D 

Theorem 10.8. The vertex cover problem is polynomially transformable 
to the feedback edge set problem. Therefore. the feedback edge set 
problem is NP-complete. 

Proof Let G = (V, E) be an undirected graph. Let D = (V x {O, I},£') 
be a directed graph, where £' consists of: 
i) [v, OJ~ [v, I]t for each i· EV, and 

ii) [v, IJ~ [w,O]and[w, IJ~ [v,O]foreachundirectededge(v,w) EE. 
See Fig. 10.9. 

"#• 
Let F C E' be a set of edges of D containing at least one edge from each 
cycle in D. Replace each edge in F of the form [ v. I] ~ [ w, OJ by the edge 

(a) G (bl D 

Fig. 10.9 An undirected graph (a) and the corresponding 
directed graph (b) used in Theorem I 0.8. Vertex cover 
{2.4} corresponds lo feedback edge set {(2.0)- (:!.I). 
(4,0)-+ (4. I)}. 

t We use x - y for the directed edge (x, y) here and subsequently in this chapter. 
The convention improves readability. 
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[w, OJ - [w. I]. Let the resulting set be F'. Then we claim HF'ii :s !iF!!. and 
F' contains at least one edge from each cycle. <The only edge out of [ 11. OJ 
goes to [11'. lJ. so [11'. OJ- [11'. IJ is in any cycle containing !1·. 1 l - f 1·. Ol. l 

Without loss of generality. assume 

F' = { [I';. OJ - [I';. I J 11 :s i :s k} 

for some k. Then every cyele of D contains an edge [ 1·;. OJ -+ [ 1·,. I] for ,\,me 
i. I :s i :s k. However, note that if (x, y) is any edge of G. then :x. I]. 
[y. OJ, [y, I], [x, OJ, [x, IJ is a cycle in D. Thus every edge of G i~ incident 
upon some 1·;, I :s i :s k. and hence { 1·1 ..... 1·iJ is a vertex cover for G. 

Conversely, we may easily show that given a·· vertex cover S of size J... the 
set {[1', OJ - [1', IJl1· ES} is a feedback edge set of D. To find whether 
there is a vertex cover for G with k vertices, construct D in polynomial time 
and determine whether there is a feedback edge set of D with k members. O 

Theorem 10.9. The vertex cover problem is polynomially transformable 
to the Hamilton circuit problem for directed graphs. Hence the Hamilton 
circuit problem for directc;d graphs is NP-complete. 

Proof Given an undir~cted graph G = (V, EJ and an integer k we show 
how to construct in time polynomial in II VII a directed graph G 0 = ( V0 • £ 1,) 

such that G 0 has a Hamilton circuit if and only if a set of k vertices of V covers 
the edges of G. 

Let V= {v1, v2 , •.• , vn}. Denote an edge (1·;. 1'j) by e;j.t Let a 1• a2 • 

. . . , a,. be new symbols. The vertices of G 0 will consist of one vertex cor­
responding to each a; plus four vertices for each edge of G. More precisely: 

Vo= {ai. a2 , ••• , ad U {[v, e, b]lv EV, e E £. 
b E {O. I}. and e is incident upon 1·}. 

Before formally describing the edges of G 0 we give an intuitive explana­
tion. An edge ( v;, 1·i) of G is represented by a subgraph with four vertices 
as shown in Fig. I 0.10. 

If a Hamilton circuit enters the subgraph representing edge <'u at A. then 
it must leave by D. since if it leaves by C either [ 1·J· eu. OJ or [ 1·,. eii. I] can­
not appear on the circuit. In going from A to D. the path may visit all four 
vertices in the subgraph, or it may visit only the two leftmost. In the latter 
case the Hamilton circuit must at some point go from B to C visiting the two 
rightmost vertic~s. 

G0 can be thought of as consisting of 11111 lists. one list for each vertex. 
The list for vertex 1· contains all edges incident upon 1· in some specific order. 
Each ai. I :s j :s k. has an edge to the vertices [ 1·1· e11. O] such that e;1 is the 
first edge _on the list for 1·;. There is an edge from [ 1·;. e;,. I] to each Clj if l'u 

t Note that <';;and £';; denote the same edge and arc to be regarded as the same symbol. 
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A 

D 

From previous 
edge adjacent 

to V; 

To next edge 
adjacent to 

V; 

From previous 
edge adjacent 

to Vj 

To next edge 
adjacent to 

Vj 

Fig. 10.10 Representation of an edge(\';, v;). 

10.S 

8 

c 

is the last edge on the list for vi. There is an edge 'ft'om [vi> eu, I] to [ vh eim• O] 
if edge e;m immediately follows eil on the list for v;. These edges, in addition 
to the edges implied by Fig. I 0. IO, form the set ED· We now show that G 0 

has a Hamilton circuit if and only if G has a set of k vertices covering all edges. 

IF. Assumevertices1·1 , 1'2 , ••• , l'i.-coveralledgesofG. Letf;1,f;2 , ••• ,f;1, 
be the list of edges incident upon v;, I s i s k. Consider the cycle from ver-
tex a1 to [v1,Ji1, O], [v1,/11 , I], [v.,.fi2, O], [v1,Ji2, I], ... , [v.,Ji,,, O], 
[v1,fll,, I] and then to a2, then to [v2 ,J;1 , O], [v2 ,J;1 , I], ... and so on 
through the edge lists of v3 , v4 , ••• , v,.., then finally back to a1• This cycle 
goes through every vertex of G 0 except those vertices in the edge lists of ver­
tices other than v1 , ••• , v,... For each pair of vertices of G0 of the form 
[vi, e, 0] , [vi, e, I] , j > k, we can extend the cycle, since e is incident· upon 
some vh I s i s k. Replace the edge from [vi, e, 0] to [ vh e, I] in the cycle 
by the path 

[v;, e, O], [1'i• e. O], [vi, e, IL [vi, e, I]. 

The cycle, revised as above for each l'i and e, contains every vertex of Go 
and hence is a Hamilton circuit. 

ONLY IF. Assume G 0 has a Hamilton circuit. The circuit can be broken 
into k paths, each path starting at a vertex ai and ending at a vertex ai. By 
our previous consideration of possible paths through the subgraph of four 
vertices representmg each edge (as in Fig. I 0.10), we see that there exists a 
vertex l' such that each vertex on the path from ai to ai is of the form [ l', e, O] 
or [1·. e. I], where e is an edge of G. or is of the form [w. e. O] or [w, e. I], 
where e is the edge ( v. II'). Thus the first component of each vertex on the 
path from a; to ai is either the vertex l' or a vertex adjacent to l'. With the 
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path from a; to a; we thus may associate some specific vertex 1·. For every 
vertex [ w, c. h] of G n· e must he incident upon one of the J.. vertice~ of G 
associated with a path. Thus the k vertices form a vertex cm·er of G. \\'c 
conclude that G 1, has a Hamilton circuit if and only if there exist J.. vertices 
in G such that every edge of G is incident upon one of these J.. vcrticc~. -__:: 

Example 10.7. Let G be the graph with vertice~ 1·1• 1·~· and 1·:1 and with ·ed!!CS 
e12 • e 1;1, and e23 as in Fig. I 0. I I (a). The graph G ,, C(m~tructed in Thcnrcm 

e1J 

(a) 

[v~, e:J, 1) 

(bl 

Fig. 10.11 Graph with Hamilton circuit: (al the undirected gmph G. I bl the directed 
graph G 1,. 
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I 0.9 is shown in Fig. I 0.11 (b). A Hamilton circuit of G 0 , based on the vertex 
cover { ''i, v2 }, is shown in boldface. D 

Theorem 10.10. The Hamilton circuit problem for directed graphs is 
polynomially transformable to the Hamilton circuit problem for undirected 
graphs. Hence the problem of determining whether there is a Hamilton 
circuit in an undirected graph is NP-complete. 

Proof Let G = (V, £)be a directed graph. Let U= (Vx {O, l, 2}, £')be 
an undirected graph where E' consists of edges 

I. ([v,O], [v, I]) forv EV, 
2. ([v, I], [v, 2]) for v E V, and 
3. ( [ v, 2], [w, OJ) if and, only if v ~ w is an edge in£. 

Note that each vertex of V has been expanded into a path consisting of three 
vertices. Since a Hamilton circuit in U must include all vertices, the last 
component of the vertices on the circuit must v1-ry in the order 0, 1, 2, 0, 1, 
2, ... or its reversal. We may assume the ·former, in which case the type-3 
edges, whose second component goes from 2 to 0, represent a directed Hamil­
ton circuit in G. Conversely, a Hamilton circuit in G may be converted to 
an undirected Hamilton circuit in U by replacing each edge v ~ w by the path 
[ v, 0], [ v, I], [ v, 2] , [ w, 0] in U. D 

Theorem 10.11. The vertex cover problem is polynomially transformable 
to the set cover problem. Therefore, the set cover problem is NP­
complete. 

Proof Let G = ( V, £) be an undirected graph. For 1 :s i :s llVll. let S; be 
the set of all edges incident upon v;. Clearly, S11 , S;,, ... , S 1• is a set cover 
for the S;'s if and only if { v; , v; , ... , v; } is a vertex cover for G. D 

I 2 t 

Theorem 10.12. The 3-satisfiability problem is polynomially transform­
able to the colorability problem . 

. Proof Given an expression F in 3-CNF with n variables and t factors, we 
show how to construct. in time polynomial in MAX(n, t), an undirected graph 
G = ( V, E) with 311 + t vertices, such that G can be colored with /1 + 1 colors 
if and only if F is satisfiable. 

Let x 1 , x2 , ••• , Xn and F 1 , F2 , ••• , F, be the variables and factors of F. 
respectively. Let v1 , v2 , ••• · , vn be new symbols. Without loss of generality 
assume n ~ 4 since any expression in 3-CNF with three or fewer distinct 
variables can be tested directly for satisfiability in time linear in the length of 
the expression without use of the transformation to colorability. The vertices 
of Gare: 

I. xh .r1, and l'1t for I :s i :s n. and 
.., F1, for I :s i :s t. 
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The edges of G are: 

I. all ( ,.;. v;) such that i #- j . 
., all (1·;, x;) and (v;, .f;) such that i #- j. 
3. (x;, .f;) for I ::s i ::s 11, 

4. (xi. F;) if X; is not a term of fac:tor F;. and (.f;. F;). if .X; is not a term of F;. 

The vertices 1·1 , v2 ••••• ''n form a complete subgraph of 11 vertices and 
hence require 11 distinct colors. Each X; and .f; is connected to each 1·;. i ¥ j. 
and hence X; and .f; cannot be the· same color as any of the v's. except pos­
sibly 1•;. Since x; and .f; are adjacent, they cannot .be the same color. so G 
cannot be colored with n + I colors unless one of x; and .f; is the same color 
as v; and the other is a new color which we refer to as the special color. 

Think of that one of X; or .f; colored with the special color as being 
assigned the value 0. Now consider the color assigned to the F; vertices. 
F; is adjacent to at least 2n - 3 of the 2n x;'s and .X;'s. Since we assume /1 2: 4. 
for each j there exists an i such that F; is adjacent to both x; and .f;. Since 
one of x; or .f; is colored with the,special color, F; cannot be colored with the 
special color. · · 

If F; contains some literal y, where y has been assigned the special color, 
then F; is not adjacent to any vertex colored the same as y and hence may be 
assigned the same color as y. Otherwise, a new color is needed. Thus all 
the F;'s can be colored with no additional colors if and only if there is an assign­
ment of the special color to the literals such that each factor contains some 
literal y where y has been assigned the special color-that is, if and only if 
one can assign values to the variables so tha.t each factor contains a y assigned 
the value 1 (ji assigned the value 0), i.e., if and only if F is satisfiable. D 

Example 10.8. Let F be (x1 + x2 ) (.f1 + x3 ). Note that there are two rather 
than three terms per factor. This change does not alter the construction of 
the graph G in Theorem 10.12, but enables us to deal with expressions in­
volving only three variables and graphs which can be colored with four colors. 
(Observe that the analog to Theorem 10.12 for 2-CN F is true, but uninter­
esting. Since there is a polynomial-time-bounded algorithm for 2-CNF, satis­
fiability for 2-CNF is polynomial-time-transformable to every problem.) The 
resulting graph is shown in Fig. 10.12. Colors are marked A, B, C, and S 
(special). The 4-coloring corresponds to the solution x1 = x2 = x3 = 0. D 

Theorem 10.13: The colorability problem is polynomially transformable 
to the exact cover problem. Hence the exact cover problem is NP­
complete. 

Proof Let G = (V. £) be an undirected graph, and let k be an integer. We 
construct sets whose elements are chosen from 

S = V U { [ t'. i] I e E E and I ::s i ::s k}. 
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Fig. 10.12 Graph with chromatic number 4. 

For each v E V and I :s i :s k, define 

Svi = {v} U {[e, iJle incident upon v}. (10.5) 

For each edge e and I :s i :s k, define 

Tei= { [e, i]}. ( 10.6) 

We can relate k-colorings of the graph G to exact covers for the collec­
tion of sets defined by (I 0.5) and (I 0.6), as follows. Suppose G has a k-color­
ing, in which vertex v is colored c,., where c,. may be taken to be an integer 
from I to k. Then we may easily check that the collection of sets consisting 
of S,.c. for each v, and those singleton sets Tei such that [e, i] $. S,.c. for any 
v, forms an exact cover. In proof, note that if e = ( v, w) is an edge, then c,. '# 
l\.., so S,.c. n s ... c •. = fJ. Certainly. if x and y are not adjacent, then S.rc, and 
Sue. are disjoint, and no Tei is selected unless it is disjoint from all other se­
lec~ed sets. 

Conversely, suppose the sets have an exact cover .9'. Then for each ,., 
there is a unique c,. such that S,.,.,. is in .9'. This follows since each v must be in 
exactly one set of .9'. We claim that each vertex v may be colored c\. to obtain 
a k-coloring of G. Suppose not. Then there is some edge e = ( v, w) such 
that c,. = c,.. = c. Then S ''('• and S .. 'C. each contain [ e, c], so .9' is not an exact 
cover as supposed. D 
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10.6 POLYNOMIAL-SPACE-BOUNDED PROBLEMS 

There is another natural class of difficult problems which contains . I 'J'. 
This class. which we call .;"-SPACE. is the class of languages accepted liy 
polynomial-space-bounded deterministic Turing machines. 

Recall. by Theorem I 0. I. that if L is accepted hy an N DTM of space 
complexity p(n) for some polynomial p. then it is accepted liy a DTM of 
space complexity p2 (n). Thus .9'-SPACE also includes all languages ac­
cepted by polynomial-space-boundec.I N DTM's. Since every polynomial­
time-bounded NDTM is polynomial-space-hounded. we immediately have 
... V&'-TIME ~ &'-SPACE (Fig. 10.13). Moreover. since ,9'-TIME ~ ... V.9'­
TIME ~&'-SPACE, if &'-TIME= 3"'-SPACE. then .9'-TIME = .n~-TIME. 
so it is even more unlikely that every language in .<?'-SPACE has a determi­
nistic polynomial-time algorithm than that every language in . l~ .. '1"-TIME has 
a deterministic polynomial-time algorithm. 

We can exhibit a fairly natural language Lr which is complete f(1r 
.9'-SPACE. That is, Lr is in &'-SPACE and if we are given a Tin) time­
bounded deterministic TM that a~cepts Lr. then for each language L in 
.9'-SPACE we can find a T(pi(n) )-time-bounded deterministic TM that ac­
cepts L, where PL is a polynomial that depends on L. The same holds if 
"deterministic" is replaced by "nondeterministic." Thus, if Lr is in &'-TIME, 
then &'-TIME= %&'-TIME= &'-SPACE. If Lr is in .A,..9'-TIME. then ..1V&'­
TIME = &'-SP ACE. The language Lr is the set of r~gular expressions whose 
complements denote nonempty sets. 

Lemma 10.2. Let M = (Q. T. I. 5, b, <Jo· qc) be a p(n)-space-bounded 
single-tape DTM where p is some polynomial. Then there is another 
polynomial p' such that if x E /* and lxl = 11. then we can construct a 
regular expression Rr in time p' ( 11). such that the complement of Rr 
denotes the empty set if and only if M does not accept x. 

Proof The proof bears a strong resemblance to that of Theorem I 0.3. There 
we used Boolean functions as the language with which to describe computa-

&'·SPACE=. ·~·SPACE 

Fig. 10.13 Space time relationships. 
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tions of a Turing machine. Here we use the language of regular expressior 
There is a certain conciseness to regular expressions. and we are able to use 
regular expression to express facts about ID sequences that are much long 
than the regular expression itself. 

The regular expression R.r can be thqught of as representing the sequenc1 
of I D's of M which do not demonstrate acceptance of x. For our purpos1 
we use the alphabet il = T U { [qX] jq E Q and X E T}. The symbol [q..\ 
in Q x T represents a cell of M's input tape which is scanned by the ta~ 
head and holds symbol X, while M is in state q. If M accepts x. it does sob 
a sequence of moves in which at most p ( lxl) tape cells are used. Thus we ma 
represent an ID by a string w; of exactly p(n) symbols. all but one of whic 
are from T; the remaining symbol is of the form [qX]. A sequence of move 
by M can be represented by a string #w1#w2# · · · w1.:# for some k ~ I, wher 
# is a new punctuation symbol and each wi is a string in ~ * representing a. 
ID. with lw;! = p(11). Each w; is padded out with blanks if necessary to mak 
it of length p(n). 

We wish to construct Rx to represenJ th~ strings in (.:l U { #}) * whicl 
do not represent accepting computations of M with input x. Thus R.r will rep 
resent all strings in (a U { #}) * if and only if M does not accept x. A strin! 
y in (a U { #}) * fails to represent an accepting computation of M only if om 
or more of the following four conditions are met. We assume lxl = 11. 

I. y is not of the form #w1#w2# · · · w1.:# for some k ~ I. where for each i 
I :::; i :::; k, Ill';!= p(n), and all but one symbol of W; is in T: the remainin~ 

symbol is of the form [qX]. 
" The initial ID w1 is wrong. That is, y does not begin with #[q0a1]a2 • • • 

anbb ... b#, where x = a 1 • • • an and the number of blanks is p ( 11) - 11. 
3. M never enters the final state. That is. no symbol of the form [qrXJ. 

appears in y. 
4. y has two consecutive I D's, the second of which does not follow from the 

first by one move of M. 

We shall write R.r as A+ B + C + D where A . .... D are regular expres-
sions representing the sets defined by conditions I .... , 4. respectively. 

It is useful to develop a shorthand for writing regular expressions. If we 
have an alphabet S = {c1• c2 • •••• c,,,}. then we use S itself to denote the 
regular expression Ci + c2 + · · · + c111 • Also. we use Si to denote the regular 
expression ( S) ( S) · · · (S) (i times), that is. strings of length i over alphabet 5. 
Note that the length of the regular expression represented by S is 2m - I: the 
length of the regular expression represented by Si is i(2m + I l. Similarly. if 
Si - S 2 ={di, .d2 • •••• dr}. then we use Si.- S 2 to denote the regular ex­
pression c/1 + c/2 + · · · + d, .. 
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Given these conventions. the regular expression A can he written 

A= il* + il*# il* + ..lU. + # )* + (..l T # )" ..l 
+ ( !l. + # ) * # T* # ( :l + # ) * 
+ (il+#)*#:l*(Q x T)~*(Q x Tl..l"#t..l-#)> 
+ (!l. + #)*#Jll•(ll)-'-l!l.*#(!l. + #)* 

+Ao+A, + · · · +A,,1nl-1· ( 10.7) 

where the A;'s are defined subsequently. The first seven terms of ( 10.7 I 
represent, respectively: 

i) strings with no #, 
ii) strings with only one #, 

iii) strings not beginning with #, 
iv) strings not ending with #, 
v) strings with no symbol of Q x T between two #'s, 

vi) strings with more than one symb9l of Q x T between two #'s, and 
vii) strings with more than p(n) symbols of !l. between;#'s. 

The remaining terms A; are given by A; = ( !l. + #) * # !l. ;# ( !l. + #) *. and to­
gether denote the set of strings with fewer than p(n) symbols of !l. between 
two #'s. · 

It is left to the reader to check that the regular expression of (10.7) does 
in fact represent the strings meeting condition 1. Also, note that the first six 
terms are of fixed length, depending only on M. The length of the seventh term 
is clearly 0 (p(n)). The term Ai is of length 0 (i), so the sum of their lengths. 
and hence the length of (10. 7), is 0 (p2 (n)), the constant of proportionality 
depending only on M, not x. Moreover, it is easy to check that expression 
(10.7) can easily be written down in time which is polynomial inn. 

