DONALD E. KNUTH Stanford University

A
vy ADDISON-WESLEY
An Imprint of Addison Wesley Longman, Inc.

Volume 2 / Seminumerical Algorithms

THE ART OF
COMPUTER PROGRAMMING

THIRD EDITION

Reading, Massachusetts - Harlow, England - Menlo Park, California
Berkeley, California - Don Mills, Ontario - Sydney
Bonn - Amsterdam - Tokyo - Mexico City

TEX is a trademark of the American Mathematical Society
METAFONT is a trademark of Addison—Wesley

The quotation on page 61 is reprinted by permission of Grove Press, Inc.

Library of Congress Cataloging-in-Publication Data

Knuth, Donald Ervin, 1938-
The art of computer programming / Donald Ervin Knuth. -- 3rd ed.
xiv,762 p. 24 cm.
Includes bibliographical references and index.
Contents: v. 1. Fundamental algorithms. -- v. 2. Seminumerical
algorithms.

ISBN 0-201-89683-4 (v. 1)
ISBN 0-201-89684-2 (v. 2)
1. Electronic digital computers--Programming. 2. Computer
algorithms. I. Title.
QA76.6.K64 1997
005.1--DC21 97-2147
CIP

Internet page http://www-cs-faculty.stanford.edu/ "knuth/taocp.html contains
current information about this book and related books.

Copyright (© 1998 by Addison Wesley Longman

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher. Printed
in the United States of America. Published simultaneously in Canada.

ISBN 0-201-89684-2

Text printed on acid-free paper
123456789 MA 00999897
First printing, September 1997

PREFACE

O dear Ophelia!
I am ill at these numbers:
| have not art to reckon my groans.

— Hamlet (Act Il, Scene 2, Line 120)

THE ALGORITHMS discussed in this book deal directly with numbers; yet I
believe they are properly called seminumerical, because they lie on the borderline
between numeric and symbolic calculation. Each algorithm not only computes
the desired answers to a numerical problem, it also is intended to blend well
with the internal operations of a digital computer. In many cases people are
not able to appreciate the full beauty of such an algorithm unless they also
have some knowledge of a computer’s machine language; the efficiency of the
corresponding machine program is a vital factor that cannot be divorced from
the algorithm itself. The problem is to find the best ways to make computers
deal with numbers, and this involves tactical as well as numerical considerations.
Therefore the subject matter of this book is unmistakably a part of computer
science, as well as of numerical mathematics.

Some people working in “higher levels” of numerical analysis will regard the
topics treated here as the domain of system programmers. Other people working
in “higher levels” of system programming will regard the topics treated here as
the domain of numerical analysts. But I hope that there are a few people left who
will want to look carefully at these basic methods. Although the methods reside
perhaps on a low level, they underlie all of the more grandiose applications of
computers to numerical problems, so it is important to know them well. We are
concerned here with the interface between numerical mathematics and computer
programming, and it is the mating of both types of skills that makes the subject
so interesting.

There is a noticeably higher percentage of mathematical material in this
book than in other volumes of this series, because of the nature of the subjects
treated. In most cases the necessary mathematical topics are developed here
starting almost from scratch (or from results proved in Volume 1), but in several
easily recognizable sections a knowledge of calculus has been assumed.

This volume comprises Chapters 3 and 4 of the complete series. Chapter 3
is concerned with “random numbers”: It is not only a study of various ways to
generate random sequences, it also investigates statistical tests for randomness,

A\

vi PREFACE

as well as the transformation of uniform random numbers into other types of
random quantities; the latter subject illustrates how random numbers are used
in practice. I have also included a section about the nature of randomness
itself. Chapter 4 is my attempt to tell the fascinating story of what people
have discovered about the processes of arithmetic, after centuries of progress. It
discusses various systems for representing numbers, and how to convert between
them; and it treats arithmetic on floating point numbers, high-precision integers,
rational fractions, polynomials, and power series, including the questions of
factoring and finding greatest common divisors.

Each of Chapters 3 and 4 can be used as the basis of a one-semester college
course at the junior to graduate level. Although courses on “Random Numbers”
and on “Arithmetic” are not presently a part of many college curricula, I be-
lieve the reader will find that the subject matter of these chapters lends itself
nicely to a unified treatment of material that has real educational value. My
own experience has been that these courses are a good means of introducing
elementary probability theory and number theory to college students. Nearly
all of the topics usually treated in such introductory courses arise naturally
in connection with applications, and the presence of these applications can be
an important motivation that helps the student to learn and to appreciate the
theory. Furthermore, each chapter gives a few hints of more advanced topics
that will whet the appetite of many students for further mathematical study.

For the most part this book is self-contained, except for occasional discus-
sions relating to the MIX computer explained in Volume 1. Appendix B contains a
summary of the mathematical notations used, some of which are a little different
from those found in traditional mathematics books.

Preface to the Third Edition

When the second edition of this book was completed in 1980, it represented the
first major test case for prototype systems of electronic publishing called TEX
and METAFONT. I am now pleased to celebrate the full development of those
systems by returning to the book that inspired and shaped them. At last I am
able to have all volumes of The Art of Computer Programming in a consistent
format that will make them readily adaptable to future changes in printing and
display technology. The new setup has allowed me to make many thousands of
improvements that I have been wanting to incorporate for a long time.

In this new edition I have gone over every word of the text, trying to retain
the youthful exuberance of my original sentences while perhaps adding some
more mature judgment. Dozens of new exercises have been added; dozens of
old exercises have been given new and improved answers. Changes appear ev-
erywhere, but most significantly in Sections 3.5 (about theoretical guarantees of
randomness), 3.6 (about portable random-number generators), 4.5.2 (about the
binary ged algorithm), and 4.7 (about composition and iteration of power series).

PREFACE vii
> The Art of Computer Programming is, however, still a work in progress.
 Research on seminumerical algorithms continues to grow at a phenomenal
rate. Therefore some parts of this book are headed by an “under construction”
icon, to apologize for the fact that the material is not up-to-date. My files are
bursting with important material that I plan to include in the final, glorious,
fourth edition of Volume 2, perhaps 16 years from now; but I must finish
Volumes 4 and 5 first, and I do not want to delay their publication any more
than absolutely necessary.

I am enormously grateful to the many hundreds of people who have helped
me to gather and refine this material during the past 35 years. Most of the hard
work of preparing the new edition was accomplished by Silvio Levy, who expertly
edited the electronic text, and by Jeffrey Oldham, who converted nearly all of
the original illustrations to METAPOST format. I have corrected every error that
alert readers detected in the second edition (as well as some mistakes that, alas,
nobody noticed); and I have tried to avoid introducing new errors in the new
material. However, I suppose some defects still remain, and I want to fix them
as soon as possible. Therefore I will cheerfully pay $2.56 to the first finder of
each technical, typographical, or historical error. The webpage cited on page iv
contains a current listing of all corrections that have been reported to me.

Stanford, California D. E K
July 1997

When a book has been eight years in the making,

there are too many colleagues, typists, students,

teachers, and friends to thank.

Besides, | have no intention of giving such people

the usual exoneration from responsibility for errors which remain.
They should have corrected me!

And sometimes they are even responsible for ideas

which may turn out in the long run to be wrong.

Anyway, to such fellow explorers, my thanks.

— EDWARD F. CAMPBELL, JR. (1975)

‘Defendit numerus,’ {there is safety in numbers]
is the maxim of the foolish;

‘Deperdit numerus,’ {there is ruin in numbers]
of the wise.

— C. C. COLTON (1820)

NOTES ON THE EXERCISES

THE EXERCISES in this set of books have been designed for self-study as well as
classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to specific problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a definite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. This is sometimes unfortunate because readers like to know in
advance how long a problem ought to take — otherwise they may just skip over
all the problems. A classic example of such a situation is the book Dynamic
Programming by Richard Bellman; this is an important, pioneering work in
which a group of problems is collected together at the end of some chapters
under the heading “Exercises and Research Problems,” with extremely trivial
questions appearing in the midst of deep, unsolved problems. It is rumored that
someone once asked Dr. Bellman how to tell the exercises apart from the research
problems, and he replied, “If you can solve it, it is an exercise; otherwise it’s a
research problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general significance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head.”

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about fifteen or twenty minutes to answer it
completely.

ix

X NOTES ON THE EXERCISES

30 A problem of moderate difficulty and/or complexity; this one may
involve more than two hours’ work to solve satisfactorily, or even more
if the TV 1s on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this “logarithmic” scale, the significance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a /5 rating in later editions
of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 2/ may take longer to solve than
an exercise that is rated 25, but the latter will require more creativity.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to find a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M
if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters “HM” if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An “HM” designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, “»”; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to be
the most valuable have been singled out. (This is not meant to detract from the
other exercises!) Each reader should at least make an attempt to solve all of the
problems whose rating is 10 or less; and the arrows may help to indicate which
of the problems with a higher rating should be given priority.

Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to

NOTES ON THE EXERCISES X1

solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may find the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means first. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later editions of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless specifically forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise 7 + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes: 00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)

> Recommended 30 Moderately hard

M Mathematically oriented 40 Term project

HM Requiring “higher math” 50 Research problem
EXERCISES

1. [00] What does the rating “M20” mean?
2. [10] Of what value can the exercises in a textbook be to the reader?

3. [84] Leonhard Euler conjectured in 1772 that the equation w* 4+ z* +4* = 2* has
no solution in positive integers, but Noam FElkies proved in 1987 that infinitely many
solutions exist [see Math. Comp. 51 (1988), 825-835|. Find all integer solutions such
that 0 < w <z <'y < z < 10°.

4. [M50] Prove that when n is an integer, n > 4, the equation w™ + z" + y" = 2"
has no solution in positive integers w, z, y, z.

Exercise is the beste instrument in learnyng.
— ROBERT RECORDE, The Whetstone of Witte (1557)

Chapter 3— Random Numbers

3.1.
3.2.

3.3.

3.4.

*3.5.
3.6.

Introduction . . .

Generating Uniform Random Numbers

3.2.1. The Linear Congruential Method .
3.2.1.1. Choice of modulus .
3.2.1.2. Choice of multiplier
3.2.1.3. Potency

3.2.2. Other Methods .

Statistical Tests

3.3.1. General Test Procedures for Studymg Random Data

3.3.2. Empirical Tests

*3.3.3. Theoretical Tests .
3.3.4. The Spectral Test -
Other Types of Random Quantities .
3.4.1. Numerical Distributions . .
3.4.2. Random Sampling and Shuffling
What Is a Random Sequence?
Summary

Chapter 4 — Arithmetic .

4.1.

4.2.

4.3.

4.4.
4.5.

Positional Number Systems
Floating Point Arithmetic . .
4.2.1. Single-Precision Calculations . .
4.2.2. Accuracy of Floating Point Arlthmetlc
*4.2.3. Double-Precision Calculations
4.2.4. Distribution of Floating Point Numbers
Multiple Precision Arithmetic
4.3.1. The Classical Algorithms
*4.3.2. Modular Arithmetic o
*4.3.3. How Fast Can We Multiply? .
Radix Conversion .
Rational Arithmetic
4.5.1. Fractions . .
4.5.2. The Greatest Common D1v1sor .
*4.5.3. Analysis of Euclid’s Algorithm .
4.5.4. Factoring into Primes .

xil

CONTENTS

10
10
12
16
23
26
41
41
61
80
93
119
119
142
149
184

194

195
214
214
229
246
253
265
265
284
294
319
330
330
333
356
379

CONTENTS

4.6. Polynomial Arithmetic
4.6.1. Division of Polynomials
*4.6.2. Factorization of Polynomials .
4.6.3. Evaluation of Powers
4.6.4. Evaluation of Polynomials .
*4.7. Manipulation of Power Series .

Answers to Exercises

Appendix A — Tables of Numerical Quantities .

1. Fundamental Constants (decimal)
2. Fundamental Constants (octal) . Ce
3. Harmonic Numbers, Bernoulli Numbers Fibonacci Numbers .

Appendix B —Index to Notations .

Index and Glossary

x1il

418
420
439
461
485
925

938

726

726
727
728
730

735

CHAPTER THREE

RANDOM NUMBERS

Any one who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.

— JOHN VON NEUMANN (1951)

Lest men suspect your tale untrue,
Keep probability in view.

— JOHN GAY (1727)

There wanted not some beams of light
to guide men in the exercise of their Stocastick faculty.

— JOHN OWEN (1662)

3.1. INTRODUCTION

NUMBERS that are “chosen at random” are useful in many different kinds of
applications. For example:

a) Simulation. When a computer is being used to simulate natural phenomena,
random numbers are required to make things realistic. Simulation covers many
fields, from the study of nuclear physics (where particles are subject to random
collisions) to operations research (where people come into, say, an airport at
random intervals).

b) Sampling. 1t is often impractical to examine all possible cases, but a random
sample will provide insight into what constitutes “typical” behavior.

c¢) Numerical analysis. Ingenious techniques for solving complicated numerical
problems have been devised using random numbers. Several books have been
written on this subject.

d) Computer programming. Random values make a good source of data for
testing the effectiveness of computer algorithms. More importantly, they are
crucial to the operation of randomized algorithms, which are often far superior
to their deterministic counterparts. This use of random numbers is the primary
application of interest to us in this series of books; it accounts for the fact that

1

2 RANDOM NUMBERS 3.1

random numbers are already being considered here in Chapter 3, before most of
the other computer algorithms have appeared.

e) Decision making. There are reports that many executives make their deci-
sions by flipping a coin or by throwing darts, etc. It is also rumored that some
college professors prepare their grades on such a basis. Sometimes it is important
to make a completely “unbiased” decision. Randomness is also an essential part
of optimal strategies in the theory of matrix games.

f) Aesthetics. A little bit of randomness makes computer-generated graphics
and music seem more lively. For example, a pattern like

00000000 e wwe 00000000
0o0000oc 000000ooC
00000000 DO00000ooc

in certain contexts. [See D. E. Knuth, Bull. Amer. Math. Soc. 1 (1979), 369.]

g) Recreation. Rolling dice, shuffling decks of cards, spinning roulette wheels,
etc., are fascinating pastimes for just about everybody. These traditional uses
of random numbers have suggested the name “Monte Carlo method,” a general
term used to describe any algorithm that employs random numbers.

more appealing than

People who think about this topic almost invariably get into philosophical
discussions about what the word “random” means. In a sense, there is no such
thing as a random number; for example, is 2 a random number? Rather, we speak
of a sequence of independent random numbers with a specified distribution, and
this means loosely that each number was obtained merely by chance, having
nothing to do with other numbers of the sequence, and that each number has a
specified probability of falling in any given range of values.

A uniform distribution on a finite set of numbers is one in which each
possible number is equally probable. A distribution is generally understood
to be uniform unless some other distribution is specifically- mentioned.

Each of the ten digits 0 through 9 will occur about 1L0 of the time in a
(uniform) sequence of random digits. Each pair of two successive digits should
occur about ﬁ of the time, and so on. Yet if we take a truly random sequence
of a million digits, it will not always have exactly 100,000 zeros, 100,000 ones,
etc. In fact, chances of this are quite slim; a sequence of such sequences will have
this character on the average.

Any specified sequence of a million digits is as probable as any other. Thus,
if we are choosing a million digits at random and if the first 999,999 of them
happen to come out to be zero, the chance that the final digit is zero is still
exactly 1—10, in a truly random situation. These statements seem paradoxical to
many people, yet no contradiction is really involved.

There are several ways to formulate decent abstract definitions of random-
ness, and we will return to this interesting subject in Section 3.5; but for the

moment, let us content ourselves with an intuitive understanding of the concept.

Many years ago, people who needed random numbers in their scientific work
would draw balls out of a “well-stirred urn,” or they would roll dice or deal out

3.1 INTRODUCTION 3

cards. A table of over 40,000 random digits, “taken at random from census
reports,” was published in 1927 by L. H. C. Tippett. Since then, a number of
devices have been built to generate random numbers mechanically. The first such
machine was used in 1939 by M. G. Kendall and B. Babington-Smith to produce
a table of 100,000 random digits. The Ferranti Mark I computer, first installed
in 1951, had a built-in instruction that put 20 random bits into the accumulator
using a resistance noise generator; this feature had been recommended by A. M.
Turing. In 1955, the RAND Corporation published a widely used table of a
million random digits obtained with the help of another special device. A famous
random-number machine called ERNIE has been used for many years to pick the
winning numbers in the British Premium Savings Bonds lottery. [See the articles
by Kendall and Babington-Smith in J. Royal Stat. Soc. A101 (1938), 147-166;
B6 (1939), 51-61. See also S. H. Lavington’s discussion of the Mark I in CACM
21 (1978), 4-12; the review of the RAND table in Math. Comp. 10 (1956), 39—
43; and the discussion of ERNIE by W. E. Thomson, J. Royal Stat. Soc. A122
(1959), 301-333.]

Shortly after computers were introduced, people began to search for efficient
ways to obtain random numbers within computer programs. A table could be
used, but this method is of limited utility because of the memory space and
input time requirement, because the table may be too short, and because it
is a bit of a nuisance to prepare and maintain the table. A machine such as
ERNIE might be attached to the computer, as in the Ferranti Mark I, but this
has proved to be unsatisfactory since it is impossible to reproduce calculations
exactly a second time when checking out a program; moreover, such machines
have tended to suffer from malfunctions that are extremely difficult to detect.
Advances in technology made tables useful again during the 1990s, because
a billion well-tested random bytes could be distributed on CDROM. George
Marsaglia helped resuscitate random tables in 1995 by preparing a demonstration
disk that contained 650 random megabytes, generated by combining the output
of a noise-diode circuit with deterministically scrambled rap music. (He called
it “white and black noise.”)

The inadequacy of mechanical methods in the early days led to an interest
in the production of random numbers using a computer’s ordinary arithmetic
operations. John von Neumann first suggested this approach in about 1946;
his idea was to take the square of the previous random number and to extract
the middle digits. For example, if we are generating 10-digit numbers and the
previous value was 5772156649, we square it to get

33317792380594909201,

the next number is therefore 7923805949.

There is a fairly obvious objection to this technique: How can a sequence
generated in such a way be random, since each number is completely determined
by its predecessor? (See von Neumann’s comment at the beginning of this
chapter.) The answer is that the sequence isn’t random, but it appears to
be. In typical applications the actual relationship between one number and

4 RANDOM NUMBERS 3.1

its successor has no physical significance; hence the nonrandom character is
not really undesirable. Intuitively, the middle square seems to be a fairly good
scrambling of the previous number.

Sequences generated in a deterministic way such as this are often called
pseudorandom or quasirandom sequences in the highbrow technical literature,
but in most places of this*book we shall simply call them random sequences,
with the understanding that they only appear to be random. Being “apparently
random” is perhaps all that can be said about any random sequence anyway.
Random numbers generated deterministically on computers have worked quite
well in nearly every application, provided that a suitable method has been
carefully selected. Of course, deterministic sequences aren’t always the answer;
they certainly shouldn’t replace ERNIE for the lotteries.

Von Neumann'’s original “middle-square method” has actually proved to be a
comparatively poor source of random numbers. The danger is that the sequence
tends to get into a rut, a short cycle of repeating elements. For example, if zero
ever appears as a number of the sequence, it will continually perpetuate itself.

Several people experimented with the middle-square method in the early
1950s. Working with numbers that have four digits instead of ten, G. E. Forsythe
tried 16 different starting values and found that 12 of them led to sequences
ending with the cycle 6100, 2100, 4100, 8100, 6100, ..., while two of them
degenerated to zero. More extensive tests were carried out by N. Metropolis,
mostly in the binary number system. He showed that when 20-bit numbers are
being used, there are 13 different cycles into which the middle-square sequence
might degenerate, the longest of which has a period of length 142.

It is fairly easy to restart the middle-square method on a new value when
zero has been detected, but long cycles are somewhat harder to avoid. Exercises 6
and 7 discuss some interesting ways to determine the cycles of periodic sequences,
using very little memory space.

A theoretical disadvantage of the middle-square method is given in exercises
9 and 10. On the other hand, working with 38-bit numbers, Metropolis obtained
a sequence of about 750,000 numbers before degeneracy occurred, and the re-
sulting 750,000 x 38 bits satisfactorily passed statistical tests for randomness.
[Symp. on Monte Carlo Methods (Wiley, 1956), 29-36.] This experience showed
that the middle-square method can give usable results, but it is rather dangerous
to put much faith in it until after elaborate computations have been performed.

Many random number generators in use when this chapter was first written
were not very good. People have traditionally tended to avoid learning about
such subroutines; old methods that were comparatively unsatisfactory have been
passed down blindly from one programmer to another, until the users have no
understanding of the original limitations. We shall see in this chapter that the
most important facts about random number generators are not difficult to learn,
although prudence is necessary to avoid common pitfalls.

It is not easy to invent a foolproof source of random numbers. This fact was
convincingly impressed upon the author in 1959, when he attempted to create a
fantastically good generator using the following peculiar approach:

3.1 INTRODUCTION 5

Algorithm K (“Super-random” number generator). Given a 10-digit decimal
number X, this algorithm may be used to change X to the number that should
come next in a supposedly random sequence. Although the algorithm might be
expected to yield quite a random sequence, reasons given below show that it
is not, in fact, very good at all. (The reader need not study this algorithm in
great detail except to observe how complicated it is; note, in particular, steps
K1 and K2.)

K1. [Choose number of iterations.] Set ¥ <« [X/10°| , the most significant
digit of X. (We will execute steps K2 through K13 exactly Y + 1 times;
that is, we will apply randomizing transformations a random number of
times.)

K2. [Choose random step.] Set Z « | X/10®| mod 10, the second most signifi-
cant digit of X. Go to step K(3+ Z). (That is, we now jump to a random
step in the program.)

K3. [Ensure > 5 x 10°.] If X < 5000000000, set X «+ X + 5000000000.

K4. [Middle square.] Replace X by | X?/10°] mod 10'?, that is, by the middle
of the square of X.

K5. [Multiply.] Replace X by (1001001001 X) mod 10'°.

K6. [Pseudo-complement.] If X < 100000000, then set X + X + 9814055677,
otherwise set X « 10'° — X.

K7. [Interchange halves.] Interchange the low-order five digits of X with the
high-order five digits; that is, set X « 10°(X mod 10°) + [X/10°], the
middle 10 digits of (10'° + 1) X.

K8. [Multiply.] Same as step K5.

K?9. [Decrease digits.] Decrease each nonzero digit of the decimal representation
of X by one.

K10. [99999 modify.] If X < 10°, set X + X? 4 99999; otherwise set X «
X — 99999.

K11. [Normalize.] (At this point X cannot be zero.) If X < 10%, set X + 10X
and repeat this step.

K12. [Modified middle square.] Replace X by | X(X — 1)/10°| mod 10'°, that
is, by the middle 10 digits of X (X — 1).

K13. [Repeat?] If Y > 0, decrease Y by 1 and return to step K2. If Y = 0, the
‘algorithm terminates with X as the desired “random” value. |

(The machine-language program corresponding to this algorithm was intended
to be so complicated that a person reading a listing of it without explanatory
comments wouldn’t know what the program was doing.)

Considering all the contortions of Algorithm K, doesn’t it seem plausible that
it should produce almost an infinite supply of unbelievably random numbers?
No! In fact, when this algorithm was first put onto a computer, it almost im-
mediately converged to the 10-digit value 6065038420, which — by extraordinary

6 RANDOM NUMBERS 3.1

Table 1

A COLOSSAL COINCIDENCE: THE NUMBER 6065038420
IS TRANSFORMED INTO ITSELF BY ALGORITHM K.

Step X (after) Step X (after)

K9 1107855700
K10 1107755701

K1 6065038420

K3 6065038420

K11 1107755701
K4 6910360760

K12 1226919902 Y =3
K5 8031120760

K5 0048821902
K6 1968879240

K6 9862877579
K7 7924019688

K7 7757998628
K8 9631707688
K9 8520606577 K8 2384626628

K9 1273515517

K10 8520506578
K11 8520506578
K12 0323372207 Y =6

K10 1273415518
K11 1273415518
K12 5870802097 Y =2

K6 9676627793

K11 5870802097
K7 2779396766

K12 3172562687 Y =1
K8 4942162766

K4 1540029446
K9 3831051655

K5 7015475446
K10 3830951656

K6 2984524554
K11 3830951656

K7 2455429845
K12 1905867781 Y =5
K12 3319967479 Y =4 K8 2730274845

K9 1620163734

K6 6680032521
K7 3252166800
K8 2218966800

K10 1620063735
K11 1620063735
K12 6065038420 Y =0

coincidence —is transformed into itself by the algorithm (see Table 1). With
another starting number, the sequence began to repeat after 7401 values, in a
cyclic period of length 3178.

The moral of this story is that random numbers should not be generated
with a method chosen at random. Some theory should be used.

In the following sections we shall consider random number generators that
are superior to the middle-square method and to Algorithm K. The correspond-
ing sequences are guaranteed to have certain desirable random properties, and
no degeneracy will occur. We shall explore the reasons for this random-like
behavior in some detail, and we shall also consider techniques for manipulating
random numbers. For example, one of our investigations will be the shuffling of
a simulated deck of cards within a computer program.

Section 3.6 summarizes this chapter and lists several bibliographic sources.

EXERCISES

» 1. [20] Suppose that you wish to obtain a decimal digit at random, not using a
computer. Which of the following methods would be suitable?

3.1 INTRODUCTION 7

a) Open a telephone directory to a random place by sticking your finger in it some-
where, and use the units digit of the first number found on the selected page.

b) Same as (a), but use the units digit of the page number.

c) Roll a die that is in the shape of a regular icosahedron, whose twenty faces have
been labeled with the digits 0,0,1,1,...,9,9. Use the digit that appears on
top, when the die comes to rest. (A felt-covered table with a hard surface is
recommended for rolling dice.)

d) Expose a geiger counter to a source of radioactivity for one minute (shielding
yourself) and use the units digit of the resulting count. Assume that the geiger
counter displays the number of counts in decimal notation, and that the count is
initially zero.

e) Glance at your wristwatch; and if the position of the second-hand is between 6n
and 6(n + 1) seconds, choose the digit n.

f) Ask a friend to think of a random digit, and use the digit he names.

g) Ask an enemy to think of a random digit, and use the digit he names.

h) Assume that 10 horses are entered in a race and that you know nothing whatever
about their qualifications. Assign to these horses the digits 0 to 9, in arbitrary
fashion, and after the race use the winner’s digit.

2. [M22] In a random sequence of a million decimal digits, what is the probability
that there are exactly 100,000 of each possible digit?

3. [10] What number follows 1010101010 in the middle-square method?

4. [20] (a) Why can’t the value of X be zero when step K11 of Algorithm K is
performed? What would be wrong with the algorithm if X could be zero? (b) Use
Table 1 to deduce what happens when Algorithm K is applied repeatedly with the
starting value X = 3830951656.

5. [15] Explain why, in any case, Algorithm K should not be expected to provide
infinitely many random numbers, in the sense that (even if the coincidence given in
Table 1 had not occurred) one knows in advance that any sequence generated by
Algorithm K will eventually be periodic.

6. [M21] Suppose that we want to generate a sequence of integers Xo, X1, Xo, ...,
in the range 0 < X,, < m. Let f(z) be any function such that 0 < z < m implies
0 < f(z) < m. Consider a sequence formed by the rule X,1+1 = f(X,). (Examples are
the middle-square method and Algorithm K.)

a) Show that the sequence is ultimately periodic, in the sense that there exist numbers
A and p for which the values

Xoy X1y ooy Xy ooy Xpgact

are distinct, but X,,» = X, when n > pu. Find the maximum and minimum
possible values of p and A.

b) (R. W. Floyd.) Show that there exists an n > 0 such that X, = Xs,; and the
smallest such value of n lies in the range p < n < p+ A. Furthermore the value of
X, is unique in the sense that if X,, = X, and X, = X5, then X, = X,,.

c) Use the idea of part (b) to design an algorithm that calculates y and X for any
given function f and any given Xy, using only O(u + A) steps and only a bounded
number of memory locations.

8 RANDOM NUMBERS 3.1

» 7. [M21] (R.P. Brent, 1977.) Let £(n) be the greatest power of 2 that is less than
or equal to n; thus, for example, £(15) = 8 and £(4(n)) = £(n).

a) Show that, in terms of the notation in exercise 6, there exists an n > 0 such that
X, = Xgyn)—1. Find a formula that expresses the least such n in terms of the
periodicity numbers p and A.

b) Apply this result to design an algorithm that can be used in conjunction with any
random number generator of the type Xn41 = f(X,), to prevent it from cycling
indefinitely. Your algorithm should calculate the period length A, and it should
use only a small amount of memory space —you must not simply store all of the
computed sequence values!

8. [23] Make a complete examination of the middle-square method in the case of

two-digit decimal numbers.

a) We might start the process out with any of the 100 possible values 00, 01, ...,
99. How many of these values lead ultimately to the repeating cycle 00, 00, ...?
[Ezample: Starting with 43, we obtain the sequence 43, 84, 05, 02, 00, 00, 00,]

b) How many possible final cycles are there? How long is the longest cycle?

c) What starting value or values will give the largest number of distinct elements
before the sequence repeats?

9. [M14] Prove that the middle-square method using 2n-digit numbers to the base b
has the following disadvantage: If the sequence includes any number whose most
significant n digits are zero, the succeeding numbers will get smaller and smaller until
zero occurs repeatedly.

10. [M16] Under the assumptions of the preceding exercise, what can you say about
the sequence of numbers following X if the least significant n digits of X are zero?
What if the least significant n + 1 digits are zero?

» 11. [M26] Consider sequences of random number generators having the form de-
scribed in exercise 6. If we choose f(r) and X, at random—in other words, if we
assume that each of the m™ possible functions f(z) is equally probable and that
each of the m possible values of X is equally probable— what is the probability
that the sequence will eventually degenerate into a cycle of length A = 1?7 (Note:
The assumptions of this problem give a natural way to think of a “random” random
number generator of this type. A method such as Algorithm K may be expected to
behave somewhat like the generator considered here; the answer to this problem gives
a measure of how colossal the coincidence of Table 1 really is.)

» 12. [M31] Under the assumptions of the preceding exercise, what is the average length
of the final cycle? What is the average length of the sequence before it begins to cycle?
(In the notation of exercise 6, we wish to examine the average values of A and of p+\.)

13. [M42] If f(z) is chosen at random in the sense of exercise 11, what is the average
length of the longest cycle obtainable by varying the starting value Xo? (Note: We
have already considered the analogous problem in the case that f(z) is a random
permutation; see exercise 1.3.3-23.)

14. [M38] If f(z) is chosen at random in the sense of exercise 11, what is the av-
erage number of distinct final cycles obtainable by varying the starting value? [See
exercise 8(b).]

15. [M15] If f(z) is chosen at random in the sense of exercise 11, what is the proba-
bility that none of the final cycles has length 1, regardless of the choice of X7

3.1 INTRODUCTION 9

16. [15] A sequence generated as in exercise 6 must begin to repeat after at most m
values have been generated. Suppose we generalize the method so that X, ; depends
on X,_1 as well as on X,; formally, let f(z,y) be a function such that 0 < z,y <m
implies 0 < f(z,y) < m. The sequence is constructed by selecting X, and X;
arbitrarily, and then letting

Xn+1 = f(Xn, Xn._]_), for n > 0.

What is the maximum period conceivably attainable in this case?

17. [10] Generalize the situation in the previous exercise so that X,;: depends on
the preceding k values of the sequence.

18. [M20] Invent a method analogous to that of exercise 7 for finding cycles in the
general form of random number generator discussed in exercise 17.
19. [M48] Solve the problems of exercises 11 through 15 for the more general case that
Xn+1 depends on the preceding k values of the sequence; each of the m™* functions
f(z1,...,zx) is to be considered equally probable. (Note: The number of functions
that yield the mazimum period is analyzed in exercise 2.3.4.2-23.)

20. [30] Find all nonnegative X < 10'° that lead ultimately via Algorithm K to the
self-reproducing number in Table 1.

21. [42] Prove or disprove: The mapping X — f(X) defined by Algorithm K has
exactly five cycles, of lengths 3178, 1606, 1024, 943, and 1.

22. [21] (H. Rolletschek.) Would it be a good idea to generate random numbers by
using the sequence f(0), (1), f(2), ..., where f is a random function, instead of using
zo, f(z0), f(f(z0)), etc.?

23. [M26] (D. Foata and A. Fuchs, 1970.) Show that each of the m™ functions f(z)
considered in exercise 6 can be represented as a sequence (zo, Z1,...,Zm—1) having the
following properties:

i) (zo,Z1,...,Zm—1) is a permutation of (f(0), f(1),..., f(m — 1)).

ii) (f(0),...,f(m — 1)) can be uniquely reconstructed from (zo,1,...,Tm—1)-

iii) The elements that appear in cycles of f are {zo,z1,...,Tk—-1}, where k is the
largest subscript such that these k elements are distinct.

iv) z; ¢ {zo,z1,...,z;-1} implies z;—1 = f(x;), unless z; is the smallest element in
a cycle of f.

v) (£(0), f(1),..., f(m — 1)) is a permutation of (0,1,...,m — 1) if and only if
(zo,Z1,...,Tm—1) represents the inverse of that permutation by the “unusual
correspondence” of Section 1.3.3.

vi) o = x1 if and only if (21, ..., Zm-1) represents an oriented tree by the construction

of exercise 2.3.4.4-18, with f(z) the parent of z.

10 RANDOM NUMBERS 3.2

3.2. GENERATING UNIFORM RANDOM NUMBERS

IN THIS SECTION we shall consider methods for generating a sequence of random
fractions — random real numbers U,,, uniformly distributed between zero and one.
Since a computer can represent a real number with only finite accuracy, we
shall actually be generating integers X, between zero and some number m; the
fraction

U, =Xn/m

will then lie between zero and one. Usually m is the word size of the computer,
so X, may be regarded (conservatively) as the integer contents of a computer
word with the radix point assumed at the extreme right, and U, may be regarded
(liberally) as the contents of the same word with the radix point assumed at the
extreme left.

3.2.1. The Linear Congruential Method

By far the most popular random number generators in use today are special
cases of the following scheme, introduced by D. H. Lehmer in 1949. [See Proc.
2nd Symp. on Large-Scale Digital Calculating Machinery (Cambridge, Mass.:
Harvard University Press, 1951), 141-146.] We choose four magic integers:

m, the modulus; 0<m.
a, the multiplier; 0<a<m. (1)
¢, the increment; 0<c<m. !

Xo, the starting value; 0 < Xo < m.
The desired sequence of random numbers (X,) is then obtained by setting
Xn+1 = (aXn + c) mod m, n > 0. (2)

This is called a linear congruential sequence. Taking the remainder mod m is
somewhat like determining where a ball will land in a spinning roulette wheel.
For example, the sequence obtained when m =10 and Xg =a=c=71s

7,6,9,0 7,690, (3)

As this example shows, the sequence is not always “random” for all choices of
m, a, ¢, and Xo; the principles of choosing the magic numbers appropriately will
be investigated carefully in later parts of this chapter.

Example (3) illustrates the fact that the congruential sequences always get
into a loop: There is ultimately a cycle of numbers that is repeated endlessly.
This property is common to all sequences having the general form X, =
f(X,.), when f transforms a finite set into itself; see exercise 3.1-6. The repeating
cycle is called the period; sequence (3) has a period of length 4. A useful sequence
will of course have a relatively long period.

The special case ¢ = 0 deserves explicit mention, since the number generation
process is a little faster when ¢ = 0 than it is when ¢ # 0. We shall see later
that the restriction ¢ = 0 cuts down the length of the period of the sequence,
but it is still possible to make the period reasonably long. Lehmer’s original

3.2.1 THE LINEAR CONGRUENTIAL METHOD 11

generation method had ¢ = 0, although he mentioned c # 0 as a possibility; the
fact that ¢ # 0 can lead to longer periods is due to Thomson [Comp. J. 1 (1958),
83, 86] and, independently, to Rotenberg [JACM 7 (1960), 75-77]. The terms
multiplicative congruential method and mized congruential method are used by
many authors to denote linear congruential sequences with ¢ = 0 and ¢ # 0,
respectively.

The letters m, a, ¢, and X will be used throughout this chapter in the sense
described above. Furthermore, we will find it useful to define

b=a—1, (4)

in order to simplify many of our formulas.

We can immediately reject the case a = 1, for this would mean that X, =
(Xo + nc) mod m, and the sequence would certainly not behave as a random
sequence. The case a = 0 is even worse. Hence for practical purposes we may
assume that

a>2, b>1. (5)
Now we can prove a generalization of Eq. (2),
Xnik = (aF X, + (a* — 1)¢/b) mod m, k>0, n>0, (6)

which expresses the (n+k)th term directly in terms of the nth term. (The special
case n = 0 in this equation is worthy of note.) It follows that the subsequence
consisting of every kth term of (X,) is another linear congruential sequence,
having the multiplier a* mod m and the increment ((a* — 1)c/b) mod m.

An important corollary of (6) is that the general sequence defined by m, a,
¢, and X can be expressed very simply in terms of the special case where ¢ =1
and Xy = 0. Let

Yo =0, Yot+1 = (aYn + 1) mod m. (7)

According to Eq. (6) we will have Y}, = (a¥ —1)/b (modulo m), hence the general
sequence defined in (2) satisfies

X, = (AY, + Xo) mod m, where A = (Xob + ¢) mod m. (8)

EXERCISES

1. [10] Example (3) shows a situation in which X4 = Xo, so the sequence begins
again from the beginning. Give an example of a linear congruential sequence with
m = 10 for which X, never appears again in the sequence.

2. [M20] Show that if a and m are relatively prime, the number X, will always
appear in the period.

3. [M10] If a and m are not relatively prime, explain why the sequence will be
somewhat handicapped and probably not very random; hence we will generally want
the multiplier a to be relatively prime to the modulus m.

4. [11] Prove Eq. (6).

5. [M20] Equation (6) holds for k > 0. If possible, give a formula that expresses
Xn+k in terms of X, for negative values of k.

12 RANDOM NUMBERS 3.2.1.1

3.2.1.1. Choice of modulus. Our current goal is to find good values for the
parameters that define a linear congruential sequence. Let us first consider the
proper choice of the number m. We want m to be rather large, since the period
cannot have more than m elements. (Even if we intend to generate only random
zeros and ones, we should not take m = 2, for then the sequence would at best
have the form ...,0,1,0,1,0,1,...! Methods for getting random zeros and ones
from linear congruential sequences are discussed in Section 3.4.)

Another factor that influences our choice of m is speed of generation: We
want to pick a value so that the computation of (aX,, + ¢) mod m is fast.

Consider MIX as an example. We can compute y mod m by putting y in
registers A and X and dividing by m; assuming that y and m are positive, we
see that y mod m will then appear in register X. But division is a comparatively
slow operation, and it can be avoided if we take m to be a value that is especially
convenient, such as the word size of our computer.

Let w be the computer’s word size, namely 2° on an e-bit binary computer or
10° on an e-digit decimal machine. (In this book we shall often use the letter e to
denote an arbitrary integer exponent, instead of the base of natural logarithms,
hoping that the context will make our notation unambiguous. Physicists have a
similar problem when they use e for the charge on an electron.) The result of
an addition operation is usually given modulo w, except on ones’-complement
machines; and multiplication mod w is also quite simple, since the desired result
is the lower half of the product. Thus, the following program computes the
quantity (aX + c¢) mod w efficiently:

LDA A TA < a.

MUL X rAX « (rA) - X.

SLAX 5 rA «— rAX modw. (1)
ADD C rA« (rA+c)modw. |

The result appears in register A. The overflow toggle might be on at the conclu-
sion of these instructions; if that is undesirable, the code should be followed by,
say, “JOV *+1” to turn it off.

A clever technique that is less commonly known can be used to perform
computations modulo w+ 1. For reasons to be explained later, we will generally
want ¢ = 0 when m = w + 1, so we merely need to compute (aX) mod (w + 1).
The following program does this:

01 LDAN X rA «+ —X.

02 MUL A rAX «+ (rA) - a.

03 STX TEMP

0/ SUB TEMP rA « 1A — X (2)
05 JANN *+3 Exit if rA > 0.

06 1INCA 2 rA «rA 4+ 2.

07 ADD =w—1= rA+rA+w—1. (See exercise 3) 1

Register A now contains the value (aX) mod (w+1). Of course, this value might
lie anywhere between 0 and w, inclusive, so the reader may legitimately wonder
how we can represent so many values in the A-register! (The register obviously

3.2.1.1 CHOICE OF MODULUS 13

cannot hold a number larger than w — 1.) The answer is that overflow will be
on after program (2) if and only if the result equals w, assuming that overflow
was initially off. We could represent w by 0, since (2) will not normally be used
when X = 0: but it is most convenient simply to reject the value w if it appears
in the congruential sequence modulo w + 1. Then we can also avoid overflow,
simply by changing lines 05 and 06 of (2) to “JANN *+4; INCA 2; JAP *-5”.

To prove that code (2) actually does determine (aX) mod (w + 1), note that
in line 04 we are subtracting the lower half of the product from the upper half.
No overflow can occur at this step; and if aX = qw +r, with 0 <r < w, we will
have the quantity r — ¢ in register A after line 04. Now

aX = qlw+1)+(r —q),

and we have —w < r — g < w since ¢ < w; hence (aX) mod (w + 1) equals either
r—qorr—q+ (w+ 1), depending on whether r — ¢ >0 or r — ¢ <0.

A similar technique can be used to get the product of two numbers modulo
(w — 1); see exercise 8.

In later sections we shall require a knowledge of the prime factors of m in
order to choose the multiplier a correctly. Table 1 lists the complete factorization
of w + 1 into primes for nearly every known computer word size; the methods of
Section 4.5.4 can be used to extend this table if desired.

The reader may well ask why we bother to consider using m = w £+ 1, when
the choice m = w is so manifestly convenient. The reason is that when m = w,
the right-hand digits of X,, are much less random than the left-hand digits. If
d is a divisor of m, and if

Y, = X, mod d, (3)

we can easily show that
Y41 = (aY, + ¢) mod d. (4)

(For Xn41 = aX, + ¢ — gm for some integer ¢, and taking both sides mod d
causes the quantity gm to drop out when d is a factor of m.)

To illustrate the significance of Eq. (4), let us suppose, for example, that
we have a binary computer. If m = w = 2¢, the low-order four bits of X, are
the numbers ¥,, = X, mod 2*. The gist of Eq. (4) is that the low-order four
bits of (X,) form a congruential sequence that has a period of length 16 or less.
Similarly, the low-order five bits are periodic with a period of at most 32; and
the least significant bit of X, is either constant or strictly alternating.

This situation does not occur when m = w =+ 1; in such a case, the low-order
bits of X,, will behave just as randomly as the high-order bits do. If, for example,
w = 235 and m = 235 — 1, the numbers of the sequence will not be very random if
we consider only their remainders mod 31, 71, 127, or 122921 (see Table 1); but
the low-order bit, which represents the numbers of the sequence taken mod 2,
should be satisfactorily random.

Another alternative is to let m be the largest prime number less than w.
This prime may be found by using the techniques of Section 4.5.4, and a table
of suitably large primes appears in that section.

