Volume 4A / Combinatorial Algorithms, Part 1

THE ART OF
COMPUTER PROGRAMMING

Upper Saddle River, NJ Boston Indianapolis San Francisco
New York Toronto Montréal London Munich Paris Madrid
Capetown Sydney Tokyo Singapore Mexico City

The poem on page 437 is quoted from The Golden Gate by Vikram Seth (New York:
Random House, 1986), copyright (© 1986 by Vikram Seth.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purposes or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:
U.S. Corporate and Government Sales (800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:
International Sales international@pearsoned.com
Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Knuth, Donald Ervin, 1938-

The art of computer programming / Donald Ervin Knuth.

xvi,883 p. 24 cm.

Includes bibliographical references and index.

Contents: v. 1. Fundamental algorithms. -- v. 2. Seminumerical
algorithms. -- v. 3. Sorting and searching. -- v. 4a. Combinatorial
algorithms, part 1.

Contents: v. 4a. Combinatorial algorithms, part 1.

ISBN 978-0-201-89683-1 (v. 1, 3rd ed.)

ISBN 978-0-201-89684-8 (v. 2, 3rd ed.)

ISBN 978-0-201-89685-5 (v. 3, 2nd ed.)

ISBN 978-0-201-03804-0 (v. 4a)

1. Electronic digital computers--Programming. 2. Computer
algorithms. I. Title.

QA76.6.K64 1997
005.1--DC21 97-2147

Internet page http://www-cs-faculty.stanford.edu/ knuth/taocp.html contains
current information about this book and related books.

See also http://www-cs-faculty.stanford.edu/ “knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with
the graphs used in many of the examples.

And see http://wwu-cs-faculty.stanford.edu/ knuth/mmix.html for basic infor-
mation about the MMIX computer.

Copyright © 2011 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department

501 Boylston Street, Suite 900

Boston, MA 02116 Fax: (617) 671-3447

ISBN-13 978-0-201-03804-0
ISBN-10 0-201-03804-8

Text printed in the United States at Courier Westford in Westford, Massachusetts.
First printing, January 2011

PREFACE

To put all the good stuff into one book is patently impossible,
and attempting even to be reasonably comprehensive
about certain aspects of the subject is likely to lead to runaway growth.

— GERALD B. FOLLAND, “Editor's Corner” (2005)

THE TITLE of Volume 4 is Combinatorial Algorithms, and when I proposed it
I was strongly inclined to add a subtitle: The Kind of Programming I Like Best.
My editors have decided to tone down such exuberance, but the fact remains
that programs with a combinatorial flavor have always been my favorites.

On the other hand I've often been surprised to find that, in many people’s
minds, the word “combinatorial” is linked with computational difficulty. Indeed,
Samuel Johnson, in his famous dictionary of the English language (1755), said
that the corresponding noun “is now generally used in an ill sense.” Colleagues
tell me tales of woe, in which they report that “the combinatorics of the sit-
uation defeated us.” Why is it that, for me, combinatorics arouses feelings of
pure pleasure, yet for many others it evokes pure panic?

It’s true that combinatorial problems are often associated with humongously
large numbers. Johnson’s dictionary entry also included a quote from Ephraim
Chambers, who had stated that the total number of words of length 24 or less,
in a 24-letter alphabet, is 1,391,724,288,887,252,999,425,128,493,402,200. The
corresponding number for a 10-letter alphabet is 11,111,111,110; and it’s only
3905 when the number of letters is 5. Thus a “combinatorial explosion” certainly
does occur as the size of the problem grows from 5 to 10 to 24 and beyond.

Computing machines have become tremendously more powerful throughout
my life. As I write these words, I know that they are being processed by a “lap-
top” whose speed is more than 100,000 times faster than the trusty IBM Type 650
computer to which I've dedicated these books; my current machine’s memory
capacity is also more than 100,000 times greater. Tomorrow’s computers will be
even faster and more capacious. But these amazing advances have not diminished
people’s craving for answers to combinatorial questions; quite the contrary. Our
once-unimaginable ability to compute so rapidly has raised our expectations,
and whetted our appetite for more — because, in fact, the size of a combinatorial
problem can increase more than 100,000-fold when n simply increases by 1.

Combinatorial algorithms can be defined informally as techniques for the
high-speed manipulation of combinatorial objects such as permutations or graphs.
We typically try to find patterns or arrangements that are the best possible ways
to satisfy certain constraints. The number of such problems is vast, and the art

v

vi PREFACE

of writing such programs is especially important and appealing because a single
good idea can save years or even centuries of computer time.

Indeed, the fact that good algorithms for combinatorial problems can have a
terrific payoff has led to terrific advances in the state of the art. Many problems
that once were thought to be intractable can now be polished off with ease, and
many algorithms that once were known to be good have now become better.
Starting about 1970, computer scientists began to experience a phenomenon
that we called “Floyd’s Lemma”: Problems that seemed to need n® operations
could actually be solved in O(n?); problems that seemed to require n? could be
handled in O(nlogn); and nlogn was often reducible to O(n). More difficult
problems saw a reduction in running time from O(2") to O(1.5") to O(1.3"),
etc. Other problems remained difficult in general, but they were found to have
important special cases that are much simpler. Many combinatorial questions
that T once thought would never be answered during my lifetime have now been
resolved, and those breakthroughs have been due mainly to improvements in
algorithms rather than to improvements in processor speeds.

By 1975, such research was advancing so rapidly that a substantial fraction
of the papers published in leading journals of computer science were devoted
to combinatorial algorithms. And the advances weren’t being made only by
people in the core of computer science; significant contributions were coming
from workers in electrical engineering, artificial intelligence, operations research,
mathematics, physics, statistics, and other fields. I was trying to complete
Volume 4 of The Art of Computer Programming, but instead I felt like I was
sitting on the lid of a boiling kettle: I was confronted with a combinatorial
explosion of another kind, a prodigious explosion of new ideas!

This series of books was born at the beginning of 1962, when I naively
wrote out a list of tentative chapter titles for a 12-chapter book. At that time
I decided to include a brief chapter about combinatorial algorithms, just for
fun. “Hey look, most people use computers to deal with numbers, but we can
also write programs that deal with patterns.” In those days it was easy to give
a fairly complete description of just about every combinatorial algorithm that
was known. And even by 1966, when I'd finished a first draft of about 3000
handwritten pages for that already-overgrown book, fewer than 100 of those
pages belonged to Chapter 7. I had absolutely no idea that what I'd foreseen as
a sort of “salad course” would eventually turn out to be the main dish.

The great combinatorial fermentation of 1975 has continued to churn, as
more and more people have begun to participate. New ideas improve upon the
older ones, but rarely replace them or make them obsolete. So of course I've
had to abandon any hopes that I once had of being able to surround the field,
to write a definitive book that sets everything in order and provides one-stop
shopping for everyone who has combinatorial problems to solve. The array of
applicable techniques has mushroomed to the point where I can almost never
discuss a subtopic and say, “Here’s the final solution: end of story.” Instead, I
must restrict myself to explaining the most important principles that seem to
underlie all of the efficient combinatorial methods that I've encountered so far.

PREFACE vii

At present I've accumulated more than twice as much raw material for Volume 4
as for all of Volumes 1-3 combined.

This sheer mass of material implies that the once-planned “Volume 4” must
actually become several physical volumes. You are now looking at Volume 4A.
Volumes 4B and 4C will exist someday, assuming that I’'m able to remain healthy;
and (who knows?) there may also be Volumes 4D, 4E, ...; but surely not 4Z.

My plan is to go systematically through the files that I've amassed since 1962
and to tell the stories that I believe are still waiting to be told, to the best of
my ability. I can’t aspire to completeness, but I do want to give proper credit to
all of the pioneers who have been responsible for key ideas; so I won’t scrimp on
historical details. Furthermore, whenever I learn something that I think is likely
to remain important 50 years from now, something that can also be explained
elegantly in a paragraph or two, I can’t bear to leave it out. Conversely, difficult
material that requires a lengthy proof is beyond the scope of these books, unless
the subject matter is truly fundamental.

OK, it’s clear that the field of Combinatorial Algorithms is vast, and I can’t
cover it all. What are the most important things that I'm leaving out? My
biggest blind spot, I think, is geometry, because I've always been much better at
visualizing and manipulating algebraic formulas than objects in space. Therefore
I don’t attempt to deal in these books with combinatorial problems that are re-
lated to computational geometry, such as close packing of spheres, or clustering of
data points in n-dimensional Euclidean space, or even the Steiner tree problem in
the plane. More significantly, I tend to shy away from polyhedral combinatorics,
and from approaches that are based primarily on linear programming, integer
programming, or semidefinite programming. Those topics are treated well in
many other books on the subject, and they rely on geometrical intuition. Purely
combinatorial developments are easier for me to understand.

I also must confess a bias against algorithms that are efficient only in
an asymptotic sense, algorithms whose superior performance doesn’t begin to
“kick in” until the size of the problem exceeds the size of the universe. A great
many publications nowadays are devoted to algorithms of that kind. I can
understand why the contemplation of ultimate limits has intellectual appeal and
carries an academic cachet; but in The Art of Computer Programming 1 tend
to give short shrift to any methods that I would never consider using myself in
an actual program. (There are, of course, exceptions to this rule, especially with
respect to basic concepts in the core of the subject. Some impractical methods
are simply too beautiful and/or too insightful to be excluded; others provide
instructive examples of what not to do.)

Furthermore, as in earlier volumes of this series, I'm intentionally concen-
trating almost entirely on sequential algorithms, even though computers are
increasingly able to carry out activities in parallel. I’'m unable to judge what
ideas about parallelism are likely to be useful five or ten years from now, let
alone fifty, so I happily leave such questions to others who are wiser than I.
Sequential methods, by themselves, already test the limits of my own ability to
discern what the artful programmers of tomorrow will want to know.

viii PREFACE

The main decision that I needed to make when planning how to present this
material was whether to organize it by problems or by techniques. Chapter 5
in Volume 3, for example, was devoted to a single problem, the sorting of data
into order; more than two dozen techniques were applied to different aspects
of that problem. Combinatorial algorithms, by contrast, involve many different
problems, which tend to be attacked with a smaller repertoire of techniques.
I finally decided that a mixed strategy would work better than any pure ap-
proach. Thus, for example, these books treat the problem of finding shortest
paths in Section 7.3, and problems of connectivity in Section 7.4.1; but many
other sections are devoted to basic techniques, such as the use of Boolean
algebra (Section 7.1), backtracking (Section 7.2), matroid theory (Section 7.6),
or dynamic programming (Section 7.7). The famous Traveling Salesrep Problem,
and other classic combinatorial tasks related to covering, coloring, and packing,
have no sections of their own, but they come up several times in different places
as they are treated by different methods.

I’'ve mentioned great progress in the art of combinatorial computing, but I
don’t mean to imply that all combinatorial problems have actually been tamed.
When the running time of a computer program goes ballistic, its programmers
shouldn’t expect to find a silver bullet for their needs in this book. The methods
described here will often work a great deal faster than the first approaches that
a programmer tries; but let’s face it: Combinatorial problems get huge very
quickly. We can even prove rigorously that a certain small, natural problem will
never have a feasible solution in the real world, although it is solvable in principle
(see the theorem of Stockmeyer and Meyer in Section 7.1.2). In other cases we
cannot prove as yet that no decent algorithm for a given problem exists, but
we know that such methods are unlikely, because any efficient algorithm would
yield a good way to solve thousands of other problems that have stumped the
world’s greatest experts (see the discussion of NP-completeness in Section 7.9).

Experience suggests that new combinatorial algorithms will continue to be
invented, for new combinatorial problems and for newly identified variations or
special cases of old ones; and that people’s appetite for such algorithms will also
continue to grow. The art of computer programming continually reaches new
heights when programmers are faced with challenges such as these. Yet today’s
methods are also likely to remain relevant.

Most of this book is self-contained, although there are frequent tie-ins with
the topics discussed in Volumes 1-3. Low-level details of machine language
programming have been covered extensively in those volumes, so the algorithms
in the present book are usually specified only at an abstract level, independent of
any machine. However, some aspects of combinatorial programming are heavily
dependent on low-level details that didn’t arise before; in such cases, all examples
in this book are based on the MMIX computer, which supersedes the MIX machine
that was defined in early editions of Volume 1. Details about MMIX appear in a
paperback supplement to that volume called The Art of Computer Programming,
Volume 1, Fascicle 1, containing Sections 1.3.1°, 1.3.2’, etc.; they’re also available
on the Internet, together with downloadable assemblers and simulators.

PREFACE ix

Another downloadable resource, a collection of programs and data called The
Stanford GraphBase, is cited extensively in the examples of this book. Readers
are encouraged to play with it, in order to learn about combinatorial algorithms
in what I think will be the most efficient and most enjoyable way.

Incidentally, while writing the introductory material at the beginning of
Chapter 7, I was pleased to note that it was natural to mention some work of
my Ph.D. thesis advisor, Marshall Hall, Jr. (1910-1990), as well as some work
of his thesis advisor, Oystein Ore (1899-1968), as well as some work of his thesis
advisor, Thoralf Skolem (1887-1963). Skolem’s advisor, Axel Thue (1863-1922),
was already present in Chapter 6.

I’'m immensely grateful to the hundreds of readers who have helped me to
ferret out numerous mistakes that I made in the early drafts of this volume, which
were originally posted on the Internet and subsequently printed in paperback
fascicles. In particular, the extensive comments of Thorsten Dahlheimer, Marc
van Leeuwen, and Udo Wermuth have been especially influential. But I fear that
other errors still lurk among the details collected here, and I want to correct them
as soon as possible. Therefore I will cheerfully award $2.56 to the first finder of
each technical, typographical, or historical error. The taocp webpage cited on
page iv contains a current listing of all corrections that have been reported to me.

Stanford, California D. E. K.
October 2010

In my preface to the first edition,

| begged the reader not to draw attention to errors.

| now wish | had not done so

and am grateful to the few readers who ignored my request.

— STUART SUTHERLAND, The International Dictionary of Psychology (1996)
Naturally, 1 am responsible for the remaining errors—

although, in my opinion, my friends could have caught a few more.

— CHRISTOS H. PAPADIMITRIOU, Computational Complexity (1994)

| like to work in a variety of fields
in order to spread my mistakes more thinly.

— VICTOR KLEE (1999)

A note on references. Several oft-cited journals and conference proceedings
have special code names, which appear in the Index and Glossary at the close of
this book. But the various kinds of IEEE Transactions are cited by including a
letter code for the type of transactions, in boldface preceding the volume number.
For example, ‘IEEE Trans. C-35’ means the IEEE Transactions on Computers,
volume 35. The IEEE no longer uses these convenient letter codes, but the codes
aren’t too hard to decipher: ‘EC’ once stood for “Electronic Computers,” ‘I'T’
for “Information Theory,” ‘SE’ for “Software Engineering,” and ‘SP’ for “Signal
Processing,” etc.; ‘CAD’ meant “Computer-Aided Design of Integrated Circuits
and Systems.”

A cross-reference such as ‘exercise 7.10-00’ points to a future exercise in
Section 7.10 whose number is not yet known.

X PREFACE

A note on notations. Simple and intuitive conventions for the algebraic rep-
resentation of mathematical concepts have always been a boon to progress, espe-
cially when most of the world’s researchers share a common symbolic language.
The current state of affairs in combinatorial mathematics is unfortunately a bit
of a mess in this regard, because the same symbols are occasionally used with
completely different meanings by different groups of people; some specialists who
work in comparatively narrow subfields have unintentionally spawned conflicting
symbolisms. Computer science— which interacts with large swaths of math-
ematics —needs to steer clear of this danger by adopting internally consistent
notations whenever possible. Therefore I've often had to choose among a number
of competing schemes, knowing that it will be impossible to please everyone.
I have tried my best to come up with notations that I believe will be best for the
future, often after many years of experimentation and discussion with colleagues,
often flip-flopping between alternatives until finding something that works well.
Usually it has been possible to find convenient conventions that other people
have not already coopted in contradictory ways.

Appendix B is a comprehensive index to all of the principal notations that
are used in the present book, inevitably including several that are not (yet?)
standard. If you run across a formula that looks weird and/or incomprehensible,
chances are fairly good that Appendix B will direct you to a page where my
intentions are clarified. But I might as well list here a few instances that you
might wish to watch for when you read this book for the first time:

e Hexadecimal constants are preceded by a number sign or hash mark. For
example, #123 means (123)5.

e The “monus” operation z — y, sometimes called dot-minus or saturating
subtraction, yields max(0,z — y).

e The median of three numbers {z,y, z} is denoted by (zyz).

e A set such as {z}, which consists of a single element, is often denoted simply
by z in contexts such as X Uz or X \ .

e Ifn is a nonnegative integer, the number of 1-bits in n’s binary representation
is vn. Furthermore, if n > 0, the leftmost and rightmost 1-bits of n are
respectively 2™ and 2°". For example, 10 = 2, A\10 = 3, p10 = 1.

e The Cartesian product of graphs G and H is denoted by GOH. For example,
C,, 0C, denotes an m X n torus, because C,, denotes a cycle of n vertices.

NOTES ON THE EXERCISES

THE EXERCISES in this set of books have been designed for self-study as well
as for classroom study. It is difficult, if not impossible, for anyone to learn a
subject purely by reading about it, without applying the information to specific
problems and thereby being encouraged to think about what has been read.
Furthermore, we all learn best the things that we have discovered for ourselves.
Therefore the exercises form a major part of this work; a definite attempt has
been made to keep them as informative as possible and to select problems that
are enjoyable as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. A motley mixture is, however, often unfortunate because readers
like to know in advance how long a problem ought to take —otherwise they
may just skip over all the problems. A classic example of such a situation is
the book Dynamic Programming by Richard Bellman; this is an important,
pioneering work in which a group of problems is collected together at the end
of some chapters under the heading “Exercises and Research Problems,” with
extremely trivial questions appearing in the midst of deep, unsolved problems.
It is rumored that someone once asked Dr. Bellman how to tell the exercises
apart from the research problems, and he replied, “If you can solve it, it is an
exercise; otherwise it’s a research problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general significance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head,” unless you’re multitasking.

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about fifteen or twenty minutes to answer it
completely. Maybe even twenty-five.

X1

xii NOTES ON THE EXERCISES

30 A problem of moderate difficulty and/or complexity; this one may
involve more than two hours’ work to solve satisfactorily, or even more
if the TV is on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this “logarithmic” scale, the significance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a 45 rating in later editions
of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 24 may take longer to solve than
an exercise that is rated 25, but the latter will require more creativity.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to find a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M
if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters “HM” if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An “HM” designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, “»”; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to
be the most valuable have been singled out. (This distinction is not meant to
detract from the other exercises!) Each reader should at least make an attempt
to solve all of the problems whose rating is 10 or less; and the arrows may help
to indicate which of the problems with a higher rating should be given priority.

Several sections have more than 100 exercises. How can you find your way
among so many? In general the sequence of exercises tends to follow the sequence

NOTES ON THE EXERCISES xiii

of ideas in the main text. Adjacent exercises build on each other, as in the
pioneering problem books of Pélya and Szeg6. The final exercises of a section
often involve the section as a whole, or introduce supplementary topics.

Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to
solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may find the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means first. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later printings of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless specifically forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n 4+ 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes: 00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)

> Recommended 30 Moderately hard

M Mathematically oriented 40 Term project

HM Requiring “higher math” 50 Research problem
EXERCISES

» 1. [00] What does the rating “M15” mean?
2. [10] Of what value can the exercises in a textbook be to the reader?

3. [HM45] Prove that every simply connected, closed 3-dimensional manifold is topo-
logically equivalent to a 3-dimensional sphere.

Art derives a considerable part of its beneficial exercise
from flying in the face of presumptions.

— HENRY JAMES, “The Art of Fiction” (1884)

| am grateful to all my friends,

and record here and now my most especial appreciation
to those friends who, after a decent interval,

stopped asking me, “How’s the book coming?”

— PETER J. GOMES, The Good Book (1996)

| at last deliver to the world a Work which | have long promised,

and of which, | am afraid, too high expectations have been raised.

The delay of its publication must be imputed, in a considerable degree,
to the extraordinary zeal which has been shown by distinguished persons
in all quarters to supply me with additional information.

— JAMES BOSWELL, The Life of Samuel Johnson, LL.D. (1791)

The author is especially grateful to the Addison—Wesley Publishing Company
for its patience in waiting a full decade for this manuscript
from the date the contract was signed.

— FRANK HARARY, Graph Theory (1969)

The average boy who abhors square root or algebra

finds delight in working puzzles which involve similar
principles, and may be led into a course of study

which would develop the mathematical and inventive bumps
in a way to astonish the family phrenologist.

— SAM LOYD, The World of Puzzledom (1896)

Bitte ein Bit!
— Slogan of Bitburger Brauerei (1951)

Xiv

CONTENTS

Chapter 7 — Combinatorial Searching

7.1. Zeros and Ones
7.1.1. Boolean Basics .
7.1.2. Boolean Evaluation .
7.1.3. Bitwise Tricks and Techmques
7.1.4. Binary Decision Diagrams .
7.2. Generating All Possibilities .
7.2.1. Generating Basic Combmatorlal Patterns
7.2.1.1. Generating all n-tuples .
7.2.1.2. Generating all permutations
7.2.1.3. Generating all combinations
7.2.1.4. Generating all partitions .
7.2.1.5. Generating all set partitions
7.2.1.6. Generating all trees -
7.2.1.7. History and further references .

Answers to Exercises

Appendix A — Tables of Numerical Quantities .

1. Fundamental Constants (decimal)
2. Fundamental Constants (hexadecimal) e
3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers .

Appendix B—Index to Notations .
Appendix C—Index to Algorithms and Theorems
Appendix D —Index to Combinatorial Problems .

Index and Glossary

Xv

47

47

96
133
202
281
281
281
319
355
390
415
440
486

514

818
818
819
820
822
828

830

834

I

IS

HU’hvvr\a-yZ

CHAPTER SEVEN

COMBINATORIAL SEARCHING

You shall seeke all day ere you finde them,
& when you have them, they are not worth the search.

— BASSANIQO, in The Merchant of Venice (Act I, Scene 1, Line 117)

Amid the action and reaction of so dense a swarm of humanity,
every possible combination of events may be expected to take place,
and many a little problem will be presented which may be striking and bizarre.

— SHERLOCK HOLMES, in The Adventure of the Blue Carbuncle (1892)

The field of combinatorial algorithms is too vast to cover
in a single paper or even in a single book.

— ROBERT E TARJAN (1976)

While jostling against all manner of people

it has been impressed upon my mind that the successful ones
are those who have a natural faculty for solving puzzles.

Life is full of puzzles, and we are called upon

to solve such as fate throws our way.

— SAM LOYD, JR (1927)

COMBINATORICS is the study of the ways in which discrete objects can be
arranged into various kinds of patterns. For example, the objects might be 2n
numbers {1,1,2,2,...,n,n}, and we might want to place them in a row so that
exactly k£ numbers occur between the two appearances of each digit k. When
n = 3 there is essentially only one way to arrange such “Langford pairs,” namely
231213 (and its left-right reversal); similarly, there’s also a unique solution when
n = 4. Many other types of combinatorial patterns are discussed below.

Five basic types of questions typically arise when combinatorial problems
are studied, some more difficult than others.

1) Existence: Are there any arrangements X that conform to the pattern?

ii) Construction: If so, can such an X be found quickly?

ii) Enumeration: How many different arrangements X exist?

iv) Generation: Can all arrangements X1, Xs, ... be visited systematically?

v) Optimization: What arrangements maximize or minimize f(X), given an
objective function f7

111

Each of these questions turns out to be interesting with respect to Langford pairs.
1

2 COMBINATORIAL SEARCHING 7

For example, consider the question of existence. Trial and error quickly
reveals that, when n = 5, we cannot place {1,1,2,2,...,5,5} properly into ten
positions. The two 1s must both go into even-numbered slots, or both into odd-
numbered slots; similarly, the 3s and 5s must choose between two evens or two
odds; but the 2s and 4s use one of each. Thus we can’t fill exactly five slots of
each parity. This reasoning also proves that the problem has no solution when
n = 6, or in general whenever the number of odd values in {1,2,...,n} is odd.

In other words, Langford pairings can exist only when n = 4m—1 or n = 4m,
for some integer m. Conversely, when n does have this form, Roy O. Davies has
found an elegant way to construct a suitable placement (see exercise 1).

How many essentially different pairings, L,,, exist? Lots, when n grows:

Ly =1; Ly=1;
L7 = 26; Lg = 150;
Ly =17,792; L1, = 108,144;
L5 = 39,809,640; Ly = 326,721,800; (1)
L9 = 256,814,891,280; Loy = 2,636,337,861,200;

Loy = 3,799,455,942,515,488; Loy = 46,845,158,056,515,936.

[The values of Ly and Loy were determined by M. Krajecki, C. Jaillet, and A. Bui
in 2004 and 2005; see Studia Informatica Universalis 4 (2005), 151-190.] A seat-
of-the-pants calculation suggests that L,, might be roughly of order (4n/e?)"+1/2
when it is nonzero (see exercise 5); and in fact this prediction turns out to be
basically correct in all known cases. But no simple formula is apparent.

The problem of Langford arrangements is a simple special case of a general
class of combinatorial challenges called exact cover problems. In Section 7.2.2.1
we shall study an algorithm called “dancing links,” which is a convenient way to
generate all solutions to such problems. When n = 16, for example, that method
needs to perform only about 3200 memory accesses for each Langford pair
arrangement that it finds. Thus the value of L1 can be computed in a reasonable
amount of time by simply generating all of the pairings and counting them.

Notice, however, that Loy is a huge number — roughly 5x 106, or about 1500
MIP-years. (Recall that a “MIP-year” is the number of instructions executed
per year by a machine that carries out a million instructions per second, namely
31,556,952,000,000.) Therefore it’s clear that the exact value of Loy was deter-
mined by some technique that did not involve generating all of the arrangements.
Indeed, there is a much, much faster way to compute L,, using polynomial
algebra. The instructive method described in exercise 6 needs O(4™n) operations,
which may seem inefficient; but it beats the generate-and-count method by a
whopping factor of order ©((n/e3)"~1/2), and even when n = 16 it runs about
20 times faster. On the other hand, the exact value of Lygg will probably never
be known, even as computers become faster and faster.

We can also consider Langford pairings that are optimum in various ways.
For example, it’s possible to arrange sixteen pairs of weights {1,1,2,2,...,16, 16}
that satisfy Langford’s condition and have the additional property of being “well-

7 COMBINATORIAL SEARCHING 3

balanced,” in the sense that they won’t tip a balance beam when they are placed
in the appropriate order:

il HHHHHHHHHH . ollalalan

16 6 15238263131091214811161151 5107 13412511144 7 ., (2)
| | || | I N | |1 1 1 1 |
-] 1 T I I |

— 1 ! I] |

In other words, 15.5-16+14.5-6+4---4+0.5-8 = 0.5-11+4---+14.5-4415.5-7; and
in this particular example we also have another kind of balance, 164+64---+8 =
114+16+---4+7, hence also 16-164+15-6+---4+1-8=1-114---4+15-4416-7.

Moreover, the arrangement in (2) has minimum width among all Langford
pairings of order 16: The connecting lines at the bottom of the diagram show
that no more than seven pairs are incomplete at any point, as we read from left
to right; and one can show that a width of six is impossible. (See exercise 7.)

What arrangements ajas .. .asz of {1,1,...,16,16} are the least balanced,
in the sense that 222:1 kay is maximized? The maximum possible value turns
out to be 5268. One such pairing— there are 12,016 of them —is

2342131416131551479611512108761391615141181012. (3)

A more interesting question is to ask for the Langford pairings that are
smallest and largest in lexicographic order. The answers for n = 24 are

{abacbdecfgdoersfpgqtuwxvjklonhmirpsjqkhltiunmwvx,

xvwsquntkigrdapaodgikngsvxwutmrpohljcfbecbhmfejl} (4)
if we use the letters a, b, ..., w, x instead of the numbers 1, 2, ..., 23, 24.

We shall discuss many techniques for combinatorial optimization in later sec-
tions of this chapter. Our goal, of course, will be to solve such problems without
examining more than a tiny portion of the space of all possible arrangements.

Orthogonal latin squares. Let’s look back for a moment at the early days of
combinatorics. A posthumous edition of Jacques Ozanam’s Recreations math-
ematiques et physiques (Paris: 1725) included an amusing puzzle in volume 4,
page 434: “Take all the aces, kings, queens, and jacks from an ordinary deck of
playing cards and arrange them in a square so that each row and each column
contains all four values and all four suits.” Can you do it? Ozanam’s solution,
shown in Fig. 1 on the next page, does even more: It exhibits the full panoply
of values and of suits also on both main diagonals. (Please don’t turn the page
until you’ve given this problem a try.)

By 1779 a similar puzzle was making the rounds of St. Petersburg, and it
came to the attention of the great mathematician Leonhard Euler. “Thirty-six
officers of six different ranks, taken from six different regiments, want to march
in a 6 X 6 formation so that each row and each column will contain one officer of
each rank and one of each regiment. How can they do it?” Nobody was able to

4 COMBINATORIAL SEARCHING 7

Fig. 1. Disorder in the court cards:
No agreement in any line of four.
(This configuration is one of many
ways to solve a popular eighteenth-
century problem.)

find a satisfactory marching order. So Euler decided to resolve the riddle—even
though he had become nearly blind in 1771 and was dictating all of his work
to assistants. He wrote a major paper on the subject [eventually published in
Verhandelingen uitgegeven door het Zeeuwsch Genootschap der Wetenschappen
te Vlissingen 9 (1782), 85—239], in which he constructed suitable arrangements
for the analogous task with n ranks and n regiments when n =1, 3, 4, 5, 7, 8,
9, 11, 12, 13, 15, 16, ...; only the cases with n mod 4 = 2 eluded him.

There’s obviously no solution when n = 2. But Euler was stumped when n =
6, after having examined a “very considerable number” of square arrangements
that didn’t work. He showed that any actual solution would lead to many others
that look different, and he couldn’t believe that all such solutions had escaped
his attention. Therefore he said, “I do not hesitate to conclude that one cannot
produce a complete square of 36 cells, and that the same impossibility extends
to the cases n = 10, n = 14 ... in general to all oddly even numbers.”

Euler named the 36 officers ac, a3, av, ad, ae, al, ba, bS3, by, bd, be, b(,
ca, ¢f8, ¢y, cd, ce, ¢, da, dfB, dvy, db, de, d(, ea, ef3, e, €d, ee, e, fa, fB, [,
6, fe, fC, based on their regiments and ranks. He observed that any solution
would amount to having two separate squares, one for Latin letters and another
for Greek. Each of those squares is supposed to have distinct entries in rows and
columns; so he began by studying the possible configurations for {a, b, c,d, e, f},
which he called Latin squares. A Latin square can be paired up with a Greek
square to form a “Graeco-Latin square” only if the squares are orthogonal to each
other, meaning that no (Latin, Greek) pair of letters can be found together in
more than one place when the squares are superimposed. For example, if we let
a=AMb=K c=Qd=J,a=&, =8 v=<,and § = O, Fig. 1 is equivalent

7 COMBINATORIAL SEARCHING 5

to the Latin, Greek, and Graeco-Latin squares

d a b c vy 6 B « dy ad bB ca
c b a d B a v § cB ba ay db
a d ¢c b Va B & v’ and ace df ¢ by |’ (5)
b ¢ d a 6 v a pB bd ¢y da af

Of course we can use any n distinct symbols in an n x n Latin square; all that
matters is that no symbol occurs twice in any row or twice in any column. So
we might as well use numeric values {0,1,...,n—1} for the entries. Furthermore
we’ll just refer to “latin squares” (with a lowercase “1”), instead of categorizing
a square as either Latin or Greek, because orthogonality is a symmetric relation.

Euler’s assertion that two 6 x 6 latin squares cannot be orthogonal was
verified by Thomas Clausen, who reduced the problem to an examination of 17
fundamentally different cases, according to a letter from H. C. Schumacher to
C. F. Gauss dated 10 August 1842. But Clausen did not publish his analysis.
The first demonstration to appear in print was by G. Tarry [Comptes rendus,
Association francaise pour ’avancement des sciences 29, part 2 (1901), 170-203],
who discovered in his own way that 6 X 6 latin squares can be classified into 17
different families. (In Section 7.2.3 we shall study how to decompose a problem
into combinatorially inequivalent classes of arrangements)

Euler’s conjecture about the remaining cases n = 10, n = 14, ... was
“proved” three times, by J. Petersen [Annuaire des mathématiciens (Paris: 1902)
413-427], by P. Wernicke [Jahresbericht der Deutschen Math.-Vereinigung 19
(1910), 264-267], and by H. F. MacNeish [Annals of Math. (2) 23 (1922), 221-
227). Flaws in all three arguments became known, however; and the question
was still unsettled when computers became available many years later. One of
the very first combinatorial problems to be tackled by machine was therefore the

enigma of 10 x 10 Greaeco-Latin squares: Do they exist or not?

In 1957, L. J. Paige and C. B. Tompkins programmed the SWAC computer to
search for a counterexample to Euler’s prediction. They selected one particular
10 x 10 latin square “almost at random,” and their program tried to find another
square that would be orthogonal to it. But the results were discouraging, and
they decided to shut the machine off after five hours. Already the program
had generated enough data for them to predict that at least 4.8 x 10! hours of
computer time would be needed to finish the run!

Shortly afterwards, three mathematicians made a breakthrough that put
latin squares onto page one of major world newspapers: R. C. Bose, S. S. Shri-
khande, and E. T. Parker found a remarkable series of constructions that yield
orthogonal n x n squares for all n > 6 [Proc. Nat. Acad. Sci. 45 (1959), 734-737,
859-862; Canadian J. Math. 12 (1960), 189-203]. Thus, after resisting attacks
for 180 years, Euler’s conjecture turned out to be almost entirely wrong.

Their discovery was made without computer help. But Parker worked for
UNIVAC, and he soon brought programming skills into the picture by solving the
problem of Paige and Tompkins in less than an hour, on a UNIVAC 1206 Military
Computer. [See Proc. Symp. Applied Math. 10 (1960), 71-83; 15 (1963), 73-81.]

6 COMBINATORIAL SEARCHING 7

Let’s take a closer look at what the earlier programmers did, and how
Parker dramatically trumped their approach. Paige and Tompkins began with
the following 10 x 10 square L and its unknown orthogonal mate(s) M:

12 678

0 3456789 Ouuuuuuuuouyg
1832547690 luuvuuowuuwuuuyg
2956308471 2 U uUuUuUULUUU
3709861524 SuUu U U UL LU U
4675290813 4 uuuUuuUuUUUULuU
L= 509478316 2 and M = SUuU U U UUUU U (6)
6547132908 buuuUuuUUULUUU
7418029356 TLUuULULUUULULLUU
8360915247 Suuuuuuuuu
9281674035 SuuuUuuUuuu oo

We can assume without loss of generality that the rows of M begin with 0, 1,
..., 9, as shown. The problem is to fill in the remaining 90 blank entries, and the
original SWAC program proceeded from top to bottom, left to right. The top left
u can’t be filled with 0, since 0 has already occurred in the top row of M. And it
can’t be 1 either, because the pair (1,1) already occurs at the left of the next row
in (L, M). We can, however, tentatively insert a 2. The digit 1 can be placed
next; and pretty soon we find the lexicographically smallest top row that might
work for M, namely 0214365897. Similarly, the smallest rows that fit below
0214365897 are 1023456789 and 2108537946; and the smallest legitimate row
below them is 3540619278. Now, unfortunately, the going gets tougher: There’s
no way to complete another row without coming into conflict with a previous
choice. So we change 3540619278 to 3540629178 (but that doesn’t work either),
then to 3540698172, and so on for several more steps, until finally 3546109278
can be followed by 4397028651 before we get stuck again.

In Section 7.2.3, we’ll study ways to estimate the behavior of such searches,
without actually performing them. Such estimates tell us in this case that
the Paige-Tompkins method essentially traverses an implicit search tree that
contains about 2.5 x 10'® nodes. Most of those nodes belong to only a few levels
of the tree; more than half of them deal with choices on the right half of the
sixth row of M, after about 50 of the 90 blanks have been tentatively filled in.
A typical node of the search tree probably requires about 75 mems (memory
accesses) for processing, to check validity. Therefore the total running time on a
modern computer would be roughly the time needed to perform 2 x 102° mems.

Parker, on the other hand, went back to the method that Euler had originally
used to search for orthogonal mates in 1779. First he found all of the so-called
transversals of L, namely all ways to choose some of its elements so that there’s
exactly one element in each row, one in each column, and one of each value. For
example, one transversal is 0859734216, in Euler’s notation, meaning that we
choose the 0 in column 0, the 8 in column 1, ..., the 6 in column 9. Each transver-
sal that includes the k in L’s leftmost column represents a legitimate way to place
the ten k’s into square M. The task of finding transversals is, in fact, rather
easy, and the given matrix L turns out to have exactly 808 of them; there are
respectively (79,96, 76,87, 70,84, 83, 75,95, 63) transversals for k = (0,1,...,9).

7 COMBINATORIAL SEARCHING 7

Once the transversals are known, we're left with an exact cover problem of
10 stages, which is much simpler than the original 90-stage problem in (6). All we
need to do is cover the square with ten transversals that don’t intersect — because
every such set of ten is equivalent to a latin square M that is orthogonal to L.

The particular square L in (6) has, in fact, exactly one orthogonal mate:

0123456789 0285947361
1832547690 1749365028
2956308471 2564870193
3709861524 3690458217
4675290813 1 4817536902 (7)
509478316 2 5178029436 7
6547132908 6902713845
7418029356 7351204689
8360915247 8023691754
9281674035 9436182570

The dancing links algorithm finds it, and proves its uniqueness, after doing only
about 1.7 x 10® mems of computation, given the 808 transversals. Furthermore,
the cost of the transversal-finding phase, about 5 million mems, is negligible by
comparison. Thus the original running time of 2 x 102° mems — which once was
regarded as the inevitable cost of solving a problem for which there are 109 ways
to fill in the blanks — has been reduced by a further factor of more than 10'2(!).

We will see later that advances have also been made in methods for solving
90-level problems like (6). Indeed, (6) turns out to be representable directly
as an exact cover problem (see exercise 17), which the dancing links procedure
of Section 7.2.2.1 solves after expending only 1.3 x 10! mems. Even so, the
Euler—Parker approach remains about a thousand times better than the Paige—
Tompkins approach. By “factoring” the problem into two separate phases, one
for transversal-finding and one for transversal-combining, Euler and Parker es-
sentially reduced the computational cost from a product, T Ts, to a sum, T; +T5.

The moral of this story is clear: Combinatorial problems might confront us
with a huge universe of possibilities, yet we shouldn’t give up too easily. A single
good idea can reduce the amount of computation by many orders of magnitude.

Puzzles versus the real world. Many of the combinatorial problems we shall
study in this chapter, like Langford’s problem of pairs or Ozanam’s problem
of the sixteen honor cards, originated as amusing puzzles or “brain twisters.”
Some readers might be put off by this emphasis on recreational topics, which
they regard as a frivolous waste of time. Shouldn’t computers really be doing
useful work? And shouldn’t textbooks about computers be primarily concerned
with significant applications to industry and/or world progress?

Well, the author of the textbook you are reading has absolutely no objections
to useful work and human progress. But he believes strongly that a book such as
this should stress methods of problem solving, together with mathematical ideas
and models that help to solve many different problems, rather than focusing on
the reasons why those methods and models might be useful. We shall learn many
beautiful and powerful ways to attack combinatorial problems, and the elegance

8 COMBINATORIAL SEARCHING 7

of those methods will be our main motivation for studying them. Combinatorial
challenges pop up everywhere, and new ways to apply the techniques discussed
in this chapter arise every day. So let’s not limit our horizons by attempting to
catalog in advance what the ideas are good for.

For example, it turns out that orthogonal latin squares are enormously
useful, particularly in the design of experiments. Already in 1788, Francois
Cretté de Palluel used a 4x4 latin square to study what happens when sixteen
sheep — four each from four different breeds— were fed four different diets and
harvested at four different times. [Mémoires d’Agriculture (Paris: Société Royale
d’Agriculture, trimestre d’été, 1788), 17-23.] The latin square allowed him to do
this with 16 sheep instead of 64; with a Graeco-Latin square he could also have
varied another parameter by trying, say, four different quantities of food or four
different grazing paradigms.

But if we had focused our discussion on his approach to animal husbandry,
we might well have gotten bogged down in details about breeding, about root
vegetables versus grains and the costs of growing them, etc. Readers who aren’t
farmers might therefore have decided to skip the whole topic, even though latin
square designs apply to a wide range of studies. (Think about testing five kinds
of pills, on patients in five stages of some disease, five age brackets, and five
weight groups.) Moreover, a concentration on experimental design could lead
readers to miss the fact that latin squares also have important applications to
discrete geometry and error-correcting codes (see exercises 18-24).

Even the topic of Langford pairing, which seems at first to be purely recre-
ational, turns out to have practical importance. T. Skolem used Langford se-
quences to construct Steiner triple systems, which we have applied to database
queries in Section 6.5 [see Math. Scandinavica 6 (1958), 273-280]; and in the
1960s, E. J. Groth of Motorola Corporation applied Langford pairs to the design
of circuits for multiplication. Furthermore, the algorithms that efficiently find
Langford pairs and latin square transversals, such as the method of dancing links,
apply to exact cover problems in general; and the problem of exact covering has
great relevance to crucial problems such as the equitable apportionment of voter
precincts to electoral districts, etc.

The applications are not the most important thing, and neither are the
puzzles. Our primary goal is rather to get basic concepts into our brains, like
the notions of latin squares and exact covering. Such notions give us the building
blocks, vocabulary, and insights that tomorrow’s problems will need.

Still, it’s foolish to discuss problem solving without actually solving any
problems. We need good problems to stimulate our creative juices, to light up
our grey cells in a more or less organized fashion, and to make the basic concepts
familiar. Mind-bending puzzles are often ideal for this purpose, because they can
be presented in a few words, needing no complicated background knowledge.

Vaclav Havel once remarked that the complexities of life are vast: “There
is too much to know... We have to abandon the arrogant belief that the world
is merely a puzzle to be solved, a machine with instructions for use waiting to
be discovered, a body of information to be fed into a computer.” He called

7 COMBINATORIAL SEARCHING 9

for an increased sense of justice and responsibility; for taste, courage, and
compassion. His words were filled with great wisdom. Yet thank goodness we
do also have puzzles that can be solved! Puzzles deserve to be counted among
the great pleasures of life, to be enjoyed in moderation like all other treats.

Of course, Langford and Ozanam directed their puzzles to human beings, not
to computers. Aren’t we missing the point if we merely shuffle such questions off
to machines, to be solved by brute force instead of by rational thought? George
Brewster, writing to Martin Gardner in 1963, expressed a widely held view as
follows: “Feeding a recreational puzzle into a computer is no more than a step
above dynamiting a trout stream. Succumbing to instant recreation.”

Yes, but that view misses another important point: Simple puzzles often
have generalizations that go beyond human ability and arouse our curiosity. The
study of those generalizations often suggests instructive methods that apply to
numerous other problems and have surprising consequences. Indeed, many of the
key techniques that we shall study were born when people were trying to solve
various puzzles. While writing this chapter, the author couldn’t help relishing
the fact that puzzles are now more fun than ever, as computers get faster and
faster, because we keep getting more powerful dynamite to play with. [Further
comments appear in the author’s essay, “Can toy problems be useful?”, originally
written in 1976; see Selected Papers on Computer Science (1996), 169-183.]

Puzzles do have the danger that they can be too elegant. Good puzzles tend
to be mathematically clean and well-structured, but we also need to learn how
to deal systematically with the messy, chaotic, organic stuff that surrounds us
every day. Indeed, some computational techniques are important chiefly because
they provide powerful ways to cope with such complexities. That is why, for
example, the arcane rules of library-card alphabetization were presented at the
beginning of Chapter 5, and an actual elevator system was discussed at length
to illustrate simulation techniques in Section 2.2.5.

A collection of programs and data called the Stanford GraphBase (SGB) has
been prepared so that experiments with combinatorial algorithms can readily be
performed on a variety of real-world examples. SGB includes, for example, data
about American highways, and an input-output model of the U.S. economy; it
records the casts of characters in Homer’s Iliad, Tolstoy’s Anna Karenina, and
several other novels; it encapsulates the structure of Roget’s Thesaurus of 1879;
it documents hundreds of college football scores; it specifies the gray-value pixels
of Leonardo da Vinci’s Gioconda (Mona Lisa). And perhaps most importantly,
SGB contains a collection of five-letter words, which we shall discuss next.

The five-letter words of English. Many of the examples in this chapter will
be based on the following list of five-letter words:

aargh, abaca, abaci, aback, abaft, abase, abash, ..., zooms, zowie. (8)

(There are 5757 words altogether —too many to display here; but those that are
missing can readily be imagined.) It’s a personal list, collected by the author
between 1972 and 1992, beginning when he realized that such words would make
ideal data for testing many kinds of combinatorial algorithms.

10 COMBINATORIAL SEARCHING 7

The list has intentionally been restricted to words that are truly part of the
English language, in the sense that the author has encountered them in actual
use. Unabridged dictionaries contain thousands of entries that are much more
esoteric, like aalii, abamp, ..., zymin, and zyxst; words like that are useful
primarily to Scrabble® players. But unfamiliar words tend to spoil the fun
for anybody who doesn’t know them. Therefore, for twenty years, the author
systematically took note of all words that seemed right for the expository goals
of The Art of Computer Programming.

Finally it was necessary to freeze the collection, in order to have a fixed
point for reproducible experiments. The English language will always be evolv-
ing, but the 5757 SGB words will therefore always stay the same —even though
the author has been tempted at times to add a few words that he didn’t know in
1992, such as chads, stent, blogs, ditzy, phish, bling, and possibly tetch.
Noj; noway. The time for any changes to SGB has long since ended: finis.

The following Glossary is intended to contain all well-known English words
. which may be used in good society, and which can serve as Links.
. There must be a stent to the admission of spick words.

— LEWIS CARROLL, Doublets: A Word-Puzzle (1879)

If there is such a verb as to tetch, Mr. Lillywaite tetched.
— ROBERT BARNARD, Corpse in a Gilded Cage (1984)

Proper names like Knuth are not considered to be legitimate words. But
gauss and hardy are valid, because “gauss” is a unit of magnetic induction and
“hardy” is hardy. In fact, SGB words are composed entirely of ordinary lowercase
letters; the list contains no hyphenated words, contractions, or terms like blasé
that require an accent. Thus each word can also be regarded as a vector, which
has five components in the range [0..26). In the vector sense, the words yucca
and abuzz are furthest apart: The Euclidean distance between them is

[1(24,20,2,2,0) — (0,1,20,25,25) > = /242 + 192 + 182 + 232 + 252 = /2415.

The entire Stanford GraphBase, including all of its programs and data sets,
is easy to download from the author’s website (see page ii). And the list of all
SGB words is even easier to obtain, because it is in the file ‘sgb-words.txt’ at
the same place. That file contains 5757 lines with one word per line, beginning
with ‘which’ and ending with ‘pupal’. The words appear in a default order,
corresponding to frequency of usage; for example, the words of rank 1000, 2000,
3000, 4000, and 5000 are respectively ditch, galls, visas, faker, and pismo.
The notation ‘WORDS(n)’ will be used in this chapter to stand for the n most
common words, according to this ranking.

Incidentally, five-letter words include many plurals of four-letter words, and
it should be noted that no Victorian-style censorship was done. Potentially offen-
sive vocabulary has been expurgated from The Official Scrabble® Players Dic-
tionary, but not from the SGB. One way to ensure that semantically unsuitable

7 COMBINATORIAL SEARCHING 11

terms will not appear in a professional paper based on the SGB wordlist is to
restrict consideration to WORDS(n) where n is, say, 3000.

Exercises 26—37 below can be used as warmups for initial explorations of the
SGB words, which we’ll see in many different combinatorial contexts throughout
this chapter. For example, while covering problems are still on our minds, we
might as well note that the four words ‘third flock began jumps’ cover 20 of
the first 21 letters of the alphabet. Five words can, however, cover at most 24
different letters, as in {becks, fjord, glitz,nymph, squaw} — unless we resort to
a rare non-SGB word like waqfs (Islamic endowments), which can be combined
with {gyved,bronx, chimp,klutz} to cover 25.

Simple words from WORDS(400) suffice to make a word square:

class
light
agree . (9)
sheep
steps

We need to go almost to WORDS(3000), however, to obtain a word cube,

types yeast pasta ester start
yeast earth armor stove three
pasta armor smoke token arena
ester stove token event rents
start three arena rents tease

; (10)

in which every 5 x 5 “slice” is a word square. With a simple extension of the
basic dancing links algorithm (see Section 7.2.2.2), one can show after performing
about 390 billion mems of computation that WORDS(3000) supports only three
symmetric word cubes such as (10); exercise 36 reveals the other two. Surpris-
ingly, 83,576 symmetrical cubes can be made from the full set, WORDS(5757).

Graphs from words. It’s interesting and important to arrange objects into
rows, squares, cubes, and other designs; but in practical applications another
kind of combinatorial structure is even more interesting and important, namely
a graph. Recall from Section 2.3.4.1 that a graph is a set of points called
vertices, together with a set of lines called edges, which connect certain pairs
of vertices. Graphs are ubiquitous, and many beautiful graph algorithms have
been discovered, so graphs will naturally be the primary focus of many sections
in this chapter. In fact, the Stanford GraphBase is primarily about graphs, as
its name implies; and the SGB words were collected chiefly because they can be
used to define interesting and instructive graphs.

Lewis Carroll blazed the trail by inventing a game that he called Word-
Links or Doublets, at the end of 1877. [See Martin Gardner, The Universe in
a Handkerchief (1996), Chapter 6.] Carroll’s idea, which soon became quite
popular; was to transform one word to another by changing a letter at a time:

tears — sears — stars — stare — stale —stile—smile. (11)

12 COMBINATORIAL SEARCHING 7

The shortest such transformation is the shortest path in a graph, where the
vertices of the graph are English words and the edges join pairs of words that
have “Hamming distance 1”7 (meaning that they disagree in just one place).
When restricted to SGB words, Carroll’s rule produces a graph of the
Stanford GraphBase whose official name is words(5757,0,0,0). Every graph
defined by SGB has a unique identifier called its ¢d, and the graphs that are
derived in Carrollian fashion from SGB words are identified by ids of the form
words(n,l,t,s). Here n is the number of vertices; [is either 0 or a list of weights,
used to emphasize various kinds of vocabulary; t is a threshold so that low-weight
words can be disallowed; and s is the seed for any pseudorandom numbers that
might be needed to break ties between words of equal weight. The full details
needn’t concern us, but a few examples will give the general idea:
e words(n,0,0,0) is precisely the graph that arises when Carroll’s idea is
applied to WORDS(n), for 1 < n < 5757.
e words (1000, {0,0,0,0,0,0,0,0,0},0, s) contains 1000 randomly chosen SGB
words, usually different for different values of s.
e words(766,{0,0,0,0,0,0,0,1,0},1,0) contains all of the five-letter words
that appear in the author’s books about TEX and METAFONT.
There are only 766 words in the latter graph, so we can’t form very many long
paths like (11), although

basic—basis — bases — based

— baked — naked — named — names — games (12)

is one noteworthy example.

Of course there are many other ways to define the edges of a graph when the
vertices represent five-letter words. We could, for example, require the Euclidean
distance to be small, instead of the Hamming distance. Or we could declare two
words to be adjacent whenever they share a subword of length four; that strategy
would substantially enrich the graph, making it possible for chaos to yield peace,
even when confined to the 766 words that are related to TEX:

chaos — chose — whose — whole —holes — hopes — copes — scope

—— score—— store — stare — spare — space — paces — peace. (13)

(In this rule we remove a letter, then insert another, possibly in a different place.)
Or we might choose a totally different strategy, like putting an edge between word
vectors ajasasagsas and bybobzbsbs if and only if their dot product a1by 4+ azbs +
azbs + a4by + asbs is a multiple of some parameter m. Graph algorithms thrive
on different kinds of data.

SGB words lead also to an interesting family of directed graphs, if we write
a1a2a3040a5 — b1b2b3b4b5 when {ag,ag,a4,a5} Q {bl,bg,b3,b4,b5} as multisets.
(Remove the first letter, insert another, and rearrange.) With this rule we can,
for example, transform words to graph via a shortest oriented path of length six:

words — dross — soars — orcas — crash — sharp — graph. (14)

7 COMBINATORIAL SEARCHING 13

Theory is the first term in the Taylor series of practice.
— THOMAS M COVER (1992)

The number of systems of terminology presently used in graph theory
is equal, to a close approximation, to the number of graph theorists.

— RICHARD P STANLEY (1986)

Graph theory: The basics. A graph G consists of a set V' of vertices together
with a set E of edges, which are pairs of distinct vertices. We will assume that
V and F are finite sets unless otherwise specified. We write u — v if v and v
are vertices with {u,v} € E, and u—v if u and v are vertices with {u,v} ¢ E.
Vertices with u — v are called “neighbors,” and they’re also said to be “adjacent”
in G. One consequence of this definition is that we have u — v if and only if
v — u. Another consequence is that v -~ v, for all v € V; that is, no vertex is
adjacent to itself. (We shall, however, discuss multigraphs below, in which loops
from a vertex to itself are permitted.)

The graph G’ = (V', E’) is a subgraph of G = (V,E)if V' CV and E' C E.
It’s a spanning subgraph of G if, in fact, V/ = V. And it’s an induced subgraph
of G if E' has as many edges as possible, when V' is a given subset of the
vertices. In other words, when V'’ C V the subgraph of G = (V, E) induced by
V'is G' = (V', E'), where

B = {{we} |ue Vv eV, and fuuh € F), ()

This subgraph G’ is denoted by G | V', and often called “G restricted to V'.” In
the common case where V' = V'\ {v}, we write simply G\ v (“G minus vertex v”)
as an abbreviation for G | (V' \ {v}). The similar notation G \ e is used when
e € E to denote the subgraph G’ = (V, E \ {e}), obtained by removing an edge
instead of a vertex. Notice that all of the SGB graphs known as words(n,l,t, s),
described earlier, are induced subgraphs of the main graph words(5757,0,0,0);
only the vocabulary changes in those graphs, not the rule for adjacency.

A graph with n vertices and e edges is said to have order n and size e. The
simplest and most important graphs of order n are the complete graph K, the
path P,, and the cycle C,. Suppose the vertices are V = {1,2,...,n}. Then

e K, has (g) = %n(n —1) edges u—wv for 1 < u < v < n; every n-vertex
graph is a spanning subgraph of K,,.
e P, has n — 1 edges v — (v+1) for 1 < v < n, when n > 1; it is a path
of length n—1 from 1 to n.
e C,, has n edges v— ((vmod n)+1) for 1 < v < n, when n > 1; it is a graph
only when n > 3 (but C; and C5 are multigraphs).
We could actually have defined K,,, P,, and C,, on the vertices {0,1,...,n—1},
or on any n-element set V instead of {1,2,...,n}, because two graphs that differ
only in the names of their vertices but not in the structure of their edges are
combinatorially equivalent.
Formally, we say that graphs G = (V, E) and G' = (V', E’) are isomorphic
if there is a one-to-one correspondence ¢ from V to V' such that u— v in G if

14 COMBINATORIAL SEARCHING 7

and only if ¢(u) — ¢(v) in G'. The notation G = G’ is often used to indicate
that G and G’ are isomorphic; but we shall often be less precise, by treating
isomorphic graphs as if they were equal, and by occasionally writing G = G’
even when the vertex sets of G and G’ aren’t strictly identical.

Small graphs can be defined by simply drawing a diagram, in which the
vertices are small circles and the edges are lines between them. Figure 2 illus-
trates several important examples, whose properties we will be studying later.
The Petersen graph in Figure 2(e) is named after Julius Petersen, an early
graph theorist who used it to disprove a plausible conjecture [L’Intermédiaire
des Mathématiciens 5 (1898), 225-227]; it is, in fact, a remarkable configuration
that serves as a counterexample to many optimistic predictions about what might
be true for graphs in general. The Chvdtal graph, Figure 2(f), was introduced
by Véclav Chvétal in J. Combinatorial Theory 9 (1970), 93-94.

(a) (b) (c) (d) (e)
Ps Cs Ks 3-cube Petersen graph Chvétal grah

Fig. 2. Six example graphs, which have respectively (5,5,5,8,10,12) vertices and
(4,5,10,12,15,24) edges.

The lines of a graph diagram are allowed to cross each other at points that
aren’t vertices. For example, the center point of Fig. 2(f) is not a vertex of
Chvatal’s graph. A graph is called planar if there’s a way to draw it without
any crossings. Clearly P, and C,, are always planar; Fig. 2(d) shows that the
3-cube is also planar. But K5 has too many edges to be planar (see exercise 46).

The degree of a vertex is the number of neighbors that it has. If all vertices
have the same degree, the graph is said to be regular. In Fig. 2, for example, Ps
is irregular because it has two vertices of degree 1 and three of degree 2. But
the other five graphs are regular, of degrees (2,4, 3, 3,4) respectively. A regular
graph of degree 3 is often called “cubic” or “trivalent.”

There are many ways to draw a given graph, some of which are much more
perspicuous than others. For example, each of the six diagrams

34 =

is isomorphic to the 3-cube, Fig. 2(d). The layout of Chvatal’s graph that appears
in Fig. 2(f) was discovered by Adrian Bondy many years after Chvatal’s paper
was published, thereby revealing unexpected symmetries.

The symmetries of a graph, also known as its automorphisms, are the permu-
tations of its vertices that preserve adjacency. In other words, the permutation
¢ is an automorphism of G if we have ¢(u) — ¢(v) whenever u — v in G. A

7 COMBINATORIAL SEARCHING 15

well-chosen drawing like Fig. 2(f) can reveal underlying symmetry, but a single
diagram isn’t always able to display all the symmetries that exist. For example,
the 3-cube has 48 automorphisms, and the Petersen graph has 120. We’ll study
algorithms that deal with isomorphisms and automorphisms in Section 7.2.3.
Symmetries can often be exploited to avoid unnecessary computations, mak-
ing an algorithm almost k times faster when it operates on a graph that has
k automorphisms.

Graphs that have evolved in the real world tend to be rather different from
the mathematically pristine graphs of Figure 2. For example, here’s a familiar
graph that has no symmetry whatsoever, although it does have the virtue of
being planar:

It represents the contiguous United States of America, and we’ll be using it later
in several examples. The 49 vertices of this diagram have been labeled with two-
letter postal codes for convenience, instead of being reduced to empty circles.

Paths and cycles. A spanning path of a graph is called a Hamiltonian path,
and a spanning cycle is called a Hamiltonian cycle, because W. R. Hamilton
invented a puzzle in 1856 whose goal was to find such paths and cycles on the
edges of a dodecahedron. T. P. Kirkman had independently studied the problem
for polyhedra in general, in Philosophical Transactions 146 (1856), 413-418; 148
(1858), 145-161. [See Graph Theory 1736-1936 by N. L. Biggs, E. K. Lloyd, and
R. J. Wilson (1998), Chapter 2.] The task of finding a spanning path or cycle is,
however, much older —indeed, we can legitimately consider it to be the oldest
combinatorial problem of all, because paths and tours of a knight on a chessboard
have a continuous history going back to ninth-century India (see Section 7.3.3).
A graph is called Hamiltonian if it has a Hamiltonian cycle. (The Petersen
graph, incidentally, is the smallest 3-regular graph that is neither planar nor
Hamiltonian; see C. de Polignac, Bull. Soc. Math. de France 27 (1899), 142-145.)

The girth of a graph is the length of its shortest cycle; the girth is infinite if
the graph is acyclic (containing no cycles). For example, the six graphs of Fig. 2
have girths (00,5, 3,4,5,4), respectively. It’s not difficult to prove that a graph
of minimum degree k and girth 5 must have at least k? 4+ 1 vertices. Further
analysis shows in fact that this minimum value is achievable only if £k = 2 (Cj),
k = 3 (Petersen), k = 7, or perhaps k = 57. (See exercises 63 and 65.)

16 COMBINATORIAL SEARCHING 7

The distance d(u,v) between two vertices u and v is the minimum length
of a path from u to v in the graph; it is infinite if there’s no such path. Clearly
d(v,v) =0, and d(u,v) = d(v,u). We also have the triangle inequality

d(u,v) +d(v,w) > d(u,w). (18)
For if d(u,v) = p and d(v,w) = g and p < co and g < oo, there are paths
U=u—u—- - —u,=v and v=vg—uv—- - —y,=w, (19)
and we can find the least subscript r such that u, = v, for some s. Then
Ug— UL — "+ ——Up_] — Vg —— Vg1 — "+ — Vg (20)

is a path of length < p + ¢ from u to w.

The diameter of a graph is the maximum of d(u, v), over all vertices u and v.
The graph is connected if its diameter is finite. The vertices of a graph can always
be partitioned into connected components, where two vertices u and v belong to
the same component if and only if d(u,v) < co.

In the graph words(5757,0,0,0), for example, we have d(tears, smile) = 6,
because (11) is a shortest path from tears to smile. Also d(tears,happy) = 6,
and d(smile,happy) = 10, and d(world,court) = 6. But d(world,happy) =
oo; the graph isn’t connected. In fact, it contains 671 words like aloof, which
have no neighbors and form connected components of order 1 all by themselves.
Word pairs such as alpha — aloha, droid — druid, and opium — odium
account for 103 further components of order 2. Some components of order 3,
like chain — chair — choir, are paths; others, like {getup, letup, setup},
are cycles. A few more small components are also present, like the curious path

login— logic — yogic — yogis — yogas — togas, (21)

whose words have no other neighbors. But the vast majority of all five-letter
words belong to a giant component of order 4493. If you can go two steps away
from a given word, the odds are better than 15 to 1 that your word is connected
to everything in the giant component.

Similarly, the graph words(n,0,0,0) has a giant component of order (3825,
2986, 2056, 1198, 224) when n = (5000, 4000, 3000, 2000, 1000), respectively. But
if n is small, there aren’t enough edges to provide much connectivity. For exam-
ple, words(500,0,0,0) has 327 different components, none of order 15 or more.

The concept of distance can be generalized to d(vy, va,. .., v) for any value
of k, meaning the minimum number of edges in a connected subgraph that
contains the vertices {v1, va, ..., v }. For example, d(blood, sweat, tears) turns
out be 15, because the subgraph

blood —brood — broad — bread — tread — treed — tweed

tears — teams — trams — trims — tries — trees tweet (22)

sweat — sweet

has 15 edges, and there’s no suitable 14-edge subgraph.

7 COMBINATORIAL SEARCHING 17

We noted in Section 2.3.4.1 that a connected graph with fewest edges is
called a free tree. A subgraph that corresponds to the generalized distance
d(vi,...,v) will always be a free tree. It is misleadingly called a Steiner tree,
because Jacob Steiner once mentioned the case k = 3 for points {vy,v2,vs3} in
the Euclidean plane [Crelle 13 (1835), 362—363]. Franz Heinen had solved that
problem in Uber Systeme von Kriften (1834); Gauss extended the analysis to
k =4 in a letter to Schumacher (21 March 1836).

Coloring. A graph is said to be k-partite or k-colorable if its vertices can be
partitioned into k or fewer parts, with the endpoints of each edge belonging to
different parts — or equivalently, if there’s a way to paint its vertices with at most
k different colors, never assigning the same color to two adjacent vertices. The fa-
mous Four Color Theorem, conjectured by F. Guthrie in 1852 and finally proved
with massive computer aid by K. Appel, W. Haken, and J. Koch [Illinois J. Math.
21 (1977), 429-567], states that every planar graph is 4-colorable. No simple
proof is known, but special cases like (17) can be colored at sight (see exercise 45);
and O(n?) steps suffice to 4-color a planar graph in general [N. Robertson, D. P.
Sanders, P. Seymour, and R. Thomas, STOC 28 (1996), 571-575].

The case of 2-colorable graphs is especially important in practice. A 2-
partite graph is generally called bipartite, or simply a “bigraph”; every edge of
such a graph has one endpoint in each part.

Theorem B. A graph is bipartite if and only if it contains no cycle of odd length.

Proof. [See D. Konig, Math. Annalen 77 (1916), 453—454.] Every subgraph of
a k-partite graph is k-partite. Therefore the cycle C, can be a subgraph of a
bipartite graph only if C,, itself is a bigraph, in which case n must be even.

Conversely, if a graph contains no odd cycles we can color its vertices with
the two colors {0,1} by carrying out the following procedure: Begin with all
vertices uncolored. If all neighbors of colored vertices are already colored, choose
an uncolored vertex w, and color it 0. Otherwise choose a colored vertex u that
has an uncolored neighbor v; assign to v the opposite color. Exercise 48 proves
that a valid 2-coloring is eventually obtained. 1|

The complete bipartite graph K,,, is the largest bipartite graph whose
vertices have two parts of sizes m and n. We can define it on the vertex set
{1,2,...,m+n} by saying that u — v whenever 1 < u < m < v < m+ n.
In other words, K, , has mn edges, one for each way to choose one vertex in
the first part and another in the second part. Similarly, the complete k-partite
graph Ky, . o, has N = nq + .- 4 nj vertices partitioned into parts of sizes
{ni1,...,nk}, and it has edges between any two vertices that don’t belong to the
same part. Here are some examples when N = 6:

D?%; M%%; @g@ (23)

Notice that K , is a free tree; it is popularly called the star graph of order n+1.

18 COMBINATORIAL SEARCHING 7

From now on say ‘“digraph” instead of “directed graph.”
It is clear and short and it will catch on.

— GEORGE POLYA, letter to Frank Harary (c 1954)

Directed graphs. In Section 2.3.4.2 we defined directed graphs (or digraphs),
which are very much like graphs except that they have arcs instead of edges.
An arc u — v runs from one vertex to another, while an edge u — v joins
two vertices without distinguishing between them. Furthermore, digraphs are
allowed to have self-loops v — v from a vertex to itself, and more than one arc
u—> v may be present between the same vertices v and v.

Formally, a digraph D = (V, A) of order n and size m is a set V' of n vertices
and a multiset A of m ordered pairs (u,v), where u € V and v € V. The ordered
pairs are called arcs, and we write u — v when (u,v) € A. The digraph is called
simple if A is actually a set instead of a general multiset —namely, if there’s at
most one arc (u,v) for all w and v. Each arc (u,v) has an initial vertex u and a
final vertex v, also called its “tip.” Each vertex has an out-degree d* (v), the num-
ber of arcs for which v is the initial vertex, and an in-degree d~ (v), the number of
arcs for which v is the tip. A vertex with in-degree 0 is called a “source”; a vertex
with out-degree 0 is called a “sink.” Notice that Y .\ d*(v) = 3 o d™ (v),
because both sums are equal to m, the total number of arcs.

Most of the notions we’ve defined for graphs carry over to digraphs in a nat-
ural way, if we just insert the word “directed” or “oriented” (or the syllable “di”)
when it’s necessary to distinguish between edges and arcs. For example, digraphs
have subdigraphs, which can be spanning or induced or neither. An isomorphism
between digraphs D = (V, A) and D’ = (V’, A’) is a one-to-one correspondence ¢
from V to V' for which the number of arcs u — v in D equals the number of
arcs (u) —p(v) in D', for all u,v € V.

Diagrams for digraphs use arrows between the vertices, instead of unadorned
lines. The simplest and most important digraphs of order n are directed variants
of the graphs K,,, P,,, and C),, namely the transitive tournament K, the oriented
path Py, and the oriented cycle C,,. They can be schematically indicated by the
following diagrams for n = 5:

EZFH: ororoons oD (2
Ky Py Cs

There’s also the complete digraph J,, which is the largest simple digraph on n
vertices; it has n? arcs u—> v, one for each choice of u and v.

Figure 3 shows a more elaborate diagram, for a digraph of order 17 that
we might call “expressly oriented”: It is the directed graph described by Her-
cule Poirot in Agatha Christie’s novel Murder on the Orient Express (1934).
Vertices correspond to the berths of the Stamboul-Calais coach in that story,
and an arc u — v means that the occupant of berth u has corroborated the
alibi of the person in berth ». This example has six connected components,
namely {0,1,3,6,8,12,13,14, 15,16}, {2}, {4,5}, {7}, {9}, and {10, 11}, because
connectivity in a digraph is determined by treating arcs as edges.

7 COMBINATORIAL SEARCHING 19

: Samuel Edward Ratchett, the deceased American

: Caroline Martha Hubbard, the American matron

: Edward Henry Masterman, the British valet

: Antonio Foscarelli, the Italian automobile salesman
: Hector MacQueen, the American secretary

: Harvey Harris, the Englishman who didn’t show up
: Hildegarde Schmidt, the German lady’s maid

: (vacancy)

: Greta Ohlsson, the Swedish nurse

: Mary Hermione Debenham, the English governess

: Helena Maria Andrenyi, the beautiful countess

: Rudolph Andrenyi, the Hungarian count/diplomat

LEGEND 14: Natalia Dragomiroff, the Russian princess dowager
0: Pierre Michel, the French conductor 15: Colonel Arbuthnot, the British officer from India
1: Hercule Poirot, the Belgian detective 16: Cyrus Bettman Hardman, the American detective

Fig. 3. A digraph of order 17 and size 18, devised by Agatha Christie.

Two arcs are consecutive if the tip of the first is the initial vertex of the
second. A sequence of consecutive arcs (a1, ag, ..., ax) is called a walk of length k;
it can be symbolized by showing the vertices as well as the arcs:

ai as (23
Vg —> V] — Vg - Vg1 —3 vg. (25)

In a simple digraph it’s sufficient merely to specify the vertices; for example,
1—0—8—14—8—3 is a walk in Fig. 3. The walk in (25) is an oriented
path when the vertices {vg,v1,..., v} are distinct; it’s an oriented cycle when
they are distinct except that vy = vq.

In a digraph, the directed distance d(u,v) is the number of arcs in the short-
est oriented path from w to v, which is also the length of the shortest walk from
u to v. It may differ from d(v, u); but the triangle inequality (18) remains valid.

Every graph can be regarded as a digraph, because an edge u — v is
essentially equivalent to a matched pair of arcs, u —> v and v— u. The digraph
obtained in this way retains all the properties of the original graph; for example,
the degree of each vertex in the graph becomes its out-degree in the digraph,
and also its in-degree in the digraph. Furthermore, distances remain the same.

A multigraph (V,E) is like a graph except that its edges E can be any
multiset of pairs {u,v}; edges v — v that loop from a vertex to itself, which
correspond to “multipairs” {v, v}, are also permitted. For example,

AD)—C=CGD (26)

is a multigraph of order 3 with six edges, {1,1}, {1, 2}, {2, 3}, {2, 3}, {3,3}, and
{3,3}. The vertex degrees in this example are d(1) = d(2) = 3 and d(3) = 6,
because each loop contributes 2 to the degree of its vertex. An edge loop v— v
becomes two arc loops v — v when a multigraph is regarded as a digraph.

Representation of graphs and digraphs. Any digraph, and therefore any

graph or multigraph, is completely described by its adjacency matriz A = (ayy),

which has n rows and n columns when there are n vertices. Each entry a,, of

this matrix specifies the number of arcs from u to v. For example, the adjacency

matrices for K3, P3, C5, Js, and (26) are respectively

. /o011 . /010 . /010 111 210

K3 = (001), Py= (001), C3= (001), Js = (111>7 A= (102). (27)
000 000 100 111 024

20 COMBINATORIAL SEARCHING 7

The powerful mathematical tools of matrix theory make it possible to prove
many nontrivial results about graphs by studying their adjacency matrices;
exercise 65 provides a particularly striking example of what can be done. One
of the main reasons is that matrix multiplication has a simple interpretation in
the context of digraphs. Consider the square of A, where the element in row u

and column v is
(AQ)uv = Z Ay Ao, (28)

by definition. Since a,,, is the number of arcs from u to w, we see that @, 0w,
is the number of walks of the form u — w — v. Therefore (A?),, is the total
number of walks of length 2 from u to v. Similarly, the entries of A tell us the
total number of walks of length k between any ordered pair of vertices, for all
k > 0. For example, the matrix A in (27) satisfies
210 5 2 2 12 9 12
A:<102>, A2:(258>, A3:<91842>; (29)
0 2 4 2 8 20 12 42 96
there are 12 walks of length 3 from the vertex 1 of the multigraph (26) to vertex 3,
and 18 such walks from vertex 2 to itself.
Reordering of the vertices changes an adjacency matrix from A to P"AP,
where P is a permutation matrix (a 0—1 matrix with exactly one 1 in each row
and column), and P~ = PT is the matrix for the inverse permutation. Thus

210 201 012 021 402 420
(102), <042>, <120>, <240>, <021>, and (201) (30)
024 120 204 102 210 012

are all adjacency matrices for (26), and there are no others.

There are more than 2”("’1)/2/71! graphs of order n, when n > 1, and
almost all of them require Q(n?) bits of data in their most economical encoding.
Consequently the best way to represent the vast majority of all possible graphs
inside a computer, from the standpoint of memory usage, is essentially to work
with their adjacency matrices.

But the graphs that actually arise in practical problems have quite different
characteristics from graphs that are chosen at random from the set of all possi-
bilities. A real-life graph usually turns out to be “sparse,” having say O(nlogn)
edges instead of Q(n?), unless n is rather small, because §2(n?) bits of data are
difficult to generate. For example, suppose the vertices correspond to people,
and the edges correspond to friendships. If we consider 5 billion people, few
of them will have more than 10000 friends. But even if everybody had 10000
friends, on average, the graph would still have only 2.5 x 10'2 edges, while almost
all graphs of order 5 billion have approximately 6.25 x 108 edges.

Thus the best way to represent a graph inside a machine usually turns out
to be rather different than to record n? values ay, of adjacency matrix elements.
Instead, the algorithms of the Stanford GraphBase were developed with a data
structure akin to the linked representation of sparse matrices discussed in Section
2.2.6, though somewhat simplified. That approach has proved to be not only
versatile and efficient, but also easy to use.

7 COMBINATORIAL SEARCHING 21

The SGB representation of a digraph is a combination of sequential and
linked allocation, using nodes of two basic types. Some nodes represent vertices,
other nodes represent arcs. (There’s also a third type of node, which represents
an entire graph, for algorithms that deal with several graphs at once. But each
graph needs only one graph node, so the vertex and arc nodes predominate.)

Here’s how it works: Every SGB digraph of order n and size m is built
upon a sequential array of n vertex nodes, making it easy to access vertex k
for 0 < k£ < n. The m arc nodes, by contrast, are linked together within a
general memory pool that is essentially unstructured. Each vertex node typically
occupies 32 bytes, and each arc node occupies 20 (and the graph node occupies
220); but the node sizes can be modified without difficulty. A few fields of each
node have a fixed, definite meaning in all cases; the remaining fields can be used
for different purposes in different algorithms or in different phases of a single
algorithm. The fixed-purpose parts of a node are called its “standard fields,”
and the multipurpose parts are called its “utility fields.”

Every vertex node has two standard fields called NAME and ARCS. If v is a
variable that points to a vertex node, we’ll call it a vertex variable. Then NAME (v)
points to a string of characters that can be used to identify the corresponding
vertex in human-oriented output; for example, the 49 vertices of graph (17) have
names like CA, WA, OR, ..., RI. The other standard field, ARCS(v), is far more
important in algorithms: It points to an arc node, the first in a singly linked list
of length d*(v), with one node for each arc that emanates from vertex v.

Every arc node has two standard fields called TIP and NEXT; a variable a that
points to an arc node is called an arc variable. TIP(a) points to the vertex node
that represents the tip of arc a; NEXT (a) points to the arc node that represents
the next arc whose initial vertex agrees with that of a.

A vertex v with out-degree 0 is represented by letting ARCS (v) = A (the null
pointer). Otherwise if, say, the out-degree is 3, the data structure contains three
arc nodes with ARCS(v) = a1, NEXT(a1) = ag, NEXT(as) = a3, and NEXT (a3) =
A; and the three arcs from v lead to TIP(ay), TIP(as3), TIP(a3).

Suppose, for example, that we want to compute the out-degree of vertex v,
and store it in a utility field called ODEG. It’s easy:

Set a < ARCS(v) and d < 0.
While a # A, set d + d+ 1 and a + NEXT(a). (31)
Set ODEG(v) <« d.

When a graph or a multigraph is considered to be a digraph, as mentioned
above, its edges u—— v are each equivalent to two arcs, u — v and v — u. These
arcs are called “mates”; and they occupy two arc nodes, say a and a’, where a
appears in the list of arcs from u and a’ appears in the list of arcs from v. Then
TIP(a) = v and TIP(a’) = u. We'll also write

MATE(a) = a’ and MATE(a') = a, (32)

in algorithms that want to move rapidly from one list to another. However, we
usually won’t need to store an explicit pointer from an arc to its mate, or to have

22 COMBINATORIAL SEARCHING 7

a utility field called MATE within each arc node, because the necessary link can
be deduced implicitly when the data structure has been constructed cleverly.

The implicit-mate trick works like this: While creating each edge u — v
of an undirected graph or multigraph, we introduce consecutive arc nodes for
u—v and v —u. For example, if there are 20 bytes per arc node, we’ll reserve
40 consecutive bytes for each new pair. We can also make sure that the memory
address of the first byte is a multiple of 8. Then if the arc node a is in memory
location «, its mate is in location

a+20, ifamod8=0
{a—20, ifam0d8:4}

Such tricks are valuable in combinatorial problems, when operations might
be performed a trillion times, because every way to save 3.6 nanoseconds per
operation will make such a computation finish an hour sooner. But (33) isn’t
directly “portable” from one implementation to another. If the size of an arc
node were changed from 20 to 24, for example, we would have to change the
numbers 40, 20, 8, and 4 in (33) to 48, 24, 16, and 8.

The algorithms in this book will make no assumptions about node sizes.
Instead, we’ll adopt a convention of the C programming language and its de-
scendants, so that if a points to an arc node, ‘a + 1’ denotes a pointer to the arc
node that follows it in memory. And in general

=a—20+ (40& ((a&4) —1)). (33)

LOC(NODE (a + k)) = LOC(NODE(a)) + ke, (34)

when there are ¢ bytes in each arc node. Similarly, if v is a vertex variable, ‘v+ &’
will stand for the kth vertex node following node v; the actual memory location
of that node will be v plus k times the size of a vertex node.

The standard fields of a graph node g include M(g), the total number of arcs;
N(g), the total number of vertices; VERTICES(g), a pointer to the first vertex
node in the sequential list of all vertex nodes; ID(g), the graph’s identification,
which is a string like words (5757,0,0,0); and some other fields needed for the
allocation and recycling of memory when the graph grows or shrinks, or for
exporting a graph to external formats that interface with other users and other
graph-manipulation systems. But we will rarely need to refer to any of these
graph node fields, nor will it be necessary to give a complete description of SGB
format here, since we shall describe almost all of the graph algorithms in this
chapter by sticking to an English-language description at a fairly abstract level
instead of descending to the bit level of machine programs.

A simple graph algorithm. To illustrate a medium-high-level algorithm of
the kind that will appear later, let’s convert the proof of Theorem B into a
step-by-step procedure that paints the vertices of a given graph with two colors
whenever that graph is bipartite.

Algorithm B (Bipartiteness testing). Given a graph represented in SGB format,
this algorithm either finds a 2-coloring with COLOR(v) € {0,1} in each vertex v,
or it terminates unsuccessfully when no valid 2-coloring is possible. Here COLOR
is a utility field in each vertex node. Another vertex utility field, LINK(v), is a

7 COMBINATORIAL SEARCHING 23

vertex pointer used to maintain a stack of all colored vertices whose neighbors
have not yet been examined. An auxiliary vertex variable s points to the top of
this stack. The algorithm also uses variables u, v, w for vertices and a for arcs.
The vertex nodes are assumed to be vg + k for 0 < k < n.

B1. [Initialize.] Set COLOR(vg + k) < —1 for 0 < k£ < n. (Now all vertices are
uncolored.) Then set w < vy + n.

B2. [Done?] (At this point all vertices > w have been colored, and so have the
neighbors of all colored vertices.) Terminate the algorithm successfully if
w = vg. Otherwise set w < w — 1, the next lower vertex node.

B3. [Color w if necessary.] If COLOR(w) > 0, return to B2. Otherwise set

COLOR (w) 0, LINK(w) + A, and s + w.

B4. [Stack = u.] Set u + s, s + LINK(s), a < ARCS(u). (We will examine all
neighbors of the colored vertex u.)

B5. [Done with u?] If a = A, go to B8. Otherwise set v « TIP(a).

B6. [Process v.] If COLOR(v) < 0, set COLOR(v) < 1 — COLOR(w), LINK (v) <+ s,
and s « v. Otherwise if COLOR(v) = COLOR(u), terminate unsuccessfully.

B7. [Loop on a.] Set a < NEXT(a) and return to B5.
B8. [Stack nonempty?] If s # A, return to B4. Otherwise return to B2. |

This algorithm is a variant of a general graph traversal procedure called “depth-
first search,” which we will study in detail in Section 7.4.1. Its running time is
O(m + n) when there are m arcs and n vertices (see exercise 70); therefore it
is well adapted to the common case of sparse graphs. With small changes we
can make it output an odd-length cycle whenever it terminates unsuccessfully,
thereby proving the impossibility of a 2-coloring (see exercise 72).

Examples of graphs. The Stanford GraphBase includes a library of more than
three dozen generator routines, capable of producing a great variety of graphs
and digraphs for use in experiments. We've already discussed words; now let’s
look at a few of the others, in order to get a feeling for some of the possibilities.

e roget(1022,0,0,0) is a directed graph with 1022 vertices and 5075 arcs. The
vertices represent the categories of words or concepts that P. M. Roget and J. L.
Roget included in their famous 19th-century Thesaurus (London: Longmans,
Green, 1879). The arcs are the cross references between categories, as found
in that book. For example, typical arcs are water — moisture, discovery —
truth, preparation — learning, vulgarity —ugliness, wit —> amusement.

e book("jean",80,0,1,356,0,0,0) is a graph with 80 vertices and 254 edges.
The vertices represent the characters of Victor Hugo’s Les Misérables; the edges
connect characters who encounter each other in that novel. Typical edges are
Fantine — Javert, Cosette — Thénardier.

e bi_book("jean",80,0,1,356,0,0,0) is a bipartite graph with 804356 vertices
and 727 edges. The vertices represent characters or chapters in Les Misérables;
the edges connect characters with the chapters in which they appear (for in-
stance, Napoleon—2.1.8, Marius—4.14.4).

24 COMBINATORIAL SEARCHING 7

e plane_miles(128,0,0,0,1,0,0) is a planar graph with 129 vertices and 381
edges. The vertices represent 128 cities in the United States or Canada, plus
a special vertex INF for a “point at infinity.” The edges define the so-called
Delaunay triangulation of those cities, based on latitude and longitude in a
plane; this means that «w — v if and only if there’s a circle passing through
and v that does not enclose any other vertex. Edges also run between INF and
all vertices that lie on the convex hull of all city locations. Typical edges are
Seattle, WA — Vancouver, BC — INF; Toronto, ON — Rochester, NY.

e plane_lisa(360, 250, 15,0, 360, 0, 250, 0, 0, 2295000) is a planar graph that has
3027 vertices and 5967 edges. It is obtained by starting with a digitized image of
Leonardo da Vinci’s Mona Lisa, having 360 rows and 250 columns of pixels, then
rounding the pixel intensities to 16 levels of gray from 0 (black) to 15 (white).
The resulting 3027 rookwise connected regions of constant brightness are then
considered to be neighbors when they share a pixel boundary. (See Fig. 4.)

[;u{j o ol

Fig. 4. A digital rendition of Mona Lisa, with a closeup detail (best viewed from afar).

e bi_lisa(360, 250, 0,360, 0,250, 8192, 0) is a bipartite graph with 360 + 250 =
610 vertices and 40923 edges. It’s another takeoff on Leonardo’s famous painting,
this time linking rows and columns where the brightness level is at least 1/8. For
example, the edge r102 — c113 occurs right in the middle of Lisa’s “smile.”

e raman(31,23,3,1) is a graph with quite a different nature from the SGB
graphs in previous examples. Instead of being linked to language, literature,
or other outgrowths of human culture, it’s a so-called “Ramanujan expander
graph,” based on strict mathematical principles. Each of its (23% —23)/2 = 6072
vertices has degree 32; hence it has 97152 edges. The vertices correspond to
equivalence classes of 2 x 2 matrices that are nonsingular modulo 23; a typical
edge is (2,7;1,1) — (4,6;1,3). Ramanujan graphs are important chiefly
because they have unusually high girth and low diameter for their size and degree.
This one has girth 4 and diameter 4.

7 COMBINATORIAL SEARCHING 25

e raman(5,37,4,1), similarly, is a regular graph of degree 6 with 50616 vertices
and 151848 edges. It has girth 10, diameter 10, and happens also to be bipartite.

e random_graph(1000, 5000, 0,0,0,0,0,0,0,s) is a graph with 1000 vertices,
5000 edges, and seed s. It “evolved” by starting with no edges, then by repeatedly
choosing pseudorandom vertex numbers 0 < u,v < 1000 and adding the edge
u— v, unless u = v or that edge was already present. When s = 0, all vertices
belong to a giant component of order 999, except for the isolated vertex 908.

e random_graph(1000, 5000, 0,0,1,0,0,0,0,0) is a digraph with 1000 vertices
and 5000 arcs, obtained via a similar sort of evolution. (In fact, each of its arcs
happens to be part also of random_graph(1000, 5000, 0,0, 0,0,0,0,0,0).)

o subsets(5,1,-10,0,0,0,#1,0) is a graph with (') = 462 vertices, one for
every five-element subset of {0,1,...,10}. Two vertices are adjacent whenever
the corresponding subsets are disjoint; thus, the graph is regular of degree 6,
and it has 1386 edges. We can consider it to be a generalization of the Petersen
graph, which has subsets(2,1, —4,0,0,0,#1,0) as one of its SGB names.

e subsets(5,1,—10,0,0,0,#10,0) has the same 462 vertices, but now they are
adjacent if the corresponding subsets have four elements in common. This graph
is regular of degree 30, and it has 6930 edges.

e parts(30,10,30,0) is another SGB graph with a mathematical basis. It has
3590 vertices, one for each partition of 30 into at most 10 parts. Two partitions
are adjacent when one is obtained by subdividing a part of the other; this rule
defines 31377 edges. The digraph parts(30, 10, 30, 1) is similar, but its 31377 arcs
point from shorter to longer partitions (for example, 13+7+7+3 — 7+7+7+6+3).

e simplex(10,10,10,10,10,0,0) is a graph with 286 vertices and 1320 edges.
Its vertices are the integer solutions to x1 +xo+x3+x4 = 10 with z; > 0, namely
the “compositions of 10 into four nonnegative parts”; they can also be regarded
as barycentric coordinates for points inside a tetrahedron. The edges, such as
3,1,4,2—3,0,4,3, connect compositions that are as close together as possible.

e board(8,8,0,0,5,0,0) and board(8,8,0,0,—2,0,0) are graphs on 64 vertices
whose 168 or 280 edges correspond to the moves of a knight or bishop in chess.
And zillions of further examples are obtainable by varying the parameters to the
SGB graph generators. For example, Fig. 5 shows two simple variants of board
and simplex; the somewhat arcane rules of board are explained in exercise 75.

‘. KA '. ""‘. KA

., Q"CD' D'OD'Q"
‘ IS EIASASES

board(6,9,0,0,5,0, 0) simplez(10,8,7,6,0,0,0)
(Knight moves on a 6 X 9 chessboard) (A truncated triangular grid)

Fig. 5. Samples of SGB graphs related to board games.

26 COMBINATORIAL SEARCHING 7

Graph algebra. We can also obtain new graphs by operating on the graphs
that we already have. For example, if G = (V, E) is any graph, its complement
G = (V, E) is obtained by letting

u—ouv in G = u#vand u—vin G. (35)

Thus, non-edges become edges, and vice versa. Notice that E_: G, and that K,
has no edges. The corresponding adjacency matrices A and A satisfy

A+A = J-1,; (36)

here J is the matrix of all 1s, and I is the identity matrix, so J and J — I are
respectively the adjacency matrices of .J, and K,, when G has order n.

Furthermore, every graph G = (V, E) leads to a line graph L(G), whose
vertices are the edges E; two edges are adjacent in L(G) if they have a common
vertex. Thus, for example, the line graph L(K,,) has (g) vertices, and it is regular
of degree 2n — 4 when n > 2 (see exercise 82). A graph is called k-edge-colorable
when its line graph is k-colorable.

Given two graphs G = (U, E) and H = (V, F), their union G U H is the
graph (UUV, EUF) obtained by combining the vertices and edges. For example,
suppose G and H are the graphs of rook and bishop moves in chess; then G U H
is the graph of queen moves, and its official SGB name is

gunion (board (8,8,0,0,—1,0,0), board(8,8,0,0,—2,0,0),0,0). (37)

In the special case where the vertex sets U and V are disjoint, the union
GUH doesn’t require the vertices to be identified in any consistent way for cross-
correlation; we get a diagram for G U H by simply drawing a diagram of G next
to a diagram of H. This special case is called the “juxtaposition” or direct sum
of G and H, and we shall denote it by G & H. For example, it’s easy to see that

Knm®Kn = K, (38)

and that every graph is the direct sum of its connected components.
Equation (38) is a special case of the general formula

Knl D an S---D Knk = Kn17n2v---7nk7 (39)

which holds for complete k-partite graphs whenever k£ > 2. But (39) fails when
k = 1, because of a scandalous fact: The standard graph-theoretic notation
for complete graphs is inconsistent! Indeed, K, , denotes a complete 2-partite
graph, but K, does not denote a complete 1-partite graph. Somehow graph the-
orists have been able to live with this anomaly for decades without going berserk.
Another important way to combine disjoint graphs G and H is to form their
join, G— H, which consists of G & H together with all edges u—v for u € U
and v € V. [See A. A. Zykov, Mat. Sbornik 24 (1949), 163-188, §1.3.] And
if G and H are disjoint digraphs, their directed join G — H is similar, but it
supplements G @& H by adding only the one-way arcs u— v from U to V.

7 COMBINATORIAL SEARCHING 27

The direct sum of two matrices A and B is obtained by placing B diagonally
below and to the right of A:

A@Bz(é g), (40)

where each O in this example is a matrix of all zeros, with the proper number of
rows and columns to make everything line up correctly. Our notation G & H for
the direct sum of graphs is easy to remember because the adjacency matrix for
G®H is precisely the direct sum of the respective adjacency matrices A and B for
G and H. Similarly, the adjacency matrices for G—H, G — H, and G<— H are

A J A J A O
ime (A0 ame (A 0) aeno (4 9)

respectively, where J is an all-1s matrix as in (36). These operations are asso-
ciative, and related by complementation:

A9 (BaC)=(A® B)®C, A—(B—C)=(A—B)—C; (42)
A—(B—C)=(A—B)—C, A+ (B+C)=(A+—B)+C; (43)
A®B=A—B, A—B=4&B; (44)
A—B=A«B, A« B=A—B; (45)
(A®B)+(A—B) = (A—B) + (A«—B). (46)

Notice that, by combining (39) with (42) and (44), we have
Kninoyony, = Kny —Kp,— - — Kp, (47)

when k£ > 2. Also
K,=K—Ky— - —K; and K;:Kl—)K1—>"'—>K1, (48)

with n copies of K, showing that K,, = Kj 1,1 is a complete n-partite graph.

Direct sums and joins are analogous to addition, because we have K,, ® K,, =
Kpmyn and K, — K, = Kp4n. We can also combine graphs with algebraic
operations that are analogous to multiplication. For example, the Cartesian
product operation forms a graph GO H of order mn from a graph G = (U, E) of
order m and a graph H = (V, F) of order n. The vertices of GO H are ordered
pairs (u,v), where u € U and v € V; the edges are (u,v) — (u’,v) when u— '
in G, together with (u,v) — (u,v") when v — v’ in H. In other words, GO H
is formed by replacing each vertex of G by a copy of H, and replacing each edge
of G by edges between corresponding vertices of the appropriate copies:

><Z>DY:

28 COMBINATORIAL SEARCHING 7

As usual, the simplest special cases of this general construction turn out to
be especially important in practice. When both G and H are paths or cycles, we
get “graph-paper graphs,” namely the m x n grid P,, 0 P,, the m x n cylinder
P,,0C,, and the m x n torus C,, 0C,, illustrated here for m = 3 and n = 4:

T
SEists

P3 DP4 P3I:|C4 CS I:|Cf4
(3 x 4 grid) (3 x 4 cylinder) (3 x 4 torus)

(50)

Four other noteworthy ways to define products of graphs have also proved to

be useful. In each case the vertices of the product graph are ordered pairs (u,v).

e The direct product G® H, also called the “conjunction” of G and H, or their

“categorical product,” has (u,v) — (v/,v") when u— v’ in G and v—' in H.

e The strong product G H combines the edges of GOH with those of G® H.

e The odd product G A H has (u,v) — (u/,v') when we have either u — u’
in G or v— ' in H, but not both.

e The lexicographic product G o H, also called the “composition” of G and H,

has (u,v) — (v',v") when u—u' in G, and (u,v) — (u,v’) when v — o' in H.

All five of these operations extend naturally to products of k > 2 graphs G, =
(Vi,Eq), ..., Gy = (Vk, Ey), whose vertices are the ordered k-tuples (vy,...,vg)
with v; € V; for 1 < j < k. For example, when k = 3, the Cartesian products
G10(G20G3) and (G10G2) 0G5 are isomorphic, if we consider the compound
vertices (v1, (v2,v3)) and ((v1,v2),v3) to be the same as (v, vz, v3). Therefore
we can write this Cartesian product without parentheses, as G; 0 Go0G3. The
most important example of a Cartesian product with k factors is the k-cube,

PQDPQD"'DPQ; (51)

its 2% vertices (vy,...,vy) are adjacent when their Hamming distance is 1.
In general, suppose v = (vy,...,v;) and v’ = (v},...,v}) are k-tuples of
vertices, where we have v; — v; in G; for exactly a of the subscripts j, and

v; = v;- for exactly b of the subscripts. Then we have:

e v—v inGO---0O0Ggifandonlyifa=1and b=k —1;

e v—v in Gy ®---® Gy, if and only if a = k and b = 0;

e v— v in Gy ®---®Gy, if and only if a +b =k and a > 0;

e v— v in Gy A---AGy if and only if a is odd.
The lexicographic product is somewhat different, because it isn’t commutative;
in Gy o---0Gy, we have v—2' for v # ¢ if and only if v; — v, where j is the
minimum subscript with v; # v’.

Exercises 91-102 explore some of the basic properties of graph products.

See also the book Product Graphs by Wilfried Imrich and Sandi Klavzar (2000),
which contains a comprehensive introduction to the general theory, including
algorithms for factorization of a given graph into “prime” subgraphs.

7 COMBINATORIAL SEARCHING 29

*Graphical degree sequences. A sequence dids ...d, of nonnegative integers
is called graphical if there’s at least one graph on vertices {1,2,...,n} such that
vertex k has degree di. We can assume that dy > dy > --- > d,. Clearly dy < n
in any such graph; and the sum m = d; +ds + - - - + d,, of any graphical sequence
is always even, because it is twice the number of edges. Furthermore, it’s easy to
see that the sequence 3311 is not graphical; therefore graphical sequences must
also satisfy additional conditions. What are they?

A simple way to decide if a given sequence dyds ...d, is graphical, and to
construct such a graph if one exists, was discovered by V. Havel [C’asopis pro
Péstovdni Matematiky 80 (1955), 477-479]. We begin with an empty tableau,
having dj, cells in row k; these cells represent “slots” into which we’ll place the
neighbors of vertex k in the constructed graph. Let ¢; be the number of cells in
column j; thus ¢; > ¢y > -+ -, and when 1 < k < n we have ¢; > k if and only if
dy, > j. For example, suppose n = 8 and dj ...ds = 55544322; then

00O Ut W
—~
ot
N
~—

is the initial tableau, and we have c; ...c5 = 88653. Havel’s idea is to pair up
vertex n with d, of the highest-degree vertices. In this case, for example, we
create the two edges 8 — 3 and 8 — 2, and the tableau takes the following form:

OO U Wh =
—
9]
w
=

2|3

(We don’t want 8 — 1, because the empty slots should continue to form a tableau
shape; the cells of each column must be filled from the bottom up.) Next we set
n < 7 and create two further edges, 7— 1 and 7— 5. And then come three
more, 6 —4, 6 — 3, 6 — 2, making the tableau almost half full:

1 7
2 6/38

3 6/8

4 6

5 = (54)
6234

7 (511

8 [2[3

30 COMBINATORIAL SEARCHING 7

We’ve reduced the problem to finding a graph with degree sequence dy ...ds =
43333; at this point we also have ¢; ...cq4 = 5551. The reader is encouraged to
fill in the remaining blanks, before looking at the answer in exercise 103.

Algorithm H (Graph generator for specified degrees). Given dy; > --- > d, >
dpt+1 = 0, this algorithm creates edges between the vertices {1,...,n} in such
a way that exactly dj edges touch vertex k, for 1 < k < n, unless the sequence

dy ...d, isn’t graphical. An array c;...cq, is used for auxiliary storage.

H1. [Set the ¢’s.] Start with k + dy and j < 0. Then while &£ > 0 do the follow-
ing operations: Set j < j + 1; while k > d;;1, set ¢ < j and k < k — 1.
Terminate successfully if j = 0 (all d’s are zero).

H2. [Find n.] Set n < ¢;. Terminate successfully if n = 0; terminate unsuccess-
fully if dy > n > 0.

H3. [Begin loop on j.] Set 7 < 1, ¢t < dy, r < ¢, and j + d,.

H4. [Generate a new edge.] Set ¢; < ¢; — 1 and m < ¢;. Create the edge
n—m, and set dp, < dpy, — 1, ¢t < m—1, 7 < j—1. If j = 0, return
to step H2. Otherwise, if m =i, set 4 « r+ 1, t + d;, and r + ¢; (see
exercise 104); repeat step H4. |

When Algorithm H succeeds, it certainly has constructed a graph with the
desired degrees. But when it fails, how can we be sure that its mission was
impossible? The key fact is based on an important concept called “majorization”:
If d,...d, and d} ...d] are two partitions of the same integer (that is, if d; >
ceo>d,and d] >--->d,anddy+---+d, =d} +---+d],), we say that
dy...d, majorizes dy ...d, ifdy +---+d, >d\+---+dj for 1 <k <n.
Lemma M. Ifd;...d
dy...d

n

., Is graphical and d, ...d, majorizes d}...d.,, then

is also graphical.

Proof. 1t is sufficient to prove the claim when d; ...d, and dj...d}, differ in
only two places,

o= dy — [k=1i]+ [k=7] where 7 < 7, (55)

because any sequence majorized by dy...d, can be obtained by repeatedly
performing mini-majorizations such as this. (Exercise 7.2.1.4-55 discusses ma-
jorization in detail.)

Condition (55) implies that d; > d; > di,,; > dj > d;. So any graph
with degree sequence dj ...d, contains a vertex v such that v — ¢ and v — j.
Deleting the edge v — ¢ and adding the edge v — j yields a graph with degree

sequence d ...d,, as desired. |

Corollary H. Algorithm H succeeds whenever d; .. .d,, is graphical.

Proof. We may assume that n > 1. Suppose G is any graph on {1,...,n} with
degree sequence dj . ..d,, and let G’ be the subgraph induced by {1,...,n —1};
in other words, obtain G’ by removing vertex n and the d,, edges that it touches.
The degree sequence d ...d,,_, of G’ is obtained from d; ...d,—1 by reducing
some d, of the entries by 1 and sorting them into nonincreasing order. By

7 COMBINATORIAL SEARCHING 31

definition, dj . ..d!,_, is graphical. The new degree sequence d/ ...d! _; produced
by the strategy of steps H3 and H4 is designed to be majorized by every such
dj ...d],_;, because it reduces the largest possible d,, entries by 1. Thus the new
dy ...d!_, is graphical. Algorithm H, which sets dy...d,_1 < df...d!_,, will
therefore succeed by induction on n. |

The running time of Algorithm H is roughly proportional to the number
of edges generated, which can be of order n?. Exercise 105 presents a faster
method, which decides in O(n) steps whether or not a given sequence d; ...d,
is graphical (without constructing any graph).

Beyond graphs. When the vertices and/or arcs of a graph or digraph are
decorated with additional data, we call it a network. For example, every vertex of
words (5757,0,0,0) has an associated rank, which corresponds to the popularity
of the corresponding five-letter word. Every vertex of plane_lisa (360,250, 15,
0, 360, 0, 250, 0, 0,2295000) has an associated pixel density, between 0 and 15.
Every arc of board(8,8,0,0,—2,0,0) has an associated length, which reflects
the distance of a piece’s motion on the board: A bishop’s move from corner to
corner has length 7. The Stanford GraphBase includes several further generators
that were not mentioned above, because they are primarily used to generate
interesting networks, rather than to generate graphs with interesting structure:

e miles(128,0,0,0,0,127,0) is a network with 128 vertices, corresponding to
the same North American cities as the graph plane_miles described earlier. But
miles, unlike plane_miles, is a complete graph with (138) edges. Every edge has
an integer length, which represents the distance that a car or truck would have
needed to travel in 1949 when going from one given city to another. For example,

‘Vancouver, BC’ is 3496 miles from ‘West Palm Beach, FL’ in the miles network.

e econ(81,0,0,0) is a network with 81 vertices and 4902 arcs. Its vertices
represent sectors of the United States economy, and its arcs represent the flow of
money from one sector to another during the year 1985, measured in millions of
dollars. For example, the flow value from Apparel to Household furniture is 44,
meaning that the furniture industry paid $44,000,000 to the apparel industry in
that year. The sum of flows coming into each vertex is equal to the sum of flows
going out. An arc appears only when the flow is nonzero. A special vertex called
Users receives the flows that represent total demand for a product; a few of these
end-user flows are negative, because of the way imported goods are treated by
government economists.

e games(120,0,0,0,0,0,128,0) is a network with 120 vertices and 1276 arcs.
Its vertices represent football teams at American colleges and universities. Arcs
run between teams that played each other during the exciting 1990 season,
and they are labeled with the number of points scored. For example, the arc
Stanford — California has value 27, and the arc California — Stanford
has value 25, because the Stanford Cardinal defeated the U. C. Berkeley Golden
Bears by a score of 27-25 on 17 November 1990.

e risc(16) is a network of an entirely different kind. It has 3240 vertices and
7878 arcs, which define a directed acyclic graph or “dag” —namely, a digraph

32 COMBINATORIAL SEARCHING 7

that contains no oriented cycles. The vertices represent gates that have Boolean
values; an arc such as Z45 — RO:7~ means that the value of gate Z45 is an
input to gate RO:7~. Each gate has a type code (AND, OR, XOR, NOT, latch,
or external input); each arc has a length, denoting an amount of delay. The
network contains the complete logic for a miniature RISC chip that is able to
obey simple commands governing sixteen registers, each 16 bits wide.

Complete details about all the SGB generators can be found in the author’s
book The Stanford GraphBase (New York: ACM Press, 1994), together with
dozens of short example programs that explain how to manipulate the graphs and
networks that the generators produce. For example, a program called LADDERS
shows how to find a shortest path between one five-letter word and another. A
program called TAKE_RISC demonstrates how to put a nanocomputer through
its paces by simulating the actions of a network built from the gates of risc(16).

Hypergraphs. Graphs and networks can be utterly fascinating, but they aren’t
the end of the story by any means. Lots of important combinatorial algorithms
are designed to work with hypergraphs, which are more general than graphs
because their edges are allowed to be arbitrary subsets of the vertices.

For example, we might have seven vertices, identified by nonzero binary
strings v = ajasas, together with seven edges, identified by bracketed nonzero
binary strings e = [b1bb3], with v € e if and only if (a1b;+azbs+asbs) mod 2 = 0.
Each of these edges contains exactly three vertices:

[001] = {010,100, 110}; [010] = {001,100, 101}; [011] = {011,100, 111};
[100] = {001,010,011}; [101] = {010,101, 111};
[110] = {001,110,111}; [111] = {011,101, 110}. (56)

And by symmetry, each vertex belongs to exactly three edges. (Edges that
contain three or more vertices are sometimes called “hyperedges,” to distinguish
them from the edges of an ordinary graph. But it’s OK to call them just “edges.”)

A hypergraph is said to be r-uniform if every edge contains exactly r vertices.
Thus (56) is a 3-uniform hypergraph, and a 2-uniform hypergraph is an ordinary
graph. The complete r-uniform hypergraph Kr(f) has n vertices and (:f) edges.

Most of the basic concepts of graph theory can be extended to hypergraphs
in a natural way. For example, if H = (V| E) is a hypergraph and if U C V, the
subhypergraph H | U induced by U has the edges {e | e € E and e C U}. The
complement H of an r-uniform hypergraph has the edges of K,(LT) that aren’t
edges of H. A k-coloring of a hypergraph is an assignment of colors to the
vertices so that no edge is monochromatic. And so on.

Hypergraphs go by many other names, because the same properties can be
formulated in many different ways. For example, every hypergraph H = (V, E)
is essentially a family of sets, because each edge is a subset of V. A 3-uniform
hypergraph is also called a triple system. A hypergraph is also equivalent to
a matrix B of Os and 1s, with one row for each vertex v and one column for
each edge e; row v and column e of this matrix contains the value b, = [v € €].