At this point, we observe that for B, C, and D we need write only expres­
sions which represent all the strings which satisfy condition 2, 3. or 4, but 
which violate condition 1, i.e., we need only generate strings of the form 
#w1# · · · wi...#,wherelw;l=p(n),andw;isinT*(QX T)T*. Forsimplicity. 
however, we shall write expressions defining sets of strings which satisfy con­
ditions 2, 3, and 4 and violate condition I, and also including some strings 
which satisfy condition 2. 3, or 4 as well as condition I. Since those in the 
latter class are alreadyioin Kr by the definition of expression A, their presence 
or absence in B, C, and D is immaterial. 

Assuming the input string x = a1<12 · • · a,., we express Bas B1 + B~ + · · · 
+ B,,<,,h where 

Bi= #(.:l- [qoaiJ)!l."'"1-1#(~ + #)*. 
B; = #..li-1cT- {a;}).:l'''">-i#(~ + #)* 
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for I < i :::; 11. and 

B; = #D.i-•(T- {b} )il''(ll)-i#(a + #)* 

for /1 < i:::; p(n). Thus B; differs from the initial ID in at least the ith input 
symbol. Clearly, B is of length 0 (p2 (n)). the constant of proportionality 
depending only on M. · 

We write C as ((il + #) - ( {q,} x T)) *. Certainly the length of this 
expression depends only on M. 

Finally, we may construct D as follows. Suppose we are given a string 
y which does represent a legal computation of M. Then it is of the form 
#w1#w2# · · · wk.#, where for each i, lwil = p (n) and wi+i is an ID that re­
sults from ID wi by one move of M. Observe that given any three consecu­
tive symbols c1c2c3 ofy, we can uniquely determine the symbol, call it/(c1c2c3 ), 

which must appear p(n) + I symbols to the right of c2• For example, if c1, 

c 2, and c3 are each in T, then c2 may not change at the next ID, so/(c1c2c3 ) = c2• 

If c1 and c2 are in T, c3 = [qX] in Q X T, an~.cS(q, X) = (p, X, L), then 
/(c1c2c3 ) = [pc2 ]. The remaining rules defining f, including those where c1 

or c2 is in Q x T, or one of the e's is#, should be obvious to the reader and 
are left as exercises. 

D is therefore the sum of terms Dc1c2c3 for all c1, c2 , and c3 in A U {#}, 
where 

Dc,c2ca = (A+ #)*C1C2Ca(A + #)P!J1)-1](c1C2C3} (A+#)* 

andf(c1c2c3)=A U {#}-/(c1c2c3 ). WeseethatthelengthofDisO(p(n)), 
and that D can be written down in time 0 (p ( n)), the constant of proportion­
ality depending only on M. 

Thus the regular expression Rr can be constructed in time p' (n) where 
p' is a polynomial of the order of p2• Moreover, Rr denotes (A U { #.}) * if 
and only if xis not accepted by M. D 

We note that in Lemma I0.2 we constructed a regular expression whose 
alphabet ~ U { #} was of a size that depends on M. We wish to talk about 
the "language of regular expressions whose complements (with respect to 
their alphabets) denote nonempty sets." Since a language must have a finite 
alphabet, we shall encode a regular expression over an arbitrary alphabet I 
as follows. 

I. +, *. 0. e, and parentheses denote themselves . 
.., The ith symbol of the alphabet I (in arbitrary order) is denoted #w#. 

where w is the decimal representation of i. 

Thus only I 7 symbols are needed to encode any regular expression over any 
alphabet. Let f·= {+, *, 0. e, (,), #. 0,), ... , 9} be this alphabet. 

We define the language Lr ~ f* to be the set of encodings of those regular 
expressions R such that the complement of R denotes a nonempty set. If R 
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is over alphabet ~. then the complementation is with respect to ~- Note that 
if R is of length /1 ;:::; 2. its encoding is of length at most Jn log 11. 

Lemma 10.3. L,. is in .<?"-SPACE. 

Pr(J(~t: By Theorem I 0.1 it suffices to construct a polynomial-spacc-houndt!d 
N DTM M to accept Lr. Let R be a regular expression whose encoding i:-. 
presented to M as an input string. By Theorem 9.2 we may. given a regular 
expression of length 11, construct a nondeterministic finite automaton A with 
at most '211 states that accepts the language denoted by the regular expression. 
The N DTM M operates by first bu_ilding the automaton A from the encoding 
of R presented to M. Observe that in the construction in Theorem 9.2 the 
next state function of A can be constructed in time no greater than 0 ( 11 2 ). 

Suppose the complement of the set denoted by R is not empty. Then there 
is a string x = a 1 • • • am such that x is not in the language denoted by R. M 
guesses x symbol by symbol. M uses an array of 211 bits to keep track of S;. 
the set of states which A may be in after having read a 1 • • • a;, I :::; i s m. 
To begin, 5 0 is the set of states repchable from the initial state of A on E-transi­
tions only. After M has guessed {1 1a2 • • • ai, A will be in some set of states S ;. 
When M guesses the next input symbol ai+i• it firs.t computes Ti+ 1 = {s' is' E 
SA (s, ai+i) and s E S;}. where SA is the next state function of A, and then 
computes S;- 1 by adding to T;_ 1 each state in SA(s', E) for s' in Ti-i· (Note the 
similarity to Algorithm 9. I.) 

When M guesses a1a2 • • • am, it will determine that 5 111 contains no final 
state of A. On finding a set of states without a final state, M accepts its own 
input string, the encoding of the regular expression R. Thus M accepts the 
encoding of R if .and only if the complement of the set denoted by R is non­
empty. D 

We can now show that the language Lr consisting of the encodings of 
those regular expressions which denote sets whose complements are not 
empty is polynomial-space complete. 

Theorem 10.14. If Lr is accepted by a DTM of time complexity T(n) ;:::; 11. 
then for each L E .9"-SPACE, there is a polynomial Pr. such that L is 
accepted in time T(pd11) ). 

Proof: Let M be a DTM accepting L. By Lemma I 0.2 and the discussion 
following. there is a polynomial-time-bounded algorithm. say of time com-• 
plexity p 1 (11). to construct the regular expression Rx from an input string x. 
Rx is over a fixed 17-symbol alphabet and is surely no longer than P1 ( lxl ). 
By Lemma 10.2. the complement of Rx is empty if and only if xis in L. We 
can. by hypothesis. test whether the complement of R,,. is empty in Tl IR,,.I) = 
T(pi( lxi)) steps. The total time taken to construct R,,. is p 1 (.r) and to test 
R:r is T(pi(l.rl)J. Since T(11);:::; 11. choosing Pi.In)= '2p 1 (11) is sufficient to 
prove the theorem. D 
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Corollary. Lr is in .9'-TIME if and only if .9'-TIME =.<?'-SPACE. 

Proof If .9'-TIME = .9'-SPACE, then Lr is in .9'-TIME by Lemma 10.3. 
The converse follows from Theorem 10.14 with T(n) a polynomial. D 

Theorem 10.15. If Lr is accepted by an N DTM of time complexity 
T(n) ~ n, then for each L E .9'-SPACE, there is a polynomial PL such 
that Lis accepted by an NDTM in time T(pdn)). 

Proof. Analogous to the proof of Theorem I 0. I 4. D 

Corollary. Lr is in .1V'.:P'-TIME if and only if.!V.9'-TIME=.9'-SPACE. 

EXERCISES 

IO.I Give all the legal sequences of moves of the NDTM in Fig. IO. I (p. 368) on 
input I 0 I 0 I. Does the N DTM accept this input? 

10.2 Informally describe an NDTM or a nondet~ininistic Pidgin ALGOL pro­
gram that will accept the following. 
a) The set of strings I Qi• I Qis • • • I Qi.t such that ir = i, for some I s r < s s k. 
b) The set of strings xcy such that x and y are in {a, b} * and x is a subword of y. 
c) The same as (b), but xis a subsequence (p. 361) of y. 

I0.3 Describe a RAM program that will simulate a nondeterministic RAM program. 

I0.4 Let M be an m x n matrix of O's and I's. Write a Pidgin ALGOL program to 
find a smallest s x n submatrix S of M such that if M[i, j] = I, then for some 
1 s ks s, S[k,j] =I. What is the time complexity of your program? 

10.S Show that the following functions are space-constructible by informally de­
scribing a DTM which places a marker symbol in the appropriate square of 
one of its tapes. 
a) n2 

b) n3 - n2 + I 
c) 211 

d) n! 

10.6 Show that if a single-tape NDTM of space complexity S(n) has s states and t 
tape symbols, and it accepts a word of length n, then it accepts the word in a 
sequence of at most sS(n)t~< 11 > moves. 

*10.7 Show how to evaluate a Boolean expression in time O(n) on a RAM. 

I0.8 Show that the language consisting of those Boolean functions that are not 
tau to logiest is NP-complete. 

10.9 Show that the subgraph isomorphism problem (Is a given undirected graph G 
isomorphic to some subgraph of a given undirected graph G'?) is NP-complete. 

t A tautology is a Boolean expression that has the value I for all assignments of values 
to its variables. 
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lHint: Use the fact that the clique problem or that the Hamihon circuit proh­
lem is NP-complete.] 

10.10 Show that the knap.rnck problem <Given a sequence of integer~ S = i,. i~ . .... ;.,, 
and an integer k. is there a subsequence of S that sum~ to exactly/.. ?1 i-. N P-.:om­
plete. [Hint: Use the exact cover problem.] 

*10.11 Show that the partition problem (the knapsack problem of E:-.erci~c 111.10 
with ~j'.. 1 i; =:?.kl is NP-complete. 

JO.I2 Show that the trm·din1: salesman proh/C'm (Given a graph(; with integer wcighh 
on its edges.· find a cycle which includes euch vertex and who-.e edge'> h;I\ c 
weights summing to at most k) is NP-complete. 

**JO.I3 Show that the problem of determining whether a regular expression without 
*"s (i.e .. using only operators+ and ·)does not denote all string~ or !>.omc fixel.I 
length is NP-complete. [Hint: Transform the CN F-satisfiahility prohlem to 
the regular expression problem.] 

**IO.I4 Show that the problem of determining whether a regular expression over the 
alphabet {O} does not denote 0* is NP-complete. 

**IO.IS Let G = ( V, £) be an undirected graph and let 1· 1 and 1·~ he two distinct ver­
tices. A c1tl.\·et for 1·1 ancP. 1·2 is a subset S k E such that every path between 
1·1 and 1·2 contains an element of S . . Show that the problem of determining 
whether a graph has a cutset of size k for 1·1 and 1·~ such that each part has the 
same number of vertices is NP-complete. 

**10.16 The one-dimensional package placement problem is the following. Let 
G = ( V, E) be an undirected graph and k a positive integer. Does there exist 
an ordering 1·1, v2 , ••• , 1•11 for V such that 

L Ji- jJ :5 k? 
(,.,,,.,JEE 

Show this problem to be NP-complete. 

**I0.17 Prove that the colorability problem is NP-complete even if k is restricted to 3 
and the maximum degree of any vertex is 4. 

**IO.IS Prove Exercise 10.17 for planar graphs. [Hint: Show that the planar graph 
of Fig. I 0.14 can be colored with three colors only if 1·1 and r; are the same 
color and 1•2 and 1·~ are the same color. Combine this result with your answer 
for Exercise I 0.17 .] 

*10.I9 Show that the clique problem is NP-complete by directly representing com­
putations of an NDTM instead of using the transformation from 3-CNF­
satisfiability. 

*10.20 Consider '\directed graph with two designated vertices .\· and t. Assign to 
each edge an integer "capacity.·· One can construct a maximal flow from s to 
t by repeatedly finding a path from s to i am.I increasing the flow along the path 
by the maximum allowed by the capacities of the edges. Show that the pruh­
lem of finding the smallest set of paths on which to increase fluw i!. NP-com­
plete. [Hillf: Consider a graph of the form shown in Fig. I 0.15 and relate the 
problem to the knapsack prohlcm.J 



402 NP-COMPLETE PROBLEMS 

Figure IO.I4 ••• 

n 

L a;-T 
i= 1 

Figure IO.IS 

**I0.21 The equal execution time scheduling problem is as follows. Given a set of 
jobs S = {J1 , ••• , ln}, a time limit I, a number of processors p, and a partial 
order < on S, does there exist a schedule for S requiring at most t time units, 
that is, a mapping/from S to {I, 2, ... , t} such that at most p jobs are mapped 
to any one integer. and if J < J', then f( J) < f ( J')? Show that this problem 
is NP-complete. 

10.22 Show each of the problems listed in Theorem 10.2 (p. 378) to be in .Y".9'-TIME. 

10.23 Let p 1 (x) and p 2 (x) be polynomials. Show that there is a polynomial which 
for all values of x exceeds Pi (P2 (x) ) . 

10.24 Write out Eiikt as on p. 382 if S(qk, xJ) = {(q3 , X4, L), (q9, X2, R) }. 

**10.25 Give a polynomial algorithm to test for 2-satisfiability. 

* 10.26 Certain subcases of the graph isomorphism problem such as for planar gr.iphs 
are known to be easy. Other subcases are as hard as the general problem. 
Show that the isomorphism problem for rooted directed acyclic graphs is of 
the same complexity as the isomorphism problem for arbitrary graphs. 
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* J0.27 A co11text-.\·e11siril'e IU11~1w~c is one which is accepted by an N DTM of space 
complexity 11 + I (called a lim•t1r-hm111ded uuromaron-sec Hopcroft and Ull­
man [ 1969] ). Show that the problem of determining Yo'hether a given linear­
bounded automaton accepts a given input is polynomial-space complete. That 
is. the problem of membership in an arbitrary context-sensitive language is 
complete for 9-SPACE. 

10.28 Show that the problem of determining whether two regular expressions are 
equivalent is polynomial-space complete. 

**10.29 Describe an algorithm for accepting Lr. the set of encodings of regular ex­
pressions R such that R denotes a nonempty set. which can be implemented 
on a linear-space-bounded DTM. 

Research Problems 

10.30 The obvious open problems are to resolve whether 9-TIME = .1",<?J-TIME or 
.A-"9-TIME = 9-SPACE. In view of the amount of work that has been done 
searching for polynomial-time algorithms for NP-complete problems. it is likely 
that the problem is at least as hard as some classical problems of mathematics. 
such as Fermat's conjecture (Is x" + y" = z" solvable in integers for /1 2: 3?) 
or the four-co.lor problem. ~ 

10.31 Failing I 0.30. it would even be of interest to obtain a nontrivial result giving 
a function T(n) such that every language in .1V'9-TIME was of (deterministic) 
time complexity T(11). Even T(n) = 2" has not been shown. 

BIBLIOGRAPHIC NOTES 

More information about nondeterministic Turing machines can be found in Hopcroft 
and Ullman [ 1969]. Theorem I 0.1, relating the space complexity of deterministic 
and nondeterministic TM's, is by Savitch (1970]. 

The key theorem that satisfiability is NP-complete is due to Cook [ 1971 b]. A 
large number of classical NP-complete problems were exhibited by Karp [ 1972]. who 
clearly demonstrated the importance of the concept. Since then, additions to the 
family of known NP-complete problems have been made by Sahni [ 1972], Sethi 
(1973], Ullman (1973], Rounds (1973]. Ibarra and Sahni [1973], Hunt and Rosen­
krantz (1974]. Garey, Johnson. and Stockmeyer (1974]. Bruno and Sethi [1974]. 
and many others. It is interesting to note that prior to Cook's pioneering paper. sev­
eral workers showed some NP-complete problems to be polynomially related to one 
another without realizing the extent of the class. For example. Dantzig. Blattner. 
and Rao [ 1966] related the trnveling salesman problem to the shortest-path problem 
with negative weights. Divetti and Grasselli [ 1968] showed the relation between the 
set cover problem.and the feed.back edge set problem. 

Complete problems for .9'-SPACE were first considered in Meyer and Stock­
meyer [ J 972]. The first space-complete language appeared implicitly in Savitch 
[ 1971]. where a language (the set of threadable mazes) complete for log 11 space was 
defined. Jones (1973] and Stockmeyer and Meyer (1973] treat restricted forms of 
polynomial-time reducibility between problems. Book [ 1972 and 1974] shows cer­
tain complexity classes incomparable. 
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Exercises I 0.8 and I 0.9 are from Cook [ 1971 b]. Exercises I 0. I 0-10. 12 are from 
Karp [ 1972]. Exercise I 0.13 is from Stockmeyer and Meyer [ 1973] and Hunt 
[1973a]. Exercises 10.14 and 10.28 are from Stockmeyer and Meyer (1973). Ex­
ercises I 0.15-10. 18 are from Garey, Johnson, and Stockmeyer [ 197 4], and Fig. l 0.14 
is an improvement suggested by M. Fischer. A proof that planar 3-colorability is 
N P-c0rni>iete appears in Stockmeyer [ 1973]. Exercise I0.20 is from Even [ 1973 ], 
I 0.21 from Ullman [ 1973], I 0.25 from Cook [ 1971 b], and the reduction needed for 
Exercise 10.27 is from Karp (1972). The proof of Theorem 10.13 was suggested to 
us by S. Even. 
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In this chapter we develop proofs that the emptiness-of-complement problem 
:·or two classes of extended regular expressions is intractable, i.e .. <!ny 
ilgorithm to solve the problem for either class requires at least exponential 
time. For one of the classes we derive a lower bound for the problem which 
is substantially greater than exponential. In particular we show that the 
problem requires more than 

time for any finite number of 2's. Before proving the lower bounds we first 
consider hierarchy results showing that "the more time or space allowed for 
computation, the more languages there are that can be recognized." 

11.1 COMPLEXITY HIERARCHIES 

In Chapter l 0 we showed certain problems to be complete for nondeter­
ministic polynomial time or complete for polynomial space. To prove partic­
ular problems to be complete, we showed bow·•to express an arbitrary 
problem in .1V9-TIME or 97J-SP ACE in terms of the specific problem. The 
technique of proof was essentially one of simulation. For example, we 
showed that the satisfiability problem for Boolean expressions is NP­
complete, and we showed that the emptiness-of-complement problem for reg­
ular expressions is polynomial-space complete, obtaining our result in both 
cases by a direct embedding of Turing machine computations into instances of 
these problems. We showed other problems to be complete by reducing to 
them a problem already known to be complete for the appropriate class of 
problems. Thus we demonstrated that both %9-TIME and 9-SPACE have 
"hardest" problems, ones whose complexity is at least as great as any 
problem in the class. · 

However compelling the circumstantial evidence may be, no one has yet 
been able to find a problem in X9-TIME or 9-SPACE that can be shown 
not to be in JP-TIME. Moreover, the techniques of Chapter IO seem suf­
ficient only to show that a problem is at least as hard as any other problem in 
some class. To actually prove that a problem is not in 9-TIME we need a 
technique to show that there exists at least one language not accepted by any 
deterministic Turing machine of polynomial-time complexity. The chief tech­
nique used for this purpose is diagonalization. Although the technique does 
not seem powe1fol enough to show 9-TIME "#- .1V9-TIME, it has been used 
to establish hierarchy results for both space and time complexity, for both de­
terministic and nondeterministic Turing machines. Each hierarchy theorem 
is of the following form: Given two "well-behaved" functions f(n) and g(n), 
wheref(11) grows "faster" than g(11), there is a language of complexity f(n) but 
not of complexity g(n). 
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11.2 THE SPACE HIERARCHY FOR 
DETERMINISTIC TURING MACHINES 

In this section we prove a space hierarchy theorem for deterministic Turing 
machines. Similar hierarchies for time and for nondeterministic Turing ma­
chines exist but since they are not required for our purposes here. they arc 
left as exercises. We recall from Corollary 3 to Lemma 10.1 that if a lan­
guage L is accepted by a k-tape DTM of space-complexity 5(11). then L is ac­
cepted by a single-tape DTM of space complexity 5(11). Thus we may 
restrict ourselves to single-tape DTM's. . 

To obtain the space hierarchy result we need to enumerate the DTM"s. 
that is, assign an ordering to DTM's so that for each nonnegative integer i 
there is a unique DTM associated with i. Furthermore we require that each 
DTM appear infinitely often in the enumeration. We shall enumerate only 
the sfogle-tape DTM's with input alphabet {O, 1} because that will be all 
we need. The method of enumeration for all Turing machines is a simple 
extension. 

We can, without loss of generality, make the following assumptions about 
the representation of a single-tape DTM. 

I. The states are named q 1• q 2 , ••• , qs for some s, with q 1 the initial state 
and q s the accepting state. 

2. The input alphabet is {O, l}. 
3. The tape alphabet is {X1, X 2 , ••• , X,} for some t, where X 1 = b, X 2 = 0, 

and X 3 =I. 
4. The next-move function S is a list of quintuples of the form 

(q;, X;, qk> X,, D,,,), meaning that S(q;, Xi)= (qk, X 1 , D,,,), i.e., q; and qk 
are states, X; and X 1 are tape symbols, and D,,, is the direction, L, R or S. 
if m = 0, 1, or 2, respectively. We assume this quintuple is encoded by 
the string 1 Qi 1 Qi 1 Qk 1 01 1 0 111 1. · 

5. The Turing machine itself is encoded by concatenating in any order the 
codes for each of the quintuples in its next-move function. Additional 
1 's may be prefixed to the string if desired. The result will be some 
string of O's and l's, beginning with 1, which we can interpret as an 
integer. 