14 RANDOM NUMBERS

3.2.1.1

Table 1
PRIME FACTORIZATIONS OF w + 1
2¢ — 1 e 2 41
7-31-151 15 32.11-331
3.5-17-257 16 65537
. 131071 17 343691
33.7.19-73 18 5-.13-37-109
524287 19 3.174763
3-52.11-31-41 20 17 - 61681
72.127 - 337 21 32.43.5419
3.23.89-683 22 5-397.2113
47 -178481 23 3. 2796203
32.5.7.13-17-241 24 97-257-673
31-601 -1801 25 3-11-251-4051
3.2731-8191 26 5-53-157-1613
773262657 27 34.19-87211
3.5-20-43-113-127 28 17 - 15790321
233 -1103 - 2089 29 3-59-3033169
32.7.11-31-151-331 30 52.13-41-61-1321
2147483647 31 3- 715827883
3.5-17-257-65537 32 641 - 6700417
7.23-89-599479 33 32.67- 68320857
3-43691- 131071 34 5-137-953 - 26317
31-71-127-122921 35 3.11-43.281-86171
33.5.7-13-19-37-73-109 36 17 -241 - 433 - 38737
223 - 616318177 37 3.1777 - 25781083
3-174763 - 524287 38 5.229 457 - 525313
7-79-8191 - 121369 39 32.2731 - 22366891
3.52.11-17-31-41-61681 40 257 - 4278255361
13367 - 164511353 41 3-83- 8831418697
32.72.43.127-337-5419 42 5-13-29-113-1429 - 14449
431-9719 - 2099863 43 3.2932031007403
3.5.23.89-397-683-2113 44 17 - 353 - 2931542417
7.31-73.151-631-23311 45 3%.11-19- 33118837001
3.47-178481 - 2796203 46 5.277-1013 - 1657 - 30269
2351 - 4513 - 13264529 47 3.283- 165768537521
32.5.7-13-17-97-241-257-673 48 193 - 65537 - 22253377
179951 - 3203431780337 59 3.2833- 37171 - 1824726041
32.52.7.11-13-31-41-61-151-331-1321 60 17 - 241 - 61681 - 4562284561
72 .73 .127 - 337 - 92737 - 649657 63 3%.19-43-5419 - 77158673929
3.5.17-257- 64165537 - 6700417 64 274177 - 7280421310721
10 — 1 e 108 +1
33.7.11-13-37 6 101 - 9901
32.239 - 4649 7 11 - 909091
32.11-73-101-137 8 17 - 5882353
34.37-333667 9 7-11-13-19- 52579
32.11-41-271-9091 10 101 - 3541 - 27961
32.21649 - 513239 11 112 - 23 - 4093 - 8779
33.7-.11-13-37-101-9901 12 73 - 137 - 99990001
32.11.17-73-101- 1375882353 16 353 - 449 - 641 - 1409 - 69857

3.2.1.1 CHOICE OF MODULUS 15

In most applications, the low-order bits are insignificant, and the choice
m = w is quite satisfactory — provided that the programmer using the random
numbers does so wisely.

Our discussion so far has been based on a “signed magnitude” computer like
MIX. Similar ideas apply to machines that use complement notations, although
there are some instructive variations. For example, a DECsystem 20 computer
has 36 bits with two’s complement arithmetic; when it computes the product of
two nonnegative integers, the lower half contains the least significant 35 bits with
a plus sign. On this machine we should therefore take w = 235, not 2¢. The
32-bit two’s complement arithmetic on IBM System/370 computers is different:
The lower half of a product contains a full 32 bits. Some programmers have
felt that this is a disadvantage, since the lower half can be negative when the
operands are positive, and it is a nuisance to correct this; but actually it is a
distinct advantage from the standpoint of random number generation, since we
can take m = 232 instead of 23! (see exercise 4).

EXERCISES

1. [M12] In exercise 3.2.1-3 we concluded that the best congruential generators will
have the multiplier a relatively prime to m. Show that when m = w in this case it is
possible to compute (aX +c¢) mod w in just three MIX instructions, rather than the four
in (1), with the result appearing in register X.

2. [16] Write a MIX subroutine having the following characteristics:
Calling sequence: JMP RANDM
Entry conditions: Location XRAND contains an integer X.
Exit conditions: X 1A + (aX + ¢) mod w, rX + 0, overflow off.

(Thus a call on this subroutine will produce the next random number of a linear
congruential sequence.)

3. [M25] Many computers do not provide the ability to divide a two-word number
by a one-word number; they provide only operations on single-word numbers, such as
himult(z,y) = |zy/w| and lomult(z,y) = vy mod w, when z and y are nonnegative
integers less than the word size w. Explain how to evaluate az mod m in terms of
himult and lomult, assuming that 0 < @, £ < m < w and that m L w. You may use
precomputed constants that depend on a, m, and w.

4. [21] Discuss the calculation of linear congruential sequences with m = 2%% on
two’s-complement machines such as the System/370 series.

5. [20] Given that m is less than the word size, and that z and y are nonnegative
integers less than m, show that the difference (z — y) mod m may be computed in just
four MIX instructions, without requiring any division. What is the best code for the
sum (z + y) mod m?

6. [20] The previous exercise suggests that subtraction mod m is easier to perform
than addition mod m. Discuss sequences generated by the rule

Xn+1 = (X, — ¢) mod m.

Are these sequences essentially different from linear congruential sequences as defined
in the text? Are they more suited to efficient computer calculation?

16 RANDOM NUMBERS 3.2.1.1

7. [M24] What patterns can you spot in Table 17

8. [20] Write a MIX program analogous to (2) that computes (aX) mod (w—1). The
values 0 and w — 1 are to be treated as equivalent in the input and output of your
program.

9. [M25] Most high-level programming languages do not to provide a good way
to divide a two-word integér by a one-word integer, nor do they provide the himult
operation of exercise 3. The purpose of this exercise is to find a reasonable way to
cope with such limitations when we wish to evaluate az mod m for variable z and for
constants 0 < a < m.

a) Prove that if ¢ = [m/a|, we have a(z — (z mod q)) = |z/q|(m — (m mod a)).
b) Use the identity of (a) to evaluate ax mod m without computing any numbers that
exceed m in absolute value, assuming that a2 < m.

10. [M26] The solution to exercise 9(b) sometimes works also when a® > m. Exactly
how many multipliers a are there for which the intermediate results in that method
never exceed m, for all z between 0 and m?

11. [M30] Continuing exercise 9, show that it is possible to evaluate az mod m using
only the following basic operations:

i) u x v, where u > 0, v > 0, and uv < m;

ii) |u/v], where 0 < v < u < m;
iii) (u — v) mod m, where 0 < u,v < m.
In fact, it is always possible to do this with at most 12 operations of types (i) and (ii),
and with a bounded number of operations of type (iii), not counting the precomputation
of constants that depend on a and m. For example, explain how to proceed when a is
62089911 and m is 2°! — 1. (These constants appear in Table 3.3.4-1.)

12. [M28] Consider computations by pencil and paper or an abacus.

a) What’s a good way to multiply a given 10-digit number by 10, modulo 99999989997

b) Same question, but multiply instead by 999999900 (modulo 9999998999).

c) Explain how to compute the powers 999999900™ mod 9999998999, for n = 1, 2,
3,

d) Relate such computations to the decimal expansion of 1/9999998999.

e) Show that these ideas make it possible to implement certain kinds of linear con-
gruential generators that have extremely large moduli, using only a few operations
per generated number.

13. [M24] Repeat the previous exercise, but with modulus 9999999001 and with
multipliers 10 and 8999999101.

14. [M25] Generalize the ideas of the previous two exercises, obtaining a large family
of linear congruential generators with extremely large moduli.

3.2.1.2. Choice of multiplier. In this section we shall consider how to choose
the multiplier a so as to produce a period of mazimum length. A long period
is essential for any sequence that is to be used as a source of random numbers;
indeed, we would hope that the period contains considerably more numbers than
will ever be used in a single application. Therefore we shall concern ourselves in
this section with the question of period length. The reader should keep in mind,
however, that a long period is only one desirable criterion for the randomness of

3.2.1.2 CHOICE OF MULTIPLIER 17

a linear congruential sequence. For example, when a = ¢ = 1, the sequence is
simply Xn4+1 = (Xn + 1) mod m, and this obviously has a period of length m,
yet it is anything but random. Other considerations affecting the choice of a
multiplier will be given later in this chapter.

Since only m different values are possible, the period surely cannot be longer
than m. Can we achieve the maximum length, m? The example above shows that
it is always possible, although the choice a = ¢ = 1 does not yield a desirable
sequence. Let us investigate all possible choices of a, ¢, and X that give a
period of length m. It turns out that all such values of the parameters can be
characterized very simply; when m is the product of distinct primes, only a =1
will produce the full period, but when m is divisible by a high power of some
prime there is considerable latitude in the choice of a. The following theorem
makes it easy to tell if the maximum period is achieved.

Theorem A. The linear congruential sequence defined by m, a, ¢, and X, has
period length m if and only if

i) c is relatively prime to m;
ii) b=a — 1 is a multiple of p, for every prime p dividing m;
iii) b is a multiple of 4, if m is a multiple of 4.

The ideas used in the proof of this theorem go back at least a hundred
years. But the first proof of the theorem in this particular form was given by
M. Greenberger in the special case m = 2¢ [see JACM 8 (1961), 383-389], and
the sufficiency of conditions (i), (ii), and (iii) in the general case was shown by
Hull and Dobell [see SIAM Review 4 (1962), 230-254]. To prove the theorem
we will first consider some auxiliary number-theoretic results that are of interest
in themselves.

Lemma P. Let p be a prime number, and let e be a positive integer, where
p¢ > 2. If
r =1 (modulo p¢), z #1 (modulo pet?), (1)
then
2P = 1 (modulo p¢*!), zP # 1 (modulo p*+?). (2)

Proof. We have £ = 1 + gp® for some integer g that is not a multiple of p. By
the binomial formula

P =1+ (Z;) qpe 4.4 (p pi 1) qp—lp(P—l)e + qpppe

1 1 1

-1+ qpe+1 (1 + _(p)qpe + _(p)qZPZe 4.t _(p)qp—-lp(p—-l)e))
p\2 p\3 p\p

The quantity in parentheses is an integer, and, in fact, every term inside the

parentheses is a multiple of p except the first term. For if 1 < k < p, the

binomial coefficient (ﬁ) is divisible by p (see exercise 1.2.6-10); hence

L/P\ k-1 _(k—1)e
p(k)q P

18 RANDOM NUMBERS 3.2.1.2

is divisible by p(*~1¢. And the last term is ¢P~!p(P~1e=1 which is divisible by p
since (p — 1)e > 1 when p®* > 2. So 2P = 1 + gp**! (modulo p**+?%), and this
completes the proof. (Note: A generalization of this result appears in exercise
3.2.2-11(a).) 1

Lemma Q. Let the decomposition of m into prime factors be

m=pi...p;. (3)

The length X of the period of the linear congruential sequence determined by
(Xo, a,c,m) is the least common multiple of the lengths A; of the periods of the
linear congruential sequences (Xo mod pjj, a mod p;j, cmod p;j, pjj), 1<j<t.

Proof. By induction on t, it suffices to prove that if m; and ms, are relatively
prime, the length X of the linear congruential sequence determined by the param-
eters (Xo, a,c, myma) is the least common multiple of the lengths A\; and A; of the
periods of the sequences determined by (Xo mod m;, a mod my, ¢ mod mq, m;)
and (Xo mod m2, a mod my, cmod ma, mz). We observed in the previous sec-
tion, Eq. (4), that if the elements of these three sequences are respectively
denoted by X,,, Y,,, and Z,, we will have

Y, =X, modm; and Zn = X mod mg, for all n > 0.
Therefore, by Law D of Section 1.2.4, we find that
X, =X if and only if Y,=Y, and Z,=7. (4)

Let X be the least common multiple of A\; and)A3; we wish to prove that
X' = \. Since X, = X, for all suitably large n, we have Y;, = Y, (hence
A is a multiple of A\;) and Z, = Z, 1 (hence X is a multiple of X2), so we must
have A >). Furthermore, we know that Y¥,, = Y,y and Z, = Z, for all
suitably large n; therefore, by (4), Xn = X,4+x. This proves A < XN. |

Now we are ready to prove Theorem A. Lemma Q tells us that it suffices to
prove the theorem when m is a power of a prime number, because

pil...pgt :)\:lcm()\l,...,)\t) S)\1>\t Spil...pgt

will be true if and only if A\; = pjj for1 <j<t.

Assume therefore that m = p®, where p is prime and e is a positive integer.
The theorem is obviously true when a = 1, so we may take a > 1. The period
can be of length m if and only if each possible integer 0 < z < m occurs in
the period, since no value occurs in the period more than once. Therefore the
period is of length m if and only if the period of the sequence with Xy = 0 is of
length m, and we are justified in supposing that Xy = 0. By formula 3.2.1—(6)
we have

"—1
Xn = <a 7)c mod m. (5)

If ¢ is not relatively prime to m, this value X, could never be equal to 1, so
condition (i) of the theorem is necessary. The period has length m if and only

3.2.1.2 CHOICE OF MULTIPLIER 19

if the smallest positive value of n for which X, = Xo = 0is n =m. By (5) and
condition (i), our theorem now reduces to proving the following fact:

Lemma R. Assume that 1 < a < p®, where p is prime. If A is the smallest
positive integer for which (a* —1)/(a — 1) = 0 (modulo p*), then
a = 1 (modulo p) when p > 2,

=p° if and only if
A=p I and only 1 {azl(modulo4) when p=2.

Proof. Assume that A = p®. If a # 1 (modulo p), then (a” —1)/(a —1) =0
(modulo p¢) if and only if a™ — 1 = 0 (modulo p°®). The condition a?® —1 =0
(modulo p®) then implies that a?® = 1 (modulo p); but by Theorem 1.2.4F we
have aP® = a (modulo p), hence a # 1 (modulo p) leads to a contradiction. And
if p = 2 and a = 3 (modulo 4), we have

(a® =1)/(a—1) =0 (modulo 2¢)

by exercise 8. These arguments show that it is necessary in general to have
a =1+ gpf, where pf > 2 and ¢ is not a multiple of p, whenever \ = p®.

It remains to be shown that this condition is sufficient to make A = p°. By
repeated application of Lemma P, we find that

a”’ =1 (modulo p/*9), a?’ # 1 (modulo pf*9+1),
for all g > 0, and therefore
1)/(a — 1) = 0 (modulo p9),
1)/(a — 1) # 0 (modulo p9*1).
)

(a”
Ca
In particular, (a?"—1)/(a — 1) = 0 (modulo p¢). Now the congruential sequence
(0,a,1,p%) has X,, = (a™ —1)/(a—1) mod p®; therefore it has a period of length A,
that is, X, = 0 if and only if n is a multiple of A. Hence p® is a multiple of .

This can happen only if A = p9 for some g, and the relations in (6) imply that
A = p®, completing the proof. | :

(6)

The proof of Theorem A is now complete. |

We will conclude this section by considering the special case of pure mul-
tiplicative generators, when ¢ = 0. Although the random number generation
process is slightly faster in this case, Theorem A shows us that the maximum
period length cannot be achieved. In fact, this is quite obvious, since the sequence
now satisfies the relation

Xn+1 = aX, modm, (7)

and the value X,, = 0 should never appear, lest the sequence degenerate to zero.
In general, if d is any divisor of m and if X, is a multiple of d, all succeeding
elements X, 11, X2, ... of the multiplicative sequence will be multiples of d.
So when ¢ = 0, we will want X,, to be relatively prime to m for all n, and this
limits the length of the period to at most ¢(m), the number of integers between
0 and m that are relatively prime to m.

20 RANDOM NUMBERS 3.2.1.2

It may be possible to achieve an acceptably long period even if we stipulate
that ¢ = 0. Let us now try to find conditions on the multiplier so that the period
is as long as possible in this special case.

According to Lemma Q, the period of the sequence depends entirely on the
periods of the sequences when m = p°, so let us consider that situation. We
have X,, = a® X, mod p®, and it is clear that the period will be of length 1 if a is
a multiple of p, so we take a to be relatively prime to p. Then the period is the
smallest integer A such that X, = a™ X mod p¢. If the greatest common divisor
of Xo and p¢ is pf, this condition is equivalent to

a* =1 (modulo p*~). (8)

By Euler’s theorem (exercise 1.2.4-28), a?®) =1 (modulo p*~f); hence X is
a divisor of

o) =" p-1).
When a is relatively prime to m, the smallest integer A for which ad =1
(modulo m) is conventionally called the order of a modulo m. Any such value
of @ that has the mazimum possible order modulo m is called a primitive element
modulo m.

Let A(m) denote the order of a primitive element, namely the maximum
possible order, modulo m. The remarks above show that A(p®) is a divisor of
p*1(p — 1); with a little care (see exercises 11 through 16 below) we can give
the precise value of A(m) in all cases as follows:

A2) =1, AM4)=2 A2)=27% if e>3;
Ape)=p"p-1), if p>2 (9)
Ap ... pt) = lem(A(PT), - MBEY))-
Our remarks may be summarized in the following theorem:
Theorem B. [C. F. Gauss, Disquisitiones Arithmeticze (1801), §90-92.] The

maximum period possible when ¢ = 0 is A(m), where A\(m) is defined in (g).
This period is achieved if

i) Xy is relatively prime to m;

ii) a is a primitive element modulo m. 1|

Notice that we can obtain a period of length m — 1 if m is prime; this is just one
less than the maximum length, so for all practical purposes such a period is as
long as we want.

The question now is, how can we find primitive elements modulo m? The
exercises at the close of this section tell us that there is a fairly simple answer
when m is prime or a power of a prime, namely the results stated in our next
theorem.

Theorem C. The number a is a primitive element modulo p® if and only if one
of the following cases applies:

i) p=2,e=1, and a is odd;

3.2.1.2 CHOICE OF MULTIPLIER 21

i) p=2,e=2, and amod 4 = 3;

b v

p=2,e>4 and amod 8 = 3 or 5;

v) pisodd, e =1, a # 0 (modulo p), and a®1/9 £ 1 (modulo p) for any
prime divisor q of p — 1,

)

ili) p=2,e=3,andamod 8 =3, 5, or 7,
)
)

vi) p is odd, e > 1, a satisfies the conditions of (v), and a?~! # 1 (modulo p?).
1

Conditions (v) and (vi) of this theorem are readily tested on a computer for
large values of p, by using the efficient methods for evaluating powers discussed
in Section 4.6.3, if we know the factors of p — 1.

Theorem C applies to powers of primes only. But if we are given values a;
that are primitive modulo p;j , it is possible to find a single value a such that
a = a; (modulo p;j), for 1 < j < t, using the Chinese remainder algorithm
discussed in Section 4.3.2; this number a will be a primitive element modulo
p7t...p;t. Hence there is a reasonably efficient way to construct multipliers
satisfying the condition of Theorem B, for any modulus m of moderate size,
although the calculations can be somewhat lengthy in the general case.

In the common case m = 2¢, with e > 4, the conditions above simplify to
the single requirement that a = 3 or 5 (modulo 8). In this case, one-fourth of all
possible multipliers will make the period length equal to m/4, and m/4 is the
maximum possible when ¢ = 0.

The second most common case is when m = 10°. Using Lemmas P and Q, it
is not difficult to obtain necessary and sufficient conditions for the achievement
of the maximum period in the case of a decimal computer (see exercise 18):

Theorem D. Ifm = 10°% e > 5, ¢ = 0, and X is not a multiple of 2 or 5, the
period of the linear congruential sequence is 5 x 10°~2 if and only if @ mod 200
equals one of the following 32 values:

3,11, 13, 19, 21, 27, 29, 37, 53, 59, 61, 67, 69, 77, 83, 91, 109, 117,)
193, 131, 133, 139, 141, 147, 163, 171, 173, 179, 181, 187, 189, 197, J *°

EXERCISES

1. [10] What is the length of the period of the linear congruential sequence with
Xo = 5772156648, a = 3141592621, ¢ = 2718281829, and m = 100000000007

2. [10] Are the following two conditions sufficient to guarantee the maximum length
period, when m is a power of 27 “(i) c is odd; (ii) amod 4 = 1.”

3. [18] Suppose that m = 10°, where e > 2, and suppose further that ¢ is odd and
not a multiple of 5. Show that the linear congruential sequence will have the maximum
length period if and only if ¢ mod 20 = 1.

4. [M20] Assume that m = 2° and Xo = 0. If the numbers a and c satisfy the
conditions of Theorem A, what is the value of X,e-17

5. [14] Find all multipliers a that satisfy the conditions of Theorem A when m =
2%% + 1. (The prime factors of m may be found in Table 3.2.1.1-1.)

22 RANDOM NUMBERS 3.2.1.2

» 6. [20] Find all multipliers a that satisfy the conditions of Theorem A when m =
10% — 1. (See Table 3.2.1.1-1.)

» 7. [M23] The period of a congruential sequence need not start with Xo, but we can
always find indices p > 0 and A > 0 such that X, = X, whenever n > p, and for
which p and X are the smallest possible values with this property. (See exercises 3.1-6
and 3.2.1-1.) If u; and \; are the indices corresponding to the sequences

(Xo mod p;’, amod p;’, cmod p’, p;’),

and if g and X correspond to the composite sequence (Xo,a,c,py* ... p;*), Lemma Q
states that) is the least common multiple of A1,...,\;. What is the value of p in
terms of the values of p1, ..., 7 What is the maximum possible value of p obtainable
by varying Xo, a, and ¢, when m = pi*...p" is fixed?

8. [M20] Show that if a mod 4 = 3, we have (aze_1 —1)/(a — 1) = 0 (modulo 2°)
when e > 1. (Use Lemma P.)

» 9. [M22] (W.E. Thomson.) When ¢ = 0 and m = 2° > 16, Theorems B and C say
that the period has length 2°72 if and only if the multiplier a satisfies a mod 8 = 3
or amod 8 = 5. Show that every such sequence is essentially a linear congruential
sequence with m = 2°7%, having full period, in the following sense:

a) If X,y1 = (4c + 1) X, mod 2°, and X, = 4Y, + 1, then
Yni1 = ((4c+ 1)V, + ¢) mod 2°72.

b) If X1 = (4c — 1)Xn mod 2°, and X, = ((—=1)"(4Ys + 1)) mod 2°, then
Y1 = ((1 — 4¢)Yn — ¢) mod 2°72.

[Note: In these formulas, c is an odd integer. The literature contains several
statements to the effect that sequences with ¢ = 0 satisfying Theorem B are somehow
more random than sequences satisfying Theorem A, in spite of the fact that the period is
only one-fourth as long in the case of Theorem B. This exercise refutes such statements;
in essence, we must give up two bits of the word length in order to save the addition
of ¢, when m is a power of 2.]

10. [M21] For what values of m is A(m) = p(m)?

» 11. [M28] Let z be an odd integer greater than 1. (a) Show that there exists a unique
integer f > 1 such that z = 2/ £ 1 (modulo 2/%1). (b) Given that 1 < z < 2°—1 and
that f is the corresponding integer from part (a), show that the order of z modulo 2°
is 277, (c) In particular, this proves parts (i)-(iv) of Theorem C.

12. [M26] Let p be an odd prime. If e > 1, prove that a is a primitive element
modulo p¢ if and only if a is a primitive element modulo p and aP~! # 1 (modulo p?).
(For the purposes of this exercise, assume that A(p®) = p®~!(p—1). This fact is proved
in exercises 14 and 16 below.)

13. [M22] Let p be prime. Given that a is not a primitive element modulo p, show
that either a is a multiple of p or a®1/9 = 1 (modulo p) for some prime number g
that divides p — 1.

14. [M18] If e > 1 and p is an odd prime, and if a is a primitive element modulo p,
prove that either a or a + p is a primitive element modulo p°. [Hint: See exercise 12/]

3.2.1.3 POTENCY 23

15. [M29] (a) Let a1 and a2 be relatively prime to m, and let their orders modulo m
be A1 and)z, respectively. If A is the least common multiple of A\; and Az, prove that
aFla5? has order A modulo m, for suitable integers x1 and k2. [Hint: Consider first
the case that A; is relatively prime to Az.] (b) Let A(m) be the maximum order of
any element modulo m. Prove that A(m) is a multiple of the order of each element
modulo m; that is, prove that a*™ = 1 (modulo m) whenever a is relatively prime
to m. (Do not use Theorem B.)

16. [M24] (Ewistence of primitive roots.) Let p be a prime number.
a) Consider the polynomial f(x) = 2™ +c12™ 4 -+ cn, where the c's are integers.
Given that a is an integer for which f(a) = 0 (modulo p), show that there exists
a polynomial
gz) ="+ quz" i+ 4 gnt

with integer coefficients such that f(z) = (z —a)q(z) (modulo p) for all integers z.
b) Let f(z) be a polynomial as in (a). Show that f(z) has at most n distinct “roots”
modulo p; that is, there are at most n integers a, with 0 < a < p, such that
f(a) = 0 (modulo p).
c) Because of exercise 15(b), the polynomial f(z) = 2*(®) —1 has p—1 distinct roots;
hence there is an integer a with order p — 1.

17. [M26] Not all of the values listed in Theorem D would be found by the text’s
construction; for example, 11 is not primitive modulo 5°. How can this be possible,
when 11 is primitive modulo 10°, according to Theorem D? Which of the values listed
in Theorem D are primitive elements modulo both 2° and 5°7

18. [M25] Prove Theorem D. (See the previous exercise.)

19. [40] Make a table of some suitable multipliers, a, for each of the values of m listed
in Table 3.2.1.1-1, assuming that ¢ = 0.

20. [M24] (G. Marsaglia.) The purpose of this exercise is to study the period length
of an arbitrary linear congruential sequence. Let Y, = 14+ a + --- 4+ a™ !, so that
Xrn = (AY, + Xo) mod m for some constant A by Eq. 3.2.1-(8).

a) Prove that the period length of (X,) is the period length of (Y, mod m'), where
m' = m/gcd(4,m).

b) Prove that the period length of (Y, mod p°®) satisfies the following when p is prime:
(i) f amodp = 0, it is 1. (ii) If amod p = 1, it is p°, except when p = 2 and
e>2and amod4 = 3. (iii) If p = 2, e > 2, and amod 4 = 3, it is twice the order
of a modulo p® (see exercise 11), unless a = —1 (modulo 2°) when it is 2. (iv) If
amod p > 1, it is the order of a modulo p°.

21. [M25] In a linear congruential sequence of maximum period, let Xo = 0 and let s
be the least positive integer such that a® =1 (modulo m). Prove that ged(X,,m) = s.

22. [M25] Discuss the problem of finding moduli m = b* £4' £ 1 so that the subtract-
with-borrow and add-with-carry generators of exercise 3.2.1.1-14 will have very long
periods.

3.2.1.3. Potency. In the preceding section, we showed that the maximum
period can be obtained when b = a — 1 is a multiple of each prime dividing m;
and b must also be a multiple of 4 if m is a multiple of 4. If z is the radix of
the machine being used —so that 2z = 2 for a binary computer, and z = 10 for a

24 RANDOM NUMBERS 3.2.1.3

decimal computer —and if m is the word size z°, the multiplier
a=z"F+1, 2<k<e (1)

satisfies these conditions. Theorem 3.2.1.2A also says that we may take ¢ = 1.
The recurrence relation now has the form

X1 = ((zF +1)X, +1) mod 2°, (2)

and this equation suggests that we can avoid the multiplication; merely shifting
and adding will suffice.
For example, suppose we choose a = B2+ 1, where B is the byte size of MIX.
The code
LDA X; SLA 2; ADD X; INCA 1 (3)

can be used in place of the instructions given in Section 3.2.1.1, and the execution
time decreases from 16u to 7u.

For this reason, multipliers having form (1) have been widely discussed in the
literature, and indeed they have been recommended by many authors. However,
the early years of experimentation with this method showed conclusively that
multipliers having the simple form in (1) should be avoided. The generated
numbers just aren’t random enough.

Later in this chapter we shall be discussing some rather sophisticated theory
that accounts for the badness of all the linear congruential random number gen-
erators known to be bad. However, some generators (such as (2)) are sufficiently
awful that a comparatively simple theory can be used to rule them out. This
simple theory is related to the concept of “potency,” which we shall now discuss.

The potency of a linear congruential sequence with maximum period is
defined to be the least integer s such that

b° =0 (modulo m). (4)

(Such an integer s will always exist when the multiplier satisfies the conditions
of Theorem 3.2.1.2A, since b is a multiple of every prime dividing m.)

We may analyze the randomness of the sequence by taking Xy = 0, since 0
occurs somewhere in the period. With this assumption, Eq. 3.2.1-(6) reduces to

X, = ((a™ — 1)¢/b) mod m;
and if we expand a™ — 1 = (b+ 1)" — 1 by the binomial theorem, we find that

anc(n+(727’)b+...+(7:)bs‘l) mod m. (5)

All terms in b°, b°T!, etc., may be ignored, since they are multiples of m.
Equation (5) can be instructive, so we shall consider some special cases.
If a = 1, the potency is 1; and X, = cn (modulo m), as we have already
observed, so the sequence is surely not random. If the potency is 2, we have
Xp=cn+cb (’2‘), and again the sequence is not very random; indeed,

Xpr1—Xn=c+chn

3.2.1.3 POTENCY 25

in this case, so the differences between consecutively generated numbers change
in a simple way from one value of n to the next. The point (Xn, Xnt1, Xn42)
always lies on one of the four planes

x—2y+z2=d+m, x—2y+z=d-—m,
x—2y+z=d, z—2y+z=d-—2m,

in three-dimensional space, where d = cb mod m.

If the potency is 3, the sequence begins to look somewhat more random,
but there is a high degree of dependency between X,, X,.1, and X, ,o; tests
show that sequences with potency 3 are still not sufficiently good. Reasonable
results have been reported when the potency is 4 or more, but they have been
disputed by other people. A potency of at least 5 would seem to be required for
sufficiently random values.

Suppose, for example, that m = 23° and a = 2¥ + 1. Then b = 2%, so
we find that the value b2 = 2%* is a multiple of m when k& > 18: The potency
is 2. If k = 17,16,...,12, the potency is 3, and a potency of 4 is achieved for
k = 11,10,9. The only acceptable multipliers, from the standpoint of potency,
therefore have £ < 8. This means a < 257, and we shall see later that small
multipliers are also to be avoided. We have now eliminated all multipliers of the
form 2% + 1 when m = 235,

When m is equal to w &+ 1, where w is the word size, m is generally not
divisible by high powers of primes, and a high potency is impossible (see exer-
cise 6). So in this case, the maximum-period method should not be used; the
pure-multiplication method with ¢ = 0 should be applied instead.

It must be emphasized that high potency is necessary but not sufficient
for randomness; we use the concept of potency only to reject impotent genera-
tors, not to accept the potent ones. Linear congruential sequences should pass
the “spectral test” discussed in Section 3.3.4 before they are considered to be
acceptably random.

EXERCISES

1. [M10] Show that, no matter what the byte size B of MIX happens to be, the code
(3) yields a random number generator of maximum period.

2. [10] What is the potency of the generator represented by the MIX code (3)?

3. [11] When m = 2°°, what is the potency of the linear congruential sequence with
a = 31415926217 What is the potency if the multiplier is a = 223 4+ 213 + 22 + 17

4. [15] Show that if m = 2° > 8, maximum potency is achieved when a mod 8 = 5.

5. [M20] Given that m = pi*...p{* and a =1 + kpft...pft, where a satisfies the
conditions of Theorem 3.2.1.2A and k is relatively prime to m, show that the potency

is max({e1/fil,..., [e:/ f:])-

6. [20] Which of the values of m = w £ 1 in Table 3.2.1.1-1 can be used in a linear
congruential sequence of maximum period whose potency is 4 or more? (Use the result
of exercise 5.)

26 RANDOM NUMBERS 3.2.1.3

7. [M20] When a satisfies the conditions of Theorem 3.2.1.2A, it is relatively prime
to m; hence there is a number a’ such that aa’ = 1 (modulo m). Show that a’ can be
expressed simply in terms of b.

8. [M26] A random number generator defined by Xn41 = (2'" + 3)X,, mod 2% and
Xo = 1 was subjected to the following test: Let Y, = [10X,./2° |; then Y, should be a
random digit between 0 and 9, and the triples (Y3n, Yan+1, Y3n+2) should take on each
of the 1000 possible values from (0, 0, 0) to (9, 9, 9) with nearly equal frequency. But
with 30000 values of n tested, some triples hardly ever occurred, and others occurred
much more often than they should have. Can you account for this failure?

3.2.2. Other Methods

Of course, linear congruential sequences are not the only sources of random num-
bers that have been proposed for computer use. In this section we shall review
the most significant alternatives. Some of these methods are quite important,
while others are interesting chiefly because they are not as good as a person
might expect.

One of the common fallacies encountered in connection with random number
generation is the idea that we can take a good generator and modify it a little, in
order to get an “even more random” sequence. This is often false. For example,
we know that

Xny1 = (X, + c)modm (1)

leads to reasonably good random numbers; wouldn’t the sequence produced by
Xny1 = ((aXn) mod (m + 1) + ¢) mod m (2)

be even more random? The answer is, the new sequence is probably a great deal
less random. For the whole theory breaks down, and in the absence of any theory
about the behavior of the sequence (2), we come into the area of generators of
the type X,+1 = f(X,) with the function f chosen at random; exercises 3.1-11
through 3.1-15 show that these sequences probably behave much more poorly
than the sequences obtained from the more disciplined function (1).

Let us consider another approach, in an attempt to obtain a genuine im-
provement of sequence (1). The linear congruential method can be generalized
to, say, a quadratic congruential method:

Xpt1 = (dX2 + aX,, + c) mod m. (3)

Exercise 8 generalizes Theorem 3.2.1.2A to obtain necessary and sufficient con-
ditions on a, ¢, and d such that the sequence defined by (3) has a period of the
maximum length m; the restrictions are not much more severe than in the linear
method.

An interesting quadratic method has been proposed by R. R. Coveyou when
m is a power of two: Let

Xomod4 =2, Xny1 = Xn(Xn + 1) mod 2°, n > 0. (4)

This sequence can be computed with about the same efficiency as (1), without
any worries of overflow. It has an interesting connection with von Neumann'’s

3.2.2 OTHER METHODS 27

original middle-square method: If we let Y, be 2°X,, so that ¥, is a double-
precision number obtained by placing e zeros to the right of the binary represen-
tation of X,, then Y, consists of precisely the middle 2e digits of Y2 + 2¢Y,!
In other words, Coveyou’s method is almost identical to a somewhat degenerate
double-precision middle-square method, yet it is guaranteed to have a long
period; further evidence of its randomness is proved in Coveyou'’s paper cited
in the answer to exercise 8.

Other generalizations of Eq. (1) also suggest themselves; for example, we
might try to extend the period length of the sequence. The period of a linear
congruential sequence is fairly long; when m is approximately the word size of
the computer, we usually get periods on the order of 10° or more, and typical
calculations will use only a very small portion of the sequence. On the other hand,
when we discuss the idea of “accuracy” in Section 3.3.4 we will see that the period
length influences the degree of randomness achievable in a sequence. Therefore it
can be desirable to seek a longer period, and several methods are available for this
purpose. One technique is to make X,,.; depend on both X,, and X,,_,, instead
of just on X,; then the period length can be as high as m?, since the sequence will
not begin to repeat until we have (X, 12, Xn+ar+1) = (Xn, Xn+1). John Mauchly,
in an unpublished paper presented to a statistics conference in 1949, extended
the middle square method by using the recurrence X,, = middle (X,,_; - Xn_s).

The simplest sequence in which X, .+; depends on more than one of the
preceding values is the Fibonacci sequence,

Xn+1 = (Xn + Xn__]_) mod m. (5)

This generator was considered in the early 1950s, and it usually gives a period
length greater than m. But tests have shown that the numbers produced by
the Fibonacci recurrence are definitely not satisfactorily random, and so our
main interest in (5) as a source of random numbers is that it makes a nice “bad
example.” We may also consider generators of the form

Xn.+_]_ = (Xn + Xn—k) mod m, (6)

when k is a comparatively large value. This recurrence was introduced by Green,
Smith, and Klem [JACM 6 (1959), 527-537], who reported that, when k < 15,
the sequence fails to pass the “gap test” described in Section 3.3.2, although
when k£ = 16 the test was satisfactory. '

A much better type of additive generator was devised in 1958 by G. J.
Mitchell and D. P. Moore [unpublished|, who suggested the somewhat unusual
sequence defined by

Xn = (Xn—24 + Xn—55) mod m, n Z 557 (7)

where m is even, and where Xy, ..., X54 are arbitrary integers not all even. The
constants 24 and 55 in this definition were not chosen at random; they are special
values that happen to define a sequence whose least significant bits, (X, mod 2),
will have a period of length 2°° — 1. Therefore the sequence (X,) must have

28 RANDOM NUMBERS 3.2.2

a period at least this long. Exercise 30 proves that (7) has a period of length
exactly 2°71(2° — 1) when m = 2°.

At first glance Eq. (7) may not seem to be extremely well suited to machine
implementation, but in fact there is a very efficient way to generate the sequence
using a cyclic list:

Algorithm A (Additive number generator). Memory cells Y[1], Y[2], ..., Y[55]
are initially set to the values Xs4, Xs3, ..., Xo, respectively; j is initially equal
to 24 and k is 55. Successive performances of this algorithm will produce the
numbers X555, X56, . . . as output.

A1.[Add.] (If we are about to output X, at this point, Y[j] now equals Xn_24
and Y[k] equals X,,_s5.) Set Y[k] + (Y [k]+Y[]) mod 2°, and output Y'[k].

A2. [Advance.] Decrease j and k by 1. If now j = 0, set j < 55; otherwise if
k=0,set k<< 55 1

This algorithm in MIX is simply the following:

Program A (Additive number generator). Assuming that index registers 5
and 6, representing j and k, are not touched by the remainder of the program in
which this routine is embedded, the following code performs Algorithm A and
leaves the result in register A.

LDA Y,6 Al. Add.
ADD Y,5 Yi +Y; (overflow possible)

STA Y,6 — Y.

DEC5 1 A2. Advance. j + 7 — 1.
DEC6 1 k+—k—1.

JEP k+2

ENTS 55 If j =0, set j « 55.

J6P k+2

ENT6 55 Ifk=0,set k<55 |

This generator is usually faster than the other methods we have been dis-
cussing, since it does not require any multiplication. Besides its speed, it has
the longest period we have seen yet, except in exercise 3.2.1.2-22. Furthermore,
as Richard Brent has observed, it can be made to work correctly with floating
point numbers, avoiding the need to convert between integers and fractions (see
exercise 23). Therefore it may well prove to be the very best source of random
numbers for practical purposes. The main reason it is difficult to recommend
sequences like (7) wholeheartedly is that there is still very little theory to prove
that they do or do not have desirable randomness properties; essentially all
we know for sure is that the period is very long, and this is not enough. John
Reiser (Ph.D. thesis, Stanford Univ., 1977) has shown, however, that an additive
sequence like (7) will be well distributed in high dimensions, provided that a
certain plausible conjecture is true (see exercise 26).

The numbers 24 and 55 in (7) are commonly called lags, and the numbers
X, defined by (7) are said to form a lagged Fibonacci sequence. Lags like
(24, 55) work well because of theoretical results developed in some of the exercises

3.2.2 OTHER METHODS 29

Table 1
LAGS THAT YIELD LONG PERIODS MOD 2

(24,55) (37,100) (83,258) (273,607) (576,3217) (7083, 19937)
(38,89) (30,127) (107,378) (1029,2281) (4187,9689) (9739,23209)

For extensions of this table, see N. Zierler and J. Brillhart, Information and Control 13 (1968),
541-554, 14 (1969), 566-569, 15 (1969), 67—69; Y. Kurita and M. Matsumoto, Math. Comp.
56 (1991), 817-821; Heringa, Blote, and Compagner, Int. J. Mod. Phys. C3 (1992), 561-564.

below. It is of course better to use somewhat larger lags when an application
happens to use, say, groups of 55 values at a time; the numbers generated by (7)
will never have X, lying strictly between X,_24 and X, _55 (see exercise 2).
J.-M. Normand, H. J. Herrmann, and M. Hajjar detected slight biases in the
numbers generated by (7) when they did extensive high-precision Monte Carlo
studies requiring 10'! random numbers [J. Statistical Physics 52 (1988), 441-
446]; but larger values of k decreased the bad effects. Table 1 lists several useful
pairs (I,k) for which the sequence X, = (X,—i + X,—r) mod 2° has period
length 2°71(2% — 1). The case (I,k) = (30,127) should be large enough for
most applications, especially in combination with other randomness-enhancing
techniques that we will discuss later.

George Marsaglia [Comp. Sci. and Statistics: Symposium on the Interface
16 (1984), 3-10] has suggested replacing (7) by

Xn = (Xn—24 . Xn—55) mod m, n Z 55, (7,)

where m is a multiple of 4 and where Xy through X554 are odd, not all congruent
to 1 (modulo 4). Then the second-least significant bits have a period of 2%° — 1,
while the most significant bits are more thoroughly mixed than before since they
depend on all bits of X,,_24 and X, _s55 in an essential way. Exercise 31 shows
that the period length of sequence (7') is only slightly less than that of (7).

Lagged Fibonacci generators have been used successfully in many situations
since 1958, so it came as shock to discover in the 1990s that they actually fail
an extremely simple, non-contrived test for randomness (see exercise 3.3.2-31).
A workaround that avoids such problems by discarding appropriate elements of
the sequence is described near the end of this section.

Instead of considering purely additive or purely multiplicative sequences,
we can construct useful random number generators by taking general linear
combinations of X,,_1, ..., Xn—x for small k. In this case the best results
occur when the modulus m is a large prime; for example, m can be chosen to be
the largest prime number that fits in a single computer word (see Table 4.5.4-2).
When m = p is prime, the theory of finite fields tells us that it is possible to find
multipliers ay, ..., ax such that the sequence defined by

Xn= (aan—l + aan—k) mOdp (8)

has period length p* — 1; here Xy, ..., Xx_; may be chosen arbitrarily but not
all zero. (The special case k = 1 corresponds to a multiplicative congruential se-
quence with prime modulus, with which we are already familiar.) The constants

30 RANDOM NUMBERS 3.2.2

ai,...,ak in (8) have the desired property if and only if the polynomial
flz)=2* —az" 1 —- —ay (9)

is a “primitive polynomial modulo p,” that is, if and only if this polynomial
has a root that is a primitive element of the field with p* elements (see exercise
4.6.2-16).)

Of course, the mere fact that suitable constants ay, ..., ax exist giving a
period of length p* — 1 is not enough for practical purposes; we must be able to
find them, and we can’t simply try all p* possibilities, since p is on the order
of the computer’s word size. Fortunately there are exactly ¢(p* — 1)/k suitable
choices of (ay, ..., ax), so there is a fairly good chance of hitting one after making
a few random tries. But we also need a way to tell quickly whether or not (9)
is a primitive polynomial modulo p; it is certainly unthinkable to generate up to
p* — 1 elements of the sequence and wait for a repetition! Methods of testing
for primitivity modulo p are discussed by Alanen and Knuth in Sankhya A26
(1964), 305-328. The following criteria can be used: Let r = (p* — 1)/(p — 1).

i) (—=1)*"lax must be a primitive root modulo p. (See Section 3.2.1.2.)
ii) The polynomial " must be congruent to (—1)*~!az, modulo f(z) and p.
iii) The degree of 7/ mod f(z), using polynomial arithmetic modulo p, must
be positive, for each prime divisor q of r.

Efficient ways to compute the polynomial z™ mod f(z), using polynomial
arithmetic modulo a given prime p, are discussed in Section 4.6.2.

In order to carry out this test, we need to know the prime factorization of
r = (pF —1)/(p — 1), and this is the limiting factor in the calculation; r can
be factored in a reasonable amount of time when k£ = 2, 3, and perhaps 4, but
higher values of k are difficult to handle when p is large. Even k = 2 essentially
doubles the number of “significant random digits” over what is achievable with

=1, so larger values of k will rarely be necessary.