7 COMBINATORIAL SEARCHING 33

Matrix B is called the incidence matriz of H, and we say that “v is incident
with €¢” when v € e. Furthermore, a hypergraph is equivalent to a bipartite
graph, with vertex set V U E and with the edge v — e whenever v is incident
with e. The hypergraph is said to be connected if and only if the corresponding
bipartite graph is connected. A cycle of length k in a hypergraph is defined to
be a cycle of length 2k in the corresponding bipartite graph.

For example, the hypergraph (56) can be defined by an equivalent incidence
matrix or an equivalent bipartite graph as follows:

[001] [010] [011] [100] [101] [110] [111] [010] 001
001 0 1 0 1 0 1 0

010 1 0 0 1 1 0 0 010
ot1 | O 0 1 1 0 0 1
101 1 1 0 0 0 O oo1] (57)
w1/ 0 1 0 O 1 0 1
100
110 1 0 0 0 0 1 1
111 0 0 1 0 1 1 0

[111] o011

It contains 28 cycles of length 3, such as
[101] — 101 —[010] — 001 — [100] — 010 — [101]. (58)

The dual HT of a hypergraph H is obtained by interchanging the roles
of vertices and edges, but retaining the incidence relation. In other words, it
corresponds to transposing the incidence matrix. Notice, for example, that the
dual of an r-regular graph is an r-uniform hypergraph.

Incidence matrices and bipartite graphs might correspond to hypergraphs in
which some edges occur more than once, because distinct columns of the matrix
might be equal. When a hypergraph H = (V, E) does not have any repeated
edges, it corresponds also to yet another combinatorial object, namely a Boolean
function. For if, say, the vertex set V is {1,2,...,n}, the function

W@y, @, @) = [{j|a; =1} € E] (59)
characterizes the edges of H. For example, the Boolean formula

(1 @22 @ 23) A (T2 D 24 D 26) A (T3 B T4 & 27)

6
A (23 ® x5 @ 26) A (F1 V o V Ty) (6o)

is another way to describe the hypergraph of (56) and (57).

The fact that combinatorial objects can be viewed in so many ways can
be mind-boggling. But it’s also extremely helpful, because it suggests different
ways to solve equivalent problems. When we look at a problem from different
perspectives, our brains naturally think of different ways to attack it. Sometimes
we get the best insights by thinking about how to manipulate rows and columns
in a matrix. Sometimes we make progress by imagining vertices and paths, or
by visualizing clusters of points in space. Sometimes Boolean algebra is just the
thing. If we're stuck in one domain, another might come to our rescue.

34 COMBINATORIAL SEARCHING 7

Covering and independence. If H = (V, E) is a graph or hypergraph, a set
U of vertices is said to cover H if every edge contains at least one member of U.
A set W of vertices is said to be independent (or “stable”) in H if no edge is
completely contained in W.

From the standpoint of the incidence matrix, a covering is a set of rows
whose sum is nonzero in every column. And in the special case that H is a
graph, every column of the matrix contains just two 1s; hence an independent
set in a graph corresponds to a set of rows that are mutually orthogonal — that
is, a set for which the dot product of any two different rows is zero.

These concepts are opposite sides of the same coin. If U covers H, then
W = V \ U is independent in H; conversely, if W is independent in H, then
U =V \W covers H. Both statements are equivalent to saying that the induced
hypergraph H | W has no edges.

This dual relationship between covering and independence, which was per-
haps first noted by Claude Berge [Proc. National Acad. Sci. 43 (1957), 842-844],
is somewhat paradoxical. Although it’s logically obvious and easy to verify, it’s
also intuitively surprising. When we look at a graph and try to find a large
independent set, we tend to have rather different thoughts from when we look at
the same graph and try to find a small vertex cover; yet both goals are the same.

A covering set U is minimal if U \ u fails to be a cover for all u € U.
Similarly, an independent set W is mazimal if W U w fails to be independent for
all w ¢ W. Here, for example, is a minimal cover of the 49-vertex graph of the
contiguous United States, (17), and the corresponding maximal independent set:

NN
LN

ENBNZaN
N
Minimal vertex cover, Maximal independent set,
with 38 vertices with 11 vertices

A covering is called minimum if it has the smallest possible size, and an
independent set is called mazimum if it has the largest possible size. For example,
with graph (17) we can do much better than (61):

NN
A NN
ENEINZENNY

NZAVZANN

Minimum vertex cover, Maximum independent set,
with 30 vertices with 19 vertices

Notice the subtle distinction between “minimal” and “minimum” here: In gen-
eral (but in contrast to most dictionaries of English), people who work with
combinatorial algorithms use ‘-al’ words like “minimal” or “optimal” to refer

7 COMBINATORIAL SEARCHING 35

to combinatorial configurations that are locally best, in the sense that small
changes don’t improve them. The corresponding ‘-um’ words, “minimum” or
“optimum,” are reserved for configurations that are globally best, considered
over all possibilities. It’s easy to find solutions to any optimization problem
that are merely optimal, in the weak local sense, by climbing repeatedly until
reaching the top of a hill. But it’s usually much harder to find solutions that
are truly optimum. For example, we’ll see in Section 7.9 that the problem of
finding a maximum independent set in a given graph belongs to a class of difficult
problems that are called NP-complete.

Even when a problem is NP-complete, we needn’t despair. We’ll discuss
techniques for finding minimum covers in several parts of this chapter, and those
methods work fine on smallish problems; the optimum solution in (62) was found
in less than a second, after examining only a tiny fraction of the 24° possibilities.
Furthermore, special cases of NP-complete problems often turn out to be simpler
than the general case. In Section 7.5.1 we’ll see that a minimum vertex cover can
be discovered quickly in any bipartite graph, or in any hypergraph that is the dual
of a graph. And in Section 7.5.5 we’ll study efficient ways to discover a maximum
matching, which is a maximum independent set in the line graph of a given graph.

The problem of maximizing the size of an independent set occurs sufficiently
often that it has acquired a special notation: If H is any hypergraph, the number

a(H) = max{|W| | W is an independent set of vertices in H } (63)
is called the independence number (or the stability number) of H. Similarly,
X(H) = min{k | H is k-colorable} (64)

is called the chromatic number of H. Notice that x(H) is the size of a mini-
mum covering of H by independent sets, because the vertices that receive any
particular color must be independent according to our definitions.

These definitions of a(H) and x(H) apply in particular to the case when
H is an ordinary graph, but of course we usually write a(G) and x(G) in such
situations. Graphs have another important number called their clique number,

w(G) = max{|X|| X is a clique in G}, (65)
where a “clique” is a set of mutually adjacent vertices. Clearly
w(G) = a(G), (66)

because a clique in G is an independent set in the complementary graph. Sim-
ilarly we can see that x(G) is the minimum size of a “clique cover,” which is a
set of cliques that exactly covers all of the vertices.

Several instances of “exact cover problems” were mentioned earlier in this
section, without an explanation of exactly what such a problem really signifies.
Finally we’re ready for the definition: Given the incidence matrix of a hyper-
graph H, an ezact cover of H is a set of rows whose sum is (11 ... 1). In other
words, an exact cover is a set of vertices that touches each hyperedge exactly

once; an ordinary cover is only required to touch each hyperedge at least once.

36 COMBINATORIAL SEARCHING 7

EXERCISES

1. [25] Suppose n = 4m — 1. Construct arrangements of Langford pairs for the
numbers {1,1,...,n,n}, with the property that we also obtain a solution for n = 4m
by changing the first ‘2m—1’ to ‘4m’ and appending ‘2m—1 4m’ at the right. Hint:
Put the m — 1 even numbers 4m—4, 4m—6, ..., 2m at the left.

2. [20] For which n can {0,0,1,1,...,n—1,n—1} be arranged as Langford pairs?

3. [22] Suppose we arrange the numbers {0,0,1,1,...,n—1,n—1} in a circle, instead
of a straight line, with distance k between the two k’s. Do we get solutions that are
essentially distinct from those of exercise 27

4. [M20] (T.Skolem, 1957.) Show that the Fibonacci string S = babbababbabba . ..
of exercise 1.2.8-36 leads directly to an infinite sequence 0012132453674 . .. of Langford
pairs for the set of all nonnegative integers, if we simply replace the a’s and b’s
independently by 0, 1, 2, etc., from left to right.

» 5. [HM22] If a permutation of {1,1,2,2,...,n,n} is chosen at random, what is the
probability that the two k’s are exactly k positions apart, given k7 Use this formula
to guess the size of the Langford numbers L, in (1).

» 6. [M28] (M. Godfrey, 2002.) Let f(z1,---,%2n) = [[1—1 (T6Tntk Z?ZkalxjijrkH).

a) Prove that 221’._.,12716{71’“} fz, ..., @2n) = g2ntiy,

b) Explain how to evaluate this sum in O(4"n) steps. How many bits of precision
are needed for the arithmetic?

¢) Gain a factor of eight by exploiting the identities

f(zl, .. .,.’EQn) = f(—xl, ey —.’Egn) = f(.’EQn, .. .,Il) = f(:nl, —T2y...,T2n—1, —.’Egn).

7. [M22] Prove that every Langford pairing of {1,1,...,16,16} must have seven
uncompleted pairs at some point, when read from left to right.

8. [23] The simplest Langford sequence is not only well-balanced; it’s planar, in the
sense that its pairs can be connected up without crossing lines as in (2):

Find all of the planar Langford pairings for which n < 8.

9. [24] (Langford triples.) In how many ways can {1,1,1,2,2,2,...,9,9,9} be ar-
ranged in a row so that consecutive k’s are k apart, for 1 < k < 9?7
10. [M20] Explain how to construct a magic square directly from Fig. 1. (Convert
each card into a number between 1 and 16, in such a way that the rows, columns, and
main diagonals all sum to 34.)

11. [20] Extend (5) to a “Hebraic-Greeco-Latin” square by appending one of the
letters {N,1,),7} to the two-letter string in each compartment. No letter pair (Latin,
Greek), (Latin, Hebrew), or (Greek, Hebrew) should appear in more than one place.

» 12. [M21] (L. Euler.) Let L;; = (¢+j) mod n for 0 < 4,5 < n be the addition table for
integers mod n. Prove that a latin square orthogonal to L exists if and only if n is odd.

13. [M25] A 10 x 10 square can be divided into four quarters of size 5 x 5. A 10 x 10
latin square formed from the digits {0,1,...,9} has k “intruders” if its upper left
quarter has exactly k elements > 5. (See exercise 14(e) for an example with k = 3.)
Prove that the square has no orthogonal mate unless there are at least three intruders.

7 COMBINATORIAL SEARCHING 37

14. [29] Find all orthogonal mates of the following latin squares:

(a) (b) (©) (d) ()
3145926870 2718459036 0572164938 1680397425 7823456019
2819763504 0287135649 6051298473 8346512097 8234067195
9452307168 7524093168 4867039215 9805761342 2340178956
6208451793 1435962780 1439807652 2754689130 3401289567
8364095217, 6390718425, 8324756091. 0538976214, 4012395678
5981274036 ° 4069271853 7203941586° 4963820571’ 5678912340°
4627530981 3102684597 5610473829 7192034658 6789523401
0576148329 9871546302 9148625307 6219405783 0195634782
1730689452 8956307214 2795380164 3471258906 1956740823
7093812645 5643820971 3986512740 5027143869 9567801234

15. [50] Find three 10 x 10 latin squares that are mutually orthogonal to each other.

16. [48] (H.J. Ryser, 1967.) A latin square is said to be of “order n” if it has n rows,
n columns, and n symbols. Does every latin square of odd order have a transversal?

17. [25] Let L be a latin square with elements L;; for 0 < i,j < n. Show that the
problems of (a) finding all the transversals of L, and (b) finding all the orthogonal
mates of L, are special cases of the general exact cover problem.

18. [M26] The string z122...zy is called “n-ary” if each element z; belongs to the
set {0,1,...,n—1} of n-ary digits. Two strings z1z2 ...z~ and y1y2 ...y~ are said to
be orthogonal if the N pairs (zj,y;) are distinct for 1 < 7 < N. (Consequently, two
n-ary strings cannot be orthogonal if their length N exceeds n?.) An n-ary matrix
with m rows and n? columns whose rows are orthogonal to each other is called an
orthogonal array of order n and depth m.

Find a correspondence between orthogonal arrays of depth m and lists of m — 2
mutually orthogonal latin squares. What orthogonal array corresponds to exercise 117

19. [M25] Continuing exercise 18, prove that an orthogonal array of order n > 1 and
depth m is possible only if m < n + 1. Show that this upper limit is achievable when
n is a prime number p. Write out an example when p = 5.

20. [HM20] Show that if each element k in an orthogonal array is replaced by e2mki/n,

the rows become orthogonal vectors in the usual sense (their dot product is zero).

21. [M21] A geometric net is a system of points and lines that obeys three axioms:
i) Each line is a set of points.
ii) Distinct lines have at most one point in common.
iii) If p is a point and L is a line with p ¢ L, then there is exactly one line M such
that pe M and LN M = (.
If LN M = 0 we say that L is parallel to M, and write L || M.
a) Prove that the lines of a geometric net can be partitioned into equivalence classes,
with two lines in the same class if and only if they are equal or parallel.
b) Show that if there are at least two classes of parallel lines, every line contains the
same number of points as the other lines in its class.
c) Furthermore, if there are at least three classes, there are numbers m and n such
that all points belong to exactly m lines and all lines contain exactly n points.

22. [M22] Show that every orthogonal array can be regarded as a geometric net. Is
the converse also true?

23. [M23] (Error-correcting codes.) The “Hamming distance” d(z,y) between two
strings © = z1...2n and y = y1 ...y~ is the number of positions j where z; # y;. A

v

38 COMBINATORIAL SEARCHING 7

b-ary code with n information digits and r check digits is a set C'(b,n,r) of b™ strings
T =21...Tnyr, Where 0 < z; < bfor 1 < j <n+r. When a codeword z is transmitted
and the message y is received, d(z,y) is the number of transmission errors. The code
is called t-error correcting if we can reconstruct the value of whenever a message y
is received with d(z,y) < t. The distance of the code is the minimum value of d(z, '),
taken over all pairs of codewords z # z’.
a) Prove that a code is t-error correcting if and only if its distance exceeds 2t.
b) Prove that a single-error correcting b-ary code with 2 information digits and 2 check
digits is equivalent to a pair of orthogonal latin squares of order b.
¢) Furthermore, a code C(b,2,r) with distance r+1 is equivalent to a set of » mutually
orthogonal latin squares of order b.

24. [M80] A geometric net with N points and R lines leads naturally to the binary
code C(2, N, R) with codewords 1 ...TZNTN+1 ... ZN+R defined by the parity bits
Znik = fu(z1,...,zn) = (3 {=z; | point j lies on line k}) mod 2.

a) If the net has m classes of parallel lines, prove that this code has distance m + 1.
b) Find an efficient way to correct up to ¢ errors with this code, assuming that m = 2¢.
Tllustrate the decoding process in the case N = 25, R = 30, t = 3.

25. [27] Find a latin square whose rows and columns are five-letter words. (For this
exercise you’ll need to dig out the big dictionaries.)

26. [25] Compose a meaningful English sentence that contains only five-letter words.
27. [20] How many SGB words contain exactly k distinct letters, for 1 < k < 57
28. [20] Are there any pairs of SGB word vectors that differ by 1 in each component?

29. [20] Find all SGB words that are palindromes (equal to their reflection), or mirror
pairs (like regal lager).

30. [20] The letters of first are in alphabetic order from left to right. What is the
lexicographically first such five-letter word? What is the last?

31. [21] (C. McManus.) Find all sets of three SGB words that are in arithmetic
progression but have no common letters in any fixed position. (One such example is
{power, slugs, visit}.)

32. [28] Does the English language contain any 10-letter words aoas ...ag for which
both agasasagas and ajaszasarag are SGB words?

33. [20] (Scot Morris.) Complete the following list of 26 interesting SGB words:
about, bacon, faced, under, chief, ..., pizza.

34. [21] For each SGB word that doesn’t include the letter y, obtain a 5-bit binary
number by changing the vowels {a, e, i,0,u} to 1 and the other letters to 0. What are
the most common words for each of the 32 binary outcomes?

35. [26] Sixteen well-chosen elements of WORDS(1000) lead to the branching pattern

|sheep| |she1f |
|sheet| |she11| |short| |shows| |sta11| |start| |steam| |steep|

|shore| |shown| |stalk| |stars| |steal| |steel|

7 COMBINATORIAL SEARCHING 39

which is a complete binary trie of words that begin with the letter s. But there’s no such
pattern of words beginning with a, even if we consider the full collection WORDS(5757).

What letters of the alphabet can be used as the starting letter of sixteen words
that form a complete binary trie within WORDS(n), given n?

36. [M17] Explain the symmetries that appear in the word cube (10). Also show that
two more such cubes can be obtained by changing only the two words {stove,event}.

37. [20] Which vertices of the graph words(5757,0,0,0) have maximum degree?

38. [22] Using the digraph rule in (14), change tears to smile in just three steps,
without computer assistance.

39. [M00] Is G\ e an induced subgraph of G? Is it a spanning subgraph?

40. [M15] How many (a) spanning (b) induced subgraphs does a graph G = (V, E)
have, when |V | =n and |E| = e?

41. [M10] For which integers n do we have (a) K,, = P,? (b) K, = Cyn?

42. [15] (D. H. Lehmer.) Let G be a graph with 13 vertices, in which every vertex
has degree 5. Make a nontrivial statement about G.

43. [23] Are any of the following graphs the same as the Petersen graph?

& KB W

44. [M23] How many symmetries does Chvatal’s graph have? (See Fig. 2(f).
45. [20] Find an easy way to 4-color the planar graph (17). Would 3 colors sufﬁce?

46. [M25] Let G be a graph with n > 3 vertices, defined by a planar diagram that
is “maximal,” in the sense that no additional lines can be drawn between nonadjacent
vertices without crossing an existing edge.

a) Prove that the diagram partitions the plane into regions that each have exactly
three vertices on their boundary. (One of these regions is the set of all points that
lie outside the diagram.)

b) Therefore G has exactly 3n — 6 edges.

47. [M22] Prove that the complete bigraph K3 3 isn’t planar.

48. [M25] Complete the proof of Theorem B by showing that the stated procedure
never gives the same color to two adjacent vertices.

49. [18] Draw diagrams of all the cubic graphs with at most 6 vertices.
50. [M24] Find all bipartite graphs that can be 3-colored in exactly 24 ways.

51. [M22] Given a geometric net as described in exercise 21, construct the bipartite
graph whose vertices are the points p and the lines L of the net, with p — L if and
only if p € L. What is the girth of this graph?

52. [M16] Find a simple inequality that relates the diameter of a graph to its girth.
(How small can the diameter be, if the girth is large?)

53. [15] Which of the words world and happy belongs to the giant component of the
graph words (5757,0,0,0)7

40 COMBINATORIAL SEARCHING 7

» 54. [21] The 49 postal codes in graph (17) are AL, AR, AZ, CA, CO, CT, DC, DE, FL, GA,
IA, ID, IL, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NM, NV,
NY, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VA, VT, WA, WI, WV, WY, in alphabetical order.

a) Suppose we consider two states to be adjacent if their postal codes agree in one
place (namely AL — AR — OR — OH, etc.). What are the components of this graph?
b) Now form a directed graph with XY — YZ (for example, AL — LA — AR, etc.).
What are the strongly connected components of this digraph? (See Section 2.3.4.2.)
¢) The United States has additional postal codes AA, AE, AK, AP, AS, FM, GU, HI, MH,
MP, PW, PR, VI, besides those in (17). Reconsider question (b), using all 62 codes.

55. [M20] How many edges are in the complete k-partite graph Kp, ...n, 7

v

56. [M10] True or false: A multigraph is a graph if and only if the corresponding
digraph is simple.

57. [M10] True or false: Vertices u and v are in the same connected component of a
directed graph if and only if either d(u,v) < oo or d(v,u) < co.

58. [M17] Describe all (a) graphs (b) multigraphs that are regular of degree 2.

v

59. [M23] A tournament of order n is a digraph on n vertices that has exactly (%)
arcs, either u— v or v — u for every pair of distinct vertices {u,v}.
a) Prove that every tournament contains an oriented spanning path v1 — —v,.
b) Consider the tournament on vertices {0,1,2,3,4} for which u — v if and only if
(u — v) mod 5 > 3. How many oriented spanning paths does it have?
¢) Is K, the only tournament of order n that has a unique oriented spanning path?

> 60. [M22] Let u be a vertex of greatest out-degree in a tournament, and let v be any
other vertex. Prove that d(u,v) < 2.

61. [M16] Construct a digraph that has k walks of length k from vertex 1 to vertex 2.

62. [M21] A permutation digraph is a directed graph in which every vertex has out-
degree 1 and in-degree 1; therefore its components are oriented cycles. If it has
n vertices and k components, we call it even if n — k is even, odd if n — k is odd.
a) Let G be a directed graph with adjacency matrix A. Prove that the number of
spanning permutation digraphs of G is per A, the permanent of A.
b) Interpret the determinant, det A, in terms of spanning permutation digraphs.

63. [M23] Let G be a graph of girth g in which every vertex has at least d neighbors.
Prove that G has at least N vertices, where

1+Zogk<td(d_1)k; if g=2t+1;
@)+ Y, d(d - DF, ifg =2t +2.

» 64. [M21] Continuing exercise 63, show that there’s a unique graph of girth 4, mini-
mum degree d, and order 2d, for each d > 2.

» 65. [HMS31] Suppose graph G has girth 5, minimum degree d, and N = d*>41 vertices.
a) Prove that the adjacency matrix A of G satisfies the equation A+ A = (d—1)T+J.
b) Since A is a symmetric matrix, it has N orthogonal eigenvectors z;, with corre-
sponding eigenvalues)\j, such that Az; = A\jz; for 1 < j < N. Prove that each
A; is either d or (—1 ++/4d — 3)/2.
c) Show that if v/4d — 3 is irrational, then d = 2. Hint: A1+ 4+ An = trace(4) = 0.
d) And if v/4d — 3 is rational, d € {3,7,57}.

66. [M30] Continuing exercise 65, construct such a graph when d = 7.

7 COMBINATORIAL SEARCHING 41

67. [M48] Is there a regular graph of degree 57, order 3250, and girth 57
68. [M20] How many different adjacency matrices does a graph G on n vertices have?

69. [20] Extending (31), explain how to calculate both out-degree 0DEG(v) and in-
degree IDEG(wv) for all vertices v in a graph that has been represented in SGB format.

70. [M20] How often is each step of Algorithm B performed, when that algorithm
successfully 2-colors a graph with m arcs and n vertices?

71. [26] Implement Algorithm B for the MMIX computer, using the MMIXAL assembly
language. Assume that, when your program begins, register vO points to the first vertex
node and register n contains the number of vertices.

72. [M22] When COLOR (v) is set in step B6, call u the parent of v; but when COLOR (w)
is set in step B3, say that w has no parent. Define the (inclusive) ancestors of vertex v,
recursively, to be v together with the ancestors of v’s parent (if any).
a) Prove that if v is below u in the stack during Algorithm B, the parent of v is an
ancestor of u.
b) Furthermore, if COLOR(v) = COLOR(u) in step B6, v is currently in the stack.
c¢) Use these facts to extend Algorithm B so that, if the given graph is not bipartite,
the names of vertices in a cycle of odd length are output.

73. [15] What’s another name for random_graph(10,45,0,0,0,0,0,0,0,0)?
74. [21] What vertex of roget(1022,0,0,0) has the largest out-degree?

75. [22] The SGB graph generator board(ni,n2,ns,n4, p, w,0) creates a graph whose
vertices are the t-dimensional integer vectors (z1,...,z:) for 0 < z; < b;, determined
by the first four parameters (n1, n2, n3, n4) as follows: Set ns < 0 and let j > 0 be min-
imum such that n;41 < 0. If j =0, set by < b2 < 8 and ¢ < 2; this is the default 8 x 8
board. Otherwise if nj;1 =0, set b; <~ n; for 1 < ¢ < jand t < j. Finally, if n;41 <0,

set t < |njt1], and set b; to the ith element of the periodic sequence (ni,...,n;,
Nni,...,Nj,n1,...). (For example, the specification (ni,n2,ns,n4) = (2,3,5,—7) is
about as tricky as you can get; it produces a 7-dimensional board with (b1,...,b7) =

(2,3,5,2,3,5,2), hence a graph with 2 3 5 2 3 5 2= 1800 vertices.)

The remaining parameters (p, w, o), for “piece, wrap, and orientation,” determine
the arcs of the graph. Suppose first that w = 0 = 0. If p > 0, we have (z1,...,2:) —
(y1,--.,y¢) if and only if y; = z; + §; for 1 < ¢ < ¢, where (dy,...,d;) is an integer
solution to the equation 67 + + 67 = |p|. And if p < 0, we allow also y; = z; + kd;
for k > 1, corresponding to k moves in the same direction.

If w#0, let w = (w...w1)2 in binary notation. Then we allow “wraparound,”
yi = (zi + 6;) mod b; or y; = (z; + kJ;) mod b;, in each coordinate 4 for which w; = 1.

If 0 # 0, the graph is directed; offsets (d1,...,d:) produce arcs only when they are
lexicographically greater than (0,...,0). But if o = 0, the graph is undirected.

Find settings of (n1,n2,ns, na, p, w,0) for which board will produce the following
fundamental graphs: (a) the complete graph K,; (b) the path P,; (c) the cycle Ch;
(d) the transitive tournament K3; (e) the oriented path Pg; (f) the oriented cycle Cy}
(g) the m x n grid P, 0P,; (h) the m X n cylinder P,,0Cy; (i) the m X n torus Cp,0Ch;
(j) the m x n rook graph K,, 0K,; (k) the m x n directed torus Cy, OCy’; (1) the null
graph K,; (m) the n-cube P,O OP, with 2™ vertices.

76. [20] Can board(ni,n2,ns,ns,p, w,0) produce loops, or parallel (repeated) edges?
77. [M20] If graph G has diameter > 3, prove that G has diameter < 3.

v

v

42 COMBINATORIAL SEARCHING 7

78. [M27] Let G = (V, E) be a graph with |V| = n and G = G. (In other words, G
is self-complementary: There’s a permutation ¢ of V' such that u — v if and only if
p(u) - ¢(v) and u # v. We can imagine that the edges of K, have been painted black
or white; the white edges define a graph that’s isomorphic to the graph of black edges.)
a) Prove that n mod 4 = 0 or 1. Draw diagrams for all such graphs with n < 8.
b) Prove that if n mod 4 = 0, every cycle of the permutation ¢ has a length that is a
multiple of 4.
c) Conversely, every permutation ¢ with such cycles arises in some such graph G.
d) Extend these results to the case n mod 4 = 1.

79. [M22] Given k > 0, construct a graph on the vertices {0,1,...,4k} that is both
regular and self-complementary.

80. [M22] A self-complementary graph must have diameter 2 or 3, by exercise 77.
Given k > 2, construct self-complementary graphs of both possible diameters, when
(a) V ={1,2,...,4k}; (b) V ={0,1,2,...,4k}.
81. [20] The complement of a simple digraph without loops is defined by extending
(35) and (36), so that we have u — v in D if and only if u # v and u 4 v in D. What
are the self-complementary digraphs of order 37

[M21] Are the following statements about line graphs true or false?
If G is contained in G', then L(G) is an induced subgraph of L(G’).
If G is a regular graph, so is L(G).

L(Kn,n) is regular, for all m,n > 0.

L(Kp,n,r) is regular, for all m,n,r > 0.

L(Kmn) 2 KnoOKp.

L(K.) K.

L(Ppi1) & Py.

The graphs G and L(G) both have the same number of components.
83. [16] Draw the graph L(K5).

84. [M21] Is L(K3,3) self-complementary?

85. [M22] (O. Ore, 1962.) For which graphs G do we have G & L(G)?
86. [M20] (R.J. Wilson.) Find a graph G of order 6 for which G = L(G).
87. [20] Is the Petersen graph (a) 3-colorable? (b) 3-edge-colorable?

88. [M20] The graph W, = K1 — Cpr_1 is called the wheel of order n, @

when n > 4. How many cycles does it contain as subgraphs? o
89. [M20] Prove the associative laws, (42) and (43). ®

90. [M24] A graph is called a cograph if it can be constructed algebraically from
1-element graphs by means of complementation and/or direct sum operations. For
example, there are four nonisomorphic graphs of order 3, and they all are cographs:
K; = K1 ® K, ® K, and its complement, K3; K;2 = K1 & K> and its complement,
Kl,z, Where Kz = K1 @ Kl.

Exhaustive enumeration shows that there are 11 nonisomorphic graphs of order 4.
Give algebraic formulas to prove that 10 of them are cographs. Which one isn’t?
91. [20] Draw diagrams for the 4-vertex graphs (a) K20K>; (b) K2 ® K2; (¢) K2R K>;
(d) KQAKQ, () I(gol(z7 (f) KQOKz, () KzOKz
92. [21] The five types of graph products defined in the text work fine for simple

digraphs as well as for ordinary graphs. Draw diagrams for the 4-vertex digraphs
(a) K20K7; (b) K2 ® K75 (¢) K2 v Ky'; (d) K22 K75 (e) K3'o K3

7 COMBINATORIAL SEARCHING 43

93. [15] Which of the five graph products takes K, and K, into Kmn?
94. [10] Are the SGB words graphs induced subgraphs of Pag 0 Pag 0 Pag O Pag O Pag?

95. [M20] If vertex u of G has degree d,, and vertex v of H has degree d,, what is
the degree of vertex (u,v) in (a) GaH? (b) G H? (¢) GrH? (d) GAH? (e) GoH?
96. [M22] Let A be an m x m' matrix with a,,/ in row u and column u’; let B be
an n X n’ matrix with b,, in row v and column v'. The direct product A ® B is an
mn X m'n’ matrix with @, by, in row (u,v) and column (u’,v'). Thus A ® B is the
adjacency matrix of G ® H, if A and B are the adjacency matrices of G and H.

Find analogous formulas for the adjacency matrices of (a) Go H; (b) G & H;
(c) GaH; (d) Go H.
97. [M25] Find as many interesting algebraic relations between graph sums and prod-
ucts as you can. (For example, the distributive law (A@B)®C = (AQC)® (BRC) for
direct sums and products of matrices implies that (G&G')@ H = (G® H) @ (G' ® H).
We also have K,, 0H = H® @ H, with m copies of H, etc.)
98. [M20] If the graph G has k components and the graph H has [components, how
many components are in the graphs GO H and GrRH?
99. [M20] Let de(u,u’) be the distance from vertex uw to vertex u' in graph G.
Prove that dgom((u,v), (v',v")) = dg(u,u') + de(v,v"), and find a similar formula
for dagm ((u,v), (u',v")).
100. [M21] For which connected graphs is G ® H connected?
101. [M25] Find all connected graphs G and H such that GO H 2 G® H.

102. [M20] What’s a simple algebraic formula for the graph of king moves (which
take one step horizontally, vertically, or diagonally) on an m X n board?

103. [20] Complete tableau (54). Also apply Algorithm H to the sequence 866444444,
104. [18] Explain the manipulation of variables ¢, ¢, and r in steps H3 and H4.

105. [M38] Suppose di > > d, > 0, and let ¢ > > cq, be its conjugate as in
Algorithm H. Prove that d; ...d, is graphical if and only if d1 + +d,, is even and
di+ +di<c+ +oe—kforl<k<s, wheresis maximal such that ds > s.

106. [20] True or false: If dy = = dn = d < n and nd is even, Algorithm H
constructs a connected graph.

107. [M21] Prove that the degree sequence d; ...d, of a self-complementary graph
satisfies dj + dpt1-j =n— 1 and doj_1 = daj for 1 < j < n/2.

108. [M23] Design an algorithm analogous to Algorithm H that constructs a simple
directed graph on vertices {1, ...,n}, having specified values d; and d;cF for the in-degree
and out-degree of each vertex k, whenever at least one such graph exists.

109. [M20] Design an algorithm analogous to Algorithm H that constructs a bipartite
graph on vertices {1,...,m + n}, having specified degrees dj, for each vertex k when
possible; all edges j — k should have 7 < m and k£ > m.

110. [M22] Without using Algorithm H, show by a direct construction that the se-
quence d; . ..d, is graphical when n > d; > >dp>di—1and di+ +d, is even.
111. [25] Let G be a graph on vertices V = {1,...,n}, with di the degree of k and
max(di,...,d,) = d. Prove that there’s an integer N with n < N < 2n and a graph H
on vertices {1,..., N}, such that H is regular of degree d and H |V = G. Explain how
to construct such a regular graph with N as small as possible.

44 COMBINATORIAL SEARCHING 7

112. [20] Does the network miles(128,0,0,0,0,127,0) have three equidistant cities?
If not, what three cities come closest to an equilateral triangle?

113. [05] When H is a hypergraph with m edges and n vertices, how many rows and
columns does its incidence matrix have?

114. [M20] Suppose the multigraph (26) is regarded as a hypergraph. What is the
corresponding incidence matrix? What is the corresponding bipartite graph?

115. [M20] When B is the incidence matrix of a graph G, explain the significance of
the symmetric matrices BTB and BBT.

116. [M17] Describe the edges of the complete bipartite r-uniform hypergraph Kr(,f,)n.

117. [M22] How many nonisomorphic 1-uniform hypergraphs have m edges and n ver-
tices? (Edges may be repeated.) List them all when m =4 and n = 3.

118. [M20] A “hyperforest” is a hypergraph that contains no cycles. If a hyperforest
has m edges, n vertices, and p components, what’s the sum of the degrees of its vertices?
119. [M18] What hypergraph corresponds to (60) without the final term (z1VZ2VZ4)?
120. [M20] Define directed hypergraphs, by generalizing the concept of directed graphs.
121. [M19] Given a hypergraph H = (V, E), let I(H) = (V, F), where F is the family
of all maximal independent sets of H. Express x(H) in terms of |V|, |F|, and a(I(H)T).

122. [M2/] Find a maximum independent set and a minimum coloring of the following
triple systems: (a) the hypergraph (56); (b) the dual of the Petersen graph.

123. [17] Show that the optimum colorings of K,, 0 K,, are equivalent to the solutions
of a famous combinatorial problem.

124. [M22] What is the chromatic number of the Chvétal graph, Fig. 2(f)?

125. [M48] For what values of g is there a 4-regular, 4-chromatic graph of girth g?
126. [

127. [M22] Prove that (a) x(G) + x(G) < n+ 1 and (b) x(G)x(G) > n when G is a
graph of order n, and find graphs for which equality holds.

128. [M18] Express x(GOH) in terms of x(G) and x(H), when G and H are graphs.
129. [

130. [M20] How many maximal cliques are in a complete k-partite graph?

M22] Find optimum colorings of the “kingwise torus,” Cy, ®C,,, when m,n > 3.

23] Describe the maximal cliques of the 8 x 8 queen graph (37).

131. [M30] Let N(n) be the largest number of maximal cliques that an n-vertex graph
can have. Prove that 31"/3) < N(n) < 3//31,

132. [M20] We call G tightly colorable if x(G) = w(G). Prove that x(Gr H) =
X(G)x(H) whenever G and H are tightly colorable.

133. [21] The “musical graph” illustrated here pro-
vides a nice way to review numerous definitions
that were given in this section, because its proper-
ties are easily analyzed. Determine its (a) order;

(b) size; (c) girth; (d) diameter; (e) independ-
ence number, a(G); (f) chromatic number, x(G);

(g) edge-chromatic number, x(L(G)); (h) clique
number, w(G); (i) algebraic formula as a product

of well-known smaller graphs. What is the size

of (j) a minimum vertex cover? (k) a maximum
matching? Is G (1) regular? (m) planar? (n) con-
nected? (o) directed? (p) a free tree? (q) Hamiltonian?

7 COMBINATORIAL SEARCHING 45

134. [M22] How many automorphisms does the musical graph have?

» 135. [HM26] Suppose a composer takes a random walk in the musical graph, starting
at vertex C and then making five equally likely choices at each step. Show that after
an even number of steps, the walk is more likely to end at vertex C than at any other
vertex. What is the exact probability of going from C to C in a 12-step walk?

136. [HM23] A Cayley digraph is a directed graph whose vertices V are the elements
of a group and whose arcs are v — va; for 1 < j < d and all vertices v, where
(a1,...,aq) are fixed elements of the group. A Cayley graph is a Cayley digraph that
is also a graph. Is the Petersen graph a Cayley graph?

[7] [7] [7]

3 3 3
8112 5[8112 5[8112 5 8112 5[81125[81125
1 71014 7101[4 7101 14710]%471014710]J
0369[0369]0369 306 9 ofs]s 9 036 9 0]
8§12 5[81w2 58125 8125812581125
L 71014 710 1|4 7101 '1171(,)14710H.171(,)H
036090369]0369 306 9 0]s]6 9 0]3(6 9 0]
8112 5[8112 5[81125 8112%8_12581_12%
471014 71014 7101 1 oaf Jo[af Jo[i_4f o
0369|036 9[0369 6 9 0] |690] [690]

> 137. [M25] (Generalized toruses.) An m X n torus can be regarded as a tiling of the
plane. For example, we can imagine that infinitely many copies of the 3 x 4 torus
in (50) have been placed together gridwise, as indicated in the left-hand illustration
above; from each vertex we can move north, south, east, or west to another vertex of the
torus. The vertices have been numbered here so that a northward move from v goes to
(v+4) mod 12, and an eastward move to (v+3) mod 12, etc. The right-hand illustration
shows the same torus, but with a differently shaped tile; any way to choose twelve cells
numbered {0,1,...,11} will tile the plane, with exactly the same underlying graph.
Shifted copies of a single shape will also tile the plane if they form a generalized
torus, in which cell (z,y) corresponds to the same vertex as cells (z + a,y + b) and
(z + ¢,y + d), where (a,b) and (c,d) are integer vectors and n = ad — bc > 0. The
generalized torus will then have n points. These vectors (a,b) and (c,d) are (4,0) and
(0,3) in the 3 x 4 example above; and when they are respectively (5,2) and (1, 3) we get

©
y 5
—
=
—
[

1567 8¢
012 3[4:
sfo01r12
45678
012 3[4

8]9 1011 12

45 8

N O

—
w

Here n = 13, and a northward move from v goes to (v + 4) mod 13; an eastward move
goes to (v + 1) mod 13.

Prove that if ged(a, b, ¢, d) = 1, the vertices of such a generalized torus can always
be assigned integer labels {0,1,...,n—1} in such a way that the neighbors of v are
(v£ p) mod n and (v £ q) mod n, for some integers p and q.

46 COMBINATORIAL SEARCHING 7

138. [HM27] Continuing exercise 137, what is a good way to label k-dimensional
vertices © = (z1,...,2k), when integer vectors «; are given such that each vector z
is equivalent to z 4+ a5 for 1 < j < k7 Illustrate your method in the case k = 3,
Qa1 = (3713 1)7 Q2 = (1733 1)7 a3z = (]-a 173)
139. [M22] Let H be a fixed graph of order h, and let #(H:G) be the number of times
that H occurs as an induced subgraph of a given graph G. If G is chosen at random
from the set of all 27" ~1)/2 graphs on the vertices V = {1,2,...,n}, what is the average
value of #(H:G) when H is (a) Kp; (b) Py, for h > 1; (c) Ch, for h > 2; (d) arbitrary?
140. [M30] A graph G is called proportional if its induced subgraph counts #(K3:G),
#(K3:G), and #(Ps:G) each agree with the expected values derived in exercise 139.

a) Show that the wheel graph Wy of exercise 88 is proportional in this sense.

b) Prove that G is proportional if and only if #(K3:G) = 1(%) and the degree

sequence di ...d, of its vertices satisfies the identities
dy + +dn=(;’), & + +di:g(g>. (+)

141. [26] The conditions of exercise 140(b) can hold only if nmod16 € {0,1,8}.
Write a program to find all of the proportional graphs that have n = 8 vertices.

142. [M30] (S. Janson and J. Kratochvil, 1991.) Prove that no graph G on 4 or more
vertices can be “extraproportional,” in the sense that its subgraph counts #(H:G) agree
with the expected values in exercise 139 for each of the eleven nonisomorphic graphs H
of order 4. Hint: (n — 3)#(K3:G) = 4#(K4:G) + 2#4(K1,1,2:G) + #(K10K3:G).

143. [M25] Let A be any matrix with m > 1 distinct rows, and n > m columns. Prove
that at least one column of A can be deleted, without making any two rows equal.

144. [21] Let X be an m X n matrix whose entries z;; are either 0, 1, or *. A
“completion” of X is a matrix X™ in which every * has been replaced by either 0 or 1.
Show that the problem of finding a completion with fewest distinct rows is equivalent
to the problem of finding the chromatic number of a graph.

145. [25] (R. S. Boyer and J. S. Moore, 1980.) Suppose the array a; ...a, contains a
magority element, namely a value that occurs more than n/2 times. Design an algorithm
that finds it after making fewer than n comparisons. Hint: If n > 3 and an—1 # an,
the majority element of ai ...a, is also the majority element of a; ...an_2.

7.1.1 BOOLEAN BASICS 47

Yet now and then your men of wit
Will condescend to take a bit.

— JONATHAN SWIFT, Cadenus and Vanessa (1713)

If the base 2 is used the resulting units may be called binary digits,
or more briefly bits, a word suggested by J. W. Tukey.

— CLAUDE E SHANNON, in Bell System Technical Journal (1948)

bit (bit), n ... [A] boring tool ...
— Random House Dictionary of the English Language (1987)

7.1. ZEROS AND ONES

COMBINATORIAL ALGORITHMS often require special attention to efficiency, and
the proper representation of data is an important way to gain the necessary
speed. It is therefore wise to beef up our knowledge of elementary representation
techniques before we set out to study combinatorial algorithms in detail.

Most of today’s computers are based on the binary number system, instead
of working directly with the decimal numbers that human beings prefer, because
machines are especially good at dealing with the two-state on-off quantities that
we usually denote by the digits 0 and 1. But in Chapters 1 to 6 we haven’t made
much use of the fact that binary computers can do several things quickly that
decimal computers cannot. A binary machine can usually perform “logical” or
“bitwise” operations just as easily as it can add or subtract; yet we have seldom
capitalized on that capability. We’ve seen that binary and decimal computers are
not significantly different, for many purposes, but in a sense we’ve been asking
a binary computer to operate with one hand tied behind its back.

The amazing ability of Os and 1s to encode information as well as to encode
the logical relations between items, and even to encode algorithms for processing
information, makes the study of binary digits especially rich. Indeed, we not only
use bitwise operations to enhance combinatorial algorithms, we also find that the
properties of binary logic lead naturally to new combinatorial problems that are
of great interest in their own right.

Computer scientists have gradually become better and better at taming the
wild Os and 1s of the universe and making them do useful tricks. But as bit
players on the world’s stage, we’d better have a thorough understanding of the
low-level properties of binary quantities before we launch into a study of higher-
level concepts and techniques. Therefore we shall start by investigating basic
ways to combine individual bits and sequences of bits.

7.1.1. Boolean Basics

There are 16 possible functions f(z,y) that transform two given bits z and y
into a third bit z = f(z,y), since there are two choices for each of f(0,0), f(0,1),
f(1,0), and f(1,1). Table 1 indicates the names and notations that have tradi-
tionally been associated with these functions in studies of formal logic, assuming
that 1 corresponds to “true” and 0 to “false.” The sequence of four values
£(0,0)£(0,1)£(1,0)f(1,1) is customarily called the truth table of the function f.

48 COMBINATORIAL SEARCHING 7.1.1

Let us conceive, then, of an Algebra
in which the symbols x, y, z, &c. admit indifferently of
the values 0 and 1, and of these values alone.

— GEORGE BOOLE, An Investigation of the Laws of Thought (1854)

‘Contrariwise,’” continued Tweedledee, ‘if it was so, it might be;
and if it were so, it would be;
but as it isn’t, it ain’'t. That’s logic.’

— LEWIS CARROLL, Through the Looking Glass (1871)

Such functions are often called “Boolean operations” in honor of George
Boole, who first discovered that algebraic operations on 0s and 1s could be used
to construct a calculus for logical reasoning [The Mathematical Analysis of Logic
(Cambridge: 1847); An Investigation of the Laws of Thought (London: 1854)].
But Boole never actually dealt with the “logical or” operation V; he confined
himself strictly to ordinary arithmetic operations on Os and 1s. Thus he would
write z + y to stand for disjunction, but he took pains never to use this notation
unless z and y were mutually exclusive (not both 1). If necessary, he wrote
x + (1—x)y to ensure that the result of a disjunction would never be equal to 2.

When rendering the + operation in English, Boole sometimes called it “and,”
sometimes “or.” This practice may seem strange to modern mathematicians until
we realize that his usage was in fact normal English; we say, for example, that
“boys and girls are children,” but “children are boys or girls.”

Boole’s calculus was extended to include the unconventional rule z + z = =
by W. Stanley Jevons [Pure Logic (London: Edward Stanford, 1864), §69], who
pointed out that (x + y)z was equal to zz 4 yz using his new + operation. But
Jevons did not know the other distributive law xy+2z = (z+2)(y+2). Presumably
he missed this because of the notation he was using, since the second distributive
law has no familiar counterpart in arithmetic; the more symmetrical notations
x Ay, V y in Table 1 make it easier for us to remember both distributive laws

(Vy)Ahz = (Az)V(yAz); (1)
(xAy)Vz = (zVz)A(yV=2). (2)

The second law (2) was introduced by C. S. Peirce, who had discovered indepen-
dently how to extend Boole’s calculus [Proc. Amer. Acad. Arts and Sciences 7
(1867), 250-261]. Incidentally, when Peirce discussed these early developments
several years later [Amer. J. Math. 3 (1880), 32], he referred to “the Boolian
algebra, with Jevons’s addition”; his now-unfamiliar spelling of “Boolean” was
in use for many years, appearing in the Funk and Wagnalls unabridged dictionary
as late as 1963.

The notion of truth-value combination is actually much older than Boolean
algebra. Indeed, propositional logic had been developed by Greek philosophers
already in the fourth century B.C. There was considerable debate in those days
about how to assign an appropriate true-or-false value to the proposition “if x
then y” when z and y are propositions; Philo of Megara, about 300 B.C., defined

7.1.1 BOOLEAN BASICS 49
Table 1
THE SIXTEEN LOGICAL OPERATIONS ON TWO VARIABLES
g‘é?}: New and old notation(s) Soyrr)ﬁll;itloé Name(s)
0000 0 1 Contradiction; falsehood; antilogy; constant 0
0001 zy, TNy, v&y A Conjunction; and
0010 zAg, zdy, [z>y], z=y D Nonimplication; difference; but not
0011 x L Left projection; first dictator
0100 ZAy, z¢vy, [z<y]l, y—z C Converse nonimplication; not ... but
0101 Y R Right projection; second dictator
0110 Ty, TZY, =Y &) Exclusive disjunction; nonequivalence; “xor”
0111 zVy, zl|y Y% (Inclusive) disjunction; or; and/or
1000 ZANG, zVy, zVy, zly v Nondisjunction; joint denial; neither ... nor
1001 T=yY, x4y, TEY = Equivalence; if and only if; “iff”
1010 9y, -y, ly, ~y R Right complementation
1011 zVg, zCy,z<y, [z>y],z¥ C Converse implication; if
1100 z, —x, lz, ~x L Left complementation
1101 zZVy,zDy,z=y, [z<y],y® D Implication; only if; if ... then
1110 zVy, TAY, Ay, x|y A Nonconjunction; not both ... and; “nand”
1111 1 T Affirmation; validity; tautology; constant 1

it by the truth table shown in Table 1, which states in particular that the
implication is true when both z and y are false. Much of this early work has been
lost, but there are passages in the works of Galen (2nd century A.D.) that refer
to both inclusive and exclusive disjunction of propositions. [See I. M. Bocheriski,
Formale Logik (1956), English translation by Ivo Thomas (1961), for an excellent
survey of the development of logic from ancient times up to the 20th century.)

A function of two variables is often written zoy instead of f(z,y), using some
appropriate operator symbol o. Table 1 shows the sixteen operator symbols that
we shall adopt for Boolean functions of two variables; for example, | symbolizes
the function whose truth table is 0000, A is the symbol for 0001, D is the symbol
for 0010, and so on. We have z | y =0, s Ay =zy,zDy=z -y, z Ly = «,
L EAY=ZVP zTy=L1

Of course the operations in Table 1 aren’t all of equal importance. For
example, the first and last cases are trivial, since they have a constant value
independent of z and y. Four of them are functions of x alone or y alone. We
write & for 1 — x, the complement of x.

The four operations whose truth table contains just a single 1 are easily
expressed in terms of the AND operator A, namely x Ay, t Ay, TAy, TAY.
Those with three 1s are easily written in terms of the OR operator V, namely
xVy,zVFY, TVy, TVY. The basic functions z Ay and x V y have proved to be
more useful in practice than their complemented or half-complemented cousins,
although the NOR and NAND operations tVy = Z Ay and x Ay = TV ¥ are also
of interest because they are easily implemented in transistor circuits.

50 COMBINATORIAL SEARCHING 7.1.1

In 1913, H. M. Sheffer showed that all 16 of the functions can be expressed
in terms of just one, starting with either V or A as the given operation (see
exercise 4). Actually C. S. Peirce had made the same discovery about 1880, but
his work on the subject remained unpublished until after his death [Collected
Papers of Charles Sanders Peirce 4 (1933), §§12—20, 264]. Table 1 indicates that
NAND and NOR have occasionally been written z | y and z | y; sometimes they
have been called “Sheffer’s stroke” and the “Peirce arrow.” Nowadays it is best
not to use Sheffer’s vertical line for NAND, because z | y denotes bitwise z V y in
programming languages like C.

So far we have discussed all but two of the functions in Table 1. The
remaining two are x =y and = @ y, “equivalence” and “exclusive-or,” which
are related by the identities

81
&®

=207 = 10zdy; (3)

r=y = TQy
=y = xz=§ = 0=z=y. (4)

rdy =

Bl

Both operations are associative (see exercise 6). In propositional logic, the notion
of equivalence is more important than the notion of exclusive-or, which means
inequivalence; but when we consider bitwise operations on full computer words,
we shall see in Section 7.1.3 that the situation is reversed: Exclusive-or turns
out to be more useful than equivalence, in typical programs. The chief reason
why = @ y has significant applications, even in the one-bit case, is the fact that

z@y = (z+y)mod?2. (5)

Therefore z@®y and Ay denote addition and multiplication in the field of two el-
ements (see Section 4.6), and @y naturally inherits many “clean” mathematical
properties.

Basic identities. Now let’s take a look at interactions between the fundamental
operators A, V, @, and 7, since the other operations are easily expressed in terms
of these four. Each of A, V, @ is associative and commutative. Besides the
distributive laws (1) and (2), we also have

(z@y Az = (2A2)©(yA2), (6)
as well as the absorption laws
(zAy)Vae = (zVy) Az = x. (7)
One of the simplest, yet most useful, identities is
@z = 0, (8)
since it implies among other things that
oy oz =y, (tdy)dy =z, (9)

when we use the obvious fact that £ @& 0 = z. In other words, given =z & y and
either x or y, it is easy to determine the other. And let us not overlook the
simple complementation law

T =z&l1. (10)

7.1.1 BOOLEAN BASICS 51

Another important pair of identities is known as De Morgan’s laws in honor
of Augustus De Morgan, who stated that “The contrary of an aggregate is the
compound of the contraries of the aggregants; the contrary of a compound is
the aggregate of the contraries of the components. Thus (A, B) and AB have
ab and (a,b) for contraries.” [Trans. Cambridge Philos. Soc. 10 (1858), 208.] In
more modern notation, these are the rules we have implicitly derived via truth
tables in connection with the operations NAND and NOR in Table 1, namely

TAYy = TV, (11)
rVy = TNY. (12)

Incidentally, W. S. Jevons knew (12) but not (11); he consistently wrote AB +
BA + AB instead of A+ B for the complement of AB. Yet De Morgan was
not the first Englishman who enunciated the laws above. Both (11) and (12)
can be found in the early 14th century writings of two scholastic philosophers,
William of Ockham [Summa Logicae 2 (1323)] and Walter Burley [De Puritate
Artis Logicee (c. 1330)].

De Morgan’s laws and a few other identities can be used to express A, V,
and @ in terms of each other:

Ay = ZTVY =20y d(zVy); (13)
tVy = TA = z2@y® (zAy); (14)
z®y = (eVy Az Ay = (A V(EAY). (15)

According to exercise 7.1.2-77, all computations of 1 & 2 H - - - x,, that use
only the operations A, V, and ~ must be at least 4(n — 1) steps long; thus, the
other three operations are not an especially good substitute for .

Functions of n variables. A Boolean function f(z,y, z) of three Boolean vari-
ables z, y, z can be defined by its 8-bit truth table f(0,0,0) f(0,0,1)... f(1,1,1);
and in general, every n-ary Boolean function f(z1,...,z,) corresponds to a 2"-
bit truth table that lists the successive values of f(0,...,0,0), f(0,...,0,1),
F(0,...,1,0), ..., f(1,...,1,1).

We needn’t devise special names and notations for all these functions, since
they can all be expressed in terms of the binary functions that we’ve already
learned. For example, as observed by I. I. Zhegalkin [Matematicheskii Sbornik
35 (1928), 311-369], we can always write

flze, .. xn) = g(®1, ..o 2pe1) @ h(z1,. .. Zp1) A2y (16)
when n > 0, for appropriate functions g and h, by letting

g(mla s 7xn71) = f(xla . 'axnflao);

h(.’l?l, PN ,Infl) = f(il‘l, ey Infl,O) D f(il?l, ey Lpn—1, 1)

(The operation A conventionally takes precedence over @, so we need not use
parentheses to enclose the subformula ‘h(z1,...,2,_1) A, on the right-hand
side of (16).) Repeating this process recursively on g and h until we’re down to

(17)

52 COMBINATORIAL SEARCHING 7.1.1

0-ary functions leaves us with an expression that involves only the operators &,
A, and a sequence of 2™ constants. Furthermore, those constants can usually be
simplified away, because we have

xA0=0 and zAl=z80=u=z. (18)
After applying the associative and distributive laws, we end up needing the
constant 0 only if f(x1,...,z,) is identically zero, and the constant 1 only if
£(0,...,0)=1.

We might have, for instance,

f(@,y,2) = (1®0AZ) ® (0B 1Az)AY) & (0B 1AZ) & (1D 1AT)Ay) Az
=(1®dzAy) ® (zByDzAy)Az
=1& Ay & zAz & yAz & xAyAz.

And by rule (5), we see that we're simply left with the polynomial
flryy,2) = (14+2y+ 22+ yz + zyz) mod 2, (19)

because x Ay = xy. Notice that this polynomial is linear (of degree <1) in each of
its variables. In general, a similar calculation will show that any Boolean function
f(z1,...,z,) has a unique representation such as this, called its multilinear rep-
resentation or exclusive normal form, which is a sum (modulo 2) of zero or more
of the 2™ possible terms 1, z1, X2, T1X2, T3, T1T3, ToL3, T1TLZ, ..y T1L2 ... Ty

George Boole decomposed Boolean functions in a different way, which is
often simpler for the kinds of functions that arise in practice. Instead of (16), he
essentially wrote

flz1,...,x,) = (g(xl, cey Tpo1) A :fn) \Y; (h(;cl, cey Tpo1) A mn) (20)
and called it the “law of development,” where we now have simply

g(xlv"'amnfl) = f(zla"'axnflao)v

h(xla"'amn—l) = f(l'la"'axn—la]-)a

(21)

instead of (17). Repeatedly iterating Boole’s procedure, using the distributive
law (1), and eliminating constants, leaves us with a formula that is a disjunc-
tion of zero or more minterms, where each minterm is a conjunction such as
x1 ANTa ATz Axq A x5 in which every variable or its complement is present. Notice
that a minterm is a Boolean function that is true at exactly one point.
For example, let’s consider the more-or-less random function f(w,z,y,2)
whose truth table is
11001001 0000 1111. (22)

When this function is expanded by repeatedly applying Boole’s law (20), we get
a disjunction of eight minterms, one for each of the 1s in the truth table:

fw,z,y,2) = (WAZAGAZ)V (DATZAGAZ) V (DAZAGAZ) V (DATAYAZ)
V(wAzZAGAZ) V (WAZAGAZ) V (wAZAYAZ) V (wAZTAYyAZ). (23)

7.1.1 BOOLEAN BASICS 53

In general, a disjunction of minterms is called a full disjunctive mormal
form. Every Boolean function can be expressed in this way, and the result
is unique — except, of course, for the order of the minterms. Nitpick: A special
case arises when f(z1,...,2,) is identically zero. We consider ‘0’ to be an empty
disjunction, with no terms, and we also consider ‘1’ to be an empty conjunction,
for the same reasons as we defined 22=1 ar = 0and H2=1 ax = 1in Section 1.2.3.

C. S. Peirce observed, in Amer. J. Math. 3 (1880), 37-39, that every Boolean
function also has a full conjunctive normal form, which is a conjunction of “min-
clauses” like T V 22 V T3 V T4 V 5. A minclause is 0 at only one point; so each
clause in such a conjunction accounts for a place where the truth table has a 0.
For example, the full conjunctive normal form of our function in (22) and (23) is

flw,z,y,2) = (wVaVyVz) A (wVzVGVE) A (WVEVYVE) A (wVIVGV2)
A (wVzVyVz) A(wVzVyVz) A (wVzVyVz) A (wVzVyVz). (24)

Not surprisingly, however, we often want to work with disjunctions and con-
junctions that don’t necessarily involve full minterms or minclauses. Therefore,
following nomenclature introduced by Paul Bernays in his Habilitationsschrift
(1918), we speak in general of a disjunctive normal form or “DNF” as any
disjunction of conjunctions,

m Sj
\/ /\ ujk = (11,11/\"'/\’[1,151) VeV (Uml/\"'/\umsm), (25)
j=1k=1
where each uji is a literal, namely a variable z; or its complement. Similarly,
any conjunction of disjunctions of literals,

m Sj
/\ \/ Uik = (U1 V- Vurg) Ao A (Um1 VooV lms,,), (26)
j=1k=1

is called a conjunctive normal form, or “CNF” for short.

A great many electrical circuits embedded inside today’s computer chips are
composed of “programmable logic arrays” (PLAs), which are ORs of ANDs of
possibly complemented input signals. In other words, a PLA basically computes
one or more disjunctive normal forms. Such building blocks are fast, versatile,
and relatively inexpensive; and indeed, DNFs have played a prominent role in
electrical engineering ever since the 1950s, when switching circuits were imple-
mented with comparatively old-fashioned devices like relays or vacuum tubes.
Therefore people have long been interested in finding the simplest DNFs for
classes of Boolean functions, and we can expect that an understanding of disjunc-
tive normal forms will continue to be important as technology continues to evolve.

The terms of a DNF are often called implicants, because the truth of any
term in a disjunction implies the truth of the whole formula. In a formula like

flz,y,2) = (@AGAZ)V(yA2z)V(TAYAZ),

for example, we know that f is true when Ay Az is true, namely when (z,y, z) =
(1,0,1). But notice that in this example the shorter term z A z also turns out to

54 COMBINATORIAL SEARCHING 7.1.1

be an implicant of f, even though not written explicitly, because the additional
term y A z makes the function true whenever z = z = 1, regardless of the value
of y. Similarly, Z A y is an implicant of this particular function. So we might as
well work with the simpler formula

f(x,y,2) = (@A2)V(yAz)V(ZAY). (27)

At this point no more deletions are possible within the implicants, because
neither z nor y nor z nor 7 is a strong enough condition to imply the truth of f.
An implicant that can’t be factored further by removing any of its literals
without making it too weak is called a prime implicant, following the terminology
of W. V. Quine in AMM 59 (1952), 521-531.
These basic concepts can perhaps be understood most easily if we simplify
the notation and adopt a more geometric viewpoint. We can write simply ‘f(z)’

instead of f(x1,...,2,), and regard z as a vector, or as a binary string z; ...z,
of length n. For example, the strings wzyz where the function of (22) is true are
{0000, 0001, 0100, 0111, 1100, 1101, 1110, 1111}, (28)

and we can think of them as eight points in the 4-dimensional hypercube 2 x
2 X 2 X 2. The eight points in (28) correspond to the minterm implicants that
are explicitly present in the full disjunctive normal form (23); but none of those
implicants is actually prime. For example, the first two points of (28) make the
subcube 000%, and the last four points constitute the subcube 11, if we use
asterisks to denote “wild cards” as we did when discussing database queries in
Section 6.5; therefore w A A ¢ is an implicant of f, and so is w A x. Similarly,
we can see that the subcube 0x00 accounts for two of the eight points in (28),
making w A ¥ A Z an implicant.

In general, each prime implicant corresponds in this way to a mazimal
subcube that stays within the set of points that make f true. (The subcube
is maximal in the sense that it isn’t contained in any larger subcube with the
same property; we can’t replace any of its explicit bits by an asterisk. A maximal
subcube has a maximal number of asterisks, hence a minimal number of con-
strained coordinates, hence a minimal number of variables in the corresponding
implicant.) The maximal subcubes of the eight points in (28) are

000%, 0x00, %100, *111, 11%x; (29)
so the prime implicants of the function f(w,z,y, 2) in (23) are
(WAZAGV(@AGAZ)V(AGAZ)V (2 AYyAz)V (wAz). (30)

The disjunctive prime form of a Boolean function is the disjunction of all its
prime implicants. Exercise 30 contains an algorithm to find all the prime impli-
cants of a given function, based on a list of the points where the function is true.

We can define a prime clause in an exactly similar way: It is a disjunctive
clause that is implied by f, having no subclause with the same property. And
the conjunctive prime form of f is the conjunction of all its prime clauses. (An
example appears in exercise 19.)

7.1.1 BOOLEAN BASICS 55

In many simple cases, the disjunctive prime form is the shortest possible
disjunctive normal form that a function can have. But we can often do better,
because we might be able to cover all the necessary points with only a few of
the maximal subcubes. For example, the prime implicant (y A z) is unnecessary
n (27). And in expression (30) we don’t need both (w A § A z) and (z A § A Z);
either one is sufficient, in the presence of the other terms.

Unfortunately, we will see in Section 7.9 that the task of finding a shortest
disjunctive normal form is NP-hard, thus quite difficult in general. But many
useful shortcuts have been developed for sufficiently small problems, and they
are well explained in the book Introduction to the Theory of Switching Circuits
by E. J. McCluskey (New York: McGraw—Hill, 1965). For later developments,
see Petr Fiser and Jan Hlavicka, Computing and Informatics 22 (2003), 19-51.

There’s an important special case for which the shortest DNF is, however,
easily characterized. A Boolean function is said to be monotone or positive if
its value does not change from 1 to 0 when any of its variables changes from 0
to 1. In other words, f is monotone if and only if f(z) < f(y) whenever z C y,
where the bit string © = x; ...z, is regarded as contained in or equal to the bit
string y = y1 ...yn if and only if z; < y; for all j. An equivalent condition (see
exercise 21) is that the function f either is constant or can be expressed entirely
in terms of A and V, without complementation.

Theorem Q. The shortest disjunctive normal form of a monotone Boolean
function is its disjunctive prime form.

Proof. [W. V. Quine, Boletin de la Sociedad Matemdtica Mexicana 10 (1953),
64-70.] Let f(z1,...,2z,) be monotone, and let u; A --- A us be one of its prime
implicants. We cannot have, say, u; = Z;, because in that case the shorter term
ug A -+ A ug would also be an implicant, by monotonicity. Therefore no prime
implicant has a complemented literal.

Now if we set uy < -+ < ug < 1 and all other variables to 0, the value of f
will be 1, but all of f’s other prime implicants will vanish. Thus u; A --- A ug
must be in every shortest DNF, because every implicant of a shortest DNF is
clearly prime. |

Corollary Q. A disjunctive normal form is the disjunctive prime form of a
monotone Boolean function if and only if it has no complemented literals and
none of its implicants is contained in another. |

Satisfiability. A Boolean function is said to be satisfiable if it is not identically
zero — that is, if it has at least one implicant. The most famous unsolved problem
in all of computer science is to find an efficient way to decide whether a given
Boolean function is satisfiable or unsatisfiable. More precisely, we ask: Is there an
algorithm that inputs a Boolean formula of length N and tests it for satisfiability,
always giving the correct answer after performing at most N steps?

When you hear about this problem for the first time, you might be tempted
to ask a question of your own in return: “What? Are you serious that computer
scientists still haven’t figured out how to do such a simple thing?”

56 COMBINATORIAL SEARCHING 7.1.1

Well, if you think satisfiability testing is trivial, please tell us your method.
We agree that the problem isn’t always difficult; if, for example, the given formula
involves only 30 Boolean variables, a brute-force trial of 23° cases— that’s about
a billion— will indeed settle the matter. But an enormous number of practical
problems that still await solution can be formulated as Boolean functions with,
say, 100 variables, because mathematical logic is a very powerful way to express
concepts. And the solutions to those problems correspond to the vectors x =
21 ...2100 for which f(z) = 1. So a truly efficient solution to the satisfiability
problem would be a wonderful achievement.

There is at least one sense in which satisfiability testing is a no-brainer: If
the function f(z1,...,,) has been chosen at random, so that all 2"-bit truth
tables are equally likely, then f is almost surely satisfiable, and we can find an x
with f(z) = 1 after making fewer than 2 trials (on the average). It’s like flipping
a coin until it comes up heads; we rarely need to wait long. But the catch, of
course, is that practical problems do not have random truth tables.

Okay, let’s grant that satisfiability testing does seem to be tough, in general.
In fact, satisfiability turns out to be difficult even when we try to simplify it by
requiring that the Boolean function be presented as a “formula in 3CNF” —
namely as a conjunctive normal form that has only three literals in each clause:

flze,. . zn) =1 Vur Vo) A (taVus Vo) Ao A (b V tm Vo). (31)

Here each t;, u;, and v; is zj or z; for some k. The problem of deciding
satisfiability for formulas in 3CNF is called “3SAT,” and exercise 39 explains
why it is not really easier than satisfiability in general.

We will be seeing many examples of hard-to-crack 3SAT problems, especially
in Section 7.9, where satisfiability testing will be discussed in great detail. The
situation is a little peculiar, however, because a formula needs to be fairly long
before we need to think twice about its satisfiability. For example, the shortest
unsatisfiable formula in 3CNF is (x V2 V z) A (ZV Z V Z); but it is obviously
no challenge to the intellect. We don’t get into rough waters unless the three
literals ¢;, u;, v; of a clause correspond to three different variables. And in
that case, each clause rules out exactly 1/8 of the possibilities, because seven
different settings of (¢;,u;,v;) will make it true. Consequently every such 3CNF
with at most seven clauses is automatically satisfiable, and a random setting of
its variables will succeed with probability > 1 —7/8 = 1/8.

The shortest interesting formula in 3CNF therefore has at least eight clauses.
And in fact, an interesting 8-clause formula does exist, based on the associative
block design by R. L. Rivest that we considered in 6.5—(13):

(1‘2\/Ig\/.’i4) A (I1V$3V1‘4) A\ (f1V1‘2VI4) N (i‘l Vig\/.’l?g)
N (.fg\/ifg\/xz;) A (531 \/.f3\/:i'4) N (x1Vi2\/§:4) N (1‘1 \/IQ\/.’E?,). (32)
Any seven of these eight clauses are satisfiable, in exactly two ways, and they

force the values of three variables; for example, the first seven imply that we have
r1xox3 = 001. But the complete set of eight cannot be satisfied simultaneously.

7.1.1 BOOLEAN BASICS 57

Simple special cases. Two important classes of Boolean formulas have been
identified for which the satisfiability problem does turn out to be pretty easy.
These special cases arise when the conjunctive normal form being tested consists
entirely of “Horn clauses” or entirely of “Krom clauses.” A Horn clause is an
OR of literals in which all or nearly all of the literals are complemented — at
most one of its literals is a pure, unbarred variable. A Krom clause is an OR of
exactly two literals. Thus, for example,

zVy, wVyVZz, uVoNVwVIVyVz, and =z
are examples of Horn clauses; and
zVx, zVZ, zVy, z VY, ZVy, and zVy

are examples of Krom clauses, only the last of which is not also a Horn clause.
(The first example qualifies because z V x = z.) Notice that a Horn clause
is allowed to contain any number of literals, but when we restrict ourselves to
Krom clauses we are essentially considering the 2SAT problem. In both cases
we will see that satisfiability can be decided in linear time —that is, by carrying
out only O(N) simple steps, when given a formula of length N.

Let’s consider Horn clauses first. Why are they so easy to handle? The
main reason is that a clause like 4 V7V @w V Z V §V z can be recast in the form
“(uAvAwAzAY)V z, which is the same as

UNVANWAZTANY = z.

In other words, if u, v, w, , and y are all true, then z must also be true. For
this reason, parameterized Horn clauses were chosen to be the basic underlying
mechanism of the programming language called Prolog. Furthermore there is
an easy way to characterize exactly which Boolean functions can be represented
entirely with Horn clauses:

Theorem H. The Boolean function f(x1,...,x,) is expressible as a conjunction
of Horn clauses if and only if

f(xla"'axn):f(yla"'ayn)zl implies f(I1/\y1,---,$n/\yn):1 (33)
for all Boolean values x; and y;.
Proof. [Alfred Horn, J. Symbolic Logic 16 (1951), 1421, Lemma 7.] If we have
ToVELIV--VZ=1land yoV§ V-V ik =1, then
(o AYo)VEL Ay V-V Ayg
=(@oVZIVH V- VELVY) A (YoVZLV L V- VTV Yg)
> (@ VIV VIR A (Yo VL V- Vgr) = 1
and a similar (but simpler) calculation applies when the unbarred literals z
and yo are not present. Therefore every conjunction of Horn clauses satisfies (33).

Conversely, condition (33) implies that every prime clause of f is a Horn
clause (see exercise 44). |

58 COMBINATORIAL SEARCHING 7.1.1

Let’s say that a Horn function is a Boolean function that satisfies con-
dition (33), and let’s also call it definite if it satisfies the further condition
f(1,...,1) = 1. It’s easy to see that a conjunction of Horn clauses is definite if
and only if each clause has ezxactly one unbarred literal, because only an entirely
negative clause like ZV g will fail if all variables are true. Definite Horn functions
are slightly simpler to work with than Horn functions in general, because they
are obviously always satisfiable. Thus, by Theorem H, they have a unique least
vector z such that f(z) = 1, namely the bitwise AND of all vectors that satisfy
all clauses. The core of a definite Horn function is the set of all variables z; that
are true in this minimum vector z. Notice that the variables in the core must
be true whenever f is true, so we can essentially factor them out.

Definite Horn functions arise in many ways, for example in the analysis
of games (see exercises 51 and 52). Another nice example comes from compiler
technology. Consider the following typical (but simplified) grammar for algebraic
expressions in a programming language:

(expression) — (term) | (expression)+ (term) | (expression) - (term)
(term) — (factor) | - (factor) | (term) * (factor) | { term) / { factor)

(factor) — (variable) | (constant) | ({expression))

(variable) — (letter) | (variable)(letter) | (variable)(digit) (34)
(letter) > a|b|c

(constant) — (digit) | { constant)(digit)

(digit) - 0] 1

For example, the string a/(-b0-10)+cc*cc meets the syntax for (expression)
and uses each of the grammatical rules at least once.

Suppose we want to know what pairs of characters can appear next to each
other in such expressions. Definite Horn clauses provide the answer, because
we can set the problem up as follows: Let the quantities Xx, xX, and xy denote
Boolean “propositions,” where X is one of the symbols {E, T,F,V,L,C,D} standing
respectively for (expression), (term), ..., (digit), and where x and y are sym-
bols in the set {+,-,%,/,(,),a,b,c,0,1}. The proposition Xx means, “X can
end with x”; similarly, xX means, “X can start with x”; and xy means, “The
character x can be followed immediately by y in an expression.” (There are
7x 11411 x 74 11 x 11 = 275 propositions altogether.) Then we can write

xT = xE = -T xC = xF Vx A yL = xy = Lc

Tx = Ex xF = —x Cx=>Fx Vx AyD = xy xD = xC

Ex = x+ Tx = x* = (F Dx = Vx Dx = Cx

xT = +x xF = *x xE = (x = aL Cx AyD = xy

Ex = x- Tx = x/ Ex = x) = La = 0D (35)

xT = -x xF = /x =F) = bL = DO

xF = xT xV = xF xL = xV =1Lb = 1D

Fx = Tx Vx = Fx Lx = Vx = cL = D1
where x and y run through the eleven terminal symbols {+,...,1}. This sche-

matic specification gives us a total of 24 x 114+3 x 11 x 11413 x 1 = 640 definite

7.1.1 BOOLEAN BASICS 59

Horn clauses, which we could write out formally as
(FTV+E) A (FTV-E) A==~ A (V#VOLV+0) A --- A (D1)

if we prefer the cryptic notation of Boolean algebra to the = convention of (35).
Why did we do this? Because the core of all these clauses is the set of all
propositions that are true in this particular grammar. For example, one can
verify that -E is true, hence the symbols (- can occur next to each other within
an expression; but the symbol pairs ++ and *- cannot (see exercise 46).
Furthermore, we can find the core of any given set of definite Horn clauses
without great difficulty. We just start out with the propositions that appear
alone, on the right-hand side of = when the left-hand side is empty; thirteen
clauses of that kind appear in (35). And once we assert the truth of those
propositions, we might find one or more clauses whose left-hand sides are now
known to be true. Hence their right-hand sides also belong to the core, and
we can keep going in the same way. The whole procedure is pretty much like
letting water run downhill until it has found its proper level. In fact, when
we choose appropriate data structures, this downhill process goes quite fast,
requiring only O(N +n) steps, when N denotes the total length of the clauses and
n is the number of propositional variables. (We assume here that all clauses have
been expanded out, not abbreviated in terms of parameters like x and y above.
More sophisticated techniques of theorem proving are available to deal with
parameterized clauses, but they are beyond the scope of our present discussion.)

Algorithm C (Core computation for definite Horn clauses). Given a set P of
propositional variables and a set C' of clauses, each having the form

ug A Aup = v where k > 0 and {uq,...,ux,v} C P, (36)

this algorithm finds the set Q C P of all propositional variables that are neces-
sarily true whenever all of the clauses are true.

We use the following data structures for clauses ¢, propositions p, and
hypotheses h, where a “hypothesis” is the appearance of a proposition on the
left-hand side of a clause:

CONCLUSION(c) is the proposition on the right of clause c;

COUNT(c) is the number of hypotheses of ¢ not yet asserted;

TRUTH(p) is 1 if p is known to be true, otherwise 0;

LAST(p) is the last hypothesis in which p appears;

CLAUSE(h) is the clause for which h appears on the left;

PREV(h) is the previous hypothesis containing the proposition of h.
We also maintain a stack Sg, Si, ..., Ss_1 of all propositions that are known to
be true but not yet asserted.

C1. [Initialize.] Set LAST(p) « A and TRUTH(p) <« O for each proposition p.
Also set s «+ 0, so that the stack is empty. Then for each clause ¢, having
the form (36), set CONCLUSION(c) v and COUNT(c) + k. If k = 0 and

60 COMBINATORIAL SEARCHING 7.1.1

TRUTH(v) = 0, set TRUTH(v) + 1, S; < v, and s < s + 1. Otherwise, for
1 < 5 <k, create a hypothesis record h and set CLAUSE(h) < ¢, PREV(h) <
LAST(u;), LAST(u;) < h.

C2. [Prepare to assert p.] Terminate the algorithm if s = 0; the desired core
now consists of all propositions whose TRUTH has been set to 1. Otherwise
set s+ s—1,p<+ Sg, and h + LAST(p).

C3. [Done with hypotheses?] If h = A, return to C2.

C4. [Validate h.] Set ¢ + CLAUSE(h) and COUNT(c) < COUNT(c) — 1. If the new
value of COUNT (¢) is still nonzero, go to step C6.

C5. [Deduce CONCLUSION(c).] Set p < CONCLUSION(c). If TRUTH(p) = O, set
TRUTH(p) < 1, S; < p, s+ s+ 1.

C6. [Loop on h.] Set h + PREV(A) and return to C3. |

Notice how smoothly the data structures work together, avoiding any need to
search for a place to make progress in the calculation. Algorithm C is similar
in many respects to Algorithm 2.2.3T (topological sorting), which was the first
example of multilinked data structures that we discussed long ago in Chapter 2;
in fact, we can regard Algorithm 2.2.3T as the special case of Algorithm C in
which every proposition appears on the right-hand side of exactly one clause.
(See exercise 47.)

Exercise 48 shows that a slight modification of Algorithm C solves the
satisfiability problem for Horn clauses in general. Further discussion can be
found in papers by W. F. Dowling and J. H. Gallier, J. Logic Programming 1
(1984), 267-284; M. G. Scutelld, J. Logic Programming 8 (1990), 265-273.

We turn now to Krom functions and the 2SAT problem. Again there’s a
linear-time algorithm; but again, we can probably appreciate it best if we look
first at a simplified-but-practical application. Let’s suppose that seven comedians
have each agreed to do one-night standup gigs at two of five hotels during a three-
day festival, but each of them is available for only two of those days because of
other commitments:

Tomlin should do Aladdin and Caesars on days 1 and 2;

Unwin should do Bellagio and Excalibur on days 1 and 2;

Vegas should do Desert and Excalibur on days 2 and 3;

Williams should do Aladdin and Desert on days 1 and 3; (37)
Xie should do Caesars and Excalibur on days 1 and 3;

Yankovic should do Bellagio and Desert on days 2 and 3;

Zany should do Bellagio and Caesars on days 1 and 2.

Is it possible to schedule them all without conflict?

To solve this problem, we can introduce seven Boolean variables {t, u,v,w,
x,y,z}, where t (for example) means that Tomlin does Aladdin on day 1 and
Caesars on day 2 while £ means that the days booked for those hotels occur in the
opposite order. Then we can set up constraints to ensure that no two comedians

7.1.1 BOOLEAN BASICS 61

are booked in the same hotel on the same day:

—(t Aw) [A1] -(yAz) [B2 =(tAz) [C2] —(w Ay) [D3]

=(u A z) [B1] -(tAz) [C1] =(vAy) [D2] —(uAz) [El] (38)
~(@Ay) B2l —(EAZ) (1] —(BAw) D3] —(uAD) B2 3
-(a A Z) [B2] —(x A Z) [C1] —(TAy) [D3] —(vAz) [E3]

Each of these constraints is, of course, a Krom clause; we must satisfy
(tVw) A (aVz) A (uVy) A (uVz) A (gVz) A ((VE) A (EVz) A (ZV2)
A(EVZ) A (0Vy) A (vVw) A (vVY) A (VYY) A (uVz) A (aVo) A (oVzE). (39)
Furthermore, Krom clauses (like Horn clauses) can be written as implications:
t=>w, u=z, U=y, U=z, Y=z, t=T, t=z, =2z,
t=z, v=y, T=>w, V=Y, w=y, U=z, U=V, V=>T. (40)
And every such implication also has an alternative, “contrapositive” form:
w=t, 2=U, y=u, z=u, zZ=>y, T=t zZ=t, Z=T,
z2=t, §=>v, w=>v, y=v, y=wuw, T=>u, V=U, T=7. (41)
But oops—alas— there is a vicious cycle,

U= Z =9 =>0=>10=>2z=>1t=7I=>u (42)
[B1] [B2] [D2] [E2] [B2] [C2] [C1] [E1]
This cycle tells that 4 and u must both have the same value; so there is no way
to accommodate all of the conditions in (37). The festival organizers will have to
renegotiate their agreement with at least one of the six comedians {t, u,v, z,y, 2},
if a viable schedule is to be achieved. (See exercise 53.)

Fig. 6. The digraph corresponding
to all implications of (40) and (41)
that do not involve either v or v.
Assigning appropriate values to the
literals in each strong component
will solve a binary scheduling prob-
lem that is an instance of 2SAT.

The organizers might, for instance, try to leave v out of the picture tem-
porarily. Then five of the sixteen constraints in (38) would go away and only 22
of the implications from (40) and (41) would remain, leaving the directed graph
illustrated in Fig. 6. This digraph does contain cycles, like z = 4 = =z = 2z and
t = zZ = t; but no cycle contains both a variable and its complement. Indeed,

62 COMBINATORIAL SEARCHING 7.1.1

we can see from Fig. 6 that the values tuwxyz = 110000 do satisfy every clause
of (39) that doesn’t involve v or ¥. These values give us a schedule that satisfies
six of the seven original stipulations in (37), starting with (Tomlin, Unwin, Zany,
Williams, Xie) at the (Aladdin, Bellagio, Caesars, Desert, Excalibur) on day 1.

In general, given any 2SAT problem with m Krom clauses that involve
n Boolean variables, we can form a directed graph in the same way. There
are 2n vertices {z1,Z1,...,Tn,Zn}, one for each possible literal; and there are
2m arcs of the form w — v and ¥ — u, two for each clause u V v. Two literals
u and v belong to the same strong component of this digraph if and only if
there are oriented paths from v to v and from v to u. For example, the six
strong components of the digraph in Fig. 6 are indicated by dotted contours.
All literals in a strong component must have the same Boolean value, in any
solution to the corresponding 2SAT problem.

Theorem K. A conjunctive normal form with two literals per clause is satisfiable
if and only if no strong component of the associated digraph contains both a
variable and its complement.

Proof. [Melven Krom, Zeitschrift fiir mathematische Logik und Grundlagen der
Mathematik 13 (1967), 15-20, Corollary 2.2.] If there are paths from z to z and
from Z to x, the formula is certainly unsatisfiable.

Conversely, assume that no such paths exist. Any digraph has at least
one strong component S that is a “source,” having no incoming arcs from
vertices in any other strong component. Moreover, our digraph always has an
attractive antisymmetry, illustrated in Fig. 6: We have u — v if and only if
v — 4. Therefore the complements of the literals in S form another strong
component S # S that is a “sink,” having no outgoing arcs to other strong
components. Hence we can assign the value 0 to all literals in S and 1 to
all literals in S, then remove them from the digraph and proceed in the same
way until all literals have received a value. The resulting values satisfy u < v
whenever u — v in the digraph; hence they satisfy u V v whenever u V v is a
clause of the formula. |

Theorem K leads immediately to an efficient solution of the 2SAT problem,
thanks to an algorithm by R. E. Tarjan that finds strong components in linear
time. [See SICOMP 1 (1972), 146-160; D. E. Knuth, The Stanford GraphBase
(1994), 512-519.] We shall study Tarjan’s algorithm in detail in Section 7.4.1.
Exercise 54 shows that the condition of Theorem K is readily checked whenever
the algorithm detects a new strong component. Furthermore, the algorithm
detects “sinks” first; thus, as a simple byproduct of Tarjan’s procedure, we can
assign values that establish satisfiability by choosing the value 1 for each literal
in a strong component that occurs before its complement.

Medians. We’ve been focusing on Boolean binary operations like zVy or x @ y.
But there’s also a significant ternary operation (zyz), called the median of z, y,
and z:

(zyz) = (zAY) V (yA2) V (zA2) = (zVyY) A (yV2) A (zV2). (43)

7.1.1 BOOLEAN BASICS 63

In fact, (zyz) is probably the most important ternary operation in the entire
universe, because it has amazing properties that are continually being discovered
and rediscovered.

In the first place, we can see easily that this formula for (zyz) describes the
magority value of any three Boolean quantities z, y, and z: (000) = (001) = 0
and (011) = (111) = 1. We call (zyz) the “median” instead of the “majority”
because, if z, y, and z are arbitrary real numbers, and if the operations A and Vv
denote min and max in (43), then

(xyz) =y when z < y < z. (44)
Secondly, the basic binary operations A and V are special cases of medians:

r ANy = (z0y); tVy = (zly). (45)

Thus any monotone Boolean function can be expressed entirely in terms of the
ternary median operator and the constants 0 and 1. In fact, if we lived in a
median-only world, we could let A stand for falsehood and V for truth; then
Ay = (xzAy) and zVy = (zVy) would be perfectly natural expressions, and we
could even use Polish notation like (Azy) and (Vay) if we wanted to! The same
idea applies to extended real numbers under the min-max interpretation of A

and V, if we take medians with respect to the constants A = —oc and V = +oc.
A Boolean function f(z1,xa,...,x,) is called self-dual when it satisfies
f(l'l,mQ,-~-,xn) = f(jlaj2)"'7jn)' (46)

We’ve noted that a Boolean function is monotone if and only if it can be expressed
in terms of A and V; by De Morgan’s laws (11) and (12), a monotone formula is
self-dual if and only if the symbols A and V can be interchanged without changing
the formula’s value. Thus the median operation defined in (43) is both monotone
and self-dual. In fact, it is the simplest nontrivial function of that kind, since
none of the binary operations in Table 1 are both monotone and self-dual except
the projections L and R.

Furthermore, any expression that has been formed entirely with the median
operator, without using constants, is both monotone and self-dual. For example,
the function (w(zyz)(w(uvw)z)) is self-dual because

(wlzyz)(w(uwww)z)) = (0 (zyz) (w(wow)z))
= (@(zgz) (0 (wow)T)) = (0(ZyZ)

—~

W(UVW)T)).

Emil Post, while working on his Ph.D. thesis (Columbia University, 1920), proved
that the converse statement is also true:

Theorem P. Every monotone, self-dual Boolean function f(z1,...,z,) can be
expressed entirely in terms of the median operation (zyz).

64 COMBINATORIAL SEARCHING 7.1.1

Proof. [Annals of Mathematics Studies 5 (1941), 74-75.] Observe first that

(z1y(z2y ... y(Ts 1yTs)...))
= ((331\/12\/---\/xs_1\/xs)/\y) V(g Azo A s Axg_q Axg); (47)

this formula for repeated medianing is easily proved by induction on s.
Now suppose f(x1,...,%,) is monotone, self-dual, and has the disjunctive
prime form

f(@1,. - @) = 1 V- Vi, tj=xj N NTjs,,

where no prime implicant ¢; is contained in another (Corollary Q). Any two prime
implicants must have at least one variable in common. For if we had, say, t; =
Ay and t3 = u Av Aw, the value of f would be l whenzx =y=1and u=v =
w = 0, as well as when £ = y = 0 and v = v = w = 1, contradicting self-duality.
Therefore if any ¢; consists of a single variable z, it must be the only prime

implicant — in which case f is the trivial function f(z1,...,z,) =z = (zzz).
Define the functions g, g1, -- -, gm by composing medians as follows:
ZTiy.eeyTy) = T1;
gO(1, 9 n) 1, (48)

9i(@1,- . Tn) = M1, T3 95-1(21, -, T0), for 1 <5 <my

here h(z1,...,xs;y) denotes the function on the top line of (47). By induction
on j, we can prove from (47) and (48) that g;(x1,...,2,) = 1 whenever we have
ty V.- Vit; =1, because (w1 V -+ V xjs,) Aty =t when k < j.

Finally, f(z1,...,x,) must equal gp,(z1,...,z,), because both functions are
monotone and self-dual, and we have shown that f(z1,...,2n) < gm(T1,.-.,Tn)
for all combinations of Os and 1s. This inequality suffices to prove equality,
because a self-dual function equals 1 in exactly half of the 2™ possible cases. |

One consequence of Theorem P is that we can express the median of five
elements via medians of three, because the median of any odd number of Boolean
variables is obviously a monotone and self-dual Boolean function. Let’s write
(@1 ...2951) for such a median. Then the disjunctive prime form of (vwzyz) is

(vAWAZ) V (VAWAY) V (VAWAZ) V (VAZAY) V (VAT AZ)
V (WAYAZ) V (wAzAY) V (WAZAZ) V (wAYAZ) V (2AYAZ);
so the construction in the proof of Theorem P expresses (vwzyz) as a huge
formula g10(v, w, x,y, z) involving 2,046 median-of-3 operations. Of course this
expression isn’t the shortest possible one; we actually have
(vwayz) = (v(zyz)(wz(wyz))). (49)
[See H. S. Miiller and R. O. Winder, IRE Transactions EC-11 (1962), 89-90.]
*Median algebras and median graphs. We noted earlier that the ternary
operation {zyz) is useful when z, y, and z belong to any ordered set like the real

numbers, when A and V are regarded as the operators min and max. In fact,
the operation (xyz) also plays a useful role in far more general circumstances.

7.1.1 BOOLEAN BASICS 65

A median algebra is any set M on which a ternary operation (zyz) is defined that
takes elements of M into elements of M and obeys the following three axioms:

(zzy) =z (majority law); (50)
(zyz) = (z2y) = (yrz) = (yzz) = (zzy) = (2yz) (commutative law); (51)
(zw(ywz)) = {(zwy)wz) (associative law). (52)

In the Boolean case, for example, the associative law (52) holds for w = 0 and
w = 1 because A and V are associative. Exercises 75 and 76 prove that these three
axioms imply also a distributive law for medians, which has both a short form

((zyzyuv) = (z(yuv)(zuv)) (53)
and a more symmetrical long form
<<xyz>uv> = <<xuv> (yuv}(zuv>>. (54)

No simple proof of this fact is known, but we can at least verify the special case
of (53) and (54) when y = u and z = v: We have

{(myz)yz) = (xyz) (55)

because both sides equal (zy(zyz)). In fact, the associative law (52) is just the
special case y = u of (53). And with (55) and (52) we can also verify the case

z = u ((uyz)uww) = (vu(yuz)) = ((vuy)uz) = ((ywv)uz) = (({yuv)uv)uz) =
{{yuv)ulvuz)) = (ulyuwv)(zuv)).

An ideal in a median algebra M is a set C C M for which we have
(zyz) € C whenever x € C, y € C, and z € M. (56)
If uw and v are any elements of M, the interval [u..v] is defined as follows:
[w..v] = {(xuv>|xEM} (57)

We say that “x is between u and v” if and only if € [u..v]. According to these
definitions, u and v themselves always belong to the interval [u . .v].

Lemma M. Every interval [u..v] is an ideal, and z € [u..v] <= z = (uav).
Proof. Let (zuv) and (yuv) be arbitrary elements of [u..v]. Then
({(zuwv)(yuv)z) = ((zyz)uv) € [u..v]

for all z € M, by (51) and (53), so [u..v] is an ideal. Furthermore every element
(zwv) € [u..v] satisfies (zuv) = (u(zuv)v) by (51) and (55). 1

Our intervals [u..v] have nice properties, because of the median laws:

vEu..ul = u=uv; (58)
z€u..vJandy €Efu..z] = y € [u..vl; (59)
z€fu..vJandy€fu..zlandy € v..2] = y€zr..z]. (60)

Equivalently, [u..u] = {u}; if z € [u..v] then [u..2z] C[u..v]; and z € [u..v]
also implies that [u..z] N[v..2] C[z..z] for all 2. (See exercise 72.)

66 COMBINATORIAL SEARCHING 7.1.1

Now let’s define a graph on the vertex set M, with the following edges:
u—v <= u#vand (zuv) € {u,v} for all x € M. (61)

In other words, u and v are adjacent if and only if the interval [u..v] consists of
just the two points u and v.

Theorem G. If M is any finite median algebra, the graph defined by (61) is
connected. Moreover, vertex = belongs to the interval [u..v] if and only if x lies
on a shortest path from u to v.

Proof. If M isn’t connected, choose u and v so that there is no path from w

to v and the interval [u..v] has as few elements as possible. Let z € [u..v] be

distinct from u and v. Then (zuv) = x # v, so v ¢ [u..z]; similarly u ¢ [z..v].

But [u..z] and [z..v] are contained in [u..v], by (59). So they are smaller

intervals, and there must be a path from u to z and from z to v. Contradiction.
The other half of the theorem is proved in exercise 73. |

Our definition of intervals implies that (zyz) € [z..y]|N[z..2]N[y..z],
because (ryz) = <<myz>xy> = <<xyz>mz> = <<:L"yz>yz> by (55). Conversely,
ifwelz..yfNnfr..z]N[y..z], exercise 74 proves that w = (ryz). In other
words, the intersection [z ..y]N[z..z]N[y..z] always contains exactly one point,
whenever x, y, and z are points of M.

Figure 7 illustrates this principle in a 4 X 4 x 4 cube, where each point x has
coordinates (z1, T2, z3) with 0 < z1, T3, T3 < 4. The vertices of this cube form a
median algebra because (zyz) = ((x1y1z1>, (z2y222), (x3y3z3>); furthermore, the
edges of the graph in Fig. 7 are those defined in (61), running between vertices
whose coordinates agree except that one coordinate changes by 1. Three typical
intervals [z ..y], [z .. z], and [y .. 2] are shown; the only point common to all three
intervals is the vertex {(zyz) = (2,2,1).

(a) The interval [z..y]. (b) The interval [z .. z]. (¢) The interval [y .. z].

Fig. 7. Intervals between the vertices z = (0,2,1),
y=1(3,3,3), and z = (2,0,0) in a 4 X 4 x 4 cube.

7.1.1 BOOLEAN BASICS 67

So far we’ve started with a median algebra and used it to define a graph with
certain properties. But we can also start with a graph that has those properties
and use it to define a median algebra. If u and v are vertices of any graph, let us
define the interval [u..v] to be the set of all points on shortest paths between u
and v. A finite graph is said to be a median graph if exactly one vertex lies in the
intersection [z ..y]N[z..2z]N[y.. 2] of the three intervals that tie any three given
vertices z, y, and z together; and we denote that vertex by (zyz). Exercise 75
proves that the resulting ternary operation satisfies the median axioms.

Many important graphs turn out to be median graphs according to this
definition. For example, any free tree is easily seen to be a median graph; and a
graph like the ny Xng X - - - X n,, hyperrectangle provides another simple example.
Cartesian products of arbitrary median graphs also satisfy the required condition.

*Median labels. If u and v are any elements of a median algebra, the mapping
f(z) that takes x — (zuv) is a homomorphism; that is, it satisfies

f((zyz)) = (f(2) f(y) £(2)), (62)

because of the long distributive law (54). This function (zuv) “projects” any
given point z into the interval [u..v], by (57). And it is particularly interesting
in the case when u — v is an edge of the corresponding graph, because f(z) is
then two-valued, essentially a Boolean mapping.

For example, consider the typical free tree shown below, with eight vertices
and seven edges. We can project each vertex = onto each of the edge intervals
[u..v] by deciding whether z is closer to u or to v:

ac bc cd de ef eg dh

a+—= a ¢ ¢ d e e d 0000000

b= ¢ b ¢c d e e d 1100000

a b cr c c c d e e d 1000000
c d— ¢ ¢c d d e e d 1010000 (63)

d e c c d e e e d 1011000

€ h f=c¢c c d e f e d 1011100

! g g c¢c ¢ d e e g d 1011010

h—= c¢c ¢c d d e e h 1010001

On the right we’ve reduced the projections to 0s and 1s, arbitrarily deciding that
a — 0000000. The resulting bit strings are called labels of the vertices, and we
write, for example, I(b) = 1100000. Since each projection is a homomorphism,
we can calculate the median of any three points by simply taking Boolean
medians in each component of their labels. For example, to compute (bgh) we
find the bitwise median of /(b) = 1100000, I(g) = 1011010, and I(h) = 1010001,
namely 1010000 = I(d).

When we project onto all the edges of a median graph, we might find that
two columns of the binary labels are identical. This situation cannot occur with
a free tree, but let’s consider what would happen if the edge g — h were added
to the tree in (63): The resulting graph would still be a median graph, but the

68 COMBINATORIAL SEARCHING 7.1.1

columns for eg and dh would become identical (except with e <+ d and g > h).
Furthermore, the new column for gh would turn out to be equivalent to the
column for de. Redundant components should be omitted from the labels in
such cases; therefore the vertices of the augmented graph would have six-bit
labels, like I(g) = 101101 and I(h) = 101001, instead of seven-bit labels.

The elements of any median algebra can always be represented by labels in
this way. Therefore any identity that holds in the Boolean case will be true in
all median algebras. This “zero-one principle” makes it possible to test whether
any two given expressions built from the ternary operation (zyz) can be shown
to be equal as a consequence of axioms (50), (51), and (52) —although we do
have to check 2”1 —1 cases when we test n-variable expressions by this method.

For example, the associative law (zw(ywz)) = ((zwy)wz) suggests that
there should be a symmetrical interpretation of both sides that does not involve
nested brackets. And indeed, there is such a formula:

<mw<ywz>> = <<xwy>wz> = {(zwywz), (64)

where (zwywz) denotes the median of the five-element multiset {z, w,y, w, 2z} =
{w,w,z,y, z}. We can prove this formula by using the zero-one principle, noting
also that median is the same thing as majority in the Boolean case. In a similar
way we can prove (49), and we can show that the function used by Post in (47)
can be simplified to

(z1y(may ... y(@s1yzs) ...)) = (T1YD2y .. . YTo_1YTs); (65)

it’s a median of 2s — 1 quantities, where nearly half of them are equal to y.

A set C of vertices in a graph is called convez if [u..v] C C whenever
u € C and v € C. In other words, whenever the endpoints of a shortest path
belong to C, all vertices of that path must also be present in C. (A convex
set is therefore identical to what we called an “ideal,” a few pages ago; now
our language has become geometric instead of algebraic.) The conver hull of
{v1,...,vm} is defined to be the smallest convex set that contains each of the
vertices vy, ..., U;,. Our theoretical results above have shown that every interval
[..v] is convex; hence [u..] is the convex hull of the two-point set {u,v}. But
in fact much more is true:

Theorem C. The convex hull of {vy,va,...,vy} In a median graph is the set
of all points
C = {{(vizvez...20) | v € M}. (66)

Furthermore, x is in C if and only if x = (viTvT ... TVy,).

Proof. Clearly v; € C for 1 < j < m. Every point of C' must belong to the
convex hull, because the point ' = (vax...2v,) is in the hull (by induction
on m), and because (v1z...2vy) € [v1..2']. The zero-one principle proves that

<$<vlyv2y e Yum) (V12022 -~2Um>> = <1)1 (zyz)va(zy2) ... <$yz>vm>; (67)

hence C is convex. Setting z = y in this formula proves that (vizvez...zv,,) is
the closest point of C to x, and that (vizvez...zvy) € [x..2z]forallz € C. |

7.1.1 BOOLEAN BASICS 69

Corollary C. Let the label of v; be vj1 ...vj for 1 < j < m. Then the convex
hull of {vy,..., v} Is the set of all z € M whose label 1 ...z, satisfies z; = ¢;
whenever vyj; = vy; = -+ = Upyj = ¢j. |

For example, the convex hull of {c, g,h} in (63) consists of all elements whose
label matches the pattern 10%x0xx*, namely {c,d, e, g, h}.

When a median graph contains a 4-cycle u — z — v — y — u, the edges
u— 1z and v — y are equivalent, in the sense that projection onto [u..z] and
projection onto [v..y] both yield the same label coordinates. The reason is that,
for any z with (zuz) = u, we have

y = (uvy) = ({zuz)vy)
= < (zvy){uvy) <zvy>>
= ((zvy)yv),

hence (zvy) = y; similarly (zuxz) = z implies (zvy) = v. The edges x — v and
y — u are equivalent for the same reasons. Exercise 77 shows, among other
things, that two edges yield equivalent projections if and only if they can be
proved equivalent by a chain of equivalences obtained from 4-cycles in this way.
Therefore the number of bits in each vertex label is the number of equivalence
classes of edges induced by the 4-cycles; and it follows that the reduced labels for
vertices are uniquely determined, once we specify a vertex whose label is 00. . . 0.

A nice way to find the vertex labels of any median graph was discovered
by P. K. Jha and G. Slutzki [Ars Combin. 34 (1992), 75-92] and improved by
J. Hagauer, W. Imrich, and S. Klavzar [Theor. Comp. Sci. 215 (1999), 123-136]:

Algorithm H (Median labels). Given a median graph G and a source vertex a,
this algorithm determines the equivalence classes defined by the 4-cycles of G,
and computes the labels I(v) = vy ...v; of each vertex, where ¢ is the number of
classes and I(a) =0...0.

H1. [Initialize.] Preprocess G by visiting all vertices in order of their distance
from a. For each edge u— v, we say that u is an early neighbor of v if a is
closer to u than to v, otherwise u is a late neighbor; in other words, the early
neighbors of v will already have been visited when v is encountered, but the
late neighbors will still be awaiting their turn. Rearrange all adjacency lists
so that early neighbors are listed first. Place each edge initially in its own
equivalence class; a “union-find algorithm” like Algorithm 2.3.3E will be
used to merge classes when the algorithm learns that they’re equivalent.

H2. [Call the subroutine.] Set j < 0 and invoke Subroutine I with parameter a.
(Subroutine I appears below. The global variable j will be used to create a
master list of edges r; — s; for 1 < j < n, where n is the total number of
vertices; there will be one entry with s; = v, for each vertex v # a.)

H3. [Assign the labels.] Number the equivalence classes from 1 to ¢. Then set
I(a) to the t-bit string 0...0. For j =1, 2, ..., n — 1 (in this order), set
I(sj) to I(r;) with bit k changed from O to 1, where k is the equivalence
class of edge r; —s;. 1

70 COMBINATORIAL SEARCHING 7.1.1

Subroutine I (Process descendants of r). This recursive subroutine, with
parameter r and global variable j, does the main work of Algorithm H on
the graph of all vertices currently reachable from vertex r. In the course of
processing, all such vertices will be recorded on the master list, except r itself,
and all edges between them will be removed from the current graph. Each vertex
has four fields called its LINK, MARK, RANK, and MATE, initially null.

I1. [Loop over s.] Choose a vertex s with r — s. If there is no such vertex,
return from the subroutine.

I2. [Record the edge.] Set j <— j + 1, rj < r, and s; < s.
I3. [Begin breadth-first search.] (Now we want to find and delete all edges

of the current graph that are equivalent to » — s.) Set MARK(s) <« s,
RANK(s) < 1, LINK(s) < A, and v < q <+ s.

I4. [Find the mate of v.] Find the early neighbor u of v for which MARK (u) # s.
(There will be exactly one such vertex u. Recall that early neighbors have
been placed first, in step H1.) Set MATE(v) + u.

I5. [Delete u — v.] Make the edges u — v and r — s equivalent by merging
their equivalence classes. Remove u and v from each other’s adjacency lists.

16. [Classify the neighbors of v.] For each early neighbor u of v, do step I7; for
each late neighbor u of v, do step I8. Then go to step I9.

I7. [Note a possible equivalence.] If MARK(u) = s and RANK(u) = 1, make the
edge u— v equivalent to the edge MATE (u) — MATE (v). Return to I6.

I8. [Rank w.] If MARK(u) = s and RANK(u) = 1, return to I6. Otherwise set
MARK (u) < s and RANK(u) < 2. Set w to the first neighbor of u (it will
be early). If w = v, reset w to u’s second early neighbor; but return to 16
if w has only one early neighbor. If MARK(w) # s or RANK(w) # 2, set
RANK (u) < 1, LINK(u) < A, LINK(g) < u, and g < u. Return to I6.

I9. [Continue breadth-first search.] Set v - LINK (v). Return to I4 if v # A.

I10. [Process subgraph s.] Call Subroutine I recursively with parameter s. Then
return to I1. |

This algorithm and subroutine have been described in terms of relatively high-
level data structures; further details are left to the reader. For example, adja-
cency lists should be doubly linked, so that edges can readily be deleted in step I5.
Any convenient method for merging equivalence classes can be used in that step.

Exercise 77 explains the theory that makes this algorithm work, and ex-
ercise 78 proves that each vertex is encountered at most lgn times in step I4.
Furthermore, exercise 79 shows that a median graph has at most O(nlogn)
edges. Therefore the total running time of Algorithm H is O(n(logn)?), except
perhaps for the bit-setting in step H3.

The reader may wish to play through Algorithm H by hand on the median
graph in Table 2, whose vertices represent the twelve monotone self-dual Boolean
functions of four variables {w,z,y,z}. All such functions that actually involve
all four variables can be expressed as a median of five things, like (64). With

7.1.1 BOOLEAN BASICS 71

Table 2

LABELS FOR THE FREE MEDIAN ALGEBRA ON FOUR GENERATORS

<z i 5 1(s;)
Yy — w 0000000
| (ewz) 1w (wwaeyz) 0000001
<« (wzyzz) 2 (wwzyz) (wyz) 0010001
(wzyyz) > 3 (wyz) (wzyzz) 0010101
7 4 (wzyzz zyz) 0010111
fwu2) £ — (wawyz) 5 gwxzzzi < g / 1010101
<~ (wzxz) 6 (wyz) (wzyyz) 0010011
(wzy) — 7 {wzyyz) y 0110011
(wwzyz) ———— J) . 8 (wwzyz) (wzz) 0000101
9 (wzz) (wzzyz) 0000111
W— 10 (wzzyz) z 0001111
11 (wwzyz) (wzy) 0000011

starting vertex a = w, the algorithm computes the master list of edges r; — s;
and the binary labels shown in the table. (The actual order of processing depends
on the order in which vertices appear in adjacency lists. But the final labels will
be the same under any ordering, except for permutations of the columns.)

Notice that the number of 1-bits in each label I(v) is the distance of v from
the starting vertex a. In fact, the uniqueness of labels tells us that the distance
between any two vertices is the number of bit positions in which their labels
differ, because we could have started at any particular vertex.