Any integer which ~annot be decoded is deemed to represent the trivial 
Turing machine with an empty next-move function. Every single-tape OTM 
will appear infinitely often in the enumeration. since given a DTM. we may 
prefix l's at will to find larger and larger integers representing the same set of 
quintuples. 

We can now design a four-tape DTM M 0 which treats its input string x 
both as an encoding of a single-tape DTM Mand also as the input to M. We 
shall design M 0 so that for each DTM M of given complexity there is at least 
one input string which M 0 accepts but which M rejects. or vice versa. One of 
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the capabilities possessed by M 11 is the ability to simulate a Turing machine, 
given its specification. We shall have M 0 determine whether the Turing 
machine M accepts the input string x without using more than S1(lxl> cells for 
some function 5 1• If M accepts x in space 5 1(lxi), then M0·does not. Other­
wise, M 0 accepts x. Thus, for all i, either M 11 disagrees with the behavior of 
the ith DTM on that input x which is the binary representation of i, or the ith 
DTM uses more than S1(lxl) cells on input x. · . 

We say that M 0 diagonalizes over all DTM's of space complexity 5 1(11), 
since if we imagined an infinite two-dimensional table in which the ijth entry 
indicated whether the ith Turing machine accepted input j, then M 0's action 
would disagree with certain of the Turing machines along the diagonal of the 
table. In particular, M 0 would disagree with Turing machines accepting their 
inputs in space 5 1(11). By Corollary 3 to Lemma IO.I, there is some single­
tape DTM M~ equivalent to M 0 and of the same space complexity. Since M~ 
is itself in the table (that is, M~ is the kth DTM for some value of k) and M~ 
cannot disagree with itself, we may conclude that M 0 and M ~ are not of space 
complexity S 1(n). The actual construction of M 0 is made complicated by our 
desire that M 0 should be of space complexity S2(n) •• where 5 1(n) and Shz) are 
almost the same. · 

Definition. Let f(n) be any function. Then infn-aaf(n) is the limit as n 
goes to infinity of the greatest lower bound of f(n), f(n + J), 
f(n + 2), .... 

Example 11.1. Since (n 2 + l)/n 2 is monotonically decreasing 

. f n2 + I l" n2 + I I m = 1m-- = . 
n-oo n2 n-oo n2 

For a second example, let f (n) = I - 1 In if n is not a power of 2 and f(n) = /1 

if n is a power of 2. Then i_nf11 _""/ (n) = I, since the greatest lower bound of 
f(n), f(n + I), f(n + 2), ... is either I - 1/n if n is not a power of 2 or 
I - l/(n +I) if n is a power of 2. 0 

Theorem 11.1. Let 5 1(n) ~ 11 and S 2(n) ~ 11 be two space-constructible 
functions with 

inf 51 (n) = 0. 
n-00 S 2(n) 

Then there is a language L accepted by a DTM of space complexity S2(n) 
but by no DTM of space complexity 5 1(n).t 

t In the literature. one often finds space complexity for Turing machines defined so as 
to ignore the number of cells scanned on the input tape; the input tape is not permitted 
to have its symbols changed. however. Under this model, it makes sense to talk about 
space complexity functions less than 11. and the conditions S 1(11) 2:: n and S2(11) 2::" can 
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Proof Let M 0 be a four-tape DTM which operates as follows on an input 
string x of length n. · 

1. M 0 marks off 5 2(n) cells on each tape. After doing so. if any tape head of 
Mo attempts to move off the marked cells. Mn halts without accepting. 

2. If x is not the encoding of some single-tape DTM. M 0 halls without 
accepting. 

3. Otherwise let M be the DTM encoded by x. /11 11 determines t. the 
number of tape symbols used by M, and s. its number of states. The 
third tape of .Mo can.be used as ··scratch .. memory to calculate t. Then 
Mo lays off on its second tape 5 1(11) blocks-of rtog tl cells each. the 
blocks being separated by single cells holding a marker #. i.e .. there are 
(1 +flog tl) 51(11) cells in all. provided (I +flog tll 5 1(11) s 5 2(11). Each 
tape symbol occurring in a cell of M's tape will be encoded as a binary 
number in the corresponding block of the second tape of Mn. Initially. 
M 0 places its input, in binary coded form. in the blocks of tape 2. filling 
the unused blocks with the code for the blank. 

4. On tape 3, M 0 sets up a ~lock of flog sl + flog 51(11)1 +flog tl 51(11) 

cells, initialized to all O's, provided again that this number of cells does not 
exceed 5 2(n). Tape 3 is used as a counter to count up to s51(11)t8•< 11 >. 

5. M 0 simulates M, using tape I. its input tape, to determine the moves of M 
and using tape 2 to simulate the tape of M. The moves of Mare counted 
in binary in the block of tape 3, and tape 4 is used to hold the state of M. 
If M accepts, then M0 halts without accepting. M 0 accepts if M halts 
without accepting, if the simulation of M attempts to use more than the 
allotted cells on tape 2. or if the counter on tape 3 overflows, i.e .. the 
number of moves made by M exceeds s51(11)t'' 1111 >. 

The Turing machine Mo described above is of space complexity 52(11). 
and it accepts some language L. Suppose L were accepted by some DTM Mi 
of space complexity 5 1(11). By Corollary 3 to Lemma 10.1 we may assume 
that M; is a single-tape Turing machine. Let M; have s states and t tape 
symbols. By stringing together the quintuples of M;. with leading J's if nec­
essary, we can find a string w of length 11 representing Mi• where /1 is suf­
ficiently large so that 52(n) is larger than MAX[( I + r1og tl)51(11). 

flog sl +flog 51(n)l + flog tl S1(11)]. The fact that inf,,_." (S1(11)/S2(11)] = 0 
guarantees that such an /1 can be found. Then. when given w for input. Mn has 
enough room to ~mulate Mi·· Mn accepts 11· if and only if /H; docs not accept 
it. But we assumed that M; accepted L. i.e., M; agreed with M0 on all inputs. 

be removed from the hypothesis of the theorem. Since we deal only with large space 
complexities here. the result for complexities less than /1 is not worth the added dctuils. 
and we omit it. In this theorem the restriction that 5 1(11) is space-constructible can be 
relaxed. 
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We thus conclude that M; does not exist, i.e., L is not accepted by any DTM 
of space complexity S1(11). 0 

A typical application of Theorem 11.1 is to show, for example, that there 
is a language accepted by a DTM of space complexity, say, 11 2 log n but by no 
DTM of space complexity n 2 • Some other. applications will be seen in the 
remainder of this chapter. 

11.3 A PROBLEM REQUIRING EXPONENTIAL TIME AND SPACE 

In Section 10.6 we considered the emptiness-of-complement problem for reg­
ular expressions and showed it to be complete for polynomial space. Since 
the class of regular sets is closed under both intersection and complemen­
tation, adding the intersection operator n and complementation operator -, to 
the notation of regular expressions does not increase the class of sets that can 
be described. However, the use of the intersection and complementation 
operators greatly shortens the length of the. ex1¥essions needed to describe 
certain regular sets. Because of this ability to be concise, even more time is 
required to solve some problems for extended regular expressions than is 
required for "ordinary" regular expressions, when time is measured as a func­
tion of the length of the given expression. 

Definition. An extended regular expression over an alphabet I is defined 
as follows: 

I. e, 0, and a, for a in I, are extended regular expressions denoting {e}, 
the empty set, and {a}, respectively. 

2. If Ri and R 2 are extended regular expressions denoting the languages 
Li and L2, respectively, then (Ri + R 2), (Ri · R 2), (R i), (Ri n R2), 
and (.....,R i) are extended regular expressions, denoting Li U .L2 , LiL2, 
Lt, Lin L 2, and I* -Li, respectively. 

Redundant pairs of parentheses may be deleted from extended regular 
expressions if we assume the operators have the following increasing order of 
precedence. 

+ n -, * 
Furthermore, the operator· is usually omitted. For example, a ....., b * + c n d 
means 

((a. (•(b*))) + (c n d)). 

If an extended regular expression has no complementation signs, then 
it is said to be semiextended. The emptiness-of-complement problem for 
semiextended regular expressions is to determine whether the complement 
of the set denoted by a given expression R is empty (or equivalently, to de· 
termine whether R denotes all strings over the input alphabet). For example. 
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the regular expression 

b* + b*aa *(e + b(a + b)(a + b)*) + b*aa *b 

denotes (a + b)* since 

b* + b*aa*(e + b(a + b)(a + h)*) = -ih*aa*b. 

We now proceed to prove that the emptiness-of-complement problem fur 
semiextended regular expressions is not in 3'-SPACE. and hence not in 
A".9'-TIME because .1V.9'-TIME is contained in .9>-SPACE. In fact. we shall 
show that there exist semiextended regular expressions of length 11 for which 
at least c'c'"110i:" space (and hence time) is required to solve the emptiness­
of-complement problem, for some constants c' > 0 and c > I. 

In Section 11.4 we shall see that the emptiness-of-complement problem 
for the full class of extended regular expressions is much harder than that for 
semiextended expressions. In anticipation of these later results, we shall 
couch many of the results of this section in terms of the full class of extended 
regular expressions. 

In addition to the notationat shorthands used in Section I 0.6. we shall 
use If=1 R; to denote the extended regular expression R 1 + R 2 + · · · + Rk. 
We also use R + for RR*. When we talk of the length of an expression, we 
are talking about the length of the actual expression denoted by these short­
hand conventions. 

We now introduce the notion of a yardstick. Let~ be an alphabet and x 
any string in I*. Then CYCLE(x) = {zylx = yz with y E ~*and z E ~ *}. 
Let# be a special marker symbol not in I. Then the set CYCLE(x#) is said 
to be a yardstick of length Ix# I. That is, a yardstick is the set of all cyclic 
permutations of the string x#. When no confusion arises, we shall sometimes 
refer to x# itself as the "yardstick." 

We shall use a yardstick to measure the length of ID's in a valid compu­
tation of a Turing machine. First we show that some long yardsticks can be 
denoted by relatively short semiextended regular expressions. 

Lemma 11.1. For every k ~ I, there exists a yardstick of length greater 
than 2 k which· can be denoted by a semiextended regular expression R 
such that IR I :s; ck 2 for some constant c independent of k. 

Proof. Let A = {a 0 , a 1, ••• , ad be an alphabet of k + I distinct symbols. 
Let x0 = a0a 0 , and for I :s; i < .k let X; = X;-1a;X;-1a;. Thus 

~ 

X; = (· · · ((afia 1) 2a:?) 2 • • • a;)2 • 

The length of x0 is 2. and the length of X; is greater than twice the length of 
Xi-1• Thus the length of XA·-1 is greater than or equal to 2". for/.: ~ l. 

Let CYCLE(xA--iad be the desired yardstick. It remains to be shown 
that there is a short semiextended regular expression denoting the set 
CYCLE(xk-1ad. 
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For 0 :s i :s k. let A; stand for (a 0 + a 1 +···+a;) and A -A; stand for 
(a;+ 1 + ll;+2 + · · · + a1...). Let 

and 

Ro= lloOo[(A -Au)+a~]*(A -Ao)+ 
+a0 [(A -A0 )"'"a~]*(A -Ao)+ao. 
+ [(A -A0 )"'°ll~]*(A -A~)+a0a0 (A -A 0 )* 

R;=At-1aiAt-1ai[(A -A;)+(At-10Y]*(A-A;)+Af':-1 
+ a;At-10;[ (A -A;)"'"(At-1a;)2]* (A -A;)+At-1 

+ A + [(A -A )+(A+ ) 2]*(A -A )+A+ A* i-1(/i i 1-10; ; i-10; i-1 

+ a;[(A -A;)+(At-10Y]*(A -A;)+At-1o;At-1 
+ [(A -A1)+(At-1a1) 2]*(A-A;)+At-1a1At-,a1(A -A;)* 

for I ::s i ::s k - I. 

We claim that the semiextended regular e~pre9'1'ion 

R = R0 n R1 n · · · n Rk-1 n A z_,ai...Al"-1 

denotes CYCLE(xk_1ai.-). In proof, we show by induction on i that any string 
in R0 n R 1 n · · · n R 1 is of the form 

Y2[(A -A,)+x;] *(A -A;)+y1 

+ [(A -A;)+x1] *(A -A;)+x1(A -A;)*, 

where y 1 y2 = x;. 

BASIS. For i = 0, we observe that R 0 denotes precisely those strings of the 
form 

aM(A - Ao)+aij] *(A -Ao)+aij-i 
+ [(A -A 0)+aij] *(A - Ao)+a0a0(A -A 0)*. 

for some 0 :sj ::s 2. Since x 11 = afi, the result is immediate. 

INDUCTIVE STEP. Assume that R 0 n R 1 n · · · n R1_1 denotes all 
strings of the form 

YH(A - A ;-1>+x;-1] *(A - A ;-i>+y; 
+ [(A -A;-1)+X;-1] *(A -A;- 1)+x;-1(A -A;- 1)*, (II.I) 

where y;y~ = X;-1 • 

Consider a string z in the intersection of (I I. I) and R i· Then. each 
maximal-length substring of z from A t-i must be X;- 1 unless it is at the begin­
ning or end of the s~ring, in which case it is y; or y;. Thus each A t- 1 in R; 
can be replaced by X;- 1 (unless it is at the beginning or end of the regular 
expression) without. changing the intersection of ( 11.1) and R;. The A t-i and 
A;*-• at the beginning or end of R; can be replaced by y; and y;. respectively. 
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Observing that xi_ 1a;Xi-iai = X;. we get 

· · · n R·= v~a-x-_ a-[(A-A·)+x.]*(A-A·)+\'' I • - I I I I I I I . I 

+a,x1- 1a1[ (A -A 1) .. x1]* (A -A1)"'"X;-1 

+ y2a;[(A-A;)+x,]*(A-A1tX;-1{/L\'; (JI.:!) 
+ ll; [(A -Ai)+ X;] *(A -Ai)+ X;-1ll;X1-1 

+ [(A -Ai)+.\';]* (A -A;)+x;-1a;-r;-1ai(A -A;)~. 

Finally, (11.2) can be rewritten as 

Y2[(A -A;)+x;]*(A -A;)+y, 
+[(A -A1)+x;]*(A -A;)+x1(A -·A 1)*, 

where y 1y2 =xi. Thus the induction hypothesis follows. Setting i = k - I 
and intersecting with A t- 1aAA t-i· we see that R denotes CYCLE(xk-•aA.). 

It remains to show that the length of the extended regular expression 
denoted by R is bounded by ck2. This result follows immediately from the 
fact that there exists a constant c1 such that the length of the regular expres­
sions denoted by each shorthand R 1 is bounded by c1k. That is. A; and A - Ai 
denote extended regular expres~ions of length O(k). Thus each term of the 
sum defining Ri denotes an extended regular expression of length O(k). 
Hence the length of the semiextended regular expression R is bounded by ck 2 

for some new constant c. D 

A construction similar to that of Lemma 11.1 enables us to write a short 
regular expression denoting all strings in A * except for x = xA·-i. This regular 
expression will find use along with the semiextended regular expression R for 
CYCLE(x#) just constructed. 

Lemma 11.2. Let alphabet A = {ao. a1 •... , ad and the strings xi be as 
in Lemma I I. I. Then there is a regular expression of length O(k2) 

denoting •xk-1· 

Proof The string xk-l obeys the following rules.· 
i) It is nonempty and begins with ao. The a0's occur in pairs and each 

occurrence of a pair is followed by an a1. 
ii) For I =::;; i =::;; k - 2, the a;'s also occur in pairs. In each pair the two a;'s 

are separated by a string in aoA ?'-1 and the second a; in the pair is 
followed by ai+ 1• That is to say, an a, which has, to its left, symbols in 
A 1_ 1 exclusively, or immediately to its left, a string in A t.1 preceded by a 
symbol in A ~A;. is followed by "o· 

iii) There are exactly two instances of ak+ The first of these is followed by 
an a0 and the other is at the right end of the string. 

More importantly, xk-i is the only string obeying these rules. We may 
prove by induction on j that if b1b2 : · · bJ is a prefix of a string satisfying the 
three rules, then b1b2 • • • bi is a prefix of X1.·-1· For example, by rule {i) the 
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first symbol is a0 • Also by rule (i), a lone a0 cannot end the string or be 
followed by any symbol but a 0 , so the string begins a0ao. Next, by rule (i) 
again, a0a0 must have an a 1 following. Then, by rule (ii) with i = 1, the string 
a11a0a1 must be followed by a0 , and so on. We leave a formal inductive proof 
for an exercise. Since xk-i does in fact sati~fy the rules, we see that it must 
be the unique string satisfying them. 

We can easily write a regular expression denoting all strings which fail to 
satisfy one or more of the three rules. Strings not satisfying rule (i) are 
denoted byt 

S 1 = e + (A - a 0)A * + A *a 0a 0 [(A - ll 1)A * + e] + 
[e +A *(A - a 0)]a 0 [(A - a 0 )A * + e]. 

In S 1 the first term denotes the empty string, the second those strings not 
starting with a0 , the third those strings containing a pair of a0's not followed 
by a1 , and the last those strings containing an isolated a0 • Those strings not 
satisfying rule (ii) are denoted by ••• 

k-2 
S2= L [A*a;Al~-1a;[(A-at+1)A* +e] 

i=I 

+ [e+A*(A-At)]At.1a;[A-a0 )A* +e]]. 

Finally, those strings which fail to satisfy rule (iii) are 

S3 =A *ak-iA *ak-iA ++(A - ak-1)*ak-1(A - ak-1)* 
+(A - ak-1)"' +(A - ak-1)*ak-1(A - ao)A *. 

In S3 the first term includes all strings having more than two ak_1's in addition 
to those strings having exactly two ak_1 's, the second of which is not at the 
right end of the string. Thus S 1 U S 2 U S 3 denotes ....,xk-i · The length of 
S 1 U S2 U S3 is easily seen to be 0(k 2). D · 

Before proceeding to show that there is no polynomial-space- or poly­
nomial-time-bounded algorithm for the emptiness-of-complement problem 
for semiextended regular expressions, we first make two preliminary observa­
tions. 

Definition. A homomorphism h from Ii to Ii is a function such that for 
any strings x and y, h(xy) = h(x)h(y). It follows that h(e) = e and 
h (a 1a 2 • • • a 11 ) = h (a 1)/z (a 2) • • • h (a 11). Thus the homomorphism Ir is 
uniquely defined by the value of h (a) for each a in I I· 

A homomorphism h is length-preserving if h(a) is a single symbol of 
I 2 for each a in I 1• A length-preserving homomorphism merely renames 

k 

t We use A - a1 to denote L a1. 
J•O , .. , 
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the symbols, possibly identifying several symbols by renaming them with 
the same symbol. If w is in~:. then 1z-a(w) = {xj/z(x) ~ w}. If L ~ '5.:. 
then 1z-a(L) = {xlh(x) E L}. 

Example 11.2. Let ~a= {a, b, c} and ! 2 = {O. I}. Define the homomor­
phism h by h(a) = 0 I 0, h(b) = I and /z(c) = e. Then lz(abc) = 010 I. Ob­
serve that h is not length-preserving. Let L be the language denoted by the 
extended regular expression I + -.., I*. or equivalently by the ordinary regular 
expression 1 + (0 + 1 )*0(0 + I)*. Then 1z-1(L) is denoted by the extended 
regular expression c*bc* + •(b + c)* or the ordinary regular expression 
c*bc* +(a+ b + c)*a(a + b + c)*. 0 

Lemma 11.3. Leth be a length-preserving homomorphism from l;"to ~:. 
Let R 2 be an extended regular expression denoting a set S ~ l :. An ex­
tended regular expression R 1 denoting /c 1(S) can be constructed such 
that the length of R 1 is bounded by a constant (depending only on h) 
times the length of R2, and Ra contains a complementation sign only if R 2 

contains a complementation sign. 
~ 

Proof. Replace each occurrence of a symbol of 2.2 in R 2 by a regular expres­
sion denoting the set of symbols mapped onto it by h. For example, if 
{ai. a2 , ••• , a 7 } is the set of symbols mapped onto a, then replace a by 
(a1 + a 2 + · · · + a7 ). Let Ra be the resulting extended regular expression. 
The proof that R 1 denotes 1i-1(S) follows easily by induction on the number of 
occurrences of operators+, ·, *, n, and-.., in R 2 • 0 

We must now talk about representations of sequences of instantaneous 
descriptions of Turing machines much as we did in Lemma 10.2. That is, 
given that M = (Q, T, I, a, b, q0 , q,) is a Turing machine, we represent an ID 
by a sequence of symbols in T plus one other symbol of the form [qX], for 
q E Q and X E T, indicating the state and input head position. If necessary 
we shall pad out an ID with blanks so that all ID's in the same computation 
are of the same length. 