An adaptation of the spectral test (Section 3.3.4) can be used to rate the
sequence of numbers generated by (8); see exercise 3.3.4-24. The considerations
of that section show that we should not make the obvious choice of a; = +1 or
—1 when a primitive polynomial of that form exists; it is better to pick large,
essentially “random” values of ai, ..., ax that satisfy the conditions, and to verify
the choice by applying the spectral test. A significant amount of computation
is involved in finding a4, ..., ak, but all known evidence indicates that the result
will be a very satisfactory source of random numbers. We essentially achieve the
randomness of a linear congruential generator with k-tuple precision, using only
single precision operations.

The special case p = 2 is of independent interest. Sometimes a random
number generator is desired that merely produces a random sequence of bits—
zeros and ones — instead of fractions between zero and one. There is a simple way
to generate a highly random bit sequence on a binary computer, manipulating
k-bit words: Start with an arbitrary nonzero binary word X. To get the next
random bit of the sequence, do the following operations, shown in MIX’s language

3.2.2 OTHER METHODS 31

(see exercise 16):

LDA X (Assume that overflow is now “off.”)
ADD X Shift left one bit.

JNOV *+2 Jump if the high bit was originally zero. (10)
XOR A Otherwise adjust the number with “exclusive or.”
STA X I

The fourth instruction here is the “exclusive or” operation found on nearly all
binary computers (see exercise 2.5-28 and Section 7.1); it changes each bit
position of rA in which location A has a “1” bit. The value in location A is
the binary constant (aj...ag)2, where k¢ —a;zF~! — ... — q; is a primitive
polynomial modulo 2 as above. After the code (10) has been executed, the next
bit of the generated sequence may be taken as the least significant bit of word X.
Alternatively, we could consistently use the most significant bit of X, if the most

significant bit is more convenient.

1011
0101
1010
0111
1110
1111
1101
1001
0001
0010
0100

(1)8(1)(1) Fig. 1. Successive contents of the computer word X in the binary

0110 method, assuming that £ = 4 and CONTENTS (A) = (0011)s,.

1100
1011

For example, consider Fig. 1, which illustrates the sequence generated for
k = 4 and CONTENTS(A) = (0011)s. This is, of course, an unusually small value
for k. The right-hand column shows the sequence of bits of the sequence, namely
1101011110001001.. ., repeating in a period of length 2¥ —1 = 15. This sequence
is quite random, considering that it was generated with only four bits of memory;
to see this, consider the adjacent sets of four bits occurring in the period, namely
1101, 1010, 0101, 1011, 0111, 1111, 1110, 1100, 1000, 0001, 0010, 0100, 1001,
0011, 0110. In general, every possible adjacent set of k bits occurs exactly once
in the period, except the set of all zeros, since the period length is 2% — 1; thus,
adjacent sets of k bits are essentially independent. We shall see in Section 3.5
that this is a very strong criterion for randomness when k is, say, 30 or more.
Theoretical results illustrating the randomness of this sequence are given in an
article by R. C. Tausworthe, Math. Comp. 19 (1965), 201-209.

Primitive polynomials modulo 2 of degree < 168 have been tabulated by
W. Stahnke, Math. Comp. 27 (1973), 977-980. When k = 35, we may take

CONTENTS (A) = (00000000000000000000000000000000101)3,

but the considerations of exercises 18 and 3.3.4-24 imply that it would be better
to find “random” constants that define primitive polynomials modulo 2.

32 RANDOM NUMBERS 3.2.2

Caution: Several people have been trapped into believing that this random
bit-generation technique can be used to generate random whole-word fractions
(XoX1...Xk—1)2, (XeXgs1...-Xok—1)2, ---; but it is actually a poor source
of random fractions, even though the bits are individually quite random. Exer-
cise 18 explains why.

Mitchell and Moore’s additive generator (7) is essentially based on the
concept of primitive polynomials: The polynomial z% 4+ 224 4 1 is primitive,
and Table 1 is essentially a listing of certain primitive trinomials modulo 2.
A generator almost identical to that of Mitchell and Moore was independently
discovered in 1971 by T. G. Lewis and W. H. Payne [JACM 20 (1973), 456-468],
but using “exclusive or” instead of addition; this makes the period length exactly
255 _ 1. Each bit position in the sequence of Lewis and Payne runs through the
same periodic sequence, but has its own starting point. Experience has shown
that (7) gives better results.

We have now seen that sequences with 0 < X, < m and period mk — 1
can be constructed without great difficulty, when X, is a suitable function of
Xn_1,-..,Xn_r and when m is prime. The highest conceivable period for any
sequence defined by a relation of the form

Xn:f(Xn—l,-'-,Xn—k), OSXTL <m, (11)

is easily seen to be m*. M. H. Martin [Bull. Amer. Math. Soc. 40 (1934), 859-
864] was the first person to show that functions achieving this maximum period
are possible for all m and k. His method is easy to state (exercise 17) and
reasonably efficient to program (exercise 29), but it is unsuitable for random
number generation because it changes the value of X,y + --- + X, _§ very
slowly: All k-tuples occur, but not in a very random order. A better class of
functions f that yield the maximum period m* is considered in exercise 21.
The corresponding programs are, in general, not as efficient for random number
generation as other methods we have described, but they do give demonstrable
randomness when the period as a whole is considered.

Many other schemes have been proposed for random number generation.
The most interesting of these alternative methods may well be the inversive
congruential sequences suggested by Eichenauer and Lehn [Statistische Hefte 27
(1986), 315-326):

Xpi1 = (aX; '+ c)modp. (12)

Here p is prime, X, ranges over the set {0,1,..., p — 1, oo}, and inverses are
defined by 07! = oo, co™! = 0, otherwise X7'X = 1 (modulo p). Since
0 is always followed by oo and then by c in this sequence, we could simply
define 0~! = 0 for purposes of implementation; but the theory is cleaner and
easier to develop when 07! = oo. Efficient algorithms suitable for hardware
implementation are available for computing X ™! modulo p; see, for example,
exercise 4.5.2-39. Unfortunately, however, this operation is not in the repertoire
of most computers. Exercise 35 shows that many choices of a and c¢ yield the
maximum period length p + 1. Exercise 37 demonstrates the most important

3.2.2 OTHER METHODS 33

property: Inversive congruential sequences are completely free of the lattice
structure that is characteristic of linear congruential sequences.

Another important class of techniques deals with the combination of random
number generators. There will always be people who feel that the linear con-
gruential methods, additive methods, etc., are all too simple to give sufficiently
random sequences; and it may never be possible to prove that their skepticism
is unjustified —indeed, they may be right —so it is pretty useless to argue the
point. There are reasonably efficient ways to combine two sequences into a third
one that should be haphazard enough to satisfy all but the most hardened skeptic.

Suppose we have two sequences Xy, X, ... and Yy, Y7, ... of random numbers
between 0 and m — 1, preferably generated by two unrelated methods. Then we
can, for example, use one random sequence to permute the elements of another,
as suggested by M. D. MacLaren and G. Marsaglia [JACM 12 (1965), 83-89;
see also Marsaglia and Bray, CACM 11 (1968), 757-759]:

Algorithmm M (Randomizing by shuffling). Given methods for generating two
sequences (X,) and (Y,), this algorithm will successively output the terms of
a “considerably more random” sequence. We use an auxiliary table V[0], V1],
..., V[k — 1], where k is some number chosen for convenience, usually in the
neighborhood of 100. Initially, the V-table is filled with the first & values of the
X-sequence.

Ma1. [Generate X,Y.] Set X and Y equal to the next members of the sequences
X,) and (Y,), respectively.

{
M2. [Extract j.] Set j + |kY/m]|, where m is the modulus used in the sequence
(Y,); that is, 7 is a random value, 0 < j < k, determined by Y.

Ma3. [Exchange.] Output V[j] and then set V[j] «+ X. |

As an example, assume that Algorithm M is applied to the following two
sequences, with k = 64:

Xo = 5772156649, X,41 = (3141592653X,, + 2718281829) mod 2°°:

{1
Yy = 1781072418, Y1 = (2718281829Y,, + 3141592653) mod 23°. (13)

On intuitive grounds it appears safe to predict that the sequence obtained by
applying Algorithm M to (13) will satisfy virtually anyone’s requirements for
randomness in a computer-generated sequence, because the relationship between
nearby terms of the output has been almost entirely obliterated. Furthermore,
the time required to generate this sequence is only slightly more than twice as
long as it takes to generate the sequence (X,) alone.

Exercise 15 proves that the period length of Algorithm M’s output will be the
least common multiple of the period lengths of (X,,) and (Y},), in most situations
of practical interest. In particular, if we reject the value 0 when it occurs in the
Y-sequence, so that (Y;,) has period length 23° — 1, the numbers generated by
Algorithm M from (12) will have a period of length 270 — 235, [See J. Arthur
Greenwood, Comp. Sci. and Statistics: Symp. on the Interface 9 (1976), 222.]

34 RANDOM NUMBERS 3.2.2

However, there is an even better way to shuffle the elements of a sequence,
discovered by Carter Bays and S. D. Durham [ACM Trans. Math. Software 2
(1976), 59-64]. Their approach, although it appears to be superficially similar to
Algorithm M, can give surprisingly better performance even though it requires
only one input sequence (X,) instead of two:

Algorithm B (Randomizing by shuffling). Given a method for generating a
sequence {X,), this algorithm will successively output the terms of a “consider-
ably more random” sequence, using an auxiliary table V[0, V[1], ..., V[k — 1]
as in Algorithm M. Initially the V-table is filled with the first & values of the
X-sequence, and an auxiliary variable Y is set equal to the (k + 1)st value.

B1. [Extract j.] Set j « |kY/m], where m is the modulus used in the sequence
(X,); that is, j is a random value, 0 < j < k, determined by Y.

B2. [Exchange.] Set Y «+ V[j], output Y, and then set V'[5] to the next member
of the sequence (X,). |

The reader is urged to work exercises 3 and .5, in order to get a feeling for
the difference between Algorithms M and B.

On MIX we may implement Algorithm B by taking k equal to the byte size,
obtaining the following simple generation scheme once the initialization has been
done:

LD6 Y(1:1) j « high-order byte of Y.

LDA X rA « X,.

INCA 1 (see exercise 3.2.1.1-1)

MUL A rX Xn+1.

STX X “n—n+1." (14)
LbA V,6

STA Y Y « V[j].

STX V,6 V[j] < Xn. |

The output appears in register A. Notice that Algorithm B requires only
four instructions of overhead per generated number.

F. Gebhardt [Math. Comp. 21 (1967), 708-709] found that satisfactory
random sequences were produced by Algorithm M even when it was applied
to a sequence as nonrandom as the Fibonacci sequence, with X,, = F5, mod m
and Y,, = F5,+; mod m. However, it is also possible for Algorithm M to produce
a sequence less random than the original sequences, if (X,) and (Y,,) are strongly
related, as shown in exercise 3. Such problems do not seem to arise with
Algorithm B. Since Algorithm B won't make a sequence any less random,
and since it enhances the randomness with very little extra cost, it can be
recommended for use in combination with any other random number generator.

Shuffling methods have an inherent defect, however: They change only
the order of the generated numbers, not the numbers themselves. For most
purposes the order is the critical thing, but if a random number generator fails
the “birthday spacings” test discussed in Section 3.3.2 or the random-walk test of
exercise 3.3.2-31 it will not fare much better after it has been shuffled. Shuffling

3.2.2 OTHER METHODS 35

also has the comparative disadvantage that it does not allow us to start at a
given place in the period, or to skip quickly from X, to X, x for large k.

Many people have therefore suggested combining two sequences (X,) and
(Y,,) in a much simpler way, which avoids both of the defects of shuffling: We
can use a combination like

Zn =(Xn —Y,) modm (15)

when 0 < X,, <mand 0 <Y, <m’ <m. Exercises 13 and 14 discuss the period
length of such sequences; exercise 3.3.2-23 shows that (15) tends to enhance the
randomness when the seeds Xy and Y, are chosen independently.

An even simpler way to remove the structural biases of arithmetically gen-
erated numbers was proposed already in the early days of computing by J. Todd
and O. Taussky Todd [Symp. on Monte Carlo Methods (Wiley, 1956), 15-28]:
We can just throw away some numbers of the sequence. Their suggestion was of
little use with linear congruential generators, but it has become quite appropriate
nowadays in connection with generators like (7) that have extremely long periods,
because we have plenty of numbers to discard.

The simplest way to improve the randomness of (7) is to use only every jth
term, for some small j. But a better scheme, which may be even simpler, is to use
(7) to produce, say, 500 random numbers in an array and to use only the first 55 of
them. After those 55 have been consumed, we generate 500 more in the same way.
This idea was proposed by Martin Liischer [Computer Physics Communications
79 (1994), 100-110], motivated by the theory of chaos in dynamical systems: We
can regard (7) as a process that maps 55 values (X,—s5,..., Xn—1) into another
vector of 55 values (X, +1—55,..., Xnt+t—1). Suppose we generate ¢t > 55 values
and use the first 55 of them. Then if ¢ = 55 the new vector of values is rather close
to the old; but if ¢ & 500 there is almost no correlation between old and new (see
exercise 33). For the analogous case of add-with-carry or subtract-with-borrow
generators (exercise 3.2.1.1-14), the vectors are in fact known to be the radix-b
representation of numbers in a linear congruential generator, and the relevant
multiplier when we generate ¢t numbers at a time is b~*. Liischer’s theory for this
case can therefore be confirmed with the spectral test of Section 3.3.4. A portable
random number generator, based on a lagged Fibonacci sequence enhanced with
Lischer’s approach, appears in Section 3.6, together with further commentary.

Random number generators typically do only a few multiplications and/or
additions to get from one element of the sequence to the next. When such
generators are combined as suggested above, common sense tells us that the
resulting sequences ought to be indistinguishable from truly random numbers.
But intuitive hunches are no substitute for rigorous mathematical proof. If we are
willing to do more work—say 1000 or 1000000 times as much— we can obtain
sequences for which substantially better theoretical guarantees of randomness
are available.

For example, consider the sequence of bits B;, Bs, ... generated by

Xni1 = X2mod M, B, = X, mod 2, (16)

36 RANDOM NUMBERS 3.2.2

[Blum, Blum, and Shub, SICOMP 15 (1986), 364-383], or the more elaborate
sequence generated by

Xp11 = X2mod M, B, =X, -Zmod2, (17)

where the dot product of r-bit binary numbers (z,_1...Z)2 and (z,_1...20)2
is ,_12,—1 + - -+ + To2o; here Z is an r-bit “mask,” and r is the number of bits
in M. The modulus M should be the product of two large primes of the form
4k + 3, and the starting value X, should be relatively prime to M. Rule (17),
suggested by Leonid Levin, is a take-off on von Neumann'’s original middle-square
method; we will call it the muddle-square method, because it jumbles the bits of
the squares. Rule (16) is, of course, the special case Z = 1.

Section 3.5F contains a proof that, when Xy, Z, and M are chosen at
random, the sequences generated by (16) and (17) pass all statistical tests for
randomness that require no more work than factoring large numbers. In other
words, the bits cannot be distinguished from truly random numbers by any
computation lasting less than 100 years on today’s fastest computers, when M
is suitably large, unless it is possible to find the factors of a nontrivial fraction of
such numbers much more rapidly than is presently known. Formula (16) is
simpler than (17), but the modulus M in (16) has to be somewhat larger than
it does in (17) if we want to achieve the same statistical guarantees.

EXERCISES

1. [12] In practice, we form random numbers using X, 1 = (aX, +c¢) mod m, where
the X's are integers, afterwards treating them as the fractions U, = Xn/m. The
recurrence relation for U, is actually

Un+1 = (aUpn + ¢/m) mod 1.

Discuss the generation of random sequences using this relation directly, by making use
of floating point arithmetic on the computer.

2. [M20] A good source of random numbers will have X,_1 < Xn41 < Xn about
one-sixth of the time, since each of the six possible relative orders of X,_1, X,, and
Xn41 should be equally probable. However, show that the ordering above never occurs
if the Fibonacci sequence (5) is used.

3. [23] (a) What sequence comes from Algorithm M if
Xo=0, Xns1=(5Xn+3)mod8, Yo=0, Ynp1 = (5Ys+1)modS8,

and k = 4?7 (Note that the potency is two, so (X,) and (Y5) aren’t extremely random
to start with.) (b) What happens if Algorithm B is applied to this same sequence (X,)
with k = 47

4. [00] Why is the most significant byte used in the first line of program (14), instead
of some other byte?

5. [20] Discuss using X, = Y, in Algorithm M, in order to improve the speed of
generation. Is the result analogous to Algorithm B?

6. [10] In the binary method (10), the text states that the low-order bit of X is
random, if the code is performed repeatedly. Why isn’t the entire word X random?

3.2.2 OTHER METHODS 37

7. [20] Show that a complete sequence of length 2° (that is, a sequence in which
each of the 2° possible sets of e adjacent bits occurs just once in the period) may be
obtained if program (10) is changed to the following:

LbA X LDA A JNOV *+3 XOR A
JANZ *+2 ADD X JAZ 42 STA X |

8. [M39] Prove that the quadratic congruential sequence (3) has period length m if
and only if the following conditions are satisfied:

i) c is relatively prime to m;
ii) d and a — 1 are both multiples of p, for all odd primes p dividing m;
iii) d is even, and d = a — 1 (modulo 4), if m is a multiple of 4;
d = a — 1 (modulo 2), if m is a multiple of 2;
iv) d # 3c (modulo 9), if m is a multiple of 9.

[Hint: The sequence defined by Xo =0, Xn41 = dX?2 +aX, +c modulo m has a period
of length m only if the same sequence modulo any divisor r of m has period length r.]

9. [M24] (R. R. Coveyou.) Use the result of exercise 8 to prove that the modified
middle-square method (4) has a period of length 2°72.

10. [M29] Show that if Xo and X, are not both even and if m = 2°, the period of
the Fibonacci sequence (5) is 3-2°7 .

11. [M36] The purpose of this exercise is to analyze certain properties of integer
sequences satisfying the recurrence relation

Xn:alxn—l+"'+aan—ky nZ k.

If we can calculate the period length of this sequence modulo m = p®, when p is prime,
the period length with respect to an arbitrary modulus m is the least common multiple
of the period lengths for the prime power factors of m.

a) If f(z), a(z), b(2) are polynomials with integer coefficients, let us write a(z) = b(2)
(modulo f(z) and m) if a(z) = b(z) + f(2)u(z) +mu(z) for some polynomials u(z)
and v(z) with integer coefficients. Prove that the following statement holds when
£(0) = 1 and p° > 2: If 2* = 1 (modulo f(2) and p°) and 2* # 1 (modulo
F(z) and p°*1), then zP* = 1 (modulo f(z) and p°™!) and 2P* # 1 (modulo f(2)
and p°t?).

b) Let f(z) =1—a1z—---— axz”, and let

G(z) =1/f(2) = Ao + A1z + A2 + -+ .

Let A(m) denote the period length of (A, mod m). Prove that A(m) is the smallest
positive integer A such that z* = 1 (modulo f(z) and m).

¢) Given that p is prime, p® > 2, and A(p®) # A(p®™!), prove that A(p°*t") = p"A(p®)
for all 7 > 0. (Thus, to find the period length of the sequence (A, mod 2°), we
can compute A(4), A(8), A(16), ... until we find the smallest e > 3 such that
A(2°) # A(4); then the period length is determined mod 2° for all e. Exercise
4.6.3-26 explains how to calculate X, for large n in O(logn) operations.)

d) Show that any sequence of integers satisfying the recurrence stated at the begin-
ning of this exercise has the generating function g(z)/f(z), for some polynomial
g(z) with integer coefficients.

e) Given that the polynomials f(z) and g(z) in part (d) are relatively prime modulo p
(see Section 4.6.1), prove that the sequence (X, mod p®) has exactly the same

38 RANDOM NUMBERS 3.2.2

period length as the special sequence (A, mod p®) in (b). (No longer period could
be obtained by any choice of Xo,...,Xk—1, since the general sequence is a linear
combination of “shifts” of the special sequence.) [Hint: By exercise 4.6.2-22
(Hensel’s lemma), there exist polynomials such that a(z)f(z) + b(2)g(z) = 1
(modulo p®).]

12. [M28] Find integers Xoy X1, a, b, and c such that the sequence
Xn+l = (aXn + bXn—l + C) mOd 26, n Z 1,

has the longest period length of all sequences of this type. [Hint: It follows that
Xpt2 = ((@+1)Xn41 + (b — a)Xn — bX,_1) mod 2°; see exercise 11(c).]

13. [M20] Let (X,) and (Y.) be sequences of integers mod m with periods of lengths
A1 and)g, and combine them by letting Z, = (X, + Y,) mod m. Show that if A
and A, are relatively prime, the sequence (Z,) has a period of length A1 .

14. [M24] Let Xn, Yn, Zn, A1, A2 be as in the previous exercise. Suppose that the
prime factorization of \; is 2°23°35° ..., and similarly suppose that Az = 2f23fagfs .
Let g, = (max(ep, fp) if ep # fp, otherwise 0), and let Ao = 2923725%® Show that
the period length)\ of the sequence (Z,) is a multiple of Ao, and it is a divisor of
A =lcm(A;, A2). In particular, N = X if (e, # fp or e, = fp = 0) for each prime p.
15. [M27] Let the sequence (X,) in Algorithm M have period length A1, and assume
that all elements of its period are distinct. Let g, = min{r | » > 0 and |kYn _/m| =
|kY,/m|}. Assume that gn < $A1 for all n > no, and that the sequence (gn) has
period length X2. Let A be the least common multiple of A1 and A2. Prove that the
output sequence (Z,) produced by Algorithm M has a period of length A.

16. [M28] Let CONTENTS(A) in method (10) be (a1az ... ak)2 in binary notation. Show

that the generated sequence of low-order bits Xo, X1, ... satisfies the relation
Xn=(a1Xn-1+a2Xn_2+ -+ arXn_) mod?2.

[This may be regarded as another way to define the sequence, although the connection

between this relation and the efficient code (10) is not apparent at first glance!]

17. [M33]) (M. H. Martin, 1934.) Let m and k be positive integers, and let X, =

Xo =---= X, =0. For all n > 0, set X,+r equal to the largest nonnegative value
y < m such that the k-tuple (Xn41,...,Xntk-1,y) has not already occurred in the
sequence; in other words, (Xn+1,---,Xn+k—1,y) must differ from (X,i1,..., Xrtk)

for 0 < r < n. In this way, each possible k-tuple will occur at most once in the
sequence. Eventually the process will terminate, when we reach a value of n such that
(Xn+1,-- -y Xntk—1,y) has already occurred in the sequence for all nonnegative y < m.
For example, if m = k = 3 the sequence is 00022212202112102012001110100, and the
process terminates at this point. (a) Prove that when the sequence terminates, we have
Xpn41 = -+ = Xnsk—1 = 0. (b) Prove that every k-tuple (a1,as,...,ax) of elements
with 0 < a; < m occurs in the sequence; hence the sequence terminates when n = m*.
[Hint: Prove that the k-tuple (ai1,...,as,0,...,0) appears, when a, # 0, by induction
on s.] Note that if we now define f(Xn, ..., Xntk—1) = Xnqx for 1 <n < mF, setting
X k4, = 0, we obtain a function of maximum possible period.

18. [M22] Let (X,) be the sequence of bits generated by method (10), with k = 35
and CONTENTS(A) = (OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO101)2. Let U, be the binary

fraction (.XnkXnk+1---Xnk+k—1)2; show that this sequence (Un) fails the serial test
on pairs (Section 3.3.2B) when d = 8.

3.2.2 OTHER METHODS 39

19. [M41] For each prime p specified in the first column of Table 2 in Section 4.5.4,
find suitable constants a; and as as suggested in the text, such that the period length
of (8), when k = 2, is p* — 1. (See Eq. 3.3.4~(39) for an example.)

20. [M40] Calculate constants suitable for use as CONTENTS(4) in method (10), having
approximately the same number of zeros as ones, for 2 < k < 64.

21. [M35] (D. Rees.) The text explains how to find functions f such that the sequence
(11) has period length m* — 1, provided that m is prime and Xo, ..., Xx_1 are not all
zero. Show that such functions can be modified to obtain sequences of type (11) with
period length m*, for all integers m. [Hints: Consider Lemma 3.2.1.2Q, the trick of
exercise 7, and sequences such as (pXon + Xont1):]

22. [M24] The text restricts discussion of the extended linear sequences (8) to the
case that m is prime. Prove that reasonably long periods can also be obtained when m
is “squarefree,” that is, the product of distinct primes. (Examination of Table 3.2.1.1-1
shows that m = w =+ 1 often satisfies this hypothesis; many of the results of the text
can therefore be carried over to that case, which is somewhat more convenient for
calculation.)

23. [20] Discuss the sequence defined by X, = (Xn_55 — Xn—24) mod m as an alter-
native to (7).

24. [M20] Let 0 < I < k. Prove that the sequence of bits defined by the recurrence
X, = (Xn—k+1 + Xn—r) mod 2 has period length 2% — 1 whenever the sequence defined
by Y, = (Yn—i + Yn_«) mod 2 does.

25. [26] Discuss the alternative to Program A that changes all 55 entries of the ¥’
table every 55th time a random number is required.

26. [M48] (J.F.Reiser.) Let p be prime and let k be a positive integer. Given integers
ai,...,ar and 1,...,Tk, let Ao be the period of the sequence (Xn) generated by the
recurrence

X, =zomodp®, 0<n<k; Xn=(a1Xn1+ +axXn_)modp®, n>k

and let N, be the number of Os that occur in the period (the number of indices j such
that po < j < fa + Ao and X; = 0). Prove or disprove the following conjecture:
There exists a constant ¢ (depending possibly on p and k and ay,...,ax) such that
N, < cp®*=2/(k=1) for all @ and all 4, ..., Tk.

[Notes: Reiser has proved that if the recurrence has maximum period length mod p
(that is, if A} = p®—1), and if the conjecture holds, then the k-dimensional discrepancy
of (X,) will be O(afp~®/*"1)} as o — oo; thus an additive generator like (7) would
be well distributed in 55 dimensions, when m = 2° and the entire period is considered.
(See Section 3.3.4 for the definition of discrepancy in k dimensions.) The conjecture
is a very weak condition, for if (X,) takes on each value about equally often and if
Ao = p* 1(p® — 1), the quantity No ~ (p* — 1)/p does not grow at all as « increases.
Reiser has verified the conjecture for £ = 3. On the other hand he has shown that it
is possible to find unusually bad starting values z1, ...,z (depending on «) so that
Nag > p%, provided that Ae = p®~'(p* — 1) and k > 3 and « is sufficiently large.]

27. [M30] Suppose Algorithm B is being applied to a sequence (X,) whose period
length is A, where A > k. Show that for fixed k and all sufficiently large A, the output
of the sequence will eventually be periodic with the same period length A, unless (Xn)
isn’t very random to start with. [Hint: Find a pattern of consecutive values of | kX, /m|
that causes Algorithm B to “synchronize” its subsequent behavior.]

40 RANDOM NUMBERS 3.2.2

28. [40] (A. G. Waterman.) Experiment with linear congruential sequences with m
the square or cube of the computer word size, while a and c are single-precision numbers.

29. [40] Find a good way to compute the function f(zi,...,zx) defined by Martin’s

sequence in exercise 17, given only the k-tuple (z1,...,Zk).
30. [M37] (R.P.Brent.) Let f(x) = 2" —a12""' —- .- — a) be a primitive polynomial
modulo 2, and suppose that X, ..., Xx—1 are integers not all even.

a) Prove that the period of the recurrence X, = (a1 Xn—1 + - + ax X, _x) mod 2°
is 2°71(2F — 1) for all e > 1 if and only if f(z)® + f(—x)® # 2f(2?) and f(z)® +
F(—z)* # 2(—1)*f(—2?) (modulo 8). [Hint: We have z2* = —z (modulo 4 and
f(z)) if and only if f(z)? + f(—=)* = 2f(z*) (modulo 8).]

b) Prove that this condition always holds when the polynomial f(z) = "+l +1is
primitive modulo 2 and k > 2.

31. [M30] (G. Marsaglia.) What is the period length of the sequence (7') when m =
2¢ > 8?7 Assume that Xo, ..., Xs4 are not all = &1 (modulo 8).

32. [M21] What recurrences are satisfied by the elements of the subsequences (X2n)
and <X3n>, when Xn = (Xn_.24 + Xn-—55) mod m7

33- [M23] (a) Let gn(z) = Xn+30 +Xn+29z+‘ ‘ '+an30+Xn+54z3l +' : '+Xn+3lz54,
where the X’s satisfy the lagged Fibonacci recurrence (7). Find a simple relation
between gn(z) and gn4:(2). (b) Express Xsoo in terms of Xo, ..., Xs4.

34. [M25] Prove that the inversive congruential sequence (12) has period p+ 1 if and
only if the polynomial f(z) = z®—cx —a has the following two properties: (i) z?*' mod
f(z) is a nonzero constant, when computed with polynomial arithmetic modulo p;
(ii) P/ mod f(z) has degree 1 for every prime g that divides p+1. [Hint: Consider

powers of the matrix (0 1)/]

35. [HM35] How many pairs (a,c) satisfy the conditions of exercise 34?
36. [M25] Prove that the inversive congruential sequence Xn11 = (aX," +¢) mod 2°,
Xo =1, e > 3, has period length 2°”! whenever amod4 = 1 and cmod 4 = 2.

37. [HM32] Let p be prime and assume that Xn41 = (aX,' + ¢) mod p defines an
inversive congruential sequence of period p+ 1. Also let 0 < b1 < --- < by < p, and
consider the set

V:{(X"+51?Xn+bz?-'-,Xn+bd) | 0 <n Sp and Xn+bj ?é oo for 1 S]S d}

This set contains p + 1 — d vectors, any d of which lie in some (d — 1)-dimensional
hyperplane H = {(v1,...,vq) | r1v1+--- +74va = 1o (modulo p)}, where (r1,...,74) &
(0,...,0). Prove that no d + 1 vectors of V' lie in the same hyperplane.

3.3 STATISTICAL TESTS 41

3.3. STATISTICAL TESTS

OUR MAIN PURPOSE is to obtain sequences that behave as if they are random. So
far we have seen how to make the period of a sequence so long that for practical
purposes it never will repeat; this is an important criterion, but it by no means
guarantees that the sequence will be useful in applications. How then are we to
decide whether a sequence is sufficiently random?

If we were to give some randomly chosen man a pencil and paper and ask him
to write down 100 random decimal digits, chances are very slim that he would
produce a satisfactory result. People tend to avoid things that seem nonrandom,
such as pairs of equal adjacent digits (although about one out of every 10 digits
should equal its predecessor). And if we would show that same man a table of
truly random digits, he would quite probably tell us they are not random at all;
his eye would spot certain apparent regularities.

According to Dr. I J. Matrix (as quoted by Martin Gardner in Scientific
American, January, 1965), “Mathematicians consider the decimal expansion
of = a random series, but to a modern numerologist it is rich with remarkable
patterns.” Dr. Matrix has pointed out, for example, that the first repeated two-
digit number in 7’s expansion is 26, and its second appearance comes in the
middle of a curious repetition pattern:

A~ A
3.14159265358979323846264338327950 (1)
Yy

After listing a dozen or so further properties of these digits, he observed that =,
when correctly interpreted, conveys the entire history of the human race!

We all notice patterns in our telephone numbers, license numbers, etc., as
aids to memory. The point of these remarks is that we cannot be trusted to judge
by ourselves whether a sequence of numbers is random or not. Some unbiased
mechanical tests must be applied. .

The theory of statistics provides us with some quantitative measures for
randomness. There is literally no end to the number of tests that can be
conceived; we will discuss the tests that have proved to be most useful, most
instructive, and most readily adapted to computer calculation.

If a sequence behaves randomly with respect to tests 11, T3, ..., Tn, we
cannot be sure in general that it will not be a miserable failure when it 1s
subjected to a further test T,,+,. Yet each test gives us more and more confidence
in the randomness of the sequence. In practice, we apply about half a dozen
different kinds of statistical tests to a sequence, and if it passes them satisfactorily
we consider it to be random —it is then presumed innocent until proven guilty.

Every sequence that is to be used extensively should be tested carefully, so
the following sections explain how to administer the tests in an appropriate way.
Two kinds of tests are distinguished: empirical tests, for which the computer
manipulates groups of numbers of the sequence and evaluates certain statistics;
and theoretical tests, for which we establish characteristics of the sequence by

42 RANDOM NUMBERS 3.3

using number-theoretic methods based on the recurrence rule used to form the
sequence.

If the evidence doesn’t come out as desired, the reader may wish to try the
techniques in How to Lie With Statistics by Darrell Huff (Norton, 1954).

3.3.1. General Test Procedures for Studying Random Data

A. “Chi-square” tests. The chi-square test (x? test) is perhaps the best
known of all statistical tests, and it is a basic method that is used in connection
with many other tests. Before considering the idea in general, let us consider a
particular example of the chi-square test as it might be applied to dice throwing.
Using two “true” dice (each of which, independently, is assumed to yield the
values 1, 2, 3, 4, 5, or 6 with equal probability), the following table gives the
probability of obtaining a given total, s, on a single throw:

valueofs= 2 3 4 5 6 7 8 9 10 11 12 ()
. 1
probability, ps= 55 {5 15 5 3 § 3% 5 13 W

For example, a value of 4 can be thrown in three ways: 1+ 3, 2+ 2, 3 + 1; this
constitutes §3€ = Tli = py4 of the 36 possible outcomes.

If we throw the dice n times, we should obtain the value s approximately
nps times on the average. For example, in 144 throws we should get the value 4
about 12 times. The following table shows what results were actually obtained

in a particular sequence of 144 throws of the dice:

valueofs=2 3 4 5 6 7 8 9 10 11 12
observed number, Y, = 2 4 10 12 22 29 21 15 14 9 6 (2)
expected number, np, = 4 8 12 16 20 24 20 16 12 8 4

Notice that the observed number was different from the expected number in all
cases; in fact, random throws of the dice will hardly ever come out with ezactly
the right frequencies. There are 3614 possible sequences of 144 throws, all of
which are equally likely. One of these sequences consists of all 2s (“snake eyes”),
and anyone throwing 144 snake eyes in a row would be convinced that the dice
were loaded. Yet the sequence of all 2s is just as probable as any other particular
sequence if we specify the outcome of each throw of each die.

In view of this, how can we test whether or not a given pair of dice is loaded?
The answer is that we can’t make a definite yes-no statement, but we can give
a probabilistic answer. We can say how probable or improbable certain types of
events are.

A fairly natural way to proceed in the example above is to consider the
squares of the differences between the observed numbers Y; and the expected
numbers np,. We can add these together, obtaining

V= (Y —nps)® + (Yz3 —np3)® + - + (Y12 — np12)2. (3)

A bad set of dice should result in a relatively high value of V; and for any given
value of V' we can ask, “What is the probability that V is this high, using true

3.3.1 GENERAL TEST PROCEDURES 43

dice?” If this probability is very small, say 1—36, we would know that only about
one time in 100 would true dice give results so far away from the expected num-
bers, and we would have definite grounds for suspicion. (Remember, however,
that even good dice would give such a high value of V about one time in a
hundred, so a cautious person would repeat the experiment to see if the high
value of V is repeated.)

The statistic V in (3) gives equal weight to (Y7 — np7)? and (Yz — np2)?,
although (Y7 — np7)? is likely to be a good deal higher than (Ys —np2)? since 7s
occur about six times as often as 2s. It turns out that the “right” statistic, at
least one that has proved to be most important, will give (Y7 — np7)? only % as
much weight as (Y2 — np;)?, and we should change (3) to the following formula:

Y, — nps)? Y3 — np3)? Yi2 —n 2
V:(z p2) +(3 P3) _*__.__*_(12 plz). (4)
np2 nps npi2
This is called the “chi-square” statistic of the observed quantities Y3,..., Y12 in

the dice-throwing experiment. For the data in (2), we find that

(2—4)2+(4—8)2+__'+(9—8)2 +(6—4)2 T

V= "y 2 3 YERITY (5)

The important question now is, of course, “Does 7275 constitute an improbably
high value for V to assume?” Before answering this question, let us consider the
general application of the chi-square method.

In general, suppose that every observation can fall into one of k categories.
We take n independent observations; this means that the outcome of one obser-
vation has absolutely no effect on the outcome of any of the others. Let ps be the
probability that each observation falls into category s, and let Y be the number
of observations that actually do fall into category s. We form the statistic

k
V = Z - nps (6)

In our example above, there are eleven possible outcomes of each throw of the
dice, so k = 11. (Eq. (6) is a slight change of notation from Eq. (4), since we
are numbering the possibilities from 1 to k instead of from 2 to 12.)
By expanding (Y; — nps)? = Y2 — 2np,Y, + n?p? in (6), and using the facts
that
Yi+Yo+ - +Y, =n,

pr+pet - +pr =1,

(7)

we arrive at the formula
k
1 Y2
=—§:<—S)—n, (8)
n —1 Ds

which often makes the computation of V somewhat easier.

44 RANDOM NUMBERS 3.3.1

Table 1
SELECTED PERCENTAGE POINTS OF THE CHI-SQUARE DISTRIBUTION

p=1% | p=5% {p=25% | p=50% |p=75% | p=95% | p = 99%

v=1 | 0.00016 | 0.00393 | 0.1015 | 0.4549 | 1.323 3.841 6.635
v= 0.02010 | 0.1026 | 0.5754 | 1.386 2.773 5.991 9.210
v= 0.1148 | 0.3518 | 1.213 2.366 4.108 7.815 | 11.34
v=4 | 02971 | 07107 | 1.923 3.357 5.385 9.488 | 13.28
v=5 | 05543 | 1.1455 | 2.675 4.351 6.626 | 11.07 15.09
v=6 | 08721 | 1.635 3.455 5.348 7.841 | 12.59 16.81
v=7 | 1.239 2.167 4.255 6.346 9.037 | 14.07 18.48
v=8 | 1.646 2.733 5.071 7.344 | 10.22 15.51 20.09
v=9 | 2.088 3.325 5.899 8.343 | 11.39 16.92 21.67
v=10 | 2.558 3.940 6.737 | 9.342 | 12.55 18.31 23.21
v=11 | 3.053 4.575 7.584 | 10.34 13.70 19.68 24.72
v=12 | 3.571 5.226 8.438 | 11.34 14.85 21.03 26.22
v=15 | 5.229 7.261 | 11.04 14.34 18.25 25.00 30.58
v=20 | 8260 |10.85 15.45 19.34 23.83 31.41 37.57
v =30 |14.95 18.49 24.48 29.34 34.80 43.77 | 50.89
v =50 |29.71 34.76 42.94 49.33 56.33 67.50 76.15
v > 30 v+v2z, + 222 - 2+ 0 (/)

T, = | —233 | —164 | —.674 0.00 0.674 1.64 2.33

(For further values, see Handbook of Mathematical Functions, edited by M. Abramowitz and
I. A. Stegun (Washington, D.C.: U.S. Government Printing Office, 1964), Table 26.8. See also
Eq. (22) and exercise 16.)

Now we turn to the important question, “What constitutes a reasonable
value of V7”7 This is found by referring to a table such as Table 1, which gives val-
ues of “the chi-square distribution with v degrees of freedom” for various values
of v. The line of the table with v = k—1 is to be used; the number of “degrees of
freedom” is k—1, one less than the number of categories. (Intuitively, this means
that Y7,Y5,..., Y, are not completely independent, since Eq. (7) shows that Yj
can be computed if Y}, ..., Y;_, are known; hence, kK — 1 degrees of freedom are
present. This argument is not rigorous, but the theory below justifies it.)

If the table entry in row v under column p is z, it means, “The quantity V'
in Eq. (8) will be less than or equal to with approximate probability p, if n
is large enough.” For example, the 95 percent entry in row 10 is 18.31; we will
have V > 18.31 only about 5 percent of the time.

3.3.1 GENERAL TEST PROCEDURES 45

Let us assume that our dice-throwing experiment has been simulated on a
computer using some sequence of supposedly random numbers, with the following
results:

valueof s=2 3 4 5 6 7 8 9 10 11 12
Experiment 1, Y, =4 10 10 13 20 18 18 11 13 14 13 (9)
Experiment 2, Y, =3 7 11 15 19 24 21 17 13 9 5

We can compute the chi-square statistic in the first case, getting the value V; =
29152—90, and in the second case we get Vo = 1%. Referring to the table entries for
10 degrees of freedom, we see that Vi is much too high; V will be greater than
23.21 only about one percent of the time! (By using more extensive tables, we
find in fact that V' will be as high as V; only 0.1 percent of the time.) Therefore
Experiment 1 represents a significant departure from random behavior.

On the other hand, V5 is quite low, since the observed values Y; in Exper-
iment 2 are quite close to the expected values np, in (2). The chi-square table
tells us, in fact, that V5 is much too low: The observed values are so close to the
expected values, we cannot consider the result to be random! (Indeed, reference
to other tables shows that such a low value of V' occurs only 0.03 percent of
the time when there are 10 degrees of freedom.) Finally, the value V = 747—8
computed in (5) can also be checked with Table 1. It falls between the entries
for 25 percent and 50 percent, so we cannot consider it to be significantly high
or significantly low; thus the observations in (2) are satisfactorily random with
respect to this test.

It is somewhat remarkable that the same table entries are used no matter
what the value of n is, and no matter what the probabilities p; are. Only the
number v = k — 1 affects the results. In actual fact, however, the table entries
are not exactly correct: The chi-square distribution is an approximation that is
valid only for large enough values of n. How large should n be? A common rule
of thumb is to take n large enough so that each of the expected values nps is
five or more; preferably, however, take n much larger than this, to get a more
powerful test. In our examples above we took n = 144, so npy was only 4,
violating the stated rule of thumb. This was done only because the author
tired of throwing the dice; it makes the entries in Table 1 less accurate for our
application. Experiments run on a computer, with n = 1000, or 10000, or even
100000, would be much better than this. We could also combine the data for
s = 2 and s = 12; then the test would have only nine degrees of freedom but the
chi-square approximation would be more accurate.

We can get an idea of how crude an approximation is involved by considering
the case when there are only two categories, having probabilities p, and ps.
Suppose p; = % and ps = 2—. According to the stated rule of thumb, we should
have n > 20 to have a satisfactory approximation, so let’s check that out. When
n = 20, the possible values of V are (Y1 —5)%5 + (5 — ¥1)%/15 = <tr? for
-5 < r < 15; we wish to know how well the row v = 1 of Table 1 describes
the distribution of V. The chi-square distribution varies continuously, while the
actual distribution of V has rather big jumps, so we need some convention for

46 RANDOM NUMBERS 3.3.1

representing the exact distribution. If the distinct possible outcomes of the
experiment lead to the values Vo £ Vi £ .- <V, with respective proba-
bilities my, 71, ..., Tn, suppose that a given percentage p falls in the range
g+ o+ mi—1 < p<mo+--+ 71 + 7. We would like to represent p by a
“percentage point” z such that V' is less than z with probability < p and V is
greater than z with probability < 1—p. It is not difficult to see that the only such
number is ¢ = V. In our example for n = 20 and v = 1, it turns out that the
percentage points of the exact distribution, corresponding to the approximations
in Table 1 for p = 1%, 5%, 25%, 50%, 75%, 95%, and 99%, respectively, are

0, 0, .27, .27, 1.07, 427, 6.67

(to two decimal places). For example, the percentage point for p = 95% is 4.27,
while Table 1 gives the estimate 3.841. The latter value is too low; it tells us
(incorrectly) to reject the value V' = 4.27 at the 95% level, while in fact the
probability that V > 4.27 is more than 6.5%. When n = 21, the situation
changes slightly because the expected values np; = 5.25 and nps = 15.75 can
never be obtained exactly; the percentage points for n = 21 are

02, .02, .14, .40, 1.29, 3.57, 5.73.