The special median graph in Table 2 could actually have been handled in a
completely different way, without using Algorithm H at all, because the labels
in this case are essentially the same as the truth tables of the corresponding
functions. Here’s why: We can say that the simple functions w, z, y, z have
the respective truth tables ¢(w) = 0000000011111111, ¢(z) = 0000111100001111,
t(y) = 0011001100110011, #(z) = 0101010101010101. Then the truth table of
(wwxyz) is the bitwise majority function <t(w)t(w)t(x)t(y)t(z)>, namely the
string 0000000101111111; and a similar computation gives the truth tables of all
the other vertices.

The last half of any self-dual function’s truth table is the same as the first
half, but complemented and reversed, so we can eliminate it. Furthermore the
leftmost bit in each of our truth tables is always zero. We are left with the
seven-bit labels shown in Table 2; and the uniqueness property guarantees that
Algorithm H will produce the same result, except for possible permutation of
columns, when it is presented with this particular graph.

This reasoning tells us that the edges of the graph in Table 2 correspond to
pairs of functions whose truth tables are almost the same. We move between
neighboring vertices by switching only two complementary bits of their truth
tables. In fact, the degree of each vertex turns out to be exactly the number of
prime implicants in the disjunctive prime form of the monotone self-dual function
represented by that vertex (see exercises 70 and 84).

72 COMBINATORIAL SEARCHING 7.1.1

*Median sets. A median set is a collection X of binary vectors with the property
that (zyz) € X whenever z € X, y € X, and z € X, where the medians are
computed componentwise as we’ve done with median labels. Thomas Schaefer
noticed in 1978 that median sets provide us with an attractive counterpoint to
the characterization of Horn functions in Theorem H:

Theorem S. The Boolean function f(x1,...,%,) is expressible as a conjunction
of Krom clauses if and only if

flz1, o ovmn) = flyry .oy yn) = f(21,- 0 ,20) =1
implies f(<11y121>a tey <xnynzn>) =1 (68)

for all Boolean values x;, y;, and z;.

Proof. [STOC 10 (1978), 216-226, Lemma 3.1B.] If we have 21 V23 = y; Vys =
21V za = 1, say, with 21 < yy < 21, then (z1y121) V {(X2y222) = y1 V (22yaz2) = 1,
since y; = 0 implies that o = yo = 1. Thus (68) is necessary.

Conversely, if (68) holds, let u; V- - -V uy be a prime clause of f, where each
u; is a literal. Then, for 1 < j <k, the clause uy V- Vuj_1 Vujq V.- Vauy is
not a clause of f; so there’s a vector (/) with f(m(j)) =1 but with »;”’ = 0 for
all i # j. If k > 3, the median (M2 () has u; = 0 for 1 < i < k; but that’s
impossible, because u; V - - -V u was supposedly a clause. Hence k < 2. |

Thus median sets are the same as “2SAT instances,” the sets of points that satisfy
some formula f in 2CNF.

A median set is said to be reduced if its vectors x = zy...x; contain no
redundant components. In other words, for each coordinate position &, a reduced
median set has at least two vectors #(*) and y*) with the property that m,(ck) =0
and y,ik) =1 but xl(.k) = yl(k) for all 7 # k. We’ve seen that the labels of a median
graph satisfy this condition; in fact, if coordinate k corresponds to the edge u— v
in the graph, we can let (*) and y*) be the labels of v and v. Conversely, any
reduced median set X defines a median graph, with one vertex for each element
of X and with adjacency defined by all-but-one equality of coordinates. The
median labels of these vertices must be identical to the original vectors in X,
because we know that median labels are essentially unique.

Median labels and reduced median sets can also be characterized in yet
another instructive way, which harks back to the networks of comparator modules
that we studied in Section 5.3.4. We noted in that section that such networks
are useful for “oblivious sorting” of numbers, and we noted in Theorem 5.3.4Z
that a network of comparators will sort all n! possible input permutations if and
only if it correctly sorts all 2" combinations of Os and 1s. When a comparator
module is attached to two horizontal lines, with inputs z and y entering from
the left, it outputs the same two values on the right, but with min(z,y) =z Ay
on the upper line and max(z,y) = = V y on the lower line. Let’s now extend
the concept slightly by also allowing inverter modules, which change 0 to 1 and
vice versa. Here, for example, is a comparator-inverter network (or CIl-net, for

7.1.1 BOOLEAN BASICS 73

short), which transforms the binary value 0010 into 0111:

(69)

o = O O
= O = O
[=)

B—¢
=)
o = O O

S O O =
O = ==
=)

(A single dot denotes an inverter.) Indeed, this network transforms

0000 > 0110; 0100 ~ 0111, 1000 — 0111; 1100 — 0110;
0001 — 0111; 0101 — 1111 1001 — 0101; 1101 — 0111;
0010 > 0111; 0110 — 1111; 1010 — 0101; 1110 — 0111; (70)
0011 ~ 0110; 0111 — 0111, 1011 — 0111; 1111 — 0110.

Suppose a Cl-net transforms the bit string x = z, ...z, into the bit string
xy ...x2; = f(x). This function f, which maps the t-cube into itself, is in fact a
graph homomorphism. In other words, we have f(z) — f(y) whenever z — y in
the t-cube: Changing one bit of x always causes exactly one bit of f(z) to change,
because every module in the network has this behavior. Moreover, Cl-nets have
a remarkable connection with median labels:

Theorem F. Every set X of t-bit median labels can be represented by a
comparator-inverter network that computes a Boolean function f(z) with the
property that f(z) € X for all bit vectors xy ...x¢, and f(z) =z for allz € X.

Proof. [Tom4s Feder, Memoirs Amer. Math. Soc. 555 (1995), 1-223, Lemma 3.37;
see also the Ph. D. thesis of D. H. Wiedemann (University of Waterloo, 1986).]
Consider columns ¢ and j of the median labels, where 1 < ¢ < j < t. Any such
pair of columns contains at least three of the four possibilities {00, 01, 10,11}, if
we look through the entire set of labels, because median labels have no redundant
columns. Let us write 7 — 4, § — 4, 7« — j, or ¢ — 7 if the value 00, 01, 10, or 11
(respectively) is missing from those two columns; we can also note the equivalent
relations 7 — j,7— 7, 7 — 7, or j — 7, respectively, which involve 7 instead of i.
For example, the labels in Table 2 give us the relations

1—2,3,4,5,6,7 2,3,4,5,6,7—1;

2 —3,4,5,6,7 3,4,5,6,7 — 2;
3— 4,7 4,7 = 3;
_ o (71)
4567 56,7 — 4
517 75
6— 7 7 6.

(There is no relation between 3 and 5 because all four possibilities occur in those
columns. But we have 3 — 4 because 11 doesn’t appear in columns 3 and 4.
The vertices whose label has a 1 in column 3 are those closer to (wyz) than to
(wwzyz) in Table 2; they form a convex set in which column 4 of the labels is
always 0, because they are also closer to (wzzyz) than to x.)

These relations between the literals {1,1,2,2,...,¢,} contain no cycles,
so they can always be topologically sorted into an anti-symmetrical sequence

74 COMBINATORIAL SEARCHING 7.1.1

U1 Ug ... Uz in which u; is the complement of us;y1—;. For example,
17423566532471 (72)
is one such way to sort the relations in (71) topologically.

Now we proceed to construct the network, by starting with ¢ empty lines
and successively examining elements u and ugyq in the topological sequence,
ford=2t—2,2t—3, ..., 1 (in this order), and for k =1, 2, ..., t — [d/2]. If
ur < Ugyq is a relation between columns ¢ and j, where ¢ < j, we append new
modules to lines 7 and j of the network as follows:

Ifi—j Ifi —7 Ifi—j Ifi—7 (73)
73
. e o o G Deoa

For example, from (71) and (72) we first enforce 1 — 7, then 1 — 4, then 1 — 2,
then 7 — 4 (that is, 4 — 7), etc., obtaining the following network:

)

T (74)
I

(Go figure. No modules are contributed when, say, uy is 7 and ug 4 is 3, because
the relation 3 — 7 does not appear in (71).)

Exercise 89 proves that each new cluster of modules (73) preserves all of the
previous inequalities and enforces a new one. Therefore, if x is any input vector,
f(z) satisfies all of the inequalities; so f(z) € X by Theorem S. Conversely, if
x € X, every cluster of modules in the network leaves x unchanged. |

Corollary F. Suppose the median labels in Theorem F are closed under the
operations of bitwise AND and OR, so that x &y € X and z | y € X whenever
x € X and y € X. Then there is a permutation of coordinates under which the
labels are representable by a network of comparator modules only.

Proof. The bitwise AND of all labelsis 0...0, and the bitwise ORis 1...1. So the
only possible relations between columns are i — j and j — 4. By topologically
sorting and renaming the columns, we can ensure that only ¢ — 7 occurs when
1 < j; and in this case the construction in the proof never uses an inverter. |

In general, if G is any graph, a homomorphism f that maps the vertices of G
onto a subset X of those vertices is called a retraction if it satisfies f(z) = « for all
x € X; and we call X a retract of G when such an f exists. The importance of this
concept in the theory of graphs was first pointed out by Pavol Hell [see Lecture
Notes in Math. 406 (1974), 291-301]. One consequence, for example, is that
the distance between vertices in X —the number of edges on a shortest path —
remains the same even if we restrict consideration to paths that lie entirely in X.
(See exercise 93.)

Theorem F demonstrates that every ¢-dimensional set of median labels is
a retract of the t-dimensional hypercube. Conversely, exercise 94 shows that
hypercube retracts are always median graphs.

7.1.1 BOOLEAN BASICS 75

Threshold functions. A particularly appealing and important class of Boolean

functions f(z1,z2,...,T,) arises when f can be defined by the formula
f@y,@e,. . xy) = [wizy + wexs + - -+ + wpx, >], (75)
where the constants wq, wa, ..., w, are integer “weights” and ¢ is an integer

“threshold” value. For example, threshold functions are important even when
all the weights are unity: We have

TIANT2 N ATy = [T1 + 22+ -+ 2, >0 (76)
TV V-V, =2 + 2y 4+ an >1]; (77)
and (123 .. . @y 1) = [T1 + T2 + - + T2 1 >], (78)

where (2122 ... 29;—1) stands for the median (or majority) value of a multiset that
consists of any odd number of Boolean values {1, s, ..., T2 1}. In particular,
the basic mappings Ay, z V y, and (zyz) are all threshold functions, and so is

T = [-2>0] (79)
With more general weights we get many other functions of interest, such as
[2"*1351 +2n72$2+"'+£L‘n2(t1t2...tn)2}, (80)

which is true if and only if the binary string zizs ...z, is lexicographically
greater than or equal to a given binary string ¢t ...t,. Given a set of n objects
having sizes wy, wa, ..., Wy, a subset of those objects will fit into a knapsack
of size t — 1 if and only if f(z1,22,...,2,) = 0, where z; = 1 represents the
presence of object 7 in the subset. Simple models of neurons, originally proposed
by W. McCulloch and W. Pitts in Bull. Math. Biophysics 5 (1943), 115-133, have
led to thousands of research papers about “neural networks” built from threshold
functions.

We can get rid of any negative weight w; by setting =; < z;, w; + —wj,
and t < t + |w;|. Thus a general threshold function can be reduced to a
positive threshold function in which all weights are nonnegative. Furthermore,
any positive threshold function (75) can be expressed as a special case of the
median/majority-of-odd function, because we have

(O“lbmqflm;"z coexpry =[b+wizy + waxe + -+ wpxy > b+], (81)

where ™ stands for m copies of x, and where a and b are defined by the rules

a=max(0,2t—1—w), b=max(0,w+1-2¢t), w=wi+wy+- - +w,. (82)
For example, when all weights are 1, we have

0"z) =21 Ao Az, and (1" lzg.om,) =2, V-V, (83)

we’ve already seen these formulas in (45) when n = 2. In general, either a or b is
zero, and the left-hand side of (81) specifies a median of 2T — 1 elements, where

T = b+t = max(t,w; +ws + -+ +w, + 1 —1). (84)

76 COMBINATORIAL SEARCHING 7.1.1

There would be no point in letting both a and b be greater than zero, because
the majority function clearly satisfies the cancellation law

<01$1(E2 .. mgt_1> = <m1x2 .. mgt_1>. (85)

One important consequence of (81) is that every positive threshold function
comes from the pure majority function

9(xo, @1, T2, ..., Ty) = <x8+bz§“1x§)2 Sz (86)

by setting zg = 0 or 1. In other words, we know all threshold functions of n vari-
ables if and only if we know all of the distinct median-of-odd functions of n+1 or
fewer variables (containing no constants). Every pure majority function is mono-
tone and self-dual; thus we’ve seen the pure majority functions of four variables
{w,z,y, 2} in column s; of Table 2 on page 71, namely (w), (wwzyz), (wyz),
(wzyzz), (zyz), (2), (wryyz), (y), (wez), (wezyz), (), (wry). By settingw =0
or 1, we obtain all the positive threshold functions f(z,y, z) of three variables:

(0), (1), (00zyz), (11zyz), (Oyz), (1yz), (Oxyzz), (lryzz), (zy2), (),
(Ozyyz), (1zyyz), (y), (0z2), (1z2), (Ozzyz), (Lezyz), (x), (Ozy), (1zy). (87)

All 150 positive threshold functions of four variables can be obtained in a similar
fashion from the self-dual majority functions in the answer to exercise 84.

There are infinitely many sequences of weights (wq,ws,...,w,), but only
finitely many threshold functions for any given value of n. So it is clear that
many different weight sequences are equivalent. For example, consider the pure
majority function

2.3 5 7 11_13
(15730475 T67),

in which prime numbers have been used as weights. A brute-force examination
of 26 cases shows that

<23571113>

L1LaT3TyTs Lg) = <1§$§IZ$§$2>3 (88)

thus we can express the same function with substantially smaller weights. Simi-
larly, the threshold function

[(z122 ... T20)2 > (01100100100001111110)5] = (17250285,324288,,262144 " 00 0),

a special case of (80), turns out to be simply

(13237645323 ;323 1 18, 118 08T 30 31 02508 28 28,080y 52161718 T10). (89)
Exercise 103 explains how to find a minimum set of weights without resorting to
a huge brute-force search, using linear programming.

A nice indexing scheme by which a unique identifier can be assigned to
any threshold function was discovered by C. K. Chow [FOCS 2 (1961), 34-38].
Given any Boolean function f(z1,...,2,), let N(f) be the number of vectors
z = (x1,...,2n) for which f(z) = 1, and let X(f) be the sum of all those
vectors. For example, if f(x1,z3) = x1 V 2, we have N(f) = 3 and X(f) =
(0,1) + (1,0) + (1,1) = (2,2).

7.1.1 BOOLEAN BASICS 77

Theorem T. Let f(z1,...,x,) and g(z1,...,7,) be Boolean functions with
N(f) = N(g) and X(f) = X(g), where f is a threshold function. Then f = g.

Proof. Suppose there are exactly k vectors (1), ... 2() such that f(m(j)) =1
and g(z()) = 0. Since N(f) = N(g), there must be exactly k vectors y(*), ...,
y®) such that f(y)) = 0 and g(y¥)) = 1. And since Z(f) = X(g), we must also
have (1) 4+ .- 4 k) = () ... 4 ()

Now suppose f is the threshold function (75); then we have w - 2z >t and
w-yY) < tfor1<j <k Butif f#gwehavek >0, and w-(z() 4. 42*) >
kt >w - (y™M 4+ ... +y®), a contradiction. |

Threshold functions have many curious properties, some of which are ex-
plored in the exercises below. Their classical theory is well summarized in Saburo
Muroga’s book Threshold Logic and its Applications (Wiley, 1971).

Symmetric Boolean functions. A function f(z1,...,x,) is called symmetric
if f(@1,...,7,) is equal to f(zp(1),- .., Tpm)) for all permutations p(1)...p(n) of
{1,...,n}. When all the z; are 0 or 1, this condition means that f depends only
on the number of 1s that are present in the arguments, namely the “sideways
sum” ve = v(21,...,%,) = ¥1 +- - -+ 2,. The notation Sk, k... k. (T1,.-., %) is
commonly used to stand for the Boolean function that is true if and only if vz is
either k1 or ks or - - or k,. For example, Sy 35(v,w,2,9,2) =vQwd DY D 2;
53,4,5(1)7 w,x,Y, Z) = <vwxyz>, S4,5(U7 w,x,Y, Z) = <00’U’U.)Iy2>

Many applications of symmetry involve the basic functions Sg(z1,...,Z,)
that are true only when va = k. For example, S3(z1,x2, T3, 24, T5, Tg) is true
if and only if exactly half of the arguments {z1,...,2¢} are true and the other
half are false. In such cases we obviously have

Se(T1,. .y xn) = Ssp(x1, .. 20) ASskq1(z1, ..., Tn), (90)
where S>i(z1,...,2,) is an abbreviation for Sk k1, n(z1,...,2n). The func-
tions S>p(x1,...,zy,) are, of course, the threshold functions [z1 + - -- + 2, > k]

that we have already studied.
More complicated cases can be treated as threshold functions of threshold
functions. For example, we have

S23689(x1,. . 212) = [va > 24 4lve>4] + 2ve > 7] + 5[ve > 10]]

= <00§Cl TN $12<05§E1 TN .f12>4<1§31 e f12>2<17f1 TN f12>5>, (91)

because the number of 1s in the outermost majority-of-25 turns out to be re-
spectively (11,12,13,14,11,12,13,12,13,14,10,11,12) when z1 + -+ + z12 =
(0,1,...,12). A similar two-level scheme works in general [R. C. Minnick, IRE
Trans. EC-10 (1961), 6-16]; and with three or more levels of logic we can reduce
the number of thresholding operations even further. (See exercise 113.)

A variety of ingenious tricks have been discovered for evaluating symmetric
Boolean functions. For example, S. Muroga attributes the following remarkable
sequence of formulas to F. Sasaki:

To Dz D B Tam = (Tos152.. . S2m),

where S5 = <I0£L‘j.’bj+1 . xj+m—1ffj+mjj+m+1 ce i‘j+2m—1>7 (92)

78 COMBINATORIAL SEARCHING 7.1.1

if m > 0 and if we consider zo,, 1 to be the same as xy, for £ > 1. In particular,
when m = 1 and m = 2 we have the identities

To @ 1 © T2 = (To(ToT1Z2)(ToT2T1)); (93)
To @ - ® x4 = (To(ToT102T3T4) (ToT223T4T1) (ToT324T1T2) (ToT4T1T273)). (94)
The right-hand sides are fully symmetric, but not obviously so! (See exercise 115.)

Canalizing functions. A Boolean function f(z1,...,z,) is said to be canalizing
or “forcing” if we might be able to deduce its value by examining at most one of
its variables. More precisely, f is canalizing if n = 0 or if there’s a subscript j for
which f(z) either has a constant value when we set z; = 0 or a constant value
when we set z; = 1. For example, f(z,y,z) = (z® z) V§ is canalizing because it
always equals 1 when y = 0. (When y = 1 we don’t know the value of f without
examining also z and z; but half a loaf is better than none.) Such functions,
introduced by Stuart Kauffman [Lectures on Mathematics in the Life Sciences
3 (1972), 63-116; J. Theoretical Biology 44 (1974), 167-190], have proved to be
important in many applications, especially in chemistry and biology. Some of
their properties are examined in exercises 125-129.

Quantitative considerations. We’ve been studying many different kinds of
Boolean functions, so it’s natural to ask: How many n-variable functions of each
type actually exist? Tables 3, 4, and 5 provide the answers, at least for small
values of n.

All functions are counted in Table 3. There are 22" possibilities for each n,
since there are 22" possible truth tables. Some of these functions are self-dual,
some are monotone; some are both monotone and self-dual, as in Theorem P.
Some are Horn functions as in Theorem H; some are Krom functions as in
Theorem S; and so on.

But in Table 4, two functions are considered identical if they differ only
because the names of variables have changed. Thus only 12 different cases arise
when n = 2, because (for example) z V § and Z V y are essentially the same.

Table 5 goes a step further: It allows us to complement individual variables,
and even to complement the entire function, without essentially changing it.
From this perspective the 256 Boolean functions of (z,y,z) fall into only 14
different equivalence classes:

Representative Class size Representative Class size

0 2 zA (Yo 2) 24

T 6 z® (y A 2) 24

TAY 24 (zAY)V(ZA2) 24
TPy 6 (zVyY)N(z® 2) 48 (95)

TAYAz 16 (@Y V(xd=2) 8

TBYDz 2 (zyz) 8

zA(yVz) 48 Si(z,y, 2) 16

We shall study ways to count and to list inequivalent combinatorial objects in
Section 7.2.3.

7.1.1 BOOLEAN BASICS 79

Table 3
BOOLEAN FUNCTIONS OF n VARIABLES
n=0n=1n=2n=3 n=4 n=>5 n==6
arbitrary 2 4 16 256 65,536 4,294,967,296 18,446,744,073,709,551,616
self-dual 0 2 4 16 256 65,536 4,294,967,296
monotone 2 3 6 20 168 7,581 7,828,354
both 0 1 2 4 12 81 2,646
Horn 2 4 14 122 4,960 2,771,104 151,947,502,948
Krom 2 4 16 166 4,170 224,716 24,445,368
threshold 2 4 14 104 1,882 94,572 15,028,134
symmetric 2 4 8 16 32 64 128
canalizing 2 4 14 120 3,514 1,292,276 103,071,426,294
Table 4
BOOLEAN FUNCTIONS DISTINCT UNDER PERMUTATION OF VARIABLES
n=0n=1n=2n=3 n=4 n=>5 n==6
arbitrary 2 4 12 80 3,984 37,333,248 25,626,412,338,274,304
self-dual 0 2 2 8 32 1,088 6,385,408
monotone 2 3 5 10 30 210 16,353
both 0 1 1 2 3 7 30
Horn 2 4 10 38 368 29,328 216,591,692
Krom 2 4 12 48 308 3,028 49,490
threshold 2 4 10 34 178 1,720 590,440
canalizing 2 4 10 38 294 15,774 149,325,022
Table 5
BOOLEAN FUNCTIONS DISTINCT UNDER COMPLEMENTATION/PERMUTATION
n=0n=1n=2n=3 n=4 n=>5 n==~6
arbitrary 1 2 4 14 222 616,126 200,253,952,527,184
self-dual 0 1 1 3 7 83 109,950
threshold 1 2 3 6 15 63 567
both 0 1 1 2 3 7 21
canalizing 1 2 3 6 22 402 1,228,158
EXERCISES

1. [15] (Lewis Carroll.) Make sense of Tweedledee’s comment, quoted near the
beginning of this section. [Hint: See Table 1.]

2. [17] Logicians on the remote planet Pincus use the symbol 1 to represent “false”
and 0 to represent “true.” Thus, for example, they have a binary operation called “or”
whose properties

lorl=1, lor0=0, Oorl=0, Oor0=0

we associate with A. What operations would we associate with the 16 logical opera-
tors that Pincusians respectively call “falsehood,” “and,” ..., “nand,” “validity” (see
Table 1)?

80 COMBINATORIAL SEARCHING 7.1.1

» 3. [13] Suppose logical values were respectively —1 for falsehood and +1 for truth, in-
stead of 0 and 1. What operations o in Table 1 would then correspond to (a) max(z,y)?
(b) min(z,y)? (c) —z? (d) =z y?

4. [24] (H. M. Sheffer.) The purpose of this exercise is to show that all of the
operations in Table 1 can be expressed in terms of NAND. (a) For each of the 16
operators o in that table, find a formula equivalent to x o y that uses only A as an
operator. Your formula should be as short as possible. For example, the answer for
operation L is simply “z”, but the answer for [is “z A 2”. Do not use the constants
0 or 1 in your formulas. (b) Similarly, find 16 short formulas when constants are
allowed. For example, x [y can now be expressed also as “z A 1”.

5. [24] Consider exercise 4 with C as the basic operation instead of A.

6. [21] (E. Schréder.) (a) Which of the 16 operations in Table 1 are associative—in
other words, which of them satisfy z o (y o 2) = (z o y) 0 2?7 (b) Which of them satisfy
the identity (zoy)o (yoz) =z o0 2?

7. [20] Which operations in Table 1 have the property that z o y = z if and only if
yoz=ux?

8. [24] Which of the 16 pairs of operations (o,o0) satisfy the left-distributive law
zo(ynz) =(xoy)o(zoz)?

9. [16] True or false? (a) (P y)Vz=(2zVz2)@(yVz); (b (Wdzdy) Vz=
(wvz)@(zvz)@(yVz)(c) (zay)V(yoz)=(=d2)V(y®:2)

10. [17] What is the multilinear representation of the “random” function (22)?

11. [M25] Is there an intuitive way to understand exactly when the multilinear rep-
resentation of f(z1,...,2,) contains, say, the term zozsxezs? (See (19).)

> 12. [M28] The integer multilinear representation of a Boolean function extends rep-
resentations like (19) to a polynomial f(z1,...,x,) with integer coefficients, in such
a way that f(z1,...,on) has the correct value (0 or 1) for all 2" possible 0—1 vectors
(z1,...,2n), without taking a remainder mod 2. For example, the integer multilinear
representation corresponding to (19) is 1 — zy — vz — yz + 3zyz.
a) What is the integer multilinear representation of the “random” function (22)?

b) How large can the coefficients of such a representation f(z1,...,z,) be?
c) Show that, in every integer multilinear representation, 0 < f(z1,...,2,) < 1
whenever x1, ..., &, are real numbers with 0 < z1,...,2, < 1.

d) Similarly, if f(z1,...,2zn) < g(z1,...,%s) whenever {z1,...,z,} C {0,1}, then
f(z1,...,xn) < g(z1,...,2n) whenever {z1,...,z,} C[0..1].
e) If f is monotone and 0 < z; < y; <1 for 1 < j <, prove that f(z) < f(y).

» 13. [20] Consider a system that consists of n units, each of which may be “working”
or “failing.” If x; represents the condition “unit j is working,” then a Boolean function
like z1 A (Z2 V Z3) represents the statement “unit 1 is working, but either unit 2 or
unit 3 is failing”; and Ss(z1,...,%,) means “exactly three units are working.”

Suppose each unit j is in working order with probability p;, independent of the
other units. Show that the Boolean function f(zi,...,z») is true with probability
F(pi,--.,pn), where F is a polynomial in the variables p1, ..., pn.

14. [20] The probability function F(pi,...,pn) in exercise 13 is often called the
availability of the system. Find the self-dual function f(z1,z2,z3) of maximum avail-
ability when the probabilities (p1, p2,ps3) are (a) (.9,.8,.7); (b) (.8,.6,.4); (c) (.8,.6,.1).

7.1.1 BOOLEAN BASICS 81

> 15. [M20] If f(z1,...,2,) is any Boolean function, show that there is a polynomial
F(z) with the property that F'(z) is an integer when z is an integer, and f(z1,...,2Zn) =
F((mn o xl)z) mod 2. Hint: Consider (i) mod 2.

16. [13] Can we replace each V by @ in a full disjunctive normal form?

17. [10] By De Morgan’s laws, a general disjunctive normal form such as (25) is not
only an OR of ANDs, it is a NAND of NANDs:

(u11 A\ A ulsl) A\ A (um1 A A\ umsm).

Both levels of logic can therefore be considered to be identical.
A student named J. H. Quick rewrote this expression in the form

(u11 /_\ /_\ Ulsl) A /_\ (um1 /_\ /_\ umsm).

Was that a good idea?

> 18. [20] Let us A Awus be an implicant in a disjunctive normal form for a Boolean
function f, and let v1 V' V v be a clause in a conjunctive normal form for the same
function. Prove that u; = v; for some ¢ and j.

19. [20] What is the conjunctive prime form of the “random” function in (22)7

20. [M21] True or false: Every prime implicant of f A g can be written f'A g’, where
f' is a prime implicant of f and ¢’ is a prime implicant of g.

21. [M20] Prove that a nonconstant Boolean function is monotone if and only if it
can be expressed entirely in terms of the operations A and V.

22. [20] Suppose f(z1,...,Zn) = g(T1,...,Tn=1) D h(z1,...,Tn_1)ATy as in (16).
What conditions on the functions g and h are necessary and sufficient for f to be
monotone?

23. [15] What is the conjunctive prime form of (vAwAz) V (vAZAZ) V (zAYyA2)?

24. [M20] Consider the complete binary tree with
2% leaves, illustrated here for k = 3. Operate al-
ternately with A or V on each level, using A at the
root, obtaining for example ((zo A1) V (z2 Az3)) A
((zaAz5)V(z6 Az7)). How many prime implicants does the resulting function contain?

25. [M21] How many prime implicants does (z1Vz2)A(z2Vas)A A(Tn—1Vz,) have?

26. [M23] Let F and G be the families of index sets for the prime clauses and the
prime implicants of a monotone CNF and a monotone DNF:

f@)= N\ Ve g@) =\ Nz

IeFiel Jegjed

Exhibit an z such that f(z) # g(z) if any of the following conditions hold:

a) Thereisan I € Fand a J € G with INnJ = 0.

b) Urer I # Ujeg J-

c) There’s an I € F with |I| > |G|, or a J € G with |J| > |F]|.

d) Y2+ 2n < 2m, where n= U2 1)
27. [M31] Continuing the previous exercise, consider the following algorithm X(F, G),
which either returns a vector x with f(z) # g(z), or returns A if f = g:

82 COMBINATORIAL SEARCHING 7.1.1

X1. [Check necessary conditions.] Return an appropriate value z if condition (a),
(b), (c), or (d) in exercise 26 applies.

[Done?] If | F||G| < 1, return A.

[

Recurse.] Compute the following reduced families, for a “best” index k:

Fi={I|I€eF, k¢I}, Fo=F1U{I|k¢I, TU{k} e F};
Go—{J|JE€G, k¢l Gi=GoU{J|kgJ JU{kleg}
Delete any member of Fo or Gy that contains another member of the same fam-
ily. The index k should be chosen so that the ratio p = min(|F1|/|F|, |Go|/|G])
is as small as possible. If X(Fo, Go) returns a vector x, return the same vector

extended with zp = 0. Otherwise if X(Fi,G1) returns a vector z, return the
same vector extended with xy = 1. Otherwise return A. |

If N = | F|+ |G|, prove that step X1 is executed at most N°{°® N)* times. Hint: Show
that we always have p <1 —1/lg N in step X3.

28. [21] (W. V. Quine, 1952.) If f(z1,...,zn) is a Boolean function with prime

implicants p1, ..., Pq, let g(y1,...,yq) = /\f(m):1 VA{y; | pj(z) = 1}. For example, the
“random” function (22) is true at the eight points (28), and it has five prime implicants

given by (29) and (30); so g(y1,...,¥ys) is

(y1Vy2) A (Y1) A (y2Vys) A (ya) A (ysVus) A (y5) A (y5) A (yaVys)
= (Y1 AY2AYaAY5) V (Y1 AYs AYaAYs)

X2.
X3.

in this case. Prove that every shortest DNF expression for f corresponds to a prime
implicant of the monotone function g.

29. [22] (The next several exercises are devoted to algorithms that deal with the
implicants of Boolean functions by representing points of the n-cube as n-bit numbers
(bn—1...b1bo)2, rather than as bit strings #1...z,.) Given a bit position j, and given
n-bit values vg < v1 < < Um-—1, explain how to find all pairs (k,k') such that
0<k<k'<mand vy = v, ®2%, in increasing order of k. The running time of your
procedure should be O(m), if bitwise operations on n-bit words take constant time.

30. [27] The text points out that an implicant of a Boolean function can be regarded
as a subcube such as 01x0x, contained in the set V of all points for which the function is
true. Every subcube can be represented as a pair of binary numbers a = (an_1-..a0)2
and b = (bp—1...bo)2, where a records the positions of the asterisks and b records the
bits in non-* positions. For example, the numbers a = (00101); and b = (01000),
represent the subcube ¢ = 01x0x. We always have a & b = 0.

The “j-buddy” of a subcube is defined whenever a; = 0, by changing b to b ® 27,
For example, 010+ has three buddies, namely its 4-buddy 11x0x, its 3-buddy 00%0x,
and its 1-buddy 01%1*. Every subcube ¢ C V can be assigned a tag value (tp—1...%0)2,
where ¢t; = 1 if and only if the j-buddy of ¢ is defined and contained in V. With this
definition, ¢ represents a maximal subcube (hence a prime implicant) if and only if its
tag is zero.

Use these concepts to design an algorithm that finds all maximal subcubes (a, b)
of a given set V', where V is represented by the n-bit numbers vg < v1 < < Um—1-

31. [28] The algorithm in exercise 30 requires a complete list of all points where a
Boolean function is true, and that list may be quite long. Therefore we may prefer to
work directly with subcubes, never going down to the level of explicit n-tuples unless

7.1.1 BOOLEAN BASICS 83

necessary. The key to such higher-level methods is the notion of consensus between
subcubes ¢ and ¢, denoted by clic’ and defined to be the largest subcube ¢’ such that

u / 1/ U /
c CcUc, ¢ Zec, and ¢ Zc.

Such a ¢’ does not always exist. For example, if ¢ = 000* and ¢’ = %111, every subcube
contained in cU ¢’ is contained either in ¢ or in ¢'.
a) Prove that the consensus, when it exists, can be computed componentwise using
the following formulas in each coordinate position:

rUr=zUx=xUxr=xz and zUZT=x*Lx%=:x, for =0 and z = 1.

Furthermore, cLic' exists if and only if the rule z LIZ = * has been used in exactly
one component.

b) A subcube with k asterisks is called a k-cube. Show that, if ¢ is a k-cube and ¢’
is a k’-cube, and if the consensus ¢’ = cLl ¢’ exists, then ¢’ is a k”-cube where
1 < k" < min(k, k') + 1.

c) If C and C' are families of subcubes, let

CucC' = {cuc|ceC,d e’ and clic exists}.
Explain why the following algorithm works.

Algorithm E (Find mazimal subcubes). Given a family C of subcubes of the n-
cube, this algorithm outputs the maximal subcubes of V = | ¢, without actually
computing the set V itself.

ceC

E1. [Initialize.] Set j < 0. Delete any subcube ¢ of C that is contained in another.

E2. [Done?] (At this point, every j-cube C V is contained in some element
of C, and C contains no k-cubes with k < j.) If C is empty, the algorithm
terminates.

E3. [Take consensuses.] Set C' < C L C, and remove all subcubes from C’ that
are k-cubes for k < j. While performing this computation, also output any
j-cube ¢ € C for which ¢ LI C does not produce a (j + 1)-cube of C".

E4. [Advance.] Set C + CUC', but delete all j-cubes from this union. Then delete
any subcube ¢ € C that is contained in another. Set j < j+1 and go to E2. |

(See exercise 7.1.3-142 for an efficient way to perform these computations.)

> 32. [M29] Let ¢y, ..., ¢m be subcubes of the n-cube.
a) Prove that ¢; U U ¢, contains at most one maximal subcube ¢ that is not
contained in c1U Ue¢j—1Ucj11 U Uep for any j € {1,...,m}. (If c exists, we
call it the generalized consensus of c1, ..., ¢m, because ¢ = c¢1 U ¢z in the notation

of exercise 31 when m = 2.)

b) Find a set of m subcubes for which each of the 2™ — 1 nonempty subsets of
{c1,...,cm} has a generalized consensus.

c¢) Prove that a DNF with m implicants has at most 2™ — 1 prime implicants.

d) Find a DNF that has m implicants and 2™ — 1 prime implicants.

33. [M21] Let f(z1,...,2,) be one of the (f:) Boolean functions that are true at
exactly m points. If f is chosen at random, what is the probability that z1 A Az
is (a) an implicant of f? (b) a prime implicant of f? [Give the answer to part (b) as a

sum; but evaluate it in closed form when k = n.]

84

> 34.

COMBINATORIAL SEARCHING 7.1.1

[HMS87] Continuing exercise 33, let ¢(m,n) be the average total number of impli-

cants, and let p(m,n) be the average total number of prime implicants.

a)

b)

c)
d)

> 35.

If 0 < m < 2%/n, show that m < ¢(m,n) < 2m + O(m/n) and p(m,n) >
me™" 4+ O(m/n); hence p(m,n) = O(c(m,n)) in this range.
Now let 2"/n < m < (1 —€)2", where € is a fixed positive constant. Define the
numbers ¢ and ay,, by the relations
2

n~4/3 < (%) = amn < n_2/3, integer t.
Express the asymptotic values of ¢(m,n) and p(m,n) in terms of n, ¢, and amn.
[Hint: Show that almost all of the implicants have exactly n—t or n—¢—1 literals.]
Estimate c(m,n)/p(m,n) when m = 2" ' and n = |(Int — Inlnt) 22tJ, integer ¢.
Prove that ¢(m,n)/p(m,n) = O(loglogn/logloglogn) when m < (1 — €)2".

[M25] A DNF is called orthogonal if its implicants correspond to disjoint sub-

cubes. Orthogonal disjunctive normal forms are particularly useful when the reliability
polynomial of exercise 13 is being calculated or estimated.

The full DNF of every function is obviously orthogonal, because its subcubes

are single points. But we can often find an orthogonal DNF that has significantly
fewer implicants, especially when the function is monotone. For example, the function
(z1Az2) V (z2Az3) V (z3A24) is true at eight points, and it has the orthogonal DNF

(z1Az2) V (T1Ax2AT3) V (T2 AT3AT4).

In other words, the overlapping subcubes 11%%, *11%, *x11 can be replaced by the dis-
joint subcubes 11x*, 011%, *011. Using the binary notation for subcubes in exercise 30,
these subcubes have asterisk codes 0011, 0001, 1000 and bit codes 1100, 0110, 0011.

Every monotone function can be defined by a list of bit codes B1, ..., By, when

the asterisk codes are respectively Bi, ..., Bp. Given such a list, let the “shadow” Sj
of By, be the bitwise OR of B; & By, for all 1 < j < k such that v(B; & Bi) = 1:

S

k=P | | Bu-vr, Bir=((Bj&Bx)® ((Bj&Bx) — 1)) = ((Bj&Bx) — 1).

For example, when the bit codes are (Bi, B2, Bs) = (1100,0110,0011), we get the
shadow codes (S1, S2,.S3) = (0000, 1000, 0100).

a)

b)

Show that the asterisk codes A; = B; — S; and bit codes B; define subcubes that
cover the same points as the subcubes with asterisk codes A; = B;.

A list of bit codes By, ..., B, is called a shelling if B; & S) is nonzero for all
1 < j < k < p. For example, (1100,0110,0011) is a shelling; but if we arrange
those bit codes in the order (1100,0011,0110) the shelling condition fails when
j =1 and k = 2, although we do have S3 = 1001. Prove that the subcubes in
part (a) are disjoint if and only if the list of bit codes is a shelling.

According to Theorem Q, every prime implicant must appear among the B’s when
we represent a monotone Boolean function in this way. But sometimes we need
to add additional implicants if we want the subcubes to be disjoint. For example,
there is no shelling for the bit codes 1100 and 0011. Show that we can, however,
obtain a shelling for this function (z1Az2)V (z3Az4) by adding one more bit code.
What is the resulting orthogonal DNF?

Permute the bit codes {11000,01100,00110,00011,11010} to obtain a shelling.
Add two bit codes to the set {110000,011000,001100,000110,000011} in order to
make a shellable list.

7.1.1 BOOLEAN BASICS 85

36. [M21] Continuing exercise 35, let f be any monotone function, not identically 1.
Show that the set of bit vectors

B={z|f(z)=1and f(z')=0}, =z & (z—1),

is always shellable when listed in decreasing lexicographic order. (The vector z’ is
obtained from z by zeroing out the rightmost 1.) For example, this method produces
an orthogonal DNF for (z1Az2) V (z3Az4) from the list (1100,1011,0111,0011).
37. [M31] Find a shellable DNF for (z1Az2) V (z3Az4)V V (Z2n—1AZ2,) that has
2™ — 1 implicants, and prove that no orthogonal DNF for this function has fewer.
38. [05] Is it hard to test the satisfiability of functions in disjunctive normal form?
39. [25] Let f(z1,...,zn) be a Boolean formula represented as an extended binary
tree with N internal nodes and N + 1 leaves. Each leaf is labeled with a variable zy,
and each internal node is labeled with one of the sixteen binary operators in Table 1;
applying the operators from bottom to top yields f(z1,...,z,) as the value of the root.
Explain how to construct a formula F(zi1,...,Zn,Y1,...,yn) in 3CNF, having
exactly 4N + 1 clauses, such that f(z1,...,2n) = 3y1...IYnF(T1,. .., Tn, Y1, -« -, YN)-
(Thus f is satisfiable if and only if F is satisfiable.)
40. [23] Given an undirected graph G, construct the following clauses on the Boolean
variables {puv | © # v} U {quow | ¥ # v, u # w, v # w, u - w}, where u, v, and w
denote vertices of G:

A= N{(pu V pou) A (Buv V Pou) | u# v}

B = A\{(Puv VPow Vpuw) | u# v, us w, v wl;

C = N{ (GuvwVPuv) A (GuowVPow) A (QuowV PuvVPow) | w7 v, w# w, v # w, u—-w};
D = A {Vogunwy (@uow V quon)) | u#w, u—w}.

Prove that the formula A A B A C A D is satisfiable if and only if G has a Hamiltonian
path. Hint: Think of p,, as the statement ‘u < v’.

41. [20] (The pigeonhole principle.) The island of San Serriffe contains m pigeons and
n holes. Find a conjunctive normal form that is satisfiable if and only if each pigeon
can be the sole occupant of at least one hole.

42. [20] Find a short, unsatisfiable CNF that is not totally trivial, although it consists
entirely of Horn clauses that are also Krom clauses.

43. [20] Is there an efficient way to decide satisfiability of a conjunctive normal form
that consists entirely of Horn clauses and/or Krom clauses (possibly mixed)?

44. [M23] Complete the proof of Theorem H by studying the implications of (33).
45. [M20] (a) Show that exactly half of the Horn functions of n variables are definite.
(b) Also show that there are more Horn functions of n variables than monotone
functions of n variables (unless n = 0).

46. [20] Which of the 11 x 11 character pairs xy can occur next to each other in the
context-free grammar (34)7

47. [20] Given a sequence of relations j < k with 1 < j,k < n as in Algorithm 2.2.3T
(topological sorting), consider the clauses

zj N Axj = T for 1 <k<mn,

where {j1,...,7:} is the set of elements such that j; < k. Compare the behavior of
Algorithm C on these clauses to the behavior of Algorithm 2.2.3T.

86 COMBINATORIAL SEARCHING 7.1.1

> 48. [21] What’s a good way to test a set of Horn clauses for satisfiability?

49. [22] Show that, if f(z1,...,2s) and g(z1, ..., Ts) are both defined by Horn clauses
in CNF, there is an easy way to test if f(z1,...,2n) < g(z1,...,2n) for all z1, ..., .

50. [HM42] There are (n + 2)2""! possible Horn clauses on n variables. Select ¢ 2™
of them at random, with repetition permitted, where ¢ > 0; and let P,(c) be the
probability that all of the selected clauses are simultaneously satisfiable. Prove that

nll)ngo Po(c) = 1—(1—e “)(1—e 2)(1—e *)(1—e%)....

» 51. [22] A great many two-player games can be defined by specifying a directed graph
in which each vertex represents a game position. There are two players, Alice and Bob,
who construct an oriented path by starting at a particular vertex and taking turns to
extend the path, one arc at a time. Before the game starts, each vertex has either
been marked A (meaning that Alice wins), or marked B (meaning that Bob wins), or
marked C (meaning that the cat wins), or left unmarked.

When the path reaches a vertex v marked A or B, that player wins. The game
stops without a winner if v has been visited before, with the same player to move. If v
is marked C, the currently active player has the option of accepting a draw; otherwise
he or she must choose an outgoing arc to extend the path, and the other player becomes
active. (If v is an unmarked vertex with out-degree zero, the active player loses.)

Associating four propositional variables AT (v), A~ (v), B*(v), and B~ (v) with
every vertex v of the graph, explain how to construct a set of definite Horn clauses
such that A" (v) is in the core if and only if Alice can force a win when the path starts
at v and she moves first; A7 (v) is in the core if and only if Bob can force her to lose in
that game; B¥ (v) and B~ (v) are similar to A" (v) and A~ (v), but with roles reversed.

52. [25] (Boolean games.) Any Boolean function f(z1,...,z,) leads to a game called
“two steps forward or one step back,” in the following way: There are two players,
0 and 1, who repeatedly assign values to the variables z;; player y tries to make
f(z1,...,xy) equal to y. Initially all variables are unassigned, and the position marker
m is zero. Players take turns, and the currently active player either sets m < m + 2
(ifm+2<n)orm+ m—1(iff m—12>1), then sets

Tm < 0or 1, if z, was not previously assigned;
Tm < Tm, if 2., was previously assigned.

The game is over as soon as a value has been assigned to all variables; then f(z1,...,zy)
is the winner. A draw is declared if the same state (including the value of m) is reached
twice. Notice that at most four moves are possible at any time.

Study examples of this game when 2 < n < 9, in the following four cases:

a) f(z1,...,2n) =[21...2n <@n...z1] (in lexicographic order);
b) f(z1,...,Tn) =71 D D Tn;

¢) f(z1,...,2n) =[®1...2, contains no two consecutive 1s];

d) f(z1,...,2n) =[(Z1...2n)2 is prime].

53. [23] Show that the impossible comedy festival of (37) can be scheduled if a
change is made to the requirements of only (a) Tomlin; (b) Unwin; (c) Vegas; (d) Xie;
(e) Yankovic; (f) Zany.

54. [20] Let S = {u1,u2,...,ur} be the set of literals in some strong component of a
digraph that corresponds to a 2CNF formula as in Fig. 6. Show that S contains both
a variable and its complement if and only if u; = @ for some j with 2 < j <k.

7.1.1 BOOLEAN BASICS 87

» 55. [30] Call f(x1,...,zn) a renamed Horn function if there are Boolean constants
Y1, - - Yn such that f(z1 S y1,...,2Z» ® yn) is a Horn function.
a) Given f(z1,...,z,) in CNF, explain how to construct g(y1, ..., yn) in 2CNF so that

the clauses of f(z1®y1,. .., Tn®yYy) are Horn clauses if and only if g(y1,...,yn)=1.

b) Design an algorithm that decides in O(m) steps whether or not all clauses of a
given CNF of length m can be converted into Horn clauses by complementing some
subset of the variables.

> 56. [20] The satisfiability problem for a Boolean function f(z1,z2,...,%s) can be
stated formally as the question of whether or not the quantified formula

Jz1 Jz2 ... Jon f(z1, 22, ..., Tn)

is true; here ‘dz; o’ means, “there exists a Boolean value z; such that o holds.”

A much more general evaluation problem arises when we replace one or more of
the existential quantifiers 3z; by the universal quantifier Vz;, where ‘Vz; o’ means,
“for all Boolean values z;, o holds.”

Which of the eight quantified formulas 3z 3y 3z f(x,y, z), Iz IyVz f(z,y,2), ...,
Yz VyVz f(z,y, z) are true when f(z,y,2) = (zVy) A (ZVz) A (yVZ)?

» 57. [30] (B. Aspvall, M. F. Plass, and R. E. Tarjan.) Continuing exercise 56, design
an algorithm that decides in linear time whether or not a given fully quantified formula
f(z1,...,xy) is true, when f is any formula in 2CNF (any conjunction of Krom clauses).

» 58. [37] Continuing exercise 57, design an efficient algorithm that decides whether or
not a given fully quantified conjunction of Horn clauses is true.

» 59. [M20] (D. Pehoushek and R. Fraer, 1997.) If the truth table for f(z1,z2,...,Zxs)
has a 1 in exactly k£ places, show that exactly k£ of the fully quantified formulas
Qz1Qz2 ...Qzn f(x1,22,...,2,) are true, when each Q is either 3 or V.

60. [12] Which of the following expressions yield the median (zyz), as defined in (43)?
(a) (Ay) ® (yAz) ® (zAz). (b) (zVy) ® (yVz) & (zVz). (c) (z0y) A (ydz) A (z®2).
(@) (z=y) @ (y==2) ® (z=2). (e) (zAy) A(yAz) A (zAz). (f) (zAy)V (yAz)V (zAz).
61. [18] True or false: If o is any one of the Boolean binary operations in Table 1, we

have the distributive law w o (zyz) = {(woz)(woy)(woz)).

62. [25] (C. Schensted.) If f(z1,...,2,) is a monotone Boolean function and n > 3,
prove the median expansion formula

f(xh s ,mn) = <f(m1,m1,m3,m4, .. .,In)f($1,mz,$2,$4, s ,mn)f(m3,m2,m3,m4, .. 7m'ﬂ)>
63. [20] Equation (49) shows how to compute the median of five elements via medians
of three. Conversely, can we compute {zyz) with a subroutine for medians of five?
64. [23] (S. B. Akers, Jr.) (a) Prove that a Boolean function f(z1,...,zs) is mono-
tone and self-dual if and only if it satisfies the following condition:

Forallz =z1...x, and y = y1 ...y, there exists k such that f(z) = zx and f(y) = y-

(b) Suppose f is undefined for certain values, but the stated condition holds whenever
both f(z) and f(y) are defined. Show that there is a monotone self-dual Boolean
function g for which g(z) = f(x) whenever f(z) is defined.

» 65. [M21] Anysubset X of {1,2,...,n} corresponds to a binary vector z = z122 ...z,
via the rule z; = [j € X]. And any family F of such subsets corresponds to a Boolean
function f(z) = f(z1,2,...,Zn) of n variables, via the rule f(z) = [X € F]. Therefore

88 COMBINATORIAL SEARCHING 7.1.1

every statement about families of subsets corresponds to a statement about Boolean
functions, and vice versa.

A family F is called intersecting if XNY # () whenever X,Y € F. An intersecting
family that loses this property whenever we try to add another subset is said to be
mazimal. Prove that F is a maximal intersecting family if and only if the corresponding
Boolean function f is monotone and self-dual.

66. [M25] A coterie of {1,...,n} is a family C of subsets called quorums, which have
the following properties whenever Q@ € C and Q' € C: (i) Q N Q" # 0; (ii)) Q C Q'
implies Q = Q’'. Coterie C dominates coterie C' if C # C' and if, for every Q' € C',
there is a Q € C with Q C Q’. For example, the coterie {{1,2},{2,3}} is dominated
by {{1,2},{1,3},{2,3}} and also by {{2}}. [Coteries were introduced in classic papers
by L. Lamport, CACM 21 (1978), 558-565; H. Garcia-Molina and D. Barbara, JACM
32 (1985), 841-860. They have numerous applications to distributed system protocols,
including mutual exclusion, data replication, and name servers. In these applications
C is preferred to any coterie that it dominates.]

Prove that C is a nondominated coterie if and only if its quorums are the index
sets of variables in the prime implicants of a monotone self-dual Boolean function
f(z1,...,2n). (Thus Table 2 illustrates the nondominated coteries on {1,2,3,4}.)

67. [M30] (J. W. Milnor and C. Schensted.) A triangular grid of
order n, illustrated here for n = 3, contains (n + 2)(n + 1)/2 points
with nonnegative “barycentric coordinates” xyz, where z+y+2z = n.
Two points are adjacent if they differ by +1 in exactly two coordinate
positions. A point is said to lie on the z side if its # coordinate is
zero, on the y side if its y coordinate is zero, or on the z side if its z
coordinate is zero; thus each side contains n+ 1 points. If n > 0, a point lies on two dif-
ferent sides if and only if it occupies one of the three corner positions.

A “Y” is a connected set of points with at least one point on each side. Suppose
each vertex of a triangular grid is covered with a white stone or a black stone. For
example, the 52 black stones in

contain a (somewhat distorted) Y; but if any of them is changed from black to white,
there is a white Y instead. A moment’s thought makes it intuitively clear that, in any
placement, the black stones contain a Y if and only if the white stones do not.

We can represent the color of each stone by a Boolean variable, with 0 for white and
1 for black. Let Y (t) = 1 if and only if there’s a black Y, where ¢ is a triangular grid com-
prising all the Boolean variables. This function Y is clearly monotone; and the intuitive
claim made in the preceding paragraph is equivalent to saying that Y is also self-dual.
The purpose of this exercise is to prove the claim rigorously, using median algebra.

Given a,b,c > 0, let tqpe be the triangular subgrid containing all points whose
coordinates xyz satisfy x > a, y > b, z > ¢. For example, too1 denotes all points except
those on the z side (the bottom row). Notice that, if a + b+ ¢ = n, tapc is the single
point with coordinates abc; and in general, t45. is a triangular grid of order n—a—b—c.

7.1.1 BOOLEAN BASICS 89

a) Prove that, lf n > 0, Y(t) = <Y(t100)Y(t010)Y(t001)>.
b) If n > 0, let t* be the triangular grid of order n — 1 defined by the rule

t;yz = <t(z+1)yztz(y+1)zt2y(z+1)>7 for + Yy +z=n-1.

Prove that Y (¢t) = Y (¢*). [In other words, t* condenses each small triangle of
stones by taking the median of their colors. Repeating this process defines a
pyramid of stones, with the top stone black if and only if there is a black Y at the
bottom. It’s fun to apply this condensation principle to the twisted Y above.]

68. [46] The just-barely-Y configuration shown in the previous exercise has 52 black
stones. What is the largest number of black stones possible in such a configuration?
(That is, how many variables can there be in a prime implicant of the function Y (£)7?)

> 69. [M26] (C. Schensted.) Exercise 67 expresses the Y function in terms of medians.
Conversely, let f(z1,...,Zn) be any monotone self-dual Boolean function with m + 1
prime implicants po, p1, ..., Pm. Prove that f(z1,...,2,) = Y(T), where T is any
triangular grid of order m — 1 in which T, is a variable common to p, and pe+p+1,
for a+ b+ c = m — 1. For example, when f(w,z,y,z) = (zwywz) we have m = 3 and

f(w7x,y7z):(w/\x)V(w/\y)v(w/\z)v(m/\y/\z):Y(www).

Ty z

» 70. [M20] (A. Meyerowitz, 1989.) Given any monotone self-dual Boolean function
f(z) = f(z1,-..,2n), choose any prime implicant z;, A Az;, and let

g9(@) = (f(z) Nz #t]) V [2=1],

where t = t1...t, is the bit vector that has 1s in positions {j1,...,js}. Prove that
g(z) is also monotone and self-dual. (Notice that g(z) is equal to f(z) except at the
two points ¢ and %.)

» 71. [M21] Given the axioms (50), (51), and (52) of a median algebra, prove that the
long distributive law (54) is a consequence of the shorter law (53).

72. [M22] Derive (58), (59), and (60) from the median laws (50)—(53).

73. [M32] (S. P. Avann.) Given a median algebra M, whose intervals are defined
by (57) and whose corresponding median graph is defined by (61), let d(u,v) denote
the distance from u to v. Also let ‘[uxv]’ stand for the statement “z lies on a shortest
path from u to v.”

a) Prove that [uzv] holds if and only if d(u,v) = d(u,z) + d(z,v).

b) Suppose z € [u..v] and u € [z..y], where z # u and y v is an edge of the

graph. Show that z — u is also an edge.
c) If ¢ € [u..v], prove [uzv], by induction on d(u,v).
d) Conversely, prove that [uzv] implies z € [u..v].

74. [M21] In a median algebra, show that w = (xyz) whenever we have w € [z..y],
w € [z..2], and w € [y..z] according to definition (57).
> 75. [M36] (M. Sholander, 1954.) Suppose M is a set of points with a betweenness

relation “z lies between u and v,” symbolized by [uzv], which satisfies the following
three axioms:

i) If [uvu] then u = v.

ii) If [uzv] and [zyu] then [vyu].

iii) Given z, y, and z, exactly one point w = (zyz) satisfies [zwy], [zwz], and [ywz].
The object of this exercise is to prove that M is a median algebra.

a) Prove the majority law (zzy) = z, Eq. (50).

v

v

90 COMBINATORIAL SEARCHING 7.1.1

b) Prove the commutative law (zyz) = (zzy) = = (zyz), Eq. (51).

c¢) Prove that [uzv] if and only if z = (uzv).

d) If [uzy] and [uyv], prove that [zyv].

e) If [uzv] and [uyz] and [vyz], prove that [zyz]. Hint: Construct the points w =
(yuv), p = (wuz), ¢ = (wvzx), r = (pxz), s = (qrz), and t = (rsz).

f) Finally, deduce the short distributive law, Eq. (53): {{zyz)uv) = (z{yuv)(zuv)).
76. [M33] Derive the betweenness axioms (i), (ii), and (iii) of exercise 75, starting
from the three median axioms (50), (51), and (52), letting [uzv] be an abbreviation for
“x = (uzv).” Do not use the distributive law (53). Hint: See exercise 74.

77. [M28] Let G be a median graph containing the edge r — s. For each edge u— v,
call u an early neighbor of v if and only if r is closer to u than to v. Partition the
vertices into “left” and “right” parts, where left vertices are closer to r than to s and
right vertices are closer to s than to r. Each right vertex v has a rank, which is the
shortest distance from v to a left vertex. Similarly, each left vertex u has rank 1 — d,
where d is the shortest distance from u to a right vertex. Thus u has rank zero if it is
adjacent to a right vertex, otherwise its rank is negative. Vertex r clearly has rank 0,
and s has rank 1.
a) Show that every vertex of rank 1 is adjacent to exactly one vertex of rank 0.

b

) Show that the set of all right vertices is convex.

c) Show that the set of all vertices with rank 1 is convex.
)
)

d

e

Prove that steps 13-19 of Subroutine I correctly mark all vertices of ranks 1 and 2.
Prove that Algorithm H is correct.

78. [M26] If the vertex v is examined k times in step 14 during the execution of
Algorithm H, prove that the graph has at least 2% vertices. Hint: There are k ways to
start a shortest path from v to a; thus at least k 1s appear in I(v).

79. [M27] (R. L. Graham.) An induced subgraph of a hypercube is a graph whose
vertices v can be labeled with bit strings I(v) in such a way that v — v if and only if
l(u) and I(v) differ in exactly one bit position. (Each label has the same length.)
a) One way to define an n-vertex subgraph of a hypercube is to let I(v) be the
binary representation of v, for 0 < v < n. Show that this subgraph has exactly
f(n) = 3722 v(k) edges, where v(k) is the sideways addition function.
b) Prove that f(n) < n[lgn]/2.
c) Prove that no n-vertex subgraph of a hypercube has more than f(n) edges.

80. [27] A partial cube is an “isometric” subgraph of a hypercube, namely a subgraph
in which the distances between vertices are the same as they are in the full graph. The
vertices of a partial cube can therefore be labeled in such a way that the distance
from u to v is the “Hamming distance” between I(u) and I(v), namely v(l(u) & I(v)).
Algorithm H shows that every median graph is a partial cube.

a) Find an induced subgraph of the 4-cube that isn’t a partial cube.

b) Give an example of a partial cube that isn’t a median graph.

81. [16] Is every median graph bipartite?

82. [25] (Incremental changes in service.) Given a sequence of vertices (vo,v1,...,Vt)
in a graph G, consider the problem of finding another sequence (ug, u1, . . . ,ut) for which
uo = vo and the sum

(d(uo,ul) + d(u1, u2) + + d(ut—1, ut)) + (d(u1, v1) + d(uz,v2) + + d(ut,vt))

7.1.1 BOOLEAN BASICS 91

is minimized, where d(u,v) denotes the distance from u to v. (Each vi can be regarded
as a request for a resource needed at that vertex; a server moves to uj as those requests
are handled in sequence.) Prove that if G is a median graph, we get an optimum solution
by choosing ur = (up—1Vkvk+1) for 0 < k < ¢, and us = vs.
83. [38] Generalizing exercise 82, find an efficient way to minimize

(d(uo,ur) + d(ur,uz) + +d(ur—1,ur)) + p(d(ur,v1) +d(ug,va) + 4 d(ue,vr))
in a median graph, given any positive ratio p.
84. [30] Write a program to find all monotone self-dual Boolean functions of five

variables. What are the edges of the corresponding median graph? (Table 2 illustrates
the four-variable case.)

85. [M22] Theorem S tells us that every formula in 2CNF corresponds to a median
set; therefore every antisymmetric digraph such as Fig. 6 also corresponds to a median
set. Precisely which of those digraphs correspond to reduced median sets?

86. [15] If v, w, =, y, and z belong to a median set X, does their five-element median
(vwzyz), computed componentwise, always belong to X?

87. [24] What Cl-net does the proof of Theorem F construct for the free tree (63)?
88. [M21] We can use parallel computation to condense the network (74) into

)¢

b
b

by letting each module act at the earliest possible time. Prove that, although the
network constructed in the proof of Theorem F may contain (%) modules, it always
requires at most O(tlogt) levels of delay.

89. [24] When the construction (73) appends a new cluster of modules to enforce
the condition © — v, for some literals v and v, prove that it preserves all previously
enforced conditions v’ — v'.

90. [21] Construct a CI-net with input bits z1 ...z: and output bits y1 ...y:, where
y1= =yi—1=0andy: =z1® P z:. Try for only O(logt) levels of delay.

91. [46] Can a retraction mapping for the labels of every median graph of dimension ¢
be computed by a Cl-net that has only O(logt) levels of delay? [This question is moti-
vated by the existence of asymptotically optimum networks for the analogous problem
of sorting; see M. Ajtai, J. Komlés, and E. Szemerédi, Combinatorica 3 (1983), 1-19.]
92. [46] Can a Cl-net sort n Boolean inputs with fewer modules than a “pure” sorting
network that has no inverters?

93. [M20] Prove that every retract X of a graph G is an isometric subgraph of G.
(In other words, distances in X are the same as in G; see exercise 80.)

94. [M21] Prove that every retract X of a hypercube is a set of median labels, if we
suppress coordinates that are constant for all z € X.

95. [M25] True or false: The set of all outputs produced by a comparator-inverter
network, when the inputs range over all possible bit strings, is always a median set.
96. [HM25] Instead of insisting that the constants w1, wa, ..., Wy, and ¢ in (75) must
be integers, we could allow them to be arbitrary real numbers. Would that increase
the number of threshold functions?

v

92 COMBINATORIAL SEARCHING 7.1.1

97. [10] What median/majority functions arise in (81) when n = 2, wy = wy = 1,

and t = —1, 0, 1, 2, 3, or 47

98. [M23] Prove that any self-dual threshold function can be expressed in the form
f(xl,xg,...7mn):[v1y1+ —i—vnyn>0}7

where each y; is either z; or ;. For example, 221+ 3z2 + 523+ Tz4 + 1125+ 1326 > 21
if and only if 221 4+ 322 4+ 523 — 7Z4 + 1125 — 13Z6 > 0.

99. [20] (J. E. Mezei, 1961.) Prove that

<<a:1 v 332371)?;1 ces y2t72> = <371 ces $2s—1yi . --y;t—2>'

100. [20] True or false: If f(z1,...,z,) is a threshold function, so are the functions
f(z1,...,2n) A g1 and f(z1,...,2n) V Trt1.
101. [M23] The Fibonacci threshold function Fy,(z1,...,Ty,) is defined by the formula
(a:fl szz .. .mfﬁ]lmn"_2> when n > 3; for example, Fr(z1,...,27) = (zizrizioizizs).
a) What are the prime implicants of F,(z1,...,2,)?
b) Find an orthogonal DNF for F,(z1,...,zn) (see exercise 35).
¢) Express F,,(z1,...,2,) in terms of the Y function (see exercises 67 and 69).

102. [M21] The self-dualization of a Boolean function is defined by the formulas

f(mo,ml,...,mn) = (mo/\f(ﬂjl,...,mn))\/((fo/\f(ﬂ_fl,...,fn))
= (ZoVf(z1,.. yxn)) A (ZoV f(T1,. .-, Tn)).

a) If f(z1,...,zxs) is any Boolean function, prove that f is self-dual.
b) Prove that f is a threshold function if and only if f is a threshold function.

103. [HM25] Explain how to use linear programming to test whether or not a mono-
tone, self-dual Boolean function is a threshold function, given a list of its prime
implicants. Also, if it is a threshold function, explain how to minimize the size of
its representation as a majority function (z7*...zp").

104. [25] Apply the method of exercise 103 to find the shortest representations of

the following threshold functions as majority functions: (a) (zz3z3a]cs cs®cs ©5°);

(b) [(z1z22324)2 > t], for 0 < t < 16 (17 cases); (c) (x5 x3’x e adabadadxy0).
105. [M25] Show that the Fibonacci threshold function in exercise 101 has no shorter
representation as a majority function than the one used to define it.

106. [M25] The median-of-three operation (zgZz) is true if and only if z > y + z.

a) Generalizing, show that we can test the condition (z122 ... 2Zn)2 > (Y1y2 .. .Yn)2+2
by performing a median of 2"*! — 1 Boolean variables.

b) Prove that no median of fewer than 2""! — 1 will suffice for this problem.
107. [17] Calculate N(f) and X(f) for the 16 functions in Table 1. (See Theorem T.)
108. [M21] Let g(zo,z1,...,2n) be a self-dual function; thus N(g) = 2" in the nota-
tion of Theorem T. Express N(f) and X(f) in terms of X(g), when f(z1,...,2,) is
(a’) 9(07 L1y ,LL‘n), (b) g(lvmlv e mn)
109. [M25] The binary string @ = a1 ...a, is said to majorize the binary string
B=0bi...by, written @ > for S R a,ifar+ Far>bi+ +bfor0<k<n.
a) Let @ =@ ...d,. Show that o &= 3 if and only if 3 > a.

7.1.1 BOOLEAN BASICS 93

(11000 (10101 01110)
[10100@01 01)
[109101&?%01011]
(10001 01010 (00111)
(00110

Fig. 8. The binary majori-
zation lattice for strings of
length 5. (See exercise 109.)

00100

b) Show that any two binary strings of length n have a greatest lower bound «a A S,
which has the property that « > v and g > « if and only if a A 8 > . Explain
how to compute a A 8, given « and 3.

¢) Similarly, explain how to compute a least upper bound a V 3, with the property
that v > a and v > § if and only if v > a V .

d) True or false: a A (BVy) = (aAB) V (aAy); aV (BAY) = (aVB) A (aVy).

e) Say that a covers B if @ = B and a # 3, and if @ = v = 8 implies that we
have either v = a or v = 3. For example, Fig. 8 illustrates the covering relations
between binary strings of length 5. Find a simple way to describe the strings that
are covered by a given binary string.

f) Show that every path a = ag, a1, ..., @ =0...0 from a given string @ to 0...0,
where aj_1 covers a; for 1 < j < r, has the same length r = r(a).

g) Let m(a) be the number of binary strings 8 with 8 = «. Prove that m(la) =
m(a) and m(0a) = m(a) + m(a'), where o’ is a with its leftmost 1 (if any)
changed to 0.

h) How many strings « of length n satisfy a = a7

110. [M23] A Boolean function is called regular if x < y implies that f(z) < f(y)
for all vectors z and y, where < is the majorization relation in exercise 109. Prove or
disprove the following statements:

a) Every regular function is monotone.

b) If f is a threshold function (75) for which w1 > wo > > wp, f is regular.

c) If fisasin (b) and X(f) = (s1,-..,5n), then s1 > 52 > > sp.

d) If f is a threshold function (75) with s1 > s2 > > 8n, then wy > wy > > wnp.
111. [M36] An optimum coterie for a system with working probabilities (p1,...,pn) is
a coterie that corresponds to a monotone self-dual function with maximum availability,
among all monotone self-dual functions with n variables. (See exercises 14 and 66.)

a) Prove thatif1 > p; > > pn > %, at least one self-dual function with maximum

availability is a regular function. Describe such a function.

b) Furthermore, it suffices to test the optimality of a regular self-dual function f at

points y of the binary majorization lattice for which f(y) = 1 but f(z) = 0 for
all « covered by y.
¢) What coterie is optimum when some probabilities are < %?

94 COMBINATORIAL SEARCHING 7.1.1

> 112. [M37] (J. Hastad.) If f(z1,22,...,Zm) is a Boolean function, let M(f) be its
representation as a multilinear polynomial with integer coefficients (see exercise 12).
Arrange the terms in this polynomial by using Chase’s sequence ag = 00...0, a1 =
10...0, ..., agm_7; = 11...1 to order the exponents; Chase’s sequence, obtained
by concatenating the sequences Ano, A(n_1)1, -.-, Aon of 7.2.1.3-(35), has the nice
property that «; is identical to ;41 except for a slight change, either 0 — 1 or 01 — 10
or 001 — 100 or 10 — 01 or 100 — 001. For example, Chase’s sequence is

0000, 1000, 0010, 0001, 0100, 1100, 1010, 1001,0011,0101,0110,1110,1101,1011,0111, 1111

when m = 4, corresponding to the respective terms 1, 1, x3, ©4, x2, T1T2, ..., T2XT3Z4,
T12Z2x3T4; SO the relevant representation of, say, ((x1 ® T2) Ax3) V (21 ATz A x4) is

T3 — 123 + T1%4 — T2T3 + 2T1T2X3 — T1T3Ta
when the terms have been arranged in this order. Now let
F(f) = [the most significant coefficient of M (f) is positive].

For example, the most significant (final) nonzero term of ((z1 ®Z2) Axs)V (21 AZs Axz4)
is —z1z3z4 in Chase’s ordering, so F'(f) = 0 in this case.
a) Determine F'(f) for each of the 16 functions in Table 1.
b) Show that F'(f) is a threshold function of the n = 2™ entries { fo...00, fo...01, - -
fi..11} of the truth table for f. Write this function out explicitly when m = 2.
c¢) Prove that, when m is large, all the weights in any threshold representation of F'
must be huge: Their absolute values must all exceed

R}

3(737) 7(72) 15(7;) . (2m71_1)(z)

1-0 -1 _ 2mn/27n72(3/2)m/1n2+O((5/4)m).
- (1-0(™)

Hint: Consider discrete Fourier transforms of the truth table entries.

113. [24] Show that the following three threshold operations suffice to evaluate the
function S2.3,6,8,9(Z1,...,212) in (91):

g1(z1,...,x12) = [ve>6] = (121 ... 212);
gg(xl, e ,3312) = [1/93 — 691 2 2} = <131‘1 e $12§?>;
g3(x1,...,z12) = [“2vz 4 13g1 + Tge > 1] = (0°Z7 ... Z3591°g3).
Also find a four-threshold scheme that evaluates S1,3,5,8(%1,-..,T12).
114. [20] (D. A. Huffman.) What is the function Ss6(z,z,z,z,y,y, 2)?

115. [M22] Explain why (92) correctly computes the parity function zo®z1® DBx2m.

» 116. [HM28] (B.Dunham and R. Fridshal, 1957.) By considering symmetric functions,
one can prove that Boolean functions of n variables might have many prime implicants.
a) Suppose 0 < j < k < n. For which symmetric functions f(z1,...,z,) is the term
1A ANz, ANZjp1 A A Ty, a prime implicant?
b) How many prime implicants does the function Ss4,56(21,...,2z9) have?
c) Let lA)(n) be the maximum number of prime implicants, over all symmetric Boolean
functions of n variables. Find a recurrence formula for b(n), and compute b(9).
d) Prove that b(n) = ©(3"/n).
e) Show that, furthermore, there are symmetric functions f(z1,...,z,) for which
both f and f have @(23"/2/72) prime implicants.

7.1.1 BOOLEAN BASICS 95

117. [M26] A disjunctive normal form is called irredundant if none of its implicants
implies another. Let b*(n) be the maximum number of implicants in an irredundant
DNF, over all Boolean functions of n variables. Find a simple formula for b*(n), and
determine its asymptotic value.

118. [29] How many Boolean functions f(z1,z2,xs,z4) have exactly m prime impli-
cants, for m=0,1,...7
119. [M48] Continuing the previous exercises, let b(n) be the maximum number of

prime implicants in a Boolean function of n variables. Clearly b(n) < b(n) < b*(n);
what is the asymptotic value of b(n)?

120. [23] What is the shortest DNF for the symmetric functions (a) z1®z2® DB zn?
(b) So,1,3,4,6,7(x1,...,27)7 (c) Prove that every Boolean function of n variables can be
expressed as a DNF with at most 2" ™' prime implicants.

121. [M23] The function (1(z1®z2)y1y2ys) is partially symmetric, since it is symmet-
ric in {z1,x2} and in {y1,y2,ys}, but not in all five variables {z1, 2, y1,y2, Y3}
a) Exactly how many Boolean functions f(z1,...,%m,¥y1,...,Yn) are symmetric in
{z1,...,zm} and {y1,...,Yn}?
b) How many of those functions are monotone?
¢) How many of those functions are self-dual?
d) How many of those functions are monotone and self-dual?

122. [M25] Continuing exercises 110 and 121, find all Boolean functions f(z1, 2,3,
Y1,Y2, Y3, Y4, Ys5,Ye) that are simultaneously symmetric in {z1,z2, 23}, symmetric in
{y1,y2,...,Y6}, self-dual, and regular. Which of them are threshold functions?

123. [46] Determine the exact number of self-dual Boolean functions of ten variables
that are threshold functions.

124. [20] Find a Boolean function of four variables that is equivalent to 767 other
functions, under the ground rules of Table 5.

125. [18] Which of the function classes in (95) are canalizing?

126. [23] (a) Show that a Boolean function is canalizing if and only if its sets of prime
implicants and prime clauses have a certain simple property. (b) Show that a Boolean
function is canalizing if and only if its Chow parameters N(f) and 3(f) have a certain
simple property (see Theorem T). (¢) Define the Boolean vectors

vif)=\{z|f@)=1} and A(f)=N\{z| f(x) =1}

by analogy with the integer vector X(f). Show that it’s possible to decide whether or
not f is canalizing, given only the four vectors V(f), V(f), A(f), and A(f).

127. [M25] Which canalizing functions are (a) self-dual? (b) definite Horn functions?
128. [20] Find a noncanalizing f(z1,...,z,) that is true at exactly two points.
129. [M25] How many different canalizing functions of n variables exist?

130. [M21] According to Table 3, there are 168 monotone Boolean functions of four
variables. But some of them, like x A y, depend on only three variables or fewer.
a) How many 4-variable monotone Boolean functions actually involve each variable?
b) How many of those functions are distinct under permutation, as in Table 47

131. [HM42] Table 3 makes it clear that there are many more Horn functions than
Krom functions. What is the asymptotic number, as n — oo?

96 COMBINATORIAL SEARCHING 7.1.1

» 132. [HM30] The Boolean function g(z) = g(x1,...,x,) is called affine if it can be
written in the form yo @ (21 Ay1)® @D (zn Ayn) = (yo+2 y) mod 2 for some Boolean
constants yo, Y1, -- ., Yn-

a) Given any Boolean function f(z), show that some affine function agrees with f(z)
at 2"~ 4+ 2"/271 or more points . Hint: Let s(y) = 3 (—=1)7® ¥ and prove
that 3° s(y)s(y®2) = 22"[2=0...0] for all vectors z.

b) The Boolean function f(z) is called bent if no affine function agrees with it at
more than 2" ! +2"/2-! points. Prove that

(1 ANZ2) B (23 ATa) D DB (Tne1 ATp) ® h(w2,Ta,...,T0)

is a bent function, when n is even and h(y1,¥2,- .., ¥Yn/2) is arbitrary.
c¢) Prove that f(z) is a bent function if and only if

z:(f(ﬂﬁ)@f(:ﬂ@y)):2"71 forally #0...0.

d) If a bent function f(z1,...,2n) is represented by a multilinear polynomial mod 2
as in (19), show that it never contains the term z1 ...z, when r > n/2 > 1.

» 133. [20] (Mark A. Smith, 1990.) Suppose we flip n independent coins to get n
random bits, where the kth coin produces bit 1 with probability px. Find a way to
choose (p1,...,pn) so that f(z1,...,2,) = 1 with probability (tot1 ...tan_1)2/(22"—1),
where tot1 ...t2n_1 is the truth table of the Boolean function f. (Thus, n suitable
random coins can generate a probability with 2"-bit precision.)

By and large the minimization of switching components
outweighs all other engineering considerations
in designing economical logic circuits.

— H A CURTIS, A New Approach to the Design of Switching Circuits (1962)

He must be a great calculator indeed who succeeds.
Simplify, simplify.
— HENRY D THOREAU, Walden; or, Life in the Woods (1854)

7.1.2. Boolean Evaluation

Our next goal is to study the efficient evaluation of Boolean functions, much as
we studied the evaluation of polynomials in Section 4.6.4. One natural way to
investigate this topic is to consider chains of basic operations, analogous to the
polynomial chains discussed in that section.

A Boolean chain, for functions of n variables (z1,...,2,), is a sequence
(Zpt1s- - - Tntr) with the property that each step combines two of the preceding
steps: .

Ti = TjG) O Th(i), forn+1<i<n+r, (1)

where 1 < j(7) < i and 1 < k(4) < ¢, and where o; is one of the sixteen binary
operators of Table 7.1.1-1. For example, when n = 3 the two chains

1‘42271/\1‘2 .’174:1‘2@1‘3
Ts = T1 A x3 and Ts =11 A T4 (2)
Teg =4V Is re = 3 D x5

both evaluate the “mux” or “if-then-else” function z¢ = (z1? z3: x3), which
takes the value x5 or z3 depending on whether z; is 1 (true) or 0 (false).

7.1.2 BOOLEAN EVALUATION 97

(Notice that the left-hand example in (2) uses the simplified notation ‘zs =
Z1 A x3’ to specify the NOTBUT operation, instead of the form ‘x5 = x; C x3’
that appears in Table 7.1.1-1. The main point is that, regardless of notation,
every step of a Boolean chain is a Boolean combination of two prior results.)

Boolean chains correspond naturally to electronic circuits, with each step
in the chain corresponding to a “gate” that has two inputs and one output.
Electrical engineers traditionally represent the Boolean chains of (2) by circuit
diagrams such as

2 1
3 3

They need to design economical circuits that are subject to various technological
constraints; for example, some gates might be more expensive than others, some
outputs might need to be amplified if reused, the layout might need to be planar
or nearly so, some paths might need to be short. But our chief concern in this
book is software, not hardware, so we don’t have to worry about such things.
For our purposes, all gates have equal cost, and all outputs can be reused as
often as desired. (Jargonwise, our Boolean chains boil down to circuits in which
all gates have fan-in 2 and unlimited fan-out.)
Furthermore we shall depict Boolean chains as binary trees such as

3
d
an ! (4)

2 3

1 21 3

instead of using circuit diagrams like (3). Such binary trees will have overlapping
subtrees when intermediate steps of the chain are used more than once. Every
internal node is labeled with a binary operator; external nodes are labeled with
an integer k, representing the variable ;. The label ‘Q’ in the left tree of (4)
stands for the NOTBUT operator, since Z A y = [z < y]; similarly, the BUTNOT
operator, x A g, can be represented by the node label ‘& ’.

Several different Boolean chains might have the same tree diagram. For
example, the left-hand tree of (4) also represents the chain

T4 = T1 N\ T3, T5 = 1 N\ Tg, T = T5 V X4.

Any topological sorting of the tree nodes yields an equivalent chain.

Given a Boolean function f of n variables, we often want to find a Boolean
chain such that z,,, = f(z1,...,T,), where 7 is as small as possible. The
combinational complezity C(f) of a function f is the length of the shortest chain
that computes it. To save excess verbiage, we will simply call C(f) the “cost
of f.” The mux function in our examples above has cost 3, because one can show
by exhaustive trials that it can’t be produced by any Boolean chain of length 2.

The DNF and CNF representations of f, which we studied in Section 7.1.1,
rarely tell us much about C(f), since substantially more efficient schemes of

98 COMBINATORIAL SEARCHING 7.1.2

calculation are usually possible. For example, in the discussion following 7.1.1—
(30) we found that the more-or-less random function of four variables whose
truth table is 1100 1001 0000 1111 has no DNF expression shorter than

(fl A\ To A .f3) \Y (.fl N T3 A :i'4) V (1‘2 A T3 N I4) V (Il A\ 1‘2). (5)

This formula corresponds to a Boolean chain of 10 steps. But that function can
also be expressed more cleverly as

(((IQ /\f4) @i‘g) /\fl) GBIQ, (6)

so its complexity is at most 4.

How can nonobvious formulas like (6) be discovered? We will see that a
computer can find the best chains for functions of four variables without doing an
enormous amount of work. Still, the results can be quite startling, even for people
who have had considerable experience with Boolean algebra. Typical examples
of this phenomenon can be seen in Fig. 9, which illustrates the four-variable
functions that are perhaps of greatest general interest, namely the functions
that are symmetric under all permutations of their variables.

Consider, for example, the function Ss(z1, T2, x3,z4), for which we have

T 0000 0000 1111 1111
To 0000 1111 0000 1111
T3 0011 0011 0011 0011
T4 0101 0101 0101 0101
T5 = 71 D T3 0011 0011 1100 1100
T = 21 D T2 0000 1111 1111 0000 (7)
T7 =25 D T4 0110 0110 0110 0110
zs = 25 V Tg 0011 1111 1111 1100
Tg = 26 D T7 0110 1001 1001 0110
Ti0 = Tg A To 0001 0110 0110 1000

according to Fig. 9. Truth tables are shown here so that we can easily verify
each step of the calculation. Step xg yields a function that is true whenever
X1 # To or 21 # x3; and xg = x1 B T2 D x3 D 4 is the parity function (z1 + 22 +
x3+x4) mod 2. Therefore the final result, 19, is true precisely when exactly two
of {x1, 22, 23,24} are 1; these are the cases that satisfy zg and have even parity.

Several of the other computational schemes of Fig. 9 can also be justified
intuitively. But some of the chains, like the one for S; 4, are quite amazing.

Notice that the intermediate result x¢ is used twice in (7). In fact, no six-
step chain for the function Sa(x1, 22,3, 24) is possible without making double
use of some intermediate subexpression; the shortest algebraic formulas for Ss,
including nice symmetrical ones like

(x1 Aw2) V(23 Axs)) ® ((z1 V 22) A (T3 V 34)), (8)

all have cost 7. But Fig. 9 shows that the other symmetric functions of four vari-
ables can all be evaluated optimally via “pure” binary trees, without overlapping
subtrees except at external nodes (which represent the variables).

7.1.2 BOOLEAN EVALUATION 99

Sy

1 23 412 3 4 1 23 412 3 4

1 2341234 123 412 3 4

1 2 3 4

Fig. 9. Optimum Boolean chains for the symmetric functions of four variables.

In general, if f(x1,...,2,) is any Boolean function, we say that its length
L(f) is the number of binary operators in the shortest formula for f. Obviously
L(f) > C(f); and we can easily verify that L(f) = C(f) whenever n < 3, by
considering the fourteen basic types of 3-variable functions in 7.1.1-(g5). But we
have just seen that L(S) = 7 exceeds C(S2) = 6 when n = 4, and in fact L(f)
is almost always substantially larger than C(f) when n is large (see exercise 49).

The depth D(f) of a Boolean function f is another important measure of its
inherent complexity: We say that the depth of a Boolean chain is the length of the
longest downward path in its tree diagram, and D(f) is the minimum achievable
depth when all Boolean chains for f are considered. All of the chains illustrated
in Fig. 9 have not only the minimum cost but also the minimum depth — except
in the cases S 3 and S;,2, where we cannot simultaneously achieve cost 6 and
depth 3. The formula

Sas(x1, 22,23, 24) = (21 A22) ® (23 A2a)) V ((21 V 22) A (23 D 24)) (9)
shows that D(S33) = 3, and a similar formula works for S ».

Optimum chains for n = 4. Exhaustive computations for 4-variable functions
are feasible because such functions have only 2!® = 65,536 possible truth tables.
In fact we need only consider half of those truth tables, because the complement f
of any function f has the same cost, length, and depth as f itself.

100 COMBINATORIAL SEARCHING 7.1.2

Let’s say that f(x1,...,z,) is normal if f(0,...,0) =0, and in general that
f(xy,.. @) @ f(0,...,0) (10)

is the “normalization” of f. Any Boolean chain can be normalized by normalizing
each of its steps and by making appropriate changes to the operators; for if
(#1,...,%;_1) are the normalizations of (x1,...,7;_1) and if z; = 2;(;) 0; Ty (;) as
in (1), then ; is clearly a binary function of &;y and &y;). (Exercise 7 presents
an example.) Therefore we can restrict consideration to normal Boolean chains,
without loss of generality.

Notice that a Boolean chain is normal if and only if each of its binary
operators o; is normal. And there are only eight normal binary operators —
three of which, namely |, |, and R, are trivial. So we can assume that all
Boolean chains of interest are formed from the five operators A, C, D, V, and &,
which are denoted respectively by ®, ©, &, @, and @ in Fig. 9. Furthermore
we can assume that j(i) < k() in each step.

There are 2'° = 32,768 normal functions of four variables, and we can com-
pute their lengths without difficulty by systematically enumerating all functions
of length 0, 1, 2, etc. Indeed, L(f) = r implies that f = g o h for some g and h,
where L(g) + L(h) = r — 1 and o is one of the five nontrivial normal operators;
so we can proceed as follows:

Algorithm L (Find normal lengths). This algorithm determines L(f) for all
normal truth tables 0 < f < 22"~! by building lists of all nonzero normal
functions of length r for r > 0.

L1. [Initialize.] Let L(0) + 0 and L(f) + oo for 1 < f < 22"~1. Then, for
1<k <n,set L(z) + 0 and put z; into list 0, where

ar = (22 —1)/2% " +1) (11)

is the truth table for zy. (See exercise 8.) Finally, set ¢ « 221 _p 1,
c is the number of places where L(f) = co.

L2. [Loop on 7.] Do step L3 for r = 1, 2, ...; eventually the algorithm will
terminate when ¢ becomes 0.

L3. [Loop on j and k.] Do step L4 for 5 =0, 1, ..., and k = r — 1 — j, while
Jj<k.

L4. [Loop on g and h.] Do step L5 for all g in list j and all h in list k. (If j = k,
it suffices to restrict h to functions that follow g in list k.)

L5. [Loop on f.] Do step L6 for f =g&h, f =g&h, f =g&h, f = g| h, and
f=g@®h. (Here g & h denotes the bitwise AND of the integers g and h; we
are representing truth tables by integers in binary notation.)

L6. [Is f new?] If L(f) = oo, set L(f) + r, ¢ + ¢— 1, and put f in list r.
Terminate the algorithm if ¢ =0. |

Exercise 10 shows that a similar procedure will compute all depths D(f).

With a little more work, we can in fact modify Algorithm L so that it finds
better upper bounds on C(f), by computing a heuristic bit vector ¢(f) called

7.1.2 BOOLEAN EVALUATION 101

Table 1
THE NUMBER OF FOUR-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITY

C(f) Classes Functions L(f) Classes Functions D(f) Classes Functions
0 2 10 0 2 10 0 2 10
1 2 60 1 2 60 1 2 60
2 5 456 2 5 456 2 17 1458
3 20 2474 3 20 2474 3 179 56456
4 34 10624 4 34 10624 4 22 7552
5 75 24184 5 75 24184 5 0 0
6 72 25008 6 68 24640 6 0 0
7 12 2720 7 16 3088 7 0 0

the “footprint” of f. A normal Boolean chain can begin in only 5(3) different
ways, since the first step z,41 must be either z; A x5 or 1 A z3 or z1 A T2 or
21V Ty Or 1 BTy OF T3 AZ3 OF -+ OF Ty 1 D Tpy. Suppose @(f) is a bit vector of
length 5(%) and U(f) is an upper bound on C(f), with the following property:
Every 1 bit in ¢(f) corresponds to the first step of some Boolean chain that
computes f in U(f) steps.

Such pairs (U(f), #(f)) can be computed by extending the basic strategy of
Algorithm L. Initially we set U(f) < 1 and we set ¢(f) to an appropriate vector
0...010...0, for all functions f of cost 1. Then, for r =2, 3, ..., we proceed to
look for functions f = g o h where U(g) + U(h) = r — 1, as before, but with two
changes: (1) If the footprints of g and h have at least one element in common,
namely if ¢(g) & ¢(h) # 0, then we know that C(f) <r — 1, so we can decrease
U(f) if it was > r. (2) If the cost of g o h is equal to (but not less than) our
current upper bound U(f), we can set ¢(f) « &(f) | (¢(g) | ¢(h)) if U(f) =,
d(f) < o(f) | (6(g9) & é(h)) if U(f) = r — 1. Exercise 11 works out the details.

It turns out that this footprint heuristic is powerful enough to find chains of
optimum cost U(f) = C(f) for all functions f, when n = 4. Moreover, we’ll see
later that footprints also help us solve more complicated evaluation problems.

According to Table 7.1.1-5, the 2¢ = 65,536 functions of four variables
belong to only 222 distinct classes when we ignore minor differences due to
permutation of variables and/or complementation of values. Algorithm L and
its variants lead to the overall statistics shown in Table 1.

*Evaluation with minimum memory. Suppose the Boolean values z1, ..., T,
appear in n registers, and we want to evaluate a function by performing a
sequence of operations having the form

for1 <i<r,

(12)
where 1 < j(i) <n and 1 < k(i) < n and o; is a binary operator. At the end of

the computation, the desired function value should appear in one of the registers.
When n = 3, for example, the four-step sequence

Tj(i) = Tj(i) Oi Thi)s

14— T1 D xo
Tr3 < r3 N1y
To < To N\ T1
T3 < 13V To

(z1 = 00001111
(21 = 00111100
(z1 = 00111100
(z1 = 00111100
(z1 = 00111100

r2 = 00110011
rg = 00110011
r2 = 00110011
2 = 00000011
z2 = 00000011

x3 = 01010101)
x3 = 01010101)
x3 = 00010100)
x3 = 00010100)
@3 = 00010111)

(13)

102 COMBINATORIAL SEARCHING 7.1.2

computes the median (z;z3x3) and puts it into the original position of z3. (All
eight possibilities for the register contents are shown here as truth tables, before
and after each operation.)

In fact we can check the calculation by working with only one truth table at a
time, instead of keeping track of all three, if we analyze the situation backwards.
Let fi(x1,...,Tn) denote the function computed by steps I, [+ 1, ..., of the
sequence, omitting the first [— 1 steps; thus, in our example, fs(x1, z2,z3) would
be the result in z3 after the three steps x3 < z3A 1, T2 < T2 AT, T3 < T3V To.
Then the function computed in register xz3 by all four steps is

fi(z1,z2,23) = fa(z1 @ 22,22, 23). (14)

Similarly fa(z1, 2, 23) = f3(21, 22,23 A x1), fa(21, 22, 73) = fa(21, 22 A 1, T3),

fa(z1, 2, 23) = fs5(x1, 22,23 V x2), and f5(x1, 22, 23) = x3. We can therefore go

back from f5 to f4 to - - - to f; by operating on truth tables in an appropriate way.
For example, suppose f(x1,2z3,x3) is a function whose truth table is

t = apaiazazaqasagar;
then the truth table for g(x1, 22, 23) = f(21 ® 22, 22, 23) is
U = apa1060704050203,
obtained by replacing a, by a,r, where
z = (z17273)2 implies 7' = ((z1®x2)T2m3)2.
Similarly the truth table for, say, h(x1,z2,23) = f(21, 22,23 A1) is
V = agGoa2G2040506a7.
And we can use bitwise operations to compute u and v from ¢ (see 7.1.3—(83)):
u=t® ((t® (t>4) @ (t < 4)) & (00110011)3); (15)
v=ta ((t® (t > 1)) & (01010000)5). (16)

Let C,,(f) be the length of a shortest minimum-memory computation for f.
The backward-computation principle tells us that, if we know the truth tables
of all functions f with C,,(f) < r, we can readily find all the truth tables of
functions with C,,(f) = r. Namely, we can restrict consideration to normal
functions as before. Then, for all normal g such that C,,(g) = r — 1, we can
construct the 5n(n — 1) truth tables for

g(@1, . L1, T O Th, Ty, -, Tpy) (17)

and mark them with cost r if they haven’t previously been marked. Exercise 14
shows that those truth tables can all be computed by performing simple bitwise
operations on the truth table for g.

When n = 4, all but 13 of the 222 basic function types turn out to have
Cim(f) = C(f), so they can be evaluated in minimum memory without increasing
the cost. In particular, all of the symmetric functions have this property —
although that fact is not at all obvious from Fig. 9. Five classes of functions

7.1.2 BOOLEAN EVALUATION 103

have C(f) = 5 but Cy,,(f) = 6; eight classes have C(f) = 6 but C,,,(f) = 7. The
most interesting example of the latter type is probably the function (21 V z2) @
(z3V 24) ® (21 A 2 A 3 A 24), which has cost 6 because of the formula

X1 @ ((Eg V $4) @ (ZL‘Q A (fl V ((Eg AN $4))), (18)
but it has no minimum-memory chain of length less than 7. (See exercise 15.)

*Determining the minimum cost. The exact value of C(f) can be found
by observing that all optimum Boolean chains (z41,.-.,Znyr) for f obviously
satisfy at least one of three conditions:

i) Zp4r = xj 0z, where z; and x;, use no common intermediate results;

ii) xp41 = xj oy, where either x; or xy is not used in steps T,4a, ..., Toir;
iii) Neither of the above, even when the intermediate steps are renumbered.
In case (i) we have f = go h, where C(g) + C(h) = r — 1, and we can call this
a “top-down” construction. In case (ii) we have f(z1,...,2n) = g(@1,..., 21,
ZjOTk, Tjt1,--.,%y), Where C(g) = r—1; we call this construction “bottom-up.”

The best chains that recursively use only top-down constructions correspond
to minimum formula length, L(f). The best chains that recursively use only
bottom-up constructions correspond to minimum-memory calculations, of length
Cm(f). We can do better yet, by mixing top-down constructions with bottom-up
constructions; but we still won’t know that we’ve found C(f), because a special
chain belonging to case (iii) might be shorter.

Fortunately such special chains are rare, because they must satisfy rather
strong conditions, and they can be exhaustively listed when n and r aren’t too
large. For example, exercise 19 proves that no special chains exist when r < n+2;
and when n = 4, r = 6, there are only 25 essentially different special chains that
cannot obviously be shortened:

12 12 12 12
4 4 2 2 4 2 4 2 4 4 4 4 1 2
1 1 1 1 2 2 2 3 4
312 3 3 3 3 1 1 1 12
12 12 12 12 12 3 3 3
12 12 12
1 2 2 2 2 1 2 2 2 2
4 4 4 4 4 1 1 1
3 1 1 1 3 4 4 4
12 3 3 3 12 3 3 3
12 12 12 12 12 12

By systematically trying 5" possibilities in every special chain, one for each way
to assign a normal operator to the internal nodes of the tree, we will find at least

104 COMBINATORIAL SEARCHING 7.1.2

one function f in every equivalence class for which the minimum cost C(f) is
achievable only in case (iii).

In fact, when n = 4 and r = 6, these 25 - 56 = 390,625 trials yield only
one class of functions that can’t be computed in 6 steps by any top-down-plus-
bottom-up chain. The missing class, typified by the partially symmetric function
((x1z2x3) V 24) ® (x1AzaAx3), can be reached in six steps by appropriately
specializing any of the first five chains illustrated above; for example, one way is

T5 =x1 Nx2, Te=2x1VZT2, T7=2T3DTs,
T8 = T4 NTs5, T9=Te ATy, T10=TgV Tog, (19)

corresponding to the first special chain. Since all other functions have L(f) <7,
these trial calculations have established the true minimum cost in all cases.

Historical notes: The first concerted attempts to evaluate all Boolean func-
tions f(w,z,y, z) optimally were reported in Annals of the Computation Labo-
ratory of Harvard University 27 (1951), where Howard Aiken’s staff presented
heuristic methods and extensive tables of the best switching circuits they were
able to construct. Their cost measure V(f) was different from the cost C(f)
that we’ve been considering, because it was based on “control grids” of vacuum
tubes: They had four kinds of gates, NOT(f), NAND(f, g), OR(f1,-.-, fx), and
AND(f1,..., fx), respectively costing 1, 2, k, and 0. Every input to NOT, NAND,
or OR could be either a variable, or the complement of a variable, or the result
of a previous gate; every input to AND had to be the output of either NOT or
NAND that wasn’t also used elsewhere.

With those cost criteria, a function might not have the same cost as its
complement. One could, for instance, evaluate Ay as AND (NOT(a‘c), NOT(gj)),
with cost 2; but the cost of TV (§ A Z) = NAND(z,OR(y, z)) was 4 while its
complement z A (y V z) = AND(NOT(z), NAND(y, z)) cost only 3. Therefore
the Harvard researchers needed to consider 402 essentially different classes of
4-variable functions instead of 222 (see the answer to exercise 7.1.1-125). Of
course in those days they worked mostly by hand. They found V(f) < 20 in all
cases, except for the 64 functions equivalent to Sp 1 (w,z,y, 2) V (Sg(w, z,y) A z),
which they evaluated with 20 control grids as follows:

g1 = AND(NOT(w@),NOT(%)), g2 = NAND(7, 2),
93 = AND(NOT(w),NOT(x));
f = AND(NAND(g1, g2), NAND(gs, AND(NOT(y), NOT(2))),

NOT(AND(NOT(g3), NOT(3), NOT(z))),
NOT(AND(NOT(g1),NOT(g2),NOT(g3))))- (20)

The first computer program to find provably optimum circuits was written
by Leo Hellerman [IEEE Transactions EC-12 (1963), 198-223], who determined
the fewest NOR gates needed to evaluate any given function f(z,y,z). He re-
quired every input of every gate to be either an uncomplemented variable or
the output of a previous gate; fan-in and fan-out were limited to at most 3.
When two circuits had the same gate count, he preferred the one with smallest

7.1.2 BOOLEAN EVALUATION 105

Table 2
THE NUMBER OF FIVE-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITY
C(f) Classes Functions L(f) Classes Functions D(f) Classes Functions
0 2 12 0 2 12 0 2 12
1 2 100 1 2 100 1 2 100
2 5 1140 2 5 1140 2 17 5350
3 20 11570 3 20 11570 3 1789 6702242
4 93 109826 4 93 109826 4 614316 4288259592
5 389 995240 5 366 936440 5 0 0
6 1988 8430800 6 1730 7236880 6 0 0
7 11382 63401728 7 8782 47739088 7 0 0
8 60713 383877392 8 40297 250674320 8 0 0
9 221541 1519125536 9 141422 955812256 9 0 0
10 293455 2123645248 10 273277 1945383936 10 0 0
11 26535 195366784 11 145707 1055912608 11 0 0
12 1 1920 12 4423 31149120 12 0 0

sum-of-inputs. For example, he computed z = NOR(z) with cost 1; zVyV z =
NOR(NOR(z,y, z)) with cost 2; (zyz) = NOR(NOR(z,y), NOR(z, z), NOR(y, 2))
with cost 4; Si(z,y,2) = NOR(NOR(ac,y7z), <xyz>) with cost 6; etc. Since he
limited the fan-out to 3, he found that every function of three variables could be
evaluated with cost 7 or less, except for the parity function 2®y®z = (z=y) =z,
where z=y has cost 4 because it is NOR(NOR(z, NOR(z, y)), NOR(y, NOR(z, y))).

Electrical engineers continued to explore other cost criteria; but four-variable
functions seemed out of reach until 1977, when Frank M. Liang established the
values of C(f) shown in Table 1. Liang’s unpublished derivation was based on
a study of all chains that cannot be reduced by the bottom-up construction.

The case n = 5. There are 616,126 classes of essentially different functions
f(z1, 22,23, 24, x5), according to Table 7.1.1-5. Computers are now fast enough
that this number is no longer frightening; so the author decided while writing
this section to investigate C(f) for all Boolean functions of five variables. Thanks
to a bit of good luck, complete results could indeed be obtained, leading to the
statistics shown in Table 2.

For this calculation Algorithm L and its variants were modified to deal
with class representatives, instead of with the entire set of 23! normal truth
tables. The method of exercise 7.2.1.2-20 made it easy to generate all functions
of a class, given any one of them, resulting in a thousand-fold speedup. The
bottom-up method was enhanced slightly, allowing it to deduce for example that
f(z1 A 22,21 V 22,23, 24, 25) has cost < r if C(f) = r — 2. After all classes
of cost 10 had been found, the top-down and bottom-up methods were able to
find chains of length < 11 for all but seven classes of functions. Then the time-
consuming part of the computation began, in which approximately 53 million
special chains with n = 5 and r = 11 were generated; every such chain led to
511 = 48,828,125 functions, some of which would hopefully fall into the seven
remaining mystery classes. But only six of those classes were found to have 11-
step solutions. The lone survivor, whose truth table is 169ae443 in hexadecimal
notation, is the unique class for which C(f) = 12, and it also has L(f) = 12.

106 COMBINATORIAL SEARCHING 7.1.2

Fig. 10. Boolean chains of minimum cost
for symmetric functions of five variables.

The resulting constructions of symmetric functions are shown in Fig. 10.
Some of them are astonishingly beautiful; some of them are beautifully simple;
and others are simply astonishing. (Look, for example, at the 8-step computation
of Sa 3(x1,x2, x3, 24, x5), or the elegant formula for S5 3 4, or the nonmonotonic
chains for Sy45 and S345.) Incidentally, Table 2 shows that all 5-variable func-
tions have depth < 4, but no attempt to minimize depth has been made in Fig. 10.

It turns out that all of these symmetric functions can be evaluated in
minimum memory without increasing the cost. No simple reason is known.

7.1.2 BOOLEAN EVALUATION 107

Multiple outputs. We often want to evaluate several different Boolean func-
tions f1(z1,-.-,%n), -+-s fm(®1,...,2,) at the same input values 1, ..., Zy;
in other words, we often want to evaluate a multibit function y = f(x), where
y = fi...fm is a binary vector of length m and * = z;...x, is a binary
vector of length n. With luck, much of the work involved in the computation of
one component value f;(z1,...,2,) can be shared with the operations that are
needed to evaluate the other component values fi(x1,...,z,).

Let C(f) = C(f1... fm) be the length of a shortest Boolean chain that com-
putes all of the nontrivial functions f;. More precisely, the chain (p41,. .., Znir)
should have the property that, for 1 < j < m, either f;(z1,...,2,) = 2y or
fi(x1, ... xn) = Ty, for some I(j) with 0 <I(j) < n+r, where zg = 0. Clearly
C(f) <C(f1)+ - -+ C(fm), but we might be able to do much better.

For example, suppose we want to compute the functions z; and zg defined by

(2120)2 = =1 + 22 + T3, (21)
the two-bit binary sum of three Boolean variables. We have
21 = (T1T273) and 20 = 11D T2 D T3, (22)

so the individual costs are C(z1) = 4 and C(z9) = 2. But it’s easy to see that
the combined cost C(z120) is at most 5, because z1 @ x5 is a suitable first step
in the evaluation of each bit z;:

Tg =171 D T2, 20=2T5=1T3D Tyg;

Tg = T3 ATy, Ty =11 ANTo, 21 =Tg=TgV T7. (23)

Furthermore, exhaustive calculations show that C(z129) > 4; hence C(z129) = 5.

Electrical engineers traditionally call a circuit for (21) a full adder, because
n such building blocks can be hooked together to add two n-bit numbers. The
special case of (22) in which z3 = 0 is also important, although it boils down
simply to

21 = 1 N\ g and zg = T1 D T2 (24)

and has complexity 2; engineers call it a “half adder” in spite of the fact that
the cost of a full adder exceeds the cost of two half adders.

The general problem of radix-2 addition

(J}n,]_ e .’1711‘0)2
(Yn—1--- Y1%0)2 (25)

(Zn Zn—1..- 21 20)2

is to compute n + 1 Boolean outputs z,...2120 from the 2n Boolean inputs
Tp_1---T1ToYn_1 ---Y1Yo; and it is readily solved by the formulas

cjr1 = (Tjyici), zj = x;®y;dcj, for0<j<m, (26)

where the c¢; are “carry bits” and we have cg = 0, 2, = ¢,. Therefore we can
use a half adder to compute ¢; and zg, followed by n — 1 full adders to compute
the other ¢’s and z’s, accumulating a total cost of 5n — 3. And in fact N. P.
Red’kin [Problemy Kibernetiki 38 (1981), 181-216] has proved that 5n — 3 steps

108 COMBINATORIAL SEARCHING 7.1.2

are actually necessary, by constructing an elaborate 35-page proof by induction,
which concludes with Case 2.2.2.3.1.2.3.2.4.3(!). But the depth of this circuit,
2n —1, is far too large for practical parallel computation, so a great deal of effort
has gone into the task of devising circuits for addition that have depth O(logn)
as well as reasonable cost. (See exercises 41—44.)

Now let’s extend (21) and try to compute a general “sideways sum”
(Zlign) ---21%0)2 = Ty + 2o+ -+, (27)

If n = 2k+1, we can use k full adders to reduce the sum to (21 +-- -+ 2,) mod 2
plus k bits of weight 2, because each full adder decreases the number of weight-1
bits by 2. For example, if n =9 and k = 4 the computation is

T10=21DT2Dx3, X11=T4DT5DTs, T12=T7DTsDT9, T13=T10DT11DX12,
y1:<x1x2x3>, y2:<$4$59€6>7 y3:<7sl‘9>7 y4=<x10x11x12>,

and we have x1 + -+ x9 = 13 + 2(y1 + y2 + y3 + v4). If n = 2k is even, a
similar reduction applies but with a half adder at the end. The bits of weight 2
can then be summed in the same way; so we obtain the recurrence

s(n) = 5|n/2] — 3[n even] + s(|n/2]), s(0) =0, (28)

for the total number of gates needed to compute 2|15 | - . - 2, 29. (A closed formula
for s(n) appears in exercise 30.) We have s(n) < 5n, and the first values

n=12345 6 7 8§ 9 10 11 12 13 14 15 16 17 18 19 20
s(ny)=0 25 9 12 17 20 26 29 34 37 44 47 52 55 63 66 71 74 81

show that the method is quite efficient even for small n. For example, when
n = 5 it produces

Sas =22 = =z1=2S23

which computes three different symmetric functions zo = Sy 5(21,...,25), 21 =
S23(x1,...,@5), 20 = S1,35(21,...,5) in just 12 steps. The 10-step computa-
tion of S4 5 is optimum, according to Fig. 10; of course the 4-step computation
of S1 3,5 is also optimum. Furthermore, although C(S23) = 8, the function S5 3
is computed here in a clever 10-step way that shares all but one gate with Sy 5.