To help us compare symbols in one ID with "corresponding" symbols in 
successive ID's, we shall superimpose a yardstick, of the length chosen to 
represent ID's, upon the ID's themselves. Formally, we use a "two-track" 
string of symbols, where the upper track is a sequence of I D's and the lower 
track contains the yardstick repeated. That is, the "two-track" symbols are 
pairs [a, b], wher& a is the S}'.mbol in the upper track and b the symbol in the 
lower track. The arrangement is shown in Fig. 11. I, where the yardstick 
used is CYCLE(x#). (x can be any string not containing#.) 

Definition. Given TM M, let Ai= TU (Q x T) U {#}and let ~2 be the 
set of symbols appearing in x#. That is, .1.a is the set of symbols that can 
appear on the upper track and .1.2 the set of symbols that can appear on 
the lower track. The "two-track" alphabet is Aa x ~2 • A \'Cl/id computa-
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Upper track 

Lower track 

# 

# 

Co 

x 

# C1 

# x 

# ... # Cr 

# ... # x 

Fig. 11.1. Sequence of ID's with yardstick. 

# 

# 

! 
tion of M with yardstick CYCLE(x #) is a string in (.6. 1 x .6.2)* of the form 
shown in Fig. 11.1, where c i r c i+I by one move of M for 0 :S i < f, c ~ 
is an initial ID, and in the last ID Cr the state is qr. The I D's hav~ 
trailing blanks to make them all of length lxl. ' 

1 
Lemma 11.4. Let R 1 be an extended regular expression for CYCLE(x#): 
and let R; be a regular expression over the alphabet of x# denoting all 
strings but x. An extended regular expression R2 denoting the invalid. 
computations of M with yardstick CYCLE(x#) can be constructed such. 
that the length of R2 is linear in IR 1 I +.Jfi ~I. the constant of propor­
tionality depending only on M. R 2 contains a complementation sign only 
if R 1 or R; contains a complementation sign. 

Proof. A string is not a valid computation with yardstick CYCLE(x#) if and 
only if either 

I. the lower track is not in #(x#)*, or 
2. the lower track is in #(x#)* but the upper track is not a valid computa-

tion. 

If .6.1 is the alphabet of the upper track and .6.2 the alphabet of the lower track, 
let h1 and h2 be the homomorphisms mapping (.6.1 x .6.2)* into .6.f and .6.f, 
respectively, such that h1([a, b]) =a and h2([a, b]) = b. Then 

h21 (.6.f# (Ri n (.6.2 - # )*)#.6.i + (.6.2 - # ).6.i + .6.t (.6.2 -# )] + E 

denotes all and only the strings whose lower track is not in #(x#)*. The first 
term of the argument of h21 denotes strings with something other than x 
between two #'s, and the remaining terms denote strings which do not begin 
and end with #. By Lemma 11.3, there is an extended regular expression of 
length proportional to IR ii that denotes this set. 

A given string satisfies condition 2 because two symbols separated by a 
number of symbols equal to the length of the yardstick do not reflect a move 
of M, or because one or more of the following format errors occur. 

i) The string does not begin and end with # on the upper track. 
ii) No state, or else two or more states, appear in the first ID. 

iii) The first IP does not contain the initial state as a component of the first 
symbol. 

iv) The accepting state does not appear as a component of any symbol. 
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v) The first ID is not of the correct length. That is, the first two # 's on the 
upper track are not in the same cells as the first two #'s on the lower 
track. 

We shall now show how to write the extended regular expression for the 
sequences in (A1 x A2)* which fail at some point to reflect legal moves of M. 
As in Lemma 10.2, we note that in a valid computation three consecutive 
symbols c1c2c3 on the upper track uniquely determine the symbol Ix# I places 
to the right. of c2 • Let this symbol be f(c1c2ca) as before. Let 

Rw:m = (A1 X A2)*[/111(c1c2c3Af) n h;1(R 1)_] 

Then, let 

[h!1(A1(A1 -f(c1c2c:;)).6.1)](.6.1 X A2)* (11.3) 

R = L Rc1c2ca· 
C1C2C3 

Note that h11(c1c2c3At} denotes all strings in (A1 x .6. 2 )* whose upper track 
begins with c1c2c3. h;1(R1) deqotes those strings of length lx#I whose lower 
track is correct. Thus their intersection is all strings of length lx#I whose 
lower track contains a string in CYCLE(x#) and which begin with c1c2c3 on 
the upper track. With these observations, it should be clear that R includes 
all strings which satisfy condition 2 because a move illegal for M is made at 
some point. Also included will be some strings which do not have a lower 
track in #(x#)*; these also satisfy condition I, and their presence or absence 
in R is immaterial. Moreover, the length of R is a constant (depending on M) 
times the length of R 1. To see the truth of this statement, it suffices to note 
that h;1 expands regular expressions by a factor depending on M. Also, '111 
expands expressions by a factor of 311.6.211 at most, since if '11(b) =a for exactly 
k values of b, then h11(a) = (b1 + b2 + · · · + bk) has length 2k + 1. Since 
1 :S k :S llA2ll is obvious, lh11(a)I :S 3ll.6.2ll follows. Moreover, it should be 
clear that ll.6.211 :S IR 1 I. since each symbol of A2 appears in R1. Hence the 
length of the terms h!1(c1c2c3At) and lz)1(.6.1(.6.1-f<c1c2c3)).6.1)in (11.3) is 
O(IR11). Finally, the terms for lf;1(R1) and (A1 x .6.2)* are clearly O(IR11). the 
constant dependent only on M. Thus the length of (J 1.3), and therefore the 
length of R, is O(IR1I +IR rn. 

The regular expressions for the format errors are easy to write and are 
left to the reader. In this manner we can construct an extended regular 
expression R2 such that the.length of R2 is linear in IR 1 I + IR; I. and R2 con­
tains a complementation sign only if R 1 or R ; does. D 

Theorem 11.2. Any algorithm to determine whether a semiextended reg­
ular expressiont denotes all strings over its alphabet is at least of space 

t An encoding similar to that in Lemma I 0.3 is assumed. 
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(and hence time) complexity c'c'" 11"1!" for some constants c' > 0, c > I, 
and an infinity of values of n. 

Proof Let L be an arbitrary language of space complexity 211 but not of 
space complexity 211/11.t (By Theorem I I. I we know that such a language 
exists.) Let M be a DTM that accepts L. . 

Suppose we have a DTM M 0 of space complexity f(n) to decide whether 
the complement of a set denoted by a semiextended regular expression is 
empty. Then we can use M 0 to recognize the language L as follows. Let 
w = a 1a2 • • • an be an input string of length n. 

I. Construct a semiextended regular expression R 1 for a yardstick of length 
2" + 1 or more. By Lemma 11.1 (with k = n), there is an expression R1 

of length 0(n 2). Moreover, R 1 can be found using only O(n 2) space. 
Similarly, construct R; denoting ...,x, where R 1 = CYCLE(x#). By 
Lemma 11.2, R; has length O(n 2) and R; is easily seen to be construc­
tible using O(n 2) space. 

2. Construct a semiextended regular expr.essit%. R 2 to denote the invalid 
computations of M with yardstick R 1 • By Lemma 11.4, there is an R 2 of 
length at most c1n 2 , for some constant c1 depending only on M. 

3. Construct a regular expression Ra to denote all strings in (A1 x A2)* that 
do not begin with # [q0a1]a2 • • • anb · · · b# in the upper track, where q0 

is the initial state of M. An expression R 3 of length O(n) clearly exists. 
Thus IR 2 + Ral :5 c2n 2 , for some constant c2 • 

4. Apply M0 to R 2 + R3 to decide whether the complement of R 2 + R3 is 
empty. If not, there is a valid computation of M with input w, so w is in 
L. Otherwise, w is not in L. 

We can construct a DTM M' of space complexity f(c2n 2 log n) t~. imple­
ment this algorithm to recognize L. The factor of log n in the argument of /is 
due to the fact that the regular expression R2 + Ra is over an n-symbol 
alphabet and thus must be encoded into a fixed alphabet. Since we assume L 
is of space complexity 2" but not of space complexity 2"/ti, we must have 
f(c2n 2 log n) > 2n/n for at least some values of n. But if f(c2n 2 log n) ex­
ceeded 2n/n for only a finite number of n's, then there would exist a modified 
version of the above recognition algorithm which first checks by a finite "table 
lookup" whether lwl was one of those n's for which /(c2n 2 log n) > 2"/n, and 
if so, whether w was in L. Thusf(c2n 2 log n) must exceed 2"/n for an infinity 
of n's, sof(m) ~ 2c3 ' 111110" 111 /Vm/log m ~ c(c')"'1110111n for an infinity of m's and 
some con~tants c3 > 0, c > 0, and c' > 1. D 

t The choice of 2n is not essential. We could replace 2n by any exponential function 
f(n) and 2n/n b}! any function which grows slightly more slowly than f(n), provided 
each was space-constructible. 
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Corollary. The equivalence problem for semiextended regular expres­
sions requires c 1 c' 111101°' space and time for some cons.tants c' > 0 and 
c > I, and an infinity of n's. 

Proof. It is easy to sh.ow that the emptiness-of-complement problem is 
polynomially reducible to the equivalence problem, since a regular expression 
denoting all strings is short and easy to write down. D 

11.4 A NONELEMENTARY PROBLEM 

We shall now consider the full class of extended regular expressions. Since 
we now have the complementation operator, we need only consider the emp­
tiness problem, i.e., given an extended regular expression R, does R denote 
the empty set? We shall see that with the complementation operator we can 
represent regular sets even more concisely and that the emptiness problem for 
extended regular expressions is considerably harder than the emptiness-of­
complement problem for semiextended regular expressions. 

Let us define the function g(m, n) by: 

I. g(O, n) = n, 
2. g(m, n) = 29 <m-i.n) form > 0. 

Thus g(l, n) is 211 , g(2, n) = 22n, and 

g(m, n) = 22 

a stack of m 2's with the last 2 raised to the nth power. A function f(n) is 
elementary if it is bounded above for all but a finite set of n's by g(m0 , n) for 
some fixed mo. 

The techniques of Section 11.3 can also be used to show that there is no 
elementary function S(n) for which the emptiness problem for the full class of 
extended regular expressions is of space complexity S(n). Before proceeding, 
we slightly change the definition of a valid computation of a Turing machine 
M = (Q, T, /, cS, b, q0 , qr) with yardstick CYCLE(x#). We delete the first 
marker # and change the last marker to a new symbol, $, as shown in Fig. 
11.2. The C's ar~ I D's (pad~ed out, if necessary, to be of the same length as 
x); C 1 r C1+1 by one move of M, for 0 s i <f, C 0 is an initial ID, and in Cr 
the state is q ,. 

We shall use the following notational conventions. We assume x E ! *. 
I. 6.1 = T U (Q x T) U {#, $} is the upper track alphabet. 
2. 6.2 = I u { #, $} is the lower track alphabet. 
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Upper track Co # c, # ... # Cr $ 

Lower track x # x # ... # x $ 

Fig. 11.2. New format for valid computations with yardstick. 

3. '1 1 : 6.1 x L\2 --+ 6.1> where h,([a, b]) =a. 
4. lz2: 6. 1 x 6.2 --+ 6.2 , where h2([a, b]) = b. 

Lemma 11.5. Let R 1 be an extended regular expression for CYCLE(x#). 
We may construct an extended regular expression R 2 denoting the set of 
cyclic permutations of valid computations of a Turing machine M with 
yardstick CYCLE(x#), such that IR2 I is O(IR 1I), the constant depending 
only on M. ' 

Proof. A string is a cyclic permutation of a -valid computation with yardstick 
CYCLE(x#) if and only if 

I. the lower track is a cyclic permutation of a sfring of the form (x#)*x$, 
2. the upper track is a cyclic permutation of a valid computation of M, and 
3. the upper and lower tracks have been cyclically permuted by the same 

amounts. 

Let R i be R 1 with$ substituted for#. Strings satisfying condition I can 
be denoted by lz 21 ( u 1 n u 2 n u 3), where 

U, =I*(#+ $)[(R 1 + Ri) n (I*#+ I*$)]*I*, 
U2 =(I+#)*$(!.+#)*, 
Ua = (R, +RD*. 

The subexpression [(R1 + R i) n (I*#+ I*$)] in U1 denotes the two 
strings x# and x$. Thus U 1 denotes I*(# + $)(x# + x$)*I *. The expres­
sion U2 allows only strings with one $. Thus any string in U, n U2 is of the 
form 

Y2#x#x# · · · x#x$x# · · · x#y, 

for some y1 and y2 in I*. The expression U 3 forces IY2 1 + IYil = lxl, from 
which we may easily show y1y2 = x for strings in U, n U2 n U3 • Hence 
S 1 = U 1 n U 2 n U 3 denotes the lower track of all strings satisfying con­
dition I. 

For condition 2, we saw in Lemma 11.4 how to write a semiextended 
regular expression for the invalid computations of M with yardstick 
CYCLE(x#). These techniques carry over easily to the format of Fig. I I.2. 
and an expressi~n E denoting cyclic permutations of invalid computations of 
M with a correct yardstick on the lower track is left for the reader to con­
struct. Applying the complementation operator to E gives us an extended 
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regular expression 5 2 • This is the only point at which complementation is 
used. It should be clear that all strings denoted by S 1 n S2 satisfy both 
conditions I and 2. 

The expression for condition 3, given that conditions I and 2 are sat­
isfled, is easy. One need only check that one symbol has $ in both tracks. 
Intersecting this expression with S 1 n S2 completes the proof. O 

We now proceed to show how longer and longer yardsticks can be 
expressed with little increase in length, using the construction of Lemma 11.5. 

Intuitively, we construct a regular expression for some small-length yard­
stick, say length n. We use the yardstick to construct a new regular expres­
sion for all cyclic permutations of valid computations, with respect to this 
yardstick, of some Turing machine which accepts exactly one string of length 
n. The Turing machine is carefully selected so that it makes at least 211 +2 

moves on the input of length n, and hence the set of cyclic permutations of its 
valid computations is itself a yardstick of length 2" or more. By repeating the 
process with the new yardstick, we create yardsticks of longer and longer 
lengths, at least 2", 22", and so on: 

Let M 0 be the particular single-tape Turing machine which behaves as 
follows. 

1. M 0 checks that its input tape begins with a sequence of a's by scanning 
its tape until it reaches the first blank. 

2. If the input tape consists of a string of ma's followed by a blank, then M 0 

counts in binary from 0 to 2m+1 - 1 on the portion of its input tape oc­
cupied by the a's and the following blank. 

3. When M 0 has counted to 2m+1 - 1, it halts and accepts. 

We observe the following about M 0 • For each n, M 0 accepts exactly one 
input string of length n, namely a". It does so with a unique valid computa­
tion consisting of at least 211+2 moves since half its moves add bits and half 
handle carries. Finally, M 0 scans only n + 1 tape cells when presented with 
an input of length n. 

· Therefore, consider the valid computations of M 0 with yardstick 
CYCLE(x#), as in Fig. 11.2. If lxl = n + l, then there will be a unique valid 
computation whose upper track begins with [q 0a]a · · · ab#. By Lemma 
11.5 we can construct a regular expression R2 for all cyclic permutations of 
the valid computation of M 0 ~ith yardstick CYCLE(x#). The expression R2 
denotes a set consisting of the cyclic permutations of a fixed string w in 
("11 x "12)*. The string h1(w) is the valid computation of Mo on input a", 
where lxl, we recall, is n + 1. Since M 0 makes at least 211 +2 moves on input 
a 11 , we may use R 2 itself as a yardstick of length at least 211 +2 • 

In summary, suppose we are given a yardstick R 1 = CYCLE(x#), where 
x E ~ *. Then we can construct from R 1 and the particular DTM Mn a yard-
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stick of length at least 21.r*I. By Lemma 11.5 there exists for this yardstick an 
extended regular expression R 2 of length at most c1 IR 1 I. where c 1 depends 
only on Mo. 

Lemma 11.6. For all i ~ 1 and m ~ 2 there is a yardstick of length at 
least g(i, m)t which can be denoted by ai:i extended regular expression of 
length at most c(c1)1-1m 2 , where c 1 is the constant depending on M 0 , in­
trodur;ed in the paragraph above, and c is the constant of Lemma 11.1. 

Proof We show, by induction on i, that we can find an extended regular 
expression R 1 denoting CYCLE(x#) for some x, where lx#I ~ g(i, m) and 
IR 1l s c(c 1)Hm 2. ·The basis, i = 1, follows from Lemma 11.1, with k = m, 
since an extended regular expression of length cm 2 denoting CYCLE(x#) can 
be constructed. 

For the inductive step, suppose we have an extended regular expression 
R 1 ,where IR 1 I s c(c 1)i-2m2,R1denotesCYCLE(x#),and lx#I ~ g(i-1,m). 
Then by the above analysis concerning the DTM M 0 , we may construct a reg­
ular expression R of length at most c1 1R~·= c(c1)Hm 2. R denotes 
CYCLE(y$), where IY$I ~ 21.r*I ~ 2°<i-t,m) = g(i, m). 0 

Theorem 11.3. Let S(n) be any elementary function. Then there is no 
S(n)-space-bounded [hence no S(n)-time-bounded] DTM to decide 
whether an extended regular expression denotes the empty set. 

Proof Suppose in contradiction that there is a g(k0 , n)-space-bounded TM 
M 1 which can decide whether an extended regular expression denotes the 
empty set. By Theorem 11.1, there is a language L accepted by a 
g(k0 +I, n)-space-bounded DTM M but by no [g(k0 +I, n)/n]-space­
bounded DTM. On the assumption that M 1 exists, we could design a DTM 
M2 to recognize L which behaves as follows. 

I. Given an input string w = a1a2 • • .. an of length n, M2 constructs an ex­
tended regular expression R 1 of length d1n 2, where d1 is a constant in­
dependent of n, denoting a yardstick of length at least g(k0 + I, n). The 
algorithm implied by Lemma 11.6 is used to construct R 1. 

2. Next, M 2 constructs an extended regular expression R 2 denoting the set 
of valid computations with yardstick R 1 of the g(k0 + I, n)-space­
bounded TM M which accepts L. We may make IR 2 I s d2 IR 1 I, for some 
constant d2, by Lemma 11.5. 

3. Then, M2 constructs R3, an extended regular expression denoting the 
valid computations of M with yardstick R, and the initial ID Co= 
[q 0a 1]a2 • • • ::nbb ... , where q0 is the initial state of M. That is, 

Ra= R2 n h11([qoa1Ja2 · · · anb*#)(.:11 X .:1J*, 

where '11 is the homomorphism from Lemma 11.5 and .:1 1 x .:12 is the 

t x is defined on p. 419. 
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alphabet of R2. By Lemma 11.3. IR:11 :s IR2 I + d:111 for some constant 
d3 > 0. Thus 

( 11.4 J 

4. Finally, M2 encodes R:1 into a fixed alphabet as in Theorem 11.::! and uses 
M 1 to test whether the extended regular expression R 3 denotes the empty 
'>et. If so, M2 rejects w, and if not, M 2 accepts w. Thus M 2 accepts L. 

Now it is not hard to see that the most space-consuming step is step 4. 
in which M1 requires space g(k0 , IR31 log IR:1D to determine whether R:i 
denotes the empty set. Thus M 2 requires this amount of space as well. 
Using (11.4) to bound IR3 1, we see that M2 is of space complexity S(11) = 
d4g(k0 , d5n2 log n) for some constants d4 and d5 , since for all but a finite 
number of n, the first term of (11.4 ), namely d 1d2 n 2 , is greater than the sec­
ond, d 3n. However, by the argument used in Theorem 11.2, we may show 
that the space complexity of M2 must exceed g(k0 + 1, n)/11 for an infinity of 
n's. Thus, if M2 exists, we have 

~ 

g(ko + 1, n)/n < d4g(ko. d5n 2 log n) ( 11.5) 

for an infinite number of values for n. But no matter what values d4 and d5 
take, there can be only a finite number of n's for which (11.5) holds, as the 
reader may easily show. We conclude that M2 does not exist, so M1 does not 
exist. Therefore the emptiness problem for extended regular expressions is 
not decidable by any elementary spacejounded Turing machine. D 

EXERCISES 

11.1 A function T(n) is said to be time-constructible if there is a DTM M which 
given an input of length n makes exactly T(n) moves before halting. Show that 
the following are time-constructible functions. 
a) n 2 

b) 2" 
c). n! 

*11.2 Show that every time-constructible function is space-constructible and that if 
S(n) is space-constructible then c5<n> is time-constructible for some integer c. 

*11.3 Show that if Lis accepted in time T(n) by a k-tape DTM (NDTM), then there 
is a single-tap~DTM (NDTM) of time complexity 0(T2(n)) accepting L. 

*11.4 (Time hierarchy for DTM's.) Show that if T1(n) and T2(n) are time-construc­
tible functions and 

. f T~(n) 0 m --= 
n-s T2(n) ' 

then there is some language accepted in time T2(n) but not T 1(11) by a DTM. 
[Hillt: By using Exercise 11.3. you need only diagonalize over single-tape 
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DTM's of time complexity [T1(n)]2. The diagonalization can be carried out by 
a multitape DTM.] 