We would expect Table 1 to be a better approximation when n = 50, but
the corresponding tableau actually turns out to be further from Table 1 in some
respects than it was for n = 20:

.03, .03, .03, .67, 1.31, 3.23, 6.
Here are the values when n = 300:
0, 0, .07, .44, 1.44, 4, 6.42.

Even in this case, when np, is > 75 in each category, the entries in Table 1 are
good to only about one significant digit.

The proper choice of n is somewhat obscure. If the dice are actually biased,
the fact will be detected as n gets larger and larger. (See exercise 12.) But large
values of n will tend to smooth out locally nonrandom behavior, when blocks of
numbers with a strong bias are followed by blocks of numbers with the opposite
bias. Locally nonrandom behavior is not an issue when actual dice are rolled,
since the same dice are used throughout the test, but a sequence of numbers
generated by computer might very well display such anomalies. Perhaps a chi-
square test should be made for several different values of n. At any rate, n should
always be rather large.

We can summarize the chi-square test as follows. A fairly large number, n, of
independent observations is made. (It is important to avoid using the chi-square
method unless the observations are independent. See, for example, exercise 10,
which considers the case when half of the observations depend on the other
half.) We count the number of observations falling into each of k categories and
compute the quantity V given in Eqgs. (6) and (8). Then V is compared with the
numbers in Table 1, with v = k — 1. If V is less than the 1% entry or greater
than the 99% entry, we reject the numbers as not sufficiently random. If V lies

3.3.1 GENERAL TEST PROCEDURES 47

A B C D E F
- O | 00| ee
o O e alee
ol | | Q0 O ®
O 00
o] | | &0
Range of V Indication Code
0-1 percent, 99-100 percent Reject .
1-5 percent, 95-99 percent Suspect 0
5-10 percent, 90-95 percent Almost suspect O

Fig. 2. Indications of “significant” deviations in 90 chi-square tests (see also Fig. 5).

between the 1% and 5% entries or between the 95% and 99% entries, the numbers
are “suspect”; if (by interpolation in the table) V lies between the 5% and 10%
entries, or the 90% and 95% entries, the numbers might be “almost suspect.”
The chi-square test is often done at least three times on different sets of data,
and if at least two of the three results are suspect the numbers are regarded as
not sufficiently random.

For example, see Fig. 2, which shows schematically the results of apply-
ing five different types of chi-square tests on each of six sequences of random
numbers. FEach test in this illustration was applied to three different blocks
of numbers of the sequence. Generator A is the MacLaren—Marsaglia method
(Algorithm 3.2.2M applied to the sequences in 3.2.2—(13)); Generator E is the
Fibonacci method, 3.2.2—(5); and the other generators are linear congruential
sequences with the following parameters:

Generator B: Xy =0, a = 3141592653, c¢ = 2718281829, m = 23°,
Generator C: Xy =0, a=2"4+1, c=1, m=2%.

Generator D: Xy =47594118, =23, c=0, m=10%+1.
Generator F: X, = 314159265, a=2%+1, c=1, m =2%,

From Fig. 2 we conclude that (so far as these tests are concerned) Generators A,
B, D are satisfactory, Generator C is on the borderline and should probably
be rejected, Generators E and F are definitely unsatisfactory. Generator F
has, of course, low potency; Generators C and D have been discussed in the
literature, but their multipliers are too small. (Generator D is the original
multiplicative generator proposed by Lehmer in 1948; Generator C is the original
linear congruential generator with ¢ # 0 proposed by Rotenberg in 1960.)

Instead of using the “suspect,” “almost suspect,” etc., criteria for judging
the results of chi-square tests, one can employ a less ad hoc procedure discussed
later in this section.

48 RANDOM NUMBERS 3.3.1

y:]_ ————-y=1
1 _1
y=3 —1¥Tz2
z=0 =3 =z=1 z=0 z=3 z=1
(a) (b)
y=1 —
_3
y=1
_1
y=73
_ 1 :
y=1
-
z=39|x=9.3 r=18.3
z=6.7T t=12.6

()

Fig. 3. Examples of distribution functions.

B. The Kolmogorov—Smirnov test. As we have seen, the chi-square test
applies to the situation when observations can fall into a finite number of cate-
gories. It is not unusual, however, to consider random quantities that range over
infinitely many values, such as a random fracton (a random real number between
0 and 1). Even though only finitely many real numbers can be represented in a
computer, we want our random values to behave essentially as if all real numbers
in [0..1) were equally likely.

A general notation for specifying probability distributions, whether they
are finite or infinite, is commonly used in the study of probability and statistics.
Suppose we want to specify the distribution of the values of a random quantity, X;
we do this in terms of the distribution function F(x), where

F(z) = Pr(X < z) = probability that (X < z).

Three examples are shown in Fig. 3. First we see the distribution function for a
random bit, namely for the case when X takes on only the two values 0 and 1,
each with probability % Part (b) of the figure shows the distribution function
for a uniformly distributed random real number between zero and one; here the
probability that X < z is simply equal to £ when 0 < z < 1. For example,
the probability that X < % is, naturally, % And part (c) shows the limiting
distribution of the value V in the chi-square test (shown here with 10 degrees of
freedom); this is a distribution that we have already seen represented in another
way in Table 1. Notice that F(z) always increases from 0 to 1 as z increases

from —oo to 4+00.

3.3.1 GENERAL TEST PROCEDURES 49

If we make n independent observations of the random quantity X, thereby
obtaining the values X;, Xo, ..., X,,, we can form the empirical distribution
function Fy,(x), where

number of X, Xo,...,X, that are <z

F.(z) = - : (10)

Figure 4 illustrates three empirical distribution functions (shown as zigzag lines,
although strictly speaking the vertical lines are not part of the graph of Fn(:r)),
superimposed on a graph of the assumed actual distribution function F(z). As
n gets large, F,(x) should be a better and better approximation to F(z).

(a)

5% 25%50% 75% 95% 99%

;
-

5% 25%50% 75% 95% 99%

i

Fig. 4. Examples of rl_l‘r

empirical distributions. =
5% 25%50% 75% 95% 99%

The Kolmogorov—Smirnov test (KS test) may be used when F(z) has no
jumps. It is based on the difference between F(z) and F,(z). A bad source of
random numbers will give empirical distribution functions that do not approxi-
mate F(z) sufficiently well. Figure 4(b) shows an example in which the X; are
consistently too high, so the empirical distribution function is too low. Part (c)
of the figure shows an even worse example; it is plain that such great deviations
between F,(z) and F(x) are extremely improbable, and the KS test is used to
tell us how improbable they are.

50 RANDOM NUMBERS 3.3.1

To make the KS test, we form the following statistics:

K;=vyn max (Fu(z)-F(z));

—oco<l <400

K;=+vn max (F(z)—Fu(z)).

n —oo<lr<+oo

(11)

Here K} measures the greatest amount of deviation when Fj, is greater than F,
and K, measures the maximum deviation when F}, is less than F. The statistics
for the examples of Fig. 4 are

Fig. 4(a) Fig. 4(b) Fig. 4(c)
K, 0.492 0.134 0.313 (12)
K;, 0.536 1.027 2.101

(Note: The factor v/n that appears in Egs. (11) may seem puzzling at first.
Exercise 6 shows that, for fixed z, the standard deviation of F,,(z) is proportional
to 1/4/n; hence the factor v/n magnifies the statistics K} and K in such a way
that this standard deviation is independent of n.)

As in the chi-square test, we may now look up the values K, K- in a
percentile table to determine if they are significantly high or low. Table 2 may
be used for this purpose, both for K;} and K;. For example, the probability is
75 percent that K3, will be 0.7975 or less. Unlike the chi-square test, the table
entries are not merely approximations that hold for large values of n; Table 2
gives exact values (except, of course, for roundoff error), and the KS test may
be used reliably for any value of n.

As they stand, formulas (11) are not readily adapted to computer calcula-
tion, since we are asking for a maximum over infinitely many values of z. But
from the fact that F(x) is increasing and the fact that F,(x) increases only in
finite steps, we can derive a simple procedure for evaluating the statistics K
and K:

Step 1. Obtain independent observations Xi, Xo,..., X, .

Step 2. Rearrange the observations so that they are sorted into ascending order,
X, £ X2 <+ < X,. (Efficient sorting algorithms are the subject of Chapter 5.
But it is possible to avoid sorting in this case, as shown in exercise 23.)

Step 3. The desired statistics are now given by the formulas

v _ J_ _)
Kn - \/—ﬁlgl]a_%(n(n F(XJ))
i1 (13)
K = Vi e (PO5) =12

An appropriate choice of the number of observations, n, is slightly easier to
make for this test than it is for the x? test, although some of the considerations
are similar. If the random variables X; actually belong to the probability
distribution G(z), while they were assumed to belong to the distribution given
by F(z), we want n to be comparatively large, in order to reject the hypothesis
that G(z) = F(z); for we need n large enough that the empirical distributions

3.3.1 GENERAL TEST PROCEDURES 51
Table 2
SELECTED PERCENTAGE POINTS OF THE DISTRIBUTIONS K} AND K;
p=1% | p=5% | p=25% | p=50% | p=T75% | p=95% | p = 99%

n=1 0.01000 | 0.05000 | 0.2500 0.5000 0.7500 0.9500 0.9900
n=2 0.01400 | 0.06749 0.2929 0.5176 0.7071 1.0980 1.2728
n=23 0.01699 | 0.07919 | 0.3112 0.5147 0.7539 1.1017 1.3589
n=4 0.01943 | 0.08789 | 0.3202 0.5110 0.7642 1.1304 1.3777
n=>5 0.02152 | 0.09471 0.3249 0.5245 0.7674 1.1392 1.4024
n= 0.02336 | 0.1002 0.3272 0.5319 0.7703 1.1463 1.4144
n= 0.02501 | 0.1048 0.3280 0.5364 0.7755 1.1537 1.4246
n=2~8 0.02650 | 0.1086 [0.3280 0.5392 0.7797 1.1586 1.4327
n=29 0.02786 | 0.1119 0.3274 0.5411 0.7825 1.1624 1.4388
n =10 | 0.02912 | 0.1147 0.3297 0.5426 0.7845 1.1658 1.4440
n=11 | 0.03028 | 0.1172 0.3330 0.5439 0.7863 1.1688 1.4484
n =12 | 0.03137 | 0.1193 0.3357 0.5453 0.7880 1.1714 1.4521
n=15 | 0.03424 | 0.1244 0.3412 0.5500 0.7926 1.1773 1.4606
n =20 | 0.03807 | 0.1298 0.3461 0.5547 0.7975 1.1839 1.4698
n =30 | 0.04354 | 0.1351 0.3509 0.5605 0.8036 1.1916 1.4801
n > 30 Yp — %n_l/z + O(1/n), where y2 = 21In(1/(1 —p))

Yp = 0.07089 | 0.1601 0.3793 0.5887 0.8326 1.2239 1.5174

(To extend this table, see Egs. (25) and (26), and the answer to exercise 20.)

Gn(z) and F,(z) are expected to be observably different. On the other hand,
large values of n will tend to average out locally nonrandom behavior, and such
undesirable behavior is a significant danger in most computer applications of
random numbers; this makes a case for smaller values of n. A good compromise
would be to take n equal to, say, 1000, and to make a fairly large number of
calculations of Ky, on different parts of a random sequence, thereby obtaining
values

Ko00(1), Kio00(2), S Kiooo(r)- (14)
We can also apply the KS test again to these results: Let F(x) now be the
distribution function for Kjy,,, and determine the empirical distribution F,(x)
obtained from the observed values in (14). Fortunately, the function F(x) in this

case is very simple; for a large value of n like n = 1000, the distribution of K

is closely approximated by
Fo(z)=1- 6"2“”2, z > 0.

(15)

52 RANDOM NUMBERS 3.3.1

The same remarks apply to K, since K, and K, have the same expected
behavior. This method of using several tests for moderately large n, then
combining the observations later in another KS test, will tend to detect both
local and global nonrandom behavior.

For example, the author conducted the following simple experiment while
writing this chapter: The *maximum-of-5” test described in the next section was
applied to a set of 1000 uniform random numbers, yielding 200 observations X,
X, ..., Xo00 that were supposed to belong to the distribution F(z) = z° for
0 < z < 1. The observations were divided into 20 groups of 10 each, and the
statistic K7, was computed for each group. The 20 values of K7, thus obtained
led to the empirical distributions shown in Fig. 4. The smooth curve shown in
each of the diagrams in Fig. 4 is the actual distribution the statistic K, should
have. Figure 4(a) shows the empirical distribution of K{, obtained from the
sequence

Yoi1 = (3141592653Y;, 4 2718281829) mod 2°°, U, =Y,/2%,

and it is satisfactorily random. Part (b) of the figure came from the Fibonacci
method; this sequence has globally nonrandom behavior —that is, it can be
shown that the observations X,, in the maximum-of-5 test do not have the correct
distribution F(z) = z°. Part (c) came from the notorious and impotent linear
congruential sequence Y, 41 = ((2'® + 1)Y, + 1) mod 2%, U, = Y, /2%.

The KS test applied to the data in Fig. 4 gives the results shown in (12).
Referring to Table 2 for n = 20, we see that the values of KJ, and K3, for
Fig. 4(b) are almost suspect (they lie at about the 5 percent and 88 percent
levels), but they are not quite bad enough to be rejected outright. The value of
K, for Fig. 4(c) is, of course, completely out of line, so the maximum-of-5 test
shows a definite failure of that random number generator.

We would expect the KS test in this experiment to have more difficulty
locating global nonrandomness than local nonrandomness, since the basic obser-
vations in Fig. 4 were made on samples of only 10 numbers each. If we were
to take 20 groups of 1000 numbers each, part (b) would show a much more
significant deviation. To illustrate this point, a single KS test was applied to all
200 of the observations that led to Fig. 4, and the following results were obtained:

Fig. 4(a) Fig. 4(b) Fig. 4(c)
Ky, 0.477 1.537 2.819 (16)
K30 0.817 0.194 0.058
The global nonrandomness of the Fibonacci generator has definitely been de-
tected here.

We may summarize the Kolmogorov—Smirnov test as follows. We are given
n independent observations X,, ..., X, taken from some distribution specified
by a continuous function F(z). That is, F(z) must be like the functions shown
in Fig. 3(b) and 3(c), having no jumps like those in Fig. 3(a). The procedure
explained just before Egs. (13) is carried out on these observations, and we obtain

3.3.1 GENERAL TEST PROCEDURES 53

the statistics K} and K,;. These statistics should be distributed according to
Table 2.

Some comparisons between the KS test and the x? test can now be made.
In the first place, we should observe that the KS test may be used in conjunction
with the x2 test, to give a better procedure than the ad hoc method we mentioned
when summarizing the x? test. (That is, there is a better way to proceed than
to make three tests and to consider how many of the results were “suspect.”)
Suppose we have made, say, 10 independent x? tests on different parts of a
random sequence, so that values V7, V5, ..., V1o have been obtained. It is not a
good policy simply to count how many of the V'’s are suspiciously large or small.
This procedure will work in extreme cases, and very large or very small values
may mean that the sequence has too much local nonrandomness; but a better
general method would be to plot the empirical distribution of these 10 values and
to compare it to the correct distribution, which may be obtained from Table 1.
The empirical distribution gives a clearer picture of the results of the x? tests,
and in fact the statistics K|, and K7, could be determined from the empirical
x? values as an indication of success or failure. With only 10 values or even
as many as 100 this could all be done easily by hand, using graphical methods;
with a larger number of V'’s, a computer subroutine for calculating the chi-square
distribution would be necessary. Notice that all 20 of the observations in Fig. 4(c)
fall between the 5 and 95 percent levels, so we would not have regarded any of
them as suspicious, individually; yet collectively the empirical distribution shows
that these observations are not at all right.

An important difference between the KS test and the chi-square test is that
the KS test applies to distributions F(x) having no jumps, while the chi-square
test applies to distributions having nothing but jumps (since all observations
are divided into k categories). The two tests are thus intended for different
sorts of applications. Yet it is possible to apply the x? test even when F(x) is
continuous, if we divide the domain of F(z) into k parts and ignore all variations
within each part. For example, if we want to test whether or not Uy, Us, ..., U,
can be considered to come from the uniform distribution between zero and one,
we want to test if they have the distribution F(z) = « for 0 < z < 1. This is
a natural application for the KS test. But we might also divide up the interval
from 0 to 1 into k& = 100 equal parts, count how many U'’s fall into each part,
and apply the chi-square test with 99 degrees of freedom. There are not many
theoretical results available at the present time to compare the effectiveness of
the KS test versus the chi-square test. The author has found some examples in
which the KS test pointed out nonrandomness more clearly than the x? test, and
others in which the x? test gave a more significant result. If, for example, the
100 categories mentioned above are numbered 0, 1, ..., 99, and if the deviations
from the expected values are positive in compartments 0 to 49 but negative in
compartments 50 to 99, then the empirical distribution function will be much
further from F(z) than the x? value would indicate; but if the positive deviations
occur in compartments 0, 2, ..., 98 and the negative ones occurin 1, 3, ..., 99,
the empirical distribution function will tend to hug F(z) much more closely. The

54 RANDOM NUMBERS 3.3.1

Range of K g

A B C
[| |
i | { ®
| O] o | | o
| ® Ol | O
|| | O] o | e
Range of K,
A B C D E F
ol T [T 11 [0 | O
O | O] | |
| Ol O 20 |00e

Fig. 5. The KS tests applied to the same data as Fig. 2.

kinds of deviations measured are therefore somewhat different. A x? test was
applied to the 200 observations that led to Fig. 4, with k = 10, and the respective
values of V were 9.4, 17.7, and 39.3; so in this particular case the values were
quite comparable to the KS values given in (16). Since the x? test is intrinsically
less accurate, and since it requires comparatively large values of n, the KS test
has several advantages when a continuous distribution is to be tested.

A further example will also be of interest. The data that led to Fig. 2
were chi-square statistics based on n = 200 observations of the maximum-of-¢
criterion for 1 < ¢ < 5, with the range divided into 10 equally probable parts.
KS statistics K35, and K5, can be computed from exactly the same sets of 200
observations, and the results can be tabulated in just the same way as we did
in Fig. 2 (showing which KS values are beyond the 99-percent level, etc.); the
results in this case are shown in Fig. 5. Notice that Generator D (Lehmer’s
original method) shows up very badly in Fig. 5, while chi-square tests on the
very same data revealed no difficulty in Fig. 2; contrariwise, Generator E (the
Fibonacci method) does not look so bad in Fig. 5. The good generators, A
and B, passed all tests satisfactorily. The reasons for the discrepancies between
Fig. 2 and Fig. 5 are primarily that (a) the number of observations, 200, is really
not large enough for a powerful test, and (b) the “reject,” “suspect,” “almost
suspect” ranking criterion is itself suspect.

(Incidentally, it is not fair to blame Lehmer for using a “bad” random
number generator in the 1940s, since his actual use of Generator D was quite
valid. The ENIAC computer was a highly parallel machine, programmed by
means of a plugboard; Lehmer set it up so that one of its accumulators was
repeatedly multiplying its own contents by 23 (modulo 10® + 1), yielding a
new value every few microseconds. Since this multiplier 23 is too small, we

3.3.1 GENERAL TEST PROCEDURES 55

know that each value obtained by such a process is too strongly related to
the preceding value to be considered sufficiently random; but the durations
of time between actual uses of the values in the special accumulator by the
accompanying program were comparatively long and subject to some fluctuation.
So the effective multiplier was 23% for large, varying values of k.)

C. History, bibliography, and theory. The chi-square test was introduced by
Karl Pearson in 1900 [Philosophical Magazine, Series 5, 50, 157-175]. Pearson’s
important paper is regarded as one of the foundations of modern statistics, since
before that time people would simply plot experimental results graphically and
assert that they were correct. In his paper, Pearson gave several interesting
examples of the previous misuse of statistics; and he also proved that certain
runs at roulette (which he had experienced during two weeks at Monte Carlo in
1892) were so far from the expected frequencies that odds against the assumption
of an honest wheel were some 10?° to one! A general discussion of the chi-square
test and an extensive bibliography appear in the survey article by William G.
Cochran, Annals Math. Stat. 23 (1952), 315-345.

Let us now consider a brief derivation of the theory behind the chi-square
test. The exact probability that Y; = vy;,...,Yr = yx is easily seen to be

n!
mﬁl N (17)
If we assume that Y, has the value y, with the Poisson probability

e "Ds (nps)ys
Ys!

and that the Y's are independent, then (Y7,...,Y:) will equal (y,...,yx) with
probability

k ‘nps np
H 7

and Y7 + .- + Y} will equal n with probability

— N, T

Z H npsr%p :en!n'

y1+tyr=n s=1
Y1, ayk>0

If we assume that they are independent except for the condition Y1 +---+Y, = n,
the probability that (Y7,...,Yx) = (y1,..-,Yx) is the quotient

(=) /().

which equals (17). We may therefore regard the Y'’s as 1ndependent1y Poisson
distributed, except for the fact that they have a fixed sum.

56 RANDOM NUMBERS 3.3.1

It is convenient to make a change of variables,

yts - s
Z, = 5 _1Ps (18)
p;

so that V = Z2 + .- + Z2. The condition Y7 + --- + Y3 = n is equivalent to

requiring that
VP1Z1+ -+ Pk Zy = 0. (19)

Let us consider the (k — 1)-dimensional space S of all vectors (Z,...,Zk)
such that (19) holds. For large values of n, each Z; has approximately the
normal distribution (see exercise 1.2.10-15); therefore points in a differential
volume dzsy...dzx of S occur with probability approximately proportional to
exp (—(zf 4+ --- + 22)/2). (It is at this point in the derivation that the chi-square
method becomes only an approximation for large n.) The probability that V < v
is now

f(zla---azk)inS&ndZ%+---+ziSv eXp (_(2]2_ + tt + Z]%)/2) dZ2 . de
Jonyins &D(—(F + - +22)/2) dza ... dz

Since the hyperplane (19) passes through the origin of k-dimensional space, the
numerator in (20) is an integration over the interior of a (k — 1)-dimensional
hypersphere centered at the origin. An appropriate transformation to generalized
polar coordinates with radius x and angles wy, ..., wg_2 transforms (20) into

(20)

fXZSv e_X2/2Xk_2f(w17 e 7wk—2) dX dws ... dwk_g
f e_X2/2Xk_2f(wly s 7wk—2) dX dUJ]_ . dCL)k_Q

for some function f (see exercise 15); then integration over the angles wy, ...,
wk_o gives a constant factor that cancels from numerator and denominator. We
finally obtain the formula

Sy emX k2 iy
fooo e—x2/2xk—2 dx
for the approximate probability that V < v.
Our derivation of (21) uses the symbol x to stand for the radial length,
just as Pearson did in his original paper; this is how the x? test got its name.

Substituting ¢t = x?2/2, the integrals can be expressed in terms of the incomplete
gamma, function, which we discussed in Section 1.2.11.3:

meve (YR e

This is the definition of the chi-square distribution with £ —1 degrees of freedom.

(21)

We now turn to the KS test. In 1933, A. N. Kolmogorov proposed a test
based on the statistic

K,=+vn max |Fy(z)— F(z)| = max(K;,K;). (23)

—oo<Lr<l+oo

3.3.1 GENERAL TEST PROCEDURES 57

N. V. Smirnov discussed several modifications of this test in 1939, including the
individual examination of K} and K, as we have suggested above. There is
a large family of similar tests, but the K! and K statistics seem to be most
convenient for computer application. A comprehensive review of the literature
concerning KS tests and their generalizations, including an extensive bibliogra-
phy, appears in a monograph by J. Durbin, Regional Conf. Series on Applied
Math. 9 (SIAM, 1973).

To study the distribution of K} and K;, we begin with the following basic
fact: If X is a random variable with the continuous distribution F(x), then F(X)
is a uniformly distributed real number between 0 and 1. To prove this, we need
only verify that if 0 < y < 1 we have F(X) < y with probability y. Since F' is
continuous, F(zy) = y for some xp; thus the probability that F/(X) < y is the
probability that X < zy. By definition, the latter probability is F'(zo), that is,
it is y.

Let Y; = nF(Xj), for 1 < j < n, where the X’s have been sorted as in
Step 2 preceding Eq. (13). Then the variables Y; are essentially the same as
independent, uniformly distributed random numbers between 0 and n that have
been sorted into nondecreasing order, Y; < Y5 < --- <Y,; and the first equation
of (13) may be transformed into

1
K:z: = 7;11’18,)((1-Y1,2-Y2, ...,’I’L—Yn).
If 0 < t < n, the probability that K} < t/+/n is therefore the probability that

Y; > j—tfor1 <j<n. Thisis not hard to express in terms of n-dimensional
integrals,

f:n dyn 5:_1 dyn—l fgf dyl
fon dyn foyn AYn—1 - -- foyz dy1 ’

The denominator here is immediately evaluated: It is found to be n™/n!, which
makes sense since the hypercube of all vectors (y1,y2,...,yn) With 0 <y; <n
has volume n™, and it can be divided into n! equal parts corresponding to each
possible ordering of the y’s. The integral in the numerator is a little more
difficult, but it yields to the attack suggested in exercise 17, and we get the
general formulas

where o; = max(j — ¢, 0). (24)

Pr<K2' < 7%—) = ni“ (Z)(k —)t +n - k)t (25)

- ¥ (Z)(k—t)k(t+n—k)”_k_l. (26)

The distribution of K is exactly the same. Equation (26) was first obtained
by N. V. Smirnov [Uspekhi Mat. Nauk 10 (1944), 176-206]; see also Z. W.
Birnbaum and Fred H. Tingey, Annals Math. Stat. 22 (1951), 592-596. Smirnov

58 RANDOM NUMBERS 3.3.1

derived the asymptotic formula
2 2
Pr(Kf <s)=1-—e"2 (1- gs/\/ﬁ—l— O(1/n)) (27)

for all fixed s > 0; this yields the approximations for large n that appear in
Table 2. .

Abel’s binomial theorem, Eq. 1.2.6-(16), shows the equivalence of (25) and
(26). We can extend Table 2 using either formula, but there is an interesting
tradeoff: Although the sum in (25) has only about s/n terms, when s = t/y/n is
given, it must be evaluated with multiple-precision arithmetic, because the terms
are large and their leading digits cancel out. No such problem arises in (26), since
its terms are all positive; but (26) has n — s4/n terms.

EXERCISES

1. [00] What line of the chi-square table should be used to check whether or not the
value V = 7% of Eq. (5) is improbably high?

2. [20] If two dice are “loaded” so that, on one die, the value 1 will turn up exactly
twice as often as any of the other values, and the other die is similarly biased towards 6,

compute the probability ps that a total of exactly s will appear on the two dice, for
2< 5< 12.

3. [23] Some dice that were loaded as described in the previous exercise were rolled
144 times, and the following values were observed:

valueofs=2 3 4 5 6 7 8 9 10 11 12
observed number, Y, = 2 6 10 16 18 32 20 13 16 9 2

Apply the chi-square test to these values, using the probabilities in (1), pretending that
the dice are not in fact known to be faulty. Does the chi-square test detect the bad
dice? If not, explain why not.

4. [23] The author actually obtained the data in experiment 1 of (9) by simulating
dice in which one was normal, the other was loaded so that it always turned up 1 or 6.
(The latter two possibilities were equally probable.) Compute the probabilities that
replace (1) in this case, and by using a chi-square test decide if the results of that
experiment are consistent with the dice being loaded in this way.

5. [22] Let F(z) be the uniform distribution, Fig. 3(b). Find K3, and K5, for the
following 20 observations:

0414, 0.732, 0.236, 0.162, 0.259, 0.442, 0.189, 0.693, 0.098, 0.302,
0.442, 0.434, 0.141, 0.017, 0.318, 0.869, 0.772, 0.678, 0.354, 0.718,

and state whether these observations are significantly different from the expected
behavior with respect to either of these two tests.

6. [M20] Consider Fi.(z), as given in Eq. (10), for fixed z. What is the probability
that Fn(z) = s/n, given an integer s7 What is the mean value of F,,(z)? What is the
standard deviation?

7. [M15] Show that K} and K, can never be negative. What is the largest possible
value K} can have?

8. [00] The text describes an experiment in which 20 values of the statistic K
were obtained in the study of a random sequence. These values were plotted, to obtain

3.3.1 GENERAL TEST PROCEDURES 59

Fig. 4, and a KS statistic was computed from the resulting graph. Why were the table
entries for n = 20 used to study the resulting statistic, instead of the table entries for
n = 107

9. [20] The experiment described in the text consisted of plotting 20 values of K1,
computed from the maximum-of-5 test applied to different parts of a random sequence.
We could have computed also the corresponding 20 values of K ,; since K, has the
same distribution as K, we could lump together the 40 values thus obtained (that is,
20 of the K{y’s and 20 of the K ;'s), and a KS test could be applied so that we would
get new values K, K ;. Discuss the merits of this idea.

10. [20] Suppose a chi-square test is done by making n observations, and the value V
is obtained. Now we repeat the test on these same.n observations over again (getting,
of course, the same results), and we put together the data from both tests, regarding
it as a single chi-square test with 2n observations. (This procedure violates the text’s
stipulation that all of the observations must be independent of one another.) How is
the second value of V related to the first one?

11. [10] Solve exercise 10 substituting the KS test for the chi-square test.

12. [M28] Suppose a chi-square test is made on a set of n observations, assuming that
ps is the probability that each observation falls into category s; but suppose that in
actual fact the observations have probability g, # p, of falling into category s. (See
exercise 3.) We would, of course, like the chi-square test to detect the fact that the p;
assumption was incorrect. Show that this will happen, if n is large enough. Prove also
the analogous result for the KS test.

13. [M24] Prove that Eqgs. (13) are equivalent to Egs. (11).

14. [HM26] Let Z, be given by Eq. (18). Show directly by using Stirling’s approxi-
mation that the multinomial probability
nlplt. L pF /YL Y = e "2/ \/(2nm)k=1p; . pr + O(nF/?),

if Z1,23,...,2Z) are bounded as n — oo. (This idea leads to a proof of the chi-square
test that is much closer to “first principles,” and requires less handwaving, than the
derivation in the text.)

15. [HM24] Polar coordinates in two dimensions are conventionally defined by the
equations £ = rcosf and y = rsin 6. For the purposes of integration, we have dz dy =
rdr df. More generally, in n-dimensional space we can let

Tr =7sinf; ...sinfg_1cos0, 1<k <n, and Tp =7sinf1...sinl,_1.
Show that in this case
dzidzs...dz, = lfrn—l sin” 20, ...sin0,_2drdo; ... dbBrn—1].
16. [HM35] Generalize Theorem 1.2.11.3A to find the value of
Yz +1, x4+ 2v2z +y)/T(z + 1),

for large = and fixed y, z. Disregard terms of the answer that are O(1/z). Use this
result to find the approximate solution, ¢, to the equation

vt v
1(53) /F(§> =P
for large v and fixed p, thereby accounting for the asymptotic formulas indicated in
Table 1. [Hint: See exercise 1.2.11.3-8.]

60 RANDOM NUMBERS 3.3.1

17. [HM26] Let t be a fixed real number. For 0 < k < n, let

T Tn Tky2 Thy1 z2
Pi(x) :/ dmn/ dTp—1 ... / dmk+1/ dzy ... / dz1;
n—t n—1~t k+1~1 0 0

by convention, let Pyo(z) = 1. Prove the following relations:

T+t n Thi42 Tr41 z2
a) Pri(z) :/ dxnf drn,_1 / dmk+1/ dz / dz;.
n n—1 k+1 t t

b) Pno(z) = (z +t)*/n! — (z +)" !/(n — 1)L

¢) Pur(z) — Pre-1)(z) = (k_;Ft)_

d) Obtain a general formula for P,x(z), and apply it to the evaluation of Eq. (24).

P(n_k)o(a: — k), if 1 S k S n.

18. [M20] Give a “simple” reason why K, has the same probability distribution
as K.

19. [HM48] Develop tests, analogous to the Kolmogorov-Smirnov test, for use with
multivariate distributions F(z1,...,z-) = Pr(X1 < 1, ..., X; < z,). (Such proce-
dures could be used, for example, in place of the “serial test” in the next section.)

20. [HM41] Deduce further terms of the asymptotic behavior of the KS distribution,
extending (27).

21. [M40] Although the text states that the KS test should be applied only when
F(z) is a continuous distribution function, it is, of course, possible to try to compute
K+ and K, even when the distribution has jumps. Analyze the probable behavior of
K7 and K, for various discontinuous distributions F(z). Compare the effectiveness
of the resulting statistical test with the chi-square test on several samples of random
numbers.

22. [HM6] Investigate the “improved” KS test suggested in the answer to exercise 6.

23. [M22] (T. Gonzalez, S. Sahni, and W. R. Franta.) (a) Suppose that the maxi-
mum value in formula (13) for the KS statistic K, occurs at a given index j where
InF(X;)] = k. Prove that F(X;) = maxi<i<n{F(Xi) | [InF(X:)] = k}. (b) Design
an algorithm that calculates K} and K, in O(n) steps (without sorting).

24. [40] Experiment with various probability distributions (p, g, r) on three categories,
where p + ¢ +r = 1, by computing the exact distribution of the chi-square statistic V
for various n, thereby determining how accurate an approximation the chi-square
distribution with two degrees of freedom really is.

25. [HM26] Suppose Yi = > 7) ai; X; + pi for 1 <4 < m, where X1, ..., X, are
independent random variables with mean zero and unit variance, and the matrix A =

(aij) has rank n.

a) Express the covariance matrix C = (ci;), where ¢;; = E(Y; — p:)(Y; — p5), in
terms of the matrix A.
b) Prove that if C = (Cij;) is any matrix such that CCC = C, the statistic

W= (Yi— w) (Y5 — py)
i=1 j=1

is equal to X2 +--- + X2. [Consequently, if the X; have the normal distribution,
W has the chi-square distribution with n degrees of freedom.]

3.3.2 EMPIRICAL TESTS 61

The equanimity of your average tosser of coins
depends upon a law ... which ensures that

he will not upset himself by losing too much
nor upset his opponent by winning too often.

— TOM STOPPARD, Rosencrantz & Guildenstern are Dead (1966)

3.3.2. Empirical Tests

In this section we shall discuss eleven kinds of specific tests that have traditionally
been applied to sequences in order to investigate their randomness. The discus-
sion of each test has two parts: (a) a “plug-in” description of how to perform the
test; and (b) a study of the theoretical basis for the test. (Readers who lack math-
ematical training may wish to skip over the theoretical discussions. Conversely,
mathematically inclined readers may find the associated theory quite interesting,
even if they never intend to test random number generators, since some instruc-
tive combinatorial questions are involved here. Indeed, this section introduces
several topics that will be important to us later in quite different contexts.)
Each test is applied to a sequence

<Un>=U0,U1,U2,... (1)

of real numbers, which purports to be independently and uniformly distributed
between zero and one. Some of the tests are designed primarily for integer-valued
sequences, instead of the real-valued sequence (1). In this case, the auxiliary
sequence

<Yn> :YO,Y]_,Y2,... (2)

defined by the rule
Yo = [dUn] (3)

is used instead. This is a sequence of integers that purports to be independently
and uniformly distributed between 0 and d — 1. The number d is chosen for
convenience; for example, we might have d = 64 = 26 on a binary computer,
so that Y, represents the six most significant bits of the binary representation
of U,,. The value of d should be large enough so that the test is meaningful, but
not so large that the test becomes impracticably difficult to carry out.

The quantities Uy, Y5, and d will have the significance stated above through-
out this section, although the value of d will probably be different in different
tests.

A. Equidistribution test (Frequency test). The first requirement that
sequence (1) must meet is that its numbers are, in fact, uniformly distributed
between zero and one. There are two ways to make this test: (a) Use the
Kolmogorov—Smirnov test, with F(z) = z for 0 < z < 1. (b) Let d be a
convenient number, such as 100 on a decimal computer, 64 or 128 on a binary
computer, and use the sequence (2) instead of (1). For each integer 7, 0 < r < d,
count the number of times that ¥; = r for 0 < j < n, and then apply the
chi-square test using k = d and probability ps = 1/d for each category.
The theory behind this test has been covered in Section 3.3.1.

62 RANDOM NUMBERS 3.3.2

B. Serial test. More generally, we want pairs of successive numbers to be
uniformly distributed in an independent manner. The sun comes up just about as
often as it goes down, in the long run, but that doesn’t make its motion random.

To carry out the serial test, we simply count the number of times that the
pair (Y2j,Y2j+1) = (g,7) occurs, for 0 < j < n; these counts are to be made for
each pair of integers (g,7) with 0 < g,r < d, and the chi-square test is applied
to these k = d? categories with probability 1/d? in each category. As with the
equidistribution test, d may be any convenient number, but it will be somewhat
smaller than the values suggested above since a valid chi-square test should have
n large compared to k (say n > 5d? at least).

Clearly we can generalize this test to triples, quadruples, etc., instead of
pairs (see exercise 2); however, the value of d must then be severely reduced in
order to avoid having too many categories. When quadruples and larger numbers
of adjacent elements are considered, we therefore make use of less exact tests such
as the poker test or the maximum test described below.

Notice that 2n numbers of the sequence (2) are used in this test in order
to make m observations. It would be a mistake to perform the serial test
on the pairs (Yp, Y1), (Y1,Y2), ..., (Ya—1,Yn); can the reader see why? We
might perform another serial test on the pairs (Y3;+1,Y2;5+2), and expect the
sequence to pass both tests, remembering that the tests aren’t independent of
each other. Alternatively, George Marsaglia has proved that, if the pairs (Yo, Y1),
(Y1,Y3), ..., (Yn_1,Yn) are used, and if we use the usual chi-square method to
compute both the statistics V2 for the serial test and V; for the frequency test on
Yy, ..., Y,_1 with the same value of d, then V3 — Vi should have the chi-square
distribution with d(d — 1) degrees of freedom when n is large. (See exercise 24.)

C. Gap test. Another test is used to examine the length of “gaps” between
occurrences of U; in a certain range. If o and § are two real numbers with
0 < a < (<1, we want to consider the lengths of consecutive subsequences Uj,
Uj+1, - -+ Ujpr in which Uj,, lies between o and § but the other U’s do not.
(This subsequence of r + 1 numbers represents a gap of length r.)

Algorithm G (Data for gap test). The following algorithm, applied to the
sequence (1) for any given values of a and 3, counts the number of gaps of
lengths 0, 1, ..., t — 1 and the number of gaps of length > ¢, until n gaps have
been tabulated.

G1. [Initialize.] Set j +- —1, s <- 0, and set COUNT[r] <~ 0 for 0 <r < .
G2. [Set r zero.] Set r + 0.

G3. [a < U; < B7) Increase j by 1. If U; > o and U; < 3, go to step G5.
G4. [Increase r.] Increase r by one, and return to step G3.

G5. [Record the gap length.] (A gap of length r has now been found.) If r > ¢,
increase COUNT([t] by one, otherwise increase COUNT|[r] by one.

G6. [n gaps found?] Increase s by one. If s < n, return to step G2. |

3.3.2 EMPIRICAL TESTS 63

G1. Initialize G2. Set » zero —><G3‘ a<Uj <ﬁ§-% G4. Increase r

Yes

No

@6‘ n gaps foun@é——‘ G5. Record the gap length
lYes

Fig. 6. Gathering data for the gap test. (Algorithms for the “coupon-collector’s test”
and the “run test” are similar.)

After Algorithm G has been performed, the chi-square test is applied to
the k = ¢t 4+ 1 values of COUNT[0], COUNT[1], ..., COUNT[¢], using the following
probabilities: :

Pr:p(l—p)r, for0<r<t-—1; pt:(l—p)t. (4)

Here p = 8 — « is the probability that & < U; < 3. The values of n and ¢ are to
be chosen, as usual, so that each of the values of COUNT[r] is expected to be 5 or
more, preferably more.

The gap test is often applied with @ = 0 or § = 1 in order to omit one of
the comparisons in step G3. The special cases (a, 8) = (0, 1) or (3,1) give rise
to tests that are sometimes called “runs above the mean” and “runs below the
mean,” respectively.

The probabilities in Eq. (4) are easily deduced, so this derivation is left to
the reader. Notice that the gap test as described above observes the lengths of n
gaps; it does not observe the gap lengths among n numbers. If the sequence (Up,)
is sufficiently nonrandom, Algorithm G might not terminate. Other gap tests
that examine a fixed number of U’s have also been proposed (see exercise 5).

D. Poker test (Partition test). The “classical” poker test considers n groups
of five successive integers, {Ys;, Ys;+1,..., Y544} for 0 < j < n, and observes
which of the following seven patterns is matched by each (orderless) quintuple:

All different: abcde
One pair: aabed
Two pairs: aabbc
Three of a kind: aaabc
Full house: aaabb
Four of a kind: aaaab
Five of a kind: aaaaa
A chi-square test is based on the number of quintuples in each category.

It is reasonable to ask for a somewhat simpler version of this test, to facilitate
the programming involved. A good compromise would simply be to count the

64 RANDOM NUMBERS 3.3.2

number of distinct values in the set of five. We would then have five categories:

5 values = all different;
4 values = one pair;
3 values = two pairs, or three of a kind;
2 values = full house, or four of a kind,;
1 value = five of a kind.
This breakdown is easier to determine systematically, and the test is nearly
as good.
In general we can consider n groups of k successive numbers, and we can

count the number of k-tuples with r different values. A chi-square test is then
made, using the probability

d(d_l)"é,fd_r+1){]:} (5)

that there are r different. (The Stirling numbers {ff} are defined in Section 1.2.6,
and they can readily be computed using the formulas given there.) Since the
probability p, is very small when r = 1 or 2, we generally lump a few categories
of low probability together before the chi-square test is applied.

To derive the proper formula for p., we must count how many of the d*
k-tuples of numbers between 0 and d — 1 have exactly r different elements, and
divide the total by d*. Since d(d —1)...(d — r + 1) is the number of ordered
choices of r things from a set of d objects, we need only show that {f} is the
number of ways to partition a set of k elements into exactly r parts. Therefore
exercise 1.2.6-64 completes the derivation of Eq. (5).

br =

E. Coupon collector’s test. The next test is related to the poker test some-
what as the gap test is related to the frequency test. We use the sequence Yy,
Y1, ..., and we observe the lengths of segments Y; 1, Y;12, ..., Y4, that are
required to get a “complete set” of integers from 0 to d—1. Algorithm C describes

this precisely:

Algorithm C (Data for coupon collector’s test). Given a sequence of integers
Yo, Y1, ..., with 0 < Y; < d, this algorithm counts the lengths of n consecutive
“coupon collector” segments. At the conclusion of the algorithm, COUNT|r] is the
number of segments with length r, for d < r < ¢, and COUNT[¢] is the number of
segments with length > ¢.

C1. [Initialize.] Set j - —1, s < 0, and set COUNT[r] <- 0 for d <r < t.
C2. [Set q,r zero.] Set g + r 0, and set OCCURS[k] — 0 for 0 < k < d.

C3. [Next observation.] Increase r and j by 1. If OCCURS[Y;]| # 0, repeat this
step.

C4. [Complete set?] Set OCCURS[Y;] < 1 and ¢ + ¢ + 1. (The subsequence
observed so far contains ¢ distinct values; if ¢ = d, we therefore have a
complete set.) If ¢ < d, return to step C3.

3.3.2 EMPIRICAL TESTS 65

C5. [Record the length.] If r > ¢, increase COUNT[t] by one, otherwise increase
COUNT[r] by one.

C6. [n found?] Increase s by one. If s < n, return to step C2. |

For an example of this algorithm, see exercise 7. We may think of a boy col-
lecting d types of coupons, which are randomly distributed in his breakfast cereal
boxes; he must keep eating more cereal until he has one coupon of each type.