Notice that we can now compute any symmetric function efficiently, because
every symmetric function of {x1,...,z,} is a Boolean function of z|igp| . .. 21 .
We know, for example, that any Boolean function of four variables has complexity
< 7; therefore any symmetric function Sy, . g, (z1,...,215) costs at most s(15)+
7 = 62. Surprise: The symmetric functions of n variables were among the hardest
of all to evaluate, when n was small, but they’re among the easiest when n > 10.

7.1.2 BOOLEAN EVALUATION 109

We can also compute sets of symmetric functions efficiently. If we want, say,
to evaluate all n 4+ 1 symmetric functions Si(z1,...,2,) for 0 < k < n with a
single Boolean chain, we simply need to evaluate the first n+1 minterms of z,, 24,
.-+, Z|lgn|- For example, when n = 5 the minterms that give us all functions Sk
are respectively So = 20 AZ1 A 22, S1 = Zg A Zy A z9, ...y, S5 = 20 A Z1 A 29.

How hard is it to compute all 2™ minterms of n variables? Electrical
engineers call this function an n-to-2" binary decoder, because it converts n bits
Z1...T, into a sequence of 2" bits dody ... dan_1, exactly one of which is 1. The
principle of “divide and conquer” suggests that we first evaluate all minterms
on the first [n/2] variables, as well as all minterms on the last [n/2]; then 2"
AND gates will finish the job. The cost of this method is ¢(n), where

t(0) =¢#(1) = 0; t(n) =2"+t([n/2]) +t(|n/2]) forn > 2. (30)
So t(n) = 2™ 4 O(2"/?); there’s roughly one gate per minterm. (See exercise 32.)

Functions with multiple outputs often help us build larger functions with
single outputs. For example, we’ve seen that the sideways adder (27) allows
us to compute symmetric functions; and an n-to-2" decoder also has many
applications, in spite of the fact that 2™ can be huge when n is large. A case in
point is the 2™-way multiplezer M, (x1,. .., Tm;Yo,Y1,---,Y2m_1), also known
as the m-bit storage access function, which has n = m + 2™ inputs and takes
the value y; when (21 ...2,,)2 = k. By definition we have

2m—1

Mm(l‘la"-axm;y07yl7"'7y2m*1) = \/ (dk/\yk)7 (31)
k=0

where dj, is the kth output of an m-to-2™ binary decoder; thus, by (30), we can
evaluate M,, with 2™ + (2™—1) + t(m) = 3n + O(y/n) gates. But exercise 39
shows that we can actually reduce the cost to only 2n + O(y/n). (See also
exercise 79.)

Asymptotic facts. When the number of variables is small, our exhaustive-
search methods have turned up lots of cases where Boolean functions can be
evaluated with stunning efficiency. So it’s natural to expect that, when more
variables are present, even more opportunities for ingenious evaluations will arise.
But the truth is exactly the opposite, at least from a statistical standpoint:

Theorem S. The cost of almost every Boolean function f(z1,...,z,) exceeds
2"/n. More precisely, if c(n,r) Boolean functions have complexity < r, we have
(r—Dleln,r) < 227 (n47r—1)%, (32)

Proof. If a function can be computed in r — 1 steps, it is also computable by
an r-step chain. (This statement is obvious when r = 1; otherwise we can let
Tptr = Tpgr—1 A Tpyr—1.) We will show that there aren’t very many r-step
chains, hence we can’t compute very many different functions with cost < r.
Let 7 be a permutation of {1,...,n+ r} that takes 1 — 1, ..., n — n, and
n+r — n+r; there are (r—1)! such permutations. Suppose (Tp41,-..,Tnir) 1S a

110 COMBINATORIAL SEARCHING 7.1.2

Boolean chain in which each of the intermediate steps 41, ..., Tnyr—1 is used

in at least one subsequent step. Then the permuted chains defined by the rule
T = Ty O Thi(i) = Tj(imym— Oir Thiim)m— s forn<i<n+r, (33

are distinct for different w. (If 7 takes a +— b, we write b = am and a = br~.)
For example, if 7 takes 5+ 6 — 7 +— 8 — 9 > 5, the chain (7) becomes

Original Permuted
5652331@333, .’135:1‘1@1‘2,
T = 1 O 22, Te = T3 D 24,
xr7 = 3 D 14, Tr7 = Tg9 V Ts, (34)
rs =I5 V Tg, rs = T5 D X,
T9 = 26 O X7, T9 = 21 D 3,
IlOZIg/\fg; $10:1‘7/\i‘8.

Notice that we might have j'(:) > k’(z) or j'(¢) > ¢ or k'(i) > i, contrary to our
usual rules. But the permuted chain computes the same function x,,, as before,
and it doesn’t have any cycles by which an entry is defined indirectly in terms
of itself, because the permuted z; is the original ;.

We can restrict consideration to normal Boolean chains, as remarked earlier.
So the ¢(n,r)/2 normal Boolean functions of cost < r lead to (r — 1)!e(n,r)/2
different permuted chains, where the operator o; in each step is either A, V, D,
or ®. And there are at most 4" (n+r—1)%" such chains, because there are four
choices for o; and n+r—1 choices for each of j(i) and k(i), for n < i < n 4 r.
Equation (32) follows; and we obtain the opening statement of the theorem by
setting r = |2"/n]. (See exercise 46.) |

On the other hand, there’s also good news for infinity-minded people: We
can actually evaluate every Boolean function of n variables with only slightly
more than 2"/n steps of computation, even if we avoid @ and =, using a technique
devised by C. E. Shannon and improved by O. B. Lupanov [Bell System Tech. J.
28 (1949), 59-98, Theorem 6; Isvestiia VUZov, Radiofizika 1 (1958), 120-140].

In fact, the Shannon—-Lupanov approach leads to useful results even when
n is small, so let’s get acquainted with it by studying a small example. Consider

f($1,1?27$3,$4,$5,1?6) = [(3011?21‘33041?51‘6)2 is prime}, (35)

a function that identifies all 6-bit prime numbers. Its truth table has 26 = 64
bits, and we can work with it conveniently by using a 4 x 16 array to look at
those bits instead of confining ourselves to one dimension:

rz3=000000001T1T1T1T1T111
r4s2=0000111100001111
rs=0011001100110011
r¢=0101010101010101
125=00|0011010100010100 (36)

z122=0110101000100000101
z1z2=1010000010001010001
z1z2=1110000010000010100

7.1.2 BOOLEAN EVALUATION 111

The rows have been divided into two groups of two rows each; and each group
of rows has 16 columns, which are of four basic types, namely 3, ¢, §, or 1. Thus
we see that the function can be expressed as

f(z1,...,m¢) = ([z122€{00}] A [z3z47576 € {0010,0101,1011}])
\% ([mlxg €{01}] A[zzzamsm6 € {0001, 1111}])
V ([z122 €{00,01}] A (23242526 € {0011, 0111,1101}])
V ([z122€{10}] A [z3z42576 € {1001, 1111}])
V ([zize €{11}] A [zsz42526 € {1101}])
V ([z122 €{10,11}] A [z3z42526 € {0101,1011}]). (37)

(The first line corresponds to group 1, type &, then comes group 1, type ¢, etc.;
the last line corresponds to group 2 and type }.) A function like [xga:4x5x6 €
{0010, 0101, 1011}} is the OR of three minterms of {3, x4, x5, z6}-

In general we can view the truth table as a 2% x 2% array, with [groups
of rows having either [2¥/1] or [2¥/I] rows in each group. A group of size m
will have columns of 2™ basic types. We form a conjunction (gi(z1,...,2%) A
hit(Tg41,...,oy,)) for each group i and each nonzero type t, where g;; is the OR
of all minterms of {xy,...,x} for the rows of the group where ¢ has a 1, while
h;; is the OR of all minterms of {zky1,...,2,} for the columns having type ¢ in
group 7. The OR of all these conjunctions (g;;: A hit) gives f(z1,...,Tys).

Once we’ve chosen the parameters k and I, with 1 < k < n—2and 1 <[< 2k,

the computation starts by computing all the minterms of {z1,..., 2} and all
the minterms of {zx41,...,2n}, in t(k) + t(n — k) steps (see (30)). Then, for
1 <4 <1, we let group i consist of rows for the values of (z1,...,x) such that

(i — 1)2F/1 < (w1...25)2 < i2F/1; it contains m; = [i2%/1] — [(i — 1)2%/1] rows.
We form all functions g;; for ¢ € S;, the family of 2™ — 1 nonempty subsets of
those rows; 2™ — m; — 1 ORs of previously computed minterms will accomplish
that task. We also form all functions h;; representing columns of nonzero type ¢;
for this purpose we’ll need at most 2" % OR operations in each group i, since we
can OR each minterm into the h function of the appropriate type t. Finally we
compute f = \/ﬁzl \/tegi (git N hit); each AND operation is compensated by an
unnecessary first OR into h;;. So the total cost is at most

t(k) + t(n—k) + (I-1) +Z (@™—mi—1)+2" %+ (2™ -2)); (38)

we want to choose k and [so that this upper bound is minimized. Exercise 52
discusses the best choice when n is small. And when n is large, a good choice
yields a provably near-optimum chain, at least for most functions:

Theorem L. Let C(n) denote the cost of the most expensive Boolean functions
of n variables. Then as n — oo we have

C(n) > %(1+1g’7n+0(%>>; (39)

o< 7 (1452 o). w

n

112 COMBINATORIAL SEARCHING 7.1.2

Proof. Exercise 48 shows that the lower bound (39) is a consequence of The-
orem S. For the upper bound, we set k = [2lgn] and I = [2¥/(n — 31gn)] in
Lupanov’s method; see exercise 53. |

Synthesizing a good chain. Formula (37) isn’t the best way to implement a 6-
bit prime detector, but it does suggest a decent strategy. For example, we needn’t
let variables z; and x5 govern the rows: Exercise 51 shows that a better chain
results if the rows are based on z5xg while the columns come from xizox324,
and in general there are many ways to partition a truth table by playing k of
the variables against the other n — k.

Furthermore, we can improve on (37) by using our complete knowledge of
all 4-variable functions; there’s no need to evaluate a function like [z3r4z526 €
{0010,0101, 1011}] by first computing the minterms of {z3, x4, x5, ¢}, if we know
the best way to evaluate every such function from scratch. On the other hand, we
do need to evaluate several 4-variable functions simultaneously, so the minterm
approach might not be such a bad idea after all. Can we really improve on it?

Let’s try to find a good way to synthesize a Boolean chain that computes a
given set of 4-variable functions. The six functions of 23242526 in (37) are rather
tame (see exercise 54), so we’ll learn more by considering a more interesting
example chosen from everyday life.

A seven-segment display is a now-ubiquitous way to represent 2/

a 4-bit number (z1z2x374)2 in terms of seven cleverly positioned
segments that are either visible or invisible. The segments are
traditionally named (a,b,c,d,e, f,g) as shown; we get a ‘O’ by
turning on segments (a,b,c,d, e, f), but a ‘1’ uses only segments
(b, ¢). (Incidentally, the idea for such displays was invented by F. W.
Wood, U.S. Patent 974943 (1910), although Wood’s original design
used eight segments because he thought that a ‘4’ requires a diagonal stroke.)
Seven-segment displays usually support only the decimal digits ‘0’, ‘1’, ..., ‘9%
but of course a computer scientist’s digital watch should display also hexadecimal
digits. So we shall design seven-segment logic that displays the sixteen digits

M(IJyCccnoooL - AEE
NI I P [B N B R Y N N Ny Ny

when given the respective inputs z;x2x324 = 0000, 0001, 0010, ..., 1111.

In other words, we want to evaluate seven Boolean functions whose truth
tables are respectively

= 1011 0111 1110 0011,
1111 1001 1110 0100,
1101 1111 1111 0100,
1011 0110 1101 1110, (42)
1010 0010 1011 1111,
1000 1111 1111 0011,
= 0011 1110 1111 1111.

Q@ 0 a0 o8
Il

7.1.2 BOOLEAN EVALUATION 113

If we simply wanted to evaluate each function separately, several methods that
we’ve already discussed would tell us how to do it with minimum costs C(a) = 5,
C(b) =C(c)=C(d) =6, C(e) = C(f) =5, and C(g) = 4; the total cost for all
seven functions would then be 37. But we want to find a single Boolean chain
that contains them all, and the shortest such chain is presumably much more
efficient. How can we discover it?

Well, the task of finding a truly optimum chain for {a,b,c,d, e, f, g} is
probably infeasible from a computational standpoint. But a surprisingly good
solution can be found with the help of the “footprint” idea explained earlier.
Namely, we know how to compute not only a function’s minimum cost, but also
the set of all first steps consistent with that minimum cost in a normal chain.
Function e, for example, has cost 5, but only if we evaluate it by starting with
one of the instructions

Ts5 =1 D x4 or 5 = o N\ T3 or T5 = T2 V T3.

Fortunately, one of the desirable first steps belongs to four of the seven
footprints: Functions ¢, d, f, and g can all be evaluated optimally by starting
with x5 = x2 @ z3. So that is a natural choice; it essentially saves us three steps,
because we know that at most 33 of the original 37 steps will be needed to finish.

Now we can recompute the costs and footprints of all 216 functions, proceed-
ing as before but also initializing the cost of the new function x5 to zero. The
costs of functions ¢, d, f, and g decrease by 1 as a result, and the footprints
change too. For example, function a still has cost 5, but its footprint has
increased from {z1 ® z3, 22 A 23} to {z1 ® 3,21 A 24,T1 A T4, A T3, T2 A 24,
To @ T4, 24 A\ T5,24 @ x5} when the function x5 = 23 @ 3 is available for free.

In fact, zg = T4 A x4 is common to four of the new footprints, so again we
have a natural way to proceed. And when everything is recalculated with zero
cost given to both x5 and xg, the subsequent step z7 = x3 A Tg turns out to be
desirable in five of the newest footprints. Continuing in this “greedy” fashion, we
aren’t always so lucky, but a chain of 22 steps does emerge; and David Stevenson
has shown that only 21 steps are actually needed if we choose x1y non-greedily:

5 = T2 D 3, Ti2 = T1 N\ T2, a =219 = T15 O 718,
T = T1 N X4, T13 = Tg N\ T12, b= w30 = x11 A T13,
7 =3 N\ Tg, Tig = T3 N\ T13, C=ZT21 = Tg N\ Z11,
Tg = x1 O X2, T15 = T5 D T14, d = T2 = Tg N\ Z16, (43)
Tg9 = T4 D s, T16 = T1 D 27, € =T23 = Te V T14,
T10 = T3 V Tg, T17 = 21 V Ts, [=24 = Ts A x15,
11 = e D Z10, r18 = T6 D 213, g =x5 =27 V Z17.

(This is a normal chain, so it contains the normalizations {a,b,¢,d,€, f,g}
instead of {a,b,c,d,e, f,g}. Simple changes will produce the unnormalized
functions without changing the cost.)

Partial functions. In practice the output value of a Boolean function is often
specified only at certain inputs zi...x,, and the outputs in other cases don’t
really matter. We might know, for example, that some of the input combinations

114 COMBINATORIAL SEARCHING 7.1.2

will never arise. In such cases, we place an asterisk into the corresponding
positions of the truth table, instead of specifying 0 or 1 everywhere.

The seven-segment display provides a case in point, because most of its
applications involve only the ten binary-coded decimal inputs for which we have
(1292314)2 < 9. We don’t care what segments are visible in the other six cases.
So the truth tables of (42) actually become

= 1011 0111 11 sk,
= 1111 1001 11 skokskk,
= 1101 1111 11 sekckek,
1011 0110 11k sokckok, (44)
= 1010 0010 10%* sk,
= 1000 111% 11 sk,
g = 0011 1110 11k sk,

0 QLo o
Il

(Function f here has an asterisk also in position zjzoz374 = 0111, because a ‘7’
can be displayed as either -,‘ or l"l . Both of these styles appeared about equally
often in the display units available to the author when this section was written.
Truncated variants of the 5 and the g were sometimes seen in olden days, but
they have thankfully disappeared.)

Asterisks in truth tables are generally known as don’t-cares — a quaint term
that could only have been invented by an electrical engineer. Table 3 shows that
the freedom to choose arbitrary outputs is advantageous. For example, there are
(136)213 = 4,587,520 truth tables with 3 don’t-cares; 69% of them cost 4 or less,
even though only 21% of the asterisk-free truth tables permit such economy. On
the other hand, don’t-cares don’t save us as much as we might hope; exercise 63
proves that a random function with, say, 30% don’t-cares in its truth table tends
to save only about 30% of the cost of a fully specified function.

What is the shortest Boolean chain that evaluates the seven partially spec-
ified functions in (44)? Our greedy-footprint method adapts itself readily to
the presence of don’t-cares, because we can OR together the footprints of all 2¢
functions that match a pattern with d asterisks. The initial costs to evaluate each
function separately are now reduced to C(a) = 3, C(b) = C(c) = 2, C(d) = 5,
C(e) =2, C(f) =3, C(g) = 4, totalling just 21 instead of 37. Function g hasn’t
gotten cheaper, but it does have a larger footprint. Proceeding as before, but
taking advantage of the don’t-cares, we now can find a suitable chain of length
only 13— a chain with fewer than two operations per output(!):

.’E5::L‘1EB:L‘2, é:x10:m4\/m8, b:$15:$2/\513,

Te = T3 N\ Ta, g =211 =27 D78, €= T16 = T2 N\ Tg,

r7 =11 @ 73, T2 =24 D11, [=17 =25 N\ mo. (45)
T8 = T3 N Tg, d=1x13 = T19 N\ T12,

.’139:1‘3\/1‘4, 621‘14:.’1_73/\I13,

Tic-tac-toe. Let’s turn now to a slightly larger problem, based on a popular
children’s game. Two players take turns filling the cells of a 3 x 3 grid. One
player writes X’s and the other writes O’s, continuing until there either are three

7.1.2 BOOLEAN EVALUATION 115

Table 3
THE NUMBER OF 4-VARIABLE FUNCTIONS WITH d DON’T-CARES AND COST ¢

c=0 c=1 c=2 c=3 c=4 c=5 c=6 c¢c=7
d=0 10 60 456 2474 10624 24184 25008 2720
d=1 160 960 7296 35040 131904 227296 119072 2560
d=2 1200 7200 52736 221840 700512 816448 166144
d=3 5600 33600 228992 831232 2045952 1381952 60192
d=14 18200 108816 666528 2034408 3505344 1118128 3296
d=15 43680 257472 1367776 3351488 3491648 433568 32

d=6 80080 455616 2015072 3648608 1914800 86016
d="17 114400 606944 2115648 2474688 533568 12032

d=38 128660 604756 1528808 960080 71520 896
d=9 114080 440960 707488 197632 4160

d=10 78960 224144 189248 20160

d=11 41440 72064 25472 800

d=12 15480 12360 1280

d=13 3680 800

d=14 480

d=15 32

d=16 1

X’s or three O’s in a straight line (in which case that player wins) or all nine
cells are filled without a winner (in which case it’s a “cat’s game” or tie). For
example, the game might proceed thus:
+ HF % H OB K K & (46)

X has won. Our goal is to design a machine that plays tic-tac-toe optimally —
making a winning move from each position in which a forced victory is possible,
and never making a losing move from a position in which defeat is avoidable.

More precisely, we will set things up so that there are 18 Boolean variables
ri, ..., Tg, 01, ..., Og, which govern lamps to illuminate cells of the current
position. The cells are numbered é@é as on a telephone dial. Cell ;7 displays
an X if z; = 1, an O if 0; = 1, or remains blank if z; = 0; = 0.¥* We never
have z; = 0; = 1, because that would display ‘®’. We shall assume that the
variables xy...xg01...09 have been set to indicate a legal position in which
nobody has won; the computer plays the X’s, and it is the computer’s turn to
move. For this purpose we want to define nine functions y, ..., yg9, where y;
means “change x; from 0 to 1.” If the current position is a cat’s game, we should
make y; = -+ = yg = 0; otherwise exactly one y; should be equal to 1, and of
course the output value y; = 1 should occur only if z; = 0; = 0.

With 18 variables, each of our nine functions y; will have a truth table of
size 2'8 = 262,144. Tt turns out that only 4520 legal inputs i ...Zg01 . ..0g are

* This setup is based on an exhibit from the early 1950s at the Museum of Science and
Industry in Chicago, where the author was first introduced to the magic of switching circuits.
The machine in Chicago, designed circa 1940 by W. Keister at Bell Telephone Laboratories,
allowed me to go first; yet I soon discovered that there was no way to defeat it. Therefore
I decided to move as stupidly as possible, hoping that the designer had not anticipated such
bizarre behavior. In fact I allowed the machine to reach a position where it had two winning
moves; and it seized both of them! Moving twice is of course a flagrant violation of the rules,
so I had won a moral victory even though the machine announced that I had lost.

116 COMBINATORIAL SEARCHING 7.1.2

| commenced an examination of a game called “tit-tat-to” ...

to ascertain what number of combinations were required

for all the possible variety of moves and situations.

| found this to be comparatively insignificant.

... A difficulty, however, arose of a novel kind.

When the automaton had to move, it might occur that there were
two different moves, each equally conducive to his winning the game.
. Unless, also, some provision were made,

the machine would attempt two contradictory motions.

— CHARLES BABBAGE, Passages from the Life of a Philosopher (1864)

possible, so those truth tables are 98.3% filled with don’t-cares. Still, 4520 is
uncomfortably large if we hope to design and understand a Boolean chain that
makes sense intuitively. Section 7.1.4 will discuss alternative ways to represent
Boolean functions, by which it is often possible to deal with hundreds of variables
even though the associated truth tables are impossibly large.

Most functions of 18 variables require more than 218/18 gates, but let’s hope
we can do better. Indeed, a plausible strategy for making suitable moves in
tic-tac-toe suggests itself immediately, in terms of several conditions that aren’t
hard to recognize:

wj, an X in cell j will win, completing a line of X’s;
bj, an O in cell j would lose, completing a line of O’s;
fj, an X in cell j will give X two ways to win;

dj, an O in cell j would give O two ways to win.

For example, X’s move to the center in (46) was needed to block O, so it was of
type bs; fortunately it was also of type f5, forcing a win on the next move.

Let L = {{1,2,3},{4,5,6},{7,8,9},{1,4,7},{2,5,8},{3,6,9},{1,5,9},{3,5,7}}
be the set of winning lines. Then we have

mj =Z; A 0j; [moving in cell j is legal] (47)

wj =m; AV ieyern (@i Azk); [moving in cell j wins] (48)

bj =m; A Vi jrper(0i Aok); [moving in cell j blocks] (49)

fi=m; A Sy({air | {i,5,k} € L}); [moving in cell j forks] (50)

dj =mj A So({Bir | {i,j,k} € L}); [moving in cell j defends] (51)
here a;; and (;; denote a single X or O together with a blank, namely

ik = (i Amyg) V (m;Axy), Bir = (0;Amy) V (m;Aog). (52)

For example, by = mq A ((02 No3)V (0gNo7)V (o5 /\09)); f2 = magASs(ays,ass) =
mz A a1z A ass; ds = ms A Sz(Bro, Bas, B3, Pas)-
With these definitions we might try rank-ordering our moves thus:

{wla"'vw9}>{bla"'abg}>{f17"'af9}>{dla"'7d9}>{m17"'vm9}‘ (53)

“Win if you can; otherwise block if you can; otherwise fork if you can; otherwise
defend if you can; otherwise make a legal move.” Furthermore, when choosing

7.1.2 BOOLEAN EVALUATION 117

between legal moves it seems sensible to use the ordering
ms > mq > m3 > Mg > My > Mgy > Mg > Mg > My, (54)

because 5, the middle cell, occurs in four winning lines, while a corner move to
1, 3,9, or 7 occurs in three, and a side cell 2, 6, 8, or 4 occurs in only two. We
might as well adopt this ordering of subscripts within all five groups of moves
fw;}. (b} (£} {d;). and {m;} in (53).

To ensure that at most one move is chosen, we define wf, b, fi, dj, mj to
mean “a prior choice is better.” Thus, wi = 0, w] = wy, wh = wy Vwi, ...,
w)y = wg Vwg, by = wy Vwy, by =bs Vb, ..., mj = mgVmg. Then we can
complete the definition of a tic-tac-toe automaton by letting

yi = (w;AW5) V (b AV (F;AF7)V (djAdy) v (myam)), for 1 <5 <9. (55)

So we’ve constructed 9 gates for the m’s, 48 for the w’s, 48 for the b’s, 144 for
the a’s and B’s, 35 for the f’s (with the help of Fig. 9), 35 for the d’s, 43 for the
primed variables, and 80 for the y’s. Furthermore we can use our knowledge of
partial 4-variable functions to reduce the six operations in (52) to only four,

ik = (z;®x) V (0;Pog), Bir = (zi®xy) V (0;Dog). (56)

This trick saves 48 gates; so our design has cost 396 gates altogether.
The strategy for tic-tac-toe in (47)—(56) works fine in most cases, but it also
has some glaring glitches. For example, it loses ignominiously in the game

o e (57)
the second X move is dsz, defending against a fork by O, yet it actually forces O
to fork in the opposite corner! Another failure arises, for example, after position
j:t when move mjy leads to the cat’s game # fg%, ;Hg ﬁé ;@%, §§§ %, instead
of to the victory for X that appeared in (46). Exercise 65 patches thlngs up and
obtains a fully correct Boolean tic-tac-toe player that needs just 445 gates.

*Functional decomposition. If the function f(z1,...,2,) can be written in
the form g(z1,..., 2k, h(Zg41,...,Ty)), it’s usually a good idea to evaluate y =
h(zgs1,...,2n) first and then to compute g(z1, ..., zk,y). Robert L. Ashenhurst
inaugurated the study of such decompositions in 1952 [see Annals Computation
Lab. Harvard University 29 (1957), 74-116], and observed that there’s an easy
way to recognize when f has this special property: If we write the truth table
for f in a 2% x 2"~F array as in (36), with rows for each setting of =1 ...z} and
columns for each setting of g1 ...x,, then the desired subfunctions g and h
exist if and only if the columns of this array have at most two different values.
For example, the truth table for the function (z1z2(z37475)) is

0 000 0 O0O0OTP O
0 0 1
0 0 1
11 1

= O O

10
10
1 1

—

1
1
1

118 COMBINATORIAL SEARCHING 7.1.2

when expressed in this two-dimensional form. One type of column corresponds
to the case h(zgy1,...,2,) = 0; the other corresponds to h(xgi1,...,2,) = 1.

In general the variables X = {z1,...,x,} might be partitioned into any two
disjoint subsets Y = {y1,...,yx} and Z = {z1,...,2,—}, and we might have
f(z) = g(y,h(z)). We could test for a (Y, Z) decomposition by looking at the
columns of the 2% x 2"~* truth table whose rows correspond to values of y. But
there are 2" such ways to partition X; and all of them are potential winners,
except for trivial cases when Y| = 0 or |Z] < 1. How can we avoid examining
such a humungous number of possibilities?

A practical way to proceed was discovered by V. Y.-S. Shen, A. C. McKellar,
and P. Weiner [IEEE Transactions C-20 (1971), 304-309], whose method usually
needs only O(n?) steps to identify any potentially useful partition (Y, Z) that
may exist. The basic idea is simple: Suppose z; € Z, x; € Z, and z,,, € Y.
Define eight binary vectors §; for I = (I1lal3)2, where §; has (11,13, 13) respectively
in components (7,7, m), and zeros elsewhere. Consider any randomly chosen
vector £ = x1 ... xZ,, and evaluate f; = f(z®d;) for 0 <1 < 7. Then the four pairs

) @) @ @) 59)

will appear in a 2 x 4 submatrix of the 2% x 2"~* truth table. So a decomposition
is impossible if these pairs are distinct, or if they contain three different values.

Let’s call the pairs “good” if they’re all equal, or if they have only two
different values. Otherwise they’re “bad.” If f has essentially random behavior,
we’ll soon find bad pairs if we do this experiment with several different randomly
chosen vectors z, because only 88 of the 256 possibilities for fy fi ... f7 correspond
to a good set of pairs; the probability of finding good pairs ten times in a row is

only (£5)10 ~.00002. And when we do discover bad pairs, we can conclude that

z, €Z and ;€272 = xm € Z, (59)

because the alternative x,, € Y is impossible.

Suppose, for example, that n = 9 and that f is the function whose truth
table 11001001000011...00101 consists of the 512 most significant bits of 7, in
binary notation. (This is the “more-or-less random function” that we studied
for n = 4 in (5) and (6) above.) Bad pairs for this 7 function are quickly
found in each of the cases (i,j,m) for which m # ¢ < 7 # m. Indeed, in
the author’s experiments, 170 of those 252 cases were decided immediately; the
average number of random z vectors per case was only 1.52; and only one case
needed as many as eight z’s before bad pairs appeared. Thus (59) holds for all
relevant (7,7, m), and the function is clearly indecomposable. In fact, exercise
73 points out that we needn’t make 252 tests to establish the indecomposability
of this 7 function; only (g) = 36 of them would have been sufficient.

Turning to a less random function, let f(xq,...,29) = (det X) mod 2, where

1y T2 I3
X = T4 Xz Tg . (60)
T7 Tg Tg

7.1.2 BOOLEAN EVALUATION 119

This function does not satisfy condition (59) when ¢ = 1, j = 2, and m = 3,
because there are no bad pairs in that case. But it does satisfy (59) for4 <m < 9
when {7, j} = {1,2}. We can denote this behavior by the convenient abbreviation
‘12=-456789’; the full set of implications, for all pairs {4, 5}, is

12=456789 18=34569 27=-34569 37=24568 48=12369 67=12358
13=456789 19=-24568 28=134679 38=14567 49=12358 68=12347
14=235689 23=456789 29=14567 39=-124578 56=123789 69=124578
15=36789 24=36789 34=25789 45=123789 57=12369 78=123456
16=25789 25=-134679 35=14789 46=-123789 58=-134679 79=123456
17=235689 26=-14789 36=124578 47=-235689 59=-12347 89=-123456

(see exercise 69). Bad pairs are a little more difficult to find when we probe
this function at random: The average number of x’s needed in the author’s
experiments rose to about 3.6, when bad pairs did exist. And of course there
was a need to limit the testing, by choosing a tolerance threshold ¢ and then
giving up when ¢ consecutive trials failed to find any bad pairs. Choosing ¢ = 10
would have found all but 8 of the 198 implications listed above.

Implications like (59) are Horn clauses, and we know from Section 7.1.1 that
it’s easy to make further deductions from Horn clauses. Indeed, the method of
exercise 74 will deduce that the only possible partition with |Z] > 1 is the trivial
one (Y =0, Z ={z1,...,39}), after looking at fewer than 50 cases (i, j,m).

Similar results occur when f(xi,...,29) = [per X > 0], where per denotes
the permanent function. (In this case f tells us if there is a perfect matching
in the bipartite subgraph of K33 whose edges are specified by the variables
x1...%9.) Now there are just 180 implications,

12=456789 18=3459 27=3459 37=2468 48=1269 67=1358
13=456789 19=2468 28=134679 38=1567 49=1358 68=-2347
14=-235689 23=-456789 29=1567 39=124578 56=-123789 69=-124578
15=3678 24=3678 34=2579 45=123789 57=1269 78=123456
16=2579 25=134679 35=1489 46=123789 58=-134679 T79=-123456
17=235689 26=1489 36=124578 47=-235689 59=2347 89=-123456,

only 122 of which would have been discovered with ¢ = 10 as the cutoff threshold.
(The best choice of ¢ is not clear; perhaps it should vary dynamically.) Still, those
122 Horn clauses were more than enough to establish indecomposability.

What about a decomposable function? With f = (zezsxero(r124T52728))
we get iAj=m for all m ¢ {i,j}, except when {3, j} C {1,4,5,7,8}; in the latter
case, m must also belong to {1,4,5,7,8}. Although only 185 of these 212 impli-
cations were discovered with tolerance ¢t = 10, the partition Y = {z2, z3, 76, T9 },
7Z = {x1,24, 25, 77,28} emerged quickly as a strong possibility.

Whenever a potential decomposition is supported by the evidence, we need
to verify that the corresponding 2F x 27~% truth table does indeed have only
one or two distinct columns. But we’re happy to spend 2" units of time on that
verification, because we’ve greatly simplified the evaluation of f.

120 COMBINATORIAL SEARCHING 7.1.2

The comparison function f = [(x1z2x3x4)2 > (zsxexrT8)2 + .’Eg] is another

interesting case. Its 184 potentially deducible implications are

12=-3456789 18=2345679 27=34689 37=-489 48=9 67=23489
13=-2456789 19=2345678 28=34679 38=479 49=8 68=23479
14=2356789 23=46789 29=34678 39=478 56=-1234789 69=-23478
15=2346789 24=36789 34=789 45=-1236789 57=1234689 T78=-349
16=2345789 25=1346789 35=-1246789 46=-23789 58=-1234679 T79=-348
17=-2345689 26=34789 36=24789 47=-389 59=-1234678 89=-4,

and 145 of them were found when ¢ = 10. Three decompositions reveal them-
selves in this case, having Z = {x4, 25,29}, Z = {3, 24,27,28,29}, and Z =
{z2, x3,24,v6,27,28, Tg}, respectively. Ashenhurst proved that we can reduce f
immediately as soon as we find a nontrivial decomposition; the other decompo-
sitions will show up later, when we try to reduce the simpler functions g and h.

*Decomposition of partial functions. When the function f is only partially
specified, a decomposition with partition (Y, Z) hinges on being able to assign
values to the don’t-cares so that at most two different columns appear in the
corresponding 2F x 2"~k truth table.

Two vectors uy ... u, and vy ...v,, consisting of Os, 1s, and xs are said to
be incompatible if either u; = 0 and v; =1 or u; = 1 and v; = 0, for some j—
equivalently, if the subcubes of the m-cube specified by u and v have no points
in common. Consider the graph whose vertices are the columns of a truth table
with don’t-cares, where u — v if and only if v and v are incompatible. We can
assign values to the *s to achieve at most two distinct columns if and only if this
graph is bipartite. For if uq, ..., u; are mutually compatible, their generalized
consensus u1lLl- - - Ly, defined in exercise 7.1.1-32, is compatible with all of them.
[See S. L. Hight, IEEE Trans. C-22 (1973), 103-110; E. Boros, V. Gurvich, P. L.
Hammer, T. Ibaraki, and A. Kogan, Discrete Applied Math. 62 (1995), 51-75.]
Since a graph is bipartite if and only if it contains no odd cycles, we can easily
test this condition with a depth-first search (see Section 7.4.1).

Consequently the method of Shen, McKellar, and Weiner works also when
don’t-cares are present: The four pairs in (58) are considered bad if and only
if three of them are mutually incompatible. We can operate almost as before,
although bad pairs will naturally be harder to find when there are lots of *s (see
exercise 72). However, Ashenhurst’s theorem no longer applies. When several
decompositions exist, they all should be explored further, because they might use
different settings of the don’t-cares, and some might be better than the others.

Although most functions f(z) have no simple decomposition g(y, h(z)), we
needn’t give up hope too quickly, because other forms like g(y, hy(2), ho(2)) might
well lead to an efficient chain. If, for example, f is symmetric in three of its vari-
ables {21, 22, 23}, we can always write f(z) = g(y, S1,2(21, 22, 23), S1,3(21, 22, 23)),
since St 2(z1,22,23) and Si 3(z1, 22,23) characterize the value of zq + 29 + z3.
(Notice that just four steps will suffice to compute both S; » and Sy 3.)

In general, as observed by H. A. Curtis [JACM 8 (1961), 484-496], f(z) can
be expressed in the form g(y, h1(2),...,h.(z)) if and only if the 2% x 2"~* truth

7.1.2 BOOLEAN EVALUATION 121

table corresponding to Y and Z has at most 2" different columns. And when
don’t-cares are present, the same result holds if and only if the incompatibility
graph for Y and Z can be colored with at most 2" colors.

For example, the function f(z) = (det X)mod 2 considered above turns
out to have eight distinct columns when Z = {z4,xs,zq,z7, 25, 29}; that’s a
surprisingly small number, considering that the truth table has 8 rows and
64 columns. From this fact we might be led to discover how to expand a
determinant by cofactors of the first row,

f(x) = 1,‘1/\h1($4,...,(£9) D mgAh2($4,...,$9) D $3/\h3($4,...,1}9),

if we didn’t already know such a rule.

When there are d < 2" different columns, we can think of f(z) as a function
of y and h(z), where h takes each binary vector zj...z, j into one of the
values {0,1,...,d — 1}. Thus (hy,...,h,) is essentially an encoding of the
different column types, and we hope to find very simple functions A, ..., h, that
provide such an encoding. Moreover, if d is strictly less than 2", the function
9(y, h1,...,h,) will have many don’t-cares that may well decrease its cost.

The distinct columns might also suggest a function g for which the h’s have
don’t-cares. For example, we can use g(y1, vz, h1,ha) = (y1 ® (h1Ay2)) Aha when
all columns are either (0,0,0,0)T or (0,0,1,1)T or (0,1,1,0)T; then the value
of hy(z) is arbitrary when z corresponds to an all-zero column. H. A. Curtis
has explained how to exploit this idea when |Y| =1 and |Z| = n — 1 [see IEEE
Transactions C-25 (1976), 1033-1044].

For a comprehensive discussion of decomposition techniques, see Richard M.
Karp, J. Society for Industrial and Applied Math. 11 (1963), 291-335.

Larger values of n. We've been considering only rather tiny examples of
Boolean functions. Theorem S tells us that large, random examples are inher-
ently difficult; but practical examples might well be highly nonrandom. So it
makes sense to search for simplifications using heuristic methods.

When n grows, the best ways currently known for dealing with Boolean
functions generally start with a Boolean chain—not with a huge truth table —
and they try to improve that chain via “local changes.” The chain can be
specified by a set of equations. Then, if an intermediate result is used in com-
paratively few subsequent steps, we can try to eliminate it, temporarily making
those subsequent steps into functions of three variables, and reformulating those
functions in order to make a better chain when possible.

For example, suppose the gate x; = x; o o} is used only once, in the gate
T| = T; 0Ty, so that £; = (x; o xy) v x,,. Other gates might already exist, by
which we have computed other functions of x;, =}, and x,,; and the definitions
of zj, zx, and z,, may imply that some of the joint values of (z;,zx,zn) are
impossible. Thus we might be able to compute z; from other gates by doing
just one further operation. For example, if x; = z; A xy and z; = z; V &y, and
if the values x; V x,, and x} V 2, appear elsewhere in the chain, we can set
z; = (z;Vay,) A (xpVa,,); this eliminates x; and reduces the cost by 1. Or if,

122 COMBINATORIAL SEARCHING 7.1.2

say, ©; A (xx®z,,) appears elsewhere and we know that x;zz.m, # 101, we can
set £; = Ty @ (2 A (2£DT1,))-

If ; is used only in z; and x; is used only in z,, then gate z, depends on four
variables, and we might be able to reduce the cost by using our total knowledge of
four-variable functions, obtaining x, in a better way while eliminating z; and ;.
Similarly, if z; appears only in x; and x,, we can eliminate z; if we find a better
way to evaluate two different functions of four variables, possibly with don’t-
cares and with other functions of those four variables available for free. Again,
we know how to solve such problems, using the footprint method discussed above.

When no local changes are able to decrease the cost, we can also try local
changes that preserve or even increase the cost, in order to discover different
kinds of chains that might simplify in other ways. We shall discuss such local
search methods extensively in Section 7.10.

Excellent surveys of techniques for Boolean optimization, which electrical
engineers call the problem of “multilevel logic synthesis,” have been published
by R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, Proceedings
of the IEEE 78 (1990), 264-300, and in the book Synthesis and Optimization of
Digital Circuits by G. De Micheli (McGraw—Hill, 1994).

Lower bounds. Theorem S tells us that nearly every Boolean function of
n > 12 variables is hard to evaluate, requiring a chain whose length exceeds 2"/n.
Yet modern computers, which are built from logic circuits involving electric
signals that represent thousands of Boolean variables, happily evaluate zillions
of Boolean functions every microsecond. Evidently there are plenty of important
functions that can be evaluated quickly, in spite of Theorem S. Indeed, the proof
of that theorem was indirect; we simply counted the cases of low cost, so we
learned absolutely nothing about any particular examples that might arise in
practice. When we want to compute a given function and we can only think of a
laborious way to do the job, how can we be sure that there’s no tricky shortcut?

The answer to that question is almost scandalous: After decades of concen-
trated research, computer scientists have been unable to find any explicit family
of functions f(z1,...,2,) whose cost is inherently nonlinear, as n increases.
The true behavior is 2"/n, but no lower bound as strong as nlogloglogn has
yet been proved! Of course we could rig up artificial examples, such as “the
lexicographically smallest truth table of length 2™ that isn’t achievable by any
Boolean chain of length [2"/n| — 17; but such functions are surely not explicit.
The truth table of an explicit function f(z1,...,2,) should be computable in
at most, say, 2°" units of time for some constant c; that is, the time needed to
specify all of the function values should be polynomial in the length of the truth
table. Under those ground rules, no family of single-output functions is currently
known to have a combinational complexity that exceeds 3n + O(1) as n — oc.
[See N. Blum, Theoretical Computer Science 28 (1984), 337-345.]

The picture is not totally bleak, because several interesting linear lower
bounds have been proved for functions of practical importance. A basic way to
obtain such results was introduced by N. P. Red’kin in 1970: Suppose we have

7.1.2 BOOLEAN EVALUATION 123

an optimum chain of cost r for f(z1,...,z,). By setting z,, < 0 or =, + 1, we
obtain reduced chains for the functions g(z1,...,2,-1) = f(21,...,2,_1,0) and
h(z1,...,2n_1) = f(x1,...,2n_1,1), having cost » —u if z,, was used as an input
to u different gates. Moreover, if z,, is used in a “canalizing” gate x; = z,, o T,
where the operator o is neither @& nor =, some setting of z, will force z; to
be constant, thereby further reducing the chain for g or h. Lower bounds on g
and/or h therefore lead to a lower bound on f. (See exercises 77-81.)

But where are the proofs of nonlinear lower bounds? Almost every problem
with a yes-no answer can be formulated as a Boolean function, so there’s no
shortage of explicit functions that we don’t know how to evaluate in linear
time, or even in polynomial time. For example, any directed graph G with
vertices {v1, ..., vy} can be represented by its adjacency matrix X, where z;; =
[v; = v,]; then

f(T12, . s Zimy o+, Tmily oo Try(m—1)) = [G has a Hamiltonian path] (61)

is a Boolean function of n = m(m — 1) variables. We would dearly love to be
able to evaluate this function in, say, n* steps. We do know how to compute
the truth table for f in O(m!2") = 27+O(/71ogn) steps since only m! potential
Hamiltonian paths exist; thus f is indeed “explicit.” But nobody knows how to
evaluate f in polynomial time, or how to prove that there isn’t a 4n-step chain.

For all we know, short Boolean chains for f might exist, for each n. After all,
Figs. 9 and 10 reveal the existence of fiendishly clever chains even in the cases of
4 and 5 variables. Efficient chains for all of the larger problems that we ever will
need to solve might well be “out there” —yet totally beyond our grasp, because
we don’t have time to find them. Even if an omniscient being revealed the simple
chains to us, we might find them incomprehensible, because the shortest proof
of their correctness might be longer than the number of cells in our brains.

Theorem S rules out such a scenario for most Boolean functions. But fewer
than 2'%° Boolean functions will ever be of practical importance in the entire
history of the world, and Theorem S tells us zilch about them.

In 1974, Larry Stockmeyer and Albert Meyer were, however, able to con-
struct a Boolean function f whose complexity is provably huge. Their f isn’t
“explicit,” in the precise sense described above, but it isn’t artificial either; it
arises naturally in mathematical logic. Consider symbolic statements such as

048+1015#1063 ; 62
Vm3n (m<n+1) ; 63
Vn3m(m+1<n) ; 64

(

(

(
VaVb (b2a+233ab(a<abAab<b)) ; (
VAVB (A=B&-3n (n€AAnEBVNREBAREL)) ; (6
VA (3n (n€A)+3m (mEAAVD (n€A3mEN))) ; (
VA (3n (n€A)+3m(mEAAVD (n€A3m2N))) ; (
JPVa((a€P¥a+3¢P)#a<1000) ; (
VAVB (VCVc (C=AAc=1VC=BAc=02(Vn (n€C#n+1€C)#c=1))>-A=B) . (

124 COMBINATORIAL SEARCHING 7.1.2

Stockmeyer and Meyer defined a language L by using the 63-character alphabet
VI~ () =€¢+AVa8<<=#2>abcdefghi jklmnopqABCDEFGHI JKLMNOPQ0123456789

and giving conventional meanings to these symbols. Strings of lowercase letters
within the sentences of L, like ‘ab’ in (65), represent numeric variables, restricted
to nonnegative integers; strings of uppercase letters represent set variables,
restricted to finite sets of such numbers. For example, (66) means, “For all
finite sets A and B, we have A = B if and only if there doesn’t exist a number n
that is in A but not in B, or in B but not in A.” Some of these statements are
true; others are false. (See exercise 82.)

All of the strings (62)—(70) belong to L, but the language is actually quite
restricted: The only arithmetic operation allowed on a number is to add a
constant; we can write ‘a+13’ but not ‘a+b’. The only relation allowed between
a number and a set is elementhood (€ or €). The only relation allowed between
sets is equality (=). Furthermore all variables must be quantified by 3 or v.*

Every sentence of L that has length k& < n can be represented by a binary
vector of length 6n, with zeros in the last 6(n — k) bits. Let f(z) be a Boolean
function of 6n variables such that f(z) = 1 whenever x represents a true sentence
of L, and f(z) = 0 whenever x represents a sentence that is false; the value of f(z)
is unspecified when = doesn’t represent a meaningful sentence. The truth table
for such a function f can be constructed in a finite number of steps, according
to theorems of Buchi and Elgot [Zeitschrift fiir math. Logik und Grundlagen der
Math. 6 (1960), 66-92; Transactions of the Amer. Math. Soc. 98 (1961), 21-51].
But “finite” does not mean “feasible”: Stockmeyer and Meyer proved that

C(f)>2""° whenever n > 460 + .302r + 5.08Inr and r > 36. (71)

In particular, we have C(f) > 2426 > 10128 when n = 621. A Boolean chain with
that many gates could never be built, since 10'2® is a generous upper bound on
the number of protons in the universe. So this is a fairly small, finite problem
that will never be solved.

Details of Stockmeyer and Meyer’s proof appear in JACM 49 (2002), 753
784. The basic idea is that the language L, though limited, is rich enough to
describe truth tables and the complexity of Boolean chains, using fairly short
sentences; hence f has to deal with inputs that essentially refer to themselves.

*For further reading. Thousands of significant papers have been written about
networks of Boolean gates, because such networks underlie so many aspects of
theory and practice. We have focused in this section chiefly on topics that are
relevant to computer programming for sequential machines. But other topics
have also been extensively investigated, of primary relevance to parallel compu-
tation, such as the study of small-depth circuits in which gates can have any
number of inputs (“unlimited fan-in”). Ingo Wegener’s book The Complexity of

* Technically speaking, the sentences of L belong to “weak second-order monadic logic with
one successor.” Weak second-order logic allows quantification over finite sets; monadic logic
with k successors is the theory of unlabeled k-ary trees.

7.1.2 BOOLEAN EVALUATION 125

Boolean Functions (Teubner and Wiley, 1987) provides a good introduction to
the entire subject.

We have mostly considered Boolean chains in which all binary operators
have equal importance. For our purposes, gates such as @ or C are neither more
nor less desirable than gates such as A or V. But it’s natural to wonder if we
can get by with only the monotone operators A and V when we are computing a
monotone function. Alexander Razborov has developed striking proof techniques
to show that, in fact, monotone operators by themselves have inherently limited
capabilities. He proved, for example, that all AND-OR chains to determine
whether the permanent of an n X n matrix of 0s and 1s is zero or nonzero
must have cost n2(1°8™), [See Doklady Akademii Nauk SSSR 281 (1985), 798~
801; Matematicheskie Zametki 37 (1985), 887-900.] By contrast, we will see in
Section 7.5.1 that this problem, equivalent to “bipartite matching,” is solvable
in only O(n?%) steps. Furthermore, the efficient methods in that section can
be implemented as Boolean chains of only slightly larger cost, when we allow
negation or other Boolean operations in addition to A and V. (Vaughan Pratt
has called this “the power of negative thinking.”) An introduction to Razborov’s
methods appears in exercises 85 and 86.

EXERCISES

1. [24] The “random” function in formula (6) corresponds to a Boolean chain of
cost 4 and depth 4. Find a formula of depth 3 that has the same cost.

2. [21] Show how to compute (a) w @ (zyz) and (b) w A (xyz) with formulas that
have depth 3 and cost 5.

3. [M23] (B. L Finikov, 1957.) If the Boolean function f(z1,...,2zn) is true at
exactly k points, prove that L(f) < 2n+(k—2)2"=". Hint: Think of k = 3 and n = 10°.

4. [M26] (P. M. Spira, 1971.) Prove that the minimum depth and formula length of
a Boolean function satisfy g L(f) < D(f) < alg L(f)+ 1, where a = 2/1g(2) ~ 3.419.
Hint: Every binary tree with r > 3 internal nodes contains a subtree with s internal
nodes, where %’r <s< %’r‘.

» 5. [21] The Fibonacci threshold function Fy(z1,...,z,) = (@f a2 gl 1pf-2)

tn n

was analyzed in exercise 7.1.1-101, when n > 3. Is there an efficient way to evaluate it?

6. [20] True or false: A Boolean function f(x1,...,Z») is normal if and only if it
satisfies the general distributive law f(z1,...,2,) Ay = f(Z1 AY,--.,Tn A Y).
7. [20] Convert the Boolean chain ‘zs = x1 V 24, ¢ = Z2 V 5, 7 = T1 A T3,
Tg = Te = x7 to an equivalent chain (25, Zs,27,2s) in which every step is normal.
» 8. [20] Explain why (11) is the truth table of variable .
9. [20] Algorithm L determines the lengths of shortest formulas for all functions f,

but it gives no further information. Extend the algorithm so that it also provides actual
minimum-length formulas like (6).

» 10. [20] Modify Algorithm L so that it computes D(f) instead of L(f).

» 11. [22] Modify Algorithm L so that, instead of lengths L(f), it computes upper
bounds U(f) and footprints ¢(f) as described in the text.

12. [15] What Boolean chain is equivalent to the minimum-memory scheme (13)?

v

v

v

v

v

v

126 COMBINATORIAL SEARCHING 7.1.2

13. [16] What are the truth tables of f1, fa, f3, fa, and fs5 in example (13)7

14. [22] What’s a convenient way to compute the 5n(n—1) truth tables of (17), given
the truth table of g7 (Use bitwise operations as in (15) and (16).)

15. [28] Find short-as-possible ways to evaluate the following functions using mini-
mum memory: (a) Sz(x1,22,23,24); (b) Si(x1,22,23,24); (c) the function in (18).
16. [HM33] Prove that fewer than 2''® of the 2'*® Boolean functions f(z1,...,z7)

are computable in minimum memory.

17. [25] (M. S. Paterson, 1977.) Although Boolean functions f(z1,...,z,) cannot
always be evaluated in n registers, prove that n + 1 registers are always sufficient. In
other words, show that there is always a sequence of operations like (13) to compute
f(z1,...,z,) if we allow 0 < j(3), k(7)) < n.

18. [35] Investigate optimum minimum-memory computations for f(z1, z2, 23, T4, 5):
How many classes of five-variable functions have Cy,(f) =r, forr=0,1,2,...7

19. [M22] 1If a Boolean chain uses n variables and has length r < n + 2, prove that it
must be either a “top-down” or a “bottom-up” construction.

20. [40] (R. Schroeppel, 2004.) A Boolean chain is canalizing if it does not use the
operators @ or =. Find the optimum cost, length, and depth of all 4-variable functions
under this constraint. Does the footprint heuristic still give optimum results?

21. [46] For how many four-variable functions did the Harvard researchers discover
an optimum vacuum-tube circuit in 19517

22. [21] Explain the chain for S5 in Fig. 10, by noting that it incorporates the chain
for Sz 3 in Fig. 9. Find a similar chain for S2(x1,x2,x3, T4, T5).

23. [23] Figure 10 illustrates only 16 of the 64 symmetric functions on five elements.
Explain how to write down optimum chains for the others.

24. [47] Does every symmetric function f have Cp,(f) = C(f)?

25. [17] Suppose we want a Boolean chain that includes all functions of n variables:
Let fr(z1,-..,on) be the function whose truth table is the binary representation of k,
for 0 <k <m =22". What is C(fof1.-. fm-1)7

26. [25] True or false: If f(zo,...,2n) = (ToAg(z1,...,20n)) D h(z1,...,Tn), where g
and h are nontrivial Boolean functions whose joint cost is C(gh), then C(f)=2+C(gh).

27. [23] Can a full adder (22) be implemented in five steps using only minimum
memory (that is, completely inside three one-bit registers)?

28. [26] Prove that C'(u'v') = C(u"v") = 5 for the two-output functions defined by

"o

(u'v")2 = (z + y — (uv)2) mod 4, (u"v")s = (—x — y — (uv)2) mod 4.
Use these functions to evaluate [(z1 + 4 z,,) mod 4=0] in fewer than 2.5n steps.
29. [M28] Prove that the text’s circuit for sideways addition (27) has depth O(logn).
30. [M25] Solve the binary recurrence (28) for the cost s(n) of sideways addition.
31. [21] If f(z1,...,zn) is symmetric, prove that C(f) < 5n 4+ O(n/logn).
32. [HM16] Why does the solution to (30) satisfy t(n) = 2" 4+ O(2"/2)?

33. [HM22] True or false: If 1 < N < 2", the first N minterms of {z1,...,z,} can
all be evaluated in N + O(v/N) steps, as n — oo and N — oc.

7.1.2 BOOLEAN EVALUATION 127

> 34. [22] A priority encoder has n = 2™ — 1 inputs z1 ...z, and m outputs y1 ... Ym,
where (y1...Ym)2 = k if and only if k = max{j | j = 0 or z; = 1}. Design a priority
encoder that has cost O(n) and depth O(m).

35. [23] If n > 1, show that the conjunctions z1 A A Trp—1 N Tpg1 A A zn for
1 < k < n can all be computed from (z1,...,z,) with total cost < 3n — 6.

» 36. [M28] (R.E.Ladner and M. J. Fischer, 1980.) Let yx be the “prefix” z1 A Az
for 1 < k <n. Clearly C(y1...yn) = n —1 and D(y1...yn) = [lgn]; but we can’t
simultaneously minimize both cost and depth. Find a chain of optimum depth [lgn]
that has cost < 4n.

37. [M28] (Marc Snir, 1986.) Given n > m > 1, consider the following algorithm:

S1. [Upward loop.] For t < 1, 2, ..., [lgm], set Toinim,2tk) — Tat(k—1/2) N
Trmin(m,2tk) for k> 1 and 2'(k — 1/2) < m.

S2. [Downward loop.] For t < [lgm] — 1, [lgm] — 2, ..., 1, set ZTorpy1/2)
Toty N Tat(ry1/2) for k> 1 and 2'(k+1/2) < m.

S3. [Extension.] For k <+ m+1, m+2, ..., n, set zx < xx—1 Azk. |

a) Prove that this algorithm solves the prefix problem of exercise 36: It transforms
(z1,Z2,...,2n) into (z1,21 AZ2,..., 21 A2 A Axp).

b) Let ¢(m,n) and d(m,n) be the cost and depth of the corresponding Boolean chain.
Prove for fixed m that, if n is sufficiently large, c(m, n) + d(m,n) = 2n — 2.

c) Given n > 1, what is d(n) = mini<m<n d(m,n)? Show that d(n) < 21lgn.

d) Prove that there’s a Boolean chain of cost 2n — 2 — d and depth d for the prefix
problem whenever d(n) < d < n. (This cost is optimum, by exercise 81.)

38. [25] In Section 5.3.4 we studied sorting networks, by which S(n) comparator
modules are able to sort n numbers (z1, z2,. .., z,) into ascending order. If the inputs
z; are Os and 1s, each comparator module is equivalent to two gates (z A y,z V y);
so a sorting network corresponds to a certain kind of Boolean chain, which evaluates
n particular functions of (z1,z2,...,ZTn).
a) What are the n functions fi1fs ... fn that a sorting network computes?
b) Show that those functions {fi, f2,..., fn} can be computed in O(n) steps with a
chain of depth O(logn). (Hence sorting networks aren’t asymptotically optimal,
Booleanwise.)

» 39. [M21] (M. S. Paterson and P. Klein, 1980.) Implement the 2™-way multiplexer
My (1, .-y Tm; Yo, Y1, - - -, y2m—1) of (31) with an efficient chain that simultaneously
establishes the upper bounds C(My,) < 2n + O(v/n) and D(My,) < m + O(log m).

40. [25] Ifn >k >1,let for(z1,...,2,) be the “k in a row” function,
(z1 A Azk) V(2 A AzZps1)V V(Tag1-k A ATp).

Show that the cost C(fn) of this function is less than 4n — 3k.

41. [M23] (Conditional-sum adders.) Omne way to accomplish binary addition (25)
with depth O(logn) is based on the multiplexer trick of exercise 4: If (zz')2 + (yy')2 =
(22")2, where |z'| = |y'| = |2'|, we have either (z)2+(y)2 = (2)2 and (z')2+(y')2 = (2')2,
or (z)2 + (y)2+1 = (2)2 and (z')2 + (y')2 = (12')2. To save time, we can compute both
()24 (y)2 and (z)2+ (y)2 + 1 simultaneously as we compute (z')2 + (y')2. Afterwards,
when we know whether or not the less significant part (z')2 + (y')2 produces a carry,
we can use multiplexers to select the correct bits for the most significant part.

128 COMBINATORIAL SEARCHING 7.1.2

If this method is used recursively to build 2n-bit adders from n-bit adders, how
many gates are needed when n = 2™? What is the corresponding depth?
42. [25] In the binary addition (25), let ur = zx Ayr and v, = zx By for 0 < k < n.
a) Show that zr = v @ ck, where the carry bits ¢ satisfy

ck = Uk—1V (Vk—1 A (ug—2 V (Vk—2 A ((v1 Aug)))))-

b) Let UF =0, V¥ =1, and U;”l = ur V (vk /\UJ’-“), le”l = vg /\ij, for k > j.
Prove that ¢ = U¥, and that UF = UJ’-C \% (VJk A Uf), vk = V]’C A Vij fori < j<k.
¢) Let h(m) = 2™™=1/2 Show that when n = h(m), the carries ci, ..., ¢, can all
be evaluated with depth (m+1)m/2 ~ lgn+ v/ 21lgn and with total cost O(2™n).

> 43. [28] A finite-state transducer is an abstract machine with a finite input alpha-
bet A, a finite output alphabet B, and a finite set of internal states (). One of those
states, qo, is called the “initial state.” Given a string @ = a; ...an, where each a; € A,
the machine computes a string 8 = by ...b,, where each b; € B, as follows:

T1. [Initialize.] Set j < 1 and g + qo-

T2. [Done?] Terminate the algorithm if j > n.

T3. [Output b;.] Set b; + c(g,a;).

T4. [Advance j.] Set ¢ + d(q,a;), j < j+ 1, and return to step T2. |

The machine has built-in instructions that specify ¢(q, a) € B and d(g,a) € Q for every
state ¢ € Q and every character a € A. The purpose of this exercise is to show that, if
the alphabets A and B of any finite state transducer are encoded in binary, the string
B can be computed from « by a Boolean chain of size O(n) and depth O(logn).

a) Consider the problem of changing a binary vector ai ...an to b1 ...b, by setting

bj < a;®[aj=aj—_1= =aj_r=1and aj_k—1 =0, where k>1 is odd],

assuming that ap = 0. For example, &« = 1100100100011111101101010 — 8 =
1000100100010101001001010. Prove that this transformation can be carried out
by a finite state transducer with |A| = |B| = |Q| = 2.

b) Suppose a finite state transducer with |Q| = 2 is in state ¢; after reading a1 ... a;_1.
Explain how to compute the sequence ¢ . ..¢n with a Boolean chain of cost O(n)
and depth O(logn), using the construction of Ladner and Fischer in exercise 36.
(From this sequence qi ... gy it is easy to compute by ... by, since b; = c(q;,a;).)

c) Apply the method of (b) to the problem in (a).

> 44. [26] (R. E. Ladner and M. J. Fischer, 1980.) Show that the problem of binary
addition (25) can be viewed as a finite state transduction. Describe the Boolean chain
that results from the construction of exercise 43 when n = 2™, and compare it to the
conditional-sum adder of exercise 41.

45. [HM20] Why doesn’t the proof of Theorem S simply argue that the number of
ways to choose j(z) and k() so that 1 < j(7),k(3) < ¢ is n2(n+1)2... (n+r—1)27?

> 46. [HM21] Let a(n) = ¢(n, |2"/n])/2*" be the fraction of n-variable Boolean func-
tions f(z1,...,2s) for which C(f) < 2"/n. Prove that a(n) — 0 rapidly as n — oc.
47. [M23] Extend Theorem S to functions with n inputs and m outputs.
48. [HM23] Find the smallest integer r = r(n) such that (r—1)122" < 22" (n4r—1)2",
(a) exactly when 1 < n < 16; (b) asymptotically when n — co.

7.1.2 BOOLEAN EVALUATION 129

49. [HM25] Prove that, as n — oo, almost all Boolean functions f(z1,...,2z,) have
minimum formula length L(f) > 2"/lgn — 2"7%/(1gn)>.

50. [24] What are the prime implicants and prime clauses of the prime-number func-
tion (35)7 Express that function in (a) DNF (b) CNF of minimum length.

51. [20] What representation of the prime-number detector replaces (37), if rows of
the truth table are based on zsze instead of z1z27

52. [23] What choices of k and [minimize the upper bound (38) when 5 < n < 167
53. [HM22] Estimate (38) when k = |2lgn| and | = [2"/(n — 31gn)] and n — co.
54. [29] Find a short Boolean chain to evaluate all six of the functions f;(z) =
[21222324 € A;j], where A; = {0010,0101, 1011}, A, = {0001, 1111}, A5 = {0011, 0111,
1101}, A4 = {1001,1111}, As = {1101}, As = {0101,1011}. (These six functions

appear in the prime-number detector (37).) Compare your chain to the minterm-first
evaluation scheme of Lupanov’s general method.

55. [34] Show that the cost of the 6-bit prime-detecting function is at most 14.

» 56. [16] Explain why all functions with 14 or more don’t-cares in Table 3 have cost 0.

-
57. [19] What seven-segment “digits” are displayed when (z1z22324)2 > 9 in (45)?
-

» 58. [30] A 4x4-bit S-boz is a permutation of the 4-bit vectors {0000,0001,...,1111};
such permutations are used as components of well-known cryptographic systems such
as the Russian standard GOST 28147 (1989). Every 4x4-bit S-box corresponds to
a sequence of four functions fi(x1,x2,x3,x4), ..., fa(z1, 22,3, z4), which transform
1222324 > f1fafsfa.

Find all 4x4-bit S-boxes for which C(f1) = C(f2) = C(f3) =C(fs) = 7.

59. [29] One of the S-boxes satisfying the conditions of exercise 58 takes (0,...,f) —
(0,6,5,b,3,9,f,e,c,4,7,8,d,2,a,1); in other words, the truth tables of (fi, f2, f3, f4)
are respectively (179a,63e8,5b26,3e29). Find a Boolean chain that evaluates these
four “maximally difficult” functions in fewer than 20 steps.

60. [23] (Frank Ruskey.) Suppose z = (x+y) mod 3, where z = (z122)2, ¥y = (Y1¥Y2)2,
z = (z122)2, and each two-bit value is required to be either 00, 01, or 10. Compute z;
and z2 from z1, x2, Y1, and y2 in six Boolean steps.

61. [34] Continuing exercise 60, find a good way to compute z = (z+y) mod 5, using
the three-bit values 000, 001, 010, 011, 100.

62. [HM23] Consider a random Boolean partial function of n variables that has 2"¢c
“cares” and 2"d “don’t-cares,” where ¢+ d = 1. Prove that the cost of almost all such
partial functions exceeds 2"c/n.

63. [HM35] (L. A. Sholomov, 1969.) Continuing exercise 62, prove that all such
functions have cost < 2"¢/n(1 + O(n"'logn)). Hint: There is a set of 2™(1 + k)
vectors 1 ...z that intersects every (k — m)-dimensional subcube of the k-cube.

64. [25] (Magic Fifteen.) Two players alternately select digits from 1 to 9, using no
digit twice; the winner, if any, is the first to get three digits that sum to 15. What’s a
good strategy for playing this game?

> 65. [35] Modify the tic-tac-toe strategy of (47)—(56) so that it always plays correctly.

66. [20] Criticize the moves chosen in exercise 65. Are they always optimum?

130 COMBINATORIAL SEARCHING 7.1.2

» 67. [40] Instead of simply finding one correct move for each position in tic-tac-toe,
we might prefer to find them all. In other words, given 1 ...x901 ...09, we could try
to compute nine outputs g; ... gg, where g; = 1 if and only if a move into cell j is legal
and minimizes X’s worst-case outcome. For example, exclamation marks indicate all
of the right moves for X in the following typical positions:

e 0 Lot ! ! X|O| X[|o X[X! X ! ot ot 0lX| !X X X X

i T e M T e He G S T o B o
A machine that chooses randomly among these possibilities is more fun to play against
than a machine that has only one fixed strategy.

One attractive way to solve the all-good-moves problem is to use the fact that
tic-tac-toe has eight symmetries. Imagine a chip that has 18 inputs z;...2901 ... 09
and three outputs (c,s,m), for “corner,” “side,” and “middle,” with the property
that the desired functions g; can be computed by hooking together eight of the chips
appropriately:

g1 = c(a:lm2x3x4m5x6x7msm9010203040506070809)

V e(Z1ZT4T7T225T8T3T6L9010407020508030609),
g2 = S(T1L2T3T4TET6L7L8T9010203040506070809)

V $(Z3T221T6T5T4ToLsLT030201060504090807),
93 = ¢(T3T2T1T6T5T4T9 T T7030201060504090807)

V ¢(T3T6T9T2T5T8T1T4T7030609020508010407),
94 = S(T1L4T7T2TETLL3L6LT9010407020508030609)

V $(T7T4T1T8T5T2T9T6T3070401080502090603),
g9 = ¢(ToT3T7TET5T4TIT2L1090807060504030201)

V ¢(T9T6T3T8T5T2T7T4T1090603080502070401),

and g5 is the OR of the m outputs from all eight chips.

Design the logic for such a chip, using fewer than 2000 gates.
68. [M25] Consider the n-bit w function 7, (z1 . ..z,), whose value is the (z1 ... zn)2th
bit to the right of the most significant bit in the binary representation of w. Does the
method of exercise 4.3.1-39, which describes an efficient way to compute arbitrary bits
of 7, prove that C(m,) < 2"/n for sufficiently large n?
69. [M2/] Let the multilinear representation of f be

00 D @001Zm D @107 D @011Z;Tm D Q100T; D ®1012:Tm D @1102T:%j; D AX111T:T;Tm,

where each coefficient «; is a function of the variables {z1,..., 2o} \ {zi, zj, zm }.
a) Prove that the pairs (58) are “good” if and only if the coefficients satisfy

Q010101 = 011(X100, Q101110 = ¥100X111, and Q110011 = (¥111(010-

b) For which values (¢, 7, m) are the pairs bad, when f = (det X) mod 2?7 (See (60).)
70. [M27] Let X be the 3 x 3 Boolean matrix (60). Find efficient chains for the
Boolean functions (a) (det X) mod 2; (b) [per X > 0]; (c) [det X > 0].

> 71. [M26] Suppose f(z) is equal to 0 with probability p at each point z = z1 ...y,
independent of its value at other points.
a) What is the probability that the pairs (58) are good?
b) What is the probability that bad pairs (58) exist?
¢) What is the probability that bad pairs (58) are found in at most ¢ random trials?
d) What is the expected time to test case (4,7,m), as a function of p, ¢, and n?

v

7.1.2 BOOLEAN EVALUATION 131

72. [M24] Extend the previous exercise to the case of partial functions, where f(z) =
0 with probability p, f(z) = 1 with probability g, and f(z) = * with probability r.

73. [20] If bad pairs (58) exist for all (i,7,m) with m # ¢ # j # m, show that the
indecomposability of f can be deduced after testing only (;) well-chosen triples (z, j, m).

74. [25] Extend the idea in the previous exercise, suggesting a strategy for choosing
successive triples (z,7, m) when using the method of Shen, McKellar, and Weiner.

75. [20] What happens when the text’s decomposition procedure is applied to the
“all-equal” function So,n(z1,-..,2n)?

76. [M25] (D. Uhlig, 1974.) The purpose of this exercise is to prove the amazing fact
that, for certain functions f, the best chain to evaluate the Boolean function

Fut, . ytun,v1,...,0n) = f(u1,-coyun)V f(vi,...,vn)

costs less than 2C(f); hence functional decomposition is not always a good idea.

We let n = m + 2™ and write f(%1,...,%m,Zo0,...,Z2m_1) = fi(x), where 7 is
regarded as the number (i1...%m)2. Then (ui,...,un) = (41,.--,%m,To,.-.,Tam_1),
(viy..-s0n) = (J1ye vy Jms Yoy« -, Y2m—1), and F(u,v) = fi(z) V f;(y).

a) Prove that a chain of cost O(n/logn)? suffices to evaluate the 2™ + 1 functions

a=zo(l<ieli<ihAr(@ey), 0<1<2™,

from given vectors i, j, x, and y; each z; is a vector of length 2™.

b) Let gi(z) = fi(z) ® fi—1(x) for 0 <7 < 2™, where f_1(x) = fam(z) = 0. Estimate
the cost of computing the 2™ + 1 values ¢; = ¢i(21), given the vectors z;, for
0<1<2m.

c) Let ¢ =t A([i<j]=[I<4]) and ¢f = et A([i < j] = [j>1]). Prove that

filz)=co®ci® Deam, fi(y)=coDci & D chm.

d) Conclude that C(F) < 2"/n+ O(2"(logn)/n?). (When n is sufficiently large, this
cost is definitely less than 2""%/n, but functions f exist with C(f) > 2"/n.)
e) For clarity, write out the chain for F when m =1 and f(%,z0,2z1) = (1 Axo) V 1.

77. [85] (N. P. Red’kin, 1970.) Suppose a Boolean chain uses only the operations

AND, OR, or NOT; thus, every step is either z; = ;) A Tp@u) Or Ti = T V Ti)

or x; = Z;(;). Prove that if such a chain computes either the “odd parity” function

fo(@1,...,on) =21 ® @z, or the “even parity” function fn(z1,...,2n) = 1D z1 B
@ zn, where n > 2, the length of the chain is at least 4(n — 1).

78. [26] (W.J.Paul, 1977.) Let f(z1,...,Zm,Yo,-..,Y2m—1) be any Boolean function
that equals y, whenever (z1...Zm)2 = k € S, for some given set S C {0,1,...,2m —1};
we don’t care about the value of f at other points. Show that C(f) > 2||S||—2 whenever
S is nonempty. (In particular, when S = {0,1,...,2™ — 1}, the multiplexer chain of
exercise 39 is asymptotically optimum.)

79. [82] (C. P. Schnorr, 1976.) Say that variables u and v are “mates” in a Boolean
chain if there is exactly one simple path between them in the corresponding binary tree
diagram. Two variables can be mates only if they are each used only once in the chain;
but this necessary condition is not sufficient. For example, variables 2 and 4 are mates
in the chain for Si 2,3 in Fig. 9, but they are not mates in the chain for S,.

a) Prove that a Boolean chain on n variables with no mates has cost > 2n — 2.

b) Prove that C(f) = 2n — 3 when f is the all-equal function Sg n(z1,...,Zn).

132 COMBINATORIAL SEARCHING 7.1.2

» 80. [M27] (L. J. Stockmeyer, 1977.) Another notation for symmetric functions is
sometimes convenient: If & = aoas ...a, is any binary string, let So(z) = a,.. For
example, (z1w273) = Soo11 and z1 B T2 ® T3 = So101 in this notation. Notice that
Sa(0,22,...,Zsn) = Sor(x2,...,2,) and So(1,22,...,Zsn) = Sin(z2,...,Tsn), where o’
and ‘a stand respectively for a with its last or first element deleted. Also,

Sa(f(z3y. s n)y f(T3ye ey Tn)y T3y e Tn) = Sigr (T3, 0y Tn)

when f is any Boolean function of n — 2 variables.
a) A parity function has ao # a1 # az # # an. Assume that n > 2. Prove that if
S« is not a parity function and S,/ isn’t constant, then

C(Sa) > max(C(Sar)+2, C(Sra)+2, min(C(Sa)+3, C(S1a)+3, C(Siar)+5)).

b) What lower bounds on C(Sy) and C(S>) follow from this result, when 0 < k < n?

81. [28] (M. Snir, 1986.) Show that any chain of cost ¢ and depth d for the prefix
problem of exercise 36 has ¢+ d > 2n — 2.

82. [M23] Explain the logical sentences (62)—(70). Which of them are true?
83. [21] If there’s a Boolean chain for f(z1,...,z») that contains p canalizing oper-
ations, show that C(f) < (p+1)(n + p/2).

84. [M20] A monotone Boolean chain is a Boolean chain in which every operator o;
is monotone. The length of a shortest monotone chain for f is denoted by C*(f). If
there’s a monotone Boolean chain for f(z1,...,z») that contains p occurrences of A
and ¢ occurrences of V, show that CT(f) < min((p + 1)(n + p/2), (¢ + 1)(n + ¢/2)).

> 85. [M28] Let M, be the set of all monotone functions of n variables. If L is a family
of functions contained in My, let

v

xuy:/\{zeL|zQx\/y} and acl‘lyz\/{zEL|z§ac/\y}.

We call L “legitimate” if it includes the constant functions 0 and 1 as well as the
projection functions z; for 1 < j<m,andifz Uy € L, x My € L whenever z,y € L.

a) When n = 3 we can write Ms = {00, 01, 03, 05, 11, 07, 13, 15, Of, 33, 55, 17, 1f,
37, 57, 3f, 5f, 77, 7f, £f}, representing each function by its hexadecimal truth
table. There are 2'° families L such that {00, 0f,33,55,ff} C L C Ms; how many
of them are legitimate?

b) If A is a subset of {1,...,n}, let [A] = \/ .4 a; also let [oo] = 1. Suppose A
is a family of subsets of {1,...,n} that contains all sets of size < 1 and is closed
under intersection; in other words, AN B € A whenever A € A and B € A. Prove
that the family L = {[A] | A € AU oo} is legitimate.

¢) Let (Zn41,-..,Tntr) be a monotone Boolean chain (1). Suppose (Zn41, ..., Entr)
is obtained from the same Boolean chain, but with every operator A changed to M
and with every operator V changed to L, with respect to some legitimate family L.
Prove that, for n +1 <11 < n + r, we must have

1
& C oV \ {&i® (80 Varo) [oi =V}
i=n+1
l
Ty C 1V \/ {Cﬁ, D (@j(i) /\ik(i)) ‘ 0; = /\}.
i=n+1

7.1.3 BITWISE TRICKS AND TECHNIQUES 133

86. [HM37] A graph G on vertices {1,...,n} can be defined by N = (Z) Boolean
variables z,, for 1 < u < v < n, where x4, = [u—wv in G]. Let f be the function
f(x) = [G contains a triangle]; for example, when n = 4, f(z12, T13, T14, T23, Toa, T3a) =
(z12 A 213 A 223) V (12 A 14 A Z24) V (13 A 14 A Z34) V (23 A Z24 A z34). The purpose
of this exercise is to prove that the monotone complexity C(f) is Q(n/logn)3.

a) If u; — v; for 1 < j < r in a graph G, call S = {{u1,v1},...,{ur,v-}} an -
family, and let A(S) = Ur<i<j<r({ui, vi}N{u;,v;}) be the elements of its pairwise
intersections. Say that G is r-closed if we have u— v whenever A(S) C {u,v} for
some r-family S. It is strongly r-closed if, in addition, we have |A(S)| > 2 for all
r-families S. Prove that a strongly r-closed graph is also strongly (r + 1)-closed.

b) Prove that the complete bigraph K., is strongly r-closed when r > max(m,n).

¢) Prove that a strongly r-closed graph has at most (r — 1)? edges.

d) Let L be the family of functions {1} U {[G] | G is a strongly 7-closed graph on
{1,...,n}}. (See exercise 85(b); we regard G as a set of edges. For example, when
the edges are 1—3,1—4,2—3, 2—4, we have [G| = z13 V Z14 V Z23 V T24.)
Is L legitimate?

e) Let N1, ..., TN4+p+q = f be a monotone Boolean chain with p A-steps and ¢
V-steps, and consider the modified chain Znx41, ..., ENtptq = f based on the
family L in (d). If f # 1, show that 2(r — 1)®p+ (r — 1)%(n — 2) > (3). Hint: Use
the second formula in exercise 85(c).

f) Furthermore, if f =1 we must have r2¢q > 2" L.

g) Therefore p = Q(n/logn)3. Hint: Let r ~ 6lgn and apply exercise 84.

87. [M20] Show that when nonmonotonic operations are permitted, the triangle func-
tion of exercise 86 has cost C(f) = O(n'8"(logn)?) = O(n*®'). Hint: A graph has a
triangle if and only if the cube of its adjacency matrix has a nonzero diagonal.

88. [40] A median chain is analogous to a Boolean chain, but it uses median-of-three
steps @; = (;(;)Tr(i)Ti(s)) for n+1 < i < n+r, instead of the binary operations in (1).

Study the optimum length, depth, and cost of median chains, for all self-dual mono-
tone Boolean functions of 7 variables. What is the shortest chain for (z1z2z324T5T677)7

Lady Caroline Psha! that’s such a hack!
Sir Simon A hack, Lady Caroline, that
the knowing ones have warranted sound.

— GEORGE COLMAN, John Bull, Act 3, Scene 1 (1803)

7.1.3. Bitwise Tricks and Techniques

Now comes the fun part: We get to use Boolean operations in our programs.
People are more familiar with arithmetic operations like addition, subtrac-
tion, and multiplication than they are with bitwise operations such as “and,”
“exclusive-or,” and so on, because arithmetic has a very long history. But we will
see that Boolean operations on binary numbers deserve to be much better known.
Indeed, they’re an important component of every good programmer’s toolkit.
Early machine designers provided fullword bitwise operations in their com-
puters primarily because such instructions could be included in a machine’s
repertoire almost for free. Binary logic seemed to be potentially useful, although

134 COMBINATORIAL SEARCHING 7.1.3

only a few applications were originally foreseen. For example, the EDSAC com-
puter, completed in 1949, included a “collate” command that essentially per-
formed the operation z <+ z + (z & y), where z was the accumulator, = was
the multiplier register, and y was a specified word in memory; it was used for
unpacking data. The Manchester Mark I computer, built at about the same
time, included not only bitwise AND, but also OR and XOR. When Alan Turing
wrote the first programming manual for the Mark I in 1950, he remarked that
bitwise NOT can be obtained by using XOR (denoted ‘=%’) in combination with a
row of 1s. R. A. Brooker, who extended Turing’s manual in 1952 when the Mark
II computer was being designed, remarked further that OR could be used “to
round off a number by forcing 1 into its least significant digit position.” By this
time the Mark II, which was to become the prototype of the Ferranti Mercury,
had also acquired new instructions for sideways addition and for the position of
the most significant 1.

Keith Tocher published an unusual application of AND and OR in 1954,
which has subsequently been reinvented frequently (see exercise 85). And dur-
ing the ensuing decades, programmers have gradually discovered that bitwise
operations can be amazingly useful. Many of these tricks have remained part of
the folklore; the time is now ripe to take advantage of what has been learned.

A trick is a clever idea that can be used once, while a technique is a trick
that can be used at least twice. We will see in this section that tricks tend to
evolve naturally into techniques.

Enriched arithmetic. Let’s begin by officially defining bitwise operations on
integers so that, if z = (...zaw120)2, ¥y = (... ¥2¥1Y0)2, and z = (...222120)2
in binary notation, we have

r&y=2z <= T ANyp =z, for all k& > 0; (1)
zly=2z <= xpVuyr=zk, for all £ > 0; (2)
TDYy=2 <= zpDYr = 2k, for all k£ > 0. (3)

(It would be tempting to write ‘zAy’ instead of z&y, and ‘zVy’ instead of z|y; but
when we study optimization problems we’ll find it better to reserve the notations
x Ay and z V y for min(z,y) and max(z,y), respectively.) Thus, for example,

5&11=1, 5|11=15, and 511 =14,

since 5 = (0101)3, 11 = (1011)3, 1 = (0001)s, 15 = (1111)s, and 14 = (1110)s.
Negative integers are to be thought of in this connection as infinite-precision
numbers in two’s complement notation, having infinitely many 1s at the left; for
example, —5is (...1111011)5. Such infinite-precision numbers are a special case
of 2-adic integers, which are discussed in exercise 4.1-31, and in fact the operators
&, |, ® make perfect sense when they are applied to arbitrary 2-adic numbers.
Mathematicians have never paid much attention to the properties of & and |
as operations on integers. But the third operation, @, has a venerable history,
because it describes a winning strategy in the game of nim (see exercises 8-16).
For this reason @y has often been called the “nim sum” of the integers = and y.

7.1.3 BITWISE TRICKS AND TECHNIQUES 135

All three of the basic bitwise operations turn out to have many useful
properties. For example, every relation between A, V, and & that we studied in
Section 7.1.1 is automatically inherited by &, |, and & on integers, since the rela-
tion holds in every bit position. We might as well recap the main identities here:

r&y=y&az, zly=ylz, OYy=youx (4)
(z&y)&z=ax&(y&z), (z[y)|lz=z[(y|z), (@dyY)Sz=z&(ydz2); (5)
(zly)&z=(&2)|(y&z2), (z&y)lz=(x]2)&(y]2) (6)
(z@y)&z=(x&z)®(y&2); (7)
(z&y)lz=z, (z|y)&z=ux (8)
(z&y) o (z|y) =rdy; (9)
z&0=0, z|0=uz, z®0=uz; (10)
r&x=ux, z|xr=ux, r®x=0; (11)
r& —1=ux, x| —-1=-1, x®—1=7z; (12)
& T =0, x|z =-1, rdT=-—1; (13)

25, rly=3&7 (19

z&y=7|17, zly=z&7, TRY=TPYy=2d7.
The notation Z in (12), (13), and (14) stands for bitwise complementation of z,
namely (...Z2T1T0)2, also written ~z. Notice that (12) and (13) aren’t quite
the same as 7.1.1-(10) and 7.1.1—(18); we must now use —1 = (... 1111)5 instead
of 1 =(...0001)5 in order to make the formulas bitwise correct.
We say that = is contained in y, written x C y or y O =z, if the individual
bits of z and y satisfy xx < yi for all £ > 0. Thus

rCy <= z&y=2z = z|ly=y <<= z2&§=0. (15)

Of course we needn’t use bitwise operations only in connection with each
other; we can combine them with all the ordinary operations of arithmetic. For
example, from the relation z 4+ T = (...1111); = —1 we can deduce the formula

- = z+1, (16)

which turns out to be extremely important. Replacing = by = — 1 gives also

=TT, (17)

and in general we can reduce subtraction to complementation and addition:

T—y = T+y. (18)

We often want to shift binary numbers to the left or right. These operations
are equivalent to multiplication and division by powers of 2, with appropriate
rounding, but it is convenient to have special notations for them:

& < k = x shifted left k bits = [2%z]; (19)
x>k = x shifted right k bits = |2 %z]. (20)
Here k can be any integer, possibly negative. In particular we have

L (-k)=z>k and x> (k) =z <k, (21)

136 COMBINATORIAL SEARCHING 7.1.3

for every infinite-precision number z. Also (z& y) <k = (z < k) & (y < k), ete.
When bitwise operations are combined with addition, subtraction, multi-
plication, and/or shifting, extremely intricate results can arise, even when the
formulas are quite short. A taste of the possibilities can be seen, for example,
in Fig. 11. Furthermore, such formulas do not merely produce purposeless,
chaotic behavior: A famous chain of operations known as “Gosper’s hack,” first
published in 1972, opened people’s eyes to the fact that a large number of useful
and nontrivial functions can be computed rapidly (see exercise 20). Our goal in
this section is to explore how such efficient constructions might be discovered.

Fig. 11. A small portion of
the patchwork quilt defined by
the bitwise function f(z,y) =
((z @ 9) & ((z - 350) > 3))*;
the square cell in row x and
column y is painted white or
black according as the value of
((f(z,y) > 12) & 1) is 0 or 1.

. (Design by D. Sleator, 1976;
i ‘:;:4 see also exercise 18.)

Packing and unpacking. We studied algorithms for multiple-precision arith-
metic in Section 4.3.1, dealing with situations where integers are too large to fit in
a single word of memory or a single computer register. But the opposite situation,
when integers are significantly smaller than the capacity of one computer word, is
actually much more common; D. H. Lehmer called this “fractional precision.” We
can often deal with several integers at once, by packing them into a single word.
For example, a date x that consists of a year number y, a month number m,
and a day number d, can be represented by using 4 bits for m and 5 bits for d:

z = (y<4)+m)<5)+d. (22)

We'll see below that many operations can be performed directly on dates in this
packed form. For example, r < 2’ when date = precedes date z’. But if necessary
the individual components (y,m,d) can readily be unpacked when z is given:

d = z mod 32, m = (z > 5) mod 16, y=z>09. (23)

And these “mod” operations do not require division, because of the important
law
rmod 2" = z & (2"-1) (24)

for any integer n > 0. We have, for instance, d = z & 31 in (22) and (23).
Such packing of data obviously saves space in memory, and it also saves time:
We can more quickly move or copy items of data from one place to another when

7.1.3 BITWISE TRICKS AND TECHNIQUES 137

they’ve been packed together. Moreover, computers run considerably faster when
they operate on numbers that fit into a cache memory of limited size.

The ultimate packing density is achieved when we have 1-bit items, because
we can then cram 64 of them into a single 64-bit word. Suppose, for example,
that we want a table of all odd prime numbers less than 1024, so that we can
easily decide the primality of a small integer. No problem; only eight 64-bit
numbers are required:

P, =0111011011010011001011010010011001011001010010001011011010000001,
P, =0100110000110010010100100110000110110000010000010110100110000100,
P, =1001001100101100001000000101101000000100100001101001000100100101,
P; = 0010001010001000011000011001010010001011010000010001010001010010,
P, = 0000110000000010010000100100110010000100100110010010110000010000,
P5; =1101001001100000101001000100001000100001000100100101000100101000,
Ps = 1010000001000010000011000011011000010000001011010000001011010000,
P; = 0000010100010000100010100100100000010100100100010010000010100110.

To test whether 2k + 1 is prime, for 0 < k < 512, we simply compute
P|_k:/64j < (k & 63) (25)

in a 64-bit register, and see if the leftmost bit is 1. For example, the following
MMIX instructions will do the job, if register pbase holds the address of Py:

SRU $0,k,3 $0 «+ |k/8] (i.e., k> 3).

LDOU $1 ,pbase B $O $1 « PL$0/8J (i.e., PLk/64j)

AND $0,k, #3f $0 + kmod 64 (i.e., k & #3f). (26)
SLU $1,$1,%0 $1 « ($1 < $0) mod 254,

BN $1,PRIME Branch to PRIME if s($1) < 0. 1

Notice that the leftmost bit of a register is 1 if and only if the register contents
are negative.
We could equally well pack the bits from right to left in each word:

o = 1000000101101101000100101001101001100100101101001100101101101110,
(21 =0010000110010110100000100000110110000110010010100100110000110010,
(22 =1010010010001001011000010010000001011010000001000011010011001001,
23 =0100101000101000100000101101000100101001100001100001000101000100,
24 =0000100000110100100110010010000100110010010000100100000000110000,
5 =0001010010001010010010001000010001000010001001010000011001001011,
Qs =0000101101000000101101000000100001101100001100000100001000000101,
7 =0110010100000100100010010010100000010010010100010000100010100000;

here Q; = PJ-R. Instead of shifting left as in (25), we now shift right,
Q|k/64) > (k & 63), (27)
and look at the rightmost bit of the result. The last two lines of (26) become

SRU $1,$1,$0 $1 « $1> $0.
BOD $1,PRIME Branch to PRIME if $1 is odd. |

(And of course we use gbase instead of pbase.) Either way, the classic sieve of
Eratosthenes will readily set up the basic table entries P; or Q; (see exercise 24).

(28)

138 COMBINATORIAL SEARCHING 7.1.3

Table 1
THE BIG-ENDIAN VIEW OF A 32-BYTE MEMORY
octa 0
tetra O tetra 4
wyde 0 wyde 2 wyde 4 wyde 6
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
ap - ..ar ag...ais Qi6---Aa23 G24.--G31 (32-...439 Q40 ---047 QA48 -.-0a55 456 ---A63
octa 8
tetra 8 tetra 12
wyde 8 wyde 10 wyde 12 wyde 14
byte 8 byte 9 byte 10 byte 11 byte 12 byte 13 byte 14 byte 15
ag4--.ar1 Qa72...Q79 480 ---A87 (88 ---A95 Y6 ---A103 G104 - -- @111 @112 ---A119 A120 - - - A127
octa 16
tetra 16 tetra 20
wyde 16 wyde 18 wyde 20 wyde 22

byte 16 byte 17 byte 18 byte 19 byte 20 byte 21 byte 22 byte 23

a128---0135 @136 - - - @143 A144 - - - @151 G152 - - - @159 A160 - - - A167 G168 - - - A175 A176 - - - A183 A184 - - - A191
octa 24
tetra 24 tetra 28
wyde 24 wyde 26 wyde 28 wyde 30
byte 24 byte 25 byte 26 byte 27 byte 28 byte 29 byte 30 byte 31

a192 - ..a199 @200 - - - @207 4208 - - - @215 A216 - - - 223 A224 - - - A231 G232 - - - A239 A240 - - - 247 A248 - - - A255

Big-endian and little-endian conventions. Whenever we pack bits or bytes
into words, we must decide whether to place them from left to right or from right
to left. The left-to-right convention is called “big-endian,” because the initial
items go into the most significant positions; thus they will have bigger significance
than their successors, when numbers are compared. The right-to-left convention
is called “little-endian”; it puts the first items where little numbers go.

A big-endian approach seems more natural in many cases, because we're ac-
customed to reading and writing from left to right. But a little-endian placement
has advantages too. For example, let’s consider the prime number problem again;
let ar = [2k+1 is prime]. Our table entries { Py, P, ..., P;} are big-endian, and
we can regard them as the representation of a single multiple-precision integer
that is 512 bits long:

(PoPy...Pr)ges = (apay...asi1)z- (29)
Similarly, our little-endian table entries represent the multiprecise integer

(Q7...Q1Q0)261 = (as11...0a100)2. (30)
The latter integer is mathematically nicer than the former, because it is

511 511

oo
Z2kak = Z2k[2k+l is prime] = <Z 2K [2k+1 is prime}) mod 252, (31)
k=0 k=0 k=0

7.1.3 BITWISE TRICKS AND TECHNIQUES 139

Table 2
THE LITTLE-ENDIAN VIEW OF A 32-BYTE MEMORY
octa 24
tetra 28 tetra 24
wyde 30 wyde 28 wyde 26 wyde 24

byte 31 byte 30 byte 29 byte 28 byte 27 byte 26 byte 25 byte 24

@255 - - - A248 4247 - - - @240 A239 - - - G232 A231 - - - 4224 G223 . - - A216 4215 - - - @208 A207 - - - G200 @199 - - - A192

octa 16
tetra 20 tetra 16
wyde 22 wyde 20 wyde 18 wyde 16
byte 23 byte 22 byte 21 byte 20 byte 19 byte 18 byte 17 byte 16

@191 ---A184 4183 - --A176 A175 - - - @168 A167 - - - 160 @159 - - - A152 A151 - - - @144 A143 - - - @136 @135 - - - A128

octa 8

tetra 12 tetra 8

wyde 14 wyde 12 wyde 10 wyde 8
byte 15 byte 14 byte 13 byte 12 byte 11 byte 10 byte 9 byte 8

127 ...@120 @119 - - - @112 A111 - - - @104 Q103 - --G96 Q95 .--A88 (8T -..A80 Q79 ---A72 Q71 -..064

octa 0

tetra 4 tetra O

wyde 6 wyde 4 wyde 2 wyde 0
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

a3 -.-as56 G55...048 Q47..-Q40 G39-..G32 a31...424 Q23...Q16 QA15..-08 ar...ag

Notice, however, that we used (Q7...Q1Qo)264 to get this simple result, not
(QoQ1 . ..Q7)264. The other number,

(Qle s Q7)264 = (a63 ...0100a127 - .. Q650640191 - - - A38503840A511 - - - a449a448)2

is in fact quite weird, and it has no really nice formula. (See exercise 25.)

Endianness has important consequences, because most computers allow in-
dividual bytes of the memory to be addressed as well as register-sized units. MMIX
has a big-endian architecture; therefore if register x contains the 64-bit number
#0123456789%abcdef, and if we use the commands ‘STOU x,0; LDBU y,1’ to
store x into octabyte location 0 and read back the byte in location 1, the result
in register y will be #23. On machines with a little-endian architecture, the
analogous commands would set y <— #cd instead; #23 would be byte 6.

Tables 1 and 2 illustrate the competing “world views” of big-endian and
little-endian aficionados. The big-endian approach is basically top-down, with
bit 0 and byte 0 at the top left; the little-endian approach is basically bottom-up,
with bit 0 and byte 0 at the bottom right. Because of this difference, great care
is necessary when transmitting data from one kind of computer to another, or
when writing programs that are supposed to give equivalent results in both cases.
On the other hand, our example of the @ table for primes shows that we can
perfectly well use a little-endian packing convention on a big-endian computer

140 COMBINATORIAL SEARCHING 7.1.3

like MMIX, or vice versa. The difference is noticeable only when data is loaded
and stored in different-sized chunks, or passed between machines.

Working with the rightmost bits. Big-endian and little-endian approaches
aren’t readily interchangeable in general, because the laws of arithmetic send
signals leftward from the bits that are “least significant.” Some of the most
important bitwise manipulation techniques are based on this fact.

If = is almost any nonzero 2-adic integer, we can write its bits in the form

z = (201%10%)y; (32)

in other words, x consists of some arbitrary (but infinite) binary string «a, followed
by a 0, which is followed by a + 1 ones, and followed by b zeros, for some a > 0

and b > 0. (The exceptions occur when = = —2°; then a = 00.) Consequently
z = (@10°01%), (33)
r—1 = (a01°01%),, (34)
— = (@10%10°)s; (35)

and we see that Z+1 = —z = z — 1, in agreement with (16) and (17). With two
operations we can therefore compute relatives of x in several useful ways:

z& (z—1) = (@ 01°00%); [remove the rightmost 1]; (36)
x & —x = (0°00%10%); [extract the rightmost 1]; (37)
x| —z = (1°11°10%); [smear the rightmost 1 to the left]; (38)
T ® —z = (1°11°00%); [remove and smear it to the left]; (39)
x| (x—1) = (a 01911%); [smear the rightmost 1 to the right]; (40)
z® (z—1) = (0°00°11%), [extract and smear it to the right]; (41)
T & (z—1) = (0°00%01%)y [extract, remove, and smear it to the right]. (42)

And two further operations produce yet another variant:
((z](z=1))+1) & 2 = (@ 00%00%); [remove the rightmost run of 1s]. (43)

When z = 0, five of these formulas produce 0, the other three give —1. [For-
mula (36) is due to Peter Wegner, CACM 3 (1960), 322; and (43) is due to
H. Tim Gladwin, CACM 14 (1971), 407-408. See also Henry S. Warren, Jr.,
CACM 20 (1977), 439-441.]

The quantity b in these formulas, which specifies the number of trailing zeros
in z, is called the ruler function of x and written pz, because it is related to
the lengths of the tick marks that are often used to indicate fractions of an inch:

[T T, In general, px is the largest integer k such that 2% divides z,
when z # 0; and we define p0 = co. The recurrence relations

p2z+1)=0, p(2z)=p(z)+1 (44)
also serve to define px for nonzero z. Another handy relation is worthy of note,

plx—y) = plz®y). (45)

7.1.3 BITWISE TRICKS AND TECHNIQUES 141

The elegant formula z & —z in (37) allows us to eztract the rightmost 1 bit
very nicely, but we often want to identify exactly which bit it is. The ruler
function can be computed in many ways, and the best method often depends
heavily on the computer that is being used. For example, a two-instruction
sequence due to J. Dallos does the job quickly and easily on MMIX (see (42)):

SUBU t,x,1; SADD rho,t,x. (46)
(See exercise 30 for the case x = 0.) We shall discuss here two approaches that
do not rely on exotic commands like SADD; and later, after learning a few more
techniques, we’ll consider a third way.
The first general-purpose method makes use of “magic mask” constants
that prove to be useful in many other applications, namely
to = (...101010101010101010101010101010101)5 = —1/3,
1 = (...100110011001100110011001100110011)y = —1/5, (47)
w2 = (...100001111000011110000111100001111)9 = —1/17,
and so on. In general py is the infinite 2-adic fraction —1/(22"+ 1), because
(22 + Dy = (up < 28) + g = (...11111); = —1. On a computer that has
24_bit registers we don’t need infinite precision, of course, so we use the truncated
constants

pap =22 -1)/2%+1) for0<k<d. (48)

These constants are familiar from our study of Boolean evaluation, because they
are the truth tables of the projection functions z4_j (see, for example, 7.1.2—(7)).
When z is a power of 2, we can use these masks to compute

pr =[x & po=0] +2[x & 11 =0] + 4[x & p =0] + 8[x & p3 =0] +---, (49)

because [27 & g =0] = ji, when j = (... j3jaj1jo)2. Thus, on a 2%-bit computer,
we can start with p < 0 and y < & —z; then set p < p+2F if y& g = 0, for
0 < k < d. This procedure gives p = pr when x # 0. (It also gives p0 = 2¢ — 1,
an anomalous value that may need to be corrected; see exercise 30.)

For example, the corresponding MMIX program might look like this:

mO GREG #5555555555555555 ;m1 GREG #3333333333333333;
m2 GREG #0£f0f0f0£f0£f0f0f0f ;m3 GREG #00ff00£ff00ff00ff;
m4 GREG #0000ffff0000ffff ;mb5 GREG #00000000ffffffff;
NEGU y,x; AND y,x,y; AND q,y,mb5; ZSZ rho,q,32;
AND q,y,m4; ADD t,rho,16; CSZ rho,q,t; (50)
AND q,y,m3; ADD t,rho,8; CSZ rho,q,t;
AND q,y,m2; ADD t,rho,4; CSZ rho,q,t;
AND q,y,m1; ADD t,rho,2; CSZ rho,q,t;
AND q,y,m0; ADD t,rho,1; CSZ rho,q,t;

total time = 19v. Or we could replace the last three lines by
SRU y,y,rho; LDB t,rhotab,y; ADD rho,rho,t (51)

where rhotab points to the beginning of an appropriate 129-byte table (only
eight of whose entries are actually used). The total time would then be p + 13v.

142 COMBINATORIAL SEARCHING 7.1.3

The second general-purpose approach to the computation of pzx is quite
different. On a 64-bit machine it starts as before, with y < x & —x; but then it
simply sets

p + decode[((a-y) mod2%*) > 58], (52)

where a is a suitable multiplier and decode is a suitable 64-byte table. The
constant a = (ag3 . .. a1a9)2 must have the property that its 64 substrings

ae3062 - .. A58, Ap2061 «-.A57y ..., A544 ...040, a4a3a2a1a00, ey (1000000

are distinct. Exercise 2.3.4.2—-23 shows that many such “de Bruijn cycles” exist;
for example, we can use M. H. Martin’s constant #03f79d71b4ca8b09, which
is discussed in exercise 3.2.2-17. The decoding table decode[0], ..., decode[63] is

then
00,01, 56,02, 57, 49, 28,03, 61, 58, 42, 50, 38,29, 17, 04,

62,47, 59,36, 45,43, 51,22, 53, 39, 33, 30, 24, 18, 12, 05,
63,55,48,27,60,41,37,16,46, 35,44, 21,52,32,23, 11, (53)
54,26,40, 15, 34, 20, 31, 10, 25, 14, 19,09, 13, 08,07, 06.
[This technique was devised in 1967 by Luther Woodrum of IBM’s Systems De-
velopment Division (unpublished); many other programmers have subsequently
discovered it independently.]

Working with the leftmost bits. The function Az = |lgz], which is dual to
pz because it locates the leftmost 1 when = > 0, was introduced in Eq. 4.6.3—(6).
It satisfies the recurrence

A1 =0; A2z) =2z +1)=A=z)+1 for z > 0; (54)

and it is undefined when z is not a positive integer. What is a good way to
compute it? Once again MMIX provides a quick-but-tricky solution:

FLOTU y,ROUND_DOWN,x; SUBy,y,fone; SR lam,y,52 (55)

where fone = #3££0000000000000 is the floating point representation of 1.0.
(Total time 6v.) This code floats z, then extracts the exponent.

But if floating point conversion is not readily available, a binary reduction
strategy works fairly well on a 2%-bit machine. We can start with A « 0 and
y < x; then we set A «— A +2¥ and y «— y>>2F if y > 2F £0, for k =d — 1,
..., 1, 0 (or until k is reduced to the point where a short table can be used to
finish up). The MMIX code analogous to (50) and (51) is now

SRU y,x,32; ZSNZ lam,y,32;

ADD t,lam,16; SRU y,x,t; CSNZ lam,y,t;

ADD t,lam,8; SRUy,x,t; CSNZ lam,y,t;

SRU y,x,lam; LDB t,lamtab,y; ADD lam,lam,t;

(56)

and the total time is g 4+ 11v. In this case table lamtab has 256 entries, namely
Az for 0 < z < 256. Notice that the “conditional set” (CS) and “zero or set”
(ZS) instructions have been used here and in (50) instead of branch instructions.

7.1.3 BITWISE TRICKS AND TECHNIQUES 143

There appears to be no simple way to extract the leftmost 1 bit that appears
in a register, analogous to the trick by which we extracted the rightmost 1 in (37).
For this purpose we could compute y < Az and then 1<y, if # 0; but a binary
“smearing right” method is somewhat shorter and faster:

Set y < x, then y <y | (y > 2F) for 0 < k < d.

The leftmost 1 bit of z is then y — (y > 1). (57)

[These non-floating-point methods have been suggested by H. S. Warren, Jr.]

Other operations at the left of a register, like removing the leftmost run of
1s, are harder yet; see exercise 39. But there is a remarkably simple, machine-
independent way to determine whether or not Ax = Ay, given unsigned integers
z and y, in spite of the fact that we can’t compute Az or Ay quickly:

Az = \y if and only if zdy<z&uy. (58)

[See exercise 40. This elegant relation was discovered by W. C. Lynch in 2006.]
We will use (58) below, to devise another way to compute Az.

Sideways addition. Binary n-bit numbers x = (2,1 ...21Z0)2 are often used
to represent subsets X of the n-element universe {0,1,...,n — 1}, with k € X
if and only if 2¥ C z. The functions Az and pz then represent the largest and
smallest elements of X. The function

VT = Tp_1 -+ + 1 + 20, (59)

b2

which is called the “sideways sum” or “population count” of x, also has obvious
importance in this connection, because it represents the cardinality |X|, namely
the number of elements in X. This function, which we considered in 4.6.3—(7),
satisfies the recurrence

v0 = 0; v(2z) =v(z) and v(2z+1)=v(z)+1, forz>0. (60)

It also has an interesting connection with the ruler function (exercise 1.2.5-11),

pr=1+v(z—1)—vz; equivalently, Zpk =n—vn. (61)
k=1

The first textbook on programming, The Preparation of Programs for an
Electronic Digital Computer by Wilkes, Wheeler, and Gill, second edition (Read-
ing, Mass.: Addison—Wesley, 1957), 155, 191-193, presented an interesting sub-
routine for sideways addition due to D. B. Gillies and J. C. P. Miller. Their
method was devised for the 35-bit numbers of the EDSAC, but it is readily

converted to the following 64-bit procedure for vz when = = (263 ... 21270)2:

Set y +— z— ((>1) & po). (Now y = (us1 ... uiuo)s, where uj = 295411+ 2;.)
Set y < (y& p1) +((y>2) & pa). (Now y = (v15...v100)16, Vj = Ugjy1 +Uz;.)
Set y < (y+ (y>4)) & po. (Now y = (wr ... w1wo)2s6, Wj = V2j41 + V2;.)

Finally v < ((a - y) mod 2%) > 56, where a = (11111111)556. (62)

The last step cleverly computes y mod 255 = wy+- - -+wy +wq via multiplication,
using the fact that the sum fits comfortably in eight bits. [David Muller had
programmed a similar method for the ILLTAC I machine in 1954.]