The next two exercises are weak forms of hierarchy results for nondeterministic 
Turing machines. 

**11.5 Show that for each integer k 2: 1, there is some language accepted by an 
N DTM of space complexity n~·+i but by. no NDTM of space complexity 11k. 

**11.6 Show the same result as Exercise 11.5 for time complexity. 

We tighten the time hierarchy for DTM's in the following two exercises. 

**11.7 Show that every language L accepted by a k-tape DTM of time complexity 
T(n) is accepted by a two-tape DTM of time complexity O(T(n) log T(n)). 

II.8 Use Exercise 11.7 to show that if T1(n) and T2(n) are time-constructible func­
tions and 

inf T1(n) log T 1(n) = O, 
n-s T2(n) 

then there is some language accepted in time T2(n) but not in time T1(n) by a 
DTM. ·•· . 

*II.9 Show that if Lis accepted by a DTM (NDTM) M of space complexity S(n) 
and time complexity T(n), and c is any constant greater than 0, then L is ac­
cepted by a DTM (NDTM) M' of space complexity MAX(cS(n), n +I) and 
time complexity MAX(cT(n), 2n). [Hint: M' must begin by condensing 
blocks of cells of M to single cells of its own tape.] 

Il.10 Show that if Lis accepted by an NDTM of time complexity T(n), then there is 
a constant c such that L is accepted by a DTM of time complexity cTtn>. 

*Il.11 Let T1 and T2 be functions such that 

inf Ti(n) = 0. 
n-s T2(n) 

Show that there is a language accepted by a RAM in time T2(n) but not T 1(n), 
where times are taken under the logarithmic cost function. 

II.12 Complete the proof of Lemma 11.2. 

*II.13 Given an extended regular expression R 1 ·for CYCLE(x#), construct an ex­
tended regular expression R2 for CYCLE((x#)*).t The length of R2 should be 
bounded by a constant times the length of R ,. 

**Il.14 Give an O(n) space-bounded nondeterministic algorithm for determining 
whether a semiextended regular expression denotes a nonempty set. Why does 
your algorithm break down if you try to determine whether the regular expres­
sion denotes all strings? Why must it break down? 

II.15 Give an exponential time deterministic algorithm to solve the emptiness-of­
complement prob~em for semiextended regular expressions. 

t The meaning of CYCLE applied to a set of strings is the union of CYCLE applied to 
each string individually. 
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11.16 Write the regular expressions for the "format errors'' in I,.emma I 1.4. 

11.17 Is the function F (11), defined as F (0) = I and F 111) = :!f"in- 11 for11 :;:: I. elemen­
tary'? (This function was introduced in Section 4. 7.) 

*11.18 Give an algorithm to solve the problem of whether an extended regular 
e~pression denotes the empty set. What is the time and space complexity of 
your algorithm? 

**11.19 Show that the emptiness problem for extended regular expressions using only 
the operators+, ·, and ..., is not elementary. · 

Research Problems 

11.20 The natural research area suggested by this chapter is to find problems of prac­
tical significance that can be proven intractable. Work in this direction has 
been done by Fischer and Rabin [ 197 4] on the complexity of elementary arith­
metic, Cook and Reckhow [1974] on theorem proving. and Hunt [1974] on 
language theoretic problems, in addition to several other authors cited in the 
bibliographic notes. 

11.21 Another area of interest is She question of whether the time hierarchy for 
DTM's and the time and space hierarchies for NDTM's are actually tighter 
than implied by Exercises 11.5, 11.6, and 11.8. For example, are there time­
constructible T(n)'s for which no languages are recognized in T(n) log T(11) 

that are not recognized in T(n) time'? The reader should consult Seiferas. 
Fischer, and Meyer [1973] for the tightest known hierarchy for NDTM's. 

BIBLIOGRAPHIC NOTES 

The first extensive studies of space and time hierarchies for Turing machines were in 
Hartmanis and Stearns [ 1965] and Hartmanis, Lewis, and Stearns [ 1965]. Rabin 
[1963] is an early paper on time complexity and is worth study. The improvement in 
the time hierarchy given in Exercises 11. 7 and 11.8 is from Hennie and Stearns 
[1966]. For the nondeterministic hierarchies, Exercise 11.5 (space) is by Ibarra 
[1972] and 11.6 (time) from Cook [1973]. The RAM hierarchy. Exercise I I.I I, is 
by Cook and Reckhow [ 1973]. Exercise 11.14 is by J. Hopcroft. Exercise 11.19 
is from Meyer and Stockmeyer [ 1973]. 

The work on exponential lower bounds for "natural" problems began with Meyer 
[ 1972] and Meyer and Stockmeyer [ 1972]. Theorem I 1.2 on semiextended regular 
expressions is from Hunt [1973b]. Theorem I 1.3 on extended regular expressions is 
by Meyer and Stockmeyer [ 1973]. Other work on intractable problems can be found 
in Book [1972], Hunti:1973a. 1974], Stockmeyerand Meyer (1973]. Meyer (1972], 
Hunt and Rosenkrantz [1974]. Rounds [1973], and Constable. Hunt. and Sahni 
[1974]. 
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In designing an algorithm to solve a given problem the most basic question to 
which we would like an answer is, "What is the inherent computational com­
plexity of the given problem?" Knowing the theoretical lower limit on how 
efficient an algorithm can be, we can better evaluate proposed algorithms and 
help determine how much further effort should be expended in trying to find a 
better solution. For example, if a problem is known to be intractable, then we 
might be content to use heuristic techniques to find approximate solutions. 

Unfortunately. determining the inherent computational complexity of a 
problem is usually a very difficult task. For most practical problems we have 
to rely on experience to judge the goodness of an algorithm. However, in 
some cases we can tightly bound from below the number of arithmetic opera­
tions required to perform certain calculations. In this chapter we shall pre­
sent some basic results of this nature. For example, we shall show that the 
multiplication of an n X p matrix by a p-vector requires np scalar multiplica­
tions, and that the evaluation of an nth-degree polynomial requires n multipli­
cations. Many additional results on lower bounds are contained in the exer­
cises. The reader interested in lower bounds sl]~pld treat the exercises as an 
integral part of this chapter. · 

12.1 FIELDS 

In order to obtain precise lower bounds we must know what basic operations 
are permitted. For specificity we shall assume that all computations are done 
in a field, such as the field of real numbers, where the basic operations are 
addition and multiplication of field elements. 

Definition. Afield is an algebraic system (A,+, ·, 0, l) such that 

1. the system is a ring with multiplicative identity 1, 
2. multiplication is commutative, and 
3. each element a in A - {O} has a multiplicative inverse a- 1 such that 

aa- 1 = a-•a = l.t 

Example 12.1. The real numbers with the familiar operations of addition and 
multiplication form a field. The integers form a ring, but not a field since in­
tegers other than ± 1 do not have multiplicative inverses that are integers. 
However, for p a prime, the integers modulo p do form a (finite) field. 0 

Consider the problem of evaluating an arbitrary polynomial p(x) = 
l;':,.0a;x; for some value of x. What we want is an algorithm that takes values 
for the a;'s and x as inputs and produces the corresponding value of p(x) as 
output. The algorithm is to work for all possible values of its inputs taken 
from some field. The maximum number of additions, subtractions. and multi-

t As is customary. we omit · •.•:h,;1i nu confusion arises. 
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plications performea by the algorithm, taken over all permissible inputs. is 
said to be the arithmetic complexity of the algorithm. 

Note that certain nth-degree polynomials appear to be much easier to 
evaluate than others. For example, the evaluation of xn + 2 takes on the order 
of log n operations, whereas intuitively we feel that the evaluation of a "ran­
dom" nth-degree polynomial would require a linear number of operations. 
Thus an evaluation algorithm which works only for a specific polynomial may 
be much faster than one that works for all polynomials. To capture the notion 

·of an algorithm which. works for an entire class of problems, we introduce 
indeterminates to represent input variables. 

Definition. An indeterminate over -an algebraic system is a symbol not 
in the underlying set. Let F = (A, +, ·, 0, I) be a field and let x1, ••• , Xn 

be indeterminates over F. The extension of F by the indeterminates 
x1, ••. , Xn, denoted F[x1o ... , Xn], is the smallest commutativet ring 
(B, +, ·, 0, I) such that B contains A U {xi. . .. , xn}~ 

Note that there are no "hidden" identities involving indeterminates. Thus 
every polynomial with coefficient~ in F and "unknowns" x1 , x2 , ••• , Xn rep­
resents some element of F[x1o ... , Xn]. Two polynomials denote the same 
element of F[x1 , ••• , Xn] if one can be transformed into the other by use of 
the laws of a commutative ring. The multiplicative identity I of F will also 
be a multiplicative identity in F[x1 , ••• , xn]. 

Example 12.2. Let F be the field of reals. Then the ring F[x, y] includes x, 
y, and all real numbers. Since F[x, y] is closed under+, we see that x + y 
and x + 4 are in F[x, y]. Since F[x, y] is closed under multiplication, it 
contains (x + y) (x + 4), which is equivalent to x 2 + xy + 4x + 4y under the 
distributive law of the ring. 0 

12.2 STRAIGHT-LINE CODE REVISITED 

Consider again the question "How many arithmetic operations are required 
to evaluate an arbitrary polynomial?" We are really asking a question con­
cerning the number of operations + and · needed to construct the expression 
:I:~0a;xi or one equivalent to it from the indeterminates a0 , ••• , an and x. 
This observation motivates the. following model of computation which is 
essentially the straight-line program model of Section I .5. 

Definition. Let F be a field. A computation with respect to F consists 
of the following. 

I. A set of indeterminates called inputs. 
2. A set of variable names. 

t That is. multiplication is commutative. 



-~30 LOWER BOUNDS ON NUMBERS OF ARITHMETIC OPERATIONS 12.: 

3. A sequence of steps of the form a - b 8 c, where 8 is+,-, or *·a i~ 
a variable not appearing in any previous step. and b and c are eithe 
inputs, elements of F. or variable names appearing on the left of th1 
arrow at some previous step. 

For convenience we write a - b ford - b + 0 and a - -b for a - 0 - b 
An element of F appearing in a computation is called a constant. 

To determine the result of a computation, we need the notion of a valua 
tion of a variable in a computation. Informally, we consider a computation t< 
take place step by step; each step assigns an element of F[xh ... , xn], when 
the x/s are the inputs, to a new variable. We define the value v(a) of variabl1 
or input a as follows. If a is an input or an element of F, then v (a) = a. If a h 
a variable and a - b 8 c is the step with a on the left, then v(a) = v(b) 8 v(c) 

A computation computes E, a set of expressions in F[x1, ... , Xn], witl 
respect to the field F, if for each expression e in E there is some variable f ii 
the computation such that v(f) = e. ·•· 

Observe that a computation is with respect to a given underlying fiek 
For example, computing x2 + y2 , where F' is the field of reals, requires tw. 
multiplications even if multiplication by a constant is not counted. Howeve1 
if F is the field of complex numbers, then only one multiplication (excludin1 
multiplications by a constant) is required, namely (x + iy) (x - iy). The under·: 
lying field js usually taken to be the field of reals, although we might use th 
complex numbers, the rational numbers, or some finite field. Which field w 
use depends on the operations we take as primitive. If we assume that we ca 
represent real numbers and perform addition and multiplication on reals a 
primitive operations, then F is taken to be the reals. 

Example 12.3. Recall that the computation of the product of two comple 
numbers a + ib and c + id with respect to the field of reals can pe viewed a 
the computation of the expressions ac - bd and ad+ be. The obvious corr 
putation is 

Ji - a*C 
J;.-b*d 
Ja-Ji.-J;. 
ft - a*d 
ls - b*c 
fs-J~+fs 

The value of Ji is ac. Similarly, v(J;.) = bd and v(fa) = ac - bd. Thu 
the value of / 3 is equal to the first expression. The value of ls is ad+ be an 
is equal to the second expression. Thus the computation computes the prodUt 
of two complex numbers. 
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There is another computation for complex multiplication which uses only 
three real multiplications: · 

J.-a+b 
J; -f;*c 
fa-d-c 

~ - a*f1 
J~-J~+J; 
ls -d+ c 
1; - b*f~ 
1s-1;-h 

It is easily shown that v(fr,) =ad+ be and v(j~) = ac - bd. D 

It should be clear that a computation computes an expression if and only 
if s'U.bstituting arbitrary values from the field F for inputs results in a computa­
tion of the specific instance of the expression obtained by substituting the 
input values for the indetermin~tes of the expression. 

In the remainder of the chapter we are concerned primarily with lower 
bounds on the number of multiplications needed to compute a set of ex­
pressions. The reason for concentrating on multiplications is that in cer­
tain domains multiplications are arbitrarily more costly than additions and 
subtractions. 

For example, we saw in Chapter 6 that because we can multiply two 2 x 2 
matrices with seven scalar multiplications, we have an o ... (n1og 7) matrix­
multiplication algorithm. The fact that Strassen's algorithm uses 18 addi­
tions is asymptotically negligible. In the first level of recursion for Strassen's 
algorithm the seven (n/2) x (n/2) matrix multiplications are arbitrarily more 
costly than the 18 (or any other number of) additions and subtractions of 
matrices of the same size, as /1 approaches infinity. 

In fact. if we could multiply two 2 x 2 matrices with six scalar multipli­
cations using only the laws of a noncommutative ring, then we would have an 
0 A (n1ot: 6 ) = o .... (n:!·59 ) matrix-multiplication algorithm, no matter how many 
additions or subtractions a 2 x 2 matrix multiplication took. (It can be shown, 
however, that if the algorithm is to work for an arbitrary ring, seven multipli­
cations are needed for a 2 x 2 matrix multiplication; see Hopcroft and Kerr 
[1971].) 

For another•example, we saw in Section 2.6 that we could multiply two 
11-bit integers in 0 8 (11 1·59 ) steps because three multiplications were sufficient 
to compute the expressions ac, bd, and ad+ be. In fact if we could evaluate 
these expressions with a computation that had only two multiplications. then 
we would have M(n) :s;; 2M(n/2) + c11 for some constant c. Such a compu­
tation. applied recursively. would yield an 0 11 ( n log 11) integer-multiplication 
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algorithm, which is better than any known. Unfortunately, we shall sho\\ 
that in any field, these expressions cannot be computed with fewer than thre~ 
multiplications. 

12.3 A MATRIX .FORMULATION OF PROBLEMS 

Many problems can be formulated in terms of computing the product of a ma­
trix and a column vector. The elements of the matrix are from F [a 1 , ••• , an], 
where F is a field and a17 ••• , an are indeterminates. The components of 
the column vector are indeterminates distinct from a1 , ••• , an. 

Example 12.4. The problem of multiplying two complex numbers a + ib and 
c + id can be couched as the matrix-vector product 

[: -:J[~] = [:~ ~ !~]. 
Here F is the field of reals and the elements of the matrix are chosen from 
F[a, b]. The vector is composed of ~he indeterminates c and d. 0 

Example 12.5. Evaluation of the polynomial If=0a;Xi can be expressed as 

Here F is the field of reals and the elements of the I x (n + I) matrix are 
from F[x]. 0 

12.4 A ROW-ORIENTED LOWER BOUND ON MULTIPLICATIONS 

Definition. Let F be a field and a 1, ••• , an indeterminates. Denote by 
Fm [a1 , ••• , an] them-dimensional space of vectors with components from 
F[a 1 , ••• , an]. Let Fm be the m-dimensional space of vectors with 
components from F. A set of vectors {v1, ... , vk} from Fm[a 1, ••• , an] 
is linearly independent modulo Fm if for u1 , ••• , uk in F, If..1u1vi in F111 

implies the ui are all zero. If the v1 are not linearly independent modulo 
pn, then they are said to be dependent modulo Fm. 

An alternative way to view linear independence modulo F 111 is to consider 
the quotient space Fm[a1' ... , an]/P11 of equivalence classes of vectors in 
Fm[a1 , • •• , an]. (Vectors v1 and v2 in Fm[a1' . .. , an] are equivalent if and 
only if v1 - v2 is in F 111 .) Linear independence modulo F 111 means linear inde-. 
pendence of the equivalence classes of Fm[a 1, ••• , an]/ Fm. 
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Example 12.6. Let F be the field of reals and let a and b be .indeterminates. 
Then the three vectors 

[ 2a ] 
V1 = 4b , 

2a-2b 

in P[a, b] are dependent modulo F3 since 

is in F3. 

• ., + •• _ •• ~ n J 

On the other hand, the vectors 

are linearly independent modulo F 2 • Suppose ~~= 1u;v; is in F 2 • Then u1b + u2a 
is in F. Since neither a nor b is in, F, we must have u1 = u2 = 0. In addition 
u1a + u3b in F implies that u1 = u3 ·= 0. We conclude that v1, v2 , and v3 are 
linearly independent modulo F 2• D 

If M is an r x p matrix with elements from F, then the number of linearly 
independent rows of M is equal to the number oflinearly independent columns 
of M. However, if M has elements from F[a1 , ••• , an], then the number of 
linearly independent rows modulo P is not in general the same as the number 
of linearly independent columns of M modulo Fr. For example, the I x 3 
matrix [a17 a2 , a3 ] has one linearly independent row modulo F3 and three lin­
early independent columns modulo F. The row rank of M modulo FP is the 
number of linearly independent rows modulo FP: The column rank of M 
modulo F is defined analogously. 

For the remainder of this section, and for the next two sections, the 
following notational conventions are usually used. 

I. F denotes a field, 
2. {a 1 , • •• , an} and {x1 , ••• , x,,} denote disjoint sets of indeterminates. 
3. Mis an r x p matrix with elements from F[a 1 , • •• , an], and 
4. xis the column vector [x1 , ••• , x,,]T.t 

Theorem 12.1. Let M be a Qlatrix with elements from F[a 1 • •••• a,,] and 
let x be the column vector [x1 , ••• , x,,]T. Assume that the row rank of 
M is r. Then any computation of Mx requires at least r multiplication 
steps. 

t Note that it is inconvenient to draw column vectors in column form. so we shall 
often write them in row form as in Chapter 7 and indicate transposition by the super­
script T. 
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Proof:. Assume without loss of generality that M has r rows. (Otherwise we 
could delete rows of M other than the r independent rows and let M' be the 
resulting matrix. Every computation of Mx is a computation of M'x. It fol­
lows that if M'x requires r multiplications, then Mx requires r multiplications.) 

Suppose there are s multiplications in some computation of Mx. Let 
e1 , ••• , e3 be the expressions computed at each of the multiplication steps. 
Then the elements of Mx can be expressed as a linear function of the expres­
si~ns e1 , ••. , e, and the indeterminates. That is, we can write 

Mx=Ne+f, (12. I) 

where.e is the Vector whose ith component is ei and f is a vector whose com­
ponciits<are linear functions of the a/s and x/s alone. N is an r x s matrix 
whose··:elements are in F only. 

· Now suppose r > s. It is an elementary result of linear algebra that if 
r > s, the rows of N are linearly dependent. t That is, there exists y ¥< O:j: in 
Fr such that yTN =or. Multiplying ( 12. l) by yT yields 

••• 
yTMx = yTNe + yTf :_ yTf. ( 12.2) 

From (12.2) we see that (yTM)x = yTf, an expression which is a linear 
function of the indeterminates. Since x has a distinct indeterminate in each 
component, we conclude that the row vector yTM must have only elements 
from F. Otherwise, there would be a term involving a product of indetermi­
nates in yTMx, and hence in yrf, contrary to the assumption that f is linear in 
the indeterminates. Since y ¥< 0 and yTM is in P', the rows of Mare dependent 
modulo FP, contrary to assumption. Thus s 2: r and the theorem follows. 0 

Example 12.7. In Section 12.2 we considered the computation of three ex­
pressions, ac, bd, and ad+ be, for a simple recursive integer multiplication 
algorithm. The three formulas may be expressed by the matrix-vector product 

( 12.3) 

Let R be the field of real numbers. The three rows of the matrix in (12.3) 
were shown linearly independent modulo R2 in Example 12.6, and thus a com­
putation of these three expressions with respect to the reals requires three 
real multiplications. 0 

t If the reader is not familiar with this result, the basis theorem, Lemma 11.1 (p. 435), 
is a harder result whose proof should provide sufficient insight to prove the present 
result. 
t 0 is the all-zero vector of the appropriate dimension. 
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12.5 A ~OLUMN-ORIENTED LOWER BOUND .ON MULTIPLICATIONS 

The result analogous to Theorem 12.1 in terms of the number of linearly in­
dependent columns is true but somewhat harder to obtain. We need a pre­
liminary result concerning sets of linearly independent. vectors. 

Lemma 12.1. Let {vi, ... , vk} be a set of k ~ 1 m-vectors with compo­
nents from F°[ai, ... , an]. Assuming {v1ll $i $ k} has a subset of q 
vectors which are linearly independent modulo F"', then for any elements 
b2, ... , bk in F, the set { vj !vi = v1 + b1vi, 2 $ i $ k} contains a subset of 
q - 1 linearly independent vectors modulo F"'. 