A chi-square test is to be applied to COUNT[d], COUNT[d + 1], ..., COUNT]¢],
with k = t —d+ 1, after Algorithm C has counted n lengths. The corresponding
probabilities are

da rr—1 d! t—1
= — d < : =1-)
Pr dr{d—l}’ sT<t P dt—l{ d } (6)

To derive these probabilities, we simply note that if g, denotes the probability
that a subsequence of length r is incomplete, then

dl (r
qr_l_d_r{d}

by Eq. (5); for this means we have an r-tuple of elements that do not have all d
different values. Then (6) follows from the relations p; = g;—; and

Dr = Qr—1 — Gr ford <r <t.

For formulas that arise in connection with generalizations of the coupon
collector’s test, see exercises 9 and 10 and also the papers by George Pdlya,
Zeitschrift fiir angewandte Math. und Mech. 10 (1930), 96-97; Hermann von
Schelling, AMM 61 (1954), 306-311.

F. Permutation test. Divide the input sequence into n groups of ¢ elements
each, that is, (Ujs, Ujt+1, - - -, Ujt4e—1) for 0 < j < n. The elements in each group
can have ¢! possible relative orderings; the number of times each ordering appears
is counted, and a chi-square test is applied with k = ¢! and with probability 1/¢!
for each ordering.

For example, if ¢t = 3 we would have six possible categories, according to
whether U3j < U3j+1 < U3j+2 or U3j < U3j+2 < U3j+1 or --- or U3j+2 <
Usj+1 < Us;. We assume in this test that equality between U’s does not occur;
such an assumption is justified, for the probability that two U’s are equal is zero.

A convenient way to perform the permutation test on a computer makes use
of the following algorithm, which is of interest in itself:

Algorithm P (Analyze a permutation). Given a sequence of distinct elements
(U1, - ..,Ut), we compute an integer f(Us,...,Us) such that

OSf(U17"'7Ut)<t!7
and f(Uy,...,U;) = f(Vi,..., V) if and only if (Uy,...,Us) and (V1,...,V4)

have the same relative ordering.

66 RANDOM NUMBERS 3.3.2

P1. [Initialize.] Set r < ¢, f - 0. (During this algorithm we will have 0 < f <
tl/rl)

P2. [Find maximum.] Find the maximum of {Uy,...,U,}, and suppose that U,
is the maximum. Set f «-r . f4+s—1.

P3. [Exchange.] Exchange U, < Us.
P4. [Decrease r.] Decrease r by one. If » > 1, return to step P2. |

The sequence (Ui, ..., U;) will have been sorted into ascending order when
this algorithm stops. To prove that the result f uniquely characterizes the initial
order of (Uy,...,U;), we note that Algorithm P can be run backwards:

Forr=2,3, ..., 1,
set s + fmodr, f«+ |f/r],
and exchange U, <> Ugy.

It is easy to see that this will undo the effects of steps P2-P4; hence no two
permutations can yield the same value of f, and Algorithm P performs as
advertised.

The essential idea that underlies Algorithm P is a mixed-radix representation
called the “factorial number system”: Every integer in the range 0 < f < ¢! can
be uniquely written in the form

fz(...(ct_l X(t—l)‘l‘ct__g)X(t—2)+-"+62) X24cc
=(t—1)!ct_1—I—(t—2)!ct_2-|--~~+2!62—|—1!cl (7)

where the “digits” c; are integers satisfying
0<¢; <13, for 1<j<t. (8)
In Algorithm P, ¢,_; = s — 1 when step P2 is performed for a given value of r.

G. Run test. A sequence may also be tested for “runs up” and “runs down.”
This means that we examine the length of monotone portions of the original
sequence (segments that are increasing or decreasing).

As an example of the precise definition of a run, consider the sequence of ten
digits “1298536704”. Putting a vertical line at the left and right and between
X; and X;; whenever X; > X;,, we obtain

|1 2 9]8]|5|3 6 7|0 4], (9)

which displays the “runs up”: There is a run of length 3, followed by two runs
of length 1, followed by another run of length 3, followed by a run of length 2.
The algorithm of exercise 12 shows how to tabulate the length of “runs up.”
Unlike the gap test and the coupon collector’s test (which are in many other
respects similar to this test), we should not apply a chi-square test to the run
counts, since adjacent runs are not independent. A long run will tend to be
followed by a short run, and conversely. This lack of independence is enough to

3.3.2 EMPIRICAL TESTS 67

invalidate a straightforward chi-square test. Instead, the following statistic may
be computed, when the run lengths have been determined as in exercise 12:

1

n —

V= >~ (COUNT[i] — nb;)(COUNT[5] — nb;) ay;, (10)

1<i,j<6

where n is the length of the sequence, and the matrices of coefficients A =
(@ij)1<i,5<6 and B = (bi)1<i<e are given by

(45204 00440 13568 18001 22615 27802\ (1 \

0044.9 18097 27139 36187 45234 55789 =

4 _ | 13568 27139 40721 54281 67852 83685 B 55
18091 36187 54281 72414 90470 111580 |’ A%
\22615 45234 67852 90470 113262 139476) =25
27892 55789 83685 111580 139476 172860 Kg}i—o

(11)
(The values of a;; shown here are approximate only; exact values can be obtained
from formulas derived below.) The statistic V' in (10) should have the chi-square
distribution with six, not five, degrees of freedom, when n is large. The value
of n should be, say, 4000 or more. The same test can be applied to “runs down.”

A vastly simpler and more practical run test appears in exercise 14, so
a reader who is interested only in testing random number generators should
skip the next few pages and go on to the “maximum-of-¢ test” after looking at
exercise 14. On the other hand it is instructive from a mathematical standpoint
to see how a complicated run test with interdependent runs can be treated, so
we shall now digress for a moment.

Given any permutation of n elements, let Z,; = 1 if position 7 is the
beginning of an ascending run of length p or more, and let Z,; = 0 otherwise.
For example, consider the permutation (g9) with n = 10; we have

Zy) =291 =231 = 214 = 215 = Zng = Zop = Z36 = Z19 = Zz9 = 1,
and all other Z’s are zero. With this notation,
R,=Zpn+Zp+ + Zpn (12)
is the number of runs of length > p, and
Ry = R, R, (13)

is the number of runs of length p exactly. Our goal is to compute the mean value
of Ry, and also the covariance

covar(R,, Ry) = mean((R, — mean(R,)) (R, — mean(Ry))),

which measures the interdependence of R, and R,. These mean values are to be
computed as the average over the set of all n! permutations.

68 RANDOM NUMBERS 3.3.2

Equations (12) and (13) show that the answers can be expressed in terms
of the mean values of Z,; and of Z,;Z,;, so as the first step of the derivation we
obtain the following results (assuming that 7 < j):

p+dn

1 , fi<n—p+1;
m}:@ﬁz (p+1)!
) 0, otherwise.
(.
(p+di1)q ifi+p<ji<n—g+1; (14)

] (p+D!g+ 1Y
Ezzpiij:4 p+da ptg+tia
' (p+1'g! (p+g+ 1)V
A 0, otherwise.

fi+p=7<n-—g+1;

The > -signs stand for summation over all possible permutations. To illustrate
the calculations involved here, we will work the most difficult case, when 7 +p =
Jj <n—g+1, and when ¢ > 1. The quantity Z,;Z,; is either zero or one,
so the summation consists of counting all permutations U U, ...U, for which
Zpi = Zg; =1, that is, all permutations such that

Ui > Ui <o <Ujppo1 > Uigp < -+ < Ujgptg-1. (15)

The number of such permutations may be enumerated as follows: There are

(1[J +Z +1) ways to choose the elements for the positions indicated in (15); there
are
p+q pt+g+1 p+ag+1
+qg+1 (> — (> — (> +1 16
prat D", p+1 1 (16)

ways to arrange them in the order (15), as shown in exercise 13; and there
are (n — p — g — 1)! ways to arrange the remaining elements. Thus there are
(p+z+1)(n —p—g— 1)! times (16) ways in all, and we divide by n! to get the
desired formula.

From relations (14) a rather lengthy calculation leads to

mean(R,) = (n+ Up/(p+ 1!~ (p-D/p!, 1<p<m (17)

covar(R,, R;) = mean(R,, R;) — mean(R,,) mean(R;)

1
- Z ~ Z Zpi Zy; — mean(R)) mean(R,)

1<i,j<n
_ [mean(R}) + f(p,q,n), if p+ g <n,
~ | mean(R}) — mean(R,) mean(R;), ifp+q>n, (18)

where t = max(p,q), s =p+ ¢, and
s(1 —pq) + pq 2s s—1
3 3 = 1 o 2 sl
f(prq,m) (”+)<@+1y@+nl @+&ﬂ)+ (s!)
(s —s—2)pg— s> —p?¢® + 1
(p+ 1)1 (g +1)!

(19)

3.3.2 EMPIRICAL TESTS 69

This expression for the covariance is unfortunately quite complicated, but it is
necessary for a successful run test as described above. From these formulas it is

easy to compute

mean(R,) = mean(R) — mean(R,),
covar(R,, R,) = covar(R,, R;) — covar(R,,, R}), (20)
covar(R,, R,) = covar(R,, R;) — covar(R,, R,).

In Annals Math. Stat. 15 (1944), 163-165, J. Wolfowitz proved that the quan-
tities R,, R,, ..., R,_,, R; become normally distributed as n — oo, subject to
the mean and covariance expressed above; this implies that the following test for
runs is valid: Given a sequence of n random numbers, compute the number of
runs R, of length p for 1 < p < t, and also the number of runs R; of length ¢ or
more. Let

Ql = R1 — mean(Rl), ceay Qt—l = Rt—l — mean(Rt_l),

Q; = R, — mean(R}).

Form the matrix C of the covariances of the R’s; for example, Ci3 =
covar(R,, Rs), while Cy; = covar(R,, R;). When t = 6, we have

(21)

C =nC; + Cy, (22)
where
23 -7 -5 —433 —13 —121
[150 360 336 60480 5670 181440 \
-7 2843 —989 —7159 —10019 —1303
360 20160 30160 362880 1814400 907200
-5 —989 54563 —21311 —62369 —7783
O, = 336 20160 907200 1814400 19958400 9979200
1= | _—433 _—m59 —21311 886657 —257699 —62611 ’
60480 362880 1814400 39916800 239500800 239500800
—13 —10019 _—62369 _—257699 20874811 —1407179
5670 ~ 1814400 19958400 239500800 5448643200 21794572800
—121 —1303 7783 —62611 —1407179 2134697
181440 907200 9979200 239500800 21794572800 1816214400
83 —29 -1 —41 91 41
[150 180 210 12096 35920 18144 \
—29 305 319 2557 10177 413
180 4032 20160 72576 604800 64800
—11 319 —58747 19703 239471 39517
C,= | 70 20160 507200 604800 19958400 9979200
—41 2557 19703 —220837 1196401 360989
12096 72576 604800 4435200 239500800 239500800
91 10177 239471 1196401 —139126639 4577641
25920 604800 19958400 239500800 7264857600 10897286400
41 413 39517 360989 4577641 —122953057

18144 64800 9979200 239500800 10897286400 21794572800
if n > 12. Now form A = (a;j;), the inverse of the matrix C, and compute
Zf =1 @iQ;ai;. The result for large n should have approximately the chi-square
distribution with ¢ degrees of freedom.
The matrix A given earlier in (11) is the inverse of C) to five significant fig-
ures. The true inverse, A, is n™2C; —n"2C['CoCy !t +n~3C1CoCT I C2C —
, and it turns out that C 1o, Cy ! is very nearly equal to —6C~!. Therefore
V = QTC'Q/(n —6).

70 RANDOM NUMBERS 3.3.2

H. Maximum-of-t test. For 0 < j < n, let V; = max(Uy;, Usj41,. .., Usjre—1).

Now apply the Kolmogorov—Smirnov test to the sequence Vj, Vi, ..., Vi1,
with the distribution function F(z) = z*, 0 < z < 1. Alternatively, apply the
equidistribution test to the sequence V¢, V{, ..., Vi_;.

To verify this test, we must show that the distribution function for the Vj is
F(z) = z*. The probability that max(Uy, Uz, ...,U;) < z is the probability that
U; <zand U <z and ... and U; < z, which is the product of the individual
probabilities, namely zz ...z = z*.

I. Collision test. Chi-square tests can be made only when a nontrivial number
of items are expected in each category. But another kind of test can be used
when the number of categories is much larger than the number of observations;
this test is related to “hashing,” an important method for information retrieval
that we shall study in Section 6.4.

Suppose we have m urns and we throw n balls at random into those urns,
where m is much greater than n. Most of the balls will land in urns that were
previously empty, but if a ball falls into an urn that already contains at least one
ball we say that a “collision” has occurred. The collision test counts the number
of collisions, and a generator passes this test if it doesn’t induce too many or too
few collisions.

To fix the ideas, suppose m = 22° and n = 2!%. Then each urn will receive
only one 64th of a ball, on the average. The probability that a given urn will
contain exactly k balls is px = (})m~%(1 —m™)""*, so the expected number of
collisions per urn is

Z(k—l)pk=2kpk—2pk=%—1+p0.

k>1 k>0 k>1

Since pgp = (1—m™)" =1 - nm~! + (g)m_2 — smaller terms, we find that
the average total number of collisions taken over all m urns is slightly less than
n?/(2m) = 128. (The actual value is ~ 127.33.)

We can use the collision test to rate a random number generator in a large
number of dimensions. For example, when m = 22° and n = 214 we can test the
20-dimensional randomness of a number generator by letting d = 2 and forming
20-dimensional vectors V; = (Y205, Y20j+1, - - - , Y20;419) for 0 < j <n. We keep
a table of m = 229 bits to determine collisions, one bit for each possible value of
the vector Vj; on a computer with 32 bits per word, this amounts to 2'* words.
Initially all 22° bits of this table are cleared to zero; then for each Vj, if the
corresponding bit is already 1 we record a collision, otherwise we set the bit to 1.
This test can also be used in 10 dimensions with d = 4, and so on.

To decide if the test is passed, we can use the following table of percentage
points when m = 220 and n = 24

collisions < 101 108 119 126 134 145 153
with probability .009 .043 .244 476 .742 .946 .989

The theory underlying these probabilities is the same we used in the poker test,
Eq. (5); the probability that c collisions occur is the probability that n — ¢ urns

3.3.2 EMPIRICAL TESTS 71

are occupied, namely

m(m—l)...(nz—n—{—c—{—l){ n }

n—c
Although m and n are very large, it is not difficult to compute these probabilities
using the following method:

Algorithm S (Percentage points for collision test). Given m and n, this

algorithm determines the distribution of the number of collisions that occur

when n balls are scattered into m urns. An auxiliary array A[0], A[1], ...,

A[n] of floating point numbers is used for the computation; actually A[j] will be

nonzero only for jo < j < j1, and j; — jo will be at most of order logn, so it

would be possible to get by with considerably less storage.

S1. [Initialize.] Set A[j] ¢ 0 for 0 < j < n; then set A[1l] < 1 and jo « j; « 1.
Then do step S2 exactly n — 1 times and go on to step S3.

S2. [Update probabilities.] (Performing this step once corresponds to tossing a
ball into an urn; A[j] represents the probability that exactly j of the urns are
occupied.) Set j; « j1 + 1. Then for j « 71, 71 — 1, ..., jo (in this order),
set A[j] « (j/m)A[j] + ((1 +1/m) — (j/m))A[j — 1]. If A[j] has become
very small as a result of this calculation, say A[j] < 10729 set A[j] « 0;
and in such a case, decrease j; by 1 if j = 7;, or increase jy by 1 if j = jo.

S3. [Compute the answers.] In this step we make use of an auxiliary table
(Th, T, ..., Titmax) = (.01, .05, .25, .50, .75, .95, .99, 1.00) containing the
specified percentage points of interest. Set p + 0, ¢ + 1, and j + jo—1. Do
the following iteration until ¢ = tmax: Increase j by 1, and set p + p + A[j];
then if p > T}, output n — j — 1 and 1 — p (meaning that with probability
1 — p there are at most n — j — 1 collisions) and repeatedly increase ¢t by 1
until p < T;. 1

J. Birthday spacings test. George Marsaglia introduced a new kind of test in
1984: We throw n balls into m urns, asin the collision test, but now we think of
the urns as “days of a year” and the balls as “birthdays.” Suppose the birthdays
are (Y1,...,Yy,), where 0 <Y; < m. Sort them into nondecreasing order Y{;y <
+++ < Y(n); then define n “spacings” S1 = Y2y — Y1), - -+, Snc1 = ¥Y(n) — Y(n—1),
Sn = Y1) +m — Y{,,; finally sort the spacings into order, S(;y < --- < S(y). Let
R be the number of equal spacings, namely the number of indices j such that
1< j<mnandS; =S;_1)- When m = 2% and n = 512, we should have

R = 0 1 2 3 or more
with probability .368801577 .369035243 .183471182 .078691997

(The average number of equal spacings for this choice of m and n should be
approximately 1.) Repeat the test 1000 times, say, and do a chi-square test with
3 degrees of freedom to compare the empirical R’s with the correct distribution;
this will tell whether or not the generator produces reasonably random birthday
spacings. Exercises 28-30 develop the theory behind this test and formulas for
other values of m and n.

72 RANDOM NUMBERS 3.3.2

Such a test of birthday spacings is important primarily because of the
remarkable fact that lagged Fibonacci generators consistently fail it, although
they pass the other traditional tests quite nicely. [Dramatic examples of such
failures were reported by Marsaglia, Zaman, and Tsang in Stat. and Prob. Letters
8 (1990), 35-39.] Consider, for example, the sequence

Xn = (Xpn-24 + X5u_55) mod m
of Eq. 3.2.2—(7). The numbers of this sequence satisfy
X, + Xng86 = Xn_24 + Xn_31 (modulo m)

because both sides are congruent to X, o4 + Xpn_55 + Xn—gs. Therefore two
pairs of differences are equal:

Xn — Xn—24 = Xp—31 — Xn_ss,

and
Xn - Xn—-31 = Xn——24 - Xn—86-

Whenever X, is reasonably close to X, _24 or X,_3; (as it should be in a truly
random sequence), the difference has a good chance of showing up in two of
the spacings. So we get significantly more cases of equality —typically R ~ 2
on the average, not 1. But if we discount from R any equal spacings that
arise from the stated congruence, the resulting statistic R’ usually does pass
the birthday test. (One way to avoid failure is to discard certain elements of
the sequence, using for example only Xo, X2, X4, ... as random numbers; then
we never get all four elements of the set {Xn, Xn—24,Xn_31,Xn_s6}, and the
birthday spacings are no problem. An even better way to avoid the problem
is to discard consecutive batches of numbers, as suggested by Liischer; see
Section 3.2.2.) Similar remarks apply to the subtract-with-borrow and add-
with-carry generators of exercise 3.2.1.1-14.

K. Serial correlation test. We may also compute the following statistic:

n(U0U1+U1U2+' e+ Up_2Un_1+Un-1Up) —(U0+U1+' . '+Un_1)2
n(U¢+U2+--+U2_) —(Uo+ U+ +Upn-1)? '

”

C = (23)

This is the “serial correlation coefficient,” a measure of the extent to which U;1,
depends on Uj;.

Correlation coefficients appear frequently in statistical work. If we have n
quantities Uy, Uy, ..., Un—1 and n others Vp, Vi, ..., Vi1, the correlation
coefficient between them is defined to be

R (U;V) = (20) (T V)
JeZ U2 (D)) (D VE - (T V)

All summations in this formula are to be taken over the range 0 < 7 < n;
Eq. (23) is the special case V; = U(j+1) mod n- The denominator of (24) is zero
when Ug =U; = - = Uy 0or Vg =V = - = V,_1; we exclude that case
from discussion.

C =

: (24)

3.3.2 EMPIRICAL TESTS 73

A correlation coefficient always lies between —1 and +1. When it is zero or
very small, it indicates that the quantities U; and V; are (relatively speaking)
independent of each other, whereas a value of &1 indicates total linear depen-
dence. In fact, V; = a £ BU; for all j in the latter case, for some constants o
and (. (See exercise 17.)

Therefore it is desirable to have C in Eq. (23) close to zero. In actual
fact, since UplU; is not completely independent of U;U,, the serial correlation
coefficient is not expected to be ezactly zero. (See exercise 18.) A “good” value
of C' will be between y, — 20, and pu, + 20,, where

-1 2 n?

, o, = TR n > 2. (25)

We expect C to be between these limits about 95 percent of the time.

The formula for o2 in (25) is an upper bound, valid for serial correlations
between independent random variables from an arbitrary distribution. When
the U’s are uniformly distributed, the true variance is obtained by subtracting
2n=2+O(n""/3logn). (See exercise 20.)

Instead of simply computing the correlation coefficient between the obser-

vations (Up,Uy,...,Up—1) and their immediate successors (Ui, ...,Un—1,Up),
we can also compute it between (Up,Uy,...,U,—1) and any cyclically shifted
sequence (Ug,...,Un—1,Up,...,Us-1); the cyclic correlations should be small

for 0 < ¢ < n. A straightforward computation of Eq. (24) for all ¢ would
require about n? multiplications, but it is actually possible to compute all the
correlations in only O(nlogn) steps by using “fast Fourier transforms.” (See
Section 4.6.4; see also L. P. Schmid, CACM 8 (1965), 115.)

L. Tests on subsequences. External programs often call for random numbers
in batches. For example, if a program works with three random variables X, Y,
and Z, it may consistently invoke the generation of three random numbers at a
time. In such applications it is important that the subsequences consisting of
every third term of the original sequence be random. If the program requires
g numbers at a time, the sequences

Uo,Ug,Usg,...; U, Ugy1,Uzgs1,---5 .5 Ug—1,Uzq-1,Uszg-1,. .-

can each be put through the tests described above for the original sequence Uy,
Uy, Us, ...

Experience with linear congruential sequences has shown that these derived
sequences rarely if ever behave less randomly than the original sequence, unless g
has a large factor in common with the period length. On a binary computer with
m equal to the word size, for example, a test of the subsequences for ¢ = 8 will
tend to give the poorest randomness for all ¢ < 16; and on a decimal computer,
g = 10 yields the subsequences most likely to be unsatisfactory. (This can be
explained somewhat on the grounds of potency, since such values of g will tend
to lower the potency. Exercise 3.2.1.2-20 provides a more detailed explanation.)

74 RANDOM NUMBERS 3.3.2

M. Historical remarks and further discussion. Statistical tests arose
naturally in the course of scientists’ efforts to “prove” or “disprove” hypotheses
about various observed data. The best-known early papers dealing with the
testing of artificially generated numbers for randomness are two articles by M. G.
Kendall and B. Babington-Smith in the Journal of the Royal Statistical Society
101 (1938), 147-166, and*in the supplement to that journal, 6 (1939), 51-61.
Those papers were concerned with the testing of random digits between 0 and 9,
rather than random real numbers; for this purpose, the authors discussed the
frequency test, serial test, gap test, and poker test, although they misapplied
the serial test. Kendall and Babington-Smith also used a variant of the coupon
collector’s test; the method described in this section was introduced by R. E.
Greenwood in Math. Comp. 9 (1955), 1-5.

The run test has a rather interesting history. Originally, tests were made
on runs up and down at once: A run up would be followed by a run down, then
another run up, and so on. Note that the run test and the permutation test
do not depend on the uniform distribution of the U’s, but only on the fact that
U; = U; occurs with probability zero when i # j; therefore these tests can be
applied to many types of random sequences. The run test in primitive form was
originated by J. Bienaymé [Comptes Rendus Acad. Sci. Paris 81 (1875), 417~
423]. Some sixty years later, W. O. Kermack and A. G. McKendrick published
two extensive papers on the subject (Proc. Royal Society Edinburgh 57 (1937),
228-240, 332-376]; as an example they stated that Edinburgh rainfall between
the years 1785 and 1930 was “entirely random in character” with respect to the
run test (although they examined only the mean and standard deviation of the
run lengths). Several other people began using the test, but it was not until
1944 that the use of the chi-square method in connection with this test was
shown to be incorrect. A paper by H. Levene and J. Wolfowitz in Annals Math.
Stat. 15 (1944), 58-69, introduced the correct run test (for runs up and down,
alternately) and discussed the fallacies in earlier misuses of that test. Separate
tests for runs up and runs down, as proposed in the text above, are more suited
to computer application, so we have not given the more complex formulas for
the alternate-up-and-down case. See the survey paper by D. E. Barton and C. L.
Mallows, Annals Math. Stat. 36 (1965), 236-260.

Of all the tests we have discussed, the frequency test and the serial corre-
lation test seem to be the weakest, in the sense that nearly all random number
generators pass them. Theoretical grounds for the weakness of these tests are
discussed briefly in Section 3.5 (see exercise 3.5-26). The run test, on the other
hand, is rather strong: The results of exercises 3.3.3-23 and 24 suggest that
linear congruential generators tend to have runs somewhat longer than normal
if the multiplier is not large enough, so the run test of exercise 14 is definitely
to be recommended.

The collision test is also highly recommended, since it has been specially
designed to detect the deficiencies of many poor generators that have unfortu-
nately become widespread. Based on ideas of H. Delgas Christiansen [Inst. Math.
Stat. and Oper. Res., Tech. Univ. Denmark (October 1975), unpublished], this

3.3.2 EMPIRICAL TESTS 75

test was the first to be developed after the advent of computers; it is specifically
intended for computer use, and unsuitable for hand calculation.

The reader probably wonders, “Why are there so many tests?” It has been
said that more computer time is spent testing random numbers than using them
in applications! This is untrue, although it is possible to go overboard in testing.

The need for making several tests has been amply documented. People have
found, for example, that some numbers generated by a variant of the middle-
square method have passed the frequency test, gap test, and poker test, yet
flunked the serial test. Linear congruential sequences with small multipliers have
been known to pass many tests, yet fail on the run test because there are too
few runs of length one. The maximum-of-¢ test has also been used to ferret out
some bad generators that otherwise seemed to perform respectably. A subtract-
with-borrow generator fails the gap test when the maximum gap length exceeds
the largest lag; see Vattulainen, Kankaala, Saarinen, and Ala-Nissila, Computer
Physics Communications 86 (1995), 209-226, where a variety of other tests are
also reported. Lagged Fibonacci generators, which are theoretically guaranteed
to have equally distributed least-significant bits, still fail some simple variants of
the 1-bit equidistribution test (see exercises 31 and 35, also 3.6-14).

Perhaps the main reason for doing extensive testing on random number
generators is that people misusing Mr. X’s random number generator will hardly
ever admit that their programs are at fault: They will blame the generator, until
Mr. X can prove to them that his numbers are sufficiently random. On the other
hand, if the source of random numbers is only for Mr. X’s personal use, he might
decide not to bother to test them, since the techniques recommended in this
chapter have a high probability of being satisfactory.

As computers become faster, more random numbers are consumed than ever
before, and random number generators that once were satisfactory are no longer
good enough for sophisticated applications in physics, combinatorics, stochastic
geometry, etc. George Marsaglia has therefore introduced a number of stringent
tests, which go well beyond classical methods like the gap and poker tests, in
order to meet the new challenges. For example, he found that the sequence
Xnt1 = (62605X, -+ 113218009) mod 22° had a noticeable bias in the following
experiment: Generate 22! random numbers X,, and extract their 10 leading bits
Y, = | X,/2'%]. Count how many of the 22° possible pairs (y,y’) of 10-bit
numbers do not occur among (Y1,Y2), (Y2,Y3), ..., (Ya21_1, Y221). There ought
to be about 141909.33 missing pairs, with standard deviation =~ 290.46 (see
exercise 34). But six consecutive trials, starting with X; = 1234567, produced
counts that were all between 1.5 and 3.5 standard deviations too low. The
distribution was a bit too “fat” to be random — probably because 22! numbers
is a significant fraction, 1/256, of the entire period. A similar generator with
multiplier 69069 and modulus 23° proved to be better. Marsaglia and Zaman call
this procedure a “monkey test,” because it counts the number of two-character
combinations that a monkey will miss after typing randomly on a keyboard
with 1024 keys; see Computers and Math. 26,9 (November 1993), 1-10, for the
analysis of several monkey tests.

76 RANDOM NUMBERS 3.3.2

EXERCISES

1. [10] Why should the serial test described in part B be applied to (Yo,11), (Y2, ¥3),
., (Yan—2, Yan—1) instead of to (Yo, Y1), (Y1,Y2), ..., (Yaz1,Ya)?

2. [10] State an appropriate way to generalize the serial test to triples, quadruples,
etc., instead of pairs.

3. [M20] How many U’s need to be examined in the gap test (Algorithm G) before
n gaps have been found, on the average, assuming that the sequence is random? What
is the standard deviation of this quantity?

4. [M12] Prove that the probabilities in (4) are correct for the gap test.

5. [M23] The “classical” gap test used by Kendall and Babington-Smith considers
the numbers Uy, Uy, ..., Un-1 to be a cyclic sequence with Un; identified with Uj.
Here N is a fixed number of U’s that are to be subjected to the test. If n of the numbers
Us, ..., Un—1 fall into the range o < U; < (3, there are n gaps in the cyclic sequence.
Let Z. be the number of gaps of length r, for 0 < r < t, and let Z; be the number of
gaps of length > t; show that the quantity V = >, .,(Zr — np,)?/np, should have
the chi-square distribution with ¢ degrees of freedom, in the limit as N goes to infinity,
where p, is given in Eq. (4).

6. [{0] (H. Geiringer.) A frequency count of the first 2000 decimal digits in the
representation of e = 2.71828... gave a x? value of 1.06, indicating that the actual
frequencies of the digits 0, 1, ..., 9 are much too close to their expected values to be
considered randomly distributed. (In fact, x? > 1.15 with probability 99.9 percent.)
The same test applied to the first 10,000 digits of e gives the reasonable value x? = 8.61;
but the fact that the first 2000 digits are so evenly distributed is still surprising. Does
the same phenomenon occur in the representation of e to other bases? [See AMM 72
(1965), 483-500.]

7. [08] Apply the coupon collector’s test procedure (Algorithm C), with d = 3 and
n = 7, to the sequence 1101221022120202001212201010201121. What lengths do the
seven subsequences have?

8. [M22] How many U’s need to be examined in the coupon collector’s test, on the
average, before n complete sets have been found by Algorithm C, assuming that the
sequence is random? What is the standard deviation? [Hint: See Eq. 1.2.9-(28).]

9. [M21] Generalize the coupon collector’s test so that the search stops as soon as
w distinct values have been found, where w is a fixed positive integer less than or equal
to d. What probabilities should be used in place of (6)?

10. [M23] Solve exercise 8 for the more general coupon collector’s test described in
exercise 9.

11. [00] The “runs up” in a particular permutation are displayed in (g); what are the
“runs down” in that permutation?

12. [20] Let Uo, Ui, ..., Un_1 be n distinct numbers. Write an algorithm that
determines the lengths of all ascending runs in the sequence. When your algorithm
terminates, COUNT[r] should be the number of runs of length 7, for 1 < r < 5, and
COUNT[6] should be the number of runs of length 6 or more.

13. [M23] Show that (16) is the number of permutations of p+¢+1 distinct elements
having the pattern (15).

3.3.2 EMPIRICAL TESTS 7

» 14. [M15] If we “throw away” the element that immediately follows a run, so that
when X is greater than X;;1 we start the next run with X 2, the run lengths are
independent, and a simple chi-square test may be used (instead of the horribly compli-
cated method derived in the text). What are the appropriate run-length probabilities
for this simple run test?

15. [M10] In the maximum-of-t test, why are Vg, V{, ..., V;_, supposed to be uni-
formly distributed between zero and one?

» 16. [15] Mr. J. H. Quick (a student) wanted to perform the maximum-of-t test for
several different values of ¢.

a) Letting Z;; = max(U;,Uj41,...,Uj+t—1), he found a clever way to go from the
sequence Zo(:—1), Z1(t-1) - - -, t0 the sequence Zo, Z1t, ..., using very little time
and space. What was his bright idea?

b) He decided to modify the maximum-of-t method so that the jth observation would
be max(Uj,...,Ujt+¢—1); in other words, he took V; = Z;; instead of V; = Z;); as
the text says. He reasoned that all of the Z’s should have the same distribution,
so the test is even stronger if each Zj;, 0 < j < n, is used instead of just every tth
one. But when he tried a chi-square equidistribution test on the values of V}, he
got extremely high values of the statistic V, which got even higher as ¢ increased.
Why did this happen?

17. [M25] Given any numbers Uy,...,Un—1,Vo,...,Vn-1, let their mean values be
_ 1 o1
uzg ZU’“’ vzﬁ ZVk.
0<k<n 0<k<n

a) Let U, = U, — 4, Vi = V,, — 0. Show that the correlation coefficient C given in
Eq. (24) is equal to

> U,;V,;/\/ Sk > v

0<k<n 0<k<n 0<k<n

b) Let C = N/D, where N and D denote the numerator and denominator of the
expression in part (a). Show that N? < D?, hence —1 < C < 1; and obtain a
formula for the difference D> — N?. [Hint: See exercise 1.2.3~30.] 4

c) If C = £1, show that aUj + Vi =7, 0 < k < n, for some constants «, (3, and T,
not all zero.

18. [M20] (a) Show that if n = 2, the serial correlation coefficient (23) is always equal
to —1 (unless the denominator is zero). (b) Similarly, show that when n = 3, the serial
correlation coefficient always equals —3. (c) Show that the denominator in (23) is zero
if and only if Uo = U1 = =Un-1.

19. [M30] (J. P. Butler.) Let Uo, ..., Un-1 be independent random variables having

the same distribution. Prove that the expected value of the serial correlation coeffi-
cient (23), averaged over all cases with nonzero denominator, is —1/(n — 1),

20. [HM41] Continuing the previous exercise, prove that the variance of (23) is equal
to n?/(n—1)%(n—2) —n® E((Uo—U1)*/ D?)/2(n—2), where D is the denominator of (23)
and E denotes the expected value over all cases with D # 0. What is the asymptotic
value of E((Up — U1)*/D?) when each Uj is uniformly distributed?

21. [19] What value of f is computed by Algorithm P if it is presented with the
permutation (1,2,9,8,5,3,6,7,0,4)?

78 RANDOM NUMBERS 3.3.2

22. [18] For what permutation of {0, 1,2,3,4,5,6,7,8,9} will Algorithm P produce
the value f = 10247

23. [M22] Let (Y,) and (Y;) be integer sequences having period lengths A and N,
respectively, with 0 < Y,,Y! < d; also let Z, = (Y, +Y,,) mod d, where r is chosen
at random between 0 and A’ — 1. Show that (Z,) passes the t-dimensional serial test at
least as well as (Y;,) does, it the following sense: Let P(z1,...,z¢) and Q(z1,...,Tt)
be the probabilities that the t-tuple (z1,...,z:) occurs in (Yn) and (Zn):

1 A—-1

P(z1,...,T¢) = X;[(Yn,...,ym_l): (T1,...,24)];
1 A-1A'—1
Qz1s- @) = 1 ; ; [(Zny. .oy Zngea) = (1,5 21)].

Then Z (Q(z1,... o) — d—t)2 < Z (P(z1,...,%t) — d—t)z.

(T1,50005%¢) (T1,--%t)
24. [HMS35] (G. Marsaglia.) Show that the serial test on n overlapping t-tuples
(Y1,Ys,..., Y1), (Y2, Y3,..., Yeq1), .o, (Yn,Y1,...,Y;-1) can be carried out as follows:
For each string a = a1...am with 0 < a; < d, let N(c) be the number of times
o occurs as a substring of Y12 ... Y, Y1 ... Ymo1, and let P(a) = P(a1)... P(am) be
the probability that a occurs at any given position; individual digits may occur with

differing probabilities P(0), P(1), ..., P(d —1). Compute the statistic
1 N(a) 1 N(a)
V= g_:t Pl@) n |a|;—1 Pla)

Then V should have the chi-square distribution with d* —d*~" degrees of freedom when
n is large. [Hint: Use exercise 3.3.1-25.]

25. [M46] Why is C7'C2CT" &~ —6C; ", when Ci and C: are the matrices defined
after (22)7

26. [HM30] Let Uy, Ua, ..., Un be independent uniform deviates in [0..1), and let
Uny < Uy < -+ < Uy be their values after sorting; also define the spacings S1 =
Uz — Uy -y Snet = Uy = U1y, Sno= Uy +1 = Uy and sorted spacings

Sy < -+ < Sy as in the birthday spacings test. It is convenient in the following
calculations to use the notation z7 as an abbreviation for the expression z"[z > 0].

a) Given any real numbers s1, Sz, ..., Sn, Prove that the simultaneous inequalities
Si > s1, S2 > s2, ..., Sn > sn occur with probability (1 —s1 —s2— -+ — sn)’}:l.

b) Consequently the smallest spacing S(1) is < s with probability 1 — (1 — ns)’}r—l.

¢) What are the distribution functions Fi(s) = Pr(Sw) < s),for 1 <k <n?

d) Calculate the mean and variance of each Sx).

27. [HM26] (Iterated spacings.) In the notation of the previous exercise, show that
the numbers Si = nS(l), Sé = (TL - 1)(5(2) — S(l)), ey S;l = 1(S(n) — S(n—l)) have
the same joint probability distribution as the original spacings Si, ..., Sn of uniform
deviates. Therefore we can sort them into order, Sy < -+ < S(,, and repeat this
transformation to get yet another set of random spacings Sy, ..., Sy, etc. Each
successive set of spacings S l(k), ey 5% can be subjected to the Kolmogorov—-Smirnov

3.3.2 EMPIRICAL TESTS 79

test, using ‘
iy =va—T1 max (Lo -5 s,
1<j<n\n —1
v/ j—1
n-1=vVn-—1 max(Sl(k)+...+S§k)__]__).
1<j<n J n—1
Examine the transformation from (S1,...,5.) to (S1,...,S5,) in detail in the cases

n = 2 and n = 3; explain why continued repetition of this process will break down
eventually when it is applied to computer-generated numbers with finite precision.
(One way to compare random number generators is to see how long they can continue
to survive such a torture test.)

28. [M26] Let bnrs(m) be the number of n-tuples (y1,-..,Yn) with 0 < y; < m that
have exactly r equal spacings and s zero spacings. Thus, the probability that R = r
in the birthday spacings test is 3710 bnrs(m)/m™. Also let p,(m) be the number of
partitions of m into at most n parts (exercise 5.1.1-15). (a) Express bnoo(m) in terms
of partitions. [Hint: Consider cases with small m and n.] (b) Show that there is a
simple relation between bn,s(m) and b(n—s)(r+1-s)0(m) when s > 0. (c) Deduce an
explicit formula for the probability that no spacings are equal.

29. [M35] Continuing exercise 28, find simple expressions for the generating functions
bur(2) = 3., 50 bnro(m)2z™/m, when r =0, 1, and 2.

30. [HM41] Continuing the previous exercises, prove that if m = n®/a we have

mn—ter/4 13a2 169a* + 20160 — 17280 — 41472¢ 3
n =]_ —_ -
Pa(m) = ST =1 < 288n 16588802 +O(n))

for fixed a as n — co. Find a similar formula for g,(m), the number of partitions of m
into n distinct positive parts. Deduce the asymptotic probabilities that the birthday
spacings test finds R equal to 0, 1, and 2, to within O(1/n).

» 31. [M21] The recurrence Y, = (Yn_24 + Yn_55) mod 2, which describes the least
significant bits of the lagged Fibonacci generator 3.2.2—(7) as well as the second-least
significant bits of 3.2.2-(7'), is known to have period length 255 _1: hence every possible
nonzero pattern of bits (Y, Yn+1,. .., Yntssa) occurs equally often. Nevertheless, prove
that if we generate 79 consecutive random bits Y, ..., Ya47s starting at a random point
in the period, the probability is more than 51% that there are more 1s than 0Os. If we use
such bits to define a “random walk” that moves to the right when the bit is 1 and to the
left when the bit is 0, we’ll finish to the right of our starting point significantly more than
half of the time. [Hint: Find the generating function ST G Pr(Yu+ - +Yoyrs = k) 28]
32. [M20] True or false: If X and Y are independent, identically distributed random
variables with mean 0, and if they are more likely to be positive than negative, then
X +Y is more likely to be positive than negative.

33. [HM32] Find the asymptotic value of the probability that k + [consecutive bits
generated by the recurrence Y, = (Yn—; + Yn_) mod 2 have more 1s than 0s, when
k > 2l and the period length of this recurrence is 2% — 1, assuming that k is large.
34. [HM29] Explain how to estimate the mean and variance of the number of two-
letter combinations that do not occur consecutively in a random string of length n
on an m-letter alphabet. Assume that m is large and n = 2m?.

» 35. [HMS32] (J. H. Lindholm, 1968.) Suppose we generate random bits (Yn) using the
recurrence

Y, =(a1Yn-1 +a2Yn_2+ -+ arYn_x) mod 2,

80 RANDOM NUMBERS 3.3.2

for some choice of a1, ..., ax such that the period length is 2* — 1; start with Yy =1
and Y1 = - = Vi1 = 0. Let Z, = (=1)¥»*! = 2Y,, — 1 be a random sign, and
consider the statistic S;n = Zn + Znt1 + - + Zntm—-1, where n is a random point in
the period.

a) Prove that ES,, = m/N, where N = 2 — 1.

b) What is ES5,? Assume that m < N. Hint: See exercise 3.2.2-16.

¢) What would E S,,, and E S2, be if the Z’s were truly random?

d) Assuming that m < N, prove that ES2, = m*/N — 6B(N + 1)/N, where

B = Z [(Yit1Yitz .. . Yige—1)e = (Vi1 Yiqe ... Yige—1)2] (m — 7).

0<i<j<m

e) Evaluate B in the special case considered in exercise 31: m = 79 and Y,, =
(Yn_24 + Yn_s5) mod 2.

*3.3.3. Theoretical Tests

Although it is always possible to test a random number generator using the
methods in the previous section, it is far better to have a priori tests: theoretical
results that tell us in advance how well those tests will come out. Such theoretical
results give us much more understanding about the generation methods than
empirical, trial-and-error results do. In this section we shall study the linear
congruential sequences in more detail; if we know what the results of certain
tests will be before we actually generate the numbers, we have a better chance
- of choosing a, m, and c properly.

The development of this kind of theory is quite difficult, although some
progress has been made. The results obtained so far are generally for statistical
tests made over the entire period. Not all statistical tests make sense when they
are applied over a full period —for example, the equidistribution test will give
results that are too perfect—but the serial test, gap test, permutation test,
maximum test, etc., can be fruitfully analyzed in this way. Such studies will
detect global nonrandomness of a sequence, that is, improper behavior in very
large samples.

The theory we shall discuss is quite illuminating, but it does not eliminate
the need for testing local nonrandomness by the methods of Section 3.3.2. Indeed,
the task of proving anything useful about short subsequences appears to be very
hard. Only a few theoretical results are known about the behavior of linear
congruential sequences over less than a full period; they will be discussed at the
end of Section 3.3.4. (See also exercise 18.)

Let us begin with a proof of a simple a priori law, for the least complicated
case of the permutation test. The gist of our first theorem is that we have
Xnt1 < X, about half the time, provided that the sequence has high potency.

Theorem P. Let a, ¢, and m generate a linear congruential sequence with
maximum period; let b = a — 1 and let d be the greatest common divisor of m
and b. The probability that X,.1 < X, is equal to % + r, where

r = (2(cmod d) — d)/2m; (1)
hence |r| < d/2m.