144 COMBINATORIAL SEARCHING 7.1.3

If x is expected to be “sparse,” having at most a few 1-bits, we can use a
faster method [P. Wegner, CACM 3 (1960), 322]:

Set v+ 0, y < x. Then whiley #0,set v+ v+ 1, y+y& (y—1). (63)
A similar approach, using y < y| (y+1), works when z is expected to be “dense.”

Bit reversal. For our next trick, let’s change x = (zg3...2120)2 to its left-
right mirror image, £ = (2o ...263)2. Anybody who has been following the
developments so far, seeing methods like (50), (56), (57), and (62), will probably
think, “Aha—once again we can divide by 2 and conquer! If we've already
discovered how to reverse 32-bit numbers, we can reverse 64-bit numbers almost
as fast, because (zy)® = y®xf. All we have to do is apply the 32-bit method in
parallel to both halves of the register, then swap the left half with the right half.”

Right. For example, we can reverse an 8-bit string in three easy steps:

Given T7TeT5T4L3T2L1 L
Swap bits TeL7T4T5LoTITOLT (6)
Swap nyps T4T5TgXT7LOT1T2L3 4

Swap nybbles ToX1T2XL3T4T5L6TT

And six such easy steps will reverse 64 bits. Fortunately, each of the swapping
operations turns out to be quite simple with the help of the magic masks py:

y (x> &py, 2z (z&pg)<<l, z+y|z;

y(—(x>>2)&u1, —(&m)<K2, z+yl|z
(>4 &y, z+ (z&u)<d, z+y|z;
—(x>8) &3, z+ (v&u3)<8, z+y|z;

y(—(ac>>16)&:,u47 2z (& pg) <16, 4+ y| 2z
— (2> 32) | ((x < 32) mod 254).

(65)

[Christopher Strachey foresaw some aspects of this construction in CACM 4
(1961), 146, and a similar ternary method was devised in 1973 by Bruce Baum-
gart (see exercise 49). The mature algorithm (65) was presented by Henry S.
Warren, Jr., in Hacker’s Delight (Addison—Wesley, 2002), 102.]

But MMIX is once again able to trump this general-purpose technique with
less traditional commands that do the job much faster. Consider

rev GREG #0102040810204080; MOR x,x,rev; MOR x,rev,Xx; (66)

the first MOR instruction reverses the bytes of x from big-endian to little-endian
or vice versa, while the second reverses the bits within each byte.

Bit swapping. Suppose we only want to interchange two bits within a register,
z; <> xj, where ¢ > j. What would be a good way to proceed? (Dear reader,
please pause for a moment and solve this problem in your head, or with pencil
and paper — without looking at the answer below.)

Let 6 =i — j. Here is one solution (but don’t peek until you're ready):

Yy (2>60)&27, 2+ (2&279) <6, z « (x&m) |y |z, where m = 2¢|27. (67)

7.1.3 BITWISE TRICKS AND TECHNIQUES 145

It uses two shifts and five bitwise Boolean operations, assuming that ¢ and j
are given constants. It is like each of the first lines of (65), except that a new
mask m is needed because y and z don’t account for all of the bits of x.

We can, however, do better, saving one operation and one constant:

ye (@ (2>0)&27, z+20ye(y<d). (68)

The first assignment now puts z; @ x; into position j; the second changes x; to
z; ® (z; ® z;) and z; to z; ® (z; ® x;), as desired. In general it’s often wise to
convert a problem of the form “change z to f(z)” into a problem of the form
“change x to = ® g(z),” since the bit-difference g(z) might be easy to calculate.

On the other hand, there’s a sense in which (67) might be preferable to (68),
because the assignments to y and z in (67) can sometimes be performed simulta-
neously. When expressed as a circuit, (67) has a depth of 4 while (68) has depth 5.

Operation (68) can of course be used to swap several pairs of bits simulta-
neously, when we use a mask 6 that’s more general than 27:

y+ (z@(x>0)) &4, T2 PYd (y<K9). (69)

Let us call this operation a “§-swap,” because it allows us to swap any non-
overlapping pairs of bits that are d places apart. The mask 6 has a 1 in the right-
most position of each pair that’s supposed to be swapped. For example, (69) will
swap the leftmost 25 bits of a 64-bit word with the rightmost 25 bits, while leav-
ing the 14 middle bits untouched, if we let 6 = 39 and § = 225 — 1 = #1ffffff.

Indeed, there’s an astonishing way to reverse 64 bits using J-swaps, namely
y< (@>1)&po, 2z (z&p) <1, z+ylz

y < (z® (x> 4)) & #0300c0303030¢303, z+ z®y® (y < 4),

Yy (z&® (r>8)) & #00c0300c03£0003f, z<+ 2Dyd (y<K8), (70)
y + (z & (> 20)) & #00000££c00003fff, 2+ xPyd (y <K 20),

z <+ (> 34) | ((z < 30) mod 2%4),

saving two of the bitwise operations in (65) even though (65) looks “optimum.”

*Bit permutation in general. The methods we’ve just seen can be extended to
obtain an arbitrary permutation of the bits in a register. In fact, there always ex-
ist masks 6o, . .., 05, 04, ..., O such that the following operations transform z =
(263 ... 2120)2 into any desired rearrangement 2™ = (Zg3y . . - T17Zox)2 Of its bits:

x + 2¥-swap of z with mask 6y, for k =0, 1, 2, 3, 4, 5;

x < 2F-swap of = with mask ék, for k=4, 3,2, 1, 0. (71)

In general, a permutation of 2¢ bits can be achieved with 2d — 1 such steps, using
appropriate masks 6 and ék, where the swap distances are respectively 2°, 21,
L2421 90

To prove this fact, we can use a special case of the permutation networks
discovered independently by A. M. Duguid and J. Le Corre in 1959, based on
earlier work of D. Slepian [see V. E. Benes, Mathematical Theory of Connecting
Networks and Telephone Traffic (New York: Academic Press, 1965), Section 3.3].

146 COMBINATORIAL SEARCHING 7.1.3

Figure 12 shows a permutation network P(2n) for 2n elements constructed from
two permutation networks for n elements, when n = 4. Each ‘I’ connection
between two lines represents a crossbar module that either leaves the line contents
unaltered or interchanges them, as the data flows from left to right. To start
the recursion when n = 1, we let P(2) consist of a single crossbar. Every setting
of the individual crossbars clearly causes P(2n) to produce a permutation of its
inputs; conversely, we will show that any permutation of the 2n inputs can be
achieved if we are clever enough to set the crossbars appropriately.

The construction of Fig. 12 is best understood by considering an example.
Suppose we want to route the inputs (0,1,2,3,4,5,6,7) to (3,2,4,1,6,0,5,7),
respectively. The first job is to determine the contents of the lines just after the
first column of crossbars and just before the last column, since we can then use
a similar method to set the crossbars in the inner P(4)’s. Thus, in the network

NO U W= O
—0 —0 0—o o—4
50 H 0 QA0 C e
mTaQaTMmoO QW s
—o G—0 O0—o O—d
N OUTO O = NWw

~

\]

N

S~—

we want to find permutations abcdefgh and ABCDEFGH such that {a,b} = {0, 1},
{c,d} = {2,3}, ..., {g,h} = {6,7}, {a,c,e,g} = {A,C,E,G}, {b,d,f,h} =
{B,D,F,H}, {A,B} = {3,2}, {c,D} = {4,1}, ..., {G,H} = {5,7}. Starting at
the bottom, let us choose h = 7, because we don’t wish to disturb the contents
of that line unless necessary. Then the following choices are forced:

H=7;G=5;e=5;f=4;D=4;C=1;a=1;b=0; F=0; E=6; g=6. (73)
If we had chosen h = 6, the forcing pattern would have been similar but reversed,
F=6;E=0;a=0;b=1;D=1; C=4; e=4; £=5; H=5,G=7; g=7. (74)

Options (73) and (74) can both be completed by choosing either d = 3 (hence
B=3,A=2,c=2)ord=2 (hence B=2,A=3, c=3).

In general the forcing pattern will go in cycles, no matter what permutation
we begin with. To see this, consider the graph on eight vertices {ab, cd, ef, gh,
AB, CD, EF, GH} that has an edge from uv to UV whenever the pair of inputs
connected to uv has an element in common with the pair of outputs connected
to UV. Thus, in our example the edges are ab — EF, ab — CD, cd — AB,
cd — AB, ef — CD, ef — GH, gh — EF, gh — GH. We have a “double bond”
between cd and AB, since the inputs connected to ¢ and d are exactly the outputs
connected to A and B; subject to this slight bending of the strict definition of
a graph, we see that each vertex is adjacent to exactly two other vertices, and
lowercase vertices are always adjacent to uppercase ones. Therefore the graph

BITWISE TRICKS AND TECHNIQUES 147

crossbar modules

2n inputs
sndjno ug

Lo Z(n)
£(n)

P 2r)

Tl
T

il
i

Fig. 12. The inside of a black box P(2n) that permutes 2n elements
in all possible ways, when n > 1. (Illustrated for n = 4.)

always consists of disjoint cycles of even length. In our example, the cycles are
ab _ BT en —GH
CD —ef
where the longer cycle corresponds to (73) and (74). If there are k different
cycles, there will be 2% different ways to specify the behavior of the first and last
columns of crossbars.

To complete the network, we can process the inner 4-element permutations
in the same way; and any 2%element permutation is achievable in this same
recursive fashion. The resulting crossbar settings determine the masks 6; and éj
of (71). Some choices of crossbars may lead to a mask that is entirely zero; then
we can eliminate the corresponding stage of the computation.

If the input and output are identical on the bottom lines of the network, our
construction shows how to ensure that none of the crossbars touching those lines
are active. For example, the 64-bit algorithm in (71) could be used also with a
60-bit register, without needing the four extra bits for any intermediate results.

cd = AB, (75)

Of course we can often beat the general procedure of (71) in special cases.
For example, exercise 52 shows that method (71) needs nine swapping steps to
transpose an 8 X 8 matrix, but in fact three swaps suffice:

Given

00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 717273747576 77

T-swap
00 10 02 12 04 14 06 16
01 11 03 13 05 15 07 17
20 30 22 32 24 34 26 36
21 31 23 33 25 35 27 37
40 50 42 52 44 54 46 56
41 51 43 53 45 55 47 57
60 70 62 72 64 74 66 76
61 71 63 73 65 75 67 77

The “perfect shuffle” is another bit

14-swap
00 10 20 30 04 14 24 34
01 11 21 31 05 15 25 35
02 12 22 32 06 16 26 36
03 13 23 33 07 17 27 37
40 50 60 70 44 54 64 74
41 51 61 71 45 55 65 75
42 52 62 72 46 56 66 76
43 53 63 73 47 57 67 77

28-swap
00 10 20 30 40 50 60 70
0111213141516171
02 12 22 32 42 52 62 72
03 13 23 33 43 53 63 73
0414 243444546474
05 15 25 35 45 55 65 75
06 16 26 36 46 56 66 76
07 17 27 37 47 57 67 77

permutation that arises frequently in

practice. If z = (...z92120)2 and y = (... y2y1Y0)2 are any 2-adic integers, we
define z 1y (“z zip y,” the zipper function of z and y) by interleaving their bits:

iy = (-~-$2y2$1ylxoyo)2- (76)

148 COMBINATORIAL SEARCHING 7.1.3

This operation has important applications to the representation of 2-dimensional
data, because a small change in either & or y usually causes only a small change
in 21y (see exercise 86). Notice also that the magic mask constants (47) satisfy

Pr T e = Myl (77)

If z appears in the left half of a register and y appears in the right half, a perfect
shuffle is the permutation that changes the register contents to = I y.

A sequence of d — 1 swapping steps will perfectly shuffle a 29-bit register; in
fact, exercise 53 shows that there are several ways to achieve this. Once again,
therefore, we are able to improve on the (2d —1)-step method of (71) and Fig. 12.

Conversely, suppose we’re given the shuffled value z = z {y in a 2%bit
register; is there an efficient way to extract the original value of y? Sure: If the
d — 1 swaps that do a perfect shuffle are performed in reverse order, they’ll undo
the shuffle and recover both x and y. But if only y is wanted, we can save half of
the work: Start with y « 2 & po; then set y < (y + (y>2F71)) & py for k =1,
..., d—=1. For example, when d = 3 this procedure goes (0y30y20y10yp)2 —
(00y3y200y1yo)2 — (0000y3y2y1Yo)2. “Divide and conquer” conquers again.

Consider now a more general problem, where we want to extract and com-
press an arbitrary subset of a register’s bits. Suppose we're given a 29-bit word
z = (2z9a_1...2120)2 and a mask x = (X2d_q...X1X0)2 that has s 1-bits; thus
vx = s. The problem is to assemble the compact subword

Y = (Ys—1---¥1Y0)2 = (25,1 - 25, Zj)2, (78)

where j,_1 > --- > ji > jo are the indices where x; = 1. For example, if
d =3 and x = (10110010)5, we want to transform z = (ysZ3Y2y12221Y0Zo)2 into
Yy = (Y3Y2y1%0)2- (The problem of going from z ty to y, considered above, is the
special case x = po.) We know from (71) that y can be found by §-swapping,
at most 2d — 1 times; but in this problem the relevant data always moves to the
right, so we can speed things up by doing shifts instead of swaps.

Let’s say that a d-shift of x with mask 6 is the operation

z 4+ 2@ ((z@ (z>0)) &4), (79)

which changes bit x; to x;,s if 0 has 1 in position j but leaves x; unchanged
otherwise. Guy Steele discovered that there always exist masks g, 01, ..., 041
so that the general extraction problem (78) can be solved with a few d-shifts:

Start with < z; then do a 2F-shift of = with mask 6y,

for k=0,1,...,d—1; finally set y < . (80)

In fact, the idea for finding appropriate masks is surprisingly simple. Every bit
that wants to move a total of exactly I = (I4_1 ...l1lp)2 places to the right should
be transported in the 2k-shifts for which I, = 1.

For example, suppose d = 3 and x = (10110010);. (We must assume that
X # 0.) Remembering that some 0s need to be shifted in from the left, we can
set 6o = (00011001)s, 6; = (00000110)s, H2 = (11111000); then (80) maps

(ysw3y2y1T2T1Y0T0)2 — (Y3T3Y2y2Y1T1Y0Y0)2 — (Y3T3Y2y291Y2Y1Y0)2 — (0000y3y2y190)2-

7.1.3 BITWISE TRICKS AND TECHNIQUES 149

Exercise 69 proves that the bits being extracted will never interfere with each
other during their journey. Furthermore, there’s a slick way to compute suitable
masks 6, dynamically from x, in O(d?) steps (see exercise 70).

A “sheep-and-goats” or “grouping” operation has been suggested for com-
puter hardware, extending (78) to produce the general unshuffled word

(ZL‘T_l e T1T0Ys—1 - - - y1y0)2 = (ZiT71 B 2 2 PRI ZjIZjO)Q; (81)

here i, 1 > --- > i1 > i are the indices where x; = 0. But another operation
called “gather-flip,” which reverses the order of the unmasked bits and gives

(xoxl oo Lp—1Ys—1 -« y1y0)2 = (Zigzi1 e Z¢T71 Zj571 e Zj1 Zjo)g, (81/)

turns out to be more useful and easier to implement. Any permutation of 2¢ bits
is achievable by using either operation, at most d times (see exercises 72 and 73).

Shifting also allows us to go beyond permutations, to arbitrary mappings of
bits within a register. Suppose we want to transform

= (T9a_y...2170)2 + ¥ = (T(2a_1)p - T1pT0p)2, (82)

where ¢ is any of the (2d)2d functions from the set {0,1,...,2% — 1} into itself.
K. M. Chung and C. K. Wong [IEEE Transactions C-29 (1980), 1029-1032]
introduced an attractive way to do this in O(d) steps by using cyclic §-shifts,
which are like (79) except that we set

2 20 (20 (>0 @< (2 —4) &) (83)

Their idea is to let ¢; be the number of indices j such that jo =1, for 0 < [< 29,
Then they find masks 6, 61, ..., 84—1 with the property that a cyclic 2*-shift
of x with mask 6, done successively for 0 < k < d, will transform z into a
number z’ that contains exactly ¢; copies of bit z; for each I. Finally the general
permutation procedure (71) can be used to change z’ — z¥.

For example, suppose d = 3 and 2% = (z3z1212023272525)2. Then we have
(co, €1, €2, €3, C4,05,¢6,07) = (1,2,0,2,0,2,0,1). Using masks 6y = (00011100)a2,
61 = (00001000)5, and 6, = (01100000),, three cyclic 2*-shifts now take z =
(T7TeT5T4T32221T0)2 — (T7TeT5T524T3T1T0)2 — (T7TeTsTsTsT3T1T0)2 —
(z7r3w1T525232120)2 = 2'. Then, some d-swaps: 2’ — (T327252123T5T1%0)2 —
(T32125272375T120)2 > (X3T1T120T3T5T5T7)2 > (T3T1T1X0T3T725T5)0 = 2¥;
we're done! Of course any 8-bit mapping can be achieved more quickly by brute
force, one bit at a time; the method of Chung and Wong becomes much more
impressive in a 256-bit register. Even with MMIX’s 64-bit registers it’s pretty
good, needing at most 96 cycles in the worst case.

To find g, we use the fact that >"c¢; = 2¢, and we look at Xeven = . Cor
and Togqa = 3. corg1. If Beven = Todd = 2971, we can set 6 = 0 and omit the
cyclic 1-shift. But if, say, Yeven < Xodd, We find an even | with ¢; = 0. Cyclically
shifting into bits [, [+1, ..., [+t (modulo 2¢) for some ¢ will produce new counts
(¢hs .-y Cha_y) for which ¥ =X,y = 24-1: g0 By = 2! + -+ . 4 2(+t) mod 27,
Then we can deal with the bits in even and odd positions separately, using the
same method, until getting down to 1-bit subwords. Exercise 74 has the details.

150 COMBINATORIAL SEARCHING 7.1.3

Working with fragmented fields. Instead of extracting bits from various
parts of a word and gathering them together, we can often manipulate those bits
directly in their original positions.

For example, suppose we want to run through all subsets of a given set U,
where (as usual) the set is specified by a mask x such that [k € U] = (x> k)& 1.
If x C x and x # x, there’s an easy way to calculate the next largest subset of U
in lexicographic order, namely the smallest integer =’ > x such that x’ C x:

= (z—x)&x. (84)

In the special case when = 0 and x # 0, we’ve already seen in (37) that this for-
mula produces the rightmost bit of x, which corresponds to the lexicographically
smallest nonempty subset of U.

Why does formula (84) work? Imagine adding 1 to the number z | x, which
has 1s wherever x is 0. A carry will propagate through those 1s until it reaches
the rightmost bit position where = has a 0 and x has a 1; furthermore all bits
to the right of that position will become zero. Therefore ' = ((z | x¥) + 1) & x.
But we have (z | x)+1=(z+x)+1=2+4+(x+1) =2 — x when z C x. QED.

Notice further that z’ = 0 if and only if z = . So we’ll know when we’ve
found the largest subset. Exercise 79 shows how to go back to x, given z’.

We might also want to run through all elements of a subcube — for example,
to find all bit patterns that match a specification like *10+1%01, consisting of
0s, 1s, and #s (don’t-cares). Such a specification can be represented by asterisk
codes a = (an_1...a9)2 and bit codes b = (b1 ...bp)2, as in exercise 7.1.1-30;
our example corresponds to a = (10010100)2, b = (01001001)5. The problem of
enumerating all subsets of a set is the special case where a = x and b = 0. In
the more general subcube problem, the successor of a given bit pattern x is

¥ = ((z— (a+b))&a)+b. (85)
Suppose the bits of z = (z,_1...z0)2 have been stitched together from two
subwords = (z,_1...20)2 and y = (Ys_1...Yo)2, where » + s = n, using

an arbitrary mask y for which vy = s to govern the stitching. For example,
2z = (Y22423Y122YoT1T0)2 when n = 8 and x = (10010100)3. We can think of z
as a “scattered accumulator,” in which alien bits x; lurk among friendly bits y;.
From this viewpoint the problem of finding successive elements of a subcube is
essentially the problem of computing y + 1 inside a scattered accumulator z,
without changing the value of z. The sheep-and-goats operation (81) would
untangle z and y; but it’s expensive, and (85) shows that we can solve the
problem without it. We can, in fact, compute y + 3 when ¢ = (y._;...4{)2
is any value inside a scattered accumulator 2/, if y and 3’ both appear in the
positions specified by x: Consider t = 2z & x and #' = 2’ & x. If we form the
sum (¢ | %) +t', all carries that occur in a normal addition y + 3 will propagate
through the blocks of 1s in Y, just as if the scattered bits were adjacent. Thus

((z&x)+ (2" [X)) & x (86)

is the sum of ¢ and y’, modulo 2%, scattered according to the mask .

7.1.3 BITWISE TRICKS AND TECHNIQUES 151

Tweaking several bytes at once. Instead of concentrating on the data in one
field within a word, we often want to deal simultaneously with two or more sub-
words, performing calculations on each of them in parallel. For example, many
applications need to process long sequences of bytes, and we can gain speed by
acting on eight bytes at a time; we might as well use all 64 bits that our machine
provides. General multibyte techniques were introduced by Leslie Lamport in
CACM 18 (1975), 471-475, and subsequently extended by many programmers.

Suppose first that we simply wish to take two sequences of bytes and find
their sum, regarding them as coordinates of vectors, doing arithmetic mod-
ulo 256 in each byte. Algebraically speaking, we're given 8-byte vectors z =
(z7...2120)256 and y = (Y7 ... Y1Y0)256; We want to compute z = (27...2120)256,
where z; = (z; +y;) mod 256 for 0 < j < 8. Ordinary addition of to y doesn’t
quite work, because we need to prevent carries from propagating between bytes.
So we extract the high-order bits and deal with them separately:

z+ (r@y) &h, where h = #8080808080808080;
z+ ((z&h)+ (y&h)) @ 2. (87)
The total time for MMIX to do this is 6v, plus 3+ 3v if we also count the time to
load z, load y, and store z. By contrast, eight one-byte additions (LDBU, LDBU,
ADDU, and STBU, repeated eight times) would cost 8 x (3u + 4v) = 24u + 32v.
Parallel subtraction of bytes is just as easy (see exercise 88).
We can also compute bytewise averages, with z; = | (z; +y,)/2] for each j:

2z ((r@y) &i)>1, where ! = #0101010101010101;
z+ (r&y)+ 2. (88)
This elegant trick, suggested by H. G. Dietz, is based on the well-known formula
z+y = (2@y) + ((z&y) <1) (89)

for radix-2 addition. (We can implement (88) with four MMIX instructions, not
five, because a single MOR operation will change = @ y to ((z @ y) & 1) > 1.)

Exercises 88-93 and 100—104 develop these ideas further, showing how to do
mixed-radix arithmetic, as well as such things as the addition and subtraction of
vectors whose components are treated modulo m when m needn’t be a power of 2.

In essence, we can regard the bits, bytes, or other subfields of a register as if
they were elements of an array of independent microprocessors, acting indepen-
dently on their own subproblems yet tightly synchronized, and communicating
with each other via shift instructions and carry bits. Computer designers have
been interested for many years in the development of parallel processors with a
so-called SIMD architecture, namely a “Single Instruction stream with Multiple
Data streams”; see, for example, S. H. Unger, Proc. IRE 46 (1958), 1744-1750.
The increased availability of 64-bit registers has meant that programmers of
ordinary sequential computers are now able to get a taste of SIMD processing.
Indeed, computations such as (87), (88), and (89) are called SWAR methods—
“SIMD Within A Register,” a name coined by R. J. Fisher and H. G. Dietz [see
Lecture Notes in Computer Science 1656 (1999), 290-305]. See also R. B. Lee,
IEEE Micro 16,4 (August 1996), 51-59.

152 COMBINATORIAL SEARCHING 7.1.3

Of course bytes often contain alphabetic data as well as numbers, and one
of the most common programming tasks is to search through a long string of
characters in order to find the first appearance of some particular byte value. For
example, strings are often represented as a sequence of nonzero bytes terminated
by 0. In order to locate the end of a string quickly, we need a fast way to
determine whether all eight bytes of a given word x are nonzero (because they
usually are). Several fairly good solutions to this problem were found by Lamport
and others; but Alan Mycroft discovered in 1987 that three instructions actually
suffice:

t «— h&(z-1)&z, (90)

where h and [appear in (87) and (88). If each byte z; is nonzero, t will be zero;
for (z;—1)&z; will be 2°%i —1, which is always less than #80 = 27. But if z; = 0,
while its right neighbors z;_1, ..., zo (if any) are all nonzero, the subtraction
x — [will produce #ff in byte j, and t will be nonzero. In fact, pt will be 85+ 7.
Caution: Although the computation in (go) pinpoints the rightmost zero
byte of x, we cannot deduce the position of the leftmost zero byte from the value
of t alone. (See exercise 94.) In this respect the little-endian convention proves
to be preferable to the corresponding big-endian behavior. An application that
needs to locate the leftmost zero byte can use (go) to skip quickly over nonzeros,
but then it must fall back on a slower method when the search has been narrowed
down to eight finalists. The following 4-operation formula produces a completely
precise test value t = (¢7...t1t0)256, in which ¢; = 128[z; = 0] for each j:

b h&n(e] (x| h) - D). (91)

The leftmost zero byte of x is now x;, where At =85 4 7.

Incidentally, the single MMIX instruction ‘BDIF t,1,x’ solves the zero-byte
problem immediately by setting each byte ¢; of ¢ to [z; =0], because 1 ~ z =
[z=0]. But we are primarily interested here in fairly universal techniques that
don’t rely on exotic hardware; MMIX’s special features will be discussed later.

Now that we know a fast way to find the first 0, we can use the same ideas
to search for any desired byte value. For example, to test if any byte of z is the
newline character (#a), we simply look for a zero byte in 2�a0a0a0a0a0alala.

And these techniques also open up many other doors. Suppose, for instance,
that we want to compute z = (27...2120)256 from z and y, where z; = z;
when z; = y; but z; = >*> when z; # y;. (Thus if £ = "beaching" and
y = "belching", we're supposed to set z < "bexching".) It’s easy:

t—h&((zdy) | (z@y)]|h)—1));
m (t<1) = (t>7); (92)
24+ 2@ ((z @ "wksrkirx") & m).

The first step uses a variant of (91) to flag the high-order bits in each byte
where x; # y;. The next step creates a mask to highlight those bytes: #00 if
x; = y;j, otherwise #£f. And the last step, which could also be written z «+
(x &) | ("Hxkkdrxx" & m), sets zj <— x; or z; < **°, depending on the mask.

7.1.3 BITWISE TRICKS AND TECHNIQUES 153

Operations (9o) and (91) were originally designed as tests for bytes that are
zero; but a closer look reveals that we can more wisely regard them as tests for
bytes that are less than 1. Indeed, if we replace [by ¢ -1 = (cccceeee)ase in
either formula, where ¢ is any positive constant < 128, we can use (90) or (91)
to see if x contains any bytes that are less than c¢. Furthermore the comparison
values ¢ need not be the same in every byte position; and with a bit more work
we can also do bytewise comparison in the cases where ¢ > 128. Here’s an 8-step
formula that sets t; < 128[z; <y, for each byte position j in the test word ¢:

t «— h&~(zyz), where z = (z | h) — (y & h). (93)

(See exercise 96.) The median operation in this general formula can often be

simplified; for example, (93) reduces to (91) when y = [, because (x(—1)z) = z| 2.

Once we've found a nonzero t in (go) or (91) or (93), we might want to

compute pt or At in order to discover the index j of the rightmost or leftmost

byte that has been flagged. The problem of calculating p or A is now simpler

than before, since t can take on only 256 different values. Indeed, the operation

256 — 1

j < table[((a-t) mod 2%) > 56], where a = ST (94)

now suffices to compute j, given an appropriate 256-byte table. And the mul-

tiplication here can often be performed faster by doing three shift-and-add
operations, “t +—t+ (t K 7), t « t+ (t K 14), t + t + (t < 28),” instead.

Broadword computing. We've now seen more than a dozen ways in which
a computer’s bitwise operations can produce astonishing results at high speed,
and the exercises below contain many more such surprises.

Elwyn Berlekamp has remarked that computer chips containing N flip-flops
continue to be built with ever larger values of N, yet in practice only O(log N) of
those components are flipping or flopping at any given moment. The surprising
effectiveness of bitwise operations suggests that computers of the future might
make use of this untapped potential by having enhanced memory units that are
able to do efficient n-bit computations for fairly large values of n. To prepare for
that day, we ought to have a good name for the concept of manipulating “wide
words.” Lyle Ramshaw has suggested the pleasant term broadword, so that we
can speak of n-bit quantities as broadwords of width n.

Many of the methods we’ve discussed are 2-adic, in the sense that they work
correctly with binary numbers that have arbitrary (even infinite) precision. For
example, the operation x & —x always extracts 2P, the least significant 1 bit of
any nonzero 2-adic integer z. But other methods have an inherently broadword
nature, such as the methods that use O(d) steps to perform sideways addition
or bit permutation of 2%-bit words. Broadword computing is the art of dealing
with n-bit words, when n is a parameter that is not extremely small.

Some broadword algorithms are of theoretical interest only, because they are
efficient only in an asymptotic sense when n exceeds the size of the universe. But
others are eminently practical even when n = 64. And in general, a broadword
mindset often suggests good techniques.

154 COMBINATORIAL SEARCHING 7.1.3

One fascinating-but-impractical fact about broadword operations is the dis-
covery by M. L. Fredman and D. E. Willard that O(1) broadword steps suffice
to evaluate the function Az = |lgz| for any nonzero n-bit number z, no matter
how big n is. Here is their remarkable scheme, when n = g2 and g is a power of 2:

ti1 < h& (x| ((z|h)—1)), where h=29" and = (2" —1)/(29 — 1);

y < (((a-t;) mod2") > (n—g)) -1, wherea=(2""9—1)/(297! —1);

to < h& (y| ((y|h)—b)), whereb= (279 —1)/(29F! —1);

m<+ (t2<1)—(ta>(g—1)), mm® (m> g); (95)
2+ ((I- (x&m)) mod 2"™) > (n — g)) - I;

ts h& (2| ((z | h) = b));

A (- ((ta>(29-1gg—1)) + (t3> (29 — 1)))) mod 2") > (n — g).

(See exercise 106.) The method fails to be practical because five of these 29 steps
are multiplications, so they aren’t really “bitwise” operations. In fact, we’ll prove
later that multiplication by a constant requires at least Q(logn) bitwise steps.

A multiplication-free way to find Az, with only O(loglogn) bitwise broad-
word operations, was discovered in 1997 by Gerth Brodal, whose method is even
more remarkable than (95). It is based on a formula analogous to (49),

Az = D=z &)]+ 2 z=Az& m1)]+4[Az= Az & p2)]+ -+, (96)
and the fact that the relation Az = Ay is easily tested (see (58)):
Algorithm B (Binary logarithm). This algorithm uses n-bit operations to
compute Az = |lg x|, assuming that 0 < z < 2" and n = d - 2.
B1. [Scale down.] Set A «— 0. Then set A < A+ 2F and z < = > 2F if x > 22",
for k=[lgn] —1, [Ilgn] -2, ..., d.

B2. [Replicate.] (At this point 0 < z < 22d; the remaining task is to increase
A by |lgz|. We will replace = by d copies of itself, in 2%-bit fields.) Set
Tz | (z<29k) for 0 < k < [lgd].

B3. [Change leading bits.] Set y <— 2 & ~(tta,a—1-- - ftd,114d,0)q2a- (See (48).)
B4. [Compare all fields.] Set t + h& (y | ((y | h) — (z & y))), where h =
(22"—1 22d—122d—1) .
gad -
B5. [Compress bits.] Set t + (¢t + (t < (247% — 2%))) mod 2" for 0 < k < [lgd].
B6. [Finish.] Finally, set A<~ A+ (t> (n —d)). 1

This algorithm is almost competitive with (56) when n = 64 (see exercise 107).

Another surprisingly efficient broadword algorithm was discovered in 2006
by M. S. Paterson and the author, who considered the problem of identifying
all occurrences of the pattern 01" in a given n-bit binary string. This problem,
which is related to finding r contiguous free blocks when allocating storage, is
equivalent to computing

g =2& <& (r<2)& (<3 & - &z k) (97)

7.1.3 BITWISE TRICKS AND TECHNIQUES 155

when z = (z,_1...21%0)2 is given. For example, when n = 16, r = 3, and
2 =(1110111101100111)5, we have ¢ = (0001000000001000)5. One might expect
intuitively that Q(logr) bitwise operations would be needed. But in fact the
following 20-step computation does the job for all n > r > 0: Let s = [r/2],
1=3502" mod2”, h = (2°"1)mod 2", and a = (3, (—1)""12%*) mod 2".

y<—h&z& ((x&h)+1);

t+— (x+y) &z & —27;

u+—t&a, v+t&a; (98)
m < (u—(u>r)) | (v—(v>r));

g+ t&((x&m)+ (t>r)&~(m<1))).

Exercise 111 explains why these machinations are valid. The method has little
or no practical value; there’s an easy way to evaluate (97) in 2[lgr] + 2 steps,
so (98) is not advantageous until r > 512. But (98) is another indication of the
unexpected power of broadword methods.

*Lower bounds. Indeed, the existence of so many tricks and techniques makes
it natural to wonder whether we’ve only been scratching the surface. Are there
many more incredibly fast methods, still waiting to be discovered? A few
theoretical results are known by which we can derive certain limitations on what
is possible, although such studies are still in their infancy.

Let’s say that a 2-adic chain is a sequence (zg,x1,...,x,) of 2-adic integers
in which each element z; for ¢ > 0 is obtained from its predecessors via bitwise
manipulation. More precisely, we want the steps of the chain to be defined by
binary operations

Ti = Tj(i) % Tk(s) Or &3 OjTg(;) O Tj;) O Ciy (99)

where each o; is one of the operators {+,—, &, |,®,=,C,D,C,D,A,V, <K, >}
and each ¢; is a constant. Furthermore, when the operator o; is a left shift or
right shift, the amount of shift must be a positive integer constant; operations
such as x ;) <y (;) Or ¢; >y (;) are not permitted. (Without the latter restriction
we couldn’t derive meaningful lower bounds, because every 0—1 valued function
of a nonnegative integer z would be computable in two steps as “(¢> z) & 17
for some constant c.)

Similarly, a broadword chain of width n, also called an n-bit broadword
chain, is a sequence (g, 1, ...,2,) of n-bit numbers subject to essentially the
same restrictions, where n is a parameter and all operations are performed
modulo 2", Broadword chains behave like 2-adic chains in many ways, but
subtle differences can arise because of the information loss that occurs at the left
of n-bit computations (see exercise 113).

Both types of chains compute a function f(z) = z, when we start them
out with a given value x = zg. Exercise 114 shows that an mn-bit broadword
chain is able to do m essentially simultaneous evaluations of any function that
is computable with an n-bit chain. Our goal is to study the shortest chains that
are able to evaluate a given function f.

156 COMBINATORIAL SEARCHING 7.1.3

Any 2-adic or broadword chain (zg, z1, ..., ,) has a sequence of “shift sets”
(So, S1,---,Sy) and “bounds” (By, By,...,B;), defined as follows: Start with
So = {0} and By = 1; then for 7 > 1, let

Sty U Sk M;BjGi) By, i xi =) 0i Tr(),
Sk(i)’ M'LBk(z)a lf T; = C; O; xk(i)a
Si = S](l)a and B1, =]\4’1.3_7(1)7 1f Tr; = ;(;J(Z) 0; C;, (100)
Sj(i)+ci’ Bj(i)7 lf Ti = Tj(;) > Ci,
Sj(i) — Ci Bjiy, if x; = zj(1) X G,

where M; = 2 if o; € {+,—} and M; = 1 otherwise, and these formulas assume
that o; ¢ {<,>}. For example, consider the following 7-step chain:

T Si B;
To=1w {0} 1
r1 = 2o & -2 {0} 1
To = 21 + 2 {0} 2
T3 =129 > 1 {1} 2 (101)
T4 = T2 + T3 {0,].} 8
Ty = Tyg > 4 {4, 5} 8

T = T4 + T5 {0,1,4,5} 128
Tr =26 > 4 {4,5,8,9} 128

(We encountered this chain in exercise 4.4-9, which proved that these operations

will yield 7 = [2/10] for 0 < 2 < 160 when performed with 8-bit arithmetic.)
To begin a theory of lower bounds, let’s notice first that the high-order bits

of x = x¢ cannot influence any low-order bits unless we shift them to the right.

Lemma A. Given a 2-adic or broadword chain, let the binary representation of
x; be (...zjx1240)2. Then bit x;, can depend on bit x4 only if ¢ < p+max S;.

Proof. By induction on ¢ we can in fact show that, if B; = 1, bit x;;, can depend
on bit z¢, only if ¢ — p € S;. Addition and subtraction, which force B; > 1,
allow any particular bit of their operands to affect all bits that lie to the left in
the sum or difference, but not those that lie to the right. 1|

Corollary I. The function x — 1 cannot be computed by a 2-adic chain, nor
can any function for which at least one bit of f(z) depends on an unbounded
number of bits of x. |

Corollary W. An n-bit function f(z) can be computed by an n-bit broadword
chain without shifts if and only if x = y (modulo 2P) implies f(z) = f(y)
(modulo 2?) for 0 < p < n.

Proof. 1If there are no shifts we have S; = {0} for all . Thus bit x,, cannot
depend on bit 2, unless ¢ < p. In other words we must have x, = y,. (modulo 27)
whenever zo = yo (modulo 2P).

Conversely, all such functions are achievable by a sufficiently long chain.
Exercise 119 gives shift-free n-bit chains for the functions

foy(x) = 2P[x mod 2PT! =y, when 0 <p <nand 0 <y < 2P (102)

7.1.3 BITWISE TRICKS AND TECHNIQUES 157

from which all the relevant functions arise by addition. [H. S. Warren, Jr., gener-
alized this result to functions of m variables in CACM 20 (1977), 439-441.] 1

Shift sets S; and bounds B; are important chiefly because of a fundamental
lemma that is our principal tool for proving lower bounds:

Lemma B. Let X, = {2,& 2P —27| | 29 € Vg, } in an n-bit broadword chain,
where
Vpgr = {z |z & |2PF* —29%5| =0 for all s € S,} (103)

and p > q. Then |X,q.| < B,. (Here p and ¢ are integers, possibly negative.)

This lemma states that at most B, different bit patterns z,_1) ... o4 can occur
within f(x), when certain intervals of bits in x are constrained to be zero.

Proof. The result certainly holds when r = 0. Otherwise if, for example, x, =
xj + xx, we know by induction that |X,q;| < B; and |Xpqk| < Bj. Furthermore
Vogr = Vpgj N Vpgi, since S, = §; U Si. Thus at most B;By possibilities for
x; + — arise when there’s no carry into position ¢, and at mos

; & |27 — 27| arise when there’ y into positi d at most
B;Byj, when there is a carry, making a grand total of at most B, = 2B;B;
possibilities altogether. Exercise 122 considers the other cases. |

We now can prove that the ruler function needs Q(loglogn) steps.

Theorem R. If n =d 2% every n-bit broadword chain that computes px for
0 < x < 2™ has more than lgd steps that are not shifts.

Proof. If there are [nonshift steps, we have |S,| < 2! and B, < 221, Apply
Lemma B with p = d and ¢ = 0, and suppose | Xqo,| = 2¢ — t. Then there are ¢
values of k < 2¢ such that

{2F, 28471, k220 okt gy,

But Vg, excludes at most 2!d of the n possible powers of 2; so t < 2.
If | <lgd, Lemma B tells us that 2¢ —t < B, < 2471 hence 2471 <t <
2! < d. But this is impossible unless d < 2, when the theorem clearly holds. |

The same proof works also for the binary logarithm function:

Corollary L. If n = d-2¢ > 2, every n-bit broadword chain that computes Az
for 0 < & < 2™ has more than lgd steps that are not shifts. |

By using Lemma B with ¢ > 0 we can derive the stronger lower bound
Q(logn) for bit reversal, and hence for bit permutation in general.

Theorem P. If 2 < g < n, every n-bit broadword chain that computes the
g-bit reversal x for 0 < x < 29 has at least L% Ig gJ steps that are not shifts.

Proof. Assume as above that there are [nonshifts. Let h = |/g| and suppose
that { < |lg(h + 1)]. Then S, is a set of at most 2! < 1(h+ 1) shift amounts s.
We shall apply Lemma B with p = ¢+h, where p < g and ¢ > 0, thusing—h+1
cases altogether. The key observation is that = & |[2P — 29| is independent of
x & 2P+ — 29%3| whenever there are no indices j and k such that 0 < j,k < h
and g —1—q— 7 = q+ s+ k. The number of “bad” choices of ¢ for which such

158 COMBINATORIAL SEARCHING 7.1.3

indices exist is at most %(h +1)h? < g — h; therefore at least one “good” choice
of q yields | X,4-| = 2". But then Lemma B leads to a contradiction, because we

obviously cannot have 2" < B, < 2(h=1/2

Corollary M. Multiplication by certain constants, modulo 2", requires Q(logn)
steps in an n-bit broadword chain.

Proof. In Hack 167 of the classic memorandum HAKMEM (M.LT. A.I Lab-
oratory, 1972), Richard Schroeppel observed that the operations

t < ((az) mod 2™) & b, y + ((ct) mod2™) > (n— g) (104)

compute y = 2% whenever n = ¢? and 0 < x < 29, using the constants a =
(2nt9 —1)/(29" —1),b=29"1(2"-1)/(29 —1),and c = (2" 9 —1)/(29 1 —1).
(See exercise 123.) |

At this point the reader might well be thinking, “Okay, I agree that broad-
word chains sometimes have to be asymptotically long. But programmers needn’t
be shackled by such chains; we can use other techniques, like conditional branches
or references to precomputed tables, which go beyond those restrictions.”

Right. And we're in luck, because broadword theory can also be extended
to more general models of computation. Consider, for example, the follow-
ing idealization of an abstract reduced-instruction-set computer, called a basic
RAM: The machine has n-bit registers vy, ..., r;, and n-bit memory words
{M][0],...,M[2™ — 1]}. Tt can perform the instructions

T =T LT, T4 TjO0TL, T4 T;>TE, T4 C, ()
10
ri < M[r; mod 2™], M][r; mod 2™] < r;, 5

where o is any bitwise Boolean operator, and where r in the shift instruction is
treated as a signed integer in two’s complement notation. The machine is also
able to branch if r; < r;, treating r; and r; as unsigned integers. Its state is the
entire contents of all registers and memory, together with a “program counter”
that points to the current instruction. Its program begins in a designated state,
which may include precomputed tables in memory, and with an n-bit input
value z in register r1. This initial state is called Q(z,0), and Q(z,t) denotes the
state after ¢ instructions have been performed. When the machine stops, r; will
contain some n-bit value f(z). Given a function f(z), we want to find a lower
bound on the least ¢ such that 71 is equal to f(z) in state Q(z,t), for 0 < z < 2™.

Theorem R’. Let ¢ = 27° A basic n-bit RAM with memory parameter m <
nl~¢ requires at least 1glg n—e steps to evaluate the ruler function px, as n — oc.

Proof. Let n = 22"’ so that m < 22°7'=2'_ Exercise 124 explains how an
omniscient observer can construct a broadword chain from a certain class of
inputs z, in such a way that each x causes the RAM to take the same branches,
use the same shift amounts, and refer to the same memory locations. Our earlier
methods can then be used to show that this chain has length > f. |

A skeptical reader may still object that Theorem R’ has no practical value,
because lglgn never exceeds 6 in the real world. To this argument there is no
rebuttal. But the following result is slightly more relevant:

7.1.3 BITWISE TRICKS AND TECHNIQUES 159

Theorem P’. A basic n-bit RAM requires at least %lgg steps to compute the
g-bit reversal z¥ for 0 < x < 29, if g < n and

h+1 .
max(m,1+1gn) < e+ 1] =2 h=[Vg]. (106)

Proof. An argument like the proof of Theorem R’ appears in exercise 125. |

Lemma B and Theorems R, P, R/, P’ and their corollaries are due to
A. Brodnik, P. B. Miltersen, and J. I. Munro, Lecture Notes in Comp. Sci.
1272 (1997), 426-439, based on earlier work of Miltersen in Lecture Notes in
Comp. Sci. 1099 (1996), 442-453.

Many unsolved questions remain (see exercises 126-130). For example, does
sideways addition require Q(logn) steps in an n-bit broadword chain? Can the
parity function (vx)mod 2, or the majority function [vz >n/2], be computed
substantially faster than vz itself, broadwordwise?

An application to directed graphs. Now let’s use some of what we’ve learned,
by implementing a simple algorithm. Given a digraph on a set of vertices V', we
write uw — v when there’s an arc from u to v. The reachability problem is to
find all vertices that lie on oriented paths beginning in a specified set Q C V;
in other words, we seek the set

R = {v]|u—" v for some u € Q}, (107)
where u —" v means that there is a sequence of ¢ arcs
U=Ug—>U] — - —> U = V, for some t > 0. (108)

This problem arises frequently in practice. For example, we encountered it in
Section 2.3.5 when marking all elements of Lists that are not “garbage.”

If the number of vertices is small, say |V| < 64, we may want to approach
the reachability problem in quite a different way than we did before, by working
directly with subsets of vertices. Let

Slu] = {v]u—rv} (109)
be the set of successors of vertex u, for all u € V. Then the following algorithm

is almost completely different from Algorithm 2.3.5E, yet it solves the same
abstract problem:

Algorithm R (Reachability). Given a simple directed graph, represented by

the successor sets S[u] in (109), this algorithm computes the elements R that

are reachable from a given set Q).

R1. [Initialize.] Set R < @ and X < (). (In the following steps, X is the subset
of vertices u € R for which we've looked at S[u].)

R2. [Done?] If X = R, the algorithm terminates.

R3. [Examine another vertex.] Let u be an element of R\ X. Set X + X U,
R + R U S[u], and return to step R2. |

The algorithm is correct because (i) every element placed into R is reachable;

(ii) every reachable element u; in (108) is present in R, by induction on j; and

(iii) termination eventually occurs, because step R3 always increases |X|.

160 COMBINATORIAL SEARCHING 7.1.3

To implement Algorithm R we will assume that V = {0,1,...,n — 1}, with
n < 64. The set X is conveniently represented by the integer o(X) = > {2* |
u € X}, and the same convention works nicely for the other sets Q, R, and
S[u]. Notice that the bits of S[0], S[1], ..., S[n— 1] are essentially the adjacency
matriz of the given digraph, as explained in Section 7, but in little-endian order:
The “diagonal” elements, which tell us whether or not u € S[u], go from right to
left. For example, if n = 3 and the arcs are {0—0,0—1,1—0,2—0}, we have
S[0] = (011)2 and S[1] = S[2] = (001)3, while the adjacency matrix is (ié%)

Step R3 allows us to choose any element of R\ X, so we use the ruler function
u + p(c(R) — o(X)) to choose the smallest. The bitwise operations require no
further trickery when we adapt the algorithm to MMIX:

Program R (Reachability). The input set Q is given in register q, and each
successor set S[u] appears in octabyte Mg[suc + 8u|. The output set R will
appear in register r; other registers s, t, tt, u, and x hold intermediate results.

01 1H SET r,q 1 R1. Initialize. r + o(Q).

02 SET x,0 1 x< o0).

03 JMP 2F 1 To R2.

04 3H SUBU tt,t,1 |R| R3. Examine another vertex. tt < t — 1.

05 SADD u,tt,t |R| u + p(t) [see (46)].

06 SLU s,u,3 |R| s + 8u.

07 LDOU s,suc,s |R| s + o(S[u]).

08 ANDN tt,t,tt |R| tt +— t & ~tt = 2%

09 OR x,x,tt |R| X + X Uu; that is, x + x | 2%, since x = o(X).
10 OR r,r,s |R| R + RU S[u]; that is, r + r | s, since r = ¢(R).
11 2H SUBU t,r,x |R|+1 R2. Done? t +r—x=o0(R\ X), since X C R.
12 PBNZ t,3B IR|+1 ToR3if R#X. |

The total running time is (1 + 9v)|R| + 7v. By contrast, exercise 131 imple-
ments Algorithm R with linked lists; the overall execution time then grows to
(3S +4|R| —2[Q| +1)pu+ (55 + 12| R| - 5|Q| +4)v, where S = 3 . |S[u]|. (But
of course that program is also able to handle graphs with millions of vertices.)

Exercise 132 presents another instructive algorithm where bitwise operations
work nicely on not-too-large graphs.

Application to data representation. Computers are binary, but (alas?)
the world isn’t. We often must find a way to encode nonbinary data into Os
and 1s. One of the most common problems of this sort is to choose an efficient
representation for items that can be in exactly three different states.

Suppose we know that = € {a,b,c}, and we want to represent z by two
bits z;x,.. We could, for example, map a — 00, b — 01, and ¢ — 10. But there
are many other possibilities—in fact, 4 choices for a, then 3 choices for b, and
2 for ¢, making 24 altogether. Some of these mappings might be much easier to
deal with than others, depending on what we want to do with .

Given two elements z,y € {a,b,c}, we typically want to compute z = z oy,
for some binary operation o. If x = x;x, and y = y;y, then z = z;2,., where

Z] :fl(xlvxTvyhyT‘) and Zr :fr(xlaxraylvyr); (110)

7.1.3 BITWISE TRICKS AND TECHNIQUES 161

these Boolean functions f; and f, of four variables depend on o and the chosen
representation. We seek a representation that makes f; and f, easy to compute.

Suppose, for example, that {a,b,c} = {—1,0,4+1} and that o is multiplica-
tion. If we decide to use the natural mapping = — z mod 3, namely

000, 4101, —1 10, (111)
so that x = x, — x;, then the truth tables for f; and f, are respectively
f1 > 0005001501 0s %% and fr <> 00050105001 sk, (112)

(There are seven “don’t-cares,” for cases where z;z, = 11 and/or yy, = 11.)
The methods of Section 7.1.2 tell us how to compute z; and z, optimally, namely

2= (x1®y) A (zr Byr), Zr = (X ®yr) A (2 D Y1); (113)

unfortunately the functions f; and f, in (112) are independent, in the sense that
they cannot both be evaluated in fewer than C(f;) + C(f,) = 6 steps.
On the other hand the somewhat less natural mapping scheme

+1 +— 00, 0+ 01, —1~10 (114)
leads to the transformation functions
f1 > 001000100+ and fr 4> 010511150105 %%k, (115)
and three operations now suffice to do the desired evaluation:
Zr = 2y V Yp, 2= (T ®Y) A Zp. (116)
Is there an easy way to discover such improvements? Fortunately we don’t
need to try all 24 possibilities, because many of them are basically alike. For
example, the mapping = — z,x; is equivalent to = +— z;x,, because the new
representation zjx, = z,x; obtained by swapping coordinates makes
fll(xgv :U;w ylla Z/;) = le = Zr = fr(xla Zr, Y, yr);

the new transformation functions f; and f; defined by

fll(ml;mrayl;yr) = fr(mraxlayrayl)a f;(mlamraylayr) = fl(xramlayrayl) (117)

have the same complexity as f; and f,.. Similarly we can complement a coordi-
nate, letting ;@] = Z;z,; then the transformation functions turn out to be

fll(xlaxraylayr) = .fl(i'laa:raglayr)a f;(mlaxraylayr) = fr(ilaxraglayr)a (118)

and again the complexity is essentially unchanged.
Repeated use of swapping and/or complementation leads to eight mappings

that are equivalent to any given one. So the 24 possibilities reduce to only three,
which we shall call classes I, II, and III:

Class I Class 11 Class II1

a—000110110010011100011011001001110001 1011001001 11;
b+—010011101000110101001110100011011110010011011000; (119)
c—101100010111001011100100110110000100111010001101.

162 COMBINATORIAL SEARCHING 7.1.3

To choose a representation we need consider only one representative of each
class. For example, if a = +1, b = 0, and ¢ = —1, representation (111) belongs
to class II, and (114) belongs to class I. Class ITI turns out to have cost 3, like
class I. So it appears that representation (114) is as good as any, with z computed
by (116), for the 3-element multiplication problem we’ve been studying.

Appearances can, however, be deceiving, because we need not map {a, b, c}
into unique two-bit codes. Consider the one-to-many mapping

+1+00, 0~0lorll, —1s 10, (120)

where both 01 and 11 are allowed as representations of zero. The truth tables
for f; and f, are now quite different from (112) and (115), because all inputs are
legal but some outputs can be arbitrary:

f1 € O Lo T Ok and fr < 0101111101011111. (121)
And in fact, this approach needs just two operations, instead of the three in (116):
z=x1D Y, Zr = Zp V Yp. (122)

A moment’s thought shows that indeed, these operations obviously yield the
product z = z-y when the three elements {41, 0, —1} are represented as in (120).

Such nonunique mappings add 36 more possibilities to the 24 that we had
before. But again, they reduce under “2-cube equivalence” to a small number of
equivalence classes. First there are three classes that we call IV,, IV,, and IV,,
depending on which element has an ambiguous representation:

Class IV, Class IV, Class IV,

a > 0% O 1% 1* *0 0 *1 x1 11 1001 00 11 01 10 00 10 11 00 01 01 11 00 10;
b 1011000101 1100 10 0% 0% 1% 1% %0 %0 %1 x1 11 1001 00 11 01 10 00; (123)
c—1110010011011000 1011000101 1100 10 O* 0% 1* 1* %0 0 *1 1.

(Representation (120) belongs to class IVj. Classes IV, and IV, don’t work well
for z = 2-y.) Then there are three further classes with only four mappings each:

Class V, Class V, Class V.

avw— tt t t t 10 11 00 01 01 00 11 10;
b~ 01 00 11 10 & ¢ ¢ ¢ 10 11 00 O1; (124)
crH— 10 11 00 01 01 00 11 10 & & & tt.

These classes are a bit of a nuisance, because the indeterminacy in their truth
tables cannot be expressed simply in terms of don’t-cares as we did in (121). For
example, if we try

+1+~ 00 or 11, 0+~ 01, —1+— 10, (125)
which is the first mapping in class V,, there are binary variables pqrst such that

fi +» p01g00001071s01¢ and f, <> pl0gl11101r0s10t. (126)

7.1.3 BITWISE TRICKS AND TECHNIQUES 163

Furthermore, mappings of classes V,, V;, and V. almost never turn out to
be better than the mappings of the other six classes (see exercise 138). Still,
representatives of all nine classes must be examined before we can be sure that
an optimal mapping has been found.

In practice we often want to perform several different operations on ternary-
valued variables, not just a single operation like multiplication. For example, we
might want to compute max(z,y) as well as z-y. With representation (120), the
best we can do is z; = z; Ay, 2 = (w1 Ayr) V (2 A (w1 V yr)); but the “natural”
mapping (111) now shines, with z; = z; A y;, 2, = 2, V y,. Class III turns out
to have cost 4; other classes are inferior. To choose between classes II, III, and
IV, in this case, we need to know the relative frequencies of z-y and max(z,y).
And if we add min(z,y) to the mix, classes II, III, and IV, compute it with the
respective costs 2, 5, 5; hence (111) looks better yet.

The ternary max and min operations arise also in other contexts, such as the
three-valued logic developed by Jan Lukasiewicz in 1917. [See his Selected Works,
edited by L. Borkowski (1970), 84-88, 153-178.] Consider the logical values
“true,” “false,” and “maybe,” denoted respectively by 1, 0, and *. Lukasiewicz
defined the three basic operations of conjunction, disjunction, and implication
on these values by specifying the tables

Y Y Y
—N— —N— —N—
0 % 1 0 % 1 0 % 1
0|0 00 0|0 = 1 0|1 11
x{*O**, x{* x x 1], x{* x 11 (127)
110 % 1 1111 1{0 = 1
VAN zVy =y
For these operations the methods above show that the binary representation
0+~ 00, *x — 01, 111 (128)
works well, because we can compute the logical operations thus:
nzr Ayyr = (@Ay) (@ Aye), mze Vyye = (@Vy) (e V), (120)
Ty = Y1Yr = ((jlvyl)/\(i'rvyr)) (jl vy'r)-

Of course x need not be an isolated ternary value in this discussion; we often
want to deal with ternary vectors r = x123...x,, where each z; is either a, b,
or c. Such ternary vectors are conveniently represented by two binary vectors

T = TUTop ... Tyl and Ty = T1,T2p . . . Trp, (130)
where z; — z;;2;, as above. We could also pack the ternary values into two-bit
fields of a single vector,

T = TUT1,T2AL2r - - - TnlTnr; (131)

that would work fine if, say, we're doing Lukasiewicz logic with the operations A
and V but not =. Usually, however, the two-vector approach of (130) is better,
because it lets us do bitwise calculations without shifting and masking.

164 COMBINATORIAL SEARCHING 7.1.3

Applications to data structures. Bitwise operations offer many efficient ways
to represent elements of data and the relationships between them. For example,
chess-playing programs often use a “bit board” to represent the positions of
pieces (see exercise 143).

In Chapter 8 we shall discuss an important data structure developed by
Peter van Emde Boas for representing a dynamically changing subset of integers
between 0 and N. Insertions, deletions, and other operations such as “find the
largest element less than ” can be done in O(loglog N) steps with his methods;
the general idea is to organize the full structure recursively as /N substructures
for subsets of intervals of size v/N, together with an auxiliary structure that
tells which of those intervals are occupied. [See Information Processing Letters
6 (1977), 80-82; also P. van Emde Boas, R. Kaas, and E. Zijlstra, Math. Systems
Theory 10 (1977), 99-127.] Bitwise operations make those computations fast.

Hierarchical data can sometimes be arranged so that the links between
elements are implicit rather than explicit. For example, we studied “heaps”
in Section 5.2.3, where n elements of a sequential array implicitly have a binary
tree structure like

@
(2) (3) _ 0010 0011 (132)
(4) (5) (6) CD 0100 010D (0110) (011D
®@I0 1000)100D 010

when, say, n = 10. (Node numbers are shown here both in decimal and binary
notation.) There is no need to store pointers in memory to relate node j of a
heap to its parent (which is node j > 1 if j # 1), or to its sibling (which is node
j@®1if j #1), or to its children (which are nodes j < 1 and (j < 1) + 1 if those
numbers don’t exceed n), because a simple calculation leads directly from j to
any desired neighbor.

Similarly, a sideways heap provides implicit links for another useful family
of n-node binary tree structures, typified by

0100 1100
0010 0110 (@)
000D(001D(O10DO11DA00D

when n = 10. (We sometimes need to go beyond n when moving from a node to
its parent, as in the path from 10 to 12 to 8 shown here.) Heaps and sideways
heaps can both be regarded as nodes 1 to n of infinite binary tree structures:
The heap with n = oo is rooted at node 1 and has no leaves; by contrast, the
sideways heap with n = oo has infinitely many leaves 1, 3, 5, ..., but no root(!).

The leaves of a sideways heap are the odd numbers, and their parents are the
odd multiples of 2. The grandparents of leaves, similarly, are the odd multiples
of 4; and so on. Thus the ruler function pj tells how high node j is above leaf level.

The parent of node j in the infinite sideways heap is easily seen to be node

(j—k) | (E<1), wherek=j& —j; (134)

7.1.3 BITWISE TRICKS AND TECHNIQUES 165

this formula rounds j to the nearest odd multiple of 21177, And the children are
j—(k>1) and j+ (k>1) (135)

when j is even. In general the descendants of node j form a closed interval
[j =207 +1.. 542 1], (136)

arranged as a complete binary tree of 2177 —1 nodes. (These are the “inclusive”
descendants, including j itself.) The ancestor of node j at height h is node

GlA<h)&-(1<h)=(G>h)|1)<h (137)

when h > pj. Notice that the symmetric order of the nodes, also called inorder,
is just the natural order 1, 2, 3,

Dov Harel noted these properties in his Ph.D. thesis (U. of California, Irvine,
1980), and observed that the nearest common ancestor of any two nodes of a
sideways heap can also be easily calculated. Indeed, if node [is the nearest
common ancestor of nodes 7 and j, where ¢ < j, there is a remarkable identity

pl = max{pr |i <o <j} = A& i), (138)

which relates the p and A functions. (See exercise 146.) We can therefore use
formula (137) with h = A\(j & —i) to calculate .

Subtle extensions of this approach lead to an asymptotically efficient algo-
rithm that finds nearest common ancestors in any oriented forest whose arcs
grow dynamically [D. Harel and R. E. Tarjan, SICOMP 13 (1984), 338-355].
Baruch Schieber and Uzi Vishkin [SICOMP 17 (1988), 1253-1262] subsequently
discovered a much simpler way to compute nearest common ancestors in an
arbitrary (but fixed) oriented forest, using an attractive and instructive blend of
bitwise and algorithmic techniques that we shall consider next.

Recall that an oriented forest with m trees and n vertices is an acyclic
digraph with n —m arcs. There is at most one arc from each vertex; the vertices
with out-degree zero are the roots of the trees. We say that v is the parent of u
when u — v, and v is an (inclusive) ancestor of v when u —* v. Two vertices
have a common ancestor if and only if they belong to the same tree. Vertex w
is called the nearest common ancestor of v and v when we have

u—"* zand v—* z if and only if w—" z. (139)

Schieber and Vishkin preprocess the given forest, mapping its vertices into
a sideways heap S of size n by computing three quantities for each vertex v:
7o, the rank of v in preorder (1 < v < n);
Bv, a node of the sideways heap S (1 < fv < n);
av, a (14 An)-bit routing code (1 < av < 21+An).
If u— v we have mu > 7v by the definition of preorder. Node Sv is defined to

be the nearest common ancestor of all sideways-heap nodes 7wu such that v is an
ancestor of vertex u (always meaning an inclusive ancestor). And we define

av = 2{2”3“’ | v—* w}. (140)

166 COMBINATORIAL SEARCHING 7.1.3

For example, here’s an oriented forest with ten vertices and two trees:

(141)

Each node has been labeled with its preorder rank, from which we can compute
the 8 and a codes:

v= A B C D E F G H I J

mv = 0001 1000 0010 0100 1001 0011 0101 0111 1010 0110

Bv = 0100 1000 0010 0100 1010 0011 0110 0111 1010 0110

av = (0100 1000 0110 0100 1010 0111 0110 0101 1010 0110
Notice that, for instance, A = 4 = 0100 because the preorder ranks of the
descendants of A are {1,2,3,4,5,6,7}. And aH = 0101 because the ancestors
of H have 8 codes {SH,3D,5A} = {0111,0100}. One can prove without
difficulty that the mapping v — Bv satisfies the following key properties:

i) If u— v in the forest, then Su is a descendant of v in S.
ii) If several vertices have the same value of Sv, they form a path in the forest.
Property (ii) holds because exactly one child u of v has fu = Sv when Sv # 7.
Now let’s imagine placing every vertex v of the forest into node Sv of S:

If k£ vertices map into node j, we can arrange them into a path
Vg —>VL —>+ " ——> V1 — Uk, where fvg = fvy = -+ = Bug_1 =J. (143)

These paths are illustrated in (142); for example, J— G — D is a path in (141),
and ‘s—c—p’ appears with node 0110 = 8J = BG.

The preprocessing algorithm also computes a table 75 for all nodes j of S,
containing pointers to the vertices vy at the tail ends of (143):

J 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
) = A A C A A D D A A B

Exercise 149 shows that all four tables mv, v, av, and 75 can be prepared in
O(n) steps. And once those tables are ready, they contain just enough informa-
tion to identify the nearest common ancestor of any two given vertices quickly:

Algorithm V (Nearest common ancestors). Suppose v, Bv, av, and Tj are
known for all n vertices v of an oriented forest, and for 1 < 7 < n. A dummy
vertex A is also assumed to be present, with mA = BA = oA = 0. This algorithm
computes the nearest common ancestor z of any given vertices z and y, returning
z = A if z and y belong to different trees. We assume that the values A\j = |1g j |
have been precomputed for 1 < 57 < n, and that A0 = An.

7.1.3 BITWISE TRICKS AND TECHNIQUES 167

V1. [Find common height.] If 3z < By, set h + A(By & —Bz); otherwise set
h < A(Bz & —By). (See (138).)

V2. [Find true height.] Set k + az & ay & —(1 < h), then h + A(k & —k).

V3. [Find Bz.] Set j « ((Bx>h) | 1) < h. (Now j =Bz, if z # A.)

V4. [Find Z and §.] (We now seek the lowest ancestors of z and y in node j.)
If j = Bz, set & + x; otherwise set | + AMaxz & ((1 <K h) —1)) and & «
7(((Bz >1) | 1) <« 1). Similarly, if j = By, set § < y; otherwise set | +
May & (L < h) = 1)) and § < 7(((By>1) [1) <1).

V5. [Find z.] Set z « & if 7& < 7§, otherwise z + §. |

These artful dodges obviously exploit (137); exercise 152 explains why they work.
Sideways heaps can also be used to implement an interesting type of priority

queue that J. Katajainen and F. Vitale call a “navigation pile,” illustrated here
for n = 10:

4 12 20 (144)

2 6 10 14 18

[503] 087[512]061[908[170]275]897] 653|426
1 3 5 7 9

11 13 15 17 19

Data elements go into the leaf positions 1, 3, ..., 2n — 1 of the sideways heap;
they can be many bits wide, and they can appear in any order. By contrast, each
branch position 2, 4, 6, ... contains a pointer to its largest descendant. And the
novel point is that these pointers take up almost no extra space—fewer than two
bits per item of data, on average — because only one bit is needed for pointers 2,
6, 10, ..., only two bits for pointers 4, 12, 20, ..., and only pj for pointer j in
general. (See exercise 153.) Thus the navigation pile requires very little memory,
and it behaves nicely with respect to cache performance on a typical computer.

R ST
C ud
T
A Fig. 13. Two views of five lines
P Q' in the hyperbolic plane.

*Cells in the hyperbolic plane. Hyperbolic geometry suggests an instructive
implicit data structure that has a rather different flavor. The hyperbolic plane is
a fascinating example of non-Euclidean geometry that is conveniently viewed by
projecting its points into the interior of a circle. Its straight lines then become
circular arcs, which meet the rim at right angles. For example, the lines PP’,
QQ', and RR' in Fig. 13 intersect at points O, A, B, and those points form a
triangle. Lines SQ’ and QQ' are parallel: They never touch, but their points
get closer and closer together. Line QT is also parallel to QQ’.

168 COMBINATORIAL SEARCHING 7.1.3

We get different views by focusing on different center points. For example,
the second view in Fig. 13 puts O smack in the center. Notice that if a line passes
through the very center, it remains straight after being projected; such diameter-
spanning chords are the special case of a “circular arc” whose radius is infinite.

Most of Euclid’s axioms for plane geometry remain valid in the hyperbolic
plane. For example, exactly one line passes through any two distinct points; and
if point A lies on line PP’ there’s exactly one line QQ’ such that angle PAQ has
any given value 6, for 0 < § < 180°. But Euclid’s famous fifth postulate does not
hold: If point C is not on line QQ’, there always are exactly two lines through C
that are parallel to QQ’. Furthermore there are many pairs of lines, like RR’
and SQ' in Fig. 13, that are totally disjoint or wultraparallel, in the sense that
their points never become arbitrarily close. [These properties of the hyperbolic
plane were discovered by G. Saccheri in the early 1700s, and made rigorous by
N. I. Lobachevsky, J. Bolyai, and C. F. Gauss a century later.]

Quantitatively speaking, when points are projected onto the unit disk |z| <1,
the arc that meets the circle at ¢ and e * has center at sec and radius
tan . The actual distance between two points whose projections are z and 2’ is
d(z,2") =In(|]1 — 22| + |z — 2’|) = In(]1 — 22/| — |z — Z|). Thus objects far from
the center appear dramatically shrunken when we see them near the circle’s rim.

The sum of the angles of a hyperbolic triangle is always less than 180°. For
example, the angles at O, A, and B in Fig. 13 are respectively 90°, 45°, and 36°.
Ten such 36°-45°-90° triangles can be placed together to make a regular pentagon
with 90° angles at each corner. And four such pentagons fit snugly together at
their corners, allowing us to tile the entire hyperbolic plane with right regular
pentagons (see Fig. 14). The edges of these pentagons form an interesting family
of lines, every two of which are either ultraparallel or perpendicular; so we have
a grid structure analogous to the unit squares of the ordinary plane. We call it
the pentagrid, because each cell now has five neighbors instead of four.

There’s a nice way to navigate in the pentagrid using Fibonacci numbers,
based on ideas of Maurice Margenstern [see F. Herrmann and M. Margenstern,
Theoretical Comp. Sci. 296 (2003), 345-351]. Instead of the ordinary Fibonacci
sequence (F,), however, we shall use the negaFibonacci numbers (F_,), namely

Fi=1,Fqy3=-1,F3=2 F4=-3, ..., F,=(-1D)""'F,. (145)

Exercise 1.2.8-34 introduced the Fibonacci number system, in which every non-
negative integer x can be written uniquely in the form

x=Fyg, + Fy, +- -+ F,, where ky == ko 5> -+ == k. > 0; (146)

here ‘j > k’ means ‘7 > k-+2’. But there’s also a negaFibonacci number system,
which suits our purposes better: Every integer x, whether positive, negative, or
zero, can be written uniquely in the form

x=Fy, + Fp, +---+ Fy,, where ki < ky << -+ <k, < L. (147)

For example, 4 =5 —-1=F 5+ F g5and 2= -3+4+1=F_4+ F_y. This
representation can conveniently be expressed as a binary code a = ...agasaq,

7.1.3 BITWISE TRICKS AND TECHNIQUES 169

Fig. 14. The pentagrid,
in which identical pentagons
tile the hyperbolic plane.

.ﬁ_“‘!“’“. ..

A circular regular tiling, confined on all sides
by infinitely small shapes, is really wonderful.

— M C ESCHER, letter to George Escher (9 November 1958)

standing for N(a) =), arF_j, with no two 1s in a row. For example, here are
the negaFibonacci representation codes of all integers between —14 and +15:

—14 = 10010100 —8 =100000 —2=1001 4 =10010 10 = 1001000

—13 =10010101 —7=100001 —1=10 5 = 10000 11 = 1001001
—12 = 101010 —6 = 100100 0=0 6 = 10001 12 = 1000010
—11 = 101000 —5 = 100101 1=1 7 = 10100 13 = 1000000
—10 = 101001 —4 =1010 2 =100 8 =10101 14 = 1000001

—9 = 100010 —3 = 1000 3 =101 9 =1001010 15 = 1000100

As in the negadecimal system (see 4.1-(6) and (7)), we can tell whether z is
negative or not by seeing if its representation has an even or odd number of digits.
The predecessor a— and successor a+ of any negaFibonacci binary code «
can be computed recursively by using the rules
(a01)— = a00, (a000)— =010, (al00)— = @001, (al0)— = (a—)O01,
(210)+ = a00, (a00)+ = a0l, (al)+ = (a—)O. (148)
(See exercise 157.) But ten elegant 2-adic steps do the calculation directly:

Yy ®Ho, 2z yd(yx1), where z = (a)s;
22| (& (2 < 1)); (149)
w—zxzDzd ((z2+1)>2); then w = (at)s.

We just use y — 1 in the top line to get the predecessor, y+ 1 to get the successor.

170 COMBINATORIAL SEARCHING 7.1.3

And now here’s the point: A negaFibonacci code can be assigned to each
cell of the pentagrid in such a way that the codes of its five neighbors are easy to
compute. Let’s call the neighbors n, s, e, w, and o, for “north,” “south,” “east,”
“west,” and “other.” If « is the code assigned to a given cell, we define

apn=a>2, a;=a<2, g=0ast, Qp=0c;—; (150)
thus as, = a, and also ae, = (a01),, = a. The “other” direction is trickier:

an+, ifa&l=1;
Qo = yp—, ifa&l=0.

For example, 1000, = 101001 and 101001, = 1000. This mysterious interloper
lies between north and east when « ends with 1, but between north and west
when « ends with 0.

If we choose any cell and label it with code 0, and if we also choose an
orientation so that its neighbors are n, e, s, w, and o in clockwise order, rules
(150) and (151) will assign consistent labels to every cell of the pentagrid. (See
exercise 160.) For example, the vicinity of a cell labeled 1000 will look like this:

(151)

(152)

e|n e
10000001
s

w olo
10001001 100000

S

w s

The code labels do not, however, identify cells uniquely, because infinitely
many cells receive the same label. (Indeed, we clearly have 0,, = 0, = 0 and
1y =1, = 1.) To get a unique identifier, we attach a second coordinate so that
each cell’s full name has the form («, y), where y is an integer. When y is constant
and « ranges over all negaFibonacci codes, the cells (a,y) form a more-or-less
hook-shaped strip whose edges take a 90° turn next to cell (0,y). In general, the
five neighbors of (Ol, y) are (aay)n = (anay + 5n(a))v (avy)s = (asa Y+ 65(0‘))7

7.1.3 BITWISE TRICKS AND TECHNIQUES 171

(0;17 Ye = (e, y+0e(@)), (0, 9)w = (Quw, y+6uw(a)), and (a,y)o = (o, y+o(a)),

on(a) =[a=0], &s(a)=—[a=0], b(a) =0, bu(a)=—[a=1];
sign(a, — an)[a, & a, =0], ifa&l=1;

%(a) = { sign(o, —)| & oy =0], if @& 1=0. (153)

(See the illustration below.) Bitwise operations now allow us to surf the entire
hyperbolic plane with ease. On the other hand, we could also ignore the y
coordinates as we move, thereby wrapping around a “hyperbolic cylinder” of
pentagons; the a coordinates define an interesting multigraph on the set of all
negaFibonacci codes, in which every vertex has degree 5.

(1,1)

(154)

Bitmap graphics. It’s fun to write programs that deal with pictures and shapes,
because they involve our left and right brains simultaneously. When image data
is involved, the results can be engrossing even if there are bugs in our code.

The book you are now reading was typeset by software that treated each
page as a gigantic matrix of Os and 1s, called a “raster” or “bitmap,” containing
millions of square picture elements called “pixels.” The rasters were transmitted
to printing machines, causing tiny dots of ink to be placed wherever a 1 appeared
in the matrix. Physical properties of ink and paper caused those small clusters
of dots to look like smooth curves; but each pixel’s basic squareness becomes
evident if we enlarge the images tenfold, as in the letter ‘A’ shown in Fig. 15(a).

With bitwise operations we can achieve special effects like “custering,” in
which the black pixels disappear when they are surrounded on all sides:

Fig. 15. The letter A,
before and after custering.

(a) (b)

172 COMBINATORIAL SEARCHING 7.1.3

This operation, introduced by R. A. Kirsch, L. Cahn, C. Ray, and G. H. Urban
[Proc. Eastern Joint Computer Conf. 12 (1957), 221-229], can be expressed as

custer(X) = X &~((XVY1) & (X >1)& (X <1) & (XA1)), (155)

where ‘XV1’ and ‘XAl stand respectively for the result of shifting the bitmap X
down or up by one row. Let us write

Xy =XV1, Xy=X>1, Xp=X<1, Xs=XAl (156)

for the 1-pixel shifts of a bitmap X. Then, for example, the symbolic expression
‘X & (X5 | X&)’ evaluates to 1 in those pixel positions whose northern neighbor
is black, and which also have either a black neighbor on the south side or a white
neighbor to the east. With these abbreviations, (155) takes the form

custer(X) = X & ~(Xy & Xy & X & X5), (157)

which can also be expressed as X & (Xy | Xw | X5 | Xs).

Every pixel has four “rook-neighbors,” with which it shares an edge at the
top, left, right, or bottom. It also has eight “king-neighbors,” with which it
shares at least one corner point. For example, the king-neighbors that lie to the
northeast of all pixels in a bitmap X can be denoted by Xy, which is equivalent
to (Xy)g in pixel algebra. Notice that we also have Xyr = (Xg)x-

A 3 x 3 cellular automaton is an array of pixels that changes dynamically
via a sequence of local transformations, all performed simultaneously: The state
of each pixel at time ¢ + 1 depends entirely on its state at time ¢ and the states
of its king-neighbors at that time. Thus the automaton defines a sequence of
bitmaps X (@, X X that lead from any given initial state X (9, where

x00 = e, X0, x0, x 0, x 0, x 1 x0, x8 xE) (158)
and f is any bitwise Boolean function of nine variables. Fascinating patterns
often emerge in this way. For example, after Martin Gardner introduced John
Conway’s game of Life to the world in 1970, more computer time was probably
devoted to studying its implications than to any other computational task during
the next several years—although the people paying the computer bills were
rarely told! (See exercise 167.)

There are 2°12 Boolean functions of nine variables, so there are 2°!2 different
3 X 3 cellular automata. Many of them are trivial, but most of them probably
have such complicated behavior that they are humanly impossible to understand.
Fortunately there also are many cases that do turn out to be useful in practice —
and much easier to justify on economic grounds than the simulation of a game.

For example, algorithms for recognizing alphabetic characters, fingerprints,
or similar patterns often make use of a “thinning” process, which removes excess
black pixels and reduces each component of the image to an underlying skeleton
that is comparatively simple to analyze. Several authors have proposed cellular
automata for this problem, beginning with D. Rutovitz [J. Royal Stat. Society
A129 (1966), 512-513] who suggested a 4 x 4 scheme. But parallel algorithms
are notoriously subtle, and flaws tended to turn up after various methods had

BITWISE TRICKS AND TECHNIQUES 173

Fig. 16. Example
results of Guo and
Hall’s 3x3 autom-
aton for thinning
the components of a
bitmap. (“Hollow”
pixels were origi-

nally black.)

been published. For example, at least two of the black pixels in a component like
i should be removed, yet a symmetrical scheme will erroneously erase all four.

A satisfactory solution to the thinning problem was finally found by Z. Guo
and R. W. Hall [CACM 32 (1989), 359-373, 759], using a 3 X 3 automaton that
invokes alternate rules on odd and even steps. Consider the function

F(Taw, Ty Tng, Tw, T, T, Tsw, Ts, Tsp) = TATG(Taws oy Tw, Ty o5 Tsp)y (159)
where g = 1 only in the following 37 configurations surrounding a black pixel:

R LT EL A A Ll ol ol Eh SR CE L) LG EL A el o])

Then we use (158), but with f(Zyxw, Tn, Zxes Tw, 2, Tr, Tsw, Ls, Tsp) replaced by
its 180° rotation f(Zsk, Ts, Tsw,Tr, T, Tw, Tnr, Tn, Txw) ON even-numbered steps.
The process stops when two consecutive cycles make no change.

With this rule Guo and Hall proved that the 3 x 3 automaton will preserve
the connectivity structure of the image, in a strong sense that we will discuss
below. Furthermore their algorithm obviously leaves an image intact if it is
already so thin that it contains no three pixels that are king-neighbors of each
other. On the other hand it usually succeeds in “removing the meat off the
bones” of each black component, as shown in Fig. 16. Slightly thinner thinning
is obtained in certain cases if we add four additional configurations

TLXTE (160)

to the 37 listed above. In either case the function g can be evaluated with a
Boolean chain of length 25. (See exercises 170-172.)

In general, the black pixels of an image can be grouped into segments or
components that are kingwise connected, in the sense that any black pixel can
be reached from any other pixel of its component by a sequence of king moves
through black pixels. The white pixels also form components, which are rookwise
connected: Any two white cells of a component are mutually reachable via rook
moves that touch nothing black. It’s best to use different kinds of connectedness
for white and black, in order to preserve the topological concepts of “inside” and
“outside” that are familiar from continuous geometry [see A. Rosenfeld, JACM
17 (1970), 146-160]. If we imagine that the corner points of a raster are black,
an infinitely thin black curve can cross between pixels at a corner, but a white
curve cannot. (We could also imagine white corner points, which would lead to
rookwise connectivity for black and kingwise connectivity for white.)

174 COMBINATORIAL SEARCHING 7.1.3

time = 0 time =1 time = 3

(a) (b) ()

Fig. 17. The shrinking of a Cheshire cat

An amusing algorithm for shrinking a picture while preserving its connec-
tivity, except that isolated black or white pixels disappear, was presented by
S. Levialdi in CACM 15 (1972), 7-10; an equivalent algorithm, but with black
and white reversed, had also appeared in T. Beyer’s Ph.D. thesis (M.I.T., 1969).
The idea is to use a cellular automaton with the simple transition function

f(waal'Na xNEaxwvl'aanxswaxSaxma) = (I A (xw\/xsw\/l's)) \ (xW/\IS) (161)

at each step. This formula is actually a 2 x 2 rule, but we still need a 3 x 3 window
if we want to keep track of the cases when a one-pixel component goes away.

For example, the 25 x 30 picture of a Cheshire cat in Fig. 17(a) has seven
kingwise black components: the outline of its head, the two earholes, the two
eyes, the nose, and the smile. The result after one application of (161) is shown
in Fig. 17(b): Seven components remain, but there’s an isolated point in one ear,
and the other earhole will become isolated after the next step. Hence Fig. 17(c)
has only five components. After six steps the cat loses its nose, and even the
smile will be gone at time 14. Sadly, the last bit of cat will vanish during step 46.

At most M + N — 1 transitions will wipe out any M x N picture, because
the lowest visible northwest-to-southeast diagonal line moves relentlessly upward
each time. Exercises 176 and 177 prove that different components will never
merge together and interfere with each other.

Of course this cubic-time cellular method isn’t the fastest way to count or
identify the components of a picture. We can actually do that job “online,”
while looking at a large image one row at a time, not bothering to keep all of
the previously seen rows in memory if we don’t wish to look at them again.

While we’re analyzing the components we might as well also record the
relationships between them. Let’s assume that only finitely many black pixels
are present. Then there’s an infinite component of white pixels called the
background. Black components adjacent to the background constitute the main
objects of the image. And these objects may in turn have holes, which may serve
as a background for another level of objects, and so on. Thus the connected
components of any finite picture form a hierarchy — an oriented tree, rooted at
the background. Black components appear at the odd-numbered levels of this
tree, and white components at the even-numbered levels, alternating between

7.1.3 BITWISE TRICKS AND TECHNIQUES 175

time = 5 time = 10 time = 20

(d) (e) ()

by repeated application of Levialdi’s transformation.

kingwise and rookwise connectedness. Each component except the background is
surrounded by its parent. Childless components are said to be simply connected.

For example, here are the Cheshire cat’s components, labeled with digits for
white pixels and letters for the black ones, and the corresponding oriented tree:

0000000000000000 000J1000000

0000JWWY000000000 00IWN000000

0000IM1IWA00000000 OJ¥1 1J400000

00 Of¥1 1 1/WA0 0 OF WY o1 1M00000

boFoXs] AFTEERET A A A AR W1 1 1J30000

ooofif1 11111111 iNiMifo000 ©

ooOMiETIMI111111 iMildifoo000

OOOM111111111111 1IM111N0000

OOOMLI1I1111111111 1iM11M0000 A

000OMITI111111111 11111000

00O0O0OP1I111111111 111111000

EEEEH B0t EEREER YRR o (162)
102

JWNO OJ1 I pPPI2i]1 111 1ikA3jA1 111100

OOIWWAL IhDIMINI 1111 1)ABA1 1111100

0000fWAT111111[1 111111100

JWWWNi 1111111101 11111 179NN BACHMDNENFNG

00 OfWwWWN1 11 11 1 1PWWWI1IN0 0

OO0OMiii111111hmd1l 1111111M00

0000M1L1 1111 A AAAAAAAR @ B

00000111 11 111111000

00000 0MNL11 1IN0 000

0000000 0N 1 111 17WN0000 0

0000000000M111111111fWWN0000000

0000000000 0INVWYWWWWWYN000000000

During the shrinking process of Fig. 17, components disappear in the order

O {02 O} (alat time 3), . 0, 0,0, D, O.

Suppose we want to analyze the components of such a picture by reading
one row at a time. After we've seen four rows the result-so-far will be

00000000000000000000000Jd0O00000 ()

000 OEFRI000000000000000FWI000000 BRCRA (16)
0000811310 00000000000 0fy22[00000 3
00O0KE1 1 1180 O O[eeleXeleleled 0 OFN2 2FNO 000 0 @ 2

and we’ll be ready to scan row five. A comparison of rows four and five will
then show that @ and @ should merge into @, but that new components @
and (3 should also be launched. Exercise 179 contains full details about an
instructive algorithm that properly updates the current tree as new rows are
input. Additional information can also be computed on the fly: For example, we
could determine the area of each component, the locations of its first and last
pixels, the smallest enclosing rectangle, and/or its center of gravity.

176 COMBINATORIAL SEARCHING 7.1.3

*Filling. Let’s complete our quick tour of raster graphics by considering how
to fill regions that are bounded by straight lines and/or simple curves. Particu-
larly efficient algorithms are available when the curves are built up from “conic
sections” —circles, ellipses, parabolas, or hyperbolas, as in classical geometry.

In keeping with geometric tradition, we shall adopt Cartesian coordinates
(z,y) in the following discussion, instead of speaking about rows or columns
of pixels: An increase of z will signify a move to the right, while an increase
of y will move upward. More significantly, we will focus on the edges between
square pixels, instead of on the pixels themselves. Edges run between integer
points (z,y) and (2',y’) of the plane when |z — /| + |y — ¥'| = 1. Each pixel
is bounded by the four edges (z,y) — (z—1,y) — (z—1,y—1) — (z,y—1) —
(z,y). Experience has shown that algorithms for filling contours become simpler
and faster when we concentrate on the edge transitions between white and black,
instead of on the black pixels of a custerized boundary. (See, for example, the
discussion by B. D. Ackland and N. Weste in IEEE Trans. C-30 (1981), 41-48.)

Consider a continuous curve z(t) = (z(t),y(t)) that is traced out as ¢ varies
from 0 to 1. We assume that the curve doesn’t intersect itself for 0 <t < 1, and
that z(0) = z(1). The famous Jordan curve theorem [C. Jordan, Cours d’analyse
3 (1887), 587-594; O. Veblen, Trans. Amer. Math. Soc. 6 (1905), 83-98] states
that every such curve divides the plane into two regions, called the inside and
the outside. We can “digitize” z(t) by forcing it to travel along edges between
pixels; then we obtain an approximation in which the inside pixels are black and
the outside pixels are white. This digitization process essentially replaces the
original curve by the sequence of integer points

round(z(t)) = (lz(t)+ 3], ly(t) + 3]), for0 <t <1. (164)

The curve can be perturbed slightly, if necessary, so that z(t) never passes exactly
through the center of a pixel. Then the digitized curve takes discrete steps along
pixel edges as t grows; and a pixel lies inside the digitization if and only if its
center lies inside the original continuous curve {z(t) | 0 < ¢ < 1}.

For example, the equations z(t) = 20 cos 27t and y(t) = 10sin 27t define an
ellipse. Its digitization, round(z(¢)), starts at (20,0) when ¢ = 0, then jumps to
(20, 1) when ¢t ~ .008 and 10sin 27t = 0.5. Then it proceeds to the points (20, 2),
(19,2), (19,3), (19,4), (18,4), ..., (20,—1), (20,0), as t increases through the
values .024, .036, .040, .057, .062, ..., .976, .992:

. "
.

The horizontal edges of such a boundary are conveniently represented by bit
vectors H(y) for each y; for example, H(10) = ...000000111111111111000000. ..
and H(9) = ...011111000000000000111110... in (165). If the ellipse is filled

7.1.3 BITWISE TRICKS AND TECHNIQUES 177

with black to obtain a bitmap B, the H vectors mark transitions between black
and white, so we have the symbolic relation

H = B® (BA1). (166)
Conversely, it’s easy to obtain B when the H vectors are given:

B(y) = H(ymax) S H(ymaxfl) D---D H(y =+ 1)
= H(ymin) ® H(ymin+1) D---D H(y) (167)

Notice that H (Ymin) B H (Ymin+1) B+ - D H (Ymax) is the zero vector, because each
bitmap is white at both top and bottom. Notice further that the analogous verti-
cal edge vectors V (z) are redundant: They satisfy the formulas V = B® (B« 1)
and B = V@ (see exercise 36), but we need not bother to keep track of them.
Conic sections are easier to deal with than most other curves, because we
can readily eliminate the parameter t. For example, the ellipse that led to (165)
can be defined by the equation (2/20)? + (y/10)? = 1, instead of using sines
and cosines. Therefore pixel (z,y) should be black if and only if its center point
(z—1%,y—3) lies inside the ellipse, if and only if (z—1)2/400+ (y—$)%100—1 < 0.
In general, every conic section is the set of points for which F(z,y) = 0,
when F' is an appropriate quadratic form. Therefore there’s a quadratic form

Qz,y) = Flz— 3,y —3) = ar® +bay + ey’ +de+ey+ f (168)

that is negative at the integer point (z,y) if and only if pixel (z,y) lies on a
given side of the digitized curve.

For practical purposes we may assume that the coefficients (a, b, ..., f) of Q
are not-too-large integers. Then we’re in luck, because the exact value of Q(z,y)
is easy to compute. In fact, as pointed out by M. L. V. Pitteway [Comp. J.
10 (1967), 282-289], there’s a nice “three-register algorithm” by which we can
quickly track the boundary points: Let and y be integers, and suppose we’ve got
the values of Q(z,y), Qz(z,y), and Qy(z,y) in three registers (Q, @, Qy), where

Qx(z,y) =2az+by+d and Qy(z,y) =bx +2cy +e (169)

are %Q and B%Q. We can then move to any adjacent integer point, because

Q(zx1l,y) = Q(z,y)xQ(z,y)+a, Qz,y£l) = Q(z,y)EQy(z,y)+c,
Qz(xilay) = Qz(x,y):l:2a, Qz(mayil) = Qz(m,y):l:b,
Qy(zt1,y) = Qy(z,y)+b; Qy(z,y£1) = Qy(x,y)+2c. (170)

Furthermore we can divide the contour into separate pieces, in each of which z(#)
and y(t) are both monotonic. For example, when the ellipse (165) travels from
(20,0) to (0,10), the value of = decreases while y increases; thus we need only
move from (z,y) to (z—1,y) or to (z,y+1). If registers (Q, R, S) respectively
hold (@, Qs —a, Qy+c), a move to (z—1,y) simply sets Q < Q@ —R, R +— R—2a,
and S < S — b; a move to (z,y+1) is just as quick. With care, this idea leads
to a blindingly fast way to discover the correctly digitized edges of almost any
conic curve.

178 COMBINATORIAL SEARCHING 7.1.3

For example, the quadratic form Q(z,y) for ellipse (165) is 422 + 16y% —
(4z + 16y + 1595), when we integerize its coefficients. We have Q(20,0) =
F(19.5,—0.5) = =75 and Q(21,0) = +85; therefore pixel (20,0), whose center is
(19.5,—0.5), is inside the ellipse, but pixel (21,0) isn’t. Let’s zoom in closer:

o

—51 93 245 405

—179 —35 117 277

—275 —131|(21 181

(172)

—339 —195 —43 117

—371 —227 75 85

(21,0)

—371 —227 -—75 85

The boundary can be deduced without examining () at very many points. In
fact, we don’t need to look at Q(21,0), because we know that all edges between
(20,0) and (0,10) must go either upwards or to the left. First we test Q(20,1)
and find it negative (—75); so we move up. Also Q(20,2) is negative (—43), so
we go up again. Then we test Q(20, 3), and find it positive (21); so we move left.
And so on. Only the @ values —75, —43, 21, —131, —35, 93, —51, ... actually
need to be examined, if we’ve set the three-register method up properly.

Algorithm T (Three-register algorithm for conics). Given two integer points
(z,y) and (2',y’), and an integer quadratic form @ as in (168), this algorithm
decides how to digitize a portion of the conic section defined by F(z,y) = 0,
where F(z,y) = Q(z + %, y+ %) It creates |2’ — x| horizontal edges and |y’ — y|
vertical edges, which form a path from (z,y) to (z',y’). We assume that

i) Real-valued points (£,7n) and (£',7') exist such that F(&,n) = F(¢',n') =0.

The curve travels from (£,7) to (¢',n') monotonically in both coordinates.
e=E+5ly=In+3), 2= +3],andy = |0 + 3]

i)
iv) If we traverse the curve from (&, 1) to (¢/,7'), we see F < 0 on our left.
)

111

v) No edge of the integer grid contains two roots of @ (see exercise 183).

T1. [Initialize.] If z = 2/, go to T11; if y = ¢', go to T10. If x < 2’ and y < ¢/,
set Q < Q(z+1,y+1), R + Qu(z+1,y+1)+a, S ¢+ Qy(z+1,y+1)+c, and
gotoT2. If z < 2’ and y > ¢/, set Q + Q(z+1,y), R + Q.(z+1,y) + a,
S — Qy(z+1,y) —c, and go to T3. If z > 2’ and y < ¢/, set Q «
Q(z,y+1), R « Qu(z,y+1) —a, S + Qu(z,y+1) + ¢, and go to T4. If
z >z and y >y, set Q « Q(z,y), R+ Qu(z,y) —a, S <+ Qu(z,y) —c,
and go to T5.

T2. [Right or up.] If Q < 0, do T9; otherwise do T6. Repeat until interrupted.

T3. [Down or right.] If @ < 0, do T7; otherwise do T9. Repeat until interrupted.

7.1.3 BITWISE TRICKS AND TECHNIQUES 179

T4. [Up or left.] If Q < 0, do T6; otherwise do T8. Repeat until interrupted.
T5. [Left or down.] If @ < 0, do T8; otherwise do T7. Repeat until interrupted.
T6. [Move up.] Create the edge (z,y) — (z,y+1), then set y + y+1. Interrupt
to T10 if y = ¢; otherwise set Q < Q + S, R+ R+ b, S+ S + 2c.
T7. [Move down.] Create the edge (z,y) — (z,y—1), then set y + y — 1.
Interrupt to T10 if y = 4'; otherwise set Q + Q—S, R + R—b, S + S—2c.
T8. [Move left.] Create the edge (z,y) — (z—1,y), then set z + = — 1.
Interrupt to T11 if z = z’; otherwise set Q + Q—R, R + R—2a, S < S—b.
T9. [Move right.] Create the edge (z,y) — (z+1,y), then set z + = + 1.
Interrupt to T11 if z = 2’; otherwise set Q + Q+R, R + R+2a, S < S+b.
T10. [Finish horizontally.] While z < 2/, create the edge (z,y) — (z+1,y) and
set + x + 1. While > 2/, create the edge (z,y) (r—1,y) and set
z + x — 1. Terminate the algorithm.
T11. [Finish vertically.] While y < 3/, create the edge (z,y) — (z,y+1) and
set y < y+ 1. While y > ¢/, create the edge (z,y) (z,y—1) and set
y < y — 1. Terminate the algorithm. |

For example, when this algorithm is invoked with (z,y) = (20,0), (z',y') =
(0,10), and Q(x,y) = 422 + 16y? — 4z — 16y — 1595, it will create the edges
(20,0) — (20,1) — (20,2) — (19,2) — (19,3) — (19,4) — (18,4) —
(18,5) — (17,5) — (17,6) — --- — (6,9) — (6,10), then make a beeline
for (0,10). (See (165) and (171).) Exercise 182 explains why it works.
Movement to the left in step T8 is conveniently implemented by setting
H(y) + H(y) ® (1 <€ (Tmax — 7)), using the H vectors of (166) and (167).
Movement to the right is similar, but we set x < x + 1 first. Step T10 could set

H(y) < H(y) & (1 < (Tmax — min(z, 7)) ~ (1 < (Tmax — max(z,')))); (172)

but one move at a time might be just as good, because |z’ — x| is often small.
Movement up or down needs no action, because vertical edges are redundant.

Notice that the algorithm runs somewhat faster in the special case when
b = 0; circles always belong to this case. The even more special case of straight
lines, when a = b = ¢ = 0, is of course faster yet; then we have a simple one-
register algorithm (see exercise 185).

Fig. 18. Pixels change from
white to black and back again,
at the edges of digitized circles.

When many contours are filled in the same image, using H vectors, the
pixel values change between black and white whenever we cross an odd number
of edges. Figure 18 illustrates a tiling of the hyperbolic plane by equilateral
45°-45°-45° triangles, obtained by superimposing the results of several hundred
applications of Algorithm T.

180 COMBINATORIAL SEARCHING 7.1.3

Fig. 19. Squines that define
the outline contour of an ‘S’.

Algorithm T applies only to conic curves. But that’s not really a limitation
in practice, because just about every shape we ever need to draw can be well ap-
proximated by “piecewise conics” called quadratic Bézier splines or squines. For

example, Fig. 19 shows a typical squine curve with 40 points (2q, 21, . - . , 239, 240),
where z490 = z9. The even-numbered points (zq, 22,...,240) lie on the curve;
the others, (z1,z23,...,239), are called “control points,” because they regulate

local bending and flexing. Each section S(zg;, 2241, 22;+2) begins at point z;,
traveling in direction zpjy1 — z2;. It ends at point 23542, traveling in direction
Z2j+2 — %2j+1- Thus if z5; lies on the straight line from 25;_1 to 29541, the squine
passes smoothly through point z3; without changing direction.

Exercise 186 defines S(2a;, 22541, 22j+2) precisely, and exercise 187 explains
how to digitize any squine curve using Algorithm T. The region inside the
digitized edges can then be filled with black pixels.

Incidentally, the task of drawing lines and curves on a bitmap turns out
to be much more difficult than the task of filling a digitized contour, because
we want diagonal strokes to have the same apparent thickness as vertical and
horizontal strokes do. An excellent solution to the line-drawing problem was
found by John D. Hobby, JACM 36 (1989), 209-229.

*Branchless computation. Modern computers tend to slow down when a
program contains conditional branch instructions, because an uncertain flow
of control can interfere with predictive lookahead circuitry. Therefore we've
used MMIX’s conditional-set instructions like CSNZ in programs like (56). Indeed,
four instructions such as ‘ADD z,y,1; SR t,u,2; CSNZ x,q,z; CSNZ v,q,t’ are
probably faster than their three-instruction counterpart

BZ q,@+12; ADD x,y,1; SRv,u,2 (173)

when the actual running time is measured on a highly pipelined machine, even
though the rule-of-thumb cost of (173) is only 3v according to Table 1.3.1-1.

7.1.3

BITWISE TRICKS AND TECHNIQUES 181

Bitwise operations can help diminish the need for costly branching. For
example, if MMIX didn’t have a CSNZ instruction we could write

NEGU m,q; SR m,m,63;
ADD t,y,1; XOR t,t,x; AND t,t,m; XOR x,x,t; (174)
SR t,u,2; XOR t,t,v; AND t,t,m; XOR v,v,t;

here the first line creates the mask m = —[¢ # 0]. On some computers these eleven

branchless instructions would still run faster than the three instructions in (173).
The inner loop of a merge sort algorithm provides an instructive example.
Suppose we want to do the following operations repeatedly:

If z; <y, set z;, < 2,1 <1+ 1, and go to z_done if i = i ax.
Otherwise set z < y;, j < j + 1, and go to y_done if j = jmax-
Then set k < k+ 1 and go to z done if k = kypax-
If we implement them in the “obvious” way, four conditional branches are in-
volved, three of which are active on each path through the loop:

1H CMP t,xi,yj; BNN t,2F Branch if x; > y;.

STO xi,zbase,kk 2k — Tj.

ADD ii,ii,8 i1+ 1.

BZ ii,X_Done To z_done if i = tmax.

LDO xi,xbase,ii Load z; into register xi.

JMP 3F Join the other branch.
2H STO yj,zbase,kk 2k Y-

ADD 3jj,jj,8 j—J3+1.

BZ jj,Y Done To y_done if j = jmax.

LDO yj,ybase,jj Load y; into register yj.
3H ADD Kkk,kk,8 k< k+1.

PBNZ kk,1B Repeat if k # kmax.

JMP Z Done To z_done. |

(Here ii = 8(% — imax); jj = 8(J — Jmax), and kk = 8(k — kmax); the factor of
8 is needed because z;, y;, and z; are octabytes.) Those four branches can be
reduced to just one:

1H CMP t,xi,yj t + sign(z; — y;).
CSN yj,t,xi yj < min(z;,y;).
STO yj,zbase,kk Zk < ¥]-
AND t,t,8 t <+ 8[xi <yj].
ADD ii,ii,t i1+ (2 <yj]
LDO xi,xbase,ii Load z; into register xi.
XOR t,t,8 t«tda.
ADD jj,jj.t J i+ m>y).
LDO yj,ybase,jj Load y; into register yj.
ADD kk,kk,8 k<+Ek+1

AND wu,ii,jj; AND u,u,kk w ¢ ii& jj & kk.

PBN u,1B Repeat if ¢ <imax, J <Jmax, and k <kmax. |
When the loop stops in this version, we can readily decide whether to continue at
z_done, y_done, or z_done. These instructions load both z; and y; from memory
each time, but the redundant value will already be present in the cache.

182 COMBINATORIAL SEARCHING 7.1.3

*More applications of MOR and MXOR. Let’s finish off our study of bitwise
manipulation by taking a look at two operations that are specifically designed for
64-bit work. MMIX’s instructions MOR and MXOR, which essentially carry out matrix
multiplication on 8 X 8 Boolean matrices, turn out to be extremely flexible and
powerful, both by themselves and in combination with other bitwise operations.

If x = (27...21%0)256 is an octabyte and a = (a7 ...a1a0)2 is a single byte,
the instruction MOR t,x,a sets t < arx7 |-+ | a1z | apxo, while MXOR t,x,a sets
t < arx7®---Daizry Dagxro. For example, MOR t,x,2 and MXOR t,x,2 both set
t< x1; MOR t,x,3 sets t <z | zo; and MXOR t,x,3 sets t + x1 D xg.

In general, of course, MOR and MXOR are functions of octabytes. When y =
(y7...y1%0)256 is a general octabyte, the instruction MOR t,x,y produces the
octabyte t whose jth byte ¢; is the result of MOR applied to = and y;.

Suppose © = —1 = #fffffffffFffffff. Then MOR t,x,y computes the
mask ¢ in which byte ¢; is #£f whenever y; # 0, while ¢; is zero when y; = 0. This
simple special case is quite useful, because it accomplishes in just one instruction
what we previously needed seven operations to achieve in situations like (92).

We observed in (66) that two MORs will suffice to reverse the bits of any 64-bit
word, and many other important bit permutations also become easy when MOR
is in a computer’s repertoire. Suppose 7 is a permutation of {0,1,...,7} that
takes 0 +— Om, 1 — 1m, ..., 7 — 7mw. Then the octabyte p = (277 ... 217207)o,
corresponds to a permutation matrix that makes MOR do nice tricks: MOR t,x,p
will permute the bytes of x, setting t; < x;,. Furthermore, MOR u,p,y will
permute the bits of each byte of y, according to the inverse permutation; it sets
uj < (ar...a1a0)2 when y; = (azx ... a1200x)2.

With a little more skullduggery we can also expedite further permutations

such as the perfect shuffle (76), which transforms a given octabyte z = 232z +y =
(231 ...212T0Y31 - - - Y1Yo)2 into the “zippered” octabyte
w = xiy = (T31Y31- - T1Y1T0Y0)2- (175)

With appropriate permutation matrices p, g, and r, the intermediate results

t= ($31$27$30$26$29$25$283324y31y27y30y26929y25928y24 v

TrT3TEL2TEL1T4TOYTYIY6Y2Y5Y1Y4Y0)2, (176)
u = (y27y31yzsy30y25929y24y28$27$31$26$303325332933243328 ce
Y3Y7Y2Y6Y1YsYoYaL3TrTaleT1L5L0Ta)2 (177)

can be computed quickly via the four instructions
MOR t,z,p; MOR t,q,t; MORu,t,r; MOR u,r,u; (178)

see exercise 204. So there’s a mask m for which ‘PUT rM,m; MUX w,t,u’ completes
the perfect shuffle in just six cycles altogether. By contrast, the traditional
method in exercise 53 requires 30 cycles (five §-swaps).

The analogous instruction MXOR is especially useful when binary linear alge-
bra is involved. For example, exercise 1.3.1-37 shows that XOR and MXOR directly
implement addition and multiplication in a finite field of 2* elements, for k < 8.

7.1.3 BITWISE TRICKS AND TECHNIQUES 183

The problem of cyclic redundancy checking provides an instructive example
of another case where MXOR shines. Streams of data are often accompanied by
“CRC bytes” in order to detect common types of transmission errors [see W. W.
Peterson and D. T. Brown, Proc. IRE 49 (1961), 228-235]. One popular method,
used for example in MP3 audio files, is to regard each byte a = (a7...aja0)2
as if it were the polynomial

a(z) = (ar...a1a0)z = arx’ + -+ ayr + ag. (179)
When transmitting n bytes an,_1...a10aq, we then compute the remainder
p= (an—l(x)xs(nfl) + - 4 ay(2)2® + ag(z)) 2 mod p(x), (180)

where p(z) = 216+ 25 + 22 + 1, using polynomial arithmetic mod 2, and append
the coefficients of 8 as a 16-bit redundancy check.

The usual way to compute 3 is to process one byte at a time, according to
classical methods like Algorithm 4.6.1D. The basic idea is to define the partial
result B, = (an_1(2)z8"71"™ 4o+ apiq(2)28 + am(z)) 2! mod p(z) so
that 3, = 0, and then to use the recursion

B = ((Bms1 < 8) & #££00) @ cre_table[(Bms1 > 8) ® am] (181)

to decrease m by 1 until m = 0. Here crc_table[a] is a 16-bit table entry that
holds the remainder of a(z)x'®, modulo p(x) and mod 2, for 0 < a < 256.
[See A. Perez, IEEE Micro 3,3 (June 1983), 40-50.]