Proof By renumbering v 2 , v3 , .•. , vk, if necessary, we can assume that 
either {vi, v2, ••• , Vq} or {v2, v3 , ••• , Vq+i} is linearly independent.t 

CASE 1. Suppose {v1> v2 , ••• , v0 } is linearly independent. Then we claim 
{v~,.v3, ... 'v~} is linearly independent. To see this, suppose kf=2C1Vi is in 
pn for some set of c/s in F. Then I1=ic1v1 is in Fm where Ci = I1=2c1b;. But 
if {vi, v2, ... , Vq} is linearly independent, then c1 = 0 for 1 $ i $ q. Thus, 
{ v~. v3, ... , v~} is linearly independent. 

CASE 2. Suppose {v2, v3 , ••• , Vq+i} is linearly independent. If {v~ •... , 
v~} is linearly independent, we have our result, so assume not. Then there 
exist c2, ... , Cq in F, not all 0, such that Ir=2c1v; is in F 111 • Let Ci= I1=2c1b;. 
Then w = I1-iC;V; is also in F'n. 

We may assume Ci ?6 0, for otherwise If=2c1v1 would be in Fm, contra­
dicting the assumption that { v2 , ••• , Vq+i} is linearly independent. We may 
thus write 

Vi= c}i (w - ± C;V;). 
i=2 

Since not all of c2 , ••• , Cq are 0 we can assume without loss of generality 
that c2 ?6 0. We now repeat the argument above with the set {v3, v~, ... , v~+1 }. 
If this set is linearly independent, -we are done, so assume kf!Jd;vj is in 
Fm, where the di's are in F and not all 0. Let di= kf!Jd1b1• Then x = d 1vi + 
ir:~d1v1 is in Fm. If di= 0, we contradict the linear independence of {v3 , ••• , 

Vq+i}. If di ?6 0, we can write 

( 
•HI ) 

Vi = d} 1 X - ? d;Vj . 
1=3 

Equating the t~o expressions for v1 we obtain 

d"j 1 ( x - % d1v1) = c"j 1 ( w - ~ c1v1). 

t We delete "modulo F111 " throughout this proof. 
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Multiplying by c1d 1 and rearranging terms we obtain 

q 

d1C2V2 + L (d1Ci - C1d1)V; - C1dq+1Vq+1 = d1W - C1X. 
1=3 

12 

Since wand x are in F"', d1w - c1x is also in F"'. Since c2 and d1 are nonzero 
{v2 , v3 •.•• , Vq+1} is linearly dependent, a contradiction. 0 

Let M be an r X p matrix with elements from F[a1 , ••• , an] as before. 
We now show that if q columns of M are linearly independent modulo Fr. 
q ~ 1, then any computation of Mx requires at least q multiplications, where 
X = (x1, ••• , Xp]T. 

Definition. A multiplication is said to be active if the value of one of the 
operands multiplied involves one of the indeterminates x1 and the other 
Qperand is not an element of F. For example, b*c is an active multipli­
cation if v(b) = 3 + a2 and v(c) = x1 + 2*X3 , but not if v(b) = 3 and v(c) = 
x1 + 2u·3 or if v(b) = 3 + a2 and v(c) = a1 + 2*a3 •· .•.. 
Theorem 12.2. Let y be a vector of.dimension r with elements from 
F[a 1 , ••• , an]. If M has column rank q, then any computation of 
Mx + y has at least q active multiplications, for q ~ I. 

Proof The proof proceeds by induction on q. 

BASIS. q = 1. There exists a column of M not in Fr and hence an element 
e of M which is in F[a1o ... , an] but not in F. Thus some element of Mx 
has a term with ·the product ex J for some j. Thus so does M x + y. A com­
putation with no active multiplications can compute only expressions of the 
form P(a1> ... , an) + L(x1 , ••• , Xp), where P is a polynomial and L is a 
linear function, each with coefficients in F. Thus a computation of Mx + y 
must have at least one active multiplication. 

INDUCTIVE STEP. Assume q > I and that the theorem is true for q - I. 
Let C be a computation of Mx + y. By the inductive hypothesis, C has at 
least q - I ~ I active multiplications. Suppose f +- g*h is the first such 
multiplication. Then without loss of generality, we may assume th.at 

p 

v(g) = P(a" ... , an) + L C1-"C;, ( 12.4) 
i-1 

where P is a polynomial with coefficients in F and the c/s are in F. More­
over. we may assume c1 =F= 0 without loss of generality. 

Our strategy is to construct from C and the set of expressions Mx + y 
a new set of expressions M'x' + y' with a computation C' having one fewer 
active multiplication than does C. Furthermore, q - I columns of M' will 
be linearly independent modulo Fr. Thus by the inductive hypothesis. C' 
has q - I active multiplications, implying that C has q active multiplications. 
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Specifically, we replace Xi in C by an expression e which makes g of ( 12.4) 
equal to 0. Moreover, the expression e will be computable without active 
multiplications. The computation C' begins with a computation of e, the 
value of e being assigned to Xi (which is no longer an input variable). The 
remainder of C' consists of C with f ~ g*'1 replaced by f ~ 0. It is then 
shown the set of expressions computed by C' ca·n be expressed as M'x' + y', 
where q - 1 columns of M' are ·linearly independent modulo P. 

We now return to the details of the proof. From (12.4) and the assump­
tion that Ci ¥- 0, we -have g = 0 if 

Xi= -c11 [P(ai, ... , an) + ~ cixJ (12.5) 

The right side of (12.5) is the expression e alluded to above. The computa­
tion C' formed from C as described above computes Mx + y with the expres­
sion e substituted for Xi. Thus M'x' + y' can be written as 

which can be written 

M 

p 

-c1i L cixi 
i=2 

X2 

X3 

Xp 

x,, 

+M 

0 
0 

0 

+y. ( 12.6) 

Consider the first term of ( 12.6). Let the ith column of M be mi. For 
2 ::;;; i ::;;; p, define mj = m, - (cifci)mi. Let M' be the matrix of p - 1 columns 
whose ith column is mi~i and let x' = [x2 , ••• , xpF· Thus the first term of 
(12.6) is equal to'"M'x'. · 

The second term of (12.6) is a vector with elements in F[ai •. .. , a,,]. 
since the elements of M are in F[a1 • ... , a11 ]. Thus the second and third 
terms of ( 12.6) can be combined to form a new vector y' with components in 
F[ai, ... , a11 ]. Thus C' computes M'x' + y'. It is immediate from Lemma 
12.1 that at least q - 1 columns of M' are linearly independent modulo F''. 
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llu ll12 llw V1 

ll21 G22 ll21• \'2 

Fig. 12.1. General matrix-vector product. 

Hence C' has q - I active multiplications, which implies that C has q active 
multiplications. D 

We shall give two examples of the use of Theorem I 2.2. 

Example 12.8. We claim that the multiplication of an n x p matrix A by a 
vector v of length p requires np scalar multiplications. Formally, for I s i s n 
and I s j s p, let aij and vi be indeterminates. Then Av is the matrix-vector 
product of Fig. I 2. I. ·•· 

The direct application of Theorems 12. i or I 2.2 to Av can yield only that 
MAX (n, p) multiplications are required. However, the matrix-vector product 
can also be expressed as Mx, where the ith row of M has v1, . . . , vp in col­
umns (i - I )p + I through ip and O's elsewhere. The vector x is a column 
vector consisting of the rows of A concatenated together. M and x are illus­
trated in Fig. 12.2. 

It is easily shown that the columns of M are linearly independent modulo 
F 11 • Thus by Theorem 12.2 any computation for Av requires at least np 
multiplications. D 

Example 12.9. Consider the problem of evaluating the nth-degree polynomial 
l:':o0ajXi. This problem can be expressed as the matrix-vector product' Mx: 

[I, x, x 2 , ••• , x 11 ] 

Here the elements of Mare in F[x] and x = [a0, a1, ... , an]T. It is straight­
forward to show that the set of columns of M, other than the first column. 
forms a linearly independent set modulo F. Thus M has n independent col­
umns and the evaluation of an arbitrary nth-degree polynomial requires n 
multiplications. 

Homer's rule, which evaluates a polynomial by the scheme 

( · • · ( (anX + an-1)X + an-2)X + · · · + a1)X + ao, 
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a.,, 
ll21 

\.' I V2 I' p 0 0 0 0· 0 0 {/22 

0 0 ... 0 Vi \.'2 I' 0 0 0 p 

n rows 

ll21• 

0 0 0 0 0 ... 0 Vi \'2 v,, 

np columns 

{/Ill 

(1112 

Fig. 12.2. Equivalent form of matrix-vector product. 

requires exactly n multiplications and hence is optimal in the sense of requir­
ing as few multiplications as possible. In an analogous manner it can be shown 
that n additions or subtractions are needed to evaluate I;'...0a;xi. Thus Homer's 
rule uses the minimum number of arithmetic operations needed to evaluate a 
polynomial at a single point. D 

12.6 A ROW-AND-COLUMN-ORIENTED BOUND ON MULTIPLICATIONS 

We now combine Theorems 12.1 and 12.2 to obtain a stronger result than can 
be obtained by considering row and column independence separately. Let 
M be the r x p matrix with elements from F[a 1 , ••• , a11 ] as before. Let 
X = [xi> ... , Xp]T. 

Theorem 12.3. ~Suppose M has a submatrix S with q rows and c columns 
such that for any vectors u and v in Fq and p·, respectively. ursv is an 
element of F if and only if either u = 0 or v = 0. Then any computation 
of Mx requires at least q + c - I multiplications. 

Proof. To begih, assume without loss of generality that M itself has only q 
rows and that S is the first c columns of M. Suppose Mx can be computed 
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with s multiplications. Let e be the vector whose components are the s ex­
pressions computed by the multiplications. Assume in particular that the ith 
element of e is computed before the jth for i < j. Then as in Theorem 12.1 
we may write 

Mx =Ne+ f,· ( 12.7) 

where N is a q x s matrix with elements in F, and f is a vector whose compo­
nents are linear combinations of the a/s and x/s. 

As in Theorem 12.1 we may conclude that s 2: q. If not, we could find 
a vector y # 0 in Fq such that yTN =OT, implying that the components of yTM 
are in F. Then the components of yrs would be in F, contrary to the hy­
pothesis (take u = y and vT = [ l, ... , 1 ]). 

Sin~e s 2: q we can partition N into two matrices N 1 and N 2 , where N 1 

consists of the first s - q + 1 columns of N and N 2 consists of the last q - I 
columns of N. Also, let e1 and e2 be the firsts - q + I and q - I elements of 
e, respectively. Then we can write ( 12.7) as 

••• Mx = N 1e1 + N2e2·+ f. ( 12.8) 

Since N 2 is q x ( q - I), there exists a vector y # 0 in Fq such that 
yTN2 =OT. Multiplying (12.8) by yT yields 

( 12.9) 

Let M' = yTM. Note that M' is a I x p matrix which is a linear-combination 
of the rows of M. Since the products in e1 can be computed without refer­
ence to those of e2 (the former were assumed to be computed first), it is clear 
that the problem M'x can be computed by a computation with s - q + I multi-· 
plications using (12.9). If we can show that c columns of M' are linearly in­
dependent modulo F, then s - q + I 2: c, by Theorem 12.2. Thus s 2: 

q + c - l, as was to be proved. 
We now prove that the first c columns of M' = yTM are linearly inde­

pendent modulo F. Let yT = [y 1, ••• , yq]. The first c entries of M' are 
'Il=iY;Mu, for 1 s j s c, where Mu is the ijth element of M. Suppose there 
exists a vector z # 0 whose components are Z1t ••• , Zc. each Z; in F, such 
that IJ= 1z1'I1=iYiMii is in F. That is, the first c columns of M' are dependent 
modulo F. Then yTSz would be in F, contrary to the hypothesis about S. 
Thus M' has c linearly independent columns modulo F and the theorem is 
proved. D 

We now apply Theorem 12.3 to the multiplication of two complex num­
bers, a + ib and c + id, to show that three real multiplications are required. 
Observe that neither Theorem 12.1 nor Theorem 12.2 is alone strong enough 
to do this. 
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Example 12.10. Consider the problem of multiplying the complex numbers 
a+ ib and c +id, namely. evaluating · 

Mx = [~ -~][~]. 
Let S be M itself. Let F be the reals and let 

and 

be in F 2• Assume that 

[Y1 Y2] [: -:][~:] 
is an element of F. The above product is y1z1a + y2z1b + y2z2a - y1z2b. If 
this. expression is an element of F, then the coefficients of a and b must be zero. 
Thus 

(12.10) 
and 

( 12.11) 

Suppose Y1 # 0. Then from ( 12.11) we have z2 = y2z1/y1• Substituting into 
(12.10) and multiplying by y1, we have (yi + yUz1 = 0. Since y1 # 0, we have 
Yi+ Yi# 0 and thus Z1 = O.t Then by (12.11), z2 = 0. But z1 = z2 = 0 con­
tradicts the hypothesis that 

[~:] # 0. 

Now assume that y 1 = 0. If y2 = 0, we have a contradiction immediately. 
If y2 # 0, then interchanging the roles of }'1 and y2 in the argument above re­
sults in z1 = z2 = 0, again contradicting the hypothesis. 

Thus Theorem 12.3 applies to Mx with q = c = 2, so three real multipli­
cations are necessary. The program in Example 12.3 shows that three multi­
plications are sufficient. 0 

Theorems 12.1-12.3 can be extended to allow divisions in a computation. 
When divisions are permitted as computational steps. we must allow the com­
putation to include steps that cause division by zero for certain values of the 
inputs. Consequ61ltly, the theory regarding multiplicative operations (i.e .. 
both multiplication and division) assumes that the field Fis infinite. If F were 
finite, we could be discussing a computation which worked for no possible 
inputs because each possible input causes a division by zero. 

t Note that the assumption F is the field of reals is essential here. 
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With these modifications, Theorems 12.1-12.3 can each be made to hold 
for multiplicative operations instead of multiplications only. In Theorem 12.2 
the definition of an active multiplicative operation, f ~ g*h or f ~ g/h, must 
be that either the value of at least one of g and h involves one of the x/s and 
the other operand is not in F, or g is in F, h involves one of the x's and the 
operation is division. 

12.7 PRECONDITIONING 

In Example 12.9 we showed that the evaluation of an nth-degree polynomial 
at a single point requires n multiplications. However, there was an underlying 
assumption that the polynomial was represented by its coefficients. Here we 
consider the problem of minimizing the number of multiplications needed to 
compute a single polynomial if one is allowed to represent a polynomial by 
any set of parameters computed from the coefficients. If one were to evaluate 
a polynomial several times, it would make sense to spend some time com­
puting a different representation for the poLynoifiial, provided the new repre­
sentation permitted faster evaluation. This change of representation is called 
preconditioning.t In Example 12.9, on polynomial evaluation, a multiplica­
tion was active if one factor involved the coefficients a0 , a 1 , ••• , an and the 
other factor was not an element of F. Thus a multiplication in which both 
factors involved the coefficients but neither factor involved the variable x was 
counted. With preconditioning we get, "for free," all multiplications where 
neither term involves the variable. 

Definition. The degree of a multivariate polynomial is the maximum 
power of any variable in the polynomial. For example, p(x, y) = x3_+ 
x 2y2 is of degree 3. 

The next lemma states that for any v + I polynomials in v variables, there 
exists a nontrivial polynomial function of the given polynomials which is iden­
tically zero. For example, let p 1 = x 2 and p2 = x + x3 • Then p 1 + 2pi + p~ -
p~ = 0 for all x. 

Lemma 12.2. Let p1(x1, ••• , Xr), I :5 i :5 n, represent n .polynomials. 
If n > r, then there exists a polynomial g(p1 , •• ·• , Pn) whose coefficients 
are not identically zero, but which is identically zero as a function of 
the x/s. 

Proof. Let Sd be the set of terms of the formp/1p/2 ••• Pn1", where 0 :5 i1:::: d 
for all j. Note that llSdll = (d + I)". Let m be the maximum degree of any of 

t Note the difference between this situation and the one in Section 8.5, where all points 
at which a polynomial was to be evaluated were known. Here, we may process only 
the coefficients before evaluation, and the evaluations are to be done one at a time, i.e .• 
on-line rather than off-line. 
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the p;'s. Then each q E Sd is a polynomial in x1, x2 , •••• Xr of degree at 
most d11111. 

Now any polynomial of degree dm11 in r variables can be represented by 
a vector of length (dmn + l)r. The components of the vector are the coef­
ficients of the terms in a fixed order. It thus makes sense to talk about linear 
independence of polynomials, and in particular to say that, by the basis the­
orem of linear algebra, any set of (dmn + I Y + I polynomials from Sd must 
be linearly dependent, i.e., have a nontrivial sum that totals zero. 

In particular. if m, 11, and rare fixed, and n > r, it is not hard to show that 
( d + I ) " 2: ( dmn + I) r for sufficiently large d, since ( d + I ) 11 is a higher-degree 
polynomial in d than (dmn + I )°r. - Thus .there exists· ad such that a nontrivial 
sum of members of Sd is identically zero as a function of the x's. This sum is 
the desired polynomial g. 0 

Using Lemma 12.2 we now show that any set of parameters for a poly­
nomial in which the coefficients are polynomial functions of parameters re­
quires n + I parameters to represent an arbitrary nth-degree polynomial. 

Lemma 12.3. · Let M be a~ one-to-one mapping from an n-dimensional 
vector space C 11 of coefficients onto an r-dimensional vector space Dr of 
parameters. If M-1 is such that each component of a vector in C 11 is a 
polynomial function of the components of the corresponding vector in 
D 1·, then r 2: n. 

Proof. Assume r < n and let M-1 be given by ci = Pi(d1, ••• , dr), where 
the p/s are polynomials, the d/s parameters, and the c/s coefficients. By 
Lemma 12.2 there exists a nontrivial polynomial g such that g(c1 , ••• , en) 
is identically zero for all values of the d1's.t But since g itself is not identi­
cally zero, there exist polynomials with coefficients ch ... , en such that 
g(c1, ••• , en) is not zero. These polynomials cannot be represented in 
terms of the d/s, a c.ontradiction. 0 

We now show that even with preconditioning, the evaluation of an nth-
degree polynomial requires at least n/2 multiplications .. 

Theorem 12.4. A computation for polynomial evaluation requires at least 
n/2 multiplications to evaluate an arbitrary nth-degree polynomial at a 
single point, even if multiplications in computations involving only coef­
ficients are not counted. 

Proof. Assume -.there exist.s a computation with m multiplication steps in­
volving the unknown x. Let the results of the multiplications be the expres­
sions fi, h_, ... , f,11 • Then each/; can be expressed as 

/; = [l.:i;-1(fi, ... ,fi-1, x) + .821-1] * [L2;(fi, ...• /;-1, x) + /32;]. 

t Observ.e that g is a polynomial in the c;'s and hence in the d;'s, since the c;"s are 
polynomials in the d;'s. 
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:s i :s m. where each L; is a linear function of the f's and x, and each {3; is a 
polynomial function of the coefficients. The polynomial p(x) which is com­
puted can be expressed as 

p (x) = L211i+1u;, ... ,f111, x) + /32111+1· 

Thus p(x) can be represented by a new set of 2111 + I parameters, the {3/s. 
Furthermore. the coefficients of p(x) are polynomial functions of the {3/s. By 
Lemma 12.3, 2m + l :::::: n + l. Thus m:::::: n/2. 0 

Theorem 12.4 gives a lower bound on the number of multiplications for 
preconditioned evaluation of a polynomial at a single point. The problem of 
representing a polynomial so that it can be computed in n/2 multiplications is 
of considerable interest. Not only must we find a set of parameters to repre­
sent the polynomial so that it is easy to evaluate, but we also must be able to 
readily compute the parameters from the coefficients of the polynomial. Thus 
it is desirable that the parameters be rational functions of the coefficients. 
Techniques for finding such parameters are found in the exercises. · 

••• 
EXERCISES 

12.1 Let F be a field and x an indeterminate. Show that the set of polynomials with 
variable x and coefficients from F forms a commut~tive ring F[x] and that the 
multiplicative identity in Fis a multiplicative identity in F[x]. 

12.2 Show that any computation for the expressions 

ae + bd, 
ae- bd, 
be+ ad, 
be-ad, 

requires at least four multiplications, where a, b, e, dare elements of a field F. 

12.3 Show that any computation of the product of a column vector by a row vector 

requires at least mn multiplications. 

12.4 The general nth-degree polynomial in two variables x and y is !;i_0!.j'..0aux1yl. 
Show that (n + I) (11 + 2)/2 - I multiplications are necessary and sufficient to 
evaluate such a polynomial with preconditioning. 

12.5 Show that multiplication of a 2 x 2 Toeplitz matrix (see the exercises to Chap-
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ter 6, p. 249) by a vector, i.e., 

requires three multiplications. 