3.3.3 THEORETICAL TESTS 81
Proof. The proof of this theorem involves some techniques that are of interest
in themselves. First we define

s(z) = (az + c) mod m. (2)

Thus, Xn4+1 = $(X,), and the theorem reduces to counting the number of
integers z such that 0 < z < m and s(x) < z, since every such integer occurs
somewhere in the period. We want to show that this number is

L(m +2(cmod d) — d). (3)

The function [(z — s(z))/m] is equal to 1 when z > s(z), and it is 0
otherwise; hence the count we wish to obtain can be written simply as

[g o (1)

o<z <m o<z <m

(=) w

o<z<m

(Recall that [—y] = —|yJ and b = @ — 1.) Such sums can be evaluated by the
method of exercise 1.2.4-37, where we have proved that
Z thj—i—cJ _(h=1D(k-1) g

- > + ;1+9LC/9J, g =ged(h,k), (5)

0<j<k

whenever h and k are integers and k£ > 0. Since a is relatively prime to m, this
formula yields

ar +c¢ a—1)(m—1
I e L B
o<Lz<m -
Z tbx;c :(b—l)ém_l)_+_dgl+c_(cmodd),

0<z<m
and (3) follows immediately. 1|

The proof of Theorem P indicates that a priori tests can indeed be carried
out, provided that we are able to deal satisfactorily with sums involving the | |
and [] functions. In many cases the most powerful technique for dealing with
floor and ceiling functions is to replace them by two somewhat more symmetrical
operations:

6(z) = |z] + 1 - [z] = [z is an integer];
() =z — |z] - } + 36(z) =2 — [zl + § — 38(z) =z — §(l=] + []). (D)

The latter function is a “sawtooth” function familiar in the study of Fourier
series: its graph is shown in Fig. 7. The reason for choosing to work with ((z))
rather than |z| or [z] is that ((x)) possesses several very useful properties:

((=2)) = -((=)); (8)

82 RANDOM NUMBERS 3.3.3

P
AV e

Fig. 7. The sawtooth function ((z)).

((z+n))=((z)), integer n; (9)
((nz)) =((z))+ <<x+ %)) +- <<x+ E—_—l)), integer n > 1. (10)

n
(See exercise 2.)

In order to get some practice working with these functions, let us prove
Theorem P again, this time without relying on exercise 1.2.4-37. With the help
of Egs. (7), (8), (9), we can show that

o] 2o (=) 1 h(==2)
1
T m 2

(11)

since (z — s(x))/m is never an integer. Now

y ol

o<z <m
since both z and s(z) take on each value of {0,1,...,m — 1} exactly once; hence
(11) yields
r—s(z)] bx + ¢ m
> = () oW
0<z<m 0<Lz<m

Let b = bpd, m = myd, where by and mg are relatively prime. We know that
(box) mod mg takes on the values {0, 1, ..., mg — 1} in some order as z varies
from 0 to mo — 1. By (9) and (10) and the fact that

(=) = (5))
Z (50) = = (55

0<z<myg

we have

3.3.3 THEORETICAL TESTS 83

s 3 (BB -a(@) o

0<x<mg

Theorem P follows immediately from (12) and (13).

One consequence of Theorem P is that practically any choice of a and ¢ will
give a reasonable probability that X,4+1 < X, at least over the entire period,
except those that have large d. A large value of d corresponds to low potency,
and we already know that generators of low potency are undesirable.

The next theorem gives us a more stringent condition for the choice of a
and c; we will consider the serial correlation test applied over the entire period.
The quantity C defined in Section 3.3.2, Eq. (23), is

o~ o (£ (2 ()

0<z<m 0<z<m

Let 2’ be the element such that s(z') = 0. We have

s(z) = m<<“x7: C)) + Do) (15)

The formulas we are about to derive can be expressed most easily in terms of
the sum

aromn 3 () w

an important function that arises in several mathematical problems. It is called
a generalized Dedekind sum, since Richard Dedekind introduced the function
o(h,k,0) in 1876 when commenting on one of Riemann’s incomplete manuscripts.
[See B. Riemann’s Gesammelte math. Werke, 2nd ed. (1892), 466-478.]

Using the well-known formulas

-1 m(m

g x:______m(m) and E 1 = (
2

0<z<m 0<z<m

3)(m—1)
3 bl

it is a straightforward matter to transform Eq. (14) into

mo(a,m,c) —3+6(m—2' —c)

C =
m?2 —1

(17)

(See exercise 5.) Since m is usually very large, we may discard terms of order
1/m, and we have the approximation

C =~ o(a,m,c)/m, (18)

with an error of less than 6/m in absolute value.

The serial correlation test now reduces to determining the value of the
Dedekind sum o(a,m,c). Evaluating o(a,m,c) directly from its definition (16)
is hardly any easier than evaluating the correlation coefficient itself directly, but
fortunately there are simple methods available for computing Dedekind sums
quite rapidly.

84 RANDOM NUMBERS 3.3.3

Lemma B (“Reciprocity law” for Dedekind sums). Let h, k, ¢ be integers. If
0<ec<k,0<h<k,andifh is relatively prime to k, then
k 1 6c2
h c 6 |~ c

o(h, k) + ol by Q) = 24 1 o+ - hJ —3e(hyc), (10)

where

e(h,c) = [c=0] + [cmod h #0]. (20)

Proof. We leave it to the reader to prove that, under these hypotheses,

6 2
o(h) + alh, by) = ok, 0) + 0k, h,0) + 5 — 6 L%

(See exercise 6.) The lemma now must be proved only in the case ¢ = 0.

The proof we will give, based on complex roots of unity, is essentially due
to L. Carlitz. There is actually a simpler proof that uses only elementary
manipulations of sums (see exercise 7) —but the following method reveals more
of the mathematical tools that are available for problems of this kind and it is
therefore much more instructive.

Let f(z) and g(z) be polynomials defined as follows:

fl@)=l+z+ - +2"1 =" -1)/(z - 1)
g(z)=z+22% + -+ (k— 1)z (22)
=zf'(zx) =kz"/(z — 1) —z(z* - 1)/(z — 1)2.
If w is the complex kth root of unity e?™/¥, we have by Eq. 1.2.9-(13)

J —3e(h,c) + 3. (21)

1 . .
Z Z wg(wz) =rz”, if0<r<k. (23)
0<i<k
Set z = 1; then g(w’z) = k/(w? — 1) if j # 0, otherwise it equals k(k — 1)/2.
Therefore
B w™IT 1 e .
rmod k = Z 1 + 5(k—1), if r is an integer.
0<j<k

(Eq. (23) shows that the right-hand side equals 7 when 0 < r < k, and it is
unchanged when multiples of k are added to r.) Hence

(D)=2.2 55w 2() g

0<ji<k

This important formula, which holds whenever r is an integer, allows us to reduce
many calculations involving ((r/k)) to sums involving kth roots of unity, and it
brings a whole new range of techniques into the picture. In particular, we get
the following formula when A L k:

—ir w—jh'r

a(h,k,0)+§(—]—ck;—1)=% > > Y o (2p)

O<r<k O<i<k O<i<k

3.3.3 THEORETICAL TESTS 85

The right-hand side of this formula may be simplified by carrying out the sum
on r; we have) ,w™ = f(w®) = 0 if smodk # 0. Equation (25) now
reduces to

3(k—1) 12 1

k F e I =D - 1)

o(h,k,0) +

(26)

A similar formula is obtained for o(k, h,0), with { = e?m/* replacing w.

It is not obvious what we can do with the sum in (26), but there is an elegant
way to proceed, based on the fact that each term of the sum is a function of w?,
where 0 < j < k; hence the sum is essentially taken over the kth roots of unity
other than 1. Whenever z,, z2, ..., z, are distinct complex numbers, we have
the identity

= 1
; (zj — 1) ... (25 — zj—1)(z — z5)(z; — Tj1) - - (5 — Zn)
1
= y 2
(z—z1)...(x — zn) (=7)
which follows from the usual method of expanding the right-hand side into partial
fractions. Moreover, if ¢(z) = (z —y1)(z — y2) ... (T — Ym), we have

qW) =y — 1) (W — Y1) — Yj+1) - - (Y5 — Um); (28)

this identity may often be used to simplify expressions like those in the left-
hand side of (27). When h and k are relatively prime, the numbers w, w?, ...,
wk=1 ¢, €2, ..., ("1 are all distinct; we can therefore consider formula (27) in
the special case of the polynomial (z — w)...(z —w* 1) (z - ¢)...(x - ¢* 1) =
(z* — 1)(z" — 1)/(z — 1)2, obtaining the following identity in z:

1 CI(¢7 —1)2 1 wl (w? —1)2 (x—1)2

B2 <<jk£1)<x—<j> e G @D
0<j<h . 0<j<k

This identity has many interesting consequences, and it leads to numerous reci-

procity formulas for sums of the type given in Eq. (26). For example, if we

differentiate (29) twice with respect to =z and let z — 1, we find that

2 G -1 2 wi(w? — 1)?
2 T D007 Tk, 2,

0<j<h

Replace j by h — j and by k& — j in these sums and use (26) to get

% (a(k,h, 0) + i(hT_l—)> + % (a(h,k,O) + ?’(kk—;l)

EYLINLINE S S S
~ 6\k h ' hk
which is equivalent to the desired result. |

86 RANDOM NUMBERS . 3.3.3

Lemma B gives us an explicit function f(h,k,c) such that
o(h,k,c) = f(h,k,c) — o(k,h,c) (30)

whenever 0 < h < k, 0 < ¢ < k, and h is relatively prime to k. From the
definition (16) it is clear that

o(k,h,c) = o(kmod h, h, cmod h). (31)

Therefore we can use (30) iteratively to evaluate o(h, k, c), using a process that
reduces the parameters as in Euclid’s algorithm.

Further simplifications occur when we examine this iterative procedure more
closely. Let us set m; = k, ma = h, 1 = ¢, and form the following tableau:

my = aymg + m3 ¢y =bymy + ¢
My = aymga + My c2 = bamz + c3 (32)
m3 = azmy + Ms c3 = bgmy + c4
R M4 = agamMs cq4 = byms + 5
Here
a; = |m;/mjn], bj = lcj/mjs1], (33)
miyo = My mod LUZEST Cj+1 = Cj mod mita,
and it follows that
0 <mj; < my, 0 <cj <my. (34)

We have assumed for convenience that Euclid’s algorithm terminates in (32)
after four iterations; this assumption will reveal the pattern that holds in the
general case. Since h and k were relatively prime to start with, we must have
ms =1 and ¢; = 0 in (32).

Let us assume also that c3 # 0 but ¢4 = 0, in order to get a feeling for the
effect this has on the recurrence. Equations (30) and (31) yield

o(h,k,c) = a(mg, my,c1)
= f(ma,m1,c1) — o(m3z, ma,C2)
= f(ma,my,c1) — f(m3,ma,c2) + f(ma, ms,c3) — f(ms, my, cs).
The first part, h/k + k/h, of the formula for f(h,k,c) in (19) contributes
m2 n m m3 Mg M4 M3 Mp My
my Me M M3 M3z Mg M4 Mg
to the total, and this simplifies to
h m; —m3 mg—m4+m3—m5 n h

-+ - —— =—=+4+a —az +asz — aq.
k mo ms3 my s k

The next part of (19), 1/hk, also leads to a simple contribution; according to
Eq. 4.5.3-(9) and other formulas in Section 4.5.3, we have

1 1 1 1 h'

- + — = — — 1’
mimsa main3 M3y M4y k (35)

3.3.3 THEORETICAL TESTS 87

where A’ is the unique integer satisfying
h'h =1 (modulo k), 0<h’' <k (36)

Adding up all the contributions, and remembering our assumption that ¢4 = 0
(so that e(my,cs) = 0, see (20)), we find that

h+h
O'(h,k),c) = T+(a1 — Qs +a3—a4)—6(bl —b2+b3—b4)

2 2 2 2
c c c c
1 2 3 4
+6 — + — + 2,
myma mam3 m3my Uz

in terms of the assumed tableau (32). Similar results hold in general:

Theorem D. Let h, k, ¢ be integers with 0 < h < k, 0 < ¢ < k, and h relatively
prime to k. Form the “Euclidean tableau” as defined in (33) above, and assume

that the process stops after t steps with my1 = 1. Let s be the smallest subscript
such that ¢c; = 0, and let h' be defined by (36). Then

2

h+h ; C;
o(h,k,c) = ——+k—— + Z (—1)7+! (aj — 6b; +6————z——)

1<t MMM+
+3((-1)° +6.1) =2+ (-1)% 1
Euclid’s algorithm is analyzed carefully in Section 4.5.3; the quantities a;,
az, ..., a; are called the partial quotients of h/k. Theorem 4.5.3F tells us that
the number of iterations, ¢, will never exceed log, k; hence Dedekind sums can

be evaluated rapidly. The terms 032- /mjm;y1 can be simplified further, and
an efficient algorithm for evaluating o(h, k,c) appears in exercise 17.

Now that we have analyzed generalized Dedekind sums, let us apply our
knowledge to the determination of serial correlation coefficients.

Example 1. Find the serial correlation when m = 23° a =234 + 1, c = 1.
Solution. We have

C=(2%0(2* +1,2%,1) =3 +6(2% — (2%* —1) - 1)) /(27 — 1),
by Eq. (17). To evaluate o(23% + 1, 235 1), we can form the tableau

m1:235 01:1

m2=234+1 a1 =1 =1 by =0
mg=2%-1 ay=1 cs=1 by=0
m4:2 a3:233—1 C4:1 b3:0
m5:1 a4:2 05:0 b4:1

Since A’ = 234 4+ 1, the value according to Theorem D comes to 232 — 3 4+ 2732,
Thus

C=(2%+5)/(20-1)=%+¢ | <27%. (37)

Such a correlation is much, much too high for randomness. Of course, this
generator has very low potency, and we have already rejected it as nonrandom.

88 RANDOM NUMBERS _ 3.3.3

Example 2. Find the approximate serial correlation when m = 10'°, ¢ = 10001,
c = 2113248653.

Solution. We have C = o(a, m,c)/m, and the computation proceeds as follows:

my = 10000000000 c1 = 2113248653

my = 10001 , a; =999900 ¢y = 7350 by = 211303

mg = 100 as = 100 C3 = 50 b2 = 73

nmy = 1 az = 100 Cq = 0 b3 = 50
o(ma,m,c1) = —31.6926653544; C~-3-107% (38)

This is a very respectable value of C' indeed. But the generator has a potency
of only 3, so it is not really a very good source of random numbers in spite of
the fact that it has low serial correlation. It is necessary to have a low serial
correlation, but not sufficient.

Example 3. Estimate the serial correlation for general a, m, and c.

Solution. If we consider just one application of (30), we have

C2

m c
o(a,m,c) ~ —+ 6a_m - 6; —o(m,a,c).

Now |o(m,a,c)| < a by exercise 12, and therefore

Cmmzl(l—6%+6<£)2>- (39)

m a m

The error in this approximation is less than (a 4+ 6)/m in absolute value.

The estimate in (39) was the first theoretical result known about the random-
ness of congruential generators. R. R. Coveyou [JACM 7 (1960), 72-74] obtained
it by averaging over all real numbers x between 0 and m instead of considering
only the integer values (see exercise 21); then Martin Greenberger [Math. Comp.
15 (1961), 383-389] gave a rigorous derivation including an estimate of the
error term.

So began one of the saddest chapters in the history of computer science!
Although the approximation above is quite correct, it has been grievously mis-
applied in practice; people abandoned the perfectly good generators they had
been using and replaced them by terrible generators that looked good from the
standpoint of (39). For more than a decade, the most common random number
generators in daily use were seriously deficient, solely because of a theoretical
advance.

A little Learning is a dang’rous Thing.
— ALEXANDER POPE, An Essay on Criticism, 215 (1711)

If we are to learn by past mistakes, we had better look carefully at how (39)
has been misused. In the first place people assumed uncritically that a small
serial correlation over the whole period would be a pretty good guarantee of

3.3.3 THEORETICAL TESTS 89

randomness; but in fact it doesn’t even ensure a small serial correlation for 1000
consecutive elements of the sequence (see exercise 14).

Secondly, (39) and its error term will ensure a relatively small value of C' only
when a & \/m; therefore people suggested choosing multipliers near v/m. In fact,
we shall see that nearly all multipliers give a value of C that is substantially less
than 1/4/m, hence (39) is not a very good approximation to the true behavior.
Minimizing a crude upper bound for C' does not minimize C'.

In the third place, people observed that (39) yields its best estimate when

c/m = % + %\/5, (40)

since these values are the roots of 1 — 6z + 622 = 0. “In the absence of any other
criterion for choosing ¢, we might as well use this one.” The latter statement
is not incorrect, but it is misleading at best, since experience has shown that
the value of ¢ has hardly any influence on the true value of the serial correlation
when a is a good multiplier; the choice (40) reduces C substantially only in cases
like Example 2 above. And we are fooling ourselves in such cases, since the bad
multiplier will reveal its deficiencies in other ways.

Clearly we need a better estimate than (39); and such an estimate is now
available thanks to Theorem D, which stems principally from the work of Ulrich
Dieter [Math. Comp. 25 (1971), 855-883]. Theorem D implies that o(a,m,c)
will be small if the partial quotients of a/m are small. Indeed, by analyzing
generalized Dedekind sums still more closely, it is possible to obtain quite a
sharp estimate:

Theorem K. Under the assumptions of Theorem D, we always have

1 1 1
—3 a; — E aj < o(h,k,c) < E aj+ 5 E a4~ 5 (41)
1<t 1<5<t 1<5<t 1<5<t
jodd jeven jodd jeven

Proof. See D. E. Knuth, Acta Arithmetica 33 (1978), 297-325, where it is

shown further that these bounds are essentially the best possible when large
partial quotients are present. |

Example 4. Estimate the serial correlation for a = 3141592621, m = 23°,
¢ odd.

Solution. The partial quotients of a/m are 10, 1, 14,1, 7,1, 1, 1, 3, 3, 3, 5, 2,
1,8,7,1,4,1, 2,4, 2; hence by Theorem K

-55 < o(a,m,c) < 67.5,

and the serial correlation is guaranteed to be extremely low for all c.

Note that this bound is considerably better than we could obtain from (39),
since the error in (39) is of order a/m; our “random” multiplier has turned out
to be much better than one specifically chosen to look good on the basis of (39).
In fact, it is possible to show that the average value of Z ._, a;, taken over all

90 RANDOM NUMBERS _ 3.3.3

multipliers a relatively prime to m, is

6
7—T—2—(1n m)? + O((log m)(log logm)*)
(see exercise 4.5.3-35). Therefore the probability that a random multiplier has
large Z;zl at, say larger than (logm)®*¢ for some fixed ¢ > 0, approaches
zero as m — oo. This substantiates the empirical evidence that almost all
linear congruential sequences have extremely low serial correlation over the entire
period.

The exercises below show that other a priori tests, such as the serial test over
the entire period, can also be expressed in terms of a few generalized Dedekind
sums. It follows from Theorem K that linear congruential sequences will pass
those tests provided that certain specified fractions (depending on a and m but
not on c¢) have small partial quotients. In particular, the result of exercise 19
implies that the serial test on pairs will be passed satisfactorily if and only if
a/m has no large partial quotients.

The book Dedekind Sums by Hans Rademacher and Emil Grosswald (Math.
Assoc. of America, Carus Monograph No. 16, 1972) discusses the history and
properties of Dedekind sums and their generalizations. Further theoretical tests,
including the serial test in higher dimensions, are discussed in Section 3.3.4.

EXERCISES — First Set
1. [M10] Express z mod y in terms of the sawtooth and ¢ functions.
2. [M20] Prove the “replicative law,” Eq. (10).

3. [HM22] What is the Fourier series expansion (in terms of sines and cosines) of
the function ((x))?

> 4. [M19] If m = 10", what is the highest possible value of d (in the notation of
Theorem P), given that the potency of the generator is 107

5. [M21] Carry out the derivation of Eq. (17).

6. [M27] Assume that hh' +kk' = 1.
a) Show, without using Lemma B, that

othko) =athk 0412 3 ((B2)) +6((52))

0<j<e
for all integers ¢ > 0.

hg E’l>>__2__l<l>- :
b) Showthat<<k>>+<<h = E 25 s if0<j<k.

¢) Under the assumptions of Lemma B, prove Eq. (21).

» 7. [M24] Give a proof of the reciprocity law (19), when ¢ = 0, by using the general
reciprocity law of exercise 1.2.4-45.

» 8. [M34] (L. Carlitz.) Let

san= 3 ((2)()

0<j<r

3.3.3 THEORETICAL TESTS 91

By generalizing the method of proof used in Lemma B, prove the following beautiful
identity due to H. Rademacher: If each of p,q,7 is relatively prime to the other two,

q T
44 3
p(p.q,m)+ p(q,r,p) + p(r,p,q) = - Ly p + s

(The reciprocity law for Dedekind sums, with ¢ = 0, is the special case r = 1.)

9. [M40] Is there a simple proof of Rademacher’s identity (exercise 8) along the lines
of the proof in exercise 7 of a special case?

10. [M20] Show that when 0 < h < k it is possible to express o(k — h, k, ¢) and
o(h,k,—c) easily in terms of o(h, k,c).
11. [M380] The formulas given in the text show us how to evaluate o(h,k,c) when h
and k are relatively prime and c is an integer. For the general case, prove that

a) o(dh,dk,dc) = o(h,k,c), for integer d > 0;

b) o(h, k, c+ 8) = o(h, k,c) + 6((h'c/k)), for integer c, real 0 < § < 1, h L k, and

hh' =1 (modulo k).

12. [M24] Show that if h is relatively prime to k and c is an integer, |o(h,k,c)| <
(k—1)(k —2)/k.
13. [M24] Generalize Eq. (26) so that it gives an expression for o(h, k, c).
14. [M20] The linear congruential generator that has m = 235 g =28 41 ¢=1,
was given the serial correlation test on three batches of 1000 consecutive numbers, and

the result was a very high correlation, between 0.2 and 0.3, in each case. What is the
serial correlation of this generator, taken over all 2°® numbers of the period?

15. [M21] Generalize Lemma B so that it applies to all real values of ¢, 0 < c¢ < k.

16. [M24] Given the Euclidean tableau defined in (33), let po = 1, p1 = a1, and
p; = a;jpj—1 + pj—2 for 1 < 7 < ¢t. Show that the complicated portion of the sum
in Theorem D can be rewritten as follows, making it possible to avoid noninteger
computations:

2

S I = S (1) (e +)P
1<;<t miMmi+1 M1 72

[Hint: Prove that lejgr(—l)j“/mjmjﬂ = (=1)"tpr1/mimeiq for 1 <7 <t]

17. [M22] Design an algorithm that evaluates o(h, k, c) for integers h, k, c satisfying
the hypotheses of Theorem D. Your algorithm should use only integer arithmetic (of
unlimited precision), and it should produce the answer in the form A + B/k where A
and B are integers. (See exercise 16.) If possible, use only a finite number of variables
for temporary storage, instead of maintaining arrays such as a1, a2, ..., a.

18. [M23] (U. Dieter.) Given positive integers h, k, z, let

S(h,k,c,2) = > ((hjljc»'

0<j<z=

Show that this sum can be evaluated in closed form, in terms of generalized Dedekind
sums and the sawtooth function. [Hint: When 2z < k, the quantity |j/k] — | (7 — z)/k]
equals 1 for 0 < j < z, and it equals 0 for z < 7 < k, so we can introduce this factor
and sum over 0 < j < k.|

92 RANDOM NUMBERS _ 3.3.3

» 19. [M23) Show that the serial test can be analyzed over the full period, in terms of
generalized Dedekind sums, by finding a formula for the probability that a < X, < 8
and o < Xnq1 < B when a, 8, o', 8’ are given integers with 0 < a <8 <m and
0< o < B < m. [Hint: Consider the quantity |(z — a)/m] — [(z — B8)/m] J
20. [M29] (U. Dieter.) Extend Theorem P by obtaining a formula for the probability
that X, > Xni1 > Xnoie, in terms of generalized Dedekind sums.

EXERCISES — Second Set

In many cases, exact computations with integers are quite difficult to carry out, but
we can attempt to study the probabilities that arise when we take the average over all
real values of z instead of restricting the calculation to integer values. Although these
results are only approximate, they shed some light on the subject.

It is convenient to deal with numbers U, between zero and one; for linear congru-
ential sequences, U, = Xn/m, and we have Uny1 = {aUn + 6}, where 6 = c¢/m and
{z} denotes mod 1. For example, the formula for serial correlation now becomes

C= (/le{axw}dx— (/ledx)2>/(/olm2dx—— (/ledx)2>.

» 21. [HM23] (R.R. Coveyou.) What is the value of C in the formula just given?

> 22. [M22] Let a be an integer, and let 0 < 6 < 1. If z is a real number between 0
and 1, and if s(z) = {az + 6}, what is the probability that s(z) < 7 (This is the “real
number” analog of Theorem P.)

23. [28] The previous exercise gives the probability that Uni1 < U,. What is the
probability that Uni2 < Uny1 < Un, assuming that Un is a random real number
between zero and one?

24. [M29] Under the assumptions of the preceding problem, except with 6§ = 0, show
that Up > Uny1 > -+ > Unqe—1 occurs with probability

o) (2

What is the average length of a descending run starting at Uy, assuming that Uy is
selected at random between zero and one?

» 25. [M25] Let a, 8, o', 8’ be real numbers with 0 < a << 1,0<d < g <1
Under the assumptions of exercise 22, what is the probability that « < z < § and
o < s(z) < #'? (This is the “real number” analog of exercise 19.)

26. [M21] Consider a “Fibonacci” generator, where Unt1 = {Un 4+ Un—1}. Assuming
that U; and U, are independently chosen at random between 0 and 1, find the proba-
bility that U; < Us < Us, Uy < Us < Uz, Uz < Ui < Us, etc. [Hint: Divide the unit
square {(z,y) | 0 < z,y < 1} into six parts, depending on the relative order of z, vy,
and {z + y}, and determine the area of each part.]

27. [M32] In the Fibonacci generator of the preceding exercise, let Uy and U; be cho-
sen independently in the unit square except that Up > Uy. Determine the probability
that U, is the beginning of an upward run of length k, so that Up > Uy < -+ < Ux >
Uks1. Compare this with the corresponding probabilities for a random sequence.

28. [M35] According to Eq. 3.2.1.3-(5), a linear congruential generator with potency 2
satisfies the condition Xn—1—2Xn+Xn+1 = (a—1)c (modulo m). Consider a generator

3.3.4 THE SPECTRAL TEST 93

that abstracts this situation: Let Un4+1 = {& + 2Un — Un—1}. As in exercise 26, divide
the unit square into parts that show the relative order of Ui, Uz, and Us; for each pair
(U1, Uz). Are there any values of a for which all six possible orders are achieved with
probability %, assuming that U; and U, are chosen at random in the unit square?

3.3.4. The Spectral Test

In this section we shall study an especially important way to check the quality of
linear congruential random number generators. Not only do all good generators
pass this test, all generators now known to be bad actually fail it. Thus it
is by far the most powerful test known, and it deserves particular attention.
Our discussion will also bring out some fundamental limitations on the degree
of randomness that we can expect from linear congruential sequences and their
generalizations.

The spectral test embodies aspects of both the empirical and theoretical
tests studied in previous sections: It is like the theoretical tests because it deals
with properties of the full period of the sequence, and it is like the empirical
tests because it requires a computer program to determine the results.

A. Ideas underlying the test. The most important randomness criteria seem
to rely on properties of the joint distribution of ¢ consecutive elements of the
sequence, and the spectral test deals directly with this distribution. If we have
a sequence (U,) of period m, the basic idea is to analyze the set of all m points

{(UnaUn+la"-aUn+t—1)|0Sn<m} (1)

in t-dimensional space.

For simplicity we shall assume that we have a linear congruential sequence
(Xo,a,c,m) of maximum period length m (so that ¢ # 0), or that m is prime
and ¢ = 0 and the period length is m — 1. In the latter case we shall add the
point (0,0,...,0) to the set (1), so that there are always m points in all; this
extra point has a negligible effect when m is large, and it makes the theory much
simpler. Under these assumptions, (1) can be rewritten as

{%(:c, s(z), s(s(x)), ..., st 1(z)) 1 0<z< m}, (2)

where
s(z) = (az + ¢) mod m (3)

is the successor of z. We are considering only the set of all such points in ¢
dimensions, not the order in which those points are actually generated. But the
order of generation is reflected in the dependence between components of the
vectors; and the spectral test studies such dependence for various dimensions ¢
by dealing with the totality of all points (2).

For example, Fig. 8 shows a typical small case in 2 and 3 dimensions, for
the generator with

s(z) = (1372 4 187) mod 256. (4)

94 RANDOM NUMBERS A 3.3.4

..o g e o - o
o-gb _o-pgB_o 0 o~
SDDDDSDDDDSDDSDDDmmi
DDDDDDDDDDDDDDDDDDDDDD: e
"0,0%08 8,0 0P8 0 e® @ & @
o O o 0 n o> @ @ g 9 .
Opo- o850 0P 0 0P, 0o 2 2e® P @ |
s - H
fDDDDDDDSDDDDDDDDDDDD @ﬁgf @@%@@®® @ @ N
.0 _gfg 0 DDDDDDDDDDD, ® 9¥0 g :®@®®@ﬁp éﬂ ©
%DDDDDDDDDDDDDDDDDD, s(z) ?® @@@@@@@@@Q%@@n@%
o o o al <2
o"g0 o500 0 0¥ @ @ 2.0 50999 % §
085950%,950%5050° o 02 %T%ThReb ¢b g ® @
DDDDDDDDDDDDDDDDDDD; _ @@ Dy BT @ @
" Bp0,0%:0,0%,0,0%0 s(s(z)) % ; o
0 g9 0% 8 08 0, . ?® 9.9 : g
'DD DDDD DDDD DD DD : ® @ :% %
o950 °7gP 0 g0 oym @ % f% B o
[T BN i W O = JONAY o, .- ROl . RO ® @@ %% q@ %? g ©
T 0 oge D T B ©
® T) @
@ T ' B g .
(a) ® g % g gég © @@
® , .
. . . ® 5 ® -
Fig. 8. (a) The two-dimensional ® ; W

grid formed by all pairs of suc- z e 78T (2)
cessive points (Xn, Xn+1), when (b) RRENUEN

Xnt1 = (137X, + 187) mod 256.

(b) The three-dimensional grid of triplets (Xn, Xn+1, Xny2)

Of course a generator with period length 256 will hardly be random, but 256 is
small enough that we can draw the diagram and gain some understanding before
we turn to the larger m’s that are of practical interest.

Perhaps the most striking thing about the pattern of boxes in Fig. 8(a) is
that we can cover them all by a fairly small number of parallel lines; indeed,
there are many different families of parallel lines that will hit all the points. For
example, a set of 20 nearly vertical lines will do the job, as will a set of 21 lines
that tilt upward at roughly a 30° angle. We commonly observe similar patterns
when driving past farmlands that have been planted in a systematic manner.

If the same generator is considered in three dimensions, we obtain 256 points
in a cube, obtained by appending a “height” component s(s(z)) to each of the
256 points (z, s(z)) in the plane of Fig. 8(a), as shown in Fig. 8(b). Let’s imagine
that this 3-D crystal structure has been made into a physical model, a cube that
we can turn in our hands; as we rotate it, we will notice various families of
parallel planes that encompass all of the points. In the words of Wallace Givens,
the random numbers stay “mainly in the planes.”

At first glance we might think that such systematic behavior is so nonrandom
as to make congruential generators quite worthless; but more careful reflection,
remembering that m is quite large in practice, provides a better insight. The
regular structure in Fig. 8 is essentially the “grain” we see when examining
our random numbers under a high-power microscope. If we take truly random
numbers between 0 and 1, and round or truncate them to finite accuracy so
that each is an integer multiple of 1/v for some given number v, then the t-
dimensional points (1) we obtain will have an extremely regular character when
viewed through a microscope.

Let 1/v, be the maximum distance between lines, taken over all families
of parallel straight lines that cover the points {(z/m, s(z)/m)} in two dimen-

3.3.4 THE SPECTRAL TEST 95

sions. We shall call v» the two-dimensional accuracy of the random number
generator, since the pairs of successive numbers have a fine structure that is
essentially good to one part in v. Similarly, let 1/v3 be the maximum distance
between planes, taken over all families of parallel planes that cover all points
{(z/m, s(zx)/m, s(s(z))/m)}; we shall call v3 the accuracy in three dimensions.
The t-dimensional accuracy v4 is the reciprocal of the maximum distance between
hyperplanes, taken over all families of parallel (¢ — 1)-dimensional hyperplanes
that cover all points {(z/m, s(z)/m, ..., stt=l(z)/m)}.

The essential difference between periodic sequences and truly random se-
quences that have been truncated to multiples of 1/v is that the accuracy of
truly random sequences is the same in all dimensions, while that of periodic
sequences decreases as t increases. Indeed, since there are only m points in the
t-dimensional cube when m is the period length, we can’t achieve a t-dimensional
accuracy of more than about ml/t.

When the independence of ¢t consecutive values is considered, computer-
generated random numbers will behave essentially as if we took truly random
numbers and truncated them to lgv; bits, where v; decreases with increasing t.
In practice, such varying accuracy is usually all we need. We don’t insist that the
10-dimensional accuracy be 232, in the sense that all (232)!% possible 10-tuples
(Upn,Unt1, - - - Unto) should be equally likely on a 32-bit machine; for such large
values of t we want only a few of the leading bits of (Upn,Unt1,- -, Unyt—1) t0
behave as if they were independently random.

On the other hand when an application demands high resolution of the
random number sequence, simple linear congruential sequences will necessarily
be inadequate. A generator with longer period should be used instead, even
though only a small fraction of the period will actually be generated. Squaring
the period length will essentially square the accuracy in higher dimensions; that
is, it will double the effective number of bits of precision.

The spectral test is based on the values of 14 for small ¢, say 2 < t < 6.
Dimensions 2, 3, and 4 seem to be adequate to detect important deficiencies
in a sequence, but since we are considering the entire period it is wise to be
somewhat cautious and go up into another dimension or two; on the other hand
the values of v, for t > 10 seem to be of no practical significance whatever. (This
is fortunate, because it appears to be rather difficult to calculate the accuracy v,
precisely when t > 10.)

There is a vague relation between the spectral test and the serial test; for
example, a special case of the serial test, taken over the entire period as in exercise
3.3.3-19, counts the number of boxes in each of 64 subsquares of Fig. 8(a). The
main difference is that the spectral test rotates the dots so as to discover the
least favorable orientation. We shall return to the serial test later in this section.

It may appear at first that we should apply the spectral test only for one
suitably high value of ¢; if a generator passes the test in three dimensions, it seems
plausible that it should also pass the 2-D test, hence we might as well omit the
latter. The fallacy in this reasoning occurs because we apply more stringent
conditions in lower dimensions. A similar situation occurs with the serial test:

96 RANDOM NUMBERS A 3.34

Consider a generator that (quite properly) has almost the same number of points
in each subcube of the unit cube, when the unit cube has been divided into 64
subcubes of size i X % X %; this same generator might yield completely empty
subsquares of the unit square, when the unit square has been divided into 64
subsquares of size % X %. Since we increase our expectations in lower dimensions,
a separate test for each dimension is required.

It is not always true that vy < mt/ ¢ although this upper bound is valid when
the points form a rectangular grid. For example, it turns out that vo = v/274 >
v/256 in Fig. 8, because a nearly hexagonal structure brings the m points closer
together than would be possible in a strictly rectangular arrangement.

In order to develop an algorithm that computes v; efficiently, we must look
more deeply at the associated mathematical theory. Therefore a reader who is
not mathematically inclined is advised to skip to part D of this section, where
the spectral test is presented as a “plug-in” method accompanied by several
examples. But the mathematics behind the spectral test requires only some

elementary manipulations of vectors.

Some authors have suggested using the minimum number N; of parallel
covering lines or hyperplanes as the criterion, instead of the maximum distance
1/v; between them. However, this number /V; does not appear to be as important
as the concept of accuracy defined above, because it is biased by how nearly
the slope of the lines or hyperplanes matches the coordinate axes of the cube.
For example, the 20 nearly vertical lines that cover all the points of Fig. 8(a)
are actually 1/\/_?;% units apart, according to Eq. (14) below with (u1,us) =
(18, —2); this might falsely imply an accuracy of one part in /328, or perhaps
even an accuracy of one part in 20. The true accuracy of only one part in v/274 is
realized only for the larger family of 21 lines with a slope of 7/15; another family
of 24 lines, with a slope of —11/13, also has a greater inter-line distance than
the 20-line family, since 1/ V290 > 1 / v/328. The precise way in which families
of lines act at the boundaries of the unit hypercube does not seem to be an
especially “clean” or significant criterion. However, for those people who prefer
to count hyperplanes, it is possible to compute /V; using a method quite similar
to the way in which we shall calculate 14 (see exercise 16).

*B. Theory behind the test. In order to analyze the basic set (2), we start
with the observation that

_ J j-—1
.l_sm(x) = (a zttaet - tea)c) mod 1. (5)

m m

We can get rid of the “mod 1” operation by extending the set periodically, making
infinitely many copies of the original ¢-dimensional hypercube, proceeding in all
directions. This gives us the set

[t—1]
L = {(E—i—kzl,f@ +k2,__,,8—-—£2 +kzt> integer :c,k:l,k:g,...,k:t}
m m m
at7lz

:{V0+(£+kl)a_x'+k2)"') +kt>
m m

integer x,kl,k2,---,kt}a

3.3.4 THE SPECTRAL TEST 97

where

Vo (0,¢, 1 +a)e, ..., (1+a+---+a""?)c) (6)

1
T m
is a constant vector. The variable k, is redundant in this representation of L,
because we can change (x, k1, ko, . . ., k¢) to (z+kim, 0, ko—aky, ..., ki—at~tky),
reducing k; to zero without loss of generality. Therefore we obtain the compara-
tively simple formula

L={Vo+wnuVi+yVa+ - +yV;|integer y1,v2,..., 4}, (7)
where
1
Vi=—(1,a,a%...,a""); 8
1 m(» 4, a4, , @)) ()
V2=(0,1,0,...,0), V3=(0,0,1,...,0), ey WZ(O,O,O,...,I). (9)

The points (1,2, ...,z) of L that satisfy 0 < z; < 1 for all j are precisely the
m points of our original set (2).

Notice that the increment ¢ appears only in Vp, and the effect of Vj is
merely to shift all elements of L without changing their relative distances; hence
¢ does not affect the spectral test in any way, and we might as well assume that
Vo = (0,0,...,0) when we are calculating v;. When Vj is the zero vector we
have a lattice of points

Lo ={y1Vi+y2Va+ -+ + vy Vi | integer y1,y2,..., Ut} (10)

and our goal is to study the distances between adjacent (¢ — 1)-dimensional
hyperplanes, in families of parallel hyperplanes that cover all the points of Ly.

A family of parallel (¢ — 1)-dimensional hyperplanes can be defined by a
nonzero vector U = (uy,...,us) that is perpendicular to all of them; and the set
of points on a particular hyperplane is then

{(z1,...,2:) | T1ug + - + Teue = g, (11)

where ¢ is a different constant for each hyperplane in the family. In other words,
each hyperplane is the set of all vectors X for which the dot product X-U has a
given value ¢. In our case the hyperplanes are all separated by a fixed distance,
and one of them contains (0,0,...,0); hence we can adjust the magnitude of U
so that the set of all integer values g gives all the hyperplanes in the family.
Then the distance between neighboring hyperplanes is the minimum distance
from (0,0,...,0) to the hyperplane for ¢ = 1, namely

min { x%—l—---—l—xf

real z1,...,2¢

xlul—l—----l—:ctut:l}. (12)

Cauchy’s inequality (see exercise 1.2.3-30) tells us that

(T1ug + - + zeu)? < (@3 + -+ 27) (Ul 4+ -+ uf), (13)

98 RANDOM NUMBERS _ 3.34

hence the minimum in (12) occurs when each z; = u;/(uf+- - -+u?); the distance
between neighboring hyperplanes is

1/\/u7%+---+uf = 1/length(U). (14)

In other words, the quantity v; that we seek is precisely the length of the shortest
vector U that defines a family of hyperplanes {X-U = ¢ | integer g} containing
all the elements of Lg.

Such a vector U = (u1, ..., us) must be nonzero, and it must satisfy V-U =
integer for all V in Lg. In particular, since the points (1,0,...,0), (0,1,...,0),
..., (0,0,...,1) are all in Ly, all of the u; must be integers. Furthermore since

V1 is in Ly, we must have %(ul + aug + -+ - + a*~luy) = integer, ie.,

uy +auz + -+ " lug =0 (modulo m). (15)

Conversely, any nonzero integer vector U = (u1, ..., us) satisfying (15) defines a
family of hyperplanes with the required properties, since all of Ly will be covered:
The dot product (yVi+---+v:V4) - U will be an integer for all integers v, - . ., ;.
We have proved that

v = min {4 +u] | uitaus+ - +a""tuy =0 (modulo m)}
(u1,...,ue)#(0,...,0)
: 2 t—1,3\2, .2 2 2
= min M) —arey—a“x3—---—a T¢) +xoTT3+ - +x;) .
(xla---azt)¢(0a"'a0)((' 2 ° t) 2 3 t)

(16)

C. Deriving a computational method. We have now reduced the spectral
test to the problem of finding the minimum value (16); but how on earth can we
determine that minimum value in a reasonable amount of time? A brute-force
search is out of the question, since m is very large in cases of practical interest.

It will be interesting and probably more useful if we develop a computational
method for solving an even more general problem: Find the minimum value of
the quantity

f(CCl, s ,:L‘t) = (ullxl + -t utlxt)2 + -+ (ult:cl + -+ Uttl't)2 (17)

over all nonzero integer vectors (zi,...,Z¢), given any nonsingular matrix of
coefficients U = (u;;). The expression (17) is called a “positive definite quadratic
form” in t variables. Since U is nonsingular, (17) cannot be zero unless the z;
are all zero.

Let us write Uy, ..., Us for the rows of U. Then (17) may be written

flze,...,ze) = (@ U + - -+ 2 Up) - (21U + - + 2 Uy), (18)

the square of the length of the vector z,U; + - - - + 2:U;. The nonsingular matrix
U has an inverse, which means that we can find uniquely determined vectors
Vi,...,V; such that

3.3.4 THE SPECTRAL TEST 99

For example, in the special form (16) that arises in the spectral test, we have

Ulz(m,0,0,...,O), Vlzi(l,a,aa...,at_l),
U2:(_a,l,O,-..,O), V2: (0,1, 0,..., 0),
U3 = (—CL2,0, 17' .- 70)7 V3 = (0707 17') 0)7 (20)
Ut = (_at_laoaoa“ '71)7 ‘/t = (0,0, 0,. <y 1)

These V; are precisely the vectors (8), (9) that we used to define our original
lattice Lo. As the reader may well suspect, this is not a coincidence —indeed, if
we had begun with an arbitrary lattice Ly, defined by any set of linearly inde-
pendent vectors Vi, ..., V4, the argument we have used above can be generalized
to show that the maximum separation between hyperplanes in a covering family
is equivalent to minimizing (17), where the coefficients u,; are defined by (19).
(See exercise 2.)

Our first step in minimizing (18) is to reduce it to a finite problem, namely

to show that we won’t need to test infinitely many vectors (z1,...,z;) when
finding the minimum. This is where the vectors Vi,...,V; come in handy; we
have

zk = (21U1 + -+ + 2,Uy) - Vi,
and Cauchy’s inequality tells us that
((CL‘lUl + -+ xtUt) : Vk)2 S f(:cl, e ,:ct)(Vk : Vk)

Hence we have derived a useful upper bound on each coordinate z:

Lemma A. Let (z1,...,7;) be a nonzero vector that minimizes (18) and let
(y1,--.,Y:) be any nonzero integer vector. Then

23 < flyr, .-, v0) (Vi - Vi), for 1 <k<t. (21)
In particular, letting y; = 6;; for all 1,

i < (U;-U;) (Vi - Vi), for 1 <j k<t 1| (22)

Lemma A reduces the problem to a finite search, but the right-hand side of
(21) is usually much too large to make an exhaustive search feasible; we need at
least one more idea. On such occasions, an old maxim provides sound advice: “If-
you can’t solve a problem as it is stated, change it into a simpler problem that
has the same answer.” For example, Euclid’s algorithm has this form; if we don’t
know the gcd of the input numbers, we change them into smaller numbers having
the same gcd. (In fact, a slightly more general approach probably underlies the
discovery of nearly all algorithms: “If you can’t solve a problem directly, change
1t into one or more simpler problems, from whose solution you can solve the
original one.”)