But of course we’d prefer to process 64 bits at once instead of 8. The solution
is to find 8 x 8 matrices A and B such that

a(z)z® = (aA)(z) + (aB)(z)z ® (modulo p(z) and 2), (182)

for arbitrary bytes «, considering a to be a 1 x 8 vector of bits. Then we can
pad the given data bytes au,_1 ...ajaq with leading zeros so that n is a multiple
of 8, and use the following efficient reduction method:

Begin with ¢+~ 0, n < n— 8, and ¢ + (Qpi7-.-Qn)256-
While n >0, set u < t- A, v<t-B, n+n—38, (183)
t e (Opgr.. 0n)ase Du® (v>>8) @ (c < 56), and ¢ « v & #££.

Here t - A and t - B denote matrix multiplication via MXOR. The desired CRC
bytes, (tx16+c2®) mod p(x), are then readily obtained from the 64-bit quantity ¢
and the 8-bit quantity c. Exercise 213 contains full details; the total running
time for n bytes comes to only (u+ 10v)n/8 4+ O(1).

The exercises below contain many more instances where MOR and MXOR lead
to substantial economies. New tricks undoubtedly remain to be discovered.

For further reading. The book Hacker’s Delight by Henry S. Warren, Jr.
(Addison—Wesley, 2002) discusses bitwise operations in depth, emphasizing the
great variety of options that are available on real-world computers that are not
as ideal as MMIX.

v

184 COMBINATORIAL SEARCHING 7.1.3

EXERCISES
1. [15] What is the net effect of settingz 2@y, y« y® (z& m), z + z P y?

2. [16] (H.S. Warren, Jr.) Are any of the following relations valid for all integers z
and y? ()z@y<z|y (i) z&y<z|y (i) |lz -y <zy.

3. [M20] Ifz = (Zn-1...2120)2 With z,—1 =1, let M = (Zn—1...%1Z0)2. Thus we
have 0™, 1M 2M 3M =-1,0,1,0,3,2,1,0,7,6, ..., if we let 0 = —1. Prove
that (z ® y)™ < |x —y| <z @y for all z,y > 0.

4. [M16] Let 2 =z, 2 = —z,2° = z+1, and ¥ = = — 1 denote the complement,

the negative, the successor, and the predecessor of an infinite-precision integer . Then
we have £CC = gNN = gSP = pPS = ., What are zCN and zNC?

5. [M21] Prove or disprove the following conjectured laws concerning binary shifts:
a) (z<Kj)Kk=2<K(j+k);
b) (2>)&(y<k)=((z>G+k)&y)<k=(z& (y< (j+k))>j.

6. [M22] Find all integers = and y such that (a) 2> y=y>z; (b) <Ky =y <KL z.

7. [M22] (R. Schroeppel, 1972.) Find a fast way to convert the binary number
x = (...T27170)2 to its negabinary counterpart z = (...z5x1x)_2, and vice versa.
Hint: Only two bitwise operations are needed!

8. [M22] Given a finite set S of nonnegative integers, the “minimal excludant” of S
is defined to be

mex(S) =min{k |k >0and k ¢ S }.

Let x @ S denote the set {z @y |y € S}, and let S @ y denote {x Py | z € S}. Prove
that if z = mex(S) and y = mex(T) then z ®y = mex((S@ y) U (zd T)).

9. [M26] (Nim.) Two people play a game with k piles of sticks, where there are a;
sticks in pile j. If a1 = = ar = 0 when it is a player’s turn to move, that player
loses; otherwise the player reduces one of the piles by any desired amount, throwing
away the removed sticks, and it is the other player’s turn. Prove that the player to
move can force a victory if and only if a1 & @ ar # 0. [Hint: Use exercise 8.]

10. [HM/0] (Nimbers, also known as Conway’s field.) Continuing exercise 8, define
the operation = ® y of “nim multiplication” recursively by the formula

t@y=mex{(z®j)®(i®y)®(i®j)|0<i<z,0<j<y}

Prove that @& and ® define a field over the set of all nonnegative integers. Prove also
that if 0 < z,y < 22" then z ® y < 22", and 22" ® y = 22"y. (In particular, this field
contains subfields of size 22" for all n > 0.) Explain how to compute = ® y efficiently.

11. [M26] (H. W. Lenstra, 1978.) Find a simple way to characterize all pairs of
positive integers (m,n) for which m ® n = mn in Conway’s field.

12. [M26] Devise an algorithm for division of nimbers. Hint: If z < 22"** then we
have z ® (z &® (z > 2")) < 22".

13. [M32] (Second-order nim.) Extend the game of exercise 9 by allowing two kinds
of moves: Either a; is reduced for some j, as before; or a; is reduced and a; is replaced
by an arbitrary nonnegative integer, for some i < j. Prove that the player to move
can now force a victory if and only if the pile sizes satisfy either as # as ® P ax or
a1 Zazs®(2®as)® D ((k—2)®ax). For example, when k = 4 and (a1, a2,as3,a4) =
(7,5,0,5), the only winning move is to (7,5, 6,3).

7.1.3 BITWISE TRICKS AND TECHNIQUES 185

14. [M30] Suppose each node of a complete, infinite binary tree has been labeled with
0 or 1. Such a labeling is conveniently represented as a sequence T = (t, to, t1, too, to1,
t10,t11,to00s - - -), With one bit t, for every binary string «; the root is labeled t, the
left subtree labels are To = (to, too, to1, tooos - - -), and the right subtree labels are T7 =
(t1,t10,t11,%100,---). Any such labeling can be used to transform a 2-adic integer
z = (...T2x1%0)2 into the 2-adic integer y = (...y2y1y0)2 = T'(z) by setting yo = t,
Y1 = tag, Y2 = tagay, €tc., so that T'(z) = 2T,,(|z/2]) + t. (In other words, z defines
an infinite path in the binary tree, and y corresponds to the labels on that path, from
right to left in the bit strings as we proceed from top to bottom of the tree.)
A branching function is the mapping 27 = 2 @ T(z) defined by such a labeling.
For example, if to1 = 1 and all of the other t, are 0, we have 27 = 2 & 4[z mod 4 =2].
a) Prove that every branching function is a permutation of the 2-adic integers.
b) For which integers k is z @ (z < k) a branching function?
c) Let z — 2T be a mapping from 2-adic integers into 2-adic integers. Prove that 27
is a branching function if and only if p(z ® y) = p(zT @ y7) for all 2-adic z and y.
d) Prove that compositions and inverses of branching functions are branching func-
tions. (Thus the set B of all branching functions is a permutation group.)
e) A branching function is balanced if the labels satisfy to = tao ®ta1 for all a. Show
that the set of all balanced branching functions is a subgroup of B.

» 15. [M26] J. H. Quick noticed that ((z+2)®3) —2 = ((z —2) ®3) +2 for all z. Find
all constants a and b such that ((z +a) ®b) — a = ((z — a) ® b) + a is an identity.

16. [M31] A function of z is called animating if it can be written in the form
((..((((x+a1)@b)+a2) ®ba)+)4 am) Dbm

for some integer constants a1, b1, az, b2, ..., am, bm, with m > 0.
a) Prove that every animating function is a branching function (see exercise 14).
b) Furthermore, prove that it is balanced if and only if b1 ® b2 & @ by, = 0. Hint:
What binary tree labeling corresponds to the animating function ((z@®c) —1)@c?
¢) Let [#] = 2@ (z—1) = 2°®+1 _1, Show that every balanced animating function
can be written in the form

zD(zPp]|®|lzDp] P D lzdp], pr<p2 < <pi,

for some integers {p1,p2,...,pi}, where [> 0, and this representation is unique.
d) Conversely, show that every such expression defines a balanced animating function.

17. [HM36] The results of exercise 16 make it pos-
sible to decide whether or not any two given ani-
mating functions are equal. Is there an algorithm
that decides whether any given expression is iden-
tically zero, when that expression is constructed
from a finite number of integer variables and con-
stants using only the binary operations + and &7
What if we also allow &7

18. [M25] The curious pixel pattern shown here
has (z?y > 11) & 1 in row x and column y, for
1 < z,y < 256. Is there any simple way to explain
some of its major characteristics mathematically?

186 COMBINATORIAL SEARCHING 7.1.3

» 19. [M37] (Paley’s rearrangement theorem.) Given three vectors A = (ao,...,a2n—1),
B = (bo,...,ban_1), and C = (co,...,con_1) of nonnegative numbers, let
f(AaBaC) = Z ajbkcl.
jOkDI=0

For example, if n = 2 we have f(A, B,C) = agboco +aobici +agbaca + agbscs +aiboct +
aibico + arbacs + + asbsco; in general there are 92n terms, one for each choice of
j and k. Our goal is to prove that f(A,B,C) < f(A*,B*,C"), where A* denotes the
vector A sorted into nonincreasing order: ag > aj > > ayn_q.

a) Prove the result when all elements of A, B, and C are Os and 1s.

b) Show that it is therefore true in general.

c) Similarly, f(A, B,C,D) =Y.\ 010meo Gibecidm < f(A*, B*,C*,D*).

> 20. [21] (Gosper’s hack.) The following seven operations produce a useful function y

of z, when z is a positive integer. Explain what this function is and why it is useful.

Uz & —x; v+ o+ y<—v+ (((vdx)/u)>2).

21. [22] Construct the reverse of Gosper’s hack: Show how to compute z from y.

22. [21] Implement Gosper’s hack efficiently with MMIX code, assuming that z < 264
without using division.

> 23. [27] A sequence of nested parentheses can be represented as a binary number by
putting a 1 in the position of each right parenthesis. For example, ‘(()) ()’ corresponds
in this way to (001101)2, the number 13. Call such a number a parenthesis trace.

a) What are the smallest and largest parenthesis traces that have exactly m 1s?

b) Suppose z is a parenthesis trace and y is the next larger parenthesis trace with
the same number of 1s. Show that y can be computed from z with a short chain
of operations analogous to Gosper’s hack.

¢) Implement your method on MMIX, assuming that vz < 32.

24. [M30] Program 1.3.2P instructed MMIX to produce a table of the first five hundred
prime numbers, using trial division to establish primality. Write an MMIX program that
uses the “sieve of Eratosthenes” (exercise 4.5.4-8) to build a table of all odd primes that
are less than N, packed into octabytes Qo, Q1, ..., @n/128—1 as in (27). Assume that
N < 2%2 and that it’s a multiple of 128. What is the running time when N = 3584?

» 25. [15] Four volumes sit side by side on a bookshelf. Each of them contains exactly
500 pages, printed on 250 sheets of paper 0.1 mm thick; each book also has a front and
back cover whose thicknesses are 1 mm each. A bookworm gnaws its way from page 1
of Volume 1 to page 500 of Volume 4. How far does it travel while doing so?

v

26. [22] Suppose we want random access to a table of 12 million items of 5-bit data.
We could pack 12 such items into one 64-bit word, thereby fitting the table into 8
megabytes of memory. But random access then seems to require division by 12, which
is rather slow; we might therefore prefer to let each item occupy a full byte, thus using
12 megabytes altogether.

Show, however, that there’s a memory-efficient approach that avoids division.

27. [21] In the notation of Eqs. (32)—(43), how would you compute (a) (a10%01%)3?
(b) (@10%11%)37? (c) (200%01°%)2? (d) (0°11%00%)2? (e) (0%°01200%)2? (f) (0%°11911%)y?
28. [16] What does the operation (z+1) & Z produce?

29. [20] (V. R. Pratt.) Express the magic mask ux of (47) in terms of pp1.

v v Vv

7.1.3 BITWISE TRICKS AND TECHNIQUES 187

30. [20] If z = 0, the MMIX instructions (46) will set p < 64 (which is a close enough

approximation to co). What changes to (50) and (51) will produce the same result?

31. [20] A mathematician named Dr. L. I. Presume decided to calculate the ruler

function with a simple loop as follows: “Set p < 0; then while &1 =0,set p+ p+1

and z < > 1.” He reasoned that, when « is a random integer, the average number

of right shifts is the average value of p, which is 1; and the standard deviation is only

V2, so the loop almost always terminates quickly. Criticize his decision.

32. [20] What is the execution time for pz when (52) is programmed for MMIX?

33. [26] (Leiserson, Prokop, and Randall, 1998.) Show that if ‘58 is replaced by ‘49’

in (52), we can use that method to identify both bits of the number y = 27 +2F quickly,

when 64 > j > k > 0. (Altogether (624) = 2016 cases need to be distinguished.)

34. [M23] Let z and y be 2-adic integers. True or false: (a) p(z & y) = max(pz, py);

(b) p(z | y) = min(pz, py); (c) pr = py if and only if r Gy = (z — 1) & (y — 1).

35. [M26] According to Reitwiesner’s theorem, exercise 4.1-34, every integer n has a

unique representation n = nt —n~ such that n* &n~ = (n™ |n)& ((n* |n")>1) =0.

Show that n™ and n~ can be calculated quickly with bitwise operations. Hint: Prove

the identity (z @ 3z) & ((z @ 3z) > 1) = 0.

36. [20] Given z = (zg3...T1Z0)2, suggest efficient ways to calculate the quantities
i) 2% = (22, ... 2P22),, where 2% =2, @ @21 Do for 0 < k < 64;

& _ (&

ii) x Tes . ..x‘%‘mé‘)g, where 2¥ =2, A Az Ao for 0 < k < 64.

37. [16] What changes to (55) and (56) will make A0 come out —1?

38. [17] How long does the leftmost-bit-extraction procedure (57) take when imple-
mented on MMIX?

39. [20] Formula (43) shows how to remove the rightmost run of 1 bits from a given
number z. How would you remove the leftmost run of 1 bits?

40. [21] Prove (58), and find a simple way to decide if Az < Ay, given = and y > 0.
41. [M22] What are the generating functions of the integer sequences (a) pn, (b) An,
and (c) vn?

42. [M21] Ifn=2"+ + 2°7, with e; > > e, > 0, express the sum Y 7 vk
in terms of the exponents ey, ..., é,.

43. [20] How sparse should z be, to make (63) faster than (62) on MMIX?

44. [23] (E. Freed, 1983.) What’s a fast way to evaluate the weighted bit sum Y jz;7
45. [20] (T. Rokicki, 1999.) Explain how to test if z™< y*, without reversing z and .
46. [22] Method (68) uses six operations to interchange two bits z; <> x; of a register.
Show that this interchange can actually be done with only three MMIX instructions.
47. [10] Can the general é-swap (69) also be done with a method like (67)?

48. [M21] How many different §-swaps are possible in an n-bit register? (When n = 4,
a d-swap can transform 1234 into 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412, 4231.)
49. [M30] Let s(n) denote the fewest §-swaps that suffice to reverse an n-bit number.

a) Prove that s(n) > [logs n] when n is odd, s(n) > [log; 3n/2] when n is even.
b) Evaluate s(n) when n=3™,2 3™, (3™ +1)/2, and (3™ —1)/2.
c) What are s(32) and s(64)? Hint: Show that s(5n + 2) < s(n) + 2.

50. [M37] Continuing exercise 49, prove that s(n) = log; n + O(loglogn).

188 COMBINATORIAL SEARCHING 7.1.3

51. [23] Let ¢ be a constant, 0 < ¢ < 2%. Find all sequences of masks (6o, 61, ...,04_1,
s, .. .,él,éo) such that the general permutation scheme (71) takes z — z™, where
the bit permutation 7 is defined by either (a) jm = j @ ¢; or (b) jm = (j + ¢) mod 2°.
[The masks should satisfy 6, C pa,x and 6 C ld,k, SO that (71) corresponds to Fig. 12;
see (48). Notice that reversal, ™ = x| is the special case ¢ = 2¢ — 1 of part (a), while
part (b) corresponds to the cyclic right shift 2™ = (z>> ¢) + (z < (2% — ¢)).]

52. [22] Find hexadecimal constants (00,01,92,03,04,95,@4,@3,@2,@1,%) that cause
(71) to produce the following important 64-bit permutations, based on the binary

(175) that takes (wes...Z33Z32%31...21%0)2 into (Te3Zsi...T33xT1L32%0)2; case (b)
transposes an 8 x 8 matrix of bits; case (c), similarly, transposes a 4 X 16 matrix;
and case (d) arises in connection with “fast Fourier transforms,” see exercise 4.6.4-14.]

53. [M25] The permutations in exercise 52 are said to be “induced by a permutation
of index digits,” because we obtain jm by permuting the binary digits of j. Suppose
Jm = (Ja=1)w - - - 1w Joy)2, Where 9 is a permutation of {0,1,...,d — 1}. Prove that if
@ has t cycles, the 2%-bit permutation z +— 2™ can be obtained with only d — t swaps.
In particular, show that this observation speeds up all four cases of exercise 52.

54. [22] (R. W. Gosper, 1985.) If an m X m bit matrix is stored in the rightmost
m? bits of a register, show that it can be transposed by doing (2¥(m — 1))-swaps for
0 < k < [lgm]. Write out the method in detail when m = 7.

55. [26] Suppose an n X n bit matrix is stored in the rightmost n? bits of an n>-bit reg-
ister. Prove that 18d+ 2 bitwise operations suffice to multiply two such matrices, when
n = 2%; the matrix multiplication can be either Boolean (like MOR) or mod 2 (like MXOR).
56. [24] Suggest a way to transpose a 7 X 9 bit matrix in a 64-bit register.

57. [22] The network P(2%) of Fig. 12 has a total of (2d — 1)2¢7* crossbars. Prove
that any permutation of 2¢ elements can be realized by some setting in which at most
d2971 of them are active.

58. [M32] The first d columns of crossbar modules in the permutation network P(2%)
perform a 1-swap, then a 2-swap, . .., and finally a 2¢"“swap, when the network’s wires
are stretched into horizontal lines as shown here for d = 3. Let

N = 2% These N lines, together with the Nd/2 crossbars, form a

so-called “Omega router” or “inverse butterfly.” The purpose of

this exercise is to study the set Q of all permutations ¢ such that

we can obtain (0p, 1, ..., (N —1)¢) as outputs on the right of an

Omega router when the inputs at the left are (0,1,..., N —1).
a) Prove that Q| = 2¥%/2. (Thus Ig|Q| = Nd/2 ~ $1gN!.)

b) Prove that a permutation ¢ of {0,1,..., N — 1} belongs to Q if and only if
imod 2F = 7 mod 2% and ip>k=7jp>k implies ip=jp

forall0 <4, < Nandall0 <k <d.
¢) Simplify condition (%) to the following, for all 0 < 7,5 < N:

AMio® jo) < p(: @ j) implies 7= j.

NOUBR WO

)

{
)
{

(%)

d) Let T be the set of all permutations 7 of {0,1,...,N — 1} such that p(i ® j) =
p(it®j7) for all 7 and j. (This is the set of branching functions considered in exer-
cise 14, modulo 2¢; so it has 2~ members, oN/2+d=1 of which are the animating
functions modulo 2d.) Prove that ¢ € Q if and only if 7o € Q for all 7 € T

7.1.3 BITWISE TRICKS AND TECHNIQUES 189

e) Suppose ¢ and ¢ are permutations of Q that operate on different elements; that
is, jo # j implies ji = 7, for 0 < j < N. Prove that ¢ € Q.

f) Prove that the permutation Op... (N — 1)¢ is Omega-routable if and only if it is
sorted by Batcher’s bitonic sorting network of order N. (See Section 5.3.4.)

59. [M30] Given 0 < ¢ < b < N = 2% how many Omega-routable permutations
operate only on the interval [a..b]? (Thus we want to count the number of ¢ € Q such
that jp # j implies a < j < b. Exercise 58(a) is the special case a =0, b= N — 1.)
60. [HM28] Given a random permutation of {0,1,...,2n—1}, let pnx be the proba-
bility that there are 2% ways to set the crossbars in the first and last columns of the
permutation network P(2n) when realizing this permutation. In other words, py is the
probability that the associated graph has k cycles (see (75)). What is the generating
function Ek>0 pnkzk? What are the mean and variance of 2%?
61. [46] Is it NP-hard to decide whether a given permutation is realizable with at
least one mask 6; = 0, using the recursive method of Fig. 12 as implemented in (71)?
62. [22] Let N = 2¢. We can obviously represent a permutation 7 of {0,1,...,N—1}
by storing a table of N numbers, d bits each. With this representation we have instant
access to y = xm, given x; but it takes Q(IV) steps to find x = ym~ when y is given.
Show that, with the same amount of memory, we can represent an arbitrary
permutation in such a way that zw and yw~ are both computable in O(d) steps.

63. [19] For what integers w, z, y, and z does the zipper function satisfy (i) ziy =
yiz? (i) (eiy) >z = (@>[2/2)) 1 (y>2/2])7? (i) (wiz)&(yiz) = (w&ky)i(z&2)?
64. [22] Find a “simple” expression for the zipper-of-sums (z + z') { (y + ¥'), as a
function of z =z fyand 2’ =2'1y'.
65. [M16] The binary polynomial u(z) = uo + wiz + + Up_1z™t (mod 2) can be
represented by the integer u = (un—1...u1uo)2. If u(z) and v(z) correspond to integers
u and v in this way, what polynomial corresponds to u {v?
66. [M26] Suppose the polynomial u(z) has been represented as an n-bit integer u as
in exercise 65, and let v = u @ (u K 0) @ (u <K 20) ® (u K 35) ® for some integer 0.

a) What’s a simple way to describe the polynomial v(z)?

b) Suppose n is large, and the bits of u have been packed into 64-bit words. How

would you compute v when § = 1, using bitwise operations in 64-bit registers?

c¢) Consider the same question as (b), but when § = 64.

d) Consider the same question as (b), but when § = 3.

e) Consider the same question as (b), but when § = 67.
67. [M31] If u(z) is a polynomial of degree < n, represented as in exercise 65, discuss
the computation of v(z) = u(z)? mod (z™ + 2™ + 1), when 0 < m < n and both m
and n are odd. Hint: This problem has an interesting connection with perfect shuffling.
68. [20] What three MMIX instructions implement the §-shift operation, (79)?

69. [25] Prove that method (80) always extracts the proper bits when the masks 6
have been set up properly: We never clobber any of the crucial bits y;.

70. [31] (Guy L. Steele Jr., 1994.) What’s a good way to compute the masks 6o, 61,
..., B4_1 that are needed in the general compression procedure (80), given x # 07
71. [17] Explain how to reverse the procedure of (80), going from the compact value
Y= (Yr—1---Y1Y0)2 to a number z = (263 ...2120)2 that has z;, = y; for 0 < i < 7.
72. [25] (Y. Hilewitz and R. B. Lee.) Prove that the gather-flip operation (81') is
Omega-routable in the sense of exercise 58.

v

v

v

190 COMBINATORIAL SEARCHING 7.1.3

73. [22] Prove that d well-chosen steps of (a) the sheep-and-goats operation (81) or
(b) the gather-flip operation (81') will implement any desired 2%-bit permutation.

74. [22] Given counts (co,c1,...,Coa_y) for the Chung—Wong procedure, explain why
an appropriate cyclic 1-shift can always produce new counts (cg, cf, ..., ¢) for which
> chy =Y 54y, thus allowing the recursion to proceed.

!
2d 1

75. [32] The method of Chung and Wong replicates bit [of a register exactly c;
times, but it produces results in scrambled order. For example, the case (co,...,c7) =
(1,2,0,2,0,2,0,1) illustrated in the text produces (z7T3z1T5T5T3T1T0)2. In some
applications this can be a disadvantage; we might prefer to have the bits retain their
original order, namely (z7T5%523T3T121%0)2 in that example.

Prove that the permutation network P(2?) of Fig. 12 can be modified to achieve
this goal, given any sequence of counts (co,ci,...,¢a_q), if we replace the d 241
crossbar modules in the right-hand half by general 2 x 2 mapping modules. (A crossbar
module with inputs (a,b) produces either (a,b) or (b,a) as output; a mapping module
can also produce (a,a) or (b,b).)

76. [47] A mapping network is analogous to a sorting network or a permutation
network, but it uses 2 X 2 mapping modules instead of comparators or crossbars, and it
is supposed to be able to output all n™ possible mappings of its n inputs. Exercise 75,
in conjunction with Fig. 12, shows that a mapping network for n = 2% exists with only
4d—2 levels of delay, and with n/2 modules on each level; furthermore, this construction
needs general 2 X 2 mapping modules (instead of simple crossbars) in only d of those
levels.

To within O(n), what is the smallest number G(n) of modules that are sufficient
to implement a general n-element mapping network?

77. [26] (R. W. Floyd and V. R. Pratt.) Design an algorithm that tests whether
or not a given standard n-network is a sorting network, as defined in the exercises
of Section 5.3.4. When the given network has r comparator modules, your algorithm
should use O(r) bitwise operations on words of length 2.

78. [M27] (Testing disjoininess.) Suppose the binary numbers z1, T2, ..., Tm each
represent sets in a universe of n — k elements, so that each z; is less than on—k J H.
Quick (a student) decided to test whether the sets are disjoint by testing the condition

z1 | z2 | | Tm = (z1+ 22 + + %) mod 2",

Prove or disprove: Quick’s test is valid if and only if £ > 1g(m — 1).

79. [20] If z # 0 and = C x, what is an easy way to determine the largest integer
x, < = such that z, C x? (Thus (z,)’ = (z'), = =, in connection with (84).)

80. [20] Suggest a fast way to find all maximal proper subsets of a set. More precisely,
given x with vy = m, we want to find all z C x such that vz = m — 1.

81. [21] Find aformula for “scattered difference,” to go with the “scattered sum” (86).
82. [21] Is it easy to shift a scattered accumulator to the left by 1, for example to
change (y274T3Yy1T2Y0T170)2 t0 (Y1T4T3YoT20T130)27

83. [33] Continuing exercise 82, find a way to shift a scattered 2?-bit accumulator to
the right by 1, given z and x, in O(d) steps.

84. [25] Given n-bit numbers z = (2p—1...2120)2 and x = (Xn—1-.-X1Xo0)2, explain
how to calculate the “stretched” quantities z «— X = (Z(n—1)—x - - - Z1—xZ0—x)2 and

7.1.3 BITWISE TRICKS AND TECHNIQUES 191

zZ—7X= (Z(n—l)—rx . 21_,XZ0_,X)2, where
j~—x=max{k | k <jand xx = 1}, J—x=min{k | k> j and xi = 1};

we let zj_ =0if xp =0for 0 <k < j,and zj_, =01if xp, =0 forn > k > j. For
example, if n = 11 and x = (01101110010), then z ~— x = (202028262625242121210)2
and z — x = (0zo2z82826252424242121)2.

85. [22] (K. D. Tocher, 1954.) Imagine that you have a vintage 1950s computer
with a drum memory for storing data, and that you need to do some computations
with a 32 x 32 x 32 array al, j, k], whose subscripts are 5-bit integers in the range
0 <,j,k < 32. Unfortunately your machine has only a very small high-speed memory:
You can access only 128 consecutive elements of the array in fast memory at any time.
Since your application usually moves from a[i, 5, k] to a neighboring position a[i’, j', k'],
where |i —i'|+|j — j'| + |k — k'| = 1, you have decided to allocate the array so that, if
stored in drum location (ks4jaiaksjsizkzjzi2k1j1i1kojoio)2. By interleaving the bits in
this way, a small change to 7, j, or k£ will cause only a small change in the address.
Discuss the implementation of this addressing function: (a) How does it change
when 7, j, or k changes by £1? (b) How would you handle a random access to a[z, j, k],
given i, j, and k? (c) How would you detect a “page fault” (namely, the condition that
a new segment of 128 elements must be swapped into fast memory from the drum)?

86. [M27] An array of 2P x 27 x 2" elements is to be allocated by putting a[z, 7, k]
into a location whose bits are the p + g + 7 bits of (4, , k), permuted in some fashion.
Furthermore, this array is to be stored in an external memory using pages of size 2°.
(Exercise 85 considers the case p=q =1 =5 and s = 7.) What allocation strategy
of this kind minimizes the number of times that a[i, 7, k] is on a different page from
ali’,j', k'], summed over all 4, j, k, i, j', and k' such that |i —3'|+|j —j'| + |k —k'| = 17
87. [20] Suppose each byte of a 64-bit word z contains an ASCII code that represents
either a letter, a digit, or a space. What three bitwise operations will convert all the
lowercase letters to uppercase?

88. [20] Given z = (z7...70)256 and y = (y7...Yo)256, compute z = (z7...20)256,
where z; = (z; — y;) mod 256 for 0 < j < 8. (See the addition operation in (87).)

89. [23] Givenz = (z31...%1%0)s and y = (Y31 .-.Y1Y0)a, compute z = (231 .. .2120)4,
where z; = |z;/y;| for 0 < j < 32, assuming that no y; is zero.

90. [20] The bytewise averaging rule (88) always rounds downward when z; + y; is
odd. Make it less biased by rounding to the nearest odd integer in such cases.

91. [26] (Alpha channels.) Recipe (88) is a good way to compute bytewise averages,
but applications to computer graphics often require a more general blending of 8-bit
values. Given three octabytes © = (z7...%0)256, Y = (Y7 ---Yo)2s6, @ = (a7 ...a0)256,
show that bitwise operations allow us to compute z = (27 ... z0)256, Where each byte z;
is a good approximation to ((255—aj)z;+a;y;)/255, without doing any multiplication.
Implement your method with MMIX instructions.

92. [21] What happens if the second line of (88) is changed to ‘z « (z | y) — 2’7
93. [18] What basic formula for subtraction is analogous to formula (89) for addition?

94. [21] Let x = (z7...2120)256 and t = (¢7...t1t0)256 in (90). Can t; be nonzero
when z; is nonzero? Can t; be zero when z; is zero?

95. [22] What's a bitwise way to tell if all bytes of = (27...2120)256 are distinct?

192 COMBINATORIAL SEARCHING 7.1.3

96. [21] Explain (93), and find a similar formula that sets test flags t; < 128[z; < y;].

97. [23] Leslie Lamport’s paper in 1975 presented the following “problem taken from
an actual compiler optimization algorithm”: Given octabytes z = (z7...20)256 and y =
(y7 - -yo)2s6, compute t = (t7...t0)256 and z = (27 ...20)256 so that ¢; # 0 if and only
if 2 #0, z; # %, and z; # y;; and z; = (2; = 07 y;: (25 # % Awj #y;7 %1 x5)).
98. [20] Given z = (x7...20)256 and y = (yr...Yo)256, compute z = (27...20)256
and w = (w7 ... wo)256, where z; = max(z;,y;) and w; = min(z;,y;) for 0 < j < 8.

v

99. [28] Find hexadecimal constants a, b, ¢, d, e such that the six bitwise operations
y<az@a, t« ((y&bd)+c)ly)dd&e
will compute the flags t = (f7 ... f1f0)256 <7 from any bytes z = (z7 ... 2T1%0)256, Where

fo=[zo="V], fi=[z1# %], fa=[22<'N’], f3=[23>72°], fa=[z42> 2],
fs=lzsc{°0°,°17,...,°9}], fos =[x6<168], fr =[zre{?<,'=",7> '2}].

100. [25] Suppose z = (z15...71%0)16 and y = (y15...Y1Yo)16 are binary-coded dec-
imal numbers, where 0 < z;,y; < 10 for each j. Explain how to compute their sum
u = (u15 ... u1ug)16 and difference v = (v1s ...v1v0)16, where 0 < uj,v; < 10 and

(u15 e u1u0)10 = ((.’E15 . $1$0)10 —|— (y15 e ylyO)IO) mod 10167

(’1)15 e ’U1’Uo)10 = ((9315 P (Blmo)lo — (y15 e ylyo)lo) mod 10167
without bothering to do any radix conversion.

» 101. [22] Two octabytes z and y contain amounts of time, represented in five fields
that respectively signify days (3 bytes), hours (1 byte), minutes (1 byte), seconds
(1 byte), and milliseconds (2 bytes). Can you add and subtract them quickly, without
converting from this mixed-radix representation to binary and back again?

102. [25] Discuss routines for the addition and subtraction of polynomials modulo 5,
when (a) 16 4-bit coefficients or (b) 21 3-bit coefficients are packed into a 64-bit word.

> 103. [22] Sometimes it’s convenient to represent small numbers in unary notation, so
that 0, 1, 2, 3, ..., k appear respectively as (0)2, (1)z, (11)2, (111)2, ..., 2¥ — 1 inside
the computer. Then max and min are easily implemented as | and &.
Suppose the bytes of x = (z7...20)256 are such unary numbers, while the bytes
of y = (yr...Y0)256 are all either 0 or 1. Explain how to “add” y to x or “subtract” y
from z, giving v = (u7...uo)256 and v = (v7...v0)256 Where

uj = 2min(8,lg(zj+1)+’yj) 1 and v; = zmax(O,Ig(zj+1)—yj) 1.

104. [22] Use bitwise operations to check the validity of a date represented in “year-
month-day” fields (y,m,d) as in (22). You should compute a value ¢ that is zero if and
only if 1900 < y < 2100, 1 < m < 12, and 1 < d < maz_day(m), where month m has
at most maz_day(m) days. Can it be done in fewer than 20 operations?

105. [30] Given = = (z7...%0)256 and y = (y7...Yo)256, discuss bitwise operations
that will sort the bytes into order, so that xo < yo < < z7 < y7 afterwards.

106. [27] Explain the Fredman—Willard procedure (95). Also show that a simple
modification of their method will compute 2*® without doing any left shifts.

» 107. [22] Implement Algorithm B on MMIX when d = 4, and compare it with (56).
108. [26] Adapt Algorithm B to cases where n does not have the form d 2¢.

7.1.3 BITWISE TRICKS AND TECHNIQUES 193

109. [20] Evaluate pzx for n-bit numbers z in O(loglogn) broadword steps.

110. [30] Suppose n = 22" and 0 < = < n. Show how to compute 1 < z in O(e)
broadword steps, using only shift commands that shift by a constant amount. (Together
with Algorithm B we can therefore extract the most significant bit of an n-bit number
in O(loglogn) such steps.)

111. [23] Explain the 01" pattern recognizer, (98).
112. [46] Can all occurrences of the pattern 170 be identified in O(1) broadword steps?

113. [23] A strong broadword chain is a broadword chain of a specified width n that
is also a 2-adic chain, for all n-bit choices of zo. For example, the 2-bit broadword
chain (zo,z1) with 1 = 2o + 1 is not strong because zo = (11)2 makes z1 = (00)2.
But (zo,1,...,%4) is a strong broadword chain that computes (zo + 1) mod 4 for all
O0<zo<difwesetzy1 =woP1l,x2=20& 1, 23 =22 1, and x4 = 1 D x3.

Given a broadword chain (zo, z1, . . . , #r) of width n, construct a strong broadword
chain (zg,z1,...,z.,) of the same width, such that r' = O(r) and (zo,z1,...,z,) is a
subsequence of (zg,z1,..., 7).

114. [16] Suppose (zo,2Z1,...,Zr) is a strong broadword chain of width n that com-
putes the value f(z) = z, whenever an n-bit number z = zo is given. Construct a
broadword chain (Xo, X1, ..., X,) of width mn that computes X, = (f(&1) ... f(&m))2n
for any given mn-bit value Xo = (£1...&m)2n, where 0 < &1,...,&m < 27.

115. [24] Given a 2-adic integer © = (...z22120)2, we might want to compute y =
(...y2y190)2 = f(x) from x by zeroing out all blocks of consecutive 1s that (a) are
not immediately followed by two 0s; or (b) are followed by an odd number of Os
before the next block of 1s begins; or (c) contain an odd number of 1s. For exam-
ple, if z is (...01110111001101000110); then y is (a) (...00000111000001000110),;
(b) (...00000111000000000110)2; (c) (...00000000001100000110)3. (Infinitely many

Os are assumed to appear at the right of . Thus, in case (a) we have
Yi =2 A ((Tj—1ATj—2) V (T -1ATj—2ATj—3) V (T -1AT;—2ATj—sATj—a) V)

for all j, where z; = 0 for £ < 0.) Find 2-adic chains for y in each case.

116. [HM30] Suppose x = (...z2w1%0)2 and y = (...y2y1y0)2 = f(z), where y is
computable by a 2-adic chain having no shift operations. Let L be the set of all binary
strings such that y; = [z; ...z1z0 € L], and assume that all constants used in the chain
are rational 2-adic numbers. Prove that L is a regular language. What languages L
correspond to the functions in exercise 115(a) and 115(b)?

117. [HM/6] Continuing exercise 116, is there any simple way to characterize the reg-
ular languages L that arise in shift-free 2-adic chains? (The language L = 0*(10*10*)*
does not seem to correspond to any such chain.)

118. [30] According to Lemma A, we cannot compute the function z > 1 for all n-
bit numbers x by using only additions, subtractions, and bitwise Boolean operations
(no shifts or branches). Show, however, that O(n) such operations are necessary and
sufficient if we include also the “monus” operator y — z in our repertoire.

119. [20] Evaluate the function fpy(x) in (102) with four broadword steps.

120. [M25] There are 2"2"" functions that take n-bit numbers (z1,...,2n) into an
n-bit number f(z1,...,Zm). How many of them can be implemented with addition,
subtraction, multiplication, and nonshift bitwise Boolean operations (modulo 2™)?

194 COMBINATORIAL SEARCHING 7.1.3

121. [M25] By exercise 3.1-6, a function from [0..2") into itself is eventually periodic.
a) Prove that if f is any n-bit broadword function that can be implemented without
shift instructions, the lengths of its periods are always powers of 2.
b) However, for every p between 1 and n, there’s an n-bit broadword chain of length 3
that has a period of length p.

122. [M22] Complete the proof of Lemma B.

123. [M23] Let a, be the constant 1+ 27 4+ 229 + 4+ 20017 = (29° _ 1)/(27 — 1).
Using (104), show that there are infinitely many g such that the operation of multiplying
by ag, modulo 29%, requires Q(log ¢) steps in any n-bit broadword chain with n > ¢2.

124. [M38] Complete the proof of Theorem R’ by defining an n-bit broadword chain
(zo,z1,...,2f) and sets (Uo, Uy, ..., Uy) such that, for 0 < ¢t < f, all inputs z € U; lead
to an essentially similar state Q(z,t), in the following sense: (i) The current instruction
in Q(z,t) does not depend on z. (ii) If register r; has a known value in Q(z, t), it holds
z; for some definite index j' < ¢. (iii) If memory location M|z] has been changed, it
holds z,~ for some definite index 2" < t. (The values of j' and 2" depend on j, z,
and t, but not on z.) Furthermore |U;| > n/22'~1, and the program cannot guarantee
that 71 = pz when ¢t < f. Hint: Lemma B implies that a limited number of shift
amounts and memory addresses need to be considered when ¢ is small.

125. [M33] Prove Theorem P'. Hint: Lemma B remains true if we replace ‘= 0’ by
‘= s’ in (103), for any values as.

126. [M46] Does the operation of extracting the most significant bit, 222 require
Q(loglogn) steps in an n-bit basic RAM? (See exercise 110.)

127. [HM40] Prove that at least Q(logn/loglogn) broadword steps are needed to
compute the parity function, (vz) mod 2, using the theory of circuit complexity. [Hint:
Every boardword operation is in complexity class ACy.]

128. [M46] Can (vz) mod 2 be computed in O(logn/loglogn) broadword steps?
129. [M46] Does sideways addition require ©(logn) broadword steps?

130. [M46] Is there an n-bit constant a such that the function (a<<x) mod 2™ requires
Q(logn) n-bit broadword steps?

131. [23] Write an MMIX program for Algorithm R when the graph is represented by
arc lists. Vertex nodes have at least two fields, called LINK and ARCS, and arc nodes have
TIP and NEXT fields, as explained in Section 7. Initially all LINK fields are zero, except
in the given set of vertices (), which is represented as a circular list. Your program
should change that circular list so that it represents the set R of all reachable vertices.

132. [M27] A clique in a graph is a set of mutually adjacent vertices; a clique is
mazximal if it’s not contained in any other. The purpose of this exercise is to discuss
an algorithm due to J. K. M. Moody and J. Hollis, which provides a convenient way
to find every maximal clique of a not-too-large graph, using bitwise operations.
Suppose G is a graph with n vertices V' = {0,1,...,n — 1}. Let p, = > {2* |
u— v or u = v} be row v of G’s reflexive adjacency matrix, and let §, = > {2* |
u # v} = 2" — 1 — 2. Every subset U C V is representable as an n-bit integer
o(U) =3, cp 2" for example, §, = o(V \ v). We also define the bitwise intersection
T(U) = 0<§f: (u € U? py: 6y).

Su<ln

For example, if n =5 we have 7({0,2}) = po & 61 & p2 & 5 & 4.

7.1.3 BITWISE TRICKS AND TECHNIQUES 195

a) Prove that U is a clique if and only if 7(U) = o(U).
b) Show that if 7(U) = o(T') then T is a clique.
¢) For 1 < k < n, consider the 2* bitwise intersections

ckz{ & (u€U? pu: 6a) Ug{o,l,...7k—1}}7

0<u<k

and let C’,j be the maximal elements of Ck. Prove that U is a maximal clique if
and only if o(U) € C;f.
d) Explain how to compute C; from G}t |, starting with Cf = {2™ — 1}.

» 133. [20] Given a graph G, how can the algorithm of exercise 132 be used to find
(a) all maximal independent sets of vertices? (b) all minimal vertex covers (sets that
hit every edge)?

134. [15] Nine classes of mappings for ternary values appear in (119), (123), and (124).
To which class does the representation (128) belong, if a =0, b =%, ¢ =17

135. [22] Lukasiewicz included a few operations besides (127) in his three-valued logic:
—z (negation) interchanges 0 with 1 but leaves * unchanged; oz (possibility) is defined
as -z = x; ox (necessity) is defined as —¢—z; and z < y (equivalence) is defined as
(z=y) A (y=-z). Explain how to perform these operations using representation (128).
136. [29] Suggest two-bit encodings for binary operations on the set {a,b, c} that are
defined by the following “multiplication tables”:

abec acb aba
(a) <bcc>; (b) <cba>; (c) <aac>-
ccece bac abc

137. [21] Show that the operation in exercise 136(c) is simpler with packed vectors
like (131) than with the unpacked form (130).
138. [2/]

139. [25] If = and y are signed bits 0, +1, or —1, what 2-bit encoding is good for
calculating their sum (z122)3 = + y, where z; and 2 are also required to be signed
bits? (This is a “half adder” for balanced ternary numbers.)

Find an example of three-state-to-two-bit encoding where class V, is best.

140. [27] Design an economical full adder for balanced ternary numbers: Show how
to compute signed bits v and v such that 3u+v = x+y+ 2z when z,y,z € {0,+1,—1}.

> 141. [30] The Ulam numbers (Ui,Us,...) = (1,2,3,4,6,8,11,13,16,18,26,...) are
defined for n > 3 by letting U, be the smallest integer > U,_; that has a unique
representation U, = U; + Uy for 0 < j < k < n. Show that a million Ulam numbers
can be computed rapidly with the help of bitwise techniques.

> 142. [38] A subcube such as ¥10x1x01 can be represented by asterisk codes 10010100
and bit codes 01001001, as in (85); but many other encodings are also possible. What
representation scheme for subcubes works best, for finding prime implicants by the
consensus-based algorithm of exercise 7.1.1-317

143. [20] Let z be a 64-bit number that represents an 8 x 8 chessboard, with a 1 bit
in every position where a knight is present. Find a formula for the 64-bit number f(z)
that has a 1 in every position reachable in one move by a knight of z. For example,
the white knights at the start of a game correspond to = = #42; then f(z) = #a51800.

144. [16] What node is the sibling of node j in a sideways heap? (See (134).)
145. [17] Interpret (137) when h is less than the height of j.

196 COMBINATORIAL SEARCHING 7.1.3

> 146. [M20] Prove Eq. (138), which relates the p and A functions.
> 147. [M20] What values of mv, Sv, av, and 75 occur in Algorithm V when the forest is

a) the empty digraph with vertices {v1,...,v,} and no arcs?

b) the oriented path v, — —va—>v17
148. [M21] When preprocessing for Algorithm V, is it possible to have fzs —"
Bys —* Bra — Byi1 —* Br1 in S when 23 — 22 — 21— A and y2 —y1 — A in
the forest? (If so, two different trees are “entangled” in S.)

> 149. [23] Design a preprocessing procedure for Algorithm V.

» 150. [25] Given an array of elements A4, ..., A,, the range minimum query problem

v

is to determine k(,j) such that Ay(; jy = min(A;,..., A;) for any given indices i and j
with 1 < i < j < n. Prove that Algorithm V will solve this problem, after O(n) steps of
preprocessing on the array A have prepared the necessary tables (7,8, o, 7). Hint: Con-
sider the binary search tree constructed from the sequence of keys (p(1),p(2),...,p(n)),
where p is a permutation of {1,2,...,n} such that A1) < Apy < < Apny-

151. [22] Conversely, show that any algorithm for range minimum queries can be used
to find nearest common ancestors, with essentially the same efficiency.

152. [M21] Prove that Algorithm V is correct.

153. [M20] The pointers in a navigation pile like (144) can be packed into a binary
string such as

0(1 0|0|1 0 0|0|0 O{1|0 1 0 O|0|0 O{O|0OO0OO

2 4 6 8 10| 12 (14 16 18| 20 [22 24

At what bit position (from the left) does the pointer for node j end?

154. [20] The gray lines in Fig. 14 show how each pentagon is composed of ten
triangles. What decomposition of the hyperbolic plane is defined by those gray lines
alone, without the black pentagon edges?

155. [M21] Prove that (z¢) mod 1 = (a0);/4 when « is the negaFibonacci code for z.

156. [21] Design algorithms (a) to convert a given integer z to its negaFibonacci
code «, and (b) to convert a given negaFibonacci code a to z = N(a).

157. [M21] Explain the recursion (148) for negaFibonacci predecessor and successor.

158. [M26] Let @ = a,...a1 be the binary code for F(a0) = anFry1 + + arF
in the standard Fibonacci number system (146). Develop methods analogous to (148)
and (149) for incrementing and decrementing such codewords.

159. [M34] Exercise 7 shows that it’s easy to convert between the negabinary and
binary number systems. Discuss conversion between negaFibonacci codewords and the
ordinary Fibonacci codes in exercise 158.

160. [M29] Prove that (150) and (151) yield consistent code labels for the pentagrid.

161. [20] The cells of a chessboard can be colored black and white, so that neighboring
cells have different colors. Does the pentagrid also have this property?

162. [HM37] Explain how to draw the pentagrid, Fig. 14. What circles are present?

163. [HM/1] Devise a way to navigate through the triangles in the tiling of Fig. 18.

164. [23] The original definition of custerization in 1957 was not (157) but
CuSter’(X) =X & N(XNW & XN & XNE & Xw & XE & XSW & XS & XSE).

Why is (157) preferable?

7.1.3 BITWISE TRICKS AND TECHNIQUES 197

165. [21] (R. A. Kirsch.) Discuss the computation of the 3 x 3 cellular automaton with
X* = custer(XW) = ~ XD & (X | xP | X P | xP).

166. [M23] Let f(M,N) be the maximum number of black pixels in an M x N
bitmap X for which X = custer(X). Prove that f(M,N)=2MN + O(M + N).

167. [24] (Life.) If the bitmap X represents an array of cells that are either dead (0)
or alive (1), the Boolean function

f(CENW, Y ~,ZESE) = [2< mNW+mN+mNE+mW+%m+mE+$SW+mS+$SE <4]

can lead to astonishing life histories when it governs a cellular automaton as in (158).

a) Find a way to evaluate f with a Boolean chain of 26 steps or less.

b) Let XJ(-t) denote row j of X at time ¢. Show that XJ(-HI) can be evaluated in
at most 23 broadword steps, as a function of the three rows Xj(t_)l, th), and
o

168. [23] To keep an image finite, we might insist that a 3 x 3 cellular automaton
treats a M x N bitmap as a torus, wrapping around seamlessly between top and bottom
and between left and right. The task of simulating its actions efficiently with bitwise
operations is somewhat tricky: We want to minimize references to memory, yet each
new pixel value depends on old values that lie on all sides. Furthermore the shifting of
bits between neighboring words tends to be awkward, taxing the capacity of a register.
Show that such difficulties can be surmounted by maintaining an array of n-bit
words Aj for0 < j < Mand0< k < N' =[N/(n—2)]. If j # M and k # 0, word Aj,
should contain the pixels of row j and columns (k — 1)(n — 2) through k(n — 2) + 1,
inclusive; the other words Ay and Ajo provide auxiliary buffer space. (Notice that
some bits of the raster appear twice.)
169. [22] Continuing the previous two exercises, what happens to the Cheshire cat of
Fig. 17(a) when it is subjected to the vicissitudes of Life, in a 26 x 31 torus?
170. [21] What result does the Guo—Hall thinning automaton produce when given a
solid black rectangle of M rows and N columns? How long does it take?
171. [24] Find a Boolean chain of length < 25 to evaluate the local thinning function
9(Znw, Tny Tre, Tw, Tr, Tsw, Ts, Tse) of (159), with or without the extra cases in (160).
172. [M29] Prove or disprove: If a pattern contains three black pixels that are king-
neighbors of each other, the Guo—Hall procedure extended by (160) will reduce it,
unless none of those pixels can be removed without destroying the connectivity.
173. [M30] Raster images often need to be cleaned up if they contain noisy data. For
example, accidental specks of black or white may well spoil the results when a thinning
algorithm is used for optical character recognition.
Say that a bitmap X is closed if every white pixel is part of a 2 X 2 square of
white pixels, and open if every black pixel is part of a 2 X 2 square of black pixels. Let

xP = &{Y |Y D X and Y is closed}; xt = [{Y Y C X and Y is open}.
A bitmap is called clean if it equals XPL for some X. We might, for example, have
X=gH~ x"=:; x""=»M1.
In general XP is “darker” than X, while X% is “lighter”: XP D X D XT.

a) Prove that (XP¥)PL = XPL. Hint: X CY implies X? CY? and X* C Y~.
b) Show that XP can be computed with one step of a 3 x 3 cellular automaton.

198 COMBINATORIAL SEARCHING 7.1.3

174. [M46] (M. Minsky and S. Papert.) Is there a three-dimensional shrinking algo-
rithm that preserves connectivity, analogous to (161)?

175. [15] How many rookwise connected black components does the Cheshire cat have?

176. [M24] Let G be the graph whose vertices are the black pixels of a given bitmap X,
with w — v when u and v are a king move apart. Let G’ be the corresponding graph
after the shrinking transformation (161) has been applied. The purpose of this exercise
is to show that the number of connected components of G’ is the number of components
of G minus the number of isolated vertices of G.

Let Ny 5y = {(3,4), (i—1,5), (i—1,j+1), (i,5+1)} be pixel (4,5) together with its
north and/or east neighbors. For each v € G let S(v) = {v' € G' | v' € N, }.

a) Prove that S(v) is empty if and only if v is isolated in G.

) f u—w in G, v’ € S(u), and v’ € S(v), prove that v'—" v’ in G'.
) For each v' € G' let S'(v') = {v e G| v € N,}. Is §'(v') always nonempty?
)
)

=3

=" e

Ifu'—" in G, u€ S (u), and v € §'(v'), prove that u—" v in G.
Hence there’s a one-to-one correspondence between the nontrivial components
of G and the components of G’.

@

177. [M22] Continuing exercise 176, prove an analogous result for the white pixels.

178. [20] If X isan M x N bitmap,
let X* be the M x (2N + 1) bitmap
X (X | (X «1)). Show that the
kingwise connected components of
X™ are also rookwise connected, and
that bitmap X™* has the same “sur-
roundedness tree” (162) as X.

» 179. [34] Design an algorithm that constructs the surroundedness tree of a given
M x N bitmap, scanning the image one row at a time as discussed in the text. (See
(162) and (163).)

» 180. [M2/] Digitize the hyperbola y? = z? 4+ 13 by hand, for 0 < y < 7.

181. [HM20] Explain how to subdivide a general conic (168) with rational coefficients
into monotonic parts so that Algorithm T applies.
182. [M31] Why does the three-register method (Algorithm T) digitize correctly?

» 183. [M29] (G. Rote.) Explain why Algorithm T might fail if condition (v) is false.

> 184. [M22] Find a quadratic form Q'(z,y) so that, when Algorithm T is applied to
(z',y"), (z,y), and Q’, it produces exactly the same edges as it does from (z,), (z', '),
and @, but in the reverse order.

> 185. [22] Design an algorithm that properly digitizes a straight line from (&,7) to
(&',n"), when £, n, €, and 1’ are rational numbers, by simplifying Algorithm T.

186. [HM22] Given three complex numbers (2o, 21, 22), consider the curve traced out by
B(t) = (1—1t)%20 +2(1 —t)tz1 + 1222, for0<t < 1.

a) What is the approximate behavior of B(t) when ¢ is near 0 or 1?7

b) Let S(zo,21,22) = {B(t) | 0 <t < 1}. Prove that all points of S(zo, 21, 22) lie
on or inside the triangle whose vertices are zo, 21, and z2.

c¢) True or false? S(w + (zo,w + (2z1,w + C22) = w + {S(20, 21, 22)-

d) Prove that S(zo,z1,22) is part of a straight line if and only if 2o, 21, and 22 are
collinear; otherwise it is part of a parabola.

7.1.3 BITWISE TRICKS AND TECHNIQUES 199

e) Prove that if 0 < 0 < 1, we have the recurrence
S(Zo, Z1, 22) = S(Zo, (1—0)20 —|— 021, B(G)) U S(B(H), (1—0)21 —|— 022,22).

187. [M29] Continuing exercise 186, show how to digitize S(z0, 21, z2) using the three-
register method (Algorithm T). For best results, the digitizations of S(z2, 21, z0) and
S(zo, 21, 22) should produce the same edges, but in reverse order.

188. [25] Bitmap images can often be viewed conveniently using pixels that are shades
of gray instead of just black or white. Such gray levels typically are 8-bit values that
range from 0 (black) to 255 (white); notice that the black/white convention is tradition-
ally reversed with respect to the 1-bit case. An m X n bitmap whose resolution is 600
dots per inch corresponds nicely to the (m/8) x (n/8) grayscale image with 75 pixels
per inch that is obtained by mapping each 8 x 8 subarray of 1-bit pixels into the gray
level [255(1 — k/64)Y7 + 1], where v = 1.3 and k is the number of 1s in the subarray.
Write an MMIX routine that converts a given m X n array BITMAP into the corre-
sponding (m/8) x (n/8) image GRAYMAP, assuming that m = 8m' and n = 64n’.
189. [25] Given a 64 X 64 bitmap, what’s a good way (a) to transpose it, or (b) to
rotate it by 90°, using operations on 64-bit numbers?

190. [23] A parity pattern of length m and width n is an m X n matrix of Os and
1s with the property that each element is the sum of its rook-neighbors, mod 2. For

example, 0011 100 01110

11 0100 01010 110 10101

00, 1101° 11011, 101, and 11011

11 0101 01010 011 10101

001 01110

are parity patterns of sizes 3 X 2,4 x 4,3 x 5,5 x 3, and 5 X 5.

a) If the binary vectors au, a2, ..., am are the rows of a parity pattern, show that
Qa, ..., m can all be computed from the top row a; by using bitwise operations.

Thus at most one m X n parity pattern can begin with any given bit vector.

b) True or false: The sum (mod 2) of two m X n parity patterns is a parity pattern.

¢) A parity pattern is called perfect if it contains no all-zero row or column. For
example, three of the matrices above are perfect, but the 3 x 2 and 3 x5 examples
are not. Show that every m X n parity pattern contains a perfect parity pattern
as a submatrix. Furthermore, all such submatrices have the same size, m’ x n’,
where m' 4 1 is a divisor of m + 1 and n’ + 1 is a divisor n + 1.

d) There’s a perfect parity pattern whose first row is 0011, but there is no such
pattern beginning with 01010. Is there a simple way to decide whether a given
binary vector is the top row of a perfect parity pattern? n 1

e) Prove that there’s a unique perfect parity pattern that begins with 10...0.

191. [M30] A wraparound parity pattern is analogous to the parity patterns of exer-
cise 190, except that the leftmost and rightmost elements of each row are also neighbors.

a) Find a simple relation between the parity pattern of width n that begins with «
and the wraparound parity pattern of width 2n + 2 that begins with 0a0af.

b) The Fibonacci polynomials Fj(z) are defined by the recurrence

Fo(z) =0, Fi(z) =1, and Fjt1(z) = xFj(z) + Fj_1(z) for j > 1.

Show that there’s a simple relation between the wraparound parity patterns that
begin with 10...0 (N—1 zeros) and the Fibonacci polynomials modulo z™ + 1.
Hint: Consider F;(z™ + 1+), and do arithmetic mod 2 as well as mod z™¥ + 1.

200 COMBINATORIAL SEARCHING 7.1.3

¢) If v is the binary string a1 ...an, let fo(z) = a1z + + anz™. Show that
Flavary(@) = (fa(®) + fa(z™"))F; (7 +142) mod (z" + 1) and mod 2,
J J

when N = 2n+2 and «; is row j of a width-n parity pattern that begins with o.

d) Consequently we can compute «; from « in only O(n?log j) steps. Hints: See ex-
ercise 4.6.3-26; and use the identity Frqn(z) = Fn(z) Fng1(z) + Foo1(z) Fr(z),
which generalizes Eq. 1.2.8—(6).

192. [HM38] The shortest parity pattern that begins with a given string can be quite
long; for example, it turns out that the perfect pattern of width 120 whose first row is
10...0 has length 36,028,797,018,963,966(!). The purpose of this exercise is to consider
how to calculate the interesting function

¢(q) = 1+ max{m | there exists a perfect parity pattern of length m and width ¢—1},

whose initial values (1, 3,4,6,5,24,9,12,28) for 1 < ¢ < 9 are easy to compute by hand.

a) Characterize c(q) algebraically, using the Fibonacci polynomials of exercise 191.

b) Explain how to calculate c(q) if we know a number M such that c(q) divides M,
and if we also know the prime factors of M.

¢) Prove that ¢(2°) =3 2°7! when e > 0. Hint: Fae(y) has a simple form, mod 2.

d) Prove that when ¢ is odd and not a multiple of 3, ¢(q) is a divisor of 2%¢ — 1,
where e is the order of 2 modulo q. Hint: F»e_1(y) has a simple form, mod 2.

e) What happens when ¢ is an odd multiple of 37

f) Finally, explain how to handle the case when ¢ is even.

193. [M21] If a perfect m x n parity pattern exists,
when m and n are odd, show that there’s also a perfect
(2m+1)x (2n+1) parity pattern. (Intricate fractals arise
when this observation is applied repeatedly; for example,
the 5 X 5 pattern in exercise 190 leads to Fig. 20.)

194. [M24] Find all n < 383 for which there exists a
perfect n x n parity pattern with 8-fold symmetry, such
as the example in Fig. 20. Hint: The diagonal elements Fig. 20. A perfect

of all such patterns must be zero. 383 x 383 parity pattern.

195. [HM25] Let A be a binary matrix having rows

i, ..., Qum of length n. FExplain how to use bitwise operations to compute the
rank m — r of A over the binary field {0,1}, and to find linearly independent binary
vectors 61, ..., 0, of length m such that ;A =0...0 for 1 < j < r. Hint: See the
“triangularization” algorithm for null spaces, Algorithm 4.6.2N.

196. [21] (K. Thompson, 1992.) Integers in the range 0 < z < 23! can be encoded as
a string of up to six bytes a(x) = a1 ... in the following way: If z < 27, set | + 1 and
ai < x. Otherwise let = (25 ... T120)6a; set | < [(Az)/5], an + 25 —28" 42 4, and
aj = 2" +x;_; for 2 < j < I. Notice that a(z) contains a zero byte if and only if z = 0.
a) What are the encodings of #a, #3a3, #7b97, and #1d4141?
b) If x < z’, prove that a(z) < a(z') in lexicographic order.
¢) Suppose a sequence of values M 2?20 has been encoded as a byte string
a(z®)a(z@) ... a(xz™), and let oy, be the kth byte in that string. Show that
it’s easy to determine the value 2% from which ay, came, by looking at a few of
the neighboring bytes if necessary.

7.1.3 BITWISE TRICKS AND TECHNIQUES 201

197. [22] The Universal Character Set (UCS), also known as Unicode, is a standard
mapping of characters to integer codepoints & in the range 0 < z < 2?° +2'6. An
encoding called UTF-16 represents such integers as one or two wydes 3(z) = (31 or
B(x) = B1B2, in the following way: If z < 2'® then fB(z) = x; otherwise

B1 = #d800 + |y/2'°| and B2 = #dc00 + (y mod 2'°), where y = z — 2'¢.

Answer questions (a), (b), and (c) of exercise 196 for this encoding.

» 198. [21] Unicode characters are often represented as strings of bytes using a scheme
called UTF-8, which is the encoding of exercise 196 restricted to integers in the range
0 < z < 22°4215 Notice that UTF-8 efficiently preserves the standard ASCII character
set (the codepoints with & < 27), and that it is quite different from UTF-16.
Let a1 be the first byte of a UTF-8 string a(z). Show that there are reasonably
small integer constants a, b, and ¢ such that only four bitwise operations

(@> ((c1>b)&c)) &3

suffice to determine the number [— 1 of bytes between a4 and the end of a(z).

» 199. [23] A person might try to encode #a as #c08a or #e0808a or #£080808a in
UTF-8, because the obvious decoding algorithm produces the same result in each case.
But such unnecessarily long forms are illegal, because they could lead to security holes.

Suppose a1 and a2 are bytes such that a; > #80 and #80 < ay < #c0. Find
a branchless way to decide whether ay and g are the first two bytes of at least one
legitimate UTF-8 string a(z).
200. [20] Interpret the contents of register $3 after the following three MMIX instruc-
tions have been executed: MOR $1,$0,#94; MXOR $2,$0,#94; SUBU $3,%$1,%$2.

201. [20] Suppose z = (Z15...T1%0)16 has sixteen hexadecimal digits. What one
MMIX instruction will change each nonzero digit to £, while leaving zeros untouched?
202. [20] What two instructions will change an octabyte’s nonzero wydes to #*££££?
203. [22] Suppose we want to convert a tetrabyte z = (z7...2z120)16 to the octabyte
y = (y7...y1Yo)256, where y; is the ASCII code for the hexadecimal digit z;. For
example, if © = #1234abcd, y should represent the 8-character string "1234abcd".
What clever choices of five constants a, b, ¢, d, and e will make the following MMIX
instructions do the job?
MOR t,x,a; SLUs,t,4; XOR t,s,t; AND t,t,b
ADD t,t,c; MOR s,d,t; ADD t,t,e; ADDy,t,s
> 204. [22] What are the amazing constants p, g, r, m that achieve a perfect shuffle
with just six MMIX commands? (See (175)—(178).)
» 205. [22] How would you perfectly unshuffle on MMIX, going from w in (175) back to 27
206. [20] The perfect shuffle (175) is sometimes called an “outshuffle,” by comparison
with the “inshuffle” that takes z — y Iz = (y31231...Y121%0%0)2; the outshuffle

preserves the leftmost and rightmost bits of z, but the inshuffle has no fixed points.
Can an inshuffle be performed as efficiently as an outshuffle?

207. [22] Use MOR to perform a 3-way perfect shuffle or “triple zip,” taking (z6s . .. Z0)2
t0 (Z21Z42L63%20 - . - T2L23L44T1L22243%0)2, as well as the inverse of this shuffle.

> 208. [28] What’s a fast way for MMIX to transpose an 8 X 8 Boolean matrix?
» 209. [21] Is the suffix parity operation 2% of exercise 36 easy to compute with MXOR?

202 COMBINATORIAL SEARCHING 7.1.3

210. [22] A puzzle: Register x contains a number 854k, where 0 < j, k < 8. Registers
a and b contain arbitrary octabytes (a7 ...a1a0)2s56 and (b7 ... b1bo)256. Find a sequence
of four MMIX instructions that will put a; & by, into register x.

211. [M25] The truth table of a Boolean function f(z1,...,zs) is essentially a 64-bit
number f = (£(0,0,0,0,0,0)...f(1,1,1,1,1,0)f(1,1,1,1,1,1)),. Show that two MOR
instructions will convert f to the truth table of the least monotone Boolean function,
f, that is greater than or equal to f at each point.

212. [M32] Suppose a = (ags - ..a1a0)2 represents the polynomial

4 + a1x + ao.

a(z) = (as3...0100)z = G63T

Discuss using MXOR to compute the product ¢(z) = a(z)b(z), modulo z** and mod 2.
213. [HM26] Implement the CRC procedure (183) on MMIX.

214. [HM28] (R. W. Gosper.) Find a short, branchless MMIX computation that com-
putes the inverse of any given 8 X 8 matrix X of Os and 1s, modulo 2, if det X is odd.

215. [21] What’s a quick way for MMIX to test if a 64-bit number is a multiple of 37
216. [M26] Given n-bit integers z1,...,Tm > 0, n > Am, compute in O(m) steps the
least y > Osuch that y ¢ {a1z1+ +amxm | a1,...,am € {0,1}}, if Az takes unit time.
217. [40] Explore the processing of long strings of text by packing them in a “trans-
posed” or “sliced” manner: Represent 64 consecutive characters as a sequence of eight
octabytes wg . .. w7, where wy, contains all 64 of their kth bits.

218. [M30] (Hans Petter Selasky, 2009.) For fixed d > 3, design an algorithm to
compute a z¥ mod 2¢, given integers a, z, and y, where z is odd, using O(d) additions
and bitwise operations together with a single multiplication by y.

In popular usage, the term BDD almost always refers to
Reduced Ordered Binary Decision Diagram (ROBDD in the literature,
used when the ordering and reduction aspects need to be emphasized).

— WIKIPEDIA, The Free Encyclopedia (7 July 2007)

7.1.4. Binary Decision Diagrams

Let’s turn now to an important family of data structures that have rapidly be-
come the method of choice for representing and manipulating Boolean functions
inside a computer. The basic idea is a divide-and-conquer scheme somewhat like
the binary tries of Section 6.3, but with several new twists.

Figure 21 shows the binary decision diagram for a simple Boolean function
of three variables, the median function (r12z223) of Eq. 7.1.1-(43). We can un-
derstand it as follows: The node at the top is called the root. Every internal node
@, also called a branch node, is labeled with a name or index j = V(@) that
designates a variable; for example, the root node @ in Fig. 21 designates ;.
Branch nodes have two successors, indicated by descending lines. One of the
successors is drawn as a dashed line and called 1.O; the other is drawn as a solid
line and called HI. These branch nodes define a path in the diagram for any values
of the Boolean variables, if we start at the root and take the LO branch from
node @ when z; = 0, the HI branch when z; = 1. Eventually this path leads
to a sink node, which is either (denoting FALSE) or (denoting TRUE).

7.1.4 BINARY DECISION DIAGRAMS 203

Fig. 21. The binary decision diagram (BDD)
for the majority or median function (z1z2x3).

In Fig. 21 it’s easy to verify that this process yields the function value FALSE
when at least two of the variables {x1,z3, z3} are 0, otherwise it yields TRUE.

Many authors use @ and to denote the sink nodes. We use and
instead, hoping to avoid any confusion with the branch nodes @ and @

Inside a computer, Fig. 21 would be represented as a set of four nodes in
arbitrary memory locations, where each node has three fields| V]| LO | HI |.
The V field holds the index of a variable, while the LO and HI fields each point
to another node or to a sink:

ROOT—>{ 1] » [« |

ey

(2] L [«] [2] » [T | (1)

N

Bl L [T |

With 64-bit words, we might for example use 8 bits for V, then 28 bits for LO
and the other 28 bits for HI.

Such a structure is called a “binary decision diagram,” or BDD for short.
Small BDDs can readily be drawn as actual diagrams on a piece of paper
or a computer screen. But in essence each BDD is really an abstract set of
linked nodes, which might more properly be called a “binary decision dag” —a
binary tree with shared subtrees, a directed acyclic graph in which exactly two
distinguished arcs emanate from every nonsink node.

We shall assume that every BDD obeys two important restrictions. First, it
must be ordered: Whenever a LO or HI arc goes from branch node @ to branch
node @, we must have ¢ < j. Thus, in particular, no variable x; will ever be
queried twice when the function is evaluated. Second, a BDD must be reduced,
in the sense that it doesn’t waste space. This means that a branch node’s LO
and HI pointers must never be equal, and that no two nodes are allowed to have
the same triple of values (V,L0,HI). Every node should also be accessible from
the root. For example, the diagrams

and

are not BDDs, because the first one isn’t ordered and the other one isn’t reduced.

Many other flavors of decision diagrams have been invented, and the liter-
ature of computer science now contains a rich alphabet soup of acronyms like

204 COMBINATORIAL SEARCHING 7.1.4

EVBDD, FBDD, IBDD, OBDD, OFDD, OKFDD, PBDD, ..., ZDD. In this
book we shall always use the unadorned code name “BDD” to denote a binary
decision diagram that is ordered and reduced as described above, just as we
generally use the word “tree” to denote an ordered (plane) tree, because such
BDDs and such trees are the most common in practice.

Recall from Section 7.1.1 that every Boolean function f(z1,...,z,) cor-
responds to a truth table, which is the 2"-bit binary string that starts with
the function value f(0,...,0) and continues with f(0,...,0,1), f(0,...,0,1,0),
f(0,...,0,1,1), ..., f(1,...,1,1,1). For example, the truth table of the median
function (z12z2r3) is 00010111. Notice that this truth table is the same as the se-
quence of leaves in the unreduced decision tree of (2), with 0 — and 1 — [T].
In fact, there’s an important relationship between truth tables and BDDs, which
is best understood in terms of a class of binary strings called “beads.”

A truth table of order n is a binary string of length 2". A bead of order n is
a truth table 8 of order n that is not a square; that is, 8 doesn’t have the form
aa for any string a of length 2"~!. (Mathematicians would say that a bead is a
“primitive string of length 2".”) There are two beads of order 0, namely 0 and 1;
and there are two of order 1, namely 01 and 10. In general there are 22" — 22"
beads of order n when n > 0, because there are 22" binary strings of length 2"
and 22”7 of them are squares. The 16 — 4 = 12 beads of order 2 are

0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1011, 1100, 1101, 1110; (3)

these are also the truth tables of all functions f(z1,z2) that depend on z1, in
the sense that f(0,z2) is not the same function as f(1,z2).

Every truth table 7 is a power of a unique bead, called its root. For if 7 has
length 2™ and isn’t already a bead, it’s the square of another truth table 7/; and
by induction on the length of 7, we must have 7 = 8* for some root 3. Hence
7= (% and § is the root of 7 as well as 7/. (Of course k is a power of 2.)

A truth table 7 of order n > 0 always has the form o7y, where 75 and 71 are

truth tables of order n — 1. Clearly 7 represents the function f(z1,zs,...,z,)
if and only if 75 represents f(0,zs,...,2,) and 71 represents f(1,za,...,Z,).
These functions f(0, za,...,2,) and f(1,z2,...,z,) are called subfunctions of f;

and their truth tables, 7y and 7y, are called subtables of T.

Subtables of a subtable are also considered to be subtables, and a table is
considered to be a subtable of itself. Thus, in general, a truth table of order n
has 2% subtables of order n — k, for 0 < k < n, corresponding to 2* possible
settings of the first k variables (x1,...,2). Many of these subtables often turn
out to be identical; in such cases we’re able to represent 7 in a compressed form.

The beads of a Boolean function are the subtables of its truth table that hap-
pen to be beads. For example, let’s consider again the median function (z;zoz3),
with its truth table 00010111. The distinct subtables of this truth table are
{00010111,0001,0111,00,01,11,0,1}; and all of them except 00 and 11 are
beads. Therefore the beads of (zyz223) are

{00010111,0001,0111,01,0,1}. (1)

7.1.4 BINARY DECISION DIAGRAMS 205

And now we get to the point: The nodes of a Boolean function’s BDD are in
one-to-one correspondence with its beads. For example, we can redraw Fig. 21
by placing the relevant bead inside of each node:

00010111

0]

In general, a function’s truth tables of order n + 1 — k correspond to its sub-
functions f(c1,...,¢k—1,Zk, -, Z,) of that order; so its beads of order n+1—k
correspond to those subfunctions that depend on their first variable, xz. There-
fore every such bead corresponds to a branch node @ in the BDD. And if @ is
a branch node corresponding to the truth table 7’ = 7}, its LO and HI branches
point respectively to the nodes that correspond to the roots of 7} and 7.

This correspondence between beads and nodes proves that every Boolean
function has one and only one representation as a BDD. The individual nodes
of that BDD might, of course, be placed in different locations inside a computer.

If f is any Boolean function, let B(f) denote the number of beads that it has.
This is the size of its BDD — the total number of nodes, including the sinks. For
example, B(f) = 6 when f is the median-of-three function, because (5) has size 6.

To fix the ideas, let’s work out another example, the “more-or-less random”
function of 7.1.1-(22) and 7.1.2—(6). Its truth table, 1100100100001111, is a
bead, and so are the two subtables 11001001 and 00001111. Thus we know that
the root of its BDD will be a @ branch, and that the LO and HI nodes below the
root will both be @s. The subtables of length 4 are {1100, 1001, 0000,1111};
here the first two are beads, but the others are squares. To get to the next level,
we break the beads in half and carry over the square roots of the nonbeads,
identifying duplicates; this leaves us with {11,00,10,01}. Again there are two
beads, and a final step produces the desired BDD:

(In this diagram and others below, it’s convenient to repeat the sink nodes
and in order to avoid excessively long connecting lines. Only one node
and one node are actually present; so the size of (6) is 9, not 13.)

An alert reader might well be thinking at this point, “Very nice, but what
if the BDD is huge?” Indeed, functions can easily be constructed whose BDD is
impossibly large; we’ll study such cases later. But the wonderful thing is that a
great many of the Boolean functions that are of practical importance turn out
to have reasonably small values of B(f). So we shall concentrate on the good

206 COMBINATORIAL SEARCHING 7.1.4

news first, postponing the bad news until we’ve seen why BDDs have proved to
be so popular.

BDD virtues. If f(z) = f(z1,...,2,) is a Boolean function whose BDD is
reasonably small, we can do many things quickly and easily. For example:

e We can evaluate f(x)in at most n steps, given any input vector z = 1 ...z,
by simply starting at the root and branching until we get to a sink.

e We can find the lexicographically smallest x such that f(z) = 1, by start-
ing at the root and repeatedly taking the LO branch unless it goes directly
to . The solution has z; = 1 only when the HI branch was necessary at @
For example, this procedure gives xixox3 = 011 in the BDD of Fig. 21, and
1222324 = 0000 in (6). (It locates the value of x that corresponds to the
leftmost 1 in the truth table for f.) Only n steps are needed, because every
branch node corresponds to a nonzero bead; we can always find a downward
path to without backing up. Of course this method fails when the root itself
is . But that happens only when f is identically zero.

e We can count the number of solutions to the equation f(z) = 1, using
Algorithm C below. That algorithm does B(f) operations on n-bit numbers; so
its running time is O(nB(f)) in the worst case.

e After Algorithm C has acted, we can speedily generate random solutions
to the equation f(x) =1, in such a way that every solution is equally likely.

e We can also generate all solutions x to the equation f(x) = 1. The algorithm
in exercise 16 does this in O(nN) steps when there are N solutions.

e We can solve the linear Boolean programming problem: Find z such that

w1x1 + -+ + Wy, 1S maximum, subject to f(zy,...,2,) =1, (7)

given constants (wy, ..., wy). Algorithm B (below) does this in O(n+B(f)) steps.
e We can compute the generating function ag + ayz + - - - + a, 2", where there
are a; solutions to f(z1,...,2,) =1 with 21 + --- 4+ z, = j. (See exercise 25.)
e We can calculate the reliability polynomial F(p1,...,pn), which is the prob-
ability that f(zq,...,2,) = 1 when each z; is independently set to 1 with a
given probability p;. Exercise 26 does this in O(B(f)) steps.
Moreover, we will see that BDDs can be combined and modified efficiently. For
example, it is not difficult to form the BDDs for f(z1,...,2n) A g(21,.-.,2y)
and f(z1,...,2j-1,9(21,.-.,Zn),Tj41,-.-,2Ly) from the BDDs for f and g.
Algorithms for solving basic problems with BDDs are often described most
easily if we assume that the BDD is given as a sequential list of branch instruc-

tions Iy 1, Is_a, ..., I1, Iy, where each Iy has the form (937 ly: hy). For example,
(6) might be represented as a list of s = 9 instructions
Is = (177:6), Iy = (371:0), I, = (470:1),
I; = (27 5:4), I, =(373:2), I = (571:1), (8)
Is = (270:1), I3 = (47 1:0), I = (570:0),

With’Ug:l, l8:7, h8:6, 1)7:2, l7:5, h7:4, ...,1)0:5, l():h():O. In
general the instruction ‘(v7?[: h)’ means, “If z,, = 0, go to I;, otherwise go to Ij,”

7.1.4 BINARY DECISION DIAGRAMS 207

except that the last cases Iy and Iy are special. We require that the LO and HI
branches [and hy satisfy

lp <k, hi < k, vy, > v, and wvp, > vk, fors>k>2;, (9)

in other words, all branches move downward, to variables of greater index. But
the sink nodes and are represented by dummy instructions I; and Iy, in
which I = hy = k and the “variable index” v, has the impossible value n + 1.

These instructions can be numbered in any way that respects the topological
ordering of the BDD, as required by (9). The root node must correspond to Is_1,
and the sink nodes must correspond to Iy and Iy, but the other index numbers
aren’t so rigidly prescribed. For example, (6) might also be expressed as

I, = (177:2), Il = (470:1), I, = (270:1),
I = (274:6), I, = (371:0), I =(571:1), (10)
I, = (373:5), I = (47 1:0), I, = (570:0),

and in 46 other isomorphic ways. Inside a computer, the BDD need not actu-
ally appear in consecutive locations; we can readily traverse the nodes of any
acyclic digraph in topological order, when the nodes are linked as in (1). But
we will imagine that they’ve been arranged sequentially as in (8), so that various
algorithms are easier to understand.

One technicality is worth noting: If f(z) = 1 for all z, so that the BDD
is simply the sink node , we let s = 2 in this sequential representation.
Otherwise s is the size of the BDD. Then the root is always represented by I_1.

Algorithm C (Count solutions). Given the BDD for a Boolean function f(z) =
f(z1,...,2,), represented as a sequence I; 1, ..., Iy as described above, this
algorithm determines |f|, the number of binary vectors z = z1 ...z, such that
f(z) = 1. Tt also computes the table ¢, c1, ..., cs—1, where ¢ is the number
of 1s in the bead that corresponds to Ij.

C1. [Loop over k.] Set cg < 0, ¢; < 1, and do step C2 for k =2,3, ..., s—1.

Then return the answer 2%s-1"le,_q.

C2. [Compute cg.] Set I < I, h + hy, and cf < 2V Ly 4 2vn—ve—1c, -

For example, when presented with (8), this algorithm computes
co 1, e3¢ 1, cq4¢ 2, c5¢ 2, cg+4, cr 4, cg + §;

the total number of solutions to f(z1,zs,z3,x4) =1 1is 8.
The integers cj in Algorithm C satisfy

0<cp < 2ntive for 2 <k < s, (11)

and this upper bound is best possible. Therefore multiprecision arithmetic may
be needed when n is large. If extra storage space for high precision is problematic,
one could use modular arithmetic instead, running the algorithm several times
and computing ¢ mod p for various single-precision primes p; then the final
answer would be deducible with the Chinese remainder algorithm, Eq. 4.3.2—(24).
On the other hand, floating point arithmetic is usually sufficient in practice.

208 COMBINATORIAL SEARCHING 7.1.4

Let’s look at some examples that are more interesting than (6). The BDDs

Independent sets Kernels (12)

represent functions of six variables that correspond to subsets of vertices in the
cycle graph Cg. In this setup a vector such as x; ...xg = 100110 stands for the
subset {1,4, 5}; the vector 000000 stands for the empty subset; and so on. On the
left is the BDD for which we have f(z) = 1 when z is independent in Cg; on the
right is the BDD for mazimal independent subsets, also called the kernels of Cg
(see exercise 12). In general, the independent subsets of C,, correspond to ar-
rangements of Os and 1s in a circle of length n, with no two 1s in a row; the kernels
correspond to such arrangements in which there also are no three consecutive Os.

Algorithm C decorates a BDD with counts ¢, working from bottom to top,
where ¢, is the number of ways to go from node k to by choosing values for
Ty...Zn,if [is the label of node k. When we apply that algorithm to the BDDs
in (12) we get

) 1

hence Cg has 18 independent sets and 5 kernels.

These counts make it easy to generate uniformly random solutions. For
example, to get a random independent set vector x; ...xg, we know that 13 of
the solutions in the left-hand BDD have z; = 0, while the other 5 have x; = 1.
So we set 21 < 0 with probability 13/18, and take the LO branch; otherwise we
set 1 < 1 and take the HI branch. In the latter case, z; = 1 forces x5 < 0, but
then x3 could go either way.

Suppose we've chosen to set xy < 1, x5 < 0, 3 < 0, and x4 < 0; this case

occurs with probability % - % - % % = %. Then there’s a branch from @ to @,

7.1.4 BINARY DECISION DIAGRAMS 209

so we flip a coin and set x5 to a completely random value. In general, a branch
from @ to @ means that the j — 4 — 1 intermediate bits 2;41...2;_; should
independently become 0 or 1 with equal probability. Similarly, a branch from
@ to should assign random values to z;11 ... Z,.

Of course there are simpler ways to make a random choice between 18
solutions to a combinatorial problem. Moreover, the right-hand BDD in (13)
is an embarrassingly complex way to represent the five kernels of Cg: We could
simply have listed them, 001001, 010010, 010101, 100100, 101010! But the point
is that this same method will yield the independent sets and kernels of C,, when
n is much larger. For example, the 100-cycle Cgg has 1,630,580,875,002 kernels,
yet the BDD describing them has only 855 nodes. One hundred simple steps will
therefore generate a fully random kernel from this vast collection.

Boolean programming and beyond. A bottom-up algorithm analogous to
Algorithm C is also able to find optimum weighted solutions (7) to the Boolean
equation f(z) = 1. The basic idea is that it’s easy to deduce an optimum solution
for any bead of f, once we know optimum solutions for the LO and HI beads
that lie directly below it.

Algorithm B (Solutions of mazimum weight). Let I;_q, ..., Iy be a sequence
of branch instructions that represents the BDD for a Boolean function f, as in
Algorithm C, and let (ws,...,w,) be an arbitrary sequence of integer weights.
This algorithm finds a binary vector x = xy ...z, such that wiz; + - 4+ wpx,
is maximum, over all z with f(z) = 1. We assume that s > 1; otherwise f(z)
is identically 0. Auxiliary integer vectors my ... ms_1 and Wy ... W,y are used
in the calculations, as well as an auxiliary bit vector t5...t5_1.
B1. [Initialize.] Set Wy4+1 < 0 and W, < W;41 + max(w;,0) for n > j > 1.
B2. [Loop on k.] Set my + 0 and do step B3 for 2 < k < s. Then do step B4.
B3. [Process Ij.] Set v < vg, | < lg, h < hg, tp < 0. If 1 # 0, set my +
m; + Wyi1 — Wy,. Then if h # 0, compute m < myp, + Wyp1 — W, + wy;
and if [= 0 or m > my, set my < m and t; + 1.
B4. [Compute the z’s.] Set j < 0, k + s — 1, and do the following operations
until j = n: While j < vy — 1, set j < j+ 1 and z; < [w; >0]; if & > 1,
set j < j+1and z; <t and k < (£, =07 Iz hg). 1
A simple case of this algorithm is worked out in exercise 18. Step B3 does tech-
nical maneuvers that may look a bit scary, but their net effect is just to compute

my < max(mg + Wyip1 — Wy, mp + Wy — Wy, +wy), (14)

and to record in t; whether [or h is better. In fact, v; and vy, are usually both
equal to v + 1; then the calculation simply sets my < max(m;, mp + w,), cor-
responding to the cases x, = 0 and z,, = 1. Technicalities arise only because we
want to avoid fetching mg, which is —oo, and because v; or vy, might exceed v+1.

With this algorithm we can, for example, quickly find an optimum set of ker-
nel vertices in an n-cycle C,,, using weights based on the “Thue—Morse” sequence,

w; = (-1)"; (15)

210 COMBINATORIAL SEARCHING 7.1.4

here vj denotes sideways addition, Eq. 7.1.3-(59). In other words, w; is —1 or
+1, depending on whether j has odd parity or even parity when expressed as
a binary number. The maximum of wyx; + - -+ + w,x, occurs when the even-
parity vertices 3, 5, 6, 9, 10, 12, 15, ... most strongly outnumber the odd-parity
vertices 1, 2, 4, 7, 8, 11, 13, ... that appear in a kernel. It turns out that

{1,3,6,9,12,15,18, 20, 23,25, 27, 30, 33, 36, 39, 41, 43, 46, 48,
51,54,57,60,63,66,68, 71,73, 75, 78,80, 83, 86,89, 92,95,97,99} (16)

is an optimum kernel in this sense when n = 100; only five vertices of odd parity,
namely {1, 25,41,73,97}, need to be included in this set of 38 to satisfy the kernel
conditions, hence max(wiz1+- - -+w100Z100) = 28. Thanks to Algorithm B, a few
thousand computer instructions are sufficient to select (16) from more than a tril-
lion possible kernels, because the BDD for all those kernels happens to be small.

Mathematically pristine problems related to combinatorial objects like cycle
kernels could also be resolved efficiently with more traditional techniques, which
are based on recurrences and induction. But the beauty of BDD methods is that
they apply also to real-world problems that don’t have any elegant structure. For
example, let’s consider the graph of 49 “united states” that appeared in 7—(17)
and 7—(61). The Boolean function that represents all the maximal independent
sets of that graph (all the kernels) has a BDD of size 780 that begins as follows:

Algorithm B quickly discovers the following kernels of minimum and maximum
weight, when each state vertex is simply weighted according to the sum of letters
in its postal code (wep =3+ 1, wpe =4+ 3, ..., wyy = 23 + 25):

AN
o o b (&
RO

g o
PN -
NN
@D €O
Minimum weight = 155 Maximum weight = 492 (18)

This graph has 266,137 kernels; but with Algorithm B, we needn’t generate them
all. In fact, the right-hand example in (18) could also be obtained with a smaller
BDD of size 428, which characterizes the independent sets, because all weights

7.1.4 BINARY DECISION DIAGRAMS 211

are positive. (A kernel of maximum weight is the same thing as an independent
set of maximum weight, in such cases.) There are 211,954,906 independent sets
in this graph, many more than the number of kernels; yet we can
find an independent set of maximum weight more quickly than
a kernel of maximum weight, because the BDD is smaller.

Fig. 22. The grid Ps 0 Ps;, and
a BDD for its connected subgraphs.

A quite different sort of graph-related BDD is shown in
Fig. 22. This one is based on the 3 x 3 grid P30 Ps; it characterizes
the sets of edges that connect all vertices of the grid together. Thus,
it’s a function f(z12,213,...,2s9) of the twelve edges 1—2,1—3, ...,

8 — 9 instead of the nine vertices {1,...,9}. Exercise 55 describes one way to
construct it. When Algorithm C is applied to this BDD, it tells us that exactly
431 of the 2'2 = 4096 spanning subgraphs of P30 P; are connected.

A straightforward extension of Algorithm C (see exercise 25) will refine this

total and compute the generating function of these solutions, namely

G(z) = > 2" f(z) = 1922° +1642° + 622" + 122" 4+ 22 (19)

Thus P; O P; has 192 spanning trees, plus 164 spanning subgraphs that are
connected and have nine edges, and so on. Exercise 7.2.1.6-106(a) gives a formula
for the number of spanning trees in P, 0O P, for general m and n; but the
full generating function G(z) contains considerably more information, and it
probably has no simple formula unless min(m, n) is small.

Suppose each edge u — v is present with probability p,., independent of
all other edges of P30 P;. What is the probability that the resulting subgraph
is connected? This is the reliability polynomial, which also goes by a variety
of other names because it arises in many different applications. In general, as
discussed in exercise 7.1.1-12, every Boolean function f(z1,...,,) has a unique
representation as a polynomial F(zy,...,z,) with the properties that

i) F(z1,...,2n) = f(@1,...,2,) whenever each z; is 0 or 1;
i) F(z1,...,z,) is multilinear: Its degree in z; is <1 for all j.
This polynomial F' has integer coefficients and satisfies the basic recurrence

F(z1,...,z,) = (1 —x1)Fo(z2,...,2,) + 1 F1 (22, ..., Ty), (20)
where Fy and Fj are the integer multilinear representations of f(0,za,...,2,)
and f(1,z3,...,2,). Indeed, (20) is George Boole’s “law of development.”

Two important things follow from recurrence (20). First, F' is precisely
the reliability polynomial F(ps, ..., p,) mentioned earlier, because the reliability

212 COMBINATORIAL SEARCHING 7.1.4

polynomial obviously satisfies the same recurrence. Second, F' is easily calculated
from the BDD for f, working upward from the bottom and using (20) to compute
the reliability of each bead. (See exercise 26.)

The connectedness function for an 8 x 8 grid P Pg is, of course, much more
complicated than the one for P30 Ps; it is a Boolean function of 112 variables and
its BDD has 43790 nodes, compared to only 37 in Fig. 22. Still, computations
with this BDD are quite feasible, and in a second or two we can compute

G(z) = 1262313229124985396825948162°3
+ 10066111400354110626007613442%4
+ 462122110 4 1122180 4 112,
as well as the probability F(p) of connectedness

and its derivative F'(p), when each of the edges is
present with probability p (see exercise 29):

F(p): : F'(p): . (21)

0 p 1 0 p 1

*A sweeping generalization. Algorithms B and C and the algorithms we’ve
been discussing for bottom-up BDD scanning are actually special cases of a much
more general scheme that can be exploited in many additional ways. Consider
an abstract algebra with two associative binary operators o and e, satisfying the
distributive laws

ae(Boy)=(aepB)o(aey), (Boy)ea=(Bea)o(yea). (22)

Every Boolean function f(z1,...,z,) corresponds to a fully elaborated truth table
involving the symbols o, e, 1, and T, together with z; and x; for 1 < j < mn, in
a way that’s best understood by considering a small example: When n = 2 and
when the ordinary truth table for f is 0010, the fully elaborated truth table is

(Zi0Tye 1)o(T10x20 L)oo (1 0T20T)0 (270220 1). (23)

The meaning of such an expression depends on the meanings that we attach to
the symbols o, e, L, T, and to the literals z; and z;; but whatever the expression
means, we can compute it directly from the BDD for f.

For example, let’s return to Fig. 21, the BDD for (z12223). The elaborations
of nodes and are a, = 1 and a+ = T, respectively. Then the elaboration

of is ag = (Tzea,) o (x5 e a+); the elaborations of the nodes labeled @ are
al2 = (Zo0(ZTzoxz)ea,)o(zyeas) on the left and af = (Toeaz)o(zoe(Tz0xz)ea)
on the right; and the elaboration of node (1) is oy = (Z1 ® a}) o (21 ® af).

(Exercise 31 discusses the general procedure.) Expanding these formulas via the
distributive laws (22) leads to a full elaboration with 2" = 8 “terms”:

a; = (T1eToeT3e)0 (T1eToexze)0 (T1exy0T30)0 (T1exser30T)

o(z1ezo0T38)0 (z10T0x30T)0 (T10T20T30T)0 (T10T00T30T). (24)

7.1.4 BINARY DECISION DIAGRAMS 213

Algorithm C is the special case where ‘o’ is addition, ‘e’ is multiplication,
‘L7is 0, ‘T7is 1, ‘T;” is 1, and ‘x;’ is also 1. Algorithm B arises when ‘o’ is the
maximum operator and ‘e’ is addition; the distributive laws

a + max(8,v) = max(a+8, a+v), max(8,7)+ a = max(f+a,y+a) (25)

))

are easily checked. We interpret ‘1’ as —oo, ‘T’ as 0, ‘z;
Then, for example, (24) becomes

¢ . .
as 0, and ‘z;’ as w;.

max(—00, —00, —00, Wy + W3, —00, W1 + W3, w1 + W2, w1 + Wy + W3);
and in general the full elaboration under this interpretation is equivalent to the
expression max{wizy + -+ + wpxy, | f(21,...,2,) = 1}

Friendly functions. Many families of functions are known to have BDDs of
modest size. If f is, for example, a symmetric function of n variables, it’s easy
to see that B(f) = O(n?). Indeed, when n = 5 we can start with the triangular
pattern

and set the leaves to or depending on the respective values of f when the

value of vx = x1+- - -+ax5 equals 0, 1, 2, 3, 4, or 5. Then we can remove redundant

or equivalent nodes, always obtaining a BDD whose size is ("'ZH) + 2 or less.
Suppose we take any function f(z1,...,z,) and make two adjacent variables

equal:

9(T1, oy mn) = f(T1,0 00, Tho1, Thy Thy Thg2y -+ -, Tn)- (27)
Exercise 40 proves that B(g) < B(f). And by repeating this condensation
process, we find that a function such as f(z1,x1,x3,z3, x3, x¢) has a small BDD
whenever B(f) is small. In particular, the threshold function [2z1 + 3z3 + z¢ > t]
must have a small BDD for any value of ¢, because it’s a condensed version of
the symmetric function f(z1,...,26) = [#1 + - -+ + ¢ > t]. This argument shows
that any threshold function with nonnegative integer weights,

f(xlal'% cee 73371) = [wlml + wexy + ¢+ WpTy Zt]a (28)

can be obtained by condensing a symmetric function of wy + wo + --- + wy,
variables, so its BDD size is O(w; + wg + - - - + wy,)%

Threshold functions often turn out to be easy even when the weights grow
exponentially. For example, suppose t = (t1t3...t,)2 and consider

ft(Il,.'EQ, e 71'n) = [2n—1x1 + 271_2372 + -tz Zt] (29)

214 COMBINATORIAL SEARCHING 7.1.4

This function is true if and only if the binary string z1xs . .. z, is lexicographically
greater than or equal to tits...t,, and its BDD always has exactly n 4+ 2 nodes
when ¢, = 1. (See exercise 170.)

Another kind of function with small BDD is the 2™-way multiplexer of
Eq. 7.1.2—(31), a function of n = m + 2™ variables:

Mm(xla oy Ty Tm41y - - - 71'71) = Im+1+(z1...zm)2' (30)

Its BDD begins with 2k=1 hranch nodes @ for 1 < k < m. But below that com-
plete binary tree, there’s just one @ for each x; in the main block of variables
with m < k <n. Hence B(M,,) =1+2+---+2m 1 42m 42 =2m+l 1 1 < 2p,

A linear network model of computation, illustrated in Fig. 23, helps to
clarify the cases where a BDD is especially efficient. Consider an arrangement
of computational modules My, M,, ..., M,, in which the Boolean variable xj
is input to module Mjy; there also are wires between neighboring modules, each
carrying a Boolean signal, with a; wires from M} to My41 and by wires from
My 41 to My, for 1 < k < n. A special wire out of M, contains the output of
the function, f(z1,...,2,). We define ay = by = b, = 0 and a,, = 1, so that
module M}, has exactly ¢, = 1+ag_1+bg input ports and exactly dr, = ax+bg_1
output ports for each k. It computes di Boolean functions of its ¢ inputs.

The individual functions computed by each module can be arbitrarily com-
plicated, but they must be well defined in the sense that their joint values are
completely determined by the z’s: Every choice of (z1,...,x,) must lead to
exactly one way to set the signals on all the wires, consistent with all of the
given functions.

Theorem M. If f can be computed by such a network, then B(f) <> /_, ar2’*

Proof. We will show that the BDD for f has at most 9ak-12""~1 branch nodes
@, for 1 < k < n. This is clear if b,_; = 0, because at most 2%*-1 subfunctions
are possible when z1 through z;_; have any given values. So we will show that
any network that has aj_ forward wires and by _; backward wires between My,_q
and Mj, can be replaced by an equivalent network that has aj_12% ' forward
wires and none that run backward.

For convenience, let’s consider the case k = 4 in Fig. 23, with a3 = 4 and
b3 = 2; we want to replace those 6 wires by 16 that run only forward. Suppose
Alice is in charge of M3 and Bob is in charge of M. Alice sends a 4-bit signal, a,
to Bob while he sends a 2-bit signal, b, to her. More precisely, for any fixed
value of (z1,...,T,), Alice computes a certain function A and Bob computes a
function B, where

Ab)=a and B(a) =b. (31)

Alice’s function A depends on (1,22, z3), so Bob doesn’t know what it is; Bob’s
function B is, similarly, unknown to Alice, since it depends on (z4,...,z,).
But those unknown functions have the key property that, for every choice of
(1,...,Ty), there’s exactly one solution (a,b) to the equations (31).

7.1.4 BINARY DECISION DIAGRAMS 215

© © ® & - 9

N) s — —
_— —
- 7 ; —> }a4 Gn—1 { I
M M> Ms——A My /) oeeee M,, — Output
k—|
—| B <«
k— ¢ ¢ } b4 bn—l{

Fig. 23. A generic network of Boolean modules for which Theorem M is valid.

So Alice changes the behavior of module Mj3: She sends Bob four 4-bit
values, A(00), A(01), A(10), and A(11), thereby revealing her A function. And
Bob changes the behavior of My: Instead of sending any feedback, he looks at
those four values, together with his other inputs (namely z4 and the by bits
received from Ms), and discovers the unique a and b that solve (31). His new
module uses this value of a to compute the a4 bits that he outputs to Ms. 1

Theorem M says that the BDD size will be reasonably small if we can
construct such a network with small values of aj and by. Indeed, B(f) will be
O(n) if the a’s and b’s are bounded, although the constant of proportionality
might be huge. Let’s work an example by considering the three-in-a-row function,

flr1, o 2n) = 212223V 222324V -+ *V Ty 2Ty 1T V Ty 1T L1 V T 122, (32)

which is true if and only if a circular necklace labeled with bits 1, ..., z, has
three consecutive 1s. One way to implement it via Boolean modules is to give My
three inputs (ug, vg, wy) from My_q and two inputs (yx, zx) from M1, where

(33)

Here subscripts are treated modulo n, and appropriate changes are made at the
left or right when k=1 or £k > n — 1. Then M}, computes the functions

Up = Tk—1, Vg =Tk2Tk—1, Wk ==Tp 1TpnT1V - -V Tk 3Tk 2Tk 1;

Yk = Tn, 2k = Tpn—-1Tn-

Ukt1 = Tk, Vkt1 = UpTh, Wgt1 = Wk V UpTk, Yk—1 = Yk, Zk—1 = 2k (34)

for nearly all values of k; exercise 45 has the details. With this construction we
have aj, < 3 and by, < 2 for all k, hence Theorem M tells us that B(f) < 2!2n =
4096n. In fact, the truth is much sweeter: B(f) is actually < 9n (see exercise 46).

Shared BDDs. We often want to deal with several Boolean functions at once,
and related functions often have common subfunctions. In such cases we can
work with the “BDD base” for {fi(z1,...,Zn),.-., fm(21,...,2,)}, which is
a directed acyclic graph that contains one node for every bead that occurs
within the truth tables of any of the functions. The BDD base also has m
“root pointers,” F;, one for each function f;; the BDD for f; is then the set of
all nodes reachable from node F;. Notice that node Fj itself is reachable from
node F; if and only if f; is a subfunction of f;.

For example, consider the problem of computing the n 4+ 1 bits of the sum
of two m-bit numbers,

(frnt1fnfn1..-f1)2 = (z123... Ton—1)2 + (T2Zs ... Tap)2. (35)

216 COMBINATORIAL SEARCHING 7.1.4

The BDD base for those n + 1 bits looks like this when n = 4:

Fs

T1T3T5T7

+ ToTaTeTs

fsfafsf2 fu

(36)

The way we've numbered the z’s in (35) is important here (see exercise 51). In
general there are exactly B(f1,..., fn+1) = 9n—5 nodes, when n > 1. The node
just to the left of F;, for 1 < j < n, represents the subfunction for a carry c; out
of the jth bit position from the right; the node just to the right of F; represents
the complement of that carry, ¢;; and node Fj,; represents the final carry c,.

Operations on BDDs. We’ve been talking about lots of things to do when a
BDD is given. But how do we get a BDD into the computer in the first place?

One way is to start with an ordered binary decision diagram such as (26) or
the right-hand example in (2), and to reduce it so that it becomes a true BDD.
The following algorithm, based on ideas of D. Sieling and I. Wegener [Information
Processing Letters 48 (1993), 139-144], shows that an arbitrary N-node binary
decision diagram whose branches are properly ordered can be reduced to a BDD
in O(N + n) steps when there are n variables.

Of course we need some extra memory space in order to decide whether
two nodes are equivalent, when doing such a reduction. Having only the three
fields (V,L0,HI) in each node, as in (1), would give us no room to maneuver.
Fortunately, only one additional pointer-size field, called AUX, is needed, together
with two additional state bits. We will assume for convenience that the state bits
are implicitly present in the signs of the LO and AUX fields, so that the algorithm
needs to deal with only four fields: (V,LO,HI,AUX). The fact that the sign is
preempted does mean that a 28-bit L0 field will accommodate only 227 nodes at
most — about 134 million— instead of 228. (On a computer like MMIX, we might
prefer to assume that all node addresses are even, and to add 1 to a field instead
of complementing it as done here.)

Algorithm R (Reduction to a BDD). Given a binary decision diagram that
is ordered but not necessarily reduced, this algorithm transforms it into a valid
BDD by removing unnecessary nodes and rerouting all pointers appropriately.
Each node is assumed to have four fields (V,L0, HI, AUX) as described above, and
ROQT points to the diagram’s top node. The AUX fields are initially irrelevant, ex-
cept that they must be nonnegative; they will again be nonnegative at the end of
the process. All deleted nodes are pushed onto a stack addressed by AVAIL, linked
together by the HI fields of its nodes. (The LO fields of these nodes will be neg-
ative; their complements point to equivalent nodes that have not been deleted.)

7.1.4 BINARY DECISION DIAGRAMS 217

The V fields of branch nodes are assumed to run from V(ROOT) up to vmax,
in increasing order from the top downwards in the given dag. The sink nodes
and are assumed to be nodes 0 and 1, respectively, with nonnegative LO and
HI fields. They are never deleted; in fact, they are left untouched except for their
AUX fields. An auxiliary array of pointers, HEAD [v] for V(ROOT) < v < ¥pax, 1S
used to create temporary lists of all nodes that have a given value of V.

R1. [Initialize.] Terminate immediately if ROOT < 1. Otherwise, set AUX(0) «
AUX(1) < AUX(ROOT) < —1, and HEAD [v] <+ —1 for V(ROOT) < v < Umax.
(We use the fact that —1 = ~0 is the bitwise complement of 0.) Then set
s < ROOT and do the following operations while s # 0:

Set p < s, s < ~AUX(p), AUX(p) + HEAD[V(p)], HEAD[V(p)] «+ ~p.
If AUX(LO(p)) > 0, set AUX(LO(p)) < ~s and s < LO(p).
If AUX(HI(p)) > 0, set AUX(HI(p)) < ~s and s < HI(p).

(We've essentially done a depth-first search of the dag, temporarily marking
all nodes reachable from ROOT by making their AUX fields negative.)

R2. [Loop on v.] Set AUX(0) < AUX(1) + 0, and v < vmax.
R3. [Bucket sort.] (At this point all remaining nodes whose V field exceeds v

have been properly reduced, and their AUX fields are nonnegative.) Set
p < ~HEAD[v], s « 0, and do the following steps while p # 0:

Set p’ < ~AUX(p).

Set q < HI(p); if LO(g) < 0, set HI(p) « ~L0(q).

Set g + LO(p); if LO(g) < 0, set LO(p) + ~L0O(q) and g + LO(p).

If ¢ = HI(p), set LO(p) < ~gq, HI(p) < AVAIL, AUX(p) < 0, AVAIL < p;
otherwise if AUX(g) > 0, set AUX(p) < s, s < ~q, and AUX(q) < ~p;
otherwise set AUX(p) <+ AUX(~AUX(q)) and AUX(~AUX(q)) < p.

Then set p < p'.

RA4. [Clean up.] (Nodes with LO = z # HI have now been linked together via
their AUX fields, beginning with ~AUX(z).) Set r + ~s, s - 0, and do the
following while r > 0:

Set q < ~AUX(r) and AUX(r) « 0.

If s = 0 set s « ¢; otherwise set AUX(p) + q.

Set p < g; then while AUX(p) > 0, set p - AUX(p).
Set r « ~AUX(p).

R5. [Loop on p.] Set p < s. Go to step R9 if p = 0. Otherwise set g « p.

R6. [Examine a bucket.] Set s - LO(p). (At this point p = q.)

R7. [Remove duplicates.] Set r <— HI(g). If AUX(r) > 0, set AUX(r) <+ ~g;
otherwise set LO(g) < AUX(7), HI(q) < AVAIL, and AVAIL < q. Then set
q < AUX(q). If ¢ # 0 and LO(q) = s, repeat step R7.

R8. [Clean up again.] If LO(p) > 0, set AUX(HI(p)) < 0. Then set p + AUX(p),
and repeat step R8 until p = q.

R9. [Done?] If p # 0, return to R6. Otherwise, if v > V(ROOT), set v «+ v — 1
and return to R3. Otherwise, if LO(ROOT) < 0, set ROOT < ~LO(ROQT). 1|

218 COMBINATORIAL SEARCHING 7.1.4

The intricate link manipulations of Algorithm R are easier to program than to
explain, but they are highly instructive and not really difficult. The reader is
urged to work through the example in exercise 53.