12.6 Generalize Exercise 12.5 to show that 2n - I multiplications are needed to 
multiply an /1 x n Toeplitz matrix by a vector. How close to the bound can 
you come for n = 3? 

*12.7 We could generalize the multiplication algorithm of Section 2.6 to break the 
multiplier and multiplicand into three pieces each, and then evaluate the matrix­
vector product 

[
a 0 OJ 

~ H m 
0 0 c 

in as few multiplications as possible. How many multiplications are needed to 
solve this problem? Does the aJ'proach yield an improvement on Section 2.6? 

'*12.8 Let F be a field and let a 1 , ••. , an and x1 , ••• , Xp be disjoint sets of inde­
terminates. Let x = [x1 , •.• , Xp]T and let M be an r x p matrix with elements 
from F[a1, ••• , an] having q independent columns modulo P. Show that 
with preconditioning of x, i.e., not counting products which involve only x;'s, 
a computation of the product Mx still requires q/2 multiplications. 

'* 12.9 Suppose exactly k expressions of a set P, no linear combination of which is a 
constant, are single multiplications (e.g., they are a*b for indeterminates a and 
b) and assume that q multiplications suffice to compute all expressions in P. 
Show that there is a computation with q multiplications of which k are those 
expressions of P which can be computed by single multiplications. 

~12.10 Show that at least three multiplications are required to compute the ~xpres­
sions ac and be+ ad. [Hint: Use Exercise 12.9.] 

~12.11 Show, that at least 3k multiplic~tions are required to compute the set of 2k 
expressions a1c1 and b1c1 + a1d;, for 1 s i s k. 

Exercises 12.12 through 12.14 make reference to the problem of multiplying two 
2 x 2 matrices A and B. Specifically, we wish to compute the four expressions of the 
product AB using noncommutative multiplications: 

[au a12J[b11 h12] = [aubu + a12h21 auh12 + a12h22] 
a21~ a22 h21 h22 a21b11 + a22b21 a21b12 + a22h22 . 

~12.12 Show that if there is any computation which works for an arbitrary ring and 
uses q multiplications. then there is another computation, using q multiplica­
tions, which works for the ring of integers modulo 2 and in which all multipli­
cations are of the form 

(a;,J, + ll;2;, +.' '+ 0;1.;..l '~ (h"''"' + h,,,211 , + · · · + h,,,,11 ). 
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.13 Show that if the left side of any multiplication as described in the previous ex­
ercise is a single a;; (i.e., k = I), then the computation has at least seven multi­
plications. [Hint: Set a;;= 0 and use Exercise 12.11 with k = 2.] 

:.14 Show that if none of the left sides are single a 1/s, then one still requires seven 
multiplications. [Hint: Show that in each case there is some set of conditions, 
e.g., au= 0 or ak1 = Clmn• such that one multiplication is identically zero and 
the resulting computation solves the problem of Exercise 12.11 with k = 2.] 

?.15 Show that multiplication of a 2 x 2 matrix by a 2 x /1 matrix requires ex­
actly Pn/21 multiplications. 

Z.16 Exhibit an algorithm to multiply an n x 2 matrix by a 2 x m matrix using 
mn + m + 11 multiplications assuming the scalars form a commutative ring. 
Combine this result with Exercise 12.15 to show that matrix multiplication 
requires more multiplications in the noncommutative case than in the com­
mutative case. 

Definition. Let R be a ring and a 1 , ••• , a,, and b1 , ••• , b,, disjoint sets of 
indeterminates. A bilinear form is an expression of the form 

••• 

where each ru is an element of R. 

12.17 a) Show that for any set of bilinear forms there exists a computation which 
is minimal with respect to the number of multiplications and in which all multi­
plications are between linear functions of the a's and b's. 
b) Show that there exists a minimal computation with respect to multiplica­
tions where each multiplication is oetween a linear function of the a's and a 
linear function of the b's. (Note that this part does not hold if we restrict the 
underlying ring to be commutative.) 
c) Given that computations are generalized to allow division, then show there 
exists a computation which is minimal with respect to multiplicative operations 
and which does not make use of division. 

'12.18 Let R be a noncommutative ring and let a, b, and x be column vectors of in­
determinates [a 1, ••• , amJT, [b 1 , ••• , b,,]T, and [:r 1, ••• , Xp]T, respectively. 
Let X be a matrix of linear sums of x1's. Exercise 12.17 implies that the com­
putations of the set of bilinear forms (aTX)T can be expressed as 

M(Pa · Qx), 

where M, P, and Q a~e matrices with elements from F. Define the left dual of 
the set of expressions (arx)r to be the set of expressions (bTXT)T and define 
the P-d1wl of the computation M(Pa · Qx) to be the computation PT(M~ · Qx). 
Prove that the P-dual of any computation of (aTX)T computes the left dual 
of (aTX)T. 

*12.19 Prove that. the minimum number of multiplications needed to multiply an 
m x n matrix by an n x p matrix over a noncommutative ring is the same as 
to multiply an n x m matrix by an m x p matrix. [Hint: Use Exercise 12.18.] 
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So far the exercises contain material concerning lower bounds on the number of arith­
metic operations. The following exercises contain material of a more general nature. 
Problems 12.20 to 12.23 are related to transposing a matrix. For I :s i.j :s 11. let a;; 
be an indeterminate. Consider a model of computation in which each variable is an 
11-tuple of indeterminates. A step a - b 8 c of a computation assigns to an 11-tuple 
a indeterminates selected from the indeterminates present in b or c. The 11-tuples b 
and c are not changed. 

*12.20 Prove that any computation of the set of 11-tuples 

from the set of inputs {(ail, ... , a;n) I 1 :s i :s n} requires at least n log /1 steps. 
[Hint: For each i andj let su be the maximum number of indeterminates with 
subscript j that occur in a single n-tuple containing ·a0 . Let 

n n 

f= L 2: log su. 
i=l j=l 

Consider the change inf. as steps of the computation are executed.] 
~ 

**12.21 Restrict the steps of a computation to the form a - b 8 c, where (J consists 
of selecting n/2 indeterminates from a cyclic shift of b and selecting n/2 inde­
termiriates from the complementary positions in c. Find a computation for 
the set of n-tuples in Exercise 12.20 with O(n log n) steps. 

**12.22 Let G be a directed acyclic graph with n designated source vertices (vertices 
having no incoming edges) and n designated output vertices (vertices having 
no outgoing edges). Let X and Y be subsets of source and output vertices, 
respectively. Let G (X, Y) be the subgraph consisting of directed edges on 
paths from vertices in X to vertices in Y. The capacity of G (X, Y) is the mini­
mum number of vertices whose removal (along with the incoming and outgoing 
edges) separates each vertex in X from each vertex in Y. Assume for each X 
and Y the graph G (X. Y) has capacity MIN <llXll. llYJI). Show for each n there 
exists such a G with en log 11 edges for some fixed constant c. 

**12.23 A shifting network is a directed graph with n source vertices numbered 0 
to n - I and n output vertices numbered 0 to n - I such that for each s, 0 :s 
s :s n - I, there exists a set of vertex disjoint paths which contains a path from 
source vertex i to output vertex (i + s) modulo n. for each i. 
a) Show that there exists a shifting network with 211 log /1 edges for each n. 
b) Show that asymptotically n log /1 edges are required for a shifting network. 
c) Show that a shifting network can be used to compute the transpose of a 

matri~. 

Definition. Let F be a field and x1, ••• , Xn indeterminates. A linear compu­
tation is a sequence of steps of the form a - A. 1b + "A.~c where a is a variable. 
b and c are variables or indeterminates, and A. 1 and A. 2 , called constams. are ele­
ments of F. 

**12.24 Let F be the field of complex numbers. Let A be a matrix with elements 
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from F and let x = [x1 , •••• xnF· Show that any linear computation of Ax 
requires log[det(A) ]/log('.!c) steps, where c is the maximum modulust of any 
constant appearing in a .step of the computation. 

*12.25 Prove that a linear computation of the Fourier transform of [x1, ••• , Xn]. 
with constants whose moduli are less than or equal to one, requires in log n 
steps. 

The following six problems are concerned with the minimum number of two-input 
gates needed to realize a Boolean function. 

* 12.26 Show that each Boolean function of n variables can be realized with at most 
n2" two-input gates. 

* 12.27 Show that' for each n there exists a Boolean function of n variables whose 
minimal realization requires approximately 2n/n two-input gates. 

* 12.28 Little is known about the complexity of realizing specific Boolean functions. 
However, if we restrict realizations to networks which are trees, then we can 
show that certain functions require n2/log n gates. Prove that the following 
condition is sufficient for a Boolean function of ~.variables to require n2/log n 
gates. · 

Condition: Let f(x 1 , ••• , Xn) be a Boolean function of n variables. Partition 
the x1 into b = n/log n blocks of log n variables each. Assign values (0 or I) 
to all variables in b - I blocks. There are 2"/n ways to do this. The result is 
a function of log n variables, which is one of zn functions of log n variables. 
The actual function obtained depends on the assignment of values to the vari­
ables in the b - I blocks. Let B1 be the block of variables not set to 0. If on 
the order of 211/n distinct functions .of the variables in B1 can be obtained by 
appropriate assignments of O's and I's to the other variables, and if this state­
ment is true for each i, I s i s Jog n, then any tree network for f must have 
n2/log n gates. 

'*12.29 Let m = 2 +Jog n. Let {tu! I sis n/m, I sj s m} be a set of 0-1 valued 
m-vectors such that each tu has at least two components with value I . Let 

f(Xu, Xu, .•. , Xn1m.m) = EB Xu · [ EB TI Xk1]. 
tsisn/m Jsks_nl2 ls/sm 

Jsjsm ""' such that t/r=I 

where tL is the /th component of tu. Prove that any tree network realization 
for f has at least n2/log n gates. 

*12.30 Construct other Boolean functions whose realizations as tree networks require 
(a) n312 gates, and (b) n2/log n gates. 

12.31 Let S1(xi. ... , Xn) be the symmetric Boolean function which has value I if 
and only if exactly i x;'s have value I. 
a) Find a realization of S3(X1, ...• Xn) with as few two-input gates as possible. 
b) Find a tree realization of S3(xh ... , Xn) with as few two-input gates as 

possible. 

t The modulus of a+ bi is Va2 + b2 • 
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**12.32 In Example 12.9 we proved that the evaluation of an arbitrary polynomial 
of degree /1 required n multiplications. Exhibit a specific polynomial of /1 vari­
ables with real coefficients that requires /1 multiplications. 

* * 12.33 Prove that matrix multiplication for the semi ring consisting of positive inte­
gers with opemtions MIN and + requires cn3 operations for some constant 
O<c<I. 

**12.34 Prove that Boolean matrix multiplication with operations AND and OR 
requires 113 operations. 

Exercises 12.35 and 12."36 are concerned with representing a polynomial so that it 
can be evaluated in approximately n/2 multiplications. 

* * 12.35 Let p (x) be an nth-degree polynomial where 11 is odd and greater than I. Write 

p(x) = (x2 - a)q(x) +bx+ c. 

a) Show that for suitable a, we can make b = 0. 
b) Prove that there exist suitable ai's and {3;'s such thatp(x) can be expressed as 

~ 

and hence p(x) represented by the a;'s and f3i's can be evaluated in ln/2J + 2 
multiplications. 

c) The a;'s in (b) may be complex numbers. How can this difficulty be over­
come? [Hint: Substitute y + c for x in p(x) for suitable c and instead of 
evaluating p(x) at x = x0 , evaluate some polynomial p'(v) at y = x0 - c.] 

Exercise 12.35 provides no method to compute the a/s. Furthermore. in general the 
a;'s are not rational numbers. The following exercise is an attempt to overcome these 
problems. 

**12.36 Let m be an integer. For I s Is m let 

(m - /) 2 + (I - I )2 + 3m + I 
r10= 

2 

and rt;= m - I+ j + I, I s j s /. Define a chain with a's and f3's as param­
eters to be a computation of the form 

Let p(x) = I!-1c11 (x). 

Cu (x) +- (x,.•• + au) (;rru + {311 ), 

C12(x) +-(en+ a12) (xr12 + /3;2). 

a) Pr0ve that the coefficient of the highest power of x depending on a;; is given 
by !.i·=;r11, and that the coefficient of the highest power of x depending on f3u 
is given by ILzor11· ~· ru. 

b) Prove that every polynomial of degree less than or equal to m(m + I)+ I 
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with leading coefficient unity can be represented by m(m + I) + I param­
eters such that (i) the polynomial can be evaluated from the parameters in 
m(m + 1)/2 + O(m) multiplications. and (ii) the parameters are rational 
functions of the coefficients. 

Research Problems 

With a straight-line program we can associate a directed acyclic graph as follows. 
The vertices of the graph represent the inputs and the variables. If f +- g•h is a step, 
then there is a directed edge from g to f and from h to f Observe that the number of 
steps in the program is exactly twice the number of edges. Thus obtaining a lower 
bound on the number of edges for any directed acyclic graph arising from a computa­
tion for a given problem gives a lower bound on the number of steps in any straight­
line program for the problem. 

12.37 For large n, prove or disprove that every directed acyclic graph with n source 
ana n output vertices satisfying the capacity condition in Exercise 12.22 has 
at least n log n edges. 

12.38 Does every graph arising from a straight-line Rrogram for multiplying two 
n-bit integers (bitwise operations are assumed) 5\lisfy the capacity condition 
in Exercise 12.22? 

BIBLIOGRAPHIC NOTES 

Theorem 12.2 and the general formulation of the problem treated in this section are 
from Winograd [ l 970a]. Theorems 12.1 and 12.3 are from Fiduccia [ 1971]. The 
fact that, assuming no divisions, n multiplications are needed to evaluate an nth-degree 
polynomial is attributed (Knuth [1969]) to A. Garsia. Pan [1966] extended the re­
sult to multiplicative operations. Motzkin [ 1955] showed that [n/2] + 1 multiplica­
tions are necessary for preconditioned polynomial evaluation. Ostrowski [ 1954] did 
some of the initial work in this direction. Winograd [ 1970b] showed three multipli­
cations are necessary for complex products. 

Exercise 12. 7 is discussed in Winograd [ 1973]. The material on lower bounds 
for matrix multiplication (Exercises 12.9 through 12.16) is based on Hopcroft and 
Kerr [ 1971]. The results of Exercise 12.17 were independently observed by several 
people. Part (c) is attributed by S. Winograd (private communication) to P. Ungar. 
Exercises 12.18 and 12.19 are from Hopcroft and Muszinski [ 1973]. Exercises 12.20 
through 12.22 as well as Exercises 12.37 and 12.38 are based on discussions with 
R. Floyd. Exercises 12.24 and 12.25 are from Morgenstern [ 1973]. Exercises 12.28 
and 12.29 are from Neciporuk [ 1966], and Exercise l 2.30(a) is from Harper and Sav­
age (1972]. Exercise 12.32 is from Strassen·(l974}. Exercise 12.33 is from Kerr 
[1970] and Exercise 12.34 from Pratt [1974]. Exercise 12.35 is from Eve [1964] 
an~ Exercise 12.36 is from Rabin and Winograd [ 1971]. 

Some additional attempts to obtain lower bounds on numbers of arithmetic oper­
ations are found in Borodin and Cook [1974] and Kedem [1974]. 
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Arlazarov, V. L., 250 
Array, 45, 47, 49, 52, 87-88, 104, 114, 

124-125,239 
Articulation point, 179-187 
Assignment statement, 34-35 
Associative operation, 196 
Asymptotic time/space complexity, see 

Time complexity, Space complexity 
Aux:iliary tree, 351-357 
Available space, see Free list 
AVL tree, 146, 152, 166-167, 169 

Back.edge, 177, 179, 188 
Balance (of a vertex/tree), 167 
Balanced tree, 118, 13", 145-146; see also 

2-3 tre~. A VL tree, Bounced balance tree 
Balancing, 65-67, 109 
Bart~e, T., 250 
Base conversion, 314 
Basis theorem, 434 
Bellman, R. E., 74 
Below (relation on surface configurations), 

341 
Berge, C., 74, 223 

Biconnected component, 180 
Biconnectivity, 179-187, 222-223 
Bilinear form, 446 
Binary search, 113-114, 147, 163-164, 377 
Binary search tree, 115-123, 145, 163, 166-

167, 169 
Binary tree, 53-57, 86-87, l 14;seealso 

Binary search tree 
Birkhoff, G., 250 
Bit operation, see OB 
Bit vector, 23-24, 49, 51, 243-247 
Blank, 27 
Blattner, W. 0., 403 
Block, 34, 36 
Bluestein, L. I., 316 
Blum, M., 41, 105 
Book, R. V., 403, 425 
Boolean function/expression, 22, 40, 375, 

379,448 
Boolean matrix, 206, 242-247, 449 
Borodin, A. B., 41, 315-316, 450 
Bottom marker, 336-337 
Bounded balance tree, 167, 169 
Branching, 6, 20, 24;see also goto statement 
Brown, W. S., 316 
Bruno, J. L., 403 
Bubblesort, 77, 102 
Bucket, 77 
Bucket sort, 77-78; see also Radix sort 
Bunch, J., 250 
Burkhard, W. A., 74 

Call, see Procedure 
Call-by-name, 37-38 
Call-by-reference, 38 
Call-by-value, 37 
Capacity (of a graph), 44 7 
Cardinality (of a set), 50 
Casting out nines, 266, 2'/4 
Catalan numbers, 73 
Charactenstic vector, 49 
Chester, D., 361 
Chinese remaindering, '29~300, 31 Q-311 
Chomsky normal form, 74 .. 
Chromatic number, see Colorability 
Circulant, 275 
Clique,375-378,384-387 
Closed (under an operation), 196 
Closed semiring, 195-206, 220, 226-227 
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:Josure (of a closed semiring element), 197, 
202-206 

:NF, see Chomsky normal form 
:oarsest partition, 15 7 
:ocke, J., 74 
:oefficicnt, 254, 442-443 
:ollins, G. E., 316 
:olorability (of a graph), 378, 392-394, 401 
:olumn rank, 433, 436 
:ombinational logic circuit, see Logic circuit 
:omment statement, 34, 38 
:ommutativc operation, 196 
:ommutative ring, 227, 247, 252, 429 
:ompact position/auxiliary tree, 357, 360 
:omparison, 24-25, 60-61, 66, 86-87, 92-

93, 100-101, 104-105, 114, 119-120, 168 
:omplement graph, 387 · 
:omplementation (of regular sets), 358, 395-

400, 410-419 
:omplete binary tree, 54 
:omplete problem, for .¥&'-TIME, see NP­

complete problem 
for &'-SPACE, 395, 399-400, 403 

:omplete subgraph, 375;see also Clique 
:omplex numbers, 252 
:omposite edge, 213 
:omputational complexity, see Space com-

plexity, Time complexity 
:omputer word, 4, 6, 14, 24 
:oncatenable queue, 147, 155-157 
:ONCATENATE, 147, 155, 163 
:oncatenation, of languages, 318-319 

of lists, 47, 145 
of sets, 196 
of strings, 318, 349 

:::onfiguration, see Instantaneous description, 
Surface configuration 

:::onjunctive normal form, 383-384 
:::onnectedgraph, 55, 172, 176-177 
:::onnectedness (of graphs), 222-223 
:::onstable, R. L., 425 
::on text-free grammar/language, 74, 360-361 
:::ontext-sensitive grammar/language, 403 
:::onvolution, 254-257, 263, 268-269 
:::ook, S. A., 41, 315, 361, 403-404, 425, 450 
:::ooley, J.M., 276 
:::ost (of a path), 195 
:::ost function, 109 
:::rane, C. A., 169 
:::ross edge, 181-182, 188 
:::utset, 401 
:::ycle (of a graph}, 50, 180 
:::YCJ.E, 411 
:::yclic difference, 275 

Danielson, G. C., 276 
Dantzig, G. B., 403 
Data base, 111, 124, 163, 168 
Data structure, 44-55, 108; see also Array, 

Graph, List, Queue, Stack, Tree 
Data type, 33-34 
Davis, M., 8 
Decision tree, 24-25, 86-87, 92-93, 100-101, 

223 
Degree, of a polynomial, 279, 442 

of a vertex, 50 
DELETE, 108-113, 115-118, 124, 135, 

145-147, 151, 154, 163, 165, 167 
Dense polynomial, 311, 314 
Dependence, see Linear independence 
Depth (of a vertex), 53, 141-143 
Depth-first numbering, 179 
Depth-first search, 176-195, 223 
Depth-first spanning tree/forest, 177, 189 
DEQUEUE, 48 
Derivative, 299, 314, 316 
Descendant, 53 55 
Determinant, fi8-229, 241, 248, 250, 448 
Deterministic finite automaton, 143-145, 162, 

319,323-327,330-336,348,361 
Deterministic Turing machine, see Turing 

machine 
DF A, see Deterministic finite automaton 
Diagonalization, 406-408 
Dictionary, I 08, 111, 146-153 
Difference equation, see Recurrence equation 
Dijkstra, E.W., 223 
Dijkstra's algorithm, 207-209 
Dinic, E. A., 250 
Directed acyclic graph, 52, 70, 209-219, 447, 

450 
Directed graph, 50-52, 187-195, 191!-201, 

207-223,378 
Directed Hamilton circuit, 378, 389-392 
Discrete Fourier transform, 252-276, 300, 

311, 448 
Disjoint-set union, 49; see also UNION 
Distributive operation, 196 
Divetti, L., 403 
Divide-and-conquer, 60-66, 72, 97, 1.20, 249, 

257,291, 295,369 
Division, of intege~:;, 280, 286, 289. 

of polynomials, 259-260, 286, 288-289~ 
315-316 . . . . 