In our case, a simpler problem is one that requires less searching because the
right-hand side of (22) is smaller. The key idea we shall use is that it is possible
to change one quadratic form into another one that is equivalent for all practical

100 RANDOM NUMBERS : 3.3.4

purposes. Let j be any fixed subscript, 1 < j < ¢; let (q1,-..,¢j-1,q5+1,---,G)
be any sequence of t — 1 integers; and consider the following transformation of

the vectors:
V=V, - qV,

Vi=V,

J 3

T, =T; — 4%, U{:Uza for 1 # 7;

=z U =U;+ 5,40, (23)

!
(2
zj
It is easy to see that the new vectors Uj, ..., U; define a quadratic form f’
for which f'(z},...,z;) = f(z,,...,z,); furthermore the basic orthogonality
condition (19) remains valid, because it is easy to check that U; -V = &;;. As
(z1,...,x¢) runs through all nonzero integer vectors, so does (z7,...,}); hence
the new form f’ has the same minimum as f.

Our goal is to use transformation (23), replacing U; by U/ and V; by V. for
all 7, in order to make the right-hand side of (22) small; and the right-hand side
of (22) will be small when both U;-U; and Vi -V} are small. Therefore it is
natural to ask the following two questions about the transformation (23):

a) What choice of g; makes V-V, as small as possible?
b) What choice of g1, ..., gj—1, gj+1, - - - , ¢ makes U; - U} as small as possible?

It is easiest to solve these questions first for real values of the ¢;. Question (a)
is quite simple, since

(Vi—aiV;)-(Vi—aiV3) =Vi-Vi=24: Vi -V +] V-V
2
= (V;V3) (@ = (Ve V3 Vi V) 4 Vi Vi = (Ve V21 V; Vs,
and the minimum occurs when
a=V:i-V;/V;- V. (24)

Geometrically, we are asking what multiple of V; should be subtracted from V;
so that the resulting vector V' has minimum length, and the answer is to choose
g so that V' is perpendicular to V; (that is, to make V-V, = 0); the following
diagram makes this plain.

—q;Vj

— !
V=Y,

Turning to question (b), we want to choose the ¢; so that U; + Z# ;Ui has
minimum length; geometrically, we want to start with U; and add some vector
in the (¢ — 1)-dimensional hyperplane whose points are the sums of multiples
of {U; | i # j}. Again the best solution is to choose things so that Uj is
perpendicular to the hyperplane, making UJ’- ‘U, =0 for all k¥ # j:

Uj Ue+ > qi(Ui-Ux) =0, 1<k<t, k#j (26)
Iy

s e L) 5 St

3.34 THE SPECTRAL TEST 101

(See exercise 12 for a rigorous proof that a solution to question (b) must satisfy
these t — 1 equations.)

Now that we have answered questions (a) and (b), we are in a bit of a
quandary; should we choose the g; according to (24), so that the V;'-V; are
minimized, or according to (26), so that U -U; is minimized? Either of these
alternatives makes an improvement in the right-hand side of (22), so it is not
immediately clear which choice should get priority. Fortunately, there is a very
simple answer to this dilemma: Conditions (24) and (26) are exactly the same!
(See exercise 7.) Therefore questions (a) and (b) have the same answer; we have
a happy state of affairs in which we can reduce the length of both the U’s and
the V'’s simultaneously. Indeed, we have just rediscovered the Gram-Schmidt
orthogonalization process [see Crelle 94 (1883), 41-73].

Our joy must be tempered with the realization that we have dealt with
questions (a) and (b) only for real values of the g;. Our application restricts us
to integer values, so we cannot make V;' exactly perpendicular to V;. The best
we can do for question (a) is to let g; be the nearest integer to Vi -V; /V; -V
(see (25)). It turns out that this is not always the best solution to question (b);
in fact Uj may at times be longer than U;. However, the bound (21) is never
increased, since we can remember the smallest value of f(y1,...,¥:) found so
far. Thus a choice of g; based solely on question (a) is quite satisfactory.

If we apply transformation (23) repeatedly in such a way that none of the
vectors V; gets longer and at least one gets shorter, we can never get into a
loop; that is, we will never be considering the same quadratic form again after
a sequence of nontrivial transformations of this kind. But eventually we will
get stuck, in the sense that none of the transformations (23) for 1 < 5 <t
will be able to shorten any of the vectors Vi, ..., V;. At that point we can
revert to an exhaustive search, using the bounds of Lemma A, which will now
be quite small in most cases. Occasionally these bounds (21) will be poor, and
another type of transformation will usually get the algorithm unstuck again and
reduce the bounds (see exercise 18). However, transformation (23) by itself has
proved to be quite adequate for the spectral test; in fact, it has proved to be
amazingly powerful when the computations are arranged as in the algorithm
discussed below.

*D. How to perform the spectral test. Here now is an efficient computational
procedure that follows from our considerations. R. W. Gosper and U. Dieter
have observed that it is possible to use the results of lower dimensions to make
the spectral test significantly faster in higher dimensions. This refinement has
been incorporated into the following algorithm, together with Gauss’s significant
simplification of the two-dimensional case (exercise 5).

Algorithm S (The spectral test). This algorithm determines the value of

vy = min{\/xf ++2? |z +aze + -+ a2y =0 (modulo m)} (27)

for 2 < t < T, given a, m, and T, where 0 < a < m and a is relatively prime to
m. (The minimum is taken over all nonzero integer vectors (z1,... ,Z¢), and the

102 RANDOM NUMBERS : 3.3.4

number v; measures the t-dimensional accuracy of random number generators,
as discussed in the text above.) All arithmetic within this algorithm is done on
integers whose magnitudes rarely if ever exceed m?, except in step S7; in fact,
nearly all of the integer variables will be less than m in absolute value during
the computation.

When v, is being calculated for ¢ > 3, the algorithm works with two ¢ x ¢
matrices U and V, whose row vectors are denoted by U; = (us1,...,us) and
Vi = (vi1,...,v;) for 1 <@ <t. These vectors satisfy the conditions

us1 + auge + - - + at tug = 0 (modulo m), 1< <t (28)

(Thus the V; of our previous discussion have been multiplied by m, to ensure
that their components are integers.) There are three other auxiliary vectors,
X = (z1,...,%¢), Y = (y1,..-,4), and Z = (z1,...,2). During the entire
algorithm, r will denote a*~! mod m and s will denote the smallest upper bound
for v2 that has been discovered so far.
S1. [Initialize] Set t < 2, A« a, k' «<m,p 1,p' < 0,r < a,s< 1+ a’.
(The first steps of this algorithm handle the case ¢ = 2 by a special method,
very much like Euclid’s algorithm; we will have

h—ap=h —ap =0 (modulo m) and hp' —h'p=+m (30)

during this phase of the calculation.)

S2. [Euclidean step.] Set g < [h'/h], u + A —qh, v« p'—gp. If u? +v? < s,
set s < u2 +v%, B < h, h < u, p + p, p + v, and repeat step S2.

S3. [Compute v,.] Set u ~ u—h, v ¢ v—p; and if u2+v2 < s, set s < u? +v?,
h' + u, p' + v. Then output /s = v2. (The validity of this calculation for
the two-dimensional case is proved in exercise 5. Now we will set up the U
and V matrices satisfying (28) and (29), in preparation for calculations in
higher dimensions.) Set

—h p P’ h'
U(—(_h, p,), V(—i(_p —h)’

where the — sign is chosen for V' if and only if p’ > 0.

S4. [Advance t.] If t = T, the algorithm terminates. (Otherwise we want to
increase ¢t by 1. At this point U and V are t x t matrices satisfying (28)
and (29), and we must enlarge them by adding an appropriate new row
and column.) Set t + t+ 1 and r < (ar) mod m. Set U; to the new row
(—r,0,0,...,0,1) of t elements, and set u;; ¢~ 0 for 1 <1 < t. Set V; to the
new row (0,0,0,...,0,m). Finally, for 1 <i < t, set ¢ + round(vi;17/m),
vyt virr —gm, and Uy « Uy + qU;. (Here “round(x)” denotes the nearest
integer to z, e.g., |* + 1/2]. We are essentially setting v;; < v;ir and
immediately applying transformation (23) with j = ¢, since the numbers
|v;17r| are so large they ought to be reduced at once.) Finally set s «
min(s, U; - Uy), k < ¢, and j < 1. (In the following steps, j denotes the

3.3.4 THE SPECTRAL TEST 103

current row index for transformation (23), and k denotes the last such index
where the transformation shortened at least one of the V;.)

S5. [Transform.] For 1 < ¢ < t, do the following operations: If ¢ # j and
2|V1VJ| > VJVJ7 set g « round(Vi'Vj/Vj'Vj)v Vi < Vi _qu’ Uj =
U; + qU;, s < min(s, U;-U;), and k < j. (We omit the transformation
when 2|V; - V;| exactly equals Vj - Vj; exercise 19 shows that this precaution
keeps the algorithm from looping endlessly.)

S6. [Advance j.| If j =t, set j < 1; otherwise set j < j + 1. Now if j # &,
return to step S5. (If j = k, we have gone through ¢t — 1 consecutive cycles
of no transformation, so the transformation process is stuck.)

S7. [Prepare for search.] (Now the absolute minimum will be determined,
using an exhaustive search over all (zi,...,z:) satisfying condition (21)
of Lemma A.) Set X « Y « (0,...,0), set k < ¢, and set

5o VI Vs/m?] |, frigjst (31)

(We will examine all X = (z1,...,2¢) with |z;| < z; for 1 < j < t.
In hundreds of applications of this algorithm, no z; has yet turned out
to be greater than 1; but larger 2’s are probably possible in weird cases,
especially in higher dimensions. During the exhaustive search, the vector Y
will always be equal to ;U1 +- - -+ Uy, so that f(zy,...,2¢) = Y -Y. Since
f(=z1,...,—z¢) = f(x1,...,x¢), we shall examine only vectors whose first
nonzero component is positive. The method is essentially that of counting
in steps of one, regarding (z1,...,x:) as the digits in a balanced number
system with mixed radices (221 + 1, ..., 2z¢ + 1); see Section 4.1.)

S8. [Advance zx.] If zx = 2i, go to S10. Otherwise increase zx by 1 and set
Y «Y + U

S9. [Advance k.] Set k + k+1. Thenif k <t,set xx ¢ —2x, Y « Y — 22U,
and repeat step S9. But if k£ > ¢, set s < min(s, Y-Y).

S10. [Decrease k.| Set k «+ k — 1. If K > 1, return to S8. Otherwise output
vt = /5 (the exhaustive search is completed) and return to S4. |

In practice Algorithm S is applied for 7' = 5 or 6, say; it usually works reasonably
well when 7' = 7 or 8, but it can be terribly slow when 7' > 9 since the exhaustive
search tends to make the running time grow as 37. (If the minimum value 14
occurs at many different points, the exhaustive search will hit them all; hence
we typically find that all zx = 1 for large . As remarked above, the values of v;
are generally irrelevant for practical purposes when t is large.)

An example will help to make Algorithm S clear. Consider the linear
congruential sequence defined by

m = 101°, a = 3141592621, c=1, Xo=0. (32)

Six cycles of the Euclidean algorithm in steps S2 and S3 suffice to prove that the
minimum nonzero value of 2 + z2 with

T + 314159262122 = 0 (modulo 10°)

104 RANDOM NUMBERS : 3.3.4

occurs for z; = 67654, zo = 226; hence the two-dimensional accuracy of this
generator is

vy = /676542 + 2262 ~ 67654.37748.

Passing to three dimensions, we seek the minimum nonzero value of 22 + z3 + z3
such that .

1 + 3141592621z, + 3141592621223 = 0 (modulo 10%°). (33)
Step S4 sets up the matrices

—67654 —226 0 —191 —44190611 2564918569
U=|-44190611 1910}, V =|[-226 67654 1307181134 | .
5793866 331 0 0 10000000000

The first iteration of step S5, with ¢ = 1 for ¢ = 2 and q = 4 for ¢ = 3, changes
them to
<—21082801 97 4) <—191 —44190611 2564918569)
U= , V= .

—44190611 191 0 —35 44258265 —1257737435
5793866 33 1 764 176762444 —259674276

(The first row U; has actually gotten longer in this transformation, although
eventually the rows of U should get shorter.)

The next fourteen iterations of step S5 have (7, q1,q2,¢3) = (2, -2, %,0),
(3,0,3,%), (1,*,—10,-1), (2,-1,%,—6), (3,—1,0,%), (1,%,0,2), (2,0, *, —1),
(3,3,4,%), (1,%,0,0), (2,-5,%,0), (3,1,0,%), (1,* —3,—-1), (2,0, %,0), (3,0,0, *).
Now the transformation process is stuck, but the rows of the matrices have
become significantly shorter:

—1479 616 2777 —888874 601246 —2994234 '
U=|-3022 104 918 |, V = | —2809871 438109 1593689 | . (34)
—227 —983 -—-130 —854296 —9749816 —1707736

The search limits (z1, 22, 23) in step S7 turn out to be (0,0,1), so Us is the
shortest solution to (33); we have

vs = /2272 + 9832 + 1302 &~ 1017.21089.

Only a few iterations were needed to find this value, although condition (33)
looks quite formidable at first glance. Our computation has proved that all
points (Un, Un+1, Un+2) produced by the random number generator (32) lie on a
family of parallel planes about 0.001 units apart, but not on any family of planes
that differ by more than 0.001 units.

The exhaustive search in steps S8-S10 reduces the value of s only rarely.
One such case, found in 1982 by R. Carling and K. Levine, occurs when a =
464680339, m = 229, and t = 5; another case arose when the author calculated
v¢ for line 21 of Table 1, later in this section.

E. Ratings for various generators. So far we haven'’t really given a criterion
that tells us whether or not a particular random number generator passes or
flunks the spectral test. In fact, spectral success depends on the application,
since some applications demand higher resolution than others. It appears that

3.3.4 THE SPECTRAL TEST 105

ve > 230/t for 2 < t < 6 will be quite adequate for most purposes (although
the author must admit choosing this criterion partly because 30 is conveniently
divisible by 2, 3, 5, and 6).

For some purposes we would like a criterion that is relatively independent
of m, so we can say that a particular multiplier is good or bad with respect to
the set of all other multipliers for the given m, without examining any others.
A reasonable figure of merit for rating the goodness of a particular multiplier
seems to be the volume of the ellipsoid in ¢-space defined by the relation

(z1m — 2o — - — x40 D2+ 25+ + 27 < U2,
since this volume tends to indicate how likely it is that nonzero integer points
(z1,...,xs) —corresponding to solutions of (15) — are in the ellipsoid. We there-
fore propose to calculate this volume, namely
mt/2
Mt = W, (35)

as an indication of the effectiveness of the multiplier a for the given m. In this

formula,
(%)v _ (%) (% _ 1) (%)ﬁ for ¢ odd. (36)

Thus, in six or fewer dimensions the merit is computed as follows:
—)2 1.2 4
pe = Tvy /m, = gmv3/m, pa = 3mevi/m,
8 5 6
ps = 15T 1/5/m pe = sm3vg/m.

We might say that the multiplier a passes the spectral test if p; is 0.1 or more
for 2 <t <6, and it “passes with flying colors” if u; > 1 for all these t. A low
value of u; means that we have probably picked a very unfortunate multiplier,
since very few lattices will have integer points so close to the origin. Conversely,
a high value of y; means that we have found an unusually good multiplier for
the given m; but it does not mean that the random numbers are necessarily very
good, since m might be too small. Only the values v; truly indicate the degree
of randomness.

Table 1 shows what sorts of values occur in typical sequences. Each line of
the table considers a particular generator, and lists v2?, u;, and the “number of
bits of accuracy” 1g v;. Lines 1 through 4 show the generators that were the sub-
ject of Figs. 2 and 5 in Section 3.3.1. The generators in lines 1 and 2 suffer from
too small a multiplier; a diagram like Fig. 8 will have a nearly vertical “stripes”
when a is small. The terrible generator in line 3 has a good us but very poor us
and p4; like nearly all generators of potency 2, it has v3 = v/6 and vy = 2 (see
exercise 3). Line 4 shows a “random” multiplier; this generator has satisfactorily
passed numerous empirical tests for randomness, but it does not have especially
high values of us, ..., ue. In fact, the value of pus flunks our criterion.

Line 5 shows the generator of Fig. 8 It passes the spectral test with very
high-flying colors, when o through pg are considered, but of course m is so small
that the numbers can hardly be called random; the v; values are terribly low.

106 RANDOM NUMBERS : 3.34

Table 1
SAMPLE RESULTS OF THE SPECTRAL TEST
Line a m V2 l/g Vs v2 Vg
1 23 108 +1 530 530 530 530 447
2 2741 235 16642 16642 16642 15602 252
3 218 .41 235 434359738368 6 4 4 4
4 3141592653 235 2997222016 1026050 27822 1118 1118
5 137 256 274 30 14 6 4
6 3141592621 1010 4577114792 1034718 62454 1776 542
7 3141592221 1010 4293881050 276266 97450 3366 2382
8 4219755981 1010 110721093248 2595578 49362 5868 820
9 4160984121 1010 9183801602 4615650 16686 6840 1344
10 2244913 15 235 8364058 8364058 21476 16712 1496
11 513 235 33161885770 2025242 113374 13070 2256
12 21643 229 536936458 118 116 116 116
13 1812433253 232 4326934538 1462856 15082 4866 906
14 1566083941 232 4659748970 2079590 44902 4652 662
15 69069 232 4243209856 2072544 52804 6990 242
16 1664525 232 4938916874 2322494 63712 4092 1038
17 314159269 231_1 | 1432232969 899290 36985 3427 1144
18 62089911 231 _1 | 1977289717 1662317 48191 6101 1462
19 16807 2311 282475250 408197 21682 4439 895
20 48271 2311 | 1990735345 1433881 47418 4404 1402
21 40692 231_9249 | 1655838865 1403422 42475 6507 1438
22 | 44485709377909 246 5.6x 1013 1180915002 1882426 279928 26230
23 31167285 248 3.2x101% 4111841446 17341510 306326 59278
24 see (38) 2.4x10'8 47x101 1.9x10° 3194548 1611610
25 see (39) (231 —1)2 1.4x1012 643578623 12930027 837632
26 see the text 264 8.8x101% 6.4x1012 4.1x10° 45662836 1846368
27 see the text ~ 278 26211 4281084902 2.2x10° 1.8x10° 1862407
28 9—24-389 A 2576 1.8x 10173 3.5x 10115 4.4x10%¢ 2x10%° 5x10%7
29 | (232-5)400 | 21376 | 16x1041% 8.6x10%7% 1x10207 2x10!65 gx 10137

Line 6 is the generator discussed in (32) above. Line 7 is a similar example,
having an abnormally low value of p3. Line 8 shows a nonrandom multiplier
for the same modulus m; all of its partial quotients are 1, 2, or 3. Such
multipliers have been suggested by I. Borosh and H. Niederreiter because the
Dedekind sums are likely to be especially small and because they produce best
results in the two-dimensional serial test (see Section 3.3.3 and exercise 30). The
particular example in line 8 has only one ‘3’ as a partial quotient; there is no
multiplier congruent to 1 modulo 20 whose partial quotients with respect to 10°
are only 1s and 2s. The generator in line 9 shows another multiplier chosen with
malice aforethought, following a suggestion by A. G. Waterman that guarantees
a reasonably high value of ps (see exercise 11). Line 10 is interesting because it
has high p3 in spite of very low 2 (see exercise 8).

Line 11 of Table 1 is a reminder of the good old days—it once was used ex-
tensively, following a suggestion of O. Taussky in the early 1950s. But computers
for which 23° was an appropriate modulus began to fade in importance during

3.3.4 THE SPECTRAL TEST 107

(e= %)

lgvo lgvs lguvg lgvs lgue | po u3 pa K5 pe |Line

45 45 45 45 44| 28 B¢t 001 034 4.62 1
70 7.0 7.0 7.0 4.0 2% 3¢* 0.04 4.66 2 2
175 13 1.0 1.0 1.0]314 2 2 5€° €8 3
157 100 74 51 51027 0.13 011 0.01 0.21 4
40 25 1.9 13 1.01(336 269 378 1.81 1.29 5
16.0 100 80 5.4 45| 1.44 0.44 1.92 0.07 0.08 6
16.0 9.0 83 59 561|135 0.06 4.69 035 6.98 7
16.7 10.7 7.8 6.3 4.8 3.37 1.75 1.20 139 0.28 8
16.5 11.1 7.0 6.4 52289 4.15 0.14 2.04 1.25 9

11.5 11.5 7.2 7.0 5.3 | 8* 295 0.07 5.53 050 | 10
17.5 10.7 84 6.8 5.6 [3.03 0.61 1.85 299 173 | 11
145 34 3.4 34 34314 € €t €3 0.02 | 12
16.0 102 69 6.1 4.9 |3.16 1.73 0.26 2.02 0.89 | 13
16.1 10.5 7.7 6.1 471341 292 232 181 035 | 14
16.0 105 7.8 6.4 4.0|3.10 291 3.20 5.01 0.02 | 15
16.1 106 80 6.0 5.0|361 345 4.66 131 135 | 16
152 9.9 7.6 59 511|210 1.66 3.14 1.69 3.60 | 17
15.4 10.3 7.8 6.3 53289 4.18 534 7.13 752 | 18
140 93 72 6.1 49041 051 1.08 3.22 173 | 19
154 10.2 7.8 6.1 52291 335 517 3.15 6.63 | 20
15.3 102 7.7 6.3 52242 324 4.15 837 7.16 | 21
228 151 10.4 9.0 7.3.1248 242 0.25 3.10 133 | 22
241 16.0 12.0 9.1 7.9]3.60 3.92 5.27 0.97 3.82 | 23
30.5 19.4 15.4 10.8 10.3 | 1.65 0.29 3.88 0.02 4.69 | 24
31.0 20.2 15.6 11.8 9.813.14 149 0.44 0.69 0.66 | 25
31.5 21.3 16.0 12.7 10.4 | 1.50 3.68 4.52 4.02 1.76 | 26
31.0 16.0 155 154 104 | 565 4 85 2.56 et 27
288. 192, 144. 115. 959 | 2.27 3.46 3.92 249 298 | 28
688. 458. 344. 275. 229.]3.10 2.04 2.85 1.15 1.33 | 29

upper bounds from (40): 3.63 5.92 9.87 14.89 23.87

the late 60s, and they disappeared almost completely in the 80s, as machines
with 32-bit arithmetic began to proliferate. This change to a comparatively small
word size called for comparatively greater care. Line 12 was, alas, the generator
actually used on such machines in most of the world’s scientific computing centers
for more than a decade; its very name RANDU is enough to bring dismay into the
eyes and stomachs of many computer scientists! The actual generator is defined
by Xp odd, Xn41 = (65539X,,) mod 23, (37)
and exercise 20 indicates that 22° is the appropriate modulus for the spectral
test. Since 9X, — 6Xnt1 + Xnio = 0 (modulo 231), the generator fails most
three-dimensional criteria for randomness, and it should never have been used.
Almost any multiplier = 5 (modulo 8) would be better. (A curious fact about
RANDU, noticed by R. W. Gosper, is that v4 = vs = v =v7 =18 = Vg = V116,
hence pg is a spectacular 11.98.) Lines 13 and 14 are the Borosh—Niederreiter
and Waterman multipliers for modulus 232. Lines 16 and 23 were found by

108 RANDOM NUMBERS . 3.3.4

M. Lavaux and F. Janssens in a computer search for spectrally good multipliers
having a very high ps; line 22 is for the multiplier used with ¢ = 0 and m = 2*8 in
the Cray X-MP library; line 26 (whose excellent multiplier 6364136223846793005
is too big to fit in the column) is due to C. E. Haynes. Line 15 was nominated
by George Marsaglia as “a candidate for the best of all multipliers,” after a
computer search for nearly cubical lattices in dimensions 2 through 5, partly
because it is easy to remember [Applications of Number Theory to Numerical
Analysis, edited by S. K. Zaremba (New York: Academic Press, 1972), 275].

Line 17 uses a random primitive root, modulo the prime 23! —1, as multiplier.
Line 18 shows the spectrally best primitive root for 23! —1, found in an exhaustive
search by G. S. Fishman and L. R. Moore III [SIAM J. Sci. Stat. Comput. 7
(1986), 24-45]. The adequate but less outstanding multiplier 16807 = 7° in
line 19 is actually used most often for that modulus, after being proposed by
Lewis, Goodman, and Miller in IBM Systems J. 8 (1969), 136-146; it has been
one of the main generators in the popular IMSL subroutine library since 1971.
The main reason for continued use of a = 16807 is that a? is less than the
modulus m, hence ax mod m can be implemented with reasonable efficiency in
high-level languages using the technique of exercise 3.2.1.1-9. However, such
small multipliers have known defects. S. K. Park and K. W. Miller noticed that
the same implementation technique applies also to certain multipliers greater
than /m, so they asked G. S. Fishman to find the best “efficiently portable”
multiplier in this wider class; the result appears in line 20 [CACM 31 (1988),
1192-1201]. Line 21 shows another good multiplier, due to P. L’Ecuyer [CACM
31 (1988), 742-749, 774]; this one uses a slightly smaller prime modulus.

When the generators of lines 20 and 21 are combined by subtraction as
suggested in Eq. 3.2.2—(15), so that the generated numbers (Z,,) satisfy

Xpt1 = 48271X, mod (2°! — 1), Y,41 = 40692Y;, mod (23! — 249),
Zn = (Xn — Yn) mod (23! — 1),
exercise 32 shows that it is reasonable to rate (Z,) with the spectral test for
m = (231 —1)(23! - 249) and a = 1431853894371298687. (This value of a satisfies
amod (2%! — 1) = 48271 and a mod (23! — 249) = 40692.) The results appear on
line 24. We needn’t worry too much about the low value of us, since vs > 1000.
Generator (38) has a period of length (23! — 2)(23! — 250)/62 ~ 7 x 106.
Line 25 of the table represents the sequence

X, = (271828183 X,,—1 — 314159269X,,_3) mod (23! — 1), (39)

(38)

which can be shown to have period length (23! — 1)2 — 1; it has been analyzed
with the generalized spectral test of exercise 24.

The last three lines of Table 1 are based on add-with-carry and subtract-
with-borrow methods, which simulate linear congruential sequences that have
extremely large moduli (see exercise 3.2.1.1-14). Line 27 is for the generator

X, = (Xn-1+65430X,_2 + C,,) mod 2%,
Cnt1 = |(Xn—1+65430Xn_s + Cn) /2%,

3.34 THE SPECTRAL TEST 109

which corresponds to X,41 = (65430 - 23! + 1).X,, mod (65430 - 262 + 23! —1); the
numbers in the table refer to the “super-values”

X, = (65430 - 23! + 1) X,,_1 + 65430X,_2 + C,

rather than to the values X, actually computed and used as random numbers.
Line 28 represents a more typical subtract-with-borrow generator

Xn = (Xn—IO - Xn——24 - Cn) mod 2247 Cn+1 = {Xn—lo < Xn——24 + Cn])

but modified by generating 389 elements of the sequence and then using only the
first (or last) 24. This generator, called RANLUX, was recommended by Martin
Liischer after it passed many stringent tests that previous generators failed
[Computer Physics Communications 79 (1994), 100-110]. A similar sequence,

Xn = (Xn—22 - Xn——43 - Cn) mod (232 - 5)7 Cn+1 = [Xn—22 < Xn——43 + Cn];

with 43 elements used after 400 are generated, appears in line 29; this sequence is
discussed in the answer to exercise 3.2.1.2-22. In both cases the table entries refer
to the spectral test on multiprecision numbers X, instead of to the individual
“digits” X, but the high u values indicate that the process of generating 339 or
400 numbers before selecting 24 or 43 is an excellent way to remove biases due
to the extreme simplicity of the generation scheme.

Theoretical upper bounds on pu;, which can never be transcended for any m,
are shown just below Table 1; it is known that every lattice with m points per
unit volume has

vy < ’th/zml/t, (40)

where ; takes the respective values
(4/3)1/2, 2M3, 22 235 (64/3)1/6, 437, 2 (41)
for t = 2, ..., 8. [See exercise 9 and J. W. S. Cassels, Introduction to the

Geometry of Numbers (Berlin: Springer, 1959), p. 332; J. H. Conway and
N. J. A. Sloane, Sphere Packings, Lattices and Groups (New York: Springer,
1988), 20.] These bounds hold for lattices generated by vectors with arbitrary
real coordinates. For example, the optimum lattice for ¢ = 2 is hexagonal, and
it is generated by vectors of length 2/ v/3m that form two sides of an equilateral
triangle. In three dimensions the optimum lattice is generated by vectors Vi,
Vs, V3 that can be rotated into the form (v,v, —v), (v, —v,v), (—v,v,v), where

v=1/€/4_75.

*F. Relation to the serial test. In a series of important papers published
during the 1970s, Harald Niederreiter showed how to analyze the distribution of -
the t-dimensional vectors (1) by means of exponential sums. One of the main
consequences of his theory is that the serial test in several dimensions will be
passed by any generator that passes the spectral test, even when we consider
only a sufficiently large part of the period instead of the whole period. We
shall now turn briefly to a study of his interesting methods, in the case of linear
congruential sequences (Xg,a,c, m) of period length m.

110 RANDOM NUMBERS 3.3.4

The first idea we need is the notion of discrepancy in t dimensions, a
quantity that we shall define as the difference between the expected number
and the actual number of t-dimensional vectors (Tn,Zn41,--.,ZTntt—1) falling
into a hyper-rectangular region, maximized over all such regions. To be precise,
let (x,) be a sequence of integers in the range 0 < z, < m. We define

number of (Zp,...,Zntt—1) D Rfor 0 <n <N _ volume of R
N mt

DI(\?) = m}'c%x

(42)

where R ranges over all sets of points of the form

R={(y1, -y o1 <y1 <P,y ar Sy < Bi s (43)

here o; and @, are integers in the range 0 < a; < 8; < m, for 1 < j <t. The
volume of R is clearly (81 — a1)...(8: — o). To get the discrepancy D¢), we
imagine looking at all these sets R and finding the one with the greatest excess
or deficiency of points (Zn, - .-, Tntt—1)-

An upper bound for the discrepancy can be found by using exponential sums.
Let w = 2™/™ be a primitive mth root of unity. If (z1,...,2:) and (y1,...,¥s)
are two vectors with all components in the range 0 < z;,y; < m, we have

Z w(l'l—‘yl)u1+"'+(l't—‘yt)ut — {mt lf (xh .- 7xt) = (yh -. - 7yt)7
0 if (z1,...,2) # (Y1, Ye)-

0<uy,...,us <M

Therefore the number of vectors (Z,,...,Zntt—1) in R for 0 < n < N, when R
is defined by (43), can be expressed as

§ : § wxnu1+"'+$n+t—1ut E . E w—(y1u1+-~-+ytut).

0<n<N 0<uy,...,ug<m a1 <y1<B1 o <y <P

When u; = --- = us = 0 in this sum, we get N/m?® times the volume of R; hence
we can express DI(\?) as the maximum over R of

1 }: E: WERUL T T 1u §' E w— (vt tyrue)
Nmt .

0<n<N 0<Zuy,...,us<m a1<y1<Br <y <P
(u1,..-,ut)#(0,...,0)
Since complex numbers satisfy |w + z| < |w| + |z| and |wz| = |wl|z|, it follows

that

(t) 1 —(yrua e Hyeus)
Dy <m}%th Z Z Zw yiu1 y g(ug, ..., us)

0<ug,.ue<m a1 <y1<P1 ar <yt <P
(u1,-e,ut)#(0,...,0)

1 -
S W Z m}%x Z Z w (yrurtetyen) g(ul,...,ut)

0<uy,...,ut <m a1 <y1<Br ar Ly <Bt
(ul 7~‘~)ut)¢(0)"')0)

3.34 - THE SPECTRAL TEST 111

= E flug, . .yue) glur, ..., ue), (44)
0<uUy, e, ur <m
(ula"'yut)¢(0)"‘70)

where

1
J— n +'”+x’n —-1U .
gluy, ..., u) = |—= E wTn e-1te).
N
0<n<N

1 — e
f(ul,...,ut)zmgx—t— E E w (yrur+-+ysu)
m
a1<y1<B1 <y <P

1 _ 1 _
= max | — 5 w MY — 5 w vt
R |{m m

a1 <y1<61 oy Ly <P

Both f and g can be simplified further in order to get a good upper bound on
DI(\?). We have

1 w-—ﬁu ——ou

1 S W= |2
m m w—r —1
aly<p

< 2 _ ‘ 1
~ m|w* -1 msin(ru/m)

when u # 0, and the sum is < 1 when u = 0; hence

flur, .. ue) < r(ug, ... ue), (45)
where)
r(u .. uw) = H msin(mug/m) (46)
1<k<t
uk¢0

Furthermore, when (z,) is generated modulo m by a linear congruential se-
quence, we have

Toi+- + Tngio1U = Tour+ (aTn +)uz+- -+ (¢ Tzptelat 24 +1))u
= (u1+auz+-- +a T u) T+ h(ug, - u)

where h(uy,...,u;:) is independent of n; hence
1 a(ur,...ue)z

g(ulr-wut) = N Z w B (47)

0<n<N

where

g(ur, ..., ug) =uy + aug + -+ a* lug. (48)
Now here is where the connection to the spectral test comes in: We will show
that the sum g(uy,...,u;) is rather small unless g(ui,...,u:) = 0 (modulo m);
in other words, the contributions to (44) arise mainly from the solutions to (15).
Furthermore exercise 27 shows that r(uy, . .., u:) is rather small when (uy, ..., u;)

is a “large” solution to (15). Hence the discrepancy Dz(\?) will be rather small

112 RANDOM NUMBERS 3.34

when (15) has only “large” solutions, namely when the spectral test is passed.
Our remaining task is to quantify these qualitative statements by making careful
calculations.

In the first place, let’s consider the size of g(uy,...,u;). When N = m,

so that the sum (47) is over an entire period, we have g(u,,...,u;) = 0 except
when (uq, ..., u) satisfies (15), so the discrepancy is bounded above in this case
by the sum of 7(uy,...,u) taken over all the nonzero solutions of (15). But
let’s consider also what happens in a sum like (47) when N is less than m and
g(uy, ..., ut) is not a multiple of m. We have

1 Ty __ 1 1 —nk zi+jk

NZ“ —NZEZW Zw’

0<n<N 0<n<N 0<k<m 0<j<m
1 1 —nk
=5 2 (a d>ow ”)Sko, (49)
0<k<m 0<n<N

where

Se=) wiritik, (50)

0<j<m

Now Sk = w™*Sko, 50 |Ski| = |Sko| for all [, and we can calculate this common
value by further exponential-summery:

1
|Skol® = — > 18kl

o<l<m
N wx3+l+] w Tigl—?
m -
o<l<m 0Lj<m 0<i<m
— _]L_ E wlU—dk E WTiH T Titl
m —
0<i,5<m o<l<m
:i Z Z w(j“i)k Z w(aj_i—1)$i+z+(aj_i——l)c/(a——1).
m
0<i<m 1<j<m+i o<i<m

Let s be minimum such that a® =1 (modulo m), and let
s'=(a° —1)c/(a — 1) mod m.

Then s is a divisor of m (see Lemma 3.2.1.2P), and 45 = z,+js’ (modulo m).
The sum on [vanishes unless 7 — ¢ is a multiple of s, so we find that

. -
Seol?=m Y witkts
0<j<m/s

We have s’ = ¢'s where ¢’ is relatively prime to m (see exercise 3.2.1.2-21), so
it turns out that

(Siol = 0 if k 4+ ¢’ #Z 0 (modulo m/s),
LT A m/vE if k4 ¢ =0 (modulo m/s). (51)

3.3.4 THE SPECTRAL TEST 113

Putting this information back into (49), and recalling the derivation of (45),

shows that
1 T
N 2

0<n<N

< Frys k) (52)

where the sum is over 0 < k < m such that k+¢' = 0 (modulo m/s). Exercise 25
can now be used to estimate the remaining sum, and we find that

% Yo wen g%%lnwo(;\}g). (53)

0<n< N
The same bound can be used to estimate |[N ™' 35,y w®"| for any ¢ # 0
(modulo m), since the effect is to replace m in this derivation by a divisor of m.
In fact, the upper bound gets even smaller when ¢ has a factor in common
with m, since s and m/+/s generally become smaller. (See exercise 26.)

We have now proved that the g(u.,...,u;) part of our upper bound (44) on
the discrepancy is small, if IV is large enough and if (u1,...,u;) does not satisfy
the spectral test congruence (15). Exercise 27 proves that the f(uy,...,u;)
part of our upper bound is small, when summed over all the nonzero vectors
(ug,...,us) satisfying (15), provided that all such vectors are far away from
(0,...,0). Putting these results together leads to the following theorem of
Niederreiter:

Theorem N. Let (X,) be a linear congruential sequence (X, a,c, m) of period
length m, and let s be the least positive integer such that a®* = 1 (modulo m).
Then the t-dimensional discrepancy Dz(\?)

of (X,), as defined in (42), satisfies

D}(\?) -0 (\/glog -j\glog m)t) L0 (ﬂ(_}v?%/__gnz) + O((log m)* rmax); (54)

Dfﬁ) = O((log m)t 7“maX)- (55)

Here ry,x is the maximum value of the quantity r(ui,...,u;) defined in (46),
taken over all nonzero integer vectors (u1,...,u:) satisfying (15).

corresponding to the first N values

Proof. The first two O terms in (54) come from vectors (uj,...,us) in (44)
that do not satisfy (15), since exercise 25 proves that f(ui,...,u;) summed over
all (u1,...,us) is O(((2/7)Inm)*) and exercise 26 bounds each g(ui,...,us).
(These terms are missing from (55) since g(uy,...,us) = 0 in that case.) The
remaining O term in (54) and (55) comes from nonzero vectors (uy,...,us) that
do satisfy (15), using the bound derived in exercise 27. (By examining this
proof carefully, we could replace each O in these formulas by an explicit function
oft.) 1

Eq. (55) relates to the serial test in ¢ dimensions over the entire period,
while Eq. (54) gives us useful information about the distribution of the first N
generated values when N is less than m, provided that N is not too small.

114 RANDOM NUMBERS 3.34

Notice that (54) will guarantee low discrepancy only when s is sufficiently large,
otherwise the m/./s term will dominate. If m = pi*... p¢~ and ged(a — 1, m) =
p{l ...pfr, then s equals p‘{l"fl ...pf_’""f’" by Lemma 3.2.1.2P; thus, the largest

values of s correspond to high potency. In the common case m = 2¢ and a = 5

(modulo 8), we have s = $m, so Dj(\f) is O(y/m (logm)**tY/N) +O((log m)*rmax) -

It is not difficult to prove that
1

\/th

(see exercise 29). Therefore Eq. (54) says in particular that the discrepancy will
be low in t dimensions if the spectral test is passed and if /V is somewhat larger
than /m (logm)*+!.

In a sense Theorem N is almost too strong, for the result in exercise 30 shows
that linear congruential sequences like those in lines 8 and 13 of Table 1 have a
discrepancy of order (logm)?/m in two dimensions. The discrepancy in this case
is extremely small in spite of the fact that there are parallelogram-shaped regions
of area ~ 1/4/m containing no points (Up, Un+1). The fact that discrepancy can
change so drastically when the points are rotated warns us that the serial test
may not be as meaningful a measure of randomness as the rotation-invariant
spectral test.

<

(56)

Tmax

G. Historical remarks. In 1959, while deriving upper bounds for the error
in the evaluation of t-dimensional integrals by the Monte Carlo method, N. M.
Korobov devised a way to rate the multiplier of a linear congruential sequence.
His rather complicated formula is related to the spectral test, since it is strongly
influenced by “small” solutions to (15); but it is not quite the same. Korobov’s
test has been the subject of an extensive literature, surveyed by Kuipers and
Niederreiter in Uniform Distribution of Sequences (New York: Wiley, 1974), §2.5.

The spectral test was originally formulated by R. R. Coveyou and R. D.
MacPherson [JACM 14 (1967), 100-119], who introduced it in an interesting
indirect way. Instead of working with the grid structure of successive points,
they considered random number generators as sources of t-dimensional “waves.”
The numbers /z% +--- + z? such that z; + -+ + a*'z; = 0 (modulo m) in
their original treatment were the wave “frequencies,” or points in the “spectrum”
defined by the random number generator, with low-frequency waves being the
most damaging to randomness; hence the name spectral test. Coveyou and
MacPherson introduced a procedure analogous to Algorithm S for performing
their test, based on the principle of Lemma A. However, their original procedure
(which used matrices UU7 and VV7 instead of U and V) dealt with extremely
large numbers; the idea of working directly with U and V' was independently sug-
gested by F. Janssens and by U. Dieter. [See Math. Comp. 29 (1975), 827-833.]

Several other authors pointed out that the spectral test could be understood
in far more concrete terms; by introducing the study of the grid and lattice struc-
tures corresponding to linear congruential sequences, the fundamental limitations
on randomness became graphically clear. See G. Marsaglia, Proc. Nat. Acad. Sci.

3.34 THE SPECTRAL TEST 115

61 (1968), 25-28; W. W. Wood, J. Chem. Phys. 48 (1968), 427; R. R. Coveyou,
Studies in Applied Math. 3 (Philadelphia: SIAM, 1969), 70-111; W. A. Beyer,
R. B. Roof, and D. Williamson, Math. Comp. 25 (1971), 345-360; G. Marsaglia
and W. A. Beyer, Applications of Number Theory to Numerical Analysis, edited
by S. K. Zaremba (New York: Academic Press, 1972), 249-285, 361-370.

R. G. Stoneham showed, by using estimates of exponential sums, that p'/2+
or more elements of the sequence a*Xy mod p have asymptotically small dis-
crepancy, when a is a primitive root modulo the prime p [Acta Arithmetica 22
(1973), 371-389]. This work was extended as explained above in a number of
papers by Harald Niederreiter [Math. Comp. 28 (1974), 1117-1132; 30 (1976),
571-597; Advances in Math. 26 (1977), 99-181; Bull. Amer. Math. Soc. 84
(1978), 957-1041]. See also Niederreiter’s book Random Number Generation
and Quasi-Monte Carlo Methods (Philadelphia: SIAM, 1992).

EXERCISES

1. [M10] To what does the spectral test reduce in one dimension? (In other words,
what happens when ¢t = 17)

2. [HM20] Let Vi, ..., V; be linearly independent vectors in t-space, let Lo be the
lattice of points defined by (10), and let Un, ..., U; be defined by (19). Prove that the
maximum distance between (¢—1)-dimensional hyperplanes, over all families of parallel
hyperplanes that cover Lo, is 1/min{f(z1,... vz | (21, @) # (0, ..., 0)}, where
f is defined in (17).

3. [M24] Determine v and vy for all linear congruential generators of potency 2 and
period length m.

4. [M23] Let u1i, uiz, u21, u22 be elements of a 2 X 2 integer matrix such that
u11 + auis E_U21 + augz = 0 (modulo m) and U11U22 — U21U1I2 = TN.

a) Prove that all integer solutions (y1, y2) to the congruence y1 +ay2 = 0 (modulo m)
have the form (y1,¥2) = (£1u11 +T2u21, T1u12+T2uU22) for integer z1, z2.

b) If, in addition, 2Jui1us1 + uiause| < ul; +uly < u3; + u3y, prove that (yi,y2) =
(u11,u12) minimizes y: + y2 over all nonzero solutions to the congruence.

5. [M30] Prove that steps S1 through S3 of Algorithm S correctly perform the spec-

tral test in two dimensions. [Hint: See exercise 4, and prove that (A’ +h)*+(p' + p)* >
h? + p* at the beginning of step S2.]

6. [M30] Let ag, a1, ..., at—1 be the partial quotients of a/m as defined in Section
3.3.3, and let A = maxo<;j<: aj. Prove that uz > 2n/(A+ 1+ 1/A4).

7. [HM22] Prove that questions (a) and (b) following Eq. (23) have the same solution
for real values of qi, ..., @j—1, @j+1, ---, g+ (see (24) and (26)).

8. [M16] Line 18 of Table 1 has a very low value of pa, yet us is quite satisfactory.
What is the highest possible value of pus when puz = 107% and m = 101°?

9. [HM32] (C. Hermite, 1846.) Let f(z1,...,x:) be a positive definite quadratic
form, defined by the matrix U as in (17), and let 8 be the minimum value of f at
nonzero integer points. Prove that 6 < (?,:—)('5'1)/2 |det U|?/t. [Hints: If W is any integer
matrix of determinant 1, the matrix WU defines a form equivalent to f; and if S is
any orthogonal matrix (that is, if S 1=g T), the matrix US defines a form identically
equal to f. Show that there is an equivalent form g whose minimum 6 occurs at

116 RANDOM NUMBERS 3.3.4

(1,0,...,0). Then prove the general result by induction on ¢, writing g(zi,...,2:) =
O(z1 + Bexo + -+ + Bixe)® + h(xa, ..., x¢) where h is a positive definite quadratic form
in t — 1 variables.]

10. [M28] Let y1 and y2 be relatively prime integers such that y; +ay, =0 (modulo m)
and ¥ +y3 < \/4/_3m. Show that there exist integers u; and us such that u; +aus =0
(modulo m), u1ys — uays = m, 2|ury1 + u2yz| < min(ui+ul, yi+y2), and (vl + ul) x
(yi + v3) > m®. (Hence v3 = min(ul+u3,yi+y3) by exercise 4.)

» 11. [HM30] (Alan G. Waterman, 1974.) Invent a reasonably efficient procedure that
computes multipliers a = 1 (modulo 4) for which there exists a relatively prime solution
to the congruence y1 +ay2 = 0 (modulo m) with yi +y3 = \/4/_3m —¢, where e > 0 is
as small as possible, given m = 2°. (By exercise 10, this choice of a will guarantee that
v > m?/(y? +y2) > +/3/4m, and there is a chance that v will be near its optimum
value \/4/_3m. In practice we will compute several such multipliers having small e,
choosing the one with best spectral values vz, vs,)

12. [HM23] Prove, without geometrical handwaving, that any solution to question (b)
following Eq. (23) must also satisfy the set of equations (26).

13. [HM22] Lemma A uses the fact that U is nonsingular to prove that a positive
definite quadratic form attains a definite, nonzero minimum value at nonzero integer
points. Show that this hypothesis is necessary, by exhibiting a quadratic form (19)
whose matrix of coefficients is singular, and for which the values of f(zi1,...,z:) get
arbitrarily near zero (but never reach it) at nonzero integer points (z1,...,x¢).

14. [24] Perform Algorithm S by hand, for m = 100, a = 41, T = 3.

» 15. [M20] Let U be an integer vector satisfying (15). How many of the (¢t — 1)-
dimensional hyperplanes defined by U intersect the unit hypercube {(zi,...,z¢) |
0<zj<lforl < j < t}? (This is approximately the number of hyperplanes in
the family that will suffice to cover Ly.)

16. [M30] (U. Dieter.) Show how to modify Algorithm S in order to calculate the
minimum number N; of parallel hyperplanes intersecting the unit hypercube as in
exercise 15, over all U satisfying (15). [Hint: What are appropriate analogs to positive
definite quadratic forms and to Lemma A7?]

17. [20] Modify Algorithm S so that, in addition to computing the quantities vy, it
outputs all integer vectors (u1,...,u:) satisfying (15) such that uf + ... +u? = 2, for
2<t< T

18. [M30] This exercise is about the worst case of Algorithm S.

a) By considering “combinatorial matrices,” whose elements have the form y + z4;;
(see exercise 1.2.3-39), find 3 x 3 matrices of integers U and V satisfying (29) such
that the transformation of step S5 does nothing for any j, but the corresponding
values of z; in (31) are so huge that exhaustive search is out of the question. (The
matrix U need not satisfy (28); we are interested here in arbitrary positive definite
quadratic forms of determinant m.)

b) Although transformation (23) is of no use for the matrices constructed in (a), find
another transformation that does produce a substantial reduction.

» 19. [HM25] Suppose step S5 were changed slightly, so that a transformation with
g = 1 would be performed when 2V;-V; = V;-V;. (Thus, ¢ = [(V;-V; /V;-V;) + 2]
whenever i # j.) Would it be possible for Algorithm S to get into an infinite loop?

3.34 THE SPECTRAL TEST 117

20. [M23] Discuss how to carry out an appropriate spectral test for linear congruential
sequences having ¢ = 0, Xy odd, m = 2%, amod 8 = 3 or 5. (See exercise 3.2.1.2-9.)

21. [M20] (R. W. Gosper.) A certain application uses random numbers in batches of
four, but “throws away” the second of each set. How can we study the grid structure
of {%(X;;m, Xan+2, Xants) }, given a linear congruential generator of period m = 2°7

22. [M46] What is the best upper bound on us3, given that ps is very near its
maximum value /4/3 7?7 What is the best upper bound on pu2, given that us is very
near its maximum value %71'\/5?

23. [M46] Let U;, V; be vectors of real numbers with U; - V; = d;; for 1 < 4,5 < ¢,
and such that U,-U; = 1, 2|U;-U;| < 1, 2|V;-V;| < V;-V; for i # j. How large
can V;- Vi be? (This question relates to the bounds in step S7, if both (23) and the
transformation of exercise 18(b) fail to make any reductions. The maximum value
known to be achievable is (¢ + 2)/3, which occurs when U1 = I, U; = +I1 + 2V/3 I,
Vi=IL —(Ih+---+1)/V3, V; = 2I;/\/3, for 2 < j < t, where (I1,...,I;) is the
identity matrix; this construction is due to B. V. Alekseev.)

24. [M28] Generalize the spectral test to second-order sequences of the form X, =
(aXn-1+bXn—2) mod p, having period length p® —1. (See Eq. 3.2.2—(8).) How should
Algorithm S be modified?

25. [HM24] Let d be a divisor of m and let 0 < ¢ < d. Prove that) r(k), summed
over all 0 < k < m such that kmod d = ¢, is at most (2/dr)In(m/d) + O(1). (Here
r(k) is defined in Eq. (46) when t = 1.)

26. [M22] Explain why the derivation of (53) leads to a similar bound on

NT! Z wien

0<n<N

for 0 < g < m. Where does the derivation of (53) break down when m = 17
27. [HM39] (E. Hlawka, H. Niederreiter.) Let 7(u1,...,u¢) be the function defined

in (46). Prove that Y 7(u1,...,u:), summed over all 0 < uy,...,u; < m such that
(uiy...,us) # (0,...,0) and (15) holds, is at most 2((m + 27 lgm)* rmax), Where Tmax
is the maximum term r(ui,...,u:) in the sum.

28. [M28] (H. Niederreiter.) Find an analog of Theorem N for the case m = prime,
c = 0, a = primitive root modulo m, Xo # 0 (modulo m). [Hint: Your exponential
sums should involve ¢ = €2™/(™~1) a5 well as w.] Prove that in this case the “average”
primitive root has discrepancy Df,tl)_l = O (t(logm)‘/p(m — 1)), hence good primitive
roots exist for all m.

29. [HM22] Prove that the quantity rmax of exercise 27 is never larger than 1/v/8v;.

30. [M33] (S. K. Zaremba.) Prove that Tmax = O(max(a1,...,as)/m) in two dimen-
sions, where aj, ..., as are the partial quotients obtained when Euclid’s algorithm
is applied to m and a. [Hint: We have a/m = //ai1,...,as//, in the notation of
Section 4.5.3; apply exercise 4.5.3—42.]

31. [HM47] (I Borosh.) Prove that for all sufficiently large m there exists a number
a relatively prime to m such that all partial quotients of a/m are < 3. Furthermore
the set of all m satisfying this condition but with all partial quotients < 2 has positive
density.

118 RANDOM NUMBERS 3.3.4

> 32. [M21] Let mi =2*' —1 and my = 2%' — 249 be the moduli of generator (38).
a) Show that if U, = (X /m; — Y»/m2) mod 1, we have U, ~ Z,,/m,.
b) Let Wy = (Xom2 — Yomi) mod m and Wr41 = aW, mod m, where a and m have
the values stated in the text following (38). Prove that there is a simple relation
between W, and U,.

2\ In the next edition -of this book, I plan to introduce a new Section 3.3.5,

. entitled “The L3 Algorithm.” It will be a digression from the general topic of
Random Numbers, but it will continue the discussion of lattice basis reduction in
Section 3.3.4. Its main topic will be the now-classic algorithm of A. K. Lenstra,
H. W. Lenstra, Jr., and L. Lovdsz [Math. Annalen 261 (1982), 515-534] for
finding a near-optimum set of basis vectors, and improvements to that algorithm
made subsequently by other researchers. Examples of the latter can be found
in the following papers and their bibliographies: M. Seysen, Combinatorica 13
(1993), 363-375; C. P. Schnorr and H. H. Hérner, Lecture Notes in Comp. Sci.
921 (1995), 1-12.

3.4.1 NUMERICAL DISTRIBUTIONS 119

3.4. OTHER TYPES OF RANDOM QUANTITIES

WE HAVE NOW SEEN how to make a computer generate a sequence of numbers
Uy, Uy, Us, ... that behaves as if each number were independently selected
at random between zero and one with the uniform distribution. Applications of
random numbers often call for other kinds of distributions, however; for example,
if we want to make a random choice from among k alternatives, we want a
random integer between 1 and k. If some simulation process calls for a random
waiting time between occurrences of independent events, a random number with
the exponential distribution is desired. Sometimes we don’t even want random
numbers — we want a random permutation (a random arrangement of n objects)
or a random combination (a random choice of k objects from a collection of n).

In principle, any of these other random quantities can be obtained from the
uniform deviates Uy, Uy, Uz, ...; people have devised a number of important
“random tricks” for the efficient transformation of uniform deviates. A study of
these techniques also gives us insight into the proper use of random numbers in
any Monte Carlo application.

It is conceivable that someday somebody will invent a random number
generator that produces one of these other random quantities directly, instead of
getting it indirectly via the uniform distribution. But no direct methods have as
yet proved to be practical, except for the “random bit” generator described in
Section 3.2.2. (See also exercise 3.4.1-31, where the uniform distribution is used
primarily for initialization, after which the method is almost entirely direct.)

The discussion in the following section assumes the existence of a random
sequence of uniformly distributed real numbers between zero and one. A new
uniform deviate U is generated whenever we need it. These numbers are usually
represented in a computer word with the radix point assumed at the left.

3.4.1. Numerical Distributions

This section summarizes the best techniques known for producing numbers from
various important distributions. Many of the methods were originally suggested
by John von Neumann in the early 1950s, and they have gradually been improved
upon by other people, notably George Marsaglia, J. H. Ahrens, and U. Dieter.

A. Random choices from a finite set. The simplest and most common type
of distribution required in practice is a random integer. An integer between 0
and 7 can be extracted from three bits of U on a binary computer; in such a
case, these bits should be extracted from the most significant (left-hand) part
of the computer word, since the least significant bits produced by many random
number generators are not sufficiently random. (See the discussion in Section
3.2.1.1)

In general, to get a random integer X between O and k — 1, we can multiply
by k, and let X = |kU|. On MIX, we would write

LDA U (1)
MUL K

120 RANDOM NUMBERS 3.4.1

and after these two instructions have been executed the desired integer will
appear in register A. If a random integer between 1 and & is desired, we add one
to this result. (The instruction “INCA 1” would follow (1).)

This method gives each integer with nearly equal probability. There is a
slight error because the computer word size is finite (see exercise 2); but the
error is quite negligible if k is small, for example if k/m < 1/10000.

In a more general situation we might want to give different weights to
different integers. Suppose that the value X = 1z; is to be obtained with
probability p;, and X = z2 with probability p, ..., X = x, with probability py.
We can generate a uniform number U and let

x1, if0<U <py;

z2, ifp1 <U <p; +po;
X=X (2)

Tk, fpr+pe+--+pp1 <UL

(Note that py +ps +---+pr = 1.)

There is a “best possible” way to do the comparisons of U against various
values of p; + p2 + --- + ps, as implied in (2); this situation is discussed in
Section 2.3.4.5. Special cases can be handled by more efficient methods; for
example, to obtain one of the eleven values 2, 3, ,.., 12 with the respective “dice”

probabilities z, &, ..., 3%, ---, =, 35, We could compute two independent
random integers between 1 and 6 and add them together.
However, there is actually a faster way to select z1, ..., z) with arbitrarily

given probabilities, based on an ingenious approach introduced by A. J. Walker
[Electronics Letters 10,8 (1974), 127-128; ACM Trans. Math. Software 3 (1977),
253-256]. Suppose we form kU and consider the integer part K = [kU| and
fraction part V = (kU) mod 1 separately; for example, after the code (1) we will
have K in register A and V in register X. Then we can always obtain the desired
distribution by doing the operations

if V<Pg then X < xgy; otherwise X « Yk, (3)

for some appropriate tables (Pp, ..., Px_1) and (Yp,...,Yx_1). Exercise 7 shows
how such tables can be computed in general. Walker’s method is sometimes
called the method of “aliases.”

On a binary computer it is usually helpful to assume that k is a power of 2,
so that multiplication can be replaced by shifting; this can be done without loss
of generality by introducing additional z's that occur with probability zero. For
example, let’s consider dice again; suppose we want X = j to occur with the
following 16 probabilities:

Jj=01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 5 4 3 2 1

P; =0 0 35 36 36 36 36 36 36 36 36 36 36 0 0 O

3.4.1 NUMERICAL DISTRIBUTIONS 121

We can do this using (3), if ¥ = 16 and z;41 = j for 0 < 3 < 16, and if the P
and Y tables are set up as follows:

j=01 2 3 4 5 6 7 8 9 101112131415
7T 7T 8 4

Pp=003%%8 11 1113F ¢ 355000

Y;=5 9 7 4 x 6 x x x 8 4 7106 7 8

(When P; = 1, Y; is not used.) For example, the value 7 occurs with probability
- (1-P)+Pr+(1-Pu)+(1—Pu)) = = as required. It is a peculiar way
to throw dice, but the results are indistinguishable from the real thing.

The probabilities p; can be represented implicitly by nonnegative weights
wi, Ws, ..., wg; if we denote the sum of the weights by W, then p; = w;/W.
In many applications the individual weights vary dynamically. Matias, Vitter,
and Ni [SODA 4 (1993), 361-370] have shown how to update a weight and
generate X in constant expected time.

B. General methods for continuous distributions. The most general real-
valued distribution can be expressed in terms of its “distribution function” F(z),
which specifies the probability that a random quantity X will not exceed z:

F(z) =Pr(X < z). (4)
This function always increases monotonically from zero to one; that is,
F(z1) < F(z2), ifz <y F(—o0) =0, F(4o00) = 1. (5)

Examples of distribution functions are given in Section 3.3.1, Fig. 3. If F(z)
is continuous and strictly increasing (so that F(z;) < F(z3) when z; < z2),
it takes on all values between zero and one, and there is an inverse function
F=1(y) such that, for 0 < y < 1,

y = F(z) if and only if 2 = FI7l(y). (6)

In general, when F(z) is continuous and strictly increasing, we can compute a
random quantity X with distribution F'(z) by setting

X = FH(), (7)

where U is uniform. This works because the probability that X < z is the prob-
ability that F{-1(U) < x, namely the probability that U < F(z), namely F(z).

The problem now reduces to one of numerical analysis, namely to find good
methods for evaluating FIm(U) to the desired accuracy. Numerical analysis
lies outside the scope of this seminumerical book; yet a number of important
shortcuts are available to speed up the general approach of (7), and we will
consider them here.

In the first place, if X; is a random variable having the distribution F}(z)
and if X» is an independent random variable with the distribution F(z), then

max(X;, X2) has the distribution Fi(z)F>(z),)
min(X;, X3) has the distribution Fi(z) + Fa(z) — Fi(z)Fa(z).

122 RANDOM NUMBERS 3.4.1

(See exercise 4.) For example, a uniform deviate U has the distribution F(z) = z,
for 0 < z < 1; if Uy, Uy, ..., U; are independent uniform deviates, then
max(Uy,Us, ..., U;) has the distribution function F(z) = z*, for 0 < z < 1.
This formula is the basis of the “maximum-of-t¢ test” given in Section 3.3.2; the
inverse function is FI-U(y) = v/y. In the special case ¢t = 2, we see therefore
that the two formulas

X =VU and X = max (U, Us) (9)

will give equivalent distributions to the random variable X, although this is not
obvious at first glance. We need not take the square root of a uniform deviate.

The number of tricks like this is endless: Any algorithm that employs
random numbers as input will give a random quantity with some distribution as
output. The problem is to find general methods for constructing the algorithm,
given the distribution function of the output. Instead of discussing such methods
in purely abstract terms, we shall study how they can be applied in important
cases.

C. The normal distribution. Perhaps the most important nonuniform, con-
tinuous distribution is the normal distribution with mean zero and standard

deviation one:) .
Flx) = — e—t2/2 dt. 10
@=>=/ (10)

The significance of this distribution was indicated in Section 1.2.10. In this case
the inverse function FI=1 is not especially easy to compute; but we shall see
that several other techniques are available.

1) The polar method, due to G. E. P. Box, M. E. Muller, and G. Marsaglia.
(See Annals Math. Stat. 29 (1958), 610-611; and Boeing Scientific Res. Lab.
report D1-82-0203 (1962).)

Algorithm P (Polar method for normal deviates). This algorithm calculates
two independent normally distributed variables, X; and Xs.

P1. [Get uniform variables.] Generate two independent random variables, U;
and Us, uniformly distributed between zero and one. Set V; « 2U; — 1,
Vo « 2U; — 1. (Now V) and V; are uniformly distributed between —1 and
+1. On most computers it will be preferable to have V; and V5 represented
in floating point form.)

P2. [Compute S.] Set S « V2 + VZ£.

P3. [Is S > 17] If S > 1, return to step P1. (Steps P1 through P3 are executed
1.27 times on the average, with a standard deviation of 0.587; see exercise 6.)

P4. [Compute X, X2.] Set X;, X5 as follows:

—2InS —2InS
S y X2 = V2 S . (11)

These are the normally distributed variables desired. |

X1 =W

3.4.1 NUMERICAL DISTRIBUTIONS 123

To prove the validity of this method, we use elementary analytic geometry
and calculus: If S < 1 in step P3, the point in the plane with Cartesian
coordinates (V1, V) is a random point uniformly distributed inside the unit circle.
Transforming to polar coordinates V3, = Rcos ©, Vo = Rsin ©, we find

S=R?’ X,=v-2InScos®, X;=+/—2InSsin®.

Using also the polar coordinates X; = R’cos®’, X3 = R’sin®’, we find that
© =0 and R' = v-2InS. It is clear that R’ and ©’ are independent, since
R and © are independent inside the unit circle. Also, © is uniformly distributed
between 0 and 2m; and the probability that R’ < r is the probability that
—2In S < r2, namely the probability that S > e™" */2, This equals 1 —e™" gl 2
since S = R2 is uniformly distributed between zero and one. The probablhty
that R’ lies between r and r + dr is therefore the differential of 1 — e~/ 2
namely re™" /2 dp. Similarly, the probability that ©’ lies between 6 and 6 + d9
is (1/2m)df. The joint probability that X, < z; and that X, < z; now can be
computed; it is

1
/ e /2rdrdf
{(r,8) | rcos <z, rsin0<zq} 27‘(’

= i e~ (@ +y7)/2 dz dy

{(‘T,'y) | .’lf<.’131, 'y<$2}

(L) (o)

This proves that X; and X, are independent and normally distributed, as
desired.

2) The rectangle-wedge-tail method, introduced by G. Marsaglia. Here we use

the function
2 T
F(z) = erf(z/V2) = ,/;/ e 2dt, 1 >0, (12)
0

which gives the distribution of the absolute value of a normal deviate. After X
has been computed according to distribution (12), we will attach a random sign
to its value, and this will make it a true normal deviate.

The rectangle-wedge-tail approach is based on several important general
techniques that we shall explore as we develop the algorithm. The first key idea
is to regard F'(z) as a mizture of several other functions, namely to write

F(z) = p1 Fi() + p2 Fo(z) + - - + prFan(2), (13)

where Fy, F5, ..., F, are appropriate distributions and p;, p2, ..., p. are
nonnegative probabilities that sum to 1. If we generate a random variable X by
choosing distribution F; with probability p;, it is easy to see that X will have
distribution F overall. Some of the distributions F;(z) may be rather difficult to
handle, even harder than F itself, but we can usually arrange things so that the

124 RANDOM NUMBERS 3.4.1
oo
0.8 — 18
07 i$f19
' f20

0.6 —

0.5 i
0.4 A
0.3
0.2

0.1 —
0.0

filf2|fs|fa|fs
0

!
4

Fig. 9. The density function divided into 31 parts. The area of each part represents
the average number of times a random number with that density is to be computed.

probability p; is very small in that case. Most of the distributions Fj(z) will be
quite easy to accommodate, since they will be trivial modifications of the uniform
distribution. The resulting method yields an extremely efficient program, since
its average running time is very small.

It is easier to understand the method if we work with the derivatives of the
distributions instead of the distributions themselves. Let

f(@)=F'(z), fi(z) = Fj/(z)

be the density functions of the probability distributions. Equation (13) becomes

f(@) = p1fi(x) + p2afolz) + - - - + pr fu(x). - (14)

Each f;(z) is > 0, and the total area under the graph of f;(z) is 1; so there is
a convenient graphical way to display the relation (14): The area under f(z)
1s divided into n parts, with the part corresponding to f;(x) having area p;.
See Fig. 9, which illustrates the situation in the case of interest to us here, with
f(z) =F'(z) =/2/me™" "/2; the area under this curve has been divided into n =
31 parts. There are 15 rectangles, which represent p; fi(z), ..., pisfis(z); there
are 15 wedge-shaped pieces, which represent pi¢ fis(), ..., p3ofso(x); and the
remaining part ps1 f31(z) is the “tail,” namely the entire graph of f(z) for z > 3.

The rectangular parts fi(x), ..., fis(z) represent uniform distributions.
For example, f3(z) represents a random variable uniformly distributed between
2 and 2. The altitude of p; f;(z) is £(j/5), hence the area of the jth rectangle
1s

2 ,
j = —f(3/5) 5im 70 for1< <15 (15)

In order to generate such rectangular portions of the distribution, we simply
compute

X =3U+S5, (16)

3.4.1 NUMERICAL DISTRIBUTIONS 125

. . | 0) y
s s+h s s+h

Fig. 10. Density functions for which Algorithm L may be used to generate random
numbers.

where U is uniform and S takes the value (j —1)/5 with probability p;. Since
p1 + -+ p1s = .9183, we can use simple uniform deviates like this about 92
percent of the time. '

In the remaining 8 percent, we will usually have to generate one of the
wedge-shaped distributions Fig, ..., F3p. Typical examples of what we need to
do are shown in Fig. 10. When z < 1, the curved part is concave downward, and
when z > 1 it is concave upward, but in each case the curved part is reasonably
close to a straight line, and it can be enclosed in two parallel lines as shown.

To handle these wedge-shaped distributions, we will rely on yet another
general technique, von Neumann'’s rejection method for obtaining a complicated
density from another one that “encloses” it. The polar method described above is
a simple example of such an approach: Steps P1-P3 obtain a random point inside
the unit circle by first generating a random point in a larger square, rejecting it
and starting over again if the point was outside the circle.

The general rejection method is even more powerful than this. To generate a
random variable X with density f, let g be another probability density function
such that

f(t) < cg(t) (17)
for all ¢, where c is a constant. Now generate X according to density g, and also
generate an independent uniform deviate U. If U > f(X)/cg(X), reject X and
start again with another X and U. When the condition U < f(X)/cg(X) finally
occurs, the resulting X will have density f as desired. [Proof: X <z will occur

with probability p(z) = ffoo (g(t) dt - f(t)/cg(t)) + gp(z), where the quantity
g= [(g(t)dt-(1—f(t)/cg(t))) = 1—1/cis the probability of rejection; hence

-0
p(z) = [Z f(t)dt]

The rejection technique is most efficient when c is small, since there will be
c iterations on the average before a value is accepted. (See exercise 6.) In some
cases f(x)/cg(z) is always 0 or 1; then U need not be generated. In other cases
if f(z)/cg(x) is hard to compute, we may be able to “squeeze” it between two
bounding functions

r(z) < f(z)/cg(z) < s(z) (18)

126 RANDOM NUMBERS 3.4.1

0T ST @
Fig. 11. Region of “acceptance” in Algorithm L.

that are much simpler, and the exact value of f(z)/cg(x) need not be calculated
unless 7(z) < U < s(z). The following algorithm solves the wedge problem by
developing the rejection method still further.

Algorithm L (Nearly linear densities). This algorithm may be used to gen-
erate a random variable X for any distribution whose density f(z) satisfies the
following conditions (see Fig. 10):

f(z) =0, for x < s and for z > s + h;

o-bz-s)/h<f@) <b-bla-s)h, fors<s<sth 0

L1. [Get U < V.] Generate two independent random variables U and V, uni-
formly distributed between zero and one. If U > V, exchange U +> V.

L2. [Easy case?] If V < a/b, go to L4.

L3. [Try again?] If V > U + (1/b)f(s + hU), go back to step L1. (If a/b is close
to 1, this step of the algorithm will not be necessary very often.)

L4. [Compute X.] Set X < s+ hU. |

When step L4 is reached, the point (U, V) is a random point in the area
shaded in Fig. 11, namely, 0 < U <V < U + (1/b)f(s + hU). Conditions (19)
ensure that

a

b
Now the probability that X < s + hz, for 0 < z < 1, is the area that lies to the
left of the vertical line U = z in Fig. 11, divided by the total area, namely

T 1 s+hzx
| 56+ huydu / | 5 huydu = |

therefore X has the correct distribution.

With appropriate constants a;, b;, s;, Algorithm L will take care of the
wedge-shaped densities f;;15 of Fig. 9, for 1 < j < 15. The final distribution,
I31, needs to be treated only about one time in 370; it is used whenever a result
X > 3 is to be computed. Exercise 11 shows that a standard rejection scheme
can be used for this “tail.” We are ready to consider the procedure in its entirety:

1
SU+3f(s+hU) < 1.

3.4.1 NUMERICAL DISTRIBUTIONS 127

M1. Get U

\ Yes
M2. Rectangle?
C:__gJ

No

MS5. Easy case? Yes

Wed No
<M3. Wedge or tai@——e——ge—» M4. Get U<V
Tail Y\es@ﬁ. Another try@—l\li—}

MT7. Get supertail deviate MS8. Reject?

M9. Attach sign

v

Fig. 12. The “rectangle-wedge-tail” algorithm for generating normal deviates.

Algorithm M (Rectangle-wedge-tail method for normal deviates). For this
algorithm we use auxiliary tables (Po,...,Ps1), (Q1,...,Q15), (Yo,...,Y31),
(Z(), cen ,Z31), (51, ey 516)7 (D16; ey D30), (Els, ceey E30), constructed as ex-
plained in exercise 10; examples appear in Table 1. We assume that a binary
computer is being used; a similar procedure could be worked out for decimal
machines.

M1. [Get U] Generate a uniform random number U = (.bob1bz...b:)2. (Here
the b’s are the bits in the binary representation of U. For reasonable
accuracy, t should be at least 24.) Set ¥ « by. (Later, ¢ will be used
to determine the sign of the result.)

M2. [Rectangle?] Set j « (bib2bsbsbs)2, a binary number determined by the
leading bits of U, and set f « (.bgby...bs)2, the fraction determined by
the remaining bits. If f > P;, set X « Y; 4+ fZ; and go to M9. Otherwise
if j < 15 (that is, by = 0), set X « S; + fQ; and go to M9. (This is an
adaptation of Walker’s alias method (3).)

M3. [Wedge or tail?] (Now 15 < 5 < 31, and each particular value j occurs with
probability p;.) If j = 31, go to MT.

M4. [Get U < V.] Generate two new uniform deviates, U and V; if U > V,
exchange U < V. (We are now performing Algorithm L.) Set X « S,;_15+
1
U
=U.

MS5. [Easy case?] If V < D;, go to MO.

128 RANDOM NUMBERS 3.4.1

Table 1
EXAMPLE OF TABLES USED WITH ALGORITHM M*
P; Piyie Qj Y; Yivie Zj Zj+ie Sijt1 Djtis Ejyis
000 .067 000 059 020 021 0.0

849 161 236 — 0.92 0.96 1.32 024 0.2 .505 25.00
970 236 206 — 5.86 —0.06 6.66 0.26 0.4 773 12.50
.855 285 234 — 0.58 0.12 1.38 0.28 0.6 876 8.33
994 .308 201 —33.13 1.31 3493 0.29 0.8 939 6.25
995 .304 201 —39.55 0.31 41.35 0.29 1.0 .986 5.00
933 .280 214 - 2.57 1.12 297 0.28 1.2 .995 4.06
923 241 217 — 1.61 0.54 2.61 0.26 1.4 987 3.37
727 197 275 0.67 0.75 0.73 0.25 1.6 979 2.86
1.000 .152 200 0.00 0.56 0.00 0.24 1.8 972 2.47
10 .691 .112 289 0.35 0.17 0.65 0.23 2.0 .966 2.16
11 454 .079 440 - 0.17 0.38 037 0.22 2.2 .960 1.92
12 287 .052 .698 0.92 -0.01 0.28 0.21 2.4 954 1.71
13 174 033 1.150 0.36 0.39 024 0.21 2.6 948 1.54
14 101 .020 1974 — 0.02 0.20 0.22 0.20 2.8 942 1.40
15 .057 .086 3.526 0.19 0.78 0.21 0.22 3.0 936 1.27

OO IOO Utk WK K O|S.

*In practice, this data would be given with much greater precision; the table shows only enough
figures so that interested readers will be able to test their own algorithms for computing the
values more accurately.

MBS6. [Another try?] If V > U + Ej(e(‘ga?-14—x2)/2 — 1), go back to step M4;
otherwise go to M9. (This step is executed with low probability.)

MT7. [Get supertail deviate.] Generate two new independent uniform deviates,
UandV, and set X « +/9—-2InV.

MBS. [Reject?] If UX > 3, go back to step M7. (This will occur only about
one-twelfth as often as we reach step MS8.)

MO. [Attach sign.] If p =1, set X « -X. 1

This algorithm is a very pretty example of mathematical theory intimately
interwoven with programming ingenuity —a fine illustration of the art of com-
puter programming! Only steps M1, M2, and M9 need to be performed most
of the time, and the other steps aren’t terribly slow either. The first publica-
tions of the rectangle-wedge-tail method were by G. Marsaglia, Annals Math.
Stat. 32 (1961), 894-899; G. Marsaglia, M. D. MacLaren, and T. A. Bray,
CACM 7 (1964), 4-10. Further refinements of Algorithm M have been developed
by G. Marsaglia, K. Ananthanarayanan, and N. J. Paul, Inf Proc. Letters 5
(1976), 27-30.

3) The odd-even method, due to G. E. Forsythe. An amazingly simple technique
for generating random deviates with a density of the general exponential form

f(z) = Ce "® [a <z <b], (20)

when
0<h(z)<1 fora<z<b, (21)

was discovered by John von Neumann and G. E. Forsythe about 1950. The idea
is based on the rejection method described earlier, letting g(z) be the uniform

3.4.1 NUMERICAL DISTRIBUTIONS 129

distribution on [a..b): We set X <+ a+ (b— a)U, where U is a uniform deviate,
and then we want to accept X with probability e~"*). The latter operation
could be done by comparing e~*X) to V, or h(X) to —InV, when V is another
uniform deviate, but the job can be done without applying any transcendental
functions in the following interesting way. Set Vy < h(X), then generate uniform
deviates V1, V4, ... until finding some K > 1 with Vx_; < V. For fixed X and k,
the probability that h(X) > Vi > --- > Vi is 1/k! times the probability that
max(V1,..., Vi) < h(X), namely h(X)*/k!; hence the probability that K = k is
h(X)*=1/(k — 1)! — h(X)*/k!, and the probability that K is odd is

ROXORT ROFY
2 ((EC—)l)! - (k!))Ze . (22)

kodd, k>1

Therefore we reject X and try again if K is even; we accept X as a random
variable with density (20) if K is odd. We usually won’t have to generate
many V’s in order to determine K, since the average value of K (given X)
is Yo Pr(K > k) = 3 oo M(X)F/k! = ehX) <e.

Forsythe realized some years later that this approach leads to an efficient
method for calculating normal deviates, without the need for any auxiliary
routines to calculate square roots or logarithms as in Algorithms P and M. His
procedure, with an improved choice of intervals [a..b) due to J. H. Ahrens and
U. Dieter, can be summarized as follows.

Algorithm F (Odd-even method for normal deviates). This algorithm generates
normal deviates on a binary computer, assuming approximately ¢ + 1 bits of
accuracy. It requires a table of values d; = a; —a;_1, for 1 < j < ¢+ 1, where

a; is defined by the relation
2 [2 1
2 —=/2 gy —
- /aj e dz = 55" (23)

F1. [Get U.] Generate a uniform random number U = (.bgb; ... b;)2, where by,
b1, ..., by denote the bits in binary notation. Set ¢ < by, j « 1, and a « 0.

F2. [Find first zero b;.] If b; = 1, set a < a +d;, j < j + 1, and repeat this
step. (If j =t + 1, treat b; as zero.)

F3. [Generate candidate.] (Now a = a;_1, and the current value of j occurs with
probability ~ 277. We will generate X in the range [a;_; ..a;), using the
rejection method above, with h(z) = 22/2—a?/2 = y?/2+ay where y = z—a.
Exercise 12 proves that h(z) < 1 as required in (21).) Set Y « d; times
(:bjt1...bt)2 and V < (3Y +a)Y. (Since the average value of j is 2, there
will usually be enough significant bits in (.bj41...b:)2 to provide decent
accuracy. The calculations are readily done in fixed point arithmetic.)

F4. [Reject?] Generate a uniform deviate U. If V. < U, go on to step F5.
Otherwise set V to a new uniform deviate; and if now U < V (that is, if K
is even, in the discussion above), go back to F3, otherwise repeat step F4.

F5. [Return X.] Set X <~ a+ Y. Ifyp =1,set X < -X. |

130 RANDOM NUMBERS 3.4.1

(0, v/2/e)

Fig. 13. Region of “acceptance”
in the ratio-of-uniforms method
for normal deviates. Lengths of
lines with coordinate ratio x have
the normal distribution.

(07_\/ 2/6)

Values of d; for 1 < j <47 appear in a paper by Ahrens and Dieter, Math.
Comp. 27 (1973), 927-937; their paper discusses refinements of the algorithm
that improve its speed at the expense of more tables. Algorithm F is attractive
since it is almost as fast as Algorithm M and it is easier to implement. The
average number of uniform deviates per normal deviate is 2.53947; R. P. Brent
[CACM 17 (1974), 704-705] has shown how to reduce this number to 1.37446
at the expense of two subtractions and one division per uniform deviate saved.

4) Ratios of uniform deviates. There is yet another good way to generate
normal deviates, discovered by A. J. Kinderman and J. F. Monahan in 1976.
Their idea is to generate a random point (U, V') in the region defined by

0<u<l, —2uy/In(1/u) < v < 2uy/In(1/u), (24)

and then to output the ratio X « V/U. The shaded area of Fig. 13 is the magic
region (24) that makes this all work. Before we study the associated theory, let
us first state the algorithm so that its efficiency and simplicity are manifest:

Algorithm R (Ratio method for normal deviates). This algorithm generates

normal deviates X.

R1. [Get U,V.] Generate two independent uniform deviates U and V, where
U is nonzero, and set X « /8/e (V—-3) /U (Now X is the ratio of
the coordinates (U, /8/e (V — %)) of a random point in the rectangle that
encloses the shaded region in Fig. 13. We will accept X if the corresponding
point actually lies “in the shade,” otherwise we will try again.)

3.4.1 NUMERICAL DISTRIBUTIONS 131

R2. [Optional upper bound test.] If X2 < 5 — 4e}/4U, output X and terminate
the algorithm. (This step can be omitted if desired; it tests whether or not
the selected point is in the interior region of Fig. 13, making it unnecessary
to calculate a logarithm.)

R3. [Optional lower bound test.] If X2 > 4e=13%/U + 1.4, go back to R1. (This
step could also be omitted; it tests whether or not the selected point is
outside the exterior region of Fig. 13, making it unnecessary to calculate a
logarithm.)

R4. [Final test.] If X? < —4InU, output X and terminate the algorithm.
Otherwise go back to R1. |

Exercises 20 and 21 work out the timing analysis; four different algorithms
are analyzed, since steps R2 and R3 can be included or omitted depending on
one’s preference. The following table shows how many times each step will be
performed, on the average, depending on which of the optional tests is applied:

Step Neither R2 only R3 only Both

R1 1.369 1.369 1.369 1.369
R2 0 1.369 0 1.369 (25)
R3 0 0 1.369 0.467
R4 1.369 0.467 1.134 0.232

Thus it pays to omit the optional tests if there is a very fast logarithm operation,
but if the log routine is rather slow it pays to include them.

But why does it work? One reason is that we can calculate the probability
that X < z, and it turns out to be the correct value (10). But such a calculation
isn’t very easy unless one happens to hit on the right trick, and anyway it is
better to understand how the algorithm might have been discovered in the first
place. Kinderman and Monahan derived it by working out the following theory
that can be used with any well-behaved density function f(z) [see ACM Trans.
Math. Software 3 (1977), 257-260].

In general, suppose that a point (U, V') has been generated uniformly over
the region of the (u,v)-plane defined by

u >0, u? < g(v/u) (26)

for some nonnegative integrable function g. If we set X < V/U, the probability
that X < z can be calculated by integrating du dv over the region defined by the
two relations in (26) plus the auxiliary condition v/u < z, then dividing by the
same integral without this extra condition. Letting v = tu, so that dv = udt,
the integral becomes

R v g(t) 1 R
/ dt/ udu = 5/ g(t) dt.
—00 0

—o0
Hence the probability that X <z is

/ ;gm dt / / :° o(t) dt. (27)

132 RANDOM NUMBERS 3.4.1
The normal distribution comes out when g(t) = et/ 2, and the condition
u? < g(v/u) simplifies in this case to (v/u)? < —4Inwu. It is easy to see that the
set of all (u,v) satisfying this relation is entirely contained in the rectangle of
Fig. 13.
The bounds in steps R2 and R3 define interior and exterior regions with
simpler boundary equations. The well-known inequality

e* > 1+x,
which holds for all real numbers z, can be used to show that
l+lnc—cu < —lnu < 1/(cu) —1+1Inc (28)

for any constant ¢ > 0. Exercise 21 proves that ¢ = e!/* is the best possible
constant to use in step R2. The situation is more complicated in step R3, and
there doesn’t seem to be a simple expression for the optimum ¢ in that case, but
computational experiments show that the best value for R3 is approximately
el'35. The approximating curves (28) are tangent to the true boundary when
u=1/c

It is possible to obtain a faster method by partitioning the region into
subregions, most of which can be handled more quickly. Of course, this means
that auxiliary tables will be needed, as in Algorithms M and F. An interesting
alternative that requires fewer auxiliary table entries has been suggested by
Ahrens and Dieter in CACM 31 (1988), 1330-1337.

5) Normal deviates from normal deviates. Exercise 31 discusses an interesting
approach that saves time by working directly with normal deviates instead of
basing everything on uniform deviates. This method, introduced by C. S. Wallace
in 1996, has comparatively little theoretical support at the present time, but it
has successfully passed a number of empirical tests.

6) Variations of the normal distribution. So far we have considered the normal
distribution with mean zero and standard deviation one. If X has this distribu-
tion, then

Y=p+oX (29)

has the normal distribution with mean p and standard deviation o. Furthermore,
if X; and X, are independent normal deviates with mean zero and standard
deviation one, and if

Y1 = + 01Xy, Y =#2+02(PX1+\/1—P2X2), (30)

then Y7 and Y5 are dependent random variables, normally distributed with means
p1, p2 and standard deviations o1, o9, and with correlation coefficient p. (For a
generalization to n variables, see exercise 13.)

D. The exponential distribution. After uniform deviates and normal de-
viates, the next most important random quantity is an expomnential deviate.
Such numbers occur in “arrival time” situations; for example, if a radioactive
substance emits alpha particles at a rate such that one particle is emitted every

3.4.1 NUMERICAL DISTRIBUTIONS 133

1 seconds on the average, then the time between two successive emissions has
the exponential distribution with mean p. This distribution is defined by the
formula

Flz)=1- e 2/H x> 0. (31)

1) Logarithm method. Clearly, if y = F(z) = 1 - e~%/k then z = FImH(y) =
—uln(1—y). Therefore —plIn(1—U) has the exponential distribution by Eq. (7).
Since 1 — U is uniformly distributed when U is, we conclude that

X =-—phhU (32)

is exponentially distributed with mean p. (The case U = 0 must be treated
specially; we can substitute any convenient value € for 0, since the probability of
this case is extremely small.)

2) Random minimization method. We saw in Algorithm F that there are
simple and fast alternatives to calculating the logarithm of a uniform deviate.
The following especially efficient approach has been developed by G. Marsaglia,
M. Sibuya, and J. H. Ahrens [see CACM 15 (1972), 876-877]:

Algorithm S (Ezponential distribution with mean p). This algorithm produces
exponential deviates on a binary computer, using uniform deviates with (t + 1)-
bit accuracy. The constants

In2 In 2)2 In 2)*
_ 12 (ln) (1n2)

Qi =+ 5+ + 5 k21 (33)

should be precomputed, extending until Q[k] > 1 — 27%.

S1. [Get U and shift.] Generate a (¢ + 1)-bit uniform random binary fraction
U = (.bgb1bs .. . by)2; locate the first zero bit b;, and shift off the leading j+1

bits, setting U < (.bj4+1...b¢)2. (As in Algorithm F, the average number of
discarded bits is 2.)

S2. [Immediate acceptance?] If U < In2, set X < u(jln2 + U) and terminate
the algorithm. (Note that Q[1] =1n2.)

S3. [Minimize.] Find the least £ > 2 such that U < Q[k]. Generate k£ new
uniform deviates Uy, ..., Ux and set V « min(Uy, ..., Uk).

S4. [Deliver the answer.] Set X < u(j+V)In2. |

Alternative ways to generate exponential deviates (for example, a ratio of
uniforms as in Algorithm R) might also be used.

E. Other continuous distributions. Let us now consider briefly how to
handle some other distributions that arise reasonably often in practice.

1) The gamma distribution of order a > 0 is defined by

F@) =55 /03c t*"te7tdt, z>0. (34)

134 RANDOM NUMBERS 3.4.1

When a = 1, this is the exponential distribution with mean 1; whe