Algorithm R can also be used to compute the BDD for any restriction of a
given function, namely for any function obtained by “hardwiring” one or more
variables to a constant value. The idea is to do a little extra work between steps
R1 and R2, setting HI(p) <+ LO(p) if variable V(p) is supposed to be fixed at 0,
or LO(p) < HI(p) if V(p) is to be fixed at 1. We also need to recycle all nodes
that become inaccessible after restriction. Exercise 57 fleshes out the details.

Synthesis of BDDs. We're ready now for the most important algorithm on
binary decision diagrams, which takes the BDD for one function, f, and combines
it with the BDD for another function, g, in order to obtain the BDD for further
functions such as f A g or f & g. Synthesis operations of this kind are the
principal way to build up the BDDs for complex functions, and the fact that
they can be done efficiently is the main reason why BDD data structures have
become popular. We will discuss several approaches to the synthesis problem,
beginning with a simple method and then speeding it up in various ways.

The basic notion that underlies synthesis is a product operation on BDD
structures that we shall call melding. Suppose a = (v,l,h) and o' = (v',I', h’)
are BDD nodes, each containing the index of a variable together with LO and
HI pointers. The “meld” of a and o', written a ¢ o', is defined as follows when
a and o are not both sinks:

(v,lol', hoh), ifv=1
aca = (v,lod, hod), ifv<; (37)
(v, aol, ach’), ifv>.

For example, Fig. 24 shows how two small but typical BDDs are melded. The
one on the left, with branch nodes (a,,~,9), represents f(z1,22,23,24) =
(21 V x2) A (23 V 24); the one in the middle, with branch nodes (w, ¥, x, ¢, v, T),
represents g(z1, T, T3, 24) = (1 B x2)V (z3 D x4). Nodes § and 7 are essentially
the same, so we would have § = 7 if f and g were part of a single BDD base; but
melding can be applied also to BDDs that do not have common nodes. At the
right of Fig. 24, o ¢ w is the root of a decision diagram that has eleven branch
nodes, and it essentially represents the ordered pair (f,g).

Fig. 24. Two BDDs can be melded together with the ¢ operation (37).

7.1.4 BINARY DECISION DIAGRAMS 219

An ordered pair of two Boolean functions can be visualized by placing the
truth table of one above the truth table of the other. With this interpretation,
o o w stands for the ordered pair J990011191116115, and B o x stands for 0900111,

etc. The melded BDD of Fig. 24 corresponds to the diagram
0000011101110111
0110111111110110
00000111 01110111
01101111 11110110

, (38)

which is analogous to (5) except that each node denotes an ordered pair of
functions instead of a single function. Beads and subtables are defined on ordered
pairs just as before. But now we have four possible sinks instead of two, namely

Lol Lo, Tol, and ToT, (39)

corresponding to the ordered pairs 8, 1 (1], and i

To compute the conjunction f A g, we AND together the truth tables of f
and g. This operation corresponds to replacing g, (1), (1), and } by 0, 0, 0, and 1,
respectively; so we get the BDD for f A g from f ¢ g by replacing the respective
sink nodes of (39) by , , , and , then reducing the result. Similarly,
the BDD for f @ g is obtained if we replace the sinks (39) by [L], [T], [T].
and . (In this particular case f @ g turns out to be the symmetric function
S1,4(x1, 2, 3, 24), as computed in Fig. 9 of Section 7.1.2.) The melded diagram
f ¢ g contains all the information needed to compute any Boolean combination
of f and g; and the BDD for every such combination has at most B(f ¢ g) nodes.

Clearly B(f ¢ g) < B(f)B(g), because each node of f ¢ g corresponds to
a node of f and a node of g. Therefore the meld of small BDDs cannot be
extremely large. Usually, in fact, melding produces a result that is considerably
smaller than this worst-case upper bound, with something like B(f) + B(g)
nodes instead of B(f)B(g). Exercise 60 discusses a sharper bound that sheds
some light on why melds often turn out to be small. But exercises 59(b) and 63
present interesting examples where quadratic growth does occur.

Melding suggests a simple algorithm for synthesis: We can form an array of
B(f)B(g) nodes, with node o ¢ &’ in row a and column o' for every « in the
BDD for f and every o' in the BDD for g. Then we can convert the four sink
nodes (39) to or as desired, and apply Algorithm R to the root node
f<©g. Voila—we’ve got the BDD for f Agor f @& g or fV g or whatever.

The running time of this algorithm is clearly of order B(f)B(g). We can
reduce it to order B(f ¢ g), because there’s no need to fill in all of the matrix
entries aoa’; only the nodes that are reachable from fog are relevant, and we can
generate them on the fly when necessary. But even with this improvement in the

220 COMBINATORIAL SEARCHING 7.1.4

running time, the simple algorithm is unsatisfactory because of the requirement
for B(f)B(g) nodes in memory. When we deal with BDDs, time is cheap but
space is expensive: Attempts to solve large problems tend to fail more often
because of “spaceout” than because of “timeout.” That’s why Algorithm R was
careful to perform its machinations with only one auxiliary link field per node.

The following algorithm solves the synthesis problem with working space of
order B(f¢g); in fact, it needs only about sixteen bytes per element of the BDD
for f ¢ g. The algorithm is designed to be used as the main engine of a “Boolean
function calculator,” which represents functions as BDDs in compressed form on
a sequential stack. The stack is maintained at the lower end of a large array
called the pool. Each BDD on the stack is a sequence of nodes, which each have
three fields (V,L0,HI). The rest of the pool is available to hold temporary results
called templates, which each have four fields (L, H, LEFT, RIGHT). A node typically
occupies one octabyte of memory, while a template occupies two.

The purpose of Algorithm S is to examine the top two Boolean functions
on the stack, f and g, and to replace them by the Boolean combination f o g,
where o is one of the 16 possible binary operators. This operator is identified by
its 4-bit truth table, op. For example, Algorithm S will form the BDD for f ® g
when op is (0110)y = 6; it will deliver f A g when op = 1.

When the algorithm begins, operand f appears in locations [fo..go) of
the pool, and operand g appears in locations [go ..NTOP). All higher locations
[NTOP..POOLSIZE) are available for storing the templates that the algorithm
needs. Those templates will appear in locations [TBOT ..POOLSIZE) at the high
end of the pool; the boundary markers NTOP and TBOT will change dynamically
as the algorithm proceeds. The resulting BDD for f og will eventually be placed
in locations [fy . . NTOP), taking over the space formerly occupied by f and g. We
assume that a template occupies the space of two nodes. Thus, the assignments
“t «— TBOT — 2, TBOT <« t” allocate space for a new template, pointed to by t; the
assignments “p <— NTOP, NTOP < p + 1” allocate a new node p. For simplicity of
exposition, Algorithm S does not check that the condition NTOP < TBOT remains
valid throughout the process; but of course such tests are essential in practice.
Exercise 69 remedies this oversight.

The input functions f and g are specified to Algorithm S as sequences of
instructions (I,_4,...,1Iy,1y) and (I.,_,,...,I{,I}), as in Algorithms B and C
above. The lengths of these sequences are s = BY(f) and s’ = B*(g), where

BT(f) = B(f)+[f is identically 1] (40)
is the number of BDD nodes when the sink is forced to be present. For
example, the two BDDs at the left of Fig. 24 could be specified by the instructions
I = (1?7 5:6), I,=(372:3),

If = (27 1: 4), I3=(471:0), (41)
IL=(274:1), I,=(4?0:1);

I5 = (i? 4: 3), 13 = (g? 2: 1),
I, =(220:3), I,=(470:1);

as usual, I;, I,, I], and I} are the sinks. These instructions are packed into
nodes, so that if Iy = (g7 l: hy) we have V(fy + k) = vg, LO(fo + k) = lg, and

7.1.4 BINARY DECISION DIAGRAMS 221

HI(fo + k) = hy for 2 < k < s when Algorithm S begins. Similar conventions
apply to the instructions I, that define g. Furthermore

V(fo) =V(fo+1) =V(go) =V(go+ 1) = vmax + 1, (42)

where we assume that f and g depend only on the variables x, for 1 < v < vpay.

Like the simple but space-hungry algorithm described earlier, Algorithm S
proceeds in two phases: First it builds the BDD for f ¢ g, constructing templates
so that every important meld a ¢ o’ is represented as a template ¢ for which

LEFT(¢) = «, RIGHT(¥) = o/, L(¥) =LO(aod’), H(¥) = Hl(aoa'). (43)

(The L and H fields point to templates, not nodes.) Then the second phase
reduces these templates, using a procedure similar to Algorithm R; it changes
template ¢ from (43) to

LEFT(t) = ~k(t), RIGHT(®) = 7(¢), (44)
L(t) = 7(LO(a o a')), H() = r(HI(a o a')), 44

where 7(t) is the unique template to which ¢ has been reduced, and where «(t)
is the “clone” of t if 7(¢t) = t. Every reduced template ¢ corresponds to an
instruction node in the BDD of f o g, and k() is the index of this node relative
to position fy in the stack. (Setting LEFT(¢) to ~k(t) instead of k(t) is a sneaky
trick that makes steps S7—S10 run faster.) Special overlapping templates are
permanently reserved for sinks at the bottom of the pool, so that we always have

LEFT(0) = ~0, RIGHT(0) =0, LEFT(1) =~1, RIGHT(1) =1, (45)

in accord with the conventions of (42) and (44).

We needn’t make a template for a0 o’ when the value of a0 o’ is obviously
constant. For example, if we're computing f A g, we know that o ¢ o will
eventually reduce to if @ = 0 or @ = 0. Such simplifications are discovered
by a subroutine called find_level(f, g), which returns the positive integer j if the
root of fog begins with the branch @, unless fog clearly has a constant value;
in the latter case, find_level(f,g) returns the value —(f o g), which is 0 or —1.
The procedure is slightly technical, but simple, using the global truth table op:

Subroutine find_level (f, g), with local variable ¢:

If f <1land g <1, return —((op > (3 —2f — g)) & 1), which is —(f o g).

If f<landg>1,sett<« (f? op&3: op>2);return 0ift =0, —1if ¢t = 3.

If f>1and g <1, sett<« (¢g? op: op>1)&5; return 0if t =0, —1 if t = 5.

Otherwise return min(V(fy + f),V(go + @)). (46)

The main difficulty that faces us, when generating a template for a descen-
dant of a ¢ o’ according to (37), is to decide whether or not such a template
already exists—and if so, to link to it. The best way to solve such problems is
usually to use a hash table; but then we must decide where to put such a table,
and how much extra space to devote to it. Alternatives such as binary search
trees would be much easier to adapt to our purposes, but they would add an
unwanted factor of log B(f ¢ g) to the running time. The synthesis problem can

222 COMBINATORIAL SEARCHING 7.1.4

actually be solved in worst-case time and space O(B(f ¢ g)) by using a bucket
sort method analogous to Algorithm R (see exercise 72); but that solution is
complicated and somewhat awkward.

Fortunately there’s a nice way out of this dilemma, requiring almost no extra
memory and only modestly complex code, if we generate the templates one level
at a time. Before generating the templates for level [, we’ll know the number
N; of templates to be requested on that level. So we can temporarily allocate
space for 2% templates at the top of the currently free area, where b = [lg N;],
and put new templates there while hashing into the same area. The idea is to
use chaining with separate lists, as in Fig. 38 of Section 6.4; the H and L fields of
our templates and potential templates play the roles of heads and links in that
illustration, while the keys appear in (LEFT,RIGHT). Here’s the logic, in detail:

Subroutine make_template (f, g), with local variable ¢:

Set h « HBASE + 2(((314159257f + 271828171g) mod 2¢) > (d — b)), where d
is a convenient upper bound on the size of a pointer (usually d = 32). Then
set t « H(h). While ¢ # A and either LEFT(¢) # f or RIGHT (t) # g, set
t < L(t). If t = A, set t < TBOT — 2, TBOT <« ¢, LEFT(¢) < f, RIGHT(t) < g,
L(t) + H(h), and H(h) < t. Finally, return the value ¢. (47)

The calling routine in steps S4 and S5 ensures that NTOP < HBASE < TBOT.

This breadth-first, level-at-a-time strategy for constructing the templates
has an added payoff, because it promotes “locality of reference”: Memory ac-
cesses tend to be confined to nearby locations that have recently been seen, hence
controlled in such a way that cache misses and page faults are significantly
reduced. Furthermore, the eventual BDD nodes placed on the stack will also
appear in order, so that all branches on the same variable appear consecutively.

Algorithm S (Breadth-first synthesis of BDDs). This algorithm computes the

BDD for f o g as described above, using subroutines (46) and (47). Auxiliary

arrays LSTART [/], LCOUNT [I], LLIST[/], and HLIST[I] are used for 0 <! < vpax.

S1. [Initialize.] Set f < go — 1 — fo, g NTOP — 1 — gg, and I + find_level(f, g).
See exercise 66 if [< 0. Otherwise set LSTART[! — 1] < POOLSIZE, and
LLIST[K] « HLIST[k] <+ A, LCOUNT[A] <« O for I < k < vmax. Set
TBOT <~ POOLSIZE — 2, LEFT(TBOT) < f, and RIGHT(TBOT) « g.

S2. [Scan the level-l templates.] Set LSTART [I] + TBOT and ¢ < LSTART[I — 1].
While ¢ > TBOT, schedule requests for future levels by doing the following;:
Set t <+ t—2, f< LEFT(#), g < RIGHT(®), vf < V(fo+f), vg < V(go+g),
Il + find_level ((vf < wvg? LO(fo+ f): f), (vf > vg? LOCgo + @): g)),
Ih < find_level ((vf < vg? HI(fo + f): f), (vf > vg? HI(go + g): g)).

If 1< 0, set L(¢) < —Il; otherwise set L(¢) « LLIST[l/], LLIST[ll] + t,
LCOUNT[Il] < LCOUNT[I/I] + 1. If [h < 0, set H(¢) < —Ih; otherwise set
H(t) < HLIST[/h], HLIST[Ih] < ¢, LCOUNT[/h] < LCOUNT[/A] + 1.

S3. [Done with phase one?] Go to S6 if | = vyax. Otherwise set I « [+ 1, and
return to S2 if LCOUNT[I/] = 0.

7.1.

S4

S5.

S6.

S7.

S8.

S9.

S10.

S11.

S12.

As

an

4 BINARY DECISION DIAGRAMS 223

. [Initialize for hashing.] Set b ¢ [lgLCOUNT[/]1], HBASE ¢ TBOT — 20*1
and H(HBASE + 2k) < A for 0 < k < 2b.

[Make the level-I templates.] Set ¢ « LLIST[I]. While t # A, set s +
L(t), f < LEFT(¢), g < RIGHT(t), vf + V(fo+ f), vg < V(go+ g,
L(t) + make_template ((vf < vg? LOCfo+1): f), (vf > vg? LO(go+9): g)),
t « s. (Were half done.) Then set ¢t <+ HLIST[I]. While ¢ # A, set
s« H(@), f < LEFT(#), g « RIGHT(®), vf < V(fo+ f), vg + V(go+ g),
H(t) + make_template((vf < vg? HI(fo+f): f), (vf > vg? HI(go+9): g)),
t < s. (Now the other half is done.) Go back to step S2.

[Prepare for phase two.] (At this point it’s safe to obliterate the nodes of f
and g, because we’ve built all the templates (43). Now we’ll convert them
to form (44). Note that V(fo) =V(fo + 1) = vmax +1.) Set NTOP + fo + 2.

[Bucket sort.] Set ¢t <— LSTART[/ — 1]. Do the following while ¢ > LSTART [/]:

Set t + t—2, L(t) + RIGHT(L(¢)), and H(t) < RIGHT (H(¢)).
If L(t) = H(#), set RIGHT () + L(¢). (This branch is redundant.)
Otherwise set RIGHT (t) < —1, LEFT(¢) < LEFT(L(#)), LEFT(L(#)) « t.

[Restore clone addresses.] If ¢ = LSTART[I — 1], set ¢ + LSTART[/] — 2
and go to S9. Otherwise, if LEFT(¢) < 0, set LEFT(L(t)) < LEFT(¢). Set
t < t 4+ 2 and repeat step S8.

[Done with level?] Set ¢t < t+2. If t = LSTART [l — 1], go to S12. Otherwise,
if RIGHT (¢) > 0 repeat step S9.

[Examine a bucket.] (Suppose L(t;) = L(f2) = L(t¢3), where t; > t5 >
ts = t and no other templates on level [have this L value. Then at this point
we have LEFT(t3) = to, LEFT(ty) = t;, LEFT(¢;) < 0, and RIGHT(¢;) =
RIGHT(t3) = RIGHT(f3) = —1.) Set s + ¢t. While s > 0, do the following:
Set r <+ H(s), RIGHT(s) < LEFT(r); if LEFT(r) < 0, set LEFT(r) < s; and
set s + LEFT(s). Finally set s < t again.

[Make clones.] If s < 0, go back to step S9. Otherwise if RIGHT (s) > 0,
set s < LEFT(s). Otherwise set r < LEFT(s), LEFT(H(s)) < RIGHT(s),
RIGHT(s) < s, q < NTOP, NTOP < ¢ + 1, LEFT(s) « ~(q — fo), LO(g) <
~LEFT(L(s)), HI(q) < ~LEFT(H(s)), V(q) < I, s < r. Repeat step S11.
[Loop on I.] Set I « I —1. Return to S7 if LSTART[!] < POOLSIZE.
Otherwise, if RIGHT(POOLSIZE — 2) = 0, set NTOP <« NTOP — 1 (because
f o g is identically 0). 1

usual, the best way to understand an algorithm like this is to trace through
example. Exercise 67 discusses what Algorithm S does when it is asked to

compute f A g, given the BDDs in (41).

Algorithm S can be used, for example, to construct the BDDs for interesting

functions such as the “monotone-function function” p,(z1,...,29n), which is
true if and only if xy ...xzqn is the truth table of a monotone function:

/J/n(xl,...,.’lign) = /\ [Ii+1§.’1?j+1}. (48)
0<iCj<2n

224 COMBINATORIAL SEARCHING 7.1.4

Fig. 25. po(z1, 23,25, 27) A po (22, T4, T6, 23) A Gs(x1,...,28) = ps(z1,...,xs),
as computed by Algorithm S.

Starting with po(z1) = 1, this function satisfies the recursion relation

P (Z1, ... Ton) =
Prn—1(T1, 23, Tan 1) A pn—1(Z2, 24, ..., Z2n) AGan(z1,...,227), (49)

where Gon(21,...,29n) = [21<@2] A[zz3<z4] A -+ A [2an_1 <2n]. So its
BDD is easy to obtain with a BDD calculator like Algorithm S: The BDDs for
tn—1(21,x3,...,x2n_1) and pin—1(z2, 24, ..., Tan) are simple variants of the one

for p,—1(z1, T3, ...,Tyn—1), and Ga» has an extremely simple BDD (see Fig. 25).

Repeating this process six times will produce the BDD for ug, which has
103,924 nodes. There are exactly 7,828,354 monotone Boolean functions of six
variables (see exercise 5.3.4-31); this BDD nicely characterizes them all, and we
need only about 4.8 million memory accesses to compute it with Algorithm S.
Furthermore, 6.7 billion mems will suffice to compute the BDD for py, which
has 155,207,320 nodes and characterizes 2,414,682,040,998 monotone functions.

We must stop there, however; the size of the next case, B(ug), turns out to
be a whopping 69,258,301,585,604 (see exercise 77).

Synthesis in a BDD base. Another approach is called for when we’re dealing
with many functions at once instead of computing a single BDD on the fly.
The functions of a BDD base often share common subfunctions, as in (36).
Algorithm S is designed to take disjoint BDDs and to combine them efficiently,
afterwards destroying the originals; but in many cases we would rather form
combinations of functions whose BDDs overlap. Furthermore, after forming a
new function f A g, say, we might want to keep f and g around for future use;
indeed, the new function might well share nodes with f or g or both.

Let’s therefore consider the design of a general-purpose toolkit for manip-
ulating a collection of Boolean functions. BDDs are especially attractive for

7.1.4 BINARY DECISION DIAGRAMS 225

this purpose because most of the necessary operations have a simple recursive
formulation. We know that every nonconstant Boolean function can be written

flz1, 22, .. 2n) = (T? f1: fr), (50)

where v = f, indexes the first variable on which f depends, and where we have

fi=70,...,0,Zp41,--y20); fo=F(1, ..., 2pq1,...,Tp). (51)

This rule corresponds to branch node @ at the top of the BDD for f; and
the rest of the BDD follows by using (50) and (51) recursively, until we reach
constant functions that correspond to or [T]. A similar recursion defines any
combination of two functions, fog: For if f and g aren’t both constant, we have

flze,. .. 2n) = (Z0? fiz fr) and g(z1,...,2n) = (To? 9t gn), (52)
where v = min(fy, g,) and where fi, fn, gi, gn are given by (51). Then, presto,

fog = (Z? fiog: faogn). (53)

This important formula is another way of stating the rule by which we defined
melding, Eq. (37).

Caution: The notations above need to be understood carefully, because the
subfunctions f; and fj, in (50) might not be the same as the f; and f; in (52).
Suppose, for example, that f = x5 V z3 while g = z1 @ z3. Then Eq. (50) holds
with f, = 2 and f = (%27 fi: fn), where f; = 3 and f, = 1. We also have
gy =1 and g = (%17 z3: T3). But in (52) we use the same branch variable z,, for
both functions, and v = min(f,, g,) = 1 in our example; so Eq. (52) holds with
f=(x1? fir fn) and fi = fn = 22 V x3.

Every node of a BDD base represents a Boolean function. Furthermore, a
BDD base is reduced; therefore two of its functions or subfunctions are equal
if and only if they correspond to exactly the same node. (This convenient
uniqueness property was not true in Algorithm S.)

Formulas (51)—(53) immediately suggest a recursive way to compute f A g:

If f A g has an obvious value, return it.
Otherwise represent f and g as in (52);

AND(f,9) = compute r; + AND(f;, g1) and ry, < AND(fh, gn); (54)
return the function (z,? r;: rp).

(Recursions always need to terminate when a sufficiently simple case arises. The
“obvious” values in the first line correspond to the terminal cases f A1 = f,
1Ng=g, fAN0=0Ag=0,and f Ag = f when f =g.) When f and g are
the functions in our example above, (54) reduces f A g to the computation of
(zoVz3) Az and (zoVrs)AZ3. Then (z2Vr3)Azs reduces to z3Azs and 1Az3; ete.

But (54) is problematic if we simply implement it as stated, because every
nonterminal step launches two more instances of the recursion. The computation
explodes, with 2% instances of AND when we're k levels deep!

Fortunately there’s a good way to avoid that blowup. Since f has only B(f)
different subfunctions, at most B(f)B(g) distinctly different calls of AND can

226 COMBINATORIAL SEARCHING 7.1.4

arise. To keep a lid on the computations, we just need to remember what we’ve
done before, by making a memo of the fact that f A g = r just before returning
r as the computed value. Then when the same subproblem occurs later, we
can retrieve the memo and say, “Hey, we’ve already been there and done that.”
Previously solved cases thereby become terminal; only distinct subproblems can
generate new ones. (Chapter 8 will discuss this memoization technique in detail.)

The algorithm in (54) also glosses over another problem: It’s not so easy to
“return the function (Z,? r;: ry),” because we must keep the BDD base reduced.
If r; = rp, we should return the node r;; and if r; # rp, we need to decide
whether the branch node (Z,? 7;: 71,) already exists, before creating a new one.

Thus we need to maintain additional information, besides the BDD nodes
themselves. We need to keep memos of problems already solved; we also need
to be able to find a node by its content, instead of by its address. The search
algorithms of Chapter 6 now come to our rescue by telling us how to do both of
these things, for example by hashing. To record a memo that f A g = r, we can
hash the key ‘(f, A, g)” and associate it with the value r; to record the existence
of an existing node (V,LO, HI), we can hash the key ‘(V,LO,HI)’ and associate
it with that node’s memory address.

The dictionary of all existing nodes (V,LO, HI) in a BDD base is traditionally
called the unique table, because we use it to enforce the all-important uniqueness
criterion that forbids duplication. Instead of putting all that information into
one giant dictionary, however, it turns out to be better to maintain a collection
of smaller unique tables, one for each variable V. With such separate tables we
can efficiently find all nodes that branch on a particular variable.

The memos are handy, but they aren’t as crucial as the unique table entries.
If we happen to forget the isolated fact that f A g = r, we can always recompute
it again later. Exponential blowup won’t be worrisome, if the answers to the
subproblems f; A g; and fn A g are still remembered with high probability.
Therefore we can use a less expensive method to store memos, designed to do
a pretty-good-but-not-perfect job of retrieval: After hashing the key ‘(f, A, g)’
to a table position p, we need look for a memo only in that one position, not
bothering to consider collisions with other keys. If several keys all share the same
hash address, position p will record only the most recent relevant memo. This
simplified scheme will still be adequate in practice, as long as the hash table is
large enough. We shall call such a near-perfect table the memo cache, because
it is analogous to the hardware caches by which a computer tries to remember
significant values that it has dealt with in relatively slow storage units.

Okay, let’s flesh out algorithm (54) by explicitly stating how it interacts with
the unique tables and the memo cache:

If f A g has an obvious value, return it.

Otherwise, if f A g =7 is in the memo cache, return r.
Otherwise represent f and g as in (52);

compute r; < AND(f7, g;) and r, < AND(fr, gn);

set r <= UNIQUE(v, ry, r), using Algorithm U;

put ‘f A g =7’ into the memo cache, and return r.

AND(f,g) = (55)

7.1.4 BINARY DECISION DIAGRAMS 227

Algorithm U (Unique table lookup). Given (v,p,q), where v is an integer while
p and ¢ point to nodes of a BDD base with variable rank > v, this algorithm re-
turns a pointer to a node UNIQUE (v, p, ¢) that represents the function (Z,? p: q).
A new node is added to the base if that function wasn’t already present.

Ul. [Easy case?] If p = ¢, return p.
U2. [Check the table.] Search variable z,’s unique table using the key (p, q). If
the search successfully finds the value r, return r.

U3. [Create a node.] Allocate a new node 7, and set V(r) « v, LO(r) + p,
HI(r) < g. Put r into z,’s unique table using the key (p,q). Return r. |

Notice that we needn’t zero out the memo cache after finishing a top-level
computation of AND(f,g). Each memo that we have made states a relationship
between nodes of the structure; those facts are still valid, and they might be
useful later when we want to compute AND(f, g) for new functions f and g.

A refinement of (55) will enhance that method further, namely to swap
f < g if we discover that f > g when f A g isn’t obvious. Then we won’t have
to waste time computing f A g when we’ve already computed g A f.

With simple changes to (55), the other binary operators OR(f, g), XOR(f, g),
BUTNOT(f,g), NOR(f,g), ... can also be computed readily; see exercise 81.

The combination of (55) and Algorithm U looks considerably simpler than
Algorithm S. Thus one might well ask, why should anybody bother to learn the
other method? Its breadth-first approach seems quite complex by comparison
with the “depth-first” order of computation in the recursive structure of (55); yet
Algorithm S is able to deal only with BDDs that are disjoint, while Algorithm U
and recursions like (55) apply to any BDD base.

Appearances can, however, be deceiving: Algorithm S has been described
at a low level, with every change to every element of its data structures spelled
out explicitly. By contrast, the high-level descriptions in (55) and Algorithm U
assume that a substantial infrastructure exists behind the scenes. The memo
cache and the unique tables need to be set up, and their sizes need to be carefully
adjusted as the BDD base grows or contracts. When all is said and done, the
total length of a program that implements Algorithms (55) and U properly “from
scratch” is roughly ten times the length of a similar program for Algorithm S.

Indeed, the maintenance of a BDD base involves interesting questions of
dynamic storage allocation, because we want to free up memory space when
nodes are no longer accessible. Algorithm S solves this problem in a last-in-first-
out manner, by simply keeping its nodes and templates on sequential stacks, and
by making do with a single small hash table that can easily be integrated with
the other data. A general BDD base, however, requires a more intricate system.

The best way to maintain a dynamic BDD base is probably to use reference
counters, as discussed in Section 2.3.5, because BDDs are acyclic by definition.
Therefore let’s assume that every BDD node has a REF field, in addition to V, LO,
and HI. The REF field tells us how many references exist to this node, either
from LO or HI pointers in other nodes or from external root pointers F; as in (36).
For example, the REF fields for the nodes labeled @ in (36) are respectively 4,

228 COMBINATORIAL SEARCHING 7.1.4

1, and 2; and all of the nodes labeled @ or @ or @ in that example have
REF = 1. Exercise 82 discusses the somewhat tricky issue of how to increase
and decrease REF counts properly in the midst of a recursive computation.

A node becomes dead when its reference count becomes zero. When that
happens, we should decrease the REF fields of the two nodes below it; and then
they too might die in the same manner, recursively spreading the plague.

But a dead node needn’t be removed from memory immediately. It still
represents a potentially useful Boolean function, and we might discover that we
need that function again as our computation proceeds. For example, we might
find a dead node in step U2, because pointers from the unique table don’t get
counted as references. Likewise, in (55), we might accidentally stumble across a
cache memo telling us that f A g = r, when r is currently dead. In such cases,
node r comes back to life. (And we must increase the REF counts of its LO and
HI descendants, possibly resurrecting them recursively in the same fashion.)

Periodically, however, we will want to reclaim memory space by removing
the deadbeats. Then we must do two things: We must purge all memos from
the cache for which either f, g, or r is dead; and we must remove all dead
nodes from memory and from their unique tables. See exercise 84 for typical
heuristic strategies by which an automated system might decide when to invoke
such cleanups and when to resize the tables dynamically.

Because of the extra machinery that is needed to support a BDD base,
Algorithm U and top-down recursions like (55) cannot be expected to match the
efficiency of Algorithm S on one-shot examples such as the monotone-function
function p, in (49). The running time is approximately quadrupled when the
more general approach is applied to this example, and the memory requirement
grows by a factor of about 2.4.

But a BDD base really begins to shine in numerous other applications.
Suppose, for example, that we want the formulas for each bit of the product
of two binary numbers,

(z1. Zman)2 = (1. Zm)2 X (Y1 .- Yn)2- (56)
Clearly z1...2m = 0...0 when n = 0, and the simple recurrence
(1. m)2 X (Y1 YnUnt1)2 = (21 Zman0)2 + (T1 .-) 2Uns1 (57)

allows us to increase n by 1. This recurrence is easy to code for a BDD base.
Here’s what we get when m = n = 3, with subscripts chosen to match the
analogous diagram for binary addition in (36):

T1T3T5

X ToX4Tg

fefsfafafaofr

7.1.4 BINARY DECISION DIAGRAMS 229

Clearly multiplication is much more complicated than addition, bitwise. (Indeed,
if it weren’t, factorization wouldn’t be so hard.) The corresponding BDD base
for binary multiplication when m = n = 16 is huge, with B(f1,..., fs2) =
136,398,751 nodes. It can be found after doing about 56 gigamems of calculation
with Algorithm U, in 6.3 gigabytes of memory—including some 1.9 billion
invocations of recursive subroutines, with hundreds of dynamic resizings of the
unique tables and the memo cache, plus dozens of timely garbage collections.
A similar calculation with Algorithm S would be almost unthinkable, although
the individual functions in this particular example do not share many common
subfunctions: It turns out that B(f1) + --- + B(f32) = 168,640,131, with the
maximum occurring at the “middle bit,” B(f16) = 38,174,143.

*Ternary operations. Given three Boolean functions f = f(z1,...,2n), g =
g(z1,...,xy), and h = h(zy,...,x,), not all constant, we can generalize (52) to

f=@,? fir fn) and g = (z,? gi: gn) and h = (z,7 hy: hy), (59)
by taking v = min(f,, g, hy). Then, for example, (53) generalizes to

(fgh) = (27 (figthi): (fngnhn)); (60)
and similar formulas hold for any ternary operation on f, g, and h, including
(f? g: h) = (J_Zv? (ﬁ? q: hl): (.fh? gh: hh)) (61)

(The reader of these formulas will please forgive the two meanings of ‘A’ in ‘hp’.)
Now it’s easy to generalize (55) to ternary combinations like multiplexing:

If (f? g: h) has an obvious value, return it.

Otherwise, if (f? g: h) = r is in the memo cache, return r.
Otherwise represent f, g, and h as in (59); (62)
compute r; + MUX(f, gi, hy) and rp, < MUX(fn, gn, hp);

set r « UNIQUE (v, r;,), using Algorithm Uj

put ‘(f? g: h) = r’ into the memo cache, and return r.

(See exercises 86 and 87.) The running time is O(B(f)B(g)B(h)). The memo
cache must now be consulted with a more complex key than before, including
three pointers (f,g,h) instead of two, together with a code for the relevant
operation. But each memo (op, f, g, h, r) can still be represented conveniently in,
say, two octabytes, if the number of distinct pointer addresses is at most 231.
The ternary operation f A g A h is an interesting special case. We could
compute it with two invocations of (55), either as AND(f, AND(g,h)) or as
AND(g, AND(h, f)) or as AND(h,AND(f,g)); or we could use a ternary sub-
routine, ANDAND(f, g, h), analogous to (62). This ternary routine first sorts
the operands so that the pointers satisty f < g < h. Then if f = 0, it returns 0;
if f=1or f =g, it returns AND(g, h); if g = h it returns AND(f, g); otherwise
1 < f < g < h and the operation remains ternary at the current level of recursion.
Supposev for examplev that f = N5(1‘17 T3y ... 7:1763)7 9= M5(I25 Lgy ... 7:1764)7
and h = Ggg(T1,...,T64), as in Eq. (49). The computation AND(f, AND(g,h))

MUX(f,g,h) =

230 COMBINATORIAL SEARCHING 7.1.4

costs 0.2 + 6.8 = 7.0 megamems in the author’s experimental implementation;
AND(g, AND(h, f)) costs 0.1 + 7.0 = 7.1; AND(h, AND(f, g)) costs 24.4 4+ 5.6 =
30.0(!); and ANDAND(f, g,h) costs 7.5. So in this instance the all-binary
approach wins, if we don’t choose a bad order of computation. But sometimes
ternary ANDAND beats all three of its binary competitors (see exercise 88).

*Quantifiers. If f = f(xy,...,2,) is a Boolean function and 1 < j < n, logicians
traditionally define ezistential and universal quantification by the formulas

Jz; f(x1,...,zn) = foV i and Vz; f(z1,...,25) = fo A f1, (63)

where f. = f(z1,...,2j-1,¢,%j41,...,2,). Thus the quantifier ‘Jz;’, pro-
nounced “there exists x;,” changes f to the function of the remaining variables
(Z1,...,%j—1,Tj41,...,%,) that is true if and only if at least one value of z;
satisfies f(z1,...,2n); the quantifier ‘Va;’, pronounced “for all x;,” changes f
to the function that is true if and only if both values of x; satisfy f.

Several quantifiers are often applied simultaneously. For example, the for-
mula 3zo Jz3 Jze f(21,...,2,) stands for the OR of eight terms, representing
the eight functions of (x1, x4, x5, T7, ..., T,) that are obtained when we plug the
values 0 or 1 into the variables zs, z3, and zg in all possible ways. Similarly,
Vo VasVae f(21,...,2,) stands for the AND of those same eight terms.

One common application arises when the function f(i1,...,%;71,..+,Jm)
denotes the value in row (iy ...4;)2 and column (j; ... jm)2 of a 2! x 2™ Boolean
matrix F. Then the function h(iy,...,4;k1,..., k) given by

Eljl---E!jm(f(ilv'"7il;j17"'ajm) /\g(jlv'-'ajm;kla-'-akn)) (64)

represents the matrix H that is the Boolean product F G.

A convenient way to implement multiple quantification in a BDD base has
been suggested by R. L. Rudell: Let g = x;, A--- A xj,, be a conjunction of
positive literals. Then we can regard Jx;, ...3x; f as the binary operation
f E g, implemented by the following variant of (55):

If f E g has an obvious value, return it.

Otherwise represent f and g as in (52);

if v # f,, return EXISTS(f, gn)-

Otherwise, if f E g = r is in the memo cache, return r. 6
Otherwise, 7, + EXISTS(f1, gn) and rp, < EXISTS(fn, gn); (65)
if v # gy, set 7 + UNIQUE (v, ry,) using Algorithm U,
otherwise compute 7 <~ OR(r;, r3);

put ‘f E g =7’ into the memo cache, and return r.

EXISTS(f,g) =

(See exercise 94.) The E operation is undefined when g does not have the stated
form. Notice how the memo cache nicely remembers existential computations
that have gone before.

The running time of (65) is highly variable—not like (55) where we know
that O(B(f)B(g)) is the worst possible case —because m OR operations are
invoked when g specifies m-fold quantification. The worst case now can be as

7.1.4 BINARY DECISION DIAGRAMS 231

bad as order B(f)2™, if all of the quantification occurs near the root of the BDD
for f; this is only O(B(f)?) if m = 1, but it might become unbearably large as m
grows. On the other hand, if all of the quantification occurs near the sinks, the
running time is simply O(B(f)), regardless of the size of m. (See exercise 97.)

Several other quantifiers are worthy of note, and equally easy, although they
aren’t as famous as 3 and V. The Boolean difference and the yes/no quantifiers
are defined by formulas analogous to (63):

dz; f = fo @ f1 Az f = fo A fi; Nz; f = fo A f1. (66)
The Boolean difference, d, is the most important of these: Jx; f is true for
all values of {z1,...,2;_1,2j41,...,2n} such that f depends on z;. If the
multilinear representation of f is f = (z;g + h) mod2, where g and h are
multilinear polynomials in {z1,...,2; 1,%41,...,2,}, then dz; f = g mod 2.
(See Eq. 7.1.1-(19).) Thus acts like a derivative in calculus, over a finite field.

A Boolean function f(z1,...,z,) is monotone (nondecreasing) if and only
if \/;l:1 Nz; f = 0, which is the same as saying that Nx; f = 0 for all 7. However,
exercise 105 presents a faster way to test a BDD for monotonicity.

Let’s consider now a detailed example of existential quantification that is
particularly instructive. If G is any graph, we can form Boolean functions IND (z)
and KER (z) for its independent sets and kernels as follows, where z is a bit vector
with one entry z, for each vertex v of G:

IND(z) == \/ (T4 A Ty); (67)
KER(z) = IND(z) A [\ (20 vV \/ 2u). (68)

We can form a new graph G whose vertices are the kernels of G, namely the
vectors = such that KER(z) = 1. Let’s say that two kernels x and y are adjacent
in G if they differ in just the two entries for v and v, where (z,,2,) = (1,0) and
(Yu,Yo) = (0,1), in which case we’ll also have u—v. Kernels can be considered
as certain ways to place markers on vertices of G; moving a marker from one
vertex to a neighboring vertex produces an adjacent kernel. Formally we define

ADJ(z,y) = [v(z ® y) =2] AKER(z) AKER(y). (69)

Then x —y in G if and only if ADJ(z,y) = 1.

Notice that, if © = x;...x2,, the function [v(x)=2] is the symmetric func-
tion Sa(z1,...,2,). Furthermore f(z @ y) has at most 3 times as many nodes
as f(z), if we interleave the variables zipperwise so that the branching order is
(1,915 -+, TnyYn). So B(ADJ) won’t be extremely large unless B(KER) is large.

Quantification now makes it easy to express the condition that x is an
isolated verter of G (a vertex of degree 0, a kernel without neighbors):

ISO(z) = KER(z) A =3y ADJ(z,y). (70)

For example, suppose G is the graph of contiguous states in the USA, as
in (18). Then each kernel vector = has 49 entries z, for v € {ME,NH,...,CA}.

232 COMBINATORIAL SEARCHING 7.1.4

The graph G has 266,137 vertices, and we have observed earlier that the BDD
sizes for IND(z) and KER (x) are respectively 428 and 780 (see (17)). In this case
ADJ(z,y) in (69) has a BDD of only 7260 nodes, even though it’s a function of
98 Boolean variables. The BDD for 3y ADJ(z,y), which describes all kernels
of G that have at least one neighbor, turns out to have 842 nodes; and the one
for ISO(z) has only 77. We find that G has exactly three isolated kernels, namely

and another that is a blend of these two. Using the algorithms above, this entire
calculation, starting from a list of the vertices and edges of G (not G), can be
carried out with a total cost of about 4 megamems, in about 1.6 megabytes of
memory; that’s only about 15 memory accesses per kernel of G.

In a similar fashion we can use BDDs to work with other “implicit graphs,”
which have more vertices than could possibly be represented in memory, if those
vertices can be characterized as the solution vectors of Boolean functions. When
the functions aren’t too complicated, we can answer queries about those graphs
that could never be answered by representing the vertices and arcs explicitly.

*Functional composition. The piéce de résistance of recursive BDD algorithms
is a general procedure to compute f(g1,92,- .., 9gn), where f is a given function of
{z1,22,...,2,} and so is each argument g;. Suppose we know a number m > 0
such that g; = x; for m < j < n; then the procedure can be expressed as follows:

If f=0or f =1, return f.

Otherwise suppose f = (Z,? fi: fn), as in (50);

if v > m, return f; otherwise, if f(g1,...,9n)=7
is in the memo cache, return .

Compute r; <+ COMPOSE(f1,91,---,9n) (72)
and rp < COMPOSE(fr,91,---,9n);

set r < MUX(gy, 71, 75) using (62);

put ‘f(g1,...,9n) = r’ into the cache, and return 7.

COMPOSE(f,g1,...,9n) =

The representation of cache memos like ‘f(g1,...,9,) = r’ in this algorithm is a
bit tricky; we will discuss it momentarily.

Although the computations here look basically the same as those we’ve been
seeing in previous recursions, there is in fact a huge difference: The functions 7;
and 7, in (72) can now involve all variables {z1,...,2,}, not just the z’s near
the bottom of the BDDs. So the running time of (72) might actually be huge.
But there also are many cases when everything works together harmoniously and
efficiently. For example, the computation of [v(z @ y) = 2] in (69) is no problem.

7.1.4 BINARY DECISION DIAGRAMS 233

The key of a memo like ‘f(g1,...,9n) = 7’ should not be a completely
detailed specification of (f,g1,...,9n), because we want to hash it efficiently.
Therefore we store only ‘f[G] = r’, where G is an identification number for the
sequence of functions (g1, . . ., gn). Whenever that sequence changes, we can use a
new number G; and we can remember the G’s for special sequences of functions
that occur repeatedly in a particular computation, as long as the individual
functions g; don’t die. (See also the alternative scheme in exercise 102.)

Let’s return to the graph of contiguous states for one more example. That
graph is planar; suppose we want to color it with four colors. Since the colors
can be given 2-bit codes {00,01,10,11}, it’s easy to express the valid colorings
as a Boolean function of 98 variables that is true if and only if the color codes
ab are different for each pair of adjacent states:

COLOR (ayg, bug, - - -, Gca, bea) =

IND(CLME A bMEa BN ¢ 7o)} A\ bCA) A\ IND(CLME A BMEa e ,aca A BCA) B (73)
A IND(ELME N bME; ey acp N\ bCA) A IND(ELME N bMEa ey aca N\ bCA)-

Each of the four INDs has a BDD of 854 nodes, which can be computed via (72)
with a cost of about 70 kilomems. The COLOR function turns out to have only
25579 BDD nodes. Algorithm C now quickly establishes that the total number
of ways to 4-color this graph is exactly 25,623,183,458,304 —or, if we divide
by 4! to remove symmetries, about 1.1 trillion. The total time needed for this
computation, starting from a description of the graph, is less than 3.5 megamems,
in 2.2 megabytes of memory. (We can also find random 4-colorings, etc.)

Nasty functions. Of course there also are functions of 98 variables that aren’t
nearly so nice as COLOR. Indeed, the total number of 98-variable functions is
22°%; exercise 108 proves that at most 22°° of them have a BDD size less than
a trillion, and that almost all Boolean functions of 98 variables actually have
B(f) ~ 2%8/98 ~ 3.2 x 10?". There’s just no way to compress 2% bits of data
into a small space, unless that data happens to be highly redundant.

What’s the worst case? If f is a Boolean function of n variables, how large
can B(f) be? The answer isn’t hard to discover, if we consider the profile of

a given BDD, which is the sequence (bo,...,b,_1,b,) when there are by nodes
that branch on variable zx1 and b, sinks. Clearly
B(f)=bo+ - +bn1+bn. (74)
We also have bg < 1, by <2, by <4, by <8, and in general
by < 28, (75)

because each node has only two branches. Furthermore b, = 2 whenever f isn’t
constant; and b, 1 < 2, because there are only two legal choices for the LO and
HI branches of @ Indeed, we know that by is the number of beads of order
n — k in the truth table for f, namely the number of distinct subfunctions of
(Zg+1,-.-,%,) that depend on zy11 after the values of (z1,...,7x) have been
specified. Only 22™ — 22" 7" beads of order m are possible, so we must have

by < 22 22" for0<k<n. (76)

234 COMBINATORIAL SEARCHING 7.1.4

When n = 11, for instance, (75) and (76) tell us that (bg,...,b11) is at most
(1,2, 4,8, 16, 32, 64, 128, 240, 12, 2, 2). (77)
Thus B(f) <1+2+---+128 4240+ --- + 2 = 255 + 256 = 511 when n = 11.
This upper bound is in fact obtained with the truth table
00000000 00000001 00000010 ... 11111110 11111111, (78)

or with any string of length 2!! that is a permutation of the 256 possible 8-bit
bytes, because all of the 8-bit beads are clearly present, and because all of the
subtables of lengths 16, 32, ..., 2! are clearly beads. Similar examples can be
constructed for all n (see exercise 110). Therefore the worst case is known:

Theorem U. Every Boolean function f(z1,...,z,) has B(f) < U,, where
n—1

Uso=2+ > min(2¢,22" "~ 2
k=0

gn—k—1 gA(n—xn)

) =2 A g2 (g

Furthermore, explicit functions f,, with B(f,) = U, exist for alln. |

If we replace A by lg, the right-hand side of (79) becomes 2"/(n — lgn) +
2"/n — 1. In general, U, is u, times 2"/n, where the factor u, lies between 1
and 2+ O(%52). A BDD with about 2"+'/n nodes needs about n+ 1 —Ign bits
for each of two pointers in every node, plus lgn bits to indicate the variable for
branching. So the total amount of memory space taken up by the BDD for any
function f(z1,...,2,) is never more than about 22 bits, which is four times
the number of bits in its truth table, even if f happens to be one of the worst
possible functions from the standpoint of BDD representation.

The average case turns out to be almost the same as the worst case, if we
choose the truth table for f at random from among all 22" possibilities. Again the
calculations are straightforward: The average number of nodes is exactly

b = (27 =22) (22— (22 - 1)) 27, (80)

because there are 22" '— 22" “"" beads of order n — k and (22" "= 1)% truth
tables in which any particular bead does not occur. Exercise 112 shows that this
complicated-looking quantity by, always lies extremely close to the worst-case
estimate min(2F, 22" 22"7’“71), except for two values of k. The exceptional
levels occur when k &~ 2" % and the “min” has little effect. For example, the
average profile (b, ...,bn_1,bn) when n = 11 is approximately

(1.0,2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 127.4, 151.9, 12.0, 2.0, 2.0) (81)

when rounded to one decimal place, and these values are virtually indistinguish-
able from the worst case (77) except when k=7 or 8.

A related concept called a quasi-BDD, or “QDD,” is also important. Every
function has a unique QDD, which is similar to its BDD except that the root
node is always @, and every @ node for k < n branches to two nodes;
thus every path from the root to a sink has length n. To make this possible,

7.1.4 BINARY DECISION DIAGRAMS 235

we allow the LO and HI pointers of a QDD node to be identical. But the QDD
must still be reduced, in the sense that different nodes cannot have the same two
pointers (LO, HI). For example, the QDD for (zzax3) is

it has two more nodes than the corresponding BDD in Fig. 21. Notice that the
V fields are redundant in a QDD, so they needn’t be present in memory.

The quasi-profile of a function is (qo, - - -, gn—1,qn), Where gg_1 is the number
of @ nodes in the QDD. It’s easy to see that g is also the number of distinct
subtables of order n — k in the truth table, just as b is the number of distinct
beads. Every bead is a subtable, so we have

qr > by, for 0 < k < n. (83)

Furthermore, exercise 115 proves that
qr <1+bg+---+by_1 and qp <bp, +---+0b,, for0<k<n. (84)
Consequently each element of the quasi-profile is a lower bound on the BDD size:
B(f) > 2qx — 1, for 0 < k < m. (85)

Let Q(f) = qo + -+ + qn—1 + ¢n be the total size of the QDD for f. We
obviously have Q() > B(f), by (83). On the other hand Q(f) can’t be too
much bigger than B(f), because (84) implies that

Q) = (B +1). (56)

Exercises 116 and 117 explore other basic properties of quasi-profiles.
The worst-case truth table (78) actually corresponds to a familiar function
that we’ve already seen, the 8-way multiplexer

M3($U9, 210, %115 L1 - - - 7398) = Ti4(zoz1011)2" (87)

But we’ve renumbered the variables perversely so that the multiplexing now
occurs with respect to the last three variables (zg, 10, 711), instead of the first
three as in Eq. (30). This simple change to the ordering of the variables raises
the BDD size of M3 from 17 to 511; and an analogous change when n = 2™ +m
would cause B(M,,) to make a colossal leap from 2n — 2m + 1 to 27~ ™*1 — 1.

R. E. Bryant has introduced an interesting “navel-gazing” multiplexer called
the hidden weighted bit function, defined as follows:

hn(xl,...,xn) = T+ 4z, — Tvzs (88)

with the understanding that 2o = 0. For example, hy4(z1, 22, 23, 24) has the truth
table 000001111001 1011. He proved [IEEE Trans. C-40 (1991), 208-210] that
h, has a large BDD, regardless of how we might try to renumber its variables.

236 COMBINATORIAL SEARCHING 7.1.4

With the standard ordering of variables, the profile (by,...,b11) of hi; is
(1,2, 4,8, 15,27, 46, 40, 18, 7, 2, 2); (89)

hence B(hy1) = 172. The first half of this profile is actually the Fibonacci se-
quence in slight disguise, with by = Fi14 — k — 2. In general, h,, always has this
value of by, for k < n/2; thus its initial profile counts grow with order ¢* instead of
the worst-case rate of 2¥. This growth rate slackens after k surpasses n/2, so that,
for example, B(hs2) is only a modest 86,636. But exponential growth eventually
takes over, and B(h1go) is out of sight: 17,530,618,296,680. (When n = 100, the
maximum profile element is bsg = 2,947,635,944,748, which dwarfs by+- - -+bg9 =
139,583,861,115.) Exercise 125 proves that B(h,) is asymptotically ex™ +O(n?),

where s s
V27— V621 + /27 + V621
X o
= 1.32471 79572 44746 02596 09088 54478 09734 07344+ (90)

is the so-called “plastic constant,” the positive root of x> = x + 1, and the
coefficient ¢ is Ty — 1+ 14/(3 + 2x) ~ 10.75115.

On the other hand we can do substantially better if we change the order
in which the variables are tested in the BDD. If f(z1,...,,) is any Boolean
function and if 7 is any permutation of {1,...,n}, let us write

.fﬂ—<x17---axn) = f(xl'/ra---axn'/r)- (91)
For example, if f(z1,z2,%3,74) = (3 V (x1 A 74)) A (T2 V T4) and if (17,27,
371-747[-) = (372747 1)7 then fﬂ—(x]_“’ﬂg,l‘g,le) = (I4 N (Ig A J;1)) A (1_72 \ i‘l)a and
we have B(f) = 10, B(f™) = 6 because the BDDs are

The BDD for f™ corresponds to a BDD for f that has a nonstandard ordering,
in which a branch is permitted from @ to @ only if i < jm:

(93)

The root is @, where ¢ = 17~ is the index for which 7 = 1. When the branch
variables are listed from the top down, we have (4, 2w, 17, 37) = (1,2, 3,4).

7.1.4 BINARY DECISION DIAGRAMS 237

Applying these ideas to the hidden weighted bit function, we have

hg(mla"-axn) = x(11+ +x,)T (94)
with the understanding that Or = 0 and z¢ = 0. For example, h(0,0,1) =1 if
(1m,2m,3m) = (3,1,2), because (4,4 z,42,)r = 3 = 1. (See exercise 120.)

Element ¢; of the quasi-profile counts the number of distinct subfunctions
that arise when the values of z; through zj are known. Using (94), we can

represent all such subfunctions by means of a slate of options [ro,...,Tn_k],
where r; is the result of the subfunction when z3411 +--- + =, = 5. Suppose
Ty =c1, ..., Tp = Cp,and let s = ¢+ - +cg. Then 7 = c(yyj)x if (s+7)m < ks

otherwise r; = z(y4). However, we set ro <— 0 if s > k, and 7, < 1 if
(s +n—k)m > k, so that the first and last options of every slate are constant.

For example, calculations show that the following permutation 17 ... 1007
reduces the BDD size of higp from 17.5 trillion to B(h],,) = 1,124,432,105:

2 4 6 8 10 12 14 16 18 20 97 57 77 37 87 47 67 27 92 52

72 32 82 42 62 22 100 60 80 40 90 50 70 30 95 55 75 35 85 45

65 25 98 58 78 38 88 48 68 28 93 53 73 33 83 43 63 23 99 59 (95)

79 39 89 49 69 29 94 54 74 34 84 44 64 24 96 56 76 36 86 46

66 26 91 51 71 31 81 41 61 21 19 17 15 13 11 9 7 5 3 1
Such calculations can be based on an enumeration of all slates that can arise, for
0 < s <k < n. Suppose we’ve tested z1, ..., zg3 and found that z; = [j <42],
say, for 1 < 57 < 83. Then s = 42; and the subfunction of the remaining 17
variables (I84, ey Ilog) is given by the slate [’I"g, N ,7”17] = [625, 98, C58,C78,C38,
Igs, C48, Ce8,C28, 93, C53, Cr3,C33,C83, C43, Cg3,C23, xgg], which reduces to

[17x987 Oa 07 17x887 Oa 07 1,1‘937 Oa 07 1707 Oa 07 1’ 1} (96)

This is one of the 2!4 subfunctions counted by gss when s = 42. Exercise 124
explains how to deal similarly with the other values of k£ and s.
We're ready now to prove Bryant’s theorem:

Theorem B. The BDD size of h], exceeds 2ln/5] | for all permutations .

Proof. Observe first that two subfunctions of h] are equal if and only if they
have the same slate. For if [rq,...,7,] # [r,...,7, ;], suppose r; # 7. If
both r; and 7’ are constant, the subfunctions differ when g1 + -+ 4+ z, = j.
If r; is constant but 7“;- = z;, we have 0 < j < n — k; the subfunctions differ
because 41 + -+ + z, can equal j with x; # r;. And if r; = z; but r; =z,
with 4 # ¢/, we can have zg 1 + - + 2, = j with z; # z;. (The latter case can
arise only when the slates correspond to different offsets s and s'.)

Therefore gi is the number of different slates [ro,...,7,—x]. Exercise 123

proves that this number, for any given k, n, and s as described above, is exactly

() (e 020 =) oo () () o

where w is the number of indices j such that s < j < s+n —k and jm < k.
Now consider the case k = [3n/5|+1, and let s = k—[n/2], s’ = |n/2] + 1.
(Think of n = 100, k = 61, s = 11, s’ = 51. We may assume that n > 10.) Then

238 COMBINATORIAL SEARCHING 7.1.4

w+w =k —w”, where w” counts the indices with jm < k and either j < s
orj>s +n—k Sincew” <(s—1)+ (k—s") =2k —2—n, we must have
w+w >n+2—k=[2n/5] + 1. Hence either w > |n/5| or w’ > |n/5]; and
in both cases (97) exceeds 217/5/=1_ The theorem follows from (85). 1

Conversely, there’s always a permutation 7 such that B(hT) = O(29-20297),

although the constant hidden by O-notation is quite large. This result was proved
by B. Bollig, M. Lobbing, M. Sauerhoff, and I. Wegener, Theoretical Informatics
and Applications 33 (1999), 103-115, using a permutation like (95): The first
indices, with jm < n/5, come alternately from j > 9n/10 and j < n/10; the
others are ordered by reading the binary representation of 9n/10 — j from right
to left (colex order).

Let’s also look briefly at a much simpler example, the permutation function
Pp(z1,...,2m2), which equals 1 if and only if the binary matrix with &(;_1)m;
in row ¢ and column j is a permutation matrix:

m
Pr(21,. .., 2m2) = /\ ST —1)ym+15 Ti—1)ym+2> - - s L(i—1)ym+m)
i=1 m
A /\ S1(Zj Tmgjo- s Tm2_myj)- (98)
j=1
In spite of its simplicity, this function cannot be represented with a small BDD,
under any reordering of its variables:

Theorem K. The BDD size of PT exceeds m2™~!, for all permutations .

Proof. [See 1. Wegener, Branching Programs and Binary Decision Diagrams
(SIAM, 2000), Theorem 4.12.3.] Given the BDD for P, notice that each of the
m! vectors x such that PT(x) = 1 traces a path of length n = m? from the root
to [T]; every variable must be tested. Let vi(x) be the node from which the
path for x takes its kth HI branch. This node branches on the value in row 7 and
column j of the given matrix, for some pair (7, 7) = (ix(z), jx()).

Suppose vi(z) = vp/(z'), where z # z’. Construct z” by letting it agree
with z up to vg(z) and with z’ thereafter. Then PT(z") = 1; consequently we
must have k = k’. In fact, this argument shows that we must also have

{ix(2),i2(2), ... ig—1(2)} = {ir(2"),d2(2"),. .., ik—1(2")}
and {j1(z), j2(@), ..., Je—1(2)} = {j1(2'), ja(@’), ..., k-1 (")} (99)
Imagine m colors of tickets, with m! tickets of each color. Place a ticket of
color k on node vi(z), for all k and all z. Then no node gets tickets of different
colors; and no node of color k gets more than (k— 1)! (m — k)! tickets altogether,
by Eq. (99). Therefore at least m!/((k — 1)! (m — k)!) = k(") different nodes

must receive tickets of color k. Summing over k gives m2™~! non-sink nodes. |

Exercise 184 shows that B(P,,) is less than m2™%! so the lower bound in
Theorem K is nearly optimum except for a factor of 4. Although the size grows
exponentially, the behavior isn’t hopelessly bad, because m = y/n. For example,
B(Py) is only 38,797,317, even though Py is a Boolean function of 400 variables.

7.1.4 BINARY DECISION DIAGRAMS 239

*Optimizing the order. Let By, (f) and Bpax(f) denote the smallest and
largest values of B(f™), taken over all permutations 7 that can prescribe an
ordering of the variables. We’ve seen several cases where By, and Bp.x are
dramatically different; for example, the 2™-way multiplexer has Buin(My,) & 2n
and Bmax(Mm) ~ 2"/n, when n = 2™ 4+ m. And indeed, simple functions for
which a good ordering is crucial are not at all unusual. Consider, for instance,

flr1, 22, .. ,2n) = (B1VZ) A (E3sVxa) A A(Tp—1V,), neven; (100)
this is the important subset function [z1z3...%n_1 CXoZy...2Ty], and we have

B(f) = Bmin(f) = n+ 2. But the BDD size explodes to B(f™) = Bmax(f) =
2n/2+1 when 7 is “organ-pipe order,” namely the ordering for which
fT(@1, @, xn) = (B1Van) AN(Z2V Tn_1) Ao A(Fnj2 V Tnyzi1). (101)
And the same bad behavior occurs for the ordering [z1 ... %y /2 CTpjot1 ... Tnl.
In these orderings the BDD must “remember” the states of n/2 variables, while
the original formulation (100) needs very little memory.
Every Boolean function f has a master profile chart, which encapsulates the
set of all its possible sizes B(f™). If f has n variables, this chart has 2" vertices,
one for each subset of the variables; and it has n2"~! edges, one for each pair of

subsets that differ in just one element. For example, the master profile chart for
the function in (92) and (93) is

(102)

{1,2,3,4}

Every edge has a weight, illustrated here by the number of lines; for example,
the weight between {1,2} and {1, 2,3} is 3. The chart has the following interpre-
tation: If X is a subset of k variables, and if z ¢ X, then the weight between X
and X Uz is the number of subfunctions of f that depend on x when the variables
of X have been replaced by constants in all 2* possible ways. For example, if
X = {17 2}7 we have f(0,0,$3,1'4) = I3, f(oa]-a I3,$4) = f(]-a]-a I3,$4) = 1'3/\:2'47
and f(1,0,z3,74) = 73 V x4; all three of these subfunctions depend on x3, but
only two of them depend on z4, as shown in the weights below {1,2}.

There are n! paths of length n from () to {1,...,n}, and we can let the path
0 — {a1} — {a1,a2} — -+ = {a1,...,a,} correspond to the permutation 7
if agm =1, agw = 2, ..., apm = n. Then the sum of the weights on path w is
B(f™), if we add 2 for the sink nodes. For example, the path § — {4} — {2,4} —
{1,2,4} — {1,2, 3,4} yields the only way to achieve B(f™) = 6 as in (93).

240 COMBINATORIAL SEARCHING 7.1.4

Notice that the master profile chart is a familiar graph, the n-cube, whose
edges have been decorated so that they count the number of beads in various sets
of subfunctions. The graph has exponential size, n2"~!; yet it is much smaller
than the total number of permutations, n!. When n is, say, 25 or less, exercise 138
shows that the entire chart can be computed without great difficulty, and we can
find an optimum permutation for any given function. For example, the hidden
weighted bit function turns out to have Bpn(has) = 2090 and Bpax(has) =
35441; the minimum is achieved with (1m,...,257) = (3, 5, 7, 9, 11, 13, 15, 17,
25, 24, 23, 22, 21, 20, 19, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1), while the maximum
results from a strange permutation (22, 19, 17, 25, 15, 13, 11, 10, 9, 8, 7, 24, 6,
5,4,3,2,12, 1, 14, 23, 16, 18, 20, 21) that tests many “middle” variables first.

Instead of computing the entire master profile chart, we can sometimes save
time by learning just enough about it to determine a path of least weight. (See
exercise 140.) But when n grows and functions get more weird, we are unlikely
to be able to determine B (f) exactly, because the problem of finding the best
ordering is NP-complete (see exercise 137).

We’ve defined the profile and quasi-profile of a single Boolean function f, but
the same ideas apply also to an arbitrary BDD base that contains m functions
{fi,---y fm}. Namely, the profile is (bg,...,b,) when there are by nodes on
level k, and the quasi-profile is (qo, . . ., g,) when there are g nodes on level k of
the corresponding QDD base; the truth tables of the functions have by different
beads of order n — k, and ¢, different subtables. For example, the profile of the
(4 + 4)-bit addition functions {f1, fa, f3, fa, f5} in (36) is (2,4,3,6,3,6,3,2,2),
and the quasi-profile is worked out in exercise 144. Similarly, the concept of
master profile chart applies to m functions whose variables are reordered simul-
taneously; and we can use it to find Buin(f1, ..., fm) and Bunax(f1,--., fm), the
minimum and maximum of by + - - - + b, taken over all profiles.

*Local reordering. What happens to a BDD base when we decide to branch
on xo first, then on =y, x3, ..., £,7 Figure 26 shows that the structure of the
top two levels can change dramatically, but all other levels remain the same.

A closer analysis reveals, in fact, that this level-swapping process isn’t
difficult to understand or to implement. The @ nodes before swapping can
be divided into two kinds, “tangled” and “solitary,” depending on whether they
have @ nodes as descendants; for example, there are three tangled nodes at
the left of Fig. 26, pointed to by s;, s, and s3, while s4 points to a solitary
node. Similarly, the nodes before swapping are either “visible” or “hidden,”
depending on whether they are independent source functions or accessible only
from @ nodes; all four of the @ nodes at the left of Fig. 26 are hidden.

After swapping, the solitary @ nodes simply move down one level; but
the tangled nodes are transmogrified into @s, according to a process that we
shall explain shortly. The hidden @ nodes disappear, if any, and the visible ones
simply move up to the top level. Additional nodes might also arise during the
transmogrification process; such nodes, labeled @, are called “newbies.” For ex-
ample, two newbies appear above ty at the right of Fig. 26. This process decreases
the total number of nodes if and only if the hidden nodes outnumber the newbies.

7.1.4 BINARY DECISION DIAGRAMS 241

S1 S2 S3 S4

Fig. 26. Interchanging the top two levels of a BDD base. Here (s1, s2, $3, S4) are source
functions; (t1,t2,ts,t4) are target nodes, representing subfunctions at lower levels.

The reverse of a swap is, of course, the same as a swap, but with the roles of
@ and @ interchanged. If we begin with the diagram at the right of Fig. 26,
we see that it has three tangled nodes (labeled @) and one that’s visible (la-
beled @), two of its nodes are hidden, none are solitary. The swapping process
in general sends (tangled, solitary, visible, hidden) nodes into (tangled, visible,
solitary, newbie) nodes, respectively — after which newbies would become hidden
in a reverse swap, and the originally hidden nodes would reappear as newbies.

Transmogrification is easiest to understand if we treat all nodes below the
top two levels as if they were sinks, having constant values. Then every source
function f(z1,22) depends only on x; and z3; hence it takes on four values
a = f(0,0), b = f(0,1), ¢ = f(1,0), and d = f(1,1), where a, b, ¢, and d
represent sinks. We may suppose that there are ¢ sinks, , , cee @, and
that 1 < a,b,¢,d < q. Then f(z1,z2) is fully described by its extended truth
table, £(0,0)f(0,1)f(1,0)f(1,1) = abed. And after swapping, we're left with
f(z2,z1), which has the extended truth table acbd. For example, Fig. 26 can be
redrawn as follows, using extended truth tables to label its nodes:

1224 2324 1324 3344 1224 2234 1234 3434

Fig. 27. Another way to represent the transformations in Fig. 26.

In these terms, the source function abcd points to a solitary node when a = b #
¢ = d, and to a visible node when a = ¢ # b = d; otherwise it points to a tangled
node (unless a = b = ¢ = d, when it points directly to a sink). The tangled node
abced usually has LO = ab and HI = cd, unless @ = b or ¢ = d; in the exceptional
cases, LO or HI is a sink. After transmogrification it will have LO = ac and
HI = bd in a similar way, where latter nodes will be either newbies or visibles
or sinks (but not both sinks). One interesting case is 1224, whose children 12
and 24 on the left are hidden nodes, while the 12 and 24 on the right are newbies.

Exercise 147 discusses an efficient implementation of this transformation,
which was introduced by Richard Rudell in IEEE/ACM International Conf.
Computer-Aided Design CAD-93 (1993), 42-47. Tt has the important property
that no pointers need to change, except within the nodes on the top two levels:

242 COMBINATORIAL SEARCHING 7.1.4

All source nodes s; still point to the same place in computer memory, and all
sinks retain their previous identity. We have described it as a swap between @s
and @s, but in fact the same transformation will swap @s and @s whenever
the variables x; and xj, correspond to branching on adjacent levels. The reason
is that the upper levels of any BDD base essentially define source functions for
the lower levels, which constitute a BDD base in their own right.

We know from our study of sorting that any reordering of the variables of
a BDD base can be produced by a sequence of swaps between adjacent levels.
In particular, we can use adjacent swaps to do a “jump-up” transformation,
which brings a given variable xj, to the top level without disturbing the relative
order of the other variables. It’s easy, for instance, to jump x4 up to the top:
We simply swap @ — @, then @ +— @, then @ > @, because x4 will be
adjacent to xy after it has jumped past xs.

Since repeated swaps can produce any ordering, they are sometimes able
to make a BDD base grow until it is too big to handle. How bad can a single
swap be? If exactly (s,t, v, h,v) nodes are solitary, tangled, visible, hidden, and
newbie, the top two levels end up with s + ¢ + v 4+ v nodes; and this is at most
m+v < m+2t when there are m source functions, because m > s+t+v. Thus the
new size of those levels can’t exceed twice the original, plus the number of sources.

If a single swap can double the size, a jump-up for xj threatens to increase
the size exponentially, because it does k — 1 swaps. Fortunately, however, jump-
ups are no worse than single swaps in this regard:

Theorem J*. B(f],...,f") <m+2B(fi,..., fm) after a jump-up operation.

Proof. Let ajas...asx_1a9r be the extended truth table for a source function
f(z1,...,x), with lower-level nodes regarded as sinks. After the jump-up, the
extended truth table for f™(z1,...,2k) = f(@1my .-+, Thr) = f(@2y ..., Tk, 21) 18
103 -..Agk_10204 - . - Gox. Thus we can see that each bead on level j of f™ is
derived from some bead on level 7 — 1 of f, for 1 < j < k; but every bead on
level j — 1 of f spawns at most two beads, of half the size, in f™. Therefore,
if the respective profiles of {fy,..., fm} and {fT,..., fr} are (bo,...,b,) and
(bG, ..., bl,), we must have by < m, by < 2by, ..., bj_; < 2b,_5, b = by, ...,
b, = b,,. The total is therefore < m+ B(f1,..., fm)+bo+ - +bgo—br_1. 1

The opposite of a jump-up is a “jump-down,” which demotes the topmost
variable by k — 1 levels. As before, this operation can be implemented with k& — 1
swaps. But we have to settle for a much weaker upper bound on the resulting size:

Theorem J~. B(fT,...,fr) < B(fi,..., fm)? after a jump-down operation.

Proof. Now the extended truth table in the previous proof changes from ay . .. ag
to @y ...agk-1 I Ggk—141...G9x = Q1Qgk—1,7...0Qgk—1G9k, the “zipper function”
7.1.3-(76). In this case we can identify every bead after the jump with an
ordered pair of original subfunctions, as in the melding operation (37) and (38).
For example, when & = 3 the truth table 12345678 becomes 15263748, whose
bead 1526 can be regarded as the meld 12 ¢ 56. |

7.1.4 BINARY DECISION DIAGRAMS 243

This proof indicates why quadratic growth might occur. If, for example,

f(mla'“amn) = 1'1? Mm(IQa"'amm+1;x2m+2a"-amn):

M (Trmg2s - - Tamt15 T2mt2, - - -, Tn), (103)

where n = 1+ 2m + 2™, a jump-down of 2m levels changes B(f) = 4n — 8m — 3
to B(f™) = 2n? —8m(n —m) —2(n—2m)+1 ~ 1B(f)>.

Since jump-up and jump-down are inverse operations, we can also use Theo-
rems J* and J~ in reverse: A jump-up operation might conceivably decrease the
BDD size to something like its square root, but a jump-down cannot reduce the
size to less than about half. That’s bad news for fans of jump-down, although
they can take comfort from the knowledge that jump-downs are sometimes the
only decent way to get from a given ordering to an optimum one.

Theorems J* and J~ are due to B. Bollig, M. Lobbing, and 1. Wegener, Inf.
Processing Letters 59 (1996), 233-239. (See also exercise 149.)

*Dynamic reordering. In practice, a natural way to order the variables often
suggests itself, based on the modules-in-a-row perspective of Fig. 23 and Theo-
rem M. But sometimes no suitable ordering is apparent, and we can only hope
to be lucky; perhaps the computer will come to our rescue and find one. Fur-
thermore, even if we do know a good way to begin a computation, the ordering
of variables that works best in the first stages of the work might turn out to be
unsatisfactory in later stages. Therefore we can get better results if we don’t
insist on a fixed ordering. Instead, we can try to tune up the current order of
branching whenever a BDD base becomes unwieldy.

For example, we might try to swap x;_; <+ z; in the order, for 1 < 5 < n,
undoing the swap if it increases the total number of nodes but letting it ride
otherwise; we could keep this up until no such swap makes an improvement.
That method is easy to implement, but unfortunately it’s too weak; it doesn’t
give much of a reduction. A much better reordering technique was proposed by
Richard Rudell at the same time as he introduced the swap-in-place algorithm of
exercise 147. His method, called “sifting,” has proved to be quite successful. The
idea is simply to take a variable x; and to try jumping it up or down to all other
levels—that is, essentially to remove zj from the ordering and then to insert it
again, choosing a place for insertion that keeps the BDD size as small as possible.
All of the necessary work can be done with a sequence of elementary swaps:

Algorithm J (Sifting o variable). This algorithm moves variable zj, into an
optimum position with respect to the current ordering of the other variables
{z1,...,Tx—1,Tk11,...,Zn} in a given BDD base. It works by repeatedly calling
the procedure of exercise 147 to swap adjacent variables x;_; <+ x;. Throughout
this algorithm, S denotes the current size of the BDD base (the total number of
nodes); the swapping operation usually changes S.

J1. [Initialize.] Set p < 0, j + k, and s + S. If k£ > n/2, go to J5.
J2. [Sift up.] While j > 1, swap zj_1 ¢> z; and set j < j — 1, s < min(S, s).

244 COMBINATORIAL SEARCHING 7.1.4

J3. [End the pass.] If p =1, go to J4. Otherwise, while j # k, set 7 < j+ 1 and
swap Z;_1 4 x;; then set p <~ 1 and go to J5.

J4. [Finish downward.] While s # S, set j < j + 1 and swap x;_1 <> ;. Stop.
J5. [Sift down.] While j<n, set j < j+1, swap z;_14>x;, and set s <~ min(S, s).

J6. [End the pass.] If p =1, go to J7. Otherwise, while j # k, swap z;_1 <> z;
and set j < j — 1; then set p < 1 and go to J2.

J7. [Finish upward.] While s # S, swap z;_1 <> x; and set j < 7 — 1. Stop. |

Whenever Algorithm J swaps x;_; <+ x;, the original variable xj is currently
called either x;_; or x;. The total number of swaps varies from about n to
about 2.5n, depending on k and the optimum final position of z;. But we can
improve the running time substantially, without seriously affecting the outcome,
if steps J2 and J5 are modified to proceed immediately to J3 and J6, respectively,
whenever S becomes larger than, say, 1.2s or even 1.1s or even 1.05s. In such
cases, further sifting in the same direction is unlikely to decrease s.

Rudell’s sifting procedure consists of applying Algorithm J exactly n times,
once for each variable that is present; see exercise 151. We could continue sifting
again and again until there is no more improvement; but the additional gain is
usually not worth the extra effort.

Let’s look at a detailed example, in order to make these ideas concrete.
We’ve observed that when the contiguous United States are arranged in the order

ME NH VT MA RI CT NY NJ PA DE MD DC VA NC SC GA FL AL TN KY WV OH MI IN (10)
IL WI MN IA MO AR MS LA TX OK KS NE SD ND MT WY CO NM AZ UT ID WA OR NV CA 4

as in (17), they lead to a BDD of size 428 for the independent-set function

ﬁ((xAL A ll,'FL) V (xAL A xGA) Vv (IAL A ll,'Ms) V-V (LI,'UT A\ .’Ewy) Vv (x\m A va)). (105)

The author chose the ordering (104) by hand, starting with the historical/geo-
graphical listing of states that he had been taught as a child, then trying to
minimize the size of the boundary between states-already-listed and states-to-
come, so that the BDD for (105) would not need to “remember” too many partial
results at any level. The resulting size, 428, is pretty good for a function of 49
variables; but sifting is able to make it even better. For example, consider WV:
Some of the possibilities for altering its position, with varying sizes S, are

RI |CT|NY | NJ PA|DE|MD|DC|VA|NC|SC GA|FL‘AL‘TN‘KY‘OH‘MI‘IN‘IL‘

424 422 417 415 414 412 411 410 412 412 415 420 421 426 425 427 428 428 436 442 453

so we can save 428 — 410 = 18 nodes by jumping WV up to a position between MD
and DC. By using Algorithm J to sift on all the variables—first on ME, then on
NH, then ..., then on CA— we end up with the ordering

VT MA ME NH CT RI NY NJ DE PA MD WV VA DC KY OH NC GA SC AL FL MS TN IN (

106
IL MI AR TX LA OK MO IA WI MN CO NE KS MT ND WY SD UT AZ NM ID CA OR WA NV)

and the BDD size has been reduced to 345(!). That sifting process involves a
total of 4663 swaps, requiring less than 4 megamems of computation altogether.

7.1.4 BINARY DECISION DIAGRAMS 245

Instead of choosing an ordering carefully, let’s consider a lazier alternative:
We might begin with the states in alphabetic order

AL AR AZ CA CO CT DC DE FL GA IA ID IL IN KS KY LA MA MD ME MI MN MO MS (10)
MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY 7

and proceed from there. Then the BDD for (105) turns out to have 306,214
nodes; it can be computed either via Algorithm S (with about 380 megamems of
machine time) or via (55) and Algorithm U (with about 565 megamems). In this
case sifting makes a dramatic difference: Those 306,214 nodes become only 2871,
at a cost of 430 additional megamems. Furthermore, the sifting cost goes down
from 430 My to 210 My if the loops of Algorithm J are aborted when S > 1.1s.
(The more radical choice of aborting when S > 1.05s would reduce the cost of
sifting to 155 My; but the BDD size would be reduced only to 2946 in that case.)
And we can actually do much, much better, if we sift the variables while eval-
uating (105), instead of waiting until that whole long sequence of disjunctions has
been entirely computed. For example, suppose we invoke sifting automatically
whenever the BDD size surpasses twice the number of nodes that were present
after the previous sift. Then the evaluation of (105), starting from the alphabetic
ordering (107), runs like a breeze: It automatically churns out a BDD that has
only 419 nodes, after only about 60 megamems of calculation! Neither human
ingenuity nor “geometric understanding” are needed to discover the ordering
NV OR ID WA AZ CA UT NM WY CO MT OK TX NE MO KS LA AR MS TN IA ND MN SD

108
GA FL AL NC SC KY WI MI IL OH IN WV MD VA DC PA NJ DE NY CT RI NH ME VT MA (108)

which beats the author’s (104). For this one, the computer just decided to invoke
autosifting 39 times, on smaller BDDs.

What is the best ordering of states for the function (105)? The answer to
that question will probably never be known for sure, but we can make a pretty
good guess. First of all, a few more sifts of (108) will yield a still-better ordering

OR ID NV WA AZ CA UT NM WY CO MT SD MN ND IA NE OK KS TX MO LA AR MS TN (10)
GA FL AL NC SC KY WI MI IL OH IN WV MD DC VA PA NJ DE NY CT RI NH ME VT MA 9

with BDD size 354. Sifting will not improve (109) further; but sifting has only
limited power, because it explores only (n — 1)? alternative orderings, out of
n! possibilities. (Indeed, exercise 134 exhibits a function of only four variables
whose BDD cannot be improved by sifting, even though the ordering of its
variables is not optimum.) There is, however, another arrow in our quiver: We
can use master profile charts to optimize every window of, say, 16 consecutive
levels in the BDD. There are 34 such windows; and the algorithm of exercise 139
optimizes each of them rather quickly. After about 9.6 gigamems of computation,
that algorithm discovers a new champion

OR ID NV WA AZ CA UT NM WY CO MT SD MN ND IA NE OK KS TX MO LA AR MS WI (110>
KY MI IN IL AL TN FL NC SC GA WV OH MD DC VA PA NJ DE NY CT RI NH ME VT MA

by cleverly rearranging 16 states within (109). This ordering, for which the BDD
size is only 339, might well be optimum, because it cannot be improved either
by sifting or by optimizing any window of width 25. However, such a conjecture

246 COMBINATORIAL SEARCHING 7.1.4

rests on shaky ground: The ordering
AL GA FL TN NC SC VA MS AR TX LA OK KY MO NM WV MD DC PA NJ DE OH IL MI (111)
IN IA NE KS WI SD WY ND MN MT UT CO ID CA AZ OR WA NV NY CT RI NH ME VT MA
also happens to be unimprovable by sifting and by width-25 window optimiza-
tion, yet its BDD has 606 nodes and is far from optimum.
With the improved ordering (110), the 98-variable COLOR function of (73)
needs only 22037 BDD nodes, instead of 25579. Sifting reduces it to 16098.

*Read-once functions. Boolean functions such as (z1 D z3) ® ((z3 =z4) A x5),
which can be expressed as formulas in which each variable occurs exactly once,
form an important class for which optimum orderings of variables can easily be
computed. Formally, let us say that f(z1,...,z,) is a read-once function if either
(1) n =1 and f(xl) = &y; Or (ll) f(xla v 7xn) = g(xlv v 71‘16) o h(xk+17 ey In),
where o is one of the binary operators {A,V,A,V,D,C,D,C,®,=} and where
both g and h are read-once functions. In case (i) we obviously have B(f) = 3.
And in case (ii), exercise 163 proves that

B(f)_{B(g)—}-B(h)—Q, ifoe {A,V,A,V,D,C,3,C};
B(g) + B(h,h) — 2, ifoe€ {®,=}.
In order to get a recurrence, we also need the similar formulas
4, if n=1;
B(f,f) =< 2B(g9) + B(h,h) — 4, ifo€e{A,V,A,V,D,C,3,C}; (113)
B(g,g) + B(h,h) —2, ifoe{®, =}

A particularly interesting family of read-once functions arises when we define

(112)

Upmt1(T15 -« oy Tomt1) = U (T1, -+« Tam) A O (Tam 41, ..., Tomt1),
(114)
Umnt1(T15 -+« Tomt1) = U (T1, .o, Tam) B U (Tam 1, ..., Tomt1),
and ug(z1) = vo(z1) = x1; for example, ug(zq,...,28) = ((xl AN22)® (23 /\x4)) A

((stxG)ea(m7Ax8)). Exercise 165 shows that the BDD sizes for these functions,
calculated via (112) and (113), involve Fibonacci numbers:
B(ugm) = 2" Fom42 + 2, B(uzm+1) = 2" Fopin + 25

m m (115)
B(vam) = 2™ Fom4a + 2, B(vam+1) = 2" Fomqa + 2.

Thus u,, and v, are functions of n = 2™ variables whose BDD sizes grow as
0(2™/2¢™) =0 (nf), where B =1/2+1g¢ ~ 1.19424. (116)

In fact, the BDD sizes in (115) are optimum for the u and v functions,
under all permutations of the variables, because of a fundamental result due to
M. Sauerhoff, I. Wegener, and R. Werchner:

Theorem W. If f(z1,...,2n) = g(21,...,2%) © K(Tht1,...,7p) is a read-
once function, there is a permutation m that minimizes B(f™) and B(f™, f™)
simultaneously, and in which the variables {x1,...,zy} occur either first or last.

7.1.4 BINARY DECISION DIAGRAMS 247

Proof. Any permutation (1m,...,nw) leads naturally to an “unshuffled” per-
mutation (1o,...,no) in which the first k elements are {1,...,%k} and the last
n — k elements are {k + 1,...,n}, retaining the 7w order within each group. For

example, if k = 7, n = 9, and (1m,...,97) = (3,1,4,5,9,2,6,8,7), we have
(1o,...,90) = (3,1,4,5,2,6,7,9,8). Exercise 166 proves that, in appropriate
circumstances, we have B(f°) < B(f™) and B(f°, f°) < B(f™, f™). 1

Using this theorem together with (112) and (113), we can readily optimize
the ordering of variables for the BDD of any given read-once function. Consider,
for example, (21 V)@ (r3AzsATs) = g(21, T2)Dh(r3, 24, 75). We have B(g) = 4
and B(g,g) = 6; B(h) =5 and B(h,h) = 8. For the overall formula f = g @ h,
Theorem W says that there are two candidates for a best ordering (1, ...,57),
namely (1,2,3,4,5) and (4,5,1,2,3). The first of these gives B(f™) = B(g) +
B(h,h) — 2 = 10; the other one excels, with B(f™) = B(h) + B(g,3) —2 = 9.

The algorithm in exercise 167 finds an optimum 7 for any read-once function
f(z1,...,2,) in O(n) steps. Moreover, a careful analysis proves that B(f™) =
O(nf) in the best ordering, where £ is the constant in (116). (See exercise 168.)

*Multiplication. Some of the most interesting Boolean functions, from a math-
ematical standpoint, are the m 4+ n bits that arise when an m-bit number is
multiplied by an n-bit number:

(Im e xgxl)g X (yn Ce ygyl)g = (Zm+n e 2221)2. (117)

In particular, the “leading bit” zp,4n, and the “middle bit” z, when m = n, are
especially noteworthy. To remove the dependence of this notation on m and n,
we can imagine that m = n = oo by letting x; = y; = 0 for all i > m and j > n;
then each zy, is a function of 2k variables, z = Zi (21, ..., Zk; Y1, - - -, Yk), Namely
the middle bit of the product (g ...21)2 X (Yk .. -y1)2-

The middle bit turns out to be difficult, BDDwise, even when % is constant.
Let Zpo(®1,...,%n) = Zn(x1,...,Znja1,...,0,), where a = (an...a1)s.
Theorem X. There is a constant a such that Buin(Zy,qa) > 22—8 coln/2] g

Proof. [P. Woelfel, J. Computer and System Sci. 71 (2005), 520-534.] We may
assume that n = 2t is even, since Zoti124 = Zotq. Let & = (2, ...21)2 and
m = ([nw<t]...[lr <t])2. Then z = p + ¢, where ¢ = = & m represents the
“known” bits of x after ¢ branches have been taken in a BDD for Z, , with the
ordering 7, and p = x & T represents the bits yet unknown. Let

P={z&m|0<2z<2"} and Q = {z&m|0<x<2"}. (118)
For any fixed a, the function Z,, , has 2' subfunctions
fap) = ((pa+qa)> (n—1)) &1, q€Q. (119)

We want to show that some n-bit number a will make many of these subfunctions
differ; in other words we want to find a large subset Q* C @ such that

g € Q" and ¢’ € Q* and ¢q # ¢’ implies fy(p) # fy(p) for some p € P. (120)

Exercise 176 shows in detail how this can be done. |

248 COMBINATORIAL SEARCHING 7.1.4

Table 1
BEST AND WORST ORDERINGS FOR THE MIDDLE BIT 2z, OF MULTIPLICATION
L11T10T9X7X8T6XL13T15 T10T11X9T8X7L16T6L15
X T16T14T12T5T4T3T2T1 X T5T4T3T12L13T2T1T14
Buin(Zs) = 756 Bmax(Zg) = 6791
T24X20L18L16L9L8L10L11L7L12L14T21 L16L17L15L14L24T13L12L11L20L10L9T23
X T22T19L17X15L6L5L4T3L2L1T13L23 X TgT7TeXL5L18L4L22L3L2L19L1T21
Bumin(Z12) = 21931 Bmax(Z12) = 866283
Table 2
BEST AND WORST ORDERINGS FOR ALL BITS {zi,...,2m+n} OF MULTIPLICATION
T112162L15L14L13L12L10T9 T10T8T9X13T2X1T11 L7
X LX7LEL5L4L3T2L1 X T16L5L15L6L4L14L3L12
1 16 1 16
Bumin(ZY, ..., 2{!8)) = 9700 Bumax(283,..., 2815)) = 28678
L15L17L24L23L22L21L20L19L18L16L14L13 L17222L14L13L16L10L20L3L2L1L19T12
X X1T2X3T4T5L6L7L8LIT10T11T12 X X24T15X9T8T21T7L6L11X23T5L4T 18
1 24 1 24
Bunin(Z33) 19, -, Z{3")5) = 648957 Bumax(Z33) 15, ., Z{31,) = 4224195
L17T16L10X9L11%12 « . . L15218T19L24X23 . . . 20 T13T14212T15216L17T22L10T8L7L18T9T2X1L19T6
X T1X2X3TL4T5LeL7LS X T24T11T21T5L4T23L3T20
1 24 1 24
Bumin(Z{g)s, -, Z{a3) = 157061 Bumax(Z{g)s, -, Z{ay) = 1236251

A good upper bound for the BDD size of the middle bit function when
neither operand is constant has been found by K. Amano and A. Maruoka,
Discrete Applied Math. 155 (2007), 1224-1232:

Theorem A. Let f(z1,...,%2n) = Zn(21,23,...,Ton_1;T2,Ta,...,T2n). Then
B(f) < Q(f) < %2“5"/5]. (121)

Proof. Consider two n-bit numbers = = 2*z;, + z; and y = 2Fy, +y;, with n — k
unknown bits in each of their high parts (zp,yp), while their k-bit low parts
(z1,y;) are both known. Then the middle bit of zy is determined by adding
together three (n — k)-bit quantities when k > n/2, namely zjy; mod 2",
zyyp, mod 2% and (z;y, > k) mod 2" 7%, Hence level 2k of the QDD needs to
“remember” only the least significant n — k bits of each of the prior quantities
x1, y, and 7y, > k, a total of 3n — 3k bits, and we have go, < 2°7 3% in f’s
quasi-profile. Exercise 177 completes the proof. |

Amano and Maruoka also discovered another important upper bound. Let

Z,(,f,)n(xl, e yTmiY1,-. .., Yn) denote the pth bit z, of the product (117).

Theorem Y. For all constants (am, ...a1)s and for all p, the BDD and QDD
for the function Zﬁf}n(al, vy @m;T1,. .., Ty) have fewer than 3 -2™/? nodes.

Proof. Exercise 180 proves that ¢ < 2"t'~* for this function. The theorem
follows when we combine that result with the obvious upper bound ¢, < 2. |

7.1.4 BINARY DECISION DIAGRAMS 249

Theorem Y shows that the lower bound of Theorem X is best possible, except
for a constant factor. It also shows that the BDD base for all m + n product
(p)

functions Zmm(T1,- -, T Tmt1, -« -, Tmtn) 1S not nearly as large as ©(2™1"),
which we get for almost all instances of m + n functions of m + n variables:

Corollary Y. Ifm <mn, B(Zﬁ)n, e Z,(n"?,j'")) < 3(m+ n)2m+(n+1)/2. 1

The best orderings of variables for the middle-bit function Z,, and for the
complete BDD base remain mysterious, but empirical results for small m and n
give reason to conjecture that the upper bounds of Theorem A and Corollary Y
are not far from the truth; see Tables 1 and 2. Here, for example, are the
optimum results of Z,, when n < 12:

n=123 4 5 6 7 8 9 10 11 12
Bumin(Z,)= 4 8 14 31 63 136 315 756 1717 4026 9654 21931
20n/5~ 2 5 12 28 64 147 338 776 1783 4096 9410 21619

The ratios Bmax/Bmin With respect to the full BDD base {Z&l,)n, cee Zﬁnﬁn)}
are surprisingly small in Table 2. Therefore all orderings for that problem might
turn out to be roughly equivalent.

Zero-suppressed BDDs: A combinatorial alternative. When BDDs are
applied to combinatorial problems, a glance at the data in memory often reveals
that most of the HI fields simply point to . In such cases, we're better
off using a variant data structure called a zero-suppressed binary decision dia-
gram, or “ZDD” for short, introduced by Shin-ichi Minato [ACM/IEEE Design
Automation Conf. 30 (1993), 272-277]. A ZDD has nodes like a BDD, but its
nodes are interpreted differently: When an @ node branches to a @ node for
J > i+1, it means that the Boolean function is false unless z;4 1 = -+ = x;_1 = 0.

For example, the BDDs for independent sets and kernels in (12) have many
nodes with HI = [L]. Those nodes go away in the corresponding ZDDs, although
a few new nodes must also be added:

Independent sets

Notice that we might have LO = HI in a ZDD, because of the new conventions.
Furthermore, the example on the left shows that a ZDD need not contain at
alll About 40% of the nodes in (12) have been eliminated from each diagram.

250 COMBINATORIAL SEARCHING 7.1.4

One good way to understand a ZDD is to regard it as a condensed repre-
sentation of a family of sets. Indeed, the ZDDs in (122) represent respectively
the families of all independent sets and all kernels of Cs. The root node of a
ZDD names the smallest element that appears in at least one of the sets; its HI
and LO branches represent the residual subfamilies that do and don’t contain that
element; and so on. At the bottom, represents the empty family ‘0, and
represents ‘{()}’. For example, the rightmost ZDD in (122) represents the fam-
ily {{173,5}, {1,4}, {2,4,6}, {2,5}, {3,6}}7 because the HI branch of the root
represents {{3,5}, {4}} and the LO branch represents {{2,4,6}, {2,5}, {3,6}}.

Every Boolean function f(z1,...,2,) is, of course, equivalent to a fam-
ily of subsets of {1,...,n}, and vice versa. But the family concept gives us
a different perspective from the function concept. For example, the family
{{1,3}, {2}, {2,5}} has the same ZDD for all n > 5; but if, say, n = 7, the
BDD for the function f(x1,...,z7) that defines this family needs additional
nodes to ensure that z, = 26 = £7 = 0 when f(z) = 1.

Almost every notion that we’ve discussed for BDDs has a counterpart in the
theory of ZDDs, although the actual data structures are often strikingly different.
We can, for example, take the truth table for any given function f(z1,...,z,) and
construct its unique ZDD in a straightforward way, analogous to the construction
of its BDD as illustrated in (5). We know that the BDD nodes for f correspond
to the “beads” of f’s truth table; the ZDD nodes, similarly, correspond to zeads,
which are binary strings of the form af with |a| = |8| and 8 # 0...0, or with
|a] = |B] — 1. Any binary string corresponds to a unique zead, obtained by
lopping off the right half repeatedly, if necessary, until the string either has odd
length or its right half is nonzero.

Dear reader, please take a moment now to work exercise 187. (Really.)

The z-profile of f(z1,...,2,) 18 (20,- .., 2,), where 2, is the number of zeads
of order n—k in f’s truth table, for 0 < k < n, namely the number of nodes
in the ZDD; also z, is the number of sinks. We write Z(f) = 20 + -+ - + 2, for
the total number of nodes. For example, the functions in (122) have z-profiles
(1,1,2,2,2,1,1) and (1,1,2,2,1,1,2), respectively, so Z(f) = 10 in each case.

The basic relations (83)—(85) between profiles and quasi-profiles hold true
also for z-profiles, but with g}, counting only nonzero subtables of order n — k:

qa. > 2, for 0 <k <my (123)
G <1420+ +2zp-1 and ¢, < zp+ - +2,, for0<k<mn; (124)
Z(f) > 2q;, — 1, for 0 <k <n. (125)

Consequently the BDD size and the ZDD size can never be wildly different:
Z(f) < g(B(f) +1)+1 and B(f) < g(Z(f) +1)+2. (126)

On the other hand, a factor of 50 when n = 100 is nothing to sneeze at.

When ZDDs are used to find independent sets and kernels of the contiguous
USA, using the original order of (17), the BDD sizes of 428 and 780 go down to
177 and 385, respectively. Sifting reduces these ZDD sizes to 160 and 335. Is any-
body sneezing? That’s amazingly good, for complicated functions of 49 variables.

7.1.4 BINARY DECISION DIAGRAMS 251

When we know the ZDDs for f and g, we can synthesize them to obtain
the ZDDs for f A g, fV g, f®g, etc., using algorithms that are very much like
the methods we’ve used for BDDs. Furthermore we can count and/or optimize
the solutions of f, with analogs of Algorithms C and Bj; in fact, ZDD-based
techniques for counting and optimization turn out to be a bit easier than the
corresponding BDD-based algorithms are. With slight modifications of BDD
methods, we can also do dynamic variable reordering via sifting. Exercises 197—
209 discuss the nuts and bolts of all the basic ZDD procedures.

In general, a ZDD tends to be better than a BDD when we’re dealing with
functions whose solutions are sparse, in the sense that vz tends to be small
when f(z) = 1. And if f(x) itself happens to be sparse, in the sense that it has
comparatively few solutions, so much the better.

For example, ZDDs are well suited to exact cover problems, defined by an
m x n matrix of Os and 1s: We want to find all ways to choose rows that sum to
(1,1,...,1). Our goal might be, say, to cover a chessboard with 32 dominoes, like

H ll

, , or . (127)

ll

This is an exact cover problem whose matrix has 8 x 8 = 64 columns, one for
each cell; there are 2 X 7 x 8 = 112 rows, one for each pair of adjacent cells:

110000000000...00000000000
100000001000...00000000000
011000000000...00000000000
010000000100...00000000000

(128)

000000000000...00000001100
000000000000...00000000110
000000000000...00000000011

Let variable x; represent the choice (or not) of row j. Thus the three so-
lutions in (127) have (x1, 22, 3,24, ..., %110, T111, Z112) = (1,0,0,0,...,1,0,1),
(1,0,0,0,...,1,0,1), and (0,1,0,1,...,1,0,0), respectively. In general, the so-
lutions to an exact cover problem are represented by the function

f(@1,... 2m) = /\sl(Xj): /\[qu:1}, (129)

where X; = {z; | a;; = 1} and (a;;) is the given matrix.

The dominoes-on-a-chessboard ZDD turns out to have only Z(f) = 2300
nodes, even though f has m = 112 variables in this case. We can use it to prove
that there are exactly 12,988,816 coverings such as (127).

252 COMBINATORIAL SEARCHING 7.1.4

Similarly, we can investigate more exotic kinds of covering. In

| \l

|| (130)

/JWLT |
for instance, a chessboard has been covered with monominoes, dominoes, and/or
trominoes— that is, with rookwise-connected pieces that each have either one,
two, or three cells. There are exactly 92,109,458,286,284,989,468,604 ways to
do this(!); and we can compute that number almost instantly, doing only about
75 megamems of calculation, by forming a ZDD of size 512,227 on 468 variables.

A special algorithm could be devised to find the ZDD for any given exact
cover problem; or we can synthesize the result using (129). See exercise 212.

Incidentally, the problem of domino covering as in (127) is equivalent to
finding the perfect matchings of the grid graph Ps O Pg, which is bipartite. We
will see in Section 7.5.1 that efficient algorithms are available by which perfect
matchings can be studied on graphs that are far too large to be treated with
BDD/ZDD techniques. In fact, there’s even an explicit formula for the number
of domino coverings of an m X n grid. By contrast, general coverings such as
(130) fall into a wider category of hypergraph problems for which polynomial-
time methods are unlikely to exist as m,n — oc.

An amusing variant of domino covering called the “mutilated

chessboard” was considered by Max Black in his book Critical

Thinking (1946), pages 142 and 394: Suppose we remove opposite

corners of the chessboard, and try to cover the remaining cells

with 31 dominoes. It’s easy to place 30 of them, for example

L [T]

as shown here; but then we'’re stuck. Indeed, if we consider the I

corresponding 108 X 62 exact cover problem, but leave out the last
two constraints of (129), we obtain a ZDD with 1224 nodes from which we can
deduce that there are 324,480 ways to choose rows that sum to (1,1,...,1,1, x, %).
But each of those solutions has at least two 1s in column 61; therefore the ZDD
reduces to after we AND in the constraint [vXs; =1]. (“Critical thinking”
explains why; see exercise 213.) This example reminds us that (i) the size of the
final ZDD or BDD in a calculation can be much smaller than the time needed
to compute it; and (ii) using our brains can save oodles of computer cycles.

ZDDs as dictionaries. Let’s switch gears now, to note that ZDDs are advanta-
geous also in applications that have an entirely different flavor. We can use them,
for instance, to represent the five-letter words of English, the set WORDS(5757)
from the Stanford GraphBase that is discussed near the beginning of this chapter.
One way to do this is to consider the function f(z1,...,225) that is defined to
be 1 if and only if the five numbers (z1...x5)2, (z6...T10)2, .-+, (T21...T25)2
encode the letters of an English word, where a = (00001)s, ..., z = (11010)a.

7.1.4 BINARY DECISION DIAGRAMS 253

For example, f(0,0,1,1,1,0,1,1,1,1,0,1,1,1,1,0,0,1,1,0,1,1,0,0, x25) = xas5.
This function of 25 variables has Z(f) = 6233 nodes— which isn’t bad, since it
represents 5757 words.

Of course we’ve studied many other ways to represent 5757 words, in Chap-
ter 6. The ZDD approach is no match for binary trees or tries or hash tables,
when we merely want to do simple searches. But with ZDDs we can also retrieve
data that is only partially specified, or data that is only supposed to match a
key approximately; many complex queries can be handled with ease.

Furthermore, we don’t need to worry very much about having lots of vari-
ables when ZDDs are being used. Instead of working with the 25 variables x;
considered above, we can also represent those five-letter words as a sparse func-
tion F(ay,...,21,02,...,22,...,0a5,...,25) that has 26 x5 = 130 variables, where
variable ay (for example) controls whether the second letter is ‘a’. To indicate
that crazy is a word, we make F' true when ¢; =13 = a3 = 24 = y5 = 1 and
all other variables are 0. Equivalently, we consider F' to be a family consisting
of the 5757 subsets {wy,hs,1i3,cq,hs}, {t1,hs, e3,r4,e5}, etc. With these 130
variables the ZDD size Z(F') turns out to be only 5020 instead of 6233.

Incidentally, B(F') is 46,189 —more than nine times as large as Z(F'). But
B(f)/Z(f) is only 8370/6233 ~ 1.4 in the 25-variable case. The ZDD world is
different from the BDD world in many ways, in spite of having similar algorithms
and a similar theory.

One consequence of this difference is a need for new primitive operations by
which complex families of subsets can readily be constructed from elementary
families. Notice that the simple subset {f1,u3,n3,n4, y5} is actually an extremely
long-winded Boolean function:

LN ANeLANfIANGLA - Atag Aug Aig A+ AT Ays A Zs, (131)

a minterm of 130 Boolean variables. Exercise 203 discusses an important family
algebra, by which that subset is expressed more naturally as ‘f1LuslLinglingllys’.
With family algebra we can readily describe and compute many interesting
collections of words and word fragments (see exercise 222).

ZDDs to represent simple paths. An important connection between arbi-
trary directed, acyclic graphs (dags) and a special class of ZDDs is illustrated in
Fig. 28. When every source vertex of the dag has out-degree 1 and every sink
vertex has in-degree 1, the ZDD for all oriented paths from a source to a sink
has essentially the same “shape” as the original dag. The variables in this ZDD
are the arcs of the dag, in a suitable topological order. (See exercise 224.)

Fig. 28. A dag, and the ZDD for its
source-to-sink paths. Arcs of the dag
correspond to vertices of the ZDD. All
branches to have been omitted from
the ZDD in order to show the structural
similarities more clearly.

254 COMBINATORIAL SEARCHING 7.1.4

We can also use ZDDs to represent simple paths in an undirected graph. ©-@-®

For example, there are 12 ways to go from the upper left corner of a 3 x 3 9.9.0

. . . C e . . OaOR0)
grid to the lower right corner, without visiting any point twice:

BB HBESEBEH e

These paths can be represented by the ZDD shown at the right, which charac-
terizes all sets of suitable edges. For example, we get the first path by taking
the HI branches at (13), (36), (68), and of the ZDD. (As in Fig. 28,
this diagram has been simplified by omitting all of the uninteresting
LO branches that merely go to .) Of course this ZDD isn’t a truly
great way to represent (132), because that family of paths has only 12
members. But on the larger grid Pg 0O Py, the number of simple paths
from corner to corner turns out to be 789,360,053,252; and they can all
be represented by a ZDD that has at most 33580 nodes. Exercise 225
explains how to construct such a ZDD quickly.

A similar algorithm, discussed in exercise 226, constructs a ZDD
that represents all cycles of a given graph. With a ZDD of size 22275,
we can deduce that Py0 Pg has exactly 603,841,648,931 simple cycles.
This ZDD may well provide the best way to represent all of those cycles within
a computer, and the best way to generate them systematically if desired.

The same ideas work well with graphs from the “real world” that don’t
have a neat mathematical structure. For example, we can use them to answer
a question posed to the author in 2008 by Randal Bryant: “Suppose I wanted
to take a driving tour of the Continental U.S., visiting all of the state capitols,
and passing through each state only once. What route should I take to minimize
the total distance?” The following diagram shows the shortest distances between
neighboring capital cities, when restricted to local itineraries that each cross only
one state boundary:

R

624 215 435 153 236 68

160 619 438 675 455 392 490 244 279 2490 244 237 268 193 111 101 45
535 663 541 338 435 100 486 165 343 255 103 415 145 186 160 354 103 124 108
3488362056297962 (133)
755_713 652 355 626 203 416 340 453 203 532 302 126
476@585 (OK)- 337 —(AR) 344 59
697 388 504 416 253 303 282 255 530_156

30 15(%{242 16

205 252 212 200

The problem is to choose a subset of these edges that form a Hamiltonian path
of smallest total length.

7.1.4 BINARY DECISION DIAGRAMS 255

Every Hamiltonian path in this graph must clearly either start or end
at Augusta, Maine (ME). Suppose we start in Sacramento, California (CA).
Proceeding as above, we can find a ZDD that characterizes all paths from CA
to ME; this ZDD turns out to have only 7850 nodes, and it quickly tells us that
exactly 437,525,772,584 simple paths from CA to ME are possible. In fact, the
generating function by number of edges turns out to be

4z 4+ 124212 + 15392 + - - - 4 3338546126 + 27070752%7; (134)

so the longest such paths are Hamiltonian, and there are exactly 2,707,075 of
them. Furthermore, exercise 227 shows how to construct a smaller ZDD, of size
4726, which describes just the Hamiltonian paths from CA to ME.

We could repeat this experiment for each of the states in place of California.
(Well, the starting point had better be outside of New England, if we are going
to get past New York, which is an articulation point of this graph.) For example,
there are 483,194 Hamiltonian paths from NJ to ME. But exercise 228 shows how
to construct a single ZDD of size 28808 for the family of all Hamiltonian paths
from ME to any other final state— of which there are 68,656,026. The answer to
Bryant’s problem now pops out immediately, via Algorithm B. (The reader may
like to try finding a minimum route by hand, before turning to exercise 230 and
discovering the absolutely optimum answer.)

*ZDDs and prime implicants. Finally, let’s look at an instructive application
in which BDDs and ZDDs are both used simultaneously.

According to Theorem 7.1.1Q, every monotone Boolean function f has a
unique shortest two-level representation as an OR of ANDs, called its “disjunctive
prime form” — the disjunction of all of its prime implicants. The prime impli-
cants correspond to the minimal points where f(z) = 1, namely the binary
vectors x for which we have f(z') =1 and 2’ C z if and only if 2’ = z. If

f(xy, w2, 23) = 21 V (22 A x3), (135)

for example, the prime implicants of f are x; and x2 A x3, while the minimal
solutions are zixsx3 = 100 and 011. These minimal solutions can also be
expressed conveniently as e; and ez Ll es, using family algebra (see exercise 203).

In general, z;, A -+ A x;, is a prime implicant of a monotone function f if
and only if e;; U--- U e;, is a minimal solution of f. Thus we can consider f’s
prime implicants PI(f) to be its family of minimal solutions. Notice, however,
that z;, A--- Az, Cxj A---Axj, if and only if e;, LI---Ue;, Dej L---Uej,; so
it’s confusing to say that one prime implicant “contains” another. Instead, we
say that the shorter one “absorbs” the longer one. '

A curious phenomenon shows up in example (135): The diagram "
is not only the BDD for f, it’s also the ZDD for PI(f)! Similarly, Fig. 21 at the
beginning of this section illustrates not only the BDD for (zz2x3) but also the
ZDD for PI({z1z2x3)). On the other hand, let g = (z1 Az3)Vx2. Then the BDD

for gis @ but the ZDD for PI(g) is 5-®~; . What’s going on here?
o

256 COMBINATORIAL SEARCHING 7.1.4

The key to resolving this mystery lies in the recursive structure on which
BDDs and ZDDs are based. Every Boolean function can be represented as

f(z1, - yzn) = (17 for f1) = (@1 A fo) V (21 A f1), (136)

where f. is the value of f when z; is replaced by c. When f is monotone we also
have f = fo V (21 A f1), because fo C fi. If fo # f1, the BDD for f is obtained
by creating a node @ whose LO and HI branches point to the BDDs for fj
and f;. Similarly, it’s not difficult to see that the prime implicants of f are

PI(f) = PI(fo) U (ex U (PI(f1) \ P1(fo))). (137)

(See exercise 253.) This is the recursion that defines the ZDD for PI(f), when
we add the termination conditions for constant functions: The ZDDs for PI(0)
and PI(1) are and [T].

Let’s say that a Boolean function f is sweet if it is monotone and if the ZDD
for PI(f) is exactly the same as the BDD for f. Constant functions are clearly
sweet. And nonconstant sweetness is easily characterized:

Theorem S. A Boolean function that depends on x1 is sweet if and only if its
prime implicants are P U (z1 U Q), where P and Q are sweet and independent
of x1, and every member of P is absorbed by some member of Q.

Proof. See exercise 246. (To say that “P and @ are sweet” means that they
each are families of prime implicants that define a sweet Boolean function.) |

Corollary S. The connectedness function of any graph is sweet.

Proof. The prime implicants of the connectedness function f are the spanning
trees of the graph. Every spanning tree that does not include arc z; has at least
one subtree that will be spanning when arc z; is added to it. Furthermore, all
subfunctions of f are the connectedness functions of smaller graphs. |

Thus, for example, the BDD in Fig. 22, which defines all 431 of the connected
subgraphs of P30 Ps, also is the ZDD that defines all 192 of its spanning trees.

Whether f is sweet or not, we can use (137) to compute the ZDD for PI(f)
whenever f is monotone. When we do this we can actually let the BDD nodes and
the ZDD nodes coezist in the same big base of data: Two nodes with identical
(V, LO, HI) fields might as well appear only once in memory, even though they
might have complete different meanings in different contexts. We use one routine
to synthesize f A g when f and g point to BDDs, and another routine to form
f\ g when f and g point to ZDDs; no trouble will arise if these routines happen
to share nodes, as long as the variables aren’t being reordered. (Of course the
cache memos must distinguish BDD facts from ZDD facts when we do this.)

For example, exercise 7.1.1-67 defines an interesting class of self-dual func-
tions called the Y functions, and the BDD for Yi2 (which is a function of 91
variables) has 748,416 nodes. This function has 2,178,889,774 prime implicants;
vet Z(P1(Yi12)) is only 217,388. (We can find this ZDD with a computational
cost of about 13 gigamems and 660 megabytes.)

7.1.4 BINARY DECISION DIAGRAMS 257

A brief history. The seeds of binary decision diagrams were implicitly planted
by Claude Shannon [Trans. Amer. Inst. Electrical Engineers 57 (1938), 713-723],
in his illustrations of relay-contact networks. Section 4 of that paper showed that
any symmetric Boolean function of n variables has a BDD with at most (";rl)
branch nodes. Shannon preferred to work with Boolean algebra; but C. Y. Lee, in
Bell System Tech. J. 38 (1959), 985-999, pointed out several advantages of what
he called “binary-decision programs,” because any m-variable function could be
evaluated by executing at most n branch instructions in such a program.

S. Akers coined the name “binary decision diagrams” and pursued the ideas
further in IEEE Trans. C-27 (1978), 509-516. He showed how to obtain a
BDD from a truth table by working bottom-up, or from algebraic subfunctions
by working top-down. He explained how to count the paths from a root to
or , and observed that these paths partition the n-cube into disjoint subcubes.

Meanwhile a very similar model of Boolean computation arose in theoret-
ical studies of automata. For example, A. Cobham [FOCS 7 (1966), 78-87]
related the minimum sizes of branching programs for a sequence of functions
fa(x1,...,2,) to the space complexity of nonuniform Turing machines that
compute this sequence. More significantly, S. Fortune, J. Hopcroft, and E. M.
Schmidt [Lecture Notes in Comp. Sci. 62 (1978), 227-240] considered “free B-
schemes,” now known as FBDDs, in which no Boolean variable is tested twice
on any path (see exercise 35). Among other results, they gave a polynomial-time
algorithm to test whether f = g, given FBDDs for f and g, provided that at
least one of those FBDDs is ordered consistently as in a BDD. The theory of
finite-state automata, which has intimate connections to BDD structure, was also
being developed; thus several researchers worked on problems that are equivalent
to analyzing the size, B(f), for various functions f. (See exercise 261.)

All of this work was conceptual, not implemented in computer programs,
although programmers had found good uses for binary tries and Patrician trees —
which are similar to BDDs except that they are trees instead of dags (see Sec-
tion 6.3). But then Randal E. Bryant discovered that binary decision diagrams
are significantly important in practice when they are required to be both reduced
and ordered. His introduction to the subject [[EEE Trans. C-35 (1986), 677-691]
became for many years the most cited paper in all of computer science, because
it revolutionized the data structures used to represent Boolean functions.

In his paper, Bryant pointed out that the BDD for any function is essentially
unique under his conventions, and that most of the functions encountered in
practice had BDDs of reasonable size. He presented efficient algorithms to
synthesize the BDDs for fAg and f@g, etc., from the BDDs for f and g. He also
showed how to compute the lexicographically least z such that f(z) =1, etc.

Lee, Akers, and Bryant all noted that many functions can profitably co-
exist in a BDD base, sharing their common subfunctions. A high-performance
“package” for BDD base operations, developed by K. S. Brace, R. L. Rudell,
and R. E. Bryant [ACM/IEEE Design Automation Conf. 27 (1990), 40—45], has
strongly influenced all subsequent implementations of BDD toolkits. Bryant
summarized the early uses of BDDs in Computing Surveys 24 (1992), 293-318.

258 COMBINATORIAL SEARCHING 7.1.4

Shin-ichi Minato introduced ZDDs in 1993, as noted above, to improve
performance in combinatorial work. He gave a retrospective account of early
ZDD applications in Software Tools for Technology Transfer 3 (2001), 156-170.

The use of Boolean methods in graph theory was pioneered by K. Maghout
[Comptes Rendus Acad. Sci. 248 (Paris, 1959), 3522-3523], who showed how
to express the maximal independent sets and the minimal dominating sets of
any graph or digraph as the prime implicants of a monotone function. Then
R. Fortet [Cahiers du Centre d’Etudes Recherche Operationelle 1,4 (1959), 5-36)
considered Boolean approaches to a variety of other problems; for example, he
introduced the idea of 4-coloring a graph by assigning two Boolean variables to
each vertex, as we have done in (73). P. Camion, in that same journal [2 (1960),
234-289], transformed integer programming problems into equivalent problems
in Boolean algebra, hoping to resolve them via techniques of symbolic logic. This
work was extended by others, notably P. L. Hammer and S. Rudeanu, whose book
Boolean Methods in Operations Research (Springer, 1968) summarized the ideas.
Unfortunately, however, their approach foundered, because no good techniques
for Boolean calculation were available at the time. The proponents of Boolean
methods had to wait until the advent of BDDs before the general Boolean
programming problem (7) could be resolved, thanks to Algorithm B. The special
case of Algorithm B in which all weights are nonnegative was introduced by
B. Lin and F. Somenzi [International Conf. Computer-Aided Design CAD-90
(IEEE, 1990), 88-91]. S. Minato [Formal Methods in System Design 10 (1997),
221-242] developed software that automatically converts linear inequalities be-
tween integer variables into BDDs that can be manipulated conveniently, some-
what as the researchers of the 1960s had hoped would be possible.

The classic problem of finding a minimum size DNF for a given function also
became spectacularly simpler when BDD methods became understood. The
latest techniques for that problem are beyond the scope of this book, but Olivier
Coudert has given an excellent overview in Integration 17 (1994), 97-140.

A fine book by Ingo Wegener, Branching Programs and Binary Decision
Diagrams (STAM, 2000), surveys the vast literature of the subject, develops the
mathematical foundations carefully, and discusses many ways in which the basic
ideas have been generalized and extended.

Caveat. We've seen dozens of examples in which the use of BDDs and/or
ZDDs has made it possible to solve a wide variety of combinatorial problems
with amazing efficiency, and the exercises below contain dozens of additional
examples where such methods shine. But BDD and ZDD structures are by no
means a panacea; they’re only two of the weapons in our arsenal. They apply
chiefly to problems that have more solutions than can readily be examined one by
one, problems whose solutions have a local structure that allows our algorithms
to deal with only relatively few subproblems at a time. In later sections of The
Art of Computer Programming we shall be studying additional techniques by
which other kinds of combinatorial problems can be tamed.

v

7.1.4 BINARY DECISION DIAGRAMS 259

EXERCISES
1. [20] Draw the BDDs for all 16 Boolean functions f(z1,z2). What are their sizes?

2. [21] Draw a planar dag with sixteen vertices, each of which is the root of one of
the 16 BDDs in exercise 1.

3. [16] How many Boolean functions f(z1,...,2,) have BDD size 3 or less?

4. [21] Suppose three fields have been packed into a 64-bit word z,

where V occupies 8 bits and the other two fields occupy 28 bits each. Show that five
bitwise instructions will transform z + z’, where 2’ is equal to = except that a LO or
HI value of 0 is changed to 1 and vice versa. (Repeating this operation on every branch
node z of a BDD for f will produce the BDD for the complementary function, f.)

5. [20] If you take the BDD for f(z1,...,z,) and interchange the LO and HI pointers
of every node, and if you also swap the two sinks > , what do you get?

6. [10] Let g(z1,z2,23,24) = f(z4,23,22,21), where f has the BDD in (6). What
is the truth table of g, and what are its beads?

7. [21] Given a Boolean function f(z1,...,zx), let
9k (0, T1, -, @n) = f(Toy- -y T2, Th—1V Thy Tht1,---,Tn) for 1 <k <n.

Find a simple relation between (a) the truth tables and (b) the BDDs of f and gy.
8. [22] Solve exercise 7 with z;_1 @ x}, in place of Tx_1V Tk.

9. [16] Given the BDD for a function f(z) = f(z1,...,Zn), represented sequentially
as in (8), explain how to determine the lexicographically largest = such that f(z) = 0.
]

10. [21] Given two BDDs that define Boolean functions f and f’, represented sequen-
tially as in (8) and (10), design an algorithm that tests f = f'.

11. [20] Does Algorithm C give the correct answer if it is applied to a binary decision
diagram that is (a) ordered but not reduced? (b) reduced but not ordered?

12. [M21] A kernel of a digraph is a set of vertices K such that

v€ K implies v/ u forall u € K;
v¢ K implies v—u for some u € K.

a) Show that when the digraph is an ordinary graph (that is, when v — v if and only
if v— u), a kernel is the same as a maximal independent set.

b) Describe the kernels of the oriented cycle Cy.

c) Prove that an acyclic digraph has a unique kernel.

13. [M15] How is the concept of a graph kernel related to the concept of (a) a maximal
clique? (b) a minimal vertex cover?

14. [M2/] How big, exactly, are the BDDs for (a) all independent sets of the cycle
graph C,,, and (b) all kernels of C,,, when n > 37 (Number the vertices as in (12).)

15. [M23] How many (a) independent sets and (b) kernels does C,, have, when n > 37

16. [22] Design an algorithm that successively generates all vectors z1 . . .z, for which
f(z1,...,2,) =1, when a BDD for f is given.

17. [32] If possible, improve the algorithm of exercise 16 so that its running time is
O(B(f)) + O(N) when there are N solutions.

18. [13] Play through Algorithm B with the BDD (8) and (w1, ...,ws) = (1,-2,—3,4).

v

v

v

260 COMBINATORIAL SEARCHING 7.1.4

19. [20] What are the largest and smallest possible values of variable my in Algo-
rithm B, based only on the weights (w1, ..., w,), not on any details of the function f?

20. [15] Devise a fast way to compute the Thue-Morse weights (15) for 1 < j < n.
21. [05] Can Algorithm B minimize wiz1 + + wpxy, instead of maximizing it?

22. [M21] Suppose step B3 has been simplified so that ‘W11 —W,,” and ‘W1 —W,,’
are eliminated from the formulas. Prove that the algorithm will still work, when applied
to BDDs that represent kernels of graphs.

23. [M20] All paths from the root of the BDD in Fig. 22 to have exactly eight
solid arcs. Why is this not a coincidence?

24. [M22] Suppose twelve weights (w12, w1s,. .., wsy) have been assigned to the edges
of the grid in Fig. 22. Explain how to find a minimum spanning tree in that graph
(namely, a spanning tree whose edges have minimum total weight), by applying Algo-
rithm B to the BDD shown there.

25. [M20] Modify Algorithm C so that it computes the generating function for the so-
: _ _ 1 1 z1+ +xn
lutions to f(z1,...,2n) = 1, namely G(2) =3>, o >, _¢2 flz1,...,zn).

26. [M20] Modify Algorithm C so that it computes the reliability polynomial for given
probabilities, namely

1 1
F(pla" . ;pn) = Z Z (]- _pl)lizlpfl cee (1 _pn)liznpznf(mla cee ,xn)~

xr1=0 Typ=0

27. [M26] Suppose F(pi,...,pn) and G(p1,-..,pn) are the reliability polynomials
for Boolean functions f(z1,...,%») and g(z1,...,on), where f # g. Let ¢ be a prime
number, and choose independent random integers qi, ..., qn, uniformly distributed
in the range 0 < gx < g. Prove that F(qi,...,¢q,) mod g # G(q,.-.,¢,) mod g with
probability > (1—1/¢)". (In particular, if n = 1000 and ¢ = 23' — 1, different functions
lead to different “hash values” under this scheme with probability at least 0.9999995.)

28. [M16] Let F(p) be the value of the reliability polynomial F(p1,...,pn) when p1 =
= pn = p. Show that it’s easy to compute F(p) from the generating function G(z).

29. [HM20] Modify Algorithm C so that it computes the reliability polynomial F(p)
of exercise 28 and also its derivative F’(p), given p and the BDD for f.

30. [M21] The reliability polynomial is the sum, over all solutions to f(z1,...,zn)=1,
of contributions from all “minterms” (1—p1)* “'pt...(1—pn)' “"p%~. Explain how

to find a solution z1 ...z, whose contribution to the total reliability is maximum, given
a BDD for f and a sequence of probabilities (p1,...,pn).

31. [M21] Modify Algorithm C so that it computes the fully elaborated truth table
of f, formalizing the procedure by which (24) was obtained from Fig. 21.

32. [M20] What interpretations of ‘o’, ‘e’, ‘L’, ‘T’ ‘z,’, and ‘z;” will make the general
algorithm of exercise 31 specialize to the algorithms of exercises 25, 26, 29, and 307

33. [M22] Specialize exercise 31 so that we can efficiently compute

> (wzi+ +wnzn) and > (wizi+ + wnz,)?
f(z)=1 f(z)=1

from the BDD of a Boolean function f(z) = f(z1,...,2Zn).

7.1.4 BINARY DECISION DIAGRAMS 261

34. [M25] Specialize exercise 31 so that we can efficiently compute

max{ max (wizy+ Fwe 1Ty FwkTE W T+ Fwas, +wl) | f(2) =13

from the BDD of f, given 3n arbitrary weights (wq, ..., Wy, wl, ..., wp,wy,...,wn).

> 35. [22] A free binary decision diagram (FBDD) is a binary decision diagram such as

where the branch variables needn’t appear in any particular order, but no variable is
allowed to occur more than once on any downward path from the root. (An FBDD is
“free” in the sense that every path in the dag is possible: No branch constrains another.)
a) Design an algorithm to verify that a supposed FBDD is really free.
b) Show that it’s easy to compute the reliability polynomial F(p1,...,ps) of a Bool-
ean function f(z1,...,z,), given (p1,...,prn) and an FBDD that defines f, and
to compute the number of solutions to f(z1,...,z,) = 1.

36. [25] By extending exercise 31, explain how to compute the elaborated truth table
for any given FBDD, if the abstract operators o and e are commutative as well as
distributive and associative. (Thus we can find optimum solutions as in Algorithm B, or
solve problems such as those in exercises 30 and 33, with FBDDs as well as with BDDs.)

37. [M20] (R.L. Rivest and J. Vuillemin, 1976.) A Boolean function f(z1,...,2x) is
called evasive if every FBDD for f contains a downward path of length n. Let G(z) be
the generating function for f, as in exercise 25. Prove that f is evasive if G(—1) # 0.

» 38. [27] Let Is_1, ..., Io be branch instructions that define a nonconstant Boolean
function f(z1,...,%,) asin (8) and (10). Design an algorithm that computes the status
variables t; ... tn, where

+1, if f(#1,...,%n) =1 whenever z; = 1;
t; = < —1, if f(z1,...,zn) =1 whenever z; = 0;
0, otherwise.

(If t1...tn #0...0, the function f is therefore canalizing as defined in Section 7.1.1.)
The running time of your algorithm should be O(n + s).

39. [M20] What is the size of the BDD for the threshold function [z1 + + zn > k]?

> 40. [22] Let g be the “condensation” of f obtained by setting zxt1 < zx as in (27).
a) Prove that B(g) < B(f). [Hint: Consider subtables and beads.]
b) Suppose h is obtained from f by setting zx12 < zx. Is B(h) < B(f)?
41. [M25] Assuming that n > 4, find the BDD size of the Fibonacci threshold func-
tions (a) (mflmgz . m:’jgzm:ﬁilx?‘*) and (b) (mfl m:il .. m?“’zmg"’lmf"’2>.
42. [22] Draw the BDD base for all symmetric Boolean functions of 3 variables.
> 43. [22] What is B(f) when (a) f(z1,...,2Z2n) =[Z1+ +ZTn=Tnt1+ + 22,]7
(b) f(z1,...,220) = [x1 + 23+ + xon—1=x2 + T4 + + x2,]?
> 44. [M32] Determine the maximum possible size, X, of B(f) when f is a symmetric
Boolean function of n variables.

262 COMBINATORIAL SEARCHING 7.1.4

45. [22] Give precise specifications for the Boolean modules that compute the three-
in-a-row function as in (33) and (34), and show that the network is well defined.

46. [M23] What is the true BDD size of the three-in-a-row function?

47. [M21] Devise and prove a converse of Theorem M: Every Boolean function f with
a small BDD can be implemented by an efficient network of modules.

48. [M22] Implement the hidden weighted bit function with a network of modules
like Fig. 23, using ar = 2+ Ak and by = 1+ A(n — k) connecting wires for 1 < k < n.
Conclude from Theorem B that the upper bound in Theorem M cannot be improved
to >, 2P(@k:%) for any polynomial p.

49. [20] Draw the BDD base for the following sets of symmetric Boolean functions:
(@) {S>k(21, 22, 23,24) | 1 <k < 4} (b) {Sk(x1, 2,25, 24) [0 <k < 4}

50. [22] Draw the BDD base for the functions of the r,‘-segment display (7.1.2—(42)).

51. [22] Describe the BDD base for binary addition when the input bits are numbered
from right to left, namely (frn+1fnfn—1.--f1)2 = (Tan—1...2371)2 + (T2n - .. T4T2)2,
instead of from left to right as in (35) and (36).

52. [20] There’s a sense in which the BDD base for m functions {fi,..., fm} isn’t
really very different from a BDD with just one root: Consider the junction function

J(Uy .oy Unj UL, ey Un) = (u1? v u2? v un? vn: 0), and let
f(tl,...,tm+1,m1,...,mn) :J(tl,...,tm+1;f1(m1,...,mn),...,fm(xl,...,mn),l),
where (t1,...,tm+1) are new “dummy” variables, placed ahead of (z1,...,z,) in the or-

dering. Show that B(f) is almost the same as the size of the BDD base for {f1,..., fm}.
53. [238] Play through Algorithm R, when it is applied to the binary decision diagram
with seven branch nodes in (2).

54. [17] Construct the BDD of f(z1,...,2,) from f’s truth table, in O(2") steps.
55. [M30] Explain how to construct the “connectedness BDD” of a graph (like Fig. 22).
56. [20] Modify Algorithm R so that, instead of pushing any unnecessary nodes onto
an AVAIL stack, it creates a brand new BDD, consisting of consecutive instructions

I._1, ..., I1, I that have the compact form (Ux? lx: hi) assumed in Algorithms B
and C. (The original nodes input to the algorithm can then all be recycled en masse.)

57. [25] Specify additional actions to be taken between steps R1 and R2 when Algo-
rithm R is extended to compute the restriction of a function. Assume that FIX[v] =
t € {0,1} if variable v is to be given the fixed value ¢; otherwise FIX[v] < 0.

58. [20] Prove that the “melded” diagram defined by recursive use of (37) is reduced.

59. [M28] Let h(z1,...,z,) be a Boolean function. Describe the melded BDD fog in
terms of the BDD for h, when (a) f(z1,...,22n) = h(x1,...,2n) and g(x1,...,T2n) =

hMznt1,---,220); (b) f(z1,22,...,%2n) = h(z1,23,...,22n—1) and g(z1, T2, ..., T2n) =
h(z2,T4,...,T2,). [In both cases we obviously have B(f) = B(g) = B(h).]

60. [M22] Suppose f(z1,...,7n) and g(z1,...,z,) have the profiles (bg,...,b,) and

(b0, - .. ,by,), respectively, and let their respective quasi-profiles be (qo,...,qn) and

(65 - - - qy)- Show that their meld fog has B(fog) < E;l:o (g;b5 +b;q; — b;b}) nodes.

61. [M27] If a and B are nodes of the respective BDDs for f and g, prove that
in-degree(a ¢ 3) < in-degree(a) in-degree(3)

in the melded BDD f ¢ g. (Imagine that the root of a BDD has in-degree 1.)

7.1.4 BINARY DECISION DIAGRAMS 263

> 62. [M21] If f(z) = /I (2251 Away) and g(z) = (21 Azn) VI (@25 Aajiga),
what are the asymptotic values of B(f), B(g), B(f<g), and B(fV g) as n — co?

63. [M27] Let f(z1,...,%n) = Mpm(21 B 22,23 D Tay- - s T2m—1D T2m; T2mt1y---,Tn)
and g(z1,...,%n) = Mm (T2 ® T3, ..., Tam—2 D Tom—1, T2m; Tam+1,-- -, Tn), Where n =

2m + 2™. What are B(f), B(g), and B(f A g)?
64. [M21] We can compute the median {f1 f2 f3) of three Boolean functions by forming

fa=fivViy, fs=finfs, foe=fANfa, fr=[fsVfs.

Then B(fs) = O(B(f1)B(f2)). B(fs) = O(B(f1)B(f2)), B(fs) = O(B(f3)B(f1)) =
O(B(f1)B(f2) B(f3)); therefore B(f7) = O(B(fs)B(fs)) = O(B(f1)*B(f2)’B(f3)).
Prove, however, that B(f7) is actually only O(B(f1)B(f2)B(f3)), and the running
time to compute it from fs and fs is also O(B(f1) B(f2) B(f3)).

» 65. [M25] If h(z1,...,2n) = f(®1,...,2j-1,9(T1,. .., Zn), Ljt+1,...,Tn), Prove that
B(h) = O(B(f)*B(g)). Can this upper bound be improved to O(B(f) B(g)) in general?

66. [20] Complete Algorithm S by explaining what to do in step S1 if f o g turns out
to be trivially constant.

67. [24] Sketch the actions of Algorithm S when (41) defines f and g, and op = 1.
68. [20] Speed up step S10 by streamlining the common case when LEFT(¢) < 0.

69. [21] Algorithm S ought to have one or more precautionary instructions such as
“if NTOP > TBOT, terminate the algorithm unsuccessfully,” in case it runs out of room.
Where are the best places to insert them?

70. [21] Discuss setting b to |1g LCOUNT[/] | instead of [lg LCOUNT[!]1] in step S4.
71. [20] Discuss how to extend Algorithm S to ternary operators.
72. [25] Explain how to eliminate hashing from Algorithm S.

» 73. [25] Discuss the use of “virtual addresses” instead of actual addresses as the links
of a BDD: Each pointer p has the form 7(p)2° + o(p), where 7(p) = p>>e is p’s “page”
and o(p) = pmod 2° is p’s “slot”; the parameter e can be chosen for convenience. Show
that, with this approach, only two fields (LO,HI) are needed in BDD nodes, because
the variable identifier V(p) can be deduced from the virtual address p itself.

> 74. [M23] Explain how to count the number of self-dual monotone Boolean functions
of n variables, by modifying (49).

75. [M20] Let pn(z1,...,x2n) be the Boolean function that is true if and only if
Z1...x2n is the truth table of a regular function (see exercise 7.1.1-110). Show that
the BDD for p,, can be computed by a procedure similar to that of u, in (49).

> 76. [M22] A “clutter” is a family S of mutually incomparable sets; in other words,
S ¢ S" whenever S and S’ are distinct members of S. Every set S C {0,1,...,n — 1}
can be represented as an n-bit integer s = > {2° | e € S}; so every family of such sets
corresponds to a binary vector xzoxi ...xz2n_1, with s = 1 if and only if s represents a
set of the family.
Show that the BDD for the function ‘[zoz1 ...2z2n_1 corresponds to a clutter]” has
a simple relation to the BDD for the monotone-function function pn(z1,...,Tan).

> 77. [M30] Show that there’s an infinite sequence (bg,b1,b2,...) = (1,2,3,5,6,...)
such that the profile of the BDD for un is (bo,b1,...,b9n—1_1,b9n-1_1,...,b1,b0,2).
(See Fig. 25.) How many branch nodes of that BDD have LO = [L]?

264 COMBINATORIAL SEARCHING 7.1.4

» 78. [25] Use BDDs to determine the number of graphs on 12 labeled vertices for which
the maximum vertex degree is d, for 0 < d < 11.
79. [20] For 0 < d < 11, compute the probability that a graph on vertices {1,...,12}
has maximum degree d, if each edge is present with probability 1/3.
80. [23] The recursive algorithm (55) computes f A g in a depth-first manner, while
Algorithm S does its computation breadth-first. Do both algorithms encounter the same

subproblems f’ A g’ as they proceed (but in a different order), or does one algorithm
consider fewer cases than the other?

v

81. [20] By modifying (55), explain how to compute f @ g in a BDD base.

82. [25] When the nodes of a BDD base have been endowed with REF fields, explain
how those fields should be adjusted within (55) and within Algorithm U.

83. [M20] Prove that if f and g both have reference count 1, we needn’t consult the
memo cache when computing AND(f, g) by (55).

v

84. [2/] Suggest strategies for choosing the size of the memo cache and the sizes of
the unique tables, when implementing algorithms for BDD bases. What is a good way
to schedule periodic garbage collections?

85. [16] Compare the size of a BDD base for the 32 functions of 16 x 16-bit binary mul-
tiplication with the alternative of just storing a complete table of all possible products.

» 86. [21] The routine MUX in (62) refers to “obvious” values. What are they?

87. [20] If the median operator {fgh) is implemented with a recursive subroutine
analogous to (62), what are its “obvious” values?

v

88. [M25] Find functions f, g, and h for which the recursive ternary computation of
f AgAh outperforms any of the binary computations (fAg)Ah, (gAR)Af, (RAf)Ag.

89. [15] Are the following quantified formulas true or false? (a) 3z13zs f = Jzo3z1 f.
(b) Vz1Vzo f = VzoVar f. (c) Vzi3zo f < FzoVar f. (d) Vi Tza f > JzaVay f.

90. [M20] When [=m = n = 3, Eq. (64) corresponds to the MOR operation of MMIX.
Is there an analogous formula that corresponds to MXOR (matrix multiplication mod 2)7

v

91. [26] In practice we often want to simplify a Boolean function f with respect to a
“care set” g, by finding a function f with small B(f) such that

f@)Ag@) < f(z) < fx)vg(z) for all .

In other words, f(z) must agree with f(z) whenever z satisfies g(z) = 1, but we
don’t care what value f(z) assumes when g(z) = 0. An appealing candidate for such
an f is provided by the function f|g, “f constrained by g,” defined as follows: If g(z) is
identically 0, f | g = 0. Otherwise (f | g)(z) = f(y), where y is the first element of
the sequence z, @ 1, z ® 2, ..., such that g(y) = 1. (Here we think of z and y as
n-bit numbers (z1...2Zn)2 and (y1...Yn)2. Thus 2®1=2@0...01 = 21...Tp_1Tn;
z®2=x80...010 = ml...mn_zfn_lmn; etc.)
a) What are f |1, f |l z;, and f | z,7

b) Prove that (f A 1) g = (f 19) A (f' L g).

c) True or false: flg=7F1lg.

d) Simplify the formula f(z1,...,2n)) (2 A Ts A Ts A z6).

e) Simplify the formula f(z1,...,2n) | (21 ® 22 ® D Tn).

f) Simplify the formula f(z1,...,2n){ ((z1 A ANzn)V (T1 A A Zy)).
g) Simplify the formula f(z1,...,2n) 4 (21 A g(z2,...,20n)).

7.1.4 BINARY DECISION DIAGRAMS 265

h) Find functions f(z1,z2) and g(z1,z2) such that B(f | g) > B(f).

i) Devise a recursive way to compute f | g, analogous to (55).

92. [M27] The operation fg in exercise 91 sometimes depends on the ordering of the
variables. Given g = g(x1,...,%n), prove that (f" 1 g™) = (f | g)™ for all permutations
m of {1,...,n} and for all functions f = f(x1,...,%,») if and only if g = 0 or g is a
subcube (a conjunction of literals).

93. [36] Given a graph G on the vertices {1,...,n}, construct Boolean functions f
and g with the property that an approximating function f exists as in exercise 91 with

small B(f) if and only if G can be 3-colored. (Hence the task of minimizing B(f) is
NP-complete.)

94. [21] Explain why (65) performs existential quantification correctly.

95. [20] Improve on (65) by testing if r; = 1 before computing ry,.

96. [20] Show how to achieve (a) universal quantification Vz;, ...Vz;, f = fAg, and
(b) differential quantification dz;, ...0z,,, f = f D g, by modifying (65).

97. [M20] Prove that it’s possible to compute arbitrary bottom-of-the-BDD quantifi-
cations such as 3z, 5V2n_4Qzn_332H_2ATn_1YZs f(21,...,2s) in O(B(f)) steps.

98. [22] In addition to (70), explain how to define the vertices ENDPT(z) of G that
have degree < 1. Also characterize PAIR(z,y), the components of size 2.

99. [20] (R. E. Bryant, 1984.) Every 4-coloring of the US map considered in the text
corresponds to 24 solutions of the COLOR function (73), under permutation of colors.
What’s a good way to remove this redundancy?

100. [24] In how many ways is it possible to 4-color the contiguous USA with exactly
12 states of each color? (Eliminate DC from the graph.)

101. [20] Continuing exercise 100, with colors {1,2,3,4}, find such a coloring that
maximizes Y, (state weight) X (state color), where states are weighted as in (18).

102. [23] Design a method to cache the results of functional composition using the fol-
lowing conventions: The system maintains at all times an array of functions [g1, . .., gn],
one for each variable x;. Initially g; is simply the projection function z;, for 1 < j < n.
This array can be changed only by the subroutine NEWG (4, g), which replaces g; by g.
The subroutine COMPOSE(f) always performs functional composition with respect to
the current array of replacement functions.

103. [20] Mr. B. C. Dull wanted to evaluate the formula

Elyl o -Elym((yl = fl(mla' . -,-Tn)) A A (ym = fm(xla- o amﬂ)) /\g(yla cee aym))a

for certain functions fi, ..., fm, and g. But his fellow student, J. H. Quick, found a
much simpler formula for the same problem. What was Quick’s idea?

104. [21] Devise an efficient way to decide whether f < gor f > g or f || g, where
f || g means that f and g are incomparable, given the BDDs for f and g.

105. [25] A Boolean function f(z1,...,x) is called unate with polarities (y1,...,Yn)
if the function h(z1,...,7n) = f(z1 D y1,-..,Tn ® Yn) is monotone.
a) Show that f can be tested for unateness by using the A and N quantifiers.
b) Design a recursive algorithm to test unateness in at most O(B(f)?) steps, given
the BDD for f. If f is unate, your algorithm should also find appropriate polarities.

266

106.

COMBINATORIAL SEARCHING 7.1.4

[25] Let f$g3$h denote the relation “f(z) = g(y) = 1 implies h(z A y) = 1, for

all z and y.” Show that this relation can be evaluated in at most O(B(f)B(g) B(h))
steps. [Motivation: Theorem 7.1.1H states that f is a Horn function if and only if
F$£$f; thus we can test Horn-ness in O(B(f)?) steps.]

107.

[26] Continuing exercise 106, show that it’s possible to determine whether or not

f is a Krom function in O(B(f)*) steps. [Hint: See Theorem 7.1.1S.]

108.

[HM2/] Let b(n,s) be the number of n-variable Boolean functions with B(f) < s.

Prove that (s — 3)!b(n, s) < (n(s — 1)?)*2 when s > 3, and explore the ramifications
of this inequality when s = |2"/(n 4 1/In2)|. Hint: See the proof of Theorem 7.1.2S.

» 109.

[HM17] Continuing exercise 108, show that almost all Boolean functions of n var-

iables have B(f™) > 2"/(n + 1/In2), for all permutations 7 of {1,...,n}, as n — oo.

110.
111.

112.

[25] Construct explicit worst-case functions f, with B(f,)= Uy in Theorem U.
[M21] Verify the summation formula (79) in Theorem U.

[HM23] Prove that min(2k,22nik— 22nik71) — by, is very small, where by, is the

number defined in (80), except when n —lgn — 1< k<n —lgn+ 1.

113.

[20] Instead of having two sink nodes, one for each Boolean constant, we could

have 2'6 sinks, one for each Boolean function of four variables. Then a BDD could stop
four levels earlier, after branching on x,_4. Would this be a good idea?

114.
» 115.
116.
117.
118.

[20] Is there a function with profile (1,1,1,1,1,2) and quasi-profile (1,2,3,4,3,2)?
[M22] Prove the quasi-profile inequalities (84) and (124).

[M21] What is the (a) worst case (b) average case of a random quasi-profile?
[M20] Compare Q(f) to B(f) when f = My (T1,-. -, Tm;Tm+1,. -, Tmt2m).
[M23] Show that, from the perspective of Section 7.1.2, the hidden weighted bit

function has cost C'(hy) = O(n). What is the exact value of C(h4)?

119.

[20] True or false: Every symmetric Boolean function of n variables is a special

case of hany1. (For example, z1 @ z2 = h5(0,1,0, 21, z2).)

120.
> 121.

[18] Explain the hidden-permuted-weighted-bit formula (94).
[M22] Tf f(21,...,x,) is any Boolean function, its dual £ is f(Z1,...,%.), and

its reflection f2is f(2n ...,z1). Notice that fPP = fER = f and fPR = fEP,

a)
b)

)

Q)
122.
123.

> 124.

Show that hER(ml, ces@n) = hp(T2,. .., Tn, 21).
Furthermore, the hidden weighted bit function satisfies the recurrence
hl(ml) = 21, hn+1($1, e ,.’En+1) = ($n+1? hn(mz, ey T, xl): hn(xl, N ,.’En)).

Define x1), a permutation on the set of all binary strings x, by the recursive rules

ep=¢€, (z1...2,0) = (z1...209)0, (z1...2,1)¢0 = (z2...2pz1)P1.

For example, 11019 = (1014)1 = (01¢)11 = (0¢))111 = (x»)0111 = 0111; and we
also have 01114 = 1101. Is % an involution?
Show that Ay () = hy(z1), where the function h, has a very small BDD.

[27] Construct an FBDD for h, that has fewer than n? nodes, when n > 1.
[M20] Prove formula (97), which enumerates all slates of offset s.

[27] Design an efficient algorithm to compute the profile and quasi-profile of hy,

given a permutation 7. Hint: When does the slate [ro, ..., n_] correspond to a bead?

7.1.4 BINARY DECISION DIAGRAMS 267

125. [HM34] Prove that B(hy,) can be expressed exactly in terms of the sequences
n n
n—k n—k
A, = B, = .
" (2k) " Z(Zk—i—l)
k=0 k=0

126. [HM/42] Analyze B(h]) for the organ-pipe permutation * = (2,4,...,n,...,3,1).
127. [46] Find a permutation 7 that minimizes B(hJq).
128. [25] Given a permutation 7 of {1,...,m + 2™}, explain how to compute the
profile and quasi-profile of the permuted 2™ -way multiplexer

M::L(ml, ey Tmy Tm41y .- - ,mm+2m) = Mm(mlﬂ-, cees Tmmy (B(m+1)ﬂ-, ceey m(m+2m)7r)-
129. [M25] Define Qm(z1,...,2,,2) to be 1 if and only if the 01 matrix (2(;—1)m+;)
has no all-zero row and no all-zero column. Prove that B(QT,) = Q(2™/m?) for all 7.

130. [HM31] The adjacency matrix of an undirected graph G on vertices {1,...,m}
consists of (7)) variable entries zu, = [u— v in G, for 1 < u < v < m. Let Cp
be the Boolean function [G has a k-clique], for some ordering of those (7;) variables.

a) If 1 < k < y/m, prove that B(Cym,x) > (*T%), where s = (¥) —1land t = m+2—k%.

b) Consequently B(Cyn [m/21) = Q(2™/3//m), regardless of the variable ordering.
131. [M28] (The covering function.) The Boolean function

O($17$27 sy Tpy Y11, Y12, - - -, Y1g, Y215 - -5 Y2gs - - -5 Ypl Yp2s - - '7yP(I)

= ((1Ay1)V(z2AY21)V V(zpAyp)) A A (#1AY10) V (22AY2)V YV (2pAYpa))

is true if and only if all columns of the matrix product

Y11 Y1z .. Yig

Y21 Y22 ... Y2q
z Y = (m1z2...3p) | . . .

Y1 Yp2 --- Ypg

are positive, i.e., when the rows of Y selected by x “cover” every column of that matrix.
The reliability polynomial of C' is important in the analysis of fault-tolerant systems.

a) When a BDD for C tests the variables in the order

T1,Y11,Y125 - -y Y1q, T2, Y21,Y22, - - -y Y2q5 - - - s Tp, Yp1, Yp2, - - -y Ypq;

show that the number of nodes is asymptotically pg29~! for fixed ¢ as p — co.
b) Find an ordering for which the size is asymptotically pg2P~* for fixed p as ¢ — oo.
¢) Prove, however, that B, (C) = Q(2™"(P9/2) in general.

132. [32] What Boolean functions f(z1,x2, 23,4, 2s5) have the largest Bumin(f)?
133. [20] Explain how to compute Buin(f) and Bmax(f) from f’s master profile chart.

134. [24] Construct the master profile chart, analogous to (102), for the Boolean
function z1 @ ((xg D (z1V (T2 A xg))) A (z3 ® m4)). What are Bmin(f) and Bmax(f)?
Hint: The identity f(x1,x2,z3,%4) = f(x1,z2, T, T3) saves about half the work.

135. [M27] For all n > 4, find a Boolean function 6, (1, ..., z,) that is uniquely thin,
in the sense that B(6;) = n + 2 for exactly one permutation w. (See (93) and (102).)

268 COMBINATORIAL SEARCHING 7.1.4

> 136. [M34] What is the master profile chart of the median-of-medians function
<<$11.’E12 . .’E1n><$21$22 . $2n> . <.’Em1$m2 . mmn>>7

when m and n are odd integers? What is the best ordering? (There are mn variables.)

137. [M38] Given a graph, the optimum linear arrangement problem asks for a permu-
tation 7 of the vertices that minimizes), , |umr—vm|. Construct a Boolean function f
for which this minimum value is characterized by the optimum BDD size Bmin(f).

> 138. [M36] The purpose of this exercise is to develop an attractive algorithm that
computes the master profile chart for a function f, given f’s QDD (not its BDD).
a) Explain how to find (";1) weights of the master profile chart from a single QDD.
b) Show that the jump-up operation can be performed easily in a QDD, without
garbage collection or hashing. Hint: See the “bucket sort” in Algorithm R.
c) Consider the 2™ ! orderings of variables in which the (i 4 1)st is obtained from
the ith by a jump-up from depth pi + vi to depth vi — 1. For example, we get
12345 21345 32145 31245 43125 41325 42135 42315 54231 52431 53241 53421 51342 51432 51243 51234

when n = 5. Show that every k-element subset of {1,...,n} occurs at the top k
levels of one of these orderings.
d) Combine these ideas to design the desired chart-construction algorithm.
e) Analyze the space and time requirements of your algorithm.
139. [22] Generalize the algorithm of exercise 138 so that (i) it computes a common
profile chart for all functions of a BDD base, instead of a single function; and (ii) it
restricts the chart to variables {zq, Zq+1,...,%b}, preserving {z1,...,xTq—1} at the top
and {Zp+1,...,Zn} at the bottom.
140. [27] Explain how to find Bmin(f) without knowing all of f’s master profile chart.
141. [30] True or false: If X1, Xo, ..., X, are disjoint sets of variables, then an opti-
mum BDD ordering for the variables of g(hi(X1),h2(X2),...,Am(Xm)) can be found
by restricting consideration to cases where the variables of each X; are consecutive.
> 142. [HM32] The representation of threshold functions by BDDs is surprisingly myste-
rious. Consider the self-dual function f(z) = (z{"...z5™), where each w; is a positive
integer and w1+ 4wy, is odd. We observed in (28) that B(f) = O(w1+ +wy)?; and
B(f) is often O(n) even when the weights grow exponentially, as in (29) or exercise 41.
a) Prove that when w; = 1, wy = 2¥72 for 1 < k < m, and wy = 2™ — 2"7* for
m < k < 2m =n, B(f) grows exponentially as n — 0o, but Bmin(f) = O(n?).
b) Find weights {w1, ..., w,} for which Bmin(f) = Q(2V"/?).
143. [24] Continuing exercise 142(a), find an optimum ordering of variables for the
function (2,2 03xiees® e el es** 200 2317215 215 019 2152 01" 217 O 218 w102 0307).
144. [16] What is the quasi-profile of the addition functions { f1, f2, fs, fa, f5} in (36)7
145. [24] Find Bwmin(f1, f2, f3, f4, f5) and Bmax(f1, f2, f3, f4, f5) of those functions.
> 146. [M22] Let (bo,...,bn) and (qo,-..,qn) be a BDD base profile and quasi-profile.
a) Prove that by < min(qo, (b1 4+ g2) (b1 + g2 — 1)), b < min(bo ~+ qo0,q2(q2 — 1)), and
bo + b1 > qo — q2.
b) Conversely, if bo, b1, go, and g2 are nonnegative integers that satisfy those in-
equalities, there is a BDD base with such a profile and quasi-profile.
» 147. [27] Flesh out the details of Rudell’s swap-in-place algorithm, using the conven-
tions of Algorithm U and the reference counters of exercise 82.

7.1.4 BINARY DECISION DIAGRAMS 269

148. [M21] Trueor false: B(ff,..., f5) <2B(f1,..., fm), after swapping @ > @

149. [M20] (Bollig, Lobbing, and Wegener.) Show that, in addition to Theorem J7,
we also have B(fT,..., fr) < (2% —2)bo + B(f1,. .., fm) after a jump-down operation
of k — 1 levels, when (bg,...,bs) is the profile of { fi,..., fm}.

150. [30] When repeated swaps are used to implement jump-up or jump-down, the
intermediate results might be much larger than the initial or final BDD. Show that
variable jumps can actually be done more directly, with a method whose worst-case
running time is O(B(f1,..., fm) + B(fT',---, fi))-

151. [20] Suggest a way to invoke Algorithm J so that each variable is sifted just once.

152. [25] The hidden weighted bit function higo has more than 17.5 trillion nodes
in its BDD. By how much does sifting reduce this number? Hint: Use exercise 124,
instead of actually constructing the diagrams.

153. [30] Put the tic-tac-toe functions {yi,...,ys} of exercise 7.1.2-65 into a BDD
base. How many nodes are present when variables are tested in the order x1, z2, ..., z9,
01, 02, ..., 09, from top to bottom? What is Bmin(y1,-.-,¥s)?

154. [20] By comparing (104) to (106), can you tell how far each state was moved
when it was sifted?

155. [25] Let fi be the independent-set function (105) of the contiguous USA, and
let f2 be the corresponding kernel function (see (68)). Find orderings 7 of the states
so that (a) B(f35) and (b) B(fT, f5) are as small as you can make them. (Note that
the ordering (110) gives B(f{') = 339, B(f5) = 795, and B(fT, f37) = 1129.)

156. [30] Theorems J* and J~ suggest that we could save reordering time by only
jumping up when sifting, not bothering to jump down. Then we could eliminate steps

J3, J5, J6, and J7 of Algorithm J. Would that be wise?

157. [M24] Show that if the m + 2™ variables of the 2™-way multiplexer M, are ar-
ranged in any order such that B(M,) > 2™"! 41, then sifting will reduce the BDD size.

158. [M24] When a Boolean function f(z1,...,z,) is symmetrical in the variables
{z1,...,xp}, it’s natural to expect that those variables will appear consecutively in at
least one of the reorderings f™(z1,...,%,) that minimize B(f™). Show, however, that if

f@y,..,zn)=lzi+ +zp=|p/3]]+[z1+ +2p=[2p/31]9(Tpt1,. ., Tptm),

where p = n—m and g(y1,...,Ym) is any nonconstant Boolean function, then B(f") =
in?4+0(n) as n — oo when {z1,...,2,} are consecutive in 7, but B(f™) = in’+0(n)
when 7 places about half of those variables at the beginning and half at the end.
159. [20] John Conway’s basic rule for Life, exercise 7.1.3-167, is a Boolean function
L(Zxw, TN, Tne, Tw, T, Te, Tsw, Ts; Tse). What ordering of those nine variables will
make the BDD as small as possible?

160. [24] (Chess Life.) Consider an 8 x 8 matrix X = (z;;) of Os and 1s, bordered by
infinitely many Os on all sides. Let L;;(X) = L(m(i—l)(j—1)7 R Y PN m(i+1)(j+1)) be
Conway’s basic rule at position (¢, 7). Call X “tame” if L;;(X) = 0 whenever i ¢ [1..8]
or j ¢ [1..8]; otherwise X is “wild,” because it activates cells outside the matrix.

a) How many tame configurations X vanish in one Life step, making all L;;(X) = 07

b) What is the maximum weight 3% | Z;s:l z;; among all such solutions?

¢) How many wild configurations vanish within the matrix after one Life step?

d) What are the minimum and maximum weight, among all such solutions?

e) How many configurations X make L;;(X) =1for 1 <i,j <87

270 COMBINATORIAL SEARCHING 7.1.4

f) Investigate the tame 8 x 8 predecessors of the following patterns:

m @ R

(Here, as in Section 7.1.3, black cells denote 1s in the matrix.)

161. [28] Continuing exercise 160, write L(X) =Y = (y;;) if X is a tame matrix such
that L”(X) = Yij for 1 S Z,_] S 8.

a) How many X'’s satisfy L(X) = X (“still Life”)?

b) Find an 8 x 8 still Life with weight 35.

¢) A “flip-flop” is a pair of distinct matrices with L(X)=Y, L(Y)=X. Count them.

d) Find a flip-flop for which X and Y both have weight 28.
162. [30] (Caged Life.) If X and L(X) are tame but L(L(X)) is wild, we say that X
“escapes” its cage after three steps. How many 6 x 6 matrices escape their 6 X 6 cage
after exactly k steps, for k =1,2,...7

163. [23] Prove formulas (112) and (113) for the BDD sizes of read-once functions.

164. [M27] What is the maximum of B(f), over all read-once functions f(z1,...,2,)?

165. [M21] Verify the Fibonacci-based formulas (115) for B(um) and B(vm).

166. [M29] Complete the proof of Theorem W.
5

167. [21] Design an efficient algorithm that computes a permutation 7 for which both
B(f™) and B(f™, f™) are minimized, given any read-once function f(z1,...,Ty).

168. [HM/0] Consider the following binary operations on ordered pairs z = (z,y):
zo2 = (z,y)o(z,y) = (z + 2, min(z + ¢, 2" +y));
zez = (z,y) e (z',y) = (z + 2’ + min(y,y'), max(y,y')).

(These operations are associative and commutative.) Let S; = {(1,0)}, and

n—1 n—1
Sy = U{zoz' | z € Sk, 7 € Sn—r} U U{zoz' | z € Sk, 7 e Sp—r} forn > 1.
k=1 k=1
Thus S = {(270)7 (27 1)}a S = {(37 0)7 (37 1)7 (37 2)}7 Sy = {(47 0)7 RS (473)7 (57 1)}7 etc.
a) Prove that there exists a read-once function f(z1,...,z,) for which we have

min, B(f™) = ¢ and min, B(f7, f7) = ¢ ifand only if (3¢’ —1,c—1c' —1) € S,.

b) True or false: 0 <y < z for all (z,y) € Sh.
c) If 27 = (x4 v,z — y)/V/2, show that 27 02’7 = (ze2')T and 27 e 2'T = (z02")T.
d) Prove that z2 4+ y2 < n? for all (z,y) € S, if B is the constant in (116). Hints:
Let |z|*> = 22 4y?; it suffices to prove that |ze2'| < 2% = v/2¢ whenever 0 < y < =,
0<y <2, |zl =r=1-6)" || =+ = (1+6)?,and 0 < § < 1. If also y = ¥/,
ze2' lies inside the ellipse (a cos @ +bsin 6§, bsin#), where a = r+r' and b = /rr'.
169. [M46] Ts mingB(f™) < B(vam+1) for every read-once function fof 2°™*" variables?

> 170. [M25] Let’s say that a Boolean function is “skinny” if its BDD involves all the
variables in the simplest possible way: A skinny BDD has exactly one branch node @
for each variable x;, and either LO or HI is a sink node at every branch.

a) How many Boolean functions f(x1,...,z») are skinny in this sense?

b) How many of them are monotone?

c) Show that fi(z1,...,2n) =[(21...2n)2 >t] is skinny when 0 < ¢ < 2™ and ¢ is odd.

7.1.4 BINARY DECISION DIAGRAMS 271

d) What is the dual of the function f; in part (c)?
e) Explain how to find the shortest CNF and DNF formulas for f;, given t.

171. [M26] Continuing exercise 170, show that a function is read-once and regular if
and only if it is skinny and monotone.

172. [M27] How many skinny functions f(z1,...,2,) are also Horn functions? How
many of them have the property that f and f both satisfy Horn’s condition?

173. [HM28] Exactly how many Boolean functions f(z1,...,z,) are skinny after some
reordering of the variables, f(Zir,...,ZTnx)?

174. [M39] Let S, be the number of Boolean functions f(z1,...,z,) whose BDD is
“thin” in the sense that it has exactly one node labeled @ for 1 < j < n. Show
that S, is also the number of combinatorial objects of the following types:

a) Dellac permutations of order 2n (namely, permutations pips...p2n such that
(/2] < pe < n+ [k/2] for 1 < k < 2n).

b) Genocchi derangements of order 2n+2 (namely, permutations g1g2 . . . gan+2 such
that gr > k if and only if k£ is odd, for 1 < k < 2n+42; also g, # k in a
derangement).

¢) Irreducible Dumont pistols of order 2n+ 2 (namely, sequences 7173 ... T2n42 such
that £ <7, <2n+2for 1 < k < 2n+2 and {r1,72,...,72n42} = {2,4,6,...,
2n,2n + 2}, with the special property that 2k € {ri,...,r2p—1} for 1 < k < n).

d) Paths from (1,0) to (2n + 2,0) in the directed graph

(7,3)—> (8,3)—> -

4

(5,2)— (6,2)—(7,2)—> (8,2

))
T) ¢)
))
))

(3,1)— (4,1)— (5,1)— (6,1) — (7,1)—(8,1)—> -

(170)—’(2,0)—’(3%)—’(4%0)—’(5 0)— (6,0)—>(7,0)—(8,0)—> -~

(Notice that objects of type (d) are very easy to count.)

175. [M30] Continuing exercise 174, find a way to enumerate the Boolean functions
whose BDD contains exactly bj—1 nodes labeled @, given a profile (bo,...,bn_1,bn).
176. [M35] To complete the proof of Theorem X, we will use exercise 6.4-78, which
states that {ha | @ € A and b € B} is a universal family of hash functions from n bits
to I bits, when hqp(z) = ((az+b)>(n —1)) mod 2", A={a |0 < a < 2", ao0dd}, B=
{b]0<b<2" '}, and 0<I<n. Let I = {has(p) | p € P} and J = {has(q) | ¢ € Q}.

a) Show that if 2! —1 < 2!7'¢/(1 — ¢), there are constants a € A and b € B for
which |I| > (1 —€)2" and |J| > (1 — €)2".

b) Given such an a, let J = {j1,...,755} where 0 = j1 < < j)s1, and choose
Q' ={q1,...,q7} CQ so that hap(qr) = ji for 1 < k < |J|. Let g(g) denote the
middle [—1 bits of ag, namely (ag>>(n—14+1)) mod 2'~. Prove that g(q) # g(q)
whenever g and ¢’ are distinct elements of the set Q" = {q1,¢s, ..., qa[s)/21-1}-

c¢) Prove that the following set Q* satisfies condition (120), when [> 3 and y = a:

Q" = {q1q€Q", g(q) is even, and g(p) + g(q) = 2'~" for some p € P}.
d) Finally, show that |Q*| is large enough to prove Theorem X.
177. [M22] Complete the proof of Theorem A by bounding the entire quasi-profile.

178. [M24] (Amano and Maruoka.) Improve the constant in (121) by using a better
variable ordering: Zn(Z2n—1,%1,%3,...,T2n—3;T2n, T2, Tdy ..., T2n—2).

272 COMBINATORIAL SEARCHING 7.1.4

179. [M47] Does the middle bit of multiplication satisfy Bmin(Zn) = @(26"/5)?
180. [M27] Prove Theorem Y, using the hint given in the text.

Let Lm,» be the leading bit function A% +n)(ml7 e yTmiYl,---,Yn). Prove

1]
that Buin(Lm,n) = O(2m) when m < n.
M38] (1. Wegener.) Does Bmin(Ln,n) grow exponentially as n — co?
]

M25] Draw the first few levels of the BDD for the “limiting leading bit function”

[(.231333335 e)2 (.11729341176 .)2 2 5],
which has infinitely many Boolean variables. How many nodes by, are there on level k7
(We don’t allow (.z123%5...)2 or (.2224%6 ...)2 to end with infinitely many 1s.)
184. [M23] What are the BDD and ZDD profiles of the permutation function P,,?

185. [M25] How large can Z(f) be, when f is a symmetric Boolean function of
n variables? (See exercise 44.)

186. [10] What Boolean function of {z1,z2, 23,24, x5, 26} has the ZDD ‘s@m’?
187. [20] Draw the ZDDs for all 16 Boolean functions f(z1,z2) of two variables.
188. [16] Express the 16 Boolean functions f(z1,z2) as families of subsets of {1,2}.
189. [18] What functions f(z1,...,z,) have a ZDD equal to their BDD?
[
[

~
(=

190. Describe all functions f for which (a) Q(f) = B(f); (b) Q(f) = Z(f).
191. [HM25] How many functions f(z1,...,2,) have no in their ZDD?

192. [M20] Define the Z-transform of binary strings as follows: e¢Z = ¢, 07 = 0,
1% =1, and

S
=

aZa?, if |a| =n and B = 0";
(@B)? ={ aZo", if |a| =n and B = o
aZp?, if|a|=|B] —1,orif o] = |8] =n and a # B # 0™

a) What is 11001001000011111%7

b) True or false: (77)Z = r for all binary strings 7.

c) If f(z1,...,%n) is a Boolean function with truth table 7, let fZ(z1,...,z,) be
the Boolean function whose truth table is 72. Show that the profile of f is almost
identical to the z-profile of fZ, and vice versa. (Therefore Theorem U holds for
ZDDs as well as for BDDs, and statistics such as (80) are valid also for z-profiles.)

193. [M21] Continuing exercise 192, what is SZ(x1,...,%,) when 0 < k < n?

194. [M25] How many f(z1,...,Z,) have the z-profile (1,...,1)? (See exercise 174.)
195. [24] Find Z(M2), Zmin(M2), and Zmax(M>), where M- is the 4-way multiplexer.
196. [M21] Find a function f(z1,...,zs) for which Z(f) = O(n) and Z(f) = Q(n?).
197. [25] Modify the algorithm of exercise 138 so that it computes the “master z-
profile chart” of f. (Then Zuyin(f) and Zmax(f) can be found as in exercise 133.)
198. [23] Explain how to compute AND(f, g) with ZDDs instead of BDDs (see (55)).
199. [21] Similarly, implement (a) OR(f,g), (b) XOR(f,g), (¢) BUTNOT(f, g).

200. [21] And similarly, implement MUX(f, g, h) for ZDDs (see (62)).

201. [22] The projection functions z; each have a simple 3-node BDD, but their ZDD
representations are more complicated. What’s a good way to implement these functions
in a general-purpose ZDD toolkit?

7.1.4 BINARY DECISION DIAGRAMS 273

202. [24] What changes are needed to the swap-in-place algorithm of exercise 147,
when levels @ “~ @ are being interchanged in a ZDD base instead of a BDD base?

> 203. [M24] (Family algebra.) The following algebraic conventions are useful for deal-
ing with finite families of finite subsets of positive integers, and with their representation
as ZDDs. The simplest such families are the empty family, denoted by () and represented
by ; the unit family {0}, denoted by € and represented by ; and the elementary
families {{j}} for 7 > 1, denoted by e; and represented by a branch node @ with
LO = and HI = [T]. (Exercise 186 illustrates the ZDD for es.)

Two families f and g can be combined with the usual set operations:
The union fUg={a|a € f or a € g} is implemented by OR(f, g);
The intersection fNg={a|a € f and a € g} is implemented by AND(f, g);
The difference f\ g ={a|a € f and o ¢ g} is implemented by BUTNOT(f, g);
The symmetric difference f & g = (f\ g)U(g\ f) is implemented by XOR(f, g).
And we also define three new ways to construct families of subsets:
e The join fUg={aUB|a € f and B € g}, sometimes written just fg;
e The meet fT1g={anNpP|a€ fand B € g};
e The delta fHg={a®pB|a€ fand B € g}.
All three are commutative and associative: flUg=gU f, fU(gUh) = (fUg)ULh, etc.
a) Suppose f = {0,{1,2},{1,3}} = eU (e1 U (e2 Ues)) and g = {{1,2},{3}} =
(ex1 Uez) Ues. What are flUgand (fg)\ (fBer)?
b) Any family f can also be regarded as a Boolean function f(z1,z2,...), where
a € f <= f([1€a],[2€a],...) = 1. Describe the operations LI, M, and H in
terms of Boolean logical formulas.
¢) Which of the following formulas hold for all families f, g, and h? (i) fU(gUh) =
(fug)u(fuh); (ii) fri(guh) = (fMg)U(fMh); (ili) fU(gMh) = (FUg)N(fUA);
(iv) fU(@UR)=(fUg)U(fUR); (v) fEEO=0Ng=hUD; (vi) fMle=c¢.
d) We say that f and g are orthogonal, written f L g, if anNp = 0 for all « € f
and all 8 € g. Which of the following statements is true for all families f and g7
() flyg<=frg=e¢i) fLg = [fugl=Ifllgl; (i) |fUgl=[fllg] =
flg (iv)flg<= fug=fmy.
e) Describe all families f for which the following statements hold: (i) f U g = g for
all g; (i) fUg = g for all g; (i) fMg = g for all g; (iv) fU (e1 Uez) = f;
(v) fU(erUes) = f; (vi) fE((e1Uex)Ues) = f; (vil) f8Bf = e (viii) fNf = f.
» 204. [M25] Continuing exercise 203, two further operations are also important:
e the quotient f/g={a|aUB € fand anB =0, for all 3 € g}.
e the remainder fmodg = f\ (gU (f/9))-
The quotient is sometimes also called the “cofactor” of f with respect to g.
) Prove that £/(g U k) = (/g) N (f/h).
) Suppose f = {{1,2},{1,3},{2},{3},{4}}. What are f/es and f/(f/e2)?
) Simplify the expressions f/0, f/e, f/f, and (f mod g)/g, for arbitrary f and g.
) Show that f/g = f/(f/(f/g))- Hint: Start with the relation g C f/(f/g)-
)
)
)

o T

[=%

@

Prove that f/g can also be defined as |J{h |gUh C f and g L h}.

Given f and j, show that f has a unique representation (e;LIg)Uh with e; L (gUh).
g) True or false: (fUg) mod e;=(fmode;)U(gmode;); (fMg)/ej=(f/e;)(g/e;)-

205. [M25] Implement the five basic operations of family algebra, namely (a) f U g,

(b) fMg, (c) fEg, (d) f/g, and (e) f mod g, using the conventions of exercise 198.

-

274 COMBINATORIAL SEARCHING 7.1.4

206. [M46] What are the worst-case running times of the algorithms in exercise 2057
207. [M25] When one or more projection functions z; are needed in applications, as
in exercise 201, the following “symmetrizing” operation turns out to be very handy:

(ei; Uei, U Uey) 8k = Sk(iy, Tigy- -5 T4y, integer k > 0.

For example, €; §1 = z;; €; §0 = Z;; (e Ue;)8§1 = z; D zy; (2 UesUes)§2 =
(2 Az3 AT5) V (T2 ATs Axs) V (T2 A z3 A xs). Show that it’s easy to implement this
operation. (Notice that e;, U Ue;, has a very simple ZDD of size [4+ 2, when [> 0.)
208. [16] By modifying Algorithm C, show that all solutions of a Boolean function
can readily be counted when its ZDD is given instead of its BDD.

209. [M21] Explain how to compute the fully elaborated truth table of a Boolean
function from its ZDD representation. (See exercise 31.)

210. [23] Given the ZDD for f, show how to construct the ZDD for the function

9() = [f(z) =1 and v =max{vy| f(y) =1},
211. [M20] When f describes the solutions to an exact cover problem, is Z(f) < B(f)?
212. [25] What’s a good way to compute the ZDD for an exact cover problem?
213. [

214. [21] When some shape is covered by dominoes, we say that the covering is
faultfree if every straight line that passes through the interior of the shape also passes
through the interior of some domino. For example, the right-hand covering in (127)
is faultfree, but the middle one isn’t; and the left-hand one has faults galore.

16] Why can’t the mutilated chessboard be perfectly covered with dominoes?

How many domino coverings of a chessboard are faultfree?

215. [21] Japanese tatami mats are 1x2 rectangles that are traditionally used to cover
rectangular floors in such a way that no four mats meet at any corner. For example,
Fig. 29(a) shows a 6 x 5 pattern from the 1641 edition of Mitsuyoshi Yoshida’s Jinkoki,
a book first published in 1627.

Find all domino coverings of a chessboard that are also tatami tilings.

Fig. 29. Two nice examples:
(a) A 17th-century tatami tiling; (a)
(b) a tricolored domino covering.

(b)

ll

216. [30] Figure 29(b) shows a chessboard covered with red, white, and blue domi-
noes, in such a way that no two dominoes of the same color are next to each other.

a) In how many ways can this be done?

b) How many of the 12,988,816 domino coverings are 3-colorable?
217. [29] The monomino/domino/tromino covering illustrated in (130) happens to
satisfy an additional constraint: No two congruent pieces are adjacent. How many of
the 92 sextillion coverings mentioned in the text are “separated,” in this sense?
218. [24] Apply BDD and ZDD techniques to the problem of Langford pairs, discussed
at the beginning of this chapter.

v

v

v

7.1.4 BINARY DECISION DIAGRAMS 275

219. [20] What is Z(F) when F is the family (a) WORDS(1000); ...; (e) WORDS(5000)7
220. [21] The z-profile of the 5757 SGB words, represented with 130 variables as . . z5
as discussed in (131),1is (1,1,1,...,1,1,1,23,3,...,6,2,0,3,2,1,1, 2).

a) Explain the entries 23 and 3, which correspond to the variables as and bs.
b) Explain the final entries 0, 3, 2, 1, 1, 2, which correspond to vs, ws, =5, etc.

221. [M27] Only 5020 nodes are needed to represent the 5757 most common five-letter
words of English, using the 130-variable representation, because of special linguistic
properties. But there are 26° = 11,881,376 possible five-letter words. Suppose we
choose 5757 of them at random; how big will the ZDD be then, on average?

222. [27] When family algebra is applied to five-letter words as in (131), the 130
variables are called a1, b1, ..., 25 instead of x1, ®2, ..., £130; and the corresponding
elementary families are denoted by the symbols aj, by, ..., z5 instead of e1, ea, .. ., e130.

Thus the family F' = WORDS(5757) can be constructed by synthesizing the formula
F=(wilheUigUecsUhs)U U(filUuplnglngUys)U U (p; UualipsLlagllls).

a) Let p denote the universal family of all subsets of {a1,...,25}, also called the
“power set.” What does the formula F' 11 g signify?

b) Let X = X1U UXs, where X; = {a;,bj,...,2z;}. Interpret the formula FIX.

) Find a simple formula for all words of F' that match the pattern t*u*h.

d) Find a formula for all SGB words that contain exactly k vowels, for 0 < k < 5
(considering only a, e, i, o, and u to be vowels). Let V; = a; Ue; Uij Uo; Uu,.

e) How many patterns in which exactly three letters are specified are matched by

at least one SGB word? (For example, m¥tc* is such a pattern.) Give a formula.

) How many of those patterns are matched at least twice (e.g., *atc*)?

) Express all words that remain words when a ‘b’ is changed to ‘o’.

) What’s the significance of the formula F/V>7

) Contrast (X;: UVaUVaU ViU X5)NF with (X1 U X5)\ ((p\F)/(V2U V3L VL)).

223. [28] A “median word” is a five-letter word p = p1...pus that can be obtained
from three words @ = a1...a5, 8 = f1...85, ¥ = 71...75 by the rule [a; =pi] +
[Bi=pi] + [vi=pi] =2 for 1 <4 < 5. For example, mixed is a median of the words
{fixed,mixer,mound}, and also of {mated,mixup,nixed}. But noted is not a median
of {notes, voted,naked}, because each of those words has e in position 4.

a) Show that {d(a, p),d(B, 1), d(v,)} is either {1,1,3} or {1,2,2} whenever u is a

median of {«, 3,7}. (Here d denotes Hamming distance.)

b) How many medians can be obtained from WORDS (n) , when n = 1007 10007 57577

¢) How many of those medians belong to WORDS (), when m = 1007 10007 57577
224. [20] Suppose we form the ZDD for all source-to-sink paths in a dag, as in Fig. 28,
when the dag happens to be a forest; that is, assume that every non-source vertex of
the dag has in-degree 1. Show that the corresponding ZDD is essentially the same as
the binary tree that represents the forest under the “natural correspondence between
forests and binary trees,” Eqs. 2.3.2—(1) through 2.3.2—(3).
225. [30] Design an algorithm that will produce a ZDD for all sets of edges that form
a simple path from s to ¢, given a graph and two distinct vertices {s,t} of the graph.
226. [20] Modify the algorithm of exercise 225 so that it yields a ZDD for all of the
simple cycles in a given graph.

227. [20] Similarly, modify it so that it considers only Hamiltonian paths from s to t.

276 COMBINATORIAL SEARCHING 7.1.4

228. [21] And mutate it once more, for Hamiltonian paths from s to any other vertex.

229. [15] There are 587,218,421,488 paths from CA to ME in the graphs (18), but only
437,525,772,584 such paths in (133). Explain the discrepancy.
230. [25] Find the Hamiltonian paths of (133) that have minimum and maximum
total length. What is the average length, if all Hamiltonian paths are equally likely?
231. [23] In how many ways can a king travel from one corner of a chessboard to
the opposite corner, never occupying the same cell twice? (These are the simple paths
from corner to corner of the graph Ps ® Ps.)
232. [23] Continuing exercise 231, a king’s tour of the chessboard is an oriented
Hamiltonian cycle of Ps®Ps. Determine the exact number of king’s tours. What is the
longest possible king’s tour, in terms of Euclidean distance traveled?
233. [25] Design an algorithm that builds a ZDD for the family of all oriented cycles
of a given digraph. (See exercise 226.)
234. [22] Apply the algorithm of exercise 233 to the directed graph on the 49 postal
codes AL, AR, ..., WY of (18), with XY — YZ as in exercise 7-54(b). For example, one
such oriented cycle is NC — CT — TN — NC. How many oriented cycles are possible?
What are the minimum and maximum cycle lengths?
235. [22] Form a digraph on the five-letter words of English by saying that z — y
when the last three letters of z match the first three letters of y (e.g., crown —» owner).
How many oriented cycles does this digraph have? What are the longest and shortest?
236. [M25] Many extensions to the family algebra of exercise 203 suggest themselves
when ZDDs are applied to combinatorial problems, including the following five opera-
tions on families of sets:

e The mazimal elements fT ={a € f|B € f and a C § implies a = B};

e The minimal elements f* ={a € f|B € f and a D B implies a = B};

e The nonsubsets f g ={a € f|B € g implies a Z B};

e The nonsupersets f g = {a € f | B € g implies a 2 B};

e The minimal hitting sets f* = {a | B € f implies a N B # O}*.
For example, when f and g are the families of exercise 203(a) we have fT = e;Li(e2Ues),
fr=ef=0,9"=g"=g,9" = (exUes)Ues, f. g = erlles, fng = €, g f = g~ f = 0.

a) Prove that f.7g= f\ (fMg), and give a similar formula for f ~\ g.

b) Let f¢ ={@|ac f} = fBU, where U = e; Ues LI is the “universal set.”
Clearly 99 = f, (fUg) = fUg®, (fng)° = f°ng°, (f\9)° fc\gc- Show
that we also have the duality laws fT¢ = fO+ ¢ = ch (fUg)® = f°ng°,
(fng)=F7ug% (f9) =17 Ng% (Fn9) = g% fF=(p ~ FO)".

¢) True or false? (i) 2t = e1; (i) 2] = er; (iii) 2! = e1; (iv) (21 V 22)* = €1 Ues;
(v) (z1 A 332)l = e Les.

d) Which of the following formulas hold for all families f, g, and h? (i) fTT = fT;
() 1% = f5 i) = 5 G0 5=) P =) =
(vil) % = 1% (viit) S = £ (i) % = 5 (x) £ 7 (QUR) = (f 7 9) N (F 7 h):
(xi) Fx(gUh) = (Fg)N(Fh); (xii) fx(gUR) = (Fng)h; (xiii) fg" = fg;
(xiv) fgh = f g (xv) (fU9) = (FFUGhY (xvi) (FUg)F = (ffugh)t.

e) Suppose g = |J,_,(eu Uey) is the family of all edges in a graph, and let f be
the family of all the independent sets. Using the operations of extended family
algebra, find simple formulas that express (i) f in terms of g; (ii) ¢ in terms of f.

7.1.4 BINARY DECISION DIAGRAMS 277

237. [25] Implement the five operations of exercise 236, in the style of exercise 205.

238. [22] Use ZDDs to compute the mazimal induced bipartite subgraphs of the con-
tiguous-USA graph G in (18), namely the maximal subsets U such that G | U has no
cycles of odd length. How many such sets U exist? Give examples of the smallest and
largest. Consider also the maximal induced tripartite (3-colorable) subgraphs.

239. [21] Explain how to compute the mazimal cliques of a graph G using family
algebra, when G is specified by its edges g as in exercise 236(e). Find the maximal sets
of vertices that can be covered by k cliques, for k = 1, 2, ..., when G is the graph (18).

240. [22] A set of vertices U is called a dominating set of a graph if every vertex is
at most one step away from U.

a) Prove that every kernel of a graph is a minimal dominating set.

b) How many minimal dominating sets does the USA graph (18) have?

c¢) Find seven vertices of (18) that dominate 36 of the others.
241. [28] The queen graph Qs consists of the 64 squares of a chessboard, with u—v
when squares u and v lie in the same row, column, or diagonal. How large are the ZDDs
for its (a) kernels? (b) maximal cliques? (c) minimal dominating sets? (d) minimal
dominating sets that are also cliques? (e) maximal induced bipartite subgraphs?

Tllustrate each of these five categories by exhibiting smallest and largest examples.

242. [24] Find all of the maximal ways to choose points on an 8 x 8 grid so that no
three points lie on a straight line of any slope.

243. [M23] The closure f™ of a family f of sets is the family of all sets that can be
obtained by intersecting one or more members of f.

a) Prove that f" = {a|a=N{B|B € f and B D a}}.

b) What’s a good way to compute the ZDD for f", given the ZDD for f?

c) Find the generating function for F when F = WORDS(5757) as in exercise 222.
244. [25] What is the ZDD for the connectedness function of P30P; (Fig. 22)? What
is the BDD for the spanning tree function of the same graph? (See Corollary S.)

245. [M22] Show that the prime clauses of a monotone function f are PI(f)*.

246. [M21] Prove Theorem S, assuming that (137) is true.

247. [M27]

248. [M22] True or false: If f and g are sweet, so is f(z1,...,2n) Ag(z1,...,Zn).

Determine the number of sweet Boolean functions of n variables for n < 7.

249. [HM31] The connectedness function of a graph is “ultrasweet,” in the sense that
it is sweet under all permutations of its variables. Is there a nice way to characterize
ultrasweet Boolean functions?

250. [28] There are 7581 monotone Boolean functions f(z1, 22, z3, z4,z5). What are
the average values of B(f) and Z(PI(f)) when one of them is chosen at random? What
is the probability that Z(PI(f)) > B(f)? What is the maximum of Z(PI(f))/B(f)?

251. [M46] 1Is Z(PI(f)) = O(B(f)) for all monotone Boolean functions f?

252. [M30] When a Boolean function isn’t monotone, its prime implicants involve
negative literals; for example, the prime implicants of (21?7 z2: z3) are z1Az2, Ti1Az3,
and x2Azs. In such cases we can conveniently represent them with ZDDs if we consider
them to be words in the 2n-letter alphabet {e;,e!,...,e,,en}. A “subcube” such as
01x0% is then e} Ul ey Ll €} in family algebra (see 7.1.1—(29)); and PI(x1? za: m3) =
(e1 Uey) U (el Ues) U (ey Lles).

278 COMBINATORIAL SEARCHING 7.1.4

Exercise 7.1.1-116 shows that symmetric functions of n variables might have
Q(3"/n) prime implicants. How large can Z(PI(f)) be when f is symmetric?

253. [M26] Continuing exercise 252, prove that if f = (Z1Afo) V (z1Af1) we have
PI(f) = AU (¢4UB) U (e;UC), where A = PI(fo A f1), B = PI(fo) \ A, and C =
PI(f2) \ A. (Equation (137) is the special case when f is monotone.)

254. [M23] Let the functions f and g of (52) be monotone, with f C g. Prove that

P1(g) \ PI(f) = (PL(g:) \P1(f1)) U (PL(gn) \ P1(fn U g1)).

255. [25] A multifamily of sets, in which members of f are allowed to occur more
than once, can be represented as a sequence of ZDDs (fo, f1, f2,...) in which fi is the
family of sets that occur (...a2a1a)2 times in f where ar = 1. For example, if «
appears exactly 9 = (1001). times in the multifamily, @ would be in f3 and fo.
a) Explain how to insert and delete items from this representation of a multifamily.
b) Implement the multiset union h = f & g for multifamilies.

256. [M32] Any nonnegative integer x can be represented as a family of subsets of
the binary powers U = {22 | k > 0} = {2!,22,2% 2% ...}, in the following way: If
r=2°" 4+ +2° where e; > > e; > 0 and ¢t > 0, the corresponding family has
t sets E; C U, where 2% = [[{u | v € E;}. Conversely, every finite family of finite
subsets of U corresponds in this way to a nonnegative integer . For example, the
number 41 = 2° 4 23 4+ 1 corresponds to the family {{2', 2%}, {2}, 2%}, 0}.
a) Find a simple connection between the binary representation of z and the truth
table of the Boolean function that corresponds to the family for z.
b) Let Z(z) be the size of the ZDD for the family that represents z, when the ele-
ments of U are tested in reverse order . . ., 24, 22, 21 (with highest exponents near-
est to the root); for example, Z(41) = 5. Show that Z(z) = O(log z/loglog z).
c) The integer z is called “sparse” if Z(x) is substantially smaller than the upper
bound in (b). Prove that the sum of sparse integers is sparse, in the sense that
Z(x+y) = 0(Z(z) Z(y))-
d) Is the saturating difference of sparse integers, z - y, always sparse?
e) Is the product of sparse integers always sparse?

257. [40] (S.Minato.) Explore the use of ZDDs to represent polynomials with nonneg-
ative integer coefficients. Hint: Any such polynomial in z, y, and z can be regarded as
a family of subsets of {2,2%,2%,...,z,2%, 2%, ...,9,9%, 9%, ..., 2,2%,2% ... }; for exam-
ple, 23 + 3y + 22 corresponds naturally to the family {{z, 2}, {z, y}, {2, z, v}, {2, 2} }.

258. [25] Given a positive integer n, what is the minimum size of a BDD that has
exactly n solutions? Answer this question also for a ZDD of minimum size.

259. [25] A sequence of parentheses can be encoded as a binary string by letting 0
represent ‘(" and 1 represent ‘)’. For example, ()) (() is encoded as 011001.

Every forest of n nodes corresponds to a sequence of 2n parentheses that are
properly nested, in the sense that left and right parentheses match in the normal way.
(See, for example, 2.3.3—(1) or 7.2.1.6—(1).) Let

Nyp(x1,...,Z2n) = [®1... T2, represents properly nested parentheses].

For example, N5(0,1,1,0,0,1) = 0 and N5(0,0,1,0,1,1) = 1; in general, N, has C,, &~
4"/ (\/mw n3/?) solutions, where C,, is a Catalan number. What are B(N,,) and Z(N,,)?

7.1.4 BINARY DECISION DIAGRAMS 279

> 260. [M27] We will see in Section 7.2.1.5 that every partition of {1,...,n} into disjoint
subsets corresponds to a “restricted growth string” a;i ...an, which is a sequence of
nonnegative integers with

a1 =0 and aj41 <14 max(ai,...,a;) for 1 <j<n.

Elements j and k belong to the same subset of the partition if and only if a; = a.

a) Let 2 = [aj =k] for 0 < k < j <n, and let Ry, be the function of these ("}")
variables that is true if and only if a1 ...an is a restricted growth string. (By
studying this Boolean function we can study the family of all set partitions, and
by placing further restrictions on R, we can study set partitions with special
properties. There are wigo ~ 5 X 10*!° set partitions when n = 100.) Calculate
B(R100) and Z(R100). Approximately how large are B(R,) and Z(R,) as n —
oo?

b) Show that, with a proper ordering of the variables z;j, the BDD base for
{R1,...,R,} has the same number of nodes as the BDD for R,, alone.

c) We can also use fewer variables, approximately nlgn instead of (";1), if we

represent each ap as a binary integer with [lgk] bits. How large are the BDD
and ZDD bases in this representation of set partitions?

261. [HM21] “The deterministic finite-state automaton with fewest states that ac-
cepts any given regular language is unique.” What is the connection between this
famous theorem of automata theory and the theory of binary decision diagrams?

262. [M26] The determination of optimum Boolean chains in Section 7.1.2 was greatly
accelerated by restricting consideration to Boolean functions that are normal, in the
sense that f(0,...,0) = 0. (See Eq. 7.1.2—(10).) Similarly, we could restrict BDDs so
that each of their nodes denotes a normal function.
a) Explain how to do this by introducing “complement links,” which point to the
complement of a subfunction instead of to the subfunction itself.
b) Show that every Boolean function has a unique normalized BDD.
¢) Draw the normalized BDDs for the 16 functions in exercise 1.
d) Let B°(f) be the size of the normalized BDD for f. Find the average and worst
case of B°(f), and compare B°(f) to B(f). (See (80) and Theorem U.)
e) The BDD base for 3 x 3 multiplication in (58) has B(Fi,...,Fs) = 52 nodes.
What is B®(Fh,...,Fs)?
f) How do (54) and (55) change, when AND is implemented with complement links?

263. [HM25] A linear block code is the set of binary column vectors z = (z1, ..., zn)7
such that Hx = 0, where H is a given m X n “parity check matrix.”

a) The linear block code with n = 2™ — 1, whose columns are the nonzero binary
m-tuples from (0,...,0,1)T to (1,...,1,1)%, is called the Hamming code. Prove
that the Hamming code is 1-error correcting in the sense of exercise 7-23.

b) Let f(z) = [Hxz =0], where H is an m X n matrix with no all-zero columns. Show
that the BDD profile of f has a simple relation to the ranks of submatrices of H
mod 2, and compute B(f) for the Hamming code.

c¢) In general we can let f(z) = [z is a codeword] define any block code. Suppose
some codeword x = z1...x, has been transmitted through a possibly noisy
channel, and that we’ve received the bits y = y1 . .. yn, where the channel delivers
yr = x, with probability pi for each k independently. Explain how to determine
the most likely codeword x, given y, p1, ..., pn, and the BDD for f.

280 COMBINATORIAL SEARCHING 7.1.4

264. [M46] The text’s “sweeping generalization” of Algorithms B and C, based on (22),
embraces many important applications; but it does not appear to include quantities
such as

fr(r;ax (Z WrTk + Z wkmkwk+1) or H;?Xl ('u)] Z Tk - wk+j),

which also can be computed efficiently from the BDD or ZDD for f.
Develop a generalization that is even more sweeping.
265. [21] Devise an algorithm that finds the mth smallest solution to f(z) = 1 in

lexicographic order of z1 ...z,, given m and the BDD for a Boolean function f of n
variables. Your algorithm should take O(nB(f) + n?) steps.

266. [20] Every forest F' whose nodes are numbered {1,...,n} in preorder defines
two families of sets

a(F) = {anc(1),...,anc(n)} and d(F) = {dec(1),...,dec(n)},

where anc(k) and dec(k) are the inclusive ancestors and descendants of node k. For

example, if F' is
(3)
g

then a(F) = {{1},{1,2}, {3}, {3,4},{3,5}} and d(F) = {{1,2},{2},{3,4,5}, {4}, {5} }.
Conversely, F' can be reconstructed from either a(F) or d(F).

Prove that the ZDD for the family a(F) has exactly n + 2 nodes.
267. [HM32] Continuing exercise 266, find the minimum, maximum, and average size
of the ZDD for the family d(F'), as F ranges over all forests on n nodes.

We dare not lengthen this book much more,
lest it be out of due proportion,
and repel men by its size.

— ALFRIC, Catholic Homilies Il (c 1000)

There are a thousand hacking at the branches of evil
to one who is striking at the root.

— HENRY D THOREAU, Walden; or, Life in the Woods (1854)

7.2.1.1 GENERATING ALL n-TUPLES 281

7.2. GENERATING ALL POSSIBILITIES

All present or accounted for, sir.
— Traditional American military saying

All present and correct, sir.
— Traditional British military saying

7.2.1. Generating Basic Combinatorial Patterns

OUR GOAL in this section is to study methods for running through all of the
possibilities in some combinatorial universe, because we often face problems
in which an exhaustive examination of all cases is necessary or desirable. For
example, we might want to look at all permutations of a given set.

Some authors call this the task of enumerating all of the possibilities; but
that’s not quite the right word, because “enumeration” most often means that
we merely want to count the total number of cases, not that we actually want
to look at them all. If somebody asks you to enumerate the permutations of
{1,2, 3}, you are quite justified in replying that the answer is 3! = 6; you needn’t
give the more complete answer {123,132,213,231, 312, 321}.

Other authors speak of listing all the possibilities; but that’s not such a great
word either. No sensible person would want to make a list of the 10! = 3,628,800
permutations of {0,1,2,3,4,5,6,7,8,9} by printing them out on thousands of
sheets of paper, nor even by writing them all in a computer file. All we really
want is to have them present momentarily in some data structure, so that a
program can examine each permutation one at a time.

So we will speak of generating all of the combinatorial objects that we need,
and wvisiting each object in turn. Just as we studied algorithms for tree traversal
in Section 2.3.1, where the goal was to visit every node of a tree, we turn now
to algorithms that systematically traverse a combinatorial space of possibilities.

He’s got 'em on the list—

he’s got 'em on the list;

And they’ll none of 'em be missed
they’ll none of 'em be missed.

— WILLIAM S GILBERT, The Mikado (1885)

7.2.1.1. Generating all n-tuples. Let’s start small, by considering how to
run through all 2" strings that consist of n binary digits. Equivalently, we want
to visit all n-tuples (a1,...,a,) where each a; is either 0 or 1. This task is
also, in essence, equivalent to examining all subsets of a given set {z1,...,z,},
because we can say that x; is in the subset if and only if a; = 1.

Of course such a problem has an absurdly simple solution. All we need to
do is start with the binary number (0...00); = 0 and repeatedly add 1 until
we reach (1...11)s = 2"— 1. We will see, however, that even this utterly trivial
problem has astonishing points of interest when we look into it more deeply. And
our study of n-tuples will pay off later when we turn to the generation of more
difficult kinds of patterns.

282 COMBINATORIAL SEARCHING 7.2.1.1

In the first place, we can see that the binary-notation trick extends to other
kinds of n-tuples. If we want, for example, to generate all (aj,...,a,) in which
each a; is one of the decimal digits {0,1,2,3,4,5,6,7,8,9}, we can simply count
from (0...00)10 = 0 to (9...99);0 = 10" — 1 in the decimal number system.
And if we want more generally to run through all cases in which

0<a; <my for 1 <j<m, (1)
where the upper limits m; might be different in different components of the
vector (ay,...,an), the task is essentially the same as repeatedly adding unity
to the number

ai, ag,...,an} (2)
my, M2, ..., Mp

in a mixed-radix number system; see Eq. 4.1-(9) and exercise 4.3.1-9.
We might as well pause to describe the process more formally:

Algorithm M (Mized-radiz generation). This algorithm visits all n-tuples
that satisfy (1), by repeatedly adding 1 to the mixed-radix number in (2) until
overflow occurs. Auxiliary variables ag and mg are introduced for convenience.

M1. [Initialize.] Set a; < 0 for 0 < j < n, and set mg < 2.

M2. [Visit.] Visit the n-tuple (ay,...,a,). (The program that wants to examine
all n-tuples now does its thing.)

M3. [Prepare to add one.] Set j + n.

M4. [Carry if necessary.] If a; =m; — 1, set aj < 0, j - j — 1, and repeat this
step.

MS5. [Increase, unless done.] If j = 0, terminate the algorithm. Otherwise set
a;j < a; + 1 and go back to step M2. |

Algorithm M is simple and straightforward, but we shouldn’t forget that
nested loops are even simpler, when n is a fairly small constant. When n = 4,
we could for example write out the following instructions:

For a; =0, 1, ..., m; — 1 (in this order) do the following:
For ay =0, 1, ..., my — 1 (in this order) do the following:
For a3 =0, 1, ..., mg — 1 (in this order) do the following: (3)
For ay =0, 1, ..., mgy — 1 (in this order) do the following:

Visit (a1, aq,as, aq).

These instructions are equivalent to Algorithm M, and they are easily expressed
in any programming language.

Gray binary code. Algorithm M runs through all (ay,...,a,) in lexicographic
order, as in a dictionary. But there are many situations in which we prefer to visit
those n-tuples in some other order. The most famous alternative arrangement is
the so-called Gray binary code, which lists all 2" strings of n bits in such a way

7.2.1.1 GENERATING ALL n-TUPLES 283

52553 v388¢
Q - ~ ~N © o S IN)
R R 0[”0}3””'“’$§0
* > QQ
Oy e Q0
7 o
*Iry Q00"
I[[I 0001
T*TT 00*1
101t 0011
Q“‘ 001
W 9
N %,
O & 0*{ 4
SO o
" N o o ¢, 0
NS H=R=- A~
* O % ¥ x
[
Fig. 30. (a) Lexicographic binary code. (b) Gray binary code.

that only one bit changes each time, in a simple and regular way. For example,
the Gray binary code for n = 4 is

0000, 0001, 0011,0010,0110,0111, 0101, 0100,
1100, 1101,1111, 1110, 1010, 1011, 1001, 1000. (1)

Such codes are especially important in applications where analog information
is being converted to digital or vice versa. For example, suppose we want to
identify our current position on a rotating disk that has been divided into 16
sectors, using four sensors that each distinguish black from white. If we use
lexicographic order to mark the tracks from 0000 to 1111, as in Fig. 30(a), wildly
inaccurate measurements can occur at the boundaries between sectors; but the
code in Fig. 30(b) never gives a bad reading,.

Gray binary code can be defined in many equivalent ways. For example,
if T',, stands for the Gray binary sequence of n-bit strings, we can define T,
recursively by the two rules

Tpyp =0T, 1TE (5)
Here € denotes the empty string, OI',, denotes the sequence I',, with 0 prefixed to
each string, and 1T'® denotes the sequence T, in reverse order with 1 prefixed
to each string. Since the last string of T, equals the first string of T2 it is clear
from (5) that exactly one bit changes in every step of I', , ; if I',, enjoys the same
property.

Another way to define the sequence I',, = ¢g(0), g(1), ..., g(2"—1) is to give
an explicit formula for its individual elements g(k). Indeed, since T',,; begins
with OT',,, the infinite sequence

I = 9(0)79(1)79(2)79(3)79(4)7 v
= (0)a, (1)2, (11)2, (10)2, (110)2, . ..
is a permutation of all the nonnegative integers, if we regard each string of Os

and 1s as a binary integer with optional leading 0s. Then T',, consists of the first
2™ elements of (6), converted to n-bit strings by inserting Os at the left if needed.

(6)

284 COMBINATORIAL SEARCHING 7.2.1.1

When k = 2™ 4 r, where 0 < r < 2™, relation (5) tells us that g(k) is equal
to 2™ + ¢(2"— 1 —r). Therefore we can prove by induction on n that the integer
k whose binary representation is (...bab1bo)2 has a Gray binary equivalent g(k)
with the representation (...asa1a0)2, where

a; = bj D bj+1, fOI'j Z 0. (7)

(See exercise 6.) For example, ¢((111001000011)z) = (100101100010);. Con-
versely, if g(k) = (... a2a1a0)2 is given, we can find k = (... bab1bg)2 by inverting
the system of equations (7), obtaining

bj =a;®aj;11Paj42® -, for j > 05 (8)

this infinite sum is really finite because a;;; = 0 for all large t.
One of the many pleasant consequences of Eq. (7) is that g(k) can be com-
puted very easily with bitwise arithmetic:

g(k) = k& [k/2]. (9)
Similarly, the inverse function in (8) satisfies
O =tel2]e /e (10)

this function, however, requires more computation (see exercise 7.1.3-117). We
can also deduce from (7) that, if k£ and k' are any nonnegative integers,

gk e k) = g(k) & g(K). (11)
Yet another consequence is that the (n+ 1)-bit Gray binary code can be written
I'nyr = 0T, (0T,)®110...0;

this pattern is evident, for example, in (4). Comparing with (5), we see that
reversing the order of Gray binary code is equivalent to complementing the first
. n—1
bit: R ')
I, =T,®10...0, also written T',, & 10™~1. (12)

The exercises below show that the function g(k) defined in (7), and its inverse
g~ defined in (8), have many further properties and applications of interest.
Sometimes we think of these as functions taking binary strings to binary strings;
at other times we regard them as functions from integers to integers, via binary
notation, with leading zeros irrelevant.

Gray binary code is named after Frank Gray, a physicist who became fa-
mous for helping to devise the method long used for compatible color television
broadcasting [Bell System Tech. J. 13 (1934), 464-515]. He invented T, for
applications to pulse code modulation, a method for analog transmission of dig-
ital signals [see Bell System Tech. J. 30 (1951), 38-40; U.S. Patent 2632058 (17
March 1953); W. R. Bennett, Introduction to Signal Transmission (1971), 238-
240]. But the idea of “Gray binary code” was known long before he worked on it;
for example, it appeared in U.S. Patent 2307868 by George Stibitz (12 January
1943). More significantly, I's was used in a telegraph machine demonstrated
in 1878 by Emile Baudot, after whom the term “baud” was later named. At

7.2.1.1 GENERATING ALL n-TUPLES 285

about the same time, a similar but less systematic code for telegraphy was
independently devised by Otto Schéffler [see Journal Télégraphique 4 (1878),
252-253; Annales Télégraphiques 6 (1879), 361, 382-383].*

In fact, Gray binary code is implicitly present in a classic toy that has
fascinated people for centuries, now generally known as the “Chinese ring puzzle”
in English, although Englishmen used to call it the “tiring irons.” Figure 31
shows a seven-ring example. The challenge is to remove the rings from the bar,
and the rings are interlocked in such a way that only two basic types of move are
possible (although this may not be immediately apparent from the illustration):

a) The rightmost ring can be removed or replaced at any time;
b) Any other ring can be removed or replaced if and only if the ring to its right
is on the bar and all rings to the right of that one are off.

We can represent the current state of the puzzle in binary notation, writing 1
if a ring is on the bar and 0 if it is off; thus Fig. 31 shows the rings in state
1011000. (The second ring from the left is encoded as 0, because it lies entirely
above the bar.)

Fig. 31.
The Chinese ring puzzle.

0T8O

A French magistrate named Louis Gros demonstrated an explicit connection
between Chinese rings and binary numbers, in a booklet called Théorie du Bague-
nodier [sic] (Lyon: Aimé Vingtrinier, 1872) that was published anonymously.
If the rings are in state a,_1...ap, and if we define the binary number k£ =
(bp—1..-b9)2 by Eq. (8), he showed that exactly k& more steps are necessary and
sufficient to solve the puzzle. Thus Gros is the true inventor of Gray binary code.

Certainly no home should be without
this fascinating, historic, and instructive puzzle.

— HENRY E DUDENEY (1901)

When the rings are in any state other than 00...0 or 10...0, exactly two
moves are possible, one of type (a) and one of type (b). Only one of these moves
advances toward the desired goal; the other is a step backward that will need to
be undone. A type (a) move changes k to k @ 1; thus we want to do it when k
is odd, since this will decrease k. A type (b) move from a position that ends in
(10771, for 1 < j < n changes k to k@ (1771); = k@ (277! —1). [In this formula
“19+1* stands for j + 1 repetitions of ‘1’, but ‘2/*1’ denotes a power of 2.] When

* Some authors have asserted that Gray code was invented by Elisha Gray, who developed a
printing telegraph machine at the same time as Baudot and Schéffler. Such claims are untrue,
although Elisha did get a raw deal with respect to priority for inventing the telephone [see
L. W. Taylor, Amer. Physics Teacher 5 (1937), 243-251].

286 COMBINATORIAL SEARCHING 7.2.1.1

k is even, we want k @ (29F! — 1) to equal k — 1, which means that k must be a
multiple of 27 but not a multiple of 27t1; in other words,

i = p(k), (13)
where p is the “ruler function” of Eq. 7.1.3—(44). Therefore the rings follow a nice
pattern when the puzzle is solved properly: If we number them 0, 1, ..., n —1

(starting at the free end), the sequence of ring moves on or off the bar is the
sequence of numbers that ends with ..., p(4), p(3), p(2), p(1).

Going backwards, successively putting rings on or off until we reach the
ultimate state 10...0 (which, as John Wallis observed in 1693, is more difficult to
reach than the supposedly harder state 11...1), yields an algorithm for counting
in Gray binary code:

Algorithm G (Gray binary generation). This algorithm visits all binary n-
tuples (an—1,...,a1,aq) by starting with (0,...,0,0) and changing only one bit
at a time, also maintaining a parity bit a., such that

Qoo = Up—1 D+ D ay; D ag. (14)

It successively complements bits p(1), p(2), p(3), ..., p(2"— 1) and then stops.
G1. [Initialize.] Set a; < 0 for 0 < j < n; also set as 0.
G2. [Visit.] Visit the n-tuple (ap_1,...,a1,a0).
G3. [Change parity.] Set a0, + 1 — G-
G4. [Choose j.] If ax = 1, set j + 0. Otherwise let j > 1 be minimum such

that a; 1 = 1. (After the kth time we have performed this step, j = p(k).)
G5. [Complement coordinate j.| Terminate if j = n; otherwise set a; «— 1 — a;

and return to G2. |
The parity bit a., comes in handy if we are computing a sum like

Xooo — Xoo01 — Xo1o + Xo11 — X100 + X101 + X110 — X111
Xop— Xo = Xp + Xap — Xe + Xac + Xoe — Xabve,

where the sign depends on the parity of a binary string or the number of elements
in a subset. Such sums arise frequently in “inclusion-exclusion” formulas such
as Eq. 1.3.3—(29). The parity bit is also necessary, for efficiency: Without it we
could not easily choose between the two ways of determining j, which correspond
to performing a type (a) or type (b) move in the Chinese ring puzzle. But the
most important feature of Algorithm G is that step G5 makes only a single
coordinate change. Therefore only a simple change is usually needed to the
terms X that we are summing, or to whatever other structures we are concerned
with as we visit each n-tuple.

or

It is impossible, of course, to remove all ambiguity in the lowest-order digit
except by a scheme like one the Irish railways are said to have used

of removing the last car of every train

because it is too susceptible to collision damage.

— G R STIBITZ and J A LARRIVEE, Mathematics and Computers (1957)

7.2.1.1 GENERATING ALL n-TUPLES 287

Fig. 32. Walsh functions wy(z) for

0 < k < 8, with the analogous trigo- wr(z)
nometric functions v/2 cos krz shown L L .
in gray for comparison. z=0 2z=3 =5 =r=7; z=1

Another key property of Gray binary code was discovered by J. L. Walsh
in connection with an important sequence of functions now known as Walsh
functions [see Amer. J. Math. 45 (1923), 5-24]. Let wo(z) = 1 for all real
numbers x, and

wg(z) = (—l)LZ“”J Tk/ﬂka/zj (2x), for k> 0. (15)

For example, wy(z) = (—1)2*] changes sign whenever z is an integer or an
integer plus 1. It follows that wy(z) = wy (2 + 1) for all k, and that wy,(z) = +1
for all z. More significantly, w(0) = 1 and wy(z) has exactly k sign changes in
the interval (0..1), so that it approaches (—1)* as = approaches 1 from the left.
Therefore wy,(z) behaves rather like a trigonometric function cos krz or sin krz,
and we can represent other functions as a linear combination of Walsh functions
in much the same way as they are traditionally represented as Fourier series. This
fact, together with the simple discrete nature of wg(z), makes Walsh functions
extremely useful in computer calculations related to information transmission,
image processing, and many other applications.

Figure 32 shows the first eight Walsh functions together with their trigono-
metric cousins. Engineers commonly call wy(x) the Walsh function of sequency
k, by analogy with the fact that coskmz and sin kwz have frequency k/2. [See,
for example, the book Sequency Theory: Foundations and Applications (New
York: Academic Press, 1977), by H. F. Harmuth.]

288 COMBINATORIAL SEARCHING 7.2.1.1

Although Eq. (15) may look formidable at first glance, it actually provides an
easy way to see by induction why wy(x) has exactly k sign changes as claimed. If
k is even, say k = 21, we have wy (z) = w;(2z) for 0 < z < 1; the effect is simply
to compress the function w;(x) into half the space, so wq(z) has accumulated
| sign changes so far. Then wy(z) = (—1)'w;(2z) = (—1)'w;(2z — 1) in the
range 1 < x < 1; this concatenates another copy of w;(2z), flipping the sign if
necessary to avoid a sign change at # = 1. The function wg41(x) is similar, but
it forces a sign change when x = %

What does this have to do with Gray binary code? Walsh discovered that
his functions could all be expressed neatly in terms of simpler functions called

Rademacher functions [Hans Rademacher, Math. Annalen 87 (1922), 112-138],
ri(e) = (-1, (16)

which take the value (—1)°—* when (...cac1¢p.c_1¢_9...)2 is the binary represen-
tation of . Indeed, we have wy(z) = ri(x), wa(x) = ri(z)re(z), ws(x) = r2(z),
and in general

wg(z) = H 7jy1(z)bi®bits when k = (...bab1bo)2. (17)
Jj=20

(See exercise 33.) Thus the exponent of 7;11(x) in wg(z) is the jth bit of the
Gray binary number g(k), according to (7), and we have

wr(z) = o)1 (2) wr—1(x), for k > 0. (18)
Equation (17) implies the handy formula

wy(z)wy (z) = wke)k’(x)a (19)

which is much simpler than the corresponding product formulas for sines and
cosines. This identity follows easily because r]-(ac)2 = 1 for all j and z, hence
7;(2)?® = r;(x)**t. It implies in particular that wy(z) is orthogonal to wy: ()
when k # k', in the sense that the average value of wy(z)wy () is zero. We also
can use (17) to define wy(z) for fractional values of k like 1/2 or 13/8.

The Walsh transform of 2™ numbers (X, ..., Xan_1) is the vector defined by
the equation (zg,...,zan_1)T = W, (Xo, ..., Xan_1)T, where W,, is the 2" x 2"
matrix having w;(k/2™) in row j and column k, for 0 < j,k < 2". For example,
Fig. 32 tells us that the Walsh transform when n = 3 is

000 1 1 1 1 1 1 1 1 XOOO

X001 1 1 1 1 T T T T X001

To1o 11 1T T1TTT11 Xo1o

ron [_ |1 1 111111 Xo11 (20)
T100 11 1 1 1 1 11 X100 ’

101 1 T T 1 T 1 1 T X101

110 1 T 1 T T 1 T 1 X110

111 1 T 1 T 1 T 1 T X111

7.2.1.1 GENERATING ALL n-TUPLES 289

(Here 1 stands for —1, and the subscripts are conveniently regarded as binary
strings 000-111 instead of as the integers 0-7.) The Hadamard transform is
defined similarly, but with the matrix H,, in place of W,,, where H,, has (—1)7 *
in row j and column k; here ‘5 -k’ denotes the dot product a,,_1b,_1+ -+ -+ agbo
of the binary representations j = (ap—1...a0)2 and k = (bp—1...bg)2. For
example, the Hadamard transform for n = 3 is

Zhoo 11111111 Xo0o
$601 1 T 1 T 1 T 1 T X001
$610 1 1 T T 1 1 T T X010
zhy | 1 1T 1T 111 11 Xo11
do | "1 111 T 11T 1| X | (21)
20y 1 T11T1T1711]]| X,
210 11T 11711 1]|Xu
m’lll 1 T T 1 I 1 1 T X111

This is the same as the discrete Fourier transform on an m-dimensional cube,
Eq. 4.6.4—(38), and we can evaluate it quickly “in place” by adapting the method
of Yates discussed in Section 4.6.4:

Given First step Second step Third step

Xooo Xooo+Xoo1 Xooot+Xoo1+Xo10+Xo11 Xooo+Xoo1+Xo10+Xo11+X100+X101+X110+X111
Xoo1 Xoo0—Xoo1 Xooo—Xo01+Xo10—Xo011 Xo00—Xo01+Xo10—Xo11+X100—X101+X110— X111
Xo10 Xo10+Xo11 Xooo+Xoo1—Xo10—Xo11 Xooo+Xoo1—Xo10—Xo11+X100+X101—X110— X111
Xo11 Xo10—Xo11 Xooo—Xo01—Xo10+Xo11 Xo00o—Xo01—Xo10+Xo011+X100—X101— X110+ X111
X100 X100+X101 Xioo+Xi01+X110+X111 Xooo+Xoo1+Xo10+Xo11—X100— X101 —X110— X111
X101 X100—X101 X100—X101+X110—X111 Xo00—Xo01+Xo10—Xo11—X100+X101— X110+ X111
X110 X110+X111 X100+X101—X110— X111 Xooo+Xoo1 —Xo10—Xo11—X100—X101+X110+X111
X111 X110—X111 X100—X101—X110+X111 Xo00—Xo001—Xo10+Xo011 —X100+ X101+ X110 — X111

Notice that the rows of H3 are a permutation of the rows of W3. This is true in
general, so we can obtain the Walsh transform by permuting the elements of the
Hadamard transform. Exercise 36 discusses the details.

Going faster. When we’re running through 2™ possibilities, we usually want
to reduce the computation time as much as possible. Algorithm G needs to
complement only one bit a; per visit to (an_1,...,a0), but it loops in step G4
while choosin