Dominator, 210-217, 223 
Doubly linked list, 47, 52 
DTM, see Tudng m.achine 
Dual (of a computation), 446 
Dynamic programming, 67-69, 120 



Edge, 50 
Ehrenfeucht, A., 361 
Elementary function, 419, 422 
Elgot, C. C., 41 
Emptiness (of regular sets), 419-4 25 
Empty set, 319 
Empty string, 143, 318-319 
Endmarker, 336-337 
ENQUEUE,48 
Enumeration, 407 
€-transition, 324, 327 
Equivalence class/relation, 180, 189, 432 
Equivalencing, 141-143 
Equivalent regular expressions, 319, 403, 419 
Equivalent states/automata, 143-145, 162 
Euclidean algorithm, 294, 300-301 
Euler circuit, 219 
Evaluation of a polynomial, 21, 254, 294, 

316,428-429,438,442-444,449-450 
Eve; J., 450 
Even, S., 223, 404 
Even permutation, 228, 241 
Exact cover, 379, 393-394 
Expected complexity, 12 
Expected depth, 92 
Expected time complexity, 12, 92-95, 100-

102, 112, 118, 163, 243 
Exponential function, 26 
Extended Euclidean algorithm, 301-303, 310 
Extended regular expression, 410, 415, 419-423 
Extension field, 429 
External name, 125-127 
External path length, 168 
.External sort, 77 

Failure function, 330-334 
Faradzev, I. A., 250 
Father, 53 
Feedback edge set, 378, 388-389 
Feedback vertex set, 378, 387-389 
FFT, see Discrete Fourier transform 
Fiduccia, C. M., 276, 450 
Field. 227, 428-429; see also Finite field 
Final state, 2 i, 143-144, 319 
FIND, 108, 124-14S, 163, 16S 
Finite automaton, see Deterministic finite 

automaton, Nondct.termmiiltic fii:iite 
automaton 

Finite control, 26, 143;"3 l 9 
Finite field, 26S 
Fischer, M.J., 74, 169, 223, 2SO, 275, 361, 

404,425 . 
Flow problem, 401 
Floyd, R. W., 1 OS, 223, 450 

for statement, 34-35, 39 
Ford, L. R., I 05 
Forest, 5:!, 129, 134, 141-142 
Formal parameter, see Parameter 
Forward edge, 188 

INDEX 465 

Four Russians' algorithm, 243-247 
Fourier transform, sec Discrete Fourier 

transform 
Frazer, W. D., I 05 
Free list, 46 
Function, 7-8, 30, 37 
Furman, M. E., 223 

Gale, D., 105.-
Galler, B. A., 169 . 
Garey, M. R., 223, 403-404 
Garsia, A., 450 
GCD, see Greatest common divisor 
Gentleman, W. M., 276, 316 
Gilbert, E. N., 169 
Global variable, 37, 39 
Godbole, S.S., 74 
Good, I. J., 276 
goto statement, 34, 36 
Graham, R. L., 1 05 
Graph, 50-52, 3 7 5; see also Directed graph, 

Tree, Undirected graph 
Grasselli, A., 403 
Gray, J. N., 361 
Greatest common divisor, of integers, 300-

303, 308-311, 316 
of polynomials, 303-308, 316 

Hadian, A., 105 
Hall, A. D., 316 
Hamilton circuit, 378, 392 
Harary, F., 74, 223 
Harper, L. H., 450 
Harrison, M. A., 361 
Hartmanis, J., 41, 169, 425 
Hashing, 111-113, 145, 163, 169 
Hasing function, 112-113 
Head (of an edge), 50 
Heap,87-90, 104, 110, 152, 174;seeaLso 

Mergeable heap 
Heapsort, 87-92, 105 
Hecht, M. S., 210 
Height (of a vertex/tree), 53, l 30·· 131, 146, 

167 
Heindel, L. E., 316 
Hennie, F. C., 42S 
Hierarchy, see Time hierarchy, Space hicr.uc!ly 
Hirschberg, D. S., 361 · 
Hoare, C. A. R., I OS 
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:ohn, F. E., 250 
:omomorphism, 4 I 4-41 S 
!opcroft, J.E., 9, 41, 169, 197, 222-223, 

250,361,403,425,431,450 
[orner's rule, 21, 438-439 
lorowitz, E., 316 
lorvath, E. C., 1 OS 
lu, T. C., 169, 223 
lunt, H. B., III, 403-404, 425 

barra, 0. H., 361, 403, 425 
D, see Instan taneoius description 
dentity (under an operation), 196 
dentity matrix, 202, 227 
r statement, 34-35 
mmediate dominator, 210 
mmediate predecessor (of a surface configu-

ration), 341 
ndeterminate, 429 
ndexing,.6 
ndirectaddressing, 6-7, IS-17,20, 39 
nitial state, 27, 143, 319, 337 
nitialization, SO, 71 
norder traversal, S4-S 7, 11 S 
nput/output, 6, 38 
.nput symbol, 27, 143, 336-337 
:nputtape, S, 7-8, 27, 143, 336-337 
:nput variable, 20-21 
:NSERT, 108-113, l lS-118, 124, 13S, 14S-

1Sl, 163, 16S, 167 
Insertion sort, 1 OS 
Instantaneous description, 29, 320, 337, 340, 

364-36S,379,396,41S 
Instruction, of a RAM, 6-8 

of a RASP, IS 
Integers, operations on, see Division, Greatest 

common divisor, Modular arithmetic, 
Multiplication, Reciprocal, Square 

Internal name, I 2S-l 27 
Internal path length, 168 
Internal sort, 77 
Interpolation of polynomials, 2S4, 299-300, 316 
Intersection, 49-SO, 410 
Intractable problem, 364, 406-42S 
Inverse, of the discrete Fourier transform, 2S4 

of a matrix, 228-229, 232-233, 241-242, 
248, 2S0,2S3 

of a ring element, 226, 428 
Isomorphism, of graphs, 400, 401 

oi trees, 84-86 

Johnson, I>. B., 222-223 
Johnson, D. S., 403-404 · 
Johnson, S. C., 31 S-316 

Johnson. S. M., I OS 
Jones, N. D., 403 

Karatsuba. A., 74 
Karp, R. M., lOS, 316, 361, 403-404 
Kasami, T., 74 
Kedem, Z., 4SO 
Kerr, L. R., 222, 2SO, 431, 4SO 
Kislitsyn, S. S., I OS 
Kleene, S. C., 223 
Kleene closure, 318-319 
Knapsack problem, 401 
Knuth, D. E., 74, lOS, 169, 316, 361, 4SO 
Konig, H., 276 
Kronrod, M. A., 2SO 
Kruskal, J. B., Jr., 222 
Kruskal's algorithm, 1 7 4 
Kuck, D. J .• 74 
Kung, H. T., 31S-316 

Label, of a path, 197 
of a statement, 6, 34, 36 

Labeled tree, 8~. 
Lagrangian interpolation formula, 294 
Lanczos, C., 276 
Landis, Y. M., 166, 169 
Language, 7-9, 27, 74, 143, 318, 33S-336, 

338,366,374 
LCM, see Least common multiple 
Leaf, S3 
Least common multiple, 31 S 
Left-dual, 446 
Left son, S3 
Left subtree, S3 
Length, of a path, SO 

of a regular expression, 322 
of a string, 318 

Length-preserving homomorphism, 414-41 S 
Level (of a vertex), S3, 84 
Lewis, P. A., 276 
Lewis, P. M., II, 41, 169, 42S 
Lexicographic order, 78 
Lexicographic sort, 78-84 
Linear bounded automaton, 403 
Linear equation, see Simultaneous linear 

equations 
Linear independence, 432-433, 43S, 443 ·. 
Linear order, 76 
Linked list, see Ust 
Lipson, J., 316 
List, 44-47, l 2S-l 27;see auo Adjacency list, 

Queue, Stack 
Literal, 3 7 S 
Liu, C. L., 74, lOS 



Local variable, 38-39, 58 
Location counter, 7-8, 15-16 
Logarithmic cost criterion, 12-14, 16-18, 

31-33,373,424 
Lo~cc~cuit,22-23,40,448 

LOW, 184-186 
Lower triangular matrix, see Triangular matrix 
LOWLINK, 190-19 5 
LU decomposition, 233, 235, 249 
LUP decomposition, 234-242, 250 

MacLane, S., 250 
Main diagonal, 229 
Marriage problem, see Stable marriage problem 
Matrix, operations on, see Determinant, 

Inverse of a matrix, Multiplication of 
matrices, Transpose 

Maximum, finding the, 60-61, 73 
Mcilroy, M. D., 169 
McKellar, A. C., 105 
McNaughton, R., 223 
Median, see Order statistics 
MEMBER, 108-122, 124, 145-147, 151, 

163, 165 
Memory (of a RAM or RASP), 6, 15 
Memory map, 7, 15 
Mergeable heap, 147, 152-155 
Mergesort, 66-67, 73, 87, 312 
Meyer, A. R., 223, 250, 275, 403-404, 425 
Miller, R. E., 361 
MIN, 108, 115-118, 139-141, 145-147, 152, 

154, 163, 165, 167 
Minimization (of finite automata), 162 
Minimum, finding the, 60-61, 73 
Minimum-cost spanning tree, see Spanning tree 
Minsky, M., 41 
Modular arithmetic, 26~-268, 271, 289-300, 

316 
Moenck, R., 315-316 
Monie polynomial, 303 
Monoid, 196 
Moore, E. F., 169 
Morgenstern, J., 275, 450 
Morris, J. H., 361 
Morris, R., 169 
Motzkin, T. S., 450 

" Move, see Instantaneous description 
Multigraph, 219 . 
Multihead 2DPDA, 359 
Multiplication, of complex numbers, 430-

431, 440-441 
of integers, 62-64, 268-274, 279-280, 283, 

286,291,310-311,315,431-432,445 
of matrices, 20, 67-69, 201-206, 223, 228-
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250,431,438-439,444-446,449 
of polynomials, 254-255, 269, 279, 286, 

288,293,308, 311~314 
Multiplicative operation, 441-442 
Multitape Turing machine, see Turing machine 
Multivariate polynomial, 278, 314 
Munro, I., 223, 316 
Muraoka, Y., 74 
Muszinski, J., 450 

NDFA, see Nondeterministic finite automaton 
NDTM, see Nondeterministic Turing machine 
Neciporuk, B: I., 450 
Negative cost cycle, 220-22.1, 223 
Negative wrapped convolution, 25 6-257, 263 
Next-move funt:tion, 27, 143, 319, 337, 365 
Nievergelt, J., 169 
Node, see Vertex 
Nondeterministic finite automaton, 197, 319-

329, 36 l, 399 . 
Nondeterministic pushdown automaton, 360-

361 
Nondeterministic RAM/RASP, 313 
Nondeterministic Turing machine, 364-373, 

395,424 
Nonsingular matrix, 229, 232-233, 235, 242, 

249 
Nonterminal, 74 
NP-complete problem, 373-394, 400-403 
%.9'-TIME, 372-395, 403 

0 (order of magnitude), 2 
0 A (order of magnitude under the straight­

line code model), 22, 279 
OB (order of magnitude under the bitwise 

computation model), 22, 279 
Dav (order of magnitude under the bit vector 

model), 24, 247 
Oc (order of magnitude under the decision 

tree model), 25 
OTM (order of magnitude under the Turing 

machine model), 31 
Odd permutation, 228, 241 
Off-line algorithm, 109, 139-141, 165, 169, 

216,442 
Ofman, Y., 74 

· 1 DPDA, see One-way pushdown automaton 
1 NPDA, see One-way pushdown automaton 
One-way pushdown automaton 360 
On-line algorithm, 109. -I 69, 442 '· 
Operand, 6-7 · ·· ' 
Operation code, 6, 8, 15 
Optimization problem, 377 
Order statistics, 76, 97-105 

.·;.,:. 
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Ordered tree, 53 
Ostrowski, A. M., 450 
Out-degree, SO;see also Degree 
Output tape, S-8, 30 
Output variable, 20-21 

Package placement problem, 401 
Palindrome, 28, 339-340, 358 
Pan, A., 222 
Pan, V. Y., 450 
Parameter, 36-38, 58 
Partial FIND, 136-139 
Partial order, 76 
Partial recursive function, 8 
Partition problem, 366, 401 
Partitioning, 157-162, 168 
Paterson, M. S., 169, 275, 361 
Path, SO 
Path compression, 131-133, 142, 165 
Pattern, 326 
Pattern matching, 318-361 
Permutation, 72, 77, 103-104 
Permutation matrix, 229, 235, 239, 241 
PF, see Partial FIND 
Pidgin ALGOL, 33-39 
Planar graph, 401 
Pohl, I., 74 
Polynomial, operations on, see Derivative, 

Division, Evaluation, Greatest common 
divisor, Interpolation, Modular arithmetic, 
Multiplication, Reciprocal, Square 

Polynomial complete, see NP-complete 
Polynomial reducibility, 373-374 
Polynomial transformation, 373-374 
Polynomially related, 25 
POP, 47, 337 
Position (in a string), 346 
Position tree, 34 7-357, 360-361 
Positive closure, 318-319 
Positive definite matrix, 249 
Positive wrapped convolution, 256-257, 263 
Postorder traversal, 54-SS 
Power series, 278-279 
Power set, 197 
Pratt, T. W., 74 
Pratt, V. R., 105, 361, 450 
Preconditioning, 295, 442-445, 449-450 
Predecessor (of a surface configuration), 

341-346 
Prefix, 318, 326-327 
Preorder traversal, 54-55, 84, 179, 189, 213 
Prim, R. C., 222 
Principal root of unity, 252 
Principal submatrix, 229 

Priority queue, 147-152, 174 
Probability distribution, 92, 95 
Problem, 374 
Procedure, 34, 36-38, 58-60 
Production, 74 
Proper ancestor/descendant, 53 
@I-SPACE, 395-400, 411 
#-SPACE, complete, see Complete problem 

for &'-SP ACE 
@'-TIME, 372-374, 395, 411 
PUSH, 47, 337 
Pushdown store, see Stack 

Queue, 48 
Quicksort, 92-97, 103, 105 

Rabin, M. 0., 41, 169, 222, 361, 425, 450 
Rabiner, L. R., 276, 316 
Rader, C. M., 276, 316 
Radix conversion, see Base conversion 
Radix sort, 77-86 
RAM, see Random access machine 
Random access machine, 5-24, 26, 31-33, 

39-40, 336, 361, 373, 424 
Random access stored program machine, 

15-19,33,39-40,58,373 
Rank, of a matrix, 229 

of a vertex, 134-135 
Rao, M. R., 403 
RASP, see Random access stored program 

machine 
read statement, 34, 38 
Real numbers, 196, 227 
Reckhow, R. A., 41, 425 
Reciprocal, of integers, 280-286 

of polynomials, 286-288 
Recurrence equation, 60, 64-65, 72-73 
Recursion, 55-60, 67 
Recursive language, 9 
Recursively enumerable language, 8 
Reducibility (of a flow graph), 223 
Reflexive relation, 76, 180 
Reflexive and transitive closure, see Transitive 

closure 
Register, 6-7, 15 
Regular expression/set, 223, 318-329, 358, 

395, 401, 403;seeatro Finite automaton 
Rehashing, 113 
Reingold, E. M., 169 
Remainder, 257, 259-260;.see atro Euclidean 

algorithm 
Remainder sequence, 300 
repeat statement, 34-35 
Re~du~289,291,293 



Return address, 58-59 
return statement, 34, 37, 59 
rev, 259 
Reversal (of a string), 339 
Right son, 53 
Right subtree, 53 
Ring, 226-227, 230, 243, 247, 253 
Rivest, R. L., 105 
Robinson, A., 41 
Rogers, H., Jr., 8 
Root, of a strongly connected component, 

. 189-192 
of a tree, 52-53, 210 
of unity, 252 

Rooted tree, see Tree 
Rooted undirected tree, 55 
Rosenberg, A. L., 361 
Rosenkrantz, D. J., 169, 403, 425 
Rounds, W. C., 403, 425 
Row rank, 433 
Runge, C., 276 

Sahni, S. K., 403, 425 
Sande, G., 276 
Satisfiable Boolean expression, 376-386 
Savage, J.E., 450 
Savitch, W. J., 403 
Scatter storage, see Hashing 
Schafer, R. W., 316 
Scheduling problem, 402 
Schonhage,A.,250,276,316 
Schonhage-Strassen algorithm, 272-274 
Scope (of a variable), 34, 38-39 
Scott, D., 361 
Seiferas, J. J., 425 
Semiextended regular expression, 410-419 
Semiring, see Clost'd semiring 
Set, 49-50, 108-111, 378 
Set cover, 378, 392 
Sethi, R., 403 
Shepherdson, J.C., 41 
Shifting network, 447 
Shortest path, 195, 200-201, 220, 222-223, 

250,403 
Sieveking, M., 315 
Simple path, 50 
Simulation, 40 
Simultaneous linear equations, 233, 242, 250 
Single-source shortest path problem, 207-209, 

220-223 
Single-tape Turing machine, 371-372 400, 

407,423-424 
Sinil'eton, R. c .• 1o·s. 
Size (of a problem), 2-4 

SIZE, 279 
Skeletal DFA, 330 
Sloane, N. J. A., 74 · 
Sobel, M., 105 
Son, 53, 178 
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Sorting, 24-25, 65-67, 76-97, 102-105, 163, 
168, 174-175,311-312 

Source, 207 
Space complexity, 2, 12, 19, 30-31, 33, 40, 

367,370,372,407-410,417-419,422 
Space hierarchy, 406-410, 424-425 
Space-constructible function, 369, 400, 408-

409, 423 
Spanning tree/forest, 109-111, 154-155, 172-

176, 2l7-218, 223 . 
Sparse polynomial, 278, 311-313; 316 
Spira, P. M., 222-223 
SPLIT, 108, 145, 147, 155-157, 163 
Square, of integers, 280, 284-286 

of polynomials, 286, 288, 312-313 
Square root, 314 
Stable marriage problem, 71 
Stable sort, 105 
Stack, 47, 58-59, 185-186, 191-193, 336-

337, 370 
Stack frame, 58-59, 370 
Standard encoding, 375-376, 378 
Start state, see Initial state 
State, 26, 143, 319, 337 
State transition function, see Next-move 

function 
Stearns, R. E., 41, 169, 425 
Steiglitz, K., 316 
Stirling's approximation, 87 
Stockrneyer, L., 403-404, 425 
Stone, H. S., 74 
Straight-line program, 19-22, 429-430 
Strassen, V., 250, 276, 450 
Strassen's algorithm, 230-232 
String, 79-84, 318 · 
String with don't cares, 358 
Strong connectivity, 189-195 
Strongly connected component, 189 
Sturgis, H. E., 41 
Subgraph isomorphism problem, 400 
Submatrix, 229 
Subsequence, 361 
Substring, 318, 329-335, 338-339, 346, 

348-349 
Substring identifier, 347-357 
Subtree, 53 
Suffix, 318 
Surface configuration, 340-346 
Symbol table, 111, 141, 165 
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Symbolic address, 20 
Symmetric relation, 180 

Tail (of an edge), 50 
Tape,5, 26-27, 143,336-337 
far1an, R. E., 105, 169, 22.2-LH 
Tautology, 400 
Terminal, 74 
Terminator, 340 
Text editing, 326 
Text string, 326 
Thompson, K., 361 
3-satisfiability, 384, 392-393 
Time complexity, 2-4, 12-14, 16-19, 22, 30-

33, 35-36, 38, 59-60, 367, 372, 423-425 
Time hierarchy, 406, 423-425 
Time-constructible function, 367, 423-424 
Toeplitz matrix, 249, 275, 444-445 
Topological sort, 70 
Total order, see Linear order 
Towers of Hanoi, 71 
Transition diagram, 320-321 
Transitive closure, 100, 195, 199-200, 219-

220, 223,324 
Transitive reduction, 219-220 
Transitive relation, 7 6, 180 
Transpose (of a matrix), 229, 447 
Traveling salesman problem, 401, 403 
Traversal (of a tree), 54-55 
Tree, 52-55, 84-86, 129-139, 141-143, 

165,448 
Tree edge, 177, 188 
Triangular matrix, 229, 232-233, 249 